

Advance Praise for Head First C

“Head First C could quite possibly turn out to be the best C book of all time. I don’t say that lightly. I could
easily see this become the standard C textbook for every college C course. Most books on programming
follow a fairly predictable course through keywords, control-flow constructs, syntax, operators, data types,
subroutines, etc. These can serve as a useful reference, as well as a fairly academic introduction to the
language. This book, on the other hand, takes a totally different approach. It teaches you how to be a
real C programmer. I wish I had had this book 15 years ago!”

— �Dave Kitabjian, Director of Software Development, NetCarrier Telecom

“Head First C is an accessible, light-hearted introduction to C programming, in the classic Head First style.
Pictures, jokes, exercises, and labs take the reader gently but steadily through the fundamentals of C—
including arrays, pointers, structs, and functions—before moving into more advanced topics in Posix and
Linux system programming, such as processes and threads.”

— �Vince Milner, software developer

Praise for other Head First books

“Kathy and Bert’s Head First Java transforms the printed page into the closest thing to a GUI you’ve ever
seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’
experience.”

—Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status,
Head First Java covers a huge amount of practical matters that other texts leave as the dreaded ‘exercise
for the reader…’  It’s clever, wry, hip, and practical—there aren’t a lot of textbooks that can make that claim
and live up to it while also teaching you about object serialization and network launch protocols.  ”

— �Dr. Dan Russell, Director of User Sciences and Experience Research,
IBM Almaden Research Center;
artificial intelligence instructor, Stanford University

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

— �Ken Arnold, former Senior Engineer at Sun Microsystems;
coauthor (with James Gosling, creator of Java),
The Java Programming Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

— �Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of
tired, stale professor-speak.”

— �Travis Kalanick, founder of Scour and Red Swoosh;
member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-eared,
mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I have
for review is tattered and torn.”

— �Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor, and substantial doses of clever make it the sort of book that helps
even nonprogrammers think well about problem solving.”

— �Cory Doctorow, coeditor of Boing Boing;
author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Praise for other Head First books

“I received the book yesterday and started to read it…and I couldn’t stop. This is definitely très ‘cool.’ It
is fun, but they cover a lot of ground, and they are right to the point. I’m really impressed.”

— �Erich Gamma, IBM Distinguished Engineer and coauthor of Design Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— �Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial-and-error learning process has now been reduced neatly into an engaging
paperback.”

— �Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— �Ken Goldstein, Executive Vice President, Disney Online

“I ♥ Head First HTML with CSS & XHTML—it teaches you everything you need to learn in a ‘fun coated’
format.”

— �Sally Applin, UI designer and artist

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Bueller…Bueller…Bueller…,’ this book is on the float
belting out ‘Shake it up, baby!’”

— �Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— �Satish Kumar

Other related books from O’Reilly

C in a Nutshell

Practical C Programming

C Pocket Reference

Algorithms with C

Secure Programming Cookbook for C and C++

Other books in O’Reilly’s Head First series

Head First Programming

Head First Rails

Head First JavaTM

Head First Object-Oriented Analysis and Design (OOA&D)

Head First HTML5 Programming

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Statistics

Head First 2D Geometry

Head First Algebra

Head First PHP & MySQL

Head First Mobile Web

Head First Web Design

Beijing • Cambridge • Farnham • K�ln • Sebastopol • Tokyo

Head First C

Wouldn’t it be dreamy if there
were a book on C that was easier to
understand than the space shuttle
flight manual? I guess it’s just a

fantasy…

David Griffiths
Dawn Griffiths

Head First C

by David Griffiths and Dawn Griffiths

Copyright © 2012 David Griffiths and Dawn Griffiths. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Editor:			 Brian Sawyer

Cover Designer:		 Karen Montgomery

Production Editor:		 Teresa Elsey

Production Services:	 Rachel Monaghan

Indexer:			 Ellen Troutman Zaig

Page Viewers:	 	 Mum and Dad, Carl

Printing History:

April 2012: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First C, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No kittens were harmed in the making of this book. Really.

ISBN: 978-1-449-39991-7
[M]										

This book uses RepKover™,  a durable and flexible lay-flat binding.
TM

Mum and Dad Carl

To Dennis Ritchie (1941–2011), the father of C.

viii

the authors

Authors of Head First C

David Griffiths

David Griffiths began programming at age 12,
when he saw a documentary on the work of Seymour
Papert. At age 15, he wrote an implementation of
Papert’s computer language LOGO. After studying
pure mathematics at university, he began writing code
for computers and magazine articles for humans. He’s
worked as an agile coach, a developer, and a garage
attendant, but not in that order. He can write code
in over 10 languages and prose in just one, and when
not writing, coding, or coaching, he spends much
of his spare time traveling with his lovely wife—and
coauthor—Dawn.

Before writing Head First C, David wrote two other
Head First books: Head First Rails and Head First
Programming.

You can follow David on Twitter at
http://twitter.com/dogriffiths.

Dawn Griffiths

Dawn Griffiths started life as a mathematician at
a top UK university, where she was awarded a first-class
honors degree in mathematics. She went on to pursue
a career in software development and has over 15 years
experience working in the IT industry.

Before joining forces with David on Head First C, Dawn
wrote two other Head First books (Head First Statistics
and Head First 2D Geometry) and has also worked on a
host of other books in the series.

When Dawn’s not working on Head First books, you’ll
find her honing her Tai Chi skills, running, making
bobbin lace, or cooking. She also enjoys traveling and
spending time with her husband, David.

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on C. � Here you are trying to learn something, while here your

brain is, doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to

avoid and whether naked snowboarding is a bad idea.” So how do you trick your

brain into thinking that your life depends on knowing C?

Intro

Who is this book for?	 xxviii

We know what you’re thinking	 xxix

Metacognition	 xxxi

Bend your brain into submission	 xxxiii

Read me	 xxxiv

The technical review team	 xxxvi

Acknowledgments	 xxxvii

 	 Intro	 xxvii

1	 Getting Started with C: Diving in	 1

2	 Memory and Pointers: What are you pointing at?	 41

2.5	 Strings: String theory	 83

3	 Creating Small Tools: Do one thing and do it well	 103

4	 Using Multiple Source Files: Break it down, build it up	 157

	 C Lab 1: Arduino	 207

5	 Structs, Unions, and Bitfields: Rolling your own structures	 217

6	 Data Structures and Dynamic Memory: Building bridges	 267

7	 Advanced Functions: Turn your functions up to 11	 311

8	 Static and Dynamic Libraries: Hot-swappable code	 351

	 C Lab 2: OpenCV	 389

9	 Processes and System Calls: Breaking boundaries	 397

10	 Interprocess Communication: It’s good to talk	 429

11	 Sockets and Networking: There’s no place like 127.0.0.1	 467

12	 Threads: It’s a parallel world	 501

	 C Lab 3: Blasteroids	 523

i	 Leftovers: The top ten things (we didn’t cover)	 539

ii	 C Topics: Revision roundup	 553

table of contents

x

C is a language for small, fast programs	 2

But what does a complete C program look like?	 5

But how do you run the program?	 9

Two types of command	 14

Here’s the code so far	 15

Card counting? In C?	 17

There’s more to booleans than equals…	 18

What’s the code like now?	 25

Pulling the ol’ switcheroo	 26

Sometimes once is not enough…	 29

Loops often follow the same structure…	 30

You use break to break out…	 31

Your C Toolbox	 40

Diving in1
getting started with C

Want to get inside the computer’s head? �
Need to write high-performance code for a new game? Program an Arduino? Or

use that advanced third-party library in your iPhone app? If so, then C’s here to

help. C works at a much lower level than most other languages, so understanding

C gives you a much better idea of what’s really going on. C can even help you better

understand other languages as well. So dive in and grab your compiler, and you’ll soon

get started in no time.

table of contents

xi

What are you pointing at?

If you really want to kick butt with C, you need to understand
how C handles memory.�
The C language gives you a lot more control over how your program uses the

computer’s memory. In this chapter, you’ll strip back the covers and see exactly what

happens when you read and write variables. You’ll learn how arrays work, how

to avoid some nasty memory SNAFUs, and most of all, you’ll see how mastering

pointers and memory addressing is key to becoming a kick-ass C programmer.

memory and pointers

2
C code includes pointers	 42

Digging into memory	 43

Set sail with pointers	 44

Try passing a pointer to the variable	 47

Using memory pointers	 48

How do you pass a string to a function?	 53

Array variables are like pointers…	 54

What the computer thinks when it runs your code	 55

But array variables aren’t quite pointers	 59

Why arrays really start at 0	 61

Why pointers have types	 62

Using pointers for data entry	 65

Be careful with scanf()	 66

fgets() is an alternative to scanf()	 67

String literals can never be updated	 72

If you’re going to change a string, make a copy	 74

Memory memorizer	 80

Your C Toolbox	 81

31
32
latitude

4,100,000

Set sail for
Cancun!

Wind in the
sails, cap’n!

Arr! Spring
break!

table of contents

xii

String theory

There’s more to strings than reading them.�
You’ve seen how strings in C are actually char arrays but what does C allow you to do

with them? That’s where string.h comes in. string.h is part of the C Standard Library

that’s dedicated to string manipulation. If you want to concatenate strings together,

copy one string to another, or compare two strings, the functions in string.h are there

to help. In this chapter, you’ll see how to create an array of strings, and then take a

close look at how to search within strings using the strstr() function.

strings

2.5
Desperately seeking Frank	 84

Create an array of arrays	 85

Find strings containing the search text	 86

Using the strstr() function	 89

It’s time for a code review	 94

Array of arrays vs. array of pointers	 98

Your C Toolbox	 101

Compare two strings to each other

Search for a string

Make a copy of a string

Slice a string into
little pieces

string.h

table of contents

xiii

Small tools can solve big problems	 104

Here’s how the program should work	 108

But you’re not using files…	 109

You can use redirection	 110

Introducing the Standard Error	 120

By default, the Standard Error is sent to the display	 121

fprintf() prints to a data stream	 122

Let’s update the code to use fprintf()	 123

Small tools are flexible	 128

Don’t change the geo2json tool	 129

A different task needs a different tool	 130

Connect your input and output with a pipe	 131

The bermuda tool	 132

But what if you want to output to more than one file?	 137

Roll your own data streams	 138

There’s more to main() 	 141

Let the library do the work for you	 149

Your C Toolbox	 156

Do one thing and do it well3
creating small tools

Every operating system includes small tools.�
Small tools written in C perform specialized small tasks, such as reading and

writing files, or filtering data. If you want to perform more complex tasks, you

can even link several tools together. But how are these small tools built? In this

chapter, you’ll look at the building blocks of creating small tools. You’ll learn how

to control command-line options, how to manage streams of information, and

redirection, getting tooled up in no time.

Standard Input comes from the keyboard.
Standard Error
goes to the display.

Standard Output
goes to the display.

table of contents

xiv

Break it down, build it up

If you create a big program, you don’t want a big source file.�
Can you imagine how difficult and time-consuming a single source file for an enterprise-

level program would be to maintain? In this chapter, you’ll learn how C allows you to

break your source code into small, manageable chunks and then rebuild them into

one huge program. Along the way, you’ll learn a bit more about data type subtleties

and get to meet your new best friend: make.

using multiple source files

4
Your quick guide to data types	 162

Don’t put something big into something small	 163

Use casting to put floats into whole numbers	 164

Oh no…it’s the out-of-work actors…	 168

Let’s see what’s happened to the code	 169

Compilers don’t like surprises	 171

Split the declaration from the definition	 173

Creating your first header file	 174

If you have common features…	 182

You can split the code into separate files	 183

Compilation behind the scenes	 184

The shared code needs its own header file	 186

It’s not rocket science…or is it?	 189

Don’t recompile every file	 190

First, compile the source into object files	 191

It’s hard to keep track of the files	 196

Automate your builds with the make tool	 198

How make works	 199

Tell make about your code with a makefile	 200

Liftoff !	 205

Your C Toolbox	 206

gcc -o

gcc -c

table of contents

xv

Ever wished your plants could tell you when they
need watering? Well, with an Arduino, they can!
In this lab, you’ll build an Arduino-powered plant
monitor, all coded in C.

C Lab 1
Arduino

table of contents

xvi

Sometimes you need to hand around a lot of data	 218

Cubicle conversation	 219

Create your own structured data types with a struct	 220

Just give them the fish	 221

Read a struct’s fields with the “.” operator	 222

Can you put one struct inside another?	 227

How do you update a struct?	 236

The code is cloning the turtle	 238

You need a pointer to the struct	 239

(*t).age vs. *t.age	 240

Sometimes the same type of thing needs different types of data	 246

A union lets you reuse memory space	 247

How do you use a union?	 248

An enum variable stores a symbol	 255

Sometimes you want control at the bit level	 261

Bitfields store a custom number of bits	 262

Your C Toolbox	 266

Rolling your own structures5
structs, unions, and bitfields

Most things in life are more complex than a simple number.�
So far, you’ve looked at the basic data types of the C language, but what if you

want to go beyond numbers and pieces of text, and model things in the real

world? structs allow you to model real-world complexities by writing your own

structures. In this chapter, you’ll learn how to combine the basic data types into

structs, and even handle life’s uncertainties with unions. And if you’re after a

simple yes or no, bitfields may be just what you need.

This is Myrtle…
…but her clone is sent to the function.

Turtle “t”

table of contents

xvii

Building bridges

Sometimes, a single struct is simply not enough.�
To model complex data requirements, you often need to link structs together. In

this chapter, you’ll see how to use struct pointers to connect custom data types into

large, complex data structures. You’ll explore key principles by creating linked lists.

You’ll also see how to make your data structures cope with flexible amounts of data by

dynamically allocating memory on the heap, and freeing it up when you’re done. And

if good housekeeping becomes tricky, you’ll also learn how valgrind can help.

data structures and dynamic memory

6
Do you need flexible storage?	 268

Linked lists are like chains of data	 269

Linked lists allow inserts	 270

Create a recursive structure	 271

Create islands in C…	 272

Inserting values into the list	 273

Use the heap for dynamic storage	 278

Give the memory back when you’re done	 279

Ask for memory with malloc()…	 280

Let’s fix the code using the strdup() function	 286

Free the memory when you’re done	 290

An overview of the SPIES system	 300

Software forensics: using valgrind	 302

Use valgrind repeatedly to gather more evidence	 303

Look at the evidence	 304

The fix on trial	 307

Your C Toolbox	 309

Craggy

Isla Nublar

Shutter

32 bytes of
data at location
4,204,853 on the
heap

table of contents

xviii

Looking for Mr. Right…	 312

Pass code to a function	 316

You need to tell find() the name of a function	 317

Every function name is a pointer to the function…	 318

…but there’s no function data type	 319

How to create function pointers	 320

Get it sorted with the C Standard Library	 325

Use function pointers to set the order	 326

Automating the Dear John letters	 334

Create an array of function pointers	 338

Make your functions streeeeeetchy	 343

Your C Toolbox	 350

Turn your functions up to 117
advanced functions

Basic functions are great, but sometimes you need more.�
So far, you’ve focused on the basics, but what if you need even more power and

flexibility to achieve what you want? In this chapter, you’ll see how to up your

code’s IQ by passing functions as parameters. You’ll find out how to get things

sorted with comparator functions. And finally, you’ll discover how to make your

code super stretchy with variadic functions.

Testing
Machine

table of contents

xix

Hot-swappable code

You’ve already seen the power of standard libraries.�
Now it’s time to use that power for your own code. In this chapter, you’ll see how to

create your own libraries and reuse the same code across several programs.

What’s more, you’ll learn how to share code at runtime with dynamic libraries. You’ll

learn the secrets of the coding gurus. And by the end of the chapter, you’ll be able to

write code that you can scale and manage simply and efficiently.

static and dynamic libraries

8
Code you can take to the bank	 352

Angle brackets are for standard headers	 354

But what if you want to share code?	 355

Sharing .h header files	 356

Share .o object files by using the full pathname	 357

An archive contains .o files	 358

Create an archive with the ar command…	 359

Finally, compile your other programs	 360

The Head First Gym is going global	 365

Calculating calories	 366

But things are a bit more complex…	 369

Programs are made out of lots of pieces…	 370

Dynamic linking happens at runtime	 372

Can you link .a at runtime?	 373

First, create an object file	 374

What you call your dynamic library depends on your platform	 375

Your C Toolbox	 387

Is it a bird? Is it
a plane? No, it's a
relocatable object
file with metadata.

Raisins, flour,
butter, anchovies…

table of contents

xx

Imagine if your computer could keep an eye on your
house while you’re out, and tell you who’s been
prowling around. In this lab, you’ll build a C-powered
intruder detector using the cleverness of OpenCV.

C Lab 2
OpenCV

table of contents

xxi

System calls are your hotline to the OS	 398

Then someone busted into the system…	 402

Security’s not the only problem	 403

The exec() functions give you more control	 404

There are many exec() functions	 405

The array functions: execv(), execvp(), execve()	 406

Passing environment variables	 407

Most system calls go wrong in the same way	 408

Read the news with RSS	 416

exec() is the end of the line for your program	 420

Running a child process with fork() + exec()	 421

Your C Toolbox	 427

Breaking boundaries9
processes and system calls

It’s time to think outside the box.�
You’ve already seen that you can build complex applications by connecting small

tools together on the command line. But what if you want to use other programs

from inside your own code? In this chapter, you’ll learn how to use system

services to create and control processes. That will give your programs access to

email, the Web, and any other tool you’ve got installed. By the end of the chapter,

you’ll have the power to go beyond C.

This is your
newshound
process.

It runs separate
processes for each of
the three newsfeeds.

The child processes all
run at the same time.

newshound

table of contents

xxii

It’s good to talk

Creating processes is just half the story.�
What if you want to control the process once it’s running? What if you want to send it

data? Or read its output? Interprocess communication lets processes work together

to get the job done. We’ll show you how to multiply the power of your code by letting it

talk to other programs on your system.

interprocess communication

10
Redirecting input and output	 430

A look inside a typical process	 431

Redirection just replaces data streams	 432

fileno() tells you the descriptor	 433

Sometimes you need to wait…	 438

Stay in touch with your child	 442

Connect your processes with pipes	 443

Case study: opening stories in a browser	 444

In the child	 445

In the parent	 445

Opening a web page in a browser	 446

The death of a process	 451

Catching signals and running your own code	 452

sigactions are registered with sigaction()	 453

Rewriting the code to use a signal handler	 454

Use kill to send signals	 457

Sending your code a wake-up call	 458

Your C Toolbox	 466

#include <stdio.h>

int main()

{

 char name[30];

 printf("Enter your name: ");

 fgets(name, 30, stdin);

 printf("Hello %s\n", name);

 return 0;

}
> ./greetings
Enter your name: ^C
>

File Edit Window Help

If you press Ctrl-C, the program
stops running. But why?

table of contents

xxiii

The Internet knock-knock server	 468

Knock-knock server overview	 469

BLAB: how servers talk to the Internet	 470

A socket’s not your typical data stream	 472

Sometimes the server doesn’t start properly	 476

Why your mom always told you to check for errors	 477

Reading from the client	 478

The server can only talk to one person at a time	 485

You can fork() a process for each client	 486

Writing a web client	 490

Clients are in charge	 491

Create a socket for an IP address	 492

getaddrinfo() gets addresses for domains	 493

Your C Toolbox	 500

There’s no place like 127.0.0.111
sockets and networking

Programs on different machines need to talk to each other.�
You’ve learned how to use I/O to communicate with files and how processes on the

same machine can communicate with each other. Now you’re going to reach out

to the rest of the world, and learn how to write C programs that can talk to other

programs across the network and across the world. By the end of this chapter,

you’ll be able to create programs that behave as servers and programs that

behave as clients.

The server will talk to
several clients at once.

A client and server have
a structured conversation
called a protocol.

Server

Telnet client

Telnet client

Telnet client

table of contents

xxiv

It’s a parallel world

Programs often need to do several things at the same time.�
POSIX threads can make your code more responsive by spinning off several pieces

of code to run in parallel. But be careful! Threads are powerful tools, but you don’t

want them crashing into each other. In this chapter, you’ll learn how to put up traffic

signs and lane markers that will prevent a code pileup. By the end, you will know

how to create POSIX threads and how to use synchronization mechanisms to

protect the integrity of sensitive data.

threads

12

Shared
variable

A

B

The traffic signals prevent the two
threads from accessing the same
shared variable at the same time.

The two cars represent two threads. They both want to access the same shared variable.

Tasks are sequential…or not…	 502

…and processes are not always the answer	 503

Simple processes do one thing at a time	 504

Employ extra staff: use threads	 505

How do you create threads?	 506

Create threads with pthread_create	 507

The code is not thread-safe	 512

You need to add traffic signals	 513

Use a mutex as a traffic signal	 514

Your C Toolbox	 521

table of contents

xxv

In this lab, you’re going to pay tribute to one of the
most popular and long-lived video games of them all.
It’s time to write Blasteroids!

C Lab 3
Blasteroids

table of contents

xxvi

The top ten things (we didn’t cover)

Even after all that, there’s still a bit more.�
There are just a few more things we think you need to know. We wouldn’t feel right

about ignoring them, even though they need only a brief mention, and we really wanted

to give you a book you’d be able to lift without extensive training at the local gym. So

before you put the book down, read through these tidbits.

leftovers

i
#1. Operators	 540

#2. Preprocessor directives	 542

#3. The static keyword	 543

#4. How big stuff is	 544

#5. Automated testing	 545

#6. More on gcc	 546

#7. More on make	 548

#8. Development tools	 550

#9. Creating GUIs	 551

#10. Reference material	 552

Revision roundup

Ever wished all those great C facts were in one place?�
This is a roundup of all the C topics and principles we’ve covered in the book. Take a

look at them, and see if you can remember them all. Each fact has the chapter it came

from alongside it, so it’s easy for you to refer back if you need a reminder. You might

even want to cut these pages out and tape them to your wall.

c topics

ii

gcc

556    appendix ii

processes and communication

Processes and communication

system() will run a string like a
console command.

CH
AP

T
ER

 9

fork() duplicates the current
process.

CH
AP

T
ER

 9

fork() + exec()
creates a child process.

CH
AP

T
ER

 9

execl() = list of args.
execle() = list of args + environment.

execlp() = list of args + search on path.

execv() = array of args.

execve() = array of args + environment.

execvp() = array of args + search on path.

CH
AP

T
ER

 9

Processes can communicate
using pipes.

CH
AP

T
ER

 10

pipe() creates a communication
pipe.

CH
AP

T
ER

 10

exit() stops the program
immediately.

CH
AP

T
ER

 10

waitpid() waits for a process
to finish.

CH
AP

T
ER

 10

you are here 4   xxvii

the intro

how to use this book

Intro

In this section, we answer the burning question:
“So why DID they put that in a C book?”

I can’t believe
they put that in a

C book.

xxviii   intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from Marketing: this book is for anyone with a credit card… we’ll accept a check, too.]

Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

Do you want to master C, create the next big thing in
software, make a small fortune, and retire to your own
private island?

2

Are you looking for a quick introduction or reference book
to C?

1

Do you already know how to program in another
programming language?

1

Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a C book should cover everything and if it bores
the reader to tears in the process, then so much the
better?

2

OK, maybe that one’s a little
far-fetched. But, you gotta
start somewhere, right?

3

you are here 4   xxix

the intro

“How can this be a serious C book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you—what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home or in a library. It’s a safe, warm, tiger‑free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to make
sure that this obviously unimportant content doesn’t clutter up scarce resources.
Resources that are better spent storing the really big things. Like tigers.
Like the danger of fire. Like how you should never have posted those
party photos on your Facebook page. And there’s no simple way
to tell your brain, “Hey brain, thank you very much, but no matter
how dull this book is, and how little I’m registering on the emotional
Richter scale right now, I really do want you to keep this stuff around.”

We know what you’re thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 600
more dull, dry,
boring pages.

33

xxx   intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner-party

companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this, but I can’t

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be

boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you care about. You remember when you feel something.

No, we’re not talking heart‑wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the…?” , and the feeling of “I rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that “I’m more technical than

thou” Bob from Engineering doesn’t.

you are here 4   xxxi

the intro

Metacognition: thinking about thinking
I wonder how

I can trick my brain
into remembering
this stuff…

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to program in C. And you probably don’t want to spend a lot of time. If you
want to use what you read in this book, you need to remember what you read.
And for that, you’ve got to understand it. To get the most from this book, or any
book or learning experience, take responsibility for your brain. Your brain on
this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well‑being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat
programming like it was a hungry tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

xxxii   intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing it refers to, as opposed to in a caption or buried in the body
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-doable, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And your
brain pays more attention to people than it does to things.

you are here 4   xxxiii

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

6 Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

9 Write a lot of code!

There’s only one way to learn to program in C:
write a lot of code. And that’s what you’re going
to do throughout this book. Coding is a skill, and
the only way to get good at it is to practice. We’re
going to give you a lot of practice: every chapter has
exercises that pose a problem for you to solve. Don’t
just skip over them—a lot of the learning happens
when you solve the exercises. We included a solution
to each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged
on something small.) But try to solve the problem
before you look at the solution. And definitely get it
working before you move on to the next part of the
book.

8 Feel something.

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

7 Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

5 Talk about it. Out loud.

Speaking activates a different part of the brain. If
you’re trying to understand something, or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

4 Make this the last thing you read before bed.
Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

3 Read “There Are No Dumb Questions.”

That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity while learning can increase the learning.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The
more deeply you force your brain to think, the better
chance you have of learning and remembering.

Slow down. The more you understand, the
less you have to memorize.

1

xxxiv   intro

how to use this book

Read me

This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We assume you’re new to C, but not to programming.

We assume that you’ve already done some programming. Not a lot, but we’ll assume you’ve
already seen things like loops and variables in some other language, like JavaScript. C is
actually a pretty advanced language, so if you’ve never done any programming at all, then
you might want to read some other book before you start on this one. We’d suggest starting
with Head First Programming.

You need to install a C compiler on your computer.

Throughout the book, we’ll be using the Gnu Compiler Collection (gcc) because it’s free
and, well, we think it’s just a pretty darned good compiler. You’ll need to make sure you
have gcc installed on your machine. The good news is, if you have a Linux computer,
then you should already have gcc. If you’re using a Mac, you’ll need to install the
Xcode/Developer tools. You can either download these from the Apple App Store or by
downloading them from Apple. If you’re on a Windows machine, you have a couple
options. Cygwin (http://www.cygwin.com) gives you a complete simulation of a UNIX
environment, including gcc. But if you want to create programs that will work on
Windows plain-and-simple, then you might want to install the Minimalist GNU for Windows
(MingW) from http://www.mingw.org.

All the code in this book is intended to run across all these operating systems, and we’ve
tried hard not to write anything that will only work on one type of computer. Occasionally,
there will be some differences, but we’ll make sure to point those out to you.

We begin by teaching some basic C concepts, and then we start
putting C to work for you right away.

We cover the fundamentals of C in Chapter 1. That way, by the time you make it all
the way to Chapter 2, you are creating programs that actually do something real, useful,
and—gulp!—fun. The rest of the book then builds on your C skills, turning you from C
newbie to coding ninja master in no time.

you are here 4   xxxv

the intro

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see some
of the same concepts come up more than once.

The examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of an example looking
for the two lines they need to understand. Most examples in this book are shown within
the smallest possible context, so that the part you’re trying to learn is clear and simple.
Don’t expect all of the examples to be robust, or even complete—they are written
specifically for learning, and aren’t always fully functional.

The Brain Power exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises, you will find hints to point you in the
right direction.

xxxvi   intro

the review teamthe review team

Dave Kitabjian has two degrees in electrical and computer engineering and about 20 years of experience consulting,
integrating, architecting, and building information system solutions for clients from Fortune 500 firms to high-tech startups.
Outside of work, Dave likes to play guitar and piano and spend time with his wife and three kids.

Vince Milner has been developing in C (and many other languages) on a wide variety of platforms for over 20 years.
When not studying for his master’s degree in mathematics, he can be found being beaten at board games by six-year-olds
and failing to move house.

Technical reviewers:

Vince Milner

Dave Kitabjian

The technical review team

you are here 4   xxxvii

the intro

Our editor:

Many thanks to Brian Sawyer for asking us to write this book
in the first place. Brian believed in us every step of the way, gave
us the freedom to try out new ideas, and didn’t panic too much
when deadlines loomed.

The O’Reilly team:

Acknowledgments

Brian Sawyer

A big thank you goes to the following people who helped us out along the way:
Karen Shaner for her expert image-hunting skills and for generally keeping the
wheels oiled; Laurie Petrycki for keeping us well fed and well motivated while in
Boston; Brian Jepson for introducing us to the wonderful world of the Arduino;
and the early release team for making early versions of the book available for
download. Finally, thanks go to Rachel Monaghan and the production team for
expertly steering the book through the production process and for working so hard
behind the scenes. You guys are awesome.

Family, friends, and colleagues:

We’ve made a lot of friends on our Head First journey. A special thanks goes to Lou
Barr, Brett McLaughlin, and Sanders Kleinfeld for teaching us so much.

David: My thanks to Andy Parker, Joe Broughton, Carl Jacques, and Simon
Jones and the many other friends who have heard so little from me whilst I was busy
scribbling away.

Dawn: Work on this book would have been a lot harder without my amazing
support network of family and friends. Special thanks go to Mum and Dad, Carl,
Steve, Gill, Jacqui, Joyce, and Paul. I’ve truly appreciated all your support and
encouragement.

The without-whom list:

Our technical review team did a truly excellent job of keeping us straight and
making sure what we covered was spot on. We’re also incredibly grateful to all the
people who gave us feedback on early releases of the book. We think the book’s
much, much better as a result.

Finally, our thanks to Kathy Sierra and Bert Bates for creating this extraordinary
series of books.

xxxviii   intro

safari books online

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in

technology and business. Technology professionals, software developers, web
designers, and business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organizations, government agencies, and individuals. Subscribers have access
to thousands of books, training videos, and prepublication manuscripts in one
fully searchable database from publishers like O’Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
information about Safari Books Online, please visit us online.

this is a new chapter   1

Don’t you just love the
deep blue C? Come on
in—the water’s lovely!

getting started with c1

Diving in

Want to get inside the computer’s head? �
Need to write high-performance code for a new game? Program an Arduino? Or use

that advanced third-party library in your iPhone app? If so, then C’s here to help. C

works at a much lower level than most other languages, so understanding C gives you a

much better idea of what’s really going on. C can even help you better understand other

languages as well. So dive in and grab your compiler, and you’ll soon get started in no time.

2   Chapter 1

how c works

C is a language for small, fast programs
The C language is designed to create small, fast programs. It’s
lower-level than most other languages; that means it creates code
that’s a lot closer to what machines really understand.

Source

You start off by
creating a source
file. The source file
contains human-
readable C code.

1

#include <stdio.h>

int main()

{

 puts("C Rocks!");

 return 0;

}

Compile

You run your source
code through a compiler.
The compiler checks
for errors, and once it’s
happy, it compiles the
source code.

2

> gcc rocks.c -o rocks
>

File Edit Window Help Compile

Output

The compiler creates a new
file called an executable. This
file contains machine code,
a stream of 1s and 0s that
the computer understands.
And that’s the program you
can run.

3

The way C works
Computers really only understand one language: machine code, a
binary stream of 1s and 0s. You convert your C code into machine
code with the aid of a compiler.

C is used where speed, space, and
portability are important. Most
operating systems are written in C.
Most other computer languages are
also written in C. And most game
software is written in C.

rocks.c rocks

In Windows, this will
be called rocks.exe
instead of rocks.

There are three C standards that you may
stumble across. ANSI C is from the late 1980s
and is used for the oldest code. A lot of things
were fixed up in the C99 standard from 1999. And
some cool new language features were added in
the current standard, C11, released in 2011. The
differences between the different versions aren’t
huge, and we’ll point them out along the way.

you are here 4   3

getting started with c

Try to guess what each of these code fragments does.

Describe what you think the code does.
int card_count = 11;

if (card_count > 10)

 puts("The deck is hot. Increase bet.");

int c = 10;

while (c > 0) {

 puts("I must not write code in class");

 c = c - 1;

}

/* Assume name shorter than 20 chars. */

char ex[20];

puts("Enter boyfriend's name: ");

scanf("%19s", ex);

printf("Dear %s.\n\n\tYou're history.\n", ex);

char suit = 'H';

switch(suit) {

case 'C':

 puts("Clubs");

 break;

case 'D':

 puts("Diamonds");

 break;

case 'H':

 puts("Hearts");

 break;

default:

 puts("Spades");

}

4   Chapter 1

fragments demystified

Don’t worry if you don’t understand all of this yet. Everything is
explained in greater detail later in the book.

int card_count = 11;

if (card_count > 10)

 puts("The deck is hot. Increase bet.");

int c = 10;

while (c > 0) {

 puts("I must not write code in class");

 c = c - 1;

}

/* Assume name shorter than 20 chars. */

char ex[20];

puts("Enter boyfriend's name: ");

scanf("%19s", ex);

printf("Dear %s.\n\n\tYou're history.\n", ex);

char suit = 'H';

switch(suit) {

case 'C':

 puts("Clubs");

 break;

case 'D':

 puts("Diamonds");

 break;

case 'H':

 puts("Hearts");

 break;

default:

 puts("Spades");

}

Create an integer variable and set it to 11.
Is the count more than 10?
If so, display a message on the command prompt.

An integer is a whole number.

This displays a string on the command prompt or terminal.

Create an integer variable and set it to 10.
As long as the value is positive…
…display a message…
…and decrease the count.
This is the end of the code that should be repeated.

The braces define a block statement.

This is a comment.
Create an array of 20 characters.
Display a message on the screen.
Store what the user enters into the array.
Display a message including the text entered.

This will insert this string of characters here in place of the %s.

This means “store everything the
user types into the ex array.”

Create a character variable; store the letter H.
Look at the value of the variable.
Is it ‘C’?
If so, display the word “Clubs.”
Then skip past the other checks.
Is it ‘D’?
If so, display the word “Diamonds.”
Then skip past the other checks.
Is it ‘H’?
If so, display the word “Hearts.”
Then skip past the other checks.
Otherwise…
Display the word “Spades.”
This is the end of the tests.

A switch statement checks a single variable for different values.

you are here 4   5

getting started with c

But what does a complete C program look like?
To create a full program, you need to enter your code into a
C source file. C source files can be created by any text editor,
and their filenames usually end with .c.

Let’s have a look at a typical C source file.

This is just a convention, but you should follow it.

/*

 * Program to calculate the number of cards in the shoe.

 * This code is released under the Vegas Public License.

 * (c)2014, The College Blackjack Team.

 */

#include <stdio.h>

int main()

{

 int decks;

 puts("Enter a number of decks");

 scanf("%i", &decks);

 if (decks < 1) {

 puts("That is not a valid number of decks");

 return 1;

 }

 printf("There are %i cards\n", (decks * 52));

 return 0;

}

So let’s look at the main() function in a little more detail.

C programs normally begin with a comment.
The comment describes the purpose of the code in the file, and might
include some license or copyright information. There’s no absolute need
to include a comment here—or anywhere else in the file—but it’s good
practice and what most C programmers will expect to find.

1

Next comes the
include section.
C is a very, very small
language and it can do
almost nothing without
the use of external
libraries. You will need
to tell the compiler what
external code to use by
including header files
for the relevant libraries.
The header you will see
more than any other
is stdio.h. The stdio
library contains code
that allows you to read
and write data from and
to the terminal.

2

The last thing you find in a source file are the functions.
All C code runs inside functions. The most important function you will
find in any C program is called the main() function. The main()
function is the starting point for all of the code in your program.

3

The comment starts with /*.

The comment ends with */.

These *s are optional. They’re
only there to make it look pretty.

6   Chapter 1

main() function

The main() Function Up Close
The computer will start running your program from the main()

function. The name is important: if you don’t have a function called main(),
your program won’t be able to start.

The main() function has a return type of int. So what does this mean?
Well, when the computer runs your program, it will need to have some way of
deciding if the program ran successfully or not. It does this by checking the return
value of the main() function. If you tell your main() function to return 0, this
means that the program was successful. If you tell it to return any other value,
this means that there was a problem.

int main()

{

 int decks;

 puts("Enter a number of decks");

 scanf("%i", &decks);

 if (decks < 1) {

 puts("That is not a valid number of decks");

 return 1;

 }

 printf("There are %i cards\n", (decks * 52));

 return 0;

}

The function name comes after the return type. That’s followed by the function
parameters if there are any. Finally, we have the function body. The function body
must be surrounded by braces.

Geek Bits
The printf() function is used to display formatted output. It
replaces format characters with the values of variables, like this:

printf("%s says the count is %i", "Ben", 21);

You can include as many parameters as you like when you call the printf()
function, but make sure you have a matching % format character for each one.

If you want to check t
he

exit status of
 a program,

type:
echo %E

rrorLev
el%

in Windows, or:
echo $?

in Linux or on the
 Mac.

First parameterThe first parameter will be inserted here as a string.

Second parameterThe second parameter will be inserted here as an integer.

This is the return type. It
should always be int for the
main() function.

Because the function is called “main,” the program will start here.

If we had any parameters, they’d be mentioned here.

The body of the
function is always
surrounded by braces.

you are here 4   7

getting started with c

/*

 * Program to evaluate face values.

 * Released under the Vegas Public License.

 * (c)2014 The College Blackjack Team.

 */

 main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 } else if (card_name[0] ==) {

 val = 10;

 } (card_name[0] ==) {

 } else {

 val = atoi(card_name);

 }

 printf("The card value is: %i\n", val);

 0;

}

Code Magnets
The College Blackjack Team was working on some code on the dorm fridge, but
someone mixed up the magnets! Can you reassemble the code from the magnets?

else

'J'
ifint

val = 11

#include 'A' <stdio.h>

return

val = 10

#include

<stdlib.h> ;

; This converts the
text into a number.

Enter two characters
for the card name.

8   Chapter 1

magnets unmixed

/*

 * Program to evaluate face values.

 * Released under the Vegas Public License.

 * (c)2014 The College Blackjack Team.

 */

 main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 } else if (card_name[0] ==) {

 val = 10;

 } (card_name[0] ==) {

 } else {

 val = atoi(card_name);

 }

 printf("The card value is: %i\n", val);

 0;

}

Code Magnets Solution
The College Blackjack Team was working on some code on the dorm fridge, but someone
mixed up the magnets! You were to reassemble the code from the magnets.

else

'J'

if

int

val = 11

#include

'A'

<stdio.h>

return

val = 10

#include <stdlib.h>

;

;

Q: What does
card_name[0] mean?

A: It’s the first character that
the user typed. So if he types 10,
card_name[0] would be 1.

Q: Do you always write
comments using /* and */?

A: If your compiler supports the
C99 standard, then you can begin
a comment with //. The compiler
treats the rest of that line as a
comment.

Q: How do I know which
standard my compiler supports?

A: Check the documentation for
your compiler. gcc supports all three
standards: ANSI C, C99, and C11.

you are here 4   9

getting started with c

But how do you run the program?
C is a compiled language. That means the computer will not interpret the code
directly. Instead, you will need to convert—or compile—the human-readable
source code into machine-readable machine code.

To compile the code, you need a program called a compiler. One of the
most popular C compilers is the GNU Compiler Collection or gcc. gcc is
available on a lot of operating systems, and it can compile lots of languages
other than C. Best of all, it’s completely free.

Here’s how you can compile and run the program using gcc.

Save the code from the Code Magnets exercise on the
opposite page in a file called cards.c.

1

Compile with gcc cards.c -o cards at a command
prompt or terminal.

2

Run by typing cards on Windows, or ./cards on Mac and
Linux machines.

3

Compile cards.c
to a file called cards.

Geek Bits

You can compile and run your code on most machines using this trick:

gcc zork.c -o zork && ./zork

You should put “zork”
instead of “./zork”
on a Windows machine.

This command will run the new program only if it compiles
successfully. If there’s a problem with the compile, it will skip running
the program and simply display the errors on the screen.

Do this!

You should create the
cards.c file and compile
it now. We’ll be working
on it more and more as
the chapter progresses.

cards.c

> gcc cards.c -o cards
>

File Edit Window Help Compile

> ./cards
Enter the card_name:

File Edit Window Help Compile

C source files usually end .c.

cards.c cards

&& here means “and then if it’s successful, do this…”

This will be cards.exe
if you’re on Windows.

10   Chapter 1

test drive

Test Drive
Let’s see if the program compiles and runs. Open up a command prompt
or terminal on your machine and try it out.

> gcc cards.c -o cards
> ./cards
Enter the card_name:
Q
The card value is: 10
> ./cards
Enter the card_name:
A
The card value is: 11
> ./cards
Enter the card_name:
7
The card value is: 7

File Edit Window Help 21

The program works!
Congratulations! You have compiled and run a C program. The gcc
compiler took the human-readable source code from cards.c and converted
it into computer-readable machine code in the cards program. If you are
using a Mac or Linux machine, the compiler will have created the machine
code in a file called cards. But on Windows, all programs need to have a
.exe extension, so the file will be called cards.exe.

Q: Why do I have to prefix the program with ./ when I run it on Linux and the Mac?

A: On Unix-style operating systems, programs are run only if you specify the directory where
they live or if their directory is listed in the PATH environment variable.

This line compiles the code and creates the cards program.
This line runs the program.
If you’re on Windows, don’t
type the ./

Remember: you can combine
the compile and run steps
together (turn back a page
to see how).

Running the program again

The user enters the name from a card…

…and the program displays
the corresponding value.

you are here 4   11

getting started with c

Wait, I don’t get it. When
we ask the user what the name

of the card is, we’re using an
array of characters. An array of
characters???? Why? Can’t we use
a string or something???

The C language doesn’t support strings out
of the box.

C is more low-level than most other languages, so instead
of strings, it normally uses something similar: an array of
single characters. If you’ve programmed in other languages,
you’ve probably met an array before. An array is just a list of
things given a single name. So card_name is just a variable
name you use to refer to the list of characters entered at
the command prompt. You defined card_name to be a
two-character array, so you can refer to the first and second
character as char_name[0] and char_name[1]. To see
how this works, let’s take a deeper dive into the computer’s
memory and see how C handles text…

But there are
a number of
C extension
libraries that
do give you
strings.

12   Chapter 1

string theory

Strings Way Up Close
Strings are just character arrays. When C sees a string like this:

s = "Shatner"

it reads it like it was just an array of separate characters:

s = {'S', 'h', 'a', 't', 'n', 'e', 'r'}

This is how you define an array in C.

Each of the characters in the string is just an element in an array, which is
why you can refer to the individual characters in the string by using an index,
like s[0] and s[1].

Don’t fall off the end of the string
But what happens when C wants to read the contents of the string? Say
it wants to print it out. Now, in a lot of languages, the computer keeps
pretty close track of the size of an array, but C is more low-level than most
languages and can’t always work out exactly how long an array is. If C is going
to display a string on the screen, it needs to know when it gets to the end of
the character array. And it does this by adding a sentinel character.

The sentinel character is an additional character at the end of the string that
has the value \0. Whenever the computer needs to read the contents of the
string, it goes through the elements of the character array one at a time, until
it reaches \0. That means that when the computer sees this:

\0 is the ASCII character
with value 0.

s = "Shatner"

it actually stores it in memory like this:

That’s why in our code we had to define the card_name variable like this:

The card_name string is only ever going to record one or two characters, but because
strings end in a sentinel character we have to allow for an extra character in the array.

char card_name[3];

'\0' C knows
to stop
when it
sees \0.

S h a ...
s[0

]
s[2

]
s[1

]

S h a t
s[0

]
s[3

]
s[2

]
s[1

]

n e r \0
s[4

]
s[7

]
s[6

]
s[5

]
C coders ofter call this
the NULL character.

you are here 4   13

getting started with c

Q: Why are the characters numbered
from 0? Why not 1?

A: The index is an offset: it’s a measure
of how far the character is from the first
character.

Q: Why?

A: The computer will store the
characters in consecutive bytes of memory.
It can use the index to calculate the
location of the character. If it knows that
c[0] is at memory location 1,000,000,
then it can quickly calculate that c[96]
is at 1,000,000 + 96.

Q: Why does it need a sentinel
character? Doesn’t it know how long the
string is?

A: Usually, it doesn’t. C is not very good
at keeping track of how long arrays are,
and a string is just an array.

Q: It doesn’t know how long arrays
are???

A: No. Sometimes the compiler
can work out the length of an array by
analyzing the code, but usually C relies on
you to keep track of your arrays.

Q: Does it matter if I use single
quotes or double quotes?

A: Yes. Single quotes are used for
individual characters, but double quotes
are always used for strings.

Q: So should I define my strings
using quotes (") or as explicit arrays of
characters?

A: Usually you will define strings using
quotes. They are called string literals, and
they are easier to type.

Q: Are there any differences between
string literals and character arrays?

A: Only one: string literals are constant.

Q: What does that mean?

A: It means that you can’t change the
individual characters once they are created.

Q: What will happen if I try?

A: It depends on the compiler, but gcc
will usually display a bus error.

Q: A bus error? What the heck’s a
bus error?

A: C will store string literals in memory
in a different way. A bus error just means
that your program can’t update that piece
of memory.

In C, the equals sign (=) is
used for assignment. But a
double equals sign (==) is
used for testing equality.

teeth = 4;

teeth == 4;

If you want to increase
or decrease a variable,
then you can save space
with the += and -=
assignments.

teeth += 2;

teeth -= 2;

Finally, if you want to
increase or decrease a
variable by 1, use ++
and --.

teeth++;

teeth--;

Not all equals signs are equal.

Set
teeth to
the value
4.

Test if teeth has
the value 4.

Adds 2 to teeth.

Takes away 2 teeth.

Increase by 1.

Decrease by 1.

Painless Operations

14   Chapter 1

do something

Two types of command
So far, every command you’ve seen has fallen into one of the following two
categories.

Do something
Most of the commands in C are statements. Simple statements are actions;
they do things and they tell us things. You’ve met statements that define
variables, read input from the keyboard, or display data to the screen.

split_hand(); This is a simple statement.

These commands form
a block statement
because they are
surrounded by braces.

Do something only if something is true
Control statements such as if check a condition before running the code:

if (value_of_hand <= 16)

 hit();

else

 stand();

This is the condition.

if statements typically need to do more than one thing when a
condition is true, so they are often used with block statements:

if (dealer_card == 6) {

 double_down();

 hit();

}

{

 deal_first_card();

 deal_second_card();

 cards_in_hand = 2;

}

Sometimes you group statements together to create block statements. Block
statements are groups of commands surrounded by braces.

Run this statement if the condition is false.

Run this statement if the condition is true.

BOTH of these commands will run if the condition is true. The commands are grouped inside a single block statement.

if (x == 2) {

 call_whitehouse();

 sell_oil();

 x = 0;

}

most C programmers write:

if (x == 2)

 puts("Do something");

Do you need braces?
Block statements allow you to
treat a whole set of statements as if
they were a single statement. In C,
the if condition works like this:

if (countdown == 0)

 do_this_thing();

The if condition runs a single
statement. So what if you
want to run several statements
in an if? If you wrap a list of
statements in braces, C will treat
them as though they were just
one statement:

C coders like to keep their code
short and snappy, so most will
omit braces on if conditions
and while loops. So instead of
writing:

if (x == 2) {

 puts("Do something");

}

you are here 4   15

getting started with c

/*

 * Program to evaluate face values.

 * Released under the Vegas Public License.

 * (c)2014 The College Blackjack Team.

 */

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 val = 10;

 } else if (card_name[0] == 'J') {

 val = 10;

 } else if (card_name[0] == 'A') {

 val = 11;

 } else {

 val = atoi(card_name);

 }

 printf("The card value is: %i\n", val);

 return 0;

}

I’ve had a thought.
Could this check if
a card value is in a
particular range? That
might be handy…

Here’s the code so far

16   Chapter 1

page goal header

Hey, how’s it going? You look

to me like a smart guy. And I

know, ’cause I’m a smart guy

too! Listen, I’m onto a sure

thing here, and I’m a nice

guy, so I’m going to let you

in on it. See, I’m an expert

in card counting. The Capo

di tutti capi. What’s card

counting, you say? Well, to

me, it’s a career!

Seriously, card counting is

a way of improving the odds

when you play blackjack. In

blackjack, if there are plenty

of high-value cards left in

the shoe, then the odds are

slanted in favor of the player.

That’s you!

Card counting helps you

keep track of the number of

high-value cards left. Say

you start with a count of 0.

Then the dealer leads with

a Queen—that’s a high card.

That’s one less available in

the deck, so you reduce the

count by one:

It’s a queen  count – 1

But if it’s a low card, like a 4,

the count goes up by one:

It’s a four  count + 1

High cards are 10s and the

face cards (Jack, Queen,

King). Low cards are 3s, 4s,

5s, and 6s.

You keep doing this for every

low card and every high

card until the count gets real

high, then you lay on cash

in your next bet and ba-da-

bing! Soon you’ll have more

money than my third wife!

If you’d like to learn more,

then enroll today in my

Blackjack Correspondence

School. Learn more about

card counting as well as:

* How to use the Kelly

Criterion to maximize the

value of your bet

* How to avoid getting

whacked by a pit boss

* How to get cannoli stains

off a silk suit

* Things to wear with plaid

For more information,

contact Cousin Vinny c/o the

Blackjack Correspondence

School.

you are here 4   17

getting started with c

Card counting? In C?
Card counting is a way to increase your chances of winning at blackjack.
By keeping a running count as the cards are dealt, a player can work out
the best time to place large bets and the best time to place small bets. Even
though it’s a powerful technique, it’s really quite simple.

Evaluate the card.
Is it between 3 and 6 (inclusive)? Increase count by 1.Otherwise…

 Is it a 10, J, Q, or K? Decrease the count by 1.

We’ve already got
code that does this.

How difficult would this be to write in C? You’ve looked at
how to make a single test, but the card-counting algorithm
needs to check multiple conditions: you need to check that
a number is >= 3 as well as checking that it’s <= 6.

You need a set of operations that will allow
you to combine conditions together.

We can just use a
variable for this.

We’ve got to check for a few values here…or do we?

How do we check that
it is >= 3 and <= 6?
Is that two checks?

18   Chapter 1

what condition the condition is in

There’s more to booleans than equals…
So far, you’ve looked at if statements that check if a single condition is true, but
what if you want to check several conditions? Or check if a single condition is
not true?

&& checks if two conditions are true
The and operator (&&) evaluates to true, only if both conditions given to it are
true.

if ((dealer_up_card == 6) && (hand == 11))

 double_down();

Both of these conditions need to be
true for this piece of code to run.

The and operator is efficient: if the first condition is false, then the computer
won’t bother evaluating the second condition. It knows that if the first condition
is false, then the whole condition must be false.

II checks if one of two conditions is true
The or operator (||) evaluates to true, if either condition given to
it is true.

if (cupcakes_in_fridge || chips_on_table)

 eat_food();

If the first condition is true, the computer won’t bother evaluating
the second condition. It knows that if the first condition is true, the
whole condition must be true.

Either can be true.

! flips the value of a condition
! is the not operator. It reverses the value of a condition.

if (!brad_on_phone)

 answer_phone();

Geek Bits
In C, boolean values
are represented by

numbers. To C, the number 0 is
the value for false. But what’s the
value for true? Anything that is
not equal to 0 is treated as true.
So there is nothing wrong in
writing C code like this:

In fact, C programs often use this
as a shorthand way of checking if
something is not 0.

int people_moshing = 34;

if (people_moshing)

 take_off_glasses();

! means “not”

you are here 4   19

getting started with c

You are going to modify the program so that it can be used for card counting. It will need to
display one message if the value of the card is from 3 to 6. It will need to display a different
message if the card is a 10, Jack, Queen, or King.

int main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 val = 10;

 } else if (card_name[0] == 'J') {

 val = 10;

 } else if (card_name[0] == 'A') {

 val = 11;

 } else {

 val = atoi(card_name);

 }

 /* Check if the value is 3 to 6 */

 if

 puts("Count has gone up");

 /* Otherwise check if the card was 10, J, Q, or K */

 else if

 puts("Count has gone down");

 return 0;

}

The ANSI C standard has no value for true
and false. C programs treat the value 0 as
false, and any other value as true. The C99
standard does allow you to use the words true
and false in your programs—but the compiler
treats them as the values 1 and 0 anyway.

The Polite Guide to Standards

20   Chapter 1

cards counted

Q: Why not just |and &?

A: You can use & and | if you want.
The & and | operators will always
evaluate both conditions, but && and ||
can often skip the second condition.

Q: So why do the & and | operators
exist?

A: Because they do more than simply
evaluate logical conditions. They perform
bitwise operations on the individual bits of
a number.

Q: Huh? What do you mean?

A: Well, 6 & 4 is equal to 4, because
if you checked which binary digits are
common to 6 (110 in binary) and 4 (100 in
binary, you get 4 (100).

You were to modify the program so that it can be used for card counting. It needed to display
one message if the value of the card is from 3 to 6. It needed to display a different message if
the card is a 10, Jack, Queen, or King.

int main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 val = 10;

 } else if (card_name[0] == 'J') {

 val = 10;

 } else if (card_name[0] == 'A') {

 val = 11;

 } else {

 val = atoi(card_name);

 }

 /* Check if the value is 3 to 6 */

 if

 puts("Count has gone up");

 /* Otherwise check if the card was 10, J, Q, or K */

 else if

 puts("Count has gone down");

 return 0;

}

((val > 2) && (val < 7))

(val == 10)

There are a few
ways of writing
this condition.

Did you spot that you
just needed a single
condition for this?

getting started with c

Test Drive
Let’s see what happens when you compile and run the program now:

> gcc cards.c -o cards && ./cards
Enter the card_name:
Q
Count has gone down

> ./cards
Enter the card_name:
8

> ./cards
Enter the card_name:
3
Count has gone up

>

File Edit Window Help FiveOfSpades
This line compiles and runs the code.

The code works. By combining multiple conditions with a boolean
operator, you check for a range of values rather than a single value.
You now have the basic structure in place for a card counter.

Stealthy communication device

We run it a
few times to
check that the
different value
ranges work.

The computer says the
card was low. The count
went up! Raise the bet!
Raise the bet!

you are here 4   21

22   Chapter 1

interview with gcc

Head First: May I begin by thanking you, gcc, for
finding time in your very busy schedule to speak to
us.

gcc: That’s not a problem, my friend. A pleasure to
help.

Head First: gcc, you can speak many languages, is
that true?

gcc: I am fluent in over six million forms of
communication…

Head First: Really?

gcc: Just teasing. But I do speak many languages. C,
obviously, but also C++ and Objective-C. I can get
by in Pascal, Fortran, PL/I, and so forth. Oh, and I
have a smattering of Go…

Head First: And on the hardware side, you can
produce machine code for many, many platforms?

gcc: Virtually any processor. Generally, when a
hardware engineer creates a new type of processor,
one of the first things she wants to do is get some
form of me running on it.

Head First: How have you achieved such incredible
flexibility?

gcc: My secret, I suppose, is that there are two sides
to my personality. I have a frontend, a part of me
that understands some type of source code.

Head First: Written in a language such as C?

gcc: Exactly. My frontend can convert that language
into an intermediate code. All of my language
frontends produce the same sort of code.

Head First: You say there are two sides to your
personality?

gcc: I also have a backend: a system for converting
that intermediate code into machine code that is
understandable on many platforms. Add to that my
knowledge of the particular executable file formats
for just about every operating system you’ve ever
heard of…

Head First: And yet, you are often described as a
mere translator. Do you think that’s fair? Surely that’s
not all you are.

gcc: Well, of course I do a little more than simple
translation. For example, I can often spot errors in
code.

Head First: Such as?

gcc: Well, I can check obvious things such as
misspelled variable names. But I also look for subtler
things, such as the redefinition of variables. Or I
can warn the programmer if he chooses to name
variables after existing functions and so on.

Head First: So you check code quality as well,
then?

gcc: Oh, yes. And not just quality, but also
performance. If I discover a section of code inside
a loop that could work equally well outside a loop, I
can very quietly move it.

Head First: You do rather a lot!

gcc: I like to think I do. But in a quiet way.

Head First: gcc, thank you.

The Compiler Exposed
This week’s interview:
What Has gcc Ever Done for Us?

you are here 4   23

getting started with c

BE the Compiler
Each of the C files on this page
represents a complete source file. Your
job is to play compiler and determine

whether each of these files
will compile, and if not,
why not. For extra bonus
points, say what you think
the output of each compiled

file will be when run, and whether you
think the code is working as intended.

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

A

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}

B

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 } else
 puts("Ace!");

 return 0;
}

C

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");

 return 0;
}

D

24   Chapter 1

code compiled

BE the Compiler Solution
Each of the C files on this page
represents a complete source file. Your
job is to play compiler and determine

whether each of these files
will compile, and if not,
why not. For extra bonus
points, say what you think
the output of each compiled

file will be when run, and whether you
think the code is working as intended.

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

A

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}

B

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 } else
 puts("Ace!");

 return 0;
}

C

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");

 return 0;
}

D

The code compiles. The
program displays “Small
card.” But it doesn’t work
properly because the else is
attached to the wrong if.

The code compiles. The
program displays nothing
and is not really working
properly because the else is
matched to the wrong if.

The code compiles. The
program displays “Ace!”
and is properly written.

The code won’t compile
because the braces are
not matched.

you are here 4   25

getting started with c

What’s the code like now?

int main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 val = 10;

 } else if (card_name[0] == 'J') {

 val = 10;

 } else if (card_name[0] == 'A') {

 val = 11;

 } else {

 val = atoi(card_name);

 }

 /* Check if the value is 3 to 6 */

 if ((val > 2) && (val < 7))

 puts("Count has gone up");

 /* Otherwise check if the card was 10, J, Q, or K */

 else if (val == 10)

 puts("Count has gone down");

 return 0;

}

C programs often need to check the same value several
times and then perform very similar pieces of code for
each case.

Now, you can just use a sequence of if statements, and that will probably be
just fine. But C gives you an alternative way of writing this kind of logic.

C can perform logical tests with the switch statement.

Hmmm…is there something we can do with
that sequence of if statements? They’re all
checking the same value, card_name[0], and most
of them are setting the val variable to 10. I wonder
if there’s a more efficient way of saying that in C.

26   Chapter 1

switch statement

Pulling the ol’ switcheroo
Sometimes when you’re writing conditional logic, you need to
check the value of the same variable over and over again. To
prevent you from having to write lots and lots of if statements,
the C language gives you another option: the switch statement.

The switch statement is kind of like an if statement, except it
can test for multiple values of a single variable:

switch(train) {

case 37:

 winnings = winnings + 50;

 break;

case 65:

 puts("Jackpot!");

 winnings = winnings + 80;

case 12:

 winnings = winnings + 20;

 break;

default:

 winnings = 0;

}

If the train == 37, add 50 to the
winnings and then skip to the end.

When the computer hits a switch statement, it checks the value
it was given, and then looks for a matching case. When it finds
one, it runs all of the code that follows it until it reaches a break
statement. The computer keeps going until it is told to
break out of the switch statement.

For any other value of train, set the winnings back to ZERO.

If the train == 12, just
add 20 to the winnings.

If the train == 65, add 80 to the
winnings AND THEN also add 20 to
the winnings; then, skip to the end.

	 Missing breaks can make
your code buggy.

Most C programs have a break
at the end of each case section
to make the code easier to

understand, even at the cost of some efficiency.

you are here 4   27

getting started with c

Let’s look at that section of your cards program again:

int val = 0;

if (card_name[0] == 'K') {

 val = 10;

} else if (card_name[0] == 'Q') {

 val = 10;

} else if (card_name[0] == 'J') {

 val = 10;

} else if (card_name[0] == 'A') {

 val = 11;

} else {

 val = atoi(card_name);

}

Do you think you can rewrite this code using a switch statement? Write your answer below:

28   Chapter 1

code switched

int val = 0;

if (card_name[0] == 'K') {

 val = 10;

} else if (card_name[0] == 'Q') {

 val = 10;

} else if (card_name[0] == 'J') {

 val = 10;

} else if (card_name[0] == 'A') {

 val = 11;

} else {

 val = atoi(card_name);

}

You were to rewrite the code using a switch statement.

int val = 0;
switch(card_name[0]) {
case ‘K’:
case ‘Q’:
case ‘J’:
 val = 10;
 break;
case ‘A’:
 val = 11;
 break;
default:
 val = atoi(card_name);
}

Q: Why would I use a switch
statement instead of an if?

A: If you are performing multiple
checks on the same variable, you might
want to use a switch statement.

Q: What are the advantages of
using a switch statement?

A: There are several. First: clarity. It
is clear that an entire block of code is
processing a single variable. That’s not so
obvious if you just have a sequence of if
statements. Secondly, you can use fall-
through logic to reuse sections of code for
different cases.

Q: Does the switch statement
have to check a variable? Can’t it
check a value?

A: Yes, it can. The switch
statement will simply check that two
values are equal.

Q: Can I check strings in a
switch statement?

A: No, you can’t use a switch
statement to check a string of characters
or any kind of array. The switch
statement will only check a single value.

�� switch statements can
replace a sequence of if
statements.

�� switch statements check a
single value.

�� The computer will start to run
the code at the first matching
case statement.

�� It will continue to run until it
reaches a break or gets
to the end of the switch
statement.

�� Check that you’ve included
breaks in the right places;
otherwise, your switches will
be buggy.

you are here 4   29

getting started with c

Sometimes once is not enough…
You’ve learned a lot about the C language, but there are still some
important things to learn. You’ve seen how to write programs for many
different situations, but there is one fundamental thing that we haven’t
really looked at yet. What if you want your program to do something
again and again and again?

Two cards???
Oh crap…

Using while loops in C
Loops are a special type of control statement. A control statement
decides if a section of code will be run, but a loop statement decides
how many times a piece of code will be run.

The most basic kind of loop in C is the while loop. A while loop
runs code over and over and over as long as some condition remains true.

while (<some condition>) {

 ... /* Do something here */

}

This checks the condition before running the body.

When it gets to the end of the body, the computer checks if the loop condition is still true. If it is, the body code runs again.

If you have only one line in the
body, you don’t need the braces.The body is between

the braces.

while (more_balls)

 keep_juggling();

There’s another form of the while loop that
checks the loop condition after the loop body is
run. That means the loop always executes at
least once. It’s called the do...while loop:

Do you do while?

do {

 /* Buy lottery ticket */

} while(have_not_won);

30   Chapter 1

for loops

Loops often follow the same structure…

int counter = 1;

while (counter < 11) {

 printf("%i green bottles, hanging on a wall\n", counter);

 counter++;

}

…and the for loop makes this easy
Because this pattern is so common, the designers of C created the
for loop to make it a little more concise. Here is that same piece
of code written with a for loop:

int counter;

for (counter = 1; counter < 11; counter++) {

 printf("%i green bottles, hanging on a wall\n", counter);

}

for loops are actually used a lot in C—as much, if not more than,
while loops. Not only do they make the code slightly shorter,
but they’re also easier for other C programmers to read, because
all of the code that controls the loop—the stuff that controls the
value of the counter variable—is now contained in the for
statement and is taken out of the loop body.

Remember: counter++ means “increase the counter variable by one.”

This is the loop startup code.
This is the loop condition. This is the loop

update code that
runs at the end of
the loop body to
update a counter.

This initializes the
loop variable.

This is the text condition checked before the loop runs each time. This is the code that
will run after each loop.

Because there’s only one line in the loop body, you could actually have skipped these braces.

Every for loop needs
to have something in
the body.

For example, this is a while loop that counts from 1 to 10:

�Do something simple before the loop, like set a counter.¥
�Have a simple test condition on the loop.¥
�Do something at the end of a loop, like update a counter.¥

Loops like this have code that prepares variables for the loop,
some sort of condition that is checked each time the loop runs,
and finally some sort of code at the end of the loop that updates
a counter or something similar.

You can use the while loop anytime you need to repeat a piece
of code, but a lot of the time your loops will have the same kind
of structure:

you are here 4   31

getting started with c

You use break to break out…
You can create loops that check a condition at the beginning or end
of the loop body. But what if you want to escape from the loop from
somewhere in the middle? You could always restructure your code,
but sometimes it’s just simpler skip out of the loop immediately using
the break statement:

while(feeling_hungry) {

 eat_cake();

 if (feeling_queasy) {

 /* Break out of the while loop */

 break;

 }

 drink_coffee();

}

A break statement will break you straight out of the current
loop, skipping whatever follows it in the loop body. breaks can
be useful because they’re sometimes the simplest and best way to
end a loop. But you might want to avoid using too many, because
they can also make the code a little harder to read.

	 The break
statement is
used to break
out of loops
and also

switch statements.

Make sure that you know what
you’re breaking out of when
you break.

Tales from
the Crypt

breaks don’t break if
statements.

On January 15, 1990, AT&T’s
long-distance telephone system
crashed, and 60,000 people
lost their phone service. The
cause? A developer working
on the C code used in the
exchanges tried to use a break
to break out of an if statement.
But breaks don’t break out
of ifs. Instead, the program
skipped an entire section of
code and introduced a bug that
interrupted 70 million phone
calls over nine hours.

…and continue to continue
If you want to skip the rest of the loop body and go back to the
start of the loop, then the continue statement is your friend:

while(feeling_hungry) {

 if (not_lunch_yet) {

 /* Go back to the loop condition */

 continue;

 }

 eat_cake();

}

“break” skips out of
the loop immediately.

“continue” takes you back to the start of the loop.

32   Chapter 1

writing functions

Writing Functions Up Close

Before you try out your new loop mojo, let’s go on a detour and
take a quick look at functions.

So far, you’ve had to create one function in every program you’ve
written, the main() function:

int main()

{

 puts("Too young to die; too beautiful to live");

 return 0;

}

Pretty much all functions in C follow the same format. For
example, this is a program with a custom function that gets called
by main():

#include <stdio.h>

int larger(int a, int b)

{

 if (a > b)

 return a;

 return b;

}

int main()

{

 int greatest = larger(100, 1000);

 printf("%i is the greatest!\n", greatest);

 return 0;

}

The larger() function is slightly different from main() because
it takes arguments or parameters. An argument is just a local
variable that gets its value from the code that calls the function. The
larger() function takes two arguments—a and b—and then it
returns the value of whichever one is larger.

This function
returns an
int value.

This is the name of the function.

Nothing between these parentheses.

The body of
the function is
surrounded by
braces.

The body of the function—
the part that does stuff.

When you’re done, you return a value.

Returns an int value

This function takes two arguments:
a and b. Both arguments are ints.

Calling the function here

The main() function
has an int return type,
so you should include a
return statement when
you get to the end. But
if you leave the return
statement out, the code
will still compile—though
you may get a warning
from the compiler. A
C99 compiler will insert
a return statement for
you if you forget. Use
-std=99 to compile to
the C99 standard.

The Polite Guide
to Standards

you are here 4   33

getting started with c

Void Functions Up Close
Most functions in C have a return value, but sometimes you
might want to create a function that has nothing useful to return. It
might just do stuff rather than calculate stuff. Normally, functions always
have to contain a return statement, but not if you give your function
the return type void:

void complain()

{

 puts("I'm really not happy");

}

In C, the keyword void means it doesn’t matter. As soon as you tell
the C compiler that you don’t care about returning a value from the
function, you don’t need to have a return statement in your function.

Almost everything in C has
a return value, and not just
function calls. In fact, even
things like assignments have

return values. For example, if you look at
this statement:

x = 4;

It assigns the number 4 to a variable. The
interesting thing is that the expression

“x = 4” itself has the value that was
assigned: 4. So why does that matter?
Because it means you can do cool tricks,
like chaining assignments together:

y = (x = 4);

That line of code will set both x and y to
the value 4. In fact, you can shorten the
code slightly by removing the parentheses:

y = x = 4;

You’ll often see chained assignments in
code that needs to set several variables to
the same value.

Q: If I create a void function,
does that mean it can’t contain a
return statement?

A: You can still include a return
statement, but the compiler will most
likely generate a warning. Also, there’s
no point to including a return
statement in a void function.

Q: Really? Why not?

A: Because if you try to read the
value of your void function, the
compiler will refuse to compile your
code.

Chaining Assignments

The void return
type means the
function won’t
return anything.

There’s no need for a return
statement because it’s a void function.

The assignment
“x = 4” has
the value 4.

So now y is also set to 4.

34   Chapter 1

messages mixed

Mixed
Messages

A short C program is listed below. One block of the program is missing. Your
challenge is to match the candidate block of code (on the left) with the output
that you’d see if the block were inserted. Not all of the lines of output will be
used, and some of the lines of output might be used more than once. Draw lines
connecting the candidate blocks of code with their matching command-line output.

y = x - y;

y = y + x;

y = y + 2;
if (y > 4)
 y = y - 1;

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3)
 x = x - 1;
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

#include <stdio.h>

int main()

{

 int x = 0;

 int y = 0;

 while (x < 5) {

 printf("%i%i ", x, y);

 x = x + 1;

 }

 return 0;

}

Candidates: Possible output:

Candidate code goes here.

Match each
candidate with
one of the
possible outputs.

you are here 4   35

getting started with c

Now that you know how to create while loops, modify the program to keep a running count
of the card game. Display the count after each card and end the program if the player types X.
Display an error message if the player types a bad card value like 11 or 24.

#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 int count = 0;
 while () {
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 switch(card_name[0]) {
 case 'K':
 case 'Q':
 case 'J':
 val = 10;
 break;
 case 'A':
 val = 11;
 break;
 case 'X':

 default:
 val = atoi(card_name);

 }
 if ((val > 2) && (val < 7)) {
 count++;
 } else if (val == 10) {
 count--;
 }
 printf("Current count: %i\n", count);
 }
 return 0;

}

You need to stop if she enters X.

What will you do here?

You need to display an error if
the val is not in the range 1 to
10. You should also skip the rest
of the loop body and try again.

Add 1 to count.

Subtract 1 from count.

