

Learn Programming with C

Authored by two standout professors in the feld of Computer Science and Technology
with extensive experience in instructing, Learn Programming with C: An Easy Step-by Step
Self-Practice Book for Learning C is a comprehensive and accessible guide to programming
with one of the most popular languages.

Meticulously illustrated with fgures and examples, this book is a comprehensive
guide to writing, editing, and executing C programs on diferent operating systems and
platforms, as well as how to embed C programs into other applications and how to create
one’s own library. A variety of questions and exercises are included in each chapter to test
the readers’ knowledge.

Written for the novice C programmer, especially undergraduate and graduate students,
this book’s line-by-line explanation of code and succinct writing style makes it an excellent
companion for classroom teaching, learning, and programming labs.

Sazzad M.S. Imran, Ph.D., is Professor in the Department of Electrical and Electronic
Engineering, University of Dhaka, Bangladesh. He completed his B.Sc. and M.S. degrees in
Applied Physics, Electronics & Communication Engineering from the University of Dhaka
and received his Ph.D. degree from the Optical Communication Lab of the Kanazawa
University, Japan. Dr. Imran has vast experience in teaching C/C++, Assembly Language,
MATLAB®, PSpice, AutoCAD, etc., at the university level (more at sazzadmsi.webnode.
com).

Md Atiqur Rahman Ahad, Ph.D., SMIEEE, SMOPTICA, is Associate Professor of
Artifcial Intelligence and Machine Learning at the University of East London, UK; and
Visiting Professor at the Kyushu Institute of Technology, Japan. He worked as Professor at
the University of Dhaka and Specially Appointed Associate Professor at Osaka University.
He has authored/edited 14+ books and published 200+ peer-reviewed papers (more at
http://ahadvisionlab.com).

http://sazzadmsi.webnode.com
http://sazzadmsi.webnode.com
http://ahadvisionlab.com

http://taylorandfrancis.com

Learn Programming with C
An Easy Step-by-Step Self-Practice Book

for Learning C

Sazzad M.S. Imran, Ph.D.
Md Atiqur Rahman Ahad, Ph.D.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Prof. Sazzad M.S. Imran, Ph.D. and Prof. Md Atiqur Rahman Ahad, Ph.D.

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been
acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that
are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data
Names: Imran, Sazzad, author. | Ahad, Md. Atiqur Rahman, author.
Title: Learn programming with C / Prof. Sazzad Imran, Ph.D, and Prof. Md. Atiqur Rahman Ahad, Ph.D.
Description: First edition. | Boca Raton, FL : CRC Press, 2024. | Includes bibliographical references and index. |
 Summary: “Authored by two standout professors in the fields of Computer Science and Technology with
 extensive experience in instructing, Learn Programming with C is a comprehensive and accessible guide to
 programming with one of the most popular languages. Meticulously illustrated with figures and examples, this
 book is a comprehensive guide to writing, editing and executing C programs on different operating systems and
 platforms, as well as how to embed C programs into other applications and how to create one’s own library.
 A variety of questions and exercises are included in each chapter to test the readers’ knowledge Written for the
 novice C programmer, especially undergraduate and graduate students, this book’s line-by-line explanation of
 code and succinct writing style makes it an excellent companion for classroom teaching, learning and
 programming labs”—Provided by publisher.
Identifiers: LCCN 2023033790 (print) | LCCN 2023033791 (ebook) | ISBN 9781032299082 (hbk) |
 ISBN 9781032283555 (pbk) | ISBN 9781003302629 (ebk)
Subjects: LCSH: C (Computer program language). | Computer programming.
Classification: LCC QA76.73.C15 I47 2024 (print) | LCC QA76.73.C15 (ebook) | DDC 005.13/3—dc23/eng/20231026
LC record available at https://lccn.loc.gov/2023033790
LC ebook record available at https://lccn.loc.gov/2023033791

ISBN: 9781032299082 (hbk)
ISBN: 9781032283555 (pbk)
ISBN: 9781003302629 (ebk)

DOI: 10.1201/9781003302629

Typeset in Minion
by Apex CoVantage, LLC

Access the Support Material: www.routledge.com/learn-programming-with-c/ahad/p/book/9781032299082

https://doi.org/10.1201/9781003302629
http://www.routledge.com/learn-programming-with-c/ahad/p/book/9781032299082
https://lccn.loc.gov
https://lccn.loc.gov
mailto:mpkbookspermissions@tandf.co.uk
http://www.copyright.com

Contents

Preface, xi

CHAPTER 1 ◾ Introduction 1
1.1 HISTORY OF PROGRAMMING LANGUAGE 1

1.2 DIFFERENT TYPES OF PROGRAMMING LANGUAGE 2

1.3 IMPORTANCE OF PROGRAMMING 3

1.4 C PROGRAM STRUCTURE 3

1.5 STEP-BY-STEP TUTORIAL TO RUN A C PROGRAM 5

1.6 KEYWORDS 7

1.7 IDENTIFIERS 7

1.8 OPERATORS 8

1.9 OPERATOR PRECEDENCE IN C 9

1.10 VARIABLES 9

1.11 CONSTANTS 10

1.12 ESCAPE SEQUENCES 10

1.13 DATA TYPES 10

1.14 TYPE CASTING 11

1.15 EXAMPLES 12

EXERCISES 26

– MCQ with Answers 26
– Questions with Short Answers 37
– Problems to Practice 44

CHAPTER 2 ◾ Flow Control 46
2.1 IF STATEMENT 46

2.2 IF..ELSE STATEMENT 47

2.3 NESTED IF..ELSE STATEMENT 47

2.4 CONDITIONAL OPERATOR 48

v

 vi ◾ Contents

2.5 FOR LOOP 49

2.6 WHILE LOOP 51

2.7 DO..WHILE LOOP 52

2.8 CONTINUE STATEMENT 53

2.9 BREAK STATEMENT 53

2.10 SWITCH..CASE STATEMENT 54

2.11 GOTO STATEMENT 55

2.12 EXAMPLES 56

EXERCISES 140

– MCQ with Answers 140
– Questions with Short Answers 143
– Problems to Practice 149

CHAPTER 3 ◾ Arrays and Pointers 152
3.1 ARRAYS 152

3.2 2D ARRAYS 153

3.3 MULTIDIMENSIONAL ARRAYS 154

3.4 STRING 155

3.5 STRING FUNCTIONS 155

3.6 POINTERS 156

3.7 MEMORY ALLOCATION 156

3.8 EXAMPLES 157

EXERCISES 205

– MCQ with Answers 205
– Questions with Short Answers 211
– Problems to Practice 214

CHAPTER 4 ◾ Functions 217
4.1 FUNCTION TYPES 217

4.2 FUNCTION STRUCTURE 217

4.3 FUNCTION CALL 218

4.4 ARRAYS AND FUNCTIONS 218

4.5 POINTERS AND FUNCTIONS 218

4.6 STORAGE CLASS 219

4.7 EXAMPLES 219

        Contents ◾ vii

EXERCISES 294

– MCQ with Answers 294
– Questions with Short Answers 296
– Problems to Practice 299

CHAPTER 5 ◾ Structure and Union 301
5.1 STRUCTURE 301

5.2 UNION 302

5.3 ENUM 302

5.4 DATA STRUCTURE AND ALGORITHM 303

5.5 LINKED LIST 304

5.6 TYPES OF LINKED LIST 305

5.7 EXAMPLES 306

EXERCISES 426

– MCQ with Answers 426
– Questions with Short Answers 430
– Problems to Practice 433

CHAPTER 6 ◾ File Management 437
6.1 FILE TYPES 437

6.2 FILE OPERATIONS 437

6.3 PREPROCESSORS 439

6.4 CONDITIONAL COMPILATION 439

6.5 EXAMPLES 440

EXERCISES 472

– MCQ with Answers 472
– Questions with Short Answers 474
– Problems to Practice 475

CHAPTER 7 ◾ C Graphics 477
7.1 INTRODUCTION 477

7.2 FUNCTION 477

7.3 COLOR TABLE 478

7.4 FONTS OF TEXT 479

7.5 FILL PATTERNS 479

7.6 INCLUDING GRAPHICS.H IN CODEBLOCKS 480

 viii ◾ Contents

7.7 EXAMPLES 480

Problems to Practice 513

CHAPTER 8 ◾ C Cross-platform 515
8.1 CREATING OWN LIBRARY 515

8.1.1 Creating Static Library 515
8.1.2 Creating Dynamic Library 519

8.2 TURBO C 522

8.3 VISUAL STUDIO CODE 525

8.4 VISUAL STUDIO 529

8.5 COMMAND LINE 531

8.6 COMMAND LINE ARGUMENTS 534

8.7 LINUX 537

8.8 EMBEDDING C CODE INTO MATLAB 539

Using MinGW-W64 Compiler 539
Using S-Function Builder 541
Using C Function Block 545
Using C Caller Block 549

8.9 INTEGRATING C CODE INTO PYTHON 552

8.10 SWITCHING FROM ONE LANGUAGE TO ANOTHER 555

8.11 TRANSITION TO C++ OR C# FROM C 557

CHAPTER 9 ◾ C Projects 558
PROJECT-1 558

PROJECT-2 558

PROJECT-3 558

PROJECT-4 558

PROJECT-5 559

PROJECT-6 559

PROJECT-7 559

PROJECT-8 559

PROJECT-9 559

PROJECT-10 559

PROJECT-10 560

PROJECT-11 560

PROJECT-12 560

        Contents ◾ ix

PROJECT-13 560

PROJECT-14 560

PROJECT-15 560

PROJECT-16 560

PROJECT-17 560

PROJECT-18 561

PROJECT-19 561

PROJECT-20 561

PROJECT-21 561

PROJECT-22 561

INDEX, 563

http://taylorandfrancis.com

Preface

Cis a progr
familiar. T

amming language with which every sofware developer should become
ough numerous books are available on C programming language, most

of the example programs are written without algorithms or any fowchart in those books.
As a result, it becomes difcult for a student to comprehend the core of a programming
language through a self-learning approach. Our experience in teaching C underscores the
importance of presenting C programs by the fowchart solution frst, then the pseudocode
solution, and fnally the actual C code with the line-by-line explanation.

It is written for C programming language courses/modules at the undergraduate and
graduate levels – mostly for beginners. However, if one has prior knowledge on program-
ming, one may skip the initial couple of chapters. By going through this book, any student
or a beginner can learn and understand C programming by taking only a little or no help
from an instructor. For the instructors, this book is an easy guidance. Only going through
this book will be sufcient for them to teach C programming – as theory lectures and prac-
tical lab. We avoid a broad or overly verbose presentation or information overload, and the
book presents a concise and defnitive perspective to C.

Tis book is written as a self-practice book for learning programming by going through
all the detailed problem solutions and working through the pseudocode, fowchart, and
the actual code. In addition, readers can observe a clearer correlation between the indi-
vidual steps in the pseudocode and the fowchart itself for a better understanding of the
program fow.

One of the specialties of this book is that we introduce a new chapter that illustrates
on writing and running C codes under various operating systems and platforms. How to
embed C codes into other applications is also presented. Each chapter incorporates a num-
ber of relevant inquisitive questions and their corresponding answers. A variety of good
exercises are also available in the textbook. Another original incorporation of this book
is the last chapter, where a number of large projects are presented for students to explore
comprehensiveness in the C programming language.

Source codes for all programs in this book will be available for those who will purchase
the book. Tough we worked hard to ensure the perfection of this book, it may have issues
that require amendments. Terefore, please feel free to share at sazzadmsi@du.ac.bd and
mahad@uel.ac.uk.

xi

mailto:mahad@uel.ac.uk
mailto:sazzadmsi@du.ac.bd

xii ◾ Preface

In conclusion, this book is a guided self-study for those interested in learning C by fol-
lowing a detailed, tutorial-type problem-solving book. We feel that it is a great book for
teachers to cover as a textbook for C programming language.

Prof. Sazzad M.S. Imran, Ph.D.
Prof. Md Atiqur Rahman Ahad, Ph.D.

MATLAB® is a registered trademark of Te Math Works, Inc. For product information,
please contact:

Te Math Works, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: http://www.mathworks.com

http://www.mathworks.com
mailto:info@mathworks.com

C H A P T E R 1

Introduction

C is a machine-independent, efficient, easy-to-use structured programming lan-
guage used to create various applications, operating systems, and sophisticated pro-

grams. C is widely recognized as the foundation of programming language, implying that
anyone who understands C can quickly acquire or grasp other structured programming
languages. Dennis Ritchie, a computer scientist at the Bell Laboratories in the United
States, designed the C programming language in 1972.

1.1 HISTORY OF PROGRAMMING LANGUAGE
Ada Lovelace created the first programming language in 1843 for an early computing sys-
tem. She created the first machine algorithm for the Difference Machine of Charles Babbage.
However, Konrad Zuse created the first proper programming language, Plankalkul, often
known as plan calculus, sometime between 1944 and 1945. After that, in 1947, Kathleen
Booth devised assembly language, a low-level programming language that simplified
machine coding. John McCauley proposed the first high-level language, Shortcode or
Short-order-code, in 1949. Alick Glennie created the first compiled language, Autocode,
for the Mark 1 computer in 1952.

John Backus invented FORmula TRANslation, or FORTRAN, in 1957. It was designed
for complex scientific, mathematical, and statistical calculations and is still used today.
A group of American and European computer scientists collaborated to create ALGOL,
or algorithmic language, in 1958. In the same year, John McCarthy of MIT proposed the
LISP (list processing) programming language for artificial intelligence. Dr. Grace Murray
Hopper oversaw the development of COBOL (Common Business Oriented Language) in
1959, which was created for credit card processors, ATMs, telephone and mobile phone
calls, hospital signals, traffic signal systems, and banking systems.

Beginners All-purpose Symbolic Instruction Code, or BASIC, was created in 1964 by
Dartmouth College students and later improved by Microsoft founders Bill Gates and Paul
Allen. The PASCAL was created in 1970 by Niklaus Wirth in honor of French mathemati-
cian Blaise Pascal. It was the first choice of Apple because of its simplicity of use and power.
Alan Kay, Adele Goldberg, and Dan Ingalls of the Xerox Palo Alto Research Centre created

DOI: 10.1201/9781003302629-1 1

https://doi.org/10.1201/9781003302629-1

2 ◾ Learn Programming with C

Smalltalk in 1972. Leafy, Logitech, and CrowdStrike were among the companies that used
it. In the same year, Dennis Ritchie created C for use with the Unix operating system at Bell
Telephone Laboratories. C is the basis for several modern languages, including C#, Java,
JavaScript, Perl, PHP, and Python. In 1972, IBM researchers Raymond Boyce and Donald
Chamberlain created SQL, which stood for Structured Query Language. It is a program
that lets you explore and edit data stored in databases.

Afer mathematician Ada Lovelace, Ada was created in 1980–1981 by a team directed
by Jean Ichbiah of CUU Honeywell Bull. Ada is an organized, statically typed, imperative,
wide-spectrum, and object-oriented high-level programming language used for air trafc
control systems. Bjarne Stroustrup created C++ afer modifying the C language at Bell
Labs in 1983. C++ is a high-performance programming language used in Microsof Ofce,
Adobe Photoshop, game engines, and other high-performance sofware. Brad Cox and
Tom Love created the Objective-C programming language in 1983 to construct sofware
for macOS and iOS. Larry Wall designed Perl in 1987 as a general-purpose, high-level pro-
gramming language for text editing.

Haskell, a general-purpose programming language, was created in 1990 to deal with
complex calculations, records, and number crunching. Guido Van Rossum created the
general-purpose, high-level programming language Python in 1991, and it is used by
Google, Yahoo, and Spotify. Visual Basic is a programming language created by Microsof
in 1991 that allows programmers to use a graphical user interface and is used in vari-
ous applications such as Word, Excel, and Access. Yukihiro Matsumoto designed Ruby
in 1993 as an interpreted high-level language for web application development. James
Gosling designed Java in 1995 as a general-purpose, high-level programming language
with cross-platform capabilities. Rasmus Lerdorf created the hypertext preprocessor PHP
in 1995 to create and maintain dynamic web pages and server-side applications. Brendan
Eich wrote JavaScript in 1995 for desktop widgets, dynamic web development, and PDF
documents.

Microsof created C# in 2000 by combining the computing power of C++ with the sim-
plicity of Visual Basic. Almost every Microsof product currently uses C#. In 2003, Martin
Odersky created Scala, which combines functional mathematical and object-oriented pro-
gramming. Scala is a Java-compatible programming language that is useful in Android
development. In 2003, James Strachan and Bob McWhirter created Groovy, a concise and
easy-to-learn language derived from Java. Google created Go in 2009, and it has since
gained popularity among Uber, Twitch, and Dropbox. Apple created Swif in 2014 to
replace C, C++, and Objective-C for desktop, mobile, and cloud applications.

1.2 DIFFERENT TYPES OF PROGRAMMING LANGUAGE
To communicate with computers, programmers utilize a programming language. Tere
are three broad categories of computer languages:

(a) Machine language

Referred to as machine code or object code, a set of binary digits 0 and 1. Easily
understandable by computer systems but not by users.

        

Introduction ◾ 3

(b) Assembly language

Considered a low-level language and used to implement the symbolic representa-
tion of machine codes.

(c) High-level language

Easy to understand and code by users. Not understandable by computer systems,
hence needs to be transformed into machine code. Diferent types of high-level
languages are as follows:

(i) Algorithmic languages – FORTRAN, ALGOL, C

(ii) Business-oriented languages – COBOL, SQL

(iii) Education-oriented languages – BASIC, Pascal, Logo, Hypertalk

(iv) Object-oriented languages – C++, C#, Ada, Java, Visual Basic, Python

(v) Declarative languages – PROLOG, LISP

(vi) Scripting languages – Perl

(vii) Document formatting languages – TeX, PostScript, SGML

(viii) World Wide Web display languages – HTML, XML

(ix) Web scripting languages – JavaScript, VB Script

1.3 IMPORTANCE OF PROGRAMMING
In recent years, programming has become the most in-demand skill. From smart TVs to
kitchen appliances, technological disruption is evident practically everywhere. As a result,
many new employments are created, and a large number of current jobs are redefned.
Programming skills provide a competitive advantage in a variety of career felds. As a
result, it is undoubtedly one of the most crucial talents to learn for both present and future
generations.

Programming helps us think more logically and analytically. Students who learn pro-
gramming languages at an early age will have many career options in the future. It is no
longer a choice to learn but rather a necessary talent to master. Apart from sofware and
application development, business analysts, graphic artists, and data scientists are among
the occupations that require programming knowledge.

1.4 C PROGRAM STRUCTURE
Te source code of any C program is written according to the syntax of the computer lan-
guage. Te source code for a C program can be written in any text editor and then saved
with the .c extension, for example, flename.c. Any alpha-numeric character, including
underscores, can be used in the fle name, except we cannot use any keyword as a fle name.
Afer then, any standard C compiler, such as Turbo C or CodeBlocks, is used to compile
and run the source code fle. Let us get started with the frst C program.

4 ◾ Learn Programming with C

Input and Output:

Explanation of the program:
Comment: Any comment in a C program begins with ‘/*’ and ends with ‘*/’. // can also

be used to make a single-line comment. Tough it is not required to write comments, it is a
good practice to do so in order to improve the readability of the program. Tere can be any
number of comments placed anywhere in the program, as the comments are not executed.

include: Many keywords and library functions, such as printf() and scanf(), may be required
in any C program. stdio.h, conio.h, and other header fles contain prototypes or declarations of
the library functions that must be included in the program. Te header fle stdio.h is included
in this program. It provides declarations for the functions printf() that displays data on the
standard output terminal and scanf() that reads data from the standard input terminal.

Display: Te built-in library function printf() displays anything written inside double
quotation marks on the output console. Te values of the variables can also be displayed
using the format specifers.

User input: Te C library function scanf() takes input from the input terminal. Following
the program’s execution, the input console awaits input, and once the age is entered, the
remaining statements are executed based on the age input.

main() function: Te main() function is used to start executing any C program source
code; hence, every C program must have one. Te main() function has the following struc-
ture. Te function name is followed by the return type, which can be either int or void.
Te return type is required for the compiler to determine if the program was successfully
compiled or not. We return 0 at the end of the main() function as 0 is the standard for
the “successful execution of the program”. Also, the ANSI standard does not allow using
void main(); therefore, it is preferred to use ‘int main()’ over ‘void main()’. If there are any

        

Introduction ◾ 5

arguments or parameters afer the function name, they are enclosed in parentheses; other-
wise, they are lef empty. Te body of the main() function is comprised of all the statements
between the opening and closing curly braces.

1.5 STEP-BY-STEP TUTORIAL TO RUN A C PROGRAM
We use Code::Blocks for windows OS to run all the programs available in this book. It is
a free, open-source, cross-platform C IDE built to meet the most demanding needs of its
users. How to run the programs using other compilers, platforms, or operating systems is
available in Chapter 8.

A step-by-step tutorial to run any C program using Code::Blocks is given below.

Step-1: Visit www.codeblocks.org/downloads/binaries/; download, and install code-
blocks-20.03mingw-32bit-setup.exe. We prefer 32-bit with mingw package as
that version is compatible with graphics.h header fle necessary for C graphics
programs.

Step-2: Open Code::Blocks and click on File→New→Project . . ., select ‘Empty project’
and click on Go and then Next>.

Write C-Program (or any name of your choice) on the ‘Project title:’ and choose the
folder (for example, C:\Users\SazzadImran\Desktop\) where you want to create the
project. Click Next>→Finish. A project or folder is created on the desktop.

http://www.codeblocks.org

 6 ◾ Learn Programming with C

Step-3: Double click on C-Program on Workspace to select the project and click
File→New→Empty fle→Yes. Write a fle name of your choice (Example-1, for example)
and click Save.

Check Debug and Release and then press OK.

An empty fle name Example-1.c is created and saved in the C-Program folder.

Step-4: Write your C program codes on the fle Example-1.c and save the fle.

        

Introduction ◾ 7

Step-5: Click Build→‘Compile current fle’ to compile the program. Correct any error(s)
or warning(s) on the codes. Correcting the errors is a must though it is optional to
correct the warnings. Recompile the program until we get 0 error(s) and 0 warning(s).

Step-6: Click Build→‘Build and run’ to execute the program. Te output screen will look
as follows:

1.6 KEYWORDS
In C programming, 32 reserved words have special meaning to compilers and are utilized
as a part of the syntax. Tese terms cannot be used as names or identifers for variables. Te
list of reserved C keywords is as follows:

auto, break, case, char, const, continue, default, do, int, long, register, return, short,
signed, sizeof, static, struct, switch, typedef, union, unsigned, void, volatile, while, double,
else, enum, extern, foat, for, goto, if.

1.7 IDENTIFIERS
Variables, functions, structures, and other objects in a program are given unique names
called identifers. For example, in the statement of the preceding demo program

int age;

int is a keyword and age is an identifer assigned to a variable by the compiler to iden-
tify the entity uniquely. When naming an identifer, the following guidelines should be
observed.

(1) A valid identifer can include uppercase and lowercase letters, numbers, and
underscores.

(2) Te frst character cannot be a digit.

(3) We cannot use any keyword as an identifer.

(4) Te length of the identifer is unlimited.

It is a good practice to give the identifer a meaningful name.

8 ◾ Learn Programming with C

1.8 OPERATORS
In C, operators are symbols that perform operations on values or variables. Tere is a rich
set of operators used in C programming.

C arithmetic operators are as follows:

+ (addition)

− (subtraction)

* (multiplication)

/ (division) and

% (modulus or remainder of division)

C increment and decrement operators are as follows:

++ (unary increment, ++a = a++ = a+1) and

−− (unary decrement,−−a = a−−= a−1)

C assignment operators are as follows:

= (a = b)

+= (a += b → a = a + b)

− =

*=

/= and

%=

C relational operators are as follows:

== (equal to, a == b)

> (greater than)

< (less than)

!= (not equal to)

>= (greater than or equal to) and

<= (less than or equal to)

C logical operators are as follows:

        

Introduction ◾ 9

&& (AND)

|| (OR) and

! (NOT)

C bitwise operators are as follows:

& (AND)

| (OR)

^ (EX-OR)

<< (shif lef) and

>> (shif right)

1.9 OPERATOR PRECEDENCE IN C
When more than one operator is included in a mathematical or logical expression, operator
precedence in C decides which operator is evaluated frst. When more than one operator of
the same precedence is present in an expression, associativity in C determines the prece-
dence of the operators.

Te precedence of the mathematical operators is as follows:

(1) *, /, %

(2) +, −

All these operators have the associativity of lef to right.
For example: 5+2*3/6 is evaluated as 5+{(2*3)/6}=5+{6/6}=5+1=6 in C.
Precedence of the logical operators are as follows:

(1) &&

(2) ||

(3) !

Te operators && and || have lef-to-right associativity, while ! has right-to-lef associativity.

1.10 VARIABLES
When a variable is declared in a C program, it refers to a memory storage space where the
data is held. Te value of a variable can be altered, but its data type cannot be changed once
it has been declared, but type conversion is permitted in a mathematical expression. For
example, in the statement

int age;

10 ◾ Learn Programming with C

age is a variable name that holds any integer type data in a fxed position in memory. Te
same rules apply to naming variables as they do to naming identifers.

1.11 CONSTANTS
If we want to keep the value of a variable constant or fxed, we can use the term const before
the variable’s data type. As a result, the variable is now a symbolic constant. For example, PI is
a symbolic constant whose value cannot be changed in the program in the following statement:

const double PI = 3.14;

1.12 ESCAPE SEQUENCES
In some cases, special sequences are used to represent characters that cannot be typed in a
C program. Backslash characters are another name for these. In a C program, the follow-
ing escape sequences are employed:

\b (backspace)

\f (form feed)

\n (newline)

\r (return)

\t (horizontal tab)

\v (vertical tab)

\\ (backslash)

\’ (single quotation mark)

\” (double quotation mark)

\? (question mark) and

\0 (null character)

1.13 DATA TYPES
In a C program, data types are used to defne variables, which determine the type and size
of the variable. Te size of a particular data type depends on the compiler. Any data type’s
size can be determined using the sizeof(variable name) operator. Format specifers specify
the type of data that is displayed or accepted by output or input functions. In C program-
ming, the following is a list of data types and their associated format specifers:

int [%d, %i]

char [%c]

        

Introduction ◾ 11

foat [%f]

double [%lf]

short int [%hd]

unsigned int [%u]

long int [%ld, %li]

long long int [%lld, %lli]

unsigned long int [%lu]

unsigned long long int [%llu]

signed char [%c]

unsigned char [%c]

long double [%Lf]

int, foat, double, char, and void are the basic data types,

short and long can be used as a type specifer, and

signed and unsigned as type modifers.

void is used as a return type when a function does not return anything; nevertheless, it
does not create variables.

1.14 TYPE CASTING
Te conversion of one data type to another is known as type casting or type conversion.
Tere are two forms of type conversion:

(1) Implicit: In this situation, the compiler casts the values of distinct data types in an
expression to a common type, which is the highest hierarchy.

int → unsigned int → long → unsigned long → long long → unsigned long long → foat
→ double → long double

Example:

Here, because foat data type is higher in the hierarchy between foat and int, the arithme-
tic expression total/count gives a foat value.

12 ◾ Learn Programming with C

(2) Explicit: In this situation, the programmer uses the cast operator to explicitly
change values of one type to another. Te syntax is as follows:

(type_name) expression

Example:

First, the total is transformed from an int to a foat, and then division is performed. Because
total has been converted to foat and count has been changed to int, the result is a decimal
value because foat is higher in the hierarchy than int data type.

1.15 EXAMPLES

PROBLEM-01
Write a program to print the sentence “Hello! Atiqur Rahman! How are you?” on the
screen.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototype of the library function
printf(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and

        Introduction ◾ 13

it returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

printf("Hello! Atiqur Rahman!\n");
/*this displays the text in double quotes as it is on the screen
except for a newline replaces \n*/
printf("How are you?");
/*this displays the text in double quotes as it is on the
screen*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-02
Write a program to input an integer and then print the integer value.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it

 14 ◾ Learn Programming with C

returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int num;
/*an integer type variable is declared; required memory spaces
are allocated for it*/
printf("Please enter an integer value: ");
/*this displays the text as it is in the double quotations on
the screen*/
scanf("%d", &num);
/*scanf() is an input function that reads an integer from the
input terminal and stores it in the memory location reserved
for the num; hence, the address operator & is used before the
variable name*/
printf("You have entered %d.", num);
/*the text inside the double quotes is displayed as it is on
the screen, except for the value of num replaces the format
specifier %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-03
Write a program that enters two integer values and displays the summation on the screen.

Programming Code of the Solution:

        

Introduction ◾ 15

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using preprocessor
directive #include before the functions are called in the program*/
int main(){
/*all C program must have a main() function with return type void or
int; here there is no parameter of the main() function and it returns
an integer; opening curly brace specifies start of the main() function
and no statement before that curly brace is executed by the compiler*/

int num1, num2, sum;
/*three integer type variables are declared; required memory
spaces are allocated for each of the variables*/
printf("Please enter two integers: ");
/*this printf() function displays the text in double quotations
as it is on the screen*/
scanf("%d %d", &num1, &num2);
/*scanf() function reads two integers from input terminal; the
first format specifier %d relates to the num1 variable, while
the second %d corresponds to the num2 variable; while input,
the two numbers may be separated by a space, tab, or newline*/
sum = num1+num2;
/*summation is done with this statement, and the result is
assigned to the sum variable*/
printf("%d+%d = %d", num1, num2, sum);
/*this printf() function displays the text in double quotations
as it is on the screen except for the value of num1 replaces the
first format specifier %d, value of num2 replaces the second %d,
and the value of sum replaces the third %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

 16 ◾ Learn Programming with C

PROBLEM-04
Write a program that will input two foating-point numbers and then display the
product on the screen.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

double num1, num2, prod;
/*three double type variables are declared that can store any
decimal values*/
printf("Please enter any two numbers: ");
/*this displays the text in the double quotations as it is on
the screen*/
scanf("%lf %lf", &num1, &num2);
/*two decimal values are read for two %lf format specifiers
correspond to num1 and num2, respectively; the address operator
must be used before the variable name*/

        

Introduction ◾ 17

prod = num1*num2;
/*numa1 is multiplied by num2 and the result is assigned to
variable prod*/
printf("Product of %0.2lf and %0.2lf is: %0.2lf", num1, num2,

prod);
/*printf() function displays the text inside the double
quotations as it is on the screen, with the exception that
the value of num1 replaces the first format specifier %0.2lf,
value of num2 replaces the second %0.2lf, and the value of prod
replaces the third %0.2lf; the format specifier 0.2lf specifies
that the number is displayed with a precision of two decimal
points*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-05
Write a program to input two integers and show the result of the division.

Programming Code of the Solution:

Input and Output of the Executed Program:

18 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <stdio.h>
/*the prototypes of the printf() and scanf() functions are contained
in the stdio.h header file, which must be included using the #include
preprocessor directive*/
int main(){
/*all C program must have a main() function with return type void or
int; here there is no parameter of the main() function, and it returns
an integer; opening curly brace specifies start of the main() function
and no statement before that curly brace is executed by the compiler*/

int num1, num2, quot, remn;
/*four integer type variables are declared: num1 is used to
store the dividend, num2 is used to store the divisor, quot
is used to assign the quotient, and remn is used to assign the
remainder of the division process.*/
printf("Enter the dividend: ");
/*this displays the text written in the double quotations as it
is on the screen*/
scanf("%d", &num1);
/*this reads an integer from input terminal and stores the value
in the memory location allocated for num1, %d is the format
specifier for the integer type data*/
printf("Enter the divisor: ");
//this displays the text written in the double quotations as it
is on the screen
scanf("%d", &num2);
/*this reads an integer from input terminal and stores the value
in the memory location assigned for variable num2*/
quot = num1/num2;
/*num1 is divided by num2 and the quotient is assigned to
variable quot*/
remn = num1%num2;
/*num1 is divided by num2 and the remainder is assigned to the
variable remn*/
printf("Quotient = %d\nRemainder = %d", quot, remn);
/*this displays the text in the double quotes as it is on the
screen except for the value of quot replaces the first format
specifier %d, the value of remn replaces the second %d and a
newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

        Introduction ◾ 19

PROBLEM-06
Write a program to calculate the area and circumference of a circle.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*stdio.h header file contains the prototypes of printf() and
scanf() functions and hence needs to be included using #include
preprocessor directive*/
#define PI 3.14
/*here PI is defined as 3.14 using #define preprocessor directive.
After that anywhere we use PI it will be replaced by 3.14*/
int main(){
/*C program starts from main() function which will return an integer
and there is no argument for the function; the opening curly brace
indicates the start of the body of the main() function and the
program execution starts from the first statement just after this
brace*/

int rad;
/*integer type variable rad is declared which will store radius
of the circle*/
float area, circum;
/*two float type variables are declared, area to store area of
the circle and circum to store area of the circumference of the
circle*/

20 ◾ Learn Programming with C

printf("Enter radius of a circle in cm: ");
/*this will display the message inside the double quotation as
it is on screen*/
scanf("%d", &rad);
/*scanf() is an input function that will take an integer as input
against int type variable rad, hence format specifier %d is used
and address operator & is used with the variable name*/
area = PI*rad*rad;
/*result of the multiplication in the right side will be float
as PI is a decimal value hence the result is assigned to float
type variable area*/
circum = 2*PI*rad;
/*circumference is calculated and assigned to float type
variable circum*/
printf("Area of the circle = %0.2f\n", area);
/*output function printf() will display the message inside the
quotation as it is on the screen except format specifier %0.2f
will be replaced by the value of float type variable area with
2 decimal point precision followed by enter due to the newline
character \n*/
printf("Circumference of the circle = %0.2f", circum);
/*output function printf() will display the message inside the
quotation as it is on the screen except format specifier %0.2f
will be replaced by the value of float type variable circum with
2 decimal point precision*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace indicates the end of the body of main()
function and the end of the program. No statement will execute after
that curly brace*/

PROBLEM-07
Write a program that calculates the power of a given number.

Programming Code of the Solution:

        

Introduction ◾ 21

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <math.h>
/*header file stdio.h contains prototypes of the library function
pow(); the header file must be included using preprocessor directive
#include before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

float base, exp;
/*two float type variables are declared that can store any
decimal values*/
printf("Enter a base number: ");
/*this displays the text inside the double quotations as it is
on the screen*/
scanf("%f", &base);
/*this reads a decimal value from input terminal and it is
stored in the memory location allocated for the variable
base*/
printf("Enter an exponent: ");
/*this displays the text inside the double quotations as it is
on the screen*/
scanf("%f", &exp);
/*this reads a decimal value from input terminal and it is
stored in the memory location allocated for the variable
exp*/
printf("%0.1f^%0.1f = %0.2f", base, exp, pow(base, exp));
/*pow(base, exp) function returns baseexp and the result is
displayed in place of the third format specifier %0.2f with
two decimal points precision; the value of base is displayed
in place of the first format specifier %0.1f with single point
precision and the value of exp in place of the second %0.1f;
other text in the double quotes is displayed as it is on the
screen*/

22 ◾ Learn Programming with C

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-08
Write a program to fnd the size of the data types int, foat, double, and char.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library function
printf(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the main()
function and no statement before that curly brace is executed by the
compiler*/

int type1;
/*integer type variable type1 is declared and required memory
space is allocated for the variable type1*/

        

Introduction ◾ 23

float type2;
/*float type variable type2 is declared*/
double type3;
/*double type variable type3 is declared*/
char type4;
/*character type variable type4 is declared*/
printf("Size of int data type is: %d byte\n", sizeof(type1));
/*sizeof(type1) returns the size of variable type1 in bytes, that is
displayed on the screen in place of format specifier %d; other text
in the quotes is displayed as it is except for a newline replaces \n*/
printf("Size of float data type is: %d byte\n", sizeof(type2));
/*sizeof(type2) returns the size of variable type2 in bytes,
that is displayed on the screen in place of format specifier
%d; other text in the quotes is displayed as it is except for
a newline replaces \n*/
printf("Size of double data type is: %d byte\n", sizeof(type3));
/*sizeof(type3) returns the size of variable type3 in bytes,
that is displayed on the screen in place of format specifier
%d; other text in the quotes is displayed as it is except for
a newline replaces \n*/
printf("Size of char data type is: %d byte", sizeof(type4));
/*sizeof(type4) returns the size of variable type4 in bytes,
that is displayed on the screen in place of format specifier
%d; other text in the quotes is displayed as it is except for
a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-09
Write a program that swaps two numbers.

Programming Code of the Solution:

24 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using preprocessor
directive #include before the functions are called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

float num1, num2, temp;
/*three float type variables are declared; required memory
spaces are allocated for each of them*/
printf("Enter first number: ");
/*this displays the text inside the double quotes as it is on
the screen*/
scanf("%f", &num1);
/*this reads a decimal value from input terminal and stores the
value in the memory location allocated for num1; %f is format
specifier for float type data; address operator & must be used
before variable in scanf() function*/
printf("Enter second number: ");
/*this displays the text written inside the double quotations
as it is on the screen*/
scanf("%f", &num2);
/*scanf() function reads a number from input terminal and
assigns the value to num2*/
temp = num1;
/*value of num1 is assigned to temp variable so that the value
of num1 is not lost*/
num1 = num2;
/*value of num2 is assigned to num1; num1 is already stored in
temp to preserve the value for future use*/

        Introduction ◾ 25

num2 = temp;
/*the value of temp=num1 is assigned to num2*/
printf("After swapping:\n\tFirst number = %0.2f\n", num1);
/*this printf() function displays the text in double quotations
as it is on the screen except for a tab replaces \t, a newline
replaces \n, value of num1 replaces format specifier %0.2f with
two decimal points precision*/
printf("\tSecond number = %0.2f", num2);
/*this printf() function displays the text in the double quotes
as it is on the screen except for a tab replaces \t and the
value of num2 replaces format specifier %0.2f with two decimal
points precision*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-10
Write a program that displays the ASCII number of a character entered by the user.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/

26 ◾ Learn Programming with C

int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char ch;
/*char type variable ch is declared that stores only character*/
printf("Please enter a character: ");
/*this displays the text inside the double quotations as it is
on the output screen*/
scanf("%c", &ch);
/*this reads a character from input terminal and assigns the
character to ch*/
printf("ASCII code of %c is %d.", ch, ch);
/*this printf() function displays the text in double quotations
as it is on the screen except for character ch replaces format
specifier %c and the ASCII code of that character ch replaces
format specifier %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

EXERCISES

MCQ with Answers

1) Who invented C language?

A) Charles Babbage

B) Graham Bell

C) Dennis Ritchie

D) Steve Jobs

2) In which laboratories was the C language invented?

A) Uniliver Labs

B) IBM Labs

C) AT&T Bell Labs

D) Verizon Labs

        

Introduction ◾ 27

3) In which year was the C language invented?

A) 1999

B) 1978

C) 1972

D) 1990

4) Which type of language C is?

A) Procedural-oriented programming

B) Semi-object-oriented programming

C) Object-oriented programming

D) None of the above

5) Before execution, the compiler converts a high-level program into a machine lan-
guage program which is called

A) Source program

B) Object program

C) exe program

D) None of this

6) What is an identifer in C language?

A) Name of a function or variable

B) Name of a macros

C) Name of structure or union

D) All of the above

7) An identifer may contain

A) Letters a–z, A–Z

B) Underscore

C) Numbers 0 to 9

D) All of the above

8) An identifer can start with

A) Alphabet

B) Underscore

28 ◾ Learn Programming with C

C) Any possible typed character

D) Options A and B

9) What is the maximum length of an identifer?

A) 32

B) 16

C) 64

D) 12

10) Which of the following is an integer constant?

A) 3.142

B) 43

C) “125”

D) PI

11) Which of the following is a foating-point constant?

A) 29.4E5

B) 34e12

C) 25.857

D) All of the above

12) Which of the following is a character constant?

A) ‘9’

B) y

C) T

D) “B”

13) Which of the following statements are right?

A) int totnum = 25; int tot_num = 25;

B) int totnum = 25; int tot.num = 25;

C) int totnum = 25; int tot num = 25;

D) All are right

14) How many keywords are present in C language?

A) 32

        

Introduction ◾ 29

B) 34

C) 62

D) 64

15) Each statement in a C program should end with a

A) Semicolon (;)

B) Colon (:)

C) Period/dot (.)

D) None of the above

16) Which of the following is not a valid identifer?

A) _atiqahad

B) 2atiqahad

C) atiq_ahad

D) atiqahad2

17) How many bytes are occupied by void in memory?

A) 0

B) 1

C) 2

D) 4

18) What is the range of signed char?

A) −128 to +127

B) 0 to 255

C) −128 to −1

D) 0 to +127

19) What is the range of unsigned char?

A) −128 to +127

B) 0 to 255

C) −128 to −1

D) 0 to +127

30 ◾ Learn Programming with C

20) Lefmost bit 0 in a singed representation indicates

A) A positive number

B) A negative number

C) An unsigned number

D) None of the above

21) What is the range of signed int?

A) 0 to 216−1

B) −215 to +215−1

C) −215−1 to +215

D) 0 to 216

22) What is the range of unsigned int?

A) 0 to 216−1

B) −215 to +215−1

C) −215−1 to +215

D) 0 to 216

23) Which is correct with respect to the size of the data types?

A) char > int > foat

B) int > char > foat

C) char > int > double

D) double > char > int

24) What is the default value of a local variable?

A) 0

B) 1

C) garbage

D) null

25) What is the default value of a static variable?

A) 0

B) 1

        

Introduction ◾ 31

C) Garbage

D) Null

26) Variable that are declared but not initialized contains_______.

A) 0

B) Blank space

C) Garbage

D) None of the above

27) What are the sizes of foat, double, and long double in bytes?

A) 4, 8, 16

B) 4, 8, 10

C) 2, 4, 6

D) 4, 6, 8

28) What is the range of signed long variables?

A) −231−1 to +231

B) 0 to +232

C) −231 to +231−1

D) 0 to 232−1

29) What is the range of unsigned long variables?

A) −231−1 to +231

B) 0 to +232

C) −231 to +231−1

D) 0 to 232−1

30) Which of the following does not store a sign?

A) short

B) int

C) long

D) byte

31) Which is the only function all C programs must contain?

A) getch()

32 ◾ Learn Programming with C

B) main()

C) printf()

D) scanf()

32) Which of the following is not a correct variable type?

A) foat

B) real

C) char

D) double

33) How would we round of a value of 3.76 to 4.0?

A) ceil(3.76)

B) foor(3.76)

C) roundup(3.76)

D) roundto(3.76)

34) What is the scope of local variable?

A) Entire program

B) Within the block or function

C) Only main() function

D) All of the above

35) Which of the following is not a valid variable name declaration?

A) #defne PI 3.14

B) foat PI = 3.14;

C) double PI = 3.14;

D) int PI = 3.14;

36) How many keywords are present in the C language?

A) 45

B) 48

C) 32

D) 16

        

Introduction ◾ 33

37) Operator % in C language is called

A) Percentage operator

B) Quotient operator

C) Modulus

D) Division

38) What is the output of an arithmetic expression with integers and real numbers by
default?

A) Integer

B) Real number

C) Depends on the numbers used in the expression

D) None of the above

39) What do we get if both numerator and denominator of a division operation in C
language are integers?

A) Te expected algebraic real value

B) Unexpected integer value

C) Compiler error

D) None of the above

40) Can we use operator % with foat and int in C language?

A) Only int variables

B) Only foat variables

C) int or foat combination

D) Numerator int variable, denominator any variable

41) Which of the following operator types has the highest precedence in C?

A) Relational operators

B) Equality operators

C) Logical operators

D) Arithmetic operators

42) What is the priority among operators *, /, and % in C language?

A) * >/> %

34 ◾ Learn Programming with C

B) % > * > /

C) % =/> *

D) % =/= *

43) What is the priority among operators (*, /, %), (+, −), and (=) in C language?

A) (*, /, %) > (+, −) < (=)

B) (*, /, %) < (+, −) < (=)

C) (*, /, %) > (+, −) > (=)

D) (*, /, %) < (+, −) (+, −) = (=)

44) Te result of a logical or relational expression in C is

A) True or false

B) 0 or 1

C) 0 if the expression is false and any positive number if the expression is true

D) None of the mentioned

45) Which of the following is not a logical operator?

A) &

B) &&

C) ||

D) !

46) Expand or abbreviate ASCII in C language.

A) Australian Standard Code for Information Interchange

B) American Standard Code for Information Interchange

C) American Symbolic Code for Information Interchange

D) Australian Symbolic Code for Information Interchange

47) Which of the following statement output “hello world.”?

A) scanf(“hello world.”);

B) printf(“hello world”);

C) scan(“hello world.”);

D) print(“hello world.”);

        

Introduction ◾ 35

48) What is the correct way of commenting on a single line?

A) /*this is a single line comment

B) //this is a single line comment

C) /this is a single line comment

D) /*this is a single line comment/*

49) Which one of the following is not a valid C identifer?

A) _a

B) a_b

C) 1a

D) a1

50) Which of the following group contains the wrong C keywords?

A) auto, double, int, struct

B) break, else, long, switch

C) case, enum, register, typedef

D) char, extern, intern, return

51) Which of the following group contains the wrong C keywords?

A) union, const, var, foat

B) short, unsigned, continue, for

C) signed, void, default, goto

D) sizeof, volatile, do, if

52) Which of the following is a correct C keyword?

A) breaker

B) go to

C) shorter

D) default

53) Which of the following is a valid C keyword?

A) Float

B) Int

36 ◾ Learn Programming with C

C) Long

D) double

54) Which of the following is an invalid header fle in C?

A) math.h

B) mathio.h

C) string.h

D) ctype.h

55) Which of the following operators has the highest precedence?

A) unary

B) shif

C) equality

D) postfx

56) sizeof() is a _______.

A) Function

B) Variable

C) Both A and B

D) Operator

57) Which operator is known as ternary operator?

A) ::

B) ;

C) ?:

D) :

58) What is the value of x in the following C statement?

int x = 7%4*3/2;

A) 4

B) 1

C) 3

D) 0

        

Introduction ◾ 37

59) Which of the following is not an arithmetic operation?

A) num %= 5

B) num /=5

C) num *=5

D) num!= 5

[Ans. C, C, C, A, B, D, D, D, A, B, D, A, A, A, A, B, A, A, B, A, B, A, C, C, A, C, B, C, D, D,
B, B, A, B, A, A, C, B, B, A, D, D, C, B, A, B, B, B, C, D, A, D, D, B, D, D, C, A, D]

Questions with Short Answers

1) What are the key features of the C programming language?

Ans. Te programming language C is widely used. Te language’s key features or
characteristics are listed below.

(a) C ofers a structured approach, as well as a rich set of library functions and data
types.

(b) C is not platform independent, although it may be run on various devices with
little or no modifcation.

(c) C is a mid-level programming language that may also be used to construct sys-
tem applications and support features of a high-level language.

(d) Because C is a structured programming language, we can use functions to split
the entire program into smaller parts.

(e) C has an extensive library of built-in functions that can be utilized to develop
any program.

(f) C provides the dynamic memory allocation functionality.

(g) Te compilation and execution times are both short.

(h) In C, we can use pointers to communicate directly with the memory.

(i) We can call a function within a function, allowing for code reuse.

(j) Te C sofware is easily adaptable to new features.

2) Why is C language being considered a middle-level language?

Ans. C is classifed as a middle-level language because it bridges the gap between
machine and high-level programming. Te C programming language is used to
develop system programming for operating systems and application programming
for menu-driven client billing systems.

38 ◾ Learn Programming with C

3) What is the signifcance of C program algorithms?

Ans. Te algorithm is created frst before a program can be written. An algorithm
includes step-by-step instructions on how to solve the problem. It also consists of
the stages to consider and the necessary computations and operations within the
sofware.

4) Write the importance of program algorithms.

Ans. A problem is solved using an algorithm, which is a step-by-step approach.
Algorithms are used to determine the optimum solution to a problem. Program
algorithms are used to

(a) improve the sofware’s accuracy and speed, and

(b) ensure that the least amount of memory and computing power is required.

5) What is a program fowchart? How does it help in writing a program?

Ans. A fowchart is a graphical depiction of a program’s various logical steps. Te
steps are represented by various types of boxes, with arrows linking the boxes in a
logical order. Tis diagram aids in visualizing what is going on and understanding
the data fow and problem-solving process.

6) Diferentiate source codes from object codes.

Ans. Programming statements written in a text editor and saved in a fle are known
as source code. Te compiler translates the source code into object code, which is
machine-readable code. Tus, source code is readable by humans, whereas object
code is readable by machines.

7) Compare and contrast compilers and interpreters.

Ans. A compiler is a program translator that reads the entire program and trans-
lates it to machine code all at once. On the other hand, an interpreter is a pro-
gram that imitates the execution of a program by executing one statement at a time.
Te interpreter does not generate any object code, even though the compiler does.
Compiling a program takes longer than interpreting it, but the execution time of a
compiled program is faster than that of an interpreted program.

8) What is debugging?

Ans. Debugging is the act of fnding and fxing existing and potential errors in
program codes that could cause the program to behave abnormally or crash.

9) What are the basic data types associated with C?

Ans. Tere are fve basic data types: char, int, foat, double, and void.

        

Introduction ◾ 39

10) How many types of errors are possible in the C language?

Ans. Tere are fve types of errors possible in C programming: logical error, run-
time error, syntax error, linking error, and semantic error.

11) What is a syntax error?

Ans. When any rule of writing program’s source code is broken, this is referred to
as a syntax error, also called compilation error. A syntax error occurs when parts
of the source code do not follow the C programming language’s syntax. Misspelled
commands, keywords, misplaced symbols, missing semicolon at the end of state-
ment, missing parenthesis afer main() function, etc., are just a few examples.

12) What are logical errors, and how does it difer from syntax errors?

Ans. Any programming logic errors made by the programmer cause logical errors.
Te sofware builds and runs successfully in this situation. However, it does not
produce the expected result. On the other hand, syntax errors arise when any rules
are broken while writing statements or commands in a program, resulting in the
program failing to compile and run.

13) What are run-time errors?

Ans. Run-time errors, ofen known as bugs, are errors that occur in a program
when it is executing afer it has been successfully compiled. Division by zero, input/
output device error, undefned object, an encoding error, and other sorts of run-
time errors are all common.

14) What are linking errors?

Ans. Te errors due to which the program is compiled successfully but failed to
link diferent object fles with the main program module are referred to as linking
errors. Incorrect function name, incorrect function prototyping, incorrect header
fles, etc., are some examples of linking errors. Due to linking errors, no executable
fle (.exe fle) is generated.

15) What are semantic errors?

Ans. Semantic errors occur when any C statement is syntactically correct but has
no meaning. For example, when any expression is used on the lef side of an assign-
ment operator, semantic error occurs.

16) What are reserved words in the C programming language?

Ans. Reserved words are those with predetermined meanings that cannot be used
as identifers. In C, 32 keywords are reserved, including char, int, foat, bread,
switch, case, for, register, short, else, return, and so on.

40 ◾ Learn Programming with C

17) Describe the header fle and its usage in C?

Ans. Function declaration and macro defnition are stored in a header fle with the
extension .h. All of the compiler’s built-in functions are declared in several header
fles. Programmers can also create their header fles. Function declarations and
macro defnitions are shared between several source fles via header fles.

18) Does a built-in header fle contain a built-in function defnition?

Ans. Only declarations of the built-in functions are found in the built-in header
fle. Te functions’ defnitions can be found in the C library, which is linked by the
linker.

19) Why is it that not all header fles are declared in all C programs?

Ans. Because diferent functions are declared in diferent fles, the decision of
declaring specifc header fles at the top of a C program is determined by the func-
tions that are utilized in that program. Including all header fles in all C programs
increases the fle size and load of the program.

20) What is the diference between including the header fle within angular braces and
double quotes?

Ans. When angle brackets (<>) are used, the compiler looks for the fle in the built-
in include directory path. If we use double quotes (“ ”), the compiler looks for the
fle frst in the current directory, then in the include directory path if it is not found.

21) Is it possible to create and use a customized header fle in C?

Ans. A header fle is a fle in which built-in or user-defned functions are declared
and used in the main program, resulting in a customized header fle. When writing
a large C program, a custom header fle comes in handy.

22) What are the diferences among main(), void main(), and int main()?

Ans. Te void main() function neither returns any value nor takes any command-
line arguments. Both main() and int main() functions indicate that the function
returns data of the integer type but does not take any arguments.

23) Can a program be compiled without a main() function?

Ans. A main() function is required in all C programs to serve as the program’s
starting point. It is still possible to compile the program if there is no main() func-
tion, but it is impossible to run it. Te program execution usually stops at the end of
the main() function.

24) Can the main() function lef empty?

Ans. It is possible to leave the main() function blank. In this situation, the program
starts execution, and nothing will happen.

        

Introduction ◾ 41

25) What are comments, and how do we insert them in a C program?

Ans. In a C program, comments are explanations of the source code. It improves
the readability of the program. In a program, there are two ways to insert
comments.

a) Single-line comments begin with a double slash (//).

b) Comments beginning with a slash asterisk (/*) and ending with an asterisk
slash (*/) can appear anywhere in the code.

26) Are comments included during the compilation stage and placed in the .exe fle as
well?

Ans. When the compiler encounters comments, they are disregarded during the
compilation stage and are not included in the execution fle. Other than improving
readability, comments do not infuence program functionality.

27) What is the use of a semicolon (;) at the end of every program statement?

Ans. Te semicolon serves as a delimiter and marks the conclusion of a statement.
As a result, the compiler can break down the statement into smaller chunks to
check for syntax errors.

28) What is a variable?

Ans. A variable is a unique identifer that points to a specifc memory location and
stores data. Variables are changeable, and their values can be altered while a pro-
gram is running.

29) What is the diference between variable declaration and defnition?

Ans. A variable’s declaration only specifes the variable’s name, data type, and
initial value, if any, but it does not allocate memory. Te defnition, on the other
hand, assigns a data type to the variable and allocates memory. In C, there is no
distinction between defning and declaring a variable, and they are usually done
simultaneously.

30) What is variable initialization, and why is it important?

Ans. Te term “initialization” refers to the process of assigning a value to a variable
before it is used in a program. Without initialization, the variable would have an
unknown value from the memory location assigned to it, resulting in unpredictable
results when used in other operations.

31) Is it possible to initialize a variable at the time it was declared?

Ans. In C, it is allowed to initialize variables with values at the time they are
declared.

32) What is the modulus operator?

42 ◾ Learn Programming with C

Ans. Te modulus operator (%) is an arithmetic operator that yields the remainder
of an integer division.

33) What is the remainder for 5.0%2?

Ans. Because the modulus operator can only be used for integer division, and one
of the operands for the above % operator is a real value, it would be an invalid
operation.

34) What is type casting?

Ans. Converting one data type to another is known as typecasting or type conver-
sion. It can be either implicit (done automatically by the compiler) or explicit (done
by the user). When an expression has multiple data types, implicit type casting is
used. Type conversion is performed to avoid any data loss.

35) What is constant?

Ans. Constants are fxed values that cannot be altered while the program is run-
ning. Constants can be int, foat, char, or any other basic data type.

36) Defne modifer? What are the modifers available in C?

Ans. Modifers are C keywords that increase or decrease the amount of memory
space assigned to a variable. Tey are prefxed with basic data types. Short, long,
signed, and unsigned are the four modifers used in C.

37) Is it possible to use curly braces to enclose a single statement?

Ans. Tere is no error if a single statement is enclosed in curly braces, and the pro-
gram compiles and runs fne. Curly braces, on the other hand, are most commonly
employed to enclose a set of multiple statements or lines of code.

38) Describe the escape sequence with an example.

Ans. In C, an escape sequence is a set of characters that do not represent themselves
but are instead transformed into another character or set of characters. It consists
of a backslash (\) and one or more letters that represent the escape sequence. Te
character \n, for example, is an escape sequence that represents a newline character.

39) How do we construct an increment or decrement statement?

Ans. Te increment operator ++ and the decrement operator can create an incre-
ment or decrement statement. Both can be used as a prefx (++x, −−x) or postfx
(x++, x−−) with variables.

40) What are the diferences between sum++ and ++sum, where the sum is an integer
type variable?

Ans. sum++ is a postfx operator, which means that the expression is evaluated frst
with the current sum value. Ten the sum value is increased by 1. ++sum, on the

        

Introduction ◾ 43

other hand, is a prefx operator that signifes the sum value is increased by 1 before
the expression is evaluated with the new sum value.

41) What are the diferent categories of C operators in terms of operand numbers?

Ans. Tree categories of operators in C language are as follows:

i) Unary: Operators operate on a single operand. Example: sizeof(), ++,−−, etc.

ii) Binary: Operators operate on two operands. Example: +,−, =, *, /, %, ==, >, <=, etc.

iii) Ternary: Operators operate on three operands. ?: is the only C ternary operator.

42) Can we use int data type to store the value 32768? Why?

Ans. Because the int data type can only store values from −32768 to 32767 (−215 to
215−1), it cannot be used to store the value 32768. To store the value 32768, we can
use unsigned int or long in.

43) What is wrong in the statement- “scanf(“%d”, num);”?

Ans. scanf() is a built-in library function that reads a value of a specifc data type from
the standard input terminal and stores it in the memory locations reserved for the
corresponding variable. As a result, the variable name num must be preceded by the
address operator &. Terefore, the preceding statement results in a run-time error.

44) Te % symbol has particular use in printf() statement. How would we output this
character on the screen?

Ans Te printf() function can be used to display the % symbol by using %%. For
example, to have the output appear as 80% on the screen, write printf(“80%%”);

45) What does the format %5.2 mean when included in printf() statement?

Ans. Tis format is employed for two purposes. To begin with, place 5 before the
decimal point to specify the number of spaces for the output number. Te second
integer following the decimal point is used to specify how many decimal places
the output number should have. Additional space characters are introduced if the
number of spaces flled by the output number is less than 5.

46) What is the purpose of the keyword typedef?

Ans. Te keyword typedef is used to create a new name to an existing type or sim-
plify a type’s complex declaration. It does not result in the creation of a new data
type. For instance, afer following the type defnition

typedef unsigned long int byte;

the identifer byte can be used as an abbreviation for the type unsigned long int,
such as

byte x; is equivalent to declaring unsigned long int x;

44 ◾ Learn Programming with C

47) What is the output of the following program?

void main(){
int a=10, b=7;
printf("%i", a+b);}

Ans. In C, %i is a valid format specifer that serves the same purpose as %d. As a
result, the program above will display 17 on the screen.

48) What should be the output of the following program?

void main(){
int a=10/3;
printf("%d", a);}

Ans. Instead of 3.33, the program displays 3 on the screen. Te decimal part is dis-
carded because the result of integer division (int/int) is simply an int.

49) What should be the output of the following program?

void main(){
int a=40, b=50;
printf("%d, %d, ", a++, b−−);
printf("%d, %d", ++a,−−b);}

Ans. 40, 50, 42, 48

Because, for the frst printf() values of a and b are displayed and then increment or
decrement operation is performed, a=a+1=41, b=b−1=49. For the second printf(),
values of a is incremented, and b is decremented, then the values are displayed.
Tus, a=a+1=42 and b=b−1=48 are displayed.

50) What are the values of x, y, and z afer the following program statements execute?

int x=10, y, z;
y = x++;
z = ++x;

Ans. x=12, y=10, z=12

Because in the y=x++ statement, the value of x=10 is frst assigned to y, and then it is
incremented to x=10+1=11. Afer that, in the z=++x statement, value of x=11 is frst
incremented to x=11+1=12, and then 12 is assigned to z.

Problems to Practice

1) Write a program to print the sentence “Hello! Atiqur Rahman! How are you?” on
the screen.

2) Write a program to input an integer and then print the integer value.

3) Write a program that enters two integer values and displays the summation on the
screen.

        

Introduction ◾ 45

4) Write a program that will input two foating-point numbers and then display the
product on the screen.

5) Write a program to input two integers and show the result of the division.

6) Write a program to calculate the area and circumference of a circle.

7) Write a program to calculate the power of a number.

8) Write a program to fnd the size of the data types int, foat, double, and char.

9) Write a program that swaps two numbers.

10) Write a program to display the ASCII code of a character entered by the user.

11) Write a program to display the ASCII codes of consecutive ten characters where the
starting character is entered by the user.

12) Write a program to display your name, date of birth, and mobile number.

13) Write a program to print a block F using hash (#), where the F has a height of seven
characters and width of fve and four characters.

14) Write a program to compute the perimeter and area of a circle with a radius of 6
inches.

15) Write a program that reads no. of days and converts it into years, weeks, and days.

16) Write a program that reads and converts Centigrade to Fahrenheit.

17) Write a program to input an employee’s ID, total worked hours in a day, and the
amount he received per hour. Print the employee’s ID and monthly salary with two
decimal places.

18) Write a program to input the coordinates of two points and calculate the distance
between them.

19) Write a program to generate a random number.

20) Write a program to calculate perimeter of a rectangle. Take sides a and b from the
user.

21) Take a number n from the user and display its cube.

22) Write a program to display the average of any three numbers. Take the numbers
from the user.

46 DOI: 10.1201/9781003302629-2

C H A P T E R 2

Flow Control

Flow control refers to the sequence in which individual function calls, instruc-
tions, or statements are executed when a program is running. Based on the output of an

expression, a decision is made on which of the several paths to pursue using a control flow
statement. Branching and looping are the two types of control flow available in C.

2.1 IF STATEMENT
The statements inside the body of the “if” are executed only if the condition is true. If the
condition is false, the “if” statement’s body is skipped, and normal execution resumes after
the body. Structure of if statement is as follows:

if (conditions){
 //blocks of valid C statements
 //these statements are executed if the conditions

//return true or 1
}
//valid C statements

Flow diagram of if statement is as follows:

https://doi.org/10.1201/9781003302629-2

        

Flow Control ◾ 47

2.2 IF..ELSE STATEMENT
If the condition is true, the statements in the body of the “if” statement are executed, skip-
ping the statements in the body of the “else” statement. If the condition is false, the state-
ments in the body of the “else” statement are executed, skipping the statements in the body
of the “if” statement. Structure of if..else statement is as follows:

if (conditions){
//blocks of valid C statements
//these statements are executed if the conditions
//return true or 1

}
else{

//blocks of valid C statements
//these statements are executed if the conditions
//return false or 0

}
//valid C statements

Flow diagram of if..else statement is as follows:

Using opening and closing curly braces is optional if the body of the “if” or “else” includes
a single sentence.

2.3 NESTED IF..ELSE STATEMENT
If if..else statements are used inside the body of another “if” or “else” statement, it is called
nested if..else statement. Structure of nested if..else statements is as follows:

if (condition1){
//blocks of valid C statements

48 ◾ Learn Programming with C

/*these statements including following if..else
statements are executed if condition1 returns 1*/
if (condition2){

//blocks of valid C statements
//these statements are executed if
//condition2 is true

}
else{

//blocks of valid C statements
//these statements are executed if
//condition2 is false

}
}
else{

//blocks of valid C statements
//these statements are executed if condition1 is
//false

}

Flow diagram of nested if..else statement is as follows:

2.4 CONDITIONAL OPERATOR
Te conditional operator in C is similar to the if..else statement. Te if..else statement
requires multiple statements to complete a task; the conditional operator can do the

        

Flow Control ◾ 49

same operation in a single statement. It is also known as the ternary operator because
it operates on three operands. It helps in the quickest possible writing of the if..else
statement.

Syntax of the conditional operator is as follows:

variable = expression1? expression2: expression3

Using if..else statement, the ternary operator (?:) can be visualized as follows:

if (expression1)

variable = expression2;

else

variable = expression3;

Flow diagram of the ternary operator is as follows:

Example:

2.5 FOR LOOP
In C, the “for” loop is used to repeatedly execute a block of statements until certain condi-
tion becomes false or returns zero. Syntax of “for” loop is as follows:

for (initialization; conditions; increment or decrement){
//blocks of valid C statements
//statements are executed repeatedly as long as
//the conditions are true

}

 50 ◾ Learn Programming with C

Flow diagram of “for” loop is as follows:

Example:

Variation-1: Te initialization part can be skipped and declared before the “for” loop
begins. Example:

Variation-2: Te increment or decrement part of the loop can be skipped and done within
the body of the “for” loop. Example:

Variation-3: In the “for” loop, it is allowed to use multiple initializations, conditions, and/
or increments or decrements. Example:

        

Flow Control ◾ 51

Nested for loop: Any valid for loop is allowed to use inside another for loop.
Example:

Note: If condition in the “for” loop can never be false or always returns 0, it is an infnite
loop and using such a condition is a logical error. Example:

2.6 WHILE LOOP
In C, a “while” loop is used to repeatedly execute a block of statements until certain condi-
tion becomes false or returns zero. Syntax of “while” loop is as follows:

initialization;
while (conditions){

//blocks of valid C statements
//statements are executed repeatedly as long as
//the conditions are true
increment or decrement;

}

Flow diagram of “while” loop is as follows:

52 ◾ Learn Programming with C

Example:

2.7 DO..WHILE LOOP
In C, a do..while loop is used to execute a block of statements until certain condition
becomes false or returns 0. Syntax of do..while loop is as follows:

initialization;
do{

//blocks of valid C statements
//statements are executed repeatedly as long as
//the conditions are true
increment or decrement;

}while (conditions);

Flow diagram of do..while loop is as follows:

Example:

        

Flow Control ◾ 53

Diferences with “while” loop:

(1) Te condition is checked frst in a while loop before the statements in the body are
executed. Whereas the condition is checked afer the loop’s body is executed in a
do..while loop.

(2) Te statements in the body of the do..while loop are executed at least once, even if
the condition is false. In contrast, the statements in the body of the while loop are
never executed if the condition is false.

(3) A semicolon is used afer while (condition) in the do..while loop and no semicolon
is used afer while (condition) in the while loop.

2.8 CONTINUE STATEMENT
When the continue statement appears in a loop, program control moves to the beginning
of the loop, skipping the statements following the continue. Te fow diagram of the con-
tinue statement is as follows:

2.9 BREAK STATEMENT
When a break statement is found, the program control exits the loop or switch-case
instantly. For the practical program of the switch-case, which is discussed later, the break
statement should always be used. Te fow diagram of the break statement is as follows:

54 ◾ Learn Programming with C

2.10 SWITCH..CASE STATEMENT
When there are multiple options to be executed and diferent tasks must be performed for
each option, the switch-case statement is used. Te syntax of the switch-case statement is
as follows:

switch (variable or integer expression){
case constant1:

//blocks of valid C statements
//statements are executed only if consant1 =
//variable or integer expression
break;

case constant2:
//blocks of valid C statements
//statements are executed only if consant2 =
//variable or integer expression
break;

default:
//blocks of valid C statements
/*statements are executed in case none of the above
case condition is true*/

}

Te fow diagram of the switch-case statement is as follows:

Example of switch-case statement is as follows:

        

Flow Control ◾ 55

Te output of this program is case 2.
If no break statement is used, then the output is case 1 case 2 default.
The break statement causes the program control to exit the switch body. After

default, using the break statement is optional and does not affect the program f low
or output.

2.11 GOTO STATEMENT
When a goto statement is encountered, the program control jumps to the label specifed in
the goto statement right away. Te syntax of the goto statement is as follows:

goto label_name;
//block-1 of valid C statements

label_name:
//block-2 of valid C statements
/*statements are executed as soon as the above goto is encountered, skipping the
block-1 statements*/

Te fow diagram of the goto statement is as follows:

56 ◾ Learn Programming with C

2.12 EXAMPLES

PROBLEM-01
Write a program to check whether a given number is positive or negative.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int num;
/*the variable num is declared as an integer type variable, and
required memory spaces are allocated for num*/
printf("Enter a number: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/

        

Flow Control ◾ 57

scanf("%d", &num);
/*when a value is entered from input terminal, the scanf()
function assigns it to num; the address operator, which must be
used before the variable name since the input value is placed
in the memory location allocated for that variable*/
if (num>=0)
/*if num is greater than or equal to zero then it is true or 1,
and the following statement is executed*/

printf("%d is a positive number.", num);
/*this printf() displays the text inside the quotations
as it is on the screen except for the value of num is
replaces the format specifier %d; as there is only one
statement in the body of if loop no curly brace is
required*/

else
/*if the above condition is false, then the following statement
is executed*/

printf("%d is a negative number.", num);
/*printf() function displays the text inside the quotations
as it is on the screen except for the value of num is
replaces %d; as there is only one statement in the body
of else loop, no curly brace is required*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-02
Write a program to check whether a number is even or odd.

Programming Code of the Solution:

 58 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int num;
/*integer type variable num is declared that stores only
integers*/
printf("Enter an integer to check: ");
/*output function printf() displays the text inside the double
quotes as it is on standard output screen*/
scanf("%d", &num);
/*scanf() reads an integer from the input terminal and assigns
the value to num*/
if (num%2)
/*num is divided by 2 and returns 0 or 1 depending on value of
num; 0 corresponds to false and 1 corresponds to true; if the
remainder is 1 following statement is executed*/

printf("%d is odd number.", num);
/*printf() function displays the text inside double
quotations as it is on screen except for the value of num
replaces the format specifier %d*/

else
/*if num%2 returns 0, then the condition of 'if' is false and
following statement is executed*/

printf("%d is even number.", num);
/*printf() function displays the text inside double
quotations as it is on the screen except for the value of
num replaces the format specifier %d*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

        

Flow Control ◾ 59

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-03
Write a program to check whether a character is an alphabet or not.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void or
int; here there is no parameter of the main() function and it returns
an integer; opening curly brace specifies start of the main() function
and no statement before that curly brace is executed by the compiler*/

char ch;
/*character type variable ch is declare that is used to store
the character to check*/
printf("Enter a character: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/

60 ◾ Learn Programming with C

scanf("%c", &ch);
/*input function scanf() reads a character from the input
terminal and assigns the character to ch*/
if ((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch<= 'Z'))
/*first two conditions check if the ch is a small letter;
the last two conditions check whether the ch is a capital
letter; if ch is either a small letter or a capital letter
above expression returns true=1 and the following statement is
executed*/

printf("%c is an alphabet.", ch);
/*this printf() function displays %c is an alphabet
with the value of ch replaces the format specifier %c*/

else
/*if ch is neither a small letter nor a capital letter above
expression of 'if' returns false = 0 and following statement is
executed*/

printf("%c is not an alphabet.", ch);
/*printf() function displays the text inside double
quotations as it is on the screen except for the
character ch replaces the format specifier %c*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-04
Write a program to count the number of digits in an integer.

Programming Code of the Solution:

        Flow Control ◾ 61

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

long long num, num1;
/*two long long integer data type num and num1 are declared to
store large values*/
int count = 0;
/*integer type variable count is declared and initialized to 0*/
printf("Enter an integer: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%lld", &num);
/*scanf() reads a value from the input terminal and the value
is assigned to variable num; %lld is the format specifier for
long long int type data*/
num1=num;
/*value of num is assigned to num1; we did this assignment to
keep the value of num unchanged as we want to show the value
on the screen later; and we use num1 to separate and count the
digits in the while loop*/
while (num1!= 0){
/*if num1≠0, the statements enclosed by curly braces are
executed; after execution of the body the condition is re-
checked; these steps continue until num1=0 at which point the
program flow exits the loop*/

num1 = num1/10;
/*in each iteration num is divided by 10, last digit is
truncated and new value is assigned to num*/
count++;
/*value of count is incremented by 1 in each iteration for
each last digit of the number; if num=238 then

62 ◾ Learn Programming with C

After 1st iteration- num=238/10=23, count=0+1=1
After 2nd iteration- num=23/10=2, count=1+1=2
After 3rd iteration- num=2/10=0, count=2+1=3*/

}
/*this closing curly brace specifies the end of the body of the
while loop*/
printf("Number of digits in %lld is: %d", num, count);
/*printf() function displays the text inside the quotations as
it is on the screen, except for the value of num replaces the
format specifier %lld and the value of count replaces %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-05
Write a program to generate and display multiplication table of a number entered
by user.

Programming Code of the Solution:

Input and Output of the Executed Program:

        

Flow Control ◾ 63

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int num, i;
/*two integer type variables are declared*/
printf("Enter an integer to display the multiplication"

"table:");
/*output function printf() displays text in the double
quotations as it is on the screen*/
scanf("%d", &num);
/*scanf() reads an integer from input terminal and stores the
value in the memory locatin assigned for; therefore, format
specifier %d is used and address operator & is used with the
variable name*/
for (i=1; i<=10; i++)
/*i=1 is the initialization, i<=10 is the condition, i++ is
the increment; its body contains only one statement, hence no
curly brace is required; initialization is done once at the
beginning of the loop; the condition is then checked, if it
is true, the body is executed;. the condition is re-checked
after incrementing the value of i by 1; these steps are
repeated until i>0, at which point the program flow exits the
loop*/

printf("%d×%d = %d\n", num, i, num*i);
/*this printf() displays the text inside the double
quotes as it is on the screen except for the value of
num replaces the 1st format specifier %d, the value of
i replaces the 2nd %d, the result of expression num×i
replaces the 3rd %d and a newline replaces \n*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

64 ◾ Learn Programming with C

PROBLEM-06
Write a program to determine and display the sum of the following harmonic series
for a given value of n.

1 1 11+ + + +
2 3 n

Te value of n should be given interactively through the terminal.

Flowchart of the Solution:

Figure 2.1 shows the fowchart followed to solve this problem.

FIGURE 2.1 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize sum←0

Step-3: Read value of n

        Flow Control ◾ 65

Step-4: Initialize i←1

Step-5: If i<=n

5.1: sum←sum+1/i

5.2: i←i+1

5.3: Go to Step-5

Step-6: If n>5

6.1: Display 1+1/2+1/3+. . .

6.2: Go to Step-10

Step-7: Display 1

Step-8: Initialize j←2

Step-9: If j<n

9.1: Display +1/j

9.2: j←j+1

9.3: Go to Step-9

Step-10: Display +1/n=sum

Step-11: Stop

Programming Code of the Solution:

 66 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int n, i, j;
/*three int type variables are declared; compiler assigns
required spaces in memory for these three variables*/
float sum=0;
/*the float type variable sum is declared and initialized to
0; this variable is used in the summation operation; thus, it
must be initialized to 0; otherwise, some garbage value is added
in the first addition, and we get the wrong answer; because
when a variable is declared, memory space is allocated for
that variable, and the assigned memory space may contain some
garbage value*/
printf("Please enter an integer: ");
/*output library function printf() displays the text inside the
double quotes as it is on the standard output terminal*/
scanf("%d", &n);
/*input library function scanf() reads an integer from input
terminal and stores the value in the memory location assigned
for n*/
for (i=1; i<=n; i++)
/*i=1 is initialization, i<=n is condition and i++ is increment;
initialization is done once at the beginning of the loop; next
the condition is checked, and if it is true, the statement in
the body is executed; the value of i is incremented by 1 before
the condition is re-checked; this process continues until the
condition becomes false at which point the program flow exits
the loop*/

        

Flow Control ◾ 67

sum=sum+(1/(float)i);
/*in each iteration of the loop, the type of i is converted
to float from int, so that 1/i gives a decimal value;
this action sequentially adds 1/1, 1/2, 1/3, . . . to the
sum*/

if (n>5)
/*if n>5 then the condition is true and following statement is
executed*/

printf("1 + 1/2 + 1/3 + . . . ");
/*this printf() function displays the text inside the
double quotations as it is on the screen*/

else{
/*statements in the body of else, enclosed by curly braces, are
executed if the condition of 'if' is false, that is, n<=5*/

printf("1");
/*output function printf() displayes 1 on the screen*/
for (j=2; j<n; j++)
/*j=2 is initialization, i<=n is condition and i++ is
increment; initialization is done once at the beginning
of the loop; then the condition is checked, and if it is
true, the statement in the body is executed; the value of
j is incremented by 1 before the condition is re-checked;
these procedures are repeated until the condition is no
longer true at which point the program flow exits the
loop*/

printf(" + 1/%d", j);
/*printf() function displays the text inside the double
quores as it is on the screen except for the value of j
replaces the format specifier %d*/

}
/*this closing curly brace specifies the end of else*/
printf(" + 1/%d = %0.2f\n", n, sum);
/*the printf() function displays the text in the double-quotes
as it is on the screen, with the exception that the value of n
replaces the format specifier %d, the value of sum replaces the
format specifier %0.2f with two decimal points precision, and
a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

68 ◾ Learn Programming with C

PROBLEM-07
Write a program to fnd the number and sum of all integers greater than 100 and less
than 200 divisible by 7.

Flowchart of the Solution:

Figure 2.2 shows the fowchart followed to solve this problem.

FIGURE 2.2 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize num←0, sum←0 and i←101

Step-3: If i<200

        Flow Control ◾ 69

3.1: If i%7=0

3.1.1: num←num+1

3.1.2: sum←sum+i

3.2: i←i+1

3.3: Go to Step-3

Step-4: Display values of num and sum

Step-5: Stop

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C programs must have a main() function with return type void
or int; here, there is no parameter of the main() function, and it
returns an integer; opening curly brace specifies the start of the
main() function and no statement before that curly brace is executed
by the compiler*/

 70 ◾ Learn Programming with C

int num=0, sum=0, i;
/*three integer type variables are declared; variables num and
sum are initialized to 0; otherwise, some garbage values are
added in the first summation involving num and sum, and we get
the wrong answers; this is because memory spaces are allocated
for the variables when they are declared, and the assigned
memory spaces may contain some garbage values*/
for (i=101; i<200; i++)
/*i=101 is the initialization, i<200 is the condition, i++ is
the increment; the body of this for loop simply comprises the
following if statement, thus no curly brace is required; the
condition is checked once at the beginning of the loop; if it
is true, the next if statement is executed; the value of i is
incremented by 1 before the condition is re-checked; these
processes continue until i=200, at which point the program flow
exits the loop*/

if (!(i%7)){
/*i=101 is divided by 7 in the first iteration; if the
remainder is 0, the condition is true, then the body of the
'if' is executed; the second iteration starts with i=102
being divided by 7; these processes continue until the
value of i reaches 200; hence, all values from 101 to 199
are sequentially checked*/

num++;
/*if i is divisible by 7, the value of num is incremented
by 1*/
sum+=i;
/*if i is divisible by 7, value i is added with sum*/

}
/*this closing curly brace specifies the end of the 'if'
condition; because this 'if' is the lone statement in the
'for' loop, it also marks the end of the 'for' loop*/

printf("Number of required integers is: %d\n", num);
/*printf() function displays the text in the double quotes as
it is on the screen except for the value of num replaces the
format specifier %d and a newline replaces\n*/
printf("Sum of all required integers is: %d\n", sum);
/*printf() function displays the text in the double quotes as
it is on the screen except for the value of sum replaces the
format specifier %d and a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

        

Flow Control ◾ 71

PROBLEM-08
Write a program to compute the roots of a quadratic equation:

ax2 + bx + c = 0

Te program should request the values of the constants a, b, and c and display the values
of the roots.

Flowchart of the Solution:

Figure 2.3 shows the fowchart followed to solve this problem.

FIGURE 2.3 Flowchart followed to solve the problem.

 72 ◾ Learn Programming with C

Algorithm of the Solution:

Step-1: Start

Step-2: Read values of a, b, and c

Step-3: If a=0

3.1: If b=0

3.1.1: Display ‘no solution’

3.1.2: Go to Step-9

3.2: Display value of -c/b

3.3: Go to Step-9

Step-4: If b2−4ac<0

4.1: x1←−b/2a

4.2: x2←(4ac-b2)/2a

4.3: Display x1+ix2

4.4: Display x1−ix2

4.5: Go to Step-9

Step-5: If b2−4ac=0

4.6.1: Display value of -b/2a

4.6.2: Go to Step-9

Step-6: x1←(−b+(b2−4ac))/2a

Step-7: x2←(−b−(b2−4ac))/2a

Step-8: Display values of x1 and x2

Step-9: Stop

Programming Code of the Solution:

        Flow Control ◾ 73

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using

74 ◾ Learn Programming with C

preprocessor directive #include before the functions are called in
the program*/
#include <math.h>
/*header file math.h contains prototype of the library function
sqrt(); the header file must be included using preprocessor directive
#include before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void or
int; here there is no parameter of the main() function and it returns
an integer; opening curly brace specifies start of the main() function
and no statement before that curly brace is executed by the compiler*/

float a, b, c, x1, x2;
/*five float type variables are declared; required memory spaces
are assigned for each variable*/
printf("Enter three constants a, b and c of the equation"

"ax^2+bx+c=0:\n");
/*output function printf() displays the texts inside double
quotations as it is on the screen except for a newline replaces
\n, here the long string was broken into two lines using two
double quotes ("")*/
scanf("%f %f %f", &a, &b, &c);
/*scanf() function reads three floating point values separated
by space, tab or enter from input terminal; 1st value is assigned
to a, 2nd value to b and 3rd value to c*/
if (a==0){
/*if the a=0 then if..else statement is executed; if a≠0, then
the program flow jumps to next 'else if' statement skipping the
body of this 'if'*/

if (b==0)
/*if the b=0, then both a=0 and b=0 and following statement
is executed*/

printf("Sorry, there is no solution to the"
"equation.\n");

/*function printf() displays the texts inside double
quotations as it is on the screen except for a newline
replaces \n*/

else
/*if b≠0, then a=0 but b≠0 and in that case following
statement is executed*/

printf("The only root of the equation is: %0.2f\n",
−(c/b));

/*output function printf() displays the texts inside
double quotations as it is on the screen except for
the value of operation – (c/b) replaces the format
specifier %0.2f with two decimal points precision and
a newline replaces \n*/

        

Flow Control ◾ 75

}
/*this is the end of first if statement with the condition
(a==0)*/
else if ((b*b−4*a*c)<0){
/*if a≠0, then this else if condition is checked; if b2−4ac<0,
the statements in the body of 'else if' enclosed with curly
braces are executed*/

x1=−b/(2*a);
/*first multiplication operation inside first brackets and
then the division operation are done, the result is assigned
to x1*/
x2=sqrt(4*a*c−b*b)/(2*a);
/*sqrt() function returns the square root value of its
argument 4ac−b2, this value is divided by 2a and the result
is assigned to x2*/
printf("Two imaginary roots of the equation are:\n");
/*output function printf() displays the text inside the
double quotations as it is on the screen except for a
newline \n*/
printf("(1) %0.2f+i%0.2f\n(2) %0.2f−i%0.2f\n", x1, x2, x1,

x2);
/*this printf() function displays the text inside the
double quotations as it is on the screen except for a
newline replaces \n; 1st and 3rd format specifiers %0.2f are
replaced by the values of x1 two decimal points precision
while 2nd and 4th %0.2f by the values of x2*/

}
/*this closing curly brace specifies the end of 'else if' with
condition b2−4ac<0*/
else if ((b*b−4*a*c)==0)
/*if a≠0 and b2−4ac≥0 then program flow jumps to this 'else if'
condition; if b2−4ac=0, then the statement in this 'else if'
body is executed*/

printf("The only root of the equation is: %0.2f\n",
−b/(2*a));

/*this printf() function displays the text inside double
quotations as it is on the screen except for the format
specifier %0.2f is replaced by the value of operation − b/2a
with two decimal points precision and a newline replaces
\n*/

else{
/*statements in the body of this else are executed only if all
the above conditions a==0, b2−4ac<0 and b2−4ac==0 are false*/

x1=(−b+sqrt(b*b−4*a*c))/(2*a);
/*sqrt() returns square root of its argument b2−4ac; result
of operation (−b+√(b2−4ac))/2a is assigned to x1*/

76 ◾ Learn Programming with C

x2=(−b−sqrt(b*b−4*a*c))/(2*a);
/*sqrt() returns square root of its argument b2−4ac; result
of operation (−b−√(b2−4ac))/2a is assigned to x1*/
printf("The roots of the equation are: %0.2f and %0.2f\n",

x1, x2);
/*this printf() function displays the text inside the double
quotes as it is on the screen except for a newline replaces
\n; 1st format specifier %0.2f is replaced by the value of
x1 with two decimal points precision while the 2nd %0.2f by
the value of x2*/

}
/*this closing curly brace specifies the end of else*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-09
Write a program to compute the sum of individual digits of a given positive integer
number.

Flowchart of the Solution:

Figure 2.4 shows the fowchart followed to solve this problem.

FIGURE 2.4 Flowchart followed to solve the problem.

        Flow Control ◾ 77

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize sum←0

Step-3: Read value of n

Step-4: If (num/10)≠0

4.1: sum←sum+num%10

4.2: num←num/10

4.3: Go to Step-4

Step-5: sum←sum+num

Step-6: Display value of sum

Step-7: Stop

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using

78 ◾ Learn Programming with C

preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int sum=0, num;
/*two integer type variables, sum and num, are declared; variable
sum is initialized to 0, otherwise some garbage value is added
in the first summation involving sum, and we get the wrong
answer; this is because when a variable is declared, memory
space is allocated for it, and the assigned memory space may
contain some garbage value*/
printf("Enter any integer: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%d", &num);
/*scanf() reads an integer from keyboard and assigns the value
to variable num*/
while (num/10){
/*here num is divided by 10; the statements in the body of
while are executed if the quotient is nonzero; for multi-digit
numbers, the quotient is nonzero and the condition is true; for
single digit numbers, the condition is false since the quotient
is zero*/

sum+=num%10;
/*num contains more than one digit as long as the condition
is true; num is divided by 10 and the remainder, which
might be the num’s last digit, is added with sum in each
iteration. */
num=num/10;
/*num contains more than one digit as long as the condition
is true; num is divided by 10 in each iteration, and the
quotient, that might be the value with the final digit
truncated, is assigned to num; the new assigned value of num
is used in the next iteration; if num=386 then
After 1st iteration- sum=sum+num%10=0+386%10=0+6=6

num=num/10=386/10=38

        

Flow Control ◾ 79

After 2nd iteration- sum=sum+num%10=6+38%10=6+8=14
num=num/10=38/10=3*/

}
/*this closing curly brace specifies the end of the while
loop*/
sum+=num;
/*when num equals the number’s first digit, the program exits
the “while” loop since the condition is false; hence, the first
digit must be added with sum outside the while loop, which is
done in this statement; for above example-
sum=sum+num=14+3=17*/
printf("The sum of the digits is: %d\n", sum);
/*printf() function displays the text in the double quotations
as it is on the screen except for the value of sum replaces the
format specifier %d, and a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-10
Develop a program to implement a calculator. The program should request the
user to input two numbers and display one of the following as per the desire
of the user (consider the operators “+”, “−”, “*”, “/”, “%” and use “switch”
statement):

(a) Sum of the numbers

(b) Diference of the numbers

(c) Product of the numbers

(d) Division of the numbers

Flowchart of the Solution:

Figure 2.5 shows the fowchart followed to solve this problem.

80 ◾ Learn Programming with C

FIGURE 2.5 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize ch←‘y’

Step-3: If ch≠‘n’

3.1: Read values of num1, num2, and op

3.2: If op=‘+’

3.2.1: Display value of num1+num2

3.2.2: Go to Step-3.6

3.3: If op=‘−’

3.3.1: Display value of num1−num2

3.3.2: Go to Step-3.6

        Flow Control ◾ 81

3.4: If op=‘*’

3.4.1: Display value of num1×num2

3.4.2: Go to Step-3.6

3.5: If op=‘/’

3.5.1: If num2≠0

3.5.1.1: Display value of num1/num2

3.5.1.2: Go to Step-3.6

3.5.2: Display ‘cannot divide by zero’

3.6: Read value of ch (=y/n)

3.7: Display enter

3.8: Go to Step-3

Step-4: Stop

Programming Code of the Solution:

 82 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <conio.h>
/*getche() is a non-standard function declared in the conio.h header
file; the header file must be included using the preprocessor
directive #include before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char ch='y', op;
/*char type variable op is declared that can hold an operator
+, −, * or/as character; another variable ch is declared and
initialized to y*/

        

Flow Control ◾ 83

float num1, num2;
/*two float type variables are declared to hold the two values
on which operation is performed*/
printf("This is a simple calculator . . . \n");
/*this displays the text inside the double quotes as it is on
the screen followed by a newline replaces \n*/
while (ch!='n'){
/*if ch≠'n', the condition is true and statements in the body
of loop, enclosed by curly braces, are executed*/

printf("Enter op1+op2 or op1−op2 or op1*op2 or op1/op2"
"followed by enter . . . \n");

/*printf() function displays the text in the quotations as
it is on the screen except for a newline replaces \n*; here
long string was broken into multiple lines using two double
quotes (““)/
scanf("%f %c %f", &num1, &op, &num2);
/*scanf()function reads two decimal values and a character
from input terminal; first format specifier %f corresponds
to num1, second %c corresponds to op and third %f corresponds
to num2*/
switch (op){
/*the switch() function moves the program control flow to
one of the following cases, based on the value of op*/

case '+':
/*if op=+, then following statements are executed*/

printf("%0.2f + %0.2f = %0.2f\n", num1, num2,
num1+num2);

/*this printf() displays the text as it is on the
screen except for the value of num1 replaces the
first format specifier %0.2f with two decimal points
precision, the value of num2 replaces the second
%0.2f, and the value of the operation num1+num2
replaces the third %0.2f*/
break;
/*program control flow immediately comes out of the
switch-case statement*/

case '−':
/*if op=−, then following statements are executed*/

printf("%0.2f – %0.2f = %0.2f\n", num1, num2, num1−
num2);

/*this printf() displays the text as it is on the
screen except for the value of num1 replaces the
first format specifier %0.2f with two decimal points
precision, the value of num2 replaces the second
%0.2f, and the value of the operation num1−num2
replaces the third %0.2f*/
break;

84 ◾ Learn Programming with C

/*program control flow immediately comes out of the
switch-case*/

case '*':
/*if op=*, then following statements are executed*/

printf("%0.2f × %0.2f = %0.2f\n", num1, num2,
num1*num2);

/*this printf() displays the text as it is on the
screen except for the value of num1 replaces the
first format specifier %0.2f with two decimal points
precision, the value of num2 replaces the second
%0.2f, and the value of the operation num1×num2
replaces the third %0.2f*/
break;
/*program control flow immediately comes out of the
switch-case statement*/

case '/':
/*following if..else is execute if op = /*/

if (num2)
/*if value of num2 is anything other than 0 then
the condition is true and following statement is
executed*/

printf("%0.2f/%0.2f = %0.2f\n", num1, num2,
num1/num2);

/*this printf() displays the text as it is
on the screen except for the value of num1
replaces the first format specifier %0.2f with
two decimal points precision, the value of
num2 replaces the second %0.2f, and the value
of the operation num1/num2 replaces the third
%0.2f*/

else
/*if num2=0, the condition is false, and the
next statement is executed skipping the above
printf()*/

printf("Cannot divide by zero.\n");
/*this printf() function displays the text in
the quotations as it is on the screen except
for a newline replaces \n*/

}
/*this closing curly brace specifies the end of switch-case
statement*/
printf("Want to do another operation? (y/n): ");
/*output function printf() displays the text in the double
quotations as it is on the screen*/
ch=getche();
/*the getche() function waits for character input from the
keyboard, and when a character is typed, it is echoed on

        

Flow Control ◾ 85

the output screen without waiting for enter to be hit, and
the character is assigned to ch*/
printf("\n");
/*this printf() function displays a newline on the screen*/

}
/*this closing curly brace specifies the end of the while loop*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-11
A person has 10 vori gold, 25 vori silver, and tk 10,000.00 in cash. He also has tk
5,000.00 in debt, and he owes his cousin tk 7,500.00. Calculate the amount of money
he has to pay for piety tax this year. Piety tax is payable to the poor, 2.5% of total
wealth (gold, silver, cash, or any business items) one person has afer one lunar year if
his total wealth is more than 7.5 vori gold or 52.5 vori silver or its equivalent money
whichever is smaller.

Flowchart of the Solution:

Figure 2.6 shows the fowchart followed to solve this problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Read values of gold, silver, bank, cash, item, debt, owe, gdprice, and srprice

Step-3: nisab←gdprice×7.5

Step-4: If silver≠0

4.1: Go to Step-8.1

Step-5: If bank≠0

5.1: Go to Step-8.1

Step-6: If cash≠0

6.1: Go to Step-8.1

Step-7: If item≠0

7.1: Go to Step-8.1

86 ◾ Learn Programming with C

FIGURE 2.6 Flowchart followed to solve the problem.

        Flow Control ◾ 87

Step-8: If owe≠0

8.1: If nisab>srprice×52.5

8.1.1: nisab←srprice×52.5

Step-9: Display value of nisab

Step-10: asset←gold×gdprice+silver×srprice+bank+cash+item+owe−debt

Step-11: Display value of asset

Step-12: If asset<nisab

12.1: Display ‘no piety-tax’

12.2: Go to Step-15

Step-13: zakat←asset×2.5/100

Step-14: Display value of zakat

Step-15: Stop

Programming Code of the Solution:

88 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using preprocessor
directive #include before the functions are called in the program*/
int main(){
/*all C program must have a main() function with return type void or
int; here there is no parameter of the main() function and it returns
an integer; opening curly brace specifies start of the main() function
and no statement before that curly brace is executed by the compiler*/

float gold, silver, bank, cash, item;
/*five float type variables are declared; required memory spaces
are allocated for each variable*/
float debt, owe, gdprice, srprice;
/*four float type variables are declared; required memory spaces
are allocated for each variable*/

        

Flow Control ◾ 89

float nisab, asset, pttax, zakat;
/*four float type variables are declared; required memory spaces
are allocated for each variable*/
printf("This is a simple piety tax calculator . . . \n\n");
/*printf() function displays the text in the quotation as it is
on screen except for a newline replaces \n*/
printf("How much gold (in vori) do you have? ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%f", &gold);
/*input function scanf() reads a decimal value from input
terminal and stores it in the memory spaces allocated to gold*/
printf("How much silver (in vori) do you have: ");
/*printf() function displays the text in the quotation as it is
on the screen*/
scanf("%f", &silver);
/*scanf() function reades a decimal value from input terminal
and stores it in the memory spaces allocated to silver*/
printf("What is your bank balance (in taka) today? ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%f", &bank);
/*scanf() function takes a decimal value from input terminal
and stores it in the memory spaces allocated to bank*/
printf("Amount of cash (in taka) in your hand today? ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%f", &cash);
/*scanf() function reads a decimal value from input terminal
and stores it in the memory spaces allocated to cash*/
printf("Enter total market price of your business items, if"

"any\n");
/*printf() function displays the text in the quotation as it is
on screen except for a newline replaces \n*/
printf("(or enter 0 if you have no business item)? ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%f", &item);
/*function scanf() reads a decimal value from input terminal
and stores it in the memory spaces allocated to item*/
printf("Do you have any debt to anyone that you have to pay"

"recently? ");
/*printf() function displays the text in the quotation as it is
on the screen, here the long string was broken into two lines
using two double quotes ("")*/
scanf("%f", &debt);
/*function scanf() reads a decimal value from input terminal
and stores it in the memory spaces allocated to debt*/

90 ◾ Learn Programming with C

printf("Do you owe anyone anything that you will get"
"recently?");

/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%f", &owe);
/*function scanf() reads a decimal value from input terminal
and stores it in the memory spaces allocated to owe*/
printf("Enter the price of gold per vori today? ");
/*printf() function displays the text in the quotations as it
is on the screen*/
scanf("%f", &gdprice);
/*function scanf() reads a decimal value from input terminal
and stores it in the memory spaces allocated to gdprice*/
printf("Enter the price of silver per vori today? ");
/*printf() function displays the text in the quotations as it
is on the screen*/
scanf("%f", &srprice);
/*function scanf() reads a decimal value from input terminal
and stores it in the memory spaces allocated to srprice*/
nisab=gdprice*7.5;
/*value of gdprice is multiplied by 7.5 and the result is
assigned to nisab*/
if (silver!=0||bank!=0||cash!=0||item!=0||owe!=0)
/*this if condition is used to check if the person concerned has
any other assets except gold and adjust the nisab accordingly;
if other assets are available, the condition is true, and the
next 'if' statement is executed*/

if (nisab>srprice*52.5)
/*if the nisab calculated from gold price is larger than
52.5 times the silver price, then the following statement
is executed to adjust the nisab amount*/

nisab=srprice*52.5;
/*value of srprice is multiplied by 52.5 and the result
is assigned to nisab*/

printf("\nYour nisab (threshold amount) is %0.2f taka.\n",
nisab);

/*printf() function displays the text in the quotations as it is
on the screen except for the format specifier %0.2f is replaced
by the value of nisab with two decimal points precision and a
newline replaces \n*/
asset=gold*gdprice+silver*srprice+bank+cash+item+owe−debt;
/*total asset of the person concerned is calculated*/
printf("Your asset is %0.2f taka.\n", asset);
/*printf() function displays the text in the quotations as it
is on the screen except for format specifier %0.2f is replaced
by the value of asset with two decimal points precision and a
newline replaces \n*/

        

Flow Control ◾ 91

if (asset<nisab)
/*if value of asset is less than nisab amount then above condition
is true and following statement is executed*/

printf("You don't have to pay any piety-tax in this lunar"
"year.\n");

/*printf() function displays the text in the quotations as
it is on the screen except for a newline replaces \n*/

else{
/*if asset>=nisab then above condition is false, and following
statements, enclosed by curly braces, are executed*/

zakat=asset*2.5/100;
/*zakat or piety-tax amount of the person concerned is
calculated*/
printf("Payable piety-tax to poor in this year is %0.2f"

"taka.\n", zakat);
/*printf() function displays the text in the quotations as
it is on the screen except for the format specifier %0.2f
is replaced by the value of zakat with two decimal points
precision and a newline replaces \n*/

}
/*this closing curly brace specifies the end of else*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-12
A person gets a monthly salary of tk 60,000.00 with two festival allowances of
tk 80,000.00. He also gets tk 50,000.00 from monthly house rent. His average
monthly expenditure is tk 45,000.00, and he has to pay tk 5,000.00 for provident
fund and tk 10,000.00 for life insurance premium. He also has to pay tk 30,000.00
for City Corporation Tax for his apartment. Calculate the amount of income tax
he has to pay to the government in this year. The government fixes the tax for
this year as follows:

Income Tax
First tk 2,20,000.00 Nil
Next tk 3,00,000.00 10%
Next tk 4,00,000.00 15%
Next tk 5,00,000.00 20%
Rest amount 25%
Minimum payable tax is tk 3,000.00

92 ◾ Learn Programming with C

Provident funds, life insurance, and share investment are considered personal invest-
ments, and the taxpayer gets a 15% rebate on his total investment. Festival allowance
and other allowances are exempted from the tax.

Flowchart of the Solution:

Figure 2.7 shows the fowcharts followed to solve this problem.

FIGURE 2.7 Flowcharts followed to solve the problem.

        

Flow Control ◾ 93

FIGURE 2.7 (Continued)

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize income1←0, income2←0, income3←0, income4←0, and income5←0

Step-3: Read values of msalary, fallowance, oallowance, oincome, pfund, linsurance,
share, oinvest, and otaxp

Step-4: tallowance←fallowance+oallowance

Step-5: tincome←(msalary+oincome)×12+tallowance

Step-6: taxincome←tincome-tallowance

Step-7: tinvest←pfund×12+linsurance+share+oinvest

Step-8: rebate←tinvest×15/100

Step-9: Display values of tincome, tallowance, taxincome, and tinvest

Step-10: If taxincome<=220000

10.1: income1←taxincome

10.2: Go to Step-19

 94 ◾ Learn Programming with C

Step-11: If taxincome<=520000

11.1: income1←220000

11.2: income2←taxincome-220000

11.3: Go to Step-19

Step-12: If taxincome<=920000

12.1: income1←220000

12.2: income2←300000

12.3: income3←taxincome-520000

12.4: Go to Step-19

Step-13: If taxincome<=1420000

13.1: income1←220000

13.2: income2←300000

13.3: income3←400000

13.4: income4←taxincome-920000

13.5: Go to Step-19

Step-14: income1←220000

Step-15: income2←300000

Step-16: income3←400000

Step-17: income4←500000

Step-18: income5←taxincome-1420000

Step-19: tax2←income2×10/100

Step-20: tax3←income3×15/100

Step-21: tax4←income4×20/100

Step-22: tax5←income5×25/100

Step-23: taxtot←tax1+tax2+tax3+tax4+tax5

Step-24: taxpaid←taxtot-rebate-otaxp

Step-25: Display values of income1, income2, tax2, income3, tax3, income4, tax4,
income5, tax5, taxincome, taxtot, rebate, and otaxp

Step-26: If taxtot>0

26.1: If taxpaid<3000

        Flow Control ◾ 95

26.1.1: Display 3000.00

26.1.2: Go to Step-28

26.2: Display value of taxpaid

26.3: Go to Step-28

Step-27: Display ‘no tax’

Step-28: Stop

Programming Code of the Solution:

 96 ◾ Learn Programming with C

        Flow Control ◾ 97

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

float msalary, fallowance, oallowance, oincome;
/*four float type variables are declared; required memory spaces
are assigned for each variable*/
float pfund, linsurance, share, oinvest, otaxp;

98 ◾ Learn Programming with C

/*five float type variables are declared that can store only
decimal values; required memory spaces are assigned for each
variable*/
float tincome, tallowance, taxincome, tinvest, rebate, taxpaid;
/*six float type variables are declared; required memory spaces
are assigned for each variable*/
float income1=0.0, income2=0.0, income3=0.0, income4=0.0;
/*four float type variables are declared and initialized to
0.0; required memory spaces are assigned for each variable;
they are used to save income that falls into distinct slabs;
if income is not that high, income in that slab remains at
0.0*/
float income5=0.0, tax2, tax3, tax4, tax5, taxtot;
/*six float type variables are declared; required memory spaces
are assigned for each variable; 1st variable is initialized to
0.0 and used to save income of another slab*/
printf("This is a simple income tax calculator . . . \n");
/*function printf() displays the text inside the double
quotations as it is on the screen except for a newline replaces
\n*/
printf("What is your monthly basic salary? ");
/*output function printf() displays the text in the double
quotes as it is on screen*/
scanf("%f", &msalary);
/*input function scanf() reads a decimal value from input
terminal and it is assigned to msalary*/
printf("Amount of festival allowance you have got in this"

"year? ");
/*function printf() displays the text in double quotations as
it is on the screen*/
scanf("%f", &fallowance);
/*scanf() reads a decimal value from input terminal and it is
assigned to fallowance*/
printf("Amount of any other allownces you have got in this"

"year? ");
/*function printf() displays the text in double quotations as
it is on the screen*/
scanf("%f", &oallowance);
/*scanf() reads a decimal value from input terminal and it is
assigned to oallowance*/
printf("Amount of any other income/month (house rent, business,"

"etc.)? ");
/*printf() displays the text in the double quotations as it is
on the screen; here long string was broken into multiple lines
using two double quotes (““)*/

        Flow Control ◾ 99

scanf("%f", &oincome);
/*scanf() reads a decimal value from input terminal and ite is
assigned to oincome*/
printf("Amount of provident fund per month you have to pay? ");
/*printf() displays the text in double quotations as it is on
the screen*/
scanf("%f", &pfund);
/*scanf() reads a decimal value from input terminal and it is
assigned to pfund*/
printf("Amount of life insurance premium you have to pay? ");
/*function printf() displays the text in the double quotations
as it is on the screen*/
scanf("%f", &linsurance);
/*scanf() takes a decimal value from input terminal and it is
assigned to linsurance*/
printf("Amount of your investment in share market? ");
/*function printf() displays the text in the double quotations
as it is on the screen*/
scanf("%f", &share);
/*scanf() reads a decimal value from input terminal and it is
assigned to share*/
printf("Amount of your other investment (DPS, Prizebond etc.)? ");
/*function printf() displays the text in the double quotations
as it is on the screen*/
scanf("%f", &oinvest);
/*scanf() reads a decimal value from input terminal and it is
assigned to oinvest*/
printf("Amount of any other tax paid to the government? ");
/*function printf() displays the text in the double quotations
as it is on the screen*/
scanf("%f", &otaxp);
/*scanf() reads a decimal value from input terminal and it is
assigned to otaxp*/
tallowance=fallowance+oallowance;
/*total allowance in the year is calculated by summing festival
and other allownces*/
tincome=(msalary+oincome)*12+tallowance;
/*total annual income is computed from monthly salaries and
other sources of income, as well as total allowance*/
taxincome=tincome−tallowance;
/*taxable income is calculated by deducting nontaxable allowance
from total income*/
tinvest=pfund*12+linsurance+share+oinvest;
/*total annual investment is calculated from monthly provident
fund, life insurance premium, share debenture and other
investments, if any*/

 100 ◾ Learn Programming with C

rebate=tinvest*15/100;
/*tax rebate is calculated from total investment*/
printf("\nTotal Income: %0.2f taka", tincome);
/*this printf() function displays the text inside double
quotations as it is on the screen except for a newline replaces
\n and the format specifier %0.2f is replaced by the value of
tincome with two decimal points precision*/
printf("\nTotal Allowances: %0.2f taka", tallowance);
/*this printf() function displays the text inside double
quotations as it is on the screen except for a newline replaces
\n and format specifier %0.2f is replaced by the value of
tallowance with two decimal points precision*/
printf("\nTotal Taxable Income: %0.2f taka", taxincome);
/*this printf() function displays the text inside the double
quotations as it is on the screen except for a newline replaces
\n and the format specifier %0.2f is replaced by the value of
taxincome with two decimal points precision*/
printf("\nTotal Investment: %0.2f taka", tinvest);
/*this printf() function displays the text inside the double
quotations as it is on the screen except for a newline replaces
\n and the format specifier %0.2f is replaced by the value of
tinvest with two decimal points precision*/
if (taxincome<=220000)
/*if the taxable income falls into the lowest income bracket,
the condition is true, and the next statement is executed*/

income1=taxincome;
/*total income is assigned to income1; income2 to income5
remain unchanged at 0.0*/

else if (taxincome<=520000){
/*if the taxable income exceeds the lowest slab but falls within
the second, the else..if condition is true, and the following
statements are executed to divide the taxable income into two
parts*/

income1=220000;
/*first 220000 income is assigned to income1*/
income2=taxincome−220000;
/*remaining income is allocated to income2; income3 through
income5 remain unchanged at 0.0*/

}
/*this is the end of else..if with condition (taxincome<=520000)*/
else if (taxincome<=920000){
/*if the taxable income exceeds the 2nd slab but falls within
the 3rd, the else..if condition is true and the following
statements are executed to divide the taxable income into three
parts*/

income1=220000;
/*first 220000 income is assigned to income1*/

        Flow Control ◾ 101

income2=300000;
/*next 300000 income is assigned to income2*/
income3=taxincome−520000;
/*remaining income is assigned to income3; income4 and
income5 remain unchanged at 0.0*/

}
/*this is the end of else..if with condition (taxincome<=920000)*/
else if (taxincome<=1420000){
/*if the taxable income exceeds the 3rd slab but falls within
the 4th, the else..if condition is true and the following
statements are executed to divide the taxable income into four
parts*/

income1=220000;
/*first 220000 income is assigned to income1*/
income2=300000;
/*next 300000 income is assigned to income2*/
income3=400000;
/*next 400000 income is assigned to income3*/
income4=taxincome−920000;
/*remaining is assigned to income4; income5 remains unchanged
at 0.0*/

}
/*this is the end of else..if with condition (taxincome<=1420000)*/
else{
/*if taxable income exceeds the 4th slab, the condition of
else..if is true and following statements are executed to divide
the taxable income into five parts*/

income1=220000;
/*first 220000 income is assigned to income1*/
income2=300000;
/*next 300000 income is assigned to income2*/
income3=400000;
/*next 400000 income is assigned to income3*/
income4=500000;
/*next 500000 income is assigned to income4*/
income5=taxincome−1420000;
/*remaining income is assigned to income5*/

}
/*this is the end of body of the above else*/
tax2=income2*10/100;
/*the tax amount for the 2nd income level is computed; if the
taxable income falls within the 1st slab, the tax amount is 0.00
(income2=0.0)*/
tax3=income3*15/100;
/*the tax amount for the 3rd income level is computed; it is
0.00 if the taxable income falls inside the 2nd slab, since
income3=0.0*/

102 ◾ Learn Programming with C

tax4=income4*20/100;
/*the tax amount for the 4th income level is computed; it is
0.00 if the taxable income falls inside the 3rd slab, since
income4=0.0*/
tax5=income5*25/100;
/*the tax amount for the 5th income level is computed; if the
taxable income falls within the 4th slab, the tax amount is 0.00
(income5=0.0)*/
taxtot=tax2+tax3+tax4+tax5;
/*the total tax amount is calculated by adding all of the
previous tax amounts together*/
taxpaid=taxtot−rebate−otaxp;
/*the amount of tax that must be paid is calculated by subtracting
the tax rebate and any other taxes that have been paid from the
total tax amount*/
printf("\n\nCalculation of Tax Liabilities");
/*this printf() function displays the text inside the double
quotations as it is on the screen except for a newline replaces
\n*/
printf("\nOn the first Tk220000 @0%% (%0.2f): 0.00", income1);
/*this printf() function displays the text inside the double
quotations as it is on the screen except for a newline replaces
\n and the format specifier %0.2f is replaced by value of
income1 with two decimal points precision*/
printf("\nOn the next Tk300000 @10%% (%0.2f): %0.2f", income2,

tax2);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n; 1st
format specifier %0.2f is replaced by the value of income2 with
two decimal points precision while 2nd %0.2f by the value of
tax2*/
printf("\nOn the next Tk400000 @15%% (%0.2f): %0.2f", income3,

tax3);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n; 1st
format specifier %0.2f is replaced by the value of income3 with
two decimal points precision while 2nd %0.2f by value of tax3*/
printf("\nOn the next Tk500000 @20%% (%0.2f): %0.2f", income4,

tax4);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n; 1st
format specifier %0.2f is replaced by the value of income4 with
two decimal points precision while 2nd %0.2f by value of tax4*/
printf("\nOn the balance amount @25%% (%0.2f): %0.2f", income5,

tax5);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n; 1st

        

Flow Control ◾ 103

format specifier %0.2f is replaced by the value of income5 with
two decimal points precision while 2nd %0.2f by value of tax5*/
printf("\n\nTotal taxable income= %0.2f", taxincome);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n; format
specifier %0.2f is replaced by the value of taxincome with two
decimal points precision*/
printf("\nTotal income tax= %0.2f", taxtot);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n; the
format specifier %0.2f is replaced by the value of taxtot with
two decimal points precision*/
printf("\nRebate on investment= %0.2f", rebate);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n; format
specifier %0.2f is replaced by the value of rebate with two
decimal points precision*/
printf("\nOther tax paid to the government= %0.2f", otaxp);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n; format
specifier %0.2f is replaced by the value of otaxp with two
decimal points precision*/
if (taxtot>0){
/*if there is a tax to be paid, the above condition is true, and
the if..else statement is executed*/

if (taxpaid<3000)
/*if the amount of tax to be paid is less than tk. 3000, the
preceding condition is true, and the following statement is
executed*/

printf("\nNet tax payable= (Minimum) 3000.00\n");
/*printf() function displays the text inside the double
quotes as it is on the screen except for a newline
replaces \n*/

else
/*if the computed tax to be paid is equal to or greater
than tk. 3000, the previous condition is false, and the
following statement is executed*/

printf("\nNet tax payable= %0.2f\n", taxpaid);
/*printf() function displays the text inside the double
quotes as it is on the screen except for a newline
replaces \n; format specifier %0.2f is replaced by the
value of taxpaid with two decimal points precision*/

}
/*this is the end of above if with condition (taxtot>0)*/
else
/*if there is no tax to pay (the calculated tax amount is 0),
the if condition is false, and the statement below is executed*/

104 ◾ Learn Programming with C

printf("\nNet tax payable= (No Tax) 0.00\n");
/*printf() function displays the text inside the double
quotes as it is on the screen except for a newline replaces
\n*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-13
Write a program to generate random numbers between a given range. Te minimum
and maximum ranges and number of random numbers to be generated are input
interactively.

Flowchart of the Solution:

Figure 2.8 shows the fowchart followed to solve this problem.

FIGURE 2.8 Flowchart followed to solve the problem.

        Flow Control ◾ 105

Algorithm of the Solution:

Step-1: Start

Step-2: Read values of num1, min, and max

Step-3: srand(time(NULL))

Step-4: Initialize cnt←0

Step-5: If (cnt<num1)

5.1: num←min+((rand()%10)/9.0)×(max−min)

5.2: Display value of num

5.3: cnt←cnt+1

5.4: Go to Step-5

Step-6: Stop

Programming Code of the Solution:

 106 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <stdlib.h>
/*header file stdlib.h includes prototypes for the standard library
functions rand() and srand(); the header file must be included using
the #include preprocessor directive before the functions are called
in the program*/
#include <time.h>
/*standard library function time() is declared in the header file
time.h; the header file must be included using the preprocessor
directive #include before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int cnt, num1, min, max;
/*four integer type variables are declared; compiler assigns
required spaces in memory for these variables*/
float num;
/*float type variable num is declared; compiler assigns required
spaces in memory for the variable*/
printf("Enter no. of random numbers you want? ");
/*output library function printf() displays text inside the
double quotations as it is on the screen*/
scanf("%d", &num1);
/*input library function scanf() reads an integer from input
terminal and stores the value in the memory space assigned for

        Flow Control ◾ 107

num1; hence %d is used as format specifier and address operator
& is used with the variable name*/
printf("Enter minimum value of random number? ");
/*function printf() displays text inside the double quotations
as it is on the screen*/
scanf("%d", &min);
/*function scanf() reads an integer from input terminal and
stores the value in the memory space assigned for min*/
printf("Enter maximum value of random number? ");
/*function printf() displays text inside the double quotations
as it is on the screen*/
scanf("%d", &max);
/*scanf() reads an integer from input terminal and stores the
value in the memory space assigned for max*/
printf("%d random numbers between %d and %d:\n", num1, min, max);
/*printf() displays the text inside the quotation as it is on
screen except for the value of num1 replaces the first format
specifier %d, the value of min replaces the second %d, the value
of max replaces the third %d and a newline replaces \n*/
srand(time(NULL));
/*the seed of the random number generator algorithm used by
rand() is set by the srand() function; we continuously modify
the seed of the function srand()to ensure that the numbers
returned by rand() are truly random; the library function time()
returns the current computer time in seconds, which varies in
each program run*/
for (cnt=0; cnt<num1; cnt++){
/*this for loop is used to generate num1 random numbers, one
number in each iteration; cnt=0 is the initialization; cnt<num1
is the condition; and cnt++ is the increment; the initialization
is done once at the beginning of the loop; if cnt is smaller
than num1, the body of the loop is executed; now the value of
cnt is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at which
point the program flow exits the loop*/

num=min+((rand()%10)/9.0)*(max−min);
/*the rand() function generates a random number in each
iteration; rand()%10 returns a random value between 0
and 9, so (rand()%10)/9.0 returns a random decimal value
between 0 and 1; ((rand()%10)/9.0)×(max−min) returns a
random number ranging from 0 to (max−min), and finally
min+((rand()%10)/9.0)×(max−min) returns a random number
ranging from min to max; the final random value is assigned
to variable num*/
printf("%0.2f, ", num);
/*printf() displays the value of num in place of the format
specifier %0.2f with two decimal points precision on the
screen followed by a comma and a space*/

108 ◾ Learn Programming with C

}
/*this closing curly brace specifies the end of the for loop*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-14
Write a program to compute the value of PI using the Monte Carlo method.

Flowchart of the Solution:

Figure 2.9 shows the fowchart followed to solve this problem.

FIGURE 2.9 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start.

Step-2: Defne SEED←time(NULL)

        Flow Control ◾ 109

Step-3: srand(SEED).

Step-4: Initialize count←0

Step-5: Read value of iter.

Step-6: Initialize i←0

Step-7: If i<iter

7.1: x←(double)rand()/RAND_MAX

7.2: y←(double)rand()/RAND_MAX

7.3: z←sqrt(x2+y2)

7.4: If z<=1

7.4.1: count←count+1

7.5: pi←(double)count/iter×4

7.6: Go to Step-7

Step-8: Display value of pi.

Step-9: Stop.

Programming Code of the Solution:

110 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <stdlib.h>
/*header file stdlib.h includes prototypes for the standard library
functions rand() and srand(); the header file must be included using
the #include preprocessor directive before the functions are called
in the program*/
#include <math.h>
/*header file math.h contains prototype of the library function
sqrt(); the header file must be included using the preprocessor
directive #include before the function is called in the program*/
#include <time.h>
/*library function time() is declared in the time.h header file;
time.h must be included using the preprocessor directive #include
before the function is called in the program*/
#define SEED time(NULL)
/*#define is a preprocessor directive that defines a constant
variable; in this case, SEED is the constant variable that takes the
value returned by the function time(); the library function time()
returns the current computer time in seconds, therefore the value
of SEED varies with each program run*/
int main(){
/*here main() function returns an integer and parameters/
arguments of the main() function also remain void; execution
of the program starts with main() function; no statement before
opening curly brace of the main() function is executed by the
compiler*/

srand(SEED);
/*srand() function sets the seed of the random number generator
algorithm used by rand(); to truly randomize the numbers
generated by rand(), we change the seed of the function srand()
in each program run*/
int i, iter, count=0;
/*two integer type variables i and iter are declared; another
integer type variable count is declared and initialized to
0*/
double x, y, z, pi;
/*four double type variables are declared; required memory
spaces are allocated for each of the variables*/

        

Flow Control ◾ 111

printf("Enter no. of iteration: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%d", &iter);
/*input function scanf() reads an integer value from keyboard
and stores the value in the memory spaces assigned for iter*/
for (i=0; i<iter; i++){
/*i=0 is the initialization, i<iter is the condition and i++ is
the increment; the initialization is done once at the beginning
of the loop; after that, the condition is checked, if it is
true, the statement in the body is executed, and the value of
i is incremented by 1 before the condition is re-checked; these
procedures are repeated until the condition is no longer true at
which point the program flow exits the loop*/

x = (double)rand()/RAND_MAX;
/*library function rand() returns a random integer number
in the range 0 to RAND_MAX; the value is converted to
double type using the type conversion so that the division
operation rand()/RAND_MAX returns a decimal random number
between 0 and 1; the value is assigned to variable x; here
we generate the x coordinate of a random number*/
y = (double)rand()/RAND_MAX;
/*another decimal random number in the range 0 to 1 is
generated and assigned to y; here we generate y cooridante
of the random number*/
z = sqrt(x*x+y*y);
/*the distance of the randomly generated point (x, y) from
the origin is computed; sqrt() function gives square root
value of its parameter*/
if (z<=1)
/*if the generated point is inside the 1st quadrant then
the distance z is within 1, above condition is true and
following statement is executed*/

count++;
/*when the value of z is within 1, the value of 'count'
is incremented by 1 to count how many randomly generated
points are within the first quadrant*/

}
/*this closing curly brace specifies the end of the for loop*/
pi = (double)count/iter*4;
/*the value of pi is determined by multiplying the ratio of
inside-count and total-sample-count by 4; type conversion is
done so that the ratio produces a decimal result; otherwise,
we would only obtain an integer result (which is incorrect)
because count and iter are both integers*/
printf("Approximate value of PI is %0.4lf", pi);
/*printf() function displays the text in double quotations as
it is on the screen except for the value of pi replaces the
format specifier %0.4lf with four decimal points precision*/

112 ◾ Learn Programming with C

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-15
Write a program to fnd the root of a nonlinear equation using the Newton–Raphson
method.

Flowchart of the Solution:

Figure 2.10 shows the fowchart followed to solve this problem.

FIGURE 2.10 Flowchart followed to solve the problem.

        Flow Control ◾ 113

Algorithm of the Solution:

Step-1: Start.

Step-2: Defne f(x)←5x+2sin(x)−cos(x)

Step-3: Defne g(x)←5+2cos(x)+sin(x)

Step-4: Initialize step←1

Step-5: Read value of x0, err, and iter

Step-6: g0←g(x0)

Step-7: f0←f(x0)

Step-8: If (g0=0.0)

8.1: Display ‘error’

8.2: Go to Step-17

Step-9: x1←x0-f0/g0

Step-10: Display values of step, x0, f0, x1, and f1

Step-11: x0←x1

Step-12: step←step+1

Step-13: If (step>iter)

13.1: Display ‘not convergent’

13.2: Go to Step-17

Step-14: f1←f(x1)

Step-15: If (fabs(f1)>err)

15.1: Go to Step-6

Step-16: Display value of x1

Step-17: Stop.

Programming Code of the Solution:

114 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using preprocessor
directive #include before the functions are called in the program*/

        

Flow Control ◾ 115

#include <math.h>
/*header file math.h contains prototypes of the library functions
fabs(), sin() and cos(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include<stdlib.h>
/*header file stdlib.h contains prototype of the library function
exit(); the header file must be included using preprocessor directive
#include before the function is called in the program*/
#define f(x) 5*x+2*sin(x)−cos(x)
/*#define is a preprocessor directive that defines a constant
variable; in this case, f(x) is the constant variable that holds
the value of the expression 5x+2sinx−cosx at x=x1*/
#define g(x) 5+2*cos(x)+sin(x)
/*the #define preprocessor directive is used to define another
constant variable, g(x), which takes the value of the expression
f/(x)=5+2cosx+sinx at x=x1*/
int main(){
/*here main() function returns an integer and parameters/
arguments of the main() function also remain void; execution of
the program starts with main() function; no statement before
opening curly brace of the main() function is executed by the
compiler*/

float x0, x1, f0, f1, g0, err;
/*six float type variables are declared; required memory spaces
are allocated for each of the variables*/
int step=1, iter;
/*integer type variables step and iter are declared; required
memory spaces are allocated for each of the variables; variable
step is initialized to 1*/
printf("Enter initial guess: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%f", &x0);
/*input function scanf() reads a decimal value from the keyboard
and stores it in the memory spaces assigned for x0*/
printf("Enter tolerable error: ");
/*output function printf() displays text in double quotations
as it is on the screen*/
scanf("%f", &err);
/*function scanf() reads a decimal value from the keyboard and
assigns it to err*/
printf("Enter maximum iteration: ");
/*function printf() displays text in the double quotations as
it is on the screen*/
scanf("%d", &iter);
/*input function scanf() reads an integer from the keyboard and
stores the value in the memory spaces assigned for iter*/

116 ◾ Learn Programming with C

printf("\nStep\tx0\t\tf(x0)\t\tx1\t\tf(x1)\n");
/*printf() function displays text in the double quotations as
it is on the screen except for a newline replaces \n and a tab
replaces \t*/
do{
/*following statements, enclosed within the curly braces,
repeatedly execute as long as the condition in the following
while remains true*/

g0 = g(x0);
/*value of the derivative of the equation at x=x0 is computed
and assigned to g0*/
f0 = f(x0);
/*value of the equation at x=x0 is calculated and assigned
to f0*/
if (g0==0.0){
/*if the function’s derivative at x=x0 is 0, then above
condition is true and following statements execute*/

printf("Error, exiting . . . ");
/*printf() displays text in the double quotations as it
is on the screen*/
exit(0);
/*if g0=0, we can’t divide the value f0 by g0 in the
next statement, which is required to calculate a new
approximate root using the Newton-Raphson method,
therefore exit() is used to terminate the program
early*/

}
/*this closing curly brace specifies the end of 'if' with
condition (g0==0.0)*/
x1 = x0−f0/g0;
/*from the previous guess x0 and the values of the function
and its derivative at x=x0, we compute a better approximation
of the root x1*/
printf("%d\t%f\t%f\t%f\t%f\n", step, x0, f0, x1, f1);
/*printf() displays the results of this step on the screen;
value of step is displayed in place of the first format
specifier %d, x0 in place of first %f, f0 in place of second
%f, x1 in place of third %f, f1 in place of fourth %f, a
newline in place of \n and a tab in place of \t*/
x0 = x1;
/*calculated better estimate value x1 is assigned to x0
so that in the following iteration of the loop, a better
approximation than x1 can be computed*/
step = step+1;
/*the number of steps required to obtain the approximate
root of the function is counted by incrementing the value
of step by 1*/

        Flow Control ◾ 117

if (step>iter){
/*if the number of steps exceeds the maximum number of
iteration, the above condition is true, and the next two
statements are executed*/

printf("Not convergent, exiting . . . ");
/*printf() displays text in the double quotations as it
is on screen*/
exit(0);
/*if step>iter and we still don’t get a root within
our limit of error, the function isn’t converging fast
enough, so we terminate the program early with exit();
exit(0) specifies an error-free program termination;
we may need more iterations to achieve the desired
outcome*/

}
/*this closing curly brace specifies the end of 'if' with
condition (step>iter)*/
f1 = f(x1);
/*value of the function is calculated at a new approximate
root x=x1 and assigned to f1*/

}while (fabs(f1)>err);
/*absolute value of f(x) at x=x1 is compared with our limit
of tolerable error; if the approximate root does not give us
function value within our limit of tolerable error, the above
condition of while is true, and the statements in the body of
do..while are executed again; these steps continue until we
get the root that gives us function value within our limit of
tolerable error*/
printf("\nRoot is: %0.3f", x1);
/*printf() function displays the text in the double-quotes as
it is on the screen, with the exception that the value of x1
replaces the format specifier %0.3f with three decimal points
precision and a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-16
Write a program to fnd the roots of a nonlinear equation using the Secant method.

Flowchart of the Solution:

Figure 2.11 shows the fowchart followed to solve this problem.

118 ◾ Learn Programming with C

FIGURE 2.11 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start.

Step-2: Defne f(x)←x3–2x−5

Step-3: Initialize step←1

Step-4: Read values of min, max, err, and iter.

        Flow Control ◾ 119

Step-5: fmin←f(min)

Step-6: fmax←f(max)

Step-7: If (fmin=fmax)

7.1: Display ‘error’

7.2: Go to Step-19

Step-8: new1←max−(max−min)×fmax/(fmax−fmin)

Step-9: fnew←f(new1)

Step-10: Display values of step, min, max, new1, and fnew.

Step-11: min←max

Step-12: fmin←fmax

Step-13: max←new1

Step-14: fmax←fnew

Step-15: step←step+1

Step-16: If (step>iter)

16.1: Display ‘not convergent’

16.2: Go to Step-19

Step-17: If (fabs(fnew)>err)

17.1: Go to Step-5

Step-18: Display value of new1

Step-19: Stop

Programming Code of the Solution:

120 ◾ Learn Programming with C

Input and Output of the Executed Program:

        

Flow Control ◾ 121

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using preprocessor
directive #include before the functions are called in the program*/
#include<math.h>
/*header file math.h contains prototype of the standard library
function fabs(); the header file must be included using the preprocessor
directive #include before the function is called in the program*/
#include<stdlib.h>
/*header file stdlib.h contains prototype of the standard library
function exit(); the header file must be included using the #include
preprocessor directive before the function is called in the program*/
#define f(x) x*x*x−2*x−5
/*#define is a preprocessor directive that defines a constant
variable; in this case, f(x) is the constant variable that holds
the value of the expression x3−2x−5 at x=x1*/
int main(){
/*here main() function returns an integer and parameters/arguments
of the main() function also remain void; execution of the program
starts with main() function; no statement before opening curly
brace of the main() function is executed by the compiler*/

float min, max, new1, fmin, fmax, fnew, err;
/*seven float type variables are declared; required memory
spaces are allocated for each of the variables*/
int step=1, iter;
/*integer type variables step and iter are declared; required
memory spaces are allocated for each of the variables; variable
step is initialized to 1*/
printf("Enter minimum initial guess: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%f", &min);
/*input function scanf() reads a decimal value from keyboard
and stores the value in the memory spaces assigned for min*/
printf("Enter maximum initial guess: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%f", &max);
/*input function scanf() reads a decimal value from keyboard
and stores the value in the memory spaces assigned for max*/
printf("Enter tolerable error: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/

 122 ◾ Learn Programming with C

scanf("%f", &err);
/*scanf() takes a decimal value from keyboard and assigns the
value to err*/
printf("Enter maximum iteration: ");
/*output function printf() displays text in the double quotations
as it is on the screen*/
scanf("%d", &iter);
/*input function scanf() reads an integer from keyboard and
stores the value in the memory spaces assigned for iter*/
printf("\nStep\tmin\t\tmax\t\tnew\t\tf(new)\n");
/*printf() function displays text in the double quotations as
it is on the screen except for a newline replaces \n and a tab
replaces \t*/
do{
/*following statements enclosed in curly braces are executed
repeatedly as long as the condition in the while loop remains
true*/

fmin = f(min);
/*value of the function f(x) at x=min is calculated and
assigned to fmin*/
fmax = f(max);
/*value of the function f(x) at x=max is calculated and
assigned to fmax*/
if (fmin==fmax){
/*if the values of f(x) at x=min and x=max are the same,
the condition above is true, and the following statements
are executed*/

printf("Mathematical error, exiting . . . ");
/*printf() displays text in the double quotations as it
is on the screen*/
exit(0);
/*if fmin=fmax, we can’t divide fmax by (fmax−fmin) in
the next statement, which is required to compute a new
approximate root using the Secant method, therefore we
call the built-in library function exit() to terminate
the program prematurely*/

}
/*this closing curly brace specifies the end of 'if' with
condition (fmin==fmax)*/
new1 = max−(max−min)*fmax/(fmax−fmin);
/*we derive a new approximate root from prior minimum and
maximum guesses, as well as values of f(x) at x=min and
x=max*/
fnew = f(new1);
/*the value of f(x) at a new approximation, x=new1, is
computed and assigned to fnew*/

        

Flow Control ◾ 123

printf("%d\t%f\t%f\t%f\t%f\n", step, min, max, new1, fnew);
/*results of this step are displayed on the screen using
output function printf(); value of step is displayed in
place of the first format specifier %d, value of min in
place of the first %f, value of max in place of the second
%f, value of new1 in place of the third %f, value of fnew
in place of the fourth %f, a newline in place of \n, and a
tab in place of \t*/
min = max;
/*value of the minimum approximation min has been changed
to the value of the maximum approximation max*/
fmin = fmax;
/*value of f(x) at x=min is changed to the value at
x=max*/
max = new1;
/*the maximum approximation value max has been changed to
the newly calculated approximation value new1*/
fmax = fnew;
/*value of f(x) at x=max is changed to the value at
x=new1
thus, in this iteration, we change the minimum and maximum
approximations min and max, as well as calculate the values
of function at these two approximations, in order to
calculate a better approximation in the next iteration of
the loop*/
step = step+1;
/*the number of steps required to obtain the approximate
root of the function is counted by incrementing the value
of step by one*/
if (step>iter){
/*if the number of steps exceeds the maximum number of
iteration, the above condition is true, and the next two
statements are executed*/

printf("Not convergent, exiting . . . ");
/*printf() displays text in the double quotations as it
is on the screen*/
exit(0);
/*if step>iter and we still don’t get a root within
our limit of error, the function isn’t converging fast
enough, so we terminate the program early with exit();
exit(0) specifies an error-free program termination;
we may need more iterations to achieve the desired
outcome*/

}
/*this closing curly brace specifies the end of 'if' with
condition (step>iter)*/

124 ◾ Learn Programming with C

}while (fabs(fnew)>err);
/*absolute value of f(x) at x=new is compared with our limit of
tolerable error; if the approximate root does not give us function
value within our limit of tolerable error, the above condition of
while is true, and the statements in the body of do..while are
executed again; these steps continue until we get root that gives
us function value within our limit of tolerable error*/
printf("\nRoot is: %0.3f", new1);
/*printf() function displays the text in the double quotations
as it is on the screen except for the value of new replaces the
format specifier %0.3f with three decimal points precision, and
a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-17
Write a program to fnd the value of an unknown function from a discrete set of known
data points using the Lagrange interpolation formula.
[note: please address this problem afer completing Chapter 3, as its solution relies on
the use of arrays]

Flowchart of the Solution:

Figure 2.12 shows the fowchart followed to solve this problem.

Algorithm of the Solution:

Step-1: Start.

Step-2: Initialize dum←‘y’

Step-3: Read value of num.

Step-4: Initialize i←0

Step-5: If i<num

5.1: Input x[i] and y[i]

5.2: i←i+1

5.3: Go to Step-5

Step-6: Initialize i←0

Step-7: If i<num

        

Flow Control ◾ 125

FIGURE 2.12 Flowchart followed to solve the problem.

7.1: Display values of x[i] and y[i]

7.2: i←i+1

7.3: Go to Step-7

Step-8: If dum=‘y’

8.1: Input vox

8.2: Initialize voy←0, i←0

 126 ◾ Learn Programming with C

8.3: If i<num

8.3.1: p←1, j←0

8.3.2: If j<num

8.3.2.1: If j≠i

8.3.2.1.1: p←p×(vox−x[j])/(x[i]−x[j])

8.3.2.2: j←j+1

8.3.2.3: Go to Step-8.3.2

8.3.3: voy←voy+p×y[i]

8.3.4: i←i+1

8.3.5: Go to Step-8.3

8.4: Display values of vox and voy.

8.5: dum←getche()

8.6: Go to Step-8

Step-9: Stop.

Programming Code of the Solution:

        Flow Control ◾ 127

Input and Output of the Executed Program:

128 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <conio.h>
/*non-standard function getche() is declared in the conio.h header
file; the header file must be included using the preprocessor
directive #include before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

float x[20], y[20], p, vox, voy;
/*two float type arrays x[] and y[] of size 20 and three float
type variables p, vox and voy are declared*/
int num, i, j;
/*three integer type variables are declared*/
char dum='y';
/*character type variable dum is declared and initialized to
'y'*/
printf("Enter number of terms of the table: ");
/*output function printf() displays text in double quotations
as it is on the screen*/
scanf("%d", &num);
/*input function scanf() reads an integer from keyboard and
stores the value in the memory spaces assigned for num*/
printf("Enter values of x and y (x y):\n");
/*output function printf() displays text in double quotations
as it is on the screen followed by a newline in place of \n*/
for (i=0; i<num; i++){
/*this for loop is used to input set of tabulated data (xi,
yi), one pair per iteration; here i=0 is initialization, i<num
is condition and i++ is increment; the initialization is done
once at the beginning of the loop; after that, the condition
is checked, if it is true, the statement in the body is
executed, and the value of i is incremented by 1 before the
condition is re-checked; these steps are repeated until the
condition is no longer true at which point the program flow
exits the loop*/

printf("x[%d] y[%d]: ", i+1, i+1);
/*output function printf() displays text in the double
quotations as it is on the screen except for the value of
i+1 replaces both format specifiers %d*/

        

Flow Control ◾ 129

scanf("%f %f", &x[i], &y[i]);
/*scanf() reads two decimal values from the keyboard
separated by a space, tab, or newline; the first value
corresponds to array element x[i], and the second value
corresponds to array element y[i]; in the first iteration,
input values correspond to x[0] and y[0]; in the second
iteration, input values correspond to x[1] and y[1], and
so on*/

}
/*this closing curly brace specifies the end of the for loop*/
printf("\nThe table you entered is:\n");
/*output function printf() displays text in double quotations
as it is on the screen except for a newline replaces \n*/
printf("x\t\ty\n");
/*printf() displays text in the double quotations as it is on
the screen except for a newline replaces \n and a tab replaces
\t*/
for (i=0; i<num; i++)
/*this for loop is used to display the set of input data,
one pair per iteration; here i=0 is initialization, i<num is
condition and i++ is increment; the initialization is done
once at the beginning of the loop; after that, the condition
is checked, if it is true, the statement in the body is
executed, and the value of i is incremented by 1 before the
condition is re-checked; these steps are repeated until the
condition is no longer true at which point the program flow
exits the loop*/

printf("%0.2f\t\t%0.2f\n", x[i], y[i]);
/*printf() function displays value of x[i] in place of first
format specifier %0.2f with two decimal points precision on
the screen, value of y[i] in place of second %0.2f, a tab
in place of \t and a newline in place of \n*/

while (dum=='y'){
/*if dum='y' then above condition is true and following
statements, enclosed by curly braces, are executed as long as
the condition remains true*/

printf("\nEnter value of x to find the respective value"
" of y: ");

/*output function printf() displays text in the double
quotations as it is on the screen except for a newline
replaces \n*/
scanf("%f", &vox);
/*input function scanf() reads a decimal value from input
terminal and stores the value in the memory spaces assigned
for vox*/
voy=0;
/*0 is assigned to the variable voy; otherwise, the summation
operation involving voy in the next 'for' loop may yield

 130 ◾ Learn Programming with C

an incorrect result because, when we declare a variable,
memory space is allocated for that variable, and the memory
space may contain some garbage value; also, voy stores the
result of the previous iteration in the second and third
iterations of the 'while' loop; when we sequentially add
data with voy and the result is accumulated in the voy
variable, the garbage value or result from the previous
iteration may be added in the first summation*/
for (i=0; i<num; i++){
/*i=0 is initialization, i<num is condition and i++ is
increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true,
statements in the body are executed and value of i is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which
point the program flow exits the loop*/

p=1;
/*1 is assigned to the variable p; otherwise, the
multiplication operation involving p in the following
'for' loop may yield an incorrect result because, when
we declare a variable, memory space is allocated for
that variable, and the memory space may contain some
garbage value; also, in the second and third iterations
of the above 'for' loop, p stores the result of the
previous iteration; when we multiply data with p in a
sequential manner, the garbage value or result from
the previous iteration may be multiplied in the first
operation*/
for (j=0; j<num; j++)
/*j=0 is initialization, j<num is condition and j++ is
increment; initialization is done once at the beginning
of the loop; then condition is checked, if it is true,
statements in the body are executed and value of j is
incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false
at which point the program flow exits the loop; for
each value of i, following if statement is executed num
times*/

if (j!=i)
/*if j≠i, the condition is true and following
statement is executed*/

p = p*(vox−x[j])/(x[i]−x[j]);
/*for i=0, at 1st iteration j=i, so no statement
executes
At 2nd iteration, p=1×(vox−x[1])/(x[0]−x[1])
At 3rd iteration, p=p×(vox−x[2])/(x[0]−x[2])

        Flow Control ◾ 131

for i=1, at 1st iteration, p=p×(vox−x[0])/
(x[1]−x[0])
At 2nd iteration j=i, so no statement executes
At 3rd iteration, p=p×(vox−x[2])/(x[1]−x[2])
for i=2, at 1st iteration, p=p×(vox−x[0])/
(x[2]−x[0])
At 2nd iteration, p=p×(vox−x[1])/(x[2]−x[1])
At 3rd iteration j=i, so no statement executes*/

voy = voy+p*y[i];
/*at 1st iteration, voy=0+p×y[0]
at 2nd iteration, voy=voy+p×y[1]
at 3rd iteration, voy=voy+p×y[2]*/

}
/*this is the end of 'for' loop with condition (i=0;
i<num; i++)*/
printf("Value of y at x=%0.3f is: %0.3f\n", vox, voy);
/*output function printf() displays the text in double
quotations as it is on the screen except for value of
vox replaces first format specifier %0.3f with three
decimal points precision, value of voy replaces second
%0.3f, and a newline replaces \n*/
printf("\nPress y to continue, n to exit: ");
/*output function printf() displays the text in the
double quotations as it is on the screen except for a
newline replaces \n*/
dum=getche();
/*the getche() function waits for character input from
the keyboard, and when a character is typed, it is
echoed on the output screen without waiting for enter
to be hit, and the character is assigned to dum*/

}
/*this is the end of the while loop*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-18
Write a program to solve ordinary diferential equations using Euler’s method.

Flowchart of the Solution:

Figure 2.13 shows the fowchart followed to solve this problem.

132 ◾ Learn Programming with C

FIGURE 2.13 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start.

Step-2: Defne f(x,y)←(y2−x2)/(y2+x2)

Step-3: Read values of x0, y0=f(x0), xn, and num.

Step-4: step←(xn−x0)/num

Step-5: Initialize i←0

Step-6: If i<num

6.1: slope←f(x0, y0)

6.2: yn←y0+step×slope

6.3: Display values of x0, y0, slope, and yn

6.4: y0←yn

6.5: x0←x0+step

6.6: i←i+1

        Flow Control ◾ 133

6.7: Go to Step-6

Step-7: Display values of xn and yn

Step-8: Stop.

Programming Code of the Solution:

Input and Output of the Executed Program:

 134 ◾ Learn Programming with C

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#define f(x,y) (y*y−x*x)/(y*y+x*x)
/*#define is a preprocessor directive that defines a constant
variable; in this case, f(x) is the constant variable that holds
the value of the expression (y2−x2)/(y2+x2) at x=x1 and y=y1*/
int main(){
/*here main() function returns an integer and parameters/arguments
of the main() function also remain void; execution of the program
starts with main() function; no statement before opening curly
brace of the main() function is executed by the compiler*/

float x0, y0, xn, yn, step, slope;
/*six float type variables are declared; required memory spaces
are allocated for each of the variables*/
int i, num;
/*two integer type variables i and num are declared; required
memory spaces are allocated for each of the variables*/
printf("Enter Initial Condition:\n");
/*printf() function displays the text in double quotations as
it is on the screen except for a newline replaces \n*/
printf("x0: ");
/*output function printf() displays text in double quotations
as it is on the screen*/
scanf("%f", &x0);
/*input function scanf() reads a decimal value from keyboard
and stores the value in the memory spaces assigned for x0*/
printf("y(%0.2f): ", x0);
/*printf() function displays the text in the double quotations
as it is on the screen except for the value of x0 replaces
format specifier %0.2f with two decimal points precision*/
scanf("%f", &y0);
/*input function scanf() reads a decimal value from keyboard
and stores the value in the memory spaces assigned for y0*/
printf("Enter calculation point xn: ");
/*output function printf() displays text in double quotations
as it is on the screen*/
scanf("%f", &xn);
/*input function scanf() reads a decimal value from keyboard
and stores the value in the memory spaces assigned for xn*/
printf("Enter number of steps: ");
/*output function printf() displays text in double quotations
as it is on the screen*/

        

Flow Control ◾ 135

scanf("%d", &num);
/*function scanf() reads an integer from input terminal and
stores the value in the memory spaces assigned for num*/
step = (xn−x0)/num;
/*step-size is calculated from calculation point, initial point
and number of steps*/
printf("\nx0\ty0\tslope\tyn\n");
/*printf() function displays the text in double quotations as
it is on the screen except for a newline replaces \n and a tab
replaces \t*/
for (i=0; i<num; i++){
/*this for loop is used to calculate f(xn) from f(x0), with each
iteration takes a small step forward to calculate f(x0+i*step);
i=0 is initialization, i<num is condition and i++ is increment;
the initialization is done once at the beginning of the loop;
after that, the condition is tested, if it is true, the statements
in the body are executed, and the value of i is incremented by
one before the condition is re-checked; these procedures are
repeated until the condition becomes false at which point the
program flow exits the loop*/

slope = f(x0, y0);
/*slope to the curve at x0 is computed from the differential
equation, f(x0, y(x0))=f(x0, y0) [value of f(x, y) at x=x0
and y=y0=y(x0)]*/
yn = y0+step*slope;
/*next slope to the curve at a point small step forward
from x0 is calculated from y0=y(x0), step size and slope at
previous point*/
printf("%0.3f\t%0.3f\t%0.3f\t%0.3f\n", x0, y0, slope, yn);
/*results of this step are displayed on screen using output
function printf(); value of x0 is displayed in place of
first format specifier %0.3f with three decimal points
precision, y0 in place of second %0.3f, slope in place of
third %0.3f and yn in place of fourth %0.3f; other text is
displayed as it is except for a newline replaces \n and a
tab replaces \t*/
y0 = yn;
/*calculated slope value yn is assigned to y0 so that it
can be used to compute slope at the next point in the next
iteration of the loop*/
x0 = x0+step;
/*next point is calculated by stepping a small step forward;
this value is used to compute slope at the next point in the
next iteration of the loop*/

}
/*this closing curly brace specifies the end of for loop*/

136 ◾ Learn Programming with C

printf("\nValue of y at x=%0.2f is %0.3f", xn, yn);
/*output function printf() displays the text in the double
quotes as it is on the screen except for the value of xn replaces
format specifier %0.2f with two decimal points precision, yn
replaces %0.3f with three decimal points precision and a newline
replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-19
Write a program to approximate the defnite integral of a continuous function using
Simpson’s 1/3 rule.

Flowchart of the Solution:

Figure 2.14 shows the fowchart followed to solve this problem.

FIGURE 2.14 Flowchart followed to solve the problem.

        Flow Control ◾ 137

Algorithm of the Solution:

Step-1: Start.

Step-2: Defne f(x)←(1+x)/(1+x2)

Step-3: Read values of low, up, and sub.

Step-4: step←(up-low)/sub

Step-5: in←f(low)+f(up)

Step-6: Initialize i←1

Step-7: If i<=sub−1

7.1: k←low+i×step

7.2: If i%2=0

7.2.1: in←in+2×f(k)

7.2.2: Go to Step-7.4

7.3: in←in+4×f(k)

7.4: i←i+1

7.5: Go to Step-7

Step-8: in←in×step/3

Step-9: Display value of in

Step-10: Stop.

Programming Code of the Solution:

138 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#define f(x) (1+x)/(1+x*x)
/*#define is a preprocessor directive that defines a constant
variable; in this case, f(x) is the constant variable that holds
the value of the expression (1+x)/(1+x2) at x=x1*/
int main(){
/*here main() function returns an integer and parameters/arguments
of the main() function also remain void; execution of the program
starts with main() function; no statement before opening curly
brace of the main() function is executed by the compiler*/

float low, up, in, step, k;
/*five float type variables are declared; required memory spaces
are allocated for each of the variables by the compiler*/
int i, sub;
/*two integer type variables are declared; required memory
spaces are allocated for each variable*/
printf("Enter lower limit of integration: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%f", &low);
/*scanf() reads a decimal value from the input terminal and
stores the value in the memory space allocated for variable low*/
printf("Enter upper limit of integration: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/

        

ˆ ˘=

Flow Control ◾ 139

scanf("%f", &up);
/*scanf() reads a decimal value from the input terminal and
stores the value in the memory space allocated for variable
up*/
printf("Enter number of sub-intervals: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &sub);
/*scanf() reads an integer from the input terminal and stores
the value in the memory space allocated for variable sub*/
step = (up−low)/sub;
/*step size is calculated from upper limit, lower limit and no.
of sub-intervals
Simpson’s 1/3 rule-

up step ̇ sub/2-1 sub/2 ˇ˜ f x dx = ˆf low + ° f(x2i)+4° f(x2i-1)+f(up)̆ � /() () 2
i= i 11 =low 3

in = f(low)+f(up);
/*values of function at x=up and atbx=low are calculated and
their summation is assigned to in*/
for (i=1; i<=sub−1; i++){
/*this for loop is used to compute the two summation terms in
the Simpson’s 1/3 rule; i=1 is initialization, i<=sub−1 is
condition and i++ is increment; the condition is checked once
at the beginning of the loop; if it is true, statements in
the body are executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop; for i=0, k=low and for i=sub, k=up; values of
the f(x) at these two points f(low) and f(up) were considered
before that loop; hence this loop starts with i=1 and ends at
i=sub−1*/

k = low+i*step;
/*next point x=k is calculated from the lower limit and
step size*/
if (i%2==0)
/*if i is an even number, following statement is executed
and skipped the next else statement*/

in = in+2*f(k);
/*first summation term of the Simpson’s 1/3 rule is
calculated and added to in*/

else
/*if i is an odd number, following statement is executed
skipping the previous if statement*/

in = in+4*f(k);
/*second summation term of the Simpson’s 1/3 rule is
calculated and added to in*/

140 ◾ Learn Programming with C

}
/*this closing curly brace specifies the end of the for loop*/
in = in*step/3;
/*integral value of the function is calculated by multiplying
the total summation in by 1/3rd of the step size*/
printf("Required value of integration is: %0.3f", in);
/*printf() displays the text in the quotations as it is on the
screen except for the value of in replaces format specifier
%0.3f with three decimal points precision*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

EXERCISES

MCQ with Answers

1) Which loop is faster in C language, for, while, or do..while?

A) for

B) while

C) do..while

D) All work at the same speed

2) Which loop executes at least once even if the condition is false?

A) do..while

B) while

C) for

D) None of the above

3) Which type of loop while and for are?

A) Entry control

B) Exit control

C) Both of the above

D) None of the above

4) What is the way to suddenly come out of or quit any loop?

A) continue statement

        

Flow Control ◾ 141

B) break statement

C) leave statement

D) quit statement

5) Choose a correct statement about the break statement.

A) A single break statement can force execution control to come out of only one
loop

B) A single break statement can force execution control to come out of a maxi-
mum of two nested loops

C) A single break statement can force execution control to come out of a maxi-
mum of three nested loops

D) None of the above

6) break statement is used to _______.

A) Quit a program

B) Quit the current iteration

C) Both A and B

D) None of the above

7) Which of the following is a C conditional operator?

A) ?:

B) :?

C) :<

D) <:

8) Which of the following is the correct syntax of the ternary operator?

A) condition? expression1: expression2

B) condition: expression1? expression2

C) condition? expression1 < expression2

D) condition < expression1? expression2

9) Which of the following is a valid statement regarding if..else statement?

A) else..if is compulsory to use with if statement

B) else is compulsory to use with if statement

C) else or else..if is optional with if statement

D) None of the above

142 ◾ Learn Programming with C

10) Choose a correct statement regarding loop for(;;);

A) for loop works exactly the frst time

B) for loop works an infnite number of times

C) Syntax error

D) None of the above

11) Which of the following cannot be checked in a switch..case statement?

A) character

B) integer

C) foat

D) enum

12) What is the value of a, afer execution of the following program statement?

int a = 5<2? 4: 3;

A) 4

B) 3

C) 5

D) 2

13) What is the value of count afer execution of the following program fragment?

for (i=0, count=0; i<5; i++);

for (j=0; j<5; j++);

count++;

A) 25

B) 0

C) 1

D) 55

14) What is the value of count afer execution of the following program fragment?

for (i=0, count=0; i<5; i++)

for (j=0; j<5; j++)

count++;

A) 25

        

Flow Control ◾ 143

B) 0

C) 1

D) 55

[Ans. D, A, A, B, A, B, A, A, C, B, C, B, C, A]

Questions with Short Answers

1) What is the diference between = and == symbols in C?

Ans. = is an assignment operator that is used in mathematical operations to assign a
value to a variable. == is a relational operator that is used to compare two variables
or constants.

2) What is || operator, and how does it function in a program?

Ans. In C, || is called OR logical operator. It is used to assess logical conditions.
If any condition of the expression is TRUE, the complete condition statement is
TRUE.

3) What are the types of loops available in C?

Ans. Four types of loops available in C are while, do..while, for, and nested loop.

4) What is a nested loop?

Ans. A nested loop is when one or more loops are used inside another while, do..
while, or for loop. Example:

x=1;

while (x<=10){

for (y=0; y<10; y++)

printf("do nothing . . .\n");

x++;}

5) What is a loop control statement? What are the loop control statements available
in C?

Ans. Te loop control statement changes the typical execution sequence. break,
continue, and goto are the loop control statements available in C.

6) What are the valid places to have a keyword break?

Ans. Only within the loop control and switch statements can a break occur. When
a break statement is encountered in a loop, the loop is terminated immediately, and
program control is passed to the next statement afer the loop.

144 ◾ Learn Programming with C

7) Explain the syntax of ‘for’ loop.

Ans. Syntax of ‘for’ loop is as follows:

for (initialization; condition; increment/decrement){

//statements to be executed if condition is true

}

Te loop’s initialization is done only once, at the beginning, and then the condi-
tion is checked. If the condition is true, the statements in the loop’s body are exe-
cuted, and the counter’s value is incremented or decremented. Now, the condition
is rechecked. Tese steps (condition→body→counter→condition) repeat until the
condition becomes false, at which point the program control exits the loop.

8) What is an infnite loop?

Ans. When a loop has no terminating condition, such as a condition that causes the
loop to restart or a condition that is never satisfed, the loop continues indefnitely
and is referred to as an infnite loop. Example is as follows:

for (x=10; x<=20; x –);

9) What is the equivalent code of the following statement in ‘while’ loop format:

for (a=1; a<=9; a++)?

Ans. a=1;

while (a<=9)
a++;

10) What are compound statements?

Ans. Compound statements are made up of two or more program statements that
are all executed together. Tese statements are frequently encased in curly braces
and used in an if..else condition or loop, where the compound statements are exe-
cuted based on whether the condition is true or false.

11) When is a ‘switch’ statement preferable over an ‘if ’ statement?

Ans. When there are more than two conditions on a single variable, the ‘switch’
statement is preferred. Te ‘if ’ statement is preferred in other situations involving
multiple variables or complex if..else clauses.

12) What will happen in a ‘switch’ statement if the break statement is omitted?