36   Chapter 1

messages unmixed

Mixed
Messages
Solution

A short C program is listed below. One block of the program is missing. Your
challenge was to match the candidate block of code (on the left) with the output
that you’d see if the block were inserted. Not all of the lines of output were used. You
were to draw lines connecting the candidate blocks of code with their matching
command-line output.

y = x - y;

y = y + x;

y = y + 2;
if (y > 4)
 y = y - 1;

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3)
 x = x - 1;
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

#include <stdio.h>

int main()

{

 int x = 0;

 int y = 0;

 while (x < 5) {

 printf("%i%i ", x, y);

 x = x + 1;

 }

 return 0;

}

Candidates: Possible output:

Candidate code goes here.

you are here 4   37

getting started with c

Now that you know how to create while loops, you were to modify the program to keep a
running count of the card game. Display the count after each card and end the program if the
player types X. Display an error message if the player types a bad card value like 11 or 24.

You need another con
tinue here

because you want to keep looping.

#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 int count = 0;
 while () {
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 switch(card_name[0]) {
 case 'K':
 case 'Q':
 case 'J':
 val = 10;
 break;
 case 'A':
 val = 11;
 break;
 case 'X':

 default:
 val = atoi(card_name);

 }
 if ((val > 2) && (val < 7)) {
 count++;
 } else if (val == 10) {
 count--;
 }
 printf("Current count: %i\n", count);
 }
 return 0;

}

card_name[0] != ‘X’

continue;

if ((val < 1) || (val > 10)) {
 puts(“I don't understand that value!");
 continue;
}

You need to check if the first character was an X.

break wouldn’t break us out of the loop, because we’re inside
a switch statement. We need a continue to go back and check
the loop condition again.

This is just one way of
writing this condition.

38   Chapter 1

test drive

Test Drive
Now that the card-counting program is finished, it’s time to take it for
a spin. What do you think? Will it work?

> gcc card_counter.c -o card_counter && ./card_counter
Enter the card_name:
4
Current count: 1
Enter the card_name:
K
Current count: 0
Enter the card_name:
3
Current count: 1
Enter the card_name:
5
Current count: 2
Enter the card_name:
23
I don't understand that value!
Enter the card_name:
6
Current count: 3
Enter the card_name:
5
Current count: 4
Enter the card_name:
3
Current count: 5
Enter the card_name:
X

File Edit Window Help GoneLoopy

Remember: you don’t need “/
if you’re on Windows.

The card counting program works!
You’ve completed your first C program. By using the power of C
statements, loops, and conditions, you’ve created a fully functioning card
counter.

Great job!

By betting big when
the count was high, I
made a fortune!

The count is
increasing!

We now check
if it looks
like a correct
card value.

This will compile
and run the
program.

Disclaimer: Using a computer for card counting is illegal in many states,
and those casino guys can get kinda gnarly. So don’t do it, OK?

you are here 4   39

getting started with c

Q: Why do I need to compile C?
Other languages like JavaScript aren’t
compiled, are they?

A: C is compiled to make the code
fast. Even though there are languages
that aren’t compiled, some of those—like
JavaScript and Python—often use some
sort of hidden compilation to improve their
speed.

Q: Is C++ just another version of C?

A: No. C++ was originally designed as
an extension of C, but now it’s a little more
than that. C++ and Objective-C were both
created to use object orientation with C.

Q: What’s object orientation? Will we
learn it in this book?

A: Object orientation is a technique to
deal with complexity. We won’t specifically
look at it in this book.

Q: C looks a lot like JavaScript, Java,
C#, etc.

A: C has a very compact syntax and it’s
influenced many other languages.

Q: What does gcc stand for?

A: The Gnu Compiler Collection.

Q: Why “collection”? Is there more
than one?

A: The Gnu Compiler Collection can be
used to compile many languages, though
C is probably still the language with which
it’s used most frequently.

Q: Can I create a loop that runs
forever?

A: Yes. If the condition on a loop is the
value 1, then the loop will run forever.

Q: Is it a good idea to create a loop
that runs forever?

A: Sometimes. An infinite loop (a loop
that runs forever) is often used in programs
like network servers that perform one thing
repeatedly until they are stopped. But most
coders design loops so that they will stop
sometime.

�� A while loop runs code as long as its
condition is true.

�� A do-while loop is similar, but runs the
code at least once.

�� The for loop is a more compact way of writing
certain kinds of loops.

�� You can exit a loop at any time with break.

�� You can skip to the loop condition at any time
with continue.

�� The return statement returns a value from
a function.

�� void functions don’t need return
statements.

�� Most expressions in C have values.

�� Assignments have values so you can chain
them together (x = y = 0).

40   Chapter 1

c toolbox

You can use the && operator on the command line to run your program only if it compiles.

Your C Toolbox

You’ve got Chapter 1 under
your belt, and now you’ve

added C basics to your toolbox.
For a complete list of tooltips in the

book, see Appendix ii.

Simple
statements
are
commands. Block

statements
are surrounded
by { and }
(braces).

if statements run code if
something is
true.

switch statements
efficiently check
for multiple values
of a variable.

Every program needs a main() function.

#include includes
external code
for things
like input and
output.

You can use &&
and || to combine
conditions
together.

You need to
compile your C

program before

you run it.

gcc is the
most popular
C compiler.

Your source files should have a name ending in .c.

-o specifies
the output
file.

count++
means add 1
to count.

count--
means
subtract 1
from count.

CH
AP

T
ER

 1

while repeats
code as long
as a condition
is true. do-while

loops run
code at
least once.

for loops are a more compact way of writing loops.

this is a new chapter   41

...and of course, Mommy
never lets me stay out

after 6 p.m.

memory and pointers2

What are you
pointing at?

If you really want to kick butt with C, you need to understand
how C handles memory.�
The C language gives you a lot more control over how your program uses the computer’s

memory. In this chapter, you’ll strip back the covers and see exactly what happens when

you read and write variables. You’ll learn how arrays work, how to avoid some nasty

memory SNAFUs, and most of all, you’ll see how mastering pointers and memory

addressing is key to becoming a kick-ass C programmer.

Thank heavens my
boyfriend variable isn’t
in read-only memory.

42   Chapter 2

introducing pointers

C code includes pointers
Pointers are one of the most fundamental things to understand in
the C programming language. So what’s a pointer? A pointer is
just the address of a piece of data in memory.

Pointers are used in C for a couple of reasons.

Instead of passing around a whole copy of the data, you
can just pass a pointer.

1

You might want two pieces of code to work on the same
piece of data rather than a separate copy.

2

Pointers help you do both these things: avoid copies and share data.
But if pointers are just addresses, why do some people find them
confusing? Because they’re a form of indirection. If you’re not
careful, you can quickly get lost chasing pointers through memory.
The trick to learning how to use C pointers is to go slowly.

		� Don’t try to rush
this chapter.

Pointers are a simple
idea, but you need

to take your time and understand
everything. Take frequent breaks, drink
plenty of water, and if you really get
stuck, take a nice long bath.

To best understand
pointers, go slowly.

I’ve got the
answer you need;
it’s right here in
the Encyclopedia
Britannica.

Or you could
just look at
page 241.

This is a copy of
the information
you need.

This is a pointer:
the location of
the information.

You were supposed to
sign the birthday card we
left in the lunch room.

But I prefer
this one—it’s
got kittens!

memory and pointers

you are here 4   43

Digging into memory
To understand what pointers are, you’ll need to dig into
the memory of the computer.

Every time you declare a variable, the computer creates
space for it somewhere in memory. If you declare a
variable inside a function like main(), the computer
will store it in a section of memory called the stack. If
a variable is declared outside any function, it will be stored
in the globals section of memory.

int y = 1;

int main()

{

 int x = 4;

 return 0;

}

The computer might allocate, say, memory location
4,100,000 in the stack for the x variable. If you assign
the number 4 to the variable, the computer will store 4
at location 4,100,000.

If you want to find out the memory address of the
variable, you can use the & operator:

printf("x is stored at %p\n", &x);

x is stored at 0x3E8FA0

The address of the variable tells you where to find the
variable in memory. That’s why an address is also called
a pointer, because it points to the variable in memory.

A variable declared inside a
function is usually stored in the
stack.
A variable declared outside a
function is stored in globals.

Stack

Heap

Globals

Constants

Code

Variable y will live in the
globals section.
Memory address 1,000,000.
Value 1.

Variable x will live in the stack. Memory address 4,100,000. Value 4.

x lives at location 4,100,000.

&x is the address of x.

%p is used to format addresses. This is what the
code will print.

This is 4,100,000 in
hex (base 16) format.

You’ll probably get a different address on your machine.

1

4

y lives in globals.

x

y

44   Chapter 2

pirates of the bermuda rectangle

Set sail with pointers
Imagine you’re writing a game in which players have to
navigate their way around the…

The game will need to keep control of lots of things, like
scores and lives and the current location of the players. You
won’t want to write the game as one large piece of code;
instead, you’ll create lots of smaller functions that will each
do something useful in the game:

What does any of this have to do with pointers? Let’s begin
coding without worrying about pointers at all. You’ll just
use variables as you always have. A major part of the game
is going to be navigating your ship around the Bermuda
Rectangle, so let’s dive deeper into what the code will need
to do in one of the navigation functions.

go_south_east() go_north_west()

go_south()

die_of_scurvy()eat_rat()

acquire_facial_hair()

speaks_in_present_tense()

make_one_se
quel_too_ma

ny()

memory and pointers

you are here 4   45

Set sail sou’east, Cap’n
The game will track the location of players using latitudes and
longitudes. The latitude is how far north or south the player
is, and the longitude is her position east or west. If a player
wants to travel southeast, that means her latitude will go down,
and her longitude will go up:

So you could write a go_south_east() function that takes
arguments for the latitude and longitude, which it will then
increase and decrease:

The program starts a ship at location [32, –64], so if it
heads southeast, the ship’s new position will be [31, –63].
At least it will be if the code works…

Look at the code carefully. Do you think it will work? Why? Why not?

#include <stdio.h>

void go_south_east(int lat, int lon)

{

 lat = lat - 1;

 lon = lon + 1;

}

int main()

{

 int latitude = 32;

 int longitude = -64;

 go_south_east(latitude, longitude);

 printf("Avast! Now at: [%i, %i]\n", latitude, longitude);

 return 0;

}

Pass in the latitude
and longitude.

Decrease the
latitude.

Increase the longitude.

go_south_east()

The longitude
will increase.

The
latitude
will
decrease.

46   Chapter 2

test drive

Test Drive
The code should move the ship southeast from [32, –64] to
the new location at [31, –63]. But if you compile and run the
program, this happens:

> gcc southeast.c -o southeast
> ./southeast
Avast! Now at: [32, -64]
>

File Edit Window Help Savvy?WTF? The ship
is still in the
same place.

Where’s The
Fightin’?

The ship’s location stays exactly the same as before.

C sends arguments as values
The code broke because of the way that C calls functions.

We be
becalmed,
cap’n!

Arr! We be
writin’ a bad
Amazon review!

32

longitude

But if that’s how C calls functions, how can you ever write a
function that updates a variable?

It’s easy if you use pointers…

�Initially, the main() function has a local variable called longitude
that had value 32.

1

�When the computer calls the go_south_east() function, it
copies the value of the longitude variable to the lon argument.
This is just an assignment from the longitude variable to the lon
variable. When you call a function, you don’t send the variable as an
argument, just its value.

2

�When the go_south_east() function changes the
value of lon, the function is just changing its local copy.
That means when the computer returns to the main()
function, the longitude variable still has its original
value of 32.

3

32

lon

32

longitude

This is a new variable
containing a copy of
the longitude value.

32
lon

31

Only the local copy
gets changed.

The original variable
keeps its original value.

memory and pointers

you are here 4   47

Q: I printed the location of the
variable on my machine and it wasn’t
4,100,000. Did I do something wrong?

A: You did nothing wrong. The memory
location your program uses for the variables
will be different from machine to machine.

Q: Why are local variables stored in
the stack and globals stored somewhere
else?

A: Local and global variables are used
differently. You will only ever get one copy of
a global variable, but if you write a function
that calls itself, you might get very many
instances of the same local variable.

Q: What are the other areas of the
memory used for?

A: You’ll see what the other areas are for
as you go through the rest of the book.

Try passing a pointer to the variable
Instead of passing the value of the latitude and longitude
variables, what happens if you pass their addresses? If the
longitude variable lives in the stack memory at location 4,100,000,
what happens if you pass the location number 4,100,000 as a
parameter to the go_south_east() function?

If the go_south_east() function is told that the latitude
value lives at location 4,100,000, then it will not only be able to find
the current latitude value, but it will also be able to change the
contents of the original latitude variable. All the function needs
to do is read and update the contents of memory location 4,100,000.

Because the go_south_east() function is updating the original
latitude variable, the computer will be able to print out the
updated location when it returns to the main() function.

Pointers make it easier to share memory
This is one of the main reasons for using pointers—to let functions
share memory. The data created by one function can be modified by
another function, so long as it knows where to find it in memory.

Now that you know the theory of using pointers to fix the
go_south_east()function, it’s time to look at the details of
how you do it.

Read contents of

memory 4,100,000

Subtract 1 from

value

Store new value in

memory 4,100,000
31

32
latitude

32

latitude

4,100,000

4,100,000

The latitude
variable is at
memory location
4,100,000.

Please
update locker
4,100,000

Instead of passing
the value of the
variable, pass its
location.

48   Chapter 2

memory pointers

Using memory pointers
There are three things you need to know in order to use
pointers to read and write data.

Get the address of a variable.
You’ve already seen that you can find where a variable is stored in
memory using the & operator:

1

int x = 4;

printf("x lives at %p\n", &x);

But once you’ve got the address of a variable, you may want to store it
somewhere. To do that, you will need a pointer variable. A pointer
variable is just a variable that stores a memory address. When you
declare a pointer variable, you need to say what kind of data is stored
at the address it will point to:

int *address_of_x = &x;

Read the contents of an address.
When you have a memory address, you will want to read the data
that’s stored there. You do that with the * operator:

2

int value_stored = *address_of_x;

The * and & operators are opposites. The & operator takes a piece
of data and tells you where it’s stored. The * operator takes an
address and tells you what’s stored there. Because pointers are
sometimes called references, the * operator is said to dereference
a pointer.

Change the contents of an address.
If you have a pointer variable and you want to change the data
at the address where the variable’s pointing, you can just use the *
operator again. But this time you need to use it on the left side of
an assignment:

3

*address_of_x = 99;

OK, now that you know how to read and write
the contents of a memory location, it’s time
for you to fix the go_south_east() function.

4

x

4,100,000

The %p format will
print out the location in
hex (base 16) format.

& will find the
address of
the variable:
4,100,000.

This is a pointer variable for
an address that stores an int.

This will read the contents at
the memory address given by
address_of_x. This will be set
to 4: the value originally stored
in the x variable.

99

x

4,100,000

4

This will change the contents of
the original x variable to 99.

memory and pointers

you are here 4   49

&latitudeint *

&longitude

Compass Magnets
Now you need to fix the go_south_east() function so that it uses
pointers to update the correct data. Think carefully about what type of
data you want to pass to the function, and what operators you’ll need
to use to update the location of the ship.

int *

*lat
*lat

*lon
*lon

lat lon&lat

&lat &lon

&lon
int

int

*latitude *longitude

#include <stdio.h>

void go_south_east(lat, lon)

{

 = - 1;

 = + 1;

}

int main()

{

 int latitude = 32;

 int longitude = -64;

 go_south_east(,);

 printf("Avast! Now at: [%i, %i]\n", latitude, longitude);

 return 0;

}

What kinds of arguments will store
memory addresses for ints?

Remember: you’re going to pass the addresses of variables.

50   Chapter 2

compass magnets

#include <stdio.h>

void go_south_east(lat, lon)

{

 = - 1;

 = + 1;

}

int main()

{

 int latitude = 32;

 int longitude = -64;

 go_south_east(,);

 printf("Avast! Now at: [%i, %i]\n", latitude, longitude);

 return 0;

}

&latitude

int *

&longitude

Compass Magnets Solution
You needed to fix the go_south_east() function so that it
uses pointers to update the correct data. You were to think carefully
about what type of data you want to pass to the function, and what
operators you’ll need to use to update the location of the ship.

int *

*lat*lat

*lon *lon

lat lon&lat

&lat &lon

&lon
int

int

*latitude *longitude

The arguments will store pointers so they need to be int *.

*lat can read the old value
and set the new value.

You need to find the address
of the latitude and longitude
variables with &.

memory and pointers

you are here 4   51

Test Drive
Now if you compile and run the new version of the function,
you get this:

> gcc southeast.c -o southeast
> ./southeast
Avast! Now at: [31, -63]
>

File Edit Window Help Savvy?This is
southeast of
the original
location.

The code works.
Because the function takes pointer arguments, it’s able to
update the original latitude and longitude variables.
That means that you now know how to create functions that
not only return values, but can also update any memory
locations that are passed to them.

�� Variables are allocated storage in
memory.

�� Local variables live in the stack.

�� Global variables live in the globals
section.

�� Pointers are just variables that store
memory addresses.

�� The & operator finds the address of
a variable.

�� The * operator can read the contents
of a memory address.

�� The * operator can also set the
contents of a memory address.

Set sail for
Cancun!

Wind in the
sails, cap’n!

Arr! Spring
break!

52   Chapter 2

no dumb questions

Q: Are pointers actual address
locations? Or are they some other kind
of reference?

A: They’re actual numeric addresses in
the process’s memory.

Q: What does that mean?

A: Each process is given a simplified
version of memory to make it look like a
single long sequence of bytes.

Q: And memory’s not like that?

A: It’s more complicated in reality. But
the details are hidden from the process so
that the operating system can move the
process around in memory, or unload it and
reload it somewhere else.

Q: Is memory not just a long list of
bytes?

A: The computer will probably structure
its physical memory in a more complex way.
The machine will typically group memory
addresses into separate banks of memory
chips.

Q: Do I need to understand this?

A: For most programs, you don’t need to
worry about the details of how the machine
arranges its memory.

Q: Why do I have to print out pointers
using the %p format string?

A: You don’t have to use the %p string.
On most modern machines, you can use
%li—although the compiler may give you
a warning if you do.

Q: Why does the %p format display
the memory address in hex format?

A: It’s the way engineers typically refer
to memory addresses.

Q: If reading the contents of a
memory location is called dereferencing,
does that mean that pointers should be
called references?

A: Sometimes coders will call pointers
references, because they refer to a memory
location. However, C++ programmers
usually reserve the word reference for a
slightly different concept in C++.

Q: Oh yeah, C++. Are we going to
look at that?

A: No, this book looks at C only.

memory and pointers

you are here 4   53

Cookies make you fat

How do you pass a string to a function?
You know how to pass simple values as arguments to functions, but what
if you want to send something more complex to a function, like a string?
If you remember from the last chapter, strings in C are actually arrays of
characters. That means if you want to pass a string to a function, you can
do it like this:

void fortune_cookie(char msg[])
{
 printf("Message reads: %s\n", msg);
}

char quote[] = "Cookies make you fat";
fortune_cookie(quote);

The function will be passed a char array.

The msg argument is defined like an array, but because you won’t know
how long the string will be, the msg argument doesn’t include a length.
That seems straightforward, but there’s something a little strange going on…

Honey, who shrank the string?
C has an operator called sizeof that can tell you how many bytes of
space something takes in memory. You can either call it with a data type or
with a piece of data:

sizeof(int)
sizeof("Turtles!")

But a strange thing happens if you look at the length of the string
you’ve passed in the function:

void fortune_cookie(char msg[])
{
 printf("Message reads: %s\n", msg);
 printf("msg occupies %i bytes\n", sizeof(msg));
}

> ./fortune_cookie
Message reads: Cookies make you fat
msg occupies 8 bytes
>

File Edit Window Help TakeAByte

Instead of displaying the full length of the string, the code returns
just 4 or 8 bytes. What’s happened? Why does it think the string
we passed in is shorter?

On most machines, this
will return the value 4.

This will return 9, which is 8
characters plus the \0 end character.

8??? And on some
machines, this
might even say 4!
What gives?

Why do you think sizeof(msg)
is shorter than the length of
the whole string? What is msg?
Why would it return different
sizes on different machines?

54   Chapter 2

array variables

Array variables are like pointers…
When you create an array, the array variable can be used as a
pointer to the start of the array in memory. When C sees a line of
code in a function like this:

char quote[] = "Cookies make you fat";

The computer will set aside space on the stack for each of the
characters in the string, plus the \0 end character. But it will also
associate the address of the first character with the quote
variable. Every time the quote variable is used in the code, the
computer will substitute it with the address of the first character in
the string. In fact, the array variable is just like a pointer:

printf("The quote string is stored at: %p\n", quote);

> ./where_is_quote
The quote string is stored at: 0x7fff69d4bdd7
>

File Edit Window Help TakeAByte

…so our function was passed a pointer
That’s why that weird thing happened in the fortune_cookie()
code. Even though it looked like you were passing a string to the
fortune_cookie() function, you were actually just passing a
pointer to it:

void fortune_cookie(char msg[])

{

 printf("Message reads: %s\n", msg);

 printf("msg occupies %i bytes\n", sizeof(msg));

}

And that’s why the sizeof operator returned a weird result. It
was just returning the size of a pointer to a string. On 32-bit
operating systems, a pointer takes 4 bytes of memory and on 64-bit
operating systems, a pointer takes 8 bytes.

msg is actually a pointer variable.

msg points to the message.

sizeof(msg) is just the
size of a pointer.

You can use “quote” as
a pointer variable, even
though it's an array.

If you write a test program
to display the address, you
will see something like this.

oC \0ko ei s ...

The quote variable will
represent the address
of the first character
in the string.

memory and pointers

you are here 4   55

What the computer thinks when it runs your code

The computer sees the function.1

void fortune_cookie(char msg[])

{

 ...

}

The computer calls the function.3

char quote[] = "Cookies make you fat";

fortune_cookie(quote);

Then it sees the function contents.2

 printf("Message reads: %s\n", msg);

 printf("msg occupies %i bytes\n", sizeof(msg));

Hmmm…looks like they intend to pass
an array to this function. That means
the function will receive the value of the
array variable, which will be an address,
so msg will be a pointer to a char.

I can print the message because I know
it starts at location msg. sizeof(msg).
That’s a pointer variable, so the answer is
8 bytes because that’s how much memory
it takes for me to store a pointer.

So quote’s an array and I’ve got to pass
the quote variable to fortune_cookie().
I’ll set the msg argument to the address
where the quote array starts in memory.

56   Chapter 2

no dumb questions

�� An array variable can be used as a
pointer.

�� The array variable points to the first
element in the array.

�� If you declare an array argument
to a function, it will be treated as a
pointer.

�� The sizeof operator returns the
space taken by a piece of data.

�� You can also call sizeof for a data
type, such as sizeof(int).

�� sizeof(a pointer) returns
4 on 32-bit operating systems and 8
on 64-bit.

Q: Is sizeof a function?

A: No, it’s an operator.

Q: What’s the difference?

A: An operator is compiled to a sequence of instructions by
the compiler. But if the code calls a function, it has to jump to a
separate piece of code.

Q: So is sizeof calculated when the program is
compiled?

A: Yes. The compiler can determine the size of the storage at
compile time.

Q: Why are pointers different sizes on different machines?

A: On 32-bit operating systems, a memory address is stored as
a 32-bit number. That’s why it’s called a 32-bit system. 32 bits == 4
bytes. That’s why a 64-bit system uses 8 bytes to store an address.

Q: If I create a pointer variable, does the pointer variable
live in memory?

A: Yes. A pointer variable is just a variable storing a number.

Q: So can I find the address of a pointer variable?

A: Yes—using the & operator.

Q: Can I convert a pointer to an ordinary number?

A: On most systems, yes. C compilers typically make the long
data type the same size as a memory address. So if p is a pointer
and you want to store it in a long variable a, you can type
a = (long)p. We’ll look at this in a later chapter.

Q: On most systems? So it’s not guaranteed?

A: It’s not guaranteed.

memory and pointers

you are here 4   57

THE
MATIN

G
GAME We have a classic trio of bachelors ready to play The Mating

Game today.

Tonight’s lucky lady is going to pick one of these fine contestants.
Who will she choose?

#include <stdio.h>

int main()

{

 int contestants[] = {1, 2, 3};

 int *choice = contestants;

 contestants[0] = 2;

 contestants[1] = contestants[2];

 contestants[2] = *choice;

 printf("I'm going to pick contestant number %i\n", contestants[2]);

 return 0;

}

Contestant 1

Contestant 2
Contestant 3 I’m going to pick

contestant number

Look at the code below,
and write your answer here.

58   Chapter 2

date picked

SOLUTION

THE
MATIN

G
GAME We had a classic trio of bachelors ready to play The Mating Game

today.

Tonight’s lucky lady picked one of these fine contestants. Who did
she choose?

#include <stdio.h>

int main()

{

 int contestants[] = {1, 2, 3};

 int *choice = contestants;

 contestants[0] = 2;

 contestants[1] = contestants[2];

 contestants[2] = *choice;

 printf("I'm going to pick contestant number %i\n", contestants[2]);

 return 0;

}

Contestant 1

Contestant 2
Contestant 3 I’m going to pick

contestant number
2

“choice” is now the address of the “contestants” array.

contestants[2]
 == *choice
 == contestants[0]
 == 2

memory and pointers

you are here 4   59

But array variables aren’t quite pointers
Even though you can use an array variable as a pointer, there
are still a few differences. To see the differences, think about this
piece of code.

char s[] = "How big is it?";

char *t = s;

sizeof(an array) is...the size of an array.
You’ve seen that sizeof(a pointer) returns the value 4 or 8,
because that’s the size of pointers on 32- and 64-bit systems. But if you
call sizeof on an array variable, C is smart enough to understand that
what you want to know is how big the array is in memory.

1

The address of the array...is the address of the array.
A pointer variable is just a variable that stores a memory address. But
what about an array variable? If you use the & operator on an array
variable, the result equals the array variable itself.

2

If a coder writes &s, that means “What is the address
of the s array?” The address of the s array is just…s.
But if someone writes &t, that means “What is the
address of the t variable?”

An array variable can’t point anywhere else.
When you create a pointer variable, the machine will
allocate 4 or 8 bytes of space to store it. But what if
you create an array? The computer will allocate space
to store the array, but it won’t allocate any memory to
store the array variable. The compiler simply plugs in
the address of the start of the array.

But because array variables don’t have allocated
storage, it means you can’t point them at anything else.

3

s = t;

Pointer decay
Because array variables are slightly
different from pointer variables, you need
to be careful when you assign arrays
to pointers. If you assign an array to a
pointer variable, then the pointer variable
will only contain the address of the array.
The pointer doesn’t know anything about
the size of the array, so a little information
has been lost. That loss of information is
called decay.

Every time you pass an array to a
function, you’ll decay to a pointer, so
it’s unavoidable. But you need to keep
track of where arrays decay in your code
because it can cause very subtle bugs.

This will give a compile error.

&s == s		 &t != t

oH \0w ...b

*

This is the s
array.
sizeof is
15.

This is the t pointer.
sizeof is 4 or 8.

sizeof(s)
 sizeof(t)

This returns 15.

This returns 4 or 8.

60   Chapter 2

five-minute mystery

The Case of the Lethal List
The mansion had all the things he’d dreamed of: landscaped grounds,
chandeliers, its own bathroom. The 94-year-old owner, Amory
Mumford III, had been found dead in the garden, apparently of a
heart attack. Natural causes? The doc thought it was an overdose of
heart medication. Something stank here, and it wasn’t just the dead
guy in the gazebo. Walking past the cops in the hall, he approached

Mumford’s newly widowed 27-year-old wife, Bubbles.

“I don’t understand. He was always so careful with his medication.
Here’s the list of doses.” She showed him the code from the drug

dispenser.

	 int doses[] = {1, 3, 2, 1000};

“The police say I reprogrammed the dispenser. But I’m no good with
technology. They say I wrote this code, but I don’t even think it’ll
compile. Will it?”

She slipped her manicured fingers into her purse and handed him a
copy of the program the police had found lying by the millionaire’s bed.
It certainly didn’t look like it would compile…

	 printf("Issue dose %i", 3[doses]);

What did the expression 3[doses] mean? 3 wasn’t an array. Bubbles
blew her nose. “I could never write that. And anyway, a dose of 3 is not
so bad, is it?”

A dose of size 3 wouldn’t have killed the old guy. But
maybe there was more to this code than met the eye…

Five-Minute
Mystery

memory and pointers

you are here 4   61

Why arrays really start at 0
An array variable can be used as a pointer to the first element in an
array. That means you can read the first element of the array either
by using the brackets notation or using the * operator like this:

int drinks[] = {4, 2, 3};

printf("1st order: %i drinks\n", drinks[0]);

printf("1st order: %i drinks\n", *drinks);

These lines
of code are
equivalent. drinks[0] == *drinks

But because an address is just a number, that means you can do
pointer arithmetic and actually add values to a pointer value
and find the next address. So you can either use brackets to read
the element with index 2, or you can just add 2 to the address of
the first element:

printf("3rd order: %i drinks\n", drinks[2]);

printf("3rd order: %i drinks\n", *(drinks + 2));

In general, the two expressions drinks[i] and *(drinks + i)
are equivalent. That’s why arrays begin with index 0. The index is
just the number that’s added to the pointer to find the location of
the element.

Use the power of pointer arithmetic to mend a broken heart. This
function will skip the first six characters of the text message.

void skip(char *msg)

{

 puts();

}

char *msg_from_amy = "Don't call me";

skip(msg_from_amy);

What expression do you need here to
print from the seventh character?

The function needs to print this
message from the ‘c’ character on.

24 3

This is at
location “drinks.”

This is at “drinks + 1.”

This is at
“drinks + 2.”

62   Chapter 2

pointers and types

You were to use the power of pointer arithmetic to mend a
broken heart. This function skips the first six characters of the
text message.

void skip(char *msg)

{

 puts();

}

char *msg_from_amy = "Don't call me";

skip(msg_from_amy);

If you add 6 to the msg pointer,
you will print from character 7.

msg + 6

> ./skip
call me
>

File Edit Window Help

Why pointers have types
If pointers are just addresses, then why do pointer variables have types?
Why can’t you just store all pointers in some sort of general pointer
variable?

The reason is that pointer arithmetic is sneaky. If you add 1 to a
char pointer, the pointer will point to the very next memory address.
But that’s just because a char occupies 1 byte of memory.

What if you have an int pointer? ints usually take 4 bytes of space,
so if you add 1 to an int pointer, the compiled code will actually add
4 to the memory address.

int nums[] = {1, 2, 3};

printf("nums is at %p\n", nums);

printf("nums + 1 is at %p\n", nums + 1);

If you run this code, the two memory address will be more than one
byte apart. So pointer types exist so that the compiler knows how
much to adjust the pointer arithmetic.

> ./print_nums
nums is at 0x7fff66ccedac
nums + 1 is at 0x7fff66ccedb0

File Edit Window Help

(nums + 1) is 4 bytes
away from nums.

short*

int*

long*

char*

Pointer variables have different
types for each type of data.

Remember, these
addresses are printed
in hex format.

oD \0‘n t ac ll m e
The code will display this.

msg points here. msg + 6 points to the letter c.

memory and pointers

you are here 4   63

The Case of the Lethal List

Last time we left our hero interviewing Bubbles Mumford,
whose husband had been given an overdose as a result of
suspicious code. Was Bubbles the coding culprit or just a
patsy? To find out, read on…

He put the code into his pocket. “It’s been a pleasure, Mrs. Mumford. I don’t
think I need to bother you anymore.” He shook her by the hand. “Thank you,”
she said, wiping the tears from her baby blue eyes, “You’ve been so kind.”

“Not so fast, sister.” Bubbles barely had time to gasp before
he’d slapped the bracelets on her. “I can tell from your
hacker manicure that you know more than you say about
this crime.” No one gets fingertip calluses like hers without
logging plenty of time on the keyboard.

“Bubbles, you know a lot more about C than you let on. Take a
look at this code again.”

int doses[] = {1, 3, 2, 1000};

printf("Issue dose %i", 3[doses]);

“I knew something was wrong when I saw the expression 3[doses]. You
knew you could use an array variable like doses as a pointer. The fatal 1,000
dose could be written down like this…” He scribbled down a few coding
options on his second-best Kleenex:

doses[3] == *(doses + 3) == *(3 + doses) == 3[doses]

“Your code was a dead giveaway, sister. It issued a dose of 1,000 to the old guy.
And now you’re going where you can never corruptly use C syntax again…”

Five-Minute
Mystery

Solved

64   Chapter 2

no dumb questions

�� Array variables can be used as
pointers…

�� …but array variables are not quite
the same.

�� sizeof is different for array and
pointer variables.

�� Array variables can’t point to
anything else.

�� Passing an array variable to a pointer
decays it.

�� Arrays start at zero because of
pointer arithmetic.

�� Pointer variables have types so they
can adjust pointer arithmetic.

Q: Do I really need to understand pointer arithmetic?

A: Some coders avoid using pointer arithmetic because it’s
easy to get it wrong. But it can be used to process arrays of data
efficiently.

Q: Can I subtract numbers from pointers?

A: Yes. But be careful that you don’t go back before the start of
the allocated space in the array.

Q: When does C adjust the pointer arithmetic calculations?

A: It happens when the compiler is generating the executable. It
looks at the type of the variable and then multiplies the pluses and
minuses by the size of the underlying variable.

Q: Go on…

A: If the compiler sees that you are working with an int array
and you are adding 2, the compiler will multiply that by 4 (the length
of an int) and add 8.

Q: Does C use the sizeof operator when it is adjusting
pointer arithmetic?

A: Effectively. The sizeof operator is also resolved at
compile time, and both sizeof and the pointer arithmetic
operations will use the same sizes for different data types.

Q: Can I multiply pointers?

A: No.

memory and pointers

you are here 4   65

Using pointers for data entry
You already know how to get the user to enter a string from the
keyboard. You can do it with the scanf() function:

char name[40];

printf("Enter your name: ");

scanf("%39s", name);

You’re going to store a name in this array.
scanf will read up to 39 characters
plus the string terminator \0.

How does scanf() work? It accepts a char pointer, and in this
case you’re passing it an array variable. By now, you might have
an idea why it takes a pointer. It’s because the scanf() function
is going to update the contents of the array. Functions that need to
update a variable don’t want the value of the variable itself—they
want its address.

Entering numbers with scanf()
So how do you enter data into a numeric field? You do it by
passing a pointer to a number variable.

int age;

printf("Enter your age: ");

scanf("%i", &age);

%i means the user will
enter an int value. Use the & operator to get the address of the int.

Because you pass the address of a number variable into the
function, scanf() can update the contents of the variable.
And to help you out, you can pass a format string that contains
the same kind of format codes that you pass to the printf()
function. You can even use scanf() to enter more than one
piece of information at a time:

char first_name[20];

char last_name[20];

printf("Enter first and last name: ");

scanf("%19s %19s", first_name, last_name);

printf("First: %s Last:%s\n", first_name, last_name);

> ./name_test
Enter first and last name: Sanders Kleinfeld
First: Sanders Last: Kleinfeld
>

File Edit Window Help Meerkats

This reads a
first name, then
a space, then the
second name.

The first and last names are
stored in separate arrays.

%i

%29s

%f

Enter an integer.

Enter up to 29 characters (+ ‘\0’).

Enter a floating-point number.

66   Chapter 2

scanf() can cause overflows

SECURITY ALERT!
SECURITY ALERT!
SECURITY ALERT!!

Be careful with scanf()
There’s a little…problem with the scanf() function. So
far, all of the code you’ve written has very carefully put a limit
on the number of characters that scanf() will read into a
function:

scanf("%39s", name);

scanf("%2s", card_name);

Why is that? After all, scanf() uses the same kind of format
strings as printf(), but when we print a string with printf(),
you just use %s. Well, if you just use %s in scanf(), there can
be a problem if someone gets a little type-happy:

char food[5];

printf("Enter favorite food: ");

scanf("%s", food);

printf("Favorite food: %s\n", food);

> ./food
Enter favorite food: liver-tangerine-raccoon-toffee
Favorite food: liver-tangerine-raccoon-toffee
Segmentation fault: 11
>

File Edit Window Help TakeAByte

The program crashes. The reason is because scanf() writes
data way beyond the end of the space allocated to the food array.

scanf() can cause buffer overflows
If you forget to limit the length of the string that you read with
scanf(), then any user can enter far more data than the
program has space to store. The extra data then gets written into
memory that has not been properly allocated by the computer.
Now, you might get lucky and the data will simply be stored and
not cause any problems.

But it’s very likely that buffer overflows will cause bugs. It might
be called a segmentation fault or an abort trap, but whatever the
error message that appears, the result will be a crash.

il ev -r at n

This is the
food array.

The food array ends
after five characters.

Everything beyond
letter r is outside
the array.

From the “-”
on, this code is
in illegal space.

memory and pointers

you are here 4   67

fgets() is an alternative to scanf()
There’s another function you can use to enter text data:
fgets(). Just like the scanf() function, it takes a char
pointer, but unlike the scanf() function, the fgets()
function must be given a maximum length:

char food[5];

printf("Enter favorite food: ");

fgets(food, sizeof(food), stdin);

That means that you can’t accidentally forget to set a length
when you call fgets(); it’s right there in the function
signature as a mandatory argument. Also, notice that the
fgets() buffer size includes the final \0 character. So
you don’t need to subtract 1 from the length as you do with
scanf().

OK, what else do you need to know about
fgets()?

Using sizeof with fgets()
The code above sets the maximum length using the sizeof
operator. Be careful with this. Remember: sizeof returns
the amount of space occupied by a variable. In the code
above, food is an array variable, so sizeof returns the
size of the array. If food was just a simple pointer variable,
the sizeof operator would have just returned the size of a
pointer.

If you know that you are passing an array variable to
fgets() function, then using sizeof is fine. If you’re
just passing a simple pointer, you should just enter the size
you want:

printf("Enter favorite food: ");

fgets(food, 5, stdin);

If food was a simple
pointer, you’d give an
explicit length, rather
than using sizeof.

Tales from
the Crypt

The fgets() function
actually comes from an
older function called
gets().

Even though fgets() is seen
as a safer-to-use function than
scanf(), the truth is that the
older gets() function is far
more dangerous than either of
them. The reason? The gets()
function has no limits at all:

char dangerous[10];
gets(dangerous);

gets() is a function that’s
been around for a long time.
But all you really need to know
is that you really shouldn’t
use it.

Nooooooo!!!!!
Seriously,
don’t use
this.

This is the
same program
as before.

First, it takes a
pointer to a buffer.

Next, it takes a maximum size
of the string (‘/0’ included).

stdin just means the
data will be coming
from the keyboard.

You’ll find out
more about
stdin later.

68   Chapter 2

scanf() vs fgets()

Title Fight
Roll up! Roll up! It’s time for the title fight we’ve all been waiting for. In the
red corner: nimble light, flexible but oh-so-slightly dangerous. It’s the bad
boy of data input: scanf(). And in the blue corner, he’s simple, he’s safe,
he’s the function you’d want to introduce to your mom: it’s fgets()!

scanf():

scanf() can limit the data
entered, so long as you remember
to add the size to the format string.

Yes! scanf() will not only allow
you to enter more than one field,
but it also allows you to enter
structured data including the
ability to specify what characters
appear between fields.

Oof ! scanf() gets hit badly by
this one. When scanf() reads a
string with the %s, it stops as soon
as it hits a space. So if you want
to enter more than one word, you
either have to call it more than
once, or use some fancy regular
expression trick.

fgets():

fgets() has a mandatory limit.
Nothing gets past him.

Ouch! fgets() takes this one on
the chin. fgets() allows you to
enter just one string into a buffer.
No other data types. Just strings.
Just one buffer.

No problem with spaces at all.
fgets() can read the whole
string every time.

Round 1: Limits
Do you limit the number of
characters that a user can
enter?

Round 2: Multiple fields
Can you be used to enter
more than one field?

Round 3: Spaces in strings
If someone enters a string,
can it contain spaces?

Result: fgets() takes this round on points.

Result: scanf() clearly wins this round.

Result: A fightback! Round to fgets().

A good clean fight between these two feisty functions. Clearly, if you need to enter
structured data with several fields, you’ll want to use scanf(). If you’re entering
a single unstructured string, then fgets() is probably the way to go.

memory and pointers

you are here 4   69

#include <stdio.h>

int main()

{

 char *cards = "JQK";

 char a_card = cards[2];

 cards[2] = cards[1];

 cards[1] = cards[0];

 cards[0] = cards[2];

 cards[2] = cards[1];

 cards[1] = a_card;

 puts(cards);

 return 0;

}

Anyone for three-card monte?
In the back room of the Head First Lounge, there’s a game
of three-card monte going on. Someone shuffles three cards
around, and you have to watch carefully and decide where you
think the Queen card went. Of course, being the Head First
Lounge, they’re not using real cards; they’re using code. Here’s the
program they’re using:

The code is designed to shuffle the letters in the three-letter
string “JQK.” Remember: in C, a string is just an array of
characters. The program switches the characters around and
then displays what the string looks like.

The players place their bets on where they think the “Q” letter
will be, and then the code is compiled and run.

Find the Queen.

70   Chapter 2

memory problems

Oops…there’s a memory problem…
It seems there’s a problem with the card shark’s code. When
the code is compiled and run on the Lounge’s notebook
computer, this happens:

Darn it. I knew that
card shark couldn’t be
trusted…

What’s more, if the guys try the same code on different
machines and operating systems, they get a whole bunch of
different errors:

What’s wrong with the code?

> gcc monte.c -o monte && ./monte
monte.exe has stopped working

File Edit Window Help HolyCrap

SegPhault!

Bus Error!
Segmentation Error!

Whack!

Kapow!

> gcc monte.c -o monte && ./monte
bus error

File Edit Window Help PlaceBet

memory and pointers

you are here 4   71

Whack!

?What’s Your Hunch?

It’s time to use your intuition. Don’t overanalyze. Just take a guess.
Read through these possible answers and select only the one you think is
correct.

What do you think the problem is?

The string can’t be updated.

We’re swapping characters outside the string.

The string isn’t in memory.

Something else.

72   Chapter 2

gut instinct

?What’s Your Hunch?

It was time to use your intuition. You were to read through these
possible answers and select only the one you think is correct.

What did you think the problem was?

The string can’t be updated.

We’re swapping characters outside the string.

The string isn’t in memory.

Something else.

String literals can never be updated
A variable that points to a string literal can’t be used to change
the contents of the string:

char *cards = "JQK"; This variable can’t modify this string.

But if you create an array from a string literal, then you can
modify it:

char cards[] = "JQK";

It all comes down to how C uses memory…

Solution

memory and pointers

you are here 4   73

In memory: char *cards=“JQK”;

The computer loads the string literal.
When the computer loads the program
into memory, it puts all of the constant
values—like the string literal “JQK”—into
the constant memory block. This section of
memory is read only.

1

char *cards="JQK";
...
cards[2] = cards[1];

The program creates the cards
variable on the stack.
The stack is the section of memory that the
computer uses for local variables: variables
inside functions. The cards variable will live
here.

2 cards

1

2

The cards variable is set to the
address of “JQK.”
The cards variable will contain the address
of the string literal “JQK.” String literals
are usually stored in read-only memory to
prevent anyone from changing them.

3

3
The computer tries to change the
string.
When the program tries to change the
contents of the string pointed to by the cards
variable, it can’t; the string is read-only.

4

So the problem is that string literals like
“JQK” are held in read only memory. They’re
constants.

But if that’s the problem, how do
you fix it?

4

I can’t update
that, buddy. It’s in
the constant memory
block, so it’s read-only.

Stack

Heap

Globals

Constants

Code

Lowest address

Highest address

Re
ad

-o
nly

 m
em

ory

\0J Q K

To understand why this line of code causes a memory error, we
need to dig into the memory of the computer and see exactly
what the computer will do.

74   Chapter 2

copy and change

If you’re going to change a string, make a copy

char cards[] = "JQK";

It’s probably not too clear why this changes anything. All
strings are arrays. But in the old code, cards was just a pointer.
In the new code, it’s an array. If you declare an array called
cards and then set it to a string literal, the cards array will
be a completely new copy. The variable isn’t just pointing at the
string literal. It’s a brand-new array that contains a fresh copy
of the string literal.

To see how this works in practice, you’ll need to look at what
happens in memory.

\0J KQ

\0J KQ

This string is in read-only memory…

…so make a copy of the string in a
section of memory that can be amended.

The truth is that if you want to change the contents of a string,
you’ll need to work on a copy. If you create a copy of the
string in an area of memory that’s not read-only, there won’t be
a problem if you try to change the letters it contains.

But how do you make a copy? Well, just create the string as a
new array.

Geek Bits

If you see a declaration like this, what does it really
mean?

char cards[]

Well, it depends on where you see it. If it’s a normal
variable declaration, then it means that cards is an
array, and you have to set it to a value immediately:

int my_function()

{
 char cards[] = "JQK";
 ...

}

But if cards is being declared as a function argument, it
means that cards is a pointer:

void stack_deck(char cards[])

{
 ...
}

void stack_deck(char *cards)
{
 ...
}

cards[] or cards*?

There’s no array size given, so you have
to set it to something immediately.

cards is
an array.

cards is a char pointer.

These two functions are equivalent.

cards is not just
a pointer. cards
is now an array.

memory and pointers

you are here 4   75

Stack

Heap

Globals

Constants

Code

In memory: char cards[]=“JQK”;

The computer loads the string literal.
As before, when the computer loads the
program into memory, it stores the constant
values—like the string “JQK”—into read-only
memory.

1

char cards[]="JQK";
...
cards[2] = cards[1];

The program creates a new array on
the stack.
We’re declaring an array, so the program will
create one large enough to store the “JQK”
string—four characters’ worth.

2

1

2

The program initializes the array.
But as well as allocating the space, the
program will also copy the contents of the
string literal “JQK” into the stack memory.

3

3

So the difference is that the original code
used a pointer to point to a read-only string
literal. But if you initialize an array with
a string literal, you then have a copy of the
letters, and you can change them as much as
you like.

Lowest address

Highest address

Re
ad

-o
nly

 m
em

ory

We’ve already seen what happens with the broken code,
but what about our new code? Let’s take a look.

\0J Q K

\0J Q K

76   Chapter 2

test drive

Test Drive
See what happens if you construct a new array in the code.

#include <stdio.h>

int main()

{

 char cards[] = "JQK";

 char a_card = cards[2];

 cards[2] = cards[1];

 cards[1] = cards[0];

 cards[0] = cards[2];

 cards[2] = cards[1];

 cards[1] = a_card;

 puts(cards);

 return 0;

}

> gcc monte.c -o monte && ./monte
QKJ

File Edit Window Help Where’sTheLady?

The code works! Your cards variable now points to a string in an
unprotected section of memory, so we are free to modify its contents.

Geek Bits

One way to avoid this problem in the future is to never write code that sets a simple char pointer to a string
literal value like:

			 char *s = "Some string";

There’s nothing wrong with setting a pointer to a string literal—the problems only happen when you try to
modify a string literal. Instead, if you want to set a pointer to a literal, always make sure you use the const
keyword:

			 const char *s = "some string";

That way, if the compiler sees some code that tries to modify the string, it will give you a compile error:

			 s[0] = 'S';

			 monte.c:7: error: assignment of read-only location

Yes! The Queen
was the first
card. I knew it…

memory and pointers

you are here 4   77

The Case of the Magic Bullet
He was scanning his back catalog of Guns ’n’ Ammo into Delicious Library when there was
a knock at the door and she walked in: 5' 6", blonde, with a good laptop bag and cheap
shoes. He could tell she was a code jockey. “You’ve gotta help me…you gotta clear his
name! Jimmy was innocent, I tells you. Innocent!” He passed her a tissue to wipe the tears
from her baby blues and led her to a seat.

It was the old story. She’d met a guy, who knew a guy. Jimmy Blomstein worked tables at
the local Starbuzz and spent his weekends cycling and working on his taxidermy collection.
He hoped one day to save up enough for an elephant. But he’d fallen in with the wrong
crowd. The Masked Raider had met Jimmy in the morning for coffee and they’d both
been alive:

char masked_raider[] = "Alive";

char *jimmy = masked_raider;

printf("Masked raider is %s, Jimmy is %s\n", masked_raider,
jimmy);

Then, that afternoon, the Masked Raider had gone off to pull a heist, like a hundred
heists he’d pulled before. But this time, he hadn’t reckoned on the crowd of G-Men
enjoying their weekly three-card monte session in the back room of the Head First
Lounge. You get the picture. A rattle of gunfire, a scream, and moments later the villain
was lying on the sidewalk, creating a public health hazard:

masked_raider[0] = 'D';

masked_raider[1] = 'E';

masked_raider[2] = 'A';

masked_raider[3] = 'D';

masked_raider[4] = '!';

Problem is, when Toots here goes to check in with her boyfriend at the coffee shop, she’s
told he’s served his last orange mocha frappuccino:

printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

So what gives? How come a single magic bullet killed Jimmy and the
Masked Raider? What do you think happened?

Masked raider is Alive, Jimmy is Alive
File Edit Window Help

Masked raider is DEAD!, Jimmy is DEAD!
File Edit Window Help

Five-Minute
Mystery

78   Chapter 2

case solved

The Case of the Magic Bullet

How come a single magic bullet killed Jimmy and the Masked Raider?

Jimmy, the mild-mannered barista, was mysteriously gunned down at the same time as arch-fiend the
Masked Raider:

#include <stdio.h>

int main()

{

 char masked_raider[] = "Alive";

 char *jimmy = masked_raider;

 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

 masked_raider[0] = 'D';

 masked_raider[1] = 'E';

 masked_raider[2] = 'A';

 masked_raider[3] = 'D';

 masked_raider[4] = '!';

 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

 return 0;

}

It took the detective a while to get to the bottom of the mystery. While he was waiting,
he took a long refreshing sip from a Head First Brain Booster Fruit Beverage. He sat
back in his seat and looked across the desk at her blue, blue eyes. She was like a rabbit caught
in the headlights of an oncoming truck, and he knew that he was at the wheel.

“I’m afraid I got some bad news for you. Jimmy and the Masked Raider…were one and the same man!”

“No!”

She took a sharp intake of breath and raised her hand to her mouth. “Sorry, sister. I have to say it how I
see it. Just look at the memory usage.” He drew a diagram:

“jimmy and masked_raider are just aliases for the same memory address. They’re pointing to the
same place. When the masked_raider stopped the bullet, so did Jimmy. Add to that this invoice
from the San Francisco elephant sanctuary and this order for 15 tons of packing material, and it’s an
open and shut case.”

Note from Marketing: ditch the product placement for the Brain Booster drink; the deal fell through.

Five-Minute
Mystery

Solved

jimmy
vilA \0e

masked_raider

memory and pointers

you are here 4   79

Q: Why didn’t the compiler just tell
me I couldn’t change the string?

A: Because we declared the cards
as a simple char *, the compiler didn’t
know that the variable would always be
pointing at a string literal.

Q: Why are string literals stored in
read-only memory?

A: Because they are designed to be
constant. If you write a function to print

“Hello World,” you don’t want some other
part of the program modifying the “Hello
World” string literal.

Q: Do all operating systems enforce
the read-only rule?

A: The vast majority do. Some
versions of gcc on Cygwin actually
allow you to modify a string literal without
complaining. But it is always wrong to do
that.

Q: What does const actually
mean? Does it make the string read-
only?

A: String literals are read-only anyway.
The const modifier means that the
compiler will complain if you try to modify
an array with that particular variable.

Q: Do the different memory
segments always appear in the same
order in memory?

A: They will always appear in the same
order for a given operating system. But
different operating systems can vary the
order slightly. For example, Windows
doesn’t place the code in the lowest
memory addresses.

Q: I still don’t understand why an
array variable isn’t stored in memory. If
it exists, surely it lives somewhere?

A: When the program is compiled, all
the references to array variables are
replaced with the addresses of the array.
So the truth is that the array variable
won’t exist in the final executable. That’s
OK because the array variable will never
be needed to point anywhere else.

Q: If I set a new array to a string
literal, will the program really copy the
contents each time?

A: It’s down to the compiler. The final
machine code will either copy the bytes
of the string literal to the array, or else
the program will simply set the values of
each character every time it reaches the
declaration.

Q: You keep saying “declaration.”
What does that mean?

A: A declaration is a piece of code that
declares that something (a variable, a
function) exists. A definition is a piece of
code that says what something is. If you
declare a variable and set it to a value
(e.g., int x = 4;), then the code is
both a declaration and a definition.

Q: Why is scanf() called
scanf()?

A: scanf() means “scan formatted”
because it’s used to scan formatted input.

�� If you see a * in a variable declaration,
it means the variable will be a pointer.

�� String literals are stored in read-only
memory.

�� If you want to modify a string, you need
to make a copy in a new array.

�� You can declare a char pointer as
const char * to prevent the code
from using it to modify a string.

80   Chapter 2

memory reminder

Memory memorizer

Stack
This is the section of memory used for local
variable storage. Every time you call a
function, all of the function’s local variables
get created on the stack. It’s called the stack
because it’s like a stack of plates: variables get
added to the stack when you enter a function,
and get taken off the stack when you leave.
Weird thing is, the stack actually works upside
down. It starts at the top of memory and
grows downward.

Heap
This is a section of memory we haven’t
really used yet. The heap is for dynamic
memory: pieces of data that get created
when the program is running and then hang
around a long time. You’ll see later in the
book how you’ll use the heap.

Globals
A global variable is a variable that lives
outside all of the functions and is visible to
all of them. Globals get created when the
program first runs, and you can update them
freely. But that’s unlike…

Constants
Constants are also created when the program
first runs, but they are stored in read-only
memory. Constants are things like string
literals that you will need when the program
is running, but you’ll never want them to
change.

Code
Finally, the code segment. A lot of operating
systems place the code right down in the
lowest memory addresses. The code segment
is also read-only. This is the part of the
memory where the actual assembled code
gets loaded. Lowest address

Highest address

Re
ad

-o
nly

 m
em

ory

memory and pointers

you are here 4   81

Your C Toolbox

You’ve got Chapter 2 under
your belt, and now you’ve

added pointers and memory to
your toolbox. For a complete list of

tooltips in the book, see Appendix ii.

CHAPT
ER 2

scanf(“%i”, &x)
will allow a
user to enter
a number x
directly.

ints are
different sizes on different machines.

&x returns
the address
of x.

&x is called
a pointer
to x.

A char pointer
variable x is
declared as
char *x.

String literals
are stored
in read-only
memory.

Initialize a new

array with a
string, and it
will copy it.

Local
variables are
stored on
the stack.

Array
variables can be used as pointers.

Read the
contents of
an address a
with *a. fgets(buf, size,

stdin) is a
simpler way to
enter text.

this is a new chapter   83

strcmp() says
we’re identical.

strings2.5

String theory

There’s more to strings than reading them.�
You’ve seen how strings in C are actually char arrays but what does C allow you to do

with them? That’s where string.h comes in. string.h is part of the C Standard Library

that’s dedicated to string manipulation. If you want to concatenate strings together,

copy one string to another, or compare two strings, the functions in string.h are there to

help. In this chapter, you’ll see how to create an array of strings, and then take a close

look at how to search within strings using the strstr() function.

I thought it
called you short
and said your butt
was bigger.

84   Chapter 2.5

string searches

Desperately seeking Susan
There are so many tracks on the retro jukebox that people can’t find
the music they are looking for. To help the customers, the guys in the
Head First Lounge want you to write another program.

This is the track list:

Frank

Gah! Wayne Newton…
again! We need a search
program to help people find
tracks on the jukebox.

The list is likely to get longer, so there’s just the first few tracks for
now. You’ll need to write a C program that will ask the user which
track she is looking for, and then get it to search through all of the
tracks and display any that match.

There’ll be lots of strings in this program. How do you think you can
record that information in C?

Track list:

I left my heart in Harvard Med School

Newark, Newark - a wonderful town

Dancing with a Dork

From here to maternity

The girl from Iwo Jima

The guys say that there will be lots more tracks in the future, but they’ll never be more than 79 characters long.

Tracks from the new album “Little Known Sinatra.”

strings

you are here 4   85

tracks[4][6]

Create an array of arrays
There are several track names that you need to record. You can record
several things at once in an array. But remember: each string is itself an
array. That means you need to create an array of arrays, like this:

char tracks[][80] = {

 "I left my heart in Harvard Med School",

 "Newark, Newark - a wonderful town",

 "Dancing with a Dork",

 "From here to maternity",

 "The girl from Iwo Jima",

};

That means that you’ll be able to find an individual track name
like this:

tracks[4] "The girl from Iwo Jima"

But you can also read the individual characters of each of the
strings if you want to:

'r'

So now that you know how to record the data in C, what do you
need to do with it?

This is the seventh character in the fifth
string.

This has this value. This is the fifth string. Remember: arrays begin at zero.

This first set of brackets is for the array of all strings.

The compiler can tell
that you have five
strings, so you don’t need
a number between these
brackets.

The second set of brackets is
used for each individual string. You know that track

names will never get longer
than 79 characters, so set
the value to 80.

Each string is an
array, so this is an
array of arrays.

The array of arrays looks something like this in memory:

Characters within a string

Tracks
tracks[4]

tracks[4][6]

-
i

D
t
w

o
e
o

n
a
r
r

k
n
J

H
w

a
o

\0
i
i

\0
t
m

r
n

v
d

\0
y
a

\0
\0
\0

m y
N

r
l

w
e

e
h
w

i

f

t
t
r

e
a

a
r

h
o
o m

r
k

t

a
m a

I

I
N e
D
F
T

a
r
h

l
w

e
a

n
o
e

c
m

f
r

t
k

i

g

n
h
i

,
g
e
r

...

...

...

...

...

Each song title will be allocated
80 characters.

86   Chapter 2.5

Compare two strings to each other

Search for a string

Make a copy of a string

Slice a string into
little pieces

string.h

Find strings containing the search text
The guys have helpfully given you a spec.

Well, you know how to record the tracks. You also know how to
read the value of an individual track name, so it shouldn’t be too
difficult to loop through each of them. You even know how to ask
the user for a piece of text to search for. But how do you look to
see if the track name contains a given piece of text?

library code

Using string.h
The C Standard Library is a bunch of useful code that you
get for free when you install a C compiler. The library code
does useful stuff like opening files, or doing math, or managing
memory. Now, chances are, you won’t want to use the whole of the
Standard Library at once, so the library is broken up into several
sections, and each one has a header file. The header file lists all
of the functions that live in a particular section of the library.

So far, you have only really used the stdio.h header file. stdio.h lets
you use the standard input/output functions like printf and
scanf.

But the Standard Library also contains code to process strings.
String processing is required by a lot of the programs, and the
string code in the Standard Library is tested, stable, and fast.

There are plenty of other exciting things in string.h for you to play with; this is just for starters.

#include <stdio.h>

#include <string.h>

You’ll use both stdio.h and
string.h in your jukebox program.

Ask the user for the text

she’s looking for.

Loop through all of the

track names.

If a track name contains

the search text, display

the track name.

You include the string code into your program using the string.h
header file. You add it at the top of your program, just like you
include stdio.h.

strings

you are here 4   87

Concatenate two strings. strchr()

See if you can match up each string.h function with the description of
what it does.

Which of the functions above should you use for the jukebox
program? Write your answer below.

strcmp()

strstr()

strcpy()

strlen()

strcat()

Find the location of a string inside
another string.

Find the location of a character inside
a string.

Find the length of a string.

Compare two strings.

Copy one string to another.

88   Chapter 2.5

what’s my purpose

Concatenate two strings. strchr()

You were to write which of the above functions you should use
for the jukebox program.

You were to match up each string.h function with the description of
what it does.

SOlUTion

strstr()

strcmp()

strstr()

strcpy()

strlen()

strcat()

Find the location of a string inside
another string.

Find the location of a character inside
a string.

Find the length of a string.

Compare two strings.

Copy one string to another.

strings

you are here 4   89

Using the strstr() function
So how exactly does the strstr() function work? Let’s look at an
example. Let’s say you’re looking for the string “fun” inside a larger
string, “dysfunctional.” You’d call it like this:

strstr("dysfunctional", "fun")

strstr() will find the
string “fun” starting
here at location
4,000,003.

The strstr() function will search for the second string in the first
string. If it finds the string, it will return the address of the located
string in memory. In the example here, the function would find that
the fun substring begins at memory location 4,000,003.

But what if the strstr() can’t find the substring? What then? In
that case, strstr() returns the value 0. Can you think why that
is? Well, if you remember, C treats zero as false. That means you
can use strstr() to check for the existence of one string inside
another, like this:

char s0[] = "dysfunctional";

char s1[] = "fun";

if (strstr(s0, s1))

 puts("I found the fun in dysfunctional!");

Let’s see how we can use strstr() in the jukebox program.

yd s uf n ic o lant

4,0
00,0

00

4,0
00,0

01

4,0
00,0

02

4,0
00,0

03

4,0
00,0

04

4,0
00,0

05

4,0
00,0

06

4,0
00,0

07

4,0
00,0

08

4,0
00,0

09

4,0
00,0

10

4,0
00,0

11

4,0
00,0

12

uf n

90   Chapter 2.5

out of the pool

Pool Puzzle
The guys in the Lounge had already started to write

the code to search through the track list, but—
oh no!—some of the paper they were writing
the code on has fallen into the pool. Do you
think you can select the correct pieces of
code to complete the search function? It’s
been a while since the pool was cleaned, so

be warned: some of the code in the pool might
not be needed for this program.

Note: the guys have slipped in a couple of new
pieces of code they found in a book somewhere.

Note: each thing from
the pool can be used
only once!

void find_track(char search_for[])

{

 int i;

 for (i = 0; i < 5; i++) {

 if ((,))

 printf("Track %i: '%s'\n", ,);

 }

}

Hey, look: you’re creating a separate function.
Presumably, when you get around to writing
the main() function, it will call this. “void” just means this function won’t return a value.

This is the “for loop.”
We’ll look at this in more
detail in a while, but for
now you just need to know
that it will run this piece
of code five times. You’re going to

be printing out
two values here.

One value will
need to be
an integer.

The other will
be a string.

This is where you're checking to see if the
search term is contained in the track name.

If the track name matches our
search, you'll display it here.

strstr

tracks[i]

search_for tracks[i]

i

“Sinatra”

way
my

strings

you are here 4   91

BE the Compiler
The jukebox program needs a main()
function that reads input from the user
and calls the find_track() function on the

opposite page. Your job is to
play like you’re the compiler
and say which of the
following main() functions
is the one you need for the

jukebox program.

int main()

{

 char search_for[80];

 printf("Search for: ");

 fgets(search_for, 80, stdin);

 find_track();

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 fgets(search_for, 80, stdin);

 find_track(search_for);

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 fgets(search_for, 79, stdin);

 find_track(search_for);

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf(search_for, 80, stdin);

 find_track(search_for);

 return 0;

}

92   Chapter 2.5

out of the pool

Pool Puzzle Solution
The guys in the Lounge had already started to

write the code to search through the track list,
but—oh no!—some of the paper they were
writing the code on has fallen into the pool.
You were to select the correct pieces of code
to complete the search function.

Note: the guys have slipped in a couple of new
pieces of code they found in a book somewhere.

void find_track(char search_for[])

{

 int i;

 for (i = 0; i < 5; i++) {

 if ((,))

 printf("Track %i: '%s'\n", ,);

 }

}

strstr

tracks[i]

search_fortracks[i]

i

“Sinatra”

way
my

strings

you are here 4   93

BE the Compiler Solution
The jukebox program needs a main()
function that reads input from the user
and calls the find_track() function on

the opposite page. Your job
was to play like you’re the
compiler and say which
of the following main()
functions is the one you

need for the jukebox program.

int main()

{

 char search_for[80];

 printf("Search for: ");

 fgets(search_for, 80, stdin);

 find_track();

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 fgets(search_for, 80, stdin);

 find_track(search_for);

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 fgets(search_for, 79, stdin);

 find_track(search_for);

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf(search_for, 80, stdin);

 find_track(search_for);

 return 0;

}

find_track() is being
called without passing
the search term.

This is the correct
main() function.

This version isn’t using the
full length of the array.
The coder has subtracted
one from the length, like
you would with scanf().

This version is using
scanf() and would allow
the user to enter 81
characters into the array.

94   Chapter 2.5

code review

It’s time for a code review
Let’s bring the code together and review what you’ve got so far:

It’s important that you assemble the code in this order. The headers are
included at the top so that the compiler will have all the correct functions
before it compiles your code. Then you define the tracks before you write
the functions. This is called putting the tracks array in global scope.
A global variable is one that lives outside any particular function. Global
variables like tracks are available to all of the functions in the program.

Finally, you have the functions: find_track() first, followed by
main(). The find_track() function needs to come first, before you
call it from main().

#include <stdio.h>
#include <string.h>

char tracks[][80] = {
 "I left my heart in Harvard Med School",
 "Newark, Newark - a wonderful town",
 "Dancing with a Dork",
 "From here to maternity",
 "The girl from Iwo Jima",
};

void find_track(char search_for[])
{
 int i;
 for (i = 0; i < 5; i++) {
 if (strstr(tracks[i], search_for))
 printf("Track %i: '%s'\n", i, tracks[i]);
 }
}

int main()
{
 char search_for[80];
 printf("Search for: ");
 fgets(search_for, 80, stdin);
 find_track(search_for);
 return 0;
}

You still need to stdio.h for the
printf() and scanf() functions. You will also need the string.h

header, so you can search
with the strstr() function.You’ll set the tracks array outside of the main() and find_track() functions; that way, the tracks will be usable everywhere in the program.

This is your new find_track()
function. You’ll need to declare it
here before you call it from main().

This code will display all
the matching tracks.

i++ means “increase
the value of i by 1.”

And this is your main() function,
which is the starting point of
the program. You're asking for the

search text here.

Now you call your new
find_track() function and
display the matching tracks.

strings

you are here 4   95

It’s time to fire up the terminal and see if the code works.

Test Drive

> gcc text_search.c -o text_search && ./text_search
Search for: town
Track 1: 'Newark, Newark - a wonderful town'
>

File Edit Window Help string.h

And the great news is, the program works!
Even though this program is a little longer than any code you’ve
written so far, it’s actually doing a lot more. It creates an array of
strings and then uses the string library to search through all of
them to find the music track that the user was looking for.

Hey, hey, hey! That code's a
rockin’ success. The cats in the
bar are groovin’ on down to a
whole heap of Sinatra goodness! Geek Bits

For more information about the
functions available in string.h, see
http://tinyurl.com/82acwue.

If you are using a Mac or a
Linux machine, you can find out
more about each of the string.h
functions like strstr() by
typing:

man strstr

96   Chapter 2.5

no dumb questions

Q: Why is the list of tracks defined
as tracks[][80]? Why not
tracks[5][80]?

A: You could have defined it that way,
but the compiler can tell there are five items
in the list, so you can skip the [5] and
just put [].

Q: But in that case, why couldn’t we
just say tracks[][]?

A: The track names are all different
lengths, so you need to tell the compiler to
allocate enough space for even the largest.

Q: Does that mean each string in the
tracks array is 80 characters, then?

A: The program will allocate 80
characters for each string, even though
each of them is much smaller.

Q: So the tracks array takes 80 
5 characters = 400 characters’ worth of
space in memory?

A: Yes.

Q: What happens if I forget to include
a header file like string.h?

A: For some header files, the compiler
will give you a warning and then include
them anyway. For other header files, the
compiler will simply give a compiler error.

Q: Why did we put the tracks
array definition outside of the functions?

A: We put it into global scope. Global
variables can be used by all functions in the
program.

Q: Now that we’ve created two
functions, how does the computer know
which one to run first?

A: The program will always run the
main() function first.

Q: Why do I have to put the
find_track() function before
main()?

A: C needs to know what parameters a
function takes and what its return type is
before it can be called.

Q: What would happen if I put the
functions in a different order?

A: In that case, you’d just get a few
warnings.

�� You can create an array of arrays with
char strings[...][...].

�� The first set of brackets is used to access
the outer array.

�� The second set of brackets is used to
access the details of each of the inner
arrays.

�� The string.h header file gives you access
to a set of string manipulation functions in
the C Standard Library.

�� You can create several functions in a C
program, but the computer will always run
main() first.

strings

you are here 4   97

void print_reverse(char *s)

{

 size_t len = strlen(s);

 char *t = + - 1;

 while (>=) {

 printf("%c", *t);

 t = ;

 }

 puts("");

}

s t

Code Magnets
The guys are working on a new piece of code for a game. They’ve created a function
that will display a string backward on the screen. Unfortunately, some of the fridge
magnets have moved out of place. Do you think you can help them to reassemble
the code?

len

s t
- 1

This works out the length of a
string, so strlen(“ABC”) == 3.

size_t is just an integer used for storing the sizes of things.

98   Chapter 2.5

code magnets

void print_reverse(char *s)

{

 size_t len = strlen(s);

 char *t = + - 1;

 while (>=) {

 printf("%c", *t);

 t = ;

 }

 puts("");

}

s

t

Code Magnets Solution
The guys are working on a new piece of code for a game. They’ve created a function
that will display a string backward on the screen. Unfortunately, some of the fridge
magnets have moved out of place. You were to help them to reassemble the code.

len

s

t - 1 Calculating addresses like this is
called “pointer arithmetic."

Array of arrays vs. array of pointers

You’ve seen how to use an array of arrays to store a
sequence of strings, but another option is to use an array
of pointers. An array of pointers is actually what it
sounds like: a list of memory addresses stored in an array.
It’s very useful if you want to quickly create a list of string
literals:

char *names_for_dog[] = {"Bowser", "Bonza", "Snodgrass"};

This is an array that
stores pointers.

There will be one pointer pointing at each string literal.

You can access the array of pointers just like you accessed
the array of arrays.

strings

you are here 4   99

C-Cross
Now that the guys have
the print_reverse()
function working, they’ve
used it to create a
crossword. The answers
are displayed by the
output lines in the code.

int main()

{

 char *juices[] = {

 "dragonfruit", "waterberry", "sharonfruit", "uglifruit",

 "rumberry", "kiwifruit", "mulberry", "strawberry",

 "blueberry", "blackberry", "starfruit"

 };

 char *a;

 puts(juices[6]);

 print_reverse(juices[7]);

 a = juices[2];

 juices[2] = juices[8];

 juices[8] = a;

 puts(juices[8]);

 print_reverse(juices[(18 + 7) / 5]);

 puts(juices[2]);

 print_reverse(juices[9]);

 juices[1] = juices[3];

 puts(juices[10]);

 print_reverse(juices[1]);

 return 0;

}

Across

Down
1
2

3
4

5
6

7
8

100   Chapter 2.5

crossword solved

C-Cross
Solution
Now that the guys have
the print_reverse()
function working, they’ve
used it to create a
crossword. The answers
are displayed by the
output lines in the code.

int main()

{

 char *juices[] = {

 "dragonfruit", "waterberry", "sharonfruit", "uglifruit",

 "rumberry", "kiwifruit", "mulberry", "strawberry",

 "blueberry", "blackberry", "starfruit"

 };

 char *a;

 puts(juices[6]);

 print_reverse(juices[7]);

 a = juices[2];

 juices[2] = juices[8];

 juices[8] = a;

 puts(juices[8]);

 print_reverse(juices[(18 + 7) / 5]);

 puts(juices[2]);

 print_reverse(juices[9]);

 juices[1] = juices[3];

 puts(juices[10]);

 print_reverse(juices[1]);

 return 0;

}

Across

Down
1
2

3
4

5
6

7
8

strings

you are here 4   101

Your C Toolbox

You’ve got Chapter 2.5 under
your belt, and now you’ve

added strings to your toolbox.
For a complete list of tooltips in the

book, see Appendix ii.

The string.h
header contains
useful string
functions.

strstr(a, b)
will return the
address of
string b in string
a.

CHAPT
ER 2.5An array

of strings is an array of arrays.
You create an
array of arrays
using char
strings [...][...]

strchr() finds
the location
of a character
inside a string.

strcmp()
compares
two strings.

strcpy()
copies one
string to
another.

strlen()
finds the
length of a
string.

strcat()
concatenates
two strings.

this is a new chapter   103

It’s all about picking
the right tool for the
right job…

creating small tools3

Do one thing
 and do it well

Every operating system includes small tools.�
Small tools written in C perform specialized small tasks, such as reading and writing

files, or filtering data. If you want to perform more complex tasks, you can even link

several tools together. But how are these small tools built? In this chapter, you’ll look

at the building blocks of creating small tools. You’ll learn how to control command-line

options, how to manage streams of information, and redirection, getting tooled up in

no time.

104   Chapter 3

tiny tools

Small tools can solve big problems
A small tool is a C program that does one task and does it well.
It might display the contents of a file on the screen or list the
processes running on the computer. Or it might display the first
10 lines of a file or send it to the printer. Most operating systems
come with a whole set of small tools that you can run from the
command prompt or the terminal. Sometimes, when you have a
big problem to solve, you can break it down into a series of small
problems, and then write small tools for each of them.

Someone’s written me a
map web application, and I’d
love to publish my route data
with it. Trouble is, the format
of the data coming from my
GPS is wrong.

42.363400,-71.098465,Speed = 21

42.363327,-71.097588,Speed = 23

42.363255,-71.096710,Speed = 17

This is a latitude. This is a longitude.

If one small part of your program needs to
convert data from one format to another,
that’s the perfect kind of task for a small tool.

data=[

{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},

{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},

{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},

...

]

A small tool
does one task
and does it well.

Operating systems like Linux are mostly made
up of hundreds and hundreds of small tools.

This is the data from the cyclist’s
GPS. It’s a comma-separated format.

This is the data format the
map needs. It’s in JavaScript
Object Notation, or JSON.

The data’s
the same, but
the format’s
a little
different.

you are here 4   105

creating small tools

Hey, who hasn’t taken a code printout on a long ride only to find that it soon becomes…
unreadable? Sure, we all have. But with a little thought, you should be able to piece together the
original version of some code.

This program can read comma-separated data from the command line and then display it in
JSON format. See if you can figure out what the missing code is. Pocket Code

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = ;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", , ,) == 3) {

 if (started)

 printf(",\n");

 else

 started = ;

 printf("{latitude: %f, longitude: %f, info: '%s'}", , ,);

 }

 puts("\n]");

 return 0;

}

We’re using scanf() to enter
more than one piece of data.

This is just a way of saying, “Give me every character up to the end of the line.”

The scanf()
function returns
the number of
values it was able
to read.

What will these values
be? Remember: scanf()
always uses pointers.

What values need to be displayed?

Be careful how you set “started.”

106   Chapter 3

pocket code

Hey, who hasn’t taken a code printout on a long ride only to find that it soon becomes…
unreadable? Sure, we all have. But with a little thought, you should have been able to piece
together the original version of some code.

This program can read comma-separated data from the command line and then display it in
JSON format. You were to figure out what the missing code is. Pocket Code

Solution

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = ;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", , ,) == 3) {

 if (started)

 printf(",\n");

 else

 started = ;

 printf("{latitude: %f, longitude: %f, info: '%s'}", , ,);

 }

 puts("\n]");

 return 0;

}

0

&latitude &longitude info

latitude longitude info
1

We need to begin with “started” set
to 0, which means false.

Did you remember the “&”s on the number
variables? scanf() needs pointers.

Once the loop has started, you can
set “started” to 1, which is true.

You’ll display a comma only if you’ve already displayed a previous line.

You don’t need & here because
printf() is using the values, not
the addresses of the numbers.

creating small tools

>./geo2json
data=[
42.363400,-71.098465,Speed = 21
{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'}42.363327,-71.097588,Speed = 23
,
{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'}42.363255,-71.096710,Speed = 17
,
{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'}42.363182,-71.095833,Speed = 22
,
...
...
...
{latitude: 42.363182, longitude: -71.095833, info: 'Speed = 22'}42.362385,-71.086182,Speed = 21
,
{latitude: 42.362385, longitude: -71.086182, info: 'Speed = 21'}^D
]
>

File Edit Window Help JSON

So what happens when you compile and run this code? What will it do?

The program lets you enter GPS data at the keyboard and then it
displays the JSON-formatted data on the screen. Problem is, the
input and the output are all mixed up together. Also, there’s a lot of
data. If you are writing a small tool, you don’t want to type in
the data; you want to get large amounts of data by reading a file.

Also, how is the JSON data going to be used? Surely it can’t be
much use on the screen?

So is the program running OK? Is it doing the right thing? Do
you need to change the code?

Test Drive

We really don’t want the output
on the screen. We need it in a file
so we can use it with the mapping
application. Here, let me show you…

Several more hours’ worth of typing…

This is the data you type in.This is the data that’s printed out. The input and the output are mixed up.

In the end, you need to
press Ctrl-D just to stop
the program.

you are here 4   107

108   Chapter 3

how it works

Here’s how the program should work

Take the GPS from the bike and download the data.
It creates a file called gpsdata.csv with one line of data for every
location.

1

The geo2json tool needs to
read the contents of the
gpsdata.csv line by line…

2

…and then write that data in
JSON format into a file called
output.json.

3

gpsdata.csv

This is the GPS unit used to track the location of the bike.

The web page that contains the map
application reads the output.json file.
It displays all of the locations on the map.

4

output.json

geo2json

The data is downloaded
into this file.

Reading this file

This is our geo2json tool.

Writing this file.

Your tool will write data to this file. The mapping application
reads the data from
output.json and displays it
on a map inside a web page.

you are here 4   109

creating small tools

But you’re not using files…
The problem is, instead of reading and writing files, your program is
currently reading data from the keyboard and writing it to the display.

But that isn’t good enough. The user won’t want to type in all
of the data if it’s already stored in a file somewhere. And if the
data in JSON format is just displayed on the screen, there’s no
way the map within the web page will be able to read it.

You need to make the program work with files. But how do
you do that? If you want to use files instead of the keyboard
and the display, what code will you have to change? Will you
have to change any code at all?

Is there a way of making our program
use files without changing code?
Without even recompiling it?

Geek Bits

Tools that read data line by line, process
it, and write it out again are called
filters. If you have a Unix machine, or
you’ve installed Cygwin on Windows, you
already have a few filter tools installed.

head: This tool displays the first few lines
of a file.

tail: This filter displays the lines at the
end of a file.

sed: The stream editor lets you do things
like search and replace text.

You’ll see later how to combine filters
together to form filter chains.

geo2json

>./geo2json

data=[

42.363400,-7
1.098465,Spe

ed = 21

{latitude: 4
2.363400, lo

ngitude: -71
.098465, inf

o: 'Speed =
21'}42.36332

7,-71.097588
,Speed = 23

,

{latitude: 4
2.363327, lo

ngitude: -71
.097588, inf

o: 'Speed =
23'}42.36325

5,-71.096710
,Speed = 17

,

{latitude: 4
2.363255, lo

ngitude: -71
.096710, inf

o: 'Speed =
17'}42.36318

2,-71.095833
,Speed = 22

,

...

...

...

{latitude: 4
2.363182, lo

ngitude: -71
.095833, inf

o: 'Speed =
22'}42.36238

5,-71.086182
,Speed = 21

,

{latitude: 4
2.362385, lo

ngitude: -71
.086182, inf

o: 'Speed =
21'}^D

]

>

File Edit Window Help JSON

The data is being read
from the keyboard.

Our tool converts the data into the new format.

The data is then sent to the
display, not to a file.

110   Chapter 3

redirect data

You can use redirection
You’re using scanf() and printf() to read from the
keyboard and write to the display. But the truth is, they don’t
talk directly to the keyboard and display. Instead, they use the
Standard Input and Standard Output. The Standard Input
and Standard Output are created by the operating system when the
program runs.

The operating system controls how data gets into and out of
the Standard Input and Output. If you run a program from the
command prompt or terminal, the operating system will send all
of the keystrokes from the keyboard into the Standard Input. If
the operating system reads any data from the Standard Output,
by default it will send that data to the display.

The scanf() and printf() functions don’t know, or care,
where the data comes from or goes to. They just read and write
Standard Input and the Standard Output.

Now this might sound like it’s kind of complicated. After all, why
not just have your program talk directly to the keyboard and
screen? Wouldn’t that be simpler?

Well, there’s a very good reason why operating systems
communicate with programs using the Standard Input and the
Standard Output:

You can redirect the Standard Input and
Standard Output so that they read and write
data somewhere else, such as to and from files.

The program receives data
through the Standard Input.

The program outputs data through the Standard Output.

you are here 4   111

creating small tools

You can redirect the Standard Input with <…

42.363400,-71.098465,Speed = 21

42.363327,-71.097588,Speed = 23

42.363255,-71.096710,Speed = 17

42.363182,-71.095833,Speed = 22

42.363110,-71.094955,Speed = 14

42.363037,-71.094078,Speed = 16

42.362965,-71.093201,Speed = 18

42.362892,-71.092323,Speed = 22

42.362820,-71.091446,Speed = 17

42.362747,-71.090569,Speed = 23

42.362675,-71.089691,Speed = 14

42.362602,-71.088814,Speed = 19

42.362530,-71.087936,Speed = 16

42.362457,-71.087059,Speed = 16

42.362385,-71.086182,Speed = 21

This is the file containing the
data from the GPS device.

> ./geo2json < gpsdata.csv
data=[
{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},
{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},
{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
{latitude: 42.363182, longitude: -71.095833, info: 'Speed = 22'},
{latitude: 42.363110, longitude: -71.094955, info: 'Speed = 14'},
{latitude: 42.363037, longitude: -71.094078, info: 'Speed = 16'},
...
...
{latitude: 42.362385, longitude: -71.086182, info: 'Speed = 21'}
]
>

File Edit Window Help Don’tCrossTheStreams

The < operator tells the operating system that the
Standard Input of the program should be connected
to the gpsdata.csv file instead of the keyboard. So you
can send the program data from a file. Now you just
need to redirect its output.

This is telling the operating
system to send the data from
the file into the Standard
Input of the program.

Now you just see the
JSON data coming
from the program.

You don’t have to type in the
GPS data, so you don’t see it
mixed up with the output.

Instead of entering data at the keyboard, you can use the <
operator to read the data from a file.

gpsdata.csv

geo2json

112   Chapter 3

redirect output

…and redirect the Standard Output with >
To redirect the Standard Output to a file, you need to use the > operator:

> ./geo2json < gpsdata.csv > output.json
>

File Edit Window Help Don’tCrossTheStreams

data=[

{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},

{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},

{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},

{latitude: 42.363182, longitude: -71.095833, info: 'Speed = 22'},

{latitude: 42.363110, longitude: -71.094955, info: 'Speed = 14'},

{latitude: 42.363037, longitude: -71.094078, info: 'Speed = 16'},

{latitude: 42.362965, longitude: -71.093201, info: 'Speed = 18'},

{latitude: 42.362892, longitude: -71.092323, info: 'Speed = 22'},

{latitude: 42.362820, longitude: -71.091446, info: 'Speed = 17'},

{latitude: 42.362747, longitude: -71.090569, info: 'Speed = 23'},

{latitude: 42.362675, longitude: -71.089691, info: 'Speed = 14'},

{latitude: 42.362602, longitude: -71.088814, info: 'Speed = 19'},

{latitude: 42.362530, longitude: -71.087936, info: 'Speed = 16'},

{latitude: 42.362457, longitude: -71.087059, info: 'Speed = 16'},

{latitude: 42.362385, longitude: -71.086182, info: 'Speed = 21'}

]

Because you’ve redirected the Standard Output, you
don’t see any data appearing on the screen at all. But the
program has now created a file called output.json.

The output.json file is the one you needed to create for the
mapping application. Let’s see if it works.

Now you are redirecting both
the Standard Input and the
Standard Output.

The output of the program will now be written to output.json.

There’s no output
on the display at all;
it’s all gone to the
output.json file.

output.json

output.json

geo2json

creating small tools

Test Drive
Now it’s time to see if the new data file you’ve created can be used
to plot the location data on a map. You’ll take a copy of the web
page containing the mapping program and put it into the same
folder as the output.json file. Then you need to open the web page
in a browser:

The map works.
The map inside the web page is able to read the data from the
output file.

Great! Now I can
publish my journeys
on the Web!

Do this!

Download the web page from
http://oreillyhfc.appspot.com/map.html.

gpsapp

map.html

output.json

This is the
web page that
contains the map.

This is the file
that our program
created.

you are here 4   113

114   Chapter 3

bad data

But there’s a problem with some of the data…
Your program seems to be able to read GPS data and format it
correctly for the mapping application. But after a few days, a
problem creeps in.

I dropped the
GPS unit on a ride a

couple of times, and now
the map won’t display.

So what happened here? The problem is that there was some bad
data in the GPS data file:

But the geo2json program doesn’t do any checking of the data it
reads; it just reformats the numbers and sends them to the output.

That should be easy to fix. You need to validate
the data.

The decimal point is in the wrong place in this number.

{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},

{latitude: 423.63182, longitude: -71.095833, info: 'Speed = 22'},

you are here 4   115

creating small tools

You need to add some code to the geo2json program that will check for bad latitude and
longitude values. You don’t need anything fancy. If a latitude or longitude falls outside the
expected numeric, just display an error message and exit the program with an error status of 2:

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = 0;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", &latitude, &longitude, info) == 3) {

 if (started)

 printf(",\n");

 else

 started = 1;

 printf("{latitude: %f, longitude: %f, info: '%s'}", latitude, longitude, info);

 }

 puts("\n]");

 return 0;

}

If the latitude is < -90 or > 90, then error
with status 2. If the longitude is < -180 or
> 180, then error with status 2.

116    Chapter 3

lat long

You needed to add some code to the geo2json program to check for bad latitude and
longitude values. If a latitude or longitude falls outside the expected numeric, just display an
error message and exit the program with an error status of 2:

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = 0;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", &latitude, &longitude, info) == 3) {

 if (started)

 printf(",\n");

 else

 started = 1;

 printf("{latitude: %f, longitude: %f, info: '%s'}", latitude, longitude, info);

 }

 puts("\n]");

 return 0;

}

 if ((latitude < -90.0) || (latitude > 90.0)) {
 printf(“Invalid latitude: %f\n”, latitude);
 return 2;
 }
 if ((longitude < -180.0) || (longitude > 180.0)) {
 printf(“Invalid longitude: %f\n”, longitude);
 return 2;
 }

These lines display
simple error messages.

These
lines will
exit
from
the
main()
function
with an
error
status
of 2.

These lines check that the latitude and longitude are in the correct range.

you are here 4   117

creating small tools

Test Drive
OK, so you now have the code in place to check that the latitude and
longitude are in range. But will it be enough to make our program cope
with bad data? Let’s see.

Compile the code and then run the bad data through the program:

> gcc geo2json.c -o geo2json
> ./geo2json < gpsdata.csv > output.json
>

File Edit Window Help Don’tCrossTheStreams

Hmmm…that’s odd. You added the
error-checking code, but when you
run the program, nothing appears to be
different. But now no points appear on
the map at all. What gives?

Study the code. What do you think happened? Is the code doing what you asked
it to? Why weren’t there any error messages? Why did the mapping program think
that the entire output.json file was corrupt?

This line will recompile
the program.
Then run the
program again
with the bad data.

You’ll save the output
in the output.json file.

WTF??? No
error message?

And where did all
the points go?

This means
“Welcome To
Finland.”

118   Chapter 3

code deconstruction

Code DeConstruction
The mapping program is complaining about the output.json file, so let’s open it up and see what’s
inside:

Once you open the file, you can see exactly what happened. The program saw that there
was a problem with some of the data, and it exited right away. It didn’t process any more
data and it did output an error message. Problem is, because you were redirecting the
Standard Output into the output.json, that meant you were also redirecting the error
message. So the program ended silently, and you never saw what the problem was.

Now, you could have checked the exit status of the program, but you really want to be able
to see the error messages.

But how can you still display error messages if you are redirecting
the output?

data=[

{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},

{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},

{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},

Invalid latitude: 423.631805

Oh, the error message was also redirected to the output file.

This is the output.json file.

Geek Bits

If your program finds a problem in the data, it exits with a status of 2. But how can you check
that error status after the program has finished? Well, it depends on what operating system
you’re using. If you’re running on a Mac, Linux, some other kind of Unix machine, or if you’re
using Cygwin on a Windows machine, you can display the error status like this:

If you’re using the Command Prompt in Windows, then it’s a little different:

Both commands do the same thing: they display the number returned by the program when it
finished.

C:\> echo %ERRORLEVEL%
2

File Edit Window Help

$ echo $?
2

File Edit Window Help

you are here 4   119

creating small tools

Wouldn’t it be dreamy if there
were a special output for errors so
that I didn’t have to mix my errors
in with Standard Output? But I know
it’s just a fantasy…

120   Chapter 3

standard error

Introducing the Standard Error
The Standard Output is the default way of outputting data
from a program. But what if something exceptional happens, like
an error? You’ll probably want to deal with things like error
messages a little differently from the usual output.

That’s why the Standard Error was invented. The Standard
Error is a second output that was created for sending error messages.

Human beings generally have two ears and one mouth, but
processes are wired a little differently. Every process has one ear
(the Standard Input) and two mouths (the Standard Output
and the Standard Error).

Let’s see how the operating system sets
these up.

This is one ear. This is another ear.

Single mouth. Multiple uses.

Human

This is the
Standard Input.
One ear only.

There is no second ear.

This is the Standard Output.
This is the Standard Error.

Process

you are here 4   121

creating small tools

By default, the Standard Error is sent
to the display
Remember how when a new process is created, the operating
system points the Standard Input at the keyboard and the Standard
Output at the screen? Well, the operating system creates the
Standard Error at the same time and, like the Standard Output, the
Standard Error is sent to the display by default.

That means that if someone redirects the Standard Input and
Standard Output so they use files, the Standard Error will continue
to send data to the display.

And that’s really cool, because it means that even if the Standard
Output is redirected somewhere else, by default, any messages
sent down the Standard Error will still be visible on the
screen.

So you can fix the problem of our hidden error messages by simply
displaying them on the Standard Error.

But how do you do that?

Standard Input comes from the keyboard.

Standard Output
goes to the display.

Standard Error
goes to the display.

Standard Error still
goes to the display.

Standard
Input comes
from a file.

Standard Output
goes to a file.

122   Chapter 3

fprintf()

fprintf() prints to a data stream
You’ve already seen that the printf() function sends
data to the Standard Output. What you didn’t know is that
the printf() function is just a version of a more general
function called fprintf():

printf("I like Turtles!");

fprintf(stdout, "I like Turtles!");

The fprintf() function allows you to choose where you
want to send text to. You can tell fprintf() to send text
to stdout (the Standard Output) or stderr (the Standard
Error).

Q: There’s a stdout and a stderr. Is there a stdin?

A: Yes, and as you probably guessed, it refers to the Standard
Input.

Q: Can I print to it?

A: No, the Standard Input can’t be printed to.

Q: Can I read from it?

A: Yes, by using fscanf(), which is just like scanf(),
but you can specify the data stream.

Q: So is fscanf(stdin, ...) exactly the same as
scanf(...)?

A: Yes, they’re identical. In fact, behind the scenes,
scanf(...) just calls fscanf(stdin, ...).

Q: Can I redirect the Standard Error?

A: Yes; > redirects the Standard Output. But 2> redirects the
Standard Error.

Q: So I could write geo2json 2> errors.txt?

A: Yes.

When you call
printf(), it
actually calls
fprintf().

These two calls are equivalent.

This will send data to
the data stream. stdout is the Standard

Output data stream.
This is the data that will be sent.

you are here 4   123

creating small tools

Let’s update the code to use fprintf()
With just a couple of small changes, you can get our error
messages printing on the Standard Error.

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = 0;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", &latitude, &longitude, info) == 3) {

 if (started)

 printf(",\n");

 else

 started = 1;

 if ((latitude < -90.0) || (latitude > 90.0)) {

 printf("Invalid latitude: %f\n", latitude);

 fprintf(stderr, "Invalid latitude: %f\n", latitude);
 return 2;

 }

 if ((longitude < -180.0) || (longitude > 180.0)) {

 printf(stderr, "Invalid longitude: %f\n", longitude);

 fprintf(stderr, "Invalid longitude: %f\n", longitude);
 return 2;

 }

 printf("{latitude: %f, longitude: %f, info: '%s'}", latitude, longitude, info);

 }

 puts("\n]");

 return 0;

}

That means that the code should now work in exactly the same
way, except the error messages should appear on the Standard
Error instead of the Standard Output.

Let’s run the code and see.

Instead of printf(),
we use fprintf().

We need to specify stderr as the first parameter.

124   Chapter 3

test drive

Test Drive
If you recompile the program and then run the corrupted GPS
data through it again, this happens.

> gcc geo2json.c -o geo2json
> ./geo2json-page21 < gpsdata.csv > output.json
Invalid latitude: 423.631805

File Edit Window Help ControlErrors

That’s excellent. This time, even though you are redirecting
the Standard Output into the output.json file, the error message
is still visible on the screen.

The Standard Error was created with exactly this in mind:
to separate the error messages from the usual output. But
remember: stderr and stdout are both just output
streams. And there’s nothing to prevent you from using them
for anything.

Let’s try out your newfound Standard Input
and Standard Error skills.

�� The printf() function sends data to
the Standard Output.

�� The Standard Output goes to the display
by default.

�� You can redirect the Standard Output to a
file by using > on the command line.

�� scanf() reads data from the Standard
Input.

�� The Standard Input reads data from the
keyboard by default.

�� You can redirect the Standard Input to read
a file by using < on the command line.

�� The Standard Error is reserved for
outputting error messages.

�� You can redirect the Standard Error using
2>.

Top Secret
We have reason to believe that the following program has been used in the transmission of secret messages:

#include <stdio.h>

int main()

{

 char word[10];

 int i = 0;

 while (scanf("%9s", word) == 1) {

 i = i + 1;

 if (i % 2)

 fprintf(stdout, "%s\n", word);

 else

 fprintf(stderr, "%s\n", word);

 }

 return 0;

}

We have intercepted a file called secret.txt and a scrap of paper with instructions:

Run with:
secret_messages < secret.txt > message1.txt 2> message2.txt

THE BUY SUBMARINE
SIX WILL EGGS
SURFACE AND AT
SOME NINE MILK PM

Your mission is to decode the two secret messages. Write your answers below.

i % 2 means “The
remainder left when
you divide by 2.”

secret.txt 2> will redirect the Standard Error. > will redirect the Standard Output.

Message 1 Message 2

creating small tools

you are here 4   125

Top Secret — solved
We have reason to believe that the following program has been used in the transmission of secret messages:

#include <stdio.h>

int main()

{

 char word[10];

 int i = 0;

 while (scanf("%9s", word) == 1) {

 i = i + 1;

 if (i % 2)

 fprintf(stdout, "%s\n", word);

 else

 fprintf(stderr, "%s\n", word);

 }

 return 0;

}

We have intercepted a file called secret.txt and a scrap of paper with instructions:

Run with:
secret_messages < secret.txt > message1.txt 2> message2.txt

THE BUY SUBMARINE
SIX WILL EGGS
SURFACE AND AT
SOME NINE MILK PM

Your mission was to decode the two secret messages.

secret.txt

Message 1 Message 2

THE
SUBMARINE
WILL
SURFACE
AT
NINE
PM

BUY
SIX
EGGS
AND
SOME
MILK

top secret solved

126   Chapter 3

you are here 4   127

creating small tools

Head First: Operating System, we’re so pleased
you’ve found time for us today.

O/S: Time sharing: it’s what I’m good at.

Head First: Now you’ve agreed to appear under
conditions of anonymity, is that right?

O/S: Don’t Ask/Don’t Tell. Just call me O/S.

Head First: Does it matter what kind of O/S you
are?

O/S: A lot of people get pretty heated over which
operating system to use. But for simple C programs,
we all behave pretty much the same way.

Head First: Because of the C Standard Library?

O/S: Yeah, if you’re writing C, then the basics are
the same everywhere. Like I always say, we’re all the
same with the lights out. Know what I’m saying?

Head First: Oh, of course. Now, you are in charge
of loading programs into memory?

O/S: I turn them into processes, that’s right.

Head First: Important job?

O/S: I like to think so. You can’t just throw a
program into memory and let it struggle, you know?
There’s a whole bunch of setup. I need to allocate
memory for the programs and connect them to their
standard data streams so they can use things like
displays and keyboards.

Head First: Like you just did for the geo2json
program?

O/S: That guy’s a real tool.

Head First: Oh, I’m sorry.

O/S: No, I mean he’s a real tool: a simple, text-based
program.

Head First: Ah, I see. And do you deal with a lot
of tools?

O/S: Ain’t that life? It depends on the operating
system. Unix-style systems use a lot of tools to get the
work done. Windows uses them less, but they’re still
important.

Head First: Creating small tools that work together
is almost a philosophy, isn’t it?

O/S: It’s a way of life. Sometimes when you’ve got a
big problem to solve, it can be easier to break it down
into a set of simpler tasks.

Head First: Then write a tool for each task?

O/S: Exactly. Then use the operating system—that’s
me—to connect the tools together.

Head First: Are there any advantages to that
approach?

O/S: The big one is simplicity. If you have a set of
small programs, they are easier to test. The other
thing is that once you’ve built a tool, you can use it in
other projects.

Head First: Any downsides?

O/S: Well, tools don’t look that great. They work on
the command line usually, so they don’t have a lot of
what you might call Eye Appeal.

Head First: Does that matter?

O/S: Not as much as you’d think. As long as you
have a set of solid tools to do the important work,
you can always connect them to a nice interface,
whether it’s a desktop application or a website. But,
hey, look at the time. Sorry, I’ve got to preempt you.

Head First: Oh, well, thank you, O/S; it’s been a
pleas…zzzzzz…

The Operating System Exposed
This week’s interview:
Does the Operating System Matter?

128   Chapter 3

reusable tools

Small tools are flexible
One of the great things about small tools is their flexibility. If you
write a program that does one thing really well, chances are you will
be able to use it in lots of contexts. If you create a program that can
search for text inside a file, say, then chances are you going to find
that program useful in more than one place.

For example, think about your geo2json tool. You created it to
help display cycling data, right? But there’s no reason you can’t use it
for some other purpose…like investigating…the…

This is
latitude 26°.

This is
latitude 34°.

This is longitude -64°.
This is longitude -76°.

To see how flexible our tool is, let’s use it for a completely different
problem. Instead of just displaying data on a map, let’s try to use
it for something a little more complex. Say you want to read in a
whole set of GPS data like before, but instead of just displaying
everything, let’s just display the information that falls inside the
Bermuda Rectangle.

That means you will display only data that matches these conditions:

((latitude > 26) && (latitude < 34))

((longitude > -76) && (longitude < -64))

So where do you need to begin?

you are here 4   129

creating small tools

Don’t change the geo2json tool

does one job and does it well

You don’t really want to modify the geo2json tool, because
you want it to do just one task. If you make the program do
something more complex, you’ll cause problems for your users
who expect the tool to keep working in exactly the same way.

Our geo2json tool displays all of the data it’s given. So what
should we do? Should we modify geo2json so that it exports
data and also checks the data?

Well, we could, but remember, a small tool:

I really don’t want
to filter data. I need
to keep on displaying
everything.

So if you don’t want to change the
geo2json tool, what should you do?

Small tools like geo2json all follow these design principles:

* They can read data from the Standard Input.

* They can display data on the Standard Output.

* They deal with text data rather than obscure binary formats.

* They each perform one simple task.

Tips for Designing Small Tools

130   Chapter 3

two tools

A different task needs a different tool

You’ll feed all of our data
into the bermuda tool.
This data includes events inside and outside the Bermuda Rectangle.

The tool will only pass on data that
falls inside the Bermuda Rectangle.

So you will only pass Bermuda
Rectangle data to geo2json.

geo2json will work exactly
the same as before.

You will produce a map
containing only Bermuda
Rectangle data.

By splitting the problem down into two tasks, you will be able
to leave your geo2json untouched. That will mean that its
current users will still be able to use it. The question is:

How will you connect your two tools together?

geo2json

bermuda

If you want to skip over the data that falls outside the Bermuda
Rectangle, you should build a separate tool that does just that.

So, you’ll have two tools: a new bermuda tool that filters out
data that is outside the Bermuda Rectangle, and then your
original geo2json tool that will convert the remaining data
for the map.

This is how you’ll connect the programs together:

you are here 4   131

creating small tools

Connect your input and output with a pipe
You’ve already seen how to use redirection to connect the
Standard Input and the Standard Output of a program file. But
now you’ll connect the Standard Output of the bermuda
tool to the Standard Input of the geo2json, like this:

This is a pipe.
A pipe can be used to connect the
Standard Output of one process to the
Standard Input of another process.

That way, whenever the bermuda tool sees a piece
of data inside the Bermuda Rectangle, it will send the data
to its Standard Output. The pipe will send that data from
the Standard Output of the bermuda tool to Standard
Input of the geo2json tool.

The operating system will handle the details of exactly how
the pipe will do this. All you have to do to get things running
is issue a command like this:

bermuda | geo2json

The output of bermuda will become the input of geo2json.

This is the pipe.The operating
system will run
both programs at
the same time.

So now it’s time to build the bermuda tool.

geo2json

bermuda

The output of bermuda…

…feeds into the input of geo2
json.

The | symbol is a
pipe that connects
the Standard Output
of one process to the
Standard Input of
another process.

132   Chapter 3

tool notes

The bermuda tool
The bermuda tool will work in a very similar way to the
geo2json tool: it will read through a set of GPS data, line by
line, and then send data to the Standard Output.

But there will be two big differences. First, it won’t send every
piece of data to the Standard Output, just the lines that are
inside the Bermuda Rectangle. The second difference is that
the bermuda tool will always output data in the same CSV
format used to store GPS data.

This is what the pseudocode for the tool looks like:

Read the latitude, longitude, and other data for each line: if the latitude is between 26 and 34, then:
 if the longitude is between -64 and -76, then:

 display the latitude, longitude, and other data

Let’s turn the pseudocode into C.

you are here 4   133

creating small tools

Pool Puzzle
Your goal is to complete the code for

the bermuda program. Take code
snippets from the pool and place
them into the blank lines below.
You won’t need to use all the
snippets of code in the pool.

Note: each thing from
the pool can be used
only once!

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 while (scanf("%f,%f,%79[^\n]", , ,) == 3)

 if ((>) (<))

 if ((>) (<))

 printf("%f,%f,%s\n", , ,);

 return 0;

}

&longitude

yeti

info

||

||
&&-64

-76

34
26

longitudelongitude

latitude

latitude

&info
info &latitude

&&

latitude

longitude

134   Chapter 3

out of the pool

Pool Puzzle Solution
Your goal was to complete the code for

the bermuda program by taking
code snippets from the pool and
placing them into the blank lines
below.

Note: each thing from
the pool can be used
only once!

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 while (scanf("%f,%f,%79[^\n]", , ,) == 3)

 if ((>) (<))

 if ((>) (<))

 printf("%f,%f,%s\n", , ,);

 return 0;

}

&longitude

yeti

info

||

||

&& -64-76

3426

longitude longitude

latitude

latitude

&info

info

&latitude

&&latitude

longitude

you are here 4   135

creating small tools

Test Drive
Now that you’ve completed the bermuda tool, it’s time to
use it with the geo2json tool and see if you can map any
weird occurrences inside the Bermuda Rectangle.

Once you’ve compiled both of the tools, you can fire up a
console and then run the two programs together like this:

Do this!

You can download the spooky.csv file at
http://oreillyhfc.appspot.com/spooky.csv.

(./bermuda | ./geo2json) < spooky.csv > output.json

By connecting the two programs together with a pipe, you
can treat these two separate programs as if they were a
single program, so you can redirect the Standard Input and
Standard Output like you did before.

Excellent: the program works!

> (./bermuda | ./geo2json) < spooky.csv > output.json
File Edit Window Help MyAngle

Remember: if you are running on
Windows, you don’t need the “./”. This is the pipe that

connects the processes.
When you connect the
two programs together,
you can treat them as
a single program.

This is the file containing all the events.

The bermuda tool filters out the events we want to ignore.
The geo2json tool will convert
the events to JSON format.

We’ll save the
output in this file.

136   Chapter 3

no dumb questions

Q: Why is it important that small
tools use the Standard Input and
Standard Output?

A: Because it makes it easier to connect
tools together with pipes.

Q: Why does that matter?

A: Small tools usually don’t solve an
entire problem on their own, just a small
technical problem, like converting data
from one format to another. But if you can
combine them together, then you can solve
large problems.

Q: What is a pipe, actually?

A: The exact details depend on the
operating system. Pipes might be made
from sections of memory or temporary files.
The important thing is that they accept data
in one end, and send the data out of the
other in sequence.

Q: So if two programs are piped
together, does the first program have
to finish running before the second
program can start?

A: No. Both of the programs will run at
the same time; as output is produced by
the first program, it can be consumed by
the second program.

Q: Why do small tools use text?

A: It’s the most open format. If a
small tool uses text, it means that any
other programmer can easily read and
understand the output just by using a text
editor. Binary formats are normally obscure
and hard to understand.

Q: Can I connect several programs
together with pipes?

A: Yes, just add more | between each
program name. A series of connected
processes is called a pipeline.

Q: If several processes are
connected together with pipes and then
I use > and < to redirect the Standard
Input and Output, which processes will
have their input and output redirected?

A: The < will send a file’s contents to
the first process in the pipeline. The > will
capture the Standard Output from the last
process in the pipeline.

Q: Are the parentheses really
necessary when I run the bermuda
program with geo2json?

A: Yes. The parentheses will make sure
the data file is read by the Standard Input
of the bermuda program.

�� If you want to perform a different
task, consider writing a separate
small tool.

�� Design tools to work with Standard
Input and Standard Output.

�� Small tools normally read and write
text data.

�� You can connect the Standard
Output of one process to the
Standard Input of another process
using a pipe.

you are here 4   137

creating small tools

ufos.csv

disappearances.csv

other.csv

spooky.csv

categorize

poof!

poof!

But what if you want to output to
more than one file?
We’ve looked at how to read data from one file and write to
another file using redirection, but what if the program needs
to do something a little more complex, like send data to
more than one file?

Imagine you need to create another tool that will read a set
of data from a file, and then split it into other files.

So what’s the problem? You can’t write to files, right?
Trouble is, with redirection you can write to only two files
at most, one from the Standard Output and one from the
Standard Error. So what do you do?

138   Chapter 3

data streams on the fly

Roll your own data streams
When a program runs, the operating system gives it three file
data streams: the Standard Input, the Standard Output, and the
Standard Error. But sometimes you need to create other data
streams on the fly.

The good news is that the operating system doesn’t limit you to the
ones you are dealt when the program starts. You can roll your own
as the program runs.

Each data stream is represented by a pointer to a file, and you can
create a new data stream using the fopen() function:

FILE *in_file = fopen("input.txt", "r");

FILE *out_file = fopen("output.txt", "w");

This will create a
data stream to
read from a file.

This is the name of the file.

This will create a
data stream to
write to a file.

This is the mode: “r” means “read.”

This is the name of the file.
This is the mode: “w” means “write.”

The fopen() function takes two parameters: a filename and a
mode. The mode can be w to write to a file, r to read from a file, or
a to append data to the end of a file.

Once you’ve created a data stream, you can print to it using
fprintf(), just like before. But what if you need to read from a
file? Well, there’s also an fscanf() function to help you do that
too:

The mode is:
 “w” = write,
 “r” = read, or
 “a” = append.

fprintf(out_file, "Don't wear %s with %s", "red", "green");

fscanf(in_file, "%79[^\n]\n", sentence);

Finally, when you’re finished with a data stream, you need to close
it. The truth is that all data streams are automatically closed when
the program ends, but it’s still a good idea to always close the data
stream yourself:

fclose(in_file);

fclose(out_file);

Let’s try this out now.

you are here 4   139

creating small tools

This is the code for a program to read all of the data from a GPS
file and then write the data into one of three other files. See if
you can fill in the blanks.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

 char line[80];

 FILE *in = fopen("spooky.csv",);

 FILE *file1 = fopen("ufos.csv",);

 FILE *file2 = fopen("disappearances.csv",);

 FILE *file3 = fopen("others.csv",);

 while ((in, "%79[^\n]\n", line) == 1) {

 if (strstr(line, "UFO"))

 (file1, "%s\n", line);

 else if (strstr(line, "Disappearance"))

 (file2, "%s\n", line);

 else

 (file3, "%s\n", line);

 }

 (file1);

 (file2);

 (file3);

 return 0;

}

The mode is:
 “w” = write,
 “r” = read, or
 “a” = append.

Q:How many data streams can I have?

A: It depends on the operating system, but usually a process
can have up to 256. The key thing is there’s a limited number of
them, so make sure you close them when you’re done using them.

Q: Why is FILE in uppercase?

A: It’s historic. FILE used to be defined using a macro.
Macros are usually given uppercase names. You’ll hear about
macros later on.

140   Chapter 3

read and write

This is the code for a program to read all of the data from a GPS
file and then write the data into one of three other files. You were
to fill in the blanks.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 char line[80];
 FILE *in = fopen("spooky.csv",);
 FILE *file1 = fopen("ufos.csv",);
 FILE *file2 = fopen("disappearances.csv",);
 FILE *file3 = fopen("others.csv",);
 while ((in, "%79[^\n]\n", line) == 1) {
 if (strstr(line, "UFO"))
 (file1, "%s\n", line);
 else if (strstr(line, "Disappearance"))
 (file2, "%s\n", line);
 else
 (file3, "%s\n", line);
 }
 (file1);
 (file2);
 (file3);
 return 0;
}

“r”
“w”

“w”
“w”

fscanf

fprintf

fprintf

fprintf

fclose
fclose
fclose

The program runs, but…
If you compile and run the program with:

gcc categorize.c -o categorize && ./categorize

the program will read the spooky.csv file and split up the data, line by line, into
three other files—ufos.csv, disappearances.csv, and other.csv.

That’s great, but what if a user wanted to split up the data differently? What if
he wanted to search for different words or write to different files? Could he do
that without needing to recompile the program each time?

ufos.csv

disappearances.csv

other.csv

you are here 4   141

creating small tools

There’s more to main()
The thing is, any program you write will need to give the user the ability to
change the way it works. If it’s a GUI program, you will probably need to give
it preferences. And if it’s a command-line program, like our categorize tool,
it will need to give the user the ability to pass it command-line arguments:

./categorize mermaid mermaid.csv Elvis elvises.csv the_rest.csv

Like any array in C, you need some way of knowing how long the
array is. That’s why the main() function has two parameters.
The argc value is a count of the number of elements in the array.

Command-line arguments really give your program a lot more
flexibility, and it’s worth thinking about which things you want
your users to tweak at runtime. It will make your program a lot
more valuable to them.

OK, let’s see how you can add a little flexibility
to the categorize program.

	 The first argument
contains the name
of the program as
it was run by the
user.

That means that the first proper
command-line argument is
argv[1].

But how do you read command-line arguments from within the
program? So far, every time you’ve created a main() function, you’ve
written it without any arguments. But the truth is, there are actually two
forms of the main() function we can use. This is the second version:

This is the first word to filter for. All of the mermaid data
will be stored in this file.

This means you want to check for Elvis.

All the Elvis sightings
will be stored here.

Everything
else goes into
this file.

int main(int argc, char *argv[])

{

 Do stuff....

}

The main() function can read the command-line arguments as
an array of strings. Actually, of course, because C doesn’t really
have strings built-in, it reads them as an array of character pointers to
strings. Like this:

This is argv[0].

The first argument is actually the
name of the program being run.

This is argv[1]. This is argv[2]. This is argv[3]. This is argv[4]. This is argv[5].

"./categorize" "mermaid" "mermaid.csv" "Elvis" "elvises.csv" "the_rest.csv"

142   Chapter 3

code magnets

Code Magnets
This is a modified version of the categorize program that can read the keywords
to search for and the files to use from the command line. See if you can fit the correct
magnets into the correct slots.

The program runs using:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[])

{

 char line[80];

 if (!=) {

 fprintf(stderr, "You need to give 5 arguments\n");

 return 1;

 }

 FILE *in = fopen("spooky.csv", "r");

 FILE *file1 = fopen(, "w");

 FILE *file2 = fopen(, "w");

 FILE *file3 = fopen(, "w");

./categorize mermaid mermaid.csv Elvis elvises.csv the_rest.csv

you are here 4   143

creating small tools

 while (fscanf(in, "%79[^\n]\n", line) == 1) {

 if (strstr(line,))

 fprintf(file1, "%s\n", line);

 else if (strstr(line,))

 fprintf(file2, "%s\n", line);

 else

 fprintf(file3, "%s\n", line);

 }

 fclose(file1);

 fclose(file2);

 fclose(file3);

 return 0;

}

argv[4]

6

argv[2]

5

argc

argv[1]

argv[5]

argv[3]

144   Chapter 3

code magnets solution

Code Magnets Solution
This is a modified version of the categorize program that can read the keywords
to search for and the files to use from the command line. You were to fit the correct
magnets into the correct slots.

The program runs using:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[])

{

 char line[80];

 if (!=) {

 fprintf(stderr, "You need to give 5 arguments\n");

 return 1;

 }

 FILE *in = fopen("spooky.csv", "r");

 FILE *file1 = fopen(, "w");

 FILE *file2 = fopen(, "w");

 FILE *file3 = fopen(, "w");

argv[4]

6

argv[2]

argc

argv[5]

./categorize mermaid mermaid.csv Elvis elvises.csv the_rest.csv

you are here 4   145

creating small tools

 while (fscanf(in, "%79[^\n]\n", line) == 1) {

 if (strstr(line,))

 fprintf(file1, "%s\n", line);

 else if (strstr(line,))

 fprintf(file2, "%s\n", line);

 else

 fprintf(file3, "%s\n", line);

 }

 fclose(file1);

 fclose(file2);

 fclose(file3);

 return 0;

}

5

argv[1]

argv[3]

146   Chapter 3

test drive

Test Drive
OK, let’s try out the new version of the code. You’ll need a test data file
called spooky.csv.

30.685163,-68.137207,Type=Yeti

28.304380,-74.575195,Type=UFO

29.132971,-71.136475,Type=Ship

28.343065,-62.753906,Type=Elvis

27.868217,-68.005371,Type=Goatsucker

30.496017,-73.333740,Type=Disappearance

26.224447,-71.477051,Type=UFO

29.401320,-66.027832,Type=Ship

37.879536,-69.477539,Type=Elvis

22.705256,-68.192139,Type=Elvis

27.166695,-87.484131,Type=Elvis

> categorize UFO aliens.csv Elvis elvises.csv the_rest.csv
File Edit Window Help ThankYouVeryMuch

spooky.csv

Now you’ll need to run the categorize program with a few command-
line arguments saying what text to look for and what filenames to use:

When the program runs, the following files are produced:

you are here 4   147

creating small tools

28.304380,-74.575195,Type=UFO

26.224447,-71.477051,Type=UFO

aliens.csv

28.343065,-62.753906,Type=Elvis

37.879536,-69.477539,Type=Elvis

22.705256,-68.192139,Type=Elvis

27.166695,-87.484131,Type=Elvis

elvises.csv

30.685163,-68.137207,Type=Yeti

29.132971,-71.136475,Type=Ship

27.868217,-68.005371,Type=Goatsucker

30.496017,-73.333740,Type=Disappearance

29.401320,-66.027832,Type=Ship

the_rest.csv

Elvis has left the building.

If you run elvises.txt through
geo2json, you can display it on a map.

Although at Head First Labs we never make mistakes (cough), it’s important in real-world
programs to check for problems when you open a file for reading or writing. Fortunately,
if there’s a problem opening a data stream, the fopen() function will return the value 0.
That means if you want to check for errors, you should change code like:

 FILE *in = fopen("i_dont_exist.txt", "r");

to this:

 FILE *in;
 if (!(in = fopen("dont_exist.txt", "r"))) {
 fprintf(stderr, "Can't open the file.\n");
 return 1;
 }

Safety Check

148   Chapter 3

command-line options

Overheard at the Head First Pizzeria

Anchovy and pineapple,
thick crust! Make it
snappy; we need it for
immediate delivery.

Chances are, any program you write is going to need
options. If you create a chat program, it’s going to
need preferences. If you write a game, the user will
want to change the shape of the blood spots. And if
you’re writing a command-line tool, you are probably
going to need to add command-line options.

Command-line options are the little switches you often
see with command-line tools:

ps -ae

tail -f logfile.out

Display all the processes,
including their environments.

Display the end of the file, but wait for new data to be added to the end of the file.

you are here 4   149

creating small tools

Let the library do the work for you
Many programs use command-line options, so there’s a special
library function you can use to make dealing with them a
little easier. It’s called getopt(), and each time you call it, it
returns the next option it finds on the command line.

Let’s see how it works. Imagine you have a program that can
take a set of different options:

rocket_to -e 4 -a Brasilia Tokyo London

Use four engines. Awesomeness mode enabled.

This program needs one option that will take a value (-e = engines)
and another that is simply on or off (-a = awesomeness). You can
handle these options by calling getopt() in a loop like this:

Inside the loop, you have a switch statement to handle each of
the valid options. The string ae: tells the getopt() function
that a and e are valid options. The e is followed by a colon to tell
getopt() that the -e needs to be followed by an extra argument.
getopt() will point to that argument with the optarg variable.

When the loop finishes, you tweak the argv and argc variables
to skip past all of the options and get to the main command-line
arguments. That will make your argv array look like this:

#include <unistd.h>

...

while ((ch = getopt(argc, argv, "ae:")) != EOF)
 switch(ch) {
 ...
 case 'e':
 engine_count = optarg;
 ...
 }

argc -= optind;
argv += optind;

Brasilia Tokyo London

This is argv[0]. This is argv[1]. This is argv[2].

You will need to
include this header. This means “The a option is

valid; so is the e option.”

The “:” means that the e
option needs an argument.

The code to handle
each option goes here.

You’re reading the
argument for the

“e” option here.
optind stores the number of
strings read from the command

line to get past the optio
ns. These final two lines

make sure we skip past
the options we read.

	 After processing
the arguments,
the 0th argument
will no longer be
the program name.

argv[0] will instead point to the
first command-line argument that
follows the options.

The unistd.h header is
not actually part of the
standard C library. Instead,
it gives your programs
access to some of the
POSIX libraries. POSIX
was an attempt to create
a common set of functions
for use across all popular
operating systems.

The Polite Guide
to Standards

150   Chapter 3

pizza puzzle

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[])

{

 char *delivery = "";

 int thick = 0;

 int count = 0;

 char ch;

 while ((ch = getopt(argc, argv, "d ")) != EOF)

 switch (ch) {

 case 'd':

 = ;

 break;

 case 't':

 = ;

 break;

 default:

 fprintf(stderr, "Unknown option: '%s'\n", optarg);

 return ;

 }

Pizza Pieces
Looks like someone’s been taking a bite out of the pizza code. See if you can replace
the pizza slices and rebuild the order_pizza program.

you are here 4   151

creating small tools

 argc -= optind;

 argv += optind;

 if (thick)

 puts("Thick crust.");

 if (delivery[0])

 printf("To be delivered %s.\n", delivery);

 puts("Ingredients:");

 for (count = ; count < ; count++)

 puts(argv[count]);

 return 0;

}

1

thick

argcdelivery

:t

optarg

1
0

152   Chapter 3

pizza unpuzzled

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[])

{

 char *delivery = "";

 int thick = 0;

 int count = 0;

 char ch;

 while ((ch = getopt(argc, argv, "d ")) != EOF)

 switch (ch) {

 case 'd':

 = ;

 break;

 case 't':

 = ;

 break;

 default:

 fprintf(stderr, "Unknown option: '%s'\n", optarg);

 return ;

 }

Pizza Pieces Solution
Looks like someone’s been taking a bite out of the pizza code. You were to replace
the pizza slices and rebuild the order_pizza program.

1thick

delivery

: t

optarg

1

The ‘d’ is followed by a colon because it takes an argument.

We’ll point the delivery variable to the
argument supplied with the ‘d’ option.

Remember: in C, setting something to 1 is equivalent to setting it to true.

you are here 4   153

creating small tools

 argc -= optind;

 argv += optind;

 if (thick)

 puts("Thick crust.");

 if (delivery[0])

 printf("To be delivered %s.\n", delivery);

 puts("Ingredients:");

 for (count = ; count < ; count++)

 puts(argv[count]);

 return 0;

}

argc0

After processing the options, the
first ingredient is argv[0].

We’ll keep looping while we’re less than argc.

154   Chapter 3

test drive

Test Drive
Now you can try out the pizza-order program:

> gcc order_pizza.c -o order_pizza
> ./order_pizza Anchovies
Ingredients:
Anchovies
> ./order_pizza Anchovies Pineapple
Ingredients:
Anchovies
Pineapple
> ./order_pizza -d now Anchovies Pineapple
To be delivered now.
Ingredients:
Anchovies
Pineapple
> ./order_pizza -d now -t Anchovies Pineapple
Thick crust.
To be delivered now.
Ingredients:
Anchovies
Pineapple
> ./order_pizza -d
order_pizza: option requires an argument -- d
Unknown option: '(null)'
>

File Edit Window Help Anchovies?

It works!
Well, you’ve learned a lot in this chapter. You got deep into
the Standard Input, Standard Output, and Standard Error.
You learned how to talk to files using redirection and your
own custom data streams. Finally, you learned how to deal
with command-line arguments and options.

A lot of C programmers spend their time creating small tools,
and most of the small tools you see in operating systems like
Linux are written in C. If you’re careful in how you design
them, and if you make sure that you design tools that do one
thing and do that one thing well, you’re well on course to
becoming a kick-ass C coder.

Compile the
program.

You’re not using
any options the
first couple of
times you call it.
Then try out the ‘d’ option and give it an argument of ‘now’.

Then the”t”option.
Remember: the “t”
option doesn’t take
any arguments.

Finally, try skipping the argument for “d”: it creates an error.

you are here 4   155

creating small tools

Q: Can I combine options like -td
now instead of -d now -t?

A: Yes, you can. The getopt()
function will handle all of that for you.

Q: What about changing the order of
the options?

A: Because of the way we read the
options, it won’t matter if you type in -d
now -t or -t -d now or -td
now.

Q: So if the program sees a value on
the command line beginning with “-”, it
will treat it as an option?

A: If it reads it before it gets to the main
command-line arguments, it will, yes.

Q: But what if I want to pass negative
numbers as command-line arguments
like set_temperature -c -4?
Won’t it think that the 4 is an option, not
an argument?

A: In order to avoid ambiguity, you
can split your main arguments from the
options using --. So you would write
set_temperature -c -- -4.
getopt() will stop reading options
when it sees the --, so the rest of the line
will be read as simple arguments.

�� There are two versions of the
main() function—one with
command-line arguments, and one
without.

�� Command-line arguments are
passed to main() as an argument
count and an array of pointers to the
argument strings.

�� Command-line options are
command-line arguments prefixed
with “-”.

�� The getopt() function helps you
deal with command-line options.

�� You define valid options by passing a
string to getopt() like ae:.

�� A “:” (colon) following an option
in the string means that the option
takes an additional argument.

�� getopt() will record the options
argument using the optarg
variable.

�� After you have read all of the options,
you should skip past them using the
optind variable.

156   Chapter 3

c toolbox

You can change where the
Standard Input, Output, and Error are connected to using redirection.

Your C Toolbox

You’ve got Chapter 3 under
your belt, and now you’ve

added small tools to your
toolbox. For a complete list of

tooltips in the book, see Appendix ii.

CH
AP

T
ER

 3

C functions like
printf() and scanf()
use the Standard
Output and
Standard Input to
communicate.

The Standard Output goes
to the display by default.

The Standard
Input reads from
the keyboard by
default.

The Standard
Error is a
separate outpu

t

intended for
error messages.

You can print to
the Standard
Error using
fprintf(stderr,...).

You can create
 custom

data streams with

fopen(“filenam
e”, mode).

The mode can be “w” to write, “r” to read, or “a” to append.

Command-line
arguments are
passed to main()

as an array of

string pointers
.

The getopt()
function makes
it easier to
read command-
line options.

this is a new chapter   157

using multiple source files4

Break it down,
build it up

If you create a big program, you don’t want a big source file.�
Can you imagine how difficult and time-consuming a single source file for an enterprise-

level program would be to maintain? In this chapter, you’ll learn how C allows you to break

your source code into small, manageable chunks and then rebuild them into one huge

program. Along the way, you’ll learn a bit more about data type subtleties and get to

meet your new best friend: make.

Who’s he calling
“short”?

158   Chapter 4

guess the data type

The amount of fuel the
rocket will need (gallons)

The total number of
components in the rocket

C can handle quite a few different types of data: characters and whole numbers, floating-point
values for everyday values, and floating-point numbers for really precise scientific calculations. You
can see a few of these data types listed on the opposite page. See if you can figure out which data
type was used in each example.

Remember: each example uses a different data type.

Guess the Data Type

you are here 4   159

using multiple source files

The distance from the
launch pad to the star
Proxima Centauri (light
years)

The numbers of stars
in the universe that we
won’t be visiting

Each letter on the
countdown display

The number of
minutes to launch

float

double

Floating points Integers

charint

short long That’s right! In C,
chars are actually
stored using their
character codes.
That means they’re
just numbers too!

These are numbers
containing decimal
points.

you are here 4   159

using multiple source files

90:00
minutes

The amount of fuel the
rocket will need (gallons)

The total number of
components in the rocket

float

int

C can handle quite a few different types of data: characters and whole numbers, floating-point
values for everyday values, and floating-point numbers for really precise scientific calculations. You
can see a few of these data types listed on the opposite page. You were to figure out which data
type was used in each example.

Remember: each example uses a different data type.

Guess the Data Type Solution

160   Chapter 4

guess the data type solution

The distance from the
launch pad to the star
Proxima Centauri (light
years)

The numbers of stars
in the universe that we
won’t be visiting

Each letter on the
countdown display

The number of
minutes to launch

double

char

short
long

90:00
minutes

you are here 4   161

using multiple source files

Let’s see why…

162   Chapter 4

data types

char
Each character is stored in the computer’s memory as a character code. And that’s just a number. So

when the computer sees A, to the computer it’s the same as seeing the literal number 65.

int
If you need to store a whole number, you can generally just use an int. The exact maximum size of

an int can vary, but it’s guaranteed to be at least 16 bits. In general, an int can store numbers up

to a few million.

long
Yes, but what if you want to store a really large count? That’s what the long data type was

invented for. On some machines, the long data type takes up twice the memory of an int, and it

can hold numbers up in the billions. But because most computers can deal with really large ints,

on a lot of machines, the long data type is exactly the same size as an int. The maximum size of a

long is guaranteed to be at least 32 bits.

float
float is the basic data type for storing floating-point numbers. For most everyday floating-point

numbers—like the amount of fluid in your orange mocha frappuccino—you can use a float.

double
Yes, but what if you want to get really precise? If you want to perform calculations that are

accurate to a large number of decimal places, then you might want to use a double. A double

takes up twice the memory of a float, and it uses that extra space to store numbers that are larger

and more precise.

Your quick guide to data types

short
But sometimes you want to save a little memory. Why use an int if you just want to store numbers

up to few hundreds or thousands? That’s what a short is for. A short number usually takes up

about half the space of an int.

65 is the ASCII
code for A.

you are here 4   163

using multiple source files

Don’t put something big into something small
When you’re passing around values, you need to be careful
that the type of the value matches the type of the variable
you are going to store it in.

Different data types use different amounts of memory. So
you need to be careful that you don’t try to store a value
that’s too large for the amount of space allocated to a
variable. short variables take up less memory than ints,
and ints take up less memory than longs.

Now there’s no problem storing a short value inside
an int or a long variable. There is plenty of space in
memory, and your code will work correctly:

short x = 15;

int y = x;

printf("The value of y = %i\n", y);

This will say that y = 15.

The problems start to happen if you go the other way
around—if, say, you try to store an int value into a short.

int x = 100000;

short y = x;

print("The value of y = %hi\n", y);

%hi is the proper code to format a short value.

Sometimes, the compiler will be able to spot that
you’re trying to store a really big value into a small
variable, and then give you a warning. But a lot
of the time the compiler won’t be smart enough
for that, and it will compile the code without
complaining. In that case, when you try to run the
code, the computer won’t be able to store a number
100,000 into a short variable. The computer will
fit in as many 1s and 0s as it can, but the number
that ends up stored inside the y variable will be very
different from the one you sent it:

The value of y = -31072

Geek Bits

So why did putting a large number into a short
go negative? Numbers are stored in binary. This is
what 100,000 looks like in binary:

 x <- 0001 1000 0110 1010 0000

But when the computer tried to store that value
into a short, it only allowed the value a couple
of bytes of storage. The program stored just the
righthand side of the number:

 y <- 1000 0110 1010 0000

Signed values in binary beginning with a 1 in
highest bit are treated as negative numbers. And
this shortened value is equal to this in decimal:

 -31072

short
int

long

The contents of a long
may be too large to fit
in a short or an int.

The contents of a short will always fit in an int or a long.

164   Chapter 4

cast a float

This will probably store
numbers from 0 to 255.

unsigned
The number will always be positive. Because it doesn’t
need to worry about recording negative numbers,
unsigned numbers can store larger numbers
since there’s now one more bit to work with. So an
unsigned int stores numbers from 0 to a maximum
value that is about twice as large as the maximum
number that can be stored inside an int. There’s also
a signed keyword, but you almost never see it, because
all data types are signed by default.

 unsigned char c;

long
That’s right, you can prefix a data type with the word
long and make it longer. So a long int is a longer
version of an int, which means it can store a larger
range of numbers. And a long long is longer than
a long. You can also use long with floating-point
numbers.

 long double d;

You can put some other keywords before data types to change the way that the numbers are interpreted:

Use casting to put floats into whole numbers
What do you think this piece of code will display?

int x = 7;

int y = 2;

float z = x / y;

printf("z = %f\n", z);

The answer? 3.0000. Why is that? Well, x and y are both integers, and if you
divide integers you always get a rounded-off whole number—in this case, 3.

What do you do if you want to perform calculations on whole numbers and
you want to get floating-point results? You could store the whole numbers into
float variables first, but that’s a little wordy. Instead, you can use a cast to
convert the numbers on the fly:

int x = 7;

int y = 2;

float z = (float)x / (float)y;

printf("z = %f\n", z);

The (float) will cast an integer value into a float value. The calculation
will then work just as if you were using floating-point values the entire time. In
fact, if the compiler sees you are adding, subtracting, multiplying, or dividing
a floating-point value with a whole number, it will automatically cast the
numbers for you. That means you can cut down the number of explicit casts
in your code:

float z = (float)x / y; The compiler will automatically
cast y to a float.

I’ve been
cast a float.

A really REALLY
precise number.

long long is C99
and C11 only.

you are here 4   165

using multiple source files

There’s a new program helping the waiters bus tables at the Head First Diner. The code
automatically totals a bill and adds sales tax to each item. See if you can figure out what needs
to go in each of the blanks.

Note: there are several data types that could be used for this program, but which would you use
for the kind of figures you’d expect?

#include <stdio.h>

 total = 0.0;

 count = 0;

 tax_percent = 6;

 add_with_tax(float f);

{

 tax_rate = 1 + tax_percent / 100 ;

 total = total + (f * tax_rate);

 count = count + 1;

 return total;

}

int main()

{

 val;

 printf("Price of item: ");

 while (scanf("%f", &val) == 1) {

 printf("Total so far: %.2f\n", add_with_tax(val));

 printf("Price of item: ");

 }

 printf("\nFinal total: %.2f\n", total);

 printf("Number of items: %hi\n", count);

 return 0;

} %hi is used to format shorts.

%.2f formats a floating-point
number to two decimal places.

166   Chapter 4

split the check

There’s a new program helping the waiters bus tables at the Head First Diner. The code
automatically totals a bill and adds sales tax to each item. You were to figure out what needs to
go in each of the blanks.

Note: there are several data types that could be used for this program, but which would you use
for the kind of figures you’d expect?

#include <stdio.h>

 total = 0.0;

 count = 0;

 tax_percent = 6;

 add_with_tax(float f);

{

 tax_rate = 1 + tax_percent / 100 ;

 total = total + (f * tax_rate);

 count = count + 1;

 return total;

}

int main()

{

 val;

 printf("Price of item: ");

 while (scanf("%f", &val) == 1) {

 printf("Total so far: %.2f\n", add_with_tax(val));

 printf("Price of item: ");

 }

 printf("\nFinal total: %.2f\n", total);

 printf("Number of items: %hi\n", count);

 return 0;

}

float

You need
a small
floating-point
number to
total the cash. short

There won’t be many items on an
order, so we’ll choose a short.

short

float We’re returning a small cash value, so it’ll be a float.

float
A float will
be OK for
this fraction.

.0

By adding .0, you make the
calculation work as a float. If
you left it as 100, it would
have returned a whole number.

float
Each price will easily fit in a float.

1 + tax_percent / 100;
would return the value 1
because 6/100 == 0 in
integer arithmetic.

you are here 4   167

using multiple source files

Data Type Sizes Up Close
Data types are different sizes on different platforms. But how do you
find out how big an int is, or how many bytes a double takes up?
Fortunately, the C Standard Library has a couple of headers with the
details. This program will tell you about the sizes of ints and floats:

#include <stdio.h>

#include <limits.h>

#include <float.h>

int main()

{

 printf("The value of INT_MAX is %i\n", INT_MAX);

 printf("The value of INT_MIN is %i\n", INT_MIN);

 printf("An int takes %z bytes\n", sizeof(int));

 printf("The value of FLT_MAX is %f\n", FLT_MAX);

 printf("The value of FLT_MIN is %.50f\n", FLT_MIN);

 printf("A float takes %z bytes\n", sizeof(float));

 return 0;

}

When you compile and run this code, you will see something like this:

The values you see on your particular machine will probably be different.

What if you want to know the details for chars or doubles? Or
longs? No problem. Just replace INT and FLT with CHAR (chars), DBL
(doubles), SHRT (shorts), or LNG (longs).

The value of INT_MAX is 2147483647
The value of INT_MIN is -2147483648
An int takes 4 bytes
The value of FLT_MAX is 340282346638528859811704183484516925440.000000
The value of FLT_MIN is 0.00000000000000000000000000000000000001175494350822
A float takes 4 bytes

File Edit Window Help HowBigIsBig

This contains the values for the integer typ
es like int and char.

This contains the values for floats and doubles.

This is the
highest value.

This is the
lowest value.

sizeof returns the number of
bytes a data type occupies.

168   Chapter 4

no dumb questions

Q: Why are data types different on
different operating systems? Wouldn’t it
be less confusing to make them all the
same?

A: C uses different data types on
different operating systems and processors
because that allows it to make the most out
of the hardware.

Q: In what way?

A: When C was first created, most
machines were 8-bit. Now, most machines
are 32- or 64-bit. Because C doesn’t specify
the exact size of its data types, it’s been
able to adapt over time. And as newer
machines are created, C will be able to
make the most of them as well.

Q: What do 8-bit and 64-bit actually
mean?

A: Technically, the bit size of a computer
can refer to several things, such as the size
of its CPU instructions or the amount of
data the CPU can read from memory. The
bit size is really the favored size of numbers
that the computer can deal with.

Q: So what does that have to do with
the size of ints and doubles?

A: If a computer is optimized best to
work with 32-bit numbers, it makes sense
if the basic data type—the int—is set at
32 bits.

Q: I understand how whole numbers
like ints work, but how are floats
and doubles stored? How does the
computer represent a number with a
decimal point?

A: It’s complicated. Most computers
used a standard published by the IEEE
(http://tinyurl.com/6defkv6).

Q: Do I really need to understand
how floating-point numbers work?

A: No. The vast majority of developers
use floats and doubles without
worrying about the details.

Oh no…it’s the out-of-work actors…
To you, it’s code.
To us, it’s art.

Aspiring actors

Some people were never really cut out to be
programmers. It seems that some aspiring actors are
filling in their time between roles and making a little
extra cash by cutting code, and they’ve decided to
spend some time freshening up the code in the bill-
totalling program.

By the time they rejiggered the code, the actors were
much happier about the way everything looked…but
there’s just a tiny problem.

The code doesn’t compile anymore.

you are here 4   169

using multiple source files

Let’s see what’s happened to the code
This is what the actors did to the code. You can see they really just
did a couple of things.

#include <stdio.h>

float total = 0.0;

short count = 0;

/* This is 6%. Which is a lot less than my agent takes...*/

short tax_percent = 6;

int main()

{

 /* Hey - I was up for a movie with Val Kilmer */

 float val;

 printf("Price of item: ");

 while (scanf("%f", &val) == 1) {

 printf("Total so far: %.2f\n", add_with_tax(val));

 printf("Price of item: ");

 }

 printf("\nFinal total: %.2f\n", total);

 printf("Number of items: %hi\n", count);

 return 0;

}

float add_with_tax(float f)

{

 float tax_rate = 1 + tax_percent / 100.0;

 /* And what about the tip? Voice lessons ain't free */

 total = total + (f * tax_rate);

 count = count + 1;

 return total;

}

The code has had some comments added, and they also changed
the order of the functions. They made no other changes.

So there really shouldn’t be a problem. The code should be good to
go, right? Well, everything was great, right up until the point that
they compiled the code…

170   Chapter 4

test drive

Test Drive
If you open up the console and try to compile the program, this happens:

> gcc totaller.c -o totaller && ./totaller
totaller.c: In function "main":
totaller.c:14: warning: format "%.2f" expects type
"double", but argument 2 has type "int"
totaller.c: At top level:
totaller.c:23: error: conflicting types for "add_with_tax"
totaller.c:14: error: previous implicit declaration of
"add_with_tax" was here

File Edit Window Help StickToActing

Bummer.

That’s not good. What does error: conflicting types for
'add_with_tax' mean? What is a previous implicit declaration? And why
does it think the line that prints out the current total is now an int? Didn’t
we design that to be floating point?

The compiler will ignore the changes made to the comments, so that
shouldn’t make any difference. That means the problem must be caused by
changing the order of the functions. But if the order is the problem,
why doesn’t the compiler just return a message saying something like:

Seriously, why doesn’t the compiler give us a little help here?

To understand exactly what’s happening here, you need to get inside the
head of the compiler for a while and look at things from its point of view.
You’ll see that what’s happening is that the compiler is actually trying to be
a little too helpful.

Dude, the order
of the functions
is busted. Fix it.

you are here 4   171

using multiple source files

Compilers don’t like surprises
So what happens when the compiler sees this line of code?

printf("Total so far: %.2f\n", add_with_tax(val));

The compiler sees a call to a function it doesn’t recognize.
Rather than complain about it, the compiler figures that it will find out more about the
function later in the source file. The compiler simply remembers to look out for the function
later on in the file. Unfortunately, this is where the problem lies…

1

The compiler needs to know what data type the function will return.
Of course, the compiler can’t know what the function will return just yet, so it makes an
assumption. The compiler assumes it will return an int.

2

Hey, here’s a call to a function I’ve
never heard of. But I’ll keep a note of it
for now and find out more later.

Meh. I bet the function
returns an int. Most do.

When it reaches the code for the actual function, it returns a “conflicting
types for ‘add_with_tax’” error.
This is because the compiler thinks it has two functions with the same name. One function is
the real one in the file. The other is the one that the compiler assumed would return an int.

3

A function called add_with_tax() that
returns a float??? But in my notes it says we’ve
already got one of these returning an int…

The computer makes an assumption that the function returns an int, when in reality it
returns a float. If you were designing the C language, how would you fix the problem?

172   Chapter 4

correct order

Hello? I really don’t care
how the C language solves the

problem. Just put the functions in
the correct freaking order!

You could just put the functions back in the correct
order and define the function before you call it in main().

Changing the order of the functions means that you can avoid the
compiler ever making any dangerous assumptions about the return types
of unknown functions. But if you force yourself to always define functions
in a specific order, there are a couple of consequences.

Fixing function order is a pain
Say you’ve added a cool new function to your code that everyone
thinks is fantastic:

int do_whatever(){...}

float do_something_fantastic(int awesome_level) {...}

int do_stuff() {

 do_something_fantastic(11);

}

What happens if you then decide your program will be even better if you add
a call to the do_something_fantastic() function in the existing
do_whatever() code? You will have to move the function earlier in
the file. Most coders want to spend their time improving what their code
can do. It would be better if you didn’t have to shuffle the order of the
code just to keep the compiler happy.