Ans. Based on the switch expression, switch-case statements are used to execute
just particular case statements. If no break statement is used at the end of each case,
the program executes all subsequent case statements until the next break statement
is found or the end of the switch case block is reached.

13) What are the diferences between ‘while’ and ‘do..while’ loops?

        

Flow Control ◾ 145

Ans. Te while loop always tests the condition before executing the while loop’s
statements, whereas the do..while loop tests the condition afer executing the loop’s
statements. As a result, even if the condition is false, the statements in the do..while
loop are executed at least once.

14) What is the output of the following program fragment?

if (4>5)

printf("Atiq . . .");

printf("Ahad . . .");

Ans. Ahad . . .

Te frst printf() statement is not executed because the ‘if ’ condition is false, and the
second printf() statement displays the text Ahad . . . on the screen.

15) What is the output of the following program fragment?

if (10>9)

printf("Dhaka . . .");

else if (6%3==0)

printf("Karachi . . .");

printf("Delhi . . .");

Ans. Dhaka . . . Delhi . . .

Because the if condition is true, the frst printf() is executed, displaying Dhaka
. . . on the screen, and the else..if condition is not entered, so the second printf()
is not executed. Te third printf() function displays the text Delhi . . . on the
screen.

16) What is the output of the following program fragment?

while (true){

printf("Singapore . . .");

break;}

Ans. Because TRUE or true is not a keyword, the while statement fails and causes a
compilation error.

17) What is the output of the following program fragment?

int num=5;

while (num=12){

printf("nothing . . .");

break;}

146 ◾ Learn Programming with C

Ans. nothing . . .

Because while (num=12) == while (12) == while (non-zero) == true, printf()
displays nothing . . . on the screen and the break statement terminates the loop
immediately.

18) What is the output of the following program fragment?

int num=40;

do{

printf("%d . . .", num);

num++;} while (num<=30);

Ans. 40 . . .

Because statements in the “do” are executed at least once before the while condition
is checked, the result is 40 Te false condition is now checked, and the loop is
terminated.

19) What is the output of the following program fragment?

for (i=1, j=10; i<=5; i++)

printf("%d, ", i+j);

Ans. 11, 12, 13, 14, 15,

Initialization is done once at the beginning of the loop, i=1, j=10. Because condition
i<=5 is true, printf() displays i+j=1+10=11 on the frst iteration, and the value of i
is incremented by 1 (i++→i=i+1=1+1=2). Because condition i<=5 is true again in the
second iteration, the number 12 is displayed, and so on. Te number 15 is displayed,
and i becomes i=5+1=6 in the ffh iteration; the condition i<=5 is false, and the loop
ends afer the ffh iteration.

20) What is the output of the following program fragment?

int num=10;

while (num<15){

num++;

if (num>=12 && num<=14)

continue;

printf("%d, ", num);}

Ans. 11, 15,

        

Flow Control ◾ 147

Because the “if” condition is true and the continue statement is executed between
12 and 14, the printf() statement in the loop skips during that period.

21) What is the output of the following program fragment?

int x=0, y=0;

while (++x<4)

printf("%d, ", x);

while (y++<4)

printf("%d, ", y);

Ans. 1, 2, 3, 1, 2, 3, 4,

Te value of x is incremented frst in the frst ‘while’ loop, and then the condition
is tested. Te second ‘while’ loop, on the other hand, checks the condition frst and
then increments the value of y.

22) What is the output of the following program fragment?

int num=3;

switch (num){

case 1: printf("1, ");

case 3: printf("3, ");

case 5: printf("5, ");

default: printf("default, ");}

Ans. 3, 5, default,

Because there is no break statement afer matching and executing the case 3 state-
ment, program control immediately moves to case 5 and default.

23) What is the output of the following program fragment?

int num=0;

switch (num){

case 1: printf("1, ");

case 3: printf("3, ");

case 5: printf("5, ");

default: printf(“default, ”);}

Ans. default,

148 ◾ Learn Programming with C

Because there is no case match in the switch statement, program control goes to
default case automatically.

24) What is the output of the following program fragment?

char code='s';

switch (code){

case 's': printf(“sun, ”); break;

case 'a': printf(“apple, ”); break;

case 't': printf(“tire, ”); break;

default: printf(“default, ”);}

Ans. sun,

Because the switch statement’s case ‘s’ matches, the corresponding printf() displays
sun on the screen because of the break statement, program control exits the switch,
ignoring all other cases.

25) What is the output of the following program fragment?

int num=32;

switch (num){

case 16: printf(“16, ”); break;

case 32: printf(“32, ”); break;

case 16*2: printf(“16×2, ”); break;

default: printf(“default, ”);}

Ans. A compilation error will occur. Because C prohibits the use of duplicate case
constants in switch statements.

26) What is the output of the following program fragment?

int num=3;

switch (num){

case 1: printf(“1, ”); break;

case 3: printf(“3, ”); break;

case 5: printf(“5, ”); continue;

default: printf(“default, ”);}

Ans. A compilation error will occur. Because the continue statement is not allowed
in a switch..case statement as it is not a loop.

        

Flow Control ◾ 149

27) What is the output of the following program fragment?

for (;;)

for (;;)

printf(“good-bye”);

Ans. Te phrase ‘goodbye’ appears indefnitely on the screen. Because ‘for’ loop
with no initialization, condition, and increment/decrement is an infnite loop.

Problems to Practice

1) Write a program to check whether a given number is positive or negative.

2) Write a program to check whether a number is even or odd.

3) Write a program to check whether a character is an alphabet or not.

4) Write a program to count the number of digits in an integer.

5) Write a program to generate and display multiplication table of a number entered
by user.

6) Write a program to determine and display the sum of the following harmonic series
for a given value of n.

1 1 11+ + + +
2 3 n

Te value of n should be given interactively through the terminal.

7) Write a program to fnd the number and sum of all integers greater than 100 and
less than 200 divisible by 7.

8) Write a program to compute the roots of a quadratic equation:

ax2 + bx + c = 0

Te program should request the values of the constants a, b, and c and display the
values of the roots.

9) Write a program to compute the sum of individual digits of a given positive integer
number.

10) Develop a program to implement a calculator. Te program should request the user
to input two numbers and display one of the following as per the desire of the user
(consider the operators “+”, “−”, “*”, “/”, “%” and use “switch” statement):

(a) Sum of the numbers

(b) Diference of the numbers

150 ◾ Learn Programming with C

(c) Product of the numbers

(d) Division of the numbers

11) A person has 10 vori gold, 25 vori silver, and tk 10,000.00 in cash. He also has
tk 5,000.00 in debt, and he owes his cousin tk 7,500.00. Calculate the amount of
money he has to pay for piety tax this year. Piety tax is payable to the poor, 2.5% of
total wealth (gold, silver, cash, or any business items) one person has afer one lunar
year if his total wealth is more than 7.5 vori gold or 52.5 vori silver or its equivalent
money whichever is smaller.

12) A person gets a monthly salary of tk 60,000.00 with two festival allowances of tk
80,000.00. He also gets tk 50,000.00 from monthly house rent. His average monthly
expenditure is tk 45,000.00, and he has to pay tk 5,000.00 for provident fund and
tk 10,000.00 for life insurance premium. He also has to pay tk 30,000.00 for City
Corporation Tax for his apartment. Calculate the amount of income tax he has to
pay to the government in this year. Te government fxes the tax for this year as
follows:

Income Tax
First tk 2,20,000.00
Next tk 3,00,000.00
Next tk 4,00,000.00
Next tk 5,00,000.00
Rest amount

Nil
10%
15%
20%
25%

Minimum payable tax is tk 3,000.00

Provident funds, life insurance, and share investment are considered personal
investments, and the taxpayer gets a 15% rebate on his total investment. Festival
allowance and other allowances are exempted from the tax.

13) Write a program to generate random numbers between a given range. Te mini-
mum and maximum ranges and number of random numbers to be generated are
input interactively.

14) Write a program to compute the value of PI using the Monte Carlo method.

15) Write a program to fnd the root of a nonlinear equation using the Newton–Raphson
method.

16) Write a program to fnd the roots of a nonlinear equation using the Secant method.

17) Write a program to solve ordinary diferential equations using Euler’s method.

18) Write a program to approximate the defnite integral of a continuous function
using Simpson’s 1/3 rule.

        

Flow Control ◾ 151

19) Write a program to fnd the largest of three numbers.

20) Write a program to check if a given number is palindrome or not.

21) Write a program to check if a given number is an Armstrong number or not.

22) Write a program to check if a given number is a natural number or not.

23) Write a program to fnd the sum of frst n natural numbers using while loop.

24) Write a program to fnd the sum of frst n natural numbers using the for loop.

25) Write a program to check if a given year is a leap year or not.

26) Write a program to fnd the lowest common multiple of two given integers.

27) Write a program to reverse a number entered by the user.

28) Write a program to display half pyramids of * and numbers.

29) Write a program to display full pyramids of * and numbers.

30) Write a program to display inverted half pyramids of * and numbers.

31) Write a program to display inverted full pyramids of * and numbers.

32) Write a program to check if a given character is digit or not.

33) Write a program to display the smallest number of three. Te numbers may be
taken from the user.

34) Write a program to check if a given number is prime or not.

35) Write a program to display all the prime numbers in a given range.

C H A P T E R 3

Arrays and Pointers

In C, an array is used to hold multiple values of the same data type. The array could be
one-dimensional, two-dimensional, or three-dimensional. On the other hand, pointer

variables are used to hold addresses rather than values of variables. In terms of memory
access, arrays and pointers are synonymous. The first element of an array is referred to by
its name, whereas the value of a pointer points to any memory location.

3.1 ARRAYS
An array is a collection of data types that are all of the same kind. A single array variable
can store, access, and handle a large amount of data. In the following C code, for example,

int num[100];

num is an integer type array with a total of 100 elements. Starting at 0 and continuing
until n-1, each array element can be retrieved using appropriate indexing. The 4th, 5th,
and 6th elements of the above num array, for example, are accessed with num[3], num[4],
and num[5].

We initialize the array in the same way that we would for any other data type variable.

(1) While declaration of the array:

 int num[4] = {5, 10, 9, 19};

 or,

 int num[] = {5, 10, 9, 19};

(2) After declaration of the array:

 int num[4];

 num[4] = {5, 10, 9, 19};

152 DOI: 10.1201/9781003302629-3

https://doi.org/10.1201/9781003302629-3

        

Arrays and Pointers ◾ 153

or,

num[] = {5, 10, 9, 19};

(3) Interactively by the user afer running the program. In that case, we usually use any
of the C loops to access each element of the array. Example:

int i, num[4];

for (i=0; i<4; i++)

scanf(“%d”, &num[i]);

When any array is declared, the array is organized such that all the array elements occupy
contiguous space in memory. If the size of the integer data type is 4 bytes, then the memory
organization of the array num[4] is as follows:

3.2 2D ARRAYS
A two-dimensional array is an array of arrays. It is also known as a matrix in C and is
defned as a set of rows and columns. Te following expression represents an integer type
2D array of matrix 2 × 4.

int num[2][4];

When declaring or initializing a 2D array, we must specify the size of the second dimen-
sion or the number of columns. Te 2D array items are initialized as follows:

(1) int num[2][4] = {

{5, 10, 9, 19},

{6, 3, 12, 23}};

(2) int num[][4] = {{5, 10, 9, 19}, {6, 3, 12, 23}};

(3) int num[][4] = {5, 10, 9, 19, 6, 3, 12, 23};

(4) int i, j, num[2][4];

for (i=0; i<2; i++)

154 ◾ Learn Programming with C

for (j=0; j<4; j++)

scanf(“%d”, &num[i][j]);

Te conceptual memory organization of the 2D array num[3][4] is as follows:

3.3 MULTIDIMENSIONAL ARRAYS
Te simplest version of multidimensional arrays used in C is 2D arrays discussed earlier.
Similar to 2D arrays, 3D arrays are declared as

int multi[2][3][4];

where multi is a three-dimensional array with 24 entries. Tree-dimensional array is ini-
tialized as follows:

int multi[2][3][4] = {

{{1, 2, 3, 4}, {5, 7, 9, 11}, {−3, 13, 23, 31}},

{{2, 4, 6, 8}, {6, 7, −8, 9}, {4, 12, 23, −3}}};

The 24 elements of the 3D array can be entered as follows from a standard input
terminal:

int i, j, k;
for (i=0; i<2; i++)

for (j=0; j<3; j++)
for (k=0; k<4; k++)

scanf(“%d”, &multi[i][j][k]);

Te 24 elements of the 3D array can be displayed on the screen as follows:

int i, j, k;
for (i=0; i<2; i++)

for (j=0; j<3; j++)
for (k=0; k<4; k++)

printf(“multi[%d][%d][%d]=%d\n”, i, j,
k, multi[i][j][k]);

        

Arrays and Pointers ◾ 155

3.4 STRING
A string is a series of characters that end with the null terminator ‘\0’. As an example, a
string is declared as follows:

char exam[] = {‘A’, ‘t’, ‘i’, ‘q’, ‘\0’};

or

char exam[] = “Atiq”;

//in that case, the null character ‘\0’ is automatically placed at the end

3.5 STRING FUNCTIONS
Te header fle string.h contains prototypes or declarations for various predefned string-
related library functions. Te following are some important predefned string functions:

gets() – used to read a string from input terminal; example: gets(name) reads any words
as string and stores the string to char type variable name

puts() – used to display a string on output console; for example: puts(name) displays
string characters stored in char type variable name

strlen() – returns length of a string; example: strlen(exam) → 4
strlwr() – converts each character of a string to lowercase; example: strlwr(exam) → atiq
strupr() – converts each character of a string to uppercase; example: strupr(exam) → ATIQ
strcat() – appends one string at the end of another; example: strcat(exam, “Ahad”) →

Atiq Ahad
strncat() – appends frst n characters of one string into another; example: strncat(exam,

“Ahad Samad”, 5) → Atiq Ahad
strcpy() – copies a string into another; example: strcpy(exam, “Ahad”) → exam = Ahad
strncpy() – copies frst n characters of a string into another; example: strncpy(exam,

“Atiq Ahad”, 4) → exam = Atiq
strcmp() – returns 0 if the two strings are same, otherwise returns positive or negative

numbers; example: strcmp(exam, “Atiq”) would return 0
strncmp() – compares frst n characters of two strings; example: strcmp(exam, “Atiqur”,

4) would return 0
strcmpi()/stricmp() – compares two strings ignoring the case of the characters; example:

strcmp(exam, “atiQ”) would return 0
strnicmp() – compares frst n characters of two strings ignoring the case of the charac-

ters; example: strnicmp(exam, “atiQahaD”, 4) would return 0
strchr() – fnds out frst occurrence of a given character in a string; example:

strchr(“atiqahad”, ‘a’) would return atiqahad
strrchr() – fnds out last occurrence of a given character in a string; example:

strrchr(“atiqahad”, ‘a’) would return ad
strstr() – fnds out frst occurrence of a given substring in another string; example:

strstr(“atiqahad”, “qah”) would return qahad
strrev() – use to reverse a string; example: strrev(exam) would return qitA

156 ◾ Learn Programming with C

3.6 POINTERS
In C, when a variable is declared, it is instantly assigned a memory location. Another vari-
able known as the pointer holds the variable’s address. A pointer’s data type must match
the data type of the variable whose address the pointer holds. Integer type pointers, for
example, only hold the address of integer type variables, while double type pointers only
retain the address of double type variables. Example:

int abc = 10; //abc is an integer type variable initialized to 10

int *pt; //pt is an integer type pointer that can hold address

pt = &abc; /*pt is initialized to the address of the variable abc using address operator &*/

In the above example, the address of the memory region assigned to the abc variable is pt,
and the value stored in that memory location is *pt. Te value at the address is known as *.

3.7 MEMORY ALLOCATION
When an array is defned, its memory is fxed, which in some situations may be insufcient.
In some circumstances, we can allocate memory space dynamically during the program’s
execution. To do so, we need to use the malloc(), calloc(), realloc(), and free() functions
from the stdlib.h header fle.

malloc() allocates a certain number of bytes in memory and returns a void type pointer
that can be cast to any data type pointer. If memory cannot be allocated, NULL is returned.
Te syntax and an example of malloc() are as follows:

ptr = (cast_type*) malloc(size);

ptr = (foat*) malloc(20*sizeof(foat));

Like malloc(), calloc() allocates a specifc number of bytes in memory, but it also initializes
all bits to zero. Te syntax and an example of calloc() are as follows:

ptr = (cast_type*) calloc(size);

ptr = (foat*) calloc(20*sizeof(foat));

If the previous allocation size is not appropriate (either insufcient or more than required),
realloc() changes the previously allocated memory space size. Syntax:

ptr = realloc(ptr, new_size);

Te free() function is used to manually free the memory space that has been dynamically
allocated. Syntax:

free(ptr);

        

Arrays and Pointers ◾ 157

3.8 EXAMPLES

PROBLEM-01
Write a program to input and print the elements of array using pointer.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int num[10], i;
/*integer type array num[] with size 10 is declared that
stores the input values, and integer type variable i is
declared which is used as an index to access each array
element*/
printf("Enter any 5 integers: ");
/*this displays the text inside the double quotations as it is
on screen*/
for (i=0; i<5; i++)

 158 ◾ Learn Programming with C

/*this for loop is used to sequentially input all of the data;
i=0 is the initialization, i<5 is the condition, and i++ →
i=i+1 is the increment; the initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, the statement in the body is executed; now, the value
of counter i is incremented by 1 before the condition is re-
checked; this iteration continues until the condition becomes
false, at which point the program exits the loop*/

scanf("%d", num+i);
/*each iteration of the input function scanf() reads one
integer and puts it in the array num[] as an array element;
here, num = &num[0], num+1 = &num[1], num+2 = &num[2], and
so on*/

printf("You entered: ");
/*this displays the text inside the double quotations as it is
on screen*/
for (i=0; i<5; i++)
/*this for loop is used to display all of the data one by one;
i=0 is the initialization, i<5 is the condition, and i++ → i=i+1
is the increment; the condition is checked once at the beginning
of the loop, if it is true, the body statement is executed;
after that, the value of the counter i is incremented by 1
before the condition is re-checked; this iteration continues
until the condition becomes false, at which point the program
exits the loop*/

printf("%d ", *(num+i));
/*each repetition of the function printf() displays value
of a single array element on the screen; the array element
is accessible using pointers as num[0] = *num, num[1] =
*(num+1), num[2] = *(num+2), and so on.*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-02
Write a program to fnd the number of elements in an array.

Programming Code of the Solution:

        

Arrays and Pointers ◾ 159

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

float array[] = {10, 13, 17, 6, 28, 38};
/*a float type array is declared and initialized to 6 different
values; it is not necessary to mention size of a one dimensional
array if it is initialized while declaring*/
int num;
/*integer type variable num is declare*/
num = sizeof(array)/sizeof(array[0]);
/*because sizeof(array) returns the entire size of the array
and sizeof(array[0]) returns the size of the array’s first
element, this formula gives the number of elements in the
array*/
printf("Number of elements in the array is: %d", num);
/*output function printf() displays the text inside the double
quotations as it is on the screen except for the value of num
replaces the format specifier %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

 160 ◾ Learn Programming with C

PROBLEM-03
Write a program to calculate the average of array elements.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int cnt=5, i;
/*an integer type variable i is declared; another variable cnt
is declared and initialized to 5*/
float num[10], sum=0;
/*a float type array num[] of size 10 is declared; the array
is used to store the data, and each array element is accessed
using indices ranging from 0 to 9; another variable, sum, is

        

Arrays and Pointers ◾ 161

declared and initialized to 0; this variable is used to compute
and store the sum of data; because when we declare a variable,
memory space is allocated for that variable may contain some
garbage value, and the garbage value adds in the first summation
operation involving sum, giving us the incorrect result*/
for (i=0; i<cnt; i++){
/*this for loop is used to read all of the data one by one
and sequentially add them all up to the sum variable; i=0
is the initialization; i<cnt is the condition; i++ → i=i+1
is the increment; the initialization is done once at the
beginning of the loop; the condition is then checked, and if
it is true, all of the statements in the body are executed;
the condition is then re-checked after the counter value
is incremented by 1; this iteration continues until the
condition is no longer true, at which point the program flow
exits the loop*/

printf("Enter a number, #%d element: ", i+1);
/*output function printf() displays the text inside the
quotation as it is on the screen, except for the value of
i+1 replaces the format specifier %d*/
scanf("%f", &num[i]);
/*scanf() input function reads a decimal number from the
standard input terminal and stores it in an array; num[0],
num[1], . . . on each iteration*/
sum = sum + num[i];
/*this performs the addition; in each iteration, one element
is added to the sum variable and accumulated; If num[4] =
{2, 3, 4, 1} then
After 1st iteration: sum = 0 + 2 = 2
After 2nd iteration: sum = 2 + 3 = 5
After 3rd iteration: sum = 5 + 4 = 9
After 4th iteration: sum = 9 + 1 = 10*/

}
/*this curly brace specifies the end of the body of the for
loop*/
printf("Average of the number is: %0.2f", sum/cnt);
/*output function printf() displays the text inside the
quotations as it is on the screen except for the result of
operation sum/cnt replaces the format specifier %0.2f with two
points precision*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

 162 ◾ Learn Programming with C

PROBLEM-04
Write a program to fnd the length of a string with and without strlen().

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and gets(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <string.h>
/*string.h header file contains the prototype or declaration of
the function strlen(); the header file must be included before the
function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int i;
/*an integer type variable i is declared*/
char str[40];
/*character type array of size 40 is declared. Each array
element is accessed using indices ranging from 0 to 39, i.e.
str[0], str[1], . . ., str[39]*/

        

Arrays and Pointers ◾ 163

printf("Enter a string: ");
/*this displays the text inside the double quotations as it is
on screen*/
gets(str);
/*input function gets() reads a string including space, tab
etc. from input terminal and stores the string in the character
array str*/
for (i=0; str[i]!= '\0'; ++i);
/*this for loop ends in a semicolon, meaning that it has no
body; initialization i=0 is done once at the beginning of the
loop; the loop then checks a single character of the string to
see if it is a NULL; if not, the index value i is incremented
by 1 to check the next character in the next iteration; this
process continues until it reaches the end of the string denoted
by '\0', at which point the loop terminates*/
printf("String length using library function: %d\n",

strlen(str));
/*strlen() function returns the string length of the argument
str and the value is displayed in place of the format specifier
%d; other text is displayed as it is on the screen except for
a newline replaces \n*/
printf("String length without using library function: %d", i);
/*output function printf() displays the text inside the
quotations as it is on the screen except for the value of i
replaces the format specifier %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-05
Write a program to print a string using pointer.

Programming Code of the Solution:

 164 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char str[40], *ptr;
/*char type array str[] of size 40 is declared; the elements of
str[] can be accessed using indices ranging from 0 to 39, that
is- str[0], str[1], . . ., str[39]. A character type pointer
ptr is declared*/
printf("Enter any string: ");
/*this displays the text inside the double quotations as it is
on the screen*/
gets(str);
/*input function gets() reads any string including whitespaces
and stores the string to the array str[]*/
ptr = str;
/*address of the first element of the array is assigned to ptr,
that is, ptr = &str[0]*/
printf("The input string is: ");
/*this displays the text inside the double quotations as it is
on screen*/
while (*ptr!='\0'){
/*the character of the array/string referred by ptr is checked
to see if it is a NULL, which specifies an end of the string;
if not, statements within the loop’s body are executed, and

        

Arrays and Pointers ◾ 165

the condition is re-checked; this process repeats until the
condition becomes false, at which point the program flow exits
the while loop*/

printf("%c", *ptr);
/*output function printf() displays the character in the
string/array referred by the pointer ptr; here, ptr = &str[0]
and *ptr = str[0] in the first iteration; ptr+1 = &str[1] and
(ptr+1) = str[1] in the second iteration, and so on/
ptr = ptr+1;
/*value of ptr is incremented by 1 so that it can point to
the next character in the array in the next iteration of
the loop*/

}
/*the while loop comes to an end with this closing curly brace*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-06
Write a program to fnd the frequency of a character in a string.

Programming Code of the Solution:

Input and Output of the Executed Program:

166 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and gets(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char str[50], ch;
/* char type array str[] of size 50 is declared; the elements
of str[] can be accessed using indices ranging from 0 to
39, that is- str[0], str[1], . . ., str[39]. Also a char
type variable ch is declared which can store only a single
character*/
int count = 0, i;
/*two integer type variables are declared; variable count is
initialized to 0*/
printf("Enter a string:");
/*this displays the text inside the double quotations on the
screen*/
gets(str);
/*gets() function reads characters including white spaces from
input terminal until a newline is encountered*/
printf("Enter a character to find the frequency of that"

" character: ");
/*this displays the text inside the double quotations on the
screen; here long string was broken into multiple lines using
two double quotes (““)*/
scanf("%c", &ch);
/*scanf() function reads a character from input terminal and
stores it in char type variable ch*/
for (i=0; str[i]!='\0'; i++)
/*i=0 is the initialization; str[i]!='\0' is the condition and
i++ is the increment; i=0 is initialized once at the beginning
of the loop; then character of the string str[] is checked
whether it is a NULL, if it is not the end of the string,
statement in the body of the loop is executed; after that the
value of i is incremented by 1 (so that next character can be
checked in the next iteration of the loop) and the condition
is re-checked; this process continues until the end of the
string is reached at which point the condition becomes false
and the program flow exits the loop*/

        

Arrays and Pointers ◾ 167

if (str[i]==ch)
/*In each iteration, the 'if' condition compares the character
ch with the array element str[]; when any character matches with
ch the condition is true and following statement is executed*/

count++;
/*if ch matches any of the character in the string, the
value of count is incremented by 1*/

printf("%c is occurred in the string %d times.", ch, count);
/*output function printf() displays the text inside the quotations
as it is on the screen except for the character ch replaces the
format specifier %c and the value of count replaces %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-07
Write a program to copy a string with and without using strcpy().

Programming Code of the Solution:

Input and Output of the Executed Program:

 168 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and gets(); the header file must be included using
preprocessor directive #include before the functions called in the
program*/
#include <string.h>
/*header file string.h contains prototype of the library function
strcpy(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char str1[50], str2[50], str3[50];
/*three character type arrays are declared each of size 50. Each
element of the string is accessed using indices ranging from 0
to 49, like- str1[0], str1[1], . . ., str1[49]*/
int i;
/*integer type variable i is declared*/
printf("Enter a string: ");
/*this displays the text inside the double quotations as it is
on the screen*/
gets(str1);
/*the gets() function reads a string from the input terminal,
including white spaces, and stores it in the str1[] array*/
for (i=0; str1[i]!='\0'; i++)
/*this for loop is used to sequentially copy each character
of the string str1[] to str2[]. i=0 is the initialization;
str1[i]!='\0' is the condition and i++ is the increment; i=0 is
initialized once at the beginning of the loop; then character of
the string str1[] is checked whether it is a NULL, if it is not
the end of the string, statement in the body of the for loop is
executed and value of i is incremented by 1 so that we can check
next character in the string. Now the condition is re-checked.
This process continues until the end of the string is reached*/

str2[i] = str1[i];
/*This copies a single character of str1[] to str2[]. For
example, in the 1st iteration- str2[0]=str1[0], in the 2nd
iteration- str2[1]=str1[1], and so on*/

str2[i] = '\0';
/*Each string must end with a NULL character, thus after copying
each character from str1[], the '\0' is appended to the end of
str2[]*/

        Arrays and Pointers ◾ 169

strcpy(str3, str1);
/*strcpy() function is called to copy the string str1[] as it
is in str3[]*/
printf("Copied string without using library function:\n");
/*this displays the text inside the double quotations as it is
on the screen followed by a newline in place of \n*/
puts(str2);
/*puts() function is called to display the string str2[] as it
is on the output screen*/
printf("Copied string using library function:\n%s", str3);
/*printf() function displays the text inside the double quotes
as it is on the screen except for a newline replaces \n and
string str3[] replaces the format specifier %s*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-08
Write a program to fnd both the largest and smallest numbers of an array of integers.

Flowchart of the Solution:

Figure 3.1 shows the fowchart followed to solve this problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize SIZE←10

Step-3: Read value of value[0]

Step-4: Initialize large←value[0], small←value[0] and i←1

Step-5: if i<SIZE

5.1: Read value of value[i]

5.2: If value[i]>large

7.2.1: large←value[i]

5.3: If value[i]<small

7.3.1: small←value[i]

170 ◾ Learn Programming with C

FIGURE 3.1 Flowchart followed to solve the problem.

5.4: i←i+1

5.5: Go to Step-5

Step-6: Display values of large and small

Step-7: Stop

Programming Code of the Solution:

        

Arrays and Pointers ◾ 171

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#define SIZE 10
/*#define is a preprocessor directive that defines a constant
variable; here 10 is assigned to constant variable SIZE; wherever
SIZE is used in this program it is replaced by 10*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int value[SIZE], large, small, i;
/*an integer type array value[] of size SIZE and three other
variables are declared*/
printf("Please enter any %d integers (separated by space):"

"\n", SIZE);
/*output function printf() displays the text inside the double
quotes as it is on screen except for the value of SIZE replaces
the format specifier %d and a newline replaces \n*/
scanf("%d", &value[0]);
/*input function scanf() reads an integer from input terminal
and it is assigned to the 1st array element*/

172 ◾ Learn Programming with C

large=value[0];
/*value of the 1st array element value[0] is assigned to variable
large which is used to store the largest number*/
small=value[0];
/*value of the 1st array element value[0] is assigned to variable
small which is used to store the smallest number*/
for (i=1; i<SIZE; i++){
/*i=1 is the initialization, i<SIZE is the condition and i++
is the increment; initialization is done once at the beginning
of the loop; then the condition is checked, if it is true,
statements in the body are executed and the value of i is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which point
the program flow exits the loop*/

scanf("%d", &value[i]);
/*this scanf() function reads an integer from input
terminal and stores the value to array value[i]; because
this statement is executed in each iteration, value[1] is
input in the 1st iteration, value[2] in the 2nd iteration
and so on*/
if (value[i]>large)
/*the input value is compared to the value of large in
each iteration; if the input value is greater than large,
the condition is true, and the following statement is
executed*/

large=value[i];
/*if the input value is larger than large, the value
of large is updated to the input value, ensuring that
large always contains the largest value*/

if (value[i]<small)
/*the input value is compared to the value of small in
each iteration; if the input value is smaller than small,
the condition is true, and the following statement is
executed*/

small=value[i];
/*if the input value is smaller than small, the value
of small is updated to the input value, ensuring that
small always contains the smallest value*/

}
/*the for loop comes to an end with this closing curly brace*/
printf("Largest value of the array is: %d\n", large);
/*output function printf() displays the text inside the double
quotations as it is on the screen except for the value of
large replaces the format specifier %d and a newline replaces
\n*/
printf("Smallest value of the array is: %d\n", small);
/*output function printf() displays text inside the double
quotations as it is on the screen except for the value of

        

Arrays and Pointers ◾ 173

small replaces the format specifier %d and a newline replaces
\n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-09
Write a program to generate the frst n terms of a Fibonacci sequence. Also, check
whether a given integer is a Fibonacci number or not.

Flowchart of the Solution:

Figure 3.2 shows the fowcharts followed to solve this problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize dm←1

Step-3: Read value of n between 3 and 25

Step-4: Initialize fn[0]←0, fn[1]←1 and i←2

Step-5: If i<n

5.1: fn[i]←fn[i−1]+fn[i−2]

5.2: i←i+1

5.3: Go to Step-5

Step-6: Initialize i←0

Step-7: If i<n−1

7.1: Display value of fn[i]

7.2: i←i+1

7.3: Go to Step-7

Step-8: Display value of fn[i]

Step-9: Read value of ck

Step-10: If ck=0

10.1: Go to Step-11

174 ◾ Learn Programming with C

FIGURE 3.2 Flowchart followed to solve the problem.

        Arrays and Pointers ◾ 175

Step-11: If ck=1

11.1: dm←0

11.2: Display ‘Fibonacci number’

11.3: Jump to Step-14

Step-12: Initialize fnck[0]←0, fnck[1]←1 and i←2

Step-13: If fnck[i−1]<ck

13.1: fnck[i]←fnck[i−1]+fnck[i−2]

13.2: If fnck[i]=ck

13.2.1: Display ‘Fibonacci number’

13.2.2: dm←0

13.2.3: Go to Step-14

13.3: i←i+1

13.4: Go to Step-13

Step-14: If dm=1

14.1: Display ‘not Fibonacci number’

Step-15: Stop

Programming Code of the Solution:

 176 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int fn[25], fnck[25], n, i, ck, dm=1;
/*two integer type arrays fn[] and fnck[] of size 25 each are
declared; four integer type variables, n, I ck, and dm, are
declared, with dm initialized to 1*/

        

Arrays and Pointers ◾ 177

printf("Please enter an integer (3–25): ");
/*output function printf() displays text in double quotations
as it is on the screen*/
scanf("%d", &n);
/*input function scanf() reads an integer from keyboard and
stores the value in the memory spaces allocated for n*/
fn[0]=0;
/*1st Fibonacci number is 0 and it is stored in the 1st element
of the array fn[0]*/
fn[1]=1;
/*2nd Fibonacci number is 1 and it is stored in the 2nd element
of the array fn[1]*/
for (i=2; i<n; i++)
/*this for loop is used to calculate other Fibonacci numbers in
the sequence; i=2 is the initialization, i<n is the condition
and i++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true then statement in the body is executed; value of i is
incremented by 1 before the condition is re-checked; these steps
continue until the condition becomes false*/

fn[i]=fn[i−1]+fn[i−2];
/*each Fibonacci number is calculated by adding the two
preceding numbers in the sequence; one number is computed
in each loop iteration and placed in the array fn[]; for
n=5, fn[0]=0, fn[1]=1
After 1st iteration- fn[2]=fn[1]+fn[0]=1+0=1
After 2nd iteration- fn[3]=fn[2]+fn[1]=1+1=2
After 3rd iteration- fn[4]=fn[3]+fn[2]=2+1=3
After 4th iteration- fn[5]=fn[4]+fn[3]=3+2=5*/

printf("First %d Fibonacci sequence:\n", n);
/*printf() function displays the text in double quotes as it is
on the screen, with the exception that the value of n replaces
the format specifier %d and a newline replaces \n*/
for (i=0; i<n−1; i++)
/*this for loop is used to display Fibonacci sequence stored in
the array; i=0 is the initialization, i<n−1 is the condition
and i++ is the increment; initialization is done once at the
beginning of the loop; then condition is checked, if it is
true then statement in the body is executed; value of i is
now incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which point
the program flow exits the loop*/

printf("%d, ", fn[i]);
/*printf() function displays value of single array element
fn[0], fn[1], fn[2], . . . in place of format specifier %d
followed by comma and space in each iteration of the loop*/

178 ◾ Learn Programming with C

printf("%d\n", fn[i]);
/*this printf() function displays the value of last array
element fn[n−1] in place of format specifier %d followed by a
newline in place of \n*/
/*following part of the program will check whether a given
number is a Fibonacci*/
printf("Enter an integer to check: ");
/*printf() function displays the text in double quotations as
it is on the screen*/
scanf("%d", &ck);
/*scanf() function reads an integer from input terminal and
stores it in the memory spaces location allocated for ck; we
want to check if ck is a Fibonacci number*/
if (ck==0 || ck==1){
/*if the input number ck is either 0 or 1, the condition is
true, and the statements, enclosed by curly braces, in the body
of the 'if' are executed*/

printf("%d is a Fibonacci number.\n", ck);
/*this printf() function displays the text in double quotes
as it is on the screen except for the value of ck replaces
the format specifier %d and a newline replaces \n*/
dm=0;
/*value 0 if assigned to dm*/

}
/*this is the end of 'if' with condition ck==0||ck==1*/
else{
/*if ck is neither 0 nor 1, that is, both conditions in the above
'if' are false, statements in the body of this else are executed*/

fnck[0]=0;
/*first Fibonacci number, 0, is saved in the 1st element of
the array fnck[0]*/
fnck[1]=1;
/*second Fibonacci number, 1, is saved in the 2nd element
of the array fnck[1]*/
for (i=2; fnck[i−1]<ck; i++){
/*this for loop sequentially computes 3rd, 4th, 5th, . . .
Fibonacci numbers; i=2 is the initialization, fnck[i−1]<ck
is the condition and i++ is the increment; initialization is
done once at the beginning of the loop; then the condition is
checked, and if it is true, statement in the body is executed;
now, the value of i is incremented by 1 before the condition
is re-checked; this process continues until the condition
becomes false at which point the program flow exits the loop*/

fnck[i]=fnck[i−1]+fnck[i−2];
/*by adding two previous Fibonacci numbers, the next
Fibonacci number is generated and saved in the array fnck[]*/

        

Arrays and Pointers ◾ 179

if (ck==fnck[i]){
/*this if compares the Fibonacci number fnck[i],
generated in previous statement, with the given
number ck; if they match than the condition is true
and following statements in the body of 'if' are
executed*/

printf("%d is a Fibonacci number.\n", ck);
/*this printf() function displays the text in the
double quotes as it is on the screen except for the
value of ck replaces the format specifier %d and a
newline replaces \n*/
dm=0;
/*this sets the value of dm to 0 */
break;
/*we don’t need to continue the loop if ck matches
the generated Fibonacci number in any iteration;
thus, this break forces the program control flow to
exit the for loop*/

}
/*this is the end of 'if' with condition ck==fnck[i]*/

}
/*the 'for' loop ends with this closing curly brace*/

}
/*this is the end of 'else' corresponding to 'if' with condition
ck==0||ck==1*/
if (dm==1)
/*if ck does not match any Fibonacci number then dm=1 and the
condition is true, so following statement is executed*/

printf("%d is not a Fibonacci number.\n", ck);
/*this printf() displays the text in double quotations as
it is on the screen except for the value of ck replaces the
format specifier %d and a newline replaces \n*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-10
Write a program to fnd the 2’s complement of a given binary number.

Flowchart of the Solution:

Figure 3.3 shows the fowchart followed to solve this problem.

180 ◾ Learn Programming with C

FIGURE 3.3 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Read value of a

Step-3: len←strlen(a)

Step-4: Initialize k←0

Step-5: If a[k]≠‘\0’

5.1: If a[k]≠‘0’

5.1.1: If a[k]≠‘1’

5.1.1.1: Display ‘incorrect number’

5.1.1.2: Go to Step-11

5.2: k←k+1

5.3: Go to Step-5

        Arrays and Pointers ◾ 181

Step-6: Initialize i←len−1

Step-7: If a[i]≠‘1’

7.1: i←i−1

7.2: Go to Step-7

Step-8: Initialize j←i−1

Step-9: If j>=0

9.1: If a[j]=1

9.1.1: a[j]←0

9.1.2: Go to Step-9.3

9.2: a[j]←1

9.3: j←j−1

9.4: Go to Step-9

Step-10: Display value of a

Step-11: Stop

Programming Code of the Solution:

 182 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include using the functions are called in
the program*/
#include<string.h>
/*header file string.h contains prototype of the library function
strlen(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
#include<stdlib.h>
/*header file stdlib.h contains prototypes of the library functions
exit(), abs(), div(), and rand(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char a[20];
/*character type array a[] of size 20 is declared; compiler
assigns required contiguous spaces in memory for this array;
each element of the array is accessed using indices ranging from
0 to 19*/
int i, j, k, len;
/*four integer type variables are declared; compiler assigns
required spaces in memory for these variables*/
printf("Enter any binary string: ");
/*output library function printf() displays text inside the
double quotations as it is on the standard output terminal*/
gets(a);
/*library function gets() reads string, including whitespace,
from input terminal and assigns the string to the array a[];

        Arrays and Pointers ◾ 183

in this program each bit of the binary number is considered as
character '1' or '0'*/
len=strlen(a);
/*library function strlen() computes and returns length of
string a that is assigned to variable len*/
for (k=0; a[k]!='\0'; k++)
/*this loop is used to check each bit of the binary number
whether the bit is any value other than 0 or 1; k=0 is the
initialization, a[k]!='\0' is the condition and k++ is the
increment; initialization is done once at the beginning of the
loop; then condition is checked, if it is true, statement in the
body is executed; now, value of k is incremented by 1 before the
condition is re-checked; these steps continue until the NULL
character is reached in the string*/

if (a[k]!='0' && a[k]!='1'){
/*if any of the bits of the binary number is neither 0 nor
1, then the condition is true and following statements,
enclosed by curly braces, are executed*/

printf("Incorrect binary number\nExiting . . . \n");
/*this printf() function displays the text inside the
double quotes as it is on the screen except for a
newline replaces \n*/
exit(0);
/*library function exit() terminates the program
immediately without returning any value*/

}
/*this closing curly brace specifies the end of 'if' condition*/

for (i=len−1; a[i]!='1'; i−−);
/*this for loop finds the index of the last bit in the binary
number that contains 1; i=len−1 is the initialization, a[i]!='1'
is the condition, and i – is the decrement; this 'for' loop ends
with a semicolon, denoting that it has no body; the index is set
to the last character of the string once at the beginning of the
loop; then the condition is checked, if it is true, the index
value i is decremented by 1 before the condition is re-checked;
this process continues until the condition becomes false, at
which point the last 1 in the binary number is found and the
program flow exits the loop*/
for (j=i−1; j>=0; j−−)
/*this 'for' loop flips each bit of a binary integer from 1 to
0 and 0 to 1 from the first bit to the bit one bit before the
last '1'; the last bit, which contains 1, remains unchanged at
1; j=i−1 is the initialization, j>=0 is the condition, and j –
is the decrement; at the beginning of the loop, initialization
is done once, which sets index to the character one character

 184 ◾ Learn Programming with C

before the last '1' in the string; then the condition is checked,
and if true, the statements in the body are executed; before the
condition is re-checked, the index value j is decremented by
one; these steps are repeated until the first character of the
string is reached, at which point the condition becomes false
and the program flow exits the loop*/

if (a[j]=='1')
/*this 'if' checks if the bit a[j] is 1, if it is true,
following statement is executed*/

a[j]='0';
/*this statement flips the bit a[j] from 1 to 0*/

else
/*if the checked bit is not '1', then the condition of above
'if' is false and following statement is executed*/

a[j]='1';
/*this statement flips the bit a[j] from 0 to 1*/

printf("2's complement: %s\n", a);
/*this printf() function displays the text inside the double
quotations as it is on the screen except for string a replaces
the format specifier %s, a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*this closing curly brace specifies the end of main() function; no
statement is executed after that point*/

PROBLEM-11
Write a program to calculate and print transpose of a given matrix.

Flowchart of the Solution:

Figure 3.4 shows the fowchart followed to solve this problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Defne ROW←4 and COL←4

Step-3: Initialize i←0

Step-4: If i<ROW

4.1: Initialize j←0

4.2: If j<COL

        

Arrays and Pointers ◾ 185

FIGURE 3.4 Flowchart followed to solve the problem.

4.2.1: Read value of mat1[i][j]

4.2.2: mat2[j][i]←mat1[i][j]

4.2.3: j←j+1

4.2.4: Go to Step-4.2

4.3: i←i+1

4.4: Go to Step-4

Step-5: Initialize i←0

Step-6: If i<ROW

 186 ◾ Learn Programming with C

6.1: Initialize j←0

6.2: If j<COL

6.2.1: Display value of mat1[i][j]

6.2.2: j←j+1

6.2.3: Go to Step-6.2

6.3: Display newline

6.4: i←i+1

6.5: Go to Step-6

Step-7: Initialize i←0

Step-8: If i<ROW

8.1: Initialize j←0

8.2: If j<COL

8.2.1: Display value of mat2[i][j]

8.2.2: j←j+1

8.2.3: Go to Step-8.2

8.3: Display newline

8.4: i←i+1

8.5: Go to Step-8

Step-9: Stop

Programming Code of the Solution:

        Arrays and Pointers ◾ 187

Input and Output of the Executed Program:

188 ◾ Learn Programming with C

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#define ROW 4
/*preprocessor directive #define defines a constant variable ROW
that takes the value 4; ROW is substituted by 4 wherever it appears
in this program from now on*/
#define COL 4
/*preprocessor directive #define defines a constant variable ROW
that takes the value 4; ROW is substituted by 4 wherever it appears
in this program from now on*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int mat1[ROW][COL], mat2[ROW][COL], i, j, m, n;
/*four integer type variables i, j, m and n, and two 2-D arrays
mat1[][] and mat2[][] of size ROW and COL are declared*/
printf("Enter Matrix elements:\n");
/*output function printf() displays the text in the quotation
as it is on the screen except for a newline replaces \n*/
for (i=0; i<ROW; i++)
/*this for loop executes following for loop ROW times; i=0
is the initialization, i<ROW is the condition and i++ is the
increment; the initialization is done once at the beginning
of the loop; then the condition is checked, if it is true,
following for loop is executed and value of i is incremented by
1 before the condition is re-checked; these process continues
till the condition becomes false at which point the program
flow exits the loop; thus, we access all elements of first row
in first iteration of this for loop, we access all elements of
second row in second iteration, and so on*/

for (j=0; j<COL; j++){
/*j=0 is the initialization, j<COL is the condition and
j++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if
it is true statements in the body are executed and value of
j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

printf("Element[%d][%d]: ", i, j);

        Arrays and Pointers ◾ 189

/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of i replaces the first format specifier %d and the
value of j replaces the second %d*/
scanf("%d", &mat1[i][j]);
/*this scanf() function reads an integer from input
terminal and stores it in the memory spaces allocated
for the particular array element*/
mat2[j][i]=mat1[i][j];
/*transpose of matrix mat1[][] is calculated here
and stores in mat2[][]; here row of mat1[][] becomes
column of mat2[][] and column of mat1[][] becomes row
of mat2[][]; mat2[0][0]=mat1[0]0], mat2[1][0]= mat1[0]
[1], mat2[2][0]=mat1[0][2], and so on*/

}
/*this is the end of 'for (j=0; j<COL; j++)' loop*/

printf("\nThe matrix is:\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
for (i=0; i<ROW; i++){
/*this for loop executes following for loop ROW times; i=0
is the initialization, i<ROW is the condition and i++ is the
increment; initialization is done once at the beginning of the
loop; then condition is checked, if it is true, following for
loop is executed and value of i is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false at which point the program flow exits
the loop; thus in first iteration all elements of first row are
displayed, in second iteration all elements of second row are
displayed, and so on*/

for (j=0; j<COL; j++)
/*j=0 is the initialization, j<COL is the condition and
j++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if
it is true, statements in the body is executed and value of
j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

printf("%d\t", mat1[i][j]);
/*function printf() displays the value of array element
mat1[i][j] in place of format specifier %d on the screen
followed by a tab in place of \t*/

printf("\n");
/*this statement is in the body of first for loop; hence, a
newline is displayed on the screen in each iteration of the
first for loop; that is, a newline is displayed after each
row of the 2-D matrix mat1[][] is displayed*/

190 ◾ Learn Programming with C

}
/*this closing curly brace specifies the end of 'for (i=0;
i<ROW; i++)' loop*/
printf("\nTranspose of the matrix is:\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
for (i=0; i<ROW; i++){
/*this for loop executes following for loops ROW times; i=0
is the initialization, i<ROW is the condition and i++ is the
increment; initialization is done once at the beginning of the
loop; then condition is checked, if it is true, following for
loop is executed and value of i is incremented by 1 before
the condition is re-checked; these steps continue till the
condition becomes false at which point the program flow exits
the loop; thus in first iteration all elements of first row are
displayed, in second iteration all elements of second row are
displayed, and so on */

for (j=0; j<COL; j++)
/*j=0 is the initialization, j<COL is the condition and
j++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, statements in the body are executed and value of
j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

printf("%d\t", mat2[i][j]);
/*function printf() displays the value of array element
mat2[i][j] in place of format specifier %d on the screen
followed by a tab in place of \t*/

printf("\n");
/*this statement is in the body of first for loop; hence, a
newline is displayed on the screen in each iteration of the
first for loop; that is, a newline is displayed after each
row of the 2-D matrix mat2[][] is displayed*/

}
/*this is the end of 'for (i=0; i<ROW; i++)' loop*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*this closing curly brace specifies the end of main() function; no
statement is executed after that point*/

PROBLEM-12
Write a program to search an item from an array of n items. Te value of n, n items,
and the target item should be given from the keyboard. Te program will display the
target item and its position in the array.

        

Arrays and Pointers ◾ 191

Flowchart of the Solution:

Figure 3.5 shows the fowchart followed to solve this problem.

FIGURE 3.5 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Read value of num

Step-3: Initialize i←0

Step-4: If i<num

4.1: Read value of array[i]

4.2: i←i+1

4.3: Go to Step-4

 192 ◾ Learn Programming with C

Step-5: Initialize check←−1

Step-6: Read value of item

Step-7: Initialize i←0

Step-8: If i<num

8.1: If array[i]=item

8.1.1: check←0

8.1.2: Display values of item and i+1

8.2: i←i+1

8.3: Go to Step-8

Step-9: If check=−1

9.1: Display ‘item not found’

Step-10: Read value of ch

Step-11: If ch ‘n’

11.1: Go to Step-5

Step-12: Stop

Programming Code of the Solution:

        

Arrays and Pointers ◾ 193

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <conio.h>
/*getche() is a non-standard function that is declared in the
conio.h header file; the header file must be included using
preprocessor directive #include before the function is called in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int array[50], item, num, i, check;
/*an integer type array of size 50, and four integer type
variables are declared; required memory spaces are allocated
for the array and each of the variables*/
char ch;
/*a character type variable ch is declared; required memory
spaces are allocated for it*/
printf("How many items: ");
/*output function printf() displays the text in the quotation
as it is on the screen*/

194 ◾ Learn Programming with C

scanf("%d", &num);
/*scanf() function reads an integer from input terminal
and stores the value in the memory spaces allocated for
the num*/
printf("Enter %d items (separated by space):\n", num);
/*printf() function displays the text in the quotation as
it is on the screen except for the value of num replaces the
format specifier %d and a newline replaces \n*/
for (i=0; i<num; i++)
/*i=0 is the initialization, i<num is the condition and i++
is the increment; the initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, statement in the body is executed and the value of
i is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

scanf("%d", &array[i]);
/*this scanf() function reads an integer from the input
terminal and stores the value in the memory spaces allocated
for the array[]; array[0] is read in the 1st iteration,
array[1] is read in the 2nd iteration, and so on*/

do{
/*the statements, enclosed by curly braces, in the body are
executed; now the condition is checked, if it is true then
the body is executed before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

check=−1;
/*value of the variable check is initialized to −1,
means the item has not found yet; value of check is
changed only if the item is found in the array*/
printf("\nEnter the item you want to find: ");
/*printf() function displays the text in the quotations
as it is on screen except for a newline replaces \n*/
scanf("%d", &item);
/*function scanf() reads an integer from input terminal
and stores the value in the memory spaces allocated for
the item*/
for (i=0; i<num; i++)
/*i=0 is the initialization, i<num is the condition and
i++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if
it is true, statement in the body is executed and value of
i is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

        

Arrays and Pointers ◾ 195

if (array[i]==item){
/*if item matches with the array element then the
condition is true, and the following statements,
enclosed in the curly braces, are executed; item is
compared with array[0] at 1st iteration, array[1] at
2nd iteration and so on*/

check=0;
/*if the item is found in the array then the
condition of 'if' is true and the value of
check is changed to 0 from −1*/
printf("%d is found in position %d of the"

"array.\n", item, i+1);
/*printf() function displays the text in the
quotations as it is on the screen except for
the value i+1 replaces the format specifier %d
and a newline replaces \n*/

}
/*this closing curly brace specifies the end of
'if' condition*/

if (check==−1)
/*if item is not found in the array, then check=−1; so, the
condition is true and following statement is executed*/

printf("%d is not in the array.\n", item);
/*printf() function displays the text in the quotation
as it is on the screen except for format specifier %d is
replaced by the value of item and \n by a newline*/

printf("Do you want to look for another item? (y/n): ");
/*printf() function displays the text in the quotation as
it is on the screen*/
ch=getche();
/*getche() function reads a character from keyboard, the
character is echoed on the screen without waiting for enter
to be pressed and it is assigned to ch*/
printf("\n");
/*this printf() function displays a newline on the screen
in place of \n*/

}while (ch!='n');
/*do..while loop ends here with condition ends with semicolon;
if the condition is true, the body in the loop is executed
before the condition is re-checked*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*this closing curly brace specifies the end of main() function; no
statement is executed after that point*/

196 ◾ Learn Programming with C

PROBLEM-13
Write a program which will read a text and count all occurrences of a particular
character.

Flowchart of the Solution:

Figure 3.6 shows the fowchart followed to solve this problem.

FIGURE 3.6 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize count←0

Step-3: Read a line of text or character string and save it to array str[]

Step-4: Read a character value of ch

        Arrays and Pointers ◾ 197

Step-5: Initialize i←0

5.1: If str[i]≠‘\0’

5.1.1: If str[i]=ch

5.1.1.1: count←count+1

5.2: i←i+1

5.3: Go to Step-5.1

Step-6: Display the value of count

Step-7: Stop

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and gets(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/

198 ◾ Learn Programming with C

int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char str[80], ch;
/*character type array str[] of size 80 and a variable ch are
declared; required memory spaces are allocated for them*/
int count=0, i;
/*integer type variable count is declared and initialized to 0;
integer type variable i is declared; count is used to calculate
and store total number of a particular character in the text;
if the variable is not initialized to 0 then the memory spaces
allocated for the variable may contain some garbage value
which is added in their first summation and gives an incorrect
result*/
printf("Enter a line of text:\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
gets(str);
/*function gets() reads a character string or any text from
input terminal and assigned it to the array str[]; gets()
function reads any character from the keyboard including
space, tab, etc. and stops reading as soon as enter is
pressed*/
printf("Enter the character you want to count: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%c", &ch);
/*function scanf() reads a character from input terminal and
stores it in the memory spaces allocated for ch*/
for (i=0; str[i]!='\0'; i++)
/*i=0 is the initialization, str[i]!='\0' is the condition
and i++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, statement in the body is executed and value of i is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which point
the program flow exits the loop; here the condition remains true
till we reach end of the string or text*/

if(str[i]==ch)
/*if ch matches with the character of the string or text
then the condition is true, and the following statement is
executed; ch is compared with 1st character str[0] at 1st
iteration, 2nd character str[1] at 2nd iteration and so
on*/

        

Arrays and Pointers ◾ 199

count++;
/*if character ch is found in the string or text then
the condition of 'if' is true and the value of count is
incremented by 1*/

printf("The character %c occurs %d times in the string.\n", ch,
count);

/*printf() function displays the text in the quotations as it
is on the screen except for character ch replaces the format
specifier %c, value count replaces %d and a newline replaces
\n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*this closing curly brace specifies the end of main() function; no
statement is executed after that point*/

PROBLEM-14
Write a program to count the number of lines, words, and characters in a given text.

Flowchart of the Solution:

Figure 3.7 shows the fowchart followed to solve this problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize end←0, chnm←0, word←0, and line←0

Step-3: If end=0

3.1: Initialize k←0

3.2: Read value of ch

3.3: If ch≠‘\n’

3.3.1: str[k]←ch

3.3.2: Read value of ch

3.3.3: k←k+1

3.3.4: Go to Step-3.3

3.4: str[k]←‘\0’

3.5: If str[0]=‘\0’

3.5.1: Go to Step-4

200 ◾ Learn Programming with C

FIGURE 3.7 Flowchart followed to solve the problem.

3.6: word←word+1

3.7: Initialize i←0

3.8: If str[i]≠‘\0’

3.8.1: If str[i]=‘ ’

3.8.1.1: Go to Step-3.8.2.1

        Arrays and Pointers ◾ 201

3.8.2: If str[i]=‘\t’

3.8.2.1: word←word+1

3.8.3: i←i+1

3.8.4: Go to Step-3.8

3.9: line←line+1

3.10: chnm←chnm+strlen(str)

Step-4: Display value of line, word, and chnm

Step-5: Stop

Programming Code of the Solution:

202 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and getchar(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
#include<string.h>
/*strlen() function is declared in the header file string.h; the
header file must be included using preprocessor directive #include
before the function is called in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char str[80], ch;
/*character type array str[] of size 80 and a variable ch are
declared; required memory spaces are allocated for them*/
int i, k, end=0, chnm=0, word=0, line=0;
/*integer type variables i and k are declared, and end, chnm,
word and line are declared and initialized to 0; chnm is used
to calculate and store total characters in this program,
word is used to calculate and store total words, and line is
used to calculate and store total line in the text; if these
variables are not initialized to 0 then the memory spaces
allocated for the variables may contain some garbage value
which is added in their first summation and gives an incorrect
result*/
printf("Enter the text and press ENTER at end.\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
while (end==0){
/*if the condition is true, following statements, enclosed by
curly braces, are executed, and the condition is re-checked;

        

Arrays and Pointers ◾ 203

this process continues until the condition becomes false at
which point the program flow exits the loop*/

k=0;
/*variable k is initialized to 0*/
for (ch=getchar(); ch!='\n'; k++){
/*this for loop is used to input the text, one character in
each iteration; ch=getchar() is the initialization, ch!='\n'
is the condition and k++ is the increment; initialization
is done once at the beginning of the loop, getchar() reads
a character from keyboard and assigned it to ch; then the
condition is checked, if enter is not pressed then it is true
and statements in the body are executed and value of k is
incremented by 1 before the condition is re-checked; these
steps continue until the enter is pressed at which point the
condition becomes false and the program flow exits the loop*/

str[k]=ch;
/*input character ch is stored in the array str[];
at first iteration ch is saved in str[0], at second
iteration in str[1], and so on*/
ch=getchar();
/*function getchar() reads a single character from input
terminal and assigned it to ch; getchar() function
immediately echoes the input character on the output
screen and waits to read another character*/

}
/*this closing curly brace specifies the end of for loop*/
str[k]='\0';
/*final character of the array is set to NULL to define it
as string*/
if (str[0]=='\0')
/*if enter is pressed at the start of any line then this
condition is true and following statement is executed*/

break;
/*program control flow immediately exits the 'while'
loop*/

else{
/*if first character of a line is not a newline then the
condition of 'if' is false, and following statements in the
body of else are executed*/

word++;
/*this statement counts the first word of a line; if
first character of a line is not '\0' then there is at
least one word in that line and word count is incremented
by 1*/
for (i=0; str[i]!='\0'; i++){
/*this for loop is used to sequentially count each
word of a line in the text except the first word; i=0

 204 ◾ Learn Programming with C

is the initialization, str[i]!='\0' is the condition and
i++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked,
if we don’t reach the end of a line, the condition is
true and statements in the body are executed; now,
value of i is incremented by 1 before the condition is
re-checked; these steps continue until the condition
becomes false at which point the program flow exits the
loop*/

if (str[i]==' '||str[i]=='\t')
/*if space or tab is encountered anywhere in the
line then above condition is true and following
statement is executed*/

word++;
/*word count is incremented by 1*/

}
/*this is the end of 'for (i=0; str[i]!='\0'; i++)'
loop*/

}
/*this is the end of else condition*/
line=line+1;
/*when an enter is encountered after any characters it’s a
line; the program flow exits first 'for' loop and skips break
statement in the 'if'; the line count here is incremented
by 1*/
chnm+=strlen(str);
/*function strlen() returns the number of characters in a
line str, the number is added to chnm and the summation is
stored in chnm*/

}
/*this is the end of while loop; a single line is entered, its
words and characters are counted; now, the condition is checked
again, if it is true, the body is executed before the condition
is re-checked; this steps continue until enter is pressed at the
beginning of a line at which point break statement in the 'if'
causes the program to exit the loop*/
printf("Number of lines: %d\n", line);
/*printf() function displays the text inside the quotations as
it is on the screen except for the value of line replaces the
format specifier %d and a newline replaces \n*/
printf("Number of words: %d\n", word);
/*printf() function displays the text inside the quotations as
it is on the screen except for the value of word replaces the
format specifier %d and a newline replaces \n*/
printf("Number of characters: %d\n", chnm);
/*printf() displays the text inside the quotations as it is on
the screen except for the value of chnm replaces the format
specifier %d and a newline replaces \n*/

        

Arrays and Pointers ◾ 205

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*this closing curly brace specifies the end of main() function; no
statement is executed after that point*/

EXERCISES

MCQ with Answers

1) An array index in C starts with

A) −1

B) 0

C) 2

D) 1

2) What is the value of an array element which is not initialized?

A) 0

B) 1

C) It depends on the storage class

D) None of the above

3) What happens when we try to access an array variable outside its size?

A) A compiler error is thrown

B) 0 value is returned

C) 1 value is returned

D) Some garbage value is returned

4) What is the size of an array ary[9]?

A) 8

B) 9

C) 10

D) None of the above

5) What is the maximum index of the array ary[9]?

A) 8

B) 9

206 ◾ Learn Programming with C

C) 10

D) None of the above

6) How many bytes are skipped if an integer array pointer is incremented by one to
reach the location of the next element?

A) 1

B) 2

C) 8

D) None of the above

7) Which function is used to allocate memory to an array at run time and initialize
each array element to 0?

A) calloc()

B) malloc()

C) palloc()

D) kalloc()

8) Which function is used to allocate memory to an array at run time without initial-
izing the array elements?

A) calloc()

B) malloc()

C) palloc()

D) kalloc()

9) What is the size of array foat ary[15]?

A) 17

B) 64

C) 16

D) 60

10) What is the dimension of the array ary[5][6]?

A) 5

B) 6

C) 2

D) 30

        

Arrays and Pointers ◾ 207

11) What is the dimension of the array ary[]={1, 2, 3, 4, 5}?

A) 1

B) 2

C) 4

D) 5

12) What is the maximum number of dimensions of an array in C?

A) 2

B) 10

C) 20

D) >20

13) An array of arrays is also called

A) Multi-data array

B) Multi-size array

C) Multidimensional array

D) Multi-byte array

14) Which of the following is the right way to initialize an array?

A) int num[6] = {2, 4, 12, 5, 45, 5};

B) int n{} = {2, 4, 12, 5, 45, 5};

C) int n{6} = {2, 4, 12};

D) int n(6) = {2, 4, 12, 5, 45, 5};

15) int ary[5]={1, 2, 4}; what is the value of ary[4]?

A) 0

B) 3

C) 2

D) 1

16) When the size of the array need not be specifed?

A) Initialization is a part of the defnition

B) It is a declaration

208 ◾ Learn Programming with C

C) It is a formal parameter

D) All of the above

17) Choose a correct statement about a C multidimensional array.

A) First dimension size is optional when initializing the array at the same time

B) Te last dimension size is optional when initializing the array at the same time

C) It is a must to specify all dimensions of a multidimensional array

D) Memory locations of elements of a multidimensional array are not sequential

18) What is a string in C language?

A) A string is a new data type in C

B) A string is an array of characters with a null character as the last element of the
array

C) A string is an array of characters with a null character as the frst element

D) A string is an array of integers with 0 as the last element of the array

19) Which one is the correct statement about array char ary[]=“hello world . . .”?

A) Array ary[] is a string

B) Ary[] has no null character at the end

C) Array size is not mentioned

D) A string cannot contain special characters

20) What is the format specifer used to display string in the C printf() function?

A) %c

B) %C

C) %s

D) %w

21) A char type array is defned as char str[]={‘a’,’t’,‘i’,‘q’}; How do you convert this to
string?

A) str[4] = 0;

B) str[4] = ‘\0’

C) str[]={‘a’,’t’,’i’,’q’,’\0’};

D) All of the above

        

Arrays and Pointers ◾ 209

22) Which of the following function is more appropriate to read multi-word string?

A) scanf()

B) gets()

C) getc()

D) fnds()

23) What is the ASCII value of NULL or ‘\0’?

A) 0

B) 1

C) 10

D) 49

24) A C string elements are always stored in

A) Random memory locations

B) Alternate memory locations

C) Sequential memory locations

D) None of the above

25) What does strcmp() function return if the two strings are identical?

A) 1

B) 0

C) −1

D) True

26) What is actually passed to printf() or scanf() function?

A) Value of string

B) Address of string

C) End address of the string

D) Integer equivalent value of the string

27) What happens if the array size is less than the number of initializers?

A) Generates an error text

B) Extra values are ignored

210 ◾ Learn Programming with C

C) Size of the array is increased

D) Size is neglected when values are given

28) Which of the following data types are allowed to create pointers?

A) Character

B) Integer

C) Unsigned integer

D) All of the above

29) Can we assign null to void pointer?

A) Yes

B) No

C) Error

D) None

30) Which of the following statement is correct about int **ptr;?

A) ptr is not a pointer

B) ptr is a pointer to pointer

C) Such a statement is not allowed in C

D) None of these

31) Which operator is used to access value at address stored by a pointer variable?

A) *

B) &

C) #

D) @

32) What does string concatenation mean?

A) Combining two strings

B) Extracting a substring out of a string

C) Partitioning the string into two strings

D) Merging two strings

33) Which function is used to append a string to another string?

        

Arrays and Pointers ◾ 211

A) strstr()

B) strnstr()

C) strcat()

D) strapp()

34) Which of the following function is used to fnd the frst occurrence of a given sub-
string in another string?

A) strchr()

B) strrchr()

C) strstr()

D) strnset()

35) Which of the following function is used to fnd the last occurrence of a given sub-
string in another string?

A) laststr()

B) strstr()

C) strnstr()

D) strrchr()

36) Which of the following function free the allocated memory?

A) remove(var-name);

B) free(var-name);

C) delete(var-name);

D) dalloc(var-name);

[Ans. B, C, D, B, A, B, A, B, D, C, A, D, C, A, A, D, A, B, A, C, D, B, A, C, B, B, A, D, A, B,
A, A, C, C, D, B]

Questions with Short Answers

1) What is a constant pointer in C?

Ans. A constant pointer is a pointer that cannot change the address it is pointing to.
Tis means that once a constant pointer points to a variable, it cannot point to any
other variable. A constant pointer is declared as

int *const ptr;

212 ◾ Learn Programming with C

2) What is a pointer to a constant in C?

Ans. A pointer to constant is a pointer that cannot change the value of the variable
it points to. However, it is allowed to change the address the pointer points to. A
pointer to constant is declared as

const int *ptr;

3) What is a dangling pointer in C?

Ans. A pointer pointing to a memory location that is deleted, freed, or de-allocated
is known as a dangling pointer.

4) Describe wild pointer in C?

Ans. A wild pointer is a pointer that is declared but not initialized. It points to some
unallocated memory location and may cause a program to crash or behave badly.

5) What is the diference between far and near pointers?

Ans. Near pointer is used to store 16-bit addresses and works within the 64-kb data
segment of memory. Far pointer is typically 32 bit and stores both segment and
ofset addresses. It can access memory outside the current segment. Examples-

char near *nrptr;

int far *frptr;

6) What is a pointer on a pointer in C?

Ans. A pointer on a pointer is known as multiple indirection or chain of pointers.
When we defne a pointer to a pointer, the frst pointer contains the address of the
variable, whereas the second pointer contains the address of the frst pointer.

7) Is it possible to add pointers to each other?

Ans. Pointers contain addresses. Terefore, though it is possible to add two point-
ers, it makes no sense to add two addresses, because we do not know what the new
address would point to.

8) Distinguish between malloc() and calloc() memory allocation.

Ans. malloc() creates a single block of memory of size specifed by the user, and
the memory block contains garbage value. calloc(), on the other hand, can assign
multiple blocks of memory of a variable, and the memory blocks always initial-
ized to 0.

        

Arrays and Pointers ◾ 213

9) What is a NULL pointer?

Ans. A NULL pointer is a pointer that does not point to a valid memory address. It
stores the NULL value and its data type is void. A NULL value or ‘\0’ is assigned to
the pointer to defne a NULL pointer. Example,

char *ptr=’\0’;

int *ptr=NULL;

10) What is the advantage of using a void pointer?

Ans. void pointer is a pointer that has no associated data type with it. It can hold the
address of any data type. malloc() and calloc() return void type pointer and can be
used to allocate memory of any data type.

11) Defne an array?

Ans. An array is a collection of elements of the same data type stored in the con-
tiguous memory location. Each element is referenced by index to a unique identi-
fer. For example, 20 diferent values of int type can be stored in a single array rather
than using 20 diferent variables.

12) How can a pointer access an array?

Ans. A pointer to an array points to the 0th element of the array. Now, this pointer
can be used to access any element of the array by adding the index value of that
element to the pointer. For example, to access the 5th element of the array, the fol-
lowing codes are used:

int stud[50];

int *ptr=arr;

printf(“%d”, ptr+4);

13) How do we access values within an array?

Ans. We can access values within an array by using their index positions. Index
position refers to the memory location where the values are saved. For example, the
5th element of an array can be accessed as follows:

int stud[50];

printf(“%d”, stud[4]);

14) What is the advantage of an array over individual variables?

Ans. An array is used to store multiple values by making use of a single variable.
So, it is declared once, and the code can be reused multiple times. Using individual
variables to store multiple values is not efcient in terms of coding, reusability, and
readability.

214 ◾ Learn Programming with C

15) Can the “if” condition be used in comparing strings?

Ans. In C, it is not allowed to compare two strings using logical operators that
may return true or false, so the “if ” condition cannot be used in comparing
strings.

16) How do we determine the length of a string value that was stored in a variable?

Ans. strlen() function is called with the variable name as its argument to determine
the length of a string value that was stored in that variable.

17) What are multidimensional arrays?

Ans. Multidimensional arrays are an array of arrays in which data are stored in
tabular form. Te total number of elements in a multidimensional array is the mul-
tiplication of the sizes of all the dimensions. For example, array[5][6], array[3][4][6],
and array [10][4][5][8], etc., are 2D, 3D, and 4D arrays, respectively.

18) What is gets() function? How does it difer from scanf() function?

Ans. Both gets() and scanf() are input library functions that read a string from the
input terminal. scanf() reads input until it encounters whitespace, tab, newline, or
EOF, whereas gets() reads input until it encounters newline or EOF, it does not stop
reading when it encounters whitespace or tab.

Problems to Practice

1) Write a program to input and print the elements of an array using pointer.

2) Write a program to fnd the number of elements in an array.

3) Write a program to calculate the average of array elements.

4) Write a program to fnd the length of a string with and without strlen().

5) Write a program to print a string using pointer.

6) Write a program to fnd the frequency of a character in a string.

7) Write a program to copy a string with and without using strcpy().

8) Write a program to fnd both the largest and smallest numbers of an array of
integers.

9) Write a program to generate the frst n terms of a Fibonacci sequence. Also, check
whether a given integer is a Fibonacci number or not.

10) Write a program to fnd the 2’s complement of a given binary number.

11) Write a program to calculate and print transpose of a given matrix.

        

15

20

25

30

35

Arrays and Pointers ◾ 215

12) Write a program to search an item from an array of n items. Te value of n, n items,
and the target item should be given from the keyboard. Te program will display
the target item and its position in the array.

13) Write a program which will read a text and count all occurrences of a particular
character.

14) Write a program to count the number of lines, words, and characters in a given text.

) Write a program to read n number of values in an array and display it in reverse
order.

16) Write a program to copy elements of an array into another array.

17) Write a program to count the total number of duplicate elements in an array.

18) Write a program to insert a new value in a sorted list of arrays.

19) Write a program to delete an element at the desired position from an array.

) Write a program to fnd the sum of the right diagonals of a matrix.

21) Write a program to fnd the sum of rows and columns of a matrix.

22) Write a program to calculate the determinant of a square matrix.

23) Write a program to check whether a given matrix is an identity matrix.

24) Write a program to check whether an array is a subset of another array.

) Write a program to swap two numbers using pointers.

26) Write a program to fnd the largest of three numbers using pointers.

27) Write a program to store n elements in an array and print the elements using a
pointer.

28) Write a program to print a string using pointers.

29) Write a program to convert all lowercase vowels to uppercase in a string.

) Write a program to convert a string from uppercase and lowercase and vice versa.

31) Write a program to sort a set of strings in ascending alphabetic order.

32) Write a program to count vowels and constants in a string using pointers.

33) Write a program that concatenates two strings without using strcat().

34) Write a program to print individual characters of a string in reverse order.

) Write a program to count each character in a given string.

216 ◾ Learn Programming with C

36) Write a program to fnd the maximum between two given numbers using pointers.

37) Write a program to display all the alphabet in English using pointers.

38) Write a program to insert an element at the end of an array.

39) Write a program to display the highest frequency character in a string.

40) Write a program to remove all blank spaces in a string.

41) Write a program that allocates memory for 500 integers using calloc() and then
stores frst 500 natural numbers in that spaces.

42) Write a program to fnd the value of an unknown function from a discrete set
of known data points using the Lagrange interpolation formula. [see Chapter 2,
Problem-17, page 124 for the solution]

C H A P T E R 4

Functions

A function is a set of statements that performs a specific task. Every C program must
have at least one main() function, but any additional functions can be defined and

used. This chapter presents and discusses two types of functions: library and user-defined.

4.1 FUNCTION TYPES
When we need to execute a block of statements several times, we define a function that
contains those statements and call it every time we need it. Functions are used to make the
codes more readable and reusable. In C, there are two different types of functions.

(1) Library functions: The standard library functions are predefined in the library
(.lib) and declared in several header files (.h). We can call these functions anytime
we need to do the task that that function defines. printf(), scanf(), gets(), puts(),
etc., are some examples. Because functions printf() and scanf() are declared in the
stdio.h header file, the header file must be included before they can be called in a C
program using the preprocessor directive #include. Example is #include stdio.h>

(2) User-defined functions: These functions are defined by the programmer and after-
ward reused as needed.

4.2 FUNCTION STRUCTURE
Syntax of the C functions:

return_type function_name(argument_list){
 //blocks of valid C statements

}

return_type can be any valid data type like int, char, long int, float, double, etc. It can also
be void if the function returns nothing.

Except for any keywords, function name can be any single alphanumeric word, prefer-
ably meaningful.

DOI: 10.1201/9781003302629-4 217

https://doi.org/10.1201/9781003302629-4

218 ◾ Learn Programming with C

argument_list is a list of variables and their data types that are passed to the func-
tion as input. Te formal parameter refers to the parameters that appear in the function
declaration, whereas the actual parameter refers to the parameters that appear in the
function call.

For example, the following function

takes two foating numbers, a and b, as its arguments and returns the total a+b. Here, a and
b are the formal parameters, whereas x and y are the real parameters in the addition(x, y)
function call.

4.3 FUNCTION CALL
When a function is called by reference, the addresses of the actual arguments are passed to
the function. Example: addition(&x, &y);

Te actual arguments are passed to the function when it is called by value. Example:
addition(x, y); or addition(3, 4.5);

4.4 ARRAYS AND FUNCTIONS
To pass an entire array to a function, both the name of the array and its size are passed as
arguments. Example:

addition(array_name, array_size); or

addition(num, 4);

4.5 POINTERS AND FUNCTIONS
When we pass a pointer to a function as an argument, we are passing the variable’s address
rather than the variable itself. As a result, any change made by the function to the variable
afects the value of the actual variable in that address. Tis is referred to as a function call
by reference. Example:

        

Functions ◾ 219

4.6 STORAGE CLASS
Tere are two properties of any C variables:

(1) Type: It defnes the data type of the variable.

(2) Storage class: It determines the lifetime and visibility of a variable. Tere are four
types of storage classes available in C.

(a) Local variable: Local variables declared within a block or function are only vis-
ible within that block or function.

(b) Global variable: Global variables are declared outside of all functions and can
be accessed from any function.

(c) Register variable: Register variables are declared with the keyword register and
are faster than local variables in terms of access.

(d) Static variable: Te keyword static is used to declare a static variable whose
value does not change until the program ends.

Example:

4.7 EXAMPLES

PROBLEM-01
Write a program to swap two numbers using pointers and function.

Programming Code of the Solution:

220 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
void swap(int *x, int *y);
/*this is the prototype (or declaration) of the user-defined function
swap() that must end with a semicolon; swap() takes two numbers
as parameters, performs some predefined operations, and returns
nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int num1, num2;
/*two integer type variables are declared; required memory
spaces are allocated for the variables*/
printf("Enter any two integers: ");
/*this displays the text inside the double quotations as it is
on the screen*/
scanf("%d %d", &num1, &num2);
/*function scanf() reads two integers from input terminal and
stores values in the memory spaces allocated for num1 and num2;
first format specifier %d corresponds to num1 and second %d
corresponds to num2*/
swap(&num1, &num2);
/*user-defined function swap() is called by reference; &num1
and &num2 are the real parameters; the program control flow
switches to the function definition*/

        Functions ◾ 221

printf("After swapping: %d %d", num1, num2);
/*output function printf() displays the text inside the
quotations as it is on the screen except for value of num1
replaces the 1st format specifier %d and value of num2 replaces
the 2nd %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void swap(int *x, int *y){
/*this is the header for the user-defined function swap(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces*/

int temp;
/*integer type variable temp is declared which is a local
variable to the function swap()*/
temp = *x;
/*x=&num1 and *x=num1, hence temp=*x=num1*/
*x = *y;
/*x=&num1 and y=&num2, *x=num1 and *y=num2, hence *x=*y→
num1=num2*/
*y = temp;
/*y=&num2, *y=num2 and temp=num1, hence *y=temp → num2=num1*/

}
/*the closing curly brace specifies the end of the swap() function’s
body; the program control flow, at this point, returns to the point
where the function was called*/

PROBLEM-02
Write a program to calculate the power of a number using function.

Programming Code of the Solution:

222 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int power(int num1, int num2);
/*this is the prototype (or declaration) of the user-defined function
power() that must end with a semicolon; power() takes two integers
as parameters, performs some predefined operations, and returns an
integer*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int base, exp, res;
/*three integer type variables are declared; required memory
spaces are allocated for each of the variables*/
printf("Enter a base number: ");
/*this displays the text inside the double quotations as it is
on the screen*/
scanf("%d", &base);
/*function scanf() is reads an integer from input terminal
and stores the value in the memory location allocated for
base*/

        Functions ◾ 223

printf("Enter power number (must be positive): ");
/*this displays the text inside the double quotations as it is
on the screen*/
scanf("%d", &exp);
/*function scanf() is reads an integer from input terminal and
stores the value in the memory location allocated for exp*/
res = power(base, exp);
/*user-defined function power() is called by value; here base
and exp are the two real arguments; the program control flow
transfers to the definition of power(); the function returns an
integer baseexp which is assigned to res*/
printf("%d^%d = %d", base, exp, res);
/*this printf() function displays the text in the double quotes
as it is on the screen except for the value of base replaces
the 1st format specifier %d, value of exp replaces the 2nd %d
and res replaces the 3rd %d*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
int power(int num1, int num2){
/*this is the header for the user-defined function power(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces; in this
definition the value of real parameter base replaces the virtual
parameter num1 and the value of exp replaces num2*/

int result = 1;
/*integer type variable result is declared; the variable is
local to the function power() and is not visible outside the
function; the variable is initialized to 1, otherwise, when
the multiplication operation in the while loop is performed it
gives a wrong answer; because when a variable is declared, a
random memory location is assigned for this variable that may
contain some garbage value present in that location and num1 is
multiplied by that garbage value in the first multiplication
operation*/
while (num2!= 0){
/*body of the while loop contains the following two statements
which are executed until the condition num2!= 0 becomes false
or returns 0*/

result = result*num1;
/*this multiplies the value of result by that of num1 and
the multiplication value is assigned to variable result*/

 224 ◾ Learn Programming with C

num2 = num2−1;
/*if num1=4 and num2=3 then
after 1st iteration: result=1×4=4, num2=3−1=2
after 2nd iteration: result=4×4=16, num2=2−1=1
after 3rd iteration: result=16×4=64, num2=1−1=0*/

}
/*this closing curly brace specifies the end of while loop*/
return result;
/*this statement returns the final result, which is an integer,
from the user-defined function power() to the point where the
function power() was called*/

}
/*the closing curly brace specifies the end of the definition of
the power() function*/

PROBLEM-03
Write a program to calculate the area of an equilateral triangle using function.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/

        Functions ◾ 225

#include <math.h>
/*math.h header file contains the declaration of function sqrt();
the header file must be included using preprocessor directive
#include before the function is called in the program*/
float area(int x);
/*this is the prototype (or declaration) of the user-defined
function area() that must end with a semicolon; area() takes an
integer argument, performs some predefined operations, and returns
a decimal number*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int len;
/*integer type variable len is declared; required memory spaces
are allocated for the variable*/
printf("Enter length of the side of a triangle: ");
/*this displays the text inside the double quotations as it is
on the screen*/
scanf("%d", &len);
/*input function scanf() reads an integer from the keyboard and
stores the value in the memory spaces allocated for the variable
len*/
printf("Area of the equilateral triangle is: %0.2f", area(len));
/*user-defined function area() is called with real parameter
len; the program control flow shifts to the definition of
area(); the function returns a decimal number which is displayed
in place of the format specifier %0.2f with two decimal points
precision; function printf() displays other text inside the
quotations as it is on the screen*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
float area(int x){
/*this is the header for the user-defined function area(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces; in this
definition the value of len replaces the virtual parameter x*/

226 ◾ Learn Programming with C

float ar;
/*float type variable ar is declared; required memory spaces
are allocated for the variable; variable ar is local to the
function area() and is not visible outside the function*/
ar = (sqrt(3)/4)*x*x;
/*area of the triangle is calculated and assigned to the variable
ar; library function sqrt() returns √3 which is a decimal
number; hence the result in the right side is a decimal number
though x is an integer*/
return ar;
/*this statement returns the value of ar, which is a decimal
number, from the user-defined function area() to the point
where the function area() was called*/

}
/*this closing curly brace specifies the end of the definition of
the area() function*/

PROBLEM-04
Write a program that displays the prime numbers from 1 to n. Te value of n should be
given interactively through the terminal.

Flowchart of the Solution:

Figure 4.1 shows the fowcharts followed to solve this problem.

FIGURE 4.1 Flowcharts followed to solve the problem.

        

Functions ◾ 227

FIGURE 4.1 (Continued)

Algorithm of the Solution:

Step-1: Start

Step-2: Read value of n

Step-3: If n<=1

3.1: Display ‘invalid entry’

3.2: Read value of n

3.3: Go to Step-3

Step-4: Display 2

Step-5: Initialize i←3

Step-6: If i<=n

6.1: Call function prime(i)

6.2: If prime(i)=1

6.2.1: Display value of i

6.3: i←i+2

6.4: Go to Step-6

Step-7: Display newline

Step-8: Stop

Algorithm for the function prime(x):

Step-1: Initialize j←2

Step-2: If j<=x/2

2.1: If x%j=0

 228 ◾ Learn Programming with C

2.1.1: Return 0

2.2: j←j+1

2.3: Go to Step-2

Step-3: Return 1

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int prime(int x);

        

Functions ◾ 229

/*this is the prototype (or declaration) of the user-defined function
prime() that must end with a semicolon; prime() takes an integer
as parameter, performs some predefined operations, and returns an
integer*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int n, i;
/*two integer type variables are declared; compiler assigns
required spaces in memory for the variables*/
printf("Please enter an integer greater than 1: ");
/*output library function printf() displays the text inside
the double quotations as it is on the standard output
terminal*/
scanf("%d", &n);
/*library function scanf() reads an integer from standard input
terminal and stores the value in the memory location allocated
for n*/
while (n<=1){
/*n<=1 is the condition of while loop; first the condition is
checked, if it is true then the statements in the body of while
loop are executed and the condition is re-checked; these steps
continue until the condition becomes false at which point the
program flow exits the loop*/

printf("Invalid entry!\n");
/*printf() displays the text inside the double quotations
as it is on the screen except for a newline replaces \n*/
printf("Please enter an integer greater than 1: ");
/*printf() displays the text inside double quotations as it
is on the screen*/
scanf("%d", &n);
/*scanf() reads an integer from the input terminal and
stores the value in the memory location allocated for
n*/
}
/*this closing curly brace specifies the end of while loop*/

printf("The prime numbers between 1 and %d are: \n", n);
/*printf() displays the text inside double quotations as it is
on the screen except for the value of n replaces the format
specifier %d and a newline replaces \n*/
printf(" 2,");
/*printf() displays the text inside the double quotations as it
is on the screen*/
for (i=3; i<=n; i=i+2)

 230 ◾ Learn Programming with C

/*i=3 is the initialization, i<=n is the condition and i=i+2
is the increment; the initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, statement in the body is executed and the value of i
is incremented by 2 before the condition is re-checked; these
steps continue until the condition becomes false at which point
the program flow exits the loop*/

if (prime(i)==1)
/*this is the only statement of the for loop; here prime()
function is called with real parameter i and program control
flow jumps to the definition of the prime() function; the
function do some predefined operation and returns 1 if i
is a prime number, otherwise it returns 0; if function
prime(i) returns 1 the condition is true and the following
statement is executed*/

printf("%4d,", i);
/*this printf() function displays the value of i on
the screen occupying 4 spaces, if the number has less
than 4 digits then the remaining digits are filled with
spaces*/

printf("\n");
/*this printf() function display a newline on the screen*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
int prime(int x){
/*prime() function is defined here; the function header must be
identical to the function prototype except for no semicolon is
used and the body is written within the curly braces; here x is the
virtual parameter that is replaced by real argument passed during
function call*/

int j;
/*an integer type variable j is declared which is a local
variable, and is not accessible outside the prime() function*/
for (j=2; j<=x/2; j++)
/*j=2 is the initialization, j<=x/2 is the condition and j++ is
the increment; the initialization is done once at the beginning
of the loop; then the condition is checked, if it is true,
statement in the body is executed, and the value of j is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which point
the program flow exits the loop*/

        

Functions ◾ 231

if ((x%j)==0)
/*here, the modulus operator % gives remainder of the
division; number x is divided by the value of j; if remainder
of the division operation is 0, the condition is true and
the following statement is executed*/

return 0;
/*if the condition is true then the function
immediately returns 0 to the point where the function
was called*/

return 1;
/*here the function prime() returns 1 to the point from where
the function was called; this statement is executed only if
there is no j for which the above if condition is true*/

}
/*this closing curly brace specifies the end of prime() function
definition*/

PROBLEM-05
Write a program to calculate the standard deviation of an array of values. Te array
elements are read from the terminal. Use functions to calculate the standard deviation
and mean.

Flowchart of the Solution:

Figure 4.2 shows the fowcharts followed to solve this problem.

FIGURE 4.2 Flowcharts followed to solve the problem.

232 ◾ Learn Programming with C

FIGURE 4.2 (Continued)

Algorithm of the Solution:

Step-1: Start

Step-2: Defne SIZE←5

Step-3: Initialize i←0

Step-4: If i<SIZE

4.1: Read value of value[i]

4.2: i←i+1

4.3: Go to Step-4

Step-5: Call function std_dev(value, SIZE)

Step-6: Stop

Functions    ◾    233

Algorithm for the function std_dev(x, n):

Step-1: Initialize sum←0.0

Step-2: z←mean(x, n) [call function mean()]

Step-3: Initialize j←0

Step-4: If j<n

4.1: sum←sum+(z−x[j])2

4.2: j←j+1

4.3: Go to Step-4

Step-5: Return √(sum/n)

Algorithm for the function mean(x,n):

Step-1: Initialize sum←0.0 and k←0

Step-2: If k<n

2.1: sum←sum+x[k]

2.2: k←k+1

2.3: Go to Step-2

Step-3: Return sum/n

Programming Code of the Solution:

234 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <math.h>
/*header file math.h contains prototype of the library functions
sqrt(); the header file must be included using preprocessor directive
#include before the function is called in the program*/
#define SIZE 5
/*preprocessor directive #define defines a constant variable SIZE
and assigns 5 to the variable; 5 replaces SIZE if it is used
anywhere in this program*/
float std_dev(float x[], int n);
/*this is the prototype of the user-defined function std_dev() that
must end with a semicolon; std_dev() takes an array and an integer
as parameters, performs some predefined operations, and returns a
decimal number*/
float mean(float x[], int n);
/*this is the declaration of the user-defined function mean() that
must end with a semicolon; mean() takes an array and an integer
as parameters, performs some predefined operations, and returns a
decimal number*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

float value[SIZE];
/*a float type array value[] of size SIZE is declared; required
contiguous memory spaces are allocated for the array*/

        

Functions ◾ 235

int i;
/*an integer type variable is declared and required memory
space is allocated for i*/
printf("Please enter any %d values (separated by" "space):\n",

SIZE);
/*function printf() displays the text in the quotations as it is
on the screen except for the value of SIZE replaces the format
specifier %d and a newline replaces \n*/
for(i=0; i<SIZE; i++)
/*this for loop reads SIZE number data; here i=0 is the
initialization, i<SIZE is the condition and i++ is the increment;
initialization is done once at the beginning of the loop; then
the condition is checked, if it is true, statement in the body
is executed and the value of i is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false at which point the program flow exits
the loop*/

scanf("%f", &value[i]);
/*scanf() function reads a decimal number from the input
terminal and stores the value in the memory spaces
allocated for the array; value[0] is read in the 1st
iteration, value[1] is read in the 2nd iteration, and
so on*/

printf("Standard deviation is: %0.2f\n", std_dev(value,
SIZE));

/*here std_dev() function takes the array and SIZE as its real
parameters and program control flow shifts to the function
definition; the function does some predefined operations and
returns a floating-point number that is displayed in place of
the format specifier %0.2f with two decimal points precision;
other text in the quotations is displayed as it is on the screen
except for a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*this closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
float std_dev(float x[], int n){
/*this is the header for the user-defined function std_dev(),
which must be identical to the function prototype except for
no semicolon is used; the function is defined within the curly
braces*/

float z, sum=0.0;
/*a float type variable z is declared; another float type
variable sum is declared and initialized to 0.0; if sum is

236 ◾ Learn Programming with C

not initialized to 0.0 then the memory space allocated for the
variable may contain some garbage value which is added in the
first summation operation and gives incorrect result*/
int j;
/*an integer type variable is declared; compiler allocates
required spaces in memory for the variable*/
z=mean(x, n);
/*user-defined function mean() is called with real parameters x
and n where x is an array and n is its size; the program control
flow shifts to the definition of the mean() function; the
function does some predefined operations and returns a decimal
number that is assigned to z*/
for (j=0; j<n; j++)
/*j=0 is the initialization, j<n is the condition and j++ is the
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true, statement
in the body is executed and the value of j is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop*/

sum+=(z−x[j])*(z−x[j]);
/*this operation is equivalent to sum=sum+(z−x[j])2; each
iteration considers a single array element x[j], therefore
the iteration begins with the first array element x[0] and
ends with the last array member x[n−1]*/

return sqrt(sum/n);
/*at that point, function std_dev() returns square-root of the
division sum/n to the point where the function was called*/

}
/*this closing curly brace specifies the end of the definition of
function std_dev()*/
float mean(float x[], int n){
/*this is the header for the user-defined function mean(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces*/

float sum=0.0;
/*a float type variable sum is declared and initialized to 0.0;
if sum is not initialized to 0.0 then the memory space allocated
for the variable may contain some garbage value that is added
in the first summation operation and gives incorrect result*/
int k;
/*an integer type variable is declared; compiler assigns required
spaces in memory for the variable*/
for (k=0; k<n; k++)
/*this for loop sequentially adds all array elements; k=0 is the
initialization, k<n is the condition and k++ is the increment;

        

Functions ◾ 237

initialization is done once at the beginning of the loop; then
the condition is checked, if it is true, statement in the body
is executed and the value of k is incremented by 1 before the
condition is re-checked; these steps continue until the condition
becomes false at which point the program flow exits the loop*/

sum+=x[k];
/*For the array elements x[4] = 2, 5, 9 and 19
After 1st iteration, sum=sum+x[0]=0+2=2
After 2nd iteration, sum=sum+s[1]=2+5=7
After 3rd iteration, sum=sum+s[2]=7+9=16
After 4th iteration, sum=sum+s[3]=16+19=35*/

return sum/n;
/*at this point, the function mean() returns result of the division
operation sum/n to the point where the function was called*/

}
/*this closing curly brace specifies the end of mean() function
definition*/

PROBLEM-06
Write a program that computes and displays the factorial for any given number m
using a loop and recursive function.

Flowchart of the Solution:

Figure 4.3 shows the fowcharts followed to solve this problem.

FIGURE 4.3 Flowcharts followed to solve the problem.

238 ◾ Learn Programming with C

FIGURE 4.3 (Continued)

Algorithm of the Solution:

Step-1: Start

Step-2: Initialize num←1

Step-3: Read value of m

Step-4: Display value of fact(m)

Step-5: Initialize n←1

Step-6: If n<=m

6.1: num←num×n

6.2: n←n+1

6.3: Go to Step-6

Step-7: Display values of m and num

Step-8: Stop

Algorithm for the function fact(y):

Step-1: If y=0

1.1: Return 1

Step-2: p←y×fact(y−1) [call function fact()]

Step-3: Return p

Programming Code of the Solution:

        

Functions ◾ 239

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
unsigned long fact(int x);
/*this is the prototype of the user-defined function fact() that
must end with a semicolon; fact() takes an integer as parameter,
performs some predefined operations, and returns an unsigned long
integer with the range [0, 2×232+1]; this data type is used since
the factorial value of a larger integer is a very large number*/
int main(){
/*all C program must have a main() function with return type void or
int; here there is no parameter of the main() function and it returns
an integer; opening curly brace specifies start of the main() function
and no statement before that curly brace is executed by the compiler*/

int m, n;
/*two integer type variables are declared; required memory
spaces are assigned for that variables*/
unsigned long num=1;
/*unsigned long integer type variable num is declared and
initialized to 1; if this variable is not initialized to 1,

240 ◾ Learn Programming with C

memory space allocated for that variable may contain some
garbage value that is multiplied in the first multiplication
operation, resulting in an incorrect answer*/
printf("Enter any integer: ");
/*printf() function displays the text in the double quotations
as it is on the screen*/
scanf("%d", &m);
/*scanf() function reads an integer from input terminal and
stores the value to the memory location allocated for m*/
printf("%d! = %lu (using recursive function)\n", m, fact(m));
/*here function fact() is called with real parameter m and
the program control flow shifts to the function definition;
fact() does some predefined operation and returns an unsigned
long integer that is displayed in place of the format
specifier %lu; printf() function displays the other text in
the double quotations as it is on the screen except for the
value of m replaces the format specifier %d and a newline
replaces \n*/
for (n=1; n<=m; n++)
/*this for loop is used to compute m!; here n=1 is the
initialization, n<=m is the condition and n++ is the increment;
initialization is done once at the beginning of the loop; then
the condition is checked, if it is true, statement in the body
is executed and the value of n is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false at which point the program flow exits
the loop*/

num*=n;
/*this multiplies 1, 2, 3, . . . with num in each iteration
and the result is stored in num; for m=4
After 1st iteration- num=num×n=1×1=1
After 2nd iteration- num=num×n=1×2=2
After 3rd iteration- num=num×n=2×3=6
After 4th iteration- num=num×n=6×4=24*/

printf("%d! = %lu (using loop)\n", m, num);
/*printf() function displays the text in the double
quotations as it is on the screen except for the value of
m replaces the format specifier %d and the value of num
replaces %lu*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

        

Functions ◾ 241

unsigned long fact(int x){
/*this is the header for the user-defined function fact(), which
must be identical to the function prototype except for no semicolon
is used; here x is the virtual parameter which is replaced by real
argument passed during the function call; the function is defined
within the curly braces*/

unsigned long p;
/*an unsigned long integer type variable is declared; required
memory spaces are allocated for that variable to store data*/
if (x==0)
/*if parameter of the function fact() is 0, following statement
is executed*/

return 1;
/*the function fact() returns 1 to the point where the
function was called*/

else
/*if parameter of the function fact() is any number other than
0, following statement is executed*/

p=x*fact(x−1);
/*this is referred to as a recursive function call because
function fact() is re-called with parameter x−1 within the
definition of fact(); each recursive function returns a
value that is multiplied with the previous multiplication
result; for x=4
After 1st recursion- p=x×fact(x−1)=4×fact(3)
After 2nd recursion- p=4×x×fact(x−1)=4×3×fact(2)
After 3rd recursion- p=4×3×x×fact(x−1)=4×3×2×fact(1)
After 4th recursion- p=4×3×2×x×fact(x−1)=4×3×2×1×fact(0)
This gives us- p=4×3×2×1×fact(1)= 4×3×2×1×1=24
fact(0) returns 1 as x=0 and the condition of above 'if'
satisfies*/

return p;
/*at this point function fact() returns the value of p to the
point where the function was called*/

}
/*this closing curly brace specifies the end of fact() function
definition*/

PROBLEM-07
Write a program to fnd the GCD (greatest common divisor) of two given integers
using both recursive function and loop.

Flowchart of the Solution:

Figure 4.4 shows the fowcharts followed to solve this problem.

242 ◾ Learn Programming with C

FIGURE 4.4 Flowcharts followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Read values of a and b

Step-3: If a>b

3.1: max←b

3.2: Go to Step-5

Step-4: max←a

Step-5: Initialize i←1

        Functions ◾ 243

Step-6: If i<=max

6.1: If a%i=0

6.1.1: If b%i=0

6.1.1.1: gcd←i

6.2: i←i+1

6.3: Go to Step-6

Step-7: Display value of gcd and gcdf(a, b) [call function gcdf()]

Step-8: Stop

Algorithm for the function gcdf(c, d):

Step-1: If d>c

1.1: Return gcdf(d, c)

Step-2: If d=0

2.1: Return c

Step-3: Return gcdf(d, c%d)

Programming Code of the Solution:

 244 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
int gcdf(int c, int d);
/*this is the prototype or declaration of the user-defined function
gcdf() that must end with a semicolon; gcdf() takes two integers
as parameters, performs some predefined operations, and returns an
integer*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int a, b, gcd, max, i;
/*five integer type variables are declared; required memory
spaces are allocated for each of the variables*/
printf("Enter a and b: ");
/*function printf() displays the text in the double quotations
as it is on the screen*/
scanf("%d %d", &a, &b);
/*function scanf() reads two integers from the input terminal;
the first value is placed in memory location a, and the second
value is stored in memory location b; the two values must be
separated by a space, tab, or enter during input*/
if (a>b)
/*this if..else is used to find smaller of the two numbers; if
the condition a>b is true, statement in the body of 'if' is
executed*/

max=b;
//this statement assigns the smaller value b to max

else
/*body of this else is executed if the condition a>b of the
above 'if' is false*/

        

Functions ◾ 245

max=a;
/*this statement assigns the smaller value a to max, if a=b
then also value of a is assigned to max*/

for (i=1; i<=max; i++){
/*this for loop computes the gcd of the two variables; i=1 is
the initialization, i<=max is the condition and i++ is the
increment; initialization is done once at the beginning of the
loop; then condition is checked, if it is true, statement in the
body is executed and the value of i is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false at which point the program flow exits
the loop*/

if (a%i==0 && b%i==0)
/*if both a and b are divisible by same number I, the
statement in the body of 'if' is executed; in 1st iteration
both a and b is divided by i=1, in 2nd iteration both a and
b is divided by i=1, and so on*/

gcd=i;
/*if both a and b are divisible by same number i then
the value of i is assigned to gcd*/

}
/*this closing curly brace specifies the end of the 'for'
loop*/
printf("\nUsing non-recursive:\nGCD of %d and %d is: %d\n", a,

b, gcd);
/*this printf() displays the text in the double quotations as it
is on the screen except for the value of a replaces the first
format specifier %d, the value of b replaces the second %d, the
value of gcd replaces the third %d and a newline replaces the
\n*/
printf("\nUsing recursive function:\nGCD of %d and %d is:"

"%d\n\n", a, b, gcdf(a, b));
/*user-defined function gcdf() is called with real parameters a
and b, program control flow shifts to the definition of gcdf()
function, gcdf() does some predefined operation, and returns an
integer that is displayed in place of the third format specifier
%d; output function printf() displays the text in the double
quotes as it is on the screen except for the value of a replaces
the first %d, value of b replaces the second %d and a newline
replaces the \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

246 ◾ Learn Programming with C

int gcdf(int c, int d){
/*this is the header for the user-defined function gcdf(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces*/

if (d>c)
/*if the value of 2nd argument is greater than that of 1st, the
condition is true and the following statement in the body is
executed*/

return gcdf(d, c);
/*function gcdf() is called to swap the arguments so that
the 2nd argument is the smaller of the two between c and
d*/

if (d==0)
/*if the 2nd argument d equals 0, the condition is true and
the following statement in the body is executed; this if is
used to check whether the 2nd argument d, which might be the
smaller of the two arguments, is 0 or not as we cannot use 0
as divisor*/

return c;
/*if the 2nd argument d is 0, d cannot be a divisor and the
gcd is the larger number c; hence, this statement returns
the value c to the point where the gcdf() function was
called*/

else
/*if 2nd argument d≠0, following statement in the body of else
is executed*/

return gcdf(d, c%d);
/*function gcdf() is called with new parameters d and c%d,
the program control flow shifts to the function definition,
gcdf() does some predefined operations and returns an
integer to the point where the function was called; for 6
and 9-
1st function call- gcdf(6, 9) → gcdf(9, 6) [d=9 > c=6, 1st
if condition is true]
2nd function call- gcdf(9, 6) → gcdf(6, 9%6) = gcdf(6, 3)
[d=6 < c=9, 1st if condition is false; d≠0, 2nd if condition
is false]
3rd function call- gcdf(6, 3) → gcdf(3, 6%3) = gcdf(3, 0)
[d=3 < c=6, 1st if condition is false; d≠0, 2nd if condition
is false]
4th function call- gcdf(3, 0) → return c=3 as gcd [d=0 <
c=3, 1st if condition is false; d=0, 2nd if condition is
true]*/

}
/*this closing curly brace specifies the end of gcdf() function
definition*/

        

Functions ◾ 247

PROBLEM-08
Write a program to sort n number of integers in ascending order. Te program will
display the data before sorting and afer sorting.

Flowchart of the Solution:

Figure 4.5 shows the fowcharts followed to solve this problem.

FIGURE 4.5 Flowchart followed to solve the problem.

 248 ◾ Learn Programming with C

Algorithm of the Solution:

Step-1: Start

Step-2: Defne SIZE←10

Step-3: Initialize i←0

Step-4: If i<SIZE

4.1: Read value of marks[i]

4.2: i←i+1

4.3: Go to Step-4

Step-5: Initialize i←0

Step-6: If i<SIZE

6.1: Display value of marks[i]

6.2: i←i+1

6.3: Go to Step-6

Step-7: Call function sort(marks, SIZE)

Step-8: Initialize i←0

Step-9: If i<SIZE

9.1: Display value of marks[i]

9.2: i←i+1

9.3: Go to Step-9

Step-10: Stop

Algorithm for the function sort(marks, m):

Step-1: Initialize i←1

Step-2: If i<=m−1

2.1: Initialize j←1

2.2: If j<=m-i

2.2.1: If x[j−1]>=x[j]

2.2.1.1: temp←x[j−1]

2.2.1.2: x[j−1]←x[j]

        Functions ◾ 249

2.2.1.3: x[j]←temp

2.2.2: j←j+1

2.2.3: Go to Step-2.2

2.3: i←i+1

2.4: Go to Step-2

Step-3: Return

Programming Code of the Solution:

Input and Output of the Executed Program:

 250 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#define SIZE 10
/* #define is a preprocessor directive that defines a constant
variable SIZE and assigns the value 10 to it; value 10 replaces SIZE
if it is used anywhere in this program*/
void sort(int x[], int m);
/*this is the prototype of the user-defined function sort() that
must end with a semicolon; sort() takes an array and a number
as parameters, performs some predefined operations, and returns
nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int i, marks[SIZE];
/*integer type variable i and array marks[] of size are declared;
required memory spaces are allocated for them*/
printf("Enter any %d integers (separated by space):\n", SIZE);
/*output function printf() displays the text in the quotations
as it is on the screen except for the value of SIZE replaces
format specifier %d and a newline replaces \n*/
for (i=0; i<SIZE; i++)
/*i=0 is the initialization, i<SIZE is the condition and i++ is
the increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true, statement
in the body is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop*/

scanf("%d", &marks[i]);
/*scanf() function reads an integer from the input terminal
and stores the value in the memory spaces allocated for the
array; value[0] is read in 1st iteration, value[1] is read
in 2nd iteration, and so on*/

printf("Marks before sorting:\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
for (i=0; i<SIZE; i++)
/*this for loop displays SIZE number data before sorting; i=0
is the initialization, i<SIZE is the condition and i++ is the

        Functions ◾ 251

increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true, statement
in the body is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop*/

printf("%d, ", marks[i]);
/*printf() function displays the value of array element
followed by a comma and a space on the screen; value[0] is
displayed in 1st iteration, value[1] is displayed in 2nd
iteration, and so on*/

sort(marks, SIZE);
/*user-defined function sort() is called with array marks[] and
its size SIZE as its real arguments, program control flow shifts
to the definition of the function*/
printf("\nMarks after sorting:\n");
/*output function printf() displays the text in the double
quotations as it is on the screen except for a newline replaces
\n*/
for (i=0; i<SIZE; i++)
/*this for loop displays SIZE number data after sorting; i=0
is the initialization, i<SIZE is the condition and i++ is the
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true, statement
in the body is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop*/

printf("%d, ", marks[i]);
/*printf() function displays the value of array element
followed by a comma and a space on the screen; value[0] is
displayed in 1st iteration, value[1] is displayed in 2nd
iteration, and so on*/

printf("\n");
/*function printf() displays a newline on the screen*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void sort(int x[], int m){
/*this is the header for the user-defined function sort(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces*/

252 ◾ Learn Programming with C

int i, j, temp;
/*three integer type variables are declared; required memory
spaces are allocated for these variables; these variables are
local to the function sort() and are not accessible outside that
function*/
/*bubble sort algorithm is used to sort the data; body of 1st
for loop contains the 2nd for loop; 2nd for loop sequentially
compares each array element with other elements and saves the
largest number in the last array element x[m−1], this is the
first iteration of 1st 'for' loop; in the 2nd iteration of 1st
'for' loop, 2nd 'for' loop sequentially compares each array
element with others except for the last array element and
the 2nd largest element is positioned in x[m−2]; these steps
continue until the smallest element is placed in the first array
position x[0]*/
for (i=1; i<=m−1; i++)
/*i=1 is the initialization, i<m−1 is the condition and i++ is
the increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true, statement
in the body is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop*/

for (j=1; j<=m−i; j++)
/*each iteration of the 1st for loop places a single array
element in its proper position; as a result, the number of
elements to compare is reduced by 1 after each iteration;
here j=1 is the initialization, j<m−i is the condition and
j++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, statement in the body is executed and the value of
j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

if (x[j−1]>=x[j]){
/*two contiguous array elements are compared, if the
larger number stays above the smaller one, the condition
is true and following statements are executed to swap
them to keep the smaller number above the larger
one*/

temp=x[j−1];
/*array element x[j−1] is assigned to the variable
temp*/
x[j−1]=x[j];
/*array element x[j] is stored in the array element
x[j−1]*/

        

Functions ◾ 253

x[j]=temp;
/*value of temp(=x[j−1]) is stored in the array
element x[j]*/

}
/*this closing curly brace specifies the end of 'if'*/

}
/*the closing curly brace specifies the end of the sort() function’s
body; the program control flow, at this point, returns to the point
where the function was called*/

PROBLEM-09
Write a program to produce a matrix that is the sum of two given matrices of same size.
Also produce a matrix that is the product of two given matrices by checking compatibility.

Flowchart of the Solution:

Figure 4.6 shows the fowcharts followed to solve this problem.

FIGURE 4.6 Flowcharts followed to solve the problem.

254 ◾ Learn Programming with C

FIGURE 4.6 (Continued)

        

Functions ◾ 255

FIGURE 4.6 (Continued)

Algorithm of the Solution:

Step-1: Start

Step-2: Defne ROW1←3, COL1←4, ROW2←4 and COL2←5

Step-3: Initialize i←0

Step-4: If i<ROW1

4.1: Initialize j←0

4.2: If j<COL1

4.2.1: Read value of mat1[i][j]

4.2.2: j←j+1

4.2.3: Go to Step-4.2

 256 ◾ Learn Programming with C

4.3: i←i+1

4.4: Go to Step-4

Step-5: Initialize i←0

Step-6: If i<ROW1

6.1: Initialize j←0

6.2: If j<COL1

6.2.1: Read value of mat2[i][j]

6.2.2: j←j+1

6.2.3: Go to Step-6.2

6.3: i←i+1

6.4: Go to Step-6

Step-7: Initialize i←0

Step-8: If i<ROW2

8.1: Initialize j←0

8.2: If j<COL2

8.2.1: Read value of mat3[i][j]

8.2.2: j←j+1

8.2.3: Go to Step-8.2

8.3: i←i+1

8.4: Go to Step-8

Step-9: Call function addition(mat1, mat2, sum, ROW1)

Step-10: Initialize i←0

Step-11: If i<ROW1

11.1: Initialize j←0

11.2: If j<COL1

11.2.1: Display value of sum[i][j]

11.2.2: j←j+1

11.2.3: Go to Step-11.2

        Functions ◾ 257

11.3: Display newline

11.4: i←i+1

11.5: Go to Step-11

Step-12: Call function multiply(mat2, mat3, prod, ROW1, ROW2)

Step-13: Initialize i←0

Step-14: If i<ROW1

14.1: Initialize j←0

14.2: If j<COL2

14.2.1: Display value of prod[i][j]

14.2.2: j←j+1

14.2.3: Go to Step-15.2

14.3: Display newline

14.4: i←i+1

14.5: Go to Step-15

Step-15: Stop

Algorithm for the Function addition(int matrix1[][COL1], int matrix2[][COL1], int
matrix3[][COL1], int row):

Step-1: Initialize i←0.

Step-2: If i<row.

2.1: Initialize j←0

2.2: If j<COL1

2.2.1: matrix3[i][j]←matrix1[i][j]+matrix2[i][j]

2.2.2: j←j+1

2.2.3: Go to Step-2.2

2.4: i←i+1

2.5: Go to Step-2

Step-4: Return.

 258 ◾ Learn Programming with C

Algorithm for the Function multiply(int matrix1[][COL1], int matrix2[][COL2], int
matrix3[][COL2], int row1, int row2):

Step-1: If COL1=row2

1.1: Initialize i←0

1.2: If i<row1

1.2.1: Initialize j←0

1.2.2: If j<COL2.

1.2.2.1: matrix3[i][j]←0

1.2.2.2: Initialize k←0.

1.2.2.3: If k<COL1

1.2.2.3.1: matrix3[i][j]← matrix3[i][j]+matrix1[i][k]×matrix2[k][j]

1.2.2.3.2: k←k+1

1.2.2.3.3: Go to Step-1.2.2.3

1.2.2.4: j←j+1

1.2.2.5: Go to Step-1.2.2

1.2.3: i←i+1

1.2.4: Go to Step-1.2

1.3: Go to Step-4

Step-2: Display ‘not permissible size’

Step-3: Stop.

Step-4: Return.

Programming Code of the Solution:

        Functions ◾ 259

260 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:
#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <stdlib.h>
/*header file stdlib.h contains prototype of the library functions
exit(); the header file must be included using preprocessor directive
#include before the function is called in the program*/
#define ROW1 3
/*preprocessor directive #define defines a constant variable ROW1
and assigns a value 3 to ROW1; value 3 replaces ROW1 if it is used
anywhere in this program*/
#define COL1 4
/*preprocessor directive #define defines a constant variable COL1
and assigns a value 4 to COL1; value 4 replaces COL1 if it is used
anywhere in this program*/
#define ROW2 4
/*preprocessor directive #define defines a constant variable ROW2
and assigns a value 4 to ROW2; value 4 replaces ROW2 if it is used
anywhere in this program*/
#define COL2 5
/*preprocessor directive #define defines a constant variable COL2
and assigns a value 5 to COL2; value 4 replaces COL2 if it is used
anywhere in this program*/
void addition(int matrix1[][COL1], int matrix2[][COL1], int

matrix3[][COL1], int row);

        

Functions ◾ 261

/*this is the prototype of the user-defined function addition()
that must end with a semicolon; addition() takes three 2-D matrices
and one integer as parameters, performs some predefined operations,
and returns nothing*/
void multiply(int matrix1[][COL1], int matrix2[][COL2], int

matrix3[][COL2], int row1, int row2);
/*this is the prototype of the user-defined function multiply()
that must end with a semicolon; multiply() takes three 2-D matrices
and one integer as parameters, performs some predefined operations,
and returns nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int mat1[ROW1][COL1], mat2[ROW1][COL1], mat3[ROW2][COL2];
/*integer type 2-D arrays mat1[][] and mat2[][] of size ROW1 and
COL1, and mat3[][] of size ROW2 and COL2 are declared; required
memory spaces are allocated for the arrays*/
int sum[ROW1][COL1], prod[ROW1][COL2];
/*integer type 2-D arrays sum[][] of size ROW1 and COL1, and
prod[][] of size ROW1 and COL2 are declared; required memory
spaces are allocated for the arrays*/
int i, j;
/*two integer type variables are declared; required memory
spaces are allocated for the variables*/
printf("Enter the first matrix of size %d×%d:\n", ROW1, COL1);
/*output function printf() displays the text in the quotations
as it is on the screen except for the value of ROW1 replaces
the 1st format specifier %d, value of COL1 replaces the 2nd %d,
and a newline replaces \n*/
for (i=0; i<ROW1; i++)
/*i=0 is the initialization, i<ROW1 is the condition and i++ is
the increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true following
for loop is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop; at 1st iteration we access all elements of the
1st row, at 2nd iteration we access all elements of the 2nd row,
and so on*/

for (j=0; j<COL1; j++)
/*j=0 is the initialization, j<COL1 is the condition and j++
is the increment; initialization is done once at the beginning

 262 ◾ Learn Programming with C

of the loop; then the condition is checked, if it is true,
statements in the body are executed and the value of j is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which
point the program flow exits the loop*/

scanf("%d", &mat1[i][j]);
/*scanf() function reads an integer from input terminal
and stores the value in the memory spaces allocated for
the array element; in 1st iteration value of 1st row
1st column mat1[0][0] is read, in 2nd iteration value
of 1st row 2nd column mat1[0][1] is read, and so on*/

printf("Enter the second matrix of size %d×%d:\n", ROW1, COL1);
/*output function printf() displays the text in the quotations
as it is on the screen except for the value of ROW1 replaces
the 1st format specifier %d, value of COL1 replaces 2nd %d, and
a newline replaces \n*/
for (i=0; i<ROW1; i++)
/*i=0 is the initialization, i<ROW1 is the condition and i++ is
the increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true following
for loop is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop; at 1st iteration we access all elements of the
1st row, at 2nd iteration we access all elements of the 2nd row,
and so on*/

for (j=0; j<COL1; j++)
/*j=0 is the initialization, j<COL1 is the condition and
j++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, statements in the body are executed and the value
of j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

scanf("%d", &mat2[i][j]);
/*scanf() function reads an integer from input terminal
and stores the value in the memory spaces allocated for
the array element; in 1st iteration value of 1st row
1st column mat2[0][0] is read, in 2nd iteration value
of 1st row 2nd column mat2[0][1] is read, and so on*/

printf("Enter the third matrix of size %d×%d:\n", ROW2, COL2);
/*output function printf() displays the text in the quotations
as it is on the screen except for the value of ROW2 replaces
the 1st format specifier %d, value of COL2 replaces 2nd %d, and
a newline replaces \n*/

        

Functions ◾ 263

for (i=0; i<ROW2; i++)
/*i=0 is the initialization, i<ROW2 is the condition and i++ is
the increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true following
for loop is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop; at 1st iteration we access all elements of the
1st row, at 2nd iteration we access all elements of the 2nd row,
and so on*/

for (j=0; j<COL2; j++)
/*j=0 is the initialization, j<COL2 is the condition and
j++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, statements in the body are executed and the value
of j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

scanf("%d", &mat3[i][j]);
/*scanf() function reads an integer from input terminal
and stores the value in the memory spaces allocated for
the array element; in 1st iteration value of 1st row
1st column mat3[0][0] is read, in 2nd iteration value
of 1st row 2nd column mat3[0][1] is read, and so on*/

addition(mat1, mat2, sum, ROW1);
/*user-defined function addition() is called with arrays
mat1[][], mat2[][] and sum[][], and row-size ROW1 as its real
arguments; program control flow shifts to the definition of the
function*/
printf("\nSum of the first two matrices is:\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
for (i=0; i<ROW1; i++){
/*i=0 is the initialization, i<ROW1 is the condition and i++ is
the increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true following
for loop is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop; at 1st iteration we access all elements of the
1st row, at 2nd iteration we access all elements of the 2nd row,
and so on*/

for (j=0; j<COL1; j++)
/*j=0 is the initialization, j<COL1 is the condition and j++
is the increment; initialization is done once at the beginning
of the loop; then the condition is checked, if it is true,

 264 ◾ Learn Programming with C

statements in the body are executed and the value of j is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which
point the program flow exits the loop*/

printf("%4d", sum[i][j]);
/*this printf() function displays the value of a single
array element sum[][] on the screen with at least 4
characters wide in each iteration; additional blank
spaces are added as needed to align the output*/

printf("\n");
/*this printf() is in the body of the 1st for loop; hence
a newline is displayed on the screen after each row of the
2-D matrix sum[][] is displayed*/

}
/*this closing curly brace specifies the end of 1st for (i=0;
i<ROW1; i++) loop*/
multiply(mat2, mat3, prod, ROW1, ROW2);
/*user-defined function multiply() is called with arrays mat2[]
[], mat3[][] and prod[][], and row-size ROW1 and ROW2 as its
real arguments, program control flow shifts to the definition
of the function*/
printf("\nProduct of the last two matrices is:\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
for (i=0; i<ROW1; i++){
/*i=0 is the initialization, i<ROW1 is the condition and i++ is
the increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true following
for loop is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop; at 1st iteration we access all elements of the
1st row, at 2nd iteration we access all elements of the 2nd row,
and so on*/

for (j=0; j<COL2; j++)
/*j=0 is the initialization, j<COL2 is the condition and
j++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true, statements in the body are executed and the value
of j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at
which point the program flow exits the loop*/

printf("%6d", prod[i][j]);
/*this printf() function displays the value of a single
array element sum[][] on the screen with at least 6
characters wide in each iteration; additional blank
spaces are added as needed to align the output*/

        

Functions ◾ 265

printf("\n");
/*this printf() is in the body of the 1st for loop; hence
a newline is displayed on the screen after each row of the
2-D matrix sum[][] is displayed*/

}
/*this closing curly brace specifies the end of the 1st for
(i=0; i<ROW1; i++) loop*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void addition(int matrix1[][COL1], int matrix2[][COL1], int

matrix3[][COL1], int row){
/*this is the header for the user-defined function addition(),
which must be identical to the function prototype except for
no semicolon is used; the function is defined within the curly
braces*/

int i, j;
/*two integer type variables are declared; required memory
spaces are allocated for these variables*/
for (i=0; i<row; i++)
/*i=0 is the initialization, i<row is the condition and i++ is
the increment; initialization is done once at the beginning of
the loop; then the condition is checked, if it is true following
for loop is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop; at 1st iteration we access all elements of the
1st row, at 2nd iteration we access all elements of the 2nd row,
and so on*/

for (j=0; j<COL1; j++)
/*j=0 is the initialization, j<COL1 is the condition and
j++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if
it is true, statements in the body are executed and the
value of j is incremented by 1 before the condition is re-
checked; these steps continue until the condition becomes
false at which point the program flow exits the loop*/

matrix3[i][j]=matrix1[i][j]+matrix2[i][j];
/*here corresponding elements of matrix1 and matrix2
are added and the sum is placed in the corresponding
position of matrix3; for example-
At 1st iteration- matrix3[0][0]=matrix1[0][0]+matrix2[0]
[0]

266 ◾ Learn Programming with C

At 2nd iteration- matrix3[0][1]=matrix1[0][1]+matrix2[0]
[1]
At 3rd iteration- matrix3[0][2]=matrix1[0][2]+matrix2[0]
[2]
At 4th iteration- matrix3[0][3]=matrix1[0][3]+matrix2[0]
[3]
At 5th iteration- matrix3[1][0]=matrix1[1][0]+matrix2[1]
[0]
and so on . . . */

}
/*the closing curly brace specifies the end of the addition()
function’s body; the program control flow, at this point, returns
to the point where the function was called*/
void multiply(int matrix1[][COL1], int matrix2[][COL2], int

matrix3[][COL2], int row1, int row2){
/*this is the header for the user-defined function multiply(),
which must be identical to the function prototype except for no
semicolon is used; the function is defined within the curly braces*/

int i, j, k;
/*three integer type variables are declared; required memory
spaces are allocated for these variables*/
if (COL1==row2)
/*if no of columns of matrix1[][] equals the no of rows of
matrix2[][], the condition is true and the following for loop
is executed*/

for (i=0; i<row1; i++)
/*i=0 is the initialization, i<row1 is the condition and
i++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true following for loop is executed and the value of i is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which
point the program flow exits the loop; at 1st iteration we
access all elements of the 1st row, at 2nd iteration we
access all elements of the 2nd row, and so on*/

for (j=0; j<COL2; j++){
/*j=0 is the initialization, j<COL2 is the condition
and j++ is the increment; initialization is done once
at the beginning of the loop; then the condition is
checked, if it is true, statements in the body are
executed and the value of j is incremented by 1 before
the condition is re-checked; these steps continue until
the condition becomes false at which point the program
flow exits the loop*/

matrix3[i][j]=0;
/*at first iteration of above for loops matrix3[0]
[0] is initialized to 0, at second iteration
matrix3[0][1] is initialized to 0, and so on*/

        

Functions ◾ 267

/*here each element of matrix3[][] is initialized to
0, otherwise the summation operation may give wrong
answer because, when we declare the array memory
spaces allocated for each array element may contain
some garbage value; the garbage value adds up in the
first summing operation involving matrix3[][]*/
for (k=0; k<COL1; k++)
/*k=0 is the initialization, k<COL1 is the condition
and k++ is the increment; initialization is done once
at the beginning of the loop; then the condition is
checked, if it is true, following statement is executed
and the value of k is incremented by 1 before the
condition is re-checked; these steps continue until
the condition becomes false at which point the program
flow exits the loop*/

matrix3[i][j]+=matrix1[i][k]*matrix2[k][j];
/*at 1st iteration- matrix3[0][0]=matrix3[0]
[0]+matrix1[0][0]*matrix2[0][0]
at 2nd iteration- matrix3[0][0]=matrix3[0]
[0]+matrix1[0][1]*matrix2[1][0]
thus, after COL1=4 iterations we get 1st element
of 1st row of matrix3 and j=1
now, at 1st iteration- matrix3[0][1]=matrix3[0]
[1]+matrix1[0][0]*matrix2[0][1]
at 2nd iteration- matrix3[0][1]=matrix3[0]
[1]+matrix1[0][1]*matrix2[1][1]
thus, after another COL1=4 iterations we get
2nd element of 1st row of matrix3 and j=2
after COL1×COL2=4×5=20 iterations, we get all
elements of 1st row of matrix3 and i=1, j=0
now, at 1st iteration- matrix3[1][0]=matrix3[1]
[0]+matrix1[1][0]*matrix2[0][0]
at 2nd iteration- matrix3[1][0]=matrix3[1]
[0]+matrix1[1][1]*matrix2[1][0]
thus, after another COL1=4 iterations we get
1st element of 2nd row of matrix3 and j=1
these steps continue until value of i becomes
row1*/

}
/*this closing curly brace specifies the end of for
(j=0; j<COL2; j++) loop*/

else{
/*if no of columns of matrix1[][] is not equal to no
of row matrix2[][], the condition of above 'if' is false,
and following statements in the body of else, enclosed by curly
braces, are executed*/

printf("Sizes of the matrices do not permit "
"multiplication.\n");

268 ◾ Learn Programming with C

/*output function printf() displays the text in double
quotations as it is on the screen except for a newline
replaces \n*/
exit(1);
/*exit(1) function causes abnormal termination of the
program; all buffers, temporary files, streams are
deleted or cleared before the termination*/

}
/*this closing curly brace specifies the end of 'else' condition*/

}
/*the closing curly brace specifies the end of the multiply()
function’s body; the program control flow, at this point, returns
to the point where the function was called*/

PROBLEM-10
Write a program that uses functions to insert a substring into a given main-string
from a given position. Also, defne a function to delete n characters from a given
position in a given string.

Flowchart of the Solution:

Figure 4.7 shows the fowcharts followed to solve this problem.

FIGURE 4.7 Flowcharts followed to solve the problem.

        

Functions ◾ 269

FIGURE 4.7 (Continued)

 270 ◾ Learn Programming with C

Algorithm of the Solution:

Step-1: Start

Step-2: Read values of mnstr, sbstr, and psn

Step-3: Call function insert(mnstr, sbstr, restr, psn)

Step-4: Display string restr

Step-5: Read value of psn and numch

Step-6: Call function delet(restr, psn, numch)

Step-7: Display string restr

Step-8: Stop

Algorithm for the function insert(str1, str2, str3, pos):

Step-1: Initialize j←0, len1←strlen(str1), len2←strlen(str2) and i←0

Step-2: If i<pos−1

2.1: str3[i]←str1[i]

2.2: i←i+1

2.3: Go to Step-2

Step-3: Initialize k←i and i←pos−1

Step-4: If i<pos+len2–1

4.1: str3[i]←str2[j]

4.2: j←j+1

4.3: i←i+1

4.5: Go to Step-4

Step-5: Initialize i←pos+len2–1

Step-6: If i<len1+len2

6.1: str3[i]←str1[k]

6.2: k←k+1

6.3: i←i+1

6.4: Go to Step-6

Step-7: str3[i]←‘\0’

Step-8: Return.

        Functions ◾ 271

Algorithm for the function delet(str1, pos, num):

Step-1: len←strlen(str1)

Step-2: Initialize b←pos+num−1 and a←pos−1

Step-3: If i<len-num

3.1: str1[a]←str1[b]

3.2: b←b+1

3.3: a←a+1

3.4: Go to Step-3

Step-4: str1[a]←‘\0’

Step-5: Return.

Programming Code of the Solution:

272 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and gets(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include<string.h>
/*header file string.h contains prototype of the library function
strlen(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
void insert(char str1[], char str2[], char str3[], int pos);
/*this is the prototype (or declaration) of the user-defined function
insert() that must end with a semicolon; insert() takes three arrays
and one integer as parameters, performs some predefined operations,
and returns nothing*/
void delet(char str1[], int pos, int num);
/*this is the prototype (or declaration) of the user-defined
function delet() that must end with a semicolon; delet() takes

        Functions ◾ 273

an array and two integers as parameters, performs some predefined
operations, and returns nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int psn, numch;
/*two integer type variables are declared; required memory
spaces are allocated for each of the variables*/
char mnstr[80], sbstr[15], restr[99];
/*four character type arrays of different sizes are declared;
required contiguous memory spaces are allocated for each of the
arrays */
printf("Enter the main string: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
gets(mnstr);
/*built-in library function gets() reads string, including
space, tab etc. until enter is pressed, from input terminal and
assigns the string to the character type array mnstr*/
printf("Enter the string to insert: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
gets(sbstr);
/*built-in library function gets() reads string, including
space, tab etc. until enter is pressed, from input terminal and
assigns the string to the character type array sbstr*/
printf("Enter position to insert: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &psn);
/*function scanf() reads an integer from input terminal and
stores the value in the memory spaces allocated for the psn*/
insert(mnstr, sbstr, restr, psn);
/*user-defined function insert() is called with four real
parameters mnstr, sbstr, restr and psn; program control flow
shifts to the definition of the function*/
printf("Resultant string after insertion: %s\n", restr);
/*printf() function displays the text in the quotations as it is
on the screen except for the string restr replaces the format
specifier %s and a newline replaces \n*/
printf("\nEnter position of resultant string to delete: ");
/*printf() function displays the text in the quotations as it
is on the screen except for a newline replaces \n*/
scanf("%d", &psn);
/*function scanf() reads an integer from input terminal and
stores the value in the memory spaces allocated for the psn*/

274 ◾ Learn Programming with C

printf("Enter Number of characters to delete: ");
/*printf() function displays the text in the quotations as it
is on the screen*/
scanf("%d", &numch);
/*function scanf() reads an integer from input terminal and
stores the value in the memory spaces allocated for the numch*/
delet(restr, psn, numch);
/*user-defined function delet() is called with three real
parameters restr, pns and numch; program control flow shifts to
the definition of the function*/
printf("Resultant string after deletion: %s\n", restr);
/*printf() function displays the text in the quotations as it is
on the screen except for the string restr replaces the format
specifier %s and a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void insert(char str1[], char str2[], char str3[], int pos){
/*this is the header for the user-defined function insert(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces*/

int len1, len2, i, j=0, k;
/*four integer type variables len1, len2, i and k are declared;
another variable j is declared and initialized to 0; required
memory spaces are allocated for these variables; these variables
are local to the function insert() and are not accessible
outside that function*/
len1=strlen(str1);
/*built-in library function strlen() returns length of the
string str1 that is assigned to len1*/
len2=strlen(str2);
/*built-in library function strlen() returns length of the
string str2 that is assigned to len2*/
for (i=0; i<pos−1; i++)
/*this for loop copies 1st pos number characters of the string
str1[] to the character type array str3[]; here i=0 is the
initialization, i<pos−1 is the condition and i++ is the increment;
initialization is done once at the beginning of the loop; then
the condition is checked, if it is true, following statement
in the body is executed and the value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop*/

        

Functions ◾ 275

str3[i]=str1[i];
/*at 1st iteration str3[0]=str1[0], at 2nd iteration
str3[1]=str1[1], and so on*/

k=i;
/*when i=pos−1, the program exits the previous 'for' loop;
i=pos−1 is assigned to k that is used as index of str1[] to
identify rest of the characters in the string to copy*/
for (i=pos−1; i<pos+len2−1; i++){
/*this for loop copies the sub-string str2[] at the end of
str3[] in which first pos characters of str1[] was copied; here
i=pos−1 is the initialization, i<pos+len2−1 is the condition
and i++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it is
true, following statement in the body is executed and the value
of i is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at which
point the program flow exits the loop*/

str3[i]=str2[j];
/*at 1st iteration str3[pos−1]=str2[0], at 2nd iteration
str3[pos]=str2[1], at 3rd iteration str3[pos+1]=str2[2],
and so on*/
j+=1;
/*index value of str2[] is incremented by 1 in each iteration
of the loop*/

}
/*this closing curly brace specifies the end of the for loop
body*/
for (i=pos+len2−1; i<len1+len2; i++){
/*this for loop copies rest of the string str1[] (pos−1 to end)
at the end of str3[] in which first pos (0 to pos−1) characters
of str1[] was copied and then str2[] was concatenated; here
i=pos+len2−1 is the initialization, i<len1+len2 is the
condition and i++ is the increment; initialization is done
once at the beginning of the loop; then the condition is
checked, if it is true, following statement in the body
is executed and the value of i is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false at which point the program flow exits
the loop*/

str3[i]=str1[k];
/*at 1st iteration str3[pos+len2−1]=str1[pos−1],
at 2nd iteration str3[pos+len2]=str1[pos],
at 3rd iteration str3[pos+len2+1]=str2[pos+1], and so on*/
k=k+1;
/*index value of str1[] is incremented by 1 in each iteration
of the loop*/

 276 ◾ Learn Programming with C

}
/*this closing curly brace specifies the end of the for loop
body*/
str3[i]='\0';
/*last character of array str3[] is set to NULL to define it
as string*/

}
/*the closing curly brace specifies the end of the insert() function’s
body; the program control flow, at this point, returns to the point
where the function was called*/
void delet(char str1[], int pos, int num){
/*this is the header for the user-defined function delet(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces*/

int len, a, b;
/*three integer type variables len, a and b are declared;
required memory spaces are allocated for these variables*/
len=strlen(str1);
/*built-in library function strlen() returns length of the
string str1 that is assigned to len*/
/*to delete a sub-string of size num that starts at position
pos−1, we keep the string str1[] unchanged from 0 to pos−2;
after that we copy characters from position pos−1+num to the end
(=len−num−1), skipping all characters in the middle*/
b=pos+num−1;
/*b is initialized to pos+num−1*/
for (a=pos−1; a<len−num; a++){
/*a=pos−1 is the initialization, a<len−num is the condition
and a++ is the increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it is
true, following statement in the body is executed and the value
of a is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false at which
point the program flow exits the loop*/

str1[a]=str1[b];
/*at 1st iteration str1[pos−1]=str1[pos+num−1],
at 2nd iteration str1[pos]=str1[pos+num],
at 3rd iteration str1[pos+1]=str1[pos+num+1], and so on*/
b=b+1;
/*index value of source array is incremented by 1 in each
iteration of the loop*/

}
/*this closing curly brace specifies the end of the for loop
body*/
str1[a]='\0';
/*last character of array str1[] is set to NULL to define it
as string*/

        Functions ◾ 277

}
/*the closing curly brace specifies the end of the delet() function’s
body; the program control flow, at this point, returns to the point
where the function was called*/

PROBLEM-11
Using pointers, write a function that receives a character string and word as arguments
and deletes all occurrences of this word in the string.

Flowchart of the Solution:

Figure 4.8 shows the fowcharts followed to solve this problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Read values of txt and wrd

Step-3: lnh←strlen(wrd)

Step-4: x←index(txt, wrd) [call function index()]

Step-5: If x≠0

5.1: Call delet(txt, x−1, lnh)

5.2: x←index(txt, wrd) [call function index()]

5.3: Go to Step-5

Step-6: Display string txt

Step-7: Stop

Algorithm for the function index(text, pat):

Step-1: Initialize k←0

Step-2: len←strlen(pat)

Step-3: Initialize i←0

Step-4: If k≠−1

4.1: If text[i]=0

4.1.1: Return 0

4.2: If text[i]=pat[0]

4.2.1: k←−1

278 ◾ Learn Programming with C

FIGURE 4.8 Flowcharts followed to solve the problem.

        

Functions ◾ 279

FIGURE 4.8 (Continued)

4.2.1: Initialize j←0

4.2.2: If j<=len−1

4.2.2.1: If text[i+j]≠pat[j]

4.2.2.1.1: k←0

4.2.2.1.2: Go to Step-4.3

4.2.2.2: j←j+1

4.2.2.3: Go to Step-4.2.2

4.3: i←i+1

4.4: Go to Step-4

Step-5: Return value of i

 280 ◾ Learn Programming with C

Algorithm for the function delet(text, ind, len):

Step-1: Initialize txtd←text and a←0

Step-2: If i<ind

2.1: text[a]←txtd[a]

2.2: a←a+1

2.3: Go to Step-2

Step-3: Initialize b←0

Step-4: If b<len

4.1: a←a+1

4.2: b←b+1

4.3: Go to Step-4

Step-5: ln←strlen(text)

Step-6: Initialize b←ind

Step-7: If b<=ln

7.1: text[b]←txtd[a]

7.2: a←a+1

7.3: b←b+1

7.4: Go to Step-7

Step-8: text[a]←’\0’

Step-9: Return

Programming Code of the Solution:

        Functions ◾ 281

 282 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and gets(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <string.h>
/*header file string.h contains prototype of the library function
strlen(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
int index(char *text, char *pat);
/*this is the prototype (or declaration) of the user-defined function
index() that must end with a semicolon; index() takes two character
type pointers as parameters, performs some predefined operations,
and returns an integer*/
void delet(char *text, int ind, int len);
/*this is the prototype (or declaration) of the user-defined
function delet() that must end with a semicolon; delet() takes a
character type pointer and two integers as parameters, performs
some predefined operations, and returns nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

char txt[80], wrd[10];
/*two character type arrays of sizes 80 and 10 are declared;
required contiguous memory spaces are allocated for each of the
arrays*/
int x, lnh;
/*two integer type variables are declared; required memory
spaces are allocated for each of the variables*/
printf("Enter your text: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
gets(txt);
/*built-in library function gets() reads a string, including
space, tab etc. until enter is pressed, from input terminal and
assigns the string to character type array txt[]*/

        

Functions ◾ 283

printf("Enter the word you want to delete: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%s", wrd);
/*function scanf() reads a string, until space, tab or enter is
pressed, from input terminal and stores the string in the memory
spaces allocated for the wrd*/
lnh=strlen(wrd);
/*built-in library function strlen() returns length of the
string wrd and assigns the value to lnh*/
x=index(txt, wrd);
/*user-defined function index() is called with txt and wrd as
real arguments; program control flow shifts to the definition
of the function; the function returns index value in the string
txt[] where the word wrd is found and that index value is
assigned to x*/
while (x){
/*if the word wrd is found in the text txt[], x≠0 and following
statements in the body, enclosed by curly braces, are executed
until x=0 at which point the program flow exits the loop*/

delet(txt, x−1, lnh);
/*user-defined function delet() is called with txt, x−1 and
lnh as real arguments; program control flow shifts to the
definition of the function*/
x=index(txt, wrd);
/*user-defined function index() is called with txt and
wrd as real arguments; program control flow shifts to the
definition of the function; the function returns index
value in the string txt[] where the word wrd is found and
that index value is assigned to x*/
/*in each iteration of the loop if wrd is found index()
returns the index and delet() deletes the wrd from txt[];
the loop continues until x becomes 0 at which point no wrd
is available in txt */

}
/*this closing curly brace specifies the end of the while loop*/
printf("Resultant text after deletion: %s\n", txt);
/*printf() function displays the text in the quotations as it
is on the screen except for the string txt replaces the format
specifier %s and a newline replaces \n*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

284 ◾ Learn Programming with C

int index(char *text, char *pat){
/*this is the header for the user-defined function index(),
which must be identical to the function prototype except for
no semicolon is used; the function is defined within the curly
braces*/

int len, i, j, k=0;
/*three integer type variables len, i and j are declared, and
another variable k is declared and initialized to 0; required
memory spaces are assigned for these variables; these variables
are local to the function index() and are not accessible outside
that function*/
len=strlen(pat);
/*built-in library function strlen() returns length of the
string pat that is assigned to len*/
for (i=0; k!=−1; i++){
/*this for loop checks if the word pat[] is present in the
string text[]; here i=0 is the initialization, k!=−1 is the
condition and i++ is the increment; initialization is done once
at the beginning of the loop; then the condition is checked, if
it is true, following statements in the body are executed and
the value of i is incremented by 1 before the condition is re-
checked; these steps continue until the condition becomes false
at which point the program flow exits the loop*/

if (!text[i])
/*if there is no character in text[] at position i then
there is nothing to check, the condition of 'if' is true
and following statement is executed*/

return 0;
/*function index() immediately returns 0 to the point
where the function was called*/

if (text[i]==pat[0]){
/*if first character of the word pat[] matches with the
character in any position of the text[] then above condition
of 'if' is true and following statements, enclosed by curly
braces, are executed*/

k=−1;
/*value of k is assigned to −1*/
for (j=0; j<=len−1; j++)
/*this for loop checks if rest of the characters of the
word pat[] are sequentially available in text[]; here
j=0 is the initialization, j<=len−1 is the condition
and j++ is the increment; initialization is done once
at the beginning of the loop; then the condition is
checked, if it is true, following statement in the
body is executed and the value of j is incremented
by 1 before the condition is re-checked; these steps

        

Functions ◾ 285

continue until the condition becomes false at which
point the program flow exits the loop*/

if (text[i+j]!=pat[j]){
/*in each iteration of the loop, character in pat[]
is sequentially checked with that in text[], if
there is any mismatch, above condition becomes true
and following statements are executed*/

k=0;
/*value of k is changed to 0 from −1*/
break;
/*program flow exits the for (j=0; j<=len−1;
j++) loop*/

}
/*this is the end of 'if' with condition
(text[i+j]!=pat[j])*/

}
/*this is the end of 'if' with condition (text[i]==pat[0])*/

}
/*this is the end of for (i=0; k!=−1; i++) loop*/
return i;
/*starting index i of the string text[] where the word pat[]
is found is returned to the point where the function was
called*/

}
/*the closing curly brace specifies the end of the index() function’s
body*/
void delet(char *text, int ind, int len){
/*this is the header for the user-defined function delet(),
which must be identical to the function prototype except for
no semicolon is used; the function is defined within the curly
braces*/

char *txtd=text;
/*character type pointer txtd is declared and initialized to
text; here, txtd[0]=text[0], txtd[1]=text[1], and so on*/
int ln, a, b;
/*three integer type variables ln, a and b are declared; required
memory spaces are allocated for these variables; these variables
are local to the function delet() and are not accessible outside
that function*/
/*to delete a word of size len that starts at index ind, we
keep the string text unchanged from 0 to ind−1; after that we
copy characters from index ind+len to the end, skipping all
characters in the middle (from ind to ind+len−1)*/
for (a=0; a<ind; a++)
/*a=0 is the initialization, a<ind is the condition and a++ is
the increment; initialization is done once at the beginning

286 ◾ Learn Programming with C

of the loop; then the condition is checked, if it is true,
following statement in the body is executed and the value of a
is incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which point
the program flow exits the loop*/

text[a]=txtd[a];
/*at 1st iteration text[0]=txtd[0], at 2nd iteration
text[1]=txtd[1], at 3rd iteration text[2]=txtd[2], and so on*/

for (b=0; b<len; b++)
/*this for loop changes index value of source txtd to a=ind+len
to delete characters from ind to ind+len−1; here b=0 is the
initialization, b<len is the condition and b++ is the increment;
initialization is done once at the beginning of the loop; then
the condition is checked, if it is true, following statement
in the body is executed and the value of b is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false at which point the program flow
exits the loop*/

a=a+1;
/*value of a is incremented by 1 in each iteration; finally,
we get a=ind+len*/

ln=strlen(text);
/*built-in library function strlen() returns length of the
string text that is assigned to ln*/
for (b=ind; b<=ln; b++){
/*b=ind is the initialization, b<=ln is the condition and b++ is
the increment; the initialization is done once at the beginning
of the loop; then the condition is checked, if it is true,
following statements in the body are executed and the value of
b is incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which point
the program flow exits the loop*/

text[b]=txtd[a];
/*at 1st iteration text[ind]=txtd[ind+len],
at 2nd iteration text[ind+1]= txtd[ind+len+1],
at 3rd iteration text[ind+2]=txtd[ind+len+2], and so on*/
a=a+1;
/*index of source array is incremented by 1 in each iteration
of the loop*/

}
/*this closing curly brace specifies the end of for loop */
text[a]='\0';
/*last character in the text is set to NULL to define it as a
string*/

}
/*the closing curly brace specifies the end of the delet() function’s
body; the program control flow, at this point, returns to the point
where the function was called*/

        

Functions ◾ 287

PROBLEM-12
Write a program to solve a polynomial equation and its derivative.

Flowchart of the Solution:

Figure 4.9 shows the fowcharts followed to solve this problem.

Algorithm of the Solution:

Step-1: Start.

Step-2: Read value of deg.

Step-3: Initialize i←0

FIGURE 4.9 Flowcharts followed to solve the problem.

288 ◾ Learn Programming with C

FIGURE 4.9 (Continued)

Step-4: If i<=deg

4.1: Read value of coef[i]

4.2: i←i+1

4.3: Go to Step-4

Step-5: Read value of x

Step-6: y←poly(coef, deg, x) [call function poly()]

Step-7: dy←deriv(coef, deg, x) [call function deriv()]

Step-8: Display values of x, y and dy

Step-9: Stop.

Algorithm for the function poly(foat coef1[], int deg1, foat x1):

Step-1: res←coef1[deg1]

Step-2: Initialize j←deg1

Step-3: If j>=1

3.1: res←(coef1[j−1]+x1*res)

3.2: j←j−1

3.3: Go to Step-3

Step-4: Return value of res.

        Functions ◾ 289

Algorithm for the function deriv(foat coef1[], int deg1, foat x1):

Step-1: Initialize sum←0 and k←0

Step-2: If k<deg1

2.1: ps←pow(x1, deg1−(k+1)) [call function pow()]

2.2: dp←(deg1−k)×coef1[deg1−k]×ps;

2.3: sum←sum+dp

2.4: k←k+1

2.5: Go to Step-2

Step-3: Return value of sum

Programming Code of the Solution:

290 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and gets(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <math.h>
/*header file math.h contains prototype of the library function
pow(); the header file must be included using preprocessor directive
#include before the function is called in the program*/
float poly(float coef1[], int deg1, float x1);
/*this is the prototype (or declaration) of the user-defined
function poly() that must end with a semicolon; poly() takes an
array, an integer and a decimal number as parameters, performs some
predefined operations, and returns a decimal number*/
float deriv(float coef1[], int deg1, float x1);
/*this is the prototype of the user-defined function deriv() that
must end with a semicolon; deriv() takes an array, an integer and a
decimal number as parameters, performs some predefined operations,
and returns a decimal number*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

        

Functions ◾ 291

float coef[10], x, y, dy;
/*a float type array coef[] of size 10 and three float type
variables x, y and dy are declared; required memory spaces are
allocated for the array and variables*/
int deg, i;
/*two integer type variables are declared; required memory
spaces are allocated for the variables*/
printf("Enter the degree of polynomial equation: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", °);
/*function scanf() reads an integer from input terminal and
stores the value in the memory space allocated for the deg*/
for (i=0; i<=deg; i++){
/*i=0 is the initialization, i<=deg is the condition and i++ is
the increment; the initialization is done once at the beginning
of the loop; then the condition is checked, if it is true,
statements in the body are executed and the value of i is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which point
the program flow exits the loop*/

printf("Enter coefficient of x to the power %d: ", i);
/*output function printf() displays the text in the
quotations as it is on the screen except for the value of i
replaces the format specifier %d*/
scanf("%f", &coef[i]);
/*function scanf() reads a decimal number from input
terminal and stores the value in the array coef[]; for the
function 2x3+3x−1
At 1st iteration, it reads −1 and saved it in coef[0]
At 2nd iteration, it reads 0 and saved it in coef[1]
At 3rd iteration, it treads 3 and saved it in coef[2]
At 4th iteration, it reads 2 and saved it in coef[3]*/

}
printf("Enter value of x for which the equation is to be"

"solved: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%f", &x);
/*function scanf() reads a decimal number from the input
terminal and stores the value in the memory spaces allocated
for the x*/
y = poly(coef, deg, x);
/*user-defined function poly() is called with three real
parameters coef, deg and x; program control flow shifts to the
function definition; poly() does some predefined operations on
the arguments and returns a decimal number that is assigned to y*/

292 ◾ Learn Programming with C

dy = deriv(coef, deg, x);
/*user-defined function deriv() is called with three real
parameters coef, deg and x; program control flow shifts to the
function definition; deriv() does some predefined operations
on the arguments and returns a decimal number that is assigned
to dy*/
printf("Solution of polynomial equation at x=%.2f is: %.2f",

x, y);
/*function printf() displays the text in the quotations as it is
on the screen except for the value of x replaces the 1st format
specifier %.2f with two decimal points precision and the value
of y replaces the 2nd %.2f*/
printf("\nSolution of derivative of the polynomial equation"

" at x=%.2f is: %.2f", x, dy);
/*function printf() displays the text in the quotations as it is
on the screen except for the value of x replaces the 1st format
specifier %.2f with two decimal points precision and the value
of dy replaces the 2nd %.2f; here long string was broken into
multiple lines using two double quotes (““)*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
float poly(float coef1[], int deg1, float x1){
/*this is the header for the user-defined function poly(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces*/

float res;
/*a float type variable is declared; required memory spaces are
allocated for the variable; res is local to the function poly()
and is not accessible outside that function*/
int j;
/*an integer type variable is declared; required memory spaces
are allocated for the variable; j is local to the function
poly() and is not accessible outside that function*/
res = coef1[deg1];
/*coefficient of the highest degree is assigned to variable
res; for the function 2x3+3x−1, res=coef1[3]=2*/
for (j=deg1; j>=1; j−−)
/*this for loop is computes f(x1); j=deg1 is the
initialization, j>=1 is the condition and j – is the
decrement; the initialization is done once at the beginning
of the loop; then the condition is checked, if it is true,

        

Functions ◾ 293

statement in the body is executed and the value of j is
decremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which
point the program flow exits the loop*/

res = (coef1[j−1]+x1*res);
/*for the function 2x3+3x−1
At 1st iteration, res=coef1[2]+x1×res=3+2x1
At 2nd iteration, res=coef1[1]+x1×res=0+x1×(3+2x1)=3x1+2x12

At 3rd iteration, res=coef1[0]+x1×res=−1+x1×(3x1+2x12)=
−1+3x12+2x13*/

return res;
/*value of res is returned to the point where the function was
called*/

}
/*this closing curly brace specifies the end of poly() function
definition*/
float deriv(float coef1[], int deg1, float x1){
/*this is the header for the user-defined function deriv(),
which must be identical to the function prototype except for
no semicolon is used; the function is defined within the curly
braces*/

float dp, sum=0, ps;
/*two float type variables dp and ps are declared; another
float type variable sum is declared and initialized to 0; if
sum is not initialized to 0 then the memory space allocated
for the variable may contain some garbage value which is
added in the first summation operation and gives incorrect
result*/
int k;
/*integer type variable k is declared; required memory spaces
are allocated for k; k is local to the function deriv() and is
not accessible outside that function*/
for (k=0; k<deg1; k++){
/*this for loop computes f/(x1); k=0 is the initialization,
k<deg1 is the condition and k++ is the increment; the
initialization is done once at the beginning of the loop; then
the condition is checked, if it is true then statements in the
body are executed and the value of k is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false at which point the program flow exits
the loop*/

ps = pow(x1, deg1−(k+1));
/*library function pow() returns x1deg1−(k+1); for f(x)=2x3+3x−1
At 1st iteration, ps=x1deg1−(k+1)=x13−(0+1)=x12

At 2nd iteration, ps=x1deg1−(k+1)=x13−(1+1)=x11

At 3rd iteration, ps=x1deg1−(k+1)=x13−(2+1)=x10*/

294 ◾ Learn Programming with C

dp = (deg1−k)*coef1[deg1−k]*ps;
/*for the function f(x)=2x3+3x−1
At 1st iteration, dp=(3−0)×coef1[3−0]×ps=3×2×x12=6x12

At 2nd iteration, dp=(3−1)×coef1[3−1]×ps=2×0×x1=0
At 3rd iteration, dp=(3−2)×coef1[3−2]×ps=1×3×x10=3*/
sum = sum+dp;
/*for the function f(x)=2x3+3x−1
At 1st iteration, sum=0+6x12=6x12

At 2nd iteration, sum=6x12+0=6x12

At 3rd iteration, sum=6x12+3 which is the derivative of
2x3+3x−1 at x1*/

}
return sum;
/*function deriv() returns the value of sum to the point where
the function was called*/

}
/*this closing curly brace specifies the end of poly() function
definition*/

EXERCISES

MCQ with Answers

1) What is the meaning of the following line:

void sum (int, int);

A) sum is function which takes int arguments

B) sum is a function which takes two int arguments and returns void

C) it will produce compilation error

D) can’t comment

2) Te concept of two functions with the same name is known as

A) Operator overloading

B) Function overloading

C) Function overriding

D) Function renaming

3) What is the storage class of the variable num in the codes given below?

void main(){

int num=10;

printf(“%d”, num);}

        

Functions ◾ 295

A) extern

B) auto

C) register

D) static

4) Which of the following is not a valid storage class?

A) auto

B) extern

C) dynamic

D) register

5) Prototype of a function means _______.

A) Name of function

B) Parameters of function

C) Declaration of function

D) All of the above

6) Which of the following will not return a value?

A) void

B) int

C) null

D) char

7) Which of the following return-type cannot be used for a function in C?

A) char *

B) struct

C) void

D) None of the above

8) Which operator is used to receive the variable number of arguments for a function?

A) Ellipses (…)

B) Backward slash (\)

C) Backward slash and asterisk (*)

D) Semicolon (;)

296 ◾ Learn Programming with C

9) How many values can a function return to the caller using the return keyword?

A) It cannot return any value

B) Only one

C) Only two

D) Multiple

10) Recursive functions are executed in a _______.

A) FIFO order

B) Load balancing

C) Parallel

D) LIFO order

11) How many functions can be called in a function?

A) Any function can call only a single function

B) A function cannot call any other function

C) Any function can call one or more functions

D) A function cannot call any user-defned function

[Ans. B, B, B, C, D, A, D, A, B, D, C]

Questions with Short Answers

1) What is function overloading in C?

Ans. Te C programming language allows us to have two functions with the same
name, but the number of arguments and types must be diferent. Tis is known as
function overloading.

2) What are the available storage classes in C? What is the default value when a local
variable is declared?

Ans. In C, there are four diferent types of storage classes: auto, register, extern, and
static. Every storage class has a specifc purpose.

Whenever a local variable is declared, it is counted in the auto storage class. Every
variable in the storage class has a default value. In the case of auto, garbage is the
default value.

3) What is the explanation for the prototype function in C?