In some situations, there is no correct order
OK, so this situation is kind of rare, but occasionally you might write some
code that is mutually recursive:

float ping() {
 ...
 pong();
 ...
}

If you have two functions that call each other, then one of them will
always be called in the file before it’s defined.

For both of those reasons, it’s really useful to be able to define functions in
whatever order is easiest at the time. But how?

There is no way
to reorder these
functions.

float pong() {
 ...
 ping();
 ...
}

Over to
you, Cecil!

you are here 4   173

using multiple source files

Split the declaration from the definition
Remember how the compiler made a note to itself about the function
it was expecting to find later in the file? You can avoid the compiler
making assumptions by explicitly telling it what functions it
should expect. When you tell the compiler about a function, it’s
called a function declaration:

float add_with_tax();
A declaration has no body c

ode.

It just ends with a ; (semicolon).
The declaration tells the compiler what return value to expect.

The declaration is just a function signature: a record of what the
function will be called, what kind of parameters it will accept, and
what type of data it will return.

Once you’ve declared a function, the compiler won’t need to make any
assumptions, so it won’t matter if you define the function after you call it.

So if you have a whole bunch of functions in your code and you
don’t want to worry about their order in the file, you can put a list of
function declarations at the start of your C program code:

float do_something_fantastic();

double awesomeness_2_dot_0();

int stinky_pete();

char make_maguerita(int count);

But even better than that, C allows you to take that whole set of
declarations out of your code and put them in a header file. You’ve
already used header files to include code from the C Standard Library:

#include <stdio.h>
This line will include the
contents of the header
file called stdio.h.

Let’s go see how you can create your own header files.

Declarations
don’t have a
body.

174   Chapter 4

add a header

Creating your first header file
To create a header, you just need to do two things:

Create a new file with a .h extension.
If you are writing a program called totaller, then create a file called
totaller.h and write your declarations inside it:

1

float add_with_tax(float f);

totaller.hYou won’t need to include the main() function in the header file,
because nothing else will need to call it.

Include your header file in your main program.
At the top of your program, you should add an extra include line:

2

#include <stdio.h>

#include "totaller.h"

...

totaller.c

Add this include to your other include lines.

When you write the name of the header file, make sure you
surround it with double quotes rather than angle brackets. Why
the difference? When the compiler sees an include line with
angle brackets, it assumes it will find the header file somewhere
off in the directories where the library code lives. But your
header file is in the same directory as your .c file. By wrapping
the header filename in quotes, you are telling the compiler to
look for a local file.

When the compiler reads the #include in the code, it will read
the contents of the header file, just as if it had been typed into
the code.

Separating the declarations into a separate header file keeps
your main code a little shorter, and it has another big advantage
that you’ll find out about in a few pages.

For now, let’s see if the header file fixed the mess.

Local header files can also include
directory names, but you will normally put
them in the same directory as the C file.

#include is a
preprocessor
instruction.

you are here 4   175

using multiple source files

Test Drive
Now when you compile the code, this happens:

> gcc totaller.c -o totaller
File Edit Window Help UseHeaders

The compiler reads the function declarations from the
header file, which means it doesn’t have to make any guesses
about the return type of the function. The order of the
functions doesn’t matter.

Just to check that everything is OK, you can run the
generated program to see if it works the same as before.

> ./totaller
Price of item: 1.23
Total so far: 1.30
Price of item: 4.57
Total so far: 6.15
Price of item: 11.92
Total so far: 18.78
Price of item: ^D
Final total: 18.78
Number of items: 3

File Edit Window Help UseHeaders

Press Ctrl-D here to stop the
program from asking for more prices.

No error
messages
this time.

176   Chapter 4

be the compiler

BE the Compiler
Look at the program below. Part of the
program is missing. Your job is to play
like you’re the compiler and say what

you would do if each of the
candidate code fragments
on the right were slotted
into the missing space.

#include <stdio.h>

 printf("A day on Mercury is %f hours\n", day);

 return 0;

}

float mercury_day_in_earth_days()

{

 return 58.65;

}

int hours_in_an_earth_day()

{

 return 24;

}

Candidate code goes here.

you are here 4   177

using multiple source files

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

Here are the code fragments.

float mercury_day_in_earth_days();

int hours_in_an_earth_day();

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury_day_in_earth_days();

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury_day_in_earth_days();

int hours_in_an_earth_day();

int main()

{

 int length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

Mark the boxes that
you think are correct.

178   Chapter 4

be the compiler solution

BE the Compiler Solution
Look at the program below. Part of the
program is missing. Your job was to play
like you’re the compiler and say what

you would do if each of the
candidate code fragments
on the right were slotted
into the missing space.

#include <stdio.h>

 printf("A day on Mercury is %f hours\n", day);

 return 0;

}

float mercury_day_in_earth_days()

{

 return 58.65;

}

int hours_in_an_earth_day()

{

 return 24;

}

you are here 4   179

using multiple source files

float mercury_day_in_earth_days();

int hours_in_an_earth_day();

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury_day_in_earth_days();

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury_day_in_earth_days();

int hours_in_an_earth_day();

int main()

{

 int length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

There will be a warning, beause you haven’t
declared the hours_in_an_earth_day()
before calling it. The program will still
work because it will guess the function
returns an int.

The program will compile without
warnings, but it won’t work
because there will be a rounding
problem.

The length_of_day variable should be a float.

The program won’t compile, because you’re calling a float function without declaring it first.

180   Chapter 4

no dumb questions

Q: So I don’t need to have
declarations for int functions?

A: Not necessarily, unless you are
sharing code. You’ll see more about this
soon.

Q: I’m confused. You talk about the
compiler preprocessing? Why does the
compiler do that?

A: Strictly speaking, the compiler just
does the compilation step: it converts the C
source code into assembly code. But in a
looser sense, all of the stages that convert
the C source code into the final executable
are normally called compilation, and the
gcc tool allows you to control those
stages. The gcc tool does preprocessing
and compilation.

Q: What is the preprocessor?

A: Preprocessing is the first stage in
converting the raw C source code into a
working executable. Preprocessing creates
a modified version of the source just before
the proper compilation begins. In your code,
the preprocessing step read the contents of
the header file into the main file.

Q: Does the preprocessor create an
actual file?

A: No, compilers normally just use pipes
for sending the stuff through the phases of
the compiler to make things more efficient.

Q: Why do some headers have
quotes and others have angle brackets?

A: Strictly speaking, it depends on the
way your compiler works. Usually quotes
mean to simply look for a file using a
relative path. So if you just include the
name of a file, without including a directory
name, the compiler will look in the current
directory. If angle brackets are used, it
will search for the file along a path of
directories.

Q: What directories will the compiler
search when it is looking for header
files?

A: The gcc compiler knows where the
standard headers are stored. On a Unix-
style operating system, the header files are
normally in places like /usr/local/include,
/usr/include, and a few others.

Q: So that’s how it works for
standard headers like stdio.h?

A: Yes. You can read through the
stdio.h file on a Unix-style machine in
/usr/include/stdio.h. If you have the MinGW
compiler on Windows, it will probably be in
C:\MinGW\include\stdio.h.

Q: Can I create my own libraries?

A: Yes; you’ll learn how to do that later
in the book.

you are here 4   181

using multiple source files

�� If the compiler finds a call to a
function it hasn’t heard of, it will
assume the function returns an int.

�� So if you try to call a function before
you define it, there can be problems.

�� Function declarations tell the
compiler what your functions will look
like before you define them.

�� If function declarations appear at the
top of your source code, the compiler
won’t get confused about return
types.

�� Function declarations are often put
into header files.

�� You can tell the compiler to read
the contents of a header file using
#include.

�� The compiler will treat included
code the same as code that is typed
into the source file.

C is a very small language. Here is the entire set
of reserved words (in no useful order).

Every C program you ever see will break into just
these words and a few symbols. If you use these
for names, the compiler will be very, very upset.

This Table’s Reserved…

auto if break
int case long
char register continue

return default short
do sizeof double

static else struct
entry switch extern

typedef float union
for unsigned goto
while enum void
const signed volatile

182   Chapter 4

code sharing

If you have common features…
Chances are, when you begin to write several programs in C, you will
find that there are some functions and features that you will want to
reuse from other programs. For example, look at the specs of the two
programs on the right.

XOR encryption is a very simple way of disguising a piece of text by
XOR-ing each character with some value. It’s not very secure, but it’s
very easy to do. And the same code that can encrypt text can also be
used to decrypt it. Here’s the code to encrypt some text:

Imagine you have a set of
functions that you want to
share between programs.
If you had created the C
programming language, how
would you allow code to be
shared?

file_hider

Read the contents
of a file and create
an encrypted version
using XOR encryption.

message_hider

Read a series of strings

from the Standard

Input and display an

encrypted version on

the Standard Output

using XOR encryption.

…it’s good to share code
Clearly, both of those programs are going to need to use
the same encrypt() function. So you could just copy
the code from one program to the other, right? That’s not
so bad if there’s just a small amount of code to copy, but
what if there’s a really large amount of code? Or what if
the way the encrypt() function works needs to change
in the future? If there are two copies of the encrypt()
function, you will have to change it in more than one
place.

For your code to scale properly, you really need to find
some way to reuse common pieces of code—some way
of taking a set of functions and making them available in
a bunch of different programs.

How would you do that?

void encrypt(char *message)

{

 char c;

 while (*message) {

 *message = *message ^ 31;

 message++;

 }

}

void means don’t return anything.
Pass a pointer to an
array into the function.

Loop through the
array and update each
character with an
encrypted version.

This means
you’ll XOR each
character with
the number 31.

Doing math with a
character? You can because
char is a numeric data type.

you are here 4   183

using multiple source files

You can split the code into separate files
If you have a set of code that you want to share among several files, it
makes a lot of sense to put that shared code into a separate .c file. If the
compiler can somehow include the shared code when it’s compiling the
program, you can use the same code in multiple applications at once. So
if you ever need to change the shared code, you only have to do it in one
place.

If you want to use a separate .c file for the shared code, that gives
us a problem. So far, you have only created programs from single .c
source files. So if you had a C program called blitz_hack, you
would have created it from a single source code file called blitz_hack.c.

But now you want some way to give the compiler a set of source
code files and say, “Go make a program from those.” How do
you do that? What syntax do you use with the gcc compiler? And
more importantly, what does it mean for a compiler to create a single
executable program from several files? How would it work? How
would it stitch them together?

To understand how the C compiler can create a
single program from multiple files, let’s take a
look at how compilation works…

This is the
shared code.

The compiler will compile the shared code into each program.

You need to find a way
of telling the compiler to
create the program from
multiple source files.

Read a file,
rewrite a file.

Encrypt
text.

Read Standard
Input, display text.

file_hider message_hider

184   Chapter 4

how compilation works

Compilation behind the scenes
To understand how a compiler can compile several source files
into a single program, you’ll need to pull back the curtain and
see how compilation really works.

Hmmmm…so I need to
compile the source files
into a program? Let’s see
what I can cook up…

Preprocessing: fix the source.
The first thing the compiler needs to do is fix the source. It needs to add in
any extra header files it’s been told about using the #include directive.
It might also need to expand or skip over some sections of the program.
Once it’s done, the source code will be ready for the actual compilation.

1

First, I’ll just add
some extra ingredients
into the source.

“directive” is
just a fancy
word for
“command.” It can do this with commands like #define and #ifdef. You’ll see how to use them later in the book.

Compilation: translate into assembly.
The C programming language probably seems pretty low level, but
the truth is it’s not low level enough for the computer to understand. The
computer only really understands very low-level machine code
instructions, and the first step to generate machine code is to convert
the C source code into assembly language symbols like this:

2

Looks pretty obscure? Assembly language describes the individual
instructions the central processor will have to follow when running the
program. The C compiler has a whole set of recipes for each of the
different parts of the C language. These recipes will tell the compiler how
to convert an if statement or a function call into a sequence of assembly
language instructions. But even assembly isn’t low level enough for the
computer. That’s why it needs…

movq	 -24(%rbp), %rax

movzbl	(%rax), %eax

movl	 %eax, %edx

So for this “if”
statement I need
to begin by adding
onto the stack…

you are here 4   185

using multiple source files

Assembly: generate the object code.
The compiler will need to assemble the symbol codes into machine or
object code. This is the actual binary code that will be executed by
the circuits inside the CPU.

3

10010101 00100101 11010101 01011100
This is a really
dirty joke in
machine code.

So are you all done? After all, you’ve taken the original C source code
and converted it into the 1s and 0s that the computer’s circuits need.
But no, there’s still one more step. If you give the computer several files
to compile for a program, the compiler will generate a piece of object
code for each source file. But in order for these separate object files to
form a single executable program, one more thing has to occur…

Time to bake that
assembly into
something edible.

Linking: put it all together.
Once you have all of the separate pieces of object code, you need to
fit them together like jigsaw pieces to form the executable program.
The compiler will connect the code in one piece of object code that
calls a function in another piece of object code. Linking will also make
sure that the program is able to call library code properly. Finally, the
program will be written out into the executable program file using
a format that is supported by the operating system. The file format
is important, because it will allow the operating system to load the
program into memory and make it run.

4

So how do you actually tell gcc that we want to make
one executable program from several separate source
files?

Finally, I need to put
everything together
for the final result…

186   Chapter 4

sharing variables

The shared code needs its own header file
If you are going to share the encrypt.c code between
programs, you need some way to tell those programs
about the encrypt code. You do that with a header file.

#include "encrypt.h"

void encrypt(char *message)
{
 char c;
 while (*message) {
 *message = *message ^ 31;
 message++;
 }
}

encrypt.c

You’ll include the header
inside encrypt.c.

void encrypt(char *message);

encrypt.h

Include encrypt.h in your program
You’re not using a header file here to be able to reorder the
functions. You’re using it to tell other programs about
the encrypt() function:

#include <stdio.h>
#include "encrypt.h"

int main()
{
 char msg[80];
 while (fgets(msg, 80, stdin)) {
 encrypt(msg);
 printf("%s", msg);
 }
}

message_hider.c

You’ll include encrypt.h so that
the program has the declaration
of the encrypt() function.

Having encrypt.h inside the main program will mean the compiler
will know enough about the encrypt() function to compile the
code. At the linking stage, the compiler will be able to connect
the call to encrypt(msg) in message_hider.c to the actual
encrypt() function in encrypt.h.

Finally, to compile everything together you just need to pass the
source files to gcc:

gcc message_hider.c encrypt.c -o message_hider

Sharing variables

You’ve seen how to share functions
between different files. But what if
you want to share variables? Source
code files normally contain their
own separate variables to prevent a
variable in one file affecting a variable
in another file with the same name.
But if you genuinely want to share
variables, you should declare them in
your header file and prefix them with
the keyword extern:

extern int passcode;

you are here 4   187

using multiple source files

Test Drive
Let’s see what happens when you compile the message_hider
program:

> gcc message_hider.c encrypt.c -o message_hider
> ./message_hider
I am a secret message
V?~r?~?lz|mzk?rzll~xz
> ./message_hider < encrypt.h
ipv{?zq|mfok7|w~m5?rzll~xz6$
>

File Edit Window Help Shhh...

You need to compile the code
with both source files.

When you run the program, you can enter text and see the encrypted version.
You can even pass it the
contents of the encrypt.h
file to encrypt it.

The message_hider program is using the encrypt() function from encrypt.c.

The program works. Now that you have the encrypt()
function in a separate file, you can use it in any program
you like. If you ever change the encrypt() function to be
something a little more secure, you will need to amend only
the encrypt.c file.

�� You can share code by putting it into
a separate C file.

�� You need to put the function
declarations in a separate .h header
file.

�� Include the header file in every C file
that needs to use the shared code.

�� List all of the C files needed in the
compiler command.

Write your own program
using the encrypt()
function. Remember,
you can call the same
function to decrypt text.

Go Off Piste

command_module.c

engine.c

inst_unit.c
ullage_motor.c

reaction_control.c

188   Chapter 4

Man! Every time I make a
simple change in one file, it
takes an age to recompile! And
I’m working on a schedule…

recompiling files

you are here 4   189

using multiple source files

command_module.c

It’s not rocket science…or is it?
Breaking your program out into separate source files not only means
that you can share code between different programs, but it also means you
can start to create really large programs. Why? Well, because you can start
to break your program down into smaller self-contained pieces of
code. Rather than being forced to have one huge source file, you can have
lots of simpler files that are easier to understand, maintain, and test.

So on the plus side, you can start to create really large programs. The
downside? The downside is…you can start to create really large
programs. C compilers are really efficient pieces of software. They take
your software through some very complex transformations. They can
modify your source, link hundreds of files together without blowing
your memory, and even optimize the code you wrote, along the way.
And even though they do all that, they still manage to run quickly.

But if you create programs that use more than a few files, the time it
takes to compile the code starts to become important. Let’s say it takes
a minute to compile a large project. That might not sound like a lot of
time, but it’s more than long enough to break your train of thought. If
you try out a change in a single line of code, you want to see the result
of that change as quickly as possible. If you have to wait a full minute
to see the result of every change, that will really start to slow you down.

If you change even one line in one file, it can take the compiler a long time to recompile all the source files.

Think carefully. Even a simple change might mean running a large, slow compile to
see the result. Given what you know about the compilation process, how could you
speed up the time to recompile the program?

launch
pitch_motor.c

launch.c
retro.c

engine.c

inst_unit.c

Compiler

reaction_control.c

190   Chapter 4

save copies

Don’t recompile every file
If you’ve just made a change to one or two of your source code files, it’s
a waste to recompile every source file for your program. Think what
happens when you issue a command like this:

gcc reaction_control.c pitch_motor.c ... engine.c -o launch

Skipping a few filenames here.

What will the compiler do? It will run the preprocessor, compiler, and
assembler for each source code file. Even the ones that haven’t changed. And
if the source code hasn’t changed, the object code that’s generated for
that file won’t change either. So if the compiler is generating the object
code for every file, every time, what do you need to do?

If you change a single file, you will have to recreate the object code file
from it, but you won’t need to create the object code for any other file.
Then you can pass all the object code files to the linker and create a new
version of the program.

So how do you tell gcc to save the object code in a
file? And how do you then get the compiler to link the
object files together?

Save copies of the compiled code
If you tell the compiler to save the object code it generates into a file, it
shouldn’t need to recreate it unless the source code changes. If a file does
change, you can recreate the object code for that one file and then pass
the whole set of object files to the compiler so they can be linked.

Object
code file

C source
file

Compiler

Object
code file

C source
file

Compiler

Object
code file

C source
file

Compiler

Executable

Linker

If this source
file changes,
it’s the only
one you need
to recompile.

The compiler will update
the object code that’s
stored in a file.

You will still need to run the linker, but most of the files will still be the same.

you are here 4   191

using multiple source files

First, compile the source into object files
You want object code for each of the source files, and you can
do that by typing this command:

gcc -c *.c
The operating system will replace
*.c with all the C filenames. This will create object

code for every file.
The *.c will match every C file in the current directory,
and the -c will tell the compiler that you want to create an
object file for each source file, but you don’t want to link them
together into a full executable program.

gcc -c will compile the
code but won’t link it.

Then, link them together
Now that you have a set of object files, you can link them
together with a simple compile command. But instead of
giving the compiler the names of the C source files, you tell it
the names of the object files:

gcc *.o -o launchThis is similar to the
compile commands
you’ve used before.

Instead of C source files, list
the object files.

This will match all the object files in the directory.

The compiler is smart enough to recognize the files as
object files, rather than source files, so it will skip most of
the compilation steps and just link them together into an
executable program called launch.

OK, so now you have a compiled program, just like before.
But you also have a set of object files that are ready to be
linked together if you need them again. So if you change just
one of the files, you’ll only need to recompile that single file
and then relink the program:

gcc -c thruster.c

gcc *.o -o launch
This is the only file that’s changed.

This will recreate the thruster.o file.

This will link everything together.
Even though you have to type two commands, you’re saving a
lot of time:

			 Before		 After

Compile time:	 2 mins 30 secs	 2 secs

 Link time:	 	 6 secs		 6 secs

Source files

Object files

Before, you were compiling every file.

Now, you’re
compiling only the
changed file.

The link time is
still 6 seconds. The build is 95% faster.

gcc -o

gcc -c

Executable

192   Chapter 4

file update

Here is some of the code that’s used to control the engine management system on the craft.
There’s a timestamp on each file. Which files do you think need to be recreated to make the
ems executable up to date? Circle the files you think need to be updated.

thruster.c
11:43

turbo.c
12:15

graticule.c
14:52

servo.c
13:47

thruster.o
11:48

turbo.o
12:22

graticule.o
14:25

servo.o
13:46

ems
14:26

you are here 4   193

using multiple source files

And in the galley, they need to check that their code’s up to date as well. Look at the times against the files. Which of
these files need to be updated?

microwave.c
15:42

popcorn.c
17:05

juicer.c
16:41

microwave.o
18:02

popcorn.o
17:07

juicer.o
16:43

galley
17:09

194   Chapter 4

files updated

Here is some of the code that’s used to control the engine management system on the craft.
There’s a timestamp on each file. You were to circle the files you think need to be recreated to
make the ems executable up to date.

thruster.c
11:43

turbo.c
12:15

graticule.c
14:52

servo.c
13:47

thruster.o
11:48

turbo.o
12:22

graticule.o
14:25

servo.o
13:46

ems
14:26

graticule.o needs to be
recompiled, because it’s
older than the latest
version of its source.

servo.o needs to be
recompiled, because it’s
older than its source.

Because you’ve changed graticule.o

and servo.o, you’ll need to relink

the ems executable as well.

you are here 4   195

using multiple source files

And in the galley, they need to check that their code’s up to date as well. Look at the times against the files. Which of
these files need to be updated?

microwave.c
15:42

popcorn.c
17:05

juicer.c
16:41

microwave.o
18:02

popcorn.o
17:07

juicer.o
16:43

galley
17:09

None of the *.o files
needs to be recompiled.
They are all newer
than their source files.

The galley executable needs to
be relinked, because it’s older
than the microwave.o file.

196   Chapter 4

need automation

It’s hard to keep track of the files

It’s true: partial compiles are faster, but you
have to think more carefully to make sure
you recompile everything you need.

If you are working on just one source file, things will be
pretty simple. But if you’ve changed a few files, it’s pretty
easy to forget to recompile some of them. That means the
newly compiled program won’t pick up all the changes
you made. Now, of course, when you come to ship the
final program, you can always make sure you can do a full
recompile of every file, but you don’t want to do that while
you’re still developing the code.

Even though it’s a fairly mechanical process to look for
files that need to be compiled, if you do it manually, it will
be pretty easy to miss some changes.

Is there something we can use to automate the process?

I thought the whole point of saving time
was so I didn’t have to get distracted.
Now the compile is faster, but I have to
think a lot harder about how to compile
my code. Where’s the sense in that?

you are here 4   197

using multiple source files

Wouldn’t it be dreamy if there were
a tool that could automatically recompile
just the source that’s changed? But I
know it’s just a fantasy…

198   Chapter 4

make it automatic

Automate your builds with the make tool
You can compile your applications really quickly in gcc, as long as
you keep track of which files have changed. That’s a tricky thing to
do, but it’s also pretty straightforward to automate. Imagine you have
a file that is generated from some other file. Let’s say it’s an object
file that is compiled from a source file:

If the thruster.c
file is newer, you
need to recompile.

If the thruster.o
file is newer, you
don’t need to
recompile.

How do you tell if the thruster.o file needs to be recompiled? You just
look at the timestamps of the two files. If the thruster.o file is older
than the thruster.c file, then the thruster.o file needs to be recreated.
Otherwise, it’s up to date.

That’s a pretty simple rule. And if you have a simple rule for
something, then don’t think about it—automate it…

make is a tool that can run the compile command for you. The
make tool will check the timestamps of the source files and the
generated files, and then it will only recompile the files if things have
gotten out of date.

But before you can do all these things, you need to tell make about
your source code. It needs to know the details of which files depend
on which files. And it also needs to be told exactly how you want to
build the code.

What does make need to know?
Every file that make compiles is called a target. Strictly speaking,
make isn’t limited to compiling files. A target is any file that is
generated from some other files. So a target might be a zip archive
that is generated from the set of files that need to be compressed.

For every target, make needs to be told two things:

Together, the dependencies and the recipe form a rule. A rule tells
make all it needs to know to create the target file.

The dependencies.
Which files the target is going to be generated from.

¥

The recipe.
The set of instructions it needs to run to generate the file.

¥

thruster.c thruster.o

Hmm…this file’s OK.
And this one. And this one.
And…ah, this one’s out of
date. I’d better send that
to the compiler.

This is make, your
new best friend.

you are here 4   199

using multiple source files

How make works
Let’s say you want to compile thruster.c into some object code in
thruster.o. What are the dependencies and what’s the recipe?

The thruster.o file is called the target, because it’s the file you
want to generate. thruster.c is a dependency, because it’s a file the
compiler will need in order to create thruster.o. And what will the
recipe be? That’s the compile command to convert thruster.c into
thruster.o.

gcc -c thruster.c
This is the rule for
creating thruster.o.

Make sense? If you tell the make tool about the dependencies
and the recipe, you can leave it to make to decide when it needs
to recompile thruster.o.

But you can go further than that. Once you build the thruster.o
file, you’re going to use it to create the launch program. That
means the launch file can also be set up as a target, because it’s
a file you want to generate. The dependency files for launch are
all of the .o object files. The recipe is this command:

gcc *.o -o launch

Once make has been given the details of all of the dependencies
and rules, all you have to do is tell it to create the launch file.
make will work out the details.

But how do you tell make about the
dependencies and recipes? Let’s find out.

thruster.c thruster.o

launch

launch.o thruster.o

launch.c launch.h thruster.h thruster.c

So I’ve got to compile the
launch program? Hmm…
First I’ll need to recompile
thruster.o, because it’s out
of date; then I just need
to relink launch.

	 The make tool
may have a
different name
on Windows.

Because make
came from the Unix world,
there are different flavors of it
available in Windows. MinGW
includes a version of make
called mingw32-make and
Microsoft produce their own
version called NMAKE.

200   Chapter 4

make a makefile

Tell make about your code with a makefile
All of the details about the targets, dependencies, and
recipes need to be stored in a file called either makefile or
Makefile. To see how it works, imagine you have a pair of
source files that together create the launch program:

The launch program is made by linking the launch.o and
thruster.o files. Those files are compiled from their matching
C and header files, but the launch.o file also depends on the
thruster.h file because it contains code that will need to call a
function in the thruster code.

This is how you’d describe that build in a makefile:

launch.o: launch.c launch.h thruster.h

	 gcc -c launch.c

thruster.o: thruster.h thruster.c

	 gcc -c thruster.c

launch: launch.o thruster.o

	 gcc launch.o thruster.o -o launch

	 All of the
recipe lines
MUST begin
with a tab
character.

If you just try to indent the
recipe lines with spaces, the
build won’t work.

There are three RULES.

This is a target.
A target is a file that is
going to be generated.

This is a recipe for
creating thruster.o.

launch.o depends on these three files.

The recipes MUST begin with a tab character.

launch

launch.o thruster.o

launch.c launch.h thruster.h thruster.c

The launch program is made from the launch.o and thruster.o files.

thruster.o is compiled from
thruster.h and thruster.c. launch.o is compiled from launch.c and

launch.h, and ALSO from thruster.h.

you are here 4   201

using multiple source files

Test Drive
Save your make rules into a text file called Makefile in the same
directory; then, open up a console and type the following:

> make launch
gcc -c launch.c
gcc -c thruster.c
gcc launch.o thruster.o -o launch

File Edit Window Help MakeItSoYou are telling make to create the launch file.
make first needs to create
a launch.o with this line.
make then needs to create
thruster.o with this line.

Finally, make links the object files
to create the launch program.

You can see that make was able to work out the sequence of
commands required to create the launch program. But what
happens if you make a change to the thruster.c file and then run
make again?

> make launch
gcc -c thruster.c
gcc launch.o thruster.o -o launch

File Edit Window Help MakeItSomake no longer needs to compile launch.c.

launch.o is already up to date.

make is able to skip creating a new version of launch.o. Instead, it
just compiles thruster.o and then relinks the program.

202   Chapter 4

no dumb questions

Q: Is make just like ant?

A: It’s probably better to say that build tools like ant and
rake are like make. make was one of the earliest tools used to
automatically build programs from source code.

Q: This seems like a lot of work just to compile source
code. Is it really that useful?

A: Yes, make is amazingly useful. For small projects, make
might not appear to save you that much time, but once you have
more than a handful of files, compiling and linking code together
can become very painful.

Q: If I write a makefile for a Windows machine, will it work
on a Mac? Or a Linux machine?

A: Because makefiles calls commands in the underlying
operating system, sometimes makefiles don’t work on different
operating systems.

Q: Can I use make for things other than compiling code?

A: Yes. make is most commonly used to compile code. But it
can also be used as a command-line installer, or a source control
tool. In fact, you can use make for almost any task that you can
perform on the command line.

Tales from
the Crypt

Why indent with tabs?

It’s easy to indent recipes with
spaces instead of tabs. So why
does make insist on using tabs?
This is a quote from make’s
creator, Stuart Feldman:

“Why the tab in column 1? … It
worked, it stayed. And then a
few weeks later I had a user
population of about a dozen,
most of them friends, and I
didn’t want to screw up my
embedded base. The rest, sadly,
is history.”

Geek Bits

make takes away a lot of the pain of compiling files.
But if you find that even it is not automatic enough,
take a look at a tool called autoconf:

http://www.gnu.org/software/autoconf/

autoconf is used to generate makefiles. C
programmers often create tools to automate the
creation of software. An increasing number of them
are available on the GNU website.

you are here 4   203

using multiple source files

oggswing:

swing.ogg:

Make Magnets
Hey, baby, if you don’t groove to the latest tunes, then you’ll love the program the
guys in the Head First Lounge just wrote! oggswing is a program that reads an Ogg
Vorbis music file and creates a swing version. Sweet! See if you can complete the
makefile that compiles oggswing and then uses it to convert a .ogg file:

[SPACES]

oggswing

oggswing whitennerd
y.ogg swing.ogg

oggswing.h

oggswing.c

gcc oggswing.c -o oggswing

whitennerdy.ogg

[TAB]

[TAB][SPACES]

This converts
whitennerdy.ogg
to swing.ogg.

204   Chapter 4

make magnets solution

oggswing:

swing.ogg:

Make Magnets Solution
Hey, baby, if you don’t groove to the latest tunes, then you’ll love the program the
guys in the Head First Lounge just wrote! oggswing is a program that reads an
Ogg Vorbis music file and creates a swing version. Sweet! You were to complete the
makefile that compiles oggswing and then uses it to convert a .ogg file:

[SPACES]

oggswing.hoggswing.c

gcc oggswing.c -o oggswing

[TAB]

[TAB]

[SPACES]

Geek Bits

The make tool can do far, far more than we have space to
discuss here. To find out more about make and what it can do
for you, visit the GNU Make Manual at:

http://tinyurl.com/yczmjx

oggswing

oggswing whitennerd
y.ogg swing.ogg

whitennerdy.ogg

Liftoff!
If you have a very slow build, make will really speed things up.
Most developers are so used to building their code with make
that they even use it for small programs. make is like having
a really careful developer sitting alongside you. If you have a
large amount of code, make will always take care to build just
the code you need at just the time you need it.

And sometimes getting things done in time is
important…

you are here 4   205

using multiple source files

�� It can take a long time to
compile a large number of
files.

�� You can speed up
compilation time by storing
object code in *.o files.

�� The gcc can compile
programs from object files as
well as source files.

�� The make tool can be used
to automate your builds.

�� make knows about the
dependencies between files,
so it can compile just the files
that change.

�� make needs to be told about
your build with a makefile.

�� Be careful formatting your
makefile: don’t forget to
indent lines with tabs instead
of spaces.

206   Chapter 4

c toolbox

Your C Toolbox

You’ve got Chapter 4 under
your belt, and now you’ve

added data types and header
files to your toolbox. For a complete

list of tooltips in the book, see
Appendix ii.CH

AP
T

ER
 4

chars are
numbers.

Use shorts
for small
whole
numbers.

Use longs
for really big
whole numbers.

Use ints for
most whole
numbers.

Use floats for
most floating
points.

Use doubles
for really
precise
floating points. Split function

declarations
from
definitions. Put

declarations
in a header
file. #include

“” for local
headers.

#include <>
for library
headers.

Save object
code into
files to speed
up your builds.

Use make to
manage your
builds.

C# Lab   207

Name: Date:

C Lab   207

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve gained
over the last few chapters.
This project is bigger than the ones you’ve seen so far.
So read the whole thing before you get started, and
give yourself a little time. And don’t worry if you get
stuck. There are no new C concepts in here, so you
can move on in the book and come back to the lab
later.
We’ve filled in a few design details for you, and we’ve
made sure you’ve got all the pieces you need to write
the code. You can even build the physical device.
It’s up to you to finish the job, but we won’t give you
the code for the answer.

C Lab 1
Arduino

208  

Arduino

The spec: make your houseplant talk
Ever wished your plants could tell you when they need watering?
Well, with an Arduino they can! In this lab, you’ll create an
Arduino-powered plant monitor, all coded in C.

Here’s what you’re going to build.

The physical device
The plant monitor has a moisture sensor that measures how wet your
plant’s soil is. If the plant needs watering, an LED lights up until the
plant’s been watered, and the string “Feed me!” is repeatedly sent to
your computer.

When the plant has been watered, the LED switches off and the
string “Thank you, Seymour!” is sent once to your computer.

Feed me! Feed
me now!

Feed me!

Feed me!

Feed me!

The moisture sensor
detects whether or not
the plant needs watering.

The LED lights up when
the plant needs watering.

Arduino

Solderless
breadboard

The plant status is shown on your computer.

USB cable

   209

Arduino

The Arduino
The brains of the plant monitor is an
Arduino. An Arduino is a small micro-
controller-based open source platform for
electronic prototyping. You can connect it
to sensors that pick up information about
the world around it, and actuators that
respond. All of this is controlled by code
you write in C.

The Arduino board has 14 digital IO pins,
which can be inputs or outputs. These
tend to be used for reading on or off
values, or switching actuators on or off.

The board also has six analog input pins,
which take voltage readings from a sensor.

The board can take power from your
computer’s USB port.

The Arduino IDE
You write your C code in an Arduino IDE. The IDE allows
you to verify and compile your code, and then upload it to the
Arduino itself via your USB port. The IDE also has a built-in
serial monitor so that you can see what data the Arduino is
sending back (if any).

The Arduino IDE is free, and you can get hold of a copy from
www.arduino.cc/en/Main/Software.

The IDE lets you upload code to the Arduino board…

…and see what data’s being sent
back via the serial port.

Digital
pins 0
to 13Analog

input
pins 0
to 5

USB

An
Arduino
board

210  

Arduino

Build the physical device
You start by building the physical device. While this bit’s
optional, we really recommend that you give it a go. Your
plants will thank you for it.

You will need:
1 Arduino
1 solderless bre

adboard

1 LED
1 10K Ohm resistor

2 galvanized nai
ls

3 short pieces
of jumper wire

2 long pieces of
 jumper wire

We used an Arduino Uno.

Build the moisture sensor
Take a long piece of jumper wire and attach it to the head of one
of the galvanized nails. You can either wrap the wire around the
nail or solder it in place.

Once you’ve done that, attach another long piece of jumper wire
to the second galvanized nail.

The moisture sensor works by checking the conductivity between
the two nails. If the conductivity is high, the moisture content must
be high. If it’s low, the moisture content must be low.

Connect the LED
Look at the LED. You will see that it has one
longer (positive) lead and one shorter (negative)
lead.

Now take a close look at the Arduino. You will
see that along one edge there are slots for 14
digital pins labeled 0–13, and another one next
to it labeled GND. Put the long positive lead of
the LED into the slot labeled 13, and the shorter
negative lead into the slot labeled GND.

This means that the LED can be controlled
through digital pin 13.

Insert the long LED
lead into the slot
for digital pin 13.

Insert the short LED lead into the slot labeled GND.

Fix the end of the
wire to the head of
the nail.

   211

Arduino

Connect the moisture sensor
Connect the moisture sensor as shown below:

�Connect a short jumper wire from the GND pin on the Arduino to slot D15 on the breadboard.1

�Connect a short jumper wire from the 0 analog input pin to slot D10 on the breadboard.3

�Connect the 10K Ohm resistor from slot C15 on the breadboard to slot C10.2

�Take one of the galvanized nails, and connect the wire attached to it to slot B10.4

�Connect a short jumper wire from the 5V pin on the Arduino to slot C5 on the breadboard.5

�Take the other galvanized nail, and connect the wire attached to it to slot B5.6

1

2

3

4

5

6
One galvanized
nail is attached
to this wire…

…the other galvanized nail is attached to this wire.

The moisture sensor is connected to analog input pin 0, which means we can read analog data from the sensor via this pin.

That’s the physical Arduino built. Now for the C code…

212  

Arduino

Here’s what your code should do
Your Arduino C code should do the following.

Read from the moisture sensor
The moisture sensor is connected to an analog input pin. You
will need to read analog values from this pin.

Here at the lab, we’ve found that our plants generally need
watering when the value goes below 800, but your plant’s
requirements may be different—say, if it’s a cactus.

Write to the LED
The LED is connected to a digital pin.

When the plant doesn’t need any more water, write to the digital
pin the LED is connected to, and get it to switch off the LED.

When the plant needs watering, write to the digital pin and get it
to switch on the LED. For extra credit, get it to flash. Even better,
get it to flash when the conditions are borderline.

Write to the serial port
When the plant needs watering, repeatedly write the string

“Feed me!” to the computer serial port.

When the plant has enough water, write the string “Thank
you, Seymour!” to the serial port once.

Assume that the Arduino is plugged in to the computer USB
socket.

Thank you,
Seymour!

   213

Arduino

Here’s what your C code should look like
An Arduino C program has a specific structure. Your program
must implement the following:

void setup()

{

/*This is called when the program starts. It
basically sets up the board. Put any initialization
code here.*/

}

void loop()

{

/*This is where your main code goes. This function
loops over and over, and allows you to respond to
input from your sensors. It only stops running when
the board is switched off*/

}

The easiest way of writing the Arduino C code is with the
Arduino IDE. The IDE allows you to verify and compile
your code, and then upload your completed program to the
Arduino board, where you’ll be able to see it running.

The Arduino IDE comes with a library of Arduino functions
and includes lots of handy code examples. Turn the page to
see a list of the functions you’ll find most useful when creating
Arduino.

You can add
extra functions
and declarations
if you like, but
without these
two functions
the code won’t
work.

214  

Arduino

Here are some useful Arduino functions

void pinMode(int pin, int mode)

Tells the Arduino whether the digital pin is an input or output. mode can be either
INPUT or OUTPUT.

int digitalRead(int pin)

Reads the value from the digital pin. The return value can be either HIGH or LOW.

void digitalWrite(int pin, int value)

Writes a value to a digital pin. value can be either HIGH or LOW.

int analogRead(int pin)

Reads the value from an analog pin. The return value is between 0 and 1023.

void analogWrite(int pin, int value)

Writes an analog value to a pin. value is between 0 and 255.

void Serial.begin(long speed)

Tells the Arduino to start sending and receiving serial data at speed bits per second.
You usually set speed to 9600.

void Serial.println(val)

Prints data to the serial port. val can be any data type.

void delay(long interval)

Pauses the program for interval milliseconds.

You’ll need some of these to write the program.

   215

Arduino

The finished product
You’ll know your Arduino project is complete when you
put the moisture sensor in your plant’s soil, connect the
Arduino to your computer, and start getting status updates
about your plant.

If you have a Mac and want to make your
plant really talk, you can download a script
from the Head First Labs website that will
read out the stream of serial data:
www.headfirstlabs.com/books/hfc

Our fully assembled Arduino

This end gets plugged
into the computer.

this is a new chapter   217

struct tea quila =
{“tealeaves”, “milk”,

“sugar”, “water”, “tequila”};

structs, unions, and bitfields5

Roll your own structures

Most things in life are more complex than a simple number.�
So far, you’ve looked at the basic data types of the C language, but what if you want to

go beyond numbers and pieces of text, and model things in the real world? structs

allow you to model real-world complexities by writing your own structures. In this

chapter, you’ll learn how to combine the basic data types into structs, and even

handle life’s uncertainties with unions. And if you’re after a simple yes or no, bitfields

may be just what you need.

218   Chapter 5

complicated data

Sometimes you need to hand around a lot of data

/* Print out the catalog entry */

void catalog(const char *name, const char *species, int teeth, int age)

{

 printf("%s is a %s with %i teeth. He is %i\n",

 name, species, teeth, age);

}

/* Print the label for the tank */

void label(const char *name, const char *species, int teeth, int age)

{

 printf("Name:%s\nSpecies:%s\n%i years old, %i teeth\n",

 name, species, teeth, age);

}

“const char *” just means you’re
going to pass string literals.

Now that’s not really so bad, is it? But even though you’re just
passing four pieces of data, the code’s starting to look a little
messy:

int main()

{

 catalog("Snappy", "Piranha", 69, 4);

 label("Snappy", "Piranha", 69, 4);

 return 0;

}

So how do you get around this problem? What can you do to
avoid passing around lots and lots of data if you’re really only
using it to describe a single thing?

You are
passing the
same four
pieces of
data twice. There’s only one fish, but you’re

passing four pieces of data.

That’s me!

You’ve seen that C can handle a lot of different types of data:
small numbers and large numbers, floating-point numbers,
characters, and text. But quite often, when you are recording
data about something in the real world, you’ll find that you need
to use more than one piece of data. Take a look at this example.
Here you have two functions that both need the same set of data,
because they are both dealing with the same real-world thing:

Both
of these
functions
take the
same set of
parameters.

H e ad Fir st

A q u a r i u m

you are here 4   219

structs, unions, and bitfields

Cubicle conversation

Joe: Sure, it’s four pieces of data now, but what if we change the
system to record another piece of data for the fish?

Frank: That’s only one more parameter.

Jill: Yes, it’s just one piece of data, but we’ll have to add that to
every function that needs data about a fish.

Joe: Yeah, for a big system, that might be hundreds of functions.
And all because we add one more piece of data.

Frank: That’s a good point. But how do we get around it?

Joe: Easy, we just group the data into a single thing. Something
like an array.

Jill: I’m not sure that would work. Arrays normally store a list of
data of the same type.

Joe: Good point.

Frank: I see. We’re recording strings and ints. Yeah, we can’t
put those into the same array.

Jill: I don’t think we can.

Joe: But come on, there must be some way of doing this in C.
Let’s think about what we need.

Frank: OK, we want something that lets us refer to a whole set
of data of different types all at once, as if it were a single piece of
data.

Jill: I don’t think we’ve seen anything like that yet, have we?

I don’t really see the
problem. It’s only four
pieces of data.

Frank
Jill Joe

What you need is something that will let you record
several pieces of data into one large piece of data.

220   Chapter 5

structs

Create your own structured data types with a struct

struct fish {

 const char *name;

 const char *species;

 int teeth;

 int age;

};

This will create a new custom data type that is made up of a
collection of other pieces of data. In fact, it’s a little bit like an
array, except:

It’s fixed length.¥
The pieces of data inside the struct are given names.¥

But once you’ve defined what your new struct looks like, how do you
create pieces of data that use it? Well, it’s quite similar to creating a new
array. You just need to make sure the individual pieces of data are in the
order that they are defined in the struct:

struct fish snappy = {"Snappy", "Piranha", 69, 4};
“struct fish” is the data type.

“snappy” is the variable name. This is the name.

This is the species. This is the number of teeth.

This is Snappy’s age.

If you have a set of data that you need to bundle together into
a single thing, then you can use a struct. The word struct is
short for structured data type. A struct will let you take
all of those different pieces of data into the code and wrap them
up into one large new data type, like this:

Name: Snappy
Species: Piranha
Teeth: 69
Age: 4 years

Q: Hey, wait a minute. What’s that
const char thing again?

A: const char * is used for strings
that you don’t want to change. That means
it’s often used to record string literals.

Q: OK. So does this struct store
the string?

A: In this case, no. The struct here
just stores a pointer to a string. That means
it’s just recording an address, and the string
lives somewhere else in memory.

Q: But you can store the whole string
in there if you want?

A: Yes, if you define a char array in
the string, like char name[20];.

you are here 4   221

structs, unions, and bitfields

Just give them the fish
Now, instead of having to pass around a whole collection of
individual pieces of data to the functions, you can just pass your
new custom piece of data:

/* Print out the catalog entry */

void catalog(struct fish f)

{

 ...

}

/* Print the label for the tank */

void label(struct fish f)

{

 ...

}

Looks a lot simpler, doesn’t it? Not only does it mean the
functions now only need a single piece of data, but the code that
calls them is easier to read:

struct fish snappy = {"Snappy", "Piranha", 69, 4};

catalog(snappy);

label(snappy);

So that’s how you can define your custom data type, but how
do you use it? How will our functions be able to read the
individual pieces of data stored inside the struct?

One of the great
things about data
passing around

inside structs is
that you can change the
contents of your struct
without having to change
the functions that use it. For
example, let’s say you want
to add an extra field to fish:

struct fish {

 const char *name;

 const char *species;

 int teeth;

 int age;

 int favorite_music;

};

All the catalog() and
label() functions have been
told is they they’re going to
be handed a fish. They don’t
know (and don’t care) that the
fish now contains more data,
so long as it has all the fields
they need.

That means that structs
don’t just make your code
easier to read, they also
make it better able to cope
with change.

Why the fish is
good for you

Hey, I’m
gooooood!

Wrapping parameters
in a struct makes your
code more stable.

222   Chapter 5

use “.”

Read a struct’s fields with the “.” operator
Because a struct’s a little like an array, you might think you
can read its fields like an array:

struct fish snappy = {"Snappy", "piranha", 69, 4};

printf("Name = %s\n", snappy[0]); If snappy was a pointer to an array, you
would access the first field like this.

OK, now that you know a few things about using structs,
let’s see if you can go back and update that code…

> gcc fish.c -o fish
fish.c: In function 'main':
fish.c:12: error: subscripted value is neither array nor pointer
>

File Edit Window Help Fish

But you can’t. Even though a struct stores fields like an array,
the only way to access them is by name. You can do this using
the “.” operator. If you’ve used another language, like JavaScript
or Ruby, this will look familiar:

struct fish snappy = {"Snappy", "piranha", 69, 4};

printf("Name = %s\n", snappy.name);

> gcc fish.c -o fish
> ./fish
Name = Snappy
>

File Edit Window Help Fish

You get an
error if you
try to read a
struct field
like it’s an
array.

This will return the
string “Snappy.”

This is the name attribute in snappy.

you are here 4   223

structs, unions, and bitfields

Pool Puzzle
Your job is to write a new version of the catalog()

function using the fish struct. Take fragments
of code from the pool and place them in the blank
lines below. You may not use the same fragment
more than once, and you won’t need to use all
the fragments.

Note: each thing from
the pool can be used
only once!

void catalog(struct fish f)

{

 printf("%s is a %s with %i teeth. He is %i\n",

 . , . , . , .);

}

int main()

{

 struct fish snappy = {"Snappy", "Piranha", 69, 4};

 catalog(snappy);

 /* We're skipping calling label for now */

 return 0;

}

teeth

*

name

f

species
fish

age

Piranha

f

f

f

fishfish

fish

*

224   Chapter 5

piranha unpuzzled

Pool Puzzle Solution
Your job was to write a new version of the catalog()

function using the fish struct. You were to
take fragments of code from the pool and place
them in the blank lines below.

void catalog(struct fish f)

{

 printf("%s is a %s with %i teeth. He is %i\n",

 . , . , . , .);

}

int main()

{

 struct fish snappy = {"Snappy", "Piranha", 69, 4};

 catalog(snappy);

 /* We're skipping calling label for now */

 return 0;

}

teeth

*

namef species

fish

age

Piranha

f ff

fishfish

fish

*

you are here 4   225

structs, unions, and bitfields

Test Drive
You’ve rewritten the catalog() function, so it’s pretty easy to
rewrite the label() function as well. Once you’ve done that,
you can compile the program and check that it still works:

> make pool_puzzle && ./pool_puzzle
gcc pool_puzzle.c -o pool_puzzle
Snappy is a Piranha with 69 teeth. He is 4
Name:Snappy
Species:Piranha
4 years old, 69 teeth
>

File Edit Window Help FishAreFriendsNotFood

That’s great. The code works the same as it did before, but now
you have really simple lines of code that call the two functions:

catalog(snappy);

label(snappy);

Hey, look, someone’s
using make…

This line is printed out
by the catalog() function.
These lines are printed
by the label() function.

Not only is the code more readable, but if you ever decide
to record some extra data in the struct, you won’t have to
change anything in the functions that use it.

Q: So is a struct just an array?

A:No, but like an array, it groups a number of pieces of data
together.

Q:An array variable is just a pointer to the array. Is a
struct variable a pointer to a struct?

A:No, a struct variable is a name for the struct itself.

Q:I know I don’t have to, but could I use [0], [1],… to
access the fields of a struct?

A:No, you can only access fields by name.

Q:Are structs like classes in other languages?

A:They’re similar, but it’s not so easy to add methods to
structs.

226   Chapter 5

structs and memory

Structs In Memory Up Close

When you define a struct, you’re not telling the computer to
create anything in memory. You’re just giving it a template for
how you want a new type of data to look.

struct fish {

 const char *name;

 const char *species;

 int teeth;

 int age;

};

But when you define a new variable, the computer will need to
create some space in memory for an instance of the struct.
That space in memory will need to be big enough to contain all of
the fields within the struct:

struct fish snappy = {"Snappy", "Piranha", 69, 4};

So what do you think happens when you assign a struct to another
variable? Well, the computer will create a brand-new copy of the
struct. That means it will need to allocate another piece of memory
of the same size, and then copy over each of the fields.

Remember: when you’re assigning struct variables,
you are telling the computer to copy data.

*name *species 69 4

“Snappy” “Piranha”

This is a pointer
to a string.

This is also a pointer to a string.

Storage for the number
of teeth and age.

struct fish snappy = {"Snappy", "Piranha", 69, 4};

struct fish gnasher = snappy;

*name *species 69 4

“Snappy” “Piranha”

*name *species 69 4
This is snappy.

And this is gnasher.

gnasher and snappy both
point to the same strings.

	 The assignment
copies the
pointers to strings,
not the strings
themselves.

When you assign one struct to
another, the contents of the struct
will be copied. But if, as here, that
includes pointers, the assignment
will just copy the pointer values.
That means the name and species
fields of gnasher and snappy
both point to the same strings.

you are here 4   227

structs, unions, and bitfields

Can you put one struct inside another?
Remember that when you define a struct, you’re actually
creating a new data type. C gives us lots of built-in data types
like ints and shorts, but a struct lets us combine existing
types together so that you can describe more complex objects to the
computer.

But if a struct creates a data type from existing data types,
that means you can also create structs from other
structs. To see how this works, let’s look at an example.

struct preferences {

 const char *food;

 float exercise_hours;

};

struct fish {

 const char *name;

 const char *species;

 int teeth;

 int age;

 struct preferences care;

};

This code tells the computer one struct will contain another
struct. You can then create variables using the same array-
like code as before, but now you can include the data for one
struct inside another:

struct fish snappy = {"Snappy", "Piranha", 69, 4, {"Meat", 7.5}};

Once you’ve combined structs together, you can access the
fields using a chain of “.” operators:

printf("Snappy likes to eat %s", snappy.care.food);

printf("Snappy likes to exercise for %f hours", snappy.care.exercise_hours);

OK, let’s try out your new struct skillz…

This is the struct data
for the care field.

This is the value
for care.food.

This is the value for
care.exercise_hours.

These are things our fish likes.

This is a new field.
This is a struct inside a struct.

Our new field is called “care,” but it will contain
fields defined by the “preferences” struct.

Why nest
structs?

Why would you want
to do this? So you can
cope with complexity.
structs give us bigger
building blocks of data.
By combining structs
together, you can create
larger and larger data
structures. You might
have to begin with just
ints and shorts, but
with structs, you can
describe hugely complex
things, like network
streams or video images.

This is called nesting.

228   Chapter 5

exercise

The guys at the Head First Aquarium are starting to record lots of data about each of their fish
guests. Here are their structs:

struct exercise {

 const char *description;

 float duration;

};

struct meal {

 const char *ingredients;

 float weight;

};

struct preferences {

 struct meal food;

 struct exercise exercise;

};

struct fish {

 const char *name;

 const char *species;

 int teeth;

 int age;

 struct preferences care;

};

you are here 4   229

structs, unions, and bitfields

This is the data that will be recorded for one of the fish:

 Name: Snappy

 Species: Piranha

 Food ingredients: meat

 Food weight: 0.2 lbs

 Exercise description: swim in the jacuzzi

 Exercise duration 7.5 hours

Question 0: How would you write this data in C?

struct fish snappy =

Question 1: Complete the code of the label() function so it produces output like this:

Name:Snappy

Species:Piranha

4 years old, 69 teeth

Feed with 0.20 lbs of meat and allow to swim in the jacuzzi for 7.50 hours

void label(struct fish a)

{

 printf("Name:%s\nSpecies:%s\n%i years old, %i teeth\n",

 a.name, a.species, a.teeth, a.age);

 printf("Feed with %2.2f lbs of %s and allow to %s for %2.2f hours\n",

 , ,

 ,);

}

230   Chapter 5

exercised

The guys at the Head First Aquarium are starting to record lots of data about each of their fish
guests. Here are their structs:

struct exercise {

 const char *description;

 float duration;

};

struct meal {

 const char *ingredients;

 float weight;

};

struct preferences {

 struct meal food;

 struct exercise exercise;

};

struct fish {

 const char *name;

 const char *species;

 int teeth;

 int age;

 struct preferences care;

};

you are here 4   231

structs, unions, and bitfields

This is the data that will be recorded for one of the fish:

 Name: Snappy

 Species: Piranha

 Food ingredients: meat

 Food weight: 0.2 lbs

 Exercise description: swim in the jacuzzi

 Exercise duration 7.5 hours

Question 0: How would you write this data in C?

struct fish snappy =

Question 1: Complete the code of the label() function so it produces output like this:

Name:Snappy

Species:Piranha

4 years old, 69 teeth

Feed with 0.20 lbs of meat and allow to swim in the jacuzzi for 7.50 hours

void label(struct fish a)

{

 printf("Name:%s\nSpecies:%s\n%i years old, %i teeth\n",

 a.name, a.species, a.teeth, a.age);

 printf("Feed with %2.2f lbs of %s and allow to %s for %2.2f hours\n",

 , ,

 ,);

}

{“Snappy”, “Piranha”, 69, 4, {{“meat”, 0.2}, {“swim in the jacuzzi”, 7.5}}};

a.care.food.weight a.care.food.ingredients
a.care.exercise.description a.care.exercise.duration

232   Chapter 5

hello typedef

Hmmm…all these struct commands seem kind
of wordy. I have to use the struct keyword when I define

a struct, and then I have to use it again when I define a
variable. I wonder if there’s some way of simplifying this.

You can give your struct a proper name using typedef.
When you create variables for built-in data types, you can use simple short
names like int or double, but so far, every time you’ve created a variable
containing a struct you’ve had to include the struct keyword.

struct cell_phone {

 int cell_no;

 const char *wallpaper;

 float minutes_of_charge;

};

...

struct cell_phone p = {5557879, "sinatra.png", 1.35};

But C allows you to create an alias for any struct that
you create. If you add the word typedef before the struct
keyword, and a type name after the closing brace, you can call
the new type whatever you like:

typedef struct cell_phone {

 int cell_no;

 const char *wallpaper;

 float minutes_of_charge;

} phone;

...

phone p = {5557879, "sinatra.png", 1.35};

typedefs can shorten your code and make it
easier to read. Let’s see what your code will look
like if you start to add typedefs to it…

What should I call
my new type?

If you use typedef to create an alias for a
struct, you will need to decide what your
alias will be. The alias is just the name of your
type. That means there are two names to think
about: the name of the struct (struct
cell_phone) and the name of the type
(phone). Why have two names? You usually
don’t need both. The compiler is quite happy
for you to skip the struct name, like this:

typedef struct {

 int cell_no;

 const char *wallpaper;

 float minutes_of_charge;

} phone;

phone p = {5557879, "s.png", 1.35};

typedef
means you
are going
to give
the struct
type a new
name.

phone will become an alias for
“struct cell_phone.”

Now, when the compiler sees “phone,” it will
treat it like “struct cell_phone.”

This is
the alias.

you are here 4   233

structs, unions, and bitfields

Exercise

It’s time for the scuba diver to make his daily round of the tanks, and he needs a new label on
his suit. Trouble is, it looks like some of the code has gone missing. Can you work out what the
missing words are?

#include <stdio.h>

 struct {

 float tank_capacity;

 int tank_psi;

 const char *suit_material;

} ;

 struct scuba {

 const char *name;

 equipment kit;

} diver;

void badge(d)

{

 printf("Name: %s Tank: %2.2f(%i) Suit: %s\n",

 d.name, d.kit.tank_capacity, d.kit.tank_psi, d.kit.suit_material);

}

int main()

{

 randy = {"Randy", {5.5, 3500, "Neoprene"}};

 badge(randy);

 return 0;

}

234   Chapter 5

labeled randy

It’s time for the scuba diver to make his daily round of the tanks, and he needs a new label on
his suit. Trouble is, it looks like some of the code has gone missing. Could you work out what the
missing words were?

#include <stdio.h>

 struct {

 float tank_capacity;

 int tank_psi;

 const char *suit_material;

} ;

 struct scuba {

 const char *name;

 equipment kit;

} diver;

void badge(d)

{

 printf("Name: %s Tank: %2.2f(%i) Suit: %s\n",

 d.name, d.kit.tank_capacity, d.kit.tank_psi, d.kit.suit_material);

}

int main()

{

 randy = {"Randy", {5.5, 3500, "Neoprene"}};

 badge(randy);

 return 0;

}

typedef

equipment

typedef

diver

diver

The coder decided to give the struct the name
“scuba” here. But you’ll just use the diver type name.

Exercise
 Solution

you are here 4   235

structs, unions, and bitfields

Q: Do struct fields get placed
next to each other in memory?

A: Sometimes there are small gaps
between the fields.

Q: Why’s that?

A: The computer likes data to fit inside
word boundaries. So if a computer uses
32-bit words, it won’t want a short, say,
to be split over a 32-bit boundary.

Q: So it would leave a gap and start
the short in the next 32-bit word?

A: Yes.

Q: Does that mean each field takes
up a whole word?

A: No. The computer leaves gaps only
to prevent fields from splitting across word
boundaries. If it can fit several fields into a
single word, it will.

Q: Why does the computer care so
much about word boundaries?

A: It will read complete words from the
memory. If a field was split across more
than one word, the CPU would have to read
several locations and somehow stitch the
value together.

Q: And that’d be slow?

A: That’d be slow.

Q: In languages like Java, if I assign
an object to a variable, it doesn’t copy
the object, it just copies a reference.
Why is it different in C?

A: In C, all assignments copy data. If
you want to copy a reference to a piece of
data, you should assign a pointer.

Q: I’m really confused about
struct names. What’s the struct
name and what’s the alias?

A: The struct name is the word that
follows the struct keyword. If you write
struct peter_parker { ... },
then the name is peter_parker, and
when you create variables, you would say
struct peter_parker x.

Q: And the alias?

A: Sometimes you don’t want to keep
using the struct keyword when you
declare variables, so typedef allows you
to create a single word alias. In typedef
struct peter_parker { ... }
spider_man;, spider_man is
the alias.

Q: So what’s an anonymous
struct?

A: One without a name. So typedef
struct { ... } spider_man;
has an alias of spider_man, but no
name. Most of the time, if you create an
alias, you don’t need a name.

�� A struct is a data type made from a
sequence of other data types.

�� structs are fixed length.

�� struct fields are accessed by name,
using the <struct>.<field name>
syntax (aka dot notation).

�� struct fields are stored in memory in the
same order they appear in the code.

�� You can nest structs.

�� typedef creates an alias for a data type.

�� If you use typedef with a struct, then
you can skip giving the struct a name.

236   Chapter 5

struct updates

How do you update a struct?
A struct is really just a bundle of variables, grouped together and
treated like a single piece of data. You’ve already seen how to create
a struct object, and how to access its values using dot notation.
But how do you change the value of a struct that already exists?
Well, you can change the fields just like any other variable:

fish snappy = {"Snappy", "piranha", 69, 4};

printf("Hello %s\n", snappy.name);

snappy.teeth = 68;

This creates a struct.
This reads the value of the name field. This sets the value of

the teeth field. Ouch! Looks like Snappy bit something hard.

That means if you look at this piece of code, you should be able to
work out what it does, right?

But there’s something odd about this code…

#include <stdio.h>

typedef struct {

 const char *name;

 const char *species;

 int age;

} turtle;

void happy_birthday(turtle t)

{

 t.age = t.age + 1;

 printf("Happy Birthday %s! You are now %i years old!\n",

 t.name, t.age);

}

int main()

{

 turtle myrtle = {"Myrtle", "Leatherback sea turtle", 99};

 happy_birthday(myrtle);

 printf("%s's age is now %i\n", myrtle.name, myrtle.age);

 return 0;

}

Myrtle the turtle

you are here 4   237

structs, unions, and bitfields

Test Drive
This is what happens when you compile and run the code.

> gcc turtle.c -o turtle && ./turtle
Happy Birthday Myrtle! You are now 100 years old!
Myrtle's age is now 99
>

File Edit Window Help ILikeTurtles

WTF????

Something weird has happened.
The code creates a new struct and then passes it to a function
that was supposed to increase the value of one of the fields by 1.
And that’s exactly what the code did…at least, for a while.

Inside the happy_birthday() function, the age field was
updated, and you know that it worked because the printf()
function displayed the new increased age value. But that’s when
the weird thing happened. Even though the age was updated by
the function, when the code returned to the main() function,
the age seemed to reset itself.

This code is doing something weird. But you’ve already been
given enough information to tell you exactly what happened.
Can you work out what it is?

Wicked
Turtle
Feet

238   Chapter 5

too many turtles

The code is cloning the turtle
Let’s take a closer look at the code that called the
happy_birthday() function:

void happy_birthday(turtle t)

{

 ...

}

...

happy_birthday(myrtle);

The myrtle struct will be
copied to this parameter.

This is the turtle that we are passing to the function.

In C, parameters are passed to functions by value. That
means that when you call a function, the values you pass into
it are assigned to the parameters. So in this code, it’s almost as
if you had written something like this:

turtle t = myrtle;

But remember: when you assign structs in C, the values
are copied. When you call the function, the parameter t
will contain a copy of the myrtle struct. It’s as if the
function has a clone of the original turtle. So the code
inside the function does update the age of the turtle, but it’s
a different turtle.

What happens when the function returns? The t parameter
disappears, and the rest of the code in main() uses the
myrtle struct. But the value of myrtle was never
changed by the code. It was always a completely separate
piece of data.

So what do you do if you want pass a struct
to a function that needs to update it?

This is Myrtle… …but her clone is sent to the function.

Turtle “t”

When you assign
a struct, its
values get copied
to the new struct.

you are here 4   239

structs, unions, and bitfields

You need a pointer to the struct
When you passed a variable to the scanf() function, you couldn’t
pass the variable itself to scanf(); you had to pass a pointer:

scanf("%f", &length_of_run);

Why did you do that? Because if you tell the scanf() function
where the variable lives in memory, then the function will be able to
update the data stored at that place in memory, which means it can
update the variable.

And you can do just the same with structs. If you want a function
to update a struct variable, you can’t just pass the struct as
a parameter because that will simply send a copy of the data to the
function. Instead, you can pass the address of the struct:

void happy_birthday(turtle *t)

{

 ...

}

...

happy_birthday(&myrtle);

This means “Someone is going to
give me a pointer to a struct.”

This means you will pass the address of the myrtle variable to the function.

Remember: an address is a pointer.

See if you can figure out what expression needs to fit into each
of the gaps in this new version of the happy_birthday()
function.

Be careful. Don’t forget that t is now a pointer variable.

void happy_birthday(turtle *t)

{

 .age = .age + 1;

 printf("Happy Birthday %s! You are now %i years old!\n",

 .name, .age);

}

240   Chapter 5

this is the age of the turtle

You were to figure out what expression needs to fit into each
of the gaps in this new version of the happy_birthday()
function.

void happy_birthday(turtle *t)

{

 .age = .age + 1;

 printf("Happy Birthday %s! You are now %i years old!\n",

 .name, .age);

}

(*t) (*t)

(*t) (*t)

You need to put a * before the variable name,
because you want the value it points to.

The parentheses are really important.
The code will break without them.

(*t).age vs. *t.age
So why did you need to make sure that *t was wrapped in
parentheses? It’s because the two expressions, (*t).age
and *t.age, are very different.

So the expression *t.age is really the same as *(t.age).
Think about that expression for a moment. It means “the
contents of the memory location given by t.age.” But
t.age isn’t a memory location.

So be careful with your parentheses when
using structs—parentheses really matter.

(*t).age *t.age

I am the contents of
the memory location
given by t.age.

I am the age
of the turtle
pointed to by t.

=
If t is a pointer to a
turtle struct, then this
expression is wrong.

If t is a pointer to a
turtle struct, then this
is the age of the turtle.

you are here 4   241

structs, unions, and bitfields

Test Drive
Let’s check if you got around the bug:

> gcc happy_birthday_turtle_works.c -o happy_birthday_turtle_works
Happy Birthday Myrtle! You are now 100 years old!
Myrtle's age is now 100
>

File Edit Window Help ILikeTurtles

That’s great. The function now works.
By passing a pointer to the struct, you allowed the function
to update the original data rather than taking a local copy.

I can see how the new code works. But the
stuff about parentheses and * notation doesn’t
make the code all that readable. I wonder if
there’s something that would help with that.

Yes, there is another struct pointer notation
that is more readable.
Because you need to be careful to use parentheses in the right
way when you’re dealing with pointers, the inventors of the C
language came up with a simpler and easier-to-read piece of
syntax. These two expressions mean the same thing:

(*t).age

t->age

So, t->age means, “The age field in the struct that t
points to,” That means you can also write the function like this:

void happy_birthday(turtle *a)

{

 a->age = a->age + 1;

 printf("Happy Birthday %s! You are now %i years old!\n",

 a->name, a->age);

}

These two mean the same.

t->age
means
(*t).age

242   Chapter 5

crack safe

Safe Cracker
Shhh…it’s late at night in the bank vault. Can you spin the correct combination to crack the
safe? Study these pieces of code and then see if you can find the correct combination that
will allow you to get to the gold. Be careful! There’s a swag type and a swag field.

#include <stdio.h>

typedef struct {

 const char *description;

 float value;

} swag;

typedef struct {

 swag *swag;

 const char *sequence;

} combination;

typedef struct {

 combination numbers;

 const char *make;

} safe;

You need to
crack this
combination.

you are here 4   243

structs, unions, and bitfields

The bank created its safe like this:

swag gold = {"GOLD!", 1000000.0};

combination numbers = {&gold, "6502"};

safe s = {numbers, "RAMACON250"};

What combination will get you to the string “GOLD!”? Select one symbol or word from each column to
assemble the expression.

con

s

numbers

swap

.

->

:

-

s

numbers

swag

gold

+

.

->

-

swag

description

value

sequence

.

-

->

+

value

swag

description

gold

Q: Why are values copied to parameter variables?

A: The computer will pass values to a function by assigning
values to the function’s parameters. And all assignments copy
values.

Q: Why isn’t *t.age just read as (*t).age?

A: Because the computer evaluates the dot operator before it
evaluates the *.

244   Chapter 5

safe cracked

Safe Cracker Solution
Shhh…it’s late at night in the bank vault. You were to spin the correct combination to crack
the safe. You needed to study these pieces of code and then find the correct combination
that would allow you to get to the gold.

#include <stdio.h>

typedef struct {

 const char *description;

 float value;

} swag;

typedef struct {

 swag *swag;

 const char *sequence;

} combination;

typedef struct {

 combination numbers;

 const char *make;

} safe;

you are here 4   245

structs, unions, and bitfields

The bank created its safe like this:

swag gold = {"GOLD!", 1000000.0};

combination numbers = {&gold, "6502"};

safe s = {numbers, "RAMACON250"};

What combination will get you to the string “GOLD!”? You were to select one symbol or word from each
column to assemble the expression.

con

s

numbers

swap

.

->

:

-

s

numbers

swag

gold

+

.

->

-

swag

description

value

sequence

.

-

->

+

value

swag

description

gold

So you can display the gold in the safe with:

printf(“Contents = %s\n”, s.numbers.swag->description);

�� When you call a function, the values
are copied to the parameter variables.

�� You can create pointers to structs,
just like any other type.

�� pointer->field is the same as
(*pointer).field.

�� The -> notation cuts down on
parentheses and makes the code
more readable.

246   Chapter 5

different data types

Sometimes the same type of thing needs different types of data

All of these describe a quantity.
An integer

Floating point

Floating point

So if you want to record, say, a quantity of something, and that
quantity might be a count, a weight, or a volume, how would you
do that? Well, you could create several fields with a struct, like this:

typedef struct {

 ...

 short count;

 float weight;

 float volume;

 ...

} fruit;

But there are a few reasons why this is not a good idea:

It would be really useful if you could specify something called
quantity in a data type and then decide for each particular piece
of data whether you are going to record a count, a weight, or a
volume against it.

In C, you can do just that by using a union.

It will take up more space in memory.¥
Someone might set more than one value.¥

Sale today:

6 apples

1.5 lb strawberries

0.5 pint orange juice

There’s nothing called “quantity.”¥

structs enable you to model more complex things from the real
world. But there are pieces of data that don’t have a single data type:

you are here 4   247

structs, unions, and bitfields

A union lets you reuse memory space

This is a char pointer
to the name.

This is space for the age as an int.
This is a float to store the weight.