Ans. Te prototype function is the declaration of the function that must end with a
semicolon and contains the following information:

        

Functions ◾ 297

b) Return-type of the function

c) Name of the function

d) Parameters list of the function

Example: int sum(int x, int y);

4) What is the general form of function defnition in C?

Ans. Te function defnition in C contains four main sections:

return _ type function _ name(parameters list){

body of the function}

Example: int sum(int x, int y){

int add=x+y;

return add;}

5) What is the keyword auto for?

Ans. By default, every local variable in the function is automatic (auto) and holds a
garbage value. An automatic variable cannot be a global variable. Both variables i
and j in the following function, for example, are automatic.

void func(){

int i;

auto int j;}

6) What is a static variable?

Ans. A static local variable retains its value between the function call, and its default
value is 0. For example, if we call the following function three times, it will display
1, 2, and 3 on the screen.

void func(){

static int num;

printf(“%d, ”, ++num);}

7) What is the purpose of extern storage specifer?

Ans. Te extern storage specifer is used to provide a global variable that is visible
in all program fles. When extern is used, the variable cannot be initialized; instead,
it points the variable name to a previously defned storage location. When a global
variable or function is defned that is used in another fle, extern is used to provide
a reference to the defned variable or function in the other fle.

298 ◾ Learn Programming with C

8) When should we use the register storage specifer?

Ans. When a variable is used frequently, it should be declared with the register stor-
age specifer so that the compiler can assign a CPU register to store it. Tis reduces
the time it takes to access the variable.

9) What is a global variable, and how do we declare it?

Ans. Te variables that can be accessed from anywhere in the program are known
as global variables. Te variable is declared just afer the preprocessor directives
section and before the main() function defnition to make it global.

10) What is the diference between formal and actual parameters of a function?

Ans. Actual parameters are the values that are passed into a function when it is
called. Te called function performs some predefned operations on the values
passed as actual parameters. Formal parameters, on the other hand, are the param-
eters used in the function defnition. When a function is called, values of the actual
parameters replace the formal parameters.

11) What are the diferent ways of passing parameters to the functions?

Ans. Tere are two ways of passing parameters to the functions.

a) Call by value: Only values are sent to the function as parameters. We use this
option when we do not want the values of the actual parameters to be changed
in the function defnition. Only their values are used.

b) Call by reference: Rather than sending the values, the addresses of the actual
arguments are sent. We use this option when we want the values of the actual
parameters to be changed by the formal parameters in the function defnition.

12) What is a static function?

Ans. By default, functions are global. When a function is declared static, its access
is limited to the fle where it is declared. Te keyword static is used before the func-
tion name to declare it as static.

13) Is it possible to have a function as a parameter in another function?

Ans. In C, a function can be used as a parameter in another function. To do that,
the entire function prototype is placed in the argument feld that will be used.

14) Describe how arrays can be passed to a user-defned function.

Ans. Te entire array cannot be passed to a user-defned function. Only a pointer
to the frst element of the array in memory can be passed. To do so, simply pass the
array’s name without brackets as an argument.

        

Functions ◾ 299

Problems to Practice

1) Write a program to swap two numbers using pointers and function.

2) Write a program to calculate the power of a number using function.

3) Write a program to calculate the area of an equilateral triangle using function.

4) Write a program that displays the prime numbers from 1 to n. Te value of n should
be given interactively through the terminal.

5) Write a program to calculate the standard deviation of an array of values. Te array
elements are read from the terminal. Use functions to calculate the standard devia-
tion and mean.

6) Write a program that computes and displays the factorial for any given number m
using a loop and recursive function.

7) Write a program to fnd the GCD (greatest common divisor) of two given integers
using recursive function and loop.

8) Write a program to sort n number of integers in ascending order. Te program will
display the data before sorting and afer sorting.

9) Write a program to produce a matrix that is the sum of two given matrices of the
same size. Also, produce a matrix that is the product of two given matrices by
checking compatibility.

10) Write a program that uses functions to insert a substring into a given main-string
from a given position. Also, defne a function to delete n characters from a given
position in a given string.

11) Using pointers, write a function that receives a character string and word as argu-
ments and deletes all occurrences of this word in the string.

12) Write a program to solve a polynomial equation and its derivative.

13) Write a program to check whether a given number is even or odd using the function.

14) Write a program to check whether a given number is prime or not using the
function.

15) Write a program to display all perfect numbers in a given range using the function.

16) Write a program to check whether two given strings are an anagram.

17) Write a program to fnd out the maximum and minimum of some values using
function.

18) Write a function to fnd sum of digits of a number.

300 ◾ Learn Programming with C

19) Write a program to calculate the sum of numbers from 1 to n using recursion.

20) Write a program to display Fibonacci Series using recursion.

21) Write a program to fnd the sum of digits of a number using recursion.

22) Write a program to reverse a string using recursion.

23) Write a program to multiply two matrices using recursion.

24) Write a program to check whether a number can be expressed as the sum of two
prime numbers.

25) Write a program that converts a binary number to decimal and vice versa.

26) Write a function to fnd square root of a number.

27) Write a function to display Hot or Cold depending on the temperature entered by a
user.

C H A P T E R 5

Structure and Union

The structure is a collection of variables under a single name that can be of the same
type or different types. A union is an object similar to a structure that allows storing

different data types, but all its members share the same memory location.

5.1 STRUCTURE
Structure is a group of different variables of the same or different data types under a single
name. Syntax of creating a struct variable is as follows:

struct struct_name{
 data_type member1;
 data_type member2;
 data_type member3;

};

struct keyword is short form of structured data type used to create a structure in C.
struct_name is the name of the structure and can be any word other than any keyword.
All the data type inside the curly braces can be of same type or of different types.
Variable of a structure can be declared as follows:

struct struct_name var_name1, var_name2;
or
struct struct_name{

 data_type member1;
 data_type member2;
 data_type member3;

} var_name1, var_name2;

Members of the structured data type can be accessed through dot (.) operator as follows:
var_name1.member1, var_name2.member3, var_name1.member2
Examples are as follows:

DOI: 10.1201/9781003302629-5 301

https://doi.org/10.1201/9781003302629-5

302 ◾ Learn Programming with C

Members of the structured data type can also be accessed through arrow (->) operator. To
do that, we frst have to create pointer to structure. Example:

struct student_data *studptr, stud1, stud2;
studptr = &stud1;

Now we can access any member using the pointer like

studptr->name, studptt->roll, studptr->grade

One or more structures can be used inside another structure known as the nested struc-
ture. Members of the nested structures are accessed through the chain of dot (.) operator.

5.2 UNION
A union is a user-defned data type that may consist of same or diferent multiple data
types. Te main diference between structure and union is that structures allocate enough
memory space for all of its members, whereas union hold the memory space equal to the
size of its largest element and share the same memory for all of its members. Example:

Like structures, union members can also be accessed using dot (.) or pointer operator.
Example:

empl1.name, empl1.idno, empl1.salary or empl2->salary

5.3 ENUM
Te enum data type consists of integral constants. Te element’s values are 0, 1, 2, . . ., but
the default values can be changed during declaration if needed. Examples are as follows:

        

Structure and Union ◾ 303

enum cnst {const1, const2, const3, const4};

Here, by default const1 = 0, const2 = 1, const3 = 2, const4 = 3.

enum cnst {const1=5, const2=9, const3=19, const4=1};

Example of declaring enum variables:

enum cnst flags;
enum cnst {const1, const2, const3, const4} flags;

5.4 DATA STRUCTURE AND ALGORITHM
A data structure is a specifed memory region for storing and organizing data. It is a quick
and easy approach to get data and update it as needed. Tere are two sorts of data struc-
tures to choose from.

(1) Linear data structure: Data are placed in sequential order in a linear data structure.
Tey are simple to implement since the elements are arranged in a specifc order.
Some famous linear data structures are as follows:

(a) Array data structure: An array’s elements are all of the same data type, and they
are stored in continuous memory.

(b) Stack data structure: Te LIFO (last in, frst out) principle governs the storage
of elements, which means that the last element in a stack is removed frst.

(c) Queue data structure: Te FIFO (frst in, frst out) principle governs the storage
of elements; that is, the frst element in a queue is removed frst.

(d) Linked list data structure: A series of nodes connects data elements, and each
node contains data items as well as the addresses of the next and prior nodes.

(2) Nonlinear data structure: Data elements in nonlinear data structures are not placed
in any particular order. Instead, they are organized in a hierarchical fashion, with
one element connected to one or more others. Graph and tree-based data structures
are two types of nonlinear data structures.

ALGORITHM

A set of well-defned instructions for solving a particular problem is known as an algo-
rithm. Tat is, an algorithm is a step-by-step procedure to get the desired output. A good
algorithm may have the following qualities:

(a) Input and output must be well-defned.

(b) Each step of the algorithm should be straightforward.

(c) Among the numerous various ways to solve a problem, algorithms should be the
most efective.

304 ◾ Learn Programming with C

(d) Programming code should not be included in an algorithm. Instead, the algorithm
should be designed in a way that allows it to be used in a variety of programming
languages.

From the data structure point of view, the following are some important categories of
algorithms:

(a) Search: to search an item in a data structure.

(b) Sort: to sort items in a particular order.

(c) Insert: to insert an item in a data structure.

(d) Update: to update an existing item in a data structure.

(e) Delete: to delete an existing item from a data structure.

5.5 LINKED LIST
A linked list is a data structure that includes a series of connected nodes. Each node of the
series consists of two members.

• A data item

• An address of another node

Te address of the frst node is usually specifed as head, and the next portion of the last
node always points to NULL. Te following example shows how a linked list is created
using the structure of a linked list node.

        

Structure and Union ◾ 305

A linked list can break the chain, rejoin it, insert a new node to the chain, delete any node
from the chain, etc.

5.6 TYPES OF LINKED LIST
Tere are three types of linked lists commonly available in C and other programming
languages:

(a) Singly linked list: It is the most common type of linked list. Each node contains data
and a pointer to the next node. Tat type of node is represented as follows:

(b) Doubly linked list: A doubly linked list can be traversed in both forward and back-
ward directions. Each node of a doubly linked list contains data and two pointers
– one to the next node and another to the previous node. Tat type of node is repre-
sented as follows:

(c) Circular linked list: Singly linked circular linked list is a variation of a singly linked
list in which the next pointer of the last item points to the frst item.

306 ◾ Learn Programming with C

A doubly linked circular linked list is a variation of a doubly linked list in which the next
pointer of the last item points to the frst item and the previous pointer of the frst item
points to the last item.

5.7 EXAMPLES

PROBLEM-01
Write a program to read and display information of a student using structure.

Programming Code of the Solution:

Input and Output of the Executed Program:

        

Structure and Union ◾ 307

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and gets(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
struct student{
/*struct is the keyword used to create structure; student is the
name of the structure followed by three members inside the curly
braces*/

char name[50];
/*character type array of size 50 is declared which is the first
member of the structure student*/
int roll;
/*integer type variable is declared which is the 2nd member of
the structure*/
float grade;
/*float type variable is declared which is the 3rd member of
the structure*/

};
/*definition of struct student type data ends with a semicolon; no
variable of the defined data type struct student is declared here*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

struct student std1;
/*struct student type variable std1 is declared that has three
members*/
printf("Enter name of the student: ");
/*this displays the text inside the double quotations as it is
on the screen*/
gets(std1.name);
/*gets() function takes a string, including space, tab etc.,
that end with a NULL character '\0' and stores the string in
the first member of the std1 structure which is accessed through
dot (.) operator std1.name*/
printf("Enter roll number of the student: ");
/*this displays the text inside the double quotations as it is
on the screen*/
scanf("%d", &std1.roll);
/*scanf() function reads an integer from the input terminal and
stores it in the second member of the std1 structure which is
accessed through dot (.) operator std1.roll*/

 308 ◾ Learn Programming with C

printf("Enter grade of the student: ");
/*this displays the text inside the double quotations as it is
on the screen*/
scanf("%f", &std1.grade);
/*scanf() function reads a decimal value from the input terminal
and stores the float value in the third member of the std1
structure which is accessed through dot (.) operator std1.
grade*/
printf("Displaying information . . .\n");
/*this displays the text inside the double quotations on the
screen followed by a newline replaces \n*/
printf("Name: %s\nRoll: %d\nGrade: %.2f", std1.name, std1.roll,

std1.grade);
/*output function printf() displays the text inside the quotations
as it is on the screen except for the 1st format specifier %s
is replaced by the string std1.name which is the member of the
struct student type variable accessed using dot (.) operator;
this is followed by a newline replaces \n; 2nd format specifier
%d is replaced by the value of std1.roll followed by a newline
and 3rd format specifier %.2f is replaced by the value of std1.
grade with two decimal points precision*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-02
Write a program to read and display information of n number of students (roll no.,
name, and marks) using structure and dynamic memory allocation.

Programming Code of the Solution:

        Structure and Union ◾ 309

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf(), sizeof(), getchar() and gets(); the header file

310 ◾ Learn Programming with C

must be included using preprocessor directive #include before the
functions are called in the program*/
#include <stdlib.h>
/*header file stdlib.h contains prototypes of the library functions
malloc() and free(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
struct course{
/*keyword struct is used to create a structure; course is the name
of the structure followed by three members inside the curly braces*/

int roll, marks;
/*two integer type variables are declared as the members of the
structure course*/
char name[40];
/*character type array of size 50 is declared which is a member
of the structure course*/

};
/*definition of structured data type must end with a semicolon; no
variable of the defined data type struct course is declared here*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

struct course *ptr;
/*struct course type pointer ptr is declared; members of the
variable pointed by ptr are accessed using arrow (->) operator*/
int i, num;
/*two integer type variables are declared; required memory
spaces are allocated for each of the variables*/
printf("Enter number of students: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &num);
/*scanf() function reads an integer from the input terminal and
stores it in the memory spaces allocated for the variable num*/
ptr = (struct course *)malloc(num*sizeof(struct course));
/*sizeof() function computes the size of struct course type
data, needed to store two integers and a character type array
of size 40; num times of that size are dynamically allocated in
the memory by malloc(); address of the memory space is assigned
to struct course type pointer variable ptr*/
for (i=0; i<num; ++i){
/*here i=0 is initialization, i<num is condition and ++i is
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true statements

        

Structure and Union ◾ 311

in the body, enclosed by curly braces, are executed and value of
i is incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false in which case
the program control flow exits the loop*/

printf("\nInformation of student #%d . . . \n", i+1);
/*output function printf() displays the text in the quotations
as it is on the screen except for the value of i+1 replaces
the format specifier %d and a newline replaces \n*/
printf("Enter roll number: ");
/*output function printf() displays the text in the
quotations as it is on the screen*/
scanf("%d", &(ptr+i)->roll);
/*function scanf() reads an integer from input terminal and
stores it in the member roll of struct course type pointer
ptr; in each iteration roll number of individual student
is read*/
getchar();
/*when we enter roll number of a student and press enter, a
\n after the integer stays in the buffer and is accepted as
input in following gets() statement; therefore we use this
getchar() after entering roll number to solve the problem*/
printf("Enter name: ");
/*output function printf() displays the text in the
quotations as it is on the screen*/
gets((ptr+i)->name);
/*gets() function takes a string, including space, tab
etc., that end with a NULL character '\0' and stores the
string in member name of the struct course type pointer
variable ptr which is accessed using arrow (->) operator*/
printf("Enter total marks: ");
/*output function printf() displays the text in the
quotations as it is on the screen*/
scanf("%d", &(ptr+i)->marks);
/*function scanf() reads an integer from input terminal
and stores it in the member marks of struct course type
pointer ptr; in each iteration marks of individual student
is read*/

}
/*this closing curly brace specifies the end of 'for' loop*/
printf("\nDisplaying Information . . . ");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
for (i=0; i<num; ++i){
/*here i=0 is initialization, i<num is condition and ++i is
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true statements
in the body, enclosed by curly braces, are executed and value

312 ◾ Learn Programming with C

of i is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false in which
case the program control flow exits the loop*/

printf("\nInformation of student #%d . . . \n", i+1);
/*output function printf() displays the text in the quotations
as it is on the screen except for the value of i+1 replaces the
format specifier %d and a newline replaces \n*/
printf("Roll: %d\nName: %s\nMarks: %d\n", (ptr+i)->roll,

(ptr+i)->name, (ptr+i)->marks);
/*output function printf() displays the text in the
quotations as it is on the screen except for the value of
(ptr+i)->roll replaces the 1st format specifier %d, string
value of (ptr+i)->name replaces %s, value of (ptr+i)->marks
replaces 2nd %d and a newline replaces \n*/

}
/*this closing curly brace specifies the end of 'for' loop*/
free(ptr);
/*memory spaces allocated for struct course type variables are
freed*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-03
Write a program to add two complex numbers using structure.

Programming Code of the Solution:

        

Structure and Union ◾ 313

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
struct complex{
/*struct is the keyword used to create structure; complex is the
name of the structure followed by two members of the same data type
inside the curly braces*/

float real, imag;
/*two float type variables are declared where real is the 1st
member and imag is the 2nd member of the structure*/

};
/*definition of struct complex type data ends with a semicolon; no
variable of the defined data type struct complex is declared here*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

struct complex num1, num2, sum;
/*three struct student type variables are declared, each has
three members*/
printf("Enter 1st complex number:\nreal: ");
/*this displays the text inside the double quotations as it is
on the screen except for a newline replaces \n*/
scanf("%f", &num1.real);
/*scanf() function reads a decimal value from the input terminal
and stores it in the 1st member of the num1 structure which is
accessed through dot (.) operator num1.real*/
printf("imaginary: ");
/*this displays the text inside the double quotations as it is
on the screen*/

314 ◾ Learn Programming with C

scanf("%f", &num1.imag);
/*scanf() function reads a decimal value from the input terminal
and stores it in the 2nd member of the num1 structure which is
accessed through dot (.) operator num1.imag*/
printf("Enter 2nd complex number:\nreal: ");
/*this displays the text inside the double quotations as it is
on the screen except for a newline replaces \n*/
scanf("%f", &num2.real);
/*function scanf() reads a decimal value from the input terminal
and stores it in the 1st member of the num2 structure which is
accessed through dot (.) operator num2.real*/
printf("imaginary: ");
/*this displays the text inside the double quotation as it is
on the screen*/
scanf("%f", &num2.imag);
/*scanf() function reads a decimal value from the input terminal
and stores it in the 2nd member of the num2 structure which is
accessed through dot (.) operator num2.imag*/
sum.real = num1.real + num2.real;
/*using dot (.) operator we access members of the struct complex
type variables; real parts of both num1 and num2 are added and
the result is stored in member real of the struct complex type
variable sum*/
sum.imag = num1.imag + num2.imag;
/*imaginary parts of both num1 and num2 are added and the result
is stored in member imag of the struct complex type variable
sum*/
printf("%.2f+j%.2f + %.2f+j%.2f = %.2f+j%.2f", num1.real,

num1.imag, num2.real, num2.imag, sum.real, sum.imag);
/*output function printf() displays the text as it is on
the screen except for the value of num1.real replaces the
1st format specifier %.2f with two decimal points precision,
value of num1.imag replaces the 2nd %.2f, value of num2.real
replaces the 3rd %.2f, value of num2.imag replaces the 4th
%.2f, value of sum.real replaces the 5th %.2f, and the value
of sum.imag replaces 6th %.2f; all the variables are members
of the struct complex type variable, and accessed using dot
(.) operator*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

        Structure and Union ◾ 315

PROBLEM-04
Write a program to create and display a singly linked list of n nodes.

Programming Code of the Solution:

 316 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and sizeof(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
#include <stdlib.h>
/*header file stdio.h contains prototype of the library function
malloc(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
struct node{
/*new data type struct node is created using keyword struct; members
of struct node are declared in the curly braces*/

int num;
/*integer type variable num is declared, this is a member of
the data type struct node*/
struct node *next;

        Structure and Union ◾ 317

/*struct node type pointer next is declared as second member
of the data type struct node; next contains address of another
node*/

} *stnode;
/*definition of the structured data type must end with a semicolon;
struct node type pointer stnode of the defined data type is declared
here*/
void create(int n);
/*this is the prototype (or declaration) of the user-defined
function create() that must end with a semicolon; create() takes
an integer as parameter, performs some predefined operations, and
returns nothing*/
void display();
/*this is the prototype (or declaration) of the user-defined
function display() that must end with a semicolon; display() takes
no parameter, performs some predefined operations, and returns
nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int nm;
/*an integer type variable is declared; required memory space
is allocated for the variable*/
printf("Input the number of nodes: ");
/*printf() function displays the text in the quotations as it
is on the screen*/
scanf("%d", &nm);
/*scanf() function reads an integer from input terminal and
stores the value in the memory spaces allocated for the nm*/
create(nm);
/*user-defined function create() is called with real parameter
nm that refers to the no. of nodes in the linked list; program
control flow shifts to the definition of the function*/
printf("\nData entered in the list:\n");
/*printf() function displays the text in the quotations as it
is on the screen except for a newline replaces \n*/
display();
/*user-defined function display() is called; program control
flow shifts to the definition of the function*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}

318 ◾ Learn Programming with C

/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void create(int n){
/*definition of create() function starts here with function header and
body; function header is same as function prototype without semicolon;
body of the function is enclosed in curly braces; real argument that is
passed during the function call replaces virtual parameter n*/

struct node *fnNode, *tmp;
/*two struct node type pointers are declared; fnNode and tmp
are the addresses of two struct node type variables each has
two members- num to store an integer and next to store address
of another struct node type variable*/
int nm, i;
/*two integer type variables are declared; required memory spaces
are allocated for the variables; these variables are local to the
function create() and is not visible outside that function*/
stnode = (struct node *)malloc(sizeof(struct node));
/*sizeof() function computes the size of struct node type data,
needed to store an integer and address of another node; required
memory spaces are dynamically allocated by malloc(); address
of the memory space is assigned to struct node type pointer
variable stnode*/
if (stnode == NULL)
/*if memory cannot be assigned successfully malloc() returns
a NULL to stnode; if the condition of if is true following
statement is executed*/

printf("Memory cannot be allocated.");
/*printf() function displays the text in the quotations as
it is on the screen*/

else{
/*if the above condition of if is false, following statements,
enclosed in the curly braces, are executed*/

printf("\nInput data for node #1: ");
/*printf() function displays the text in the double
quotations as it is on the screen except for a newline
replaces \n*/
scanf("%d", &nm);
/*scanf() function reads an integer from input terminal
and stores the value in the memory spaces allocated for
the nm*/
stnode->num = nm;
/*value of nm is assigned to the member num of the first
node stnode of the linked list*/
stnode->next = NULL;
/*next pointer of the first node is set to NULL; there is
no more node after that in the linked list*/

        

Structure and Union ◾ 319

tmp = stnode;
/*struct node type pointer tmp refers to the first node of
the linked list stnode*/
for (i=2; i<=n; i++){
/*this for loop creates other nodes of the linked list
other than the first node; here i=2 is initialization, i<=n
is condition and i++ is increment; initialization is done
once at the beginning of the loop; then the condition is
checked, if it is true statements in the body, enclosed by
curly braces, are executed and value of i is incremented by
1 before the condition is re-checked; these steps continue
until the condition becomes false in which case the program
control flow exits the loop*/

fnNode = (struct node *)malloc(sizeof(struct node));
/*sizeof() function computes the size of struct node
type data, needed to store an integer and address of
another node; required memory spaces are dynamically
allocated by malloc(); address of the memory space
is assigned to struct node type pointer variable
fnNode*/
if (fnNode == NULL){
/*if memory cannot be assigned successfully malloc()
returns a NULL to fnNode; if the condition of if is true
following statements, enclosed in the curly braces, are
executed*/

printf("Memory cannot be allocated.");
/*output function printf() displays the text in the
quotations as it is on the screen*/
break;
/*as memory cannot be allocated for the node, the
program control flow immediately exits the loop*/

}
/*this closing curly brace specifies the end of 'if'
with condition (fnNode == NULL)*/
else{
/*if the above condition of if is false, memory is
successfully allocated for the node and the following
statements, enclosed in the curly braces, are executed*/

printf("Input data for node #%d: ", i);
/*output function printf() displays the text in the
quotations as it is on the screen except for the
value of i replaces the format specifier %d*/
scanf("%d", &nm);
/*scanf() function reads an integer from input
terminal and stores the value in the memory spaces
allocated for the nm*/
fnNode->num = nm;

320 ◾ Learn Programming with C

/*value of nm is assigned to the member num of the
node fnNode of the linked list*/
fnNode->next = NULL;
/*next pointer of the node is set to NULL; there is
no more node after that in the linked list*/
tmp->next = fnNode;
/*newly created node fnNode is linked with the
previous node tmp by assigning the address of fnNode
to the next pointer of the node tmp*/
tmp = tmp->next;
/*node tmp now refers to the newly created node
fnNode so that another node can be inserted after
that tmp (or fnNode) node in the next iteration of
the loop*/

}
/*this closing curly brace specifies the end of 'else'
with if (fnNode == NULL)*/

}
/*this closing curly brace specifies the end of 'for' loop

}
/*this closing curly brace specifies the end of 'else' with if
(stnode == NULL)*/

}
/*this closing curly brace specifies the end of definition of
create() function; program control flow returns to the point where
the function was called*/
void display(){
/*definition of display() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces*/

struct node *tmp;
/*struct node type pointer is declared; tmp is the address of
struct node type variable that has two members- num to store an
integer and next to store address of another node type variable*/
if (stnode == NULL)
/*if starting node stnode is NULL above condition is true and
following statement is executed*/

printf("List is empty . . . ");
/*printf() function displays the text in the quotations as
it is on the screen*/

else{
/*if the linked list is not empty then above condition of 'if'
is false and the following statements, enclosed in the curly
braces, are executed*/

tmp = stnode;
/*struct node type pointer tmp refers to the first node
stnode of the linked list*/

        

Structure and Union ◾ 321

while (tmp!= NULL){
/*condition in the while loop checks if tmp refers to the
last node; the condition is checked, if it is true statements
in the body, enclosed by curly braces, are executed before
the condition is re-checked; these steps continue until the
condition becomes false in which case the program control
flow exits the loop*/

printf("%d, ", tmp->num);
/*printf() function displays the value of num of current
node tmp on the screen in place of format specifier %d*/
tmp = tmp->next;
/*pointer tmp now refers to the next node of the current
node so that the next node can be checked and displayed
in the next iteration of the loop*/

}
/*this closing curly brace specifies the end of while loop*/

}
/*this closing curly brace specifies the end of else*/

}
/*this closing curly brace specifies the end of the definition of
display() function; program control flow returns to the point where
the function was called*/

PROBLEM-05
Write a program to create a doubly linked list of n nodes and display it in reverse order.

Programming Code of the Solution:

 322 ◾ Learn Programming with C

        Structure and Union ◾ 323

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and sizeof(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
#include <stdlib.h>
/*header file stdio.h contains prototype of the library function
malloc(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
struct node{
/*new data type struct node is created using keyword struct; members
of struct node are declared in the curly braces*/

int num;
/*integer type variable num is declared, this is a member of
the data type struct node*/
struct node *prev, *next;
/*two struct node type pointers are declared as members of the
data type struct node; prev and next contain addresses of other
nodes*/

} *stnode, *ednode;
/*definition of the structured data type must end with a semicolon;
struct node type pointers stnode and ednode of the defined data type
are declared here*/
void create(int n);
/*this is the prototype (or declaration) of the user-defined
function create() that must end with a semicolon; create() takes
an integer as parameter, performs some predefined operations, and
returns nothing*/
void display();
/*this is the prototype (or declaration) of the user-defined
function display() that must end with a semicolon; display() takes

 324 ◾ Learn Programming with C

no parameter, performs some predefined operations, and returns
nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int nm;
/*an integer type variable is declared; required memory space
is allocated for the variable*/
stnode = NULL;
/*NULL value is assigned to the starting node stnode*/
ednode = NULL;
/*NULL value is assigned to the last node ednode*/
printf("Input the number of nodes: ");
/*printf() function displays the text in the quotations as it
is on the screen*/
scanf("%d", &nm);
/*scanf() function reads an integer from input terminal and
stores the value in the memory spaces allocated for the nm*/
create(nm);
/*user-defined function create() is called with real parameter
nm that refers to the no. of nodes in the linked list; program
control flow shifts to the definition of the function*/
display();
/*user-defined function display() is called; program control
flow shifts to the definition of the function*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void create(int n){
/*definition of create() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces; real
argument that is passed during the function call replaces virtual
parameter n*/

int i, nm;
/*two integer type variables are declared; required memory
spaces are allocated for the variables; these variables are
local to the function create() and is not visible outside that
function*/
struct node *fnNode;

        

Structure and Union ◾ 325

/*struct node type pointer is declared; fnNode is the address of
a struct node type variable with three members- num to store an
integer, and prev and next to store addresses of another node
type variables*/
stnode = (struct node *)malloc(sizeof(struct node));
/*sizeof() function computes the size of struct node type data,
needed to store an integer and two addresses of other nodes;
required memory spaces are dynamically allocated by malloc();
address of the memory space is assigned to struct node type
pointer variable stnode*/
if (stnode!= NULL){
/*if memory is successfully assigned by malloc() above condition
is true and the following statements, enclosed in the curly
braces, are executed*/

printf("\nInput data for node #1: ");
/*printf() function displays the text in the double
quotations as it is on the screen except for a newline
replaces \n*/
scanf("%d", &nm);
/*scanf() function reads an integer from input terminal
and stores the value in the memory spaces allocated for
the nm*/
stnode->num = nm;
/*value of nm is assigned to the member num of the first
node stnode of the linked list*/
stnode->prev = NULL;
/*prev pointer of the first node is set to NULL; there is
no more node before that in the linked list*/
stnode->next = NULL;
/*next pointer of the first node is set to NULL; there is
no more node after that in the linked list*/
ednode = stnode;
/*both starting node stnode and last node ednode refer to
the same node*/
for (i=2; i<=n; i++){
/*this for loop creates other nodes of the linked list;
here i=2 is initialization, i<=n is condition and i++ is
increment; initialization is done once at the beginning
of the loop; then the condition is checked, if it is true
statements in the body, enclosed by curly braces, are
executed and value of i is incremented by 1 before the
condition is re-checked; these steps continue until the
condition becomes false in which case the program control
flow exits the loop*/

fnNode = (struct node *)malloc(sizeof(struct node));
/*sizeof() function computes the size of struct node
type data, needed to store an integer and two addresses

326 ◾ Learn Programming with C

of nodes; required memory spaces are dynamically allocated
by malloc(); address of the memory space is assigned to
struct node type pointer variable fnNode*/
if (fnNode!= NULL){

/*if memory is assigned successfully by malloc()
above condition of if is true and the following
statements, enclosed in the curly braces, are
executed*/
printf("Input data for node #%d: ", i);
/*output function printf() displays the text in the
quotations as it is on the screen except for the
value of i replaces the format specifier %d*/
scanf("%d", &nm);
/*scanf() function reads an integer from input
terminal and stores the value in the memory spaces
allocated for the nm*/
fnNode->num = nm;
/*value of nm is assigned to the member num of the
new node fnNode of the linked list*/
fnNode->prev = ednode;
/*prev of new node fnNode refers to its previous
node ednode*/
fnNode->next = NULL;
/*next of new node fnNode refers to NULL; there is
no more node after the new node*/
ednode->next = fnNode;
/*next of previous node ednode refers to the new
node fnNode*/
ednode = fnNode;
/*ednode now becomes the new node fnNode so that
another node can be inserted after ednode in the
next iteration of the loop*/

}
/*this closing curly brace specifies the end of 'if'
with condition (fnNode!= NULL)*/
else{
/*if memory cannot be assigned successfully malloc()
returns a NULL to fnNode; if the condition of above if
(fnNode!= NULL) is false following statements, enclosed
in the curly braces, are executed*/

printf("Memory cannot be allocated.");
/*output function printf() displays the text in the
quotations as it is on the screen*/
break;
/*as memory cannot be allocated for the node, the
program control flow immediately exits the loop*/

}

        

Structure and Union ◾ 327

/*this closing curly brace specifies the end of 'else'
with if (fnNode!= NULL)*/

}
/*this closing curly brace specifies the end of 'for' loop*/

}
/*this closing curly brace specifies the end of 'if' with
condition (stnode!= NULL)*/
else
/*if memory cannot be assigned successfully malloc() returns a
NULL to stnode; if the condition of above if (stnode!= NULL) is
false following statement is executed*/

printf("Memory cannot be allocated.");
/*output function printf() displays the text in the
quotations as it is on the screen*/

}
/*this closing curly brace specifies the end of definition of
create() function; program control flow returns to the point where
the function was called*/
void display(){
/*definition of display() function starts here with function
header and body; function header is same as function prototype
without semicolon; body of the function is enclosed in curly
braces*/

struct node *tmp;
/*struct node type pointer is declared; tmp is the address of
struct node type variable that has three members- num to store
an integer, and prev and next to store addresses of another
struct node type variables*/
if (ednode == NULL)
/*if last node ednode is NULL above condition is true and
following statement is executed*/

printf("No data found in the list yet.");
/*printf() function displays the text in the quotations as
it is on the screen*/

else{
/*if the linked list is not empty then above condition of 'if'
is false and the following statements, enclosed in the curly
braces, are executed*/

tmp = ednode;
/*struct node type pointer tmp refers to the last node
ednode of the linked list*/
printf("\nData in reverse order are:\n");
/*printf() function displays the text in the double quotations
as it is on the screen except for a newline replaces \n*/
while (tmp!= NULL){
/*condition in the while loop checks if tmp refers to the
first node; the condition is checked, if it is true statements

 328 ◾ Learn Programming with C

in the body, enclosed by curly braces, are executed before
the condition is re-checked; these steps continue until the
condition becomes false in which case the program control
flow exits the loop*/

printf("%d, ", tmp->num);
/*printf() function displays the value of num of current
node tmp on the screen in place of format specifier %d*/
tmp = tmp->prev;
/*pointer tmp now refers to the previous node of the
current node so that the previous node can be checked
and displayed in the next iteration of the loop*/

}
/*this closing curly brace specifies the end of while loop*/

}
/*this closing curly brace specifies the end of else*/

}
/*this closing curly brace specifies the end of the definition of
display() function; program control flow returns to the point where
the function was called*/

PROBLEM-06
Write a program to insert a new node at the beginning of a circular linked list.

Programming Code of the Solution:

        Structure and Union ◾ 329

 330 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and sizeof(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
#include <stdlib.h>
/*header file stdio.h contains prototype of the library function
malloc(); the header file must be included using preprocessor
directive #include before the function is called in the program*/
struct node{

        Structure and Union ◾ 331

/*new data type struct node is created using keyword struct; members
of struct node are declared in the curly braces*/

int item;
/*integer type variable item is declared, this is a member of
the data type struct node*/
struct node *next;
/*struct node type pointer next is declared as second member
of the data type struct node; next contains address of another
node*/

} *stnode;
/*definition of the structured data type must end with a semicolon;
struct node type pointer stnode of the defined data type is declared
here*/
void create(int n);
/*this is the prototype (or declaration) of the user-defined
function create() that must end with a semicolon; create() takes
an integer as parameter, performs some predefined operations, and
returns nothing*/
void insert(int nm);
/*this is the prototype (or declaration) of the user-defined
function insert() that must end with a semicolon; insert() takes
an integer as parameter, performs some predefined operations, and
returns nothing*/
void display(int a);
/*this is the prototype (or declaration) of the user-defined
function display() that must end with a semicolon; display() takes
an integer as parameter, performs some predefined operations, and
returns nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int num1, num2, num3;
/*three integer type variabls are declared; required memory
spaces are allocated for each of the variables*/
stnode = NULL;
/*NULL value is assigned to the starting node stnode*/
printf("Input the number of nodes: ");
/*printf() function displays the text in the quotations as it
is on the screen*/
scanf("%d", &num1);
/*scanf() function reads an integer from input terminal and
stores the value in the memory spaces allocated for the num1*/
create(num1);

332 ◾ Learn Programming with C

/*user-defined function create() is called with real parameter
num1 that refers to the no. of nodes in the linked list; program
control flow shifts to the definition of the function*/
num2=1;
/*value 1 is assigned to the variable num2*/
display(num2);
/*user-defined function display() is called with real parameter
num2; program control flow shifts to the definition of the
function*/
printf("\nInput data to be inserted at the beginning: ");
/*printf() function displays the text in the double quotations
as it is on the screen except for a newline replaces \n*/
scanf("%d", &num3);
/*scanf() function reads an integer from input terminal and
stores the value in the memory spaces allocated for the
num3*/
insert(num3);
/*user-defined function insert() is called with real parameter
num3 that refers to the item of node to be inserted in the
linked list; program control flow shifts to the definition of
the function*/
num2=2;
/*value 2 is assigned to the variable num2*/
display(num2);
/*user-defined function display() is called with real parameter
num2; program control flow shifts to the definition of the
function*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void create(int n){
/*definition of create() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces; real
argument that is passed during the function call replaces virtual
parameter n*/

int i, num4;
/*two integer type variables are declared; required memory
spaces are allocated for the variables; these variables are
local to the function create() and is not visible outside that
function*/
struct node *prev, *newn;

        

Structure and Union ◾ 333

/*two struct node type pointers are declared; prev and newn are
the addresses of two struct node type variables each has two
members- item to store an integer and next to store address of
another struct node type variable*/
stnode = (struct node *)malloc(sizeof(struct node));
/*sizeof() function computes the size of struct node type data,
needed to store an integer and address of another node; required
memory spaces are dynamically allocated by malloc(); address
of the memory space is assigned to struct node type pointer
variable stnode*/
if (stnode == NULL)
/*if memory cannot be assigned successfully malloc() returns
a NULL to stnode; if the condition of if is true following
statement is executed*/

printf("Memory cannot be allocated.");
/*printf() function displays the text in the quotations as
it is on the screen*/

else{
/*if the above condition of if is false, following statements,
enclosed in the curly braces, are executed*/

printf("\nInput data for node #1: ");
/*printf() function displays the text in the double
quotations as it is on the screen except for a newline
replaces \n*/
scanf("%d", &num4);
/*scanf() function reads an integer from input terminal and
stores the value in the memory spaces allocated for the num4*/
stnode->item = num4;
/*value of num4 is assigned to the member item of the first
node stnode of the linked list*/
stnode->next = NULL;
/*next pointer of the first node is set to NULL; there is
no more node after that in the linked list*/
prev = stnode;
/*struct node type pointer prev refers to the first node of
the linked list stnode*/
for (i=2; i<=n; i++){
/*this for loop creates other nodes of the linked list
other than the first node; here i=2 is initialization, i<=n
is condition and i++ is increment; initialization is done
once at the beginning of the loop; then the condition is
checked, if it is true statements in the body, enclosed by
curly braces, are executed and value of i is incremented by
1 before the condition is re-checked; these steps continue
until the condition becomes false in which case the program
control flow exits the loop*/

334 ◾ Learn Programming with C

newn = (struct node *)malloc(sizeof(struct node));
/*sizeof() function computes the size of struct node
type data, needed to store an integer and address of
another node; required memory spaces are dynamically
allocated by malloc(); address of the memory space is
assigned to struct node type pointer variable newn*/
if (newn == NULL){
/*if memory cannot be assigned successfully malloc()
returns a NULL to newn; if the condition of if is true
following statements, enclosed in the curly braces, are
executed*/

printf("Memory cannot be allocated.");
/*output function printf() displays the text in the
quotations as it is on the screen*/
break;
/*as memory cannot be allocated for the node, the
program control flow immediately exits the loop*/

}
/*this closing curly brace specifies the end of 'if'
with condition (newn == NULL)*/
else{
/*if the above condition of if is false, memory is
successfully allocated for the node and the following
statements, enclosed in the curly braces, are executed*/

printf("Input data for node #%d: ", i);
/*output function printf() displays the text in the
quotations as it is on the screen except for the
value of i replaces the format specifier %d*/
scanf("%d", &num4);
/*scanf() function reads an integer from input
terminal and stores the value in the memory spaces
allocated for the num4*/
newn->item = num4;
/*value of num4 is assigned to the member item of
the node newn of the linked list*/
newn->next = NULL;
/*next pointer of the node is set to NULL; there is
no more node after that in the linked list*/
prev->next = newn;
/*newly created node newn is linked with the previous
node prev by assigning the address of newn to the
next pointer of the node prev*/
prev = newn;
/*node prev now refers to the newly created node newn
so that another node can be inserted after that prev
(or newn) node in the next iteration of the loop*/

}

        Structure and Union ◾ 335

/*this closing curly brace specifies the end of 'else'
with if (newn == NULL)*/

}
/*this closing curly brace specifies the end of 'for' loop*/
prev->next = stnode;
/*prev refers to the last node created in the for loop; last
node prev is linked with the first node stnode by assigning
the address of stnode to the next pointer of the node prev*/

}
/*this closing curly brace specifies the end of 'else' with if
(stnode == NULL)*/

}
/*this closing curly brace specifies the end of definition of
create() function; program control flow returns to the point where
the function was called*/
void insert(int nm){
/*definition of insert() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces; real
argument that is passed during the function call replaces virtual
parameter nm*/

struct node *newn, *curn;
/*two struct node type pointers are declared; newn and curn are
the addresses of two struct node type variables each has two
members- item to store an integer and next to store address of
another struct node type variable*/
if (stnode == NULL)
/*if starting node stnode is NULL above condition is true and
following statement is executed*/

printf("No data found in the List yet.");
/*printf() function displays the text in the quotations as
it is on the screen*/

else{
/*if the linked list is not empty then above condition of 'if'
is false and the following statements, enclosed in the curly
braces, are executed*/

newn = (struct node *)malloc(sizeof(struct node));
/*sizeof() function computes the size of struct node type
data, needed to store an integer and address of another
node; required memory spaces are dynamically allocated by
malloc(); address of the memory space is assigned to struct
node type pointer variable newn*/
if (newn == NULL)
/*if memory cannot be assigned successfully malloc() returns
a NULL to newn; if the condition of if is true following
statement is executed*/

printf("Memory cannot be allocated.");

 336 ◾ Learn Programming with C

/*printf() function displays the text in the quotations
as it is on the screen*/

else{
/*if the above condition of if is false, following statements,
enclosed in the curly braces, are executed*/

newn->item = nm;
/*value of nm is assigned to the member item of the new
node newn of the linked list*/
newn->next = stnode;
/*next of new node newn refers to the starting or first
node stnode*/
curn = stnode;
/*struct node type pointer curn refers to the starting
node stnode*/
while (curn->next!= stnode)
/*this while loop finds the last node of the linked
list; if the next of curn does not refer to the first
node the condition is true and following statement
is executed before the condition is re-checked; these
steps continue until the condition becomes false in
which case the program control flow exits the loop*/

curn = curn->next;
/*curn refers to the next node of the current node
curn so that next node can be checked in the next
iteration of the loop*/

curn->next = newn;
/*next of last node of the linked list curn refers to
the new node newn*/
stnode = newn;
/*newly inserted node newn becomes the starting or
first node of the linked list*/

}
/*this closing curly brace specifies the end of 'else' with
if (newn == NULL)*/

}
/*this closing curly brace specifies the end of 'else' with if
(stnode == NULL)*/

}
/*this closing curly brace specifies the end of definition of
insert() function; program control flow returns to the point where
the function was called*/
void display(int a){
/*definition of display() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces; real
argument that is passed during the function call replaces virtual
parameter a*/

        

Structure and Union ◾ 337

struct node *tmp;
/*struct node type pointer is declared; tmp is the address of
struct node type variable that has two members- item to store
an integer and next to store address of another struct node type
variable*/
if (stnode == NULL)
/*if starting node stnode is NULL above condition is true and
following statement is executed*/

printf("No data found in the List yet.");
/*printf() function displays the text in the quotations as
it is on the screen*/

else{
/*if the linked list is not empty then above condition of 'if'
is false and the following statements, enclosed in the curly
braces, are executed*/

tmp = stnode;
/*struct node type pointer tmp refers to the first node
stnode of the linked list*/
if (a==1)
/*if the condition of 'if' is true following statement is
executed*/

printf("\nData entered in the list are:\n");
/*printf() function displays the text in the quotations
as it is on the screen except for a newline replaces
\n*/

else
/*if the condition of above 'if' is false following statement
is executed*/

printf("\nAfter insertion the new list are:\n");
/*printf() function displays the text in the quotations
as it is on the screen except for a newline replaces
\n*/

do{
/*following statements, enclosed in the curly braces, are
executed at the beginning of the loop*/

printf("%d, ", tmp->item);
/*printf() function displays the value of item of
current node tmp on the screen in place of format
specifier %d*/
tmp = tmp->next;
/*pointer tmp now refers to the next node of the current
node so that the next node can be checked and displayed
in the next iteration of the loop*/

}while (tmp!= stnode);
/*if the condition in the 'while' is true, the statements
in body of 'do' are executed before the condition is re-
checked; these steps continue until the condition becomes

338 ◾ Learn Programming with C

false in which case the program control flow exits the
loop*/

}
/*this closing curly brace specifies the end of 'else' with if
(stnode == NULL)*/

}
/*this closing curly brace specifies the end of the definition of
display() function; program control flow returns to the point where
the function was called*/

PROBLEM-07
Write a program to display the truth table of three input EX-OR gate.

Flowchart of the Solution:

Figure 5.1 shows the fowchart followed to solve this problem.

FIGURE 5.1 Flowchart followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Defne struct exor with members a, b, c, and res

Step-3: Initialize i←0

        

Structure and Union ◾ 339

Step-4: If i<8

4.1: c[i]←i%2

4.2: b[i]←(i/2)%2

4.3: a[i]←(i/2)/2

4.4: res[i]←a[i] b[i] c[i]

4.5: i←i+1

4.6: Go to Step-5

Step-5: Initialize j←0

Step-6: If j<8

6.1: Display values of a[j], b[j], c[j], res[j]

6.2: j←j+1

6.3: Go to Step-6

Step-7: Stop

Programming Code of the Solution:

340 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf() and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
struct exor{
/*the keyword struct is used to create the structured data type
exor, and its members are declared within the curly braces*/

int a, b, c, res;
/*four integer type variables are declared, these are the
members of the structured data type exor*/

};
/*definition of structured data type ends with the semicolon without
declaring any variable of the defined data type exor*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int i, j;
/*two integer type variables are declared here; required memory
spaces are allocated for each variable*/
struct exor abc[8];
/*structured exor type array abc of size 8 is declared; each
array element abc[0], abc[1], . . . has four integer type
members a, b, c and res*/
for (i=0; i<8; i++){
/*this for loop is used to generate all 8 combination of
3-digit binary numbers from equivalent decimal numbers (0–7)
and ex-or of each combination; i=0 is the initialization, i<8

        

Structure and Union ◾ 341

is the condition and i++ is the increment; initialization is
done once at the beginning of the loop; then the condition is
checked, if it is true, then statements in the body are executed
and value of i is incremented by 1 before the condition is re-
checked; these steps continue until the condition becomes false
at which point the program flow exits the loop*/

abc[i].c=i%2;
/*LSB is calculated from corresponding decimal numbers 0,
1, 2, . . . in each iteration and stored it in the member c
of each array element abc[]; hence
After 1st iteration- abc[0].c=abc[0].c=i%2=0%2=0
After 2nd iteration- abc[1].c=abc[1].c=i%2=1%2=1
After 3rd iteration- abc[2].c=abc[2].c=i%2=2%2=0 and so
on*/
abc[i].b=(i/2)%2;
/*middle-bit is calculated from corresponding decimal
number 0, 1, 2, . . . in each iteration and stored it in the
member b of each array element abc[]; hence
After 1st iteration- abc[0].b=abc[0].b=(i/2)%2=(0/2)%2=0%2=0
After 2nd iteration- abc[1].b=abc[1].b=(i/2)%2=(1/2)%2=0%2=0
After 3rd iteration- abc[2].b=abc[2].b=(i/2)%2=(2/2)%2=1%2=1
and so on*/
abc[i].a=(i/2)/2;
/*MSB is calculated from corresponding decimal numbers 0,
1, 2, . . . in each iteration and stored it in the member a
of each array element abc[]; hence
After 1st iteration- abc[0].a=abc[0].a=(i/2)/2=(0/2)/2=0/2=0
After 2nd iteration- abc[1].a=abc[1].a=(i/2)/2=(1/2)/2=0/2=0
After 3rd iteration- abc[2].a=abc[2].a=(i/2)/2=(2/2)/2=1/2=0
and so on*/
abc[i].res=abc[i].a^abc[i].b^abc[i].c;
/*EX-OR of particular combination of 3-digit binary number
is calculated in each iteration and stored it in the member
res of array element abc[]; hence
After 1st iteration- abc[0].res=abc[0].a^abc[0].b^abc[0].
c =0^0^0=0
After 2nd iteration- abc[1].res=abc[1].a^abc[1].b^abc[1].
c =0^0^1=1
After 3rd iteration- abc[2].res=abc[2].a^abc[2].b^abc[2].
c =0^1^0=0 and so on*/

}
/*this is the end of 'for' loop*/
printf(" A\tB\tC\tEX-OR\n");
/*printf() function displays the text inside the double
quotations as it is on the screen except for a tab replaces \t
and a newline replaces \n*/
printf("-----------------------------\n");

342 ◾ Learn Programming with C

/*output library function printf() displays the text inside
the double quotations as it is on screen except for a newline
replaces \n*/
for (j=0; j<8; j++)
/*this for loop displays all combination of 3-digit binary numbers
and their corresponding ex-or; j=0 is the initialization, j<8 is
the condition and j++ is the increment; initialization is done
once at the beginning of the loop; then the condition is checked,
if it is true then statement in the body is executed and value of
j is incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false at which point the
program flow exits the loop*/

printf(" %d\t%d\t%d\t %d\n", abc[j].a, abc[j].b, abc[j].c,
abc[j].res);

/*printf() function displays the text inside the double
quotations as it is on screen except for a tab replaces
\t and a newline replaces \n; here the value of abc[j].a
replaces the 1st format specifier %d, the value of abc[j].b
replaces the 2nd %d, the value of abc[j].c replaces the
3rd %d and the value of abc[j].res replaces the 4th
%d; value of j is incremented by 1 from 0 to 7 in each
iteration*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*this closing curly brace specifies the end of main() function; no
statement is executed after that point*/

PROBLEM-08
Write a program that uses functions to perform the following operations:

(a) Reading a complex number

(b) Writing a complex number

(c) Addition of two complex numbers

(d) Multiplication of two complex numbers

Flowchart of the Solution:

Figure 5.2 shows the fowcharts followed to solve this problem.

        

Structure and Union ◾ 343

FIGURE 5.2 Flowcharts followed to solve the problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Defne struct complex with members real and imag

Step-3: op1←read() [call function read()]

Step-4: op2←read() [call function read()]

Step-5: Read value of ch

 344 ◾ Learn Programming with C

Step-6: If ch=‘+’

6.1: op3←add(op1, op2) [call function add()]

6.2: Call function write(op3)

6.3: Go to Step-10

Step-7: If ch=‘*’

7.1: op3←mul(op1, op2) [call function mul()]

7.2: Call function write(op3)

7.3: Go to Step-10

Step-8: Display ‘wrong choice’

Step-9: Stop

Algorithm for the function read():

Step-1: Read values of num.real, op, sym and num2

Step-2: If op=‘-’

2.1: num.imag←-num2

2.2: Go to Step-4

Step-3: num.imag←num2

Step-4: Return value of num

Algorithm for the function add(num1, num2):

Step-1: num3.real←num1.real + num2.real

Step-2: num3.imag←num1.imag + num2.imag

Step-3: Return value of num3

Algorithm for the function mul(num1, num2):

Step-1: num3.real←num1.real×num2.real – num1.imag×num2.imag

Step-2: num3.imag← num1.real×num2.imag + num1.imag×num2.real

Step-3: Return value of num3

Algorithm for the function write(num1):

Step-1: If num1.imag>0

        Structure and Union ◾ 345

1.1: Display value of num1.real+inum1.imag

1.2: Go to Step-2

Step-2: Display value of num1.real-inum1.imag

Step-3: Return

Programming Code of the Solution:

 346 ◾ Learn Programming with C

Input and Output of the Executed Program:

        

Structure and Union ◾ 347

Explanation of the Programming Code:

#include<stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include<conio.h>
/*header file conio.h contains prototypes of the nonstandard
library function getche(); the header file must be included using
preprocessor directive #include before the function is called in
the program*/
struct complex add(struct complex num1, struct complex num2);
/*this is the prototype (or declaration) of the user-defined function
add() that must end with a semicolon; add() takes two struct complex
type values as parameters, performs some predefined operations, and
returns a struct complex type value*/
struct complex mul(struct complex num1, struct complex num2);
/*another user-defined function mul() is declared that must end with
a semicolon; struct complex is the return type, mul is the function
name, and num1 and num2 are two struct complex type parameters
passed to the function*/
void write(struct complex num1);
/*this is the declaration of user-defined function write() that
must end with a semicolon; this function takes struct complex type
variable num1 as argument, displays the complex number num1 in
appropriate form and returns nothing*/
struct complex read();
/*this is the declaration of user-defined function read() that must
end with a semicolon; this function has no argument, it reads a
complex number from keyboard and returns the number*/
struct complex{
/*structured data type complex is created using keyword struct; its
members are declared within the curly braces*/

float real, imag;
/*two float type variables are declared, these are the members
of the structured data type complex*/

};
/*definition of struct complex type data ends with a semicolon;
no variable of the defined data type struct complex is declared
here*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

 348 ◾ Learn Programming with C

struct complex op1, op2, op3;
/*three structured complex type variables are declared here;
each of the variables has two float type members real and imag
that can be accessed through dot (.) operator*/
char ch;
/*character type variable ch is declared; required memory space
of 1 byte is allocated for the variable*/
printf("Enter 1st complex number: ");
/*printf() function displays the text inside the double
quotations as it is on the screen*/
op1=read();
/*user-defined function read() is called, program control flow
shifts to the definition of the function, function read() reads
a complex number from keyboard and returns the value that is
assigned to variable op1*/
printf("Enter 2nd complex number: ");
/*printf() function displays the text inside the double
quotations as it is on the screen*/
op2=read();
/*user-defined function read() is called, program control flow
shifts to the definition of the function, function read() reads
a complex number from the keyboard and returns the value that
is assigned to variable op2*/
printf("Enter + for addition, * for multiplication: ");
/*printf() function displays the text inside the double
quotations as it is on the screen*/
ch=getche();
/*library function getche() is called that reads a character
from keyboard and assign the value to variable ch; the input
character is echoed on the screen immediately without waiting
for enter to be pressed*/
switch (ch){
/*switch..case is used to choose different sets of statements
to be executed depending on different option; here the value of
char type variable ch is checked and based on the value program
control shifts to any one of the following cases, each case has
single or multiple statements to be executed*/

case '+':
/*if ch='+', then all the statements under this case are
executed*/

op3=add(op1, op2);
/*user-defined function add() is called with real
parameters op1 and op2, program control flow shifts
to the definition of function add(); add() does some
defined operation and returns a value that is stored
in op3*/
printf("\n");

        

Structure and Union ◾ 349

/*this printf() function displays a newline on the
screen*/
write(op1);
/*user-defined function write() is called with op1
passed to the function as real parameter; program
control flow shifts to the definition of function
write()*/
printf(" + ");
/*printf() function displays the text inside the double
quotations as it is on the screen*/
write(op2);
/*user-defined function write() is called with op2
passed to the function as real parameter; program
control flow shifts to the definition of function
write()*/
printf(" = ");
/*printf() function displays the text inside the double
quotations as it is on the screen*/
write(op3);
/*user-defined function write() is called with op3
passed to the function as real parameter; program
control flow shifts to the definition of function
write()*/
printf("\n");
/*this printf() function displays a newline on the
screen*/
break;
/*this break statement causes the program control flow
exits the switch..case without executing any of the
following statements inside the switch..case*/

case '*':
/*if ch='*', then all the statements under this case are
executed*/

op3=mul(op1, op2);
/*user-defined function mul() is called with real
parameters op1 and op2, program control flow shifts
to the definition of function mul(); mul() does some
defined operation and returns a value that is stored
in op3*/
printf("\n");
/*this printf() function displays a newline on the
screen*/
write(op1);
/*user-defined function write() is called with op1
passed to the function as real parameter; program
control flow shifts to the definition of function
write()*/

350 ◾ Learn Programming with C

printf(" * ");
/*printf() function displays the text inside the double
quotations as it is on the screen*/
write(op2);
/*user-defined function write() is called with op2 passed
to the function as real parameter; program control flow
shifts to the definition of function write()*/
printf(" = ");
/*printf() function displays the text inside the double
quotations as it is on the screen*/
write(op3);
/*user-defined function write() is called with op3 passed
to the function as real parameter; program control flow
shifts to the definition of function write()*/
printf("\n");
/*this printf() function displays a newline on the
screen*/
break;
/*this break statement causes the program control flow
exits the switch..case without executing any of the
following statements inside the switch..case*/

default:
/*if ch equals neither '+' nor '*', then any of the above
cases does not match and statement under this default is
executed*/

printf("Entered wrong choice, quitting . . . ");
/*printf() function displays text inside the double
quotations as it is on the screen; as default is
the last level to be executed, after this statement,
program control flow immediately exits the switch..
case*/

}
/*this closing curly brace specifies the end of switch..
case*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
struct complex read(){
/*definition of read() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces*/

struct complex num;

        

Structure and Union ◾ 351

/*newly defined struct complex type variable num is declared
here that has two float type members real and imag; both members
can be accessed using dot (.) operator*/
char op, sym;
/*two character type variables are declared; op will be used
to store sign and sym will be used to store symbol i of the
imaginary part of complex number*/
float num2;
/*float type variable num2 is declared that is used to store
value of the imaginary part of complex number*/
printf("(num1+inum2 or num1−inum2) ");
/*printf() function displays text inside the double quotation
as it is on the screen; this printf() gives a text to users
about format of entering complex number and it might be real
part followed by +i/−i followed by imaginary part*/
scanf("%f%c%c%f", &num.real, &op, &sym, &num2);
/*this scanf() function takes four inputs with format displayed
in the above printf(); 1st float number corresponds to first
member real of struct complex type variable num that is accessed
using dot(.) and address operator & as &num.real; 2nd and 3rd
characters correspond to char type variables op and sym; 4th
float number corresponds to variable num2*/
if (op=='−')
/*this if..else initialize second member of the struct complex
type variable num depending on input; if value of op is '−'
then the condition of 'if' is true and following statement
executes*/

num.imag=−num2;
/*value of num2 with – ve sign is assigned to num.imag,
that is, to second member of struct complex type variable
num*/

else
/*if condition of above 'if' is false, means value of op is '+'
then following statement executes*/

num.imag=num2;
/*value of num2 with +ve sign is assigned to num.imag,
that is, to second member of struct complex type variable
num*/

return num;
/*here value of num that has two members real and imag is
returned to the point from where the function read() was
called*/

}
/*this closing curly brace specifies the end of read() function
definition*/
struct complex add(struct complex num1, struct complex num2){

352 ◾ Learn Programming with C

/*definition of add() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces;
here num1 and num2 are virtual parameters that are replaced with
corresponding real parameters used to call the function*/

struct complex num3;
/*newly defined struct complex type variable num3 is declared
here that has two float type members real and imag; both members
can be accessed using dot (.) operator*/
num3.real=num1.real+num2.real;
/*real parts of both the numbers num1 and num2 are added and the
summation value is assigned to member real of num3*/
num3.imag=num1.imag+num2.imag;
/*imaginary parts of both the numbers num1 and num2 are
added and the summation value is assigned to member image
of num3*/
return num3;
/*num3 contains the summation of the two complex numbers and the
result is returned to the point from where the function add()
was called*/

}
/*this closing curly brace specifies the end of add() function
definition*/
struct complex mul(struct complex num1, struct complex num2){
/*this is the header for the user-defined function mul(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces; in this
definition, the value of real parameters replace the virtual
parameters num1 and num2*/

struct complex num3;
/*newly defined struct complex type variable num3 is declared
here that has two float type members real and imag; both members
can be accessed using dot (.) operator; the variable num3 is
local to the function mul() and is not visible outside the
function;*/
num3.real=num1.real*num2.real−num1.imag*num2.imag;
/*imaginary parts of both complex numbers num1 and num2 are
multiplied and subtracted from the multiplication of real parts
of both complex numbers; the result is assigned to member real
of num3*/
num3.imag=num1.real*num2.imag+num1.imag*num2.real;
/*imaginary part of 1st complex number num1 is multiplied with
real part of 2nd complex number num2 and subtracted from the
multiplication of real part of num1 and imaginary part of num2;
the result is assigned to member real of num3*/
return num3;

        Structure and Union ◾ 353

/*num3 contains the multiplication of the two complex numbers
and it is returned to the point where the function mul() was
called*/

}
void write(struct complex num1){
/*this is the header for the user-defined function write(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces; in this
definition the value of real parameter replaces the virtual parameter
num1*/

if (num1.imag>=0)
/*this 'if' checks the sign of imaginary part of the complex
number; imaginary part is stored in the second member of struct
complex type variable num1 which is accessed using dot (.)
operator; if the condition is true, then following statement is
executed*/

printf("(%0.2f+i%0.2f)", num1.real, num1.imag);
/*printf() function displays text inside the double
quotations as it is on the screen except for value of num1.
real replaces the first format specifier %0.2f with two
decimal points precision and value of num1.imag replaces
the second %0.2f*/

else
/* if the condition of above 'if' is false, means the imaginary
part of the complex number has -ve sign then following statement
is xecuted*/

printf("(%0.2f−i%0.2f)", num1.real, num1.imag);
/*printf() function displays text inside the double quotations
as it is on the screen except for value of num1.real replaces
1st format specifier %0.2f with two decimal points precision
and value of num1.imag replaces the 2nd format specifier %0.2f*/

}
/*this closing curly brace specifies the end of write() function
definition*/

PROBLEM-09
Te marks distribution for attendance of the Department of EEE, Dhaka University, is
given below:

Attendance Marks Attendance Marks

90% and above 5.0 70% to <75% 3.0
80% to <90% 4.5 65% to <70% 2.5
70% to <80% 4.0 60% to <65% 2.0
60% to <70% 3.5 Less than 60% 0.0

354 ◾ Learn Programming with C

Tere were 30 classes of EEE-1102 in the current session. Calculate the obtained atten-
dance marks of the following n students:

Class Roll No. of Classes Class Roll No. of Classes
101 27 106 28
102 15 107 12
103 21 108 27
104 19 109 9
105 12 110 28

Flowchart of the Solution:
Figure 5.3 shows the fowcharts followed to solve this problem.

FIGURE 5.3 Flowchart followed to solve the problem.

        Structure and Union ◾ 355

Algorithm of the Solution:

Step-1: Start

Step-2: Defne struct atten with members roll, classno, classper and mark

Step-3: Read values of numstd and classtot

Step-4: Initialize i←0

Step-5: If i<numstd

5.1: Read values of stud[i].roll and stud[i].classno

5.2: stud[i].classper←(stud[i].classno)/classtot)×100

5.3: If stud[i].classper>=90.0

5.3.1: stud[i].mark←5.0

5.3.2: Go to Step-6.11

5.4: If stud[i].classper>=85.0

5.4.1: stud[i].mark←4.5

5.4.2: Go to Step-6.11

5.5: If stud[i].classper>=80.0

5.5.1: stud[i].mark←4.0

5.5.2: Go to Step-6.11

5.6: If stud[i].classper>=75.0

5.6.1: stud[i].mark←3.5

5.6.2: Go to Step-6.11

5.7: If stud[i].classper>=70.0

5.7.1: stud[i].mark←3.0

5.7.2: Go to Step-6.11

5.8: If stud[i].classper>=65.0

5.8.1: stud[i].mark←2.5

5.8.2: Go to Step-6.11

5.9: If stud[i].classper>=60.0

5.9.1: stud[i].mark←2.0

5.9.2: Go to Step-6.11

 356 ◾ Learn Programming with C

5.10: stud[i].mark←0.0

5.11: i←i+1

5.12: Go to Step-5

Step-6: Display values of classes and classtot

Step-7: Initialize i←0

Step-8: If i<numstd

8.1: Display values of stud[i].roll, stud[i].classno, stud[i].classper, and stud[i].mark

8.2: i←i+1

8.3: Go to Step-8

Step-9: Stop

Programming Code of the Solution:

        Structure and Union ◾ 357

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
struct atten{
/*structured data type atten is created using keyword struct; its
members are declared within the curly braces*/

int roll, classno;
/*two int type variables are declared, these are the members of
the data type struct atten*/
float classper, mark;

358 ◾ Learn Programming with C

/*two float type variables are declared as members of the
structured data type atten*/

};
/*definition of structured data type must end with a semicolon;
no variable of the defined data type struct atten is declared
here*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

struct atten stud[100];
/*struct atten type array of size 100 is declared; each of the
array element has two integer type members roll and classno, and
two float type members classper and mark that can be accessed
using dot (.) operator*/
int numstd, classtot, i;
/*three integer type variables are declared and required memory
spaces are allocated for these variables to store data*/
printf("Enter the number of students: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &numstd);
/*function scanf() reads an integer from input terminal and
stores the value in the memory spaces allocated for the variable
numstd*/
printf("Enter total number of classes taken: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &classtot);
/*function scanf() reads an integer from input terminal and stores
it in the memory spaces allocated for the variable classtot*/
for (i=0; i<numstd; i++){
/*here i=0 is initialization, i<numstd is condition and i++ is
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true statements in
the body, enclosed by curly braces, are executed and value of i
is incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false in which case
the program control flow exits the loop*/

printf("\nEnter the roll no. of student #%d: ", i+1);
/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of i+1 replaces the format specifier %d and a newline
replaces \n*/

        Structure and Union ◾ 359

scanf("%d", &stud[i].roll);
/*function scanf() reads an integer from input terminal and
stores it in the member roll of struct atten type array
element stud[]; in each iteration roll number of individual
student is read*/
printf("Enter number of classes attended: ");
/*output function printf() displays the text in the
quotations as it is on the screen*/
scanf("%d", &stud[i].classno);
/*function scanf() reads an integer from input terminal
and stores it in the member classno of struct atten type
array element stud[]; in each iteration number of classes
attended for individual student is read*/
stud[i].classper=((stud[i].classno)/((float) classtot))*100;
/*this arithmetic operation calculates percentage of classes
attended by a student in each iteration; here classtot is
converted to float so that the division operation gives
decimal result rather than integer*/
if (stud[i].classper>=90.0)
/*if the condition is true, means class percentage of a
particular student is greater than or equal to 90, following
statement is executed*/

stud[i].mark=5.0;
/*if class percentage of a student is greater than or
equal to 90 then his mark is 5.0*/

else if (stud[i].classper>=85.0)
/*if the condition is true, means class percentage of a
particular student is between 85 and 90, following statement
is executed*/

stud[i].mark=4.5;
/*value 4.5 is assigned to member mark of a particular
student*/

else if (stud[i].classper>=80.0)
/*if the condition is true, means class percentage of a
particular student is between 80 and 85, following statement
is executed*/

stud[i].mark=4.0;
/*value 4.0 is assigned to member mark of a particular
student*/

else if (stud[i].classper>=75.0)
/*if the condition is true, means class percentage of a
particular student is between 75 and 80, following statement
is executed*/

stud[i].mark=3.5;
/*value 3.5 is assigned to member mark of a particular
student*/

360 ◾ Learn Programming with C

else if (stud[i].classper>=70.0)
/*if the condition is true, means class percentage of a
particular student is between 70 and 75, following statement
is executed*/

stud[i].mark=3.0;
/*value 3.0 is assigned to member mark of a particular
student*/

else if (stud[i].classper>=65.0)
/*if the condition is true, means class percentage of a
particular student is between 65 and 70, following statement
is executed*/

stud[i].mark=2.5;
/*value 2.5 is assigned to member mark of a particular
student*/

else if (stud[i].classper>=60.0)
/*if the condition is true, means class percentage of a
particular student is between 60 and 65, following statement
is executed*/

stud[i].mark=2.0;
/*value 2.0 is assigned to member mark of a particular
student*/

else
/*if all the above condition is false, means class percentage
of a particular student is less than 60, following statement
executed*/

stud[i].mark=0.0;
/*value 0.0 is assigned to member mark of a particular
student*/

}
/*this closing curly brace specifies the end of 'for' loop*/
printf("\nTotal number of classes: %d\n", classtot);
/*output function printf() displays the text in the quotations
as it is on the screen except for the value of classtot replaces
the format specifier %d and a newline replaces \n*/
printf("Roll No. \tAttended Class \tPercentage \tObtained”

" Marks\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n and a
tab replaces \t*/
printf("---\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
for (i=0; i<numstd; i++)
/*here i=0 is initialization, i<numstd is condition and i++ is
increment; initialization is done once at the beginning of the

        

Structure and Union ◾ 361

loop; then the condition is checked, if it is true statement in
the body is executed and value of i is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false in which case the program control flow
exits the loop*/

printf("%d\t\t%d\t\t%0.2f\t\t%0.1f\n", stud[i].roll,
stud[i].classno, stud[i].classper, stud[i].mark);

/*output function printf() displays the text in the
quotations as it is on the screen except for the value of
stud[i].roll replaces the 1st format specifier %d, value
of stud[i].classno replaces the 2nd %d, value of stud[i].
classper replaces the 3rd format specifier %0.2f with two
decimal points precision, value of stud[i].mark replaces
the 4th %0.1f with single decimal point precision, a
newline replaces \n and a tab replaces \t*/

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-10
Answer scripts of final examination of the Department of EEE, Dhaka University,
have been examined by two examiners independently. The obtained final marks of
any course will be average of the two marks. But, if their marks for any particular
script differ by 20% or more, then the script is evaluated by another independent
third examiner. And the obtained final marks of that course will be average of the
two marks of the examiners whose marks are closer. Write a program to read the
following data and determine:

(a) Whether third examination is necessary for a particular answer script.

(b) Obtained fnal marks (out of 70) by each student of a particular course afer third
examination if necessary.

Roll No. 1st Examiner 2nd Examiner Roll No. 1st Examiner 2nd Examiner

1001 65 58 1004 68 48
1002 55 54 1005 50 52
1003 40 30 1006 15 32

362 ◾ Learn Programming with C

Flowchart of the Solution:

Figure 5.4 shows the fowcharts followed to solve this problem.

FIGURE 5.4 Flowcharts followed to solve the problem.