Dog d = {"Biff", 2, 98.5};

A union is different. A union will use the space for just one
of the fields in its definition. So, if you have a union called
quantity, with fields called count, weight, and volume,
the computer will give the union enough space for its largest
field, and then leave it up to you which value you will store in
there. Whether you set the count, weight, or volume field,
the data will go into the same space in memory:

If a float takes 4 bytes, and a short takes
2, then this space will be 4 bytes long.

typedef union {

 short count;

 float weight;

 float volume;

} quantity;

A union looks like a struct, but it uses the union keyword.

Each of these fields will be
stored in the same space.

Every time you create an instance of a struct, the computer
will lay out the fields in memory, one after the other:

char *name int age float weight

quantity (might be a float or a short)

These are all different types,
but they’re all quantities.

Count oranges. Weigh grapes.
Measure juice.

248   Chapter 5

union

How do you use a union?
When you declare a union variable, there are a few ways
of setting its value.

C89 style for the first field
If the union is going to store a value for the first field,
then you can use C89 notation. To give the union a
value for its first field, just wrap the value in braces:

quantity q = {4}; This means the quantity
is a count of 4.

Designated initializers set other values
A designated initializer sets a union field value by
name, like this:

quantity q = {.weight=1.5}; This will set the
union for a floating-
point weight value.

Set the value with dot notation
The third way of setting a union value is by creating the
variable on one line, and setting a field value on another
line:

quantity q;

q.volume = 3.7;

Remember: whichever way you set the union’s value,
there will only ever be one piece of data stored. The
union just gives you a way of creating a variable that
supports several different data types.

The Polite Guide to
Standards

Designated initializers allow
you to set struct and union
fields by name and are part of
the C99 C standard. They are
supported by most modern
compilers, but be careful if
you are using some variant of
the C language. For example,
Objective C supports
designated initializers, but
C++ does not.

Q: Why is a union always set to the
size of the largest field?

A: The computer needs to make sure that
a union is always the same size. The only
way it can do that is by making sure it is large
enough to contain any of the fields.

Q:Why does the C89 notation only set
the first field? Why not set it to the first
float if I pass it a float value?

A: To avoid ambiguity. If you had, say, a
float and a double field, should the
computer store {2.1} as a float or a
double? By always storing the value in the
first field, you know exactly how the data will
be initialized.

you are here 4   249

structs, unions, and bitfields

Those designated initializers look like
they could be useful for structs as well.
I wonder if I can use them there.

Yes, designated initializers can be used to set the
initial values of fields in structs as well.
They can be very useful if you have a struct that contains a large
number of fields and you initially just want to set a few of them. It’s
also a good way of making your code more readable:

typedef struct {

 const char *color;

 int gears;

 int height;

} bike;

bike b = {.height=17, .gears=21};

This will set the gears and
the height fields, but won’t
set the color field.

typedef struct {

 const char *name;

 const char *country;

 quantity amount;

} fruit_order;

fruit_order apples = {"apples", "England", .amount.weight=4.2};

printf("This order contains %2.2f lbs of %s\n", apples.amount.weight, apples.name);

Here, you’re using a double
designated identifier.
.amount for the struct and
.weight for the .amount.

This will print “This order contains 4.20 lbs of apples.”

It’s .amount because that’s the name of the struct quantity variable.

unions are often used with structs
Once you’ve created a union, you’ve created a new data type.
That means you can use its values anywhere you would use
another data type like an int or a struct. For example, you
can combine them with structs:

And you can access the values in the struct/union
combination using the dot or -> notation you used before:

250   Chapter 5

mixers mixed

Mixed-Up Mixers
It’s Margarita Night at the Head First Lounge, but after one too many samples, it looks like the guys
have mixed up their recipes. See if you can find the matching code fragments for the different
margarita mixes.

Here are the basic ingredients:

typedef union {

 float lemon;

 int lime_pieces;

} lemon_lime;

typedef struct {

 float tequila;

 float cointreau;

 lemon_lime citrus;

} margarita;

Here are the different margaritas:

margarita m = {2.0, 1.0, {2}};

margarita m = {2.0, 1.0, {0.5}};

margarita m = {2.0, 1.0, .citrus.lemon=
2};

margarita m = {2.0, 1.0, 0.5};

margarita m = {2.0, 1.0, {.lime_pieces=1}};

margarita m = {2.0, 1.0, {1}};

you are here 4   251

structs, unions, and bitfields

And finally, here are the different mixes and the drink recipes they produce. Which of the margaritas need to be
added to these pieces of code to generate the correct recipes?

BE the Compiler
One of these pieces of code compiles; the
other doesn’t. Your job is to play like
you’re the compiler and say which one

compiles, and why the other
one doesn’t.

margarita m = {2.0, 1.0, {0.5}};

margarita m;

m = {2.0, 1.0, {0.5}};

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila

1.0 measures of cointreau

2.0 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila

1.0 measures of cointreau

0.5 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%i pieces
 of lime\n", m.tequila, m.cointreau, m.citrus.lime_pieces);

2.0 measures of tequila

1.0 measures of cointreau

1 pieces of lime

252   Chapter 5

mixed mixers unmixed

Mixed-Up Mixers Solution
It’s Margarita Night at the Head First Lounge, but after one too many samples, it looks like the guys
have mixed up their recipes. You were to find the matching code fragments for the different margarita
mixes.

Here are the basic ingredients:

typedef union {

 float lemon;

 int lime_pieces;

} lemon_lime;

typedef struct {

 float tequila;

 float cointreau;

 lemon_lime citrus;

} margarita;

Here are the different margaritas:

margarita m = {2.0, 1.0, .citrus.lemon=
2};

margarita m = {2.0, 1.0, 0.5};

margarita m = {2.0, 1.0, {1}};

None of these
lines was used.

you are here 4   253

structs, unions, and bitfields

And finally, here are the different mixes and the drink recipes they produce. Which of the margaritas need to be
added to these pieces of code to generate the correct recipes?

BE the Compiler Solution
One of these pieces of code compiles; the
other doesn’t. Your job is to play like
you’re the compiler and say which one

compiles, and why the other
one doesn’t.

margarita m = {2.0, 1.0, {0.5}};

margarita m;

m = {2.0, 1.0, {0.5}};

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila

1.0 measures of cointreau

2.0 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila

1.0 measures of cointreau

0.5 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%i pieces
 of lime\n", m.tequila, m.cointreau, m.citrus.lime_pieces);

2.0 measures of tequila

1.0 measures of cointreau

1 pieces of lime

margarita m = {2.0, 1.0, {2}};

margarita m = {2.0, 1.0, {0.5}};

margarita m = {2.0, 1.0, {.lime_pieces=1}};

This one compiles perfectly. It’s
actually just one of the drinks above!

This one doesn’t compile because the compiler will only know
that {2.0, 1.0, {0.5}} represents a struct if it’s used on the
same line that a struct is declared. When it’s on a separate
line, the compiler thinks it’s an array.

254   Chapter 5

unions and type

Hey, wait a minute… You’re setting all these
different values with all these different types
and you’re storing them in the same place in
memory… How do I know if I stored a float in there
once I’ve stored it? What’s to stop me from
reading it as a short or something??? Hello?

That’s a really good point: you can store lots of
possible values in a union, but you have no way
of knowing what type it was once it’s stored.
The compiler won’t be able to keep track of the fields that are set
and read in a union, so there’s nothing to stop us setting one field
and reading another. Is that a problem? Sometimes it can be a
BIG PROBLEM.

#include <stdio.h>

typedef union {

 float weight;

 int count;

} cupcake;

int main()

{

 cupcake order = {2};

 printf("Cupcakes quantity: %i\n", order.count);

 return 0;

} > gcc badunion.c -o badunion && ./badunion
Cupcakes quantity: 1073741824

File Edit Window Help

You need some way, then, of keeping track of the
values we’ve stored in a union. One trick that some C
coders use is to create an enum.

By mistake, the
programmer has set the weight, not the count.

She set the weight, but
she’s reading the count.

This is what the program did.

That’s a lot of cupcakes…

you are here 4   255

structs, unions, and bitfields

An enum variable stores a symbol
Sometimes you don’t want to store a number or a piece
of text. Instead, you want to store something from a list of
symbols. If you want to record a day of the week, you only
want to store MONDAY, TUESDAY, WEDNESDAY, etc. You
don’t need to store the text, because there are only ever going
to be seven different values to choose from.

That’s why enums were invented.

enum lets you create a list of symbols, like this:

enum colors {RED, GREEN, PUCE};
Possible colors in your enum.

The values are separated by commas.

You could have given the type a proper name with typedef.

	 structs and
unions
separate
items with
semicolons (;),

but enums use commas.

Any variable that is defined with a type of enum colors
can then only be set to one of the keywords in the list. So you
might define an enum colors variable like this:

enum colors favorite = PUCE;

Under the covers, the computer will just assign numbers to
each of the symbols in your list, and the enum will just store a
number. But you don’t need to worry about what the numbers
are; your C code can just refer to the symbols. That’ll make
your code easier to read, and it will prevent storing values like
REB or PUSE:

enum colors favorite = PUSE;

The computer will spot that this is
not a legal value, so it won’t compile.

Nope; I’m not
compiling that;
it’s not on my list.

So that’s how enums work, but how do they
help you keep track of unions? Let’s look at
an example…

#include <stdio.h>

typedef enum {

 COUNT, POUNDS, PINTS

} unit_of_measure;

typedef union {

 short count;

 float weight;

 float volume;

} quantity;

typedef struct {

 const char *name;

 const char *country;

 quantity amount;

 unit_of_measure units;

} fruit_order;

void display(fruit_order order)

{

 printf("This order contains ");

 if (== PINTS)

 printf("%2.2f pints of %s\n", order.amount. , order.name);

256   Chapter 5

code magnets

Code Magnets
Because you can create new data types with enums, you can store them inside
structs and unions. In this program, an enum is being used to track the kinds of
quantities being stored. Do you think you can work out where the missing pieces of
code go?

you are here 4   257

structs, unions, and bitfields

 else if (==)

 printf("%2.2f lbs of %s\n", order.amount.weight, order.name);

 else

 printf("%i %s\n", order.amount. , order.name);

}

int main()

{

 fruit_order apples = {"apples", "England", .amount.count=144, };

 fruit_order strawberries = {"strawberries", "Spain", .amount. =17.6, POUNDS};

 fruit_order oj = {"orange juice", "U.S.A.", .amount.volume=10.5, };

 display(apples);

 display(strawberries);

 display(oj);

 return 0;

}

order.unitsPINTS

weightCOUNT

volume

order.unitsPOUNDS

count

#include <stdio.h>

typedef enum {

 COUNT, POUNDS, PINTS

} unit_of_measure;

typedef union {

 short count;

 float weight;

 float volume;

} quantity;

typedef struct {

 const char *name;

 const char *country;

 quantity amount;

 unit_of_measure units;

} fruit_order;

void display(fruit_order order)

{

 printf("This order contains ");

 if (== PINTS)

 printf("%2.2f pints of %s\n", order.amount. , order.name);

258   Chapter 5

magnets solved

Code Magnets Solution
Because you can create new data types with enums, you can store them inside
structs and unions. In this program, an enum is being used to track the kinds of
quantities being stored. Were you able to work out where the missing pieces of code
go?

volume

order.units

you are here 4   259

structs, unions, and bitfields

 else if (==)

 printf("%2.2f lbs of %s\n", order.amount.weight, order.name);

 else

 printf("%i %s\n", order.amount. , order.name);

}

int main()

{

 fruit_order apples = {"apples", "England", .amount.count=144, };

 fruit_order strawberries = {"strawberries", "Spain", .amount. =17.6, POUNDS};

 fruit_order oj = {"orange juice", "U.S.A.", .amount.volume=10.5, };

 display(apples);

 display(strawberries);

 display(oj);

 return 0;

}

order.units

PINTS

weight

COUNT

POUNDS

count

When you run the program, you get this:

> gcc enumtest.c -o enumtest
This order contains 144 apples
This order contains 17.60 lbs of strawberries
This order contains 10.50 pints of orange juice

File Edit Window Help

260   Chapter 5

overheard

union: …so I said to the code, “Hey, look. I don’t care
if you gave me a float or not. You asked for an int.
You got an int.”

struct: Dude, that was totally uncalled for.

union: That’s what I said. It’s totally uncalled for.

struct: Everyone knows you only have one storage
location.

union: Exactly. Everything is one. I’m, like, Zen that
way…

enum: What happened, dude?

struct: Shut up, enum. I mean, the guy was crossing
the line.

union: I mean, if he had just left a record. You know,
said, I stored this as an int. It just needed an enum or
something.

enum: You want me to do what?

struct: Shut up, enum.

union: I mean, if he’d wanted to store several things at
once, he should have called you, am I right?

struct: Order. That’s what these people don’t grasp.

enum: Ordering what?

struct: Separation and sequencing. I keep several
things alongside each other. All at the same time, dude.

union: That’s just my point.

struct: All. At. The. Same. Time.

enum: (Pause) So has there been a problem?

union: Please, enum? I mean these people just need to

make a decision. Wanna store several things, use you.
But store just one thing with different possible types?
Dude’s your man.

struct: I’m calling him.

union: Hey, wait…

enum: Who’s he calling, dude?

struct/union: Shut up, enum.

union: Look, let’s not cause any more problems here.

struct: Hello? Could I speak to the Bluetooth service,
please?

union: Hey, let’s just think about this.

struct: What do you mean, he’ll give me a callback?

union: I’m just. This doesn’t seem like a good idea.

struct: No, let me leave you a message, my friend.

union: Please, just put the phone down.

enum: Who’s on the phone, dude?

struct: Be quiet, enum. Can’t you see I’m on the phone
here? Listen, you just tell him that if he wants to store a
float and an int, he needs to come see me. Or I’m
going to come see him. Understand me? Hello? Hello?

union: Easy, man. Just try to keep calm.

struct: On hold? They put me on ^*&^ing hold!

union: They what? Pass me the phone… Oh…that…
man. The Eagles! I hate the Eagles…

enum: So if you pack your fields, is that why you’re so
fat?

struct: You are entering a world of pain, my friend.

you are here 4   261

structs, unions, and bitfields

Sometimes you want control at the bit level
Let’s say you need a struct that will contain a lot of yes/no values.
You could create the struct with a series of shorts or ints:

typedef struct {

 short low_pass_vcf;

 short filter_coupler;

 short reverb;

 short sequential;

 ...

} synth;

Each of these fields
will contain 1 for
true or 0 for false.

There are a lot more fields that follow this.

Each field will use many bits.

And that would work. The problem? The short fields will take up
a lot more space than the single bit that you need for true/false
values. It’s wasteful. It would be much better if you could create a
struct that could hold a sequence of single bits for the values.

That’s why bitfields were created.

0000000000000001 0000000000000001 0000000000000001 ...

Geek Binary Digits

When you’re dealing with binary value, it would be
great if you had some way of specifying the 1s and 0s
in a literal, like:

	 int x = 01010100;
Unfortunately, C doesn’t support binary literals, but
it does support hexadecimal literals. Every time
C sees a number beginning with 0x, it treats the
number as base 16:

	 int x = 0x54;

But how do you convert back and forth between
hexadecimal and binary? And is it any easier than

converting binary and decimal? The good news is
that you can convert hex to binary one digit at a
time:

Each hexadecimal digit matches a binary digit of
length 4. All you need to learn are the binary patterns
for the numbers 0–15, and you will soon be able to
convert binary to hex and back again in your head
within seconds.

This is not decimal 54.

0x54

0101 0100
This is 5. This is 4.

262   Chapter 5

take care of your bits

Bitfields store a custom number of bits
A bitfield lets you specify how many bits an individual
field will store. For example, you could write your
struct like this:

typedef struct {

 unsigned int low_pass_vcf:1;

 unsigned int filter_coupler:1;

 unsigned int reverb:1;

 unsigned int sequential:1;

 ...

} synth;

This means the field will
only use 1 bit of storage.

Each field should be an unsigned int.

By using bitfields, you can make sure
each field takes up only one bit.

If you have a sequence of bitfields, the computer can
squash them together to save space. So if you have
eight single-bit bitfields, the computer can store them in a
single byte.

Let’s see how how good you are at using
bitfields.

	 Bitfields can save
space if they are
collected together
in a struct.

But if the compiler
finds a single bitfield on its own, it
might still have to pad it out to the
size of a word. That’s why bitfields
are usually grouped together.

How many bits do I need?
Bitfields can be used to store a sequence of true/false values, but they’re
also useful for other short-range values, like months of the year. If you want
to store a month number in a struct, you know it will have a value of,
say, 0–11. You can store those values in 4 bits. Why? Because 4 bits let you
store 0–15, but 3 bits only store 0–7.

...

unsigned int month_no:4;

...

1 1 1 ...

you are here 4   263

structs, unions, and bitfields

Back at the Head First Aquarium, they’re creating a customer satisfaction survey. Let’s see if you
can use bitfields to create a matching struct.

typedef struct {

 unsigned int first_visit: ;

 unsigned int come_again: ;

 unsigned int fingers_lost: ;

 unsigned int shark_attack: ;

 unsigned int days_a_week: ;

} survey;

Is this your first visit?

Will you come again?

Number of fingers lost in the piranha tank:

Did you lose a child in the shark exhibit?

How many days a week would you visit if you could?

Aquarium Questionnaire

H e ad Fir s t

A q u a r i u m

You need to decide
how many bits to use.

264   Chapter 5

exercise solved

Back at the Head First Aquarium, they’re creating a customer satisfaction survey. You were to
use bitfields to create a matching struct.

typedef struct {

 unsigned int first_visit: ;

 unsigned int come_again: ;

 unsigned int fingers_lost: ;

 unsigned int shark_attack: ;

 unsigned int days_a_week: ;

} survey;

1
1

4
1

3

Is this your first visit?

Will you come again?

Number of fingers lost in the piranha tank:

Did you lose a child in the shark exhibit?

How many days a week would you visit if you could?

Aquarium Questionnaire

H e ad Fir s t

A q u a r i u m

1 bit can store 2
values: true/false.
4 bits are needed to store up to 10.

3 bits can store
numbers up to 7.

you are here 4   265

structs, unions, and bitfields

Q: Why doesn’t C support binary
literals?

A: Because they take up a lot of space,
and it’s usually more efficient to write hex
values.

Q: Why do I need 4 bits to store a
value up to 10?

A: Four bits can store values from 0 to
binary 1111, which is 15. But 3 bits can only
store values up to binary 111, which is 7.

Q: So what if I try to put the value 9
into a 3-bit field?

A: The computer will store a value of 1
in it, because 9 is 1001 in binary, so the
computer transfers 001.

Q: Are bitfields really just used to
save space?

A: No. They’re important if you need to
read low-level binary information.

Q: Such as?

A: If you’re reading or writing some sort
of custom binary file.

�� A union allows you to store
different data types in the same
memory location.

�� A designated initializer sets a field
value by name.

�� Designated initializers are part of
the C99 standard. They are not
supported in C++.

�� If you declare a union with a value
in {braces}, it will be stored with the
type of the first field.

�� The compiler will let you store
one field in a union and read a
completely different field. But be
careful! This can cause bugs.

�� enums store symbols.

�� Bitfields allow you to store a field with
a custom number of bits.

�� Bitfields should be declared as
unsigned int.

266   Chapter 5

c toolbox

Your C Toolbox

You’ve got Chapter 5 under
your belt, and now you’ve

added structs, unions, and
bitfields to your toolbox. For a

complete list of tooltips in the book,
see Appendix ii.CH

AP
T

ER
 5

A struct
combines data
types together

.

You can read
struct fields
with dot
notation.

You can
initialize
structs with
{array, like,
notation}.

typedef lets
you create an
alias for a
data type.

-> notation
lets you easily
update fields
using a struct
pointer.

unions can hold
different data
types in one
location.

Designated
initializers let
you set struct
and union fields
by name.

enums let you
create a set
of symbols.

Bitfields give
you control
over the exact
bits stored in a
struct.

this is a new chapter   267

data structures and dynamic memory6

Building bridges

Sometimes, a single struct is simply not enough.�
To model complex data requirements, you often need to link structs together. In

this chapter, you’ll see how to use struct pointers to connect custom data types into

large, complex data structures. You’ll explore key principles by creating linked lists.

You’ll also see how to make your data structures cope with flexible amounts of data by

dynamically allocating memory on the heap, and freeing it up when you’re done. And if

good housekeeping becomes tricky, you’ll also learn how valgrind can help.

That’s so sad.

I heard that
Ted left Judy
on the heap.

268   Chapter 6

flexible data

Do you need flexible storage?
You’ve looked at the different kinds of data that you can store in C, and
you’ve also seen how you can store multiple pieces of data in an array.
But sometimes you need to be a little more flexible.

Imagine you’re running a travel company that arranges flying tours
through the islands. Each tour contains a sequence of short flights from
one island to the next. For each of those islands, you will need to record
a few pieces of information, such as the name of the island and the
hours that its airport is open. So how would you record that?

You could create a struct to represent a single island:

typedef struct {

 char *name;

 char *opens;

 char *closes;

} island;

Now if a tour passes through a sequence of islands, that means you’ll need
to record a list of islands, and you can do that with an array of islands:

island tour[4];

Coconut Airways flies
C planes between the
islands.

But there’s a problem. Arrays are fixed length, which means they’re not
very flexible. You can use one if you know exactly how long a tour will be.
But what if you need to change the tour? What if you want to add an extra
destination to the middle of the tour?

To store a flexible amount of data, you need something
more extensible than an array. You need a linked list.

you are here 4   269

data structures and dynamic memory

Linked lists are like chains of data
A linked list is an example of an abstract data structure.
It’s called an abstract data structure because a linked list is
general: it can be used to store a lot of different kinds of data.

To understand how a linked list works, think back to our tour
company. A linked list stores a piece of data, and a link to
another piece of data.

In a linked list, as long as you know where the list starts, you can
travel along the list of links, from one of piece of data to the next,
until you reach the end of the list. Using a pencil, change the list
so that the tour includes a trip to Skull Island between Craggy
Island and Isla Nublar.

You are storing a piece of
data for each island.

This is a link to the
next piece of data.

Amity

Craggy Isla Nublar

Shutter

Skull

270   Chapter 6

tour changed

In a linked list, as long as you know where the list starts, you
can travel along the list of links, from one of piece of data to the
next, until you reach the end of the list. Using a pencil, you were
to change the list so that the tour includes a trip to Skull Island
between Craggy Island and Isla Nublar.

Linked lists allow inserts
With just a few changes, you were able to add an extra step
to the tour. That’s another advantage linked lists have over
arrays: inserting data is very quick. If you wanted to
insert a value into the middle of an array, you would have to
shuffle all the pieces of data that follow it along by one:

So linked lists allow you to store a variable amount of
data, and they make it simple to add more data.

But how do you create a linked list in C?

Amity Craggy Isla Nublar ShutterThis is an array.

If you wanted to insert an extra value
after Craggy Island, you’d have to move
the other values along one space.

And because an array is fixed length, you’d lose Shutter Island.

Amity

Craggy Isla Nublar

Shutter

Skull

You needed to
remove the flight
from Craggy to
Isla Nublar.

You needed to
create a new
flight from
Craggy to Skull. You needed to

create a new
flight from
Skull to Isla
Nublar.

you are here 4   271

data structures and dynamic memory

Create a recursive structure
Each one of the structs in the list will need to connect to
the one next to it. A struct that contains a link to another
struct of the same type is called a recursive structure.

	 Recursive structures
need names.

If you use the typedef
command, you can normally
skip giving the struct a proper

name. But in a recursive structure, you need
to include a pointer to the same type. C
syntax won’t let you use the typedef alias,
so you need to give the struct a proper
name. That’s why the struct here is called
struct island.

Island Another Island

This is a recursive
structure for an island.

You need to record all of the
usual details for the island…

…but you also need to give the
island a link to the next island.

Recursive structures contain pointers to other structures of the
same type. So if you have a flight schedule for the list of islands
that you’re going to visit, you can use a recursive structure for
each island. Let’s look at how that works in more detail:

How do you store a link from one struct to the
next? With a pointer. That way, the island data will
contain the address of the next island that we’re
going to visit. So, whenever our code is at one island,
it will always be able to hop over to the next island.

Let’s write some code and start island
hopping.

Island airport

Name:		 Amity

Opens:		 9AM

Closes:	 5PM

Next island:	 Craggy

You’ll record
these details
for each
island.

For each island, you’ll also record the next island.

typedef struct island {

 char *name;

 char *opens;

 char *closes;

 struct island *next;

} island;

You’ll use
strings for
the name
and opening
times.

You store a
pointer to the
next island in
the struct.

You must give the struct a name.

272   Chapter 6

link islands

Create islands in C…
Once you have defined an island data type, you can create
the first set of islands like this:

island amity = {"Amity", "09:00", "17:00", NULL};

island craggy = {"Craggy", "09:00", "17:00", NULL};

island isla_nublar = {"Isla Nublar", "09:00", "17:00", NULL};

island shutter = {"Shutter", "09:00", "17:00", NULL};

This code will create island
structs for each of the islands.

Did you notice that we originally set the next field in each
island to NULL? In C, NULL actually has the value 0, but
it’s set aside specially to set pointers to 0.

amity.next = &craggy;

craggy.next = &isla_nublar;

isla_nublar.next = &shutter;

You have to be careful to set the next field in each island
to the address of the next island. You’ll use struct
variables for each of the islands.

So now you’ve created a complete island tour in C, but what
if you want to insert an excursion to Skull Island between Isla
Nublar and Shutter Island?

Craggy

Isla Nublar

Shutter

…and link them together to form a tour
Once you’ve created each island, you can then
connect them together:

Amity

Craggy

Isla Nublar

Shutter

you are here 4   273

data structures and dynamic memory

Code Magnets
Oh, no, the code for the display() function was on the fridge door, but
someone’s mixed up the magnets. Do you think you can reassemble the code?

void display(island *start)

{

 island *i = start;

 for (; i ; i) {

 printf("Name: %s open: %s-%s\n", , ,);

 }

}

i->closes
i->opens

NULLi->name

i->next
!=

=

Inserting values into the list
You can insert islands just like you did earlier, by changing the values
of the pointers between islands:

island skull = {"Skull", "09:00", "17:00", NULL};

isla_nublar.next = &skull;

skull.next = &shutter;

In just two lines of code, you’ve inserted a new value into
the list. If you were using an array, you’d write a lot more
code to shuffle items along the array.

OK, you’ve seen how to create and use linked
lists. Now let’s try out your new skills…

This connects Isla Nublar to Skull.
This connects Skull to Shutter Island.

Isla Nublar
Shutter

Skull

This line creates
Skull Island.

274   Chapter 6

magnets solved

Code Magnets Solution
Oh, no, the code for the display() function was on the fridge door, but
someone’s mixed up the magnets. Were you able to reassemble the code?

void display(island *start)

{

 island *i = start;

 for (; i ; i) {

 printf("Name: %s open: %s-%s\n", , ,);

 }

}

i->closesi->opens

NULL

i->name

i->next!= =

You don’t
need any
extra
code at
the start
of the
loop.

You need to keep looping until the
current island has no next value.

At the end of each loop,
skip to the next island.

Q: Other languages, like Java, have
linked lists built in. Does C have any
data structures?

A: C doesn’t really come with any data
structures built in. You have to create them
yourself.

Q: What if I want to use the 700th
item in a really long list? Do I have to
start at the first item and then read all
the way through?

A: Yes, you do.

Q: That’s not very good. I thought a
linked list was better than an array.

A: You shouldn’t think of data structures
as being better or worse. They are either
appropriate or inappropriate for what you
want to use them for.

Q: So if I want a data structure that
lets me insert things quickly, I need a
linked list, but if I want direct access I
might use an array?

A: Exactly.

Q: You’ve shown a struct that
contains a pointer to another struct.
Can a struct contain a whole
recursive struct inside itself?

A: No.

Q: Why not?

A: C needs to know the exact amount of
space a struct will occupy in memory.
If it allowed full recursive copies of the
same struct, then one piece of data
would be a different size than another.

you are here 4   275

data structures and dynamic memory

Test Drive
Let’s use the display() function on the linked list of islands
and compile the code together into a program called tour.

island amity = {"Amity", "09:00", "17:00", NULL};

island craggy = {"Craggy", "09:00", "17:00", NULL};

island isla_nublar = {"Isla Nublar", "09:00", "17:00", NULL};

island shutter = {"Shutter", "09:00", "17:00", NULL};

amity.next = &craggy;

craggy.next = &isla_nublar;

isla_nublar.next = &shutter;

island skull = {"Skull", "09:00", "17:00", NULL};

isla_nublar.next = &skull;

skull.next = &shutter;

display(&amity);

> gcc tour.c -o tour && ./tour
Name: Amity
Open: 09:00-17:00
Name: Craggy
Open: 09:00-17:00
Name: Isla Nublar
Open: 09:00-17:00
Name: Skull
Open: 09:00-17:00
Name: Shutter
Open: 09:00-17:00
>

File Edit Window Help GetBiggerBoat

Excellent. The code creates a linked list of islands, and
you can insert items with very little work.

OK, so now that you know the basics of how to work with
recursive structs and lists, you can move on to the main
program. You need to read the tour data from a file that
looks like this:

Delfino Isle

Angel Island

Wild Cat Island

Neri's Island

Great Todday

The folks at the airline are still creating the file, so you won’t
know how long it is until runtime. Each line in the file is the
name of an island. It should be pretty straightforward to turn
this file into a linked list. Right?

There will
be some
more lines
after this.

The code on this page declares
a new variable, skull, right in
the middle of the code. This is
allowed only in C99 and C11.
In ANSI C, you need to declare
all your local variables at the
top of a function.

The Polite Guide
to Standards

276   Chapter 6

dynamic storage

Hmmm… So far, we’ve used a separate variable
for each item in the list. But if we don’t know how
long the file is, how do we know how many variables
we need? I wonder if there’s some way to generate
new storage when we need it.

Yes, you need some way to create
dynamic storage.

All of the programs you’ve written so far have used
static storage. Every time you wanted to store something,
you’ve added a variable to the code. Those variables have
generally been stored in the stack. Remember: the stack
is the area of memory set aside for storing local variables.

So when you created the first four islands, you did it like
this:

island amity = {"Amity", "09:00", "17:00", NULL};

island craggy = {"Craggy", "09:00", "17:00", NULL};

island isla_nublar = {"Isla Nublar", "09:00", "17:00", NULL};

island shutter = {"Shutter", "09:00", "17:00", NULL};

Each island struct needed its own variable. This piece
of code will always create exactly four islands. If you
wanted the code to store more than four islands, you
would need another local variable. That’s fine if you know
how much data you need to store at compile time, but quite
often, programs don’t know how much storage they need until
runtime. If you’re writing a web browser, for instance, you
won’t know how much data you’ll need to store a web page
until, well, you read the web page. So C programs need some
way to tell the operating system that they need a little extra
storage, at the moment that they need it.

Programs need dynamic storage.

you are here 4   277

data structures and dynamic memory

Wouldn’t it be dreamy if there were a
way to allocate as much space as I needed
with code at runtime? But I know that’s
just a fantasy…

278   Chapter 6

malloc()

Use the heap for dynamic storage
Most of the memory you’ve been using so far has been in the
stack. The stack is the area of memory that’s used for local
variables. Each piece of data is stored in a variable, and each
variable disappears as soon as you leave its function.

The trouble is, it’s harder to get more storage on the stack at
runtime, and that’s where the heap comes in. The heap is
the place where a program stores data that will need to be
available longer term. It won’t automatically get cleared away,
so that means it’s the perfect place to store data structures like
our linked list. You can think of heap storage as being a bit
like reserving a locker in a locker room.

First, get your memory with malloc()
Imagine your program suddenly finds it has a large
amount of data that it needs to store at runtime. This
is a bit like asking for a large storage locker for the
data, and in C you do that with a function called
malloc(). You tell the malloc() function exactly
how much memory you need, and it asks the operating
system to set that much memory aside in the heap. The
malloc() function then returns a pointer to the new
heap space, a bit like getting a key to the locker. It allows
you access to the memory, and it can also be used to
keep track of the storage locker that’s been allocated.

Heap storage is like saving valuables in a locker.

32 bytes of
data at location
4,204,853 on the
heap

The malloc() function will give you a
pointer to the space in the heap.

The heap

you are here 4   279

data structures and dynamic memory

Give the memory back when you’re done
The good news about heap memory is that you can keep hold of it for a
really long time. The bad news is…you can keep hold of it for a really
long time.

When you were just using the stack, you didn’t need to worry about
returning memory; it all happened automatically. Every time you leave a
function, the local storage is freed from the stack.

The heap is different. Once you’ve asked for space on the heap, it
will never be available for anything else until you tell the C Standard
Library that you’re finished with it. There’s only so much heap memory
available, so if your code keeps asking for more and more heap space,
your program will quickly start to develop memory leaks.

A memory leak happens when a program asks for more and more
memory without releasing the memory it no longer needs. Memory
leaks are among the most common bugs in C programs, and they can be
really hard to track down.

The heap has
only a fixed
amount of
storage available,
so be sure you
use it wisely.

Free memory by calling the free() function
The malloc() function allocates space and gives you a pointer to it.
You’ll need to use this pointer to access the data and then, when you’re
finished with the storage, you need to release the memory using the
free() function. It’s a bit like handing your locker key back to the
attendant so that the locker can be reused.

Thanks for the
storage. I’m
done with it now.

Every time some part of your code requests heap storage with the
malloc() function, there should be some other part of your code
that hands the storage back with the free() function. When
your program stops running, all of its heap storage will be released
automatically, but it’s always good practice to explicitly call free()
on every piece of dynamic memory you’ve created.

Let’s see how malloc() and free() work.

32 bytes of

data at location

4,204,853 on the

heap

280   Chapter 6

free()

Ask for memory with malloc()…
The function that asks for memory is called malloc()
for memory allocation. malloc() takes a single parameter:
the number of bytes that you need. Most of the time, you
probably don’t know exactly how much memory you need
in bytes, so malloc() is almost always used with an
operator called sizeof, like this:

#include <stdlib.h>

...

malloc(sizeof(island));

You need to include the stdlib.h header file
to pick up the malloc() and free() functions.

This means, “Give me enough space
to store an island struct.”

sizeof tells you how many bytes a particular data type
occupies on your system. It might be a struct, or it could
be some base data type, like int or double.

The malloc() function sets aside a chunk of memory
for you, then returns a pointer containing the start address.
But what kind of pointer will that be? malloc() actually
returns a general-purpose pointer, with type void*.

island *p = malloc(sizeof(island));

This means, “Create
enough space for an
island, and store the
address in variable p.”

…and free up the memory with free()
Once you’ve created the memory on the heap, you can use
it for as long as you like. But once you’ve finished, you need
to release the memory using the free() function.

free() needs to be given the address of the memory that
malloc() created. As long as the library is told where the
chunk of memory starts, it will be able to check its records
to see how much memory to free up. So if you wanted to
free the memory you allocated above, you’d do it like this:

free(p); This means, “Release the memory you
allocated from heap address p.”

OK, now that we know more about dynamic
memory, we can start to write some code.

Remember: if you
allocated memory
with malloc() in one
part of your program,
you should always
release it later with
the free() function.

you are here 4   281

data structures and dynamic memory

Oh, no! It’s the out-of-work actors…

Look carefully at the code for the create() function. Do you think there
might be any problems with it? Once you’ve thought about it good and
hard, turn the page to see it in action.

That’s a pretty cool-looking function. The actors
have spotted that most of the island airports have
the same opening and closing times, so they’ve set
the opens and closes fields to default values.
The function returns a pointer to the newly created
struct.

island* create(char *name)

{

 island *i = malloc(sizeof(island));

 i->name = name;

 i->opens = "09:00";

 i->closes = "17:00";

 i->next = NULL;

 return i;

}

This is the new function.

It’s using the malloc() function
to create space on the heap.

The sizeof operator works out how
many bytes are needed.

The name of the island is
passed as a char pointer.

This will create a
new island struct
on the heap.

These lines set the
fields on the new struct.

The function returns the
address of the new struct.

The aspiring actors are currently between jobs, so
they’ve found some free time in their busy schedules
to help you out with the coding. They’ve created a
utility function to create a new island struct
with a name that you pass to it. The function looks
like this:

282   Chapter 6

the game is afoot

The Case of the Vanishing Island
Captain’s Log. 11:00. Friday. Weather clear. A create() function
using dynamic allocation has been written, and the coding team says it
is ready for air trials.

14:15. Weather cloudy. Northwest headwind 15kts near Bermuda.
Landing at first stop. Software team on board providing basic code.
Name of island entered at the command line.

14:45. Take off from landing strip rocky due to earth tremors. Software
team still on board. Supplies of Jolt running low.

island* create(char *name)

{

 island *i = malloc(sizeof(island));

 i->name = name;

 i->opens = "09:00";

 i->closes = "17:00";

 i->next = NULL;

 return i;

}

char name[80];

fgets(name, 80, stdin);

island *p_island0 = create(name);

Create an array to store an island name.

Ask the user for the name of an island.

> ./test_flight
Atlantis

File Edit Window Help

Five-Minute
Mystery

you are here 4   283

data structures and dynamic memory

15:35. Arrival at second island. Weather good. No wind. Entering
details into new program.

17:50 Back at headquarters tidying up on paperwork. Strange thing.
The flight log produced by the test program appears to have a bug.
When the details of today’s flight are logged, the trip to the first island
has been mysteriously renamed. Asking software team to investigate.

What happened to the name of the first island? Is there
a bug in the create() function? Does the way it was
called give any clues?

fgets(name, 80, stdin);

island *p_island1 = create(name);

p_island0->next = p_island1;

Titchmarsh Island
File Edit Window Help

Ask the user to enter the name of the second island. This creates the
second island.

This connects the first island
to the second island.

display(p_island0);
This will display the details of the list of islands using the function we created earlier.

Name: Titchmarsh Island
 open: 09:00-17:00
Name: Titchmarsh Island
 open: 09:00-17:00

File Edit Window Help

What happened to Atlantis???? The first island now has the same name as the second island!!!

284   Chapter 6

case solved

The Case of the Vanishing Island

What happened to the name of the first island?

Look at the code of the create() function again:

When the code records the name of the island, it doesn’t take a copy of
the whole name string; it just records the address where the name string
lives in memory. Is that important? Where did the name string live? We
can find out by looking at the code that was calling the function:

The program asks the user for the name of each island, but both times
it uses the name local char array to store the name. That means that
the two islands share the same name string. As soon as the local
name variable gets updated with the name of the second island, the
name of the first island changes as well.

island* create(char *name)

{

 island *i = malloc(sizeof(island));

 i->name = name;

 i->opens = "09:00";

 i->closes = "17:00";

 i->next = NULL;

 return i;

}

Five-Minute
Mystery

Solved

char name[80];

 fgets(name, 80, stdin);

 island *p_island0 = create(name);

 fgets(name, 80, stdin);

 island *p_island1 = create(name);

you are here 4   285

data structures and dynamic memory

String Copying Up Close
In C, you often need to make copies of strings. You could do that by calling the
malloc() function to create a little space on the heap and then manually copying
each character from the string you are copying to the space on the heap. But guess
what? Other developers got there ahead of you. They created a function in the
string.h header called strdup().

Let’s say that you have a pointer to a character array that you want to copy:

char *s = "MONA LISA"; M O N A L I S A \0

The strdup() function can reproduce a complete copy of the string somewhere
on the heap:

char *copy = strdup(s);

The strdup() function works out how long the string is, and then
calls the malloc() function to allocate the correct number of
characters on the heap.

1

It then copies each of the characters to the new space on the heap.2

That means that strdup() always creates space on the heap. It can’t create space on
the stack because that’s for local variables, and local variables get cleared away too often.

But because strdup() puts new strings on the heap, that means you must always
remember to release their storage with the free() function.

That’s 10 characters from
position s to the \0 character,
and malloc(10) tells me I’ve got
space starting on the heap at
location 2,500,000.

2,500,000 is an
M; 2,500,001 is
an O; …

286   Chapter 6

use strdup()

Let’s fix the code using the strdup() function
You can fix up the original create() function using the
strdup() function, like this:

island* create(char *name)

{

 island *i = malloc(sizeof(island));

 i->name = strdup(name);

 i->opens = "09:00";

 i->closes = "17:00";

 i->next = NULL;

 return i;

}

You can see that we only need to put the strdup() function on
the name field. Can you figure out why that is?

It’s because we are setting the opens and closes fields to string
literals. Remember way back when you saw where things were
stored in memory? String literals are stored in a read-only area
of memory set aside for constant values. Because you always
set the opens and closes fields to constant values, you don’t
need to take a defensive copy of them, because they’ll never
change. But you had to take a defensive copy of the name array,
because something might come and update it later.

So does it fix the code?
To see if the change to the create() function fixed the code,
let’s run your original code again:

Now that code works. Each time the user enters the name of an island,
the create() function is storing it in a brand-new string.

OK, now that you have a function to create island
data, let’s use it to create a linked list from a file.

> ./test_flight
Atlantis
Titchmarsh Island
Name: Atlantis
 open: 09:00-17:00
Name: Titchmarsh Island
 open: 09:00-17:00

File Edit Window Help CoconutAirways

Q: If the island struct had a
name array rather than a character pointer,
would I need to use strdup() here?

A: No. Each island struct would
store its own copy, so you wouldn’t need to
make your own copy.

Q: So why would I want to use char
pointers rather than char arrays in my
data structures?

A: char pointers won’t limit the amount of
space you need to set aside for strings. If you
use char arrays, you will need to decide in
advance exactly how long your strings might
need to be.

you are here 4   287

data structures and dynamic memory

Pool Puzzle
Catastrophe! The code to create an island tour has

fallen into the pool! Your job is to take code
snippets from the pool and place them into the
blank lines in the code below. Your goal is to
reconstruct the program so that it can read a list
of names from Standard Input and then connect
them together to form a linked list. You may not

use the same code snippet more than once, and
you won’t need to use all the pieces of code.

Note: each thing from
the pool can be used
only once!

 island *start = NULL;

 island *i = NULL;

 island *next = NULL;

 char name[80];

 for(; != ; i =) {

 next = create(name);

 if (start == NULL)

 start = ;

 if (i != NULL)

 i = next;

 }

 display(start);

fgets(name, 80, stdin)

NULL
next

next

next

NULL

->

.

288   Chapter 6

out of the pool

Pool Puzzle Solution
Catastrophe! The code to create an island tour has

fallen into the pool! Your job was to take code
snippets from the pool and place them into the
blank lines in the code below. Your goal was to
reconstruct the program so that it can read a list
of names from Standard Input and then connect
them together to form a linked list.

Note: each thing from
the pool can be used
only once!

 island *start = NULL;

 island *i = NULL;

 island *next = NULL;

 char name[80];

 for(; != ; i =) {

 next = create(name);

 if (start == NULL)

 start = ;

 if (i != NULL)

 i = next;

 }

 display(start);

fgets(name, 80, stdin) NULL next

next

next

NULL

->

.

Read a string from the Standard Input.

We’ll keep looping until we don’t get any more strings.

At the end of each
loop, set i to the next
island we created.

This creates
an island.

The first time through, start is set to
NULL, so set it to the first island.

Don’t forget: i is a pointer, so
we’ll use -> notation.

you are here 4   289

data structures and dynamic memory

void release(island *start)

{

 island *i = start;

 island *next = NULL;

 for (; i != NULL; i = next) {

 next = ;

 ;

 ;

 }

}

But wait! You’re not done yet. Don’t forget that if you ever
allocate space with the malloc() function, you need to
release the space with the free() function. The program
you’ve written so far creates a linked list of islands in heap
memory using malloc(), but now it’s time to write some code
to release that space once you’re done with it.

Here’s a start on a function called release() that will release
all of the memory used by a linked list, if you pass it a pointer to
the first island:

Think very carefully. When you release the memory, what will you need to free? Just the island, or
something more? In what sequence should you free them?

290   Chapter 6

sharpen your pencil

But wait! You’re not done yet. Don’t forget that if you ever
allocate space with the malloc() function, you need to
release the space with the free() function. The program
you’ve written so far creates a linked list of islands in heap
memory using malloc(), but now it’s time to write some code
to release that space once you’re done with it.

Here’s a start on a function called release() that will release
all of the memory used by a linked list, if you pass it a pointer to
the first island:

void release(island *start)

{

 island *i = start;

 island *next = NULL;

 for (; i != NULL; i = next) {

 next = ;

 ;

 ;

 }

}

When you release the memory, what will you need to free? Just the island, or something more? In
what sequence should you free them?

i->next
free(i->name)
free(i)

Set next to point to the next island. First, you need to free
the name string that you
created with strdup(). Only after freeing the name

should you free the island struct.

If you’d freed the island first, you might not
have been able to reach the name to free it.

Free the memory when you’re done
Now that you have a function to free the linked list, you’ll
need to call it when you’ve finished with it. Your program
only needs to display the contents of the list, so once you’ve
done that, you can release it:

display(start);

release(start);

Once that’s done, you can test the code.

you are here 4   291

data structures and dynamic memory

Test Drive
So, if you compile the code and then run the file through it, what
happens?

> ./tour < trip1.txt
Name: Delfino Isle
 Open: 09:00-17:00
Name: Angel Island
 Open: 09:00-17:00
Name: Wild Cat Island
 Open: 09:00-17:00
Name: Neri's Island
 Open: 09:00-17:00
Name: Great Todday
 Open: 09:00-17:00
Name: Ramita de la Baya
 Open: 09:00-17:00
Name: Island of the Blue Dolphins
 Open: 09:00-17:00
Name: Fantasy Island
 Open: 09:00-17:00
Name: Farne
 Open: 09:00-17:00
Name: Isla de Muert
 Open: 09:00-17:00
Name: Tabor Island
 Open: 09:00-17:00
Name: Haunted Isle
 Open: 09:00-17:00
Name: Sheena Island
 Open: 09:00-17:00

File Edit Window Help FreeSpaceYouDon’tNeed

It works. Remember: you had no way of knowing how long that
file was going to be. In this case, because you are just printing out
the file, you could have simply printed it out without storing it all
in memory. But because you do have it in memory, you’re free to
manipulate it. You could add in extra steps in the tour, or remove
them. You could reorder or extend the tour.

Dynamic memory allocation lets you create the
memory you need at RUNTIME. And the way you
access dynamic heap memory is with malloc() and
free().

292   Chapter 6

stack and heap

Tonight’s Talk: Stack and Heap Discuss Their Differences

Stack:
Heap? Are you there? I’m home.

Deep regression. Oops…excuse me… Just tidy that
up…

The code just exited a function. Just need to free up
the storage from those local variables.

Perhaps you’re right. Mind if I sit?

I…think this is yours?

You really should consider getting somebody in to
take care of this place.

How do you know? I mean, how do you know it
hasn’t just forgotten about it?

Hmmm? Are you sure? Wasn’t it written by the
same woman who wrote that dreadful Whack-a-
bunny game? Memory leaks everywhere. I could
barely move for rabbit structs. Droppings
everywhere. It was terrible.

Heap:

Don’t see you too often this time of day. Got a little
something going on?

What’re you doing?

You should take life a little easier. Relax a little…

Beer? Don’t worry about the cap; throw it anywhere.

Hey, you found the pizza! That’s great. I’ve been
looking for that all week.

Don’t worry about it. That online ordering
application left it lying around. It’ll probably be
back for it.

He’d have been back in touch. He’d have called
free().

you are here 4   293

data structures and dynamic memory

Heap:
Hey, it’s not my responsibility to clear up the
memory. Someone asks me for space, I give him
space. I’ll leave it there until he tells me to clean
it up.

Yeah, maybe. But I’m easy to use. Not like you and
your…fussing.

<belches>What? I’m just saying you’re difficult to
keep track of.

Whatever. I’m a live-and-let-live type. If a program
wants to make a mess, it’s not my responsibility.

I’m easygoing.

Ah, here we go again…

Easy, now.

Hey, you’re overflowing. Take this…

It’s the high score table from Whack-a-Bunny.
Don’t worry; I don’t think the program needs it
anymore.

Stack:

That’s irresponsible.

Fussing? I don’t fuss! You might want to use a
napkin…

I just believe that memory should be properly
maintained.

You’re messy.

Why don’t you do garbage collection?!

I mean, just a little…tidying up. You don’t do
anything!!!

<crying>I’m sorry. I just can’t cope with this level of
disorganization.

<blows nose>Thank you. Wait, what is this?

294   Chapter 6

no dumb questions

Q: Why is the heap called the heap?

A: Because the computer doesn’t
automatically organize it. It’s just a big heap
of data.

Q: What’s garbage collection?

A: Some languages track when you
allocate data on a heap and then, when
you’re no longer using the data, they free
the data from the heap.

Q: Why doesn’t C contain garbage
collection?

A: C is quite an old language; when it
was invented, most languages didn’t do
automatic garbage collection.

Q: I understand why I needed to
copy the name of the island in the
example. Why didn’t I need to copy the
opens and closes values?

A: The opens and closes values
are set to string literals. String literals can’t
be updated, so it doesn’t matter if several
data items refer to the same string.

Q: Does strdup() actually call
the malloc() function?

A: It will depend on how the C Standard
Library is implemented, but most of the
time, yes.

Q: Do I need to free all my data
before the program ends?

A: You don’t have to; the operating
system will clear away all of the memory
when the program exits. But it’s good
practice to always explicitly free anything
you’ve created.

�� Dynamic data structures allow you
to store a variable number of data
items.

�� A linked list is a data structure that
allows you to easily insert items.

�� Dynamic data structures are
normally defined in C with recursive
structs.

�� A recursive struct contains
one or more pointers to a similar
struct.

�� The stack is used for local variables
and is managed by the computer.

�� The heap is used for long-term
storage. You allocate space with
malloc().

�� The sizeof operator will tell you
how much space a struct needs.

�� Data will stay on the heap until you
release it with free().

you are here 4   295

data structures and dynamic memory

You’ve seen how to create a linked list in C. But linked lists aren’t the
only data structures you might need to build. Below are some other
example data structures. See if you can match up the data structure
with the description of how it can be used.

?What’s my data structure?

Data structure

I can be used to store a sequence of items,
and I make it easy to insert new items. But
you can process me in only one direction.

Description

Each item I store can connect to up to
two other items. I am useful for storing
hierarchical information.

I can be used to associate two different
types of data. For example, you could use
to me to associate people’s names to their
phone numbers.

Each item I store connects to up to two
other items. You can process me in two
directions.

296   Chapter 6

that’s my data structure

You’ve seen how to create a linked list in C. But linked lists aren’t the
only data structures you might need to build. Below are some other
example data structures. You were to match up the data structure with
the description of how it can be used.

I can be used to store a sequence of items,
and I make it easy to insert new items. But
you can process me in only one direction.

Each item I store can connect to up to
two other items. I am useful for storing
hierarchical information.

I can be used to associate two different
types of data. For example, you could use
to me to associate people’s names to their
phone numbers.

Each item I store connects to up to two
other items. You can process me in two
directions.

Associated array or map
It connects key
information to
value information.

Description

Doubly linked list

It’s like a normal linked list, but it has connections going both ways.

Binary tree

Linked list

Data structures are useful, but be careful!
You need to be careful when you create these data structures
using C. If you don’t keep proper track of the data you are
storing, there’s a risk that you’ll leave old dead data on the heap.
Over time, this will start to eat away at the memory on your
machine, and it might cause your program to crash with memory
errors. That means it’s really important that you learn
to track down and fix memory leaks in your code…

?What’s my data structure?
Solution

you are here 4   297

data structures and dynamic memorydata structures and dynamic memory

you are here 4   297

Top Secret

Federal Bureau of Investigations United States Department of

Justice, Washington, D. C.

From: J. Edgar Hoover, Director

Subject: SUSPECTED LEAK IN GOVERNMENT EXPERT SYSTEM

Our Cambridge, MA, office advised that there is a suspected leak

somewhere inside the new Suspicious Persons Identification

Expert System (SPIES). Our sources and informants familiar

with software matters advise that the supposed leak is the

result of shoddy coding by person or persons unknown.

An informant who has furnished reliable information in the past

and who claims to be close to the people concerned has advised

that the leak is the result of careless management of data in the

area of memory known to the hacker fraternity as “The Heap.”

You are hereby given access to the expert system source code

and have, by my order, been given access to the full resources of

the FBI’s software engineering lab. Consider the evidence and

analyze the details of the case carefully. I want this leak found,

and I want this leak fixed.

Failure is not an option.

Very truly yours,

298   Chapter 6

top secret

Exhibit A: the source code
What follows is the source code for the Suspicious Persons
Identification Expert System (SPIES). This software can be
used to record and identify persons of interest. You are not
required to read this code in detail now, but please keep a copy
in your records so that you may refer to it during the ongoing
investigation.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct node {
 char *question;
 struct node *no;
 struct node *yes;
} node;

int yes_no(char *question)
{
 char answer[3];
 printf("%s? (y/n): ", question);
 fgets(answer, 3, stdin);
 return answer[0] == 'y';
}

node* create(char *question)
{
 node *n = malloc(sizeof(node));
 n->question = strdup(question);
 n->no = NULL;
 n->yes = NULL;
 return n;
}

void release(node *n)
{
 if (n) {
 if (n->no)
 release(n->no);
 if (n->yes)
 release(n->yes);
 if (n->question)
 free(n->question);
 free(n);
 }
}

you are here 4   299

data structures and dynamic memory

int main()
{
 char question[80];
 char suspect[20];
 node *start_node = create("Does suspect have a mustache");
 start_node->no = create("Loretta Barnsworth");
 start_node->yes = create("Vinny the Spoon");

 node *current;
 do {
 current = start_node;
 while (1) {
 if (yes_no(current->question))
 {
 if (current->yes) {
 current = current->yes;
 } else {
 printf("SUSPECT IDENTIFIED\n");
 break;
 }
 } else if (current->no) {
 current = current->no;
 } else {

 /* Make the yes-node the new suspect name */
 printf("Who's the suspect? ");
 fgets(suspect, 20, stdin);
 node *yes_node = create(suspect);
 current->yes = yes_node;

 /* Make the no-node a copy of this question */
 node *no_node = create(current->question);
 current->no = no_node;

 /* Then replace this question with the new question */
 printf("Give me a question that is TRUE for %s but not for %s? ", suspect,
 current->question);
 fgets(question, 80, stdin);
 current->question = strdup(question);

 break;
 }
 }
 } while(yes_no("Run again"));
 release(start_node);
 return 0;
}

300   Chapter 6

top secret

An overview of the SPIES system
The SPIES program is an expert system that learns how to identify
individuals using distinguishing features. The more people you enter
into the system, the more the software learns and the smarter it gets.

The program builds a tree of suspects
The program records data using a binary tree. A binary tree allows
each piece of data to connect to two other pieces of data like this:

This is what the data looks like when the program starts. The first
item (or node) in the tree stores a question: “Does the suspect have a
mustache?” That’s linked to two other nodes: one if the answer’s yes,
and another if the answer’s no. The yes and no nodes store the name
of a suspect.

The program will use this tree to ask the user a series of questions
to identify a suspect. If the program can’t find the suspect, it will ask
the user for the name of the new suspect and some detail that can be
used to identify him or her. It will store this information in the tree,
which will gradually grow as it learns more things.

Let’s see what the program looks like in action.

Has a mustache?

Vinny the Spoon Loretta Barnsworth

This is the first question.

Yes, Vinny has a mustache. No, Loretta does not have a mustache.

Has a mustache?

One gold tooth? Facial scar?

Vinny the Spoon Loretta BarnsworthCliffy Five Fingers Hayden Fantucci

The program
will store new
information in the
tree like this.

The suspect names always appear at
the ends of the tree.

you are here 4   301

data structures and dynamic memory

Test Drive
This is what happens if an agent compiles the SPIES program and
then takes it on a test run:

The first time through, the program fails to identify the suspect
Hayden Fantucci. But once the suspect’s details are entered, the
program learns enough to identify Mr. Fantucci on the second run.

Pretty smart. So what’s the problem?
Someone was using the system for a few hours in the lab and noticed
that even though the program appeared to be working correctly, it
was using almost twice the amount of memory it needed.

That’s why you have been called in. Somewhere deep in the source
code, something is allocating memory on the heap and never freeing
it. Now, you could just sit and read through all of the code and hope
that you see what’s causing the problem. But memory leaks can be
awfully difficult to track down.

> gcc spies.c -o spies && ./spies
Does suspect have a mustache? (y/n): n
Loretta Barnsworth? (y/n): n
Who's the suspect? Hayden Fantucci
Give me a question that is TRUE for Hayden Fantucci
 but not for Loretta Barnsworth? Has a facial scar
Run again? (y/n): y
Does suspect have a mustache? (y/n): n
Has a facial scar
? (y/n): y
Hayden Fantucci
? (y/n): y
SUSPECT IDENTIFIED
Run again? (y/n): n
>

File Edit Window Help TrustNoone

So maybe you should pay a trip to the software lab…

302   Chapter 6

valgrind

Software forensics: using valgrind

Prepare your code: add debug info
You don’t need to do anything to your code before you run it through
valgrind. You don’t even need to recompile it. But to really get
the most out of valgrind, you need to make sure your executable
contains debug information. Debug information is extra data that
gets packed into your executable when it’s compiled—things like the
line number in the source file that a particular piece of code was
compiled from. If the debug info is present, valgrind will be able
to give you a lot more details about the source of your memory leak.

To add debug info into your executable, you need to recompile the
source with the -g switch:

gcc -g spies.c -o spies

It can take an achingly long time to track down bugs in large,
complex programs like SPIES. So C hackers have written tools that
can help you on your way. One tool used on the Linux operating
system is called valgrind.

valgrind can monitor the pieces of data that are allocated
space on the heap. It works by creating its own fake version
of malloc(). When your program wants to allocate some
heap memory, valgrind will intercept your calls to malloc()
and free() and run its own versions of those functions. The
valgrind version of malloc() will take note of which piece of
code is calling it and which piece of memory it allocated. When your
program ends, valgrind will report back on any data that was left
on the heap and tell you where in your code the data was created.

The -g switch tells the compiler
to record the line numbers
against the code it compiles.

Just the facts: interrogate your code
To see how valgrind works, let’s fire it up on a Linux box and use
it to interrogate the SPIES program a couple times.

The first time, use the program to identify one of the built-in
suspects: Vinny the Spoon. You’ll start valgrind on the command
line with the --leak-check=full option and then pass it the
program you want to run:

> valgrind --leak-check=full ./spies
==1754== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): y
Vinny the Spoon? (y/n): y
SUSPECT IDENTIFIED
Run again? (y/n): n
==1754== All heap blocks were freed -- no leaks are possible

File Edit Window Help valgrindRules

You can find out if valgrind is available
on your operating system and how to
install it at http://valgrind.org.

spies

malloc()

valgrind
intercepts
calls to the
malloc()
and free()
functions.

valgrind will keep track of data
that is allocated but not freed.

you are here 4   303

data structures and dynamic memory

Use valgrind repeatedly to gather more evidence
When the SPIES program exited, there was nothing left on
the heap. But what if you run it a second time and teach the
program about a new suspect called Hayden Fantucci?

> valgrind --leak-check=full ./spies
==2750== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): n
Loretta Barnsworth? (y/n): n
Who's the suspect? Hayden Fantucci
Give me a question that is TRUE for Hayden Fantucci
 but not for Loretta Barnsworth? Has a facial scar
Run again? (y/n): n
==2750== HEAP SUMMARY:
==2750== in use at exit: 19 bytes in 1 blocks
==2750== total heap usage: 11 allocs, 10 frees, 154 bytes allocated
==2750== 19 bytes in 1 blocks are definitely lost in loss record 1 of 1
==2750== at 0x4026864: malloc (vg_replace_malloc.c:236)
==2750== by 0x40B3A9F: strdup (strdup.c:43)
==2750== by 0x8048587: create (spies.c:22)
==2750== by 0x804863D: main (spies.c:46)
==2750== LEAK SUMMARY:
==2750== definitely lost: 19 bytes in 1 blocks
>

File Edit Window Help valgrindRules

This time, valgrind found a memory leak
It looks like there were 19 bytes of information left on the
heap at the end of the program. valgrind is telling you
the following things:

19 bytes of memory were allocated but not freed.¥

That’s quite a few pieces of information. Let’s take these
facts and analyze them.

Looks like we allocated new pieces of memory 11 times, but freed only 10 of them.¥

Do these lines give us any clues?¥

Why 19 bytes? Is that a clue?¥

19 bytes was left on the heap.
Upi allocated new pieces
of memory 11 times, but
only freed 10 of them.

Do these lines give us any clues?

Why 19 bytes? Is that a clue?

304   Chapter 6

valgrind

Look at the evidence
OK, now that you’ve run valgrind, you’ve collected quite a few
pieces of evidence. It’s time to analyze that evidence and see if you
can draw any conclusions.

1. Location
You ran the code two times. The first time, there was no problem.
The memory leak only happened when you entered a new suspect
name. Why is that significant? Because that means the leak can’t
be in the code that ran the first time. Looking back at the source
code, that means the problem lies in this section of the code:

} else if (current->no) {

 current = current->no;

} else {

 /* Make the yes-node the new suspect name */

 printf("Who's the suspect? ");

 fgets(suspect, 20, stdin);

 node *yes_node = create(suspect);

 current->yes = yes_node;

 /* Make the no-node a copy of this question */

 node *no_node = create(current->question);

 current->no = no_node;

 /* Then replace this question with the new question */

 printf("Give me a question that is TRUE for %s but not for %s? ",

 suspect, current->question);

 fgets(question, 80, stdin);

 current->question = strdup(question);

 break;

}

you are here 4   305

data structures and dynamic memory

2. Clues from valgrind
When you ran the code through valgrind and added a single
suspect, the program allocated memory 11 times, but only released
memory 10 times. What does that tell you?

valgrind told you that there were 19 bytes of data left on the
heap when the program ended. If you look at the source code,
what piece of data is likely to take up 19 bytes of space?

Finally, what does this output from valgrind tell you?

==2750== 19 bytes in 1 blocks are definitely lost in loss record 1 of 1
==2750== at 0x4026864: malloc (vg_replace_malloc.c:236)
==2750== by 0x40B3A9F: strdup (strdup.c:43)
==2750== by 0x8048587: create (spies.c:22)
==2750== by 0x804863D: main (spies.c:46)

Consider the evidence carefully, then answer these questions.

?THE

BIG
QUESTIONS

1. How many pieces of data were left on the heap?

2. What was the piece of data left on the heap?

3. Which line or lines of code caused the leak?

4. How do you plug the leak?

306   Chapter 6

cunning plan

You were to consider the evidence carefully and answer these questions.

?THE

BIG
AnswerS

1. How many pieces of data were left on the heap?

2. What was the piece of data left on the heap?

3. Which line or lines of code caused the leak?

4. How do you plug the leak?

There is one piece of data.

The string “Loretta Barnsworth”. It’s 18 characters with a string terminator.

The create() functions themselves don’t cause leaks because they didn’t on the first pass,
so it must be this strdup() line:

 current->question = strdup(question);

If current->question is already pointing to something on the heap, free that before
allocating a new question:

free(current->question);
current->question = strdup(question);

you are here 4   307

data structures and dynamic memory

The fix on trial
Now that you’ve added the fix to the code, it’s time to run the
code through valgrind again.

> valgrind --leak-check=full ./spies
==1800== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
Does suspect have a mustache? (y/n): n
Loretta Barnsworth? (y/n): n
Who's the suspect? Hayden Fantucci
Give me a question that is TRUE for Hayden Fantucci
 but not for Loretta Barnsworth? Has a facial scar
Run again? (y/n): n
==1800== All heap blocks were freed -- no leaks are possible
>

File Edit Window Help valgrindRules

The leak is fixed
You ran exactly the same test data through the program, and
this time the program cleared everything away from the heap.

How did you do? Did you crack the case? Don’t worry if you
didn’t manage to find and fix the leak this time. Memory
leaks are some of the hardest bugs to find in C programs.
The truth is that many of the C programs available probably
have some memory bugs buried deep inside them, but that’s
why tools like valgrind are important.

Spot when leaks happen.¥

Identify the location where they happen.¥

Check to make sure the leak is fixed.¥

308   Chapter 6

no dumb questions

Q: valgrind said the leaked
memory was created on line 46, but the
leak was fixed on a completely different
line. How come?

A: The “Loretta…” data was put
onto the heap on line 46, but the leak
happened when the variable pointing to
it (current->question) was
reassigned without freeing it. Leaks don’t
happen when data is created; they happen
when the program loses all references to
the data.

Q: Can I get valgrind on my Mac/
Windows/FreeBSD system?

A: Check http://valgrind.org for details
on the latest release.

Q: How does valgrind intercept
calls to malloc() and free()?

A: The malloc() and free()
functions are contained in the C Standard
Library. But valgrind contains a library
with its own versions of malloc() and
free(). When you run a program with
valgrind, your program will be using
valgrind’s functions, rather than the
ones in the C Standard Library.

Q: Why doesn’t the compiler always
include debug information when it
compiles code?

A: Because debug information will make
your executable larger, and it may also
make your program slightly slower.

Q: Where did the name valgrind
come from?

A: Valgrind is the name of the entrance
to Valhalla. valgrind (the program)
gives you access to the computer’s heap.

�� valgrind checks for memory
leaks.

�� valgrind works by intercepting
the calls to malloc() and
free().

�� When a program stops running,
valgrind prints details of what’s
left on the heap.

�� If you compile your code with debug
information, valgrind can give
you more information.

�� If you run your program several times,
you can narrow the search for the
leak.

�� valgrind can tell you which lines
of code in your source put the data
on the heap.

�� valgrind can be used to check
that you’ve fixed a leak.

you are here 4   309

data structures and dynamic memory

Your C Toolbox

You’ve got Chapter 6 under
your belt, and now you’ve

added data structures and
dynamic memory to your toolbox.

For a complete list of tooltips in the
book, see Appendix ii.

CHAPT
ER 6

A linked
list is more
extensible
than an array.

Data can
be inserted
easily into a
linked list.

A linked
list is a
dynamic data
structure.

Dynamic data
structures
use recursive
structs.

Recursive
structs contain
one or more
links to similar
data.

malloc()
allocates
memory on the
heap.

free()
releases
memory on
the heap.

Unlike the
stack, heap
memory is not
automatically
released. The stack

is used
for local
variables.

strdup() will
create a copy
of a string on
the heap.

A memory leak
is allocated
memory you can
no longer access.

valgrind can
help you
track down
memory leaks.

this is a new chapter   311

My go_on_date()
is awesome now
that I’ve discovered
variadic functions.

advanced functions7

Turn your functions
up to 11

Basic functions are great, but sometimes you need more.�
So far, you’ve focused on the basics, but what if you need even more power and

flexibility to achieve what you want? In this chapter, you’ll see how to up your code’s

IQ by passing functions as parameters. You’ll find out how to get things sorted with

comparator functions. And finally, you’ll discover how to make your code super stretchy

with variadic functions.

312   Chapter 7

true love

Looking for Mr. Right…
You’ve used a lot of C functions in the book so far, but the
truth is that there are still some ways to make your C functions
a lot more powerful. If you know how to use them correctly, C
functions can make your code do more things but without
writing a lot more code.

To see how this works, let’s look at an example. Imagine
you have an array of strings that you want to filter down,
displaying some strings and not displaying others:

int NUM_ADS = 7;

char *ADS[] = {

 "William: SBM GSOH likes sports, TV, dining",

 "Matt: SWM NS likes art, movies, theater",

 "Luis: SLM ND likes books, theater, art",

 "Mike: DWM DS likes trucks, sports and bieber",

 "Peter: SAM likes chess, working out and art",

 "Josh: SJM likes sports, movies and theater",

 "Jed: DBM likes theater, books and dining"

};

I want someone into
sports, but definitely
not into Bieber…

Let’s write some code that uses string
functions to filter this array down.

you are here 4   313

advanced functions

Code Magnets
Complete the find() function so it can track down all the sports fans in
the list who don’t also share a passion for Bieber.

Beware: you might not need all the fragments to complete the function.

void find()

{

 int i;

 puts("Search results:");

 puts("------------------------------------");

 for (i = 0; i ; i++) {

 if ((,)

 (,)) {

 printf("%s\n", ADS[i]);

 }

 }

 puts("------------------------------------");

}

NUM_ADS
ADS[i]

&&

strstr

!
<

strstr

ADS[i]
"sports"

"bieber"
||

strcmp

strcmp

314   Chapter 7

magnets solved

Code Magnets Solution
You were to complete the find() function so it can track down all the
sports fans in the list who don’t also share a passion for Bieber.

void find()

{

 int i;

 puts("Search results:");

 puts("------------------------------------");

 for (i = 0; i ; i++) {

 if ((,)

 (,)) {

 printf("%s\n", ADS[i]);

 }

 }

 puts("------------------------------------");

}

NUM_ADS

ADS[i]&&

strstr

!

<

strstr

ADS[i] "sports"

"bieber"

||
strcmp

strcmp

you are here 4   315

advanced functions

Test Drive
Now, if you take the function and the data, and wrap everything
up in a program called find.c, you can compile and run it like
this:

> gcc find.c -o find && ./find
Search results:

William: SBM GSOH likes sports, TV, dining
Josh: SJM likes sports, movies and theater

>

File Edit Window Help FindersKeepers

And sure enough, the find() function loops through the array
and finds the matching strings. Now that you have the basic code,
it would be easy to create clones of the function that could perform
different kinds of searches.

Find someone

who likes

sports or

working out.

I want a non-
smoker who
likes the
theater.

Find someone

who likes the

art, theater, or

dining.
Hey, wait! Clone? Clone the
function???? That’s dumb. Each version
would only vary by, like, one line.

Exactly right. If you clone the function, you’ll
have a lot of duplicated code.

C programs often have to perform tasks that are almost identical
except for some small detail. At the moment, the find()
function runs through each element of the array and applies a
simple test to each string to look for matches. But the test it makes
is hardwired. It will always perform the same test.

Now, you could pass some strings into the function so that it could
search for different substrings. The trouble is, that wouldn’t allow
find() to check for three strings, like “arts,” “theater,” or “dining.”
And what if you needed something wildly different?