        

Structure and Union ◾ 363

FIGURE 5.4 (Continued)

Algorithm of the Solution:

Step-1: Start

Step-2: Defne struct marks with members roll, marks1, marks2, marks3, third and
marksfnal

Step-3: Initialize ind←0

Step-4: Read values of numstd and markstot

Step-5: Initialize i←0

Step-6: If i<numstd

364 ◾ Learn Programming with C

6.1: Read values of stud[i].roll, stud[i].marks1, and stud[i].marks2

6.2: If |stud[i].marks1−stud[i].marks2|×100/markstot>=20.0

6.2.1: stud[i].third←1

6.2.2: ind←1

6.2.3: Go to Step-6.4

6.3: stud[i].third←0

6.4: i←i+1

6.5: Go to Step-6

Step-7: Initialize i←0

Step-8: If i<numstd

8.1: If stud[i].third=0

8.1.1: stud[i].marksfnal←(stud[i].marks1+stud[i].marks2)/2

8.1.2: Display values of stud[i].roll, stud[i].marks1, stud[i].marks2, and stud[i].
marksfnal

8.1.3: Go to Step-8.3

8.2: Display values of stud[i].roll, stud[i].marks1 and stud[i].marks2, and “Required”

8.3: i←i+1

8.4: Go to Step-8

Step-9: If ind!=1

9.1: Display “no third examination”

9.2: Go to Step-14

Step-10: Initialize i←0

Step-11: If i<numstd

11.1: If stud[i].third=1

11.1.1: Read value of stud[i].marks3

11.1.2: dif12←|stud[i].marks1−stud[i].marks2|

11.1.3: dif23←|stud[i].marks2−stud[i].marks3|

11.1.4: dif31←|stud[i].marks1−stud[i].marks3|

11.1.5: If dif23=dif31

11.1.5.1: stud[i].marksfnal←stud[i].marks3

        

Structure and Union ◾ 365

11.1.5.2: Go to Step-11.2

11.1.6: min←minfn(dif12, dif23, dif31)

11.1.6.1: If min=dif12

11.1.6.1.1: stud[i].marksfnal←(stud[i].marks1+ stud[i].
marks2)/2

11.1.6.1.1: Go to Step-11.2

11.1.6.2: If min=dif23

11.1.6.2.1: stud[i].marksfnal←(stud[i].marks2+ stud[i].
marks3)/2

11.1.6.2.2: Go to Step-11.2

11.1.6.3: stud[i].marksfnal←(stud[i].marks3+ stud[i].marks1)/2

11.2: i←i+1

11.3: Go to Step-11

Step-12: Initialize i←0

Step-13: If i<numstd

13.1: If stud[i].third=1

13.1.1: Display values of stud[i].roll, stud[i].marks1, stud[i].marks2, stud[i].
marks3, and stud[i].marksfnal

13.1.2: Go to Step-14.3

13.2: Display values of stud[i].roll, stud[i].marks1, stud[i].marks2, and stud[i].
marksfnal

13.3: i←i+1

13.4: Go to Step-13

Step-14: Stop

Algorithm for the function minfn(x, y, z):

Step-1: Declare and initialize min1←x

Step-2: If y<min1

2.1: min1←y

Step-3: If z<min1

3.1: min1←z

Step-4: Return value of min1

 366 ◾ Learn Programming with C

Programming Code of the Solution:

Structure and Union    ◾    367

 368 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), and scanf(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
#include <stdlib.h>
/*header file stdlib.h contains prototypes of the library function
abs(); the header file must be included using preprocessor directive
#include before the function is called in the program*/
#include <math.h>
/*header file math.h contains prototypes of the library function
ceil(); the header file must be included using preprocessor directive
#include before the function is called in the program*/
struct marks{

        

Structure and Union ◾ 369

/*structured data type marks is defined using keyword struct; its
members are declared within the curly braces*/

int roll;
/*integer type variable roll is declared as first member of the
data type struct marks*/
int marks1, marks2, marks3;
/*three integer type variables are declared, these are the
members of the data type struct marks*/
int third, marksfinal;
/*two integer type variables are declared, these are the members
of the data type struct marks*/

};
/*definition of structured data type must end with a semicolon; no
variable of the defined data type struct marks is declared here*/
int minfn(int x, int y, int z){
/*user-defined function minfn() is defined here; definition starts
with the function header and body of the function; x, y and z are
the virtual parameters which are replaced by the real arguments
passed during function call; this function computes the minimum of
three integers, and returns the value */

int min1=x;
/*integer min1 is declared and initialized to x; min1 is
local to the function minfn(), and is not visible outside the
function*/
if (y<min1)
/*if condition y<min1 is true then the following statement is
executed*/

min1=y;
/*value of y is assigned to min1*/

if (z<min1)
/*if condition z<min1 is true then the following statement is
executed*/

min1=z;
/*valur of z is assigne to min1*/

return min1;
/*value of min1 is returned to the point where the function was
called*/

}
/*this closing curly brace specifies the end of definition of
minfn() function*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

370 ◾ Learn Programming with C

struct marks stud[100];
/*struct marks type array of size 100 is declared; each of the
array element has six integer type members that can be accessed
using dot (.) operator*/
int numstd, markstot, ind=0, i;
/*integer type variables numstd, markstot and i are declared;
another integer type variable ind is declared and initialized
to 0*/
int diff12, diff23, diff31, min;
/*four integer type variables are declared and required memory
spaces are allocated for these variables to store data*/
printf("Enter number of students: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &numstd);
/*function scanf() reads an integer from the input terminal
and stores it in the memory spaces allocated for the variable
numstd*/
printf("Enter total marks of the exam: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &markstot);
/*function scanf() reads an integer from the input terminal
and stores it in the memory spaces allocated for the variable
markstot*/
for (i=0; i<numstd; i++){
/*here i=0 is initialization, i<numstd is condition and i++ is
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true statements
in the body, enclosed by curly braces, are executed and the
value of i is incremented by 1 before the condition is re-
checked; these steps continue until the condition becomes false
in which case the program control flow exits the loop*/

printf("\nEnter roll no. of student #%d: ", i+1);
/*output function printf() displays the text in the
quotations as it is on the screen except for the value of
i+1 replaces the format specifier %d and a newline replaces
\n*/
scanf("%d", &stud[i].roll);
/*this scanf() function reads an integer from the input
terminal and stores it in the member roll of struct marks
type array stud[]*/
printf("Enter marks of 1st examiner: ");
/*output function printf() displays the text in the quotation
as it is on the screen*/
scanf("%d", &stud[i].marks1);

        

Structure and Union ◾ 371

/*this scanf() function reads an integer from the input
terminal and stores it in the member marks1 of struct marks
type array stud[]*/
printf("Enter marks of 2nd examiner: ");
/*output function printf() displays the text in the
quotations as it is on the screen*/
scanf("%d", &stud[i].marks2);
/*this scanf() function reads an integer from the input
terminal and stores it in the member marks2 of struct marks
type array stud[]*/
if(abs(stud[i].marks1−stud[i].marks2)*100/(float)

markstot>=20.0){
/*here type of markstot is converted to float so that the
operation gives us decimal result; if the result is greater
than or equal to 20 then the condition is true and the
following statements are executed; abs() function in the
expression gives absolute value of its parameter*/

stud[i].third=1;
/*member third of a particular student stud[i] is
set to 1; the member third is accessed using dot (.)
operator*/
ind=1;
/*value of ind is set to 1; if there is no third
examination for any student then above condition never
becomes true and value of ind remains 0*/

}
/*this closing curly brace specifies the end of
'if'condition*/
else
/*if all the above conditions are false, following statement
is executed*/

stud[i].third=0;
/*member third of a particular student stud[i] is
set to 0; the member third is accessed using dot (.)
operator*/

}
printf("\nRoll No.\t1st Examiner\t2nd Examiner\t3rd Examiner"

"\tFinal Marks\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n and a
tab replaces \t; here long string was broken into multiple lines
using two double quotes (““)*/
printf("---\n");
/*output function printf() displays the text in the quotation
as it is on the screen except newline character \n is replaced
by enter*/

372 ◾ Learn Programming with C

for (i=0; i<numstd; i++)
/*here i=0 is initialization, i<numstd is condition and i++ is
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true statement in
the body is executed and value of i is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false in which case the program flow exits
the loop*/

if (stud[i].third==0){
/*if the condition is true, following statements inside the
curly braces are executed*/

stud[i].marksfinal=ceil((stud[i].marks1+
(float) stud[i].marks2)/2);

/*because no third examination is required, final marks
of a particular student is average of the marks – marks1
and marks2; ceil() function computes nearest integer
greater than its parameter*/
printf("%d\t\t%d\t\t%d\t\t%c\t\t%d\n",stud[i].

roll, stud[i].marks1, stud[i].marks2, ' ', stud[i].
marksfinal);

/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of stud[i].roll replaces the 1st format specifier %d,
value of stud[i].marks1 replaces the 2nd %d, the value
of stud[i].marks2 replaces the 3rd %d, the value of
value of stud[i].marksfinal replaces the 4th %d, a
newline replaces \n and a tab replaces \t*/

}
/*this closing curly brace specifies the end of 'if'
condition*/
else
/*if condition of above 'if' is false, following statement
is executed*/

printf("%d\t\t%d\t\t%d\t\t%s\n", stud[i].roll,
stud[i].marks1, stud[i].marks2, "Required");

/*output function printf() displays the value of stud[i].
roll on the screen in place of 1st format specifier %d,
value of stud[i].marks1 in place of 2nd %d, value of
stud[i].marks2 in place of 3rd %d and Required in place
of %s; also, a newline replaces \n and a tab replaces \t*/

if (ind!=1)
/*if the condition is true, means no third examination of any
student is required, following statement is executed*/

printf("\nThere is no third examination and the above”
“result is final.\n");

        

Structure and Union ◾ 373

/*output function printf() displays the text in the
quotations as it is on the screen except for a newline
replaces \n; here long string was broken into multiple
lines using two double quotes (““)*/

else{
/*if condition of above 'if' is false, means third examination
of at least a single student is required, then following for
loop is executed*/

for (i=0; i<numstd; i++){
/*here i=0 is initialization, i<numstd is condition and i++
is increment; initialization is done once at the beginning
of the loop; then the condition is checked, if it is true
statement in the body is executed and the value of i is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false in which
case the program flow exits the loop*/

if (stud[i].third==1){
/*if the condition is true, following statements inside
the curly braces are executeds*/

printf("\nEnter 3rd examiner marks of roll %d: ",
stud[i].roll);

/*output function printf() displays the text in the
quotations as it is on the screen except for the
value of stud[i].roll replaces 1st format specifier
%d and a newline replaces \n*/
scanf("%d", &stud[i].marks3);
/*function scanf() reads an integer from input
terminal and stores it in the member marks3 of
struct atten type array element stud[]*/
diff12=abs(stud[i].marks1−stud[i].marks2);
/*this arithmetic operation calculates the absolute
value of the differences between 1st and 2nd
examination marks*/
diff23=abs(stud[i].marks2−stud[i].marks3);
/*this arithmetic operation calculates the absolute
value of the differences between 2nd and 3rd
examination marks*/
diff31=abs(stud[i].marks1−stud[i].marks3);
/*this arithmetic operation calculates the absolute
value of the differences between 1st and 2nd
examination marks*/
if (diff23==diff31)
/*if this condition is true, means 3drd
examination marks is exactly in the middle of 1st
and 2nd examination marks, following statement is
executed*/

374 ◾ Learn Programming with C

stud[i].marksfinal=stud[i].marks3;
/*this statement sets the marksfinal to 3rd
examination marks of that student*/

else{
/*if condition of above 'if' is false, means 3drd
examination marks is not in the middle of 1st and
2nd examination marks, following statements inside
the curly braces are executed*/

min=minfn(diff12, diff23, diff31);
/*minfn() is called with real parameters diff12,
diff23 and diff31, program control flow shifts
to the function definition; function minfn()
does some defined operations and returns an
integer that is assigned to min*/
if (min==diff12)
/*if this condition is true, means 1st and
2nd examination marks are closest, following
statement is executed*/

stud[i].marksfinal=ceil((stud[i].marks1+
(float) stud[i].marks2)/2);
/*final marks of a particular student is
calculated as average of the marks- marks1
and marks2; ceil() function computes nearest
integer greater than its parameter*/

else if (min==diff23)
/*if condition of above 'if' (min==diff12) is false but
this condition is true, means 2nd and 3rd examination
marks are closest, following statement is executed*/

stud[i].marksfinal=ceil((stud[i].marks2+
(float) stud[i].marks3)/2);
/*final marks of a particular student is
calculated as average of the marks- marks2
and marks3; ceil() function computes nearest
integer greater than its parameter*/

else
/*if both conditions of 'if' (min==diff12) and
'else if' (min==diff23) are false, means 3rd
and 1st examination marks are closest, following
statement is executed*/

stud[i].marksfinal=ceil((stud[i].marks3+
(float) stud[i].marks1)/2);
/*final marks of a particular student is
calculated as average of the marks- marks3
and marks1; ceil() function computes nearest
integer greater than its parameter*/

}

        

Structure and Union ◾ 375

/*this closing curly brace specifies the end of 'else'
with conditions diff23==diff31*/

}
/*this closing curly brace specifies the end of 'if' with
condition (stud[i].third==1)*/

}
/*this closing curly brace specifies the end of 'for' loop*/
printf("\nFinal result after third examination");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
printf("\nRoll No.\t1st Examiner\t2nd Examiner\t3rd Examiner"

"\tFinal Marks\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n and a
tab replaces \t; here long string was broken into multiple lines
using two double quotes (““)*/
printf("---"
"---------------------\n");
/*output function printf() displays the text in the quotations
as it is on the screen except for a newline replaces \n*/
for (i=0; i<numstd; i++)
/*here i=0 is initialization, i<numstd is condition and i++ is
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true statement in
the body is executed and value of i is incremented by 1 before
the condition is re-checked; these steps continue until the
condition becomes false in which case the program flow exits
the loop*/

if (stud[i].third==1)
/*if the condition is true, means third examination was
done for that student, following statement is executed*/

printf("%d\t\t%d\t\t%d\t\t%d\t\t%d\n",stud[i].roll,
stud[i].marks1, stud[i].marks2, stud[i].marks3,
stud[i].marksfinal);

/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of stud[i].roll replaces the 1st format specifier %d,
value of stud[i].marks1 replaces the 2nd %d, value of
stud[i].marks3 replaces the 3rd %d, value of stud[i].
marksfinal replaces the 4th %d, a newline replaces \n
and a tab replaces \t*/

else
/*if condition of above 'if' is false, means no third
examination is required, following statement is executed*/

printf("%d\t\t%d\t\t%d\t\t%c\t\t%d\n",stud[i].roll,
stud[i].marks1, stud[i].marks2, ' ', stud[i].
marksfinal);

376 ◾ Learn Programming with C

/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of stud[i].roll replaces 1st format specifier %d, value
of stud[i].marks1 replaces 2nd %d, value of stud[i].
marksfinal replaces 3rd %d, a newline replaces \n and
a tab replaces \t*/

}
/*this closing curly brace specifies the end of 'else' with
condition ind!=1*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-11
Te annual examination results of n students are tabulated as follows:

Roll No. EEE-1101 EEE-1102 EEE-1103

101 69 56 89
102 80 65 91
103 45 36 68

Write a program to read the data and determine the following:

(a) Grade obtained by each student in each subject.

Marks Letter Grade Grade Point

90% and above A+ 4.00
80% to <90% A 3.50
70% to <60% B 3.00
60% to <70% C 2.50
50% to <60% D 2.00
Less than 50% F 0.00

(b) Total marks and GPA obtained by each student.

(c) Te position of each student based on GPA (for equal GPA, consider who gets the
higher total marks).

(d) Te result should be displayed according to the roll number and merit.

Flowchart of the Solution:

Figure 5.5 shows the fowcharts followed to solve this problem.

        

Structure and Union ◾ 377

FIGURE 5.5 Flowcharts followed to solve the problem.

378 ◾ Learn Programming with C

FIGURE 5.5 (Continued)

        Structure and Union ◾ 379

Algorithm of the Solution:

Step-1: Start

Step-2: Defne struct subject with members mark, point, and letter

Step-3: Defne struct exam with members roll, sub[100], total, gpa, and pos

Step-4: Read values of numstd and numsub

Step-5: Initialize i←0

Step-6: If i<numstd

6.1: Read value of stud[i].roll

6.2: Initialize stud[i].total←0, totgrd←0 and j←0

6.3: If j<numsub

6.3.1: Read value of stud[i].sub[j].mark

6.3.2: If stud[i].sub[j].mark>=90

6.3.2.1: stud[i].sub[j].point←4.00

6.3.2.2: stud[i].sub[j].letter←“A+”

6.3.2.3: Go to Step-6.3.9

6.3.3: If stud[i].sub[j].mark>=80

6.3.3.1: stud[i].sub[j].point←3.50

6.3.3.2: stud[i].sub[j].letter←“A”

6.3.3.3: Go to Step-6.3.9

6.3.4: If stud[i].sub[j].mark>=70

6.3.4.1: stud[i].sub[j].point←3.00

6.3.4.2: stud[i].sub[j].letter←“B”

6.3.4.3: Go to Step-6.3.9

6.3.5: If stud[i].sub[j].mark>=60

7.4.5.1: stud[i].sub[j].point←2.50

7.4.5.2: stud[i].sub[j].letter←“C”

7.4.5.3: Go to Step-6.3.9

6.3.6: If stud[i].sub[j].mark>=50

380 ◾ Learn Programming with C

6.3.6.1: stud[i].sub[j].point←2.00

6.3.6.2: stud[i].sub[j].letter←“D”

6.3.6.3: Go to Step-6.3.9

6.3.7: stud[i].sub[j].point←0.00

6.3.8: stud[i].sub[j].letter←“F”

6.3.9: stud[i].total← stud[i].total+stud[i].sub[j].mark

6.3.10: totgrd←totgrd+stud[i].sub[j].point

6.3.11: j←j+1

6.3.12: Go to Step-6.3

6.4: stud[i].gpa←totgrd/numsub

6.5: i←i+1

6.6: Go to Step-6

Step-7: Initialize i←1

Step-8: If i<=numstd−1

8.1: Initialize j←1

8.2: If j<=numstd−i

8.2.1: If stud[j−1].gpa<stud[j].gpa

8.2.1.1: temp←stud[j−1]

8.2.1.2: stud[j−1]←stud[j]

8.2.1.3: stud[j]←temp

8.2.1.4: Go to Step-8.2.3

8.2.2: If stud[j−1].gpa=stud[j].gpa

8.2.2.1: If stud[j−1].total<stud[j].total

8.2.2.1.1: temp←stud[j−1]

8.2.2.1.2: stud[j−1]←stud[j]

8.2.2.1.3: stud[j]←temp

8.2.3: j←j+1

8.2.4: Go to Step-8.2

8.3: i←i+1

        

Structure and Union ◾ 381

8.4: Go to Step-8

Step-9: Initialize i←0

Step-10: If i<numstd

10.1: stud[i].pos←i+1

10.2: i←i+1

10.3: Go to Step-10

Step-11: Initialize i←0

Step-12: If i<numstd

12.1: Display value of stud[i].roll

12.2: Initialize j←0

12.3: If j<numsub

12.3.1: Display values of stud[i].sub[j].letter, stud[i].sub[j].point, stud[i].gpa
and stud[i].pos

12.3.2: j←j+1

12.3.3: Go to Step-12.3

12.4: i←i+1

12.5: Go to Step-12

Step-13: Initialize i←1

Step-14: If i<=numstd−1

14.1: Initialize j←1

14.2: If j<=numstd−i

14.2.1: If stud[j−1].roll>stud[j].roll

14.2.1.1: temp←stud[j−1]

14.2.1.2: stud[j−1]←stud[j]

14.2.1.3: stud[j]←temp

14.2.2: j←j+1

14.2.3: Go to Step-14.2

14.3: i←i+1

14.4: Go to Step-14

382 ◾ Learn Programming with C

Step-15: Initialize i←0

Step-16: If i<numstd

16.1: Display value of stud[i].roll

16.2: Initialize j←0

16.3: If j<numsub

16.3.1: Display values of stud[i].sub[j].letter, stud[i].sub[j].point, stud[i].gpa
and stud[i].pos

16.3.2: j←j+1

16.3.3: Go to Step-16.3

16.4: i←i+1

16.5: Go to Step-16

Step-17: Stop

Programming Code of the Solution:

        Structure and Union ◾ 383

 384 ◾ Learn Programming with C

Input and Output of the Executed Program:

        Structure and Union ◾ 385

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and gets(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
struct subject{

386 ◾ Learn Programming with C

/*structured data type subject is defined here using keyword struct;
its members are declared within the curly braces*/

int mark;
/*integer type variable mark is declared as member of the data
type struct subject*/
float point;
/*float type variable point is declared as member of the data
type struct subject*/
char *letter;
/*character type pointer letter is declared as member of the
data type struct subject*/

};
/*definition of structured data type must end with a semicolon;
no variable of the defined data type struct subject is declared
here*/
struct exam{
/*structured data type exam is defined here using keyword struct;
its members are declared within the curly braces*/

int roll, total, pos;
/*int type variables roll, total and pos are declared as members
of the structured data type exam, that will be used to store
roll no, obtained total marks and merit position, respectively
of a particular student*/
struct subject sub[10];
/*structured subject type array sub[] with size 10 is declared
as member of the structured data type exam, that will be used
to store information of maximum 10 subjects of a particular
student*/
float gpa;
/*float type variable gpa is declared as member of the structured
data type exam, that will be used to store gpa calculated for
a particular student*/

};
/*definition of structured data type must end with a semicolon; no
variable of the defined data type marks is declared here*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

struct exam stud[100], temp;
/*struct exam type variable temp and an array stud[] of size 100
are declared; members of the variable and the array elements are
accessed using dot (.) operator*/
int numstd, numsub, i, j;

        

Structure and Union ◾ 387

/*four integer type variables are declared; required memory
spaces are allocated for each of the variables*/
float totgrd;
/*a float type variable is declared; required memory spaces are
allocated for the variable*/
printf("Enter the number of students: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &numstd);
/*scanf() function reads an integer from the input terminal
and stores it in the memory spaces allocated for the variable
numstd*/
printf("How many subjects: ");
/*output function printf() displays the text in the quotations
as it is on the screen*/
scanf("%d", &numsub);
/*scanf() function reads an integer from the input terminal
and stores it in the memory spaces allocated for the variable
numsub*/
for (i=0; i<numstd; i++){
/*here i=0 is initialization, i<numstd is condition and i++ is
increment; initialization is done once at the beginning of the
loop; then the condition is checked, if it is true statements in
the body, enclosed by curly braces, are executed and the value
of i is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false in which
case the program flow exits the loop*/

printf("Enter the roll no. of student #%d: ", i+1);
/*output function printf() displays the text in the
quotations as it is on the screen except for the value of
i+1 replaces the format specifier %d*/
scanf("%d", &stud[i].roll);
/*this scanf() function reads an integer from input terminal
and stores it in roll which is a member of struct subject
type array stud[]*/
stud[i].total=0;
/*member total of struct subject type array stud[] is
initialized to 0 that is used to store the total marks of
a particular student; it is initialized to 0, otherwise the
summation operation may give wrong answer because, when we
declare a variable a memory space is allocated for that
variable and the memory space may contain some garbage
value and it adds in the first summation*/
totgrd=0;
/*variable totgrd is initialized to 0 that is used to
store the total grade of a particular student needed to

388 ◾ Learn Programming with C

calculate gpa; it is initialized to 0 to avoid adding up any
garbage value in the first summation*/
for (j=0; j<numsub; j++){
/*here j=0 is initialization, j<numsub is condition and j++
is increment; initialization is done once at the beginning
of the loop; then condition is checked, if it is true
statements in the body, enclosed by curly braces, are
executed and the value of j is incremented by 1 before
the condition is re-checked; these steps continue until
the condition becomes false in which case the program flow
exits the loop*/

printf("Mark obtained in EEE-110%d: ", j+1);
/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of j+1 replaces the format specifier %d*/
scanf("%d", &stud[i].sub[j].mark);
/*this scanf() function reads an integer from input
terminal and stores it in mark which is a member of
struct subject type array sub[] which in turn is
a member of struct exam type array stud[], hence
variable mark is accessed using double dot (.)
operators*/
if (stud[i].sub[j].mark>=90){
/*if the condition is true, means marks of a particular
subject of a particular student is greater than
or equal to 90, then following two statements are
executed*/

stud[i].sub[j].point=4.00;
/*point is a member of struct subject type array
sub[] which in turn is a member of struct exam type
array stud[]; point is accessed using double dot
(.) operators and assigned a value 4.00*/
stud[i].sub[j].letter="A+";
/*character type pointer letter is a member of
struct subject type array sub[] which in turn is
a member of struct exam type array stud[], hence
variable point is accessed using double dot (.)
operators and assigned a string A+*/

}
/*this closing curly brace specifies end of if (stud[i].
sub[j].mark>=90)*/
else if (stud[i].sub[j].mark>=80){
/*if the condition is true, means marks of a particular
subject of a particular student is between 80 and 90,
then following two statements are executed*/

        Structure and Union ◾ 389

stud[i].sub[j].point=3.50;
/*point is a member of struct subject type array
sub[] which in turn is a member of struct exam type
array stud[]; point is accessed using double dot
(.) operators and assigned a value 3.50*/
stud[i].sub[j].letter="A";
/*character type pointer letter is a member of
struct subject type array sub[] which in turn is
a member of struct exam type array stud[], hence
variable point is accessed using double dot (.)
operators and assigned a string A*/

}
/*this closing curly brace specifies end of else if
(stud[i].sub[j].mark>=80)*/
else if (stud[i].sub[j].mark>=70){
/*if the condition is true, means marks of a particular
subject of a particular student is between 70 and 80,
then following two statements are executed*/

stud[i].sub[j].point=3.00;
/*point is a member of struct subject type array
sub[] which in turn is a member of struct exam type
array stud[]; point is accessed using double dot
(.) operators and assigned a value 3.00*/
stud[i].sub[j].letter="B";
/*character type pointer letter is a member of
struct subject type array sub[] which in turn is
a member of struct exam type array stud[], hence
variable point is accessed using double dot (.)
operators and assigned a string B*/

}
/*this closing curly brace specifies end of else if
(stud[i].sub[j].mark>=70)*/
else if (stud[i].sub[j].mark>=60){
/*if the condition is true, means marks of a particular
subject of a particular student is between 60 and 70,
then following two statements are executed*/

stud[i].sub[j].point=2.50;
/*point is a member of struct subject type array
sub[] which in turn is a member of struct exam type
array stud[]; point is accessed using double dot
(.) operators and assigned a value 2.50*/
stud[i].sub[j].letter="C";
/*character type pointer letter is a member of
struct subject type array sub[] which in turn is
a member of struct exam type array stud[], hence

 390 ◾ Learn Programming with C

variable point is accessed using double dot (.)
operators and assigned a string C*/

}
/*this closing curly brace specifies end of else if
(stud[i].sub[j].mark>=60)*/
else if (stud[i].sub[j].mark>=50){
/*if the condition is true, means marks of a particular
subject of a particular student is between 50 and 60,
then following two statements are executed*/

stud[i].sub[j].point=2.00;
/*point is a member of struct subject type array
sub[] which in turn is a member of struct exam type
array stud[]; point is accessed using double dot
(.) operators and assigned a value 2.00*/
stud[i].sub[j].letter="D";
/*character type pointer letter is a member of
struct subject type array sub[] which in turn is
a member of struct exam type array stud[], hence
variable point is accessed using double dot (.)
operators and assigned a string D*/

}
/*this closing curly brace specifies end of else if
(stud[i].sub[j].mark>=50)*/
else{
/*if all the above conditions of 'if' and 'else if'
are false, means marks of a particular subject of a
particular student is less than 50, then following two
statements are executed*/

stud[i].sub[j].point=0.00;
/*point is a member of struct subject type array
sub[] which in turn is a member of struct exam type
array stud[]; point is accessed using double dot
(.) operators and assigned a value 0.00*/
stud[i].sub[j].letter="F";
/*character type pointer letter is a member of
struct subject type array sub[] which in turn is
a member of struct exam type array stud[], hence
variable point is accessed using double dot (.)
operators and assigned a string F*/

}
/*this closing curly brace specifies end of above
'else'*/
stud[i].total+=stud[i].sub[j].mark;
/*this arithmetic operation computes total marks of a
particular student by adding obtained marks of all the
subjects; in each iteration of first 'for' loop one

        

Structure and Union ◾ 391

particular student is considered and in each iteration of
second 'for' loop individual subject of that particular
student is considered*/
totgrd+=stud[i].sub[j].point;
/*this arithmetic operation computes total grades of
a particular student by adding all grade-points of
individual subject; in each iteration of first 'for'
loop one particular student is considered and in each
iteration of second 'for' loop individual subject of
that particular student is considered*/

}
/*this closing curly brace specifies end of for (j=0;
j<numsub; j++)*/
stud[i].gpa=totgrd/numsub;
/*gpa of each student is calculated from total grade-point
totgrd of that particular student; in each iteration of
first 'for' loop individual student is considered*/

}
/*this closing curly brace specifies end of for (i=0; i<numstd;
i++)*/
for (i=1; i<=numstd−1; i++)
/*here i=1 is initialization, i<=numstd−1 is condition and i++
is increment; initialization is done once at the beginning
of the loop; then the condition is checked, if it is true
statement in the body is executed and the value of i is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false in which case
the program flow exits the loop; this for loop together with
the following for loop sort students based on their gpa in
ascending order*/

for (j=1; j<=numstd−i; j++)
/*here j=1 is initialization, j<numstd−i is condition
and j++ is increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true statement in the body is executed and the value of
j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false in
which case the program flow exits the loop*/

if (stud[j−1].gpa<stud[j].gpa){
/*if the condition is true then following statements,
enclosed within curly braces, are executed; here gpa
of two contiguous students are compared, if the larger
gpa stays above the smaller one then they are swapped*/

temp=stud[j−1];
/*array element stud[j−1] is stored in variable
temp*/

392 ◾ Learn Programming with C

stud[j−1]=stud[j];
/*array element stud[j] is stored in array element
stud[j−1]*/
stud[j]=temp;
/*value of temp is stored in array element stud[j],
that is stud[j−1] now becomes stud[j]*/

}
/*this closing curly brace specifies the end of 'if'*/
else if (stud[j−1].gpa==stud[j].gpa)
/*if above 'if' condition is false then this 'else
if' condition is checked; if this condition is true,
means gpa of two contiguous students are equal then
following 'if' condition is executed to sort students
according to their obtained total marks in ascending
order*/

if (stud[j−1].total<stud[j].total){
/*if this condition is true then following
statements, enclosed in the curly braces, are
executed; here total of two contiguous students
are compared, if the larger total stays above the
smaller one then they are swapped*/

temp=stud[j−1];
/*array element stud[j−1] is stored in
variable temp*/
stud[j−1]=stud[j];
/*array element stud[j] is stored in array
element stud[j−1]*/
stud[j]=temp;
/*value of temp is stored as array element
stud[j], that is stud[j−1] now becomes
stud[j]*/

}
/*this closing curly brace specifies the end of
'if' with condition*/

for (i=0; i<numstd; i++)
/*this for loop is used to set position of individual student
according to sorted gpa; here i=0 is initialization, i<numstd
is condition and i++ is increment; initialization is done once
at the beginning of the loop; then the condition is checked, if
it is true statement in the body is executed and the value of i
is incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false in which case
the program flow exits the loop*/

stud[i].pos=i+1;
/*member pos of struct exam type array stud[] is set to i+1;
at 1st iteration position of 1st student is set to stud[0].

        

Structure and Union ◾ 393

pos=1, at 2nd iteration position of 2nd student is set to
stud[1].pos=2, and so on*/

printf("\nResult according to merit position:\n");
/*output function printf() displays the text in the double
quotations as it is on the screen except for a newline replaces
\n*/
for (i=0; i<numstd; i++){
/*this for loop is used to display information of individual
student according to sorted gpa; here i=0 is initialization,
i<numstd is condition and i++ is increment; initialization is
done once at the beginning of the loop; then the condition is
checked, if it is true statements in the body are executed and
the value of i is incremented by 1 before the condition is re-
checked; these steps continue until the condition becomes false
in which case the program flow exits the loop*/

printf("Roll No.: %d\n", stud[i].roll);
/*output function printf() displays the text in the
quotations as it is on the screen except for the value of
stud[i].roll replaces the format specifier %d and a newline
replaces \n*/
for (j=0; j<numsub; j++)
/*this for loop is used to display information of all
subjects of individual student according to sorted gpa;
here j=0 is initialization, j<numsub is condition and j++
is increment; initialization is done once at the beginning
of the loop; then the condition is checked, if it is true
statements in the body is executed and the value of i is
incremented by 1 before the condition is re-checked; these
steps continue until the condition becomes false in which
case the program flow exits the loop*/

printf("EEE−110%d: %s (%0.2f)\n", j+1, stud[i].sub[j].
letter, stud[i].sub[j].point);

/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of j+1 replaces format specifier %d, string value of
stud[i].sub[j].letter replaces %s, value of stud[i].
sub[j].point replaces %0.2f with two decimal points
precision and a newline replaces \n*/

printf("GPA: %0.2f\nMerit Position: %d\n\n", stud[i].gpa,
stud[i].pos);

/*output function printf() displays the text in the
quotations as it is on the screen except for the value of
stud[i].pos replaces format specifier %d, value of stud[i].
gpa replaces %0.2f with two decimal points precision and a
newline replaces \n*/

}

394 ◾ Learn Programming with C

/*this closing curly brace specifies the end of for (i=0;
i<numstd; i++) loop*/
for (i=1; i<=numstd−1; i++)
/*here i=1 is initialization, i<=numstd−1 is condition and i++
is increment; initialization is done once at the beginning of
the loop; then condition is checked, if it is true statement
in the body is executed and value of i is incremented by 1
before the condition is re-checked; these steps continue until
the condition becomes false in which case the program flow
exits the loop; this for loop together with the following for
loop sort students according to their roll no in ascending
order*/

for (j=1; j<=numstd−i; j++)
/*here j=1 is initialization, j<numstd−i is condition
and j++ is increment; initialization is done once at the
beginning of the loop; then the condition is checked, if it
is true statement in the body is executed and the value of
j is incremented by 1 before the condition is re-checked;
these steps continue until the condition becomes false in
which case the program flow exits the loop*/

if (stud[j−1].roll>stud[j].roll){
/*if this condition is true then following statements,
enclosed in the curly braces, are executed; here
roll of two contiguous students are compared, if the
larger roll stays above the smaller one then they are
swapped*/

temp=stud[j−1];
/*array element stud[j−1] is stored in variable
temp*/
stud[j−1]=stud[j];
/*array element stud[j] is stored in array element
stud[j−1]*/
stud[j]=temp;
/*value of temp is stored in array element stud[j],
that is stud[j−1] now becomes stud[j]*/

}
/*this closing curly brace specifies the end of 'if'
condition*/

printf("\nResult according to roll no.:\n");
/*output function printf() displays the text in the double
quotations as it is on the screen except for a newline replaces
\n*/
for (i=0; i<numstd; i++){
/*this for loop is used to display information of individual
student according to sorted roll; here i=0 is initialization,
i<numstd is condition and i++ is increment; initialization is

        

Structure and Union ◾ 395

done once at the beginning of the loop; then the condition is
checked, if it is true statements in the body are executed and
the value of i is incremented by 1 before the condition is re-
checked; these steps continue until the condition becomes false
in which case the program flow exits the loop*/

printf("Roll No.: %d\n", stud[i].roll);
/*output function printf() displays the text in the
quotations as it is on the screen except for the value of
stud[i].roll replaces the format specifier %d and a newline
replaces \n*/
for (j=0; j<numsub; j++)
/*this for loop is used to display information of all
subjects of individual student according to sorted gpa;
here j=0 is initialization, j<numsub is condition and
j++ is increment; initialization is done once at the
beginning of the loop; then the condition is checked,
if it is true statements in the body are executed and
the value of i is incremented by 1 before the condition
is re-checked; these steps continue until the condition
becomes false in which case the program flow exits the
loop*/

printf("EEE−110%d: %s (%0.2f)\n", j+1, stud[i].sub[j].
letter, stud[i].sub[j].point);

/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of j+1 replaces the format specifier %d, string value
of stud[i].sub[j].letter replaces %s, value of stud[i].
sub[j].point replaces %0.2f with two decimal points
precision and a newline replaces \n*/

printf("GPA: %0.2f\nMerit Position: %d\n\n", stud[i].gpa,
stud[i].pos);

/*output function printf() displays the text in the
quotations as it is on the screen except for the value
of stud[i].pos replaces the format specifier %d, value
of stud[i].gpa replaces the %0.2f with two decimal points
precision and a newline replaces \n*/

}
/*this closing curly brace specifies the end of for (i=0;
i<numstd; i++) loop*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

396 ◾ Learn Programming with C

PROBLEM-12
Write a program to create a linear linked list interactively and delete a specifed node
from the list. Te program will display all the items before and afer deletion.

Flowchart of the Solution:

Figure 5.6 shows the fowcharts followed to solve this problem.

FIGURE 5.6 Flowcharts followed to solve the problem.

        

Structure and Union ◾ 397

FIGURE 5.6 (Continued)

 398 ◾ Learn Programming with C

Algorithm of the Solution:

Step-1: Start

Step-2: Defne struct list node with members num and next

Step-3: Call function create(head)

Step-4: Call function print(head)

Step-5: If head->num≠−99

5.1: head←delet(head) [call function delet()]

5.2: Call function print(head)

Step-6: Display enter

Step-7: Stop

Algorithm for the function create(pt):

Step-1: Initialize count←0

Step-2: Read value of key

Step-3: If key=−99

3.1: If count=0

3.1.1: pt->num←−99

3.1.2: pt->next←0

3.1.3: Go to Step-8

3.2: head1->next←0

3.3: free(pt)

3.4: Go to Step-8

Step-4: count←count+1

Step-5: head1←pt

Step-6: pt->num←key

Step-7: Call function create(pt->next)

Step-8: Return.

        

Algorithm for the function print(pt):

Step-1: If pt->num=−99

1.1: Display ‘empty list’

1.2: Go to Step-4

Step-2: If pt->next=0

2.1: Display value of pt->num

2.2: Go to Step-4

Step-3: Display value of pt->num

Step-4: Return.

Algorithm for the function fnd(pt, key):

Step-1: If pt->next=0

1.1: If pt->num≠key

1.1.1: Go to Step-3.1

Step-2: If pt->next->num=key

2.1: Return value of pt

Step-3: If pt->next->next=0

3.1: Return 0

Step-4: Call function fnd(pt->next, key)

Algorithm for the function delet(pt):

Step-1: Read value of key

Step-2: If pt->num=key

2.1: If pt->next=0

2.1.1: pt->num←−99

2.1.2: Go to Step-9

2.2: temp←pt->next

2.3: free(pt)

2.4: pt←temp

Structure and Union ◾ 399

 400 ◾ Learn Programming with C

2.5: Go to Step-9

Step-3: ptr←fnd(pt, key) [call function fnd()]

Step-4: If ptr=0

4.1: Display ‘key not found’

4.1: Go to Step-9

Step-5: If ptr->next->next=0

5.1: free(ptr->next)

5.2: ptr->next←0

5.3: Go to Step-9

Step-6: temp←ptr->next->next

Step-7: free(ptr->next)

Step-8: ptr->next→temp

Step-9: Return value of pt

Programming Code of the Solution:

        Structure and Union ◾ 401

 402 ◾ Learn Programming with C

Input and Output of the Executed Program:

        

Structure and Union ◾ 403

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf() and sizeof(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
#include <stdlib.h>
/*header file stdio.h contains prototypes of the library functions
free(), and malloc(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
typedef struct list{
/*new data type struct list is created using keyword struct; members
of struct list are declared in the curly braces*/

int num;
/*integer type variable num is declared, this is a member of
the data type struct list*/
struct list *next;
/*struct list type pointer next is declared as second member
of the data type struct list; next contains address of another
struct list*/

} node;
/*keyword typedef gives struct list a new name node and after this
definition identifier node can be used as an abbreviation of the
data type struct list; definition of the structured data type must
end with a semicolon; no variable of the defined data type struct
list is declared here*/
void create(node *pt);
/*this is the prototype (or declaration) of the user-defined function
create() that must end with a semicolon; create() takes node type
pointer as parameter, performs some predefined operations, and
returns nothing*/
void print(node *pt);
/*this is the prototype (or declaration) of the user-defined
function print() that must end with a semicolon; print() takes node
type pointer as parameter, performs some predefined operations, and
returns nothing*/
node *find(node *pt, int key);
/*this is the prototype (or declaration) of the user-defined
function find() that must end with a semicolon; find() takes a node
type pointer and an integer as parameters, performs some predefined
operations, and returns a node type pointer*/
node *delet(node *pt);
/*this is the prototype (or declaration) of the user-defined
function delet() that must end with a semicolon; delet() takes

404 ◾ Learn Programming with C

a node type pointer as parameter, performs some predefined operations,
and returns a node type pointer*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

node *head;
/*node type pointer head is declared; head is the address of a
struct list type variable that has two members- num to store
an integer and next to store address of another node type
variable*/
head=(node *)malloc(sizeof(node));
/*sizeof() function computes the size of node type data, needed
to store an integer and address of another node; required
memory spaces are dynamically allocated by malloc(); address
of the memory space is assigned to node type pointer variable
head*/
create(head);
/*user-defined function create() is called with real parameter
head that refers to the 1st node of the linked list; program
control flow shifts to the definition of the function*/
printf("List of items before deletion:\n");
/*printf() function displays the text in the quotations as it
is on the screen except for a newline replaces \n*/
print(head);
/*user-defined function print() is called with real parameter
head that refers to the first node of the linked list; program
control flow shifts to the definition of the function*/
if (head->num!=−99){
/*member of structured data type variable is accessed using
pointer operator; pointer head refers to the first node of
the linked list; if value of member num of first node head is
any integer other than −99, then the linked list is not empty,
and following statements, enclosed in the curly braces, are
executed*/

head=delet(head);
/*user-defined function delet() is called with real
parameter head that refers to the first node of the linked
list; program control flow shifts to the definition of the
function that does some pre-defined operation and returns a
node type pointer that is assigned to head*/
printf("List of items after deletion:\n");
/*printf() function displays the text in the double
quotations as it is on the screen except for a newline
replaces \n*/

        

Structure and Union ◾ 405

print(head);
/*user-defined function print() is called with real
parameter head that refers to the first node of the linked
list; program control flow shifts to the definition of the
function*/

}
/*this closing curly brace specifies the end of 'if'*/
printf("\n");
/*this printf() displays a newline on the screen*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void create(node *pt){
/*definition of create() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces; real
argument that is passed during the function call replaces virtual
parameter pt*/

int key;
/*an integer type variable key is declared; required memory
space is allocated for the variable; this variable is local
to the function create() and is not visible outside that
function*/
static int count=0;
/*an integer type variable count is declared and initialized to
0; the variable is declared as static, means the value of count
is preserved between the function calls and until the end of
the program execution*/
static node *head1;
/*a node type pointer head1 is declared; the pointer is declared
as static, means this pointer is alive until the end of the
program execution; this is done so that address of a created
node is preserved between function calls*/
printf("Input a number (−99 to end): ");
/*printf() function displays the text in the double quotations
as it is on the screen*/
scanf("%d", &key);
/*scanf() function reads an integer from input terminal and
stores the value in the memory spaces allocated for the key*/
if (key==−99){
/*if key is −99, we do not want to add anymore node in the
linked list, and the statements in the body of 'if', enclosed
by curly braces, are executed*/

406 ◾ Learn Programming with C

if (count==0){
/*if count equals 0, the linked list is empty, and
following statements, enclosed in the curly braces, are
executed*/

pt->num=−99;
/*value of the member num of first node of the linked
list is set to −99*/
pt->next=0;
/*next pointer of the first node is set to 0; there is
no more node after that in the linked list*/

}
/*this is the end of 'if' with condition (count==0)*/
else{
/*if key=−99 but count≠0, the linked list is not empty and
we do not want to add anymore node to the linked list, and
following statements, enclosed in the curly braces, are
executed*/

head1->next=0;
/*next pointer of the last node is set to 0, here is no
more node after that in the linked list*/
free(pt);
/*memory space allocated for node pt is freed*/

}
/*this is the end of above 'else' with condition (count==0)*/

}
/*this is the end of 'if' with condition (key==−99)*/
else{
/*if key≠−99, we want to add more node in the linked list
and following statements, enclosed by curly braces, are
executed*/

count++;
/*value of 'count' is incremented by 1 to count the number
of node added in the linked list*/
head1=pt;
/*node pointer pt, passed as argument in the function call,
is assigned to head1; that is, head1 always refer to the
last node of the linked list*/
pt->num=key;
/*value of key, entered by user, is assigned to member num
of the last node pt*/
pt->next=(node *)malloc(sizeof(node));
/*a new node is created whose address is assigned to the
member next of last node pt of the linked list, hence next
of pt points to another node; sizeof() function calculates
the size of node type data, needed to store an integer
and address of another node; required memory spaces are
dynamically allocated by malloc()*/

        

Structure and Union ◾ 407

create(pt->next);
/*user-defined function create() is called again to define
the newly created node; program control flow shifts to
definition of the function create()*/

}
/*this is the end of else with condition (key==−99)*/

}
/*this closing curly brace specifies the end of definition of
create() function; program control flow returns to the point where
the function was called*/
void print(node *pt){
/*definition of print() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces; real
argument that is passed during the function call replaces virtual
parameter pt*/

if (pt->num==−99)
/*if value of the member num of first node pt is −99, the linked
list is empty, and following statement is executed*/

printf("The list is empty.");
/*printf() function displays the text in the quotations as
it is on the screen*/

else if (pt->next==0)
/*if pt->num≠−99, linked list is not empty, and we check if pt
is the last node; if pt is the last node of the linked list
then condition of 'else if' is true and following statement is
executed*/

printf("%d, ", pt->num);
/*printf() function displays the value of num of last node
pt on the screen in place of format specifier %d*/

else{
/*if pt->num≠−99, linked list is not empty, and pt->next≠0, pt is
not the last node, in that case, following statements are executed*/

printf("%d, ", pt->num);
/*printf() function displays the value of num of current
node pt on the screen in place of format specifier %d*/
print(pt->next);
/*user-defined function print() is called with real
parameter pt->next that refers to the next node of the
linked list; program control flow shifts to the definition
of the function*/

}
/*this closing curly brace specifies the end of else*/

}
/*this closing curly brace specifies the end of the definition of
print() function; program control flow returns to the point where
the function was called*/

 408 ◾ Learn Programming with C

node *find(node *pt, int key){
/*definition of the user-defined function find() begins with the
function header and body of the function; function header is exactly
same as the function prototype except for no semicolon is used,
and body of the function is enclosed in curly braces; here pt and
key are the virtual parameters which are replaced by real arguments
passed during function call*/

if (pt->next==0 && pt->num!=key)
/*if pt is the last node and value of num is not the key,
the item is not found in the linked list, and the following
statement is executed*/

return 0;
/*this statement returns 0 to the point where the function
was called*/

else if (pt->next->num==key)
/*if pt is not the last node or key is not found in the current
node, then we check the value of num of the next node; if
the value of num of the next node of pt equals key following
statement is executed*/

return pt;
/*if the key is found in the next node of pt, then this
statement returns the pointer of node pt to the point where
the function was called*/

else if (pt->next->next==0)
/*if pt is not the last node or key is not found in the current
node or the next node, and next node is the last node following
statement is executed*/

return 0;
/*this statement returns 0 to the point where the function
was called*/

else
/*if current node pt or next node of pt is not the last node
and key is not found in that node, then the following statement
is executed*/

find(pt->next, key);
/*if the key is not available in the current or next node,
we call function find() again to search the next nodes for
the key; program control flow shifts to the definition of
the function*/

}
/*this closing curly brace specifies the end of definition of find()
function*/
node *delet(node *pt){
/*definition of user-defined function delet() begins with the
function header and body of the function; function header is exactly
same as the function prototype except for no semicolon is used and
body of the function is enclosed in curly braces; here pt is the

        

Structure and Union ◾ 409

virtual parameter which is replaced by real argument passed during
function call*/

int key;
/*an integer type variable key is declared that is local
to the function delet() and is not visible outside that
function*/
node *ptr, *temp;
/*two node type pointers ptr and temp are declared; these
pointers are local to the function delet() and are not visible
outside that function*/
printf("\nWhat is the item to be deleted? ");
/*printf() function displays the text in the quotations as it
is on the screen except for a newline replaces \n*/
scanf("%d", &key);
/*scanf() function reads an integer from input terminal and
stores the value in the memory spaces allocated for the key*/
if (pt->num==key){
/*if key is found in the first node pt, then the condition of
'if' is true and following 'if else', enclosed in the curly
braces, are executed*/

if (pt->next==0)
/*if key is found in the first node pt and eventually it is
the last node also then condition of this 'if' is true and
following statement is executed*/

pt->num=−99;
/*value of num of the first and last node is set to
−99 that deletes the only node of the linked list and
convert it to an empty list*/

else{
/*if key is found in the first node pt but it is not the
last node then to delete that first node pt, following
statements in the body of 'else' (enclosed by curly braces)
are executed*/

temp=pt->next;
/*next node of pt is stored in the node type pointer
temp*/
free(pt);
/*calling library function free() with parameter pt,
that deletes the first node pt*/
pt=temp;
/*second node of the linked list that was saved in
pointer temp is now assigned to pt that makes it the
first node of the list*/

}
/*this is the end of 'else'*/

}
/*this is the end of 'if' with condition (pt->num==key)*/

410 ◾ Learn Programming with C

else{
/*if key is not found in the first node then following
statements in the body of 'else', enclosed in curly braces, are
executed*/

ptr=find(pt, key);
/*user-defined function find() is called with argument pt
and key; program control flow shifts to the definition of
the function; find() searches the linked list for key, if
key is not found it returns 0 that is assigned to ptr; if
key is found in the next node of pt then pointer pt is
returned that is assigned to ptr*/
if (ptr==0)
/*if key is not found in the linked list then above condition
is true and following statement is executed*/

printf("Key not found.\n");
/*printf() function displays the text in the quotations
as it is on the screen except for a newline replaces
\n*/

else if (ptr->next->next==0){
/*if key is found in the last node then above condition of
'else if' is true and following statements, enclosed in the
curly braces, are executed to delete the last node*/

free(ptr->next);
/*library function free() is called to free next node
of ptr, which is the last node of the linked list where
the key was found*/
ptr->next=0;
/*make the current node ptr as the last node by setting
its 'next' value to 0*/

}
/*this is the end of 'else if' with condition (ptr->next-
>next==0)*/
else{
/*if key is found in the next node of ptr, but the node is not
the last one of the linked list then following statements,
enclosed in curly braces, are executed to delete the next
node of ptr; this operation is more understandable if we
consider ptr as the 3rd node, ptr->next refers to 4th node
and ptr->next->next refers to 5th node; here we need to
delete the 4th node*/

temp=ptr->next->next;
/*next node of the node ptr->next (5th node) is saved
to node type pointer temp; temp now refers to the 5th
node of the linked list*/
free(ptr->next);
/*library function free() is called to free next node
of ptr, which is the 4th node of the linked list where
the key was found*/

        

Structure and Union ◾ 411

ptr->next=temp;
/*5th node is linked with the 3rd node; previously next
of the 3rd node (ptr->next) holds the address of the
4th node and now ptr->next holds the address of the 5th
node*/

}
/*this is the end of 'else' with condition (ptr==0)*/

}
/*this is the end of 'else' with condition (pt->num==key)*/
return pt;
/*pointer of the first node pt of the linked list is returned
to the point where the function was called*/

}
/*this closing curly brace specifies the end of the definition of
delet() function*/

PROBLEM-13
Write a program to create a linear linked list interactively and insert a given item before
and afer a specifed node of the list. Te program will display all the items before and
afer insertion.

Flowchart of the Solution:

Figure 5.7 shows the fowcharts followed to solve this problem.

FIGURE 5.7 Flowcharts followed to solve the problem.

412 ◾ Learn Programming with C

FIGURE 5.7 (Continued)

        

Structure and Union ◾ 413

FIGURE 5.7 (Continued)

Algorithm of the Solution:

Step-1: Start

Step-2: Defne struct list node with members num and next

Step-3: Call function create(head)

Step-4: Call function print(head)

Step-5: If head->num≠−99

5.1: head←insert(head) [call function insert()]

5.2: Call function print(head)

Step-6: Display enter

Step-7: Stop

Algorithm for the function create(pt):

Step-1: Initialize count←0

Step-2: Read value of key

Step-3: If key=−99

 414 ◾ Learn Programming with C

3.1: If count=0

3.1.1: pt->num←−99

3.1.2: pt->next←0

3.1.3: Go to Step-8

3.2: head1->next←0

3.3: free(pt)

3.4: Go to Step-8

Step-4: count←count+1

Step-5: head1←pt

Step-6: pt->num←key

Step-7: Call function create(pt->next)

Step-8: Return.

Algorithm for the function print(pt):

Step-1: If pt->num=−99

1.1: Display ‘empty list’

1.2: Go to Step-4

Step-2: If pt->next=0

2.1: Display value of pt->num

2.2: Go to Step-4

Step-3: Display value of pt->num

Step-4: Return.

Algorithm for the function fnd(pt, key):

Step-1: If pt->next=0

1.1: If pt->num≠key

1.1.1: Go to Step-3.1

Step-2: If pt->next->num=key

2.1: Return value of pt

        Structure and Union ◾ 415

Step-3: If pt->next->next=0

3.1: Return 0

Step-4: Call function fnd(pt->next, key)

Algorithm for the function insert(pt):

Step-1: Read value of nmb and key

Step-2: If pt->num=key

2.1: temp->num←nmb

2.2: temp->next←pt

2.3: pt←temp

2.4: Go to Step-8

Step-3: ptr←fnd(pt, key) [call function fnd()]

Step-4: If ptr=0

4.1: Display ‘key not found’

4.1: Go to Step-8

Step-5: temp->num←nmb

Step-6: temp->next←ptr->next

Step-7: ptr->next←temp

Step-8: Return value of pt

Programming Code of the Solution:

 416 ◾ Learn Programming with C

        Structure and Union ◾ 417

 418 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
printf(), scanf(), and sizeof(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
#include <stdlib.h>
/*header file stdlib.h contains prototypes of the library functions
free(), and malloc(); the header file must be included using
preprocessor directive #include before the functions are called in
the program*/
typedef struct list{
/*new data type struct list is created using keyword struct; members
of struct list are declared in the curly braces*/

int num;
/*integer type variable num is declared, this is a member of
the data type struct list*/
struct list *next;
/*struct list type pointer next is declared as second member
of the data type struct list; next contains address of another
struct list*/

} node;
/*keyword typedef gives struct list a new name node and after this
definition identifier node can be used as an abbreviation of the
data type struct list; definition of the structured data type must
end with a semicolon; no variable of the defined data type struct
list is declared here*/
void create(node *pt);

        

Structure and Union ◾ 419

/*this is the prototype (or declaration) of the user-defined function
create() that must end with a semicolon; create() takes node type
pointer as a parameter, performs some predefined operations, and
returns nothing*/
void print(node *pt);
/*this is the prototype (or declaration) of the user-defined function
print() that must end with a semicolon; print() takes node type
pointer as a parameter, performs some predefined operations, and
returns nothing*/
node *find(node *pt, int key);
/*this is the prototype (or declaration) of the user-defined
function find() that must end with a semicolon; find() takes a node
type pointer and an integer as parameters, performs some predefined
operations, and returns a node type pointer*/
node *insert(node *pt);
/*this is the prototype (or declaration) of the user-defined function
delet() that must end with a semicolon; delet() takes a node type
pointer as a parameter, performs some predefined operations, and
returns a node type pointer*/
int main(){
/*all C programs must have a main() function with return type void
or int; here, there is no parameter of the main() function, and it
returns an integer; opening curly brace specifies the start of the
main() function and no statement before that curly brace is executed
by the compiler*/

node *head;
/*node type pointer head is declared; head is the address of a
struct list type variable that has two members- num to store
an integer and next to store address of another node type
variable*/
head=(node *)malloc(sizeof(node));
/*sizeof() function computes the size of node type data, needed
to store an integer and address of another node; required
memory spaces are dynamically allocated by malloc(); address
of the memory space is assigned to node type pointer variable
head*/
create(head);
/*user-defined function create() is called with real parameter
head that refers to the 1st node of the linked list; program
control flow shifts to the definition of the function*/
printf("List of items before deletion:\n");
/*printf() function displays the text in the quotations as it
is on the screen except for a newline replaces \n*/
print(head);
/*user-defined function print() is called with real parameter
head that refers to the first node of the linked list; program
control flow shifts to the definition of the function*/

420 ◾ Learn Programming with C

if (head->num!=−99){
/*member of structured data type variable is accessed using
pointer operator; pointer head refers to the first node of
the linked list; if value of member num of first node head is
any integer other than −99, then the linked list is not empty,
and following statements, enclosed in the curly braces, are
executed*/

head=insert(head);
/*user-defined function insert() is called with real
parameter head that refers to the first node of the linked
list; program control flow shifts to the definition of the
function that does some pre-defined operation and returns a
node type pointer that is assigned to head*/
printf("List of items after deletion:\n");
/*printf() function displays the text in the double
quotations as it is on the screen except for a newline
replaces \n*/
print(head);
/*user-defined function print() is called with real
parameter head that refers to the first node of the linked
list; program control flow shifts to the definition of the
function*/

}
/*this closing curly brace specifies the end of 'if'*/
printf("\n");
/*this printf() displays a newline on the screen*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/
void create(node *pt){
/*definition of create() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces; real
argument that is passed during the function call replaces virtual
parameter pt*/

int key;
/*an integer type variable key is declared; required memory
space is allocated for the variable; this variable is local
to the function create() and is not visible outside that
function*/
static int count=0;
/*an integer type variable count is declared and initialized
to 0; the variable is declared as static, means the value of

        

Structure and Union ◾ 421

count is preserved between the function calls and until the end
of the program execution*/
static node *head1;
/*a node type pointer head1 is declared; the pointer is declared
as static, means this pointer is alive until the end of the
program execution; this is done so that address of a created
node is preserved between function calls*/
printf("Input a number (−99 to end): ");
/*printf() function displays the text in the double quotations
as it is on the screen*/
scanf("%d", &key);
/*scanf() function reads an integer from input terminal and
stores the value in the memory spaces allocated for the
key*/
if (key==−99){
/*if key is −99, we do not want to add anymore node in the
linked list, and the statements in the body of 'if', enclosed
by curly braces, are executed*/

if (count==0){
/*if count equals 0, the linked list is empty, and
following statements, enclosed in the curly braces, are
executed*/

pt->num=−99;
/*value of the member num of first node of the linked
list is set to −99*/
pt->next=0;
/*next pointer of the first node is set to 0; there is
no more node after that in the linked list*/

}
/*this is the end of 'if' with condition (count==0)*/
else{
/*if key=−99 but count≠0, the linked list is not empty and
we do not want to add anymore node to the linked list, and
following statements, enclosed in the curly braces, are
executed*/

head1->next=0;
/*next pointer of the last node is set to 0, here is no
more node after that in the linked list*/
free(pt);
/*memory space allocated for node pt is freed*/

}
/*this is the end of above 'else' with condition (count==0)*/

}
/*this is the end of 'if' with condition (key==−99)*/
else{
/*if key≠−99, we want to add more node in the linked list and
following statements, enclosed by curly braces, are executed*/

 422 ◾ Learn Programming with C

count++;
/*value of 'count' is incremented by 1 to count the number
of node added in the linked list*/
head1=pt;
/*node pointer pt, passed as argument in the function call,
is assigned to head1; that is, head1 always refer to the
last node of the linked list*/
pt->num=key;
/*value of key, entered by user, is assigned to member num
of the last node pt*/
pt->next=(node *)malloc(sizeof(node));
/*a new node is created whose address is assigned to the
member next of last node pt of the linked list, hence next
of pt points to another node; sizeof() function calculates
the size of node type data, needed to store an integer
and address of another node; required memory spaces are
dynamically allocated by malloc()*/
create(pt->next);
/*user-defined function create() is called again to define
the newly created node; program control flow shifts to
definition of the function create()*/

}
/*this is the end of else with condition (key==−99)*/

}
/*this closing curly brace specifies the end of definition of
create() function; program control flow returns to the point where
the function was called*/
void print(node *pt){
/*definition of print() function starts here with function header
and body; function header is same as function prototype without
semicolon; body of the function is enclosed in curly braces; real
argument that is passed during the function call replaces virtual
parameter pt*/

if (pt->num==−99)
/*if value of the member num of first node pt is −99, the linked
list is empty, and following statement is executed*/

printf("The list is empty.");
/*printf() function displays the text in the quotations as
it is on the screen*/

else if (pt->next==0)
/*if pt->num≠−99, linked list is not empty, and we check if pt
is the last node; if pt is the last node of the linked list
then condition of 'else if' is true and following statement is
executed*/

printf("%d, ", pt->num);
/*printf() function displays the value of num of last node
pt on the screen in place of format specifier %d*/

        Structure and Union ◾ 423

else{
/*if pt->num≠−99, linked list is not empty, and pt->next≠0, pt
is not the last node, in that case, following statements are
executed*/

printf("%d, ", pt->num);
/*printf() function displays the value of num of current
node pt on the screen in place of format specifier %d*/
print(pt->next);
/*user-defined function print() is called with real
parameter pt->next that refers to the next node of the
linked list; program control flow shifts to the definition
of the function*/

}
/*this closing curly brace specifies the end of else*/

}
/*this closing curly brace specifies the end of the definition of
print() function; program control flow returns to the point where
the function was called*/
node *find(node *pt, int key){
/*definition of the user-defined function find() begins with the
function header and body of the function; function header is exactly
same as the function prototype except for no semicolon is used,
and body of the function is enclosed in curly braces; here pt and
key are the virtual parameters which are replaced by real arguments
passed during function call*/

if (pt->next==0 && pt->num!=key)
/*if pt is the last node and value of num is not the key,
the item is not found in the linked list, and the following
statement is executed*/

return 0;
/*this statement returns 0 to the point where the function
was called*/

else if (pt->next->num==key)
/*if pt is not the last node or key is not found in the current
node, then we check the value of num of the next node; if
the value of num of the next node of pt equals key following
statement is executed*/

return pt;
/*if the key is found in the next node of pt, then this
statement returns the pointer of node pt to the point where
the function was called*/

else if (pt->next->next==0)
/*if pt is not the last node or key is not found in the current
node or the next node, and next node is the last node following
statement is executed*/

return 0;

424 ◾ Learn Programming with C

/*this statement returns 0 to the point where the function
was called*/

else
/*if current node pt or next node of pt is not the last node
and key is not found in that node, then the following statement
is executed*/

find(pt->next, key);
/*if the key is not available in the current or next node,
we call function find() again to search the next nodes for
the key; program control flow shifts to the definition of
the function*/

}
/*this closing curly brace specifies the end of definition of find()
function*/
node *insert(node *pt){
/*definition of user-defined function insert() starts here with the
function header and body of the function; function header is exactly
same as the function prototype except for no semicolon is used and
body of the function is enclosed in the curly braces; here pt is the
virtual parameter which is replaced by real argument passed during
function call*/

int key, nmb;
/*two integer type variables are declared that are local
to the function insert() and are not visible outside that
function*/
node *ptr, *temp;
/*two node type pointers are declared; these pointers are local
to the function insert() and are not visible outside that
function*/
printf("\nWhat is the item to be inserted? ");
/*printf() function displays the text in the quotations as it
is on the screen except for a newline replaces \n*/
scanf("%d", &nmb);
/*scanf() function reads an integer from input terminal and
stores it in the memory spaces allocated for the nmb*/
printf("What is the item before which the item to be"

" inserted? ");
/*printf() function displays the text in the quotations as it
is on the screen*/
scanf("%d", &key);
/*function scanf() reads an integer from input terminal and
stores it in the memory spaces allocated for the key*/
if (pt->num==key){
/*if key is found in the first node pt, then the condition of
'if' is true and following statements, enclosed in the curly
braces, are executed that inserts a new node before pt and makes
it the first node*/

        

Structure and Union ◾ 425

temp=(node *)malloc(sizeof(node));
/*a new node temp is created; sizeof() function calculates
the size of node type data, needed to store an integer and
address of another node, and required memory spaces are
dynamically allocated by malloc(); address of the memory
space is assigned to node type pointer temp*/
temp->num=nmb;
/*value of nmb is stored in num of the node temp*/
temp->next=pt;
/*newly created node temp is linked with the first node pt,
member next of node temp now refers to the first node pt of
the linked list*/
pt=temp;
/*newly created node temp is now assigned to pt that makes
pt the first node of the linked list*/

}
/*this is the end of 'if' with condition (pt->num==key)*/
else{
/*if key is not found in the first node, following statements
in the body of 'else', enclosed in the curly braces, are
executed*/

ptr=find(pt, key);
/*user-defined function find() is called with argument pt
and key; program control flow shifts to the definition of
the function; find() searches the linked list for key, if
key is not found it returns 0 which is assigned to ptr;
if key is found in the next node of pt then pointer pt is
returned which is assigned to ptr*/
if (ptr==0)
/*if key is not found in the linked list, above condition
is true and following statement is executed*/

printf("Key not found. Item cannot be inserted.\n");
/*printf() function displays the text in the quotations
as it is on the screen except for a newline replaces
\n*/

else{
/*if key is found in the next node of ptr, then following
statements are executed to insert the new node after ptr;
this operation is more understandable if we consider ptr as
the 3rd node and ptr->next refers to 4th node; here we need
to insert the new node before the 4th node*/

temp=(node *)malloc(sizeof(node));
/*a new node temp is created; sizeof() function computes
the size of node type data, needed to store an integer
and address of another node, and required memory spaces
are dynamically allocated by malloc(); address of the
memory space is assigned to node type pointer temp*/

426 ◾ Learn Programming with C

temp->num=nmb;
/*value of nmb is assigned to num of the node temp*/
temp->next=ptr->next;
/*newly created node temp is linked with the 4th node,
member next of node temp now refers to the 4th node
(next node of ptr)*/
ptr->next=temp;
/*newly created node temp is now assigned to member
next of ptr (next of 3rd node) that makes temp the 4th
node and old 4th node the 5th node of the linked list*/

}
/*this is the end of 'else' with condition (ptr==0)*/

}
/*this is the end of 'else' with condition (pt->num==key)*/
return pt;
/*pointer of the first node pt of the linked list is returned
to the point where the function was called*/

}
/*this closing curly brace specifies the end of the definition of
delet() function*/

EXERCISES

MCQ with Answers

1) What is the size of a C structure?

A) C structure is always 128 bytes

B) Te size of the C structure is the total bytes of all elements of a structure

C) Te size of the C structure is the size of the largest element

D) None of the above

2) Choose a correct statement about C structure.

A) Structure elements can be initialized at the time of declaration

B) Structure members cannot be initialized at the time of declaration

C) Only integer members of a structure can be initialized at the time of declaration

D) None of the above

3) Choose a correct statement about C structure elements.

A) Structure elements are stored on random free memory locations

B) Structure elements are stored in register memory locations

        

Structure and Union ◾ 427

C) Structure elements are stored in contiguous memory locations

D) None of the above

4) In a nested structure defnition, with division.district.station statement, member
district is actually present in the structure

A) division

B) district

C) station

D) All of the above

5) What is actually passed if you pass a structure variable to a function?

A) Copy of structure variable

B) Reference of a structure variable

C) Starting address of structure variable

D) Ending address of structure variable

6) What are the types of data allowed inside a structure?

A) int, foat, double, long double

B) char, enum, union

C) pointers and same structure type members

D) All of the above

7) Can we declare a function inside a structure of a C program?

A) Yes

B) No

C) Depends on compiler

D) Yes, but run-time error

8) What is the important diference between structure and union?

A) Tere is no diference

B) Union takes less memory

C) Union is faster

D) Structure is faster

428 ◾ Learn Programming with C

9) Which of the following operation is illegal in structures?

A) Typecasting of structure

B) Pointer to a variable of the same structure

C) Dynamic allocation of memory for the structure

D) All of the above

10) Presence of code like “div.dis.pol = 10” indicate

A) Syntax error

B) Structure

C) Double data type

D) An ordinary variable name

11) Which of the following is themselves a collection of diferent data types?

A) string

B) structure

C) char

D) All of the above

12) A user-defned data type can be derived by

A) struct

B) enum

C) typedef

D) All of the above

13) Which operator connects the structure name to its member name?

A) –

B) .

C) <–

D) Both <– and .

14) Which of the following cannot be a structure member?

A) Another structure

B) Function

        

Structure and Union ◾ 429

C) Array

D) None of the above

15) Which of the following structure declaration will throw an error?

A) struct temp{}s;

B) struct temp{}; struct temp s;

C) struct temp s; struct temp{};

D) None of the above

16) Number of bytes in memory taken by the below structure is as follows:

struct test{int n; char c;};

A) Multiple of integer size

B) Integer size + character size

C) Depends on the platform

D) Multiple of word size

17) What is the similarity between a structure, union, and enumeration?

A) All of them let us defne new values

B) All of them let us defne new data types

C) All of them let us defne new pointers

D) All of them let us defne new structures

18) Size of a union is determined by the size of

A) First member in the union

B) Last member in the union

C) Biggest member in the union

D) Sum of the sizes of all members

19) Members of a union are accessed as

A) union-name.member

B) union-pointer->member

C) Both union-name.member & union-pointer->member

D) None of the above

430 ◾ Learn Programming with C

20) Which of the following user-defned data type shares its memory with each other?

A) structure

B) union

C) class

D) array

21) Which of the following share a similarity in syntax?

(1) union, (2) structure, (3) arrays, and (4) pointers

A) 3 and 4

B) 1 and 2

C) 1 and 3

D) 1, 3 and 4

[Ans. B, B, C, A, A, D, B, B, A, B, B, D, B, B, D, C, B, C, C, B, B]

Questions with Short Answers

1) Defne structure.

Ans. Te structure is a user-defned datatype in the C programming language that
combines diferent data types. Structure aids in the creation of a more meaningful
complex data type. It is comparable to an array; however, an array only retains the
same data type. Structure, on the other hand, may store diferent data types, making
it more practical.

2) Can the structure variable be initialized as soon as it is declared?

Ans. Structure variables can be initialized when they are declared. Tis procedure
is similar to that for initializing arrays. Te structure declaration is followed by an
equal sign and a list of initialization values with respect to the order of structure
elements only, separated by commas and enclosed in braces. For example, look at
the following statements for initializing the values of the members of the complex
structure variable.

struct num{
int real;
int imag;

} complex = {10, 15};

3) Can the members of a structure be initialized as soon as it is declared?

Ans. We cannot initialize structure members with its declaration; consider the given
code that is incorrect, and the compiler generates an error.

        

Structure and Union ◾ 431

struct num{
int real=10;
int imag=15;

};

Te reason for the error is simple; when a datatype is declared, no memory is allo-
cated for it. Memory is allocated only when variables are created.

4) Is there a way to compare two structure variables?

Ans. In c, it is not permitted to check or compare structure variables directly with
logical operators. We need to compare element by element of the structure variables.

5) What is a stack? What is the method to save data in a stack?

Ans. A stack is a linear data structure. Te First In Last Out (FILO) technique is
used to store data in the stack data structure type. At any given time, just the top of
the stack is accessible. A PUSH is a storage mechanism, whereas a POP is a retrieval
mechanism.

6) Describe dynamic data structure in C programming language?

Ans. Dynamic data structures are those that expand and contract as needed.
Dynamic data structures allocate memory blocks from the heap as required and use
pointers to connect those blocks into some data structure. When a data structure
no longer requires a memory block, it returns it to the heap for reuse. Tis recycling
makes very efcient use of memory.

7) What is a nested structure?

Ans. In C, a nested structure is a structure within a structure. As we defne structure
members inside a structure, one structure can be declared inside another structure.
For example, the college structure is declared inside the student structure in the fol-
lowing structure declarations:

struct college{
int colid;
char colname[50];

};
struct student{

int stid;
char stname[20];
float cgpa;
struct college;

} stdata;

8) What is a self-referential structure?

Ans. A self-referential structure is one whose members can point to the same type
of structure variable. Tey can point to the same type of structure as their member

432 ◾ Learn Programming with C

with one or more pointers. In dynamic data structures such as trees, linked lists,
and so on, the self-referential structure is widely used. A linked list of the same
struct type will be used to point to the next node of a node. In the example below,
the pointer next refers to a structure of type node. As a result, the structure node is
a self-referential structure with the referencing pointer next.

struct node{
int data;
struct node *next;

};

9) What are enumerations?

Ans. An enumeration (enum) is a special data type that represents a group of con-
stants. It is used to assign names to the integral constants, making a program easy
to read and maintain. Te enum keyword is used to create an enum. Te constants
declared inside are separated by commas. Enumerated types enable programmers to
use more meaningful words as variable values. By default, the frst item in the list is
assigned the value 0, the second item is assigned the value 1, and so on. In the fol-
lowing example, red=0, green=1, and blue=2.

enum color{
red;
green;
blue;

};

Assigning custom values to enum elements is also allowed in C. In the example
below- red=12, green=13, and blue=15.

enum color{
red=12;
green;
blue=15;

};

10) What are linked lists?

Ans. A linked list is a dynamic data structure in which each element (called a node)
consists of two items: data and a reference (or pointer) to another node. A linked list
is a collection of nodes, each of which is linked to another via a pointer. Afer array,
the linked list is the most ofen used data structure. Using linked lists to store data is
an efcient way to use memory.

11) What is FIFO?

Ans. A data structure known as a queue exists in C programming. Te FIFO format
is used to store and access data in this structure. First In, First Out is abbreviated as
FIFO. It is a data structure processing approach in which the oldest element is pro-
cessed frst and the newest element is processed last.

        

Structure and Union ◾ 433

12) What are binary trees?

Ans.

Binary trees are an extension of the concept of linked lists. A binary tree is a nonlin-
ear data structure of the tree type with a maximum of two children for each parent.
Along with the data element, every node in a binary tree has a lef and right refer-
ence. Te root node is the node at the very top of a tree’s hierarchy. Te parent nodes
are the nodes that include additional subnodes. Te lef child and right child are the
two child nodes of a parent node.

13) What is a heap? What are the advantages and disadvantages of a heap?

Ans. A heap is a customized tree-based data structure that is essentially an almost
complete tree that satisfes the heap property: in a max-heap, the key of parent node
P is larger than or equal to the key of child node C for any given node C. Te key of
P in a min-heap is less than or equal to the key of C.

It takes longer to store data on the heap than it does on the stack. Te main beneft
of employing the heap, though, is its adaptability. Tis is because the memory in this
structure can be allocated and removed in any sequence. If an algorithm is well-
designed and implemented, it can compensate for the slowness in a heap.

Problems to Practice

1) Write a program to read and display information of a student using structure.

2) Write a program to read and display information of n number of students using
structure and dynamic memory allocation.

3) Write a program to add two complex numbers using structure.

4) Write a program to create and display a singly linked list of n nodes.

5) Write a program to create and display a doubly linked list of n nodes.

6) Write a program to create and display a circular linked list of n nodes.

7) Write a program to display the truth table of three input EX-OR gate.

434 ◾ Learn Programming with C

8) Write a program that uses functions to perform the following operations:

(a) Reading a complex number

(b) Writing a complex number

(c) Addition of two complex numbers

(d) Multiplication of two complex numbers

9) Te marks distribution for attendance of the Department of EEE, Dhaka University,
is given below:

Attendance Marks Attendance Marks

90% and above 5.0 70% to <75% 3.0
80% to <90% 4.5 65% to <70% 2.5
70% to <80% 4.0 60% to <65% 2.0
60% to <70% 3.5 Less than 60% 0.0

Tere were 30 classes of EEE-1102 in the current session. Calculate the obtained
attendance marks of the following n students:

Class Roll No. of Classes Class Roll No. of Classes

101 27 106 28
102 15 107 12
103 21 108 27
104 19 109 9
105 12 110 28

10) Answer scripts of fnal examination of the Department of EEE, Dhaka University,
have been examined by two examiners independently. Te obtained fnal marks of
any course will be average of the two marks. But, if their marks for any particular
script difer by 20% or more, then the script is evaluated by another independent
third examiner. And the obtained fnal marks of that course will be average of the
two marks of the examiners whose marks are closer. Write a program to read the
following data and determine:

(a) Whether third examination is necessary for a particular answer script.

(b) Obtained fnal marks (out of 70) by each student of a particular course afer
third examination if necessary.

Roll No. 1st Examiner 2nd Examiner Roll No. 1st Examiner 2nd Examiner

1001 65 58 1004 68 48
1002 55 54 1005 50 52
1003 40 30 1006 15 32

        

Structure and Union ◾ 435

11) Te annual examination results of n students are tabulated as follows:

Roll No. EEE-1101 EEE-1102 EEE-1103

101 69 56 89
102 80 65 91
103 45 36 68

Write a program to read the data and determine the following:

(a) Grade obtained by each student in each subject.

Marks Letter Grade Grade Point

90% and above A+ 4.00
80% to <90% A 3.50
70% to <60% B 3.00
60% to <70% C 2.50
50% to <60% D 2.00
Less than 50% F 0.00

(b) Total marks and GPA obtained by each student.

(c) Te position of each student based on GPA (for equal GPA, consider who gets
the higher total marks).

(d) Te result should be displayed according to the roll number and merit.

12) Write a program to create a linear linked list interactively and delete a specifed
node from the list. Te program will display all the items before and afer deletion.

13) Write a program to create a linear linked list interactively and insert a given item
before and afer a specifed node of the list. Te program will display all the items
before and afer insertion.

14) Write a program to add two distances (in an inch-feet system) using structure.

15) Write a program to compute the diference between two time periods.

16) Write a program to read and display a student’s information (roll no., name, and
cgpa) using structure.

17) Write a program to create a singly linked list of n nodes and display it in reverse
order.

18) Write a program to insert a new node at the beginning of a singly linked list.

19) Write a program to insert a new node at the end of a singly linked list.

20) Write a program to delete the frst node of a singly linked list.

21) Write a program to delete the last node of a singly linked list.

436 ◾ Learn Programming with C

22) Write a program to search an existing element in a singly linked list.

23) Write a program to create and display a doubly linked list of n nodes.

24) Write a program to insert a new node at the beginning of a doubly linked list.

25) Write a program to insert a new node at the end of a doubly linked list.

26) Write a program to delete the frst node of a doubly linked list.

27) Write a program to delete the last node of a doubly linked list.

28) Write a program to search an existing element in a doubly linked list.

29) Write a program to insert a new node at any position in a doubly linked list.

30) Write a program to delete a node from any position of a doubly linked list.

31) Write a program to create and display a circular linked list of n nodes.

32) Write a program to create a circular linked list of n nodes and display it in
reverse order.

33) Write a program to insert a new node at the end of a circular linked list.

34) Write a program to delete the frst node of a circular linked list.

35) Write a program to delete the last node of a circular linked list.

36) Write a program to search an existing element in a circular linked list.

37) Write a program to insert a new node at any position in a circular linked list.

38) Write a program to delete a node from any position of a circular linked list.

C H A P T E R 6

File Management

A file is a memory space where some data is stored. C provides various functions to
deal with the file. This chapter provides mechanisms/operations how to manipulate

files, known as the file management.

6.1 FILE TYPES
Files are needed in C for the following three main reasons:

(1) To preserve data after termination of the program

(2) To input a large amount of data through access of the file that may store the data

(3) To move data from one computer to another.

Two types of files are allowed to use in C program:

(1) Text file: any text editor or .txt file. All the contents are in plain text and can be easily
edited or deleted.

(2) Binary file: any .bin file. All the contents are in binary form (0’s and 1’s) and cannot
be easily edited and hence provide better security.

6.2 FILE OPERATIONS
Some major operations on file in C are as follows:

(1) Opening a file: fopen() is used to open a file. When fopen() opens a file successfully,
it will return the address of the first character of the file; otherwise, it returns NULL.
Syntax is as follows:

 FILE *ptr_name fopen(“file_name”, “mode”);

FILE is a structured data type defined in stdio.h header file and used to refer differ-
ent file operation.

DOI: 10.1201/9781003302629-6 437

https://doi.org/10.1201/9781003302629-6

438 ◾ Learn Programming with C

ptr_name is any pointer name of your choice.

fle_name is the name of the fle that you want to open with full address path.

mode determines the various operations allowed to perform on the fle.

Various fle opening modes are as follows:

r, rb – read only mode, return the address of the frst character.

w, wb – write only mode, return the address of the frst character.

a, ab – use to append content at the end of the fle, return the address of the last
character.

r+, rb+ or w+, wb+ – read, write, or modify the content, return the address of the
frst character.

a+, ab+ – read or append content, but modifcation is not allowed.

Example:

We should always check whether the fle was opened successfully before using the
fle or any fle operation is performed. Te following code will do the job:

(2) Reading a fle: A fle frst needs to open in reading mode. Afer that fgetc() function
reads the characters sequentially one afer another until EOF (end of fle) is reached.
Example:

To read a string from the fle, fgets() function is used. Example:

fgets(str, 10, fpr);

str is the array of char where the string will be stored afer the read and 10 is the
number of characters to be read.

(3) Writing to a fle: A fle frst needs to open in writing or append mode. Afer that
fprintf() or fputc() function is used to write data to the fle. Example:

        

File Management ◾ 439

fputs() function is used to write a string to the fle. Example: fputs(str, fpw);

(4) Closing a fle: fclose() function is used to close an opened fle. Syntax: fclose(fpw);

Calling fclose() function ensures fle descriptor is properly disposed of and output
bufer fushed so that data written to the fle will be saved in the fle. If anyone failed
to do so, operating system properly closes the fle before termination of the program.

To read or write in a binary, we need to change the fle name and mode of operation as
shown below:

6.3 PREPROCESSORS
Preprocessor allows defning macros and transforms the source code before compilation.
Te directives instruct the preprocessor to do something. Some common uses of prepro-
cessing directives are as follows:

(1) Including header fle: #include <stdio.h>, this will replace the contents of the header
fle stdio.h while transformation.

(2) Macros using #defne: #defne PI 3.14, this will replace 3.14 in place of PI during
transformation.

(3) Function like macros: #defne CIRCLE(rad) 3.14*rad*rad, this will replace 3.14*arg*
arg every time the program encounters CIRCLE(arg).