You need something a little more sophisticated…

316   Chapter 7

give the function code

Pass code to a function
What you need is some way of passing the code for the
test to the find() function. If you had some way of
wrapping up a piece of code and handing that code to the
function, it would be like passing the find() function a
testing machine that it could apply to each piece of data.

This means the bulk of the find() function would stay
exactly the same. It would still contain the code to check
each element in an array and display the same kind of output.
But the test it applies against each element in the array would
be done by the code that you pass to it.

Find someone
who likes
sports or
working out.

Find someone

who likes the

arts, theater,

or dining.

This testing machine looks for people
who like arts, theater, or dining.

This testing machine looks for people who like sports or working out.

Testing
Machine

Testing
Machine

you are here 4   317

advanced functions

You need to tell find() the name of a function
Imagine you take our original search condition and rewrite it as a
function:

I want someone into
sports, but definitely
not into Bieber…

int sports_no_bieber(char *s)

{

 return strstr(s, "sports") && !strstr(s, "bieber");

}

Now, if you had some way of passing the name of the function
to find() as a parameter, you’d have a way of injecting the test:

void find()

{

 int i;

 puts("Search results:");

 puts("------------------------------------");

 for (i = 0; i < NUM_ADS; i++) {

 if ((ADS[i])) {

 printf("%s\n", ADS[i]);

 }

 }

 puts("------------------------------------");

}

function-name match

call-the-match-function

match would specify the
name of the function
containing the test.

Here, you’d need some way of calling
the function whose name was given by
the match parameter.

If you could find a way of passing a function name to find(),
there would be no limit to the kinds of tests that you could make in
the future. As long as you can write a function that will return true
or false to a string, you can reuse the same find() function.

find(sports_no_bieber);

find(sports_or_workout);

find(ns_theater);

find(arts_theater_or_dining);

But how do you say that a parameter stores the
name of a function? And if you have a function
name, how do you use it to call the function?

318   Chapter 7

function pointers

Every function name is a pointer to the function…
You probably guessed that pointers would come into
this somewhere, right? Think about what the name of
a function really is. It’s a way of referring to the piece
of code. And that’s just what a pointer is: a way of
referring to something in memory.

That’s why, in C, function names are also pointer
variables. When you create a function called
go_to_warp_speed(int speed), you are also
creating a pointer variable called go_to_warp_speed
that contains the address of the function. So, if you give
find() a parameter that has a function pointer type, you
should be able to use the parameter to call the function it
points to.

int go_to_warp_speed(int speed)

{

 dilithium_crystals(ENGAGE);

 warp = speed;

 reactor_core(c, 125000 * speed, PI);

 clutch(ENGAGE);

 brake(DISENGAGE);

 return 0;

}

go_to_warp_speed(4);

Let’s look at the C syntax you’ll need to work
with function pointers.

"go_to_warp_speed"

Stack

Heap

Globals

Constants

Code

Whenever you create a function,
you also create a function pointe

r
with the same name.

The pointer contains the address of the function.

When you call the function, you are
using the function pointer.

you are here 4   319

advanced functions

…but there’s no function data type
Usually, it’s pretty easy to declare pointers in C. If you have a
data type like int, you just need to add an asterisk to the end
of the data type name, and you declare a pointer with int *.
Unfortunately, C doesn’t have a function data type, so you
can’t declare a function pointer with anything like function *.

int *a; This declares an int pointer…

function *f; …but this won’t declare a function pointer.

Why doesn’t C have a function data type?
C doesn’t have a function data type because there’s not just
one type of function. When you create a function, you can vary a
lot of things, such as the return type or the list of parameters it
takes. That combination of things is what defines the type of the
function.

int go_to_warp_speed(int speed)

{

 ...

}

char** album_names(char *artist, int year)

{

 ...

}

There are many different types
of functions. These functions are
different types because they have
different return types and parameters.

So, for function pointers, you’ll need to use slightly more complex
notation…

320   Chapter 7

create a function pointer

How to create function pointers
Say you want to create a pointer variable that can store
the address of each of the functions on the previous page.
You’d have to do it like this:

int (*warp_fn)(int);

warp_fn = go_to_warp_speed;

warp_fn(4);

This will create a variable called
warp_fn that can store the
address of the go_to_warp_speed()
function.

This is just like calling go_to_warp_speed(4).

char** (*names_fn)(char*,int);

names_fn = album_names;

char** results = names_fn("Sacha Distel", 1972);

This will create a variable called names_fn that can store the address of the album_names() function.

That looks pretty complex, doesn’t it?

Unfortunately, it has to be, because you need to tell C the
return type and the parameter types the function will take.
But once you’ve declared a function pointer variable, you
can use it like any other variable. You can assign values
to it, you can add it to arrays, and you can also pass it to
functions…

…which brings us back to your find() code…

Q: What does char** mean? Is it a typing error? A: char** is a pointer normally used to point to an
array of strings.

you are here 4   321

advanced functions

Take a look at those other types of searches that people have asked for. See if you can create a
function for each type of search. Remember: the first is already written.

int sports_no_bieber(char *s)

{

 return strstr(s, "sports") && !strstr(s, "bieber");

}

Find someone

who likes

sports or

working out.

I want a non-
smoker who
likes the
theater.

Find someone

who likes the

arts, theater,

or dining.

void find()
{
 int i;
 puts("Search results:");
 puts("------------------------------------");
 for (i = 0; i < NUM_ADS; i++) {
 if (match(ADS[i])) {
 printf("%s\n", ADS[i]);
 }
 }
 puts("------------------------------------");
}

Then, see if you can complete the find() function:

Someone who likes
sports but not Bieber

int sports_or_workout(char *s)

{

}

int ns_theater(char *s)

{

}

int arts_theater_or_dining(char *s)

{

}

find() will need a
function pointer passing
to it called match.

This will call the match() function that was passed in.

322   Chapter 7

exercise solved

You were to take a look at those other types of searches that people have asked for and create a
function for each type of search.

int sports_no_bieber(char *s)

{

 return strstr(s, "sports") && !strstr(s, "bieber");

}

Find someone

who likes

sports or

working out.

I want a non-
smoker who
likes the
theater.

Find someone

who likes the

arts, theater,

or dining.

void find()
{
 int i;
 puts("Search results:");
 puts("------------------------------------");
 for (i = 0; i < NUM_ADS; i++) {
 if (match(ADS[i])) {
 printf("%s\n", ADS[i]);
 }
 }
 puts("------------------------------------");
}

Then, you were to complete the find() function:

Someone who likes
sports but not Bieber

int sports_or_workout(char *s)

{

}

int ns_theater(char *s)

{

}

int arts_theater_or_dining(char *s)

{

}

return strstr(s, “sports”) || strstr(s, “working out”);

return strstr(s, “NS”) && strstr(s, “theater”);

return strstr(s, “arts”) || strstr(s, “theater”) || strstr(s, “dining”);

int (*match)(char*)

you are here 4   323

advanced functions

Test Drive
Let’s take those functions out on the road and see how they
perform. You’ll need to create a program to call find() with
each function in turn:

int main()

{

 find(sports_no_bieber);

 find(sports_or_workout);

 find(ns_theater);

 find(arts_theater_or_dining);

 return 0;

}

> ./find
Search results:

William: SBM GSOH likes sports, TV, dining
Josh: SJM likes sports, movies and theater

Search results:

William: SBM GSOH likes sports, TV, dining
Mike: DWM DS likes trucks, sports and bieber
Peter: SAM likes chess, working out and art
Josh: SJM likes sports, movies and theater

Search results:

Matt: SWM NS likes art, movies, theater

Search results:

William: SBM GSOH likes sports, TV, dining
Matt: SWM NS likes art, movies, theater
Luis: SLM ND likes books, theater, art
Josh: SJM likes sports, movies and theater
Jed: DBM likes theater, books and dining

>

File Edit Window Help FindersKeepers

Each call to the find() function is performing a very
different search. That’s why function pointers are one of the
most powerful features in C: they allow you to mix functions
together. Function pointers let you build programs with a lot
more power and a lot less code.

This is find(sports_no_bieber).

This is find(sports_or_workout).

This is find(ns_theater).

This is find(arts_theater_or_dining).

324   Chapter 7

go huntin’

Q: If function pointers are just
pointers, why don’t you need to prefix
them with a * when you call the
function?

A: You can. In the program, instead of
writing match(ADS[i]), you could
have written (*match)(ADS[i]).

Q: And could I have used & to get
the address of a method?

A: Yes. Instead of
find(sports_or_
workout), you could have written
find(&sports_or_workout).

Q: Then why didn’t I?

A: Because it makes the code easier
to read. If you skip the * and &, C will still
understand what you’re saying.

When you’re out in the reeds, identifying those function pointers can be pretty
tricky. But this simple, easy-to-carry guide will fit in the ammo pocket of any C user.

The Hunter’s Guide to Function Pointers

Return type (* Pointer variable)(Param types)

char** (*names_fn)(char*,int)

This is the name of the
variable you’re declaring.

you are here 4   325

advanced functions

Get it sorted with the C Standard Library
Lots of programs need to sort data. And if the data’s
something simple like a set of numbers, then sorting is
pretty easy. Numbers have their own natural order. But it’s
not so easy with other types of data.

Imagine you have a set of people. How would you put
them in order? By height? By intelligence? By hotness?

When the people who wrote the C Standard Library
wanted to create a sort function, they had a problem:

How could a sort function sort any type of
data at all?

326   Chapter 7

sorting

Use function pointers to set the order
You probably guessed the solution: the C Standard Library
has a sort function that accepts a pointer to a comparator
function, which will be used to decide if one piece of data
is the same as, less than, or greater than another piece
of data.

This is what the qsort() function looks like:

qsort(void *array,

 size_t length,

 size_t item_size,

 int (*compar)(const void *, const void *));

This is a pointer
to an array.

This is the length
of the array.

This is the size of each
element in the array.

This is a pointer to a function that compares two items in the array.

Remember, a void* pointer
can point to anything.

The qsort() function compares pairs of values over and
over again, and if they are in the wrong order, the computer
will switch them.

And that’s what the comparator function is for. It will tell
qsort() which order a pair of elements should be in. It
does this by returning three different values:

To see how this works in practice, let’s look at an example.

If the first value is less than the second
value, it should return a negative number.

If the first value is greater than the second
value, it should return a positive number.

If the two values are equal,
it should return zero.

+ve

-ve

0

you are here 4   327

advanced functions

Sorting ints Up Close
Let’s say you have an array of integers and you want to sort them in
increasing order. What does the comparator function look like?

int scores[] = {543,323,32,554,11,3,112};

If you look at the signature of the comparator function that
qsort() needs, it takes two void pointers given by void*.
Remember void* when we used malloc()? A void pointer can
store the address of any kind of data, but you always need to cast
it to something more specific before you can use it.

The qsort() function works by comparing pairs of elements in
the array and then placing them in the correct order. It compares
the values by calling the comparator function that you give it.

A void pointer
void* can store
a pointer to
anything.

int compare_scores(const void* score_a, const void* score_b)

{

 ...

}

Values are always passed to the function as pointers, so the first thing
you need to do is get the integer values from the pointers:

int a = *(int*)score_a;

int b = *(int*)score_b;

You need to cast the void pointer to an integer pointer.

This first * then gets the int
stored at address score_b.

Then you need to return a positive, negative, or zero
value, depending on whether a is greater than, less
than, or equal to b. For integers, that’s pretty easy to
do—you just subtract one number from the other:

return a - b;

And this is how you ask qsort() to sort the array:

qsort(scores, 7, sizeof(int), compare_scores);

If a > b, this is positive. If a < b, this is negative. If a and b are equal, this is zero.

The comparator
function returned the
value –21. That means 11
needs to be before 32.

328   Chapter 7

exercise

Now it’s your turn. Look at these different sort descriptions. See if you can write a comparator
function for each one. To get you started, the first one is already completed.

Sort the

rectangles

in area order,

smallest first.

Sort integer
scores, with
the smallest
first.

Sort integer

scores, with

the largest

first.

int compare_scores(const void* score_a, const void* score_b)

{

 int a = *(int*)score_a;

 int b = *(int*)score_b;

 return a - b;

}

int compare_scores_desc(const void* score_a, const void* score_b)

{

}

typedef struct {

 int width;

 int height;

} rectangle;

int compare_areas(const void* a, const void* b)

{

}

This is the
rectangle type.

you are here 4   329

advanced functions

Sort a list
of names in
alphabetical
order. Case-
sensitive.

Sort the
rectangles
in area order,

largest first.

int compare_names(const void* a, const void* b)

{

}

Warning: this one is really tricky.

If a string is a pointer to a char, what will a pointer to it be? Here’s a hint:
strcmp(“Abc”, “Def”) < 0

And finally: if you already had the compare_areas() and compare_names() functions, how would you write
these two comparator functions?

int compare_areas_desc(const void* a, void* b)

{

}

Sort a list of
names in reverse
alphabetical
order. Case-
sensitive.

int compare_names_desc(const void* a, const void* b)

{

}

330   Chapter 7

exercise solved

Now it’s your turn. You were to look at these different sort descriptions and write a comparator
function for each one.

This is the one done before.

Sort the

rectangles

in area order,

smallest first.

Sort integer
scores, with
the smallest
first.

Sort integer

scores, with

the largest

first.

int compare_scores(const void* score_a, const void* score_b)

{

 int a = *(int*)score_a;

 int b = *(int*)score_b;

 return a - b;

}

int compare_scores_desc(const void* score_a, const void* score_b)

{

 int a = *(int*)score_a;
 int b = *(int*)score_b;
 return b - a;
}

typedef struct {

 int width;

 int height;

} rectangle;

int compare_areas(const void* a, const void* b)

{

 rectangle* ra = (rectangle*)a;
 rectangle* rb = (rectangle*)b;
 int area_a = (ra->width * ra->height);
 int area_b = (rb->width * rb->height);
 return area_a - area_b;
}

This is the
rectangle type.

If you subtract the numbers the other way
around, you’ll reverse the order of the final sort.

First, convert
the pointers to
the correct type.

Then, calculate
the areas.

Then, use the
subtraction trick.

you are here 4   331

advanced functions

Sort a list
of names in
alphabetical
order. Case-
sensitive.

Sort the
rectangles
in area order,

largest first.

int compare_names(const void* a, const void* b)

{

 char** sa = (char**)a;
 char** sb = (char**)b;
 return strcmp(*sa, *sb);
}

A string is a pointer to a char, so the pointers
you’re given are pointers to pointers.

We need to use the * operator to find the actual strings.
Here’s a hint:
strcmp(“Abc”, “Def”) < 0

And finally: if you already had the compare_areas() and compare_names() functions, how did you write
these two comparator functions?

int compare_areas_desc(const void* a, const void* b)

{

 return compare_areas(b, a);
}

Or you could have used -compare_areas(a, b).

Sort a list of
names in reverse
alphabetical
order. Case-
sensitive.

int compare_names_desc(const void* a, const void* b)

{

 return compare_names(b, a);
}

Or you could have used
-compare_names(a, b).

		� Don’t worry if this
exercise caused you a
few problems.

It involved pointers,
function pointers, and even a little math. If
you found it tough, take a break, drink a little
water, and then try it again in an hour or two.

332   Chapter 7

test drive

Test Drive
Some of the comparator functions were really pretty gnarly, so it’s
worth seeing how they run in action. This is the kind of code you
need to call the functions.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main()

{

 int scores[] = {543,323,32,554,11,3,112};

 int i;

 qsort(scores, 7, sizeof(int), compare_scores_desc);

 puts("These are the scores in order:");

 for (i = 0; i < 7; i++) {

 printf("Score = %i\n", scores[i]);

 }

 char *names[] = {"Karen", "Mark", "Brett", "Molly"};

 qsort(names, 4, sizeof(char*), compare_names);

 puts("These are the names in order:");

 for (i = 0; i < 4; i++) {

 printf("%s\n", names[i]);

 }

 return 0;

}

The comparator
functions go here.

This is the line
that sorts the
scores.

This will print out
the array once
it’s been sorted.

This sorts
the names.

Remember: an
array of names
is just an array
of char pointers,
so the size of
each item is
sizeof(char*).

This prints the sorted names out.

qsort() changes
the order of the
elements in the array.

you are here 4   333

advanced functions

If you compile and run this code, this is what you get:

Q: I don’t understand the comparator
function for the array of strings. What
does char** mean?

A: Each item in a string array is
a char pointer (char*). When
qsort() calls the comparator function,
it sends pointers to two elements in
the arrays. That means the comparator
receives two pointers-to-pointers-to-char.
In C notation, each value is a char**.

Q: OK, but when I call the
strcmp() function, why does the
code say strcmp(*a, *b)? Why
not strcmp(a, b)?

A: a and b are of type char**. The
strcmp() function needs values of
type char*.

Q: Does qsort() create a sorted
version of an array?

A: It doesn’t make a copy, it actually
modifies the original array.

Q: Why does my head hurt?

A: Don’t worry about it. Pointers are
really difficult to use sometimes. If you
don’t find them a little confusing, it probably
means you aren’t thinking hard enough
about them.

> ./test_drive
These are the scores in order:
Score = 554
Score = 543
Score = 323
Score = 112
Score = 32
Score = 11
Score = 3
These are the names in order:
Brett
Karen
Mark
Molly
>

File Edit Window Help Sorted

Great, it works.
Now try writing your own example code. The sorting
functions can be incredibly useful, but the comparator
functions they need can be tricky to write. But the more
practice you get, the easier they become.

Do this!

334   Chapter 7

dear john

Automating the Dear John letters
Imagine you’re writing a mail-merge program to send out
different types of messages to different people. One way of
creating the data for each response is with a struct like this:

enum response_type {DUMP, SECOND_CHANCE, MARRIAGE};
typedef struct {
 char *name;
 enum response_type type;
} response;

These are the three types of messages
that will be sent to people.

You’ll record a response type with each piece of response data.

The enum gives you the names for each of the three types of
response you’ll be sending out, and that response type can be
recorded against each response. Then you’ll be able to use
your new response data type by calling one of these three
functions for each type of response:

void dump(response r)
{
 printf("Dear %s,\n", r.name);
 puts("Unfortunately your last date contacted us to");
 puts("say that they will not be seeing you again");
}

void second_chance(response r)
{
 printf("Dear %s,\n", r.name);
 puts("Good news: your last date has asked us to");
 puts("arrange another meeting. Please call ASAP.");
}

void marriage(response r)
{
 printf("Dear %s,\n", r.name);
 puts("Congratulations! Your last date has contacted");
 puts("us with a proposal of marriage.");
}

So, now that you know what the data looks like, and you have
the functions to generate the responses, let’s see how complex
the code is to generate a set of responses from an array of data.

you are here 4   335

advanced functions

int main()
{
 response r[] = {
 {"Mike", DUMP}, {"Luis", SECOND_CHANCE},
 {"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
 };
 int i;
 for (i = 0; i < 4; i++) {
 switch() {
 case :
 dump();
 break;
 case :
 second_chance();
 break;
 default:
 marriage();
 }
 }
 return 0;
}

Pool Puzzle
Take code fragments from the pool and place

them into the blank lines below. Your
goal is to piece together the main()
function so that it can generate a set
of letters for the array of response
data. You may not use the same code
fragment more than once.

Note: each thing from
the pool can be used
only once!

r[i].type

DUMP

SECOND_CHANCE
r[i]

r[i]

r[i]

r[i].name

r[i].name
r[i].namedump

second_chance

336   Chapter 7

out of the pool

int main()
{
 response r[] = {
 {"Mike", DUMP}, {"Luis", SECOND_CHANCE},
 {"Matt", SECOND_CHANCE}, {"William", MARRIAGE}
 };
 int i;
 for (i = 0; i < 4; i++) {
 switch() {
 case :
 dump();
 break;
 case :
 second_chance();
 break;
 default:
 marriage();
 }
 }
 return 0;
}

Pool Puzzle Solution
Take code fragments from the pool and place

them into the blank lines below. Your
goal was to piece together the main()
function so that it can generate a set of
letters for the array of response data.

Note: each thing from
the pool can be used
only once!

r[i].type
DUMP

SECOND_CHANCE
r[i]

r[i]

r[i]

r[i].name

r[i].name
r[i].namedump

second_chance

Looping through the array
Testing the type field each time

Call the method for
each matching type.

you are here 4   337

advanced functions

Test Drive
When you run the program, sure enough, it generates the
correct response for each person:

./send_dear_johns
Dear Mike,
Unfortunately your last date contacted us to
say that they will not be seeing you again
Dear Luis,
Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear Matt,
Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear William,
Congratulations! Your last date has contacted
us with a proposal of marriage.
>

File Edit Window Help DontForgetToBreak

Well, it’s good that it worked, but there is quite a lot of code
in there just to call a function for each piece of response
data. Every time you need call a function that matches a
response type, it will look like this:

 switch(r.type) {
 case DUMP:
 dump(r);
 break;
 case SECOND_CHANCE:
 second_chance(r);
 break;
 default:
 marriage(r);
 }

And what will happen if you add a fourth response
type? You’ll have to change every section of your
program that looks like this. Soon, you will have a lot
of code to maintain, and it might go wrong.

Fortunately, there is a trick that you can use in C,
and it involves arrays…

They told me a
coder forgot a set of
break statements, and
that meant I ended up
with this guy…

338   Chapter 7

function pointer arrays

Create an array of function pointers
The trick is to create an array of function pointers that match
the different response types. Before seeing how that works, let’s
look at how to create an array of function pointers. If you had an
array variable that could store a whole bunch of function names,
you could use it like this:

replies[] = {dump, second_chance, marriage};

But that syntax doesn’t quite work in C. You have to tell the
compiler exactly what the functions will look like that you’re
going to store in the array: what their return types will be and
what parameters they’ll accept. That means you have to use this
much more complex syntax:

But how does an array help?
Look at that array. It contains a set of function names that are in
exactly the same order as the types in the enum:

enum response_type {DUMP, SECOND_CHANCE, MARRIAGE};

This is really important, because when C creates an enum, it gives
each of the symbols a number starting at 0. So DUMP == 0,
SECOND_CHANCE == 1, and MARRIAGE == 2. And that’s really
neat, because it means you can get a pointer to one of your sets
of functions using a response_type:

replies[SECOND_CHANCE] == second_chance

Let’s see if you can use the function array to
replace your old main() function.

This is your “replies”
array of functions.

SECOND_CHANCE has the value 1.

It’s equal to the name
of the second_chance
function.

void (*replies[])(response) = {dump, second_chance, marriage};

Return type (* Pointer variable)(Param types)

Each function in
the array will be
a void function.

Declaring a function
pointer (array).

The variable will be
called “replies.”

And it’s not just a function pointer;
it’s a whole array of them.

Now you’re done naming the variable, and it’s time to say what parameters each function will take.

Just one parameter,
with type “response.”

you are here 4   339

advanced functions

OK, this exercise is quite a tough one. But take your time with it,
and you should be fine. You already have all the information you
need to complete the code. In this new version of the main()
function, the whole switch/case statement used before has
been removed and needs to be replaced with a single line of
code. This line of code will find the correct function name from
the replies array and then use it to call the function.

void (*replies[])(response) = {dump, second_chance, marriage};

int main()

{

 response r[] = {

 {"Mike", DUMP}, {"Luis", SECOND_CHANCE},

 {"Matt", SECOND_CHANCE}, {"William", MARRIAGE}

 };

 int i;

 for (i = 0; i < 4; i++) {

 }

 return 0;

}

340   Chapter 7

main() updated

OK, this exercise was quite a tough one. In this new version of
the main() function, the whole switch/case statement
used before was removed, and you needed to replace it. This line
of code will find the correct function name from the replies
array and then use it to call the function.

void (*replies[])(response) = {dump, second_chance, marriage};

int main()

{

 response r[] = {

 {"Mike", DUMP}, {"Luis", SECOND_CHANCE},

 {"Matt", SECOND_CHANCE}, {"William", MARRIAGE}

 };

 int i;

 for (i = 0; i < 4; i++) {

 }

 return 0;

}

(replies[r[i].type])(r[i]);
If you wanted, you could have added a *
after the opening parenthesis, but it would
work the same way.

(replies[r[i].type])(r[i]);

Let’s break that down.

This is your array of
function names.

This is a value like
0 for DUMP or 2
for MARRIAGE.

This whole thing is a function
like “dump” or “marriage.”

You’re calling the
function and passing it
the response data r[i].

you are here 4   341

advanced functions

Test Drive
Now, when you run the new version of the program, you get
exactly the same output as before:

> ./dear_johns
Dear Mike,
Unfortunately your last date contacted us to
say that they will not be seeing you again
Dear Luis,
Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear Matt,
Good news: your last date has asked us to
arrange another meeting. Please call ASAP.
Dear William,
Congratulations! Your last date has contacted
us with a proposal of marriage.
>

File Edit Window Help WhoIsJohn

The difference? Now, instead of an entire switch statement,
you just have this:

(replies[r[i].type])(r[i]);

If you have to call the response functions at several places in
the program, you won’t have to copy a lot of code. And if you
decide to add a new type and a new function, you can just add
it to the array:

enum response_type {DUMP, SECOND_CHANCE, MARRIAGE, LAW_SUIT};

void (*replies[])(response) = {dump, second_chance, marriage, law_suit};

You can add
new types and
functions like this.

Arrays of function pointers can make your code much easier
to manage. They are designed to make your code scalable by
making it shorter and easier to extend. Even though they are
quite difficult to understand at first, function pointer arrays
can really crank up your C programming skills.

342   Chapter 7

no dumb questions

Q: Why is the function pointer
array syntax so complex?

A: Because when you declare
a function pointer, you need to say
what the return and parameter types
are. That’s why there are so many
parentheses.

Q: This looks a little like the
sort of object-oriented code in
other languages. Is it?

A: It’s similar. Object-oriented
languages associate a set of
functions (called methods) with
pieces of data. In the same way, you
can use function pointers to associate
functions with pieces of data.

Q: Hey, so does that mean that
C is object oriented? Wow, that’s
awesome.

A: No. C is not object oriented,
but other languages that are built on
C, like Objective-C and C++, create
a lot of their object-oriented features
by using function pointers under the
covers.

�� Function pointers store the addresses of functions.

�� The name of each function is actually a function pointer.

�� If you have a function shoot(), then shoot and
&shoot are both pointers to that function.

�� You declare a new function pointer with
return-type(*var-name)(param-types).

�� If fp is a function pointer, you can call it with
fp(params, ...).

�� Or, you can use (*fp)(params,...). C will work
the same way.

�� The C Standard Library has a sorting function called
qsort().

�� qsort() accepts a pointer to a comparator function
that can test for (in)equality.

�� The comparator function will be passed pointers to two
items in the array being sorted.

�� If you have an array of data, you can associate functions
with each data item using function pointer arrays.

you are here 4   343

advanced functions

Make your functions streeeeeetchy
Sometimes, you want to write C functions that are really powerful, like your
find() function that could search using function pointers. But other times,
you just want to write functions that are easy to use. Take the printf()
function. The printf() function has one really cool feature that you’ve
used: it can take a variable number of arguments:

printf("%i bottles of beer on the wall, %i bottles of beer\n", 99, 99);
printf("Take one down and pass it around, ");
printf("%i bottles of beer on the wall\n", 98); You can pass the printf() as many

arguments as you need to print.

So how can YOU do that?
And you’ve got just the problem that needs it. Down in the Head First
Lounge, they’re finding it a little difficult to keep track of the drink totals.
One of the guys has tried to make life easier by creating an enum with the
list of cocktails available and a function that returns the prices for each one:

enum drink {
 MUDSLIDE, FUZZY_NAVEL, MONKEY_GLAND, ZOMBIE
};

double price(enum drink d)
{
 switch(d) {
 case MUDSLIDE:
 return 6.79;
 case FUZZY_NAVEL:
 return 5.31;
 case MONKEY_GLAND:
 return 4.82;
 case ZOMBIE:
 return 5.89;
 }
 return 0;
}

And that’s pretty cool, if the Head First Lounge crew just wants the price of
a drink. But what they want to do is get the price of a total drinks order:

They want a function called total() that will accept a count of
the drinks and then a list of drink names.

price(ZOMBIE)		 total(3, ZOMBIE, MONKEY_GLAND, FUZZY_NAVEL)Easy Not so
easy

The number of drinks

A list of the drinks in the order

#include <stdarg.h>

void print_ints(int args, ...)

{

 va_list ap;

 va_start(ap, args);

 int i;

 for (i = 0; i < args; i++) {

 printf("argument: %i\n", va_arg(ap, int));

 }

 va_end(ap);

}

344   Chapter 7

variadic functions

This will loop through all
of the other arguments.

Variadic Functions Up Close

A function that takes a variable number of parameters is
called a variadic function. The C Standard Library
contains a set of macros that can help you create your
own variadic functions. To see how they work, you’ll
create a function that can print out series of ints:

You can think of macros as a
special type of function that
can modify your source code.

print_ints(3, 79, 101, 32);

Number of ints to print The ints that need to be printed

This is a normal, ordinary
argument that will always
be passed.

The variable arguments
will follow here.

Here’s the code:

args contains a count
of how many variables
there are.

va_start says where the
variable arguments start.

The variable arguments will start
after the args parameter.

Let’s break it down and take a look at it, step by step.

you are here 4   345

advanced functions

Say where the variable arguments start.
C needs to be told the name of the last fixed argument. In the
case of our function, that’ll be the args parameter.

4

Then read off the variable arguments, one at a time.
Now your arguments are all stored in the va_list, you can read
them with va_arg. va_arg takes two values: the va_list and
the type of the next argument. In your case, all of the arguments
are ints.

5

Finally…end the list.
After you’ve finished reading all of the arguments, you need to tell
C that you’re finished. You do that with the va_end macro.

6

Now you can call your function.
Once the function is complete, you can call it:

7

print_ints(3, 79, 101, 32);

Include the stdarg.h header.
All the code to handle variadic functions is in stdarg.h, so you
need to make sure you include it.

1

Tell your function there’s more to come…
Remember those books where the heroine drags the guy
through the bedroom and then the chapter ends “…”? Well,
that “…” is called an ellipsis, and it tells you that something
else is going to follow. In C, an ellipsis after the argument of a
function means there are more arguments to come.

2

No, we don’t read
those books either.

Create a va_list.
A va_list will be used to store the extra arguments that
are passed to your function.

3

This will print out 79, 101, and 32 values.

Geek Bits

A macro is used to rewrite your code before it’s compiled. The macros
you’re using here (va_start, va_arg, and va_end) might look
like functions, but they actually hide secret instructions that tell the
preprocessor how to generate lots of extra smart code inside your
program, just before compiling it.

Functions vs. macros

346   Chapter 7

no dumb questions

Q: Wait, why are va_end and
va_start called macros? Aren’t they
just normal functions?

A: No, they are designed to look like
ordinary functions, but they actually are
replaced by the preprocessor with other
code.

Q: And the preprocessor is?

A: The preprocessor runs just before
the compilation step. Among other things,
the preprocessor includes the headers into
the code.

Q: Can I have a function with just
variable arguments, and no fixed
arguments at all?

A: No. You need to have at least one
fixed argument in order to pass its name to
va_start.

Q: What happens if I try to read more
arguments from va_arg than have
been passed in?

A: Random errors will occur.

Q: That sounds bad.

A: Yep, pretty bad.

Q: What if I try to read an int
argument as a double, or something?

A: Random errors will occur.

you are here 4   347

advanced functions

OK, now it’s over to you. The guys in the Head First Lounge want to create a function that can
return the total cost of a round of drinks, like this:

printf("Price is %.2f\n", total(3, MONKEY_GLAND, MUDSLIDE, FUZZY_NAVEL));

This will print “Price is 16.9”.

Using the price() from a few pages back, complete the code for total():

double total(int args, ...)

{

 double total = 0;

 return total;

}

348   Chapter 7

who’s paying?

OK, now it’s over to you. The guys in the Head First Lounge want to create a function that can
return the total cost of a round of drinks, like this:

printf("Price is %.2f\n", total(3, MONKEY_GLAND, MUDSLIDE, FUZZY_NAVEL));

This will print “Price is 16.9”.

Using the price() from a few pages back, you were to complete the code for total():

double total(int args, ...)

{

 double total = 0;

 return total;

}

 va_list ap;
 va_start(ap, args);
 int i;
 for(i = 0; i < args; i++) {
 enum drink d = va_arg(ap, enum drink);
 total = total + price(d);
 }
 va_end(ap);

Don’t worry if
your code doesn’t
look exactly like
this. There are
a few ways of
writing it.

you are here 4   349

advanced functions

Test Drive
If you create a little test code to call the function, you can
compile it and see what happens:

main(){

 printf("Price is %.2f\n", total(2, MONKEY_GLAND, MUDSLIDE));

 printf("Price is %.2f\n", total(3, MONKEY_GLAND, MUDSLIDE, FUZZY_NAVEL));

 printf("Price is %.2f\n", total(1, ZOMBIE));

 return 0;

}

This is the test code.

> ./price_drinks
Price is 11.61
Price is 16.92
Price is 5.89
>

File Edit Window Help Cheers

And this is the
output.

Your code works!
Now you know how to use variable arguments to
make your code simpler and more intuitive to use. Yeah, baby! I could

remember these even
after one too many
Monkey Glands…

�� Functions that accept a variable
number of arguments are called
variadic functions.

�� To create variadic functions, you need
to include the stdarg.h header file.

�� The variable arguments will be stored
in a va_list.

�� You can control the va_list using
va_start(), va_arg(), and
va_end().

�� You will need at least one fixed
parameter.

�� Be careful that you don’t try to read
more parameters than you’ve been
given.

�� You will always need to know the data
type of every parameter you read.

350   Chapter 7

c toolbox

Your C Toolbox

You’ve got Chapter 7 under
your belt, and now you’ve

added advanced functions to
your toolbox. For a complete list of

tooltips in the book, see Appendix ii.

CH
AP

T
ER

 7

Function pointers
let you pass
functions around
as if they were
data.

Function pointer
s

are the only
pointers that
don’t need the

 *

and & operator
s…

…but you can
still use them if
you want to.

The name of
every function
is a pointer to
the function.

qsort()
will sort
an array.

Each sort
function needs
a pointer to
a comparator
function. Comparator

functions decide
how to order
two pieces of
data.

Arrays of function pointers can help run different
functions for
different types of data.

Functions with a
variable number
of arguments are
called “variadic.”

stdarg.h lets
you create
variadic
functions.

this is a new chapter   351

The toe bone’s statically
linked to the foot bone, and
the foot bone’s statically
linked to the ankle bone…

static and dynamic libraries8

Hot-swappable code

You’ve already seen the power of standard libraries.�
Now it’s time to use that power for your own code. In this chapter, you’ll see how to create

your own libraries and reuse the same code across several programs. What’s more,

you’ll learn how to share code at runtime with dynamic libraries. You’ll learn the secrets

of the coding gurus. And by the end of the chapter, you’ll be able to write code that you

can scale and manage simply and efficiently.

352   Chapter 8

security library

Code you can take to the bank
Do you remember the encrypt() function you wrote a while
back that encrypted the contents of a string? It was in a separate
source code file that could be used by several programs:

#include "encrypt.h"

void encrypt(char *message)

{

 while (*message) {

 *message = *message ^ 31;

 message++;

 }

}

encrypt.c
Somebody else has written a function called
checksum() that can be used to check if
the contents of a string have been modified.
Encrypting data and checking if data has been
modified are both important for security.
Separately, the two functions are useful, but
together they could form the basis of a
security library.

void encrypt(char *message);

encrypt.h

#include "checksum.h"

int checksum(char *message)

{

 int c = 0;

 while (*message) {

 c += c ^ (int)(*message);

 message++;

 }

 return c;

}

checksum.c

int checksum(char *message);

checksum.h

This function returns a number
based on the contents of a string.

you are here 4   353

static and dynamic libraries

A security library? Hey,
that’s just what I’m looking
for! The security at our
bank is, well…kinda sloppy. Head of security at the

First Bank of Head First.
He also cleans pools.

The guy at the bank has written a test program to see how
the two functions work. He put all of the source into the same
directory on his machine and then began to compile it.

He compiled the two security files into object files, and then
wrote a test program:

#include <stdio.h>

#include <encrypt.h>

#include <checksum.h>

int main()

{

 char s[] = "Speak friend and enter";

 encrypt(s);

 printf("Encrypted to '%s'\n", s);

 printf("Checksum is %i\n", checksum(s));

 encrypt(s);

 printf("Decrypted back to '%s'\n", s);

 printf("Checksum is %i\n", checksum(s));

 return 0;

}

And that’s when the problems started. When he compiled the program,
something went badly wrong…

> gcc test_code.c encrypt.o checksum.o -o test_code
test_code.c:2:21: error: encrypt.h: No such file or directory
test_code.c:3:22: error: checksum.h: No such file or directory
>

File Edit Window Help

Using a pencil, highlight which command or code made the compile fail.

> gcc -c encrypt.c -o encrypt.o
> gcc -c checksum.c -o checksum.o
>

File Edit Window Help

encrypt() will encrypt your
data. If you call it again,
it will decrypt it.

354   Chapter 8

<> for standard headers

#include <stdio.h>

#include <encrypt.h>

#include <checksum.h>

int main()

{

 char s[] = "Speak friend and enter";

 encrypt(s);

 printf("Encrypted to '%s'\n", s);

 printf("Checksum is %i\n", checksum(s));

 encrypt(s);

 printf("Decrypted back to '%s'\n", s);

 printf("Checksum is %i\n", checksum(s));

 return 0;

}

The problem is in the test program. All of the source files are
stored in the same directory, but the test program includes the
encrypt.h and checksum.h headers using angle brackets (< >).

Angle brackets are for standard headers
If you use angle brackets in an #include statement, the compiler
won’t look for the headers in the current directory; instead, it will search
for them in the standard header directories.

To get the program to compile with the local header files, you need to
switch the angle brackets for simple quotes (" "):

#include <stdio.h>

#include "encrypt.h"

#include "checksum.h"

> gcc test_code.c encrypt.o checksum.o -o test_code
> ./test_code
Encrypted to 'Loz~t?ymvzq{?~q{?zqkzm'
Checksum is 89561741
Decrypted back to 'Speak friend and enter'
Checksum is 89548156
>

File Edit Window Help <>
stdio.h is
stored in
one of the
standard
header
directories.

encrypt.h and checksum.h are in
the same directory as the program.

Now the code compiles correctly.
It encrypts the test string to
something unreadable.

Calling the encrypt() function a second
time returns the original string. The checksum returns different

values for different strings.

you are here 4   355

static and dynamic libraries

But what if you want to share code?
Sometimes you want to write code that will be
available to lots of programs, in different folders,
all over your computer. What do you do then?

Yeah, I gotta get security
added to all these different
programs. I don’t want a
separate copy of the security
code for each one…

There are two sets of files that you want to share
between programs: the .h header files and the

.o object files. Let’s look at how you can share
each type.

Where are the standard header directories?
So, if you include headers using angle
brackets, where does the compiler go
searching for the header files? You’ll need
to check the documentation that came with
your compiler, but typically on a Unix-style
system like the Mac or a Linux machine, the
compiler will look for the files under these
directories:

	 /usr/local/include

	 /usr/include

And if you’re using the MinGW version of the
gcc compiler, it will normally look here:

	 C:\MinGW\include

It will check /usr/local/include first.

/usr/local/include is often
used for header files for
third-party libraries.

/usr/include is normally used for operating system header files.

356   Chapter 8

sharing headers

Sharing .h header files
There are a few ways of sharing header files between
different C projects:

Store them in a standard directory.
If you copy your header files into one of the standard directories like
/usr/local/include, you can include them in your source code using
angle brackets.

1

#include <encrypt.h>
You can use angle brackets if your header
files are in a standard directory.

Put the full pathname in your include statement.
If you want to store your header files somewhere else, such as
/my_header_files, you can add the directory name to your
include statement:

2

#include "/my_header_files/encrypt.h"

You can tell the compiler where to find them.
The final option is to tell the compiler where it can find your
header files. You can do this with the -I option on gcc:

3

The -I option tells the gcc compiler that there’s another
place where it can find header files. It will still search in all the
standard places, but first it will check the directory names in
the -I option.

This tells the compiler to look
in /my_header_files as well
as the standard directories.

/ Root directory

my_header_files

encrypt.h

checksum.h

gcc -I/my_header_files test_code.c ... -o test_code

you are here 4   357

static and dynamic libraries

Share .o object files by using the full pathname

/ Root directory

my_object_files

encrypt.o

checksum.o

Now you can always put your .o object files into some sort of
shared directory. Once you’ve done that, you can then just add
the full path to the object files when you’re compiling the
program that uses them:

gcc -I/my_header_files test_code.c

 /my_object_files/encrypt.o

 /my_object_files/checksum.o -o test_code

Using the full pathname to the object files means you don’t need a separate copy for each C project.

/my_object_files is like a central
store for your object files.

If you compile your code with the full pathname to the object
files you want to use, then all your C programs can share the
same encrypt.o and checksum.o files.

Yes, if you create an archive of object
files, you can tell the compiler about a
whole set of object files all at once.

An archive is just a bunch of object files wrapped up
into a single file. By creating a single archive file of all
of your security code, you can make it a lot easier to
share the code between projects.

Let’s see how to do it…

Hmmm… That’s OK if I just have
one or two object files to share, but
what if I have a lot of object files? I
wonder if there’s some way of telling
the compiler about a bunch of them…

358   Chapter 8

archives

An archive contains .o files
Ever used a .zip or a .tar file? Then you know how
easy it is to create a file that contains other files. That’s
exactly what a .a archive file is: a file containing other
files.

Open up a terminal or a command prompt and
change into one of the library directories. These are
the directories like /usr/lib or C:\MinGW\lib that
contain the library code. In a library directory, you’ll
find a whole bunch of .a archives. And there’s a
command called nm that you can use to look inside
them:

> nm libl.a

libl.a(libmain.o):
00000000000003a8 s EH_frame0
 U _exit
0000000000000000 T _main
00000000000003c0 S _main.eh
 U _yylex

libl.a(libyywrap.o):
0000000000000350 s EH_frame0
0000000000000000 T _yywrap
0000000000000368 S _yywrap.eh
>

File Edit Window Help SilenceInTheLibrary

The nm command lists the names that are stored
inside the archive. The libl.a archive shown here
contains two object files: libmain.o and libyywrap.o.
What these two object files are used for doesn’t really
matter; the point is that you can take a whole set of
object files and turn them into a single archive file that
you can use with gcc.

Before you see how to compile programs using .a, let’s
see how to store our encrypt.o and checksum.o files in an
archive.

This is an archive
called libl.a.

You might not have a libl.a on your machine, but you can try the command on any other .a file.

libmain.o

“T _main” means libmain.o
contains a main() function.

libyywrap.o

libmain.o libyywrap.o

libl.a

you are here 4   359

static and dynamic libraries

Create an archive with the ar command…
The archive command (ar) will store a set of object files in
an archive file:

ar -rcs libhfsecurity.a encrypt.o checksum.o

The r means the .a
file will be updated
if it already exists.

The c means that the archive
will be created without any
feedback.

The s tells ar to create
an index at the start of
the .a file.

This is the name of the .a file to create.

These are the files that will be stored in the archive.

Did you notice that all of the .a files have names like
lib<something>.a? That’s the standard way of
naming archives. The names begin with lib because they
are static libraries. You’ll see what this means later on.

	 Make sure you always
name your archives
lib<something>.a.

If you don’t name them
this way, your compiler will

have problems tracking them down.

…then store the .a in a library directory

Once you have an archive, you can store it in a library
directory. Which library directory should you store it
in? It’s up to you, but you have a couple of choices:

You can put your .a file in a standard
directory like /usr/local/lib.
Some coders like to install archives into a standard
directory once they are sure it’s working. On Linux, on
Mac, and in Cygwin, the /usr/local/lib directory is a
good choice because that’s the directory set aside for your
own local custom libraries.

¥

Put the .a file in some other directory.
If you are still developing your code, or if you don’t feel
comfortable installing your code in a system directory,
you can always create your own library directory. For
example: /my_lib.

¥

On most machines, you need to be an
administrator to put files in /usr/local/lib.

360   Chapter 8

compile with -l

Finally, compile your other programs
The whole point of creating a library archive was so you
could use it with other programs. If you’ve installed your
archive in a standard directory, you can compile your
code using the -l switch:

gcc test_code.c -lhfsecurity -o test_code

hfsecurity tells the compiler to look
for an archive called libhfsecurity.a.

If you’re using several archives,
you can set several -l options.

Remember to list your source
files before your -l libraries.

Do you need a -I option?
It depends on where you
put your headers.

Can you see now why it’s so important to name your
archive lib<something>.a? The name that follows the -l
option needs to match part of the archive name. So if your
archive is called libawesome.a, you can compile your
program with the -lawesome switch.

But what if you put your archive somewhere else, like
/my_lib? In that case, you will need to use the -L option
to say which directories to search:

gcc test_code.c -L/my_lib -lhfsecurity -o test_code

Geek Bits

The contents of the library directories can be very different from one machine to another. Why is that? It’s
because different operating systems have different services available. Each of the .a files is a separate library.
There’ll be libraries for connecting to the network, or creating GUI applications.

Try running the nm command on a few of the .a files. A lot of the names listed in each module will match
compiled functions that you can use:

	 0000000000000000 T _yywrap

The nm command will tell you the name of each .o object file and then list the names that are available within
the object file. If you see a T next to a name, that means it’s the name of a function within the object file.

So, I need to look for
libhfsecurity.a starting in
the /my_lib directory.

T means “Text,” which means this is a function.

The name of the function is yywrap().

you are here 4   361

static and dynamic libraries

encrypt.o: encrypt.c

	 gcc encrypt.c -o encrypt.o

checksum.o: checksum.c

	 gcc checksum.c -o checksum.o

libhfsecurity.a: encrypt.o

	 ar -rcs encrypt.o

bank_vault: bank_vault.c

	 gcc -I -L -o bank_vault

Make Magnets
The security guy is having trouble compiling one of the bank programs
against the new security library. He has his source code as well as the
encrypt and checksum source code in the same directory. For now, he
wants to create the libhfsecurity.a archive in the same directory and then
use it to compile his own program. Can you help him fix his makefile?

Note: the bank_vault program uses these #include statements:

libhfsecurity.a
checksum.o -lhfsecurity

.

-c-c

libhfsecurity.a
bank_vault.c

checksum.o

#include <encrypt.h>

#include <checksum.h>

This is the makefile:

.

-rcs/usr/local/include /usr/local/lib/usr/lib
-rcs

362   Chapter 8

make unpuzzled

encrypt.o: encrypt.c

	 gcc encrypt.c -o encrypt.o

checksum.o: checksum.c

	 gcc checksum.c -o checksum.o

libhfsecurity.a: encrypt.o

	 ar -rcs encrypt.o

bank_vault: bank_vault.c

	 gcc -I -L -o bank_vault

Make Magnets Solution
The security guy is having trouble compiling one of the bank programs
against the new security library. He has his source code, as well as the
encrypt and checksum source code in the same directory. For now, he
wants to create the libhfsecurity.a archive in the same directory and then
use it to compile his own program. You were to help him fix his makefile.

Note: the bank_vault program uses these #include statements:

libhfsecurity.a checksum.o

-rcs

-lhfsecurity.

/usr/local/include

-c

-c

libhfsecurity.a

bank_vault.c

/usr/local/lib

checksum.o

/usr/lib

#include <encrypt.h>

#include <checksum.h>

This is the makefile:

.

-rcs

The #includes are using angle brackets.
The compiler will need to be told where
the header files are with a -I statement.

This creates the object file from the encrypt.c source file.

This creates the object from
the checksum.c source file.

You can’t build the libhfsecurity.a archive until
we’ve created encrypt.o and checksum.o.

This will create the
libhfsecurity.a archive.

You need -I. because the
header files are in the “.”
(current) directory.

You need the -L.,
because the archive is in
the current directory.

You need -lhfsecurity because the
archive is called libhfsecurity.a.

The program’s source code needs to be listed before the library code.

you are here 4   363

static and dynamic libraries

Q: How do I know what the standard
library directories are on my machine?

A: You need to check the
documentation for your compiler. On most
Unix-style machines, the library directories
include /usr/lib and /usr/local/lib.

Q: When I try to put a library archive
into my /usr/lib directory, it won’t let me.
Why is that?

A: Almost certainly security. Many
operating systems will prevent you from
writing files to the standard directories in
case you accidentally break one of the
existing libraries.

Q: Is the ar format the same on all
systems?

A: No. Different platforms can have slightly
different archive formats. And the object
code the archive contains will be completely
different for different operating systems.

Q: If I’ve created a library archive,
can I see what’s inside it?

A: Yes. ar -t <filename> will
list the contents of the archive.

Q: Are the object files in the archive
linked together like an executable?

A: No. The object files are stored in the
archive as distinct files.

Q: Can I put any kind of file in a
library archive?

A: No. The ar command will check the
file type before including it.

Q: Can I extract a single object file
from an archive?

A: Yes. To extract the encrypt.o
file from libhfsecurity.a, use ar -x
libhfsecurity.a encrypt.o.

Q: Why is it called “static” linking?

A: Because it can’t change once it’s
been done. When two files are linked
together statically, it’s like mixing coffee
with milk: you can’t separate them
afterward.

Q: Should I use the HF security
library to secure the data at my bank?

A: That’s probably not a good idea.

�� Headers in angle brackets (< >) are read from the
standard directories.

�� Examples of standard header directories are
/usr/include and C:\MinGW\include.

�� A library archive contains several object files.

�� You can create an archive with ar -rcs
libarchive.a file0.o file1.o....

�� Library archive names should begin lib. and end .a.

�� If you need to link to an archive called libfred.a,
use -lfred.

�� The -L flag should appear after the source files in
the gcc command.

364   Chapter 8

interview

Head First: Linker, thank you so much for making
time for us today.

Linker: It’s a pleasure.

Head First: I’d like to begin by asking if you ever
feel overlooked by developers. Perhaps they don’t
understand exactly what it is you do?

Linker: I’m a very quiet person. A lot of people
don’t talk to me directly with the ld command.

Head First: ld?

Linker: Yes? See, that’s me.

Head First: That’s a lot of options on my screen.

Linker: Exactly. I have a lot of options. A lot of
ways of joining programs together. That’s why some
people just use the gcc command.

Head First: So the compiler can link files together?

Linker: The compiler works out what needs to be
done to join some files together and then calls me.
And I do it. Quietly. You’d never know I was there.

Head First: I do have another question…

Linker: Yes?

Head First: I hate to sound foolish, but what
exactly is it you do?

Linker: That’s not a foolish question. I stitch pieces
of compiled code together, a bit like a telephone
operator.

Head First: I don’t follow.

Linker: The old telephone operators would patch
calls from one location to another so the two parties
could talk. An object file is like that.

Head First: How so?

Linker: An object file might need to call a function
that’s stored in some other file. I link together the
point in one file where the function call is made to
the point in another file where the function lives.

Head First: You must have a lot of patience.

Linker: I like that kind of thing. I make lace in my
spare time.

Head First: Really?

Linker: No.

Head First: Linker, thank you.

The Linker Exposed
This week’s interview:
What Exactly Do You Do?

you are here 4   365

static and dynamic libraries

The Head First Gym is going global
The guys at the Head First Gym are going to spread their
business worldwide. They are opening up outlets on four
continents, and each one will contain their trademarked
Blood, Sweat, and Gears™ gym equipment. So they’re writing
software for their ellipticals, treadmills, and exercise bikes.
The software will read data from the sensors that are fitted
on each device and then display information on a small LCD
screen that will tell users what distance they’ve covered and
how many calories they’ve burned.

That’s the plan, anyway, but the guys need a little help.
Let’s look into the code in a little more detail.

366   Chapter 8

test the code

Calculating calories
The team is still working on the software, but they’ve got one
of the key modules ready. The hfcal library will generate the
main data for the LCD display. If the code is told the user’s
weight, the virtual distance she’s traveled on the machine, and
then a special coefficient, it will generate the basic LCD details
on the Standard Output:

#include <stdio.h>

#include <hfcal.h>

void display_calories(float weight, float distance, float coeff)

{

 printf("Weight: %3.2f lbs\n", weight);

 printf("Distance: %3.2f miles\n", distance);

 printf("Calories burned: %4.2f cal\n", coeff * weight * distance);

}

hfcal.c

The hfcal.h header file just contains a
declaration of the display_calories() function.

This code will go into
a file called hfcal.c.

The weight is in pounds.

The distance is in miles.

The team hasn’t yet written the main code for each piece of
equipment. When they do, there will be separate programs for
the ellipticals, treadmills, and exercise bikes. Until then, they’ve
created a test program that will call the hfcal.c code with some
example data:

#include <stdio.h>

#include <hfcal.h>

int main()

{

 display_calories(115.2, 11.3, 0.79);

 return 0;

}

elliptical.c

Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal

The test user weighs 115.2 pounds and has done 11.3 miles on the elliptical.

For this machine, the
coefficient is 0.79.

The LCD display will capture
the Standard Output.

This is what the display
looks like for the test
program.

This is the test code.

you are here 4   367

static and dynamic libraries

Now that you’ve seen the source code for the test program and
the hfcal library, it’s time to build the code.

Let’s see how well you remember the commands.

1. Start by creating an object file called hfcal.o. The hfcal.h header is going
to be stored in ./includes:

2. Next, you need to create an object file called elliptical.o from the
elliptical.c test program:

3. Now, you need to create an archive library from hfcal.o and store it in
./libs:

4. Finally, create the elliptical executable using elliptical.o and the
hfcal archive:

368   Chapter 8

code built

Now that you’ve seen the source code for the test program and
the hfcal library, it’s time to build the code.

Let’s see how well you remembered the commands.

1. Start by creating an object file called hfcal.o. The hfcal.h header is going
to be stored in ./includes:

2. Next, you need to create an object file called elliptical.o from the
elliptical.c test program:

3. Now, you need to create an archive library from hfcal.o and store it in
./libs:

4. Finally, create the elliptical executable using elliptical.o and the
hfcal archive:

gcc -I./includes -c hfcal.c -o hfcal.o

Did you remember to add the -I flag?

The hfcal.c program needs to know where the header file is.

-c means “just create the object file; don’t link it.”

gcc -I./includes -c elliptical.c -o elliptical.o

Again, you need to tell the compiler that the headers are in ./includes.

ar -rcs ./libs/libhfcal.a hfcal.o

The library needs to be named lib….a.

The archive needs to go into the ./libs directory.

gcc elliptical.o -L./libs -lhfcal -o elliptical

You’re building the program using
elliptical.o and the library.

-L./libs tells the compiler where the library is stored.

-lhfcal tells the compiler to look for libhfcal.a.

Now that you’ve built the elliptical
program, you can run it on the console:

> ./elliptical
Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal
>

File Edit Window Help SilenceInTheLibrary

you are here 4   369

static and dynamic libraries

But things are a bit more complex…
Turns out, there’s a problem. The Head First Gyms are expanding
everywhere, in different countries that use different languages and
different measures. For example, in England, the machines need to
report information in kilograms and kilometers:

In the US,
measurements
need to be in
pounds and
miles.

But in
England,
measurements
need to be in
kgs and kms.

The gyms have lots of different types of equipment. If they have 20
different types of machines, and they have gyms in 50 countries, that
means there will be 1,000 different versions of the software. That’s a
lot of different versions.

And then there are other problems too:

If you think about it, you get the same kinds of problems when you
write any software. Different machines might require different device
driver code, or they might need to talk to different databases or different
graphical user interfaces. You probably won’t be able to build a version
of your code that will work on every machine, so what should you do?

�If an engineer upgrades the sensors used on a machine, she might need to
upgrade the code that talks to them.

¥

�If the displays ever change, the engineers might need to change the code that
generates the output.

¥

�Plus many, many other variations.¥

Weight: 53.25 kg
Distance: 15.13 km
Calories burned: 750.42 cal

370   Chapter 8

hold the anchovies

Programs are made out of lots of pieces…
You’ve already seen that you can build programs using different
pieces of object code. You’ve created .o files and .a archives,
and you’ve linked them together into single executables.

Raisins, flour,
butter, anchovies…

…but once they’re linked, you can’t change them

The problem is that if you build programs like this, they are
static. Once you’ve created a single executable file from
those separate pieces of object code, you really have no way of
changing any of the ingredients without rebuilding the whole
program.

The program is just a large chunk of object code. There’s no
way to separate the display code from the sensor code; it’s
all lost in the mix.

Hmmmm…maybe I
should have used
cranberries.

you are here 4   371

static and dynamic libraries

Wouldn’t it be dreamy if there
were a way to run a program using
switchable pieces of object code?
But I guess that’s just a fantasy…

372   Chapter 8

static vs. dynamic

Dynamic linking happens at runtime
The reason you can’t change the different pieces of object
code in an executable file is because, well, they are all
contained in a single file. They were statically linked
together when the program was compiled.

Raisin and anchovy cake

Very difficult to remove just the raisins

But if your program wasn’t just a single file—if your
program was made up of lots of separate files that only
joined together when the program was run—you would
avoid the problem.

Each of these pieces of
code lives in a separate file.

The trick, then, is to find a way of storing pieces of object
code in separate files and then dynamically linking
them together only when the program runs.

You need to join these files together
each time the program runs.

Elliptical
sensor

Elliptical
sensor

Treadmill
sensor

US
display

UK
display

UK
display

you are here 4   373

static and dynamic libraries

Can you link .a at runtime?
So you need to have separate files containing separate
pieces of object code. But you’ve already got separate files
containing object code: the .o object files and the .a archive
files. Does that mean you just need to tell the computer not
to link the .o files until you run the program?

Sadly, it’s not that easy. Simple object files and archives
don’t have quite enough information in them to be linked
together at runtime. There are other things our dynamic
library files will need, like the names of the other files they
need to link to.

Dynamic libraries are object files on steroids

So, dynamic libraries are similar to those .o object files
you’ve been creating for a while, but they’re not quite the
same. Like an archive file, a dynamic library can be built
from several .o object files, but unlike an archive, the object
files are properly linked together in a dynamic library to
form a single piece of object code.

A dynamic library contains extra
information that the operating system will
need to link the library to other things.

At the heart of a dynamic
library is a single piece of
object code.

The library is built from
one or more .o files.

So how do you create your own dynamic libraries?
Let’s see.

Is it a bird? Is it
a plane? No, it’s a
relocatable object
file with metadata.

374   Chapter 8

create an object file

First, create an object file
If you’re going to convert the hfcal.c code into a
dynamic library, then you need to begin by compiling it
into a .o object file, like this:

gcc -I/includes -fPIC -c hfcal.c -o hfcal.o

The hfcal.h header is in /includes.

-c means “Don’t link the code.”

What does -fPIC mean?

Did you spot the difference? You’re creating the hfcal.o
exactly the same as before except you’re adding an
extra flag: -fPIC. This tells gcc that you want to
create position-independent code. Some operating
systems and processors need to build libraries from
position-independent code so that they can decide at
runtime where they want to load it into memory.

Now, the truth is that on most systems you don’t need to
specify this option. Try it out on your system. If it’s not
needed, it won’t do any harm.

Position-independent
code can be moved
around in memory.

Geek Bits

So, what is position-independent code?

Position-independent code is code that doesn’t mind where the computer
loads it into memory. Imagine you had a dynamic library that expected to
find the value of some piece of global data 500 bytes away from where the
library is loaded. Bad things would happen if the operating system decided
to load the library somewhere else in memory. If the compiler is told to
create position-independent code, it will avoid problems like this.

Some operating systems, like Windows, use a technique called memory
mapping when loading dynamic libraries, which means all code is
effectively position-independent. If you compile your code on Windows,
you might find that gcc will give you a warning that the -fPIC option is
not needed. You can either remove the -fPIC flag, or ignore the warning.
Either way, your code will be fine.

Do this!

you are here 4   375

static and dynamic libraries

What you call your dynamic library depends on your platform
Dynamic libraries are available on most operating systems, and
they all work in pretty much the same way. But what they’re
called can vary a lot. On Windows, dynamic libraries are usually
called dynamic link libraries and they have the extension

.dll. On Linux and Unix, they’re shared object files (.so),
and on the Mac, they’re just called dynamic libraries (.dylib).
But even though the files have different extensions, you can
create them in very similar ways:

gcc -shared hfcal.o -o

C:\libs\hfcal.dll

/libs/libhfcal.dll.a

/libs/libhfcal.so

/libs/libhfcal.dylib

MinGW on Windows

Cygwin on Windows
Linux or Unix

Mac

The -shared option tells gcc that you want to convert a .o
object file into a dynamic library. When the compiler creates
the dynamic library, it will store the name of the library inside
the file. So, if you create a library called libhfcal.so on a Linux
machine, the libhfcal.so file will remember that its library name
is hfcal. Why is that important? It means that if you compile a
library with one name, you can’t just rename the file afterward.

If you need to rename a library, recompile it with the new name.

	 On some older
Mac systems,
the -shared flag
is not available.

But don’t worry, on
those machines, if you just replace
it with -dynamiclib, everything
will work exactly the same way.

Compiling the elliptical program
Once you’ve created the dynamic library, you can use it just like
a static library. So, you can build the elliptical program like
this:

gcc -I\include -c elliptical.c -o elliptical.o

gcc elliptical.o -L\libs -lhfcal -o elliptical

Even though these are the same commands you would use
if hfcal were a static archive, the compile will work differently.
Because the library’s dynamic, the compiler won’t include the
library code into the executable file. Instead, it will insert some
placeholder code that will track down the library and link to it at
runtime.

Now, let’s see if the program runs.

Library names in
MinGW and Cygwin

Both MinGW and Cygwin let you
use several name formats for
dynamic libraries. The hfcal library
can have any of these names:

libhfcal.dll.a

libhfcal.dll

hfcal.dll

376   Chapter 8

test drive

Test Drive
You’ve created the dynamic library in the /libs directory and built the
elliptical test program. Now you need to run it. Because hfcal isn’t in
one of the standard library directories, you’ll need to make sure the
computer can find the library when you run the program.

> ./elliptical
Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal
>

File Edit Window Help I’mAMac

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/libs
> ./elliptical
Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal
>

File Edit Window Help I’mLinux
On Linux, you need to set the LD_LIBRARY_PATH variable so the program
can find the library.

There’s no need to do this
if the library is somewhere
standard, like /usr/lib.

You need to make sure
the variable is exported.

Mac

Linux

On a Mac
On the Mac, you can just run the program. When the program is
compiled on the Mac, the full path to the /libs/libhfcal.dylib file is stored
inside the executable, so when the program starts, it knows exactly where
to find the library.

On Linux
That’s not quite what happens on Linux.

On Linux, and most versions of Unix, the compiler just records the
filename of the libhfcal.so library, without including the path name. That
means if the library is stored outside the standard library directories (like
/usr/lib), the program won’t have any way of finding the hfcal library. To
get around this, Linux checks additional directories that are stored in the
LD_LIBRARY_PATH variable. If you make sure your library directory
is added to the LD_LIBRARY_PATH—and if you make sure you
export it—then elliptical will find libhfcal.so.

you are here 4   377

static and dynamic libraries

On Windows
Now let’s take a look at how to run code that’s been compiled using the
Cygwin and MinGW versions of the gcc compiler. Both compilers
create Windows DLL libraries and Windows executables. And just like
Linux, Windows executables store the name of the hfcal library without
the name of the directory where it’s stored.

But Windows doesn’t use a LD_LIBRARY_PATH variable to hunt the
library down. Instead, Windows programs look for the library in the
current directory, and if they don’t find it there, the programs search for
it using the directories stored in the PATH variable.

> PATH="$PATH:/libs"
> ./elliptical
Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal
>

File Edit Window Help I’mCygwin

Using MinGW
And if you’ve compiled the program using the MinGW compiler, you
can run it from the command prompt like this:

C:\code> PATH="%PATH%:C:\libs"
C:\code> ./elliptical
Weight: 115.20 lbs
Distance: 11.30 miles
Calories burned: 1028.39 cal
C:\code>

File Edit Window Help I’mMinGW

Does this seem a little complex? It is, which is why most programs that
use dynamic libraries store them in one of the standard directories.
That means on Linux and the Mac, they are normally in directories
like /usr/lib or /usr/local/lib; and in Windows, developers normally keep
.DLLs stored in the same directory as the executable.

Windows using Cygwin

Windows using MinGW

Using Cygwin
If you’re compiled the program using Cygwin, you can run the program
from the bash shell like this:

378   Chapter 8

exercise

The guys at the Head First Gym are about to ship a treadmill over to England. The embedded
server is running Linux, and it already has the US code installed.

/usr/local/lib

common-lisp

python2.7

python4.2

site_ruby

libfluxcap.a

libfluxcap.la

libhfcal.so

libmrfusion.so

/usr/local/include

python2.7

python4.2

fluxcap.h

hfcal.h

mrfusion.h

bwanalyze.h

And this machine also has the header
file for the hfcal library installed in
/usr/local/include:

The tech guys like to install libraries using these directories because it’s a little more
standard. The machine is all configured for use in the US, but things need to change.

The tech guys installed the library in
/usr/local/lib.

This is where the hfcal
library is installed.

This is the /usr/local/lib folder.

There are lots of other files in here as well.

This is the hfcal header file.

This is the /usr/local/include folder.

There are lots of other
files in here too.

you are here 4   379

static and dynamic libraries

The system needs to be updated for use in the gym it is being shipped to in England. That means the
treadmill’s display code needs to be switched from miles and pounds to kilometers and kilograms.

#include <stdio.h>

#include <hfcal.h>

void display_calories(float weight, float distance, float coeff)

{

 printf("Weight: %3.2f kg\n", weight / 2.2046);

 printf("Distance: %3.2f km\n", distance * 1.609344);

 printf("Calories burned: %4.2f cal\n", coeff * weight * distance);

}

hfcal_UK.c

This is the code for the UK gym.

This code displays the
information in kms and kgs.

This file is in the /home/ebrown directory.

The software that’s already installed on the machine needs to use this new version of the code.
Because the applications connect to this code as a dynamic library, all you need to do is compile it into
the /usr/local/lib directory.

Assuming that you are already in the same directory as the hfcal_UK.c file and that you have write
permissions on all the directories, what commands would you need to type to compile this new version
of the library?

If the treadmill’s main application is called /opt/apps/treadmill, what would you need to type in to run
the program?

380   Chapter 8

exercise solved

The guys at the Head First Gym are about to ship a treadmill over to England. The embedded
server is running Linux, and it already has the US code installed.

/usr/local/lib

common-lisp

python2.7

python4.2

site_ruby

libfluxcap.a

libfluxcap.la

libhfcal.so

libmrfusion.so

/usr/local/include

python2.7

python4.2

fluxcap.h

hfcal.h

mrfusion.h

bwanalyze.h

And this machine also has the header
file for the hfcal library installed in
/usr/local/include:

The tech guys like to install libraries using these directories because it’s a little more
standard. The machine is all configured for use in the US, but things need to change.

The tech guys installed the library in
/usr/local/lib.

This is where the hfcal
library is installed.

This is the /usr/local/lib folder.

There are lots of other files in here as well.

This is the hfcal header file.

This is the /usr/local/include folder.

There are lots of other
files in here too.

you are here 4   381

static and dynamic libraries

The system needs to be updated for use in the gym it is being shipped to in England. That means the
treadmill’s display code needs to be switched from miles and pounds to kilometers and kilograms.

#include <stdio.h>

#include <hfcal.h>

void display_calories(float weight, float distance, float coeff)

{

 printf("Weight: %3.2f kg\n", weight / 2.2046);

 printf("Distance: %3.2f km\n", distance * 1.609344);

 printf("Calories burned: %4.2f cal\n", coeff * weight * distance);

}

hfcal_UK.c

The software that’s already installed on the machine needs to use this new version of the code.
Because the applications connect to this code as a dynamic library, all you need to do is compile it into
the /usr/local/lib directory.

Assuming that you are already in the same directory as the hfcal_UK.c file and that you have write
permissions on all the directories, what commands would you need to type to compile this new version
of the library?

If the treadmill’s main application is called /opt/apps/treadmill, what would you need to type in to run
the program?

gcc -c -fPIC hfcal_UK.c -o hfcal.o
gcc -shared hfcal.o -o /usr/local/lib/libhfcal.so

You need to compile the
source code to an object file.

Then you need to convert the
object file to a shared object.

You don’t need to set a -I
option, because the header file
is in a standard directory.

/opt/apps/treadmill
You don’t need to set the LD_LIBRARY_PATH
variable because the library is in a standard directory.

Did you spot that the library and headers had been installed in standard
directories? That meant you didn’t have to use a -I flag when you were
compiling the code, and you didn’t have to set the LD_LIBRARY_PATH
variable when you were running the code.

382   Chapter 8

test drive

Test Drive
Now that you’ve updated the library on the
English treadmill, let’s try it against an American
machine. This is one of the unaltered US
treadmills using the original version of libhfcal.so
library:

Weight: 117.40 lbs
Distance: 9.40 miles
Calories burned: 750.42 cal

The treadmill application starts when the machine
boots up, so after using the machine for a while the display
shows this:

The treadmill program on the US. machine is
dynamically linking itself to the version of the libhfcal.so
library that was compiled from the US version of the
hfcal program.

But what about the treadmill in England?

TreadmillUS hfcal
library

This is an American treadmill.

you are here 4   383

static and dynamic libraries

When the runner has been on the treadmill for a similar distance,
the display looks like this:

UK
hfcal

library

Treadmill

This is exactly
the same
treadmill program.

This version is linked
the UK version of the
hfcal library.

Weight: 53.25 kg
Distance: 15.13 km
Calories burned: 750.42 cal

It worked.
Even though the treadmill program was never recompiled, it was
able to pick up the code from the new library dynamically.

Dynamic libraries make it easier to change code at runtime. You
can update an application without needing to recompile it. If you
have several programs that share the same piece of code, you can
update them all at the same time. Now that you know how to create
dynamic libraries, you’ve become a much more powerful C developer.

The weight
is displayed
in kgs.
The distance
is displayed
in kms. The calories are still

displayed in calories.

The English machine has the same
treadmill program installed, but
on this machine you recompiled the
libhfcal.so library from the source code
in the hfcal_UK.c file.

This is an English
treadmill.

384   Chapter 8

static and dynamic

Tonight’s talk: Two renowned proponents of modular software
discuss the pros and cons of static and dynamic linking.

Static:
Well, I think we can both agree that creating code in
smaller modules is a good idea.

It makes so much sense, doesn’t it?

Keeps the code manageable.

Nice, large programs.

Yes. Nice BIG programs with their dependencies
fixed.

What do you mean, old friend?

Well… <laughs>…that’s a very…but no, seriously.

What? Lots of separate files? Joined together willy-
nilly?!

But that’s…that’s…a recipe for chaos!

You should get things right in the first place.

Dynamic:

Absolutely.

Yes.

Yes.

Large?

That doesn’t sound like a good idea.

I think programs should be made of lots of small
files that link together only when the program is run.

I’m being serious.

I prefer the term dynamically to willy-nilly.

It means I can change my mind later.

But that’s not always possible. All large programs
should use dynamic linking.

you are here 4   385

static and dynamic libraries

Dynamic:

I think so.

…statically linked. Yeah, I know. That’s your one.

Look, we’ll just have to agree to disagree.

No.

Static:
All programs?

What about the Linux kernel, hmmm? That large
enough? And I believe that’s…

Static linking might not be as loose and informal,
but you know what? Static programs are simple to
use. Single files. Want to install one? Just copy the
executable. No need for DLL hell.

I can’t change your mind?

So, you’re telling me your mind is statically linked?

�� Dynamic libraries are linked to
programs at runtime.

�� Dynamic libraries are created from
one or more object files.

�� On some machines, you need to
compile them with the -fPIC
option.

�� -fPIC makes the object code
position-independent.

�� You can skip -fPIC on many
systems.

�� The -shared compiler option
creates a dynamic library.

�� Dynamic libraries have different
names on different systems.

�� Life is simpler if your dynamic
libraries are stored in standard
directories.

�� Otherwise, you might need to set
PATH and LD_LIBRARY_PATH
variables.

386   Chapter 8

no dumb questions

Q: Why are dynamic libraries
so different on different operating
systems?

A: Operating systems like to optimize
the way they load dynamic libraries,
so they’ve each evolved different
requirements for dynamic libraries.

Q: I tried to change the name of my
library by renaming the file, but the
compiler couldn’t find it anymore.
Why not?

A: When the compiler creates a
dynamic library, it stores the name of the
library inside the file. If you rename the
file, it will then have the wrong name inside
the file and will get confused. If you want
to change its name, you should recompile
the library.

Q: Why does Cygwin support so
many different naming conventions for
dynamic library files?

A: Cygwin makes it easy to compile
Unix software on a Windows machine.
Because Cygwin creates a Unix-style
environment, it borrows a lot of Unix
conventions. So it prefers to give libraries
.a extensions, even if they’re dynamic DLLs.

Q: Are Cygwin dynamic libraries real
DLLs?

A: Yes. But because they depend on
the Cygwin system, you’ll need to do a
little work before non-Cygwin code can use
them.

Q: Why does the MinGW compiler
support the same dynamic library name
format as Cygwin?

A: Because the two projects are closely
associated and share a lot of code. The
big difference is that MinGW programs can
run on machines that don’t have Cygwin
installed.

Q: Why doesn’t Linux just store
library pathnames in executables?
That way, you wouldn’t need to set
LD_LIBRARY_PATH.

A: It was a design choice. By not storing
the pathname, it gives you a lot more
control over which version of a library a
program can use—which is great when
you’re developing new libraries.

Q: Why doesn’t Cygwin use
LD_LIBRARY_PATH to find
libraries?

A: Because it needs to use Windows
DLLs. Windows DLLs are loaded using the
PATH variable.

Q: Which is better? Static or
dynamic linking?

A: It depends. Static linking means
you get a small, fast executable file that is
easier to move from machine to machine.
Dynamic linking means that you can
configure the program at runtime more.

Q: If different programs use the same
dynamic library, does it get loaded more
than once? Or is it shared in memory?

A: That depends on the operating
system. Some operating systems will load
separate copies for each process. Others
load shared copies to save memory.

Q: Are dynamic libraries the best
way of configuring an application?

A: Usually, it’s simpler to use
configuration files. But if you’re going to
connect to some external device, you’d
normally need separate dynamic libraries
to act as drivers.

you are here 4   387

static and dynamic libraries

Your C Toolbox

You’ve got Chapter 8 under
your belt, and now you’ve

added static and dynamic
libraries to your toolbox. For a

complete list of tooltips in the book,
see Appendix ii.

CHAPT
ER 8

#include
<> looks in
standard
directories suc

h

as /usr/include
.

gcc -shared
converts
object files
into dynamic
libraries.

The ar
command
creates a
library archive
of object files.

-L<name> adds a directory to the list of standard library directories.

Library
archives have
names like
libsomething.a.

-l<name> links
to a file in
standard
directories such
as /usr/lib. -I<name> adds

a directory
to the list of
standard include
directories.

Library
archives are
statically
linked.

Dynamic
libraries are
linked at
runtime. Dynamic

libraries have
different names
on different
operating systems.

Dynamic
libraries have
.so, .dylib,
.dll, or .dll.a
extensions.

C# Lab   389

Name: Date:

C Lab   389

This lab gives you a spec that describes a
program for you to investigate and build, using
the knowledge you’ve gained over the last few
chapters.
This project is bigger than the ones you’ve seen so
far. So read the whole thing before you get started,
and give yourself a little time. And don’t worry if
you get stuck; there are no new C concepts in here,
so you can move on in the book and come back to
the lab later.
It’s up to you to finish the job, but we won’t give
you the code for the answer.

C Lab 2
OpenCV

390  

OpenCV

The spec: turn your computer into an intruder detector
Imagine if your computer could keep an eye on your
house while you’re out and tell you who’s been prowling
around. Well, using its default webcam and the cleverness
of OpenCV, it can!

Here’s what you’re going to create.

The intruder detector
Your computer will constantly survey its surroundings using its
webcam. When it detects movement, it will write the current
webcam image to a file. And if you store this file on a network
drive or use a file synchronization service such as Dropbox,
you’ll have instant evidence of any intruders.

Webcam

Image file

Intruder

When the computer
spots movement
through its webcam…

…it writes what it sees to
an image file.

Aha, an intruder
making off with the
coffee supplies! I must
record this…

   391

OpenCV

OpenCV
OpenCV is an open source computer vision library. It allows you
to take input from your computer camera, process it, and analyze
real-time image data and make decisions based on what your
computer sees. What’s more, you can do all of this using C code.

OpenCV is available on Window, Linux, and Mac platforms.

You can find the OpenCV wiki here:

Installing OpenCV
You can install OpenCV on Windows, Linux, or Mac. The
install guide is here, and includes links to the latest stable releases:

http://opencv.willowgarage.com/wiki/FullOpenCVWiki

http://opencv.willowgarage.com/wiki/InstallGuide

Once you’ve installed OpenCV, you should see a folder on your
computer labeled samples. It’s worth taking a look at these. There
are also links to tutorials on the OpenCV wiki. You’ll need to
investigate OpenCV in order to complete this lab.

If you want to get deep into OpenCV, we recommend the book
Learning OpenCV by Gary Bradski and Adrian Kaehler (O’Reilly).

We found the book
Learning OpenCV
inspirational.

392  

OpenCV

What your code should do
Your C code should do the following.

Take input from your computer camera
You need to work with real-time data that comes in from your
computer camera, so the first thing you need to do is capture that
data. There’s an OpenCV function that will help you with this
called cvCreateCameraCapture(0). It returns a pointer to a
CvCapture struct. This pointer is your hotline to the webcam
device, and you’ll use it to grab images.

Remember to check for errors in case your computer can’t find a
camera. If you can’t contact the webcam, you’ll receive a NULL
pointer from cvCreateCameraCapture(0).

Grab an image from the webcam
You can read the latest image from the webcam using the
cvQueryFrame() function. It takes the CvCapture pointer as
a parameter. The cvQueryFrame() function returns a pointer to
the latest image, so your code will probably start with something a
little like this:

Image file

CvCapture* webcam = cvCreateCameraCapture(0);

if (!webcam)

 /* Exit with an error */

while (1) {

 IplImage* image = cvQueryFrame(webcam);

 if (image) {

 }

}

If you decide that there’s a thief in the image, you can save the
image to a file with:

cvSaveImage("somefile.jpg", image, 0);

This means “Couldn’t find the webcam.”

Loop forever.
Read an image
from the webcam.

If you read an image, you’ll need to process it here.

The name of the image file The image you read
from the webcam Unless you want a grayscale image, set this flag to 0.

   393

OpenCV

Detect an intruder
Now you come to the really clever part of the code. How do you
decide if there’s an intruder in the frame?

One way is to check for movement in the image. OpenCV has
functions to create a Farneback optical flow. An optical flow
compares two images and tells you how much movement there’s
been at each pixel.

This part, you’ll need to research yourself. You’ll probably
want to use the cvCalcOpticalFlowFarneback() to
compare two consecutive images from the webcam and create
the optical flow. From that, you’ll need to write some code that
measures the amount of movement between the two frames.
If the movement’s above a threshold level, you’ll know that
something large is moving in front of the webcam.

Make a clean getaway
When you start the program, you don’t want the camera to record
you walking away, so you might want to add a delay to give you
time to leave the room.

Optional: show the current webcam output
During our tests here at the lab, we found it useful to check on
the current images the program is seeing. To do this, we opened a
window and displayed the current webcam output.

You can easily create a window in OpenCV with:

Maybe if I move
reeeaaaally slooooowly,
it won’t spot me…

cvNamedWindow("Thief", 1);

To display the current image in the window, use this:

cvShowImage("Thief", image);

394  

OpenCV

The finished product
You’ll know your OpenCV project is complete when your
computer is able to automatically take pictures of people
trying to sneak up on it.

Why stop there? We’re sure you have all
kinds of exciting ideas for what you could
do with OpenCV. Drop us a line at Head
First Labs and let us know how OpenCV is
working out for you.

Busted.

processes and system calls

It’s time to become a C ninja…
The final part of the book covers advanced topics.

As you’re going to be digging into some of the more
advanced functions in C, you’ll need to make sure
that you have all of these features available on your
computer. If you’re using Linux or Mac, you’ll be
fine, but if you’re using Windows, you need to have
Cygwin installed.

Once you’re ready, turn the page and enter the gate…

you are here 4   395

this is a new chapter   397

Thanks, Ted. Since you taught
me how to make system calls,
I haven’t looked back. Ted?
Ted, are you there?

processes and system calls9

Breaking boundaries

It’s time to think outside the box.�
You’ve already seen that you can build complex applications by connecting small tools

together on the command line. But what if you want to use other programs from inside

your own code? In this chapter, you’ll learn how to use system services to create and

control processes. That will give your programs access to email, the Web, and any other

tool you’ve got installed. By the end of the chapter, you’ll have the power to go beyond C.

398   Chapter 9

system()

System calls are your hotline to the OS
C programs rely on the operating system for pretty much
everything. They make system calls if they want to talk
to the hardware. System calls are just functions that live
inside the operating system’s kernel. Most of the code in
the C Standard Library depends on them. Whenever you
call printf() to display something on the command
line, somewhere at the back of things, a system call will be
made to the operating system to send the string of text to
the screen.

I want to display this on
the command line, then play

this music track, then send this
message to the network…

Certainly. I shall
perform those tasks
immediately.

Let’s look at an example of a system call. We’ll begin with
one called (appropriately) system().

system() takes a single string parameter and executes it
as if you had typed it on the command line:

The system() function is an easy way of running other
programs from your code—particularly if you’re creating
a quick prototype and you’d sooner call external programs
rather than write lots and lots of C code.

system("dir D:");

system("gedit");

system("say 'End of line'");

This will print out the contents of the D: drive.

This will launch an editor on Linux.

This will read to you on the Mac.

you are here 4   399

processes and system calls

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

char* now()

{

 time_t t;

 time (&t);

 return asctime(localtime (&t));

}

/* Master Control Program utility.

 Records guard patrol check-ins. */

int main()

{

 char comment[80];

 char cmd[120];

 (, ,);

 (,

 ,

 ,);

 system(cmd);

 return 0;

}

Code Magnets
This is a program that writes timestamped text to the end of a logfile. It would have
been perfectly possible to write this entire program in C, but the programmer has
used a call to system() as a quick way of dealing with the file handling.

See if you can complete the code that creates the operating system command
string that displays the text comment, followed by the timestamp.

"echo '%s %s' >> reports.log"

comment

80 cmd

now()

sprintf

fgetscomment

stdin

This function returns a string
containing the current date and time.

scanf stdout

120

printf

400   Chapter 9

magnets moved

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

char* now()

{

 time_t t;

 time (&t);

 return asctime(localtime (&t));

}

/* Master Control Program utility.

 Records guard patrol check-ins. */

int main()

{

 char comment[80];

 char cmd[120];

 (, ,);

 (,

 ,

 ,);

 system(cmd);

 return 0;

}

Code Magnets Solution
This is a program that writes timestamped text to the end of a logfile. It would have
been perfectly possible to write this entire program in C, but the programmer has
used a call to system() as a quick way of dealing with the file handling.

You were to complete the code that creates the operating system command string
that displays the text comment, followed by the timestamp.

"echo '%s %s' >> reports.log"

comment

scanf

80

cmd

now()

sprintf

stdout

120

fgets

printf

comment

stdin
Using fgets for
unstructured
text.

It needs to store
the text in the
comment array.

There is room
for only 80
characters.

The data will come
from the Standard
Input: the keyboard.

The command will append
the comment to a file.

sprintf will print
the characters to
a string.

The formatted string will be
stored in the cmd array.

This is the command
template.

The comment will appear first.
The timestamp appears second.

This runs the
contents of
the cmd string.

you are here 4   401

processes and system calls

Test Drive
Let’s compile the program and then watch it in action:

> gcc guard_log.c -o guard_log
> ./guard_log
Checked in Crom - a compound interest program.
> ./guard_log
Blue Leader reports breach in jet walls.
>

File Edit Window Help Who’sYourUser

Q: Does the system() function get compiled into my
program?

A: No. The system() function—like all system calls—
doesn’t live in your program. It lives in the main operating system.

Q: So, when I make a system call, I’m making a call to
some external piece of code, like a library?

A: Kind of. But the details depend on the operating system.
On some operating systems, the code for a system call lives inside
the kernel of the operating system. On other operating systems, it
might simply be stored in some dynamic library.

Now, when you look in the same directory as the program,
there’s a new file that’s been created called reports.log:

Checked in Crom - a compound interest program.

 Thu Oct 29 11:25:53 2015

Blue Leader reports breach in jet walls.

 Thu Oct 29 11:26:06 2015

reports.logThe program worked. It read a comment from the command
line and called the echo command to add the comment to
the end of the file.

Even though you could have written the whole program in C,
by using system(), you simplified the program and got it
working with very little work.

This is the
reports.log file
the program
created.

These are the
timestamps.

This will compile
the program.

This runs the
program.
Running it a
second time

This is a comment.

Another comment

402   Chapter 9

yikes

Then someone busted into the system…

ALERT! ALERT! Main
system security has
been breached!

There’s a downside to the system() function. It’s
quick and easy to use, but it’s also kinda sloppy. Before
getting into the problems with system(), let’s see
what it takes to break the program.

The code worked by stitching together a string
containing a command, like this:

By injecting some command-line code into the text,
you can make the program run whatever code you
like:

> ./guard_log
' && ls / && echo '

Applications System dev private
Developer Users etc sbin
Library Volumes home tmp
Network bin mach_kernel usr
Space Paranoids Source cores net var
>

File Edit Window Help Yikes

echo ' <comment> <timestamp> ' >> reports.log

But what if someone entered a comment like this?

echo ' <timestamp> ' >> reports.log

The user can use
the program to
run any command
she likes on the
computer. This is a

listing of
the root
directory.

Is this a big problem? If a user can run guard_log,
she can just as easily run some other program. But
what if your code has been called from a web server?
Or if it’s processing data from a file?

' && ls / && echo '

you are here 4   403

processes and system calls

Security’s not the only problem
This example injects a piece of code to list the contents of the root
directory, but it could have deleted files or launched a virus. But you
shouldn’t just worry about security.

What if the comments contain apostrophes?
That might break the quotes in the command.

¥

What if the PATH variable causes the system() function
to call the wrong program?

¥

What if the program we’re calling needs to have a specific
set of environment variables set up first?

¥

The system() function is easy to use, but most of the time, you’re
going to need something more structured—some way of calling a
specific program, with a set of command-line arguments and maybe
even some environment variables.

Geek Bits

What’s the kernel?
On most machines, system calls are functions that live inside the kernel of the operating system. But
what is the kernel? You never actually see the kernel on the screen, but it’s always there, controlling your
computer. The kernel is the most important program on your computer, and it’s in charge of three things:

Processes
No program can run on the system without the kernel loading it into memory. The kernel creates
processes and makes sure they get the resources they need. The kernel also watches for processes that
become too greedy or crash.

Memory
Your machine has a limited supply of memory, so the kernel has to carefully ration the amount of memory
each process can take. The kernel can increase the virtual memory size by quietly loading and unloading
sections of memory to disk.

Hardware
The kernel uses device drivers to talk to the equipment that’s plugged into the computer. Your program
can use the keyboard and the screen and the graphics processor without knowing too much about them,
because the kernel talks to them on your behalf.

System calls are the functions that your program uses to talk to the kernel.

exec()

The exec() functions give you more control
When you call the system() function, the operating
system has to interpret the command string and decide
which programs to run and how to run them. And that’s
where the problem is: the operating system needs to interpret
the string, and you’ve already seen how easy it is to get that
wrong. So, the solution is to remove the ambiguity and
tell the operating system precisely which program you want
to run. That’s what the exec() functions are for.

exec() functions replace the current process

A process is just a program running in memory. If you
type taskmgr on Windows or ps -ef on most other
machines, you’ll see the processes running on your system.
The operating system tracks each process with a number
called the process identifier (PID).

The exec() functions replace the current process by
running some other program. You can say which command-
line arguments or environment variables to use, and when the
new program starts it will have exactly the same PID as the
old one. It’s like a relay race, where your program hands
over its process to the new program.

OK, I’m handing over to
you now, sendmail. This is
the data you need. Don’t
let me down.

I’m all
over it.

A process is a program
running in memory.

404   Chapter 9

you are here 4   405

processes and system calls

There are many exec() functions
Over time, programmers have created several different versions
of exec(). Each version has a slightly different name and its
own set of parameters. Even though there are lots of versions,
there are really just two groups of exec() functions: the list
functions and the array functions.

The exec() functions
are in unistd.h.

The list functions: execl(), execlp(), execle()
The list functions accept command-line arguments as a list of
parameters, like this:

The program.
This might be the full pathname of the program—execl()/
execle()—or just a command name to search for—execlp()—
but the first parameter tells the exec() function what program it
will run.

¥

The command-line arguments.
You need to list one by one the command-line arguments you want
to use. Remember: the first command-line argument is always the
name of the program. That means the first two parameters passed
to a list version of exec() should always be the same string.

¥

NULL.
That’s right. After the last command-line argument, you need a
NULL. This tells the function that there are no more arguments.

¥

Environment variables (maybe).
If you call an exec() function whose name ends with ...e(), you can
also pass an array of environment variables. This is just an array of strings
like "POWER=4", "SPEED=17", "PORT=OPEN",

¥

	 Spaces in
command line
arguments
can confuse
MinGW.

If you pass two arguments “I
like” and “turtles,” MinGW
programs might send three
arguments: “I,” “like,” and

“turtles.”

execl("/home/flynn/clu", "/home/flynn/clu", "paranoids", "contract", NULL)

execlp("clu", "clu", "paranoids", "contract", NULL)

execle("/home/flynn/clu", "/home/flynn/clu", "paranoids", "contract", NULL, env_vars)

execL = a LIST of arguments. These are the arguments.

The second
parameter
should be
the same as
the first.

You should
end the list
with NULL.

These are the arguments.execLP = a LIST of arguments
+ search on the PATH.

execLE = a LIST of arguments
+ ENVIRONMENT variables.

These are the arguments.

env_vars is an array of strings
containing environment variables.

406   Chapter 9

array functions

The array functions: execv(), execvp(), execve()

execv("/home/flynn/clu", my_args);execV = an array or
VECTOR of arguments.

The arguments need to be stored
in the my_args string array. execvp("clu", my_args);

execVP = an array/
VECTOR of arguments
+ search on the PATH.

The only difference between these two functions is that
execvp will search for the program using the PATH variable.

How to remember the exec() functions

You can figure out which exec() function you need by
constructing the name. Each exec() function can be followed
by one or two characters that must be l, v, p, or e. The
characters tell you which feature you want to use. So, for the
execle() function:

execle = exec + l + e = LIST of arguments + an ENVIRONMENT

Uses Character
List of args l
Array/vector of args v
Search the path p
Environment vars e

The l and v characters always come before p and e,
and the p and e characters are optional.

exec

l

v

p e

All exec() functions
begin with exec.

Take a list of arguments.

Take a vector/array
of arguments.

Search
for the
program on
the path.

Use an array
of environment
strings.

You don’t
have to
include p
or e.

If you already have your command-line arguments stored in an
array, you might find these two versions easier to use:

you are here 4   407

processes and system calls

Passing environment variables

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

 printf("Diners: %s\n", argv[1]);

 printf("Juice: %s\n", getenv("JUICE"));

 return 0;

}

diner_info.c

getenv() in stdlib.h lets you
read environment variables.

Every process has a set of environment
variables. These are the values you see when
you type set or env on the command
line, and they usually tell the process
useful information, such as the location
of the home directory or where to find
the commands. C programs can read
environment variables with the getenv()
system call. You can see getenv() being
used in the diner_info program on the
right.

If you want to run a program using
command-line arguments and environment
variables, you can do it like this:

char *my_env[] = {"JUICE=peach and apple", NULL};

execle("diner_info", "diner_info", "4", NULL, my_env);

The execle() function will set the command-line
arguments and environment variables and then replace the
current process with diner_info.

> ./my_exec_program
Diners: 4
Juice: peach and apple
>

File Edit Window Help MoreOJ

But what if there’s a problem?
If there’s a problem calling the program, the existing process
will keep running. That’s useful, because it means that if you
can’t start that second process, you’ll be able to recover from
the error and give the user more information on what went
wrong. And luckily, the C Standard Library provides some
built-in code to help you with that.

	 If you’re
passing an
environment
on Cygwin,
be sure to

include a PATH variable.

On Cygwin, the PATH
variable is needed when
programs are loaded. So, if
you’re passing environment
variables on Cygwin, be sure
to include PATH=/usr/bin.

You can create a
set of environment
variables as an array
of string pointers.

Each variable in the
environment is name=value.

The last item in the
array must be NULL.

execle passes a list of arguments and an environment. my_env contains the environment.

408   Chapter 9

errno

Most system calls go wrong in the same way
Because system calls depend on something outside your
program, they might go wrong in some way that you can’t
control. To deal with this problem, most system calls go
wrong in the same way.

Take the execle() call, for example. It’s really easy to
see when an exec() call goes wrong. If an exec() call
is successful, the current program stops running. So, if the
program runs anything after the call to exec(), there must
have been a problem:

execle("diner_info", "diner_info", "4", NULL, my_env);

puts("Dude - the diner_info code must be busted");

If execle() worked,
this line of code
would never run.

But just telling if a system call worked is not enough. You
normally want to know why a system call failed. That’s why
most system calls follow the golden rules of failure.

The errno variable is a global variable that’s defined in
errno.h, along with a whole bunch of standard error values,
like:

Now you could check the value of errno against each of
these values, or you could look up a standard piece of error
text using a function in string.h called strerror():

puts(strerror(errno)); strerror() converts an error
number into a message.

So, if the system can’t find the program you are running
and it sets the errno variable to ENOENT, the above code
will display this message:

No such file or directory

EPERM=1	 Operation not permitted

ENOENT=2	 No such file or directory

ESRCH=3	 No such process

EMULLET=81	 Bad haircut
This value is
not available
on all systems.

The Golden Rules
of Failure

* Tidy up as much as you can.
* Set the errno variable to
an error value.
* Return -1.

Guaranteed
Standard of

Failure

you are here 4   409

processes and system calls

Different machines have different commands to tell you about their network configuration. On
Linux and Mac machines, there’s the /sbin/ifconfig program, and on Windows there’s a
command called ipconfig that’s stored somewhere on the command path.

This program tries to run the /sbin/ifconfig program and, if that fails, it will try the
ipconfig command. There’s no need to pass arguments to either command. Think carefully.
What type of exec() commands will you need?

#include <stdio.h>

int main()

{

 if ()

 if (execlp() {

 fprintf(stderr, "Cannot run ipconfig: %s",);

 return 1;

 }

 return 0;

}

What headers will you need?

This will need to run /sbin/ifconfig.
What should we test for?

This will need to run
the ipconfig command
and check if it fails.

What do you think goes here?

410   Chapter 9

exercise solved

Different machines have different commands to tell you about their network configuration. On
Linux and Mac machines, there’s the /sbin/ifconfig program, and on Windows there’s a
command called ipconfig that’s stored somewhere on the command path.

This program tries to run the /sbin/ifconfig program and, if that fails, it will try the
ipconfig command. There’s no need to pass arguments to either command. Think carefully.
What type of exec() commands will you need?

#include <stdio.h>

int main()

{

 if ()

 if (execlp() {

 fprintf(stderr, "Cannot run ipconfig: %s",);

 return 1;

 }

 return 0;

}

You need this for the exec() functions.

Use execl() because you have the
path to the program file.

#include <unistd.h>
#include <errno.h> You need this for the errno variable.
#include <string.h> This will let you display errors with strerror().

execl(“/sbin/ifconfig”, “/sbin/ifconfig”, NULL) == -1

If execl() returns -1, it failed, so
we should probably look for ipconfig.

“ipconfig”, “ipconfig”, NULL) == -1
strerror(errno)

The strerror() function
will display any problems.

execlp() will
let us find
the ipconfig
command on
the path.

Checking for the value -1 in
case the command failed.

you are here 4   411

processes and system calls

Q: Isn’t system() just easier to use than exec()?

A: Yes. But because the operating system needs to interpret the
string you pass to system(), it can be a bit buggy. Particularly
if you create the command string dynamically.

Q: Why are there so many exec() functions?

A: Over time, people wanted to create processes in different
ways. The different versions of exec() were created for more
flexibility.

Q: Do I always have to check the return value of a system
call? Doesn’t it make the program really long?

A: If you make system calls and don’t check for errors, your
code will be shorter. But it will probably also have more bugs. It is
better to think about errors when you first write code. It will make it
much easier to catch bugs later on.

Q: If I call an exec() function, can I do anything
afterward?

A: No. If the exec() function is successful, it will change the
process so that it runs the new program instead of your program.
That means the program containing the exec() call will stop as
soon as it runs the exec() function.

�� System calls are functions that live in
the operating system.

�� When you make a system call,
you are calling code outside your
program.

�� system() is a system call to run a
command string.

�� system() is easy to use, but it
can cause bugs.

�� The exec() system calls let you
run programs with more control.

�� There are several versions of the
exec() system call.

�� System calls usually, but not always,
return –1 if there’s a problem.

�� They will also set the errno
variable to an error number.

412   Chapter 9

mixed messages

Mixed
Messages

The guys over at Starbuzz have come up with a new order-generation program that
they call coffee:

#include <string.h>

#include <stdio.h>

#include <errno.h>

int main(int argc, char *argv[]){

 fprintf(stderr,"Can't create order: %s\n", strerror(errno));

 return 1;

 }

 return 0;

}

Candidate code goes here.

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

 char *w = getenv("EXTRA");

 if (!w)

 w = getenv("FOOD");

 if (!w)

 w = argv[argc - 1];

 char *c = getenv("EXTRA");

 if (!c)

 c = argv[argc - 1];

 printf("%s with %s\n", c, w);

 return 0;

}

To try it out, they’ve created this test program. Can you match up these code fragments to the output they produce?

you are here 4   413

processes and system calls

char *my_env[] = {"FOOD=coffee", NULL};

if(execle("./coffee", "./coffee", "donuts", NULL, my_env) == -1){

 fprintf(stderr,"Can't run process 0: %s\n", strerror(errno));

 return 1;

}

coffee with donuts

Candidates: Possible output:
Match each candidate with one of the possible outputs.

char *my_env[] = {"FOOD=donuts", NULL};

if(execle("./coffee", "./coffee", "cream", NULL, my_env) == -1){

 fprintf(stderr,"Can't run process 0: %s\n", strerror(errno));

 return 1;

}

if(execl("./coffee", "coffee", NULL) == -1){

 fprintf(stderr,"Can't run process 0: %s\n", strerror(errno));

 return 1;

}

char *my_env[] = {"FOOD=donuts", NULL};

if(execle("./coffee", "coffee", NULL, my_env) == -1){

 fprintf(stderr,"Can't run process 0: %s\n", strerror(errno));

 return 1;

}

cream with donuts

donuts with coffee

coffee with coffee

414   Chapter 9

messages unmixed

Mixed
Messages
Solution

The guys over at Starbuzz have come up with a new order-generation program that
they call coffee:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

 char *w = getenv("EXTRA");

 if (!w)

 w = getenv("FOOD");

 if (!w)

 w = argv[argc - 1];

 char *c = getenv("EXTRA");

 if (!c)

 c = argv[argc - 1];

 printf("%s with %s\n", c, w);

 return 0;

}

#include <string.h>

#include <stdio.h>

#include <errno.h>

int main(int argc, char *argv[]){

 fprintf(stderr,"Can't create order: %s\n", strerror(errno));

 return 1;

 }

 return 0;

}

Candidate code goes here.

To try it out, they’ve created this test program. Can you match up these code fragments to the output they produce?

you are here 4   415

processes and system calls

char *my_env[] = {"FOOD=coffee", NULL};

if(execle("./coffee", "./coffee", "donuts", NULL, my_env) == -1){

 fprintf(stderr,"Can't run process 0: %s\n", strerror(errno));

 return 1;

}

char *my_env[] = {"FOOD=donuts", NULL};

if(execle("./coffee", "./coffee", "cream", NULL, my_env) == -1){

 fprintf(stderr,"Can't run process 0: %s\n", strerror(errno));

 return 1;

}

if(execl("./coffee", "coffee", NULL) == -1){

 fprintf(stderr,"Can't run process 0: %s\n", strerror(errno));

 return 1;

}

char *my_env[] = {"FOOD=donuts", NULL};

if(execle("./coffee", "coffee", NULL, my_env) == -1){

 fprintf(stderr,"Can't run process 0: %s\n", strerror(errno));

 return 1;

}

Candidates: Possible output:

coffee with donuts

cream with donuts

donuts with coffee

coffee with coffee

416   Chapter 9

rss gossip

Read the news with RSS
RSS feeds are a common way for websites to publish
their latest news stories. Each RSS feed is just an
XML file containing a summary of stories and links.
Of course, it’s possible to write a C program that will
read RSS files straight off the Web, but it involves
a few programming ideas that you haven’t seen yet.
But that’s not a problem if you can find another
program that will handle the RSS processing for you.

I want all the latest
stories on Pajama Death.

> export RSS_FEED=http://www.cnn.com/rss/celebs.xml
> python rssgossip.py 'pajama death'
Pajama Death launch own range of kitchen appliances.
Lead singer of Pajama Death has new love interest.
"I never ate the bat" says Pajama Death's Hancock.

File Edit Window Help ReadAllAboutIt

Do this!

RSS Gossip is a small Python script that can search
RSS feeds for stories containing a piece of text. To run
the script, you will need Python installed. Once you
have Python and rssgossip.py, you can search for
stories like this:

Download RSS Gossip from
https://github.com/dogriffiths/rssgossip/zipball/master.
Also, if you don’t have Python installed, you can get it here:
http://www.python.org/.

Ooh, I just had a great idea.
Why not write a program that
can search a lot of RSS feeds
all at once! Can you do that?

You need to create
an environment
variable containing
the address of an
RSS feed.

This isn’t a
real feed.
You should
replace it
with one you
find online.

This is running in a
Unix environment.

This runs the
rssgossip script
with a search
string.

Editor

you are here 4   417

processes and system calls

The editor wants a program on his machine that can search a lot of RSS feeds all at the
same time. You could do that if you ran the rssgossip.py several times for different RSS feeds.
Fortunately, the out-of-work actors have made a start on the program for you. Trouble is,
they’re having problems creating the call to exec() the rssgossip.py script. Think carefully
about what you need to do to run the script, and then complete the newshound code.

int main(int argc, char *argv[])

{

 char *feeds[] = {"http://www.cnn.com/rss/celebs.xml",

 "http://www.rollingstone.com/rock.xml",

 "http://eonline.com/gossip.xml"};

 int times = 3;

 char *phrase = argv[1];

 int i;

 for (i = 0; i < times; i++) {

 char var[255];

 sprintf(var, "RSS_FEED=%s", feeds[i]);

 char *vars[] = {var, NULL};

 if (("/usr/bin/python", "/usr/bin/python",

) == -1) {

 fprintf(stderr, "Can't run script: %s\n", strerror(errno));

 return 1;

 }

 }

 return 0;

}

newshound.c

To save space, this listing doesn’t
show the #include lines.

These are RSS feeds the editor wants (you might want to choose your own).

We’ll pass the search terms in as an argument.

Loop through each of the feeds.

This is an
environment
array.
You need
to insert
the
function
name
here.

On the editor’s Mac, Python is installed here.

You need to insert the other
parameters to the function here.

And for extra bonus points…

What will the program do when it runs?

418   Chapter 9

newshound hounded

The editor wants a program on his machine that can search a lot of RSS feeds all at the
same time. You could do that if you ran the rssgossip.py several times for different RSS feeds.
Fortunately, the out-of-work actors have made a start on the program for you. Trouble is,
they’re having problems creating the call to exec() the rssgossip.py script. You were to think
carefully about what you need to do to run the script, and then complete the newshound code.

int main(int argc, char *argv[])

{

 char *feeds[] = {"http://www.cnn.com/rss/celebs.xml",

 "http://www.rollingstone.com/rock.xml",

 "http://eonline.com/gossip.xml"};

 int times = 3;

 char *phrase = argv[1];

 int i;

 for (i = 0; i < times; i++) {

 char var[255];

 sprintf(var, "RSS_FEED=%s", feeds[i]);

 char *vars[] = {var, NULL};

 if (("/usr/bin/python", "/usr/bin/python",

) == -1) {

 fprintf(stderr, "Can't run script: %s\n", strerror(errno));

 return 1;

 }

 }

 return 0;

}

newshound.c

You’re using
a LIST of
args and an
ENVIRON-
MENT, so
it’s execLE.

This is the
name of the
Python script.

But what will the program do when you run it?

execle
“./rssgossip.py”, phrase, NULL, vars

This is the
search phrase,
as a command-
line argument.

Pass the
environment
as an extra
parameter.

you are here 4   419

processes and system calls

Test Drive
When you compile and run the program, it looks like it works:

> ./newshound 'pajama death'
Pajama Death ex-drummer tells all.
New Pajama Death album due next month.

File Edit Window Help ReadAllAboutIt

The newshound program has the rssgossip.py script using data
from the array of RSS feeds.

Worked!? Worked?!? It didn’t work! What about
the announcement of the surprise concert? That
was on every other news site! I coulda sent my
photographers down there. As it is, I was beaten
to the story by everyone else in town!

Actually there is a problem.

Although the newshound program managed
to run the rssgossip.py script, it looks like it didn’t
manage to run the script for all of the feeds. In fact,
the only news it displayed came from the first
feed on the list. That meant the other news
stories matching the search terms were missed.

Look at the code of the newshound program again and think about how it works.
Why do you think it failed to run the rssgossip.py script for any of the other
newsfeeds?

420   Chapter 9

fork()

exec() is the end of the line for your program

fork() will clone your process
You’re going to get around this problem by using
a system call named fork().

fork() makes a complete copy of the current
process. The brand-new copy will be running
the same program, on the same line number. It
will have exactly the same variables that contain
exactly the same values. The only difference is
that the copy process will have a different process
identifier from the original.

The original process is called the parent
process, and the newly created copy is called
the child process.

But how can cloning the current process fix the
problems with exec()? Let’s see.

The exec() functions replace the current
function by running a new program. But what
happens to the original program? It terminates,
and it terminates immediately. That’s why the
program only ran the rssgossip.py script for the
first newsfeed. After it had called execle() the
first time, the newshound program terminated.

newshound
rssgossip.py

Once the newshound program hands over
the process to the rssgossip.py program,
newshound quits.

 for (i = 0; i < times; i++) {

 ...

 if (execle("/usr/bin/python", "/usr/bin/python",
 "./rssgossip.py", phrase, NULL, vars) == -1) {

 ...

 }

 }

Once execle() is
called, the whole
program quits.

The loop will run only once.

But if you want to start another process and keep
your original process running, how do you do it?

The fork() system call will
clone the current process.

The new process
is called the
child process.

The original
process is
called the
parent process.

	 Unlike Linux
and the Mac,
Windows
doesn’t support
fork() natively.

To use fork() on a Windows
machine, you should first install
Cygwin.

you are here 4   421

processes and system calls

Running a child process with fork() + exec()
The trick is to only call an exec() function on a child
process. That way, your original parent process will be able
to continue running. Let’s look at the process step by step.

1. Make a copy
Begin by making a copy of your current process by calling
the fork() system call.

The processes need some way of telling which of them is
the parent process and which is the child, so the fork()
function returns 0 to the child process, and it will return a
nonzero value to the parent process.

The original process
New process 1234

2. If you’re the child process, call exec()
At this point, you have two identical processes running,
both of them using identical code. But the child process
(the one that received a 0 from the fork() call) now needs
to replace itself by calling exec():

This is the parent process.

This is the child process.
The child process calls exec().

The child process is
replaced by rssgossip.py.

Now you have two separate processes: the child process
is running the rssgossip.py script, and the original parent
process is free to continue doing something else.

422   Chapter 9

code magnets

Code Magnets
It’s time to update the newshound program. The code needs to run the
rssgossip.py script in a separate process for each of the RSS feeds. The code
is reduced, so you only have to worry about the main loop. Be careful to
check for errors, and don’t get the parent and child processes mixed!

for (i = 0; i < times; i++) {

 char var[255];

 sprintf(var, "RSS_FEED=%s", feeds[i]);

 char *vars[] = {var, NULL};

}

Put your
magnets
in this
space.

you are here 4   423

processes and system calls

}

return 1;

pid_t pid = fork();

}

return 1;

}
if (!pid) {

if (execle("/usr/bi
n/python", "/usr/bi

n/python", "./rssgo
ssip.py",

phrase, NULL, vars)
 == -1) {

if (pid == -1) {

fprintf(stderr, "Can't run script: %s\n", strerror(errno));

fprintf(stderr, "Can't fork process: %s\n", strerror(errno));

You call fork() like this:

 pid_t pid = fork();

fork() will actually return an integer value that is 0 for
the child process and positive for the parent process.
The parent process will receive the process identifier of
the child process.

But what is pid_t? Different operating systems use
different kinds of integers to store process IDs: some
might use shorts and some might use ints. So pid_t
is always set to the type that the operating system uses.

What the fork()?

424   Chapter 9

magnets unmuddled

Code Magnets Solution
It’s time to update the newshound program. The code needs to run the
rssgossip.py script in a separate process for each of the RSS feeds. The code
is reduced, so you only had to worry about the main loop. Be careful to
check for errors, and don’t get the parent and child processes mixed!

for (i = 0; i < times; i++) {

 char var[255];

 sprintf(var, "RSS_FEED=%s", feeds[i]);

 char *vars[] = {var, NULL};

}

}

return 1;

pid_t pid = fork();

}

return 1;

}

if (!pid) {

if (execle("/usr/bi
n/python", "/usr/bi

n/python", "./rssgo
ssip.py",

phrase, NULL, vars)
 == -1) {

if (pid == -1) {

fprintf(stderr, "Can't run script: %s\n", strerror(errno));

fprintf(stderr, "Can't fork process: %s\n", strerror(errno));

First, call fork() to clone the process.

If fork() returned -1, there was a problem cloning the process.

This is the same as if (pid == 0).
If fork() returned a 0, the code is running in the child process.

If you get here, you’re the child process,
so we should exec() the script.

you are here 4   425

processes and system calls

Test Drive
Now, if you compile and run the code, this happens:

> ./newshound 'pajama death'
Pajama Death ex-drummer tells all.
New Pajama Death album due next month.
Photos from the surprise Pajama Death concert.
Official Pajama Death pajamas go on sale.
"When Pajama Death jumped the shark" by HenryW.
Breaking News: Pajama Death attend premiere.

File Edit Window Help ReadAllAboutIt

Hey! That’s
great! I’ll send my
photographers down
to the premiere.

By fork-ing a copy of itself and then exec-ing the
Python script in a separate process, the newshound
program is able to run a separate process for each of the
RSS feeds. And the great thing is that these processes will
all run at the same time.

This is your
newshound
process.

It runs separate
processes for each of
the three newsfeeds.

The child processes all
run at the same time.

That’s a lot faster than reading the newsfeeds one at a time.
By learning how to create and run separate processes with
fork() and exec(), not only can you make the most
of your existing software, but you can also improve the
performance of your code.

newshound

426   Chapter 9

no dumb questions

Q: Does system() run programs
in a separate process?

A: Yes. But system() gives you
less control over exactly how the program
runs.

Q: Isn’t fork-ing processes really
inefficient? I mean, it copies an entire
process, and then a moment later we
replace the child process by doing an
exec()?

A: Operating systems use lots of tricks
to make fork-ing processes really quick.
For example, the operating system cheats
and avoids making an actual copy of the
parent process’s data. Instead, the child
and parent processes share the same data.

Q: But what if one of the processes
changes some data in memory? Won’t
that screw things up?

A: It would, but the operating system
will catch that a piece of memory is going
to change, and then it will make a separate
copy of that piece of memory for the child
process.

Q: That technique sounds quite cool.
Does it have a name?

A: Yes; it’s called “copy-on-write.”

Q: Is a pid_t just an int?

A: It depends on the platform. The
only thing you know is that it will be some
integer type.

Q: I stored the result of a fork()
call in an int, and it worked just fine.

A: It’s best to always use pid_t to
store process IDs. If you don’t, you might
cause problems with other system calls
or if your code is compiled on another
machine.

Q: Why doesn’t Windows support
the fork() system call?

A: Windows manages processes very
differently from other operating systems,
and the kinds of tricks fork() needs to
do in order to work efficiently are very hard
to do on Windows. This may be why there
isn’t a version of fork() built in.

Q: But Cygwin lets me do fork()s
on Windows, right?

A: Yes. The gurus who work on
Cygwin did a lot of work to make Windows
processes look like processes that are
used on Unix, Linux, and the Mac. But
because they still need to rely on Windows
to create the underlying processes,
fork() on Cygwin can be a little slower
than fork() on other platforms.

Q: So, if I’m just interested in writing
code to work on Windows, is there
something else I should use instead?

A: Yes. There’s a function called
CreateProcess() that’s like an
enhanced version of system(). To find
out more, go to http://msdn.microsoft.com
and search for “CreateProcess.”

Q: Won’t the output of the various
feeds get mixed up?

A: The operating system will make sure
that each string is printed completely.

�� System calls are functions that live in
the kernel.

�� The exec() functions give you more
control than system().

�� The exec() functions replace the
current process.

�� The fork() function duplicates the
current process.

�� System calls usually return –1 if they
fail.

�� Failed system calls set the errno
variable to the error number.

you are here 4   427

processes and system calls

Your C Toolbox

You’ve got Chapter 9 under
your belt, and now you’ve

added processes and system
calls to your toolbox. For a complete

list of tooltips in the book, see
Appendix ii.

CHAPT
ER 9

system() will
run a string
like a console
command. execl() = list of args.

execle() = list of args + environment.
execlp() = list of args + search on path.
execv() = array of args.
execve() = array of args + environment.
execvp() = array of args + search on path.

fork()
duplicates
the current
process. fork() +

exec()
creates a
child process.

this is a new chapter   429

interprocess communication10

It’s good to talk

Creating processes is just half the story.�
What if you want to control the process once it’s running? What if you want to send it

data? Or read its output? Interprocess communication lets processes work together to

get the job done. We’ll show you how to multiply the power of your code by letting it talk

to other programs on your system.

430   Chapter 10

redirection

Redirecting input and output
When you run programs from the command line, you can
redirect the Standard Output to a file using the > operator:

python ./rssgossip.py Snooki > stories.txt
You can redirect output
using the > operator.

The Standard Output is one of the three default data
streams. A data stream is exactly what it sounds like: a
stream of data that goes into, or comes out of, a process.
There are data streams for the Standard Input, Output,
and Error, and there are also data streams for other things,
like files or network connections. When you redirect the
output of a process, you change where the data is sent. So,
instead of the Standard Output sending data to the screen,
you can make it send the data to a file.

Redirection is really useful on the command line, but is
there a way of making a process redirect itself?

You can redirect the Standard Output to a file.

The Standard
Input: stdin

The Standard
Output: stdout

The Standard
Error: stderr

you are here 4   431

interprocess communication

A look inside a typical process

The descriptor table has one column for each of the file
descriptor numbers. Even though these are called file descriptors,
they might not be connected to an actual file on the hard disk.
Against every file descriptor, the table records the associated data
stream. That data stream might be a connection to the keyboard
or screen, a file pointer, or a connection to the network.

The first three slots in the table are always the same. Slot 0 is
the Standard Input, slot 1 is the Standard Output, and slot 2 is
the Standard Error. The other slots in the table are either empty
or connected to data streams that the process has opened. For
example, every time your code opens a file for reading or writing,
another slot is filled in the descriptor table.

When the process is created, the Standard Input is connected to
the keyboard, and the Standard Output and Error are connected
to the screen. And they will stay connected that way until
something redirects them somewhere else.

Every process will contain the program it’s running, as well as
space for stack and heap data. But it will also need somewhere
to record where data streams like the Standard Output are
connected. Each data stream is represented by a file descriptor,
which, under the surface, is just a number. The process keeps
everything straight by storing the file descriptors and their data
streams in a descriptor table.

A typical
process

Data Stream
0 The keyboard
1 The screen
2 The screen
3 Database connection

Standard Input
Standard Output
Standard Error

The process might also
have other open streams.

A file descriptor is a
number that represents
a data stream.

File descriptors don’t
necessarily refer to files.

432   Chapter 10

replace the descriptors

Standard Output has been redirected to a file.

Redirection just replaces data streams
The Standard Input, Output, and Error are always fixed in the same
places in the descriptor table. But the data streams they point to can
change.

That means if you want to redirect the Standard
Output, you just need to switch the data stream against
descriptor 1 in the table.

All of the functions, like printf(), that send data
to the Standard Output will first look in the descriptor
table to see where descriptor 1 is pointing. They will
then write data out to the correct data stream.

Processes can redirect themselves
Every time you’ve used redirection so far, it’s been from
the command line using the > and < operators. But
processes can do their own redirection by rewiring the
descriptor table.

Data Stream
0 The keyboard
1 The screen File stories.txt
2 The screen
3 Database connection

Geek Bits

So, that’s why it’s 2 …
You can redirect the Standard Output and
Standard Error on the command line using the
> and 2> operators:

./myprog > output.txt 2> errors.log

Now you can see why the Standard Error is
redirected with 2>. The 2 refers to the number
of the Standard Error in the descriptor table.
On most operating systems, you can use 1> as
an alternative way of redirecting the Standard
Output, and on Unix-based systems you can
even redirect the Standard Error to the same
place as the Standard Output like this:

./myprog 2>&1

2> means “redirect
Standard Error.”

&1 means “to the
Standard Input.”

you are here 4   433

interprocess communication

fileno() tells you the descriptor
Every time you open a file, the operating system registers a
new item in the descriptor table. Let’s say you open a file with
something like this:

FILE *my_file = fopen("guitar.mp3", "r");

The operating system will open the guitar.mp3 file and return a
pointer to it, but it will also skim through the descriptor table
until it finds an empty slot and register the new file there.

But once you’ve got a file pointer, how do you find it in the
descriptor table? The answer is by calling the fileno()
function.

Data Stream
0 The keyboard
1 The screen
2 The screen
3 Database connection
4 File guitar.mp3

Hmmm…looks
like slot 4 is free;
I’ll record the music
file there.

int descriptor = fileno(my_file);

This will return the value 4.
fileno() is one of the few system functions that doesn’t return
–1 if it fails. As long as you pass fileno() the pointer to an
open file, it should always return the descriptor number.

dup2() duplicates data streams
Opening a file will fill a slot in the descriptor table, but what if
you want to change the data stream already registered against
a descriptor? What if you want to change file descriptor 3 to
point to a different data stream? You can do it with the dup2()
function. dup2() duplicates a data stream from one slot to
another. So, if you have a file pointer to guitar.mp3 plugged in
to file descriptor 4, the following code will connect it to file
descriptor 3 as well.

dup2(4, 3);

There’s still just one guitar.mp3 file, and there’s still just one data
stream connected to it. But the data stream (the FILE*) is now
registered with file descriptors 3 and 4.

Now that you know how to find and change
things in the descriptor table, you should
be able to redirect the Standard Output of a
process to point to a file.

Data Stream
0 The keyboard
1 The screen
2 The screen
3 Database connection File guitar.mp3
4 File guitar.mp3

434   Chapter 10

sleepless nights

Does your error code worry you?
Do you find that you’re writing duplicate error-handling code
every time you make a system call? Then fear no more! Using
our patented method, we’ll show you how to make the most out of
your error code without writing the same thing over and over.

Look at these two troublesome pieces of code:

pid_t pid = fork();

if (pid == -1) {

 fprintf(stderr, "Can't fork process: %s\n", strerror(e
rrno));

 return 1;

}

if (execle(...) == -1) {

 fprintf(stderr, "Can't run script: %s\n", strerror(err
no));

 return 1;

}

Duplicated code can be the cause
of unwarranted coding stress.

Is there some way of removing the duplicated code block? Why, yes, there is! By creating a

simple fire-and-forget error() function, you’ll make your duplicated code a thing of the past.

What’s that, you say? How do you handle that troublesome return statement? After all, you

can’t move that into a function, can you?

There’s no need! The exit() system call is the fastest way to stop your program in its tracks.

No more worrying about returning to main(); just call exit(), and your program’s history!

This is how it works. First, remove all of your error code into a separate function called

error() and replace that tricky return with a call to exit().

void error(char *msg)

{

 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

 exit(1);

}

Now you can replace that troublesome error-checking code with something much simpler:

pid_t pid = fork();

if (pid == -1) {

 error("Can't fork process");

}

if (execle(...) == -1) {

 error("Can't run script");

}

Warning: offer limited to one exit() call per program execution. Do not operate exit() if

you have a fear of sudden program termination.

To ensure you have the exit system call available, you need to include stdlib.h.

exit(1) will terminate your program with status 1 IMMEDIATELY!

you are here 4   435

interprocess communication

This is a program that saves the output of the rssgossip.py
script into a file called stories.txt. It’s similar to the newshound
program, except it searches through a single RSS feed only. Using
what you’ve learned about the descriptor table, see if you can find
the missing line of code that will redirect the Standard Output of
the child process to the stories.txt file.

int main(int argc, char *argv[])

{

 char *phrase = argv[1];

 char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};

 FILE *f = fopen("stories.txt", "w");

 if (!f) {

 error("Can't open stories.txt");

 }

 pid_t pid = fork();

 if (pid == -1) {

 error("Can't fork process");

 }

 if (!pid) {

 if () {

 error("Can't redirect Standard Output");

 }

 if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

 phrase, NULL, vars) == -1) {

 error("Can't run script");

 }

 }

 return 0;

}

newshound2.c

The #includes and the error() function have been removed to save space.

If we can’t write to stories.txt, then f will be zero.
We’ll report errors using the error()
function we wrote earlier.

What do you think goes here?

436   Chapter 10

standard output redirected

This is a program that saves the output of the rssgossip.py script
into a file called stories.txt. It’s similar to the newshound
program, except it searches through a single RSS feed only. Using
what you’ve learned about the descriptor table, you were to find
the missing line of code that will redirect the Standard Output of
the child process to the stories.txt file.

int main(int argc, char *argv[])

{

 char *phrase = argv[1];

 char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};

 FILE *f = fopen("stories.txt", "w");

 if (!f) {

 error("Can't open stories.txt");

 }

 pid_t pid = fork();

 if (pid == -1) {

 error("Can't fork process");

 }

 if (!pid) {

 if () {

 error("Can't redirect Standard Output");

 }

 if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

 phrase, NULL, vars) == -1) {

 error("Can't run script");

 }

 }

 return 0;

}

newshound2.c

This opens stories.txt for writing.

This code changes the child
process because the pid is zero. This points descriptor #1

to the stories.txt file.

If f was zero, we couldn’t open the file.

dup2(fileno(f), 1) == -1

Data Stream
0 The keyboard
1 File stories.txt
2 The screen
3 File stories.txt

Did you get the right answer? The program
will change the descriptor table in the child
script to look like this:

That means that when the rssgossip.py script
sends data to the Standard Output, it should
appear in the stories.txt file.

you are here 4   437

interprocess communication

Test Drive
This is what happens when the program is compiled and
run:

> ./newshound2 'pajama death'
> cat stories.txt
Pajama Death ex-drummer tells all.
New Pajama Death album due next month.

File Edit Window Help ReadAllAboutItThis runs the program.
This displays the contents
of the stories.txt file.

If you’re on a Windows machine,
you’ll need to be running Cygwin.

The stories are
saved in the
stories.txt file.

What happened?
When the program opened the stories.txt file with fopen(),
the operating system registered the file f in the descriptor
table. fileno(f) was the descriptor number it used. The
dup2() function set the Standard Output descriptor (1) to
point to the same file.

I think there might be a
problem with the program.
See, I just tried the same thing,
but on my machine the file was
empty. So what happened?

> ./newshound2 'pajama death'
> cat stories.txt
>

File Edit Window Help ReadAllAboutIt

No data in the
file? WTF?!?

Assuming you’re searching for stories that exist on the feed, why
was stories.txt empty after the program finished?

Where’s The Facts?

438   Chapter 10

hey, wait

Sometimes you need to wait…
The newshound2 program fires off a separate process to run
the rssgossip.py script. But once that child process gets created, it’s
independent of its parent. You could run the newshound2
program and still have an empty stories.txt, just because the rssgossip.py
isn’t finished yet. That means the operating system has to give you
some way of waiting for the child process to complete.

The waitpid() function
The waitpid() function won’t return until the child process dies.
That means you can add a little code to your program so that it
won’t exit until the rssgossip.py script has stopped running:

 int pid_status;

 if (waitpid(pid, &pid_status, 0) == -1) {

 error("Error waiting for child process");

 }

 return 0;

}

newshound2.c

This new code goes
at the end of the
newshound2 program.

The process ID

This variable is used to store
information about the process.

This is a pointer to an int.
You can add
options here.

Can you save these
stories to the file?

Might take
a while…

That’s OK,
I can wait.

newshound
child process

#include <sys/wait.h>You need to include
the sys/wait.h
header.

you are here 4   439

interprocess communication

waitpid() Up Close
waitpid() takes three parameters:

waitpid(pid, pid_status, options)

pid
This is the process ID that the parent process was given when it forked
the child.

¥

pid_status
This will store exit information about the process. waitpid() will
update it, so it needs to be a pointer.

¥

options
There are several options you can pass to waitpid(), and typing
man waitpid will give you more info. If you set the options to 0, the
function waits until the process finishes.

¥

What’s the status?
When the waitpid() function has finished waiting, it
stores a value in pid_status that tells you how the process
did. To find the exit status of the child process, you’ll have
to pass the pid_status value through a macro called
WEXITSTATUS():

if (WEXITSTATUS(pid_status))

 puts("Error status non-zero");

If the exit status is not zero

Why do you need the macro? Because the pid_status
contains several pieces of information, and only the first 8 bits
represent the exit status. The macro tells you the value of just
those 8 bits.

440   Chapter 10

test drive

Test Drive
Now, when you run the newshound2 program, it checks that the
rssgossip.py script finishes before newshound2 itself ends:

> ./newshound2 'pajama death'
> cat stories.txt
Pajama Death ex-drummer tells all.
New Pajama Death album due next month.

File Edit Window Help ReadAllAboutIt

The stories.txt
file now contains
the stories
as soon as
newshound2 is run.

That’s great. Now
I’ll never miss
another story again.

Adding a waitpid() to the program was easy to do and
it made the program more reliable. Before, you couldn’t
be sure that the subprocess had finished writing, and that
meant there was no way you could use the newshound2
program as a proper tool. You couldn’t use it in scripts and
you couldn’t create a GUI frontend for it.

Redirecting input and output, and making processes wait
for each other, are all simple forms of interprocess
communication. When processes are able to cooperate—
by sharing data or by waiting for each other—they become
much more powerful.

�� exit() is a quick way of ending
a program.

�� All open files are recorded in the
descriptor table.

�� You can redirect input and output
by changing the descriptor table.

�� fileno() will find a descriptor
in the table.

�� dup2() can be used to change
the descriptor table.

�� waitpid() will wait for
processes to finish.

you are here 4   441

interprocess communication

Q: Does exit() end the program
faster than just returning from
main()?

A: No. But if you call exit(), you
don’t need to structure your code to get
back to the main() function. As soon as
you call exit(), your program is dead.

Q: Should I check for –1 when I call
exit(), in case it doesn’t work?

A: No. exit() doesn’t return a value,
because exit() never fails. exit()
is the only function that is guaranteed
never to return a value and never to fail.

Q: Is the number I pass to exit()
the exit status?

A: Yes.

Q: Are the Standard Input, Output,
and Error always in slots 0, 1, and 2 of
the descriptor table?

A: Yes, they are.

Q: So, if I open a new file, it is
automatically added to the descriptor
table?

A: Yes.

Q: Is there a rule about which slot it
gets?

A: New files are always added to the
available slot with the lowest number. So,
if slot number 4 is the first available one,
that’s the one your new file will use.

Q: How big is the descriptor table?

A: It has slots from 0 to 255.

Q: The descriptor table seems kinda
complicated. Why is it there?

A: Because it allows you to rewire
the way a program works. Without the
descriptor table, redirection isn’t possible.

Q: Is there a way of sending data to
the screen without using the Standard
Output?

A: On some systems. For example, on
Unix-based machines, if you open
/dev/tty, it will send data directly to the
terminal.

Q: Can I use waitpid() to wait
for any process? Or just the processes
I started?

A: You can use waitpid() to wait
for any process.

Q: Why isn’t the pid_status in
waitpid(..., &pid_status,
...) just an exit status?

A: Because the pid_status
contains other information.

Q: Such as?

A: For example, WIFSIGNALED
(pid_status) will be false if
a process ended naturally, or true if
something killed it off.

Q: How can an integer variable like
pid_status contain several pieces
of information?

A: It stores different things in different
bits. The first 8 bits store the exit status.
The other information is stored in the other
bits.

Q: So, if I can extract the first 8 bits
of the pid_status value, I don’t
have to use WEXITSTATUS()?

A: It is always best to use
WEXITSTATUS(). It’s easier to read
and it will work on whatever the native
int size is on the platform.

Q: Why is WEXITSTATUS() in
uppercase?

A: Because it is a macro rather than
a function. The compiler replaces macro
statements with small pieces of code at
runtime.

442   Chapter 10

don’t be a stranger

Stay in touch with your child
You’ve seen how to run a separate process using exec() and
fork(), and you know how to redirect the output of a child
process into a file. But what if you want to listen to a child
process directly? Is that possible? Rather than waiting for a
child process to send all of its data into a file and then reading
the file afterward, is there some way to start a process running
and read the data it generates in real time?

Reading story links from rssgossip
As an example, there’s an option on the rssgossip.py script that
allows you to display the URLs for any stories that it finds:

> python rssgossip.py -u 'pajama death'
Pajama Death ex-drummer tells all.
 http://www.rock-news.com/exclusive/24.html
New Pajama Death album due next month.
 http://www.rolling-stone.com/pdalbum.html

File Edit Window Help

-u tells the script to include story links.

The URL line
begins with a
tab character.

This is the URL
for the story.

Now, you could run the script and save its output to a file, but
that would be slow. It would be much better if the parent and
child process could talk to each other while the child process is
still running.

Since I created
you, you never write,
you never phone…

Whatever.

Parent process

Child process

you are here 4   443

interprocess communication

Connect your processes with pipes

grep filters the
output of the script.

rssgossip.py sends its
output into the pipe.

python rssgossip.py -u 'pajama death' | grep 'http'
 http://www.rock-news.com/exclusive/24.html
 http://www.rolling-stone.com/pdalbum.html

File Edit Window Help ReadAllAboutIt

The two processes are
connected with a pipe.

Pipes are used on the command line to connect the output of
one process with the input of another process. In the example
here, you’re running the rssgossip.py script manually and then
passing its output through a command called grep. The grep
command finds all the lines containing http.

Piped commands are parents and children
Whenever you pipe commands together on the command line,
you are actually connecting them together as parent and child
processes. So, in the above example, the grep command is
the parent of the rssgossip.py script.

Pipes are used a lot on the command line to allow users to
connect processes together. But what if you’re just using C
code? How do you connect a pipe to your child process so that
you can read its output as soon as it’s generated?

You’ve already used something that makes live connections
between processes: pipes.

The command line creates the parent process.1

The parent process forks the rssgossip.py
script in a child process.

2

The parent connects the output of the child
with the input of the parent using a pipe.

3

The parent process execs the grep command.4

444   Chapter 10

pipe()

Case study: opening stories in a browser

I want a program
that opens stories in
my browser as soon
as they’re found.

Let’s say you want to run the rssgossip.py script and then
open the stories it finds in a web browser. Your program
will run in the parent process and rssgossip.py will run in the
child. You need to create a pipe that connects the output of
rssgossip.py to the input of your program.

But how do you create a pipe?

pipe() opens two data streams
Because the child is going to send data to the parent, you
need a pipe that’s connected to the Standard Output of the
child and the Standard Input of the parent. You’ll create
the pipe using the pipe() function. Remember how we
said that every time you open a data stream to something
like a file, it gets added to the descriptor table? Well, that’s
exactly what the pipe() functions does: it creates two
connected streams and adds them to the table. Whatever is
written into one stream can be read from the other.

The pipe() command creates a pipe and tells you two
descriptors: fd[1] is the descriptor that writes to the
pipe, and fd[0] is the descriptor that reads from the
pipe. Once you’ve got the descriptors, you’ll need to use
them in the parent and child processes.

fd[1] writes to
the pipe; fd[0]
reads from it.

Whatever is written here… …can be read from here.

When pipe() creates the two lines in the descriptor table,
it will store their file descriptors in a two-element array:

int fd[2];

if (pipe(fd) == -1) {

 error("Can't create the pipe");

}

The descriptors will be
stored in this array.

You pass the name
of the array to
the pipe() function.

Data Stream
0 Standard input
1 Standard output
2 Standard error
3 Read-end of the pipe
4 Write-end of the pipe

This is fd[0].
This is fd[1].

Calling pipe() creates these two descriptors.

you are here 4   445

interprocess communication

In the child
In the child process, you need to close the fd[0] end
of the pipe and then change the child process’s Standard
Output to point to the same stream as descriptor fd[1].

In the parent
In the parent process, you need to close the fd[1] end
of the pipe (because you won’t be writing to it) and then
redirect the parent process’s Standard Input to read its data
from the same place as descriptor fd[0]:

close(fd[0]);

dup2(fd[1], 1);

This will close the read end of the pipe.The child won’t
read from the pipe.

That means that everything the child sends to the Standard
Output will be written to the pipe.

dup2(fd[0], 0);

close(fd[1]); This will close the write end of the pipe.

Everything that the child writes to the pipe will be read
through the Standard Input of the parent process.

Data Stream
0 Standard input
1 Standard output Write-end of the pipe
2 Standard error
3 Read-end of the pipe
4 Write-end of the pipe

The child
won’t read
from the pipe…

Data Stream
0 Standard input Read-end of the pipe
1 Standard output
2 Standard error
3 Read-end of the pipe
4 Write-end of the pipe

…but will
write.

The parent
will read
from the
pipe…
…but won’t
write

The child then connects the write
end to the Standard Output.

This is fd[1], the write end
of the pipe.

This is fd[0],
the read end
of the pipe.

The parent connects
the read end to the
Standard Output.

fd[0] is the read end of the pipe.

446   Chapter 10

ready-bake code

Ready-Bake
Code

Opening a web page in a browser
Your program will need to open up a web page using the
machine’s browser. That’s kind of hard to do, because
different operating systems have different ways of talking to
programs like web browsers.

Fortunately, the out-of-work actors have hacked together
some code that will open web pages on most systems. It looks
like they were in a rush to go do something else, so they’ve
put together something pretty simple using system():

void open_url(char *url)

{

 char launch[255];

 sprintf(launch, "cmd /c start %s", url);

 system(launch);

 sprintf(launch, "x-www-browser '%s' &", url);

 system(launch);

 sprintf(launch, "open '%s'", url);

 system(launch);

}

The code runs three separate commands to open a
URL: that’s one command each for the Mac, Windows, and
Linux. Two of the commands will always fail, but as long as
the third command works, that’ll be fine.

Think you can write better code
than the out-of-work actors?
Then why not rewrite the code
to use fork() and exec() for
your favorite operating system?

Go Off Piste

This will open a web page on Windows.

This will open a web
page on Linux.

This will open a web page on the Mac.

you are here 4   447

interprocess communication

It looks like most of the program is already written. All you need to do is complete the code that
connects the parent and child processes to a pipe. To save space, the #include lines and the
error() and open_url() functions have been removed. Remember, in this program the
child is going to talk to the parent, so make sure that pipe’s connected the right way!

int main(int argc, char *argv[])

{

 char *phrase = argv[1];

 char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};

 int fd[2];

 pid_t pid = fork();

 if (pid == -1) {

 error("Can't fork process");

 }

 if (!pid) {

 if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

 "-u", phrase, NULL, vars) == -1) {

 error("Can't run script");

 }

 }

 char line[255];

 while (fgets(line, 255,)) {

 if (line[0] == '\t')

 open_url(line + 1);

 }

 return 0;

}

news_opener.c

You might want to replace this
with another RSS newsfeed.

This array will store the descriptors for your pipe.

Create your
pipe here.

Are you parent or child? What code goes in these lines?

“-u” tells the script to display
URLs for the stories.Are you in the parent or the child here?

What do you need to do to the pipe?

What needs
to go here?
What will you
read from?If the line starts with a tab…

…then it’s a URL.
“line + 1” is the string starting
after the tab character.

448   Chapter 10

pipe connected

It looks like most of the program is already written. You were to complete the code that connects
the parent and child processes to a pipe. To save space, the #include lines and the
error() and open_url() functions have been removed.

int main(int argc, char *argv[])

{

 char *phrase = argv[1];

 char *vars[] = {"RSS_FEED=http://www.cnn.com/rss/celebs.xml", NULL};

 int fd[2];

 pid_t pid = fork();

 if (pid == -1) {

 error("Can't fork process");

 }

 if (!pid) {

 if (execle("/usr/bin/python", "/usr/bin/python", "./rssgossip.py",

 "-u", phrase, NULL, vars) == -1) {

 error("Can't run script");

 }

 }

 char line[255];

 while (fgets(line, 255,)) {

 if (line[0] == '\t')

 open_url(line + 1);

 }

 return 0;

}

news_opener.c

This will create the pipe and store its descriptors in fd[0] and fd[1].

Need to check that return code, in case we can’t create the pipe.

You’re in the child process here.

You’re in the parent process down here.

You’re reading from the
Standard Input, because
that’s connected to the
pipe.

if (pipe(fd) == -1) {
 error(“Can’t create the pipe”);
}

dup2(fd[1], 1);
close(fd[0]);

This will set the Standard Output to the write end of the pipe.
The child won’t read from the pipe, so we’ll close the read end.

dup2(fd[0], 0);
close(fd[1]);

This will redirect the Standard Input to the read end of the pipe.
This will close the write end of the pipe,
because the parent won’t write to it.

stdin

You could also
have put fd[0].

you are here 4   449

interprocess communication

Test Drive
When you compile and run the code, this happens:

> ./news_opener 'pajama death'
File Edit Window Help ReadAllAboutIt

The program opens all the news stories it can find in the browser.

That’s great. It worked.
The news_opener program ran the rssgossip.py in a
separate process and told it to display URLs for each story it
found. All of the output of the screen was redirected through
a pipe that was connected to the news_opener parent
process. That meant the news_opener process could
search for any URLs and then open them in the browser.

Pipes are a great way of connecting processes together.
Now, you have the ability to not only run processes and
control their environments, but you also have a way of
capturing their output. That opens up a huge amount of
functionality to you. Your C code can now use and control
any program that you can use from the command line.

Now that you know how to control rssgossip.py, why not try controlling some of these
programs? You can get all of them for Unix-style machines or any Windows machine
using Cygwin:

curl/wget
These programs let you talk to web servers. If you call them from C code, you can write
programs that can talk to the Web.

mail/mutt
These programs let you send email from the command line. If they’re on your machine, it means
your C programs can send mail too.

convert
This command can convert one image format to another image format. Why not create a C
program that outputs SVG charts in text format, and then use the convert command to create
PNG images from them?

Go Off Piste

450   Chapter 10

no dumb questions

Q: Is a pipe a file?

A: It’s up to the operating system how
it creates pipes, but pipes created with the
pipe() function are not normally files.

Q: So pipes might be files?

A: It is possible to create pipes based
on files, which are normally called named
pipes or FIFO (first-in/first-out) files.

Q: Why would anyone want a pipe
that uses a file?

A: Pipes based on files have names.
That means they are useful if two
processes need to talk to each other and
they are not parent and child processes. As
long as both processes know the name of
the pipe, they can talk with it.

Q: Great! So how do I use named
pipes?

A: Using the mkfifo() system call.
For more information, see
http://tinyurl.com/cdf6ve5.

Q: If most pipes are not files, what
are they?

A: Usually, they are just pieces of
memory. Data is written at one point and
read at another.