6.4 CONDITIONAL COMPILATION
Conditional directives are used to instruct the preprocessor to include a block of data or
statements depending on some certain conditions. Trough conditional directives, same
source fle can be used for two diferent programs. Few important conditional directives
are as follows:
1) #ifdef MAC

//block of codes
//these codes will be included in the program if
//MAC is defined

 #endif

440 ◾ Learn Programming with C

2) #if expression
//block of codes
//these codes will be included if the value of
//expression is non-zero

 #endif
3) #if expression

//block of codes
//these codes will be included if the value of
//expression is non-zero

 #else
//block of codes
//these codes will be included if the value of
//expression is zero

 #endif
4) #if expression

//block of codes
//these codes will be included if the value of
//expression is non-zero

 #elif expression1
//block of codes
//codes will be included if the value of the
//expression1 is non-zero

 #elif expression2
//block of codes
//codes will be included if the value of the
//expression2 is non-zero

 #else
//block of codes
//codes will be included if values of all the
//above expressions are zero

 #endif

6.5 EXAMPLES

PROBLEM-01
Write a program to read name and marks of a student and store them in a fle.

Programming Code of the Solution:

        

File Management ◾ 441

Input and Output of the Executed Program:

Explanationof the Programming Code:

#include <stdio.h>
/*stdio.h header file contains the prototypes of the library
functions printf(), scanf(), gets(), fopen(), fprintf() and
fclose(), hence needs to be included using #include preprocessor
directive*/
#include <stdlib.h>
/*stdlib.h header file contains the prototype of the library function
exit(), hence needs to be included using #include preprocessor
directive*/
int main(){
/*C program starts from main() function which will return an integer
and there is no argument for the function; the opening curly brace
indicates the start of the body of the main() function and the
program execution starts from the first statement just after this
brace*/

char name[50];
/*char type array is declared which can take only characters.
Size of the array is 50, means it can take up to 50 characters.
Each array elements can be accessed using indexes starting from
0 to 49, that is- name[0], name[1], . . ., name[49]*/
float mark;
/*float type variable is declared which can take and store any
decimal value*/
FILE *fptr;
/*FILE is a structured data type defined in stdio.h header
file. Here a FILE type pointer is declared to refer any
file*/

442 ◾ Learn Programming with C

fptr = fopen("C:\\Intel\\student.txt", "w");
/*fopen() function opens a text file named student.txt in the
address C:\\Intel\\ with write mode, indicated by “w”, and
returns a FILE type pointer*/
if (fptr == NULL){
/*after opening a file in C, we must always check whether
the file opens successfully. To do that we check the pointer
returned by fopen() function. If it is NULL then file could not
open. Hence, here if the file failed to open the condition is
true and following two statements will be executed*/

printf("Error in opening the file, exiting . . .");
/*output function printf() will display the message inside
the double quotation as it is on the screen*/
exit(1);
/*exit(1) function causes abnormal termination of the
program. All buffers, temporary files, streams are deleted
or cleared before the termination*/

}
/*this closing curly brace indicates the end of the if body*/
printf("Enter name of the student:");
/*output function printf() will display the message inside the
double quotation as it is on the screen*/
gets(name);
/*gets() is an input function that can take any string or
array of characters, including space, tab, etc., end with NULL
character \0 and store the string to its parameter name*/
printf("Enter marks of the student:");
/*output function printf() will display the message inside the
double quotation as it is on the screen*/
scanf("%f", &mark);
/*scanf() function takes a decimal value from the standard
input terminal and store the float value to the variable
mark*/
fprintf(fptr, "\nName: %s\nMarks: %0.2f\n", name, mark);
/*fprintf() function will write information inside the double
quotation as it is in the file referred by the pointer fptr.
Here enter is written in place of new line character, string
name in place of %s format specifier and decimal value mark in
place of %0.2f format specifier with 2 point precision*/
fclose(fptr);
/*once a file is open in C, it is a good practice to close the
file before end of the program to properly flush the output
buffer. This is done here by the fclose() function which close
the file referred by its argument fptr*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}

        

File Management ◾ 443

/*the closing curly brace indicates the end of the body of main()
function and the end of the program. No statement will execute after
that curly brace*/

PROBLEM-02
Write a program to open the fle created in the last problem, read name and marks
of a student, and append them in the fle.

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdio.h>
/*stdio.h header file contains the prototypes of the library functions
printf(), scanf(), gets(), fopen(), fprintf() and fclose(), hence
needs to be included using #include preprocessor directive*/
#include <stdlib.h>
/*stdlib.h header file contains the prototype of the library function
exit(), hence needs to be included using #include preprocessor
directive*/
int main(){
/*C program starts from main() function which will return an
integer and there is no argument for the function; the opening
curly brace indicates the start of the body of the main() function

444 ◾ Learn Programming with C

and the program execution starts from the first statement just
after this brace*/

char name[50];
/*char type array is declared which can take only characters.
Size of the array is 50, means it can take up to 50 characters.
Each array elements can be accessed using indexes starting from
0 to 49, that is- str[0], str[1], . . ., str[49]*/
float mark;
/*float type variable is declared which can take and store any
decimal value*/
FILE *fptr;
/*FILE is a structured data type defined in stdio.h header file.
Here a FILE type pointer is declared to refer any file*/
fptr = fopen("C:\\Intel\\student.txt", "a");
/*fopen() function opens a text file named student.txt in the
address C:\\Intel\\ with append mode, indicated by “a”, and
returns a FILE type pointer. Anything written into the file will
be appended after the previous information*/
if (fptr == NULL){
/*after opening a file in C, we must always check whether
the file opens successfully. To do that we check the pointer
returned by fopen() function. If it is NULL then file could not
open. Hence, here if the file failed to open the condition is
true and following two statements will be executed */

printf("Error in opening the file, exiting . . .");
/*output function printf() will display the message inside
the double quotation as it is on the screen*/
exit(1);
/*exit(1) function causes abnormal termination of the
program. All buffers, temporary files, streams are deleted
or cleared before the termination*/

}
/*this closing curly brace indicates the end of the if body*/
printf("Enter name of the student:");
/*output function printf() will display the message inside the
double quotation as it is on the screen*/
gets(name);
/*gets() is an input function that can take any string or
array of characters, including space, tab, etc., end with
NULL character \0 and store the string to its parameter
name*/
printf("Enter marks of the student:");
/*output function printf() will display the message inside the
double quotation as it is on the screen*/
scanf("%f", &mark);
/*scanf() function takes a decimal value from the standard
input terminal and store the float value to the variable

        File Management ◾ 445

mark*/
fprintf(fptr, "\nName: %s\nMarks: %0.2f\n", name, mark);
/*fprintf() function will write information inside the double
quotation as it is in the file referred by the pointer fptr.
Here enter is written in place of new line character, string
name in place of %s format specifier and decimal value mark in
place of %0.2f format specifier with 2 point precision. As fptr
referred to a file opened as mode “a”, these information will
be written after the existing information in the file*/
fclose(fptr);
/*once a file is open in C, it is a good practice to close the
file before end of the program to properly flush the output
buffer. This is done here by the fclose() function which close
the file referred by its argument fptr*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace indicates the end of the body of main()
function and the end of the program. No statement will execute after
that curly brace*/

PROBLEM-03
Write a program to open the fle created in the last problem, read information from the
fle, and display them on the screen.

Programming Code of the Solution:

446 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanationof the Programming Code:

#include <stdio.h>
/*stdio.h header file contains the prototypes of the library
functions printf(), fgetc(), fopen() and fclose(), hence needs to
be included using #include preprocessor directive*/
#include <stdlib.h>
/*stdlib.h header file contains the prototype of the library function
exit(), hence needs to be included using #include preprocessor
directive*/
int main(){
/*C program starts from main() function which will return an integer
and there is no argument for the function; the opening curly brace
indicates the start of the body of the main() function and the program
execution starts from the first statement just after this brace*/

char ch;
/*char type variable is declared which can take and store only
character*/
FILE *fptr;
/*FILE is a structured data type defined in stdio.h header file.
Here a FILE type pointer is declared to refer any file*/
fptr = fopen("C:\\Intel\\student.txt", "r");
/*fopen() function opens a text file named student.txt in the
address C:\\Intel\\ with read mode, indicated by “r”, and
returns a FILE type pointer*/
if (fptr == NULL){
/*after opening a file in C, we must always check whether
the file opens successfully. To do that we check the pointer
returned by fopen() function. If it is NULL then file could not
open. Hence, here if the file failed to open the condition is
true and following two statements will be executed*/

printf("Error in opening the file, exiting . . .");
/*output function printf() will display the message inside
the double quotation as it is on the screen*/
exit(1);

        

File Management ◾ 447

/*exit(1) function causes abnormal termination of the
program. All buffers, temporary files, streams are deleted
or cleared before the termination*/

}
/*this closing curly brace indicates the end of the if body*/
printf("Contents of the file are:\n");
/*output function printf() will display the message inside the
double quotation as it is on the screen*/
ch = fgetc(fptr);
/*fgetc() function reads a character from the file referred by
the pointer fptr. At start, it reads the 1st character and the
pointer automatically points to the next character. Here ch=1st
character, pointer points to the 2nd character*/
while (ch!= EOF){
/*ch is compared with EOF, means whether we reach the end-of-
file or not. If not, then statements inside the body of the
while loop will execute*/

printf("%c", ch);
/*output function printf() will display the character
corresponding to ch in place of format specifier %c on
screen*/
ch = fgetc(fptr);
/*now fgetc() function reads 2nd character in the file in the
1st iteration and pointer points to the 3rd character. This
ch=2nd character is compared with EOF and if we don’t reach
at the end-of-the file, printf() function prints ch=2nd
character and fgetc() function reads the 3rd character.
This continues till we reach the EOF in which case the
condition becomes false and the program steps out of the
while loop*/

}
/*this closing curly brace indicates the end of the while
loop*/
fclose(fptr);
/*once a file is open in C, it is a good practice to close the
file before end of the program to properly flush the output
buffer. This is done here by the fclose() function which close
the file referred by its argument fptr*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace indicates the end of the body of main()
function and the end of the program. No statement will execute after
that curly brace*/

448 ◾ Learn Programming with C

PROBLEM-04
Te annual examination results of n students are tabulated as follows:

Roll No. EEE-1101 EEE-1102 EEE-1103
101 69 56 89
102 80 65 91
103 45 36 68

Write a program to read the data and determine the following:

(a) Grade obtained by each student in each subject.

Marks Letter Grade Grade Point

90% and above
80% to <90%
70% to <60%
60% to <70%
50% to <60%
Less than 50%

A+
A
B
C
D
F

4.00
3.50
3.00
2.50
2.00
0.00

(b) Total marks and GPA obtained by each student.

(c) Te position of each student based on GPA (for equal GPA, consider who gets the
higher total marks).

(d) Te result should be displayed according to the roll number and merit.

(e) Save the results in a text fle and retrieve and print the results from the text fle.

Flow Chart of the Solution:

Figure 6.1 shows the fowcharts followed to solve this problem.

Algorithm of the Solution:

Step-1: Start

Step-2: Defne struct subject with members mark, point, and letter

Step-3: Defne struct exam with members roll, sub[100], total, gpa, and pos

Step-4: Read values of numstd and numsub

Step-5: Initialize i←0

        

File Management ◾ 449

FIGURE 6.1 Flowcharts followed to solve the problem.

450 ◾ Learn Programming with C

FIGURE 6.1 (Continued)

Step-6: If i<numstd

6.1: Read value of stud[i].roll

6.2: Initialize stud[i].total←0, totgrd←0 and j←0

6.3: If j<numsub

6.3.1: Read value of stud[i].sub[j].mark

6.3.2: If stud[i].sub[j].mark>=90

6.3.2.1: stud[i].sub[j].point←4.00

6.3.2.2: stud[i].sub[j].letter←“A+”

6.3.2.3: Go to Step-6.3.9

6.3.3: If stud[i].sub[j].mark>=80

6.3.3.1: stud[i].sub[j].point←3.50

6.3.3.2: stud[i].sub[j].letter←“A”

6.3.3.3: Go to Step-6.3.9

        

File Management ◾ 451

FIGURE 6.1 (Continued)

6.3.4: If stud[i].sub[j].mark>=70

6.3.4.1: stud[i].sub[j].point←3.00

6.3.4.2: stud[i].sub[j].letter←“B”

6.3.4.3: Go to Step-6.3.9

6.3.5: If stud[i].sub[j].mark>=60

6.3.5.1: stud[i].sub[j].point←2.50

6.3.5.2: stud[i].sub[j].letter←“C”

6.3.5.3: Go to Step-6.3.9

6.3.6: If stud[i].sub[j].mark>=50

6.3.6.1: stud[i].sub[j].point←2.00

6.3.6.2: stud[i].sub[j].letter←“D”

6.3.6.3: Go to Step-6.3.9

 452 ◾ Learn Programming with C

6.3.7: stud[i].sub[j].point←0.00

6.3.8: stud[i].sub[j].letter←“F”

6.3.9: stud[i].total← stud[i].total+stud[i].sub[j].mark

6.3.10: totgrd←totgrd+stud[i].sub[j].point

6.3.11: j←j+1

6.3.12: Go to Step-6.3

6.4: stud[i].gpa←totgrd/numsub

6.5: i←i+1

6.6: Go to Step-6

Step-7: Initialize i←1

Step-8: If i<=numstd−1

8.1: Initialize j←1

8.2: If j<=numstd−i

8.2.1: If stud[j−1].gpa<stud[j].gpa

8.2.1.1: temp←stud[j−1]

8.2.1.2: stud[j−1]←stud[j]

8.2.1.3: stud[j]←temp

8.2.1.4: Go to Step-8.2.3

8.2.2: If stud[j−1].gpa=stud[j].gpa

8.2.2.1: If stud[j−1].total<stud[j].total

8.2.2.1.1: temp←stud[j−1]

8.2.2.1.2: stud[j−1]←stud[j]

8.2.2.1.3: stud[j]←temp

8.2.3: j←j+1

8.2.4: Go to Step-8.2

8.3: i←i+1

8.4: Go to Step-8

Step-9: Initialize i←0

        

File Management ◾ 453

Step-10: If i<numstd

10.1: stud[i].pos←i+1

10.2: i←i+1

10.3: Go to Step-10

Step-11: fp←fopen()

Step-12: If fp=NULL

12.1: Display ‘Cannot open’

12.2: Go to Step-24

Step-13: Initialize i←0

Step-14: If i<numstd

14.1: Save to fle stud[i].roll

14.2: Initialize j←0

14.3: If j<numsub

14.3.1: Save values of stud[i].sub[j].letter, stud[i].sub[j].point, stud[i].gpa
and stud[i].pos to fp

14.3.2: j←j+1

14.3.3: Go to Step-14.3

14.4: i←i+1

14.5: Go to Step-14

Step-15: Initialize i←1

Step-16: If i<=numstd−1

16.1: Initialize j←1

16.2: If j<=numstd−i

16.2.1: If stud[j−1].roll>stud[j].roll

16.2.1.1: temp←stud[j−1]

16.2.1.2: stud[j−1]←stud[j]

16.2.1.3: stud[j]←temp

16.2.2: j←j+1

16.2.3: Go to Step-16.2

454 ◾ Learn Programming with C

16.3: i←i+1

16.4: Go to Step-16

Step-17: fp←fopen()

Step-18: If fp=NULL

18.1: Display ‘Cannot open’

18.2: Go to Step-24

Step-19: Initialize i←0

Step-20: If i<numstd

20.1: Save value of stud[i].roll to fp

20.2: Initialize j←0

20.3: If j<numsub

20.3.1: Save values of stud[i].sub[j].letter, stud[i].sub[j].point, stud[i].gpa,
and stud[i].pos to fp

20.3.2: j←j+1

20.3.3: Go to Step-20.3

20.4: i←i+1

20.5: Go to Step-20

Step-21: fp←fopen()

Step-22: If fp=NULL

22.1: Display ‘Cannot open’

22.2: Go to Step-25

Step-23: If 1 or true

23.1: ch←fgetc(fp)

23.2: If ch=EOF

23.2.1: Go to Step-24

23.3: Display value of ch

23.4: Go to Step-23

        File Management ◾ 455

Step-24: Stop

Programming Code of the Solution:

 456 ◾ Learn Programming with C

        File Management ◾ 457

Input and Output of the Executed Program:

 458 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <stdio.h>
/*header file stdio.h contains prototypes of the library functions
like printf(), scanf(), fopen(), fclose(), fprint() etc., hence
needs to be included using preprocessor directive #include before
they can be used in the program*/

        

File Management ◾ 459

#include <stdlib.h>
/*header file stdlib.h contains prototypes of the library function
exit(), hence needs to be included using preprocessor directive
#include before they can be used in the program*/
struct subject{
/*structured data type subject is defined here using keyword struct;
its members are declared within the curly braces*/

int mark;
/*int type variable mark is declared as member of the structured
data type subject, that will be used to store the obtained mark
in a particular subject*/
float point;
/*float type variable point is declared as member of the
structured data type subject, that will be used to store the
obtained grade-point in a particular subject*/
char *letter;
/*char type pointer letter is declared as member of the
structured data type subject, that will be used to store the
obtained letter-grade in a particular subject*/

};
/*definition of structured data type must end with a semicolon; no
variable of the defined data type marks is declared here*/
struct exam{
/*structured data type exam is defined here using keyword struct;
its members are declared within the curly braces*/

int roll, total, pos;
/*int type variables roll, total and pos are declared as members
of the structured data type exam, that will be used to store
roll no, obtained total marks and merit position, respectively
of a particular student*/
struct subject sub[10];
/*structured subject type array sub[] with size 10 is declared
as member of the structured data type exam, that will be used to
store information of maximum 10 subjects of a particular student*/
float gpa;
/*float type variable gpa is declared as member of the structured
data type exam, that will be used to store gpa calculated for
a particular student*/

};
/*definition of structured data type must end with a semicolon; no
variable of the defined data type marks is declared here*/
int main(){
/*here main() function returns an integer and parameters/arguments
of the main() function also remain void; execution of the program
starts with main() function; no statement before opening curly
brace of the main() function will be executed by the compiler*/

 460 ◾ Learn Programming with C

FILE *fp;
/*FILE is a structured data type defined in stdio.h header file.
Here a FILE type pointer fp is declared to refer any file*/
struct exam stud[100], temp;
/*structured exam type variable temp and an array stud[] with
size 100 are declared here; members of each of the array element
can be accessed through dot (.) operator*/
int numstd, numsub, i, j;
/*integer type variables numstd, numsub, i and j are declared;
required memory spaces have been allocated for each of the
variables*/
float totgrd;
/*float type variable totgrd is declared that can store any
decimal value*/
char ch;
/*char type variable is declared which can take and store only
character*/
printf("Enter the number of students: ");
/*output function printf() displays the message in the quotation
as it is on screen*/
scanf("%d", &numstd);
/*number of student will be input using this input function
scanf() which will take decimal value from input terminal and
keep the value in the memory spaces allocated for the variable
numstd*/
printf("How many subjects: ");
/*output function printf() displays the message in the quotation
as it is on screen*/
scanf("%d", &numsub);
/*number of subject will be input using this input function
scanf() which will take decimal value from input terminal and
keep the value in the memory spaces allocated for the variable
numsub*/
for (i=0; i<numstd; i++){
/*here i=0 is initialization, i<numstd is condition and i++ is
increment; this for loop works as follows- initialization is
done only once at the start; then condition is checked, if it is
true statements in the body, enclosed by curly braces, execute
and value of i is incremented by 1; now the condition is checked
again and if it is true the body executes again; these steps
continue till the condition becomes false; this for loop is
used here to input necessary information of all numstd students
and calculate marks, gpa and letter-grade; in each iteration
individual student is considered*/

printf("Enter the roll no. of student #%d: ", i+1);
/*output function printf() displays the message in the
quotation as it is on screen except format specifier %d is
replaced by the value of i+1*/

        

File Management ◾ 461

scanf("%d", &stud[i].roll);
/*this scanf() function takes a decimal value from input
terminal and save the value in roll which is a member of
struct subject type array stud[]*/
stud[i].total=0;
/*member total of structured subject type array stud[] is
initialized to 0 that will be used to store the total marks
of a particular student; it is initialized to 0, otherwise
the summation operation may give wrong answer because, when
we declare a variable a memory space is allocated for that
variable and the memory space may contain some garbage
value; when we sequentially add the data with the total
and result will be accumulated in the total variable, the
garbage value may add up in the first summation*/
totgrd=0;
/*variable totgrd is initialized to 0 that will be used to store
the total grade of a particular student needed to calculate
gpa; it is initialized to 0 to avoid add up any garbage value
in the first summation and get any wrong answer*/
for (j=0; j<numsub; j++){
/*here j=0 is initialization, j<numsub is condition
and j++ is increment; this for loop works as follows-
initialization is done only once at the start; then
condition is checked, if it is true statements in the
body, enclosed by curly braces, execute and value of j
is incremented by 1; now the condition is checked again
and if it is true the body executes again; these steps
continue till the condition becomes false; this for loop
is used here to input necessary information of all numsub
subjects and calculate marks, gpa and letter-grade; in
each iteration individual subject is considered*/

printf("Mark obtained in EEE-110%d: ", j+1);
/*output function printf() displays the message in the
quotation as it is on screen except format specifier %d
is replaced by the value of j+1*/
scanf("%d", &stud[i].sub[j].mark);
/*this scanf() function takes a decimal value from
input terminal and save the value in mark which is a
member of struct subject type array sub[] which is in
turn is a member of structured exam type array stud[],
hence variable mark is accessed through double dot (.)
operators*/
if (stud[i].sub[j].mark>=90){
/*if the condition is true, means marks of a particular
subject of a particular student is greater than or
equal to 90, then following two statements execute;
multiple statements in the body of 'if' is enclosed
with curly braces*/

462 ◾ Learn Programming with C

stud[i].sub[j].point=4.00;
/*point is a member of struct subject type array
sub[] which is in turn is a member of structured
exam type array stud[], hence variable point is
accessed through chain of dot (.) operators and
assigned a value 4.00*/
stud[i].sub[j].letter="A+";
/*character type pointer letter is a member of
struct subject type array sub[] which is in turn
is a member of structured exam type array stud[],
hence variable point is accessed through chain of
dot (.) operators and assigned a string A+*/

}
/*this closing curly brace indicates end of if (stud[i].
sub[j].mark>=90)*/
else if (stud[i].sub[j].mark>=80){
/*if the condition is true, means marks of a particular
subject of a particular student is greater than or equal to
80 but less than 90, then following two statements execute;
condition of 90 has already been checked in the previous
'if' condition and condition of 80 is only checked if the
above 'if' condition of 90 is false; multiple statements
in the body of 'if' is enclosed with curly braces*/

stud[i].sub[j].point=3.50;
/*point is a member of struct subject type array sub[]
which is in turn is a member of structured exam type
array stud[], hence variable point is accessed through
chain of dot (.) operators and assigned a value 3.50*/
stud[i].sub[j].letter="A";
/*character type pointer letter is a member of
struct subject type array sub[] which is in turn
is a member of structured exam type array stud[],
hence variable point is accessed through chain of
dot (.) operators and assigned a string A*/

}
/*this closing curly brace indicates end of else if
(stud[i].sub[j].mark>=80)*/
else if (stud[i].sub[j].mark>=70){
/*if the condition is true, means marks of a particular
subject of a particular student is greater than or equal
to 70 but less than 80, then following two statements
execute; condition of 90 and 80 have already been
checked in the previous 'if' and 'else if' conditions
and condition of 70 is only checked if the both of
the above 'if' and 'else if' conditions of 90 and 80
are false; multiple statements in the body of 'if' is
enclosed with curly braces*/

        File Management ◾ 463

stud[i].sub[j].point=3.00;
/*point is a member of struct subject type array
sub[] which is in turn is a member of structured
exam type array stud[], hence variable point is
accessed through chain of dot (.) operators and
assigned a value 3.00*/
stud[i].sub[j].letter="B";
/*character type pointer letter is a member of
struct subject type array sub[] which is in turn
is a member of structured exam type array stud[],
hence variable point is accessed through chain of
dot (.) operators and assigned a string B*/

}
/*this closing curly brace indicates end of else if
(stud[i].sub[j].mark>=70)*/
else if (stud[i].sub[j].mark>=60){
/*if the condition is true, means marks of a particular
subject of a particular student is greater than or equal
to 60 but less than 70, then following two statements
execute; this condition of 60 is checked only if all the
above 'if' and 'else if' conditions are false*/

stud[i].sub[j].point=2.50;
/*point is a member of struct subject type array
sub[] which is in turn is a member of structured
exam type array stud[], hence variable point is
accessed through chain of dot (.) operators and
assigned a value 2.50*/
stud[i].sub[j].letter="C";
/*character type pointer letter is a member of
struct subject type array sub[] which is in turn
is a member of structured exam type array stud[],
hence variable point is accessed through chain of
dot (.) operators and assigned a string C*/

}
/*this closing curly brace indicates end of else if
(stud[i].sub[j].mark>=60)*/
else if (stud[i].sub[j].mark>=50){
/*if the condition is true, means marks of a particular
subject of a particular student is greater than or equal
to 50 but less than 60, then following two statements
execute; this condition of 50 is checked only if all the
above 'if' and 'else if' conditions are false*/

stud[i].sub[j].point=2.00;
/*point is a member of struct subject type array
sub[] which is in turn is a member of structured
exam type array stud[], hence variable point is
accessed through chain of dot (.) operators and

464 ◾ Learn Programming with C

assigned a value 2.00*/
stud[i].sub[j].letter="D";
/*character type pointer letter is a member of
struct subject type array sub[] which is in turn
is a member of structured exam type array stud[],
hence variable point is accessed through chain of
dot (.) operators and assigned a string D*/

}
/*this closing curly brace indicates end of else if
(stud[i].sub[j].mark>=50)*/
else{
/*if all the above conditions of 'if' and 'else if'
are false, means marks of a particular subject of a
particular student is less than 50, then following two
statements execute*/

stud[i].sub[j].point=0.00;
/*point is a member of struct subject type array
sub[] which is in turn is a member of structured
exam type array stud[], hence variable point is
accessed through chain of dot (.) operators and
assigned a value 0.00*/
stud[i].sub[j].letter="F";
/*character type pointer letter is a member of
struct subject type array sub[] which is in turn
is a member of structured exam type array stud[],
hence variable point is accessed through chain of
dot (.) operators and assigned a string F*/

}
/*this closing curly brace indicates end of above
'else'*/
stud[i].total+=stud[i].sub[j].mark;
/*this arithmetic operation calculates total marks
of a particular student by adding obtained marks of
all the subjects; in each iteration of first 'for'
loop one particular student is considered and in each
iteration of second 'for' loop individual subject of
that particular student is considered*/
totgrd+=stud[i].sub[j].point;
/*this arithmetic operation calculates total grades of
a particular student by adding all grade-points of
individual subject; in each iteration of first 'for'
loop one particular student is considered and in each
iteration of second 'for' loop individual subject of
that particular student is considered*/

}
/*this closing curly brace indicates end of for (j=0;
j<numsub; j++)*/

        

File Management ◾ 465

stud[i].gpa=totgrd/numsub;
/*gpa of each student is calculated from total grade-point
totgrd of that particular student; in each iteration of
first 'for' loop individual student is considered*/

}
/*this closing curly brace indicates end of for (i=0; i<numstd;
i++)*/
for (i=1; i<=numstd−1; i++)
/* this for loop is used to repeat the following 'for' loop as
long as the condition satisfies; here i=1 is initialization,
i<=numstd−1 is condition and i++ is increment; this for loop
works as follows- initialization is done only once at the start;
then condition is checked, if it is true statement in the body
executes and value of i is incremented by 1; now the condition
is checked again and if it is true the body executes again;
these steps continue till the condition becomes false; this for
loop together with the following for loop are used here to sort
students based on their earned gpa in ascending order*/

for (j=1; j<=numstd−i; j++)
/*this for loop is used to compare gpa of each student
and swap if necessary to place one student in its right
position in each iteration; hence after each iteration,
number of gpa of students to be compared is decreased
by 1, as the student which is already placed in right
position in previous iteration does not need to be compared
again in the subsequent iteration; here j=1 is initialization,
j<numstd−i is condition and j++ is increment; this for loop
works as follows- initialization is done only once at the
start; then condition is checked, if it is true statement in
the body executes and value of j is incremented by 1; now the
condition is checked again and if it is true the body executes
again; these steps continue till the condition becomes false*/

if (stud[j−1].gpa<stud[j].gpa){
/*body of above 'for' loop contains only this 'if'
condition; if the condition of 'if' is true then following
three statements will execute; as there are multiple
statements in the body of 'if' they are enclosed with
curly braces; here gpa of two contiguous students are
compared, if the larger gpa stays above the smaller one
then they are swapped to always keep the student with
smaller gpa above the larger one*/

temp=stud[j−1];
/*array element stud[j−1] is stored in variable temp*/
stud[j−1]=stud[j];
/*array element stud[j] is stored as array
element stud[j−1], that is and stud[j] now becomes
stud[j−1]*/

466 ◾ Learn Programming with C

stud[j]=temp;
/*value of temp is stored as array element stud[j],
that is stud[j−1] now becomes stud[j]*/

}
/*this closing curly brace indicates the end of 'if'*/
else if (stud[j−1].gpa==stud[j].gpa)
/*if above 'if' condition is false then this 'else if'
condition is checked; if this condition is true, means
gpa of two contiguous students are equal then following
'if' condition executes to sort students according to
their obtained total marks in ascending order*/

if (stud[j−1].total<stud[j].total){
/*if this condition is true then following three
statements will execute; means- here total of two
contiguous students are compared, if the larger
total stays above the smaller one then they are
swapped to always keep the student with smaller
total above the larger one*/

temp=stud[j−1];
/*array element stud[j−1] is stored in variable
temp*/
stud[j−1]=stud[j];
/*array element stud[j] is stored as array
element stud[j−1], that is and stud[j] now
becomes stud[j−1]*/
stud[j]=temp;
/*value of temp is stored as array element
stud[j], that is stud[j−1] now becomes
stud[j]*/

}
/*this closing curly brace indicates the end of
'if' with condition*/

for (i=0; i<numstd; i++)
/*this for loop is used to set position of each student
according to sorted gpa; here i=0 is initialization, i<numstd is
condition and i++ is increment; this for loop works as follows-
initialization is done only once at the start; then condition is
checked, if it is true statement in the body executes and value
of i is incremented by 1; now the condition is checked again
and if it is true the body executes again; these steps continue
till the condition becomes false*/

stud[i].pos=i+1;
/*member pos of structured exam type array stud[] is set to
i+1; at 1st iteration position of first student is set to
stud[0].pos=1, at 2nd iteration position of second student
is set to stud[1].pos=2, and so on*/

        File Management ◾ 467

fp=fopen("c:\\myfiles\\Results.txt", "w");
/*fopen() function opens a text file named Results.txt in the
address C:\\myfiles\\ with write mode, indicated by “w”, and
returns a FILE type pointer*/
if (fp==NULL){
/*after opening a file in C, we must always check whether
the file opens successfully; to do that we check the pointer
returned by fopen() function; if it is NULL then file could not
open; hence, here if the file failed to open the condition is
true and following two statements will be executed*/

puts("Cannot open source file!\n");
/*output function puts() will display the string message
inside the double quotation as it is on screen except
newline character \n is replaced by enter*/
exit(1);
/*exit(1) function causes abnormal termination of the
program; all buffers, temporary files, streams are deleted
or cleared before the termination*/

}
/*this closing curly brace indicates the end of the 'if' body*/
fprintf(fp, "\nResult according to merit position . . . \n");
/*fprintf() function writes information inside the double
quotation as it is in the file referred by the pointer fp; here
enter is written in place of new line character*/
for (i=0; i<numstd; i++){
/*this for loop is used to display information of each student
according to sorted gpa; in each iteration individual student is
considered; here i=0 is initialization, i<numstd is condition and
i++ is increment; this for loop works as follows- initialization
is done only once at the start; then condition is checked, if
it is true statements in the body execute and value of i is
incremented by 1; now the condition is checked again and if it
is true the body executes again; these steps continue till the
condition becomes false*/

fprintf(fp, "Roll No.: %d\n", stud[i].roll);
/*fprintf() function will write information inside the
double quotation as it is in the file referred by the pointer
fp; here enter is written in place of new line character,
value of stud[i].roll in place of %d format specifier*/
for (j=0; j<numsub; j++)
/*this for loop is used to display information of all subjects
of each student according to sorted gpa; in each iteration
individual subject of a particular student is considered;
here j=0 is initialization, j<numsub is condition and j++ is
increment; this for loop works as follows- initialization
is done only once at the start; then condition is checked,

468 ◾ Learn Programming with C

if it is true statements in the body execute and value of i
is incremented by 1; now the condition is checked again and
if it is true the body executes again; these steps continue
till the condition becomes false*/

fprintf(fp, "EEE−110%d: %s (%0.2f)\n", j+1, stud[i].
sub[j].letter, stud[i].sub[j].point);

/*fprintf() function writes information in the quotation
as it is in the file referred by the pointer fp; here
format specifier %d is replaced by the value of j+1,
%s by string value of stud[i].sub[j].letter, %0.2f by
stud[i].sub[j].point with 2 decimal point precision and
newline character \n by enter*/

fprintf(fp, "GPA: %0.2f\nMerit Position: %d\n\n”, stud[i].
gpa, stud[i].pos);

/*fprintf() function writes information in the quotation as
it is in the file referred by the pointer fp; here format
specifier %d is replaced by the value of stud[i].pos, %0.2f
by stud[i].gpa with 2 decimal point precision and newline
character \n by enter*/

}
/*this closing curly brace indicates the end of for (i=0;
i<numstd; i++) loop*/
fclose(fp);
/*once a file is open in C, it is a good practice to close the
file before end of the program or reuse the file to properly
flush the output buffer; this is done here by the fclose()
function which close the file referred by its argument fp*/
for (i=1; i<=numstd−1; i++)
/* this for loop is used to repeat the following 'for' loop as
long as the condition satisfies; here i=1 is initialization,
i<=numstd−1 is condition and i++ is increment; this for loop
works as follows- initialization is done only once at the start;
then condition is checked, if it is true statement in the body
executes and value of i is incremented by 1; now the condition
is checked again and if it is true the body executes again;
these steps continue till the condition becomes false; this for
loop together with the following for loop are used here to sort
students according to their roll no in ascending order*/

for (j=1; j<=numstd−i; j++)
/*this for loop is used to compare roll of each student
and swap if necessary to place one student in its right
position in each iteration; hence after each iteration,
number of roll of students to be compared is decreased by 1,
as the student which is already placed in right position in
previous iteration does not need to be compared again in the
subsequent iteration; here j=1 is initialization, j<numstd−i
is condition and j++ is increment; this for loop works as

        

File Management ◾ 469

follows- initialization is done only once at the start; then
condition is checked, if it is true statement in the body
executes and value of j is incremented by 1; now the condition
is checked again and if it is true the body executes again;
these steps continue till the condition becomes false*/

if (stud[j−1].roll>stud[j].roll){
/*if this condition is true then following three
statements in the body of if, enclosed by curly braces,
will execute; means- here roll of two contiguous
students are compared, if the larger roll stays above
the smaller one then they are swapped to always keep
the student with smaller roll above the larger one*/

temp=stud[j−1];
/*array element stud[j−1] is stored in variable temp*/
stud[j−1]=stud[j];
/*array element stud[j] is stored as array element
stud[j−1], that is and stud[j] now becomes stud[j−1]*/
stud[j]=temp;
/*value of temp is stored as array element
stud[j], that is stud[j−1] now becomes stud[j]*/

}
/*this closing curly brace indicates the end of 'if'
condition*/

fp=fopen("c:\\myfiles\\Results.txt", "a");
/*fopen() function opens the same text file, in which some information
was saved, named Results.txt in the address C:\\myfiles\\ with
append mode, indicated by “a”, and returns a FILE type pointer*/
if (fp==NULL){
/*after opening a file in C, we must always check whether
the file opens successfully; to do that we check the pointer
returned by fopen() function; if it is NULL then file could not
open; hence, here if the file failed to open the condition is
true and following two statements will be executed*/

puts("Cannot open target file!\n");
/*output function puts() will display the string message
inside the double quotation as it is on screen except
newline character \n is replaced by enter*/
exit(1);
/*exit(1) function causes abnormal termination of the
program; all buffers, temporary files, streams are deleted
or cleared before the termination*/

}
/*this closing curly brace indicates the end of the 'if' body*/
fprintf(fp, "\nResult according to roll no \n");
/*fprintf() function will write information inside the double
quotation as it is in the file referred by the pointer fp; here
enter is written in place of new line character \n*/

470 ◾ Learn Programming with C

for (i=0; i<numstd; i++){
/*this for loop is used to display information of each student
according to sorted roll; in each iteration individual student
is considered; here i=0 is initialization, i<numstd is
condition and i++ is increment; this for loop works as follows-
initialization is done only once at the start; then condition is
checked, if it is true statements in the body execute and value
of i is incremented by 1; now the condition is checked again
and if it is true the body executes again; these steps continue
till the condition becomes false*/

fprintf(fp, "Roll No.: %d\n", stud[i].roll);
/*fprintf() function will write information inside the
double quotation as it is in the file referred by the pointer
fp; here enter is written in place of newline character,
value of stud[i].roll in place of %d format specifier*/
for (j=0; j<numsub; j++)
/*this for loop is used to display information of all subjects
of each student according to sorted gpa; in each iteration
individual subject of a particular student is considered;
here j=0 is initialization, j<numsub is condition and j++ is
increment; this for loop works as follows- initialization
is done only once at the start; then condition is checked,
if it is true statements in the body execute and value of i
is incremented by 1; now the condition is checked again and
if it is true the body executes again; these steps continue
till the condition becomes false*/

fprintf(fp, "EEE−110%d: %s (%0.2f)\n", j+1, stud[i].
sub[j].letter, stud[i].sub[j].point);

/*fprintf() function writes information in the quotation
as it is in the file referred by the pointer fp; here
format specifier %d is replaced by the value of j+1,
%s by string value of stud[i].sub[j].letter, %0.2f by
stud[i].sub[j].point with 2 decimal point precision and
newline character \n by enter*/

fprintf(fp, "GPA: %0.2f\nMerit Position: %d\n\n”, stud[i].
gpa, stud[i].pos);

/*fprintf() function writes information in the quotation as
it is in the file referred by the pointer fp; here format
specifier %d is replaced by the value of stud[i].pos, %0.2f
by stud[i].gpa with 2 decimal point precision and newline
character \n by enter*/

}
/*this closing curly brace indicates the end of for (i=0;
i<numstd; i++) loop*/
fclose(fp);
/*once a file is open in C, it is a good practice to close the
file before end of the program or reuse the file to properly
flush the output buffer; this is done here by the fclose()
function which close the file referred by its argument fp*/

        

File Management ◾ 471

fp=fopen("c:\\myfiles\\Results.txt", "r");
/*fopen() function opens a text file, same file used before
to write information of the students, named Result.txt in the
address C:\\my files\\ with read mode, indicated by “r”, and
returns a FILE type pointer*/
if (fp==NULL){
/*after opening a file in C, we must always check whether
the file opens successfully; to do that we check the pointer
returned by fopen() function; if it is NULL then file could
not open; hence, here if the file failed to open the condition
is true and following two statements execute*/

puts("Cannot open target file!\n");
/*output function puts() will display the string message
inside the double quotation as it is on screen except
newline character \n is replaced by enter*/
exit(1);
/*exit(1) function causes abnormal termination of the
program; all buffers, temporary files, streams are deleted
or cleared before the termination*/

}
/*this closing curly brace indicates the end of the 'if'
body*/
printf("\n");
/*output function printf() displays enter due to newline
character \n*/
while (1){
/*as the 1 means true, the condition of 'while' is always true
and following statements in the body of while, enclosed by curly
braces, execute in any case; in each iteration character is read
sequentially from the file and displayed on screen*/

ch=fgetc(fp);
/*fgetc() function reads a character from the file referred by
the pointer fp; at 1st iteration, it reads the 1st character
(ch=1st character) and the pointer automatically points
to the 2nd character; at 2nd iteration, it reads the 2nd
character (ch=2nd character) and the pointer automatically
points to the 3rd character; and so on*/
if (ch==EOF)
/*ch is compared with EOF, means whether we reach the end-
of-file or not; if yes, then the program steps out of the
while loop*/

break;
/*program control immediately comes out of the while
loop skipping following statement*/

printf("%c", ch);
/*output function printf() displays character ch due to
format specifier %c*/

}
/*this closing curly brace indicates the end of while loop*/

472 ◾ Learn Programming with C

fclose(fp);
/*once a file is open in C, it is a good practice to close the
file before end of the program or reuse the file to properly
flush the output buffer; this is done here by the fclose()
function which close the file referred by its argument fp*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace indicates the end of the body of main()
function and the end of the program; no statement will execute after
that curly brace*/

EXERCISES

MCQ with Answers

1) What is the keyword used to declare a C fle pointer?

A) fle

B) FILE

C) FILEFP

D) flefp

2) What is a C FILE data type?

A) FILE is like a structure only

B) FILE is like a union only

C) FILE is like a user-defned int data type

D) None of the above

3) Where is a fle temporarily stored before read or write operation in C language?

A) Notepad

B) RAM

C) Hard disk

D) Bufer

4) What is the syntax for writing a fle in C using binary mode?

A) fp=fopen(“abc.txt”, “wr”);

B) fp=fopen(“abc.txt”, “wb”);

C) fp=fopen(“abc.txt”, “wbin”);

D) fp=fopen(“abc.txt”, “b”);

        

File Management ◾ 473

5) What are the C functions used to read or write a fle in text mode?

A) fprintf(), fscanf()

B) fread(), fwrite()

C) fprint(), fscan()

D) read(), write()

6) What are the C functions used to read or write a fle in binary mode?

A) fprintf(), fscanf()

B) fread(), fwrite()

C) readf(), writef()

D) printf(), scanf()

7) What is the C function used to move current pointer to the beginning of fle?

FILE *fp;

A) rev(fp)

B) rewind(fp)

C) rew(fp)

D) wind(fp)

8) Choose a correct syntax for FSCANF and FPRINTF in C language?

A) fprintf(“format specifer”,variables, fp);

fscanf(“format specifer”,variables, fp);

B) fprintf(fp,count, “format specifer”,variables);

fscanf(fp,count,“format specifer”,variables);

C) fprintf(fp, “format specifer”,variables);

fscanf(fp, “format specifer”,variables);

D) None of the above

9) What is the use of rewind() function in C?

A) Set the position to the starting point

B) Gives current position in the fle

C) Set the position to the desired point

D) None of the above

[Ans. B, A, D, B, A, B, B, C, A]

474 ◾ Learn Programming with C

Questions with Short Answers

1) What is the diference between text fles and binary fles?

Ans. Text fles contain data that humans can easily comprehend. It consists of let-
ters, numbers, and other symbols and characters. Binary fles, on the other hand,
contain 1’s and 0’s that only computers can understand.

2) What is a sequential access fle?

Ans. It is possible to designate a fle into several forms while writing programs that
store and retrieve data. Data is kept in sequential order in a sequential access fle:
one data is added afer the other to the fle. To get to a certain data in the sequential
access fle, data must be read one by one until the proper one is found.

3) What is the advantage of a random access fle?

Ans. If a fle has a vast quantity of data, random access allows looking through it
more quickly. If it had been a sequential access fle, we would have had to go through
each record one by one until we got to the desired information. A random access fle
allows jumping right to the data’s target address.

4) How do you search data in a data fle using a random access method?

Ans. To search data on a fle using a random access method, we need to use the
fseek() function. Syntax of fseek() function is:

int fseek(FILE *pointer, long int ofset, int position)

pointer: pointer to a FILE object that identifes the stream.

ofset: number of bytes to ofset from position

position: position from where the ofset is added.

Returns zero if successful, or else it returns a nonzero value.

5) What do the characters “r” and “w” mean when writing programs in C?

Ans. “r” means read and opens a fle to retrieve data. “w” means write, and opens
a fle to write data in the fle. Previous data that was stored on that fle will be
erased.

6) Describe the fle opening mode “w+”.

Ans. “w+” mode opens a fle both to read and to write data. If a fle does not exist, it
creates a one; otherwise, it is overwritten if a fle does exist.

7) What is the diference between fopen modes “r+”, and “w+”?

Ans. Te diference in the fopen modes r+ and w+ in C:

“r+”: opens a text fle both for reading and for writing; neither delete the content if it
exists nor create a new fle if it doesn’t exist.

        

File Management ◾ 475

“w+”: opens a text fle both for reading and for writing; frst truncating the fle to
zero length if it exists or creating the fle if it does not exist.

8) Is FILE a built-in data type?

Ans. No, it is a structure defned in stdio.h.

9) How can we determine whether a fle is successfully open or not using fopen()
function?

Ans. Afer opening the fle using the fopen() function and assigning the “fle” to a
variable, we must check the return value. An error has occurred if the variable ==
NULL; otherwise, the fle was successfully open.

Problems to Practice

1) Write a program to read name and marks of a student and store them in a fle.

2) Write a program to open the fle created in the last problem, read name and marks
of a student and append them in the fle.

3) Write a program to open the fle created in the last problem, read information from
the fle, and display them on the screen.

4) Write a program to calculate the area and circumference of a circle.

5) Te annual examination results of n students are tabulated as follows:

Roll No. EEE-1101 EEE-1102 EEE-1103
101 69 56 89
102 80 65 91
103 45 36 68

Write a program to read the data and determine the following:

(a) Grade obtained by each student in each subject:

Marks Letter Grade Grade Point
90% and above A+ 4.00
80% to <90% A 3.50
70% to <60% B 3.00
60% to <70% C 2.50
50% to <60% D 2.00
Less than 50% F 0.00

(b) Total marks and GPA obtained by each student.

(c) Te position of each student based on GPA (for equal GPA, consider who gets
the higher total marks).

476 ◾ Learn Programming with C

(d) Te result should be displayed according to the roll number and merit.

(e) Save the results in a text fle and retrieve and print the results from the text fle.

6) Write a program to write and read multiple lines in a text fle.

7) Write a program to count the number of lines, words, and characters in a text fle.

8) Write a program to delete and replace a specifc line in a text fle.

9) Write a program to copy a fle and write it in a new fle.

10) Write a program to merge two fles and write it in a new fle.

11) Write a program to read a string from a fle and display it to the user.

C H A P T E R 7

C Graphics

Graphics is a powerful feature and makes computer applications attractive. This
chapter describes the fundamentals of graphics programming in C and for those who

do not have any prior knowledge of graphics programming. Graphics programming in C
is used to draw geometrical objects, draw curves using mathematical functions, color an
object or pattern, and create simple animations such as bouncing balls and driving cars.

7.1 INTRODUCTION
C applications usually run in a console window known as CUI (character user interface).
C library contains header file graphics.h containing many predefined functions to imple-
ment GUI (graphical user interface) in C applications. To implement GUI programming,
we need to convert the output screen from CUI (character data) mode to GUI (pixel) mode.

7.2 FUNCTION
All the related functions to implement the graphics programming are available in the
header file graphics.h. Open graphics.h header file to see all the functions available in the
header file. Some of the important functions used are as follows:

initgraph() used to convert CUI mode into GUI mode (initialize graphics mode). It
takes three arguments: graphics driver, graphics mode, and path.

closegraph() used to deallocate all memory allocated by graphics system and shut
down the graphics system.

outtextxy() displays a message in (x, y) coordinate. It takes three arguments: x and y
arguments, and a message as string or char type pointer.

getmaxx() returns the maximum x coordinate for current graphics mode and driver.

getmaxy() returns the maximum y coordinate for current graphics mode and driver.

DOI: 10.1201/9781003302629-7 477

https://doi.org/10.1201/9781003302629-7

478 ◾ Learn Programming with C

setcolor() sets drawing color. It takes an integer argument whose value (0 to 15)
determines a particular color. Or name of the color (BLACK, CYAN,
RED, WHITE etc.) can be passed as string argument.

setbkcolor() sets the background color. It takes an integer argument whose value (0 to
15) determines a particular color. Or name of the color (BLACK, CYAN,
RED, WHITE etc.) can be passed as string argument.

settextstyle() sets the current text characteristics (font, direction, and size). It takes three
arguments: frst argument sets the font depending on integer constant (0,
1, 2, 3, or 4), second argument sets the font’s direction (HORIZ_DIR=0
for horizontal from lef to right and VERT_DIR=1 for vertical from bot-
tom to top), and the third argument sets the font’s size which gradually
increases depending on the integer value you have passed from 1 to 10.

kbhit() checks for recent keystrokes. It returns a nonzero integer if a keystroke is
available.

setfllstyle() sets the current fll pattern and fll color. First parameter represents the
pattern and the second one the color. Te allowed patterns are EMPTY_
FILL=0, SOLID_FILL=1, LINE_FILL=2, . . ., USER_FILL=12 and the col-
ors are BLACK=0, BLUE=1, . . ., WHITE=15.

foodfll() flls an enclosed area at location (x, y) coordinate. Te current fll pattern
and fll color are used to fll the area. Border color of the enclosed area is
passed as third argument of the function.

delay() delay() function is built upon another C library function clock(). Tis is
used to suspend execution of a program for a particular time. Te time to
be delayed is passed as argument in some integer milliseconds.

cleardevice() clears the screen in graphics mode, like clrscr() function does in CUI
mode, and sets the current position to (0, 0). To clear the screen, it just
flls the screen with current background color.

DETECT a macro that automatically detect the suitable graphics driver.

7.3 COLOR TABLE
In graphics, each color is assigned an integer number. Total number of available colors is
16. While the default drawing color is WHITE, the default background color is BLACK.
Te following table shows the supported colors and associated integer values:

Color Integer Value

BLACK 0
BLUE 1
GREEN 2

        

C Graphics ◾ 479

Color Integer Value

CYAN 3
RED 4
MAGENTA 5
BROWN 6
LIGHTGRAY 7
DARKGRAY 8
LIGHTBLUE 9
LIGHTGREEN 10
LIGHTCYAN 11
LIGHTRED 12
LIGHTMAGENTA 13
YELLOW 14
WHITE 15

7.4 FONTS OF TEXT
In graphics, diferent font is assigned a diferent number. Total number of available fonts is
11. Te following table shows the fonts value with their integer values.

Font Integer Value

DEFAULT_FONT 0
TRIPLEX_FONT 1
SMALL_FONT 2
SANS_SERIF_FONT 3
GOTHIC_FONT 4
SCRIPT_FONT 5
SIMPLEX_FONT 6
TRIPLEX_SCR_FONT 7
COMPLEX_FONT 8
EUROPEAN_FONT 9
BOLD_FONT 10

7.5 FILL PATTERNS
In graphics, diferent integer values represent diferent patterns that are used to fll enclosed
areas. Following table shows all the available 13 fll patterns and their corresponding inte-
ger values.

Pattern Integer value
EMPTY_FILL 0
SOLID_FILL 1
LINE_FILL 2
LTSLASH_FILL 3

480 ◾ Learn Programming with C

Pattern Integer value

SLASH_FILL 4
BKSLASH_FILL 5
LTBKSLASH_FILL 6
HATCH_FILL 7
XHATCH_FILL 8
INTERLEAVE_FILL 9
WIDE_DOT_FILL 10
CLOSE_DOT_FILL 11
USER_FILL 12

7.6 INCLUDING GRAPHICS.H IN CODEBLOCKS
Follow the below steps to compile and execute the graphics code on Code::Blocks success-
fully. We assume here that you have installed and using 32-bit CodeBlocks with mingw
package.

Step-1: Download WinBGIm from http://winbgim.codecutter.org/ and extract the
downloaded fle. Tere will be three fles: graphics.h, winbgim.h, and libbgi.a.

Step-2: Open graphics.h fle with Notepad++. Go to line number 302, and replace that line
with int lef=0, int top=0, int right=INT_MAX, int bottom=INT_MAX, and save the fle.

Step-3: Copy and paste graphics.h and winbgim.h fles into include folder of compiler
directory [Tis PC > WINDOWS10 (C:) > Program Files (x86) > CodeBlocks >
MinGW > include].

Step-4: Copy and paste libbgi.a into lib folder of compiler directory [Tis PC >
WINDOWS10 (C:) > Program Files (x86) > CodeBlocks > MinGW > lib].

Step-5: Open CodeBlocks. Go to Settings→Compiler . . . →Linker settings. Click the Add
button under the “Link libraries” part; browse and select the libbgi.a fle copied to the
lib folder, and click OK.

In the “Other linker options” part, paste the command -lbgi -lgdi32 -lcomdlg32 -luuid
-loleaut32 -lole32 and click OK.

Step-6: Save the source code with fle extension .cpp (not .c) and then build and run the
program.

7.7 EXAMPLES

PROBLEM-01
Write a program to draw a bar of size 100 × 300 and a circle with a radius of 50.

http://winbgim.codecutter.org

        

C Graphics ◾ 481

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <graphics.h>
/*header file graphics.h contains prototypes of the library functions
initgraph(), bar(), circle(), and closegraph(); the header file
must be included using preprocessor directive #include before the
functions are called in the program*/
#include <conio.h>
/*header file conio.h contains the prototype of the libray function
getch(), hence needs to be included before the function is used in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and
it returns an integer; opening curly brace specifies start of

482 ◾ Learn Programming with C

the main() function and no statement before that curly brace is
executed by the compiler*/

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
bar(100, 100, 200, 400);
/*bar() function is called to draw a bar diagram that takes
(100, 100) as top-left coordinate and (200, 400) as bottom-
right coordinate*/
circle(400, 250, 50);
/*function circle() is called to draw a circle that takes
(400, 250) as coordinate of the center and 50 as radius of the
circle*/
getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

Comments:
To run the above program in Turbo C, we need to defne the initgraph() function in the
program as follows:

initgraph(&gd, &gm, “C:\\TC\\BGI”);

Tat is, instead of writing an empty string in the third argument, we need to write the full
path address of the BGI folder in TC with double backslash. Tis modifcation is needed
for all the other graphics program to run in Turbo C.

PROBLEM-02
Write a program that prints a message in diferent colors.

        

C Graphics ◾ 483

Programming Code of the Solution:

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <graphics.h>
/*header file graphics.h contains prototypes of the library functions
initgraph(), setcolor(), outtextxy(), and closegraph(); the header
file must be included using preprocessor directive #include before
the functions are called in the program*/
#include <conio.h>
/*header file conio.h contains the prototype of the libray function
getch(), hence needs to be included before the function is used in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and

484 ◾ Learn Programming with C

it returns an integer; opening curly brace specifies start of
the main() function and no statement before that curly brace is
executed by the compiler*/

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/
int i, x=100, y=50;
/*three integer type variables i, x and y are declared; compiler
assigns required spaces in memory for these three variables; x
is initialized to 100 and y to 50 that will be used to select
coordinates on the screen*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
for (i=1; i<16; i=i+2){
/*i=1 is initialization, i<16 is condition and i=i+2 is increment;
initialization is done once at the beginning of the loop; next
the condition is checked, and if it is true, the statements in
the body are executed; the value of i is incremented by 2 before
the condition is re-checked; this process continues until the
condition becomes false at which point the program flow exits
the loop*/

setcolor(i);
/*this function sets the drawing color; as integer 0
represents BLACK color and cannot be seen on black background,
we starts from 1 that represents BLUE color; after that
as i changes in each iteration, it sets different drawing
color*/
outtextxy(x, y, "Welcome to Learn Programming with C. . .”);
/*this function displays the message enclosed by double
quotations in the (x, y) coordinate*/
y = y+30;
/*we have kept the value of x unchanged and increased the
y value by 30 in each iteration so that the message is
displayed in different coordinate*/

}
/*this closing curly brace specifies the end the the for loop*/
getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/

        

C Graphics ◾ 485

return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-03
Write a program that displays diferent messages in diferent colors and diferent
directions on diferent backgrounds.

Programming Code of the Solution:

Input and Output of the Executed Program:

486 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <graphics.h>
/*header file graphics.h contains prototypes of the library functions
initgraph(), setbkcolor(), setcolor(), settextsyle(), outtextxy(),
cleardevice() and closegraph(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
#include <conio.h>
/*header file conio.h contains the prototype of the libray function
getch(), hence needs to be included before the function is used in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
setbkcolor(WHITE);
/*sets the background color to white; the default color is
black*/
setcolor(GREEN);
/* sets the drawing color to green*/
settextstyle(0, HORIZ_DIR, 2);
/*sets the current text characteristics; first argument sets
the font to DEFAULT_FONT=0, second argument sets the font’s
direction to horizontal and the third argument sets the size of
the font to 2*/
outtextxy(20, 100, "Welcome to Learn Programming with C . . . ");
/*this displays the message enclosed by double quotations in
the coordinate (20, 100) in the horizontal direction*/
outtextxy(20, 150, "Press any key to continue . . . ");
/*this displays the message enclosed by double quotations in
the coordinate (20, 150) in the horizontal direction*/
getch();
/*input function getch() is called here to keep the console state
visible until we enter any character; as soon as we enter any key,
program flow goes to the next instruction immediately*/

        

C Graphics ◾ 487

cleardevice();
/*this function erases the previous two messages shown and
clears the screen*/
setbkcolor(RED);
/*sets the background color to red from white that was previously
set*/
setcolor(BLUE);
/* sets the drawing color to blue from the green that was
previously set*/
settextstyle(1, VERT_DIR, 3);
/*sets the current text characteristics; first argument sets
the font to TRIPLEX_FONT=1, second argument sets the font’s
direction to vertical and the third argument sets the size of
the font to 3*/
outtextxy(50, 50, "Very effective book to learn C . . . ");
/*this displays the message enclosed by double quotations in
the coordinate (50, 50) in the vertical direction; (50, 50) is
the top coordinate*/
outtextxy(150, 50, "Press any key to close . . . ");
/*this displays the message enclosed by double quotations in
the coordinate (150, 50) in the vertical direction; (150, 50)
is the top coordinate*/
getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-04
Write a program that draws 16 circles of same size at diferent coordinates where each
circle intersects all its neighbor circles.

Programming Code of the Solution:

488 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <graphics.h>
/*header file graphics.h contains prototypes of the library functions
initgraph(), setbkcolor(), setcolor(), circle(), and closegraph();
the header file must be included using preprocessor directive #include
before the functions are called in the program*/
#include <conio.h>
/*header file conio.h contains the prototype of the libray function
getch(), hence needs to be included before the function is used in
the program*/

        

C Graphics ◾ 489

int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/
int x, y;
/*two integer type variables x and y are declared; compiler
assigns required spaces in memory for these two variables*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
setbkcolor(WHITE);
/*sets the background color to white; the default color is
black*/
setcolor(RED);
/* sets the drawing color to red*/
for (y=100; y<=400; y+=100)
/*y=100 is initialization, y<=400 is condition and y+=100
=> y=y+100 is increment; initialization is done once at the
beginning of the loop; next the condition is checked, and if it
is true, the statement in the body is executed; the value of y
is incremented by 100 before the condition is re-checked; this
process continues until the condition becomes false at which
point the program flow exits the loop*/

for (x=100; x<=400; x+=100)
/*x=100 is initialization, x<=400 is condition and x+=100
=> x=x+100 is increment; initialization is done once at
the beginning of the loop; next the condition is checked,
and if it is true, the statement in the body is executed;
the value of x is incremented by 100 before the condition
is re-checked; this process continues until the condition
becomes false at which point the program flow exits the
loop*/

circle(x, y, 50);
/*this function draws a circle of radius 50 cm whose
center is at (x, y) coordinate; we want to draw 4×4=16
circles that touches each others’ neighbor circles;
that’s why the distance between two centers is 100
and the radius of each circle is 50; for the first 4

490 ◾ Learn Programming with C

circles the y coordinate remains fixed at 100 and the
x coordinates change by 100 in each iteration of the
2nd 'for' loop; in the 2nd iteration of the 1st 'for'
loop the y coordinate changed to 200 to draw another 4
circles in the 2nd row and keeping the y value fixed at
200 we again change the x coordinates by 100 in each
iteration of the 2nd 'for' loop*/

getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-05
Write a program that draws dynamic rainbow with beautiful colors.

Programming Code of the Solution:

        

C Graphics ◾ 491

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <graphics.h>
/*header file graphics.h contains prototypes of the library
functions initgraph(), getmaxx(), getmaxy(), setcolor(), arc(), and
closegraph(); the header file must be included using preprocessor
directive #include before the functions are called in the program*/
#include <conio.h>
/*header file conio.h contains the prototype of the libray function
getch(), hence needs to be included before the function is used in
the program*/
#include <dos.h>
/*header file dos.h contains the prototype of the libray function
delay() and hence, needs to be included before using the function
in the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/
int x, y, i;
/*three integer type variables i, x and y are declared; compiler
assigns required spaces in memory for these three variables*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize
the graphics mode. Graphics mode gm represents screen

492 ◾ Learn Programming with C

resolution and will be selected implicitly depending on
the graphics driver gd; as the mentioning path in the third
argument is not mandatory we write it as empty string*/
x=getmaxx()/2;
/*library function getmaxx() returns the maximum x coordinate
that is divided by 2 and the value is assigned to variable x*/
y=getmaxy()/2;
/*library function getmaxy() returns the maximum y coordinate
that is divided by 2 and the value is assigned to variable y;
thus we get the (x, y) coordinate at the center of the current
graphics mode and driver*/
for (i=40; i<200; i++){
/*i=40 is initialization, i<200 is condition and i++ => i=i+1
is increment; initialization is done once at the beginning
of the loop; next the condition is checked, and if it is
true, the statements in the body are executed; the value of i
is incremented by 1 before the condition is re-checked; this
process continues until the condition becomes false at which
point the program flow exits the loop*/

delay(100);
/*this halts the execution of the next instruction for 100
milliseconds*/
setcolor(i/10);
/*this function sets the drawing color; at the 1st 10
iterations of the loop, it sets the color to RED=4; at
the 2nd 10 iterations of the loop, it sets the color to
MAGENTA=5; and so on*/
arc(x, y, 0, 180, i−10);
/*it draws an arc with center at (x, y), 0 is the starting
point of the angle, 180 is the ending point of the angle,
and i−10 is the radius of the arc; at the 1st 10 iterations
of the loop, it draws 10 red color arcs whose radius changes
in each iteration from 30 to 39; at the 2nd 10 iterations,
it draws 10 magenta color arcs whose radius changes in each
iteration from 40 to 49; and so on*/

}
/*this closing curly brace specifies the end of the for loop*/
getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}

        

C Graphics ◾ 493

/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-06
Write a program that draws a simple house and shows it on the screen.

Programming Code of the Solution:

Input and Output of the Executed Program:

494 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <graphics.h>
/*header file graphics.h contains prototypes of the library functions
initgraph(), line(), rectangle(), setfillstyle(), floodfill() and
closegraph(); the header file must be included using preprocessor
directive #include before the functions are called in the program*/
#include <conio.h>
/*header file conio.h contains the prototype of the libray function
getch(), hence needs to be included before the function is used in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared.
Variable gd is initialized to DETECT which is a macro that
automatically detect graphics driver suitable for hardware*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
line(100, 100, 150, 50);
/*draws a straight line from a point (100, 100) coordinate to
point (150, 50) coordinate*/
line(150, 50, 200, 100);
/*draws a straight line from a point (150, 50) coordinate to
point (200, 100) coordinate*/
line(150, 50, 350, 50);
/*draws a straight line from a point (150, 50) coordinate to
point (350, 50) coordinate*/
line(350, 50, 400, 100);
/*draws a straight line from a point (350, 50) coordinate to
point (400, 100) coordinate*/
rectangle(100, 100, 200, 200);
/*draws a rectangle with left-top corner at (100, 100) coordinate
and right-bottom corner at (200, 200)*/
rectangle(200, 100, 400, 200);
/*draws a rectangle with left-top corner at (200, 100) coordinate
and right-bottom corner at (400, 200)*/
rectangle(130, 130, 170, 200);
/*draws a rectangle with left-top corner at (130, 130) coordinate
and right-bottom corner at (170, 200)*/
rectangle(250, 120, 350, 180);

        

C Graphics ◾ 495

/*draws a rectangle with left-top corner at (250, 120) coordinate
and right-bottom corner at (350, 180)*/
setfillstyle(2, 3);
/*sets the current fill pattern to LINE_FILL and fill color to
CYAN*/
floodfill(131, 131, WHITE);
/*filsl the enclosed area at location (131, 131) with current
fill pattern and fill color set in the previous instruction,
and with border color white*/
floodfill(201, 101, WHITE);
/*fills the enclosed area at location (201, 101) with current
fill pattern and fill color set in the previous instruction,
and with border color white*/
setfillstyle(11, 7);
/*sets the current fill pattern to CLOSE_DOT_FILL and fill
color to LIGHTGRAY*/
floodfill(101, 101, WHITE);
/*fills the enclosed area at location (101, 101) with current
fill pattern and fill color set in the previous instruction,
and with border color white*/
floodfill(150, 52, WHITE);
/*fills the enclosed area at location (150, 52) with current
fill pattern and fill color set in the previous instruction,
and with border color white*/
floodfill(163, 55, WHITE);
/*fills the enclosed area at location (163, 55) with current
fill pattern and fill color set in the previous instruction,
and with border color white*/
floodfill(251, 121, WHITE);
/*fills the enclosed area at location (251, 121) with current
fill pattern and fill color set in the previous instruction,
and with border color white*/
getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

496 ◾ Learn Programming with C

PROBLEM-07
Write a program to make a dynamic digital clock.

Programming Code of the Solution:

        C Graphics ◾ 497

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdlib.h>
/*header file stdlib.h contains the prototype of the libray function
itoa(), hence needs to be included before the function is used in
the program*/
#include <graphics.h>
/*header file graphics.h contains prototypes of the library
functions initgraph(), setcolor(), cleardevice(), settextstyle(),
outtextxy(), rectangle(), and closegraph(); the header file must be
included using preprocessor directive #include before the functions
are called in the program*/
#include <conio.h>
/*header file conio.h contains the prototypes of the libray
functions getch() and kbhit(), hence needs to be included before
these functions are used in the program*/
#include <dos.h>
/*header file dos.h contains the prototypes of the libray functions
gettime(), sound(), nosound() and delay(); hence, needs to be
included before using these functions in the program*/
struct time tm;
/*struct time type variable tm is declared; the structure contains
local calendar date and time broken down into its components; the
members that represents the current time in hour, minute and seconds
can be accessed using dot (.) operator*/
void display(int x, int y, int num);
/*this is the prototype (or declaration) of the user-defined function
display() that must end with a semicolon; display() takes three
integer values as parameters, executes some predefined instructions,
and returns nothing*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

498 ◾ Learn Programming with C

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/
int hr, min, sec;
/*three integer type variables hr, min and sec are declared;
compiler assigns required spaces in memory for these three
variables*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
setcolor(RED);
/*this function sets the drawing color RED*/
while (!kbhit()){
/*body of the while loop contains the following statements,
enclosed by curly braces, which are executed until the condition
becomes false; when any key is pressed, kbhit() returns nonzero
value and due to ! (NOT) sign the value becomes false (or zero)
at which point the program flow exits the loop*/

gettime(&tm);
/*this function gets the current time in hour, minutes,
seconds etc. and passed it to the time object tm*/
hr = tm.ti_hour;
/*hour of the current time passed by gettime() function
to tm is accessed using the dot operator and assigned to
variable hr*/
min = tm.ti_min;
/*minute of the current time passed by gettime() function
to tm is accessed using the dot operator and assigned to
variable min*/
sec = tm.ti_sec;
/*second of the current time passed by gettime() function
to tm is accessed using the dot operator and assigned to
variable sec*/
display(100, 100, hr);
/*user-defined function display() is called with three
integer values 100, 100 and hr are passed as arguments;
program control goes to the definition of the function
that displays value of hr at coordinate (100, 100) and
the program control returns to the immedicate next
instruction*/
display(200, 100, min);
/*user-defined function display() is called with three

        

C Graphics ◾ 499

integer values 200, 100 and min are passed as arguments;
program control goes to the definition of the function
that displays value of min at coordinate (200, 100)
and the program control returns to the immedicate next
instruction*/
display(300, 100, sec);
/*user-defined function display() is called with three
integer values 300, 100 and sec are passed as arguments;
program control goes to the definition of the function
that displays value of hr at coordinate (300, 100) and
the program control returns to the immedicate next
instruction*/
sound(400);
/*this function is called to produce the system sound of
frequency 400 Hz*/
delay(30);
/*this function is called to halt the execution of the next
instruction for 30 ms so that the program can continue the
system sound of 400 Hz for 30 ms*/
nosound();
/*/this function is called to stop the system sound*/
delay(970);
/*this function is called to halt the execution of the next
instruction for 970 ms so that there remains no system sound
for 970 ms*/
cleardevice();
/*this clears the screen and fill it with current background
color; if we don’t clear the screen after showing the
current time for one second, then the next time will simply
overrite on previous time; as it continues, it will be
difficult to undstand the current time at all*/

}
/*this closing curly brace specifies the end of while loop*/
getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

 500 ◾ Learn Programming with C

void display(int x, int y, int num){
/*this is the header for the user-defined function display(), which
must be identical to the function prototype except for no semicolon
is used; the function is defined within the curly braces*/

char str[3];
/*a character type array str[] of size 3 is declared; required
contiguous memory spaces are allocated for the array*/
itoa(num, str, 10);
/*itoa() converts decimal data num to its equivalent string str;
here 10 means decimal; this conversion is done as outtextxy()
function only displays string*/
settextstyle(4, HORIZ_DIR, 7);
/*sets the current text characteristics; first argument sets
the font to GOTHIC_FONT=4, second argument sets the font’s
direction to horizontal and the third argument sets the size of
the font to 7*/
outtextxy(180, 100, ":");
/*this displays the message enclosed by double quotations in
the coordinate (180, 100) in the horizontal direction*/
outtextxy(280, 100, ":");
/*this displays the message enclosed by double quotations in
the coordinate (280, 100) in the horizontal direction*/
outtextxy(x, y, str);
/*this displays the message str in the coordinate (x, y) in the
horizontal direction*/
rectangle(90, 90, 380, 200);
/*draws a rectangle with left-top corner at (90, 90) coordinate
and right-bottom corner at (380, 200)*/
rectangle(70, 70, 400, 220);
/*draws a rectangle with left-top corner at (70, 70) coordinate
and right-bottom corner at (400, 220)*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-08
Write a program that displays an animated smiley on the screen.

Programming Code of the Solution:

        C Graphics ◾ 501

Input and Output of the Executed Program:

 502 ◾ Learn Programming with C

Explanation of the Programming Code:

#include <graphics.h>
/*header file graphics.h contains prototypes of the library functions
initgraph(), getmaxx(), getmaxy(), setcolor(), setfillstyle(),
fillellipse(), arc(), cleardevice() and closegraph(); the header
file must be included using preprocessor directive #include before
the functions are called in the program*/
#include <conio.h>
/*header file conio.h contains the prototypes of the libray
functions getch() and kbhit(), hence needs to be included before
these functions are used in the program*/
#include <dos.h>
/*header file dos.h contains the prototype of the libray function
delay(); hence, needs to be included before using the function in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/

        

C Graphics ◾ 503

int i=1, midx, midy;
/*three integer type variables i, midx and midy are declared;
compiler assigns required spaces in memory for these three
variables; variable i is also initialized to 1*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
midx = getmaxx()/2;
/*library function getmaxx() returns the maximum x coordinate
that is divided by 2 and the value is assigned to variable
midx*/
midy = getmaxy()/2;
/*library function getmaxy() returns the maximum y coordinate
that is divided by 2 and the value is assigned to variable midy;
thus we get the (midx, midy) coordinate at the center of the
current graphics mode and driver*/
while (!kbhit()){
/*body of the while loop contains the following statements,
enclosed by curly braces, which are executed until the
condition becomes false; when any key is pressed, kbhit()
returns nonzero value and due to! (NOT) sign the value becomes
false (or zero) at which point the program flow exits the
loop*/

if (i%2==0)
/*if i is divisible by 2, then the condition is true and
following statement is executed*/

i=0;
/*0 is assigned to variable i*/

else
/*statement in the body of else is executed if the condition
of 'if' is false, that is, i is not divisible by 2*/

i=25;
/*25 is assigned to variable i; 25 is assigned to i in
the 1st iteration, 0 in the 2nd iteration, again 25 in
the 3rd iteration, and so on; this is done to create
blinking eyes*/

setcolor(6);
/* sets the drawing color to BROWN=6*/
setfillstyle(SOLID_FILL, YELLOW);
/*sets the current fill pattern to SOLID_FILL and fill
color to YELLOW*/
fillellipse(midx, midy, 200, 200);
/*this draws (with brown color) and fills (with yellow

504 ◾ Learn Programming with C

color) an ellipse with center at (midx, midy) and 200 (3rd

argument) as x-radius, and 200 (4th argument) as y-radius;
this is done to create the body of the smiley*/
arc(midx, midy+50, 180, 360, 100);
/*it draws an arc with center at (midx, midy+50), 180 is
the starting point of the angle, 360 is the ending point of
the angle, and 100 is the radius of the arc; this is done
to create the smile of the similey*/
setfillstyle(SOLID_FILL, BROWN);
/*sets the current fill pattern to SOLID_FILL and fill
color to BROWN*/
fillellipse(midx+70, midy−70, 20, i);
/*this draws (with brown color) and fills (with brown
color) an ellipse with center at (midx+70, midy−70) and 20
as x-radius, and i as y-radius; this is done to create the
left-eye of the smiley*/
fillellipse(midx−70, midy−70, 20, i);
/*this draws (with brown color) and fills (with brown
color) an ellipse with center at (midx+70, midy−70) and 20
as x-radius, and i as y-radius; this is done to create the
right-eye of the smiley*/
i++;
/*value of i is increamented by 1 at each iteration so that
in the 1st iteration, i=0 and we get closed eye; in the 2nd

iteration, i=25 and we get opened eye; thus we get blinking
eyes of the smiley*/
delay(1000);
/*this function is called to halt the execution of the
next instruction for 1000 ms so that the smiley with
closed eye remains on the screen for 1000 ms, and the
smiley with opened eye remains on the screen for the next
1000 ms */
cleardevice();
/*this clears the screen and fill it with current background
color; if we don’t clear the screen after showing each
status of the smiley for one second, then the next status
will simply overrite on previous status and we cannot
clearly see different status of the smiley*/

}
/*this closing curly brace specifies the end of while loop*/
getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();

        

C Graphics ◾ 505

/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-09
Write a program that shows a man walking in the rain.

Programming Code of the Solution:

 506 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <stdlib.h>
/*header file stdlib.h contains the prototype of the libray function
rand(), hence needs to be included before the function is used in
the program*/
#include <graphics.h>
/*header file graphics.h contains prototypes of the library functions
initgraph(), circle(), line(), getmaxx(), getmaxy(), outtextxy(),
cleardevice(), and closegraph(); the header file must be included
using preprocessor directive #include before the functions are
called in the program*/
#include <conio.h>
/*header file conio.h contains the prototype of the libray function
getch(), hence needs to be included before the function is used in
the program*/
#include <dos.h>
/*header file dos.h contains the prototype of the libray function
delay(); hence, needs to be included before using the function in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

        C Graphics ◾ 507

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/
int i, j, x, y;
/*four integer type variables i, j, x, and y are declared;
compiler assigns required spaces in memory for these four
variables*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
for (i=0; i<700; i++){
/*i=0 is initialization, i<700 is condition and i++ => i=i+1
is increment; initialization is done once at the beginning
of the loop; next the condition is checked, and if it is
true, the statements in the body are executed; the value of i
is incremented by 1 before the condition is re-checked; this
process continues until the condition becomes false at which
point the program flow exits the loop*/

circle(20+i, 200, 10);
/*function circle() is called to draw a circle that takes
(20+i, 200) as coordinate of the center and 10 as radius of
the circle; this is used to create the moving head; at each
iteration of the loop, value of i is changed and hence, the
position of head as well*/
line(20+i, 210, 20+i, 250);
/*draws a straight line from a point (20+i, 210) coordinate
to point (20+i, 250) coordinate; this is used to create the
moving body; at each iteration of the loop, value of i is
changed and hence, the position of body as well*/
line(20+i, 220, 10+i, 250);
/*draws a straight line from a point (20+i, 220) coordinate
to point (10+i, 250) coordinate*/
line(20+i, 210, 30+i, 250);
/*draws a straight line from a point (20+i, 210) coordinate
to point (30+i, 250) coordinate; this, together with the
previous instruction, is used to create the moving arms; at
each iteration of the loop, value of i is changed and hence,
the position of arms as well*/
line(20+i, 250, 30+i, 300);
/*draws a straight line from a point (20+i, 250) coordinate
to point (30+i, 300) coordinate*/
line(20+i, 250, 10+i, 300);

508 ◾ Learn Programming with C

/*draws a straight line from a point (20+i, 250) coordinate
to point (10+i, 300) coordinate; this, together with the
previous instruction, is used to create the moving legs; at
each iteration of the loop, value of i is changed and hence,
the position of legs as well*/
line(0, 300, 700, 300);
/*draws a straight line from a point (0, 300) coordinate to
point (700, 300) coordinate; this draws the 1-D surface on
which the man moves*/
x = getmaxx();
/*library function getmaxx() returns the maximum x coordinate
that is assigned to variable x*/
y = getmaxy();
/*library function getmaxy() returns the maximum y coordinate
that is assigned to variable y*/
for (j=0; j<100; j++)
/*j=0 is initialization, i<100 is condition and j++ => j=j+1
is increment; initialization is done once at the beginning
of the loop; next the condition is checked, and if it is
true, the statement in the body is executed; the value of
j is incremented by 1 before the condition is re-checked;
this process continues until the condition becomes false at
which point the program flow exits the loop*/

outtextxy(rand()%x, rand()%y, "!");
/*function rand() generates a random number and the modulus
operation in the 1st argument gives any number between 0~x
(x=maximum x coordinate) that is used as x coordinate;
similary, 2nd argument gives us any number between 0~y as y
coordinate; function outtextxy() now displays the message
enclosed by double quotations in the (r, y) coordinate;
this is done to create dynamic rain drops*/

delay(5);
/*this halts the execution of the next instruction for 5
milliseconds*/
cleardevice();
/*this clears the screen and sets the current postion
to (0, 0); if we don’t clear the screen after showing a
particular position of the man for 5 milliseconds, then
in the next iteration of the outer for loop, the man will
be shown in two different locations- current and previous;
and so on*/

}
/*this closing curly brace specifies the end of outer for (i=0;
i<700; i++) loop*/
getch();

        

C Graphics ◾ 509

/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

PROBLEM-10
Write a program that displays a moving car on the screen.

Programming Code of the Solution:

 510 ◾ Learn Programming with C

Input and Output of the Executed Program:

Explanation of the Programming Code:

#include <graphics.h>
/*header file graphics.h contains prototypes of the library functions
initgraph(), getmaxx(), getmaxy(), line(), arc(), circle(),
ellipse(), cleardevice() and closegraph(); the header file must be
included using preprocessor directive #include before the functions
are called in the program*/
#include <conio.h>
/*header file conio.h contains the prototype of the libray function
getch(), hence needs to be included before the function is used in
the program*/
#include <dos.h>
/*header file dos.h contains the prototype of the libray function
delay(); hence, needs to be included before using the function in
the program*/
int main(){
/*all C program must have a main() function with return type void
or int; here there is no parameter of the main() function and it
returns an integer; opening curly brace specifies start of the
main() function and no statement before that curly brace is executed
by the compiler*/

int gd=DETECT, gm;
/*two integer type variables gd, and gm are declared. Variable
gd is initialized to DETECT which is a macro that automatically
detect graphics driver suitable for hardware*/

        

C Graphics ◾ 511

int i, x, y;
/*three integer type variables i, x and y are declared;
compiler assigns required spaces in memory for these three
variables*/
initgraph(&gd, &gm, (char *)"");
/*library function initgraph() is called here to initialize the
graphics mode. Graphics mode gm represents screen resolution
and will be selected implicitly depending on the graphics
driver gd; as the mentioning path in the third argument is not
mandatory we write it as empty string*/
x = getmaxx()/2;
/*library function getmaxx() returns the maximum x coordinate
that is divided by 2 and the value is assigned to variable
x*/
y = getmaxy()/2;
/*library function getmaxy() returns the maximum y coordinate
that is divided by 2 and the value is assigned to variable y;
thus we get the (x, y) coordinate at the center of the current
graphics mode and driver*/
x −= 300;
/*x=x−300, that is, the value of x is decreamented by 300*/
for (i=0; i<600; i=i+5){
/*i=0 is initialization, i<600 is condition and i=i+5 is
increment; initialization is done once at the beginning of the
loop; next the condition is checked, and if it is true, the
statements in the body are executed; the value of i is incremented
by 5 before the condition is re-checked; this process continues
until the condition becomes false at which point the program
flow exits the loop*/

cleardevice();
/*this clears the screen and sets the current postion
to (0, 0); if we don’t clear the screen after showing a
particular position of the car for 50 milliseconds, then in
the next iteration of the for loop, the car will be shown
in two different locations- current and previous; and so
on*/
line(x−70+i, y, x+70+i, y);
/*draws a straight line from a point (x−70+i, y) coordinate
to point (x+70+i, y) coordinate*/
line(x−69+i, y−3, x+69+i, y−3);
/*draws a straight line from a point (x−69+i, y−3) coordinate
to point (x+69+i, y−3) coordinate*/
arc(x−105+i, y, 0, 180, 35);
/*it draws an arc with center at (x−105+i, y), 0 is the
starting point of the angle, 180 is the ending point of the
angle, and 35 is the radius of the arc*/
circle(x−105+i, y, 25);
/*function circle() is called to draw a circle that takes

 512 ◾ Learn Programming with C

(x−105+i, y) as coordinate of the center and 25 as radius
of the circle; this circle() and previous arc() functions
are used to create the moving back-wheel of the car*/
arc(x+105+i, y, 0, 180, 35);
/*it draws an arc with center at (x+105+i, y), 0 is the
starting point of the angle, 180 is the ending point of the
angle, and 35 is the radius of the arc*/
circle(x+105+i, y, 25);
/*function circle() is called to draw a circle that takes
(x+105+i, y) as coordinate of the center and 25 as radius of
the circle; this circle() and previous arc() functions are
used to create the moving front-wheel of the car */
line(x+140+i, y, x+190+i, y);
/*draws a straight line from a point (x+140+i, y) coordinate
to point (x+190+i, y) coordinate*/
line(x+140+i, y−3, x+190+i, y−3);
/*draws a straight line from a point (x+140+i, y−3)
coordinate to point (x+190+i, y−3) coordinate*/
line(x−190+i, y, x−140+i, y);
/*draws a straight line from a point (x−190+i, y) coordinate
to point (x−140+i, y) coordinate*/
line(x−190+i, y−3, x−140+i, y−3);
/*draws a straight line from a point (x−190+i, y−3)
coordinate to point (x−140+i, y−3) coordinate*/
ellipse(x+105+i, y, 0, 90, 85, 50);
/*draws an ellipse with (x+105+i, y) as the location of the
ellipse, 0 as the starting point of the angle, 90 as the
ending point of the angle, 85 as the x-radius and 50 as the
y-radius*/
ellipse(x−105+i, y, 90, 180, 85, 50);
/*draws an ellipse with (x−105+i, y) as the location of the
ellipse, 90 as the starting point of the angle, 180 as the
ending point of the angle, 85 as the x-radius and 50 as the
y-radius*/
ellipse(x+i, y−50, 0, 180, 105, 35);
/*draws an ellipse with (x+i, y−50) as the location of the
ellipse, 0 as the starting point of the angle, 180 as the
ending point of the angle, 105 as the x-radius and 35 as
the y-radius*/
ellipse(x+i, y−50, 349, 192, 95, 30);
/*draws an ellipse with (x+i, y−50) as the location of the
ellipse, 349 as the starting point of the angle, 192 as the
ending point of the angle, 95 as the x-radius and 30 as the
y-radius*/
line(x−92+i, y−44, x+92+i, y−44);
/*draws a straight line from a point (x−92+i, y−44)
coordinate to point (x+92+i, y−44) coordinate*/

        

C Graphics ◾ 513

line(x−92+i, y−41, x+92+i, y−41);
/*draws a straight line from a point (x−92+i, y−41)
coordinate to point (x+92+i, y−41) coordinate*/
line(x+i, y−44, x+i, y−80);
/*draws a straight line from a point (x+i, y−44) coordinate
to point (x+i, y−80) coordinate*/
line(x+i, y−40, x+i, y−5);
/*draws a straight line from a point (x+i, y−40) coordinate
to point (x+i, y−5) coordinate; this, together with the
previous instructions in the for loop, creates body of the
car that moves in the forward x-direction as the value of
i changes in each iteration of the loop*/
delay(50);
/*this function is called to halt the execution of the
next instruction for 50 ms so that the car remains in a
particular position on the screen for 50 ms before it
moves to the next position in the next iteration of the
loop*/

}
/*this closing curly brace specifies the end of the for
loop*/
getch();
/*input function getch() is called here to keep the console
state visible until we enter any character*/
closegraph();
/*function closegraph() is called here to deallocate all memory
and shut down the graphics system*/
return 0;
/*0 is returned as it is the standard for the successful
execution of the program*/

}
/*the closing curly brace specifies the end of the main() function’s
body, as well as the program’s end; after that curly brace, no
statement is executed*/

Problems to Practice

1) Write a program to draw a bar of size 100 × 300 and a circle with a radius of 50.

2) Write a program that prints a message in diferent colors.

3) Write a program that displays diferent messages in diferent colors and diferent
directions on diferent backgrounds.

4) Write a program that draws 16 circles of same size at diferent coordinates where
each circle intersects all its neighbor circles.

5) Write a program that draws rainbow with beautiful colors.

6

7

8

9

10

11

12

13

14

15

16

514 ◾ Learn Programming with C

) Write a program that draws a simple house and shows it on the screen.

) Write a program to make a dynamic digital clock.

) Write a program that displays an animated smiley on the screen.

) Write a program that shows a man walking in the rain.

) Write a program that displays a moving car on the screen.

) Write a program that shows a man walking in the rain with an umbrella.

) Write a program that creates a car and trafc light signal.

) Write a program that shows a moving car with a fag in front.

) Write a program to make a fying plane in C graphics.

) Write a program to draw six concentric circles with diferent radius and colors.

) Write a program that shows many circles with diferent colors and animation.

DOI: 10.1201/9781003302629-8 515

C H A P T E R 8

C Cross-platform

The language C is cross-platform because it can work across multiple types of platforms or
operating environments. We do not run C codes directly on machines; first, the source code

is compiled to a platform-specific assembly. Therefore, we can use the same C source code to
compile with different compilers to create the specific assembly needed. This chapter describes
how the C source codes can be compiled and run on different platforms and operating systems.

8.1 CREATING OWN LIBRARY
There are some inbuilt functions in C known as standard library functions. Prototypes and
data definition of the functions are available in corresponding header files. We need to include
the header files in our C programs before using these standard functions. Similarly, we can
define our own functions and create our own library so that we can reuse the codes or functions
we have defined. Two types of libraries in C are static library (*.a) and dynamic library (*.dll)

8.1.1 Creating Static Library

Static library is a collection of object files (*.o) that contains definition of C functions. Creating
a static library is nothing but simply generating an archive (*.a) of one or more object files.
The object files of a static library are linked to the main program module during linking
stage of compilation. After successful linking, the compiler generates a single executable file
(.exe) that contains both main program module and the libraries. The following flow dia-
gram explains how a C static library is generated from three different C source files.

https://doi.org/10.1201/9781003302629-8

 516 ◾ Learn Programming with C

Steps to follow to create a user-defned C static library libSimpleLib.a are as follows.
Step-1: Open CodeBlocks C compiler. Now, click File→New→Project . . ., select “Static

library”, and click on Go.

Now click on Next> and write SimpleLib on “Project title”: and select a folder where to cre-
ate the project (may be in C:\Users\SazzadImran\Desktop\ for example).

Now click Next>, select your compiler (GNU GCC Compiler in this case) and then click
Finish. A static library project named SimpleLib.cbp will be created.

Step-2: Click File→New→File . . ., select “C/C++ source”, click Go and then Next>.
Now select C and then click Next>. On the “Filename with full path”: go to C:\Users\
SazzadImran\Desktop\SimpleLib and write SimpleLib1 (user-defned name of the C source
fle) on the “File name”. Now click Save and then check Debug and Release under ‘In build
target(s):’ before click on Finish.

        C Cross-platform ◾ 517

Step-3: On the SimpleLib1.c defne any function. We defne a function named add(), as
an example, that takes two integers as argument and return sum of the values. Include the
user-defned header fle, where the prototype of the function will be available, using double
quotation in the defnition of the function.

Defne another function subtract() in another source fle named SimpleLib3.c in a similar
way as we have defned function add() in SimpleLib1.c.

Step-4: Click File→New→File . . ., select “C/C++ header”, click Go and then Next>. On
the “Filename with full path:” go to C:\Users\SazzadImran\Desktop\SimpleLib and write
SimpleLib2 as user-defned name of the C header fle (may also be same as the source fle)
on the “File name” and then click Save. Now check Debug and Release under “In build
target(s):” and then click on Finish.

 518 ◾ Learn Programming with C

Include all standard header fles, that are needed to compile and run the user-defned
functions add() and subtract(), afer 2nd statement (#defne . . .). Afer including header
fles, write the prototypes of the function add() and subtract() and then save the fle.

Step-5: Open main.c source fle, write the following codes in the fle, and click Save. You
may rename the main.c source fle as example1.c to write the following codes.

Step-6: Now click Build→Build. All object fles with .o extension are created in our target
folder obj\Debug, and a static library named libSimpleLib with .a extension is created in
our target folder bin\Debug.

        

C Cross-platform ◾ 519

Step-7: To run the program, click Project→Properties . . . →“Build targets”, select “Console
application” under Type: drop-down menu and check “Pause when execution ends”.
Now, click OK and then “Build and run”. Afer successful compilation, an executable fle
SimpleLib.exe is created in our target folder bin\Debug and the output of the program will
look as follows:

8.1.2 Creating Dynamic Library

Like static library, C dynamic library is also a collection of object fles (*.o) that contains
the defnition of C functions. But unlike C static library, object fles of the dynamic library
are loaded into main program module at run time (not during compilation). So rather than
generating a single stand-alone executable fle containing both the main program module
and libraries, here the exe fle contains only references to the functions and data defned in
C dynamic libraries. Hence, both libraries and exe fle are required to execute the program.

Steps to follow to create a user-defned C dynamic link library SimpleLib.dll are as follows:
Step-1: Open CodeBlocks C compiler. Now, click File→New→Project . . ., select “Dynamic

Link Library” and click on Go.

Now click on Next> and write SimpleLib on “Project title:” and select a folder where to cre-
ate the project (may be in C:\Users\SazzadImran\Desktop\ for example).

 520 ◾ Learn Programming with C

Now click Next>, select your compiler (GNU GCC Compiler in this case) and then click
Finish. A dynamic library project named SimpleLib.cbp will be created.

Step-2: Click File→New→File . . ., select “C/C++ source”, click Go and then Next>.
Now select C and then click Next>. On the “Filename with full path:” go to C:\Users\
SazzadImran\Desktop\SimpleLib and write SimpleLib1 (user-defned name of the C source
fle) on the ‘File name’. Now click Save and then check Debug and Release under ‘In build
target(s):’ before click on Finish.

Step-3: On the SimpleLib1.c defne any function. We defne a function named add(), as
an example, that takes two integers as argument and returns sum of the values. Include the
user-defned header fle, where the prototype of the function will be available, using double
quotation in the defnition of the function.

Defne another function subtract() in another source fle named SimpleLib3.c in a similar
way as we have defned function add() in SimpleLib1.c.

        

C Cross-platform ◾ 521

Step-4: Click File→New→File . . ., select “C/C++ header”, click Go and then Next>. On
the ‘Filename with full path:’ go to C:\Users\SazzadImran\Desktop\ SimpleLib and write
SimpleLib2 as user-defned name of the C header fle (may also be same as the source fle)
on the ‘File name’ and then click Save. Now check Debug and Release under ‘In build
target(s):’ and then click on Finish.

Include all standard header fles that are needed to compile and run the user-defned
functions add() and subtract(), afer 2nd statement (#defne . . .). Afer including header
fles, write the prototypes of the function add() and subtract() and then save the fle.

Step-5: Open another source fle named example1.c, write the following codes in the fle
and click Save.

Step-6: Delete main.cpp and main.h fles from the project. Now click Build→Build. All
object fles with .o extension are created in our target folder obj\Debug, and a dynamic
link library named SimpleLib with .dll extension is created in our target folder bin\Debug.

522 ◾ Learn Programming with C

Other than .dll fle, a module defnition fle libSimpleLib.def and a static library
libSimpleLib.a were also created. Te .def fle provides information to the linker about
exported fles, attributes, etc., of the program to be linked, and is necessary while building
a dll fle.

Step-7: To run the program, click Project→Properties . . . →“Build targets”, select “Console
application” under Type: drop-down menu and check “Pause when execution ends”.
Now, click OK and then “Build and run”. Afer successful compilation, an executable fle
SimpleLib.exe is created in our target folder bin\Debug and the output of the program will
look like as follows:

8.2 TURBO C
Turbo C is a compiler for the C programming language from Borland. It includes a source
code editor, a fast compiler, and a linker. Tough it is discontinued nowadays, many still
use this compiler to edit and run C programs. Terefore, a step-by-step procedure to run C
programs using the Turbo C compiler is given below.

Step-1: Download and install Turbo C/C++ for windows. It may be downloaded from
https://techdecodetutorials.com/download/.

Step-2: Open the program and click on File -> New, an empty blue window appears.
Write your C program codes on the fle and click File -> Save as . . ., write a fle name of your
choice with .cpp extension (Example1.cpp, for example) and then click OK.

https://techdecodetutorials.com

        C Cross-platform ◾ 523

Step-3: Tree extra lines need to be added to run a program on the Turbo C platform.
For example, our frst C program in Chapter 1 was as follows:

524 ◾ Learn Programming with C

To run this program using the Turbo C compiler, the program should be modifed as follows:

Explanation of the added header fle and codes are as follows:
#include <stdio.h>
#include <conio.h>
/*conio.h is the header file that contains the prototypes of the
functions clrscr() and getch()*/
int main(){

int age;
int clrscr();
/*this function is used to clear the console screen. clrscr()
is used before the first printf() or output function to clear
any residual output from previous program run, otherwise when
we execute this program we will see the residual output first
and then the current output*/
printf("Enter your age: ");
scanf("%d", &age);
if (age<18)

printf("Sorry, you are not eligible for vaccination.");
else

printf("Congratulation, you are eligible for vaccination.");
getch();
/*this is an input function that takes any character from the
standard input terminal. This input function is used here to
keep the console screen alive to see the program output. Here
the console screen wait until we press any key; otherwise,
the program output is just shown for a second, and the console
screen is closed immediately*/
return 0;

}

So, as described, we need to add three extra lines in each C program if we want to run the
program using the Turbo C compiler:

(1) Call function clrscr() before using any output function.

(2) Call getch() function before last line of the program, that is, “return 0;”.

(3) Include header fle conio.h that contains prototypes of clrscr() and getch() functions.

        

C Cross-platform ◾ 525

Step-4: Press Alt+F9 to compile the program. Correct any error(s) or warning(s) on the
codes. Correcting the errors is a must, though it is optional to correct the warnings.
Recompile the program until we get 0 error(s) and 0 warning(s).

Step-5: Press Ctrl+F9 to execute the program. Te output may look like as follows:

8.3 VISUAL STUDIO CODE
Visual studio code, also known as VS code, is a source-code editor developed by Microsof
for Windows, Linux, and macOS. Te source-code editor can be used with various pro-
gramming languages, including Java, JavaScript, Python, and C/C++, and features that
difer per language. A notable feature of the visual studio code is its ability to create exten-
sions that support new languages. Step-by-step procedures to run a C program using visual
studio code are given below:

Step-1: Download the C compiler “MinGW w64”. MinGW stands for Minimalist GNU
for Windows. It may be downloaded from the link https://bit.ly/mingw10.

Now extract mingw-18.0 to any destination, for example, on Desktop.

https://bit.ly/mingw10

 526 ◾ Learn Programming with C

Step-2: Add path in environment variable to access gcc in visual studio code. To do that,

– copy the path of the bin directory of MinGW (for example, C:\Users\
SazzadImran\Desktop\MinGW\bin).

– go to Control Panel\System and Security\System and click on “Advanced sys-
tem settings”. Alternately, right-click on Tis PC, click on Properties, and then
on “Advanced system settings” on the rightmost column.

– click “Environment Variables . . .” and click on Path→Edit→New under the
“User variables”, paste the MinGW path in the blank feld, and then click on OK
button three times.

– go to Command Prompt (press Win+R, write cmd, and press Enter) and write
“gcc – version” and press Enter. If it shows the version number on the screen,
then the MinGW gcc is successfully installed.

Step-3: Download Visual Studio Code from https://code.visualstudio.com/.

https://code.visualstudio.com

        C Cross-platform ◾ 527

Now install the sofware. During setup, we must check “Add to PATH” option.

Step-4: Start and confgure the visual studio code for running C programs. For that,

– install the C extension in the visual studio code (needed only for the frst time).
To do that, press the extension button, type c/c++ in the search bar, and install
the frst option from Microsof.

– again, type code runner in the search bar and install (needed only for the frst
time) the frst option from Jun Han.

Step-5: Click File→New File . . . → “Text File Built-In”→ “Select a Language” and then C
(c) to create a new source fle in the visual studio code. Now click File→Save and choose
C:\Users\SazzadImran\Desktop\MinGW\bin to save your fle (in the bin directory of

 528 ◾ Learn Programming with C

MinGW) and give a name to your fle as you wish (for example, example1) and click on the
Save button.

Step-6: Write your C programming codes on the fle and save the program.

Now press ctrl+alt+n or click on the small play button in the top-right corner.
Step-7: To run a program that includes input from the user, frst click on

File→Preferences→Settings and type “run in terminal” and check the box “Code runner:
Run in Terminal”.

        

C Cross-platform ◾ 529

Now cancel the settings and return to the program. Run the code by pressing the run play
button. Te output will look like as follows:

If there is an error message showing “#include errors detected. Please update your include-
Path” while compiling or running a program even afer following all the above steps; in
that case, it should be enough to correct the error if we just restart the program “Visual
Studio Code”.

8.4 VISUAL STUDIO
Visual Studio is a powerful integrated development environment (IDE) that supports a
full-featured editor, resource managers, debuggers, and compilers for many languages and
platforms. It is to mention that the cross-platform Visual Studio Code is an editor while
the Visual Studio is an IDE. Te following are the steps to run a C program using Visual
Studio 2022 or the latest version.

Step-1: Download Visual Studio from
https://visualstudio.microsof.com/downloads/

To install Visual Studio, click on VisualStudioSetup and then uncheck all the
Workloads except “Desktop development with C++”. Now click on “Install while
downloading”.

https://visualstudio.microsoft.com

 530 ◾ Learn Programming with C

Step-2: Start the Visual Studio program and click on “Create a new project”. Select
“Empty Project” and click Next.

Enter an appropriate project name (Project1, for example), choose a suitable location (for
example, C:\Users\SazzadImran\Desktop\), and click “Create”. A folder of the project name
will be added to the location.

Step-3: In the “Solution Explorer” window, right-click on “Source Files”, and choose
“Add” and “New Item”. Now give a fle name of your choice with .c extension (for example,
example1.c) and click Add. A blank fle will be created in the project.

        

C Cross-platform ◾ 531

Step-4: Write your C programming codes in the editor window and save the fle.

We may need to use more secure version scanf_s() instead of scanf() as input function.
Because the Visual Studio considers scanf() as an unsafe function and returns error code
C4996 while compiling the program. Te format and structure of both scanf_s() and
scanf() functions are identical.

Step-5: Now click Build→“Build Solution” to create the executable fle. If there is any
syntax error in the program, the error messages will be displayed in the output window.
Make necessary corrections in the source code, save it again, and then click Build→“Build
Solution”. Continue correcting the source codes until there is no more error.

Step-6: Now press ctrl+F5 to run and execute the program. Te output will show in the
output window accordingly.

8.5 COMMAND LINE
If you want to run a C program on your computer, you need to install the C toolset. We
will use MinGW to compile and execute C programs. Te following is the step-by-step
procedure to create and run a C program using the command line.

Step-1: Properly install CodeBlocks IDE along with MinGW from
www.codeblocks.org/downloads/binaries/.

http://www.codeblocks.org

 532 ◾ Learn Programming with C

Or, download and install the GCC compiler for the system from http://tdm-gcc.tdragon.
net/download.

Step-2: Properly set the Path environment variable to access the program from any other
location. To do that,

– copy the path of the bin directory of MinGW or TDM-GCC-64 (for example,
C:\Program Files (x86)\CodeBlocks\MinGW\bin or, C:\TDM-GCC-64\bin).

– go to Control Panel\System and Security\System and click on “Advanced sys-
tem settings”. Alternately, right-click on Tis PC, click on Properties, and then
on “Advanced system settings” on the rightmost column.

– click “Environment Variables . . . ” and click on Path→Edit→New under the
“System variables” and paste the bin path in the blank feld, and then click on
OK button three times.

http://tdm-gcc.tdragon.net
http://tdm-gcc.tdragon.net

        C Cross-platform ◾ 533

– go to Command Prompt (press Win+R, write cmd, and press Enter), write “gcc
– version” and press Enter. If it shows the version number on the screen, then the
GCC is successfully installed.

Step-3: Write C programming codes using any text editor, for example, Notepad, and
save the fle in any location (for example, in Desktop) with a suitable name with extension
.c (for example, example1.c).

Step-4: Open the command prompt in the location where you have saved your fle
example1.c. To do that, go to the location, and in the address bar, write cmd and press
Enter. Or, we can do that using the cd command.

534 ◾ Learn Programming with C

Step-5: Write gcc -c example1.c and press Enter. An object fle named example1.o will be
created if there is no syntax error in the program.

Step-6: Write gcc example1.o -o example1.exe and press Enter. An exe fle named exam-
ple1 will be created.

Step-7: We can create exe fle with a single command also. Just write gcc example1.c
and press Enter. An executable fle will be generated as a.exe. If we want to give a name of
our choice to the executable fle, then write gcc -o example1 example1.c and press Enter.

Step-8: To run the program, write a or example1 and press Enter. Te output will be
shown on the command prompt accordingly.

8.6 COMMAND LINE ARGUMENTS
Te most important function in any C program is the main() function, usually defned
without arguments. But we can pass some values from the command line to the C program
during run time through arguments in the main() function. To pass command line argu-
ments, we need to follow two steps:

(1) main() function is defned with two arguments as follows:
int main(int argc, char *argv[]){

. . . }

        

C Cross-platform ◾ 535

– frst one (argc = ARGument Count) is the number of arguments that must be a
positive integer, and

– second (argv = ARGument Vector) is the list of command-line arguments. Here,
argv[0] is the program name, and then argv[1], argv[2], . . ., argv[argc-1] is the
arguments that will be written in the command line shell of the operating systems.

2) Command line arguments are given afer the program name in the command line shell.

Example:

Save the above program on desktop as example1.c and compile the program. Now open
the command prompt (Win+cmd and press Enter) and type cd desktop, and press Enter
to change the path to where we save the program. Now write the commands to run the
program. Te following four scenarios may arise:

(1) Without argument:

(2) Single argument:

536 ◾ Learn Programming with C

(3) Tree arguments:

(4) Single arguments in quotes separated by space:

If we want to pass two integers through the command line and add or multiply the two
integers, we need to convert the string values to integers using atoi() function in the main()
program. We can only pass string values to the main() function through command-line
arguments, not integers or other data types. Given below is such an example.

Save the program as add.c and compile the program. Ten, in the command prompt if we
write “add 10 20 and press Enter”, the output will be as follows:

        

C Cross-platform ◾ 537

8.7 LINUX
Linux is an open-source operating system that is freely available to everyone. Hence, it
has become a developer’s programming paradise. Tere are many versions available for
Linux OS. Here, we will explain how to write, compile, and run C programs in WSL Linux
Ubuntu.

Step-1: Open the Linux command-line tool, the Terminal. Login as root using the follow-
ing command and entering your password:

$ sudo su

Step-2: Connect to the internet and enter the following command as root in the Linux ter-
minal to update the resources of the linux system:

apt-get update

Step-3: Now, enter the following command as root in the Linux terminal and press Enter
to install the GCC compiler:

apt-get install gcc – y

Step-4: To create and edit text fles right from the Linux terminal, install gedit text editor
using the following command as root in the Linux terminal:

apt-get install gedit -y

 538 ◾ Learn Programming with C

Step-5: Afer installing the GCC and gedit packages, write the following command in the
Linux terminal as root and press Enter:

gedit example1.c

Tis will create and open a fle named example1.c, where you can write and save your C
programming codes.

Step-6: Write the following command in the Linux terminal to compile the program that
will make an executable fle named example1, if there is no error.

gcc example1.c -o example1

If we write only # gcc example1.c, then an executable fle named a.out will be created.

If the program is not located in the Home folder, we need to specify the appropriate paths
in the command. For example, if the fle is saved on the Desktop, write # cd Desktop/ in the
Terminal and press Enter to change the directory.

Step-5: To run the compiled program, write the following command in the Terminal and
press Enter.

./example1 or # ./a.out

        

C Cross-platform ◾ 539

Te output of the program will be shown in the Terminal accordingly:

8.8 EMBEDDING C CODE INTO MATLAB®

We can compile and run the C program directly from MATLAB using the MinGW-w64
compiler. Alternatively, we can call external C code to the Simulink model using a C
Function block or a C Caller block. C Function block and C Caller block bring C algo-
rithms into Simulink, while S-Function Builder is used to model dynamic systems.

Using MinGW-W64 Compiler

https://stackoverfow.com/questions/27383807/mex-fle-compiled-without-errors-but-not-
working-in-matlab

Te following is the step-by-step procedure to compile and run C programs directly
from the MATLAB command window.

Step-1: Go to www.mathworks.com/matlabcentral/fleexchange/52848-matlab-
support-for-mingw-w64-c-c-compiler.

Download “MATLAB Support for MinGW-w64 C/C++ Compiler”. Now open MATLAB
and browse to this downloaded fle using the current folder browser. Double-click on
this fle to install the MinGW-w64 C/C++ Compiler for MATLAB.

Step-2: Download MinGW-w64 compiler from https://jmeubank.github.io/tdm-gcc/.

https://jmeubank.github.io
http://www.mathworks.com
http://www.mathworks.com
https://stackoverflow.com
https://stackoverflow.com

540 ◾ Learn Programming with C

Install the tdm-gcc in a location (pathname must not contain any space), for example,
C:\TDM-GCC-64.

Step-3: In the MATLAB Command window, run the command:

setenv(‘MW_MINGW_64_LOC’, ‘path’)

for example, setenv(‘MW_MINGW_64_LOC’, ‘C:\TDM-GCC-64’)

Step-4: In the Command window, run the command:

mex -setup

Step-5: Click New→Script and write your C codes in the fle. Now save it as a .c fle in the
current working folder (for example, example1.c in C:\Users\SazzadImran\Desktop).
Use mexFunction() instead of main() as mexFunction() is the entry point for a mex fle.

        

C Cross-platform ◾ 541

Step-6: In the Command window of the MATLAB program, run the command
mex example1.c

and press Enter. A MATLAB executable fle example1.mexw64 will be created in the cur-
rent folder.

Note: When we run the mex fle example1 in the MATLAB command prompt, it will show
nothing. Tis is due to the fact that the functions printf(), scanf(), etc., only works in native
C. For example, printf() function only displays any string or message on standard output
and does not display that on MATLAB command window. To create mex fles that work
on MATLAB command prompt just like a native C program, we need to use diferent mex
functions. However, this is a separate topic and out of scope for discussion in this book.

Generating mex fle (Matlab EXecutable fle) of C program is necessary to call external
C code into diferent Matlab Simulink model.

Using S-Function Builder

Te following is the step-by-step procedure to call external C code into the Simulink model
using the MATLAB S-Function block.

Step-1: Go to www.mathworks.com/matlabcentral/fleexchange/52848-matlab-support-
for-mingw-w64-c-c-compiler.

http://www.mathworks.com
http://www.mathworks.com

542 ◾ Learn Programming with C

Download “MATLAB Support for MinGW-w64 C/C++ Compiler”. Now open MATLAB
and browse this downloaded fle using the current folder browser. Double-click on
this fle to install the MinGW-w64 C/C++ Compiler for MATLAB.

Step-2: Download MinGW-w64 compiler from https://jmeubank.github.io/tdm-gcc/.

Install the tdm-gcc in a location (pathname must not contain any space), for example,
C:\TDM-GCC-64.

Step-3: In the MATLAB Command window, run the command

setenv(‘MW_MINGW_64_LOC’, ‘path’)

for example, setenv(‘MW_MINGW_64_LOC’, ‘C:\TDM-GCC-64’)

Step-4: In the Command window, run the command

mex -setup

Step-5: Create a header fle SimpleLib2.h containing prototype of the user-defned func-
tion prototype add() in the current working directory (for example, in C:\Users\

https://jmeubank.github.io

        

C Cross-platform ◾ 543

SazzadImran\Desktop\MatlabSfunction). It may include other header fles needed to
compile the user-defned function.

Step-6: Create a C source fle in the same directory, defne its function, and save the
fle with a .c extension. Use double quotations to include the header fle created in
Step-5. For example, the SimpleLib1.c fle may contain the defnition of the func-
tion add().

Step-7: In the Command window of the MATLAB program, run the following
commands:

 (i) Initialize the structure of the S-function:

def = legacy_code(‘initialize’) and press Enter

(ii) Give a name of your choice to the S function:

def.SFunctionName = ‘MySFunction’ and press Enter

iii) For the output function specifcation, use only y and u as parameters:

def.OutputFcnSpec = ‘double y1 = add(double u1, double u2)’ and press
Enter

iv) Add header and source fles:

def.HeaderFiles = {‘SimpleLib2.h’} and press Enter

def.SourceFiles = {‘SimpleLib1.c’} and press Enter

544 ◾ Learn Programming with C

 v) legacy_code(‘sfcn_cmex_generate’, def) and press Enter

A fle named MySFunction.c will be generated.

 vi) legacy_code(‘compile’, def) and press Enter

MATLAB executable fle MySFunction.mexw64 will be generated.

Step-8: Create a new Simulink model and save it as MyModel.mdl. To do that, click
New→Simulink Model and then click “Blank Model”. Now click File→Save As . . .,
write MyModel in the “File name:” box, select Simulink Models (*.mdl)’ in “Save as
type:” box and click on Save.

        

C Cross-platform ◾ 545

Step-9: Add a MATLAB S-Function block from Library Browser→Simulink→ User-
Defned Functions library to the model. Double-click on the S-Function block to
open S-Function Block Parameters. In the S-function name box, write MySFunction
and click OK.

Step-10: Connect two Constant blocks to the input ports and a Display block to the
output port of the MATLAB Function Block. For Constant blocks, click View→
Library Browser→Simulink→Sources and drag two Constant blocks to MyModel. For
Display block, click View→Library Browser→Simulink→Sinks and drag Display block
to MyModel.

Step-11: Input 3 and 4.5 in the two input Constant blocks. Now, save the model and run
the simulation; 7.5 appears in the Display output block.

Using C Function Block

Follow the following steps to call external C code into the Simulink model using the C
Function block.

Step-1: Go to www.mathworks.com/matlabcentral/fleexchange/52848-matlab-support-
for-mingw-w64-c-c-compiler.

Download “MATLAB Support for MinGW-w64 C/C++ Compiler”. Now open MATLAB
and browse to this downloaded fle using the current folder browser. Double-click on this
fle to install the MinGW-w64 C/C++ Compiler for Matlab.

Step-2: Download MinGW-w64 compiler from https://jmeubank.github.io/tdm-gcc/.

https://jmeubank.github.io
http://www.mathworks.com
http://www.mathworks.com

 546 ◾ Learn Programming with C

Install the tdm-gcc in a location (pathname must not contain any space), for example, C:\
TDM-GCC-64.

Step-3: In the MATLAB Command window, run the command
setenv(‘MW_MINGW_64_LOC’, ‘path’)
for example, setenv(‘MW_MINGW_64_LOC’, ‘C:\TDM-GCC-64’)
Step-4: In the Command window, run the command
mex -setup

Step-5: Create a header fle containing the user-defned function prototype in the cur-
rent working directory (C:\Users\SazzadImran\Desktop\MatlabCfunction, for example).
For example, the SimpleLib2.h fle may contain a prototype of the function add().

        C Cross-platform ◾ 547

Step-6: Create a C source fle in the same directory, defne its function, and save the fle
with a .c extension. Use double quotations to include the header fle created in Step-5. For
example, the SimpleLib1.c fle may contain the defnition of the function add().

Step-7: Create a new Simulink model and save it as MyModel.mdl. To do that, click
Home→New→Simulink Model and then click “Blank Model”. Now click File→Save As . . .,
write MyModel in the “File name:” box, select Simulink Models (*.mdl)’ in “Save as type:”
box and click on Save.

Step-8: Add a MATLAB Function block to the model. To do that, click View→ Library
Browser→Simulink→User-Defned Functions and then drag MATLAB Function block to
MyModel. Double-click on the Function block to open MATLAB Function Block Editor
and enter Matlab code that uses the coder.ceval Matlab function to call the C function
add().

Step-9: Connect two Constant blocks to the input ports and a Display block to the
output port of the MATLAB Function Block. For Constant blocks, click View→ Library
Browser→Simulink→Sources and drag two Constant blocks to MyModel. For Display
block, click View→Library Browser→Simulink→Sinks and drag Display block to MyModel.

548 ◾ Learn Programming with C

Step-10: Open the Model Confguration Parameters window, and navigate the Simulation
Target pane.

(i) Click “Header fle” in the “Insert custom C code in generated:” tab and enter
#include “SimpleLib2.h”.

(ii) Click “Source fle” in the “Additional build information:” tab and enter SimpleLib1.c.
Now click Apply and then OK.

(iii) If the C source file and the header file are outside the MATLAB current folder
where the MyModel.mdl was saved, click Set Path→Add Folder . . . select the
folder where C source and header files were saved, and then click “Select
Folder”→Save→Close.

Step-11: Save the model and run the simulation. If we input 3 and 4.5 in the two input
Constant blocks, 7.5 appears in the Display output block.

        

C Cross-platform ◾ 549

Using C Caller Block

First of all, it is to mention that the C Caller block is only available in MATLAB R2018b
and later versions. Follow the following steps to call external C code into the Simulink
model using the C Caller block.

Step-1: Go to www.mathworks.com/matlabcentral/fleexchange/52848-matlab-support-
for-mingw-w64-c-c-compiler.

Download “MATLAB Support for MinGW-w64 C/C++ Compiler”. Now open MATLAB
and browse to this downloaded fle using the current folder browser. Double-click on this
fle to install the MinGW-w64 C/C++ Compiler for Matlab.

Step-2: Download MinGW-w64 compiler from https://jmeubank.github.io/tdm-gcc/.

https://jmeubank.github.io
http://www.mathworks.com
http://www.mathworks.com

550 ◾ Learn Programming with C

Install the tdm-gcc in a location (pathname must not contain any space), for example, C:\
TDM-GCC-64.

Step-3: In the MATLAB Command window, run the command

setenv(‘MW_MINGW_64_LOC’, ‘path’)
for example, setenv(‘MW_MINGW_64_LOC’, ‘C:\TDM-GCC-64’)

Step-4: In the Command window, run the command

mex -setup

Step-5: Create a header fle containing the user-defned function prototype in the cur-
rent working directory (in C:\Users\SazzadImran\Desktop\MatlabCcaller for example).
For example, the SimpleLib2.h fle may contain a prototype of the function add().

Step-6: Create a C source fle in the same directory, defne its function, and save the fle
with a .c extension. Use double quotations to include the header fle created in Step-2. For
example, the SimpleLib1.c fle may contain the defnition of the function add().

Step-7: Create a new Simulink model and save it as MyModel.mdl. To do that click
New→Simulink Model and then click “Blank Model”. Now click File→Save As . . ., write
MyModel in the “File name:” box, select Simulink Models (*.mdl)’ in “Save as type:” box
and click on Save.

        

C Cross-platform ◾ 551

Step-8: Open the Model Confguration Parameters window, and navigate to the
Simulation Target pane.

(i) Click the Header fle under “Insert custom C code in generated:” bar and enter the
name of the header fle with #include “SimpleLib2.h”.

(ii) If the model and the header fles are stored in diferent folders, click “Include direc-
tories” under “Additional build information” and list the path of the header fles in
the text box.

(iii) Click Source fles under “Additional build information:” and enter SimpleLib1.c.
If the model and the source fle are in diferent folders, enter the source fle’s path
address before the source fle name and click OK.

Step-9: Add a MATLAB C Caller block from Library Browser→Simulink→
User-Defined Functions library to the model. Double click on the C Caller block to
open the Block Parameters dialog box. Click on the Refresh button to import the
source code. Select your C function in the “Function name:” box (for example, add)
and click OK.

Step-10: Connect two Constant blocks to the input ports and a Display block
to the output port of the MATLAB Caller Block. For Constant blocks click View→
Library Browser→Simulink→Sources and drag two Constant blocks to MyModel. For
Display block click View→Library Browser→Simulink→Sinks and drag Display block to
MyModel.

552 ◾ Learn Programming with C

Step-12: Save the model and run the simulation. If we input 3 and 4.5 in the two input
Constant blocks, 7.5 appears in the Display output block.

8.9 INTEGRATING C CODE INTO PYTHON
Python is an interpreted, object-oriented, high-level programming language that provides
increased productivity compared to other languages. A step-by-step procedure to run C
code from a Python program is given below. At frst, download the latest version of Python
installer from www.python.org/downloads/release/python-383/.

Install Python in any location (C:\Program Files (x86)\Python38–32 for example). Don’t
forget to check “Add python.exe to PATH” and “Install launcher for all users” during
installation of the Python program. We choose 32-bit version as we have GCC from 32-bit-
MinGW to create *.so shared object fle.

Now, download and install any C compiler (for example, CodeBlocks with 32-bit MinGW
from www.codeblocks.org/downloads/binaries/) on your PC.

http://www.codeblocks.org
http://www.python.org

        

C Cross-platform ◾ 553

Step-1: Open CodeBlocks C compiler. Now, click File→New→ “Empty fle”. An empty text
fle will open. Now, click “File→Save fle as . . . “, write SimpleLib in the “File name:” box,
select a folder of your choice (for example, C:\Users\SazzadImran\Desktop\ CfromPython),
and click Save.

Step-2: Defne one or more of your C functions in the fle except main(). For example,
we have defned functions add() and subtract(), and save the fle.

Step-3: Open Command Prompt as administrator and using cd command go to the
folder where *.c fle is saved (in this case, C:\Users\SazzadImran\Desktop\ CfromPython).
Now, write the following command and press Enter.

gcc -o SimpleLib.so – shared -fPIC SimpleLib.c

A shared object fle SimpleLib.so is created in the destination folder. We can give any name of
our choice to the shared object fle (*.so). It does not necessarily be the same as that of the *.c fle.

http://SimpleLib.so
http://SimpleLib.so

554 ◾ Learn Programming with C

Step-4: Click on Windows, write IDLE, and click on IDLE (Python 3.8 32-bit) to open
Python shell. Click File→New File and save it with any name (for example, example1) as
Python fles in any location (may be in the same folder where we saved *.so fle, C:\Users\
SazzadImran\Desktop\CfromPython).

Step-4: Now write your Python codes in example1.py fle. In the coding, we must do the
following to use any function defned in the *.c fle:

 (i) Import Python Ctypes objects using the following code:

from ctypes import *

(ii) Defne path of the shared object fle SimpleLib.so relative to the path of example1.
py and store it to a variable. Use forward slash in place of back slash while writing
the path address.

lib_path = ‘./SimpleLib.so’

If .so and .py fles are in diferent location, simply write full address path of the .so fle.

(iii) Pass the variable lib_path to function CDLL() to defne a Python object where all
functions and variables from the .c fle are stored.

c_fun = CDLL(lib_path)

(iv) Call any function defned in the SimpleLib.c using . (dot) operator.

result = c_fun.add(25, 19)

(v) Write any other necessary Python codes in the example1.py fle, save the fle.

http://example1.py
http://SimpleLib.so
http://SimpleLib.so
http://example1.py

        

C Cross-platform ◾ 555

(vi) Now click Run→“Run Module” to run the program. Te output will be as follows”

We can also do the same task using dynamic link library (*.dll) created in Section 8.1.2 in
folder C:\Users\SazzadImran\Desktop\SimpleLib\ bin\Debug.

To call C functions using DLL fle, write full path of the location of SimpleLib.dll as it is in
separate location from that of example1.py. Also, we can use WinDLL() function to defne
the Python object. Te Python fle will look like as follows

Now if we run the module, we will get the same output.

8.10 SWITCHING FROM ONE LANGUAGE TO ANOTHER
In addition to any programming tool, an experienced programmer should be able to
expand their knowledge and skills to any programming language. Programming lan-
guages evolve regularly, and today, it is not enough to know only one language. Knowing

http://example1.py

556 ◾ Learn Programming with C

multiple languages gives anyone a competitive edge over others in the job market. Tis sec-
tion highlights some benefts and tips on efective switching from one language to another.

Many programmers might think that mastering one language is enough. But, in real-
ity, many coders practice switching programming languages to improve their professional
skills and get their desired job. If we know the reason behind our switching language, we
can switch and learn the right language for us.

When choosing a language to learn, always pay attention to the following six points:

(1) Try to understand its relevance and fexibility.

(2) Analyze the market trends, demands, and potential vacancies to get your
desired job.

(3) What is your end goal, that is, your purpose of learning? Two main reasons may be
new project requirements or expanding portfolio.

(4) Take a go-to-developer approach and master a trending new language rather than
an obsolete one.

(5) Understanding the interdependence between the new language you want to learn
and the previous language you have already mastered.

(6) Learning languages of the same family is comparatively easy as they have related
syntax, libraries, and patterns. On the other hand, switching to a language of a dif-
ferent family is not an easy task at all.

Most experts argue that frst you need to master a fundamental language. Afer that, you
can quickly learn another language of your needs. Take into account the following simple
tips to master another language of your choice:

(1) You must be patient and consistent.

(2) Be focused and motivated, knowing why you want to learn a particular language
and where you can apply it.

(3) Do not switch before you are entirely comfortable with the new language. Switching
while still learning a language may slow down the learning process.

(4) Start with books for beginners and then toward more advanced texts. Take help
from available video tutorials and other free resources.

(5) Practice a lot. Write strings of codes and simple to complex programs.

(6) Find someone who masters the language and is willing to review your codes. He may
also guide you toward the right path.

(7) Try to convert programs from one language to another. Transferring codebase from
an existing project is a challenging and time-consuming but helpful process for
experimenting with new concepts and paradigms.

        

C Cross-platform ◾ 557

To be an expert developer, you need to learn new programming languages mastering their
principles and algorithms. Tere are no alternatives other than improving your program-
ming skills based on recent market trends to be competitive in the job market.

8.11 TRANSITION TO C++ OR C# FROM C
C++ is an intermediate language that adds object-oriented programming capabilities to C.
C++ is used to develop operating systems, PC sofware, and high-profle servers. C#, on the
other hand, is a high-level, component-oriented language that was built as an extension of
the C programming language. C# is used in enterprise applications and client and server
development in the Microsof .NET framework. Tough complicated, C# is less error-
prone and easier to learn of the three.

It is easy to migrate from C to C++, as C is ofen considered a subset of C++. A frst
step may be to program in the C subset of C++ and fnd a better experience than C, as
C++ provides extra type-checking and more notational support. C++ exclusively supports
new and delete operators, classes, templates, operator and function overloading, strict type
casts conversions, and typedef to create unique types. Hence, C++ is known as “a better C”.

Te following three phases may be deployed sequentially, separately, or in parallel for
the transition to C++ from C.

(1) Write new codes in C++ and link these with existing C codes.

(2) Develop codes in C and then modify them so that the codes are compatible with
C++ compiler.

(3) Start using C++ language features to improve programming style without initially
using OOP features.

C programmers need to throw away and forget some of the C concepts they are familiar
with and get used to C++ or OOP features. Some of such C concepts are as follows:

(1) Tink of everything as objects. Create a class and create as many functions as you
need inside it.

(2) Instead of defning lots of global functions, make them member functions of a class.

(3) Group similar functions of diferent types in a template.

(4) Tere is no need to use a prefx in the identifers to avoid name conficts, as they can
be put in a namespace.

(5) We may use references and derived classes instead of so many pointers and type casts.

C and C# are two completely diferent programming languages. Tere are more diferences
than similarities between these two languages. C# adds garbage collection, bound check-
ing, uninitialized variable checking, and type checking capabilities. Having a background
in C may help learn C# as many of the syntaxes are similar, but anyone can learn C#
quickly without knowing anything about C.

http://Microsoft .NET

C H A P T E R 9

C Projects

Implementing different types of projects enhances C programming skills. Developing
problem-solving abilities and sharpening essential programming skills allow program-

mers to navigate innovation. The following are some C language projects and ideas that
you can try to implement to improve your programming skills.

PROJECT-1
Create a student management system that can store all information of all students, teach-
ers, and staff of your department in the form of structures. The following information
needs to be stored for each student:

Name, Semester, Class Roll, Exam Roll, Course Name and Grade Point Earned in the
Current Semester, GPA Earned in Previous Semesters, CGPA.

Employ files as a database to conduct file handling activities such as add, search, change,
and remove entries.

PROJECT-2
Create a simple address book that automatically generates an external file to permanently
store the user’s data. The user’s data will be Name, Phone Number, E-mail ID, and Address.
Keep the option to add, search, edit, and delete data from the record.

PROJECT-3
Create a simple online mini voting system that securely enables organizations to conduct
votes and elections. In the voting system, users can enter their preferences, total votes, and
leading candidates can be calculated. The voting system can identify a legitimate voter, and
one voter can vote only once.

PROJECT-4
Create a Tic-Tac-Toe game in the C programming language using 2D arrays. It is a two-person
game where each player alternately marks squares in a 3×3 grid with X or O. The winner is the
player who successfully places his three markers in a horizontal, vertical, or diagonal row.

558 DOI: 10.1201/9781003302629-9

https://doi.org/10.1201/9781003302629-9

        

C Projects ◾ 559

PROJECT-5
Create a simple library management system that manages and preserves book data. Te
book data will be Name, Authors, Publisher, and Year. Both students and library adminis-
trators can use the system to keep track of all the books available in the library. Te library
administrators can search, add, delete, or issue books and the students can only search and
make a request to issue books. As one particular student can keep three books at a time for
a maximum of one month, the system will check that before issuing any book to a student.

PROJECT-6
Create a simple bus reservation system that can book bus tickets in advance. Te user can
check the bus schedule, book tickets, cancel a reservation, and check the bus status. When
purchasing tickets, the user must enter the bus number, seat number, the number of tick-
ets, and passengers’ names.

PROJECT-7
Create a simple bank management system that can create a new account and remove an
existing account. It can also update the information of an existing account (name, contact
number, and address) and check the details of an existing account (name, account number,
total debit, credit and current balance). Te system can view the existing customers’ lists
and manage each account’s transactions (debit and credit).

PROJECT-8
Create an employee management system that can store all information of all staf of
an organization in the form of structures. Name, Designation, Contact Number, Job
Responsibility, and Monthly Salary need to be stored for each staf. Employ fles as a data-
base to conduct fle-handling activities such as add, search, modify, and remove entries.

PROJECT-9
Create a student attendance management system that will take and store the daily atten-
dance of each student in a particular subject. Te system will show Name, Class Roll, Total
Class Taken, Total Class Attended, Percentage and Marks for Attendance for each student.
Employ fles as a database to conduct fle-handling activities such as add, search, modify,
and remove entries.

PROJECT-10
Create a simple quiz game that will ask a number of questions to the user. If the user can
give a correct answer, a cash prize will be awarded for each correct answer, and a fne
will be imposed for each wrong answer. Questions may be asked randomly from science,
movies, sports, geography, etc. We can divide the game into two rounds. Te contestant
will move to the “advanced round” only if he can get qualifed in the preliminary round.
Te questions will be more challenging in the “advanced round”, and prize money and
fne will be higher.

560 ◾ Learn Programming with C

PROJECT-10
Create a simple snake game in which the snake’s food is provided in diferent coordinates
of the screen to eat. When the snake eats the food, its length is automatically increased by
one element, and the score is increased by 10 points.

PROJECT-11
Create a simple cricket score display system that will display the following information
on the screen:

For batsman- Name, Runs, Balls, 4s, 6s, Out/Not-Out, Strike-rate etc.
For bowler- Name, Over, Wide, No-ball, Wickets etc.
Date and Time of the game, Toss, Name of the teams, Target, Current and required run

rate, Remaining wickets etc.

PROJECT-12
Create a simple cash-fow manager that allows users to keep track of their daily cash infow
and outfow. It will show total income, categorize expenses, and balance each month. It
also has the provision to store data in a fle for each month and display the yearly data.

PROJECT-13
Create a simple ATM machine management system that allows users to withdraw cash
afer entering the PIN and amount to be withdrawn. Afer successful withdrawal, the
amount will be debited from their bank account. Te user can also check his current bal-
ance using the system.

PROJECT-14
Create a simple matrix calculator that allows users to add, subtract, or multiply two matri-
ces. It can also perform division and transpose operations. First, it checks the matrices’ size
and then performs the operation only if the size is allowed.

PROJECT-15
Create a modern periodic table that accurately stores the name, symbol, atomic number,
atomic weight, and other properties of the chemical elements. Users can search by name or
any properties of the elements.

PROJECT-16
Design a CE amplifer with voltage divider bias of a given gain. Te C project will calcu-
late and provide values of all the elements (resistors, capacitors, voltage source, etc.) needed
to get the output gain.

PROJECT-17
Develop a vaccine registration portal that verifes users through NID or BRN num-
bers and checks their age and status. Te portal gives a date, time, and place to receive a

        

C Projects ◾ 561

particular vaccine based on the information. Te portal also shows the list of people with
their NID or BRN numbers who have already received vaccines.

PROJECT-18
Develop a password management system used by the cyber cafes and computer centers
to keep a record of the clients. Clients frst need to sign-up to use a computer there. Te
signed-up users need to log in with their valid credentials (user name and password) to
use a computer. Te system also maintains a database that stores all the users’ data (name,
contact number, user name, password, date and time of use) and shows a particular user’s
information on demand.

PROJECT-19
Create a monthly calendar with days and dates. It shows the list of holidays and the sched-
ule of events of a particular user. Users can edit, add, or delete their events as well. Te
calendar also gives reminders 24 hours and 10 minutes before the occurrence of each event.

PROJECT-20
Create a medical store management system that shows the list of all available medicines
in the store. Unit price, packet price, and name of the pharmaceutical company for each
drug are also available. Users can search for any medication by name or by indication.

PROJECT-21
Develop a hospital management system that adds new patient’s records (name, age, sex,
disease description, and referred room number) and searches, edits, or deletes patient’s
records. Users can list patient’s records by names (alphabetic order), emergency patients,
OPD patients, or dates.

PROJECT-22
Develop a telephone billing system that shows the current month’s telephone billing
records (customer name, phone number, and amount to be paid). Te system can add new
records and search, modify, and delete old records.

http://taylorandfrancis.com

Index

0–9 break, 7, 53, 54, 55, 83, 141, 143, 144, 147, 179, 319
#elif, 440 builder, 539, 541
#else, 440 built-in, 4, 37, 40, 43, 122, 273, 475
#endif, 440 bus reservation, 559
#if, 440
2D array, 153, 154, 558
2’s complement, 179, 184, 214 C

C#, 2, 3, 557
A C++, 2, 3, 529, 542, 545, 549, 557

calculator, 79, 83, 89, 98, 149, 560
actual, 218, 298 calendar, 497, 561
addition, 8, 218, 256, 257, 260, 261, 263, 265, 266, caller, 296, 539, 549, 551

342, 434 calloc (), 156, 212, 213, 216
address book, 558 car, 477, 509, 511, 512, 513, 514
allocation, 37, 156, 308, 428, 433 case, 53, 54, 83, 142, 144
alphabet, 27, 59, 60, 149, 216, 561 cash-flow manager, 560
animated, 500, 514 casting, 11, 42
annual, 99, 376, 435, 448, 475 C caller, 539, 549, 551
append, 155, 168, 210, 438, 443, 444, 469, 475 CE amplifier, 560
arc (), 491, 502, 510, 512 C function, 217, 515, 519, 539, 545, 547, 551, 553, 555
array element, 152, 153, 157, 158, 160, 177, 231, 236, char, 10, 22, 23, 29, 30

252, 341, 392, 466 circle, 19, 45, 475, 480, 482, 487, 489, 507, 513
ascending, 215, 247, 299, 391, 392, 394, 465, 466, 468 circle (), 439, 481, 482, 488, 506, 507, 510, 511, 512
ascii, 25, 26, 34, 45, 209 circular, 305, 306, 328, 433, 436
ATM machine, 560 circular linked list, 305, 306, 328, 433, 436
atoi (), 536 circumference, 19, 45, 475
attendance, 353, 354, 434, 559 class, 354, 360, 434, 557, 559
attendance management, 559 cleardevice (), 478, 486, 497, 502, 508, 511
average, 45, 91, 150, 160, 161, 214, 361, 372, 374, 434 clock, 496, 514

clock (), 478
B closegraph (), 477, 482, 484, 487, 490, 495, 509, 513

clrscr (), 478, 524background, 478, 484, 485, 486, 487, 489, 499, 504,
codeblocks, 3, 5, 480, 516, 519, 531, 532, 552513, 557
command, 526, 531, 533, 534, 535, 540, 553bank management, 559
command line, 531, 534, 535, 536, 537bar, 480, 482, 513, 527, 533, 551
command prompt, 526, 533, 534, 535, 536, 541, 553bar (), 481, 482
command window, 439, 540, 541, 542, 543, 546, 550binary, 43, 179, 183, 214, 342, 433, 437, 439, 472,
comment, 4, 35, 41, 482473, 474
compatibility, 253, 299binary file, 437, 474
compilation, 39, 41, 145, 148, 439, 515, 519, 522binary tree, 433
compilation error, 39, 148

563

564 ◾ Index

compiler, 3, 5, 7, 38, 40, 42 E
complex number, 312, 313, 314, 342, 347, 348, 351,

ellipse (), 510, 512352, 353, 433, 434
embedding, 539compound, 144
employee, 45, 559conditional, 48, 141, 439
employee management, 559conditional directive, 439
enum, 7, 302, 432conditional operator, 48, 49
enumeration, 429, 432conio.h, 4, 82, 128, 193, 347, 481, 491, 502, 524
EOF, 214, 438, 447, 454, 471const, 7, 10, 211, 212
equation, 71, 74, 112, 117, 131, 150, 287, 292, 299constant, 10, 28, 42, 143, 171, 211, 212, 302, 432,
equilateral, 224, 225, 299545, 551
error, 7, 38, 39, 41, 42, 43, 51constant pointer, 211
escape, 10, 42continue, 7, 53, 143, 147
Euler, 131, 150continuous, 136, 150, 303
even, 57, 58, 139, 149, 299coordinate, 111, 477, 484, 490, 503, 512, 560
exe, 5, 39, 41, 515, 519, 522, 534, 552copy, 23, 168, 214
executable file, 39, 515, 519, 522, 531, 534, 538, 541, cos (), 115

544create (), 317, 320, 324, 332, 403, 419
exit (), 115, 116, 117, 122, 183, 241, 459cricket score display, 560
EX-OR, 9, 338, 340, 433
expenditure, 91, 150

D extern, 7, 296, 297

dangling pointer, 212
F

data structure, 303, 304, 431, 432, 433
data type, 11, 12, 22, 23, 38, 41, 42, 43, 45, 152, 153, fabs (), 115, 117, 119, 121, 124

156, 213, 217, 219, 301, 302, 303, 310, 323, 331, fact (), 238, 241
386, 403, 418, 430, 432, 459, 475 factorial, 237, 239, 299

debugging, 38 far pointer, 212
decrement, 8, 42, 44, 49, 50 fclose (), 439, 442, 443, 447, 468, 470, 472
default, 7, 54, 147, 296, 350, 478, 479 fgetc (), 438, 446, 447, 454, 471
delay (), 478, 491, 497, 510 fgets (), 438
delet (), 272, 282, 398, 403, 409, 419 Fibonacci, 173, 175, 177, 179, 214, 300
deletion, 274, 283, 396, 404, 419, 435 FIFO, 303, 432
derivative, 116, 287, 292, 299 FILE, 437, 441, 444, 446, 459, 473, 474, 475
deviation, 231, 235, 299 file operation, 437, 438
differential equation, 131, 135, 150 file type, 437, 441, 444, 446, 469, 471
digital, 496, 514 fillellipse (), 502, 503, 504
direction, 478, 485, 486, 500, 513 fill pattern, 478, 479, 495, 503, 504
discrete, 124, 150 find (), 399, 403, 408, 414, 419, 424
display (), 317, 320, 323, 327, 331, 336, 497, 498, floating, 15, 74, 218, 235

499, 500 floodfill (), 478, 494, 495
distribution, 353, 434 fonts, 479
divisible, 65, 70, 149, 245, 503 fopen (), 437, 442, 444, 458, 471, 475, 566
division, 8, 12, 17, 33, 39, 42, 44, 79, 150, 231 for loop, 50, 51, 70
dos.h, 491, 497, 502, 506, 510 formal, 218, 298
dot operator, 301, 302, 307, 313, 314, 388, 462, 498, 554 format specifier, 4, 10, 14, 16, 17, 20, 21, 24, 26, 44,
double-quotes, 67, 117 61, 83, 100, 112, 117, 135, 169, 229, 235, 240, 273,
doubly, 305, 306, 321, 433, 436 292, 353, 447
doubly linked list, 305, 306, 321, 433, 436 fprintf (), 438, 443, 445, 468, 470
do while, 52, 53, 117, 124, 143, 145, 195 fputc (), 438
dynamic, 37, 308, 431, 432, 490, 496, 515, 519, fputs (), 438

521, 555 free (), 156, 310, 312, 403, 406, 418
dynamic data structure, 431, 432 function call, 218, 230, 241, 246, 297, 318, 324, 332,
dynamic library, 515, 519, 520 335, 405, 421

Index    ◾    565

G L

game, 558, 559, 560 Lagrange, 124, 216
gate, 338, 433 largest, 151, 169, 172, 214, 252, 302
GCC compiler, 516, 520, 532, 537 length, 155, 162, 163, 214, 274, 283, 286
GCD, 241, 243, 245, 299 library function, 4, 21, 43, 106, 155, 214, 217, 220,
gcdf (), 243, 244, 246 222, 224, 293, 478, 484
getchar (), 202, 203, 309, 311 library management, 559
getche (), 82, 84, 126, 128, 131, 193, 195, 348 line (), 494, 506, 507, 511, 512
getmaxx (), 477, 491, 492, 502, 503, 506, 508, linear linked list, 396, 411, 435

510, 511 linked list, 303, 304, 305, 306, 315, 317, 321, 324, 325,
getmaxy (), 477, 491, 492, 502, 508, 511 404, 406, 421, 432, 433
gets (), 155, 163, 164, 166, 168, 182, 198, 273, 282, linking, 38, 39, 515

307, 442, 444 linking error, 39
gettime (), 497, 498 linux, 525, 537, 538
global, 219, 297, 298, 557 logical, 8, 9, 34, 38, 39, 51, 143, 214, 431
goto, 7, 55, 143 logical error, 39, 51
grade, 308, 376, 391, 435, 448, 459, 475, 558 long, 7, 11, 31, 42, 43, 61, 98, 166, 217, 239, 241
graphics.h, 477, 480, 481, 486, 491, 497, 506, 510 loop, 49, 51, 52, 53, 107, 123, 130

loop control, 143

H
M

harmonic, 64, 149
machine, 1, 2, 3, 37, 38, 560header file, 4, 5, 12, 21, 40, 56, 82, 106, 110, 121, 128,
main (), 4, 12, 15, 39, 40, 445, 534, 536, 155, 156, 162, 217, 439, 441, 477, 481, 486, 506,

540, 553515, 517, 521, 524, 542, 546, 548, 551
malloc (), 156, 212, 213, 310, 316, 318, 333heap, 431, 433
management, 437, 558, 559, 560, 561hospital, 561
manager, 529, 560hospital management, 561
math.h, 21, 74, 110, 121, 225, 234, 290, 368
matlab, 539, 540, 541, 547, 551

I matrices, 253, 261, 267, 299, 560
matrix, 153, 184, 188, 215, 253, 257, 299, 560

identifier, 7, 27, 28, 29, 35, 41, 43, 213, 403, 418 matrix calculator, 560
if statement, 46, 47, 70, 74, 75, 90, 130, 139, 144 mean (), 233, 234, 236
increment, 8, 42, 44, 49, 52 medical store, 561
index (), 277, 282, 283, 284 memory allocation, 37, 156, 308, 433
infinite, loop, 51, 144, 149 mex file, 541
initgraph (), 477, 481, 482, 484, 488, 491, 494, 498, mexFunction (), 540

503, 511 middle-level, 37
initialization, 41, 49, 50, 51, 52, 63, 128, 144, 146, mingw-w64, 539, 541, 542, 545, 549

149, 188 modifier, 11, 42
insert (), 270, 272, 273, 304, 331, 336, 413, 415, 419, modulus, 8, 41, 42, 231, 508

424, 436 Monte Carlo, 108, 150
integral, 136, 140, 150, 302, 432 monthly calendar, 561
interactively, 64, 104, 149, 153, 226, 396, 411, 435 moving, 507, 508, 509, 512, 514
interpolation, 124, 150 multidimensional, 154, 214
interpreter, 38 multiplication, 8, 20, 62, 63, 75, 149, 214, 223, 240,

267, 342, 352, 434

K
N

kbhit (), 478, 497, 498, 502, 503
key feature, 37 near pointer, 212
keyword, 3, 7, 28, 35, 39, 43, 143, 145, 217, 219, negative, 56, 57, 149, 155

297, 432 nested, 47, 48, 51, 143, 302, 427, 431

566 ◾ Index

nested if, 47, 48 puts (), 155, 169, 217, 439, 467, 469, 471
nested structure, 302, 427, 431 Python, 2, 3, 525, 552, 554
newline \n, 75
Newton-Raphson, 112, 116, 150

Qnonlinear, 112, 117, 150, 303, 433
nosound (), 497, 499 quadratic, 71, 149
NULL pointer, 213 quiz game, 559

O R

object, 2, 3, 7, 38, 39, 301, 474, 477, 498, 515, 519, 534, rain, 505, 508, 514
552, 554, 557 rainbow, 490, 513

object code, 2, 38 rand_max, 109, 111
odd, 57, 58, 139, 149, 299 rand (), 105, 106, 107, 110, 111, 182, 506, 508
online mini voting, 558 random, 45, 104, 106, 107, 111, 150, 223, 474, 508
operand, 42, 43, 48 random access, 474
operating system, 1, 2, 5, 37, 439, 515, 535, 537, 557 rectangle (), 494, 495, 497, 500
operator, 8, 9, 10, 12, 33, 39, 41, 42, 43, 48, 49, 57, 79, recursive, 237, 240, 241, 245, 299

143, 156, 214, 231, 301, 302, 307, 431, 554, 557 register, 7, 39, 198, 219, 296, 426
ordinary, 131, 150 remainder, 8, 18, 42, 58, 70, 78, 231
outtextxy (), 477, 483, 484, 486, 500, 506, 508 reserved, 7, 14, 39, 43
overloading, 296, 557 reverse, 151, 155, 215, 300, 321, 327

run-time error, 39, 43

P
Spassing, 218, 298

password, 537, 561 Secant, 117, 122, 150
password management, 561 self-referential, 431, 432
pattern, 477, 478, 479, 495, 503, 504, 556 semantic, 39
periodic table, 560 sequence, 10, 42, 46, 143, 173, 177, 214, 433
PI, 10, 19, 20, 108, 111, 439 sequential access, 474
piety, 85, 89, 91, 150 series, 64, 149, 155, 300, 303, 304
pointer, 152, 156, 157, 163, 165, 211, 212, 213, 214, setbkcolor (), 478, 486, 487, 488, 489

218, 219, 277, 282, 298, 302, 305, 306, 310, 320, setcolor (), 478, 483, 484, 486, 487, 488, 489, 491,
403, 419, 431, 432, 438, 444, 469, 474, 477, 557 492, 497, 498, 502, 503

pointer access, 213 setfillstyle (), 478, 494, 495, 502, 503, 504
pointer operator, 302, 404, 420 settextstyle (), 478, 486, 487, 497, 500
pointer variable, 152, 310, 311, 318, 319, 325, 326, S-function, 539, 541, 543, 545

333, 334, 335, 404, 419 short, 7, 11, 39, 42
polynomial, 287, 291, 292, 299 signed, 7, 11, 29, 30, 31, 42
positive, 56, 57, 76, 149, 155, 223, 535 significance, 38
pow (), 21, 289, 290, 293 Simpson, 136, 139, 150
power (), 222, 223, 224 sin (), 113, 115
preprocessor, 12, 21, 110, 115, 121, 188, 217, 234, 260, single statement, 42, 48

298, 439, 441 singly, 305, 315, 433, 435, 436
prime (), 227, 228, 230, 231 singly linked list, 305, 315, 433, 435
product, 16, 17, 79, 253, 264 sizeof (), 10, 23, 36, 43, 156, 159, 309, 310, 318,
program algorithm, 38 418, 419
program flowchart, 38 smallest, 151, 169, 172, 214, 252
program fragment, 142, 145, 146, 147, 148, 149 smiley, 500, 504, 514
project, 5, 516, 519, 530, 558 snake game, 560

Index    ◾    567

sort (), 248, 250, 251, 252, 253 tic-tac-toe game, 558
sorting, 247, 250, 251, 299 time (), 105, 106, 107, 108, 110
sound (), 497, 499 time.h, 106, 110
source, 3, 4, 38, 39, 40, 41, 439, 480, 515, 517, 525, 530 transition, 557
source code, 3, 4, 38, 39, 41, 439, 480, 515, 522, 525, transpose, 184, 189, 190, 214, 560

531, 551 triangle, 224, 225, 226, 299
specifier, 4, 10, 11, 14, 17, 24, 44 truth, 338, 433
sqrt (), 74, 75, 76, 109, 110, 111, 225, 226, 234, 236 turbo C, 3, 482, 522, 523, 524
srand (), 105, 106, 107, 109, 110 tutorial, 5, 556
stack, 303, 431, 433 type casting, 11, 42
static, 7, 30, 219, 296, 297, 298, 405, 420, 421, 515, typecasting, 42

516, 518, 519, 522 typedef, 7, 43, 403, 418, 557
static library, 515, 516, 518, 519, 522 types of error, 39
std_dev (), 232, 233, 234, 235, 236
stdio.h, 4, 12, 13, 15 U
stdlib.h, 106, 110, 121
storage, 219, 294, 295, 296, 297, 298, 303, 431 union, 7, 301, 302
strcpy (), 155, 167, 168, 169, 214 unsigned, 7, 11, 29, 30, 31, 42, 43, 239, 240, 241
string function, 155 user defined, 40, 217, 298, 302, 430, 520, 521, 545
string.h, 155, 162, 168, 182, 202, 272, 282
string length, 163 V
strlen (), 202, 204, 214, 270, 271, 272, 274, 283
structure, 3, 217, 301, 302, 303, 304, 306, 307, 426, vaccine, 560, 561

430, 431, 432, 433 vaccine registration, 560
student management, 558 variable, 4, 7, 8, 9, 10, 11, 14, 15, 31, 41, 42, 43, 49, 54
studio, 525, 526, 527, 529, 530, 531 visual studio, 525, 526, 527, 529, 530, 531
substring, 155, 211, 268, 299 void, 4, 7, 11, 12, 15, 38, 40
summation, 14, 15, 66, 70, 139, 352, 387, 461 void main (), 4, 40, 44
swap (), 220, 221 void pointer, 213
switch, 83, 143, 144, 147, 148, 348, 349, 556 voltage divider bias, 560
switch case, 53, 54, 83, 84, 144, 148, 348, 349, 350
switching, 555, 556

W
symbol, 8, 39, 43, 143, 351, 474, 560
syntax, 3, 7, 12, 39, 41, 49, 51, 52, 54, 55, 144, 156, walking, 505, 514

217, 301, 437, 439, 474, 531, 534, 556, 557 while, 7, 9, 51, 52, 53, 61, 140, 143, 144, 145,
syntax error, 39, 41, 531, 534 146, 147

while loop, 51, 53, 61, 79, 122, 130, 144, 145, 147, 165,
203, 321, 447, 503T

wild pointer, 212
telephone billing, 561 word, 199, 202, 277
text file, 437, 442, 444, 446, 467, 469, 471, 474, 475, writing, 38, 39, 40, 48, 342, 434, 438, 474, 475,

476, 527, 537, 553 482, 554

	Cover
	Half Title
	Title
	Copyright
	Contents
	Preface
	Chapter 1 . Introduction
	1.1 History of Programming Language
	1.2 Different Types of Programming Language
	1.3 Importance of Programming
	1.4 C Program Structure
	1.5 Step-By-Step Tutorial to Run A C PROGRAM
	1.6 Keywords
	1.7 Identifiers
	1.8 Operators
	1.9 Operator Precedence in C
	1.10 Variables
	1.11 Constants
	1.12 Escape Sequences
	1.13 Data Types
	1.14 Type Casting
	1.15 Examples
	Exercises
	– MCQ with Answers
	– Questions with Short Answers
	– Problems to Practice

	Chapter 2 . Flow Control
	2.1 If Statement
	2.2 If..Else Statement
	2.3 Nested If..Else Statement
	2.4 Conditional Operator
	2.5 For Loop
	2.6 While Loop
	2.7 Do..While Loop
	2.8 Continue Statement
	2.9 Break Statement
	2.10 Switch..Case Statement
	2.11 Goto Statement
	2.12 Examples
	Exercises
	– MCQ with Answers
	– Questions with Short Answers
	– Problems to Practice

	Chapter 3 . Arrays and Pointers
	3.1 Arrays
	3.2 2D Arrays
	3.3 Multidimensional Arrays
	3.4 String
	3.5 String Functions
	3.6 Pointers
	3.7 Memory Allocation
	3.8 Examples
	Exercises
	– MCQ with Answers
	– Questions with Short Answers
	– Problems to Practice

	Chapter 4 . Functions
	4.1 Function Types
	4.2 Function Structure
	4.3 Function Call
	4.4 Arrays and Functions
	4.5 Pointers and Functions
	4.6 Storage Class
	4.7 Examples
	Exercises
	– MCQ with Answers
	– Questions with Short Answers
	– Problems to Practice

	Chapter 5 . Structure and Union
	5.1 Structure
	5.2 Union
	5.3 Enum
	5.4 Data Structure and Algorithm
	5.5 Linked List
	5.6 Types of Linked List
	5.7 Examples
	Exercises
	– MCQ with Answers
	– Questions with Short Answers
	– Problems to Practice

	Chapter 6 . File Management
	6.1 File Types
	6.2 File Operations
	6.3 Preprocessors
	6.4 Conditional Compilation
	6.5 Examples
	Exercises
	– MCQ with Answers
	– Questions with Short Answers
	– Problems to Practice

	Chapter 7 . C Graphics
	7.1 Introduction
	7.2 Function
	7.3 Color Table
	7.4 Fonts of Text
	7.5 Fill Patterns
	7.6 Including Graphics.H in Codeblocks
	7.7 Examples
	Problems to Practice

	Chapter 8 . C Cross-platform
	8.1 Creating Own Library
	8.1.1 Creating Static Library
	8.1.2 Creating Dynamic Library

	8.2 Turbo C
	8.3 Visual Studio Code
	8.4 Visual Studio
	8.5 Command Line
	8.6 Command Line Arguments
	8.7 Linux
	8.8 Embedding C Code into Matlab
	Using MinGW-W64 Compiler
	Using S-Function Builder
	Using C Function Block
	Using C Caller Block

	8.9 Integrating C Code into Python
	8.10 Switching from One Language to Another
	8.11 Transition to C++ or C# from C

	Chapter 9 . C Projects
	Project-1
	Project-2
	Project-3
	Project-4
	Project-5
	Project-6
	Project-7
	Project-8
	Project-9
	Project-10
	Project-10
	Project-11
	Project-12
	Project-13
	Project-14
	Project-15
	Project-16
	Project-17
	Project-18
	Project-19
	Project-20
	Project-21
	Project-22

	Index