Q: What happens if I try to read from
a pipe and there’s nothing in there?

A: Your program will wait until
something is there.

Q: How does the parent know when
the child is finished?

A: When the child process dies, the pipe
is closed and the fgets() command
receives an end-of-file, which means the
fgets() function returns 0, and the
loop ends.

Q: Can parents speak to children?

A: Absolutely. There is no reason why
you can’t connect your pipes the other way
around, so that the parent sends data to
the child process.

Q: Can you have a pipe that works in
both directions at once? That way, my
parent and child processes could have
a two-way conversation.

A: No, you can’t do that. Pipes always
work in only one direction. But you can
create two pipes: one from the parent to
the child, and one from the child to the
parent.

�� Parent and child processes can
communicate using pipes.

�� The pipe() function creates a
pipe and two descriptors.

�� The descriptors are for the read and
write ends of the pipe.

�� You can redirect Standard Input and
Output to the pipe.

�� The parent and child processes use
different ends of the pipe.

you are here 4   451

interprocess communication

The death of a process
You’ve seen how processes are created, how their
environments are configured, and even how processes talk to
each other. But what about how processes die? For example,
if your program is reading data from the keyboard and the
user hits Ctrl-C, the program stops running.

How does that happen? You can tell from the output
that the program never got as far as running the second
printf(), so the Ctrl-C didn’t just stop the fgets()
command. Instead, the whole program just stopped in its
tracks. Did the operating system just unload the program?
Did the fgets() function call exit()? What happened?

#include <stdio.h>

int main()

{

 char name[30];

 printf("Enter your name: ");

 fgets(name, 30, stdin);

 printf("Hello %s\n", name);

 return 0;

}
> ./greetings
Enter your name: ^C
>

File Edit Window Help

If you press Ctrl-C, the program
stops running. But why?

The O/S controls your program with signals

The magic all happens in the operating system. When you
call the fgets() function, the operating system reads the
data from the keyboard, and when it sees the user hit Ctrl-C,
sends an interrupt signal to the program.

operating system

process

A signal is just a short message: a single integer value. When
the signal arrives, the process has to stop whatever it’s doing
and go deal with the signal. The process looks at a table of
signal mappings that link each signal with a function called the
signal handler. The default signal handler for the interrupt
signal just calls the exit() function.

So, why doesn’t the operating system just kill the program?
Because the signal table lets you run your own code when
your process receives a signal.

Signal Handler
SIGURG Do nothing
SIGINT Call exit()

This is the
interrupt signal.

SIGINT has
the value 2.

The default handler calls exit().

Signal mappings

Keyboard

Someone hits Ctrl-C.

Ctrl-C Interrupt
signal

Hey! He hit Ctrl-C.
Run your interrupt
handler.

The operating
system sends an
interrupt signal.

The process runs its
default interrupt
handler and calls exit().

452   Chapter 10

sigaction()

Catching signals and running your own code
Sometimes you’ll want to run your own code if someone interrupts
your program. For example, if your process has files or network
connections open, it might want to close things down and tidy up
before exiting. But how do you tell the computer to run your code
when it sends you a signal? You can do it with sigactions.

A sigaction is a function wrapper
A sigaction is a struct that contains a pointer to a function.
sigactions are used to tell the operating system which function
it should call when a signal is sent to a process. So, if you have a
function called diediedie() that you want the operating system
to call if someone sends an interrupt signal to your process, you’ll
need to wrap the diediedie() function up as a sigaction.

This is how you create a sigaction:

struct sigaction action;

action.sa_handler = diediedie;

sigemptyset(&action.sa_mask);

action.sa_flags = 0;

The function wrapped by a sigaction is called the handler,
because it will be used to deal with (or handle) a signal that’s sent
to it. If you want to create a handler, it will need to be written in a
certain way.

All handlers take signal arguments
Signals are just integer values, and if you create a custom handler
function, it will need to accept an int argument, like this:

void diediedie(int sig)

{

 puts ("Goodbye cruel world....\n");

 exit(1);

}

Because the handler is passed the number of the signal, you can
reuse the same handler for several signals. Or, you can have a
separate handler for each signal. How you choose to program it is
up to you.

Handlers are intended to be short, fast pieces of code. They should
do just enough to deal with the signal that’s been received.

	 Be careful when
writing to
Standard Output
and Error in
handler functions.

Even though the example code
you’ll use will display text on
the Standard Output, be careful
about doing that in more complex
programs. Signals can arrive
because something bad has
happened to the program. That
might mean that Standard Output
isn’t available, so be careful.

This is the signal number
the handler has caught.

Create a new action.
This is the name of the function you want the computer to call.

The mask is a way of filtering the signals that the sigaction will handle.

You’ll usually want to use an
empty mask, like here.

These are some
additional flags.
You can just set
them to zero.

The function that the sigaction
wraps is called a handler.

you are here 4   453

interprocess communication

sigactions are registered with sigaction()
Once you’ve create a sigaction, you’ll need to tell the operating
system about it. You do that with the sigaction() function:

sigaction(signal_no, &new_action, &old_action);

sigaction() takes three parameters:

The signal number.
The integer value of the signal you want to handle. Usually, you’ll pass
one of the standard signal symbols, like SIGINT or SIGQUIT.

¥

The new action.
This is the address of the new sigaction you want to register.

¥

The old action.
If you pass a pointer to another sigaction, it will be filled with
details of the current handler that you’re about to replace. If you don’t
care about the existing signal handler, you can set this to NULL.

¥

You’ll find out more
about the standard
signals in a while.

The sigaction() function will return –1 if it fails and will also
set the errno function. To keep the code short, some of the code
you’ll see in this book will skip checking for errors, but you should
always check for errors in your own code.

Ready-Bake
Code

This is a function that will
make it a little easier to
register functions as signal
handlers:

int catch_signal(int sig, void (*handler)(int))

{

 struct sigaction action;

 action.sa_handler = handler;

 sigemptyset(&action.sa_mask);

 action.sa_flags = 0;

 return sigaction (sig, &action, NULL);

}

This function will allow you to set a signal handler by calling
catch_signal() with a signal number and a function name:

catch_signal(SIGINT, diedieie)

The signal number A pointer to the handler function

Create an action.
Set the action’s handler to
the handler function that
was passed in.Use an empty mask.

Return the value of sigaction(), so you can check for errors.

454   Chapter 10

catching signals

Rewriting the code to use a signal handler
You now have all the code to make your program do something if
someone hits the Ctrl-C key:

The program will ask for the user’s name and then wait for her to type.
But if instead of typing her name, the user just hits the Ctrl-C key, the
operating system will automatically send the process an interrupt signal
(SIGINT). That interrupt signal will be handled by the sigaction
that was registered in the catch_signal() function. The
sigaction contains a pointer to the diediedie() function. This
will then be called, and the program will display a message and exit().

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>

void diediedie(int sig)
{
 puts ("Goodbye cruel world....\n");
 exit(1);
}

int catch_signal(int sig, void (*handler)(int))
{
 struct sigaction action;
 action.sa_handler = handler;
 sigemptyset(&action.sa_mask);
 action.sa_flags = 0;
 return sigaction (sig, &action, NULL);
}

int main()
{
 if (catch_signal(SIGINT, handle_interrupt) == -1) {
 fprintf(stderr, "Can't map the handler");
 exit(2);
 }
 char name[30];
 printf("Enter your name: ");
 fgets(name, 30, stdin);
 printf("Hello %s\n", name);
 return 0;
}

You need to include the signal.h header.

This our new signal handler. Handlers
have void
return types. The operating system passes

the signal to the handler.

This sets the interrupt handler to
the handle_interrupt() function.

SIGINT means we are capturing the interrupt signal.

This is the function to register a handler.

you are here 4   455

interprocess communication

> ./greetings
Enter your name: ^CGoodbye cruel world....
>

File Edit Window Help

Goodbye,
cruel world…

The operating system received the Ctrl-C and sent a
SIGINT signal to the process, which then ran your
handle_interrupt() function.

When you run the new version of the program and press
Ctrl-C, this happens:

Test Drive

The process was interrupted.SIGINT

There are a bunch of different signals the operating system can send to
your process. Match each signal to its cause.

Someone asked the process to stop and dump
the memory in a core dump file.

SIGQUIT

Floating-point error.

SIGFPE

The debugger asks where the process is.

SIGTRAP

The process tried to access illegal memory.

SIGSEGV

The terminal window changed size.

SIGWINCH

Someone just asked the kernel to kill the
process.

SIGTERM

The process wrote to a pipe that nothing’s
reading.

SIGPIPE

456   Chapter 10

purpose found

The process was interrupted.SIGINT

There are a bunch of different signals the operating system can send to
your process. You were to match each signal to its cause.

SOlUTion

Someone asked the process to stop and dump
the memory in a core dump file.

SIGQUIT

Floating-point error.

SIGFPE

The debugger asks where the process is.

SIGTRAP

The process tried to access illegal memory.

SIGSEGV

The terminal window changed size.

SIGWINCH

Someone just asked the kernel to kill the
process.

SIGTERM

The process wrote to a pipe that nothing’s
reading.

SIGPIPE

Q: If the interrupt handler didn’t call exit(), would the
program still have ended?

A: No.

Q: So, I could write a program that completely ignores
interrupts?

A: You could, but it’s not a good idea. In general, if your
program receives an error signal, it’s best to exit with an error,
even if you run some of your own code first.

you are here 4   457

interprocess communication

Use kill to send signals
If you’ve written some signal-handling code, how do you test
it? Fortunately, on Unix-style systems, there’s a command
called kill. It’s called kill because it’s normally used to kill
off processes, but in fact, kill just sends a signal to a process.
By default, the command sends a SIGTERM signal to the
process, but you can use it to send any signal you like.

To try it out, open two terminals. In one terminal, you can run
your program. Then, in the second terminal, you can send
signals to your program with the kill command:

Including Cygwin on Windows

> ps
77868 ttys003 0:00.02 bash
78222 ttys003 0:00.01 ./testprog
> kill 78222
> kill -INT 78222
> kill -SEGV 78222
> kill -KILL 78222

File Edit Window Help

Each of these kill commands will send signals to the process
and run whatever handler the process has configured. The
exception is the SIGKILL signal. The SIGKILL signal can’t
be caught by code, and it can’t be ignored. That means if you
have a bug in your code and it is ignoring every signal, you can
always stop the process with kill -KILL.

SIGSTOP can’t be ignored either.
It’s used to pause your process.

Send signals with raise()
Sometimes you might want a process to send a signal to itself,
which you can do with the raise() command.

raise(SIGTERM);

Normally, the raise() command is used inside your own
custom signal handlers. It means your code can receive a
signal for something minor and then choose to raise a more
serious signal.

This is called signal escalation.

ps displays your
current processes.

This is the program we want to
send signals to. 78222 is the
process ID.

This sends SIGTERM
to the program.
This sends SIGINT
to the program.

This sends SIGSEGV
to the program. This sends SIGKILL, which can’t be ignored.

kill -KILL <pid>
will always kill
your program.

458   Chapter 10

smell the coffee

Sending your code a wake-up call
The operating system sends signals to a process when something has
happened that the process needs to know about. It might be that the
user has tried to interrupt the process, or someone has tried to kill it,
or even that the process has tried to do something it shouldn’t have,
like trying to access a restricted piece of memory.

But signals are not just used when things go wrong. Sometimes a
process might actually want to generate its own signals. One example
of that is the alarm signal, SIGALRM. The alarm signal is usually
created by the process’s interval timer. The interval timer is like
an alarm clock: you set it for some time in the future, and in the
meantime your program can go and do something else:

alarm(120);

do_important_busy_work();

do_more_busy_work();

This will make the timer
fire in 120 seconds.

Meanwhile, your code
does something else.

Calling alarm(120) sets
the alarm for 120
seconds in the future.

But even though your program is busy doing other things, the timer
is still running in the background. That means that when the 120
seconds are up…

…the timer fires a SIGALRM signal
When a process receives a signal, it stops doing everything else
and handles the signal. But what does a process do with an alarm
signal by default? It stops the process. It’s really unlikely that you
would ever want a timer to kill your program for you, so most of the
time you will set the handler to do something else:

catch_signal(SIGALRM, pour_coffee);

alarm(120);

Alarm signals let you multitask. If you need to run a particular job
every few seconds, or if you want to limit the amount of time you
spend doing a job, then alarm signals are a great way of getting a
program to interrupt itself.

	 Don’t use
alarm() and
sleep() at
the same
time.

The sleep() function puts
your program to sleep for a
few seconds, but it works
by using the same interval
timer as the alarm()
function, so if you try to
use the two functions at
the same time, they will
interfere with each other.

Ah, sweet,
sweet coffee…

Tick, tick, tick,
just a couple of
minutes…

Brrriiiiiiinnnng!

This will catch the
signal using the
function you created
earlier.

you are here 4   459

interprocess communication

You’ve seen how to set custom signal handlers, but
what if you want to restore the default signal handler?
Fortunately, the signal.h header has a special symbol
SIG_DFL, which means handle it the default way.

catch_signal(SIGTERM, SIG_DFL);

Also, there’s another symbol, SIG_IGN, that tells
the process to completely ignore a signal.

catch_signal(SIGINT, SIG_IGN);

But you should be very careful before you choose to
ignore a signal. Signals are an important way of
controlling—and stopping—processes. If you ignore
them, your program will be harder to stop.

Resetting and Ignoring Signals Up Close

OK, so if I receive
TERM signal, I
should just exit()
like before…

Ctrl-C? Talk
to the hand; I’m
doing nothing.

Q: Can I set an alarm for less than a second?

A: Yes, but it’s a little more complicated. You need to use a
different function called setitimer(). It lets you set the
process’s interval timer directly in either seconds or fractions of a
second.

Q: How do I do that?

A: Go to http://tinyurl.com/3o7hzbm for more details.

Q: Why is there only one timer for a process?

A: The timers have to be managed by the operating system
kernel, and if processes had lots of timers, the kernel would go
slower and slower. To prevent this from happening, the operating
system limits each process to one timer.

Q: Timers let me multitask?! Great, so I can use them to do
lots of things at once?

A: No. Remember, your process will always stop whatever it’s
doing when it handles a signal. That means it is still only doing one
thing at a time. You’ll see later how you can really make your code
do more than one thing at a time.

Q: What happens if I set one timer and it had already been
set?

A: Whenever you call the alarm() function, you reset the
timer. That means if you set the alarm for 10 seconds, then a
moment later you set it for 10 minutes, the alarm won’t fire until 10
minutes are up. The original 10-second timer will be lost.

460   Chapter 10

exercise

This is the source code for a program that tests the user’s math skills. It asks the user to work
the answer to a simple multiplication problem and keeps track of how many answers he got
right.The program will keep running forever, unless:

1. The user presses Ctrl-C, or

2. The user takes more than five seconds to answer the question.

When the program ends, it will display the final score and set the exit status to 0.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <time.h>

#include <string.h>

#include <errno.h>

#include <signal.h>

int score = 0;

void end_game(int sig)

{

 printf("\nFinal score: %i\n", score);

}

int catch_signal(int sig, void (*handler)(int))

{

 struct sigaction action;

 action.sa_handler = handler;

 sigemptyset(&action.sa_mask);

 action.sa_flags = 0;

 return sigaction (sig, &action, NULL);

}

What should
happen once
the score is
displayed?

you are here 4   461

interprocess communication

void times_up(int sig)

{

 puts("\nTIME'S UP!");

 raise();

}

void error(char *msg)

{

 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

 exit(1);

}

int main()

{

 catch_signal(SIGALRM,);

 catch_signal(SIGINT,);

 srandom (time (0));

 while(1) {

 int a = random() % 11;

 int b = random() % 11;

 char txt[4];

 printf("\nWhat is %i times %i? ", a, b);

 fgets(txt, 4, stdin);

 int answer = atoi(txt);

 if (answer == a * b)

 score++;

 else

 printf("\nWrong! Score: %i\n", score);

 }

 return 0;

}

What will
the signal()
functions do?This makes sure

you get different
random numbers
each time.

a and b will be random numbers from 0 to 10.

Hmmm…what line is missing? Need to check the spec…

Raise what?

You need to set the exit status to 0 and stop.

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <time.h>

#include <string.h>

#include <errno.h>

#include <signal.h>

int score = 0;

void end_game(int sig)

{

 printf("\nFinal score: %i\n", score);

}

int catch_signal(int sig, void (*handler)(int))

{

 struct sigaction action;

 action.sa_handler = handler;

 sigemptyset(&action.sa_mask);

 action.sa_flags = 0;

 return sigaction (sig, &action, NULL);

}

462   Chapter 10

exercise solved

This is the source code for a program that tests the user’s math skills. It asks the user to work
the answer to a simple multiplication problem and keeps track of how many answers he got
right.The program will keep running forever, unless:

1. The user presses Ctrl-C, or

2. The user takes more than five seconds to answer the question.

When the program ends, it will display the final score and set the exit status to 0.

exit(0);

you are here 4   463

interprocess communication

void times_up(int sig)

{

 puts("\nTIME'S UP!");

 raise();

}

void error(char *msg)

{

 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

 exit(1);

}

int main()

{

 catch_signal(SIGALRM,);

 catch_signal(SIGINT,);

 srandom (time (0));

 while(1) {

 int a = random() % 11;

 int b = random() % 11;

 char txt[4];

 printf("\nWhat is %i times %i? ", a, b);

 fgets(txt, 4, stdin);

 int answer = atoi(txt);

 if (answer == a * b)

 score++;

 else

 printf("\nWrong! Score: %i\n", score);

 }

 return 0;

}

The signal()
functions set
the handlers.This makes sure

you get different
random numbers
each time.

times_up
end_game

alarm(5);Set the alarm to
fire in 5 seconds.

As long as you
go through
the loop in less
than 5 seconds,
the timer will
be reset and it
will never fire.

Raising SIGINT will make the program
display the final score in end_game().

SIGINT

464   Chapter 10

test drive

Test Drive
To see if the program works, you need to run it a couple of times.

> ./math_master

What is 0 times 1? 0

What is 6 times 1? 6

What is 4 times 10? 40

What is 2 times 3? 6

What is 7 times 4? 28

What is 4 times 10? ^C
Final score: 5
>

File Edit Window Help Test 1: hit Ctrl-C
The first time, you’ll answer a few questions and then hit Ctrl-C.

Ctrl-C sends the process an interrupt signal (SIGINT) that makes the
program display the final score and then exit().

Test 2: wait five seconds
The second time, instead of hitting Ctrl-C, wait for at least five
seconds on one of the answers and see what happens.

The alarm signal (SIGALRM) fires. The program was waiting for the
user to enter an answer, but because he took so long, the timer signal
was sent; the process immediately switches to the times_up()
handler function. The handler displays the “TIME’S UP!” message
and then escalates the signal to a SIGINT that causes the program to
display the final score.

> ./math_master

What is 5 times 9? 45

What is 2 times 8? 16

What is 9 times 1? 9

What is 9 times 3?
TIME'S UP!
Final score: 3
>

File Edit Window Help

Signals are a little complex, but incredibly useful. They allow
your programs to end gracefully, and the interval timer can help
you deal with tasks that are taking too long.

Uh, oh…looks like someone
was a little slow.

The user hit Ctrl-C here.

The program displayed the final score before ending.

you are here 4   465

interprocess communication

Q: Are signals always received in the
same order they are sent?

A: Not if they are sent very close
together. The operating system might
choose to reorder the signals if it thinks
one is more important than the others.

Q: Is that always true?

A: It depends on the platform. On
most versions of Cygwin, for example, the
signals will always be sent and received
in the same order. But in general, you
shouldn’t rely on it.

Q: If I send the same signal twice,
will it be received twice by the process?

A: Again, it depends. On Linux and the
Mac, if the same signal is repeated very
quickly, the kernel might choose to only
send the signal once to the process. On
Cygwin, it will always send both signals.
But again, you should not assume that just
because you sent the same signal twice, it
will be received twice.

�� The operating system talks to
processes using signals.

�� Programs are normally stopped
using signals.

�� When a process receives a signal, it
runs a handler.

�� For most error signals, the default
handler stops the program.

�� Handlers can be replaced with the
signal() function.

�� You can send signals to yourself with
raise().

�� The interval timer sends SIGALRM
signals.

�� The alarm() function sets the
interval timer.

�� There is one timer per process.

�� Don’t use sleep() and alarm()
at the same time.

�� kill sends signals to a process.

�� kill -KILL will always kill a
process.

466   Chapter 10

c toolbox

Your C Toolbox

You’ve got Chapter 10
under your belt, and now

you’ve added interprocess
communication to your toolbox. For

a complete list of tooltips in the book,
see Appendix ii.CH

AP
T

ER
 10

exit() stops
the program
immediately.

fileno()
finds the
descriptor.

dup2()
duplicates a
data stream.waitpid()

waits for a
process to
finish.

pipe()
creates a
communication
pipe. Processes can

communicate
using pipes.

Signals are
messages
from the
O/S. sigaction()

lets you
handle signals.

The kill
command
sends a signal.

A program can
send signals
to itself with
raise().

alarm() sends
a SIGALRM
after a few
seconds.

this is a new chapter   467

There’s no place
like 127.0.0.1

A new client, darling?
I always knew your
BLABing would come
in useful one day.

sockets and networking11

Programs on different machines need to talk to each other.�
You’ve learned how to use I/O to communicate with files and how processes on the same

machine can communicate with each other. Now you’re going to reach out to the rest

of the world, and learn how to write C programs that can talk to other programs across

the network and across the world. By the end of this chapter, you’ll be able to create

programs that behave as servers and programs that behave as clients.

Servers-R-Us,
how can I
help you?

468   Chapter 11

knock-knock server

The Internet knock-knock server
C is used to write most of the low-level networking code on the
Internet. Most networked applications need two separate programs:
a server and a client.

You’re going to build a server in C that tells jokes over the Internet.
You’ll be able to start the server on one machine like this:

> ./ikkp_server
Waiting for connection

File Edit Window Help KnockKnock

Other than telling you it’s running, the server won’t display anything
else on the screen. However, if you open a second console, you’ll be
able to connect to the server using a client program called telnet.
Telnet takes two parameters: the address of the server, and the port
the server is running on. If you are running telnet on the same
machine as the server, you can use 127.0.0.1 for the address:

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Who's there?
Oscar
> Oscar who?
Oscar silly question, you get a silly answer
Connection closed by foreign host.
>

File Edit Window Help Who’sThere?

Use 127.0.0.1 if you’re running
the server on the same machine.

30000 is the number of the network port.

The server has responded.

You type in these responses.

You will need a telnet program in order to
connect to the server. Most systems come
with telnet already installed. You can
check that you have telnet by typing:

	 telnet

on the command line.

If you don’t have telnet, you can install it
in one of these ways:

Cygwin:
Run the setup.exe program for
Cygwin and search for telnet.

Linux:
Search for telnet in your package manager.
On many systems, the package manager
is called Synaptic.

Mac:
If you don’t have telnet, you can install it
from www.macports.org or
www.finkproject.org.

Do this!

	 You’ll be using
telnet quite a
lot in this
chapter to test
our server code.

If you try to use the built-in
Windows telnet, you might have
problems because of the way it
communicates with the network.
If you install the Cygwin version
of telnet, you should be fine.

you are here 4   469

sockets and networking

Knock-knock server overview
The server will be able to talk to several clients at once. The client
and the server will have a structured conversation called a protocol.
There are different protocols used on the Internet. Some of
them are low-level protocols, like the internet protocol (IP), which
are used to control how binary 1s and 0s are sent around the
Internet. Other protocols are high-level protocols, like the hypertext
transfer protocol (HTTP), which controls how web browsers talk to
web servers. The joke server is going to use a custom high-level
protocol called the Internet knock-knock protocol (IKKP).

The server will talk to
several clients at once.

A client and server have
a structured conversation
called a protocol.

A protocol is
a structured
conversation.

The client and the server will exchange messages like this:

A protocol always has a strict set of rules. As long as the client and
the server both follow those rules, everything is fine. But if one of
them breaks the rules, the conversation usually stops pretty abruptly.

 Server:
Knock knock!

Oscar.

Oscar silly question, you
get a silly answer.

Client:

Who’s there?

Oscar who?

Server

Telnet client

Telnet client

Telnet client

Protocol demands that you
reply with “Who’s there?” I
shall therefore terminate
this conversation forthwith.

470   Chapter 11

blab

Web: port 80.
Email: port 25.
Chat: port 5222.
Jokes: port 30000.

BLAB: how servers talk to the Internet

#include <sys/socket.h>

...

int listener_d = socket(PF_INET, SOCK_STREAM, 0);

if (listener_d == -1)

 error("Can't open socket");

Before a server can use a socket to talk to a client program,
it needs to go through four stages that you can remember
with the acronym BLAB: Bind, Listen, Accept, Begin.

Bind to a port.
Listen.
Accept a connection.
Begin talking.1. Bind to a port

A computer might need to run several server programs at
once. It might be sending out web pages, posting email, and
running a chat server all at the same time. To prevent the
different conversations from getting confused, each server
uses a different port. A port is just like a channel on a TV.
Different ports are used for different network services, just
like different channels are used for different content.

When a server starts up, it needs to tell the operating
system which port it’s going to use. This is called binding
the port. The knock-knock server is going to use port
30000, and to bind it you’ll need two things: the socket
descriptor and a socket name. A socket name is just a
struct that means “Internet port 30000.”

#include <arpa/inet.h>

...

struct sockaddr_in name;

name.sin_family = PF_INET;

name.sin_port = (in_port_t)htons(30000);

name.sin_addr.s_addr = htonl(INADDR_ANY);

int c = bind (listener_d, (struct sockaddr *) &name, sizeof(name));

if (c == -1)

 error("Can't bind to socket");

When C programs need to talk to the outside world, they use
data streams to read and write bytes. You’ve used data
streams that are connected to the files or Standard Input and
Output. But if you’re going to write a program to talk to the
network, you need a new kind of data stream called a socket.

You’ll need this header.
listener_d is a descriptor
for the socket.

It’s an Internet socket.

This is a
protocol number.
You can leave it
as 0.

You’ll need this header for creating Internet addresses.

These lines create a name for the
port meaning “Internet port 30000.”

This is the
error() function
you created in
the last chapter.

you are here 4   471

sockets and networking

2. Listen
If your server becomes popular, you’ll probably get lots of clients
connecting to it at once. Would you like the clients to wait in a
queue for a connection? The listen() system call tells the
operating system how long you want the queue to be:

if (listen(listener_d, 10) == -1)

 error("Can't listen");

Calling listen() with a queue length of 10 means that up to
10 clients can try to connect to the server at once. They won’t all
be immediately answered, but they’ll be able to wait. The 11th
client will be told the server is too busy.

3. Accept a connection
Once you’ve bound a port and set up a listen queue, you then
just have to…wait. Servers spend most of their lives waiting for
clients to contact them. The accept() system call waits until a
client contacts the server, and then it returns a second socket
descriptor that you can use to hold a conversation on.

struct sockaddr_storage client_addr;

unsigned int address_size = sizeof(client_addr);

int connect_d = accept(listener_d, (struct sockaddr *)&client_addr, &address_size);

if (connect_d == -1)

 error("Can't open secondary socket");

This new connection descriptor (connect_d) is
the one that the server will use to…

Begin talking. Why do you think the accept() system
call creates the descriptor for a new
socket? Why don’t servers just use the
socket they created to listen to the port?

You’ll use a queue with a length of 10.

client_addr will store details about
the client who’s just connected.

The first 10 clients
will be able to wait. The 11th and 12th

will be told the
server is too busy.

472   Chapter 11

send()

A socket’s not your typical data stream
So far, data streams have all been the same. Whether you’re
connected to files or Standard Input/Output, you’ve been able
to use functions like fprintf() and fscanf() to talk to
them. But sockets are a little different. A socket is two way: it
can be used for input and output. That means it needs different
functions to talk to it.

If you want to output data on a socket, you can’t use
fprintf(). Instead, you use a function called send():

char *msg = "Internet Knock-Knock Protocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ";

if (send(connect_d, msg, strlen(msg), 0) == -1)

 error("send");

Remember: it’s important to always check the return
value of system calls like send(). Network errors are really
common, and your servers will have to cope with them.

Geek Bits

What port should I use?
You need to be careful when you choose a port number for a server application. There are lots
of different servers available, and you need to make sure you don’t use a port number that’s
normally used for some other program. On Cygwin and most Unix-style machines, you’ll find
a file called /etc/services that lists the ports used by most of the common servers. When you
choose a port, make sure there isn’t another application that already uses the same one.

Port numbers can be between 0 and 65535, and you need to decide whether you want to
use a low number (< 1024) or a high one. Port numbers that are lower than 1024 are usually
only available to the superuser or administrator on most systems. This is because the low port
numbers are reserved for well-known services, like web servers and email servers. Operating
systems restrict these ports to administrators only, to prevent ordinary users from starting
unwanted services.

Most of the time, you’ll probably want to use a port number greater than 1024.

This is the message you’re going
to send over the network.

This is the
socket
descriptor.

This is the message
and its length.

The final parameter is used for advanced
options. This can be left as 0.

you are here 4   473

sockets and networking

This server generates random advice for any client that connects to it,
but it’s not quite complete. You need to fill in the missing system calls.
Also, this version of the code will send back a single piece of advice
and then end. Part of the code needs to be inside a loop. Which part?

int main(int argc, char *argv[])

{

 char *advice[] = {

 "Take smaller bites\r\n",

 "Go for the tight jeans. No they do NOT make you look fat.\r\n",

 "One word: inappropriate\r\n",

 "Just for today, be honest. Tell your boss what you *really* think\r\n",

 "You might want to rethink that haircut\r\n"

 };

 int listener_d = (PF_INET, SOCK_STREAM, 0);

 struct sockaddr_in name;

 name.sin_family = PF_INET;

 name.sin_port = (in_port_t)htons(30000);

 name.sin_addr.s_addr = htonl(INADDR_ANY);

 (listener_d, (struct sockaddr *) &name, sizeof(name));

 (listener_d, 10);

 puts("Waiting for connection");

 struct sockaddr_storage client_addr;

 unsigned int address_size = sizeof(client_addr);

 int connect_d = (listener_d, (struct sockaddr *)&client_addr, &address_size);

 char *msg = advice[rand() % 5];

 (connect_d, msg, strlen(msg), 0);

 close(connect_d);

 return 0;

}

And for a bonus point, if you add in the missing #include statements, the program will work. But what has
the programmer missed out? Hint: look at the system calls.

The programmer has forgotten to

The includes are removed
to save space.

474   Chapter 11

code written

This server generates random advice for any client that connects to it,
but it’s not quite complete. You needed to fill in the missing system calls.
Also, this version of the code will send back a single piece of advice and
then end. Part of the code needs to be inside a loop. Which part?

int main(int argc, char *argv[])

{

 char *advice[] = {

 "Take smaller bites\r\n",

 "Go for the tight jeans. No they do NOT make you look fat.\r\n",

 "One word: inappropriate\r\n",

 "Just for today, be honest. Tell your boss what you *really* think\r\n",

 "You might want to rethink that haircut\r\n"

 };

 int listener_d = (PF_INET, SOCK_STREAM, 0);

 struct sockaddr_in name;

 name.sin_family = PF_INET;

 name.sin_port = (in_port_t)htons(30000);

 name.sin_addr.s_addr = htonl(INADDR_ANY);

 (listener_d, (struct sockaddr *) &name, sizeof(name));

 (listener_d, 10);

 puts("Waiting for connection");

 struct sockaddr_storage client_addr;

 unsigned int address_size = sizeof(client_addr);

 int connect_d = (listener_d, (struct sockaddr *)&client_addr, &address_size);

 char *msg = advice[rand() % 5];

 (connect_d, msg, strlen(msg), 0);

 close(connect_d);

 return 0;

}

And for a bonus point, if you add in the missing #include statements, the program will work. But what has
the programmer missed out? Hint: look at the system calls.

The programmer has forgotten to

socket Create a socket.

bind

Bind the socket to port 30000.

listen Set to the listen queue depth to 10.

while (1) { You need to loop the accept/begin talking section.

accept
Accept a connection from a client.

send
Begin talking to the client. }

check for errors. You should always check if socket, bind, listen,
accept, or send return -1.

you are here 4   475

sockets and networking

Test Drive
Let’s compile the advice server and see what happens.

> gcc advice_server.c -o advice_server
> ./advice_server
Waiting for connection

File Edit Window Help I’mTheServer

Then, while the server is still running, open a second console and
connect to the server using telnet a couple of times.

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
One word: inappropriate
Connection closed by foreign host.
> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
You might want to rethink that haircut
Connection closed by foreign host.
>

File Edit Window Help I’mTelnet

That’s great, the server works. Here, you’re using 127.0.0.1 as the IP
address, because the client is running on the same machine as the
server. But you could have connected to the server from anywhere
on the network and we’d have gotten the same response.

Working, you
say? Hmm…I think
there might be a
problem…

476   Chapter 11

starting problems

Sometimes the server doesn’t start properly

> ./advice_server
Waiting for connection

File Edit Window Help I’mTheServer

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
One word: inappropriate
Connection closed by foreign host.
>

File Edit Window Help I’mTheClient

The server looks like it’s starting correctly the second time,
but the client can’t get any response from it. Why is that?

Remember that the code was written without any error
checking. Let’s add a little error check into the code and
see if we can figure out what’s happening.

> ./advice_server
Waiting for connection
^C
> ./advice_server
Waiting for connection

File Edit Window Help I’mTheServer

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused
telnet: Unable to connect to remote host
>

File Edit Window Help I’mTheClient

If I start the server,
then run the client
one time, it works…

…but then, if I stop the
server and restart it real
quick, the client can’t get
a response anymore!

Server
console

Client console

The server’s started.

The server sends back a response.

Server console

Client console

Hitting
Ctrl-C
kills the
server.

The server’s restarted.

WTF??!?!??

Where’s The Feedback????

you are here 4   477

sockets and networking

Why your mom always told you to check for errors
If you add an error check on the line that binds the socket to a
port:

 bind (listener_d, (struct sockaddr *) &name, sizeof (name));

 if (bind (listener_d, (struct sockaddr *) &name, sizeof(name)) == -1)

 error("Can't bind the port");

Then you’ll get a little more information from the server if it is
stopped and restarted quickly:

> ./advice_server
Waiting for connection
^C
> ./advice_server
Can't bind the port: Address already in use
>

File Edit Window Help I’mTheServer

If the server has responded to a client and then gets stopped and
restarted, the call to the bind system call fails. But because the
original version of the program never checked for errors, the rest
of the server code ran even though it couldn’t use the server port.

Bound ports are sticky
When you bind a socket to a port, the operating system will
prevent anything else from rebinding to it for the next 30
seconds or so, and that includes the program that bound the port
in the first place. To get around the problem, you just need to set
an option on the socket before you bind it:

This code makes the socket reuse the port when it’s bound.
That means you can stop and restart the server and there will be
no errors when you bind the port a second time.

int reuse = 1;

if (setsockopt(listener_d, SOL_SOCKET, SO_REUSEADDR, (char *)&reuse, sizeof(int)) == -1)

 error("Can't set the reuse option on the socket");

From this…
…to this

This is calling the error function you wrote a while
back. It will display the cause of the error and exit.

The bind fails!

You need an int variable to store the option.
Setting it to 1 means “Yes, reuse the port.”

This makes the socket reuse the port.

ALWAYS check for
errors on system calls.

478   Chapter 11

recv()

Reading from the client
You’ve learned how to send data to the client, but what about reading from the
client? In the same way that sockets have a special send() function to write
data, they also have a recv() function to read data.

<bytes read> = recv(<descriptor>, <buffer>, <bytes to read>, 0);

If someone types in a line of text into a client and hits return, the recv()
function stores the text into a character array like this:

There are a few things to remember:

recv() will return the
value 14, because there
are 14 characters sent
from the client.

This last point is important. It means you might have to call recv() more
than once:

That means recv() can be tricky to use. It’s best to wrap recv() in a
function that stores a simple \0-terminated string in the array it’s given.
Something like this:

int read_in(int socket, char *buf, int len)
{
 char *s = buf;
 int slen = len;
 int c = recv(socket, s, slen, 0);
 while ((c > 0) && (s[c-1] != '\n')) {
 s += c; slen -= c;
 c = recv(socket, s, slen, 0);
 }
 if (c < 0)
 return c;
 else if (c == 0)
 buf[0] = '\0';
 else
 s[c-1]='\0';
 return len - slen;
}

�The characters are not terminated with a \0 character.¥
�When someone types text in telnet, the string always ends \r\n.¥

W h o ' h rs t e e ? \r \n

W h o ' h rs t e e ? \r \n

You might need to call
recv() a few times to
get all the characters.

�The recv() will return the number of characters, or –1 if there’s an error, or
0 if the client has closed the connection.

¥
�You’re not guaranteed to receive all the characters in a single call to recv().¥

This is one way of
simplifying recv(),
but could you do
better? Why not write
your own version of
read_in() and let us

know at headfirstlabs.com.

Go Off Piste

This reads all the characters
until it reaches ‘\n’.

Keep reading until there are no more characters or you reach ‘\n’.

In case there’s an error

Nothing read; send
back an empty string.
Replace the ‘\r’
character with a ‘\0’.

you are here 4   479

sockets and networking

Ready-Bake
Code

Here are some other functions that are useful when you are
writing a server. Do you understand how each of them works?

Now that you have a set of server functions, let’s try them out…

void error(char *msg)
{
 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
 exit(1);
}

You’ve used this error function
a LOT in this book.

Display the error…

…then stop the program.

Don’t call this function if you
want the program to keep running.

int open_listener_socket()
{
 int s = socket(PF_INET, SOCK_STREAM, 0);
 if (s == -1)
 error("Can't open socket");

 return s;
}

Create an Internet streaming socket.

void bind_to_port(int socket, int port)
{
 struct sockaddr_in name;
 name.sin_family = PF_INET;
 name.sin_port = (in_port_t)htons(30000);
 name.sin_addr.s_addr = htonl(INADDR_ANY);
 int reuse = 1;
 if (setsockopt(socket, SOL_SOCKET, SO_REUSEADDR, (char *)&reuse, sizeof(int)) == -1)
 error("Can't set the reuse option on the socket");
 int c = bind (socket, (struct sockaddr *) &name, sizeof(name));
 if (c == -1)
 error("Can't bind to socket");
}

name is Internet port 30000.

Yes, reuse the socket (so you can
restart the server without problems).

Grab port 30000.

int say(int socket, char *s)
{
 int result = send(socket, s, strlen(s), 0);
 if (result == -1)
 fprintf(stderr, "%s: %s\n", "Error talking to the client", strerror(errno));
 return result;
}

Send a string to a client.
Don’t call error() if there’s a problem.
You won’t want to stop the server if
there’s just a problem with one client.

480   Chapter 11

server unwritten

Now it’s time to write the code for the Internet knock-knock server. You’re going to write a
little more code than usual, but you’ll be able to use the ready-bake code from the previous
page. Here’s the start of the program.

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <signal.h>

int listener_d;

void handle_shutdown(int sig)

{

 if (listener_d)

 close(listener_d);

 fprintf(stderr, "Bye!\n");

 exit(0);

}

The ready-bake functions from the previous page go here.

This will
store the
main listener
socket for
the server.

If someone hits Ctrl-C when the server
is running, this function will close the
socket before the program ends.

you are here 4   481

sockets and networking

Now it’s over to you to write the main function. You’ll need to create a new server socket and store it in listener_d.
The socket will be bound to port 30000, and the queue depth should be set to 10. Once that’s done, you need to write
code that works like this:

Try to check error codes and if the user says the wrong thing, just send an error message, close the connection, and
then wait for another client.

Good luck!

Get connection from client

Say, “Knock! Knock!”

Check that they say, “Who’s there?”

Say, “Oscar”

Check that they say, “Oscar who?”

Say, “oscar silly question,

you get a silly answer”

482   Chapter 11

server written

Now it’s time to write the code for the Internet knock-knock server. You were to write a little
more code than usual, but you’ll be able to use the ready-bake code from the previous page.
Here’s the start of the program.

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <signal.h>

int listener_d;

void handle_shutdown(int sig)

{

 if (listener_d)

 close(listener_d);

 fprintf(stderr, "Bye!\n");

 exit(0);

}

The ready-bake functions from the previous page go here.

This will
store the
main listener
socket for
the server.

If someone hits Ctrl-C when the server
is running, this function will close the
socket before the program ends.

you are here 4   483

sockets and networking

This is the kind of code you should have written. Is yours similar? It doesn’t matter if the code is exactly the same. The
important thing is that your code can tell the joke in the right way, and cope with errors.

int main(int argc, char *argv[])
{
 if (catch_signal(SIGINT, handle_shutdown) == -1)
 error(“Can’t set the interrupt handler”);
 listener_d = open_listener_socket();
 bind_to_port(listener_d, 30000);
 if (listen(listener_d, 10) == -1)
 error(“Can’t listen”);
 struct sockaddr_storage client_addr;
 unsigned int address_size = sizeof(client_addr);
 puts(“Waiting for connection”);
 char buf[255];
 while (1) {
 int connect_d = accept(listener_d, (struct sockaddr *)&client_addr, &address_size);
 if (connect_d == -1)
 error(“Can’t open secondary socket”);
 if (say(connect_d,
 “Internet Knock-Knock Protocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> “) != -1) {
 read_in(connect_d, buf, sizeof(buf));
 if (strncasecmp(“Who’s there?”, buf, 12))
 say(connect_d, “You should say ‘Who’s there?’!”);
 else {
 if (say(connect_d, “Oscar\r\n> “) != -1) {
 read_in(connect_d, buf, sizeof(buf));
 if (strncasecmp(“Oscar who?”, buf, 10))
 say(connect_d, “You should say ‘Oscar who?’!\r\n”);
 else
 say(connect_d, “Oscar silly question, you get a silly answer\r\n”);
 }
 }
 }
 close(connect_d);
 }
 return 0;
}

This will call handle_shutdown() if Ctrl-C is hit.

Create a socket on port 30000.
Set the listen-queue length to 10.

Listen for a connection.

Send data to the client.

Read data from the client.

Checking the user’s answers.

Close the secondary socket we used for the conversation.

484   Chapter 11

test drive

Test Drive
Now that you’ve written the knock-knock server, it’s
time to compile it and fire it up. > gcc ikkp_server.c -o ikkp_server

> ./ikkp_server
Waiting for connection

File Edit Window Help I’mTheServer

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Who's there?
Oscar
> Oscar who?
Oscar silly question, you get a silly answer
Connection closed by foreign host.

File Edit Window Help I’mTheClient

Server console

Client console

The server’s waiting for a connection, so
open a separate console and connect to it
with telnet:

The server can tell
you a joke, but what
happens if you break
the protocol and
send back an invalid
response?

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Come in
You should say 'Who's there?'!Connection closed by foreign host.
>

File Edit Window Help I’mTheClient

Client console

The server is able to validate the data you send it and
close the connection immediately. Once you’re done
running the server, you can switch back to the server
window and hit Ctrl-C to close it down neatly. It even
sends you a farewell message:

> gcc ikkp_server.c -o ikkp_server
> ./ikkp_server
Waiting for connection
^CBye!
>

File Edit Window Help I’mTheServer

Server console

That’s great! The server does everything you need it to do.

Or does it?

you are here 4   485

sockets and networking

The server can only talk to one person at a time
There’s a problem with the current server code. Imagine
someone connects to it and he is a little slow with his responses:

> telnet knockknockster.com 30000
Trying knockknockster.com...
Connected to localhost.
Escape character is '^]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Who's there?
Oscar
>

File Edit Window Help I’mTheClient

The server is running on a machine out on the Internet.

Then, if someone else tries to get
through to the server, she can’t; it’s busy
with the first guy:

The server can’t respond to the second user, because it is busy dealing with the
first. What have you learned that might help you deal with both clients at once?

> telnet knockknockster.com 30000
Trying knockknockster.com...
Connected to localhost.
Escape character is '^]'.

File Edit Window Help I’mAnotherClient

The problem is that the server is still busy talking to the first
guy. The main server socket will keep the client waiting until the
server calls the accept() system call again. But because of the
guy already connected, it will be some time before that happens.

Oh, great! I can’t get
through to the server and I
can’t even Ctrl-C my way out
of telnet. What gives?

Oh, wait! Oscar! Oh, I know
this one… Oh, it’s so funny… It’s…
Oscar…Oscar who? Hey,that’s like…
no, wait…don’t tell me…

486   Chapter 11

different clients, different sockets

You can fork() a process for each client
When the clients connect to the server, they start to have a
conversation on a separate, newly created socket. That means the
main server socket is free to go and find another client. So let’s do
that.

When a client connects, you can fork() a separate child process
to deal with the conversation between the server and the client.

While the client is talking to the child process, the server’s parent
process can go connect to the next client.

The parent and child use different sockets
One thing to bear in mind is that the parent server process will
only need to use the main listener socket. That’s because the
main listener socket is the one that’s used to accept() new
connections. On the other hand, the child process will only ever
need to deal with the secondary socket that gets created by the
accept() call. That means once the parent has forked the
child, the parent can close the secondary socket and the child can
close the main listener socket.

close(connect_d);

close(listener_d);

After forking the
child, the parent can
close this socket.

Q: If I create a new process for
each client, what happens if hundreds
of clients connect? Will my machine
create hundreds of processes?

A: Yes. If you think your server will get
a lot of clients, you need to control how
many processes you create. The child
can signal you when it’s finished with a
client, and you can use that to maintain a
count of current child processes.

Once the child gets
created, it can
close this socket.

Hey, great to see you! I’ll
just hand you over to someone
who can deal with you.

Knock! Knock!

Child
process

Parent process Client

Who’s there?

you are here 4   487

sockets and networking

This is a version of the server code that has been changed to
fork a separate child process to talk to each client…except it’s
not quite finished. See if you can figure out the missing pieces
of code.

 while (1) {

 int connect_d = accept(listener_d, (struct sockaddr *)&client_addr,

 &address_size);

 if (connect_d == -1)

 error("Can't open secondary socket");

 if () {

 close();

 if (say(connect_d,

 "Internet Knock-Knock Protocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ")

 != -1) {

 read_in(connect_d, buf, sizeof(buf));

 if (strncasecmp("Who's there?", buf, 12))

 say(connect_d, "You should say 'Who's there?'!");

 else {

 if (say(connect_d, "Oscar\r\n> ") != -1) {

 read_in(connect_d, buf, sizeof(buf));

 if (strncasecmp("Oscar who?", buf, 10))

 say(connect_d, "You should say 'Oscar who?'!\r\n");

 else

 say(connect_d, "Oscar silly question, you get a silly answer\r\n");

 }

 }

 }

 close();

 }

 close();

 }

What should the child do when the conversation is done?

488   Chapter 11

code written

This is a version of the server code that has been changed to
fork a separate child process to talk to each client—except
it’s not quite finished. You were to figure out the missing
pieces of code.

 while (1) {

 int connect_d = accept(listener_d, (struct sockaddr *)&client_addr,

 &address_size);

 if (connect_d == -1)

 error("Can't open secondary socket");

 if () {

 close();

 if (say(connect_d,

 "Internet Knock-Knock Protocol Server\r\nVersion 1.0\r\nKnock! Knock!\r\n> ")

 != -1) {

 read_in(connect_d, buf, sizeof(buf));

 if (strncasecmp("Who's there?", buf, 12))

 say(connect_d, "You should say 'Who's there?'!");

 else {

 if (say(connect_d, "Oscar\r\n> ") != -1) {

 read_in(connect_d, buf, sizeof(buf));

 if (strncasecmp("Oscar who?", buf, 10))

 say(connect_d, "You should say 'Oscar who?'!\r\n");

 else

 say(connect_d, "Oscar silly question, you get a silly answer\r\n");

 }

 }

 }

 close();

 }

 close();

 }

Once the child process has finished talking, it should exit.
That will prevent it from falling into the main server loop.

!fork()
This creates the child process, and you know that if
the fork() call returns 0, you must be in the child.

listener_d In the child, you need to close
the main listener socket.

The child will use only the connect_d
socket to talk to the client.

connect_d

Once the conversation’s over, the child
can close the socket to the client.

connect_d

exit(0);

you are here 4   489

sockets and networking

Test Drive
Let’s try the modified version of the server. You can
compile and run it in the same way: > gcc ikkp_server.c -o ikkp_server

> ./ikkp_server
Waiting for connection

File Edit Window Help I’mTheServer

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
> Who's there?
Oscar
>

File Edit Window Help I’mTheClient

Server console

Client console

Everything seems the same, but if you leave the client
running with the joke half-told, you should be able to
see what’s changed:

If you open a separate console and start telnet, you
can connect, just like you did before:

If you open a third console, you will see that there are now two
processes for the server: one for the parent and one for the child:

> ps
 PID TTY TIME CMD
14324 ttys002 0:00.00 ./ikkp_server
14412 ttys002 0:00.00 ./ikkp_server
>

File Edit Window Help I’mJustCurious

> telnet 127.0.0.1 30000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Internet Knock-Knock Protocol Server
Version 1.0
Knock! Knock!
>

File Edit Window Help I’mAnotherClientThat means you can connect, even while the first
client is still talking to the server:

Another client console

Now that you’ve built an Internet server,
let’s go look at what it takes to build a
client, by writing something that can
read from the Web.

The parent process The child process

The ps command shows
running processes in
Unix and Cygwin.

490   Chapter 11

the client

Writing a web client
What if you want to write your own client program? Is it
really that different from a server? To see the similarities
and differences, you’re going to write a web client for the
hypertext transfer protocol (HTTP).

HTTP is a lot like the Internet knock-knock protocol you
coded earlier. All protocols are structured conversations. Every
time a web client and server talk, they say the same kind of
things. Open telnet and see how to download
http://en.wikipedia.org/wiki/O’Reilly_Media.

> telnet en.wikipedia.org 80
Trying 91.198.174.225...
Connected to wikipedia-lb.esams.wikimedia.org.
Escape character is '^]'.
GET /wiki/O'Reilly_Media http/1.1
Host: en.wikipedia.org

HTTP/1.0 200 OK
Server: Apache
...
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang=en" dir="ltr" class"client-nojs"
xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>O'Reilly Media - Wikipedia, the free encyclopedia</title>
...

File Edit Window Help I’mJustCurious

When your program connects to the web server, it will need to
send at least three things:

But before you can send any data at all to the
server, you need to make a connection from
the client. How do you do that?

A GET command
GET /wiki/O'Reilly_Media http/1.1

¥

The hostname
Host: en.wikipedia.org

¥

A blank line¥

Most web clients actually send a lot more information, but you’ll just send the minimum amount.

Most web servers run on port 80.
This is the numeric
address of Wikipedia.
You might get a slightly
different address when
you try it.

Do this!

This is the path that follows
the hostname in the URL.

In HTTP/1.1, you need to say
what hostname you are using.

You need to type
in these two lines.

And then you need to
hit return and leave a
blank line.
The server first
responds with some
extra details about
the web page.

And this is the HTML for the web page.

you are here 4   491

sockets and networking

Clients are in charge
Clients and servers communicate using sockets, but the way
that each gets hold of a socket is a little different. You’ve
already seen that servers use the BLAB sequence:

A server spends most of its life waiting for a fresh connection
from a client. Until a client connects, a server really can’t
do anything. Clients don’t have that problem. A client can
connect and start talking to a server whenever it likes. This is
the sequence for a client:

I was taught
never to speak
until I’m spoken to.

Remote ports and IP addresses
When a server connects to the network, it just has to decide
which port it’s going to use. But clients need to know a little
more: they need to know the port of the remote server, but
they also need to know its internet protocol (IP) address:

208.201.239.100

Internet addresses are kind of hard to remember, which is
why most of the time human beings use domain names. A
domain name is just an easier-to-remember piece of text like:

www.oreilly.com

Even though human beings prefer domain names, the actual
packets of information that flow across the network only use
the numeric IP address.

Addresses with four digits are in IP version 4 format. Most
will eventually be replaced with longer version 6 addresses.

Bind a port.1

Listen.2

Accept a conversation.3

Begin talking.4

Connect to a remote port.1

Begin talking.2

Server

492   Chapter 11

client sockets

Create a socket for an IP address
Once your client knows the address and port number of the
server, it can create a client socket. Client sockets and server
sockets are created the same way:

int s = socket(PF_INET, SOCK_STREAM, 0);
To save space, the examples won’t include the
error check here. But in your code, always check
for errors.

The difference between client and server code is what they do
with sockets once they’re created. A server will bind the socket to
a local port, but a client will connect the socket to a remote port:

 struct sockaddr_in si;

 memset(&si, 0, sizeof(si));

 si.sin_family = PF_INET;

 si.sin_addr.s_addr = inet_addr("208.201.239.100");

 si.sin_port = htons(80);

 connect(s, (struct sockaddr *) &si, sizeof(si));

Hello? I don’t want
to know how to connect a
socket to an IP address.
I’m actually human…I
want to connect to a real
domain name.

The above code works only for
numeric IP addresses.

To connect a socket to a remote domain name,
you’ll need a function called getaddrinfo().

These lines
create a socket
address for
208.201.239.100
on port 80.

This line
connects the
socket to the
remote port.

Client Server 208.201.239.100

Port 80

you are here 4   493

sockets and networking

getaddrinfo() gets addresses for domains

Create a socket for a domain name
Most of the time, you’ll want your client code to use the DNS
system to create sockets. That way, your users won’t have to
look up the IP addresses themselves. To use DNS, you need to
construct your client sockets in a slightly different way:

 #include <netdb.h>
 ...
 struct addrinfo *res;
 struct addrinfo hints;
 memset(&hints, 0, sizeof(hints));
 hints.ai_family = PF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 getaddrinfo("www.oreilly.com", "80", &hints, &res);

The domain name system is a huge address book. It’s a way of
converting a domain name like www.oreilly.com into the kinds
of numeric IP addresses that computers need to address the
packets of information they send across the network.

The getaddrinfo() constructs a new data structure on the
heap called a naming resource. The naming resource represents
a port on a server with a given domain name. Hidden away
inside the naming resource is the IP address that the computer
will need. Sometimes very large domains can have several IP
addresses, but the code here will simply pick one of them. You
can then use the naming resource to create a socket.

int s = socket(res->ai_family, res->ai_socktype,
 res->ai_protocol);

Finally, you can connect to the remote socket. Because the
naming resource was created on the heap, you’ll need to tidy it
away with a function called freeaddrinfo():

Once you’ve connected a socket to a remote port, you can
read and write to it using the same recv() and send()
functions you used for the server. That means you should have
enough information now to write a web client…

Domain name Address
en.wikipedia.org 91.198.174.225
www.oreilly.com 208.201.239.100
www.oreilly.com 208.201.239.101

Some large sites have
several IP addresses. Computers need IP

addresses to create
network packets.

The DNS is a gigantic address book.

You’ll need to include this header
for the getaddrinfo() function.

This creates a
name resource
for port 80 on
www.oreilly.com.

getaddrinfo() expects
the port to be a string.

Now you can create the socket using the naming resource.

connect(s, res->ai_addr, res->ai_addrlen);
freeaddrinfo(res);

This will connect to
the remote socket.

res->ai_addr is the
addr of the remote
host and port.

res->ai_addrlen is the size
of the address in memory.

When you’ve connected, you can delete the address data with freeaddrinf0().

494   Chapter 11

magnets muddled

Code Magnets
Here is the code for a web client that will download the contents of a page from Wikipedia
and display it on the screen. The web page will be passed as an argument to the program.
Think carefully about the data you need to send to a web server running HTTP.

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <netdb.h>

void error(char *msg)

{

 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

 exit(1);

}

int open_socket(char *host, char *port)

{

 struct addrinfo *res;

 struct addrinfo hints;

 memset(&hints, 0, sizeof(hints));

 hints.ai_family = PF_UNSPEC;

 hints.ai_socktype = SOCK_STREAM;

 if (getaddrinfo(host, port, &hints, &res) == -1)

 error("Can't resolve the address");

 int d_sock = socket(res->ai_family, res->ai_socktype,

 res->ai_protocol);

 if (d_sock == -1)

 error("Can't open socket");

 int c = connect(d_sock, res->ai_addr, res->ai_addrlen);

 freeaddrinfo(res);

 if (c == -1)

 error("Can't connect to socket");

 return d_sock;

}

you are here 4   495

sockets and networking

int say(int socket, char *s)

{

 int result = send(socket, s, strlen(s), 0);

 if (result == -1)

 fprintf(stderr, "%s: %s\n", "Error talking to the server",
strerror(errno));

 return result;

}

int main(int argc, char *argv[])

{

 int d_sock;

 d_sock = ;

 char buf[255];

 sprintf(buf, , argv[1]);

 say(d_sock, buf);

 say(d_sock,);

 char rec[256];

 int bytesRcvd = recv(d_sock, rec, 255, 0);

 while (bytesRcvd) {

 if (bytesRcvd == -1)

 error("Can't read from server");

 rec[bytesRcvd] = ;

 printf("%s", rec);

 bytesRcvd = recv(d_sock, rec, 255, 0);

 }

 ;

 return 0;

}

"GET /wiki/%s http/1.1\r\n""Host: en.wikipedia.org\r\n\r\n"
'\0' "\r\n"

"Host: en.wikipedia.org\r\n"open_socket("en.wikipedia.org", "80")
close(d_sock)

496   Chapter 11

magnets unmuddled

Code Magnets Solution
Here is the code for a web client that will download the contents of a page from Wikipedia
and display it on the screen. The web page will be passed as an argument to the program.
You were to think carefully about the data you need to send to a web server running HTTP.

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <netdb.h>

void error(char *msg)

{

 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

 exit(1);

}

int open_socket(char *host, char *port)

{

 struct addrinfo *res;

 struct addrinfo hints;

 memset(&hints, 0, sizeof(hints));

 hints.ai_family = PF_UNSPEC;

 hints.ai_socktype = SOCK_STREAM;

 if (getaddrinfo(host, port, &hints, &res) == -1)

 error("Can't resolve the address");

 int d_sock = socket(res->ai_family, res->ai_socktype,

 res->ai_protocol);

 if (d_sock == -1)

 error("Can't open socket");

 int c = connect(d_sock, res->ai_addr, res->ai_addrlen);

 freeaddrinfo(res);

 if (c == -1)

 error("Can't connect to socket");

 return d_sock;

}

you are here 4   497

sockets and networking

int say(int socket, char *s)

{

 int result = send(socket, s, strlen(s), 0);

 if (result == -1)

 fprintf(stderr, "%s: %s\n", "Error talking to the server",
strerror(errno));

 return result;

}

int main(int argc, char *argv[])

{

 int d_sock;

 d_sock = ;

 char buf[255];

 sprintf(buf, , argv[1]);

 say(d_sock, buf);

 say(d_sock,);

 char rec[256];

 int bytesRcvd = recv(d_sock, rec, 255, 0);

 while (bytesRcvd) {

 if (bytesRcvd == -1)

 error("Can't read from server");

 rec[bytesRcvd] = ;

 printf("%s", rec);

 bytesRcvd = recv(d_sock, rec, 255, 0);

 }

 ;

 return 0;

}

"GET /wiki/%s http/1.1\r\n"

"Host: en.wikipedia.org\r\n\r\n"

'\0'

open_socket("en.wikipedia.org", "80")

close(d_sock)

Create a string for the path
to the page you want.

This sends the
host data as well
as a blank line.

Add a ‘\0’ to the end of the array of
characters to make it a proper string.

"\r\n"

"Host: en.wikipedia.org\r\n"

498   Chapter 11

test drive

Test Drive
If you compile and run the web client, you make it
download a page from Wikipedia like this:

> gcc wiki_client.c -o wiki_client
> ./wiki_client "O'Reilly_Media"
HTTP/1.0 200 OK
Date: Fri, 06 Jan 2012 20:30:15 GMT
Server: Apache
...
Connection: close
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang="en" dir="ltr" class="client-nojs" xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>O'Reilly Media - Wikipedia, the free encyclopedia</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
...

File Edit Window Help I’mTheWebClient

You’ll have to replace any spaces with underscore (_) characters.

At the beginning, you’ll get the response HEADERS. These tell you things about the server and the web page.

Then you get the contents of the web page from Wikipedia.

It works!
The client took the name of the page from the
command line and then connected to Wikipedia to
download the page. Because it’s constructing the path
to the file, you need to make sure that the you replace
any spaces in the page name with underscore (_)
characters.

Why not update the code to automatically replace characters like spaces for
you? For more details on how to replace characters for web addresses, see:

Go Off Piste

http://www.w3schools.com/tags/ref_urlencode.asp

you are here 4   499

sockets and networking

Q: Should I create sockets with IP addresses or domain names?

A: Most of the time, you’ll want to use domain names. They’re easier to remember, and
occasionally some servers will change their numeric addresses but keep the same domain
names.

Q: So, do I even need to know how to connect to a numeric address?

A: Yes. If the server you are connecting to is not registered in the domain name system,
such as machines on your home network, then you will need to know how to connect by IP.

Q: Can I use getaddrinfo() with a numeric address?

A: Yes, you can. But if you know that the address you are using is a numeric IP, the first
version of the client socket code is simpler.

�� A protocol is a structured
conversation.

�� Servers connect to local ports.

�� Clients connect to remote ports.

�� Clients and servers both use sockets
to communicate.

�� You write data to a socket with
send().

�� You read data from a socket with
recv().

�� HTTP is the protocol used on the
Web.

500   Chapter 11

c toolbox

Your C Toolbox

You’ve got Chapter 11 under
your belt, and now you’ve

added sockets and networking
to your toolbox. For a complete list

of tooltips in the book, see Appendix ii.

CH
AP

T
ER

 11

Telnet is a
simple network

client.
Create
sockets with
the socket()
function.

Servers BLAB:
B = bind()
L = listen()
A = accept()
B = Begin talking

Use fork()
to cope with
several clients
at once.

DNS =
Domain name
system getaddrinfo()

finds
addresses by
domain.

this is a new chapter   501

Johnny told me he
got his heap variables
locked in a mutex.

threads12

It’s a parallel world

Programs often need to do several things at the same time.�
POSIX threads can make your code more responsive by spinning off several pieces of

code to run in parallel. But be careful! Threads are powerful tools, but you don’t want

them crashing into each other. In this chapter, you’ll learn how to put up traffic signs and

lane markers that will prevent a code pileup. By the end, you will know how to create

POSIX threads and how to use synchronization mechanisms to protect the integrity

of sensitive data.

502   Chapter 12

working in parallel

Tasks are sequential…or not…
Imagine you are writing something complex like a game in
C. The code will need to perform several different tasks:

Not only will your code need to do all of these things, but it
will need to do them all at the same time. That’s going
to be true for many different programs. Chat programs
will need to read text from the network and send data to
the network at the same time. Media players will need to
stream video to the display as well as watch for input from
the user controls.

How can your code perform several
different tasks at once?

It will need to update
the graphics on the
screen.

It will need to
calculate the latest
locations of the
objects that are
moving in the game.

It will need to read
control information
from the games
controller or
keyboard.

It might need
to communicate
with the disk
and the network.

you are here 4   503

threads

…and processes are not always the answer
You’ve already learned how to make the computer do
several things at once: with processes. In the last chapter,
you built a network server that could deal with several
different clients at once. Each time a new user connected,
the server created a new process to handle the new session.

Does that mean that whenever you want to do several
things at once, you should just create a separate process?
Well, not really, and here’s why.

Processes take time to create
Some machines take a little while to create new processes. Not much time, but

some. If the extra task you want to perform takes just a few hundredths of a

second, creating a process each time won’t be very efficient.

Processes can’t share data easily
When you create a child process, it automatically has a complete copy of all

the data from the parent process. But it’s a copy of the data. If the child needs

to send data back to the parent, then you need something like a pipe to do that

for you.

Processes are just plain difficult
You need to create a chunk of code to generate processes, and that can make

your programs long and messy.

You need something that starts a separate task quickly, can
share all of your current data, and won’t need a huge
amount of code to build.

You need threads.

504   Chapter 12

single threads of execution

Simple processes do one thing at a time
Say you have a task list with a set of things that you need to do:

Shop-n-Surf
Run the cash register.
Stock the shop.
Rewax the surfboards.
Answer the phones.
Fix the roof.
Keep the books.

You can’t do all of the tasks at the same time, not by
yourself. If someone comes into the shop, you’ll need to
stop stocking the shelves. If it looks like rain, you might
stop bookkeeping and get on the roof. If you work in a
shop alone, you’re like a simple process: you do one thing
after another, but always one thing at a time. Sure, you can
switch between tasks to keep everything going, but what
if there’s a blocking operation? What if you’re serving
someone at the checkout and the phone rings?

All of the programs you’ve written so far have had a single
thread of execution. It’s like there’s only been one
person working inside the program’s process.

Well, I can’t do
everything all at once.
Who do you think I am?

Process.

Shop-n-Surf

Alternatively,
just go surfing.

you are here 4   505

threads

Employ extra staff: use threads
A multithreaded program is like a shop with several
people working in it. If one person is running the checkout,
another is filling the shelves, and someone else is waxing the
surfboards, then everybody can work without interruptions.
If one person answers the phone, it won’t stop the other
people in the shop.

In the same way that several people can work in the same
shop, you can have several threads living inside the same
process. All of the threads will have access to the same piece
of heap memory. They will all be able to read and write to
the same files and talk on the same network sockets. If one
thread changes a global variable, all of the other threads will
see the change immediately.

That means you can give each thread a separate task and
they’ll all be performed at the same time.

You can run each task
inside a separate thread.

Read games controller input.

Update screen.
Calculate physics of rocket.

Send text message to network.

If one thread has to wait for something, the other threads can keep running.

All of the threads can
run inside a single process.

Shop-n-Surf

Run the cash register.

Stock the shop.

Re-wax the surfboards.

Answer the phones.

Fix the roof.

Keep the books.
If you employ more people, more than one thing can be done at once.

506   Chapter 12

creating threads

How do you create threads?
There are a few thread libraries, and you’re going to use one of
the most popular: the POSIX thread library, or pthread.
You can use the pthread library on Cygwin, Linux, and the
Mac.

Let’s say you want to run these two functions in separate threads:

You’ll need to run both of these functions in parallel in separate
threads. Let’s see how to do that.

Did you notice that both functions return a void pointer?
Remember, a void pointer can be used to point to any piece of
data in memory, and you’ll need to make sure that your thread
functions have a void* return type.

You’re going to run each of these functions inside its own thread.

void* does_not(void *a)

{

 int i = 0;

 for (i = 0; i < 5; i++) {

 sleep(1);

 puts("Does not!");

 }

 return NULL;

}

void* does_too(void *a)

{

 int i = 0;

 for (i = 0; i < 5; i++) {

 sleep(1);

 puts("Does too!");

 }

 return NULL;

}

Thread functions need to have a
void* return type.

Nothing useful
to return, so
just use NULL.

Main program

void* does_not(void *a)

{

void* does_too(void *a)

{

Thread A

Thread B

you are here 4   507

threads

Create threads with pthread_create
To run these functions, you’ll need a little setup code, like some headers
and maybe an error() function that you can call if there’s a problem.

The pthread_join() also receives the return value of your thread
function and stores it in a void pointer variable. Once both threads have
finished, your program can exit smoothly.

Let’s see if it works.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <pthread.h>

void error(char *msg)
{
 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
 exit(1);
}

These are the headers for the main part of the code.

This is the header for the pthread library.

But then you can start the code for your main function. You’re going
to create two threads, and each one needs to have its info stored in a
pthread_t data structure. Then you can create and run a thread with
pthread_create().

 pthread_t t0;
 pthread_t t1;
 if (pthread_create(&t0, NULL, does_not, NULL) == -1)
 error("Can't create thread t0");
 if (pthread_create(&t1, NULL, does_too, NULL) == -1)
 error("Can't create thread t1");

This records all the information about the thread.

That code will run your two functions in separate threads. But you’ve not
quite finished yet. If your program just ran this and then finished, the
threads would be killed when the program ended. So you need to wait for
your threads to finish:

 void* result;
 if (pthread_join(t0, &result) == -1)
 error("Can't join thread t0");
 if (pthread_join(t1, &result) == -1)
 error("Can't join thread t1");

This
creates
the
thread.

does_not is the name of the function the thread will run.
Always check
for errors.

&t1 is the address of the
data structure that will store
the thread info.

The void pointer returned from each function will be stored here.

The pthread_join() function
waits for a thread to finish.

508   Chapter 12

test drive

Test Drive
Because you’re using the pthread library, you’ll need
to make sure you link it when you compile your program,
like this:

> gcc argument.c -lpthread -o argument
File Edit Window Help Don’tLoseTheThread

This will link the
pthread library.

This is your program.

When you run the code, you’ll see both functions running
at the same time:

> ./argument
Does too!
Does not!
Does too!
Does not!
Does too!
Does not!
Does too!
Does not!
Does not!
Does too!
>

File Edit Window Help Don’tLoseTheThread

When you run the code, the
messages might come out in a
different order than this.

Q: If both functions are running at the same time, why
don’t the letters in the messages get mixed up? Each
message is on its own line.

A: That’s because of the way the Standard Output works. The
text from puts() will all get output at once.

Q: I removed the sleep() function, and the output
showed all the output from one function and then all the
output from the other function. Why is that?

A: Most machines will run the code so quickly that without the
sleep() call, the first function will finish before the second
thread starts running.

you are here 4   509

threads

Beer Magnets
It’s time for a really BIG party. This code runs 20 threads that count the
number of beers down from 2,000,000. See if you can spot the missing
code, and if you get the answer right, celebrate by cracking open a
couple of cold ones yourself.

int beers = 2000000;

void* drink_lots(void *a)

{

 int i;

 for (i = 0; i < 100000; i++) {

 beers = beers - 1;

 }

 return NULL;

}

int main()

{

 pthread_t threads[20];

 int t;

 printf("%i bottles of beer on the wall\n%i bottles of beer\n", beers, beers);

 for (t = 0; t < 20; t++) {

 (, NULL, , NULL);

 }

 void* result;

 for (t = 0; t < 20; t++) {

 (threads[t], &result);

 }

 printf("There are now %i bottles of beer on the wall\n", beers);

 return 0;

}

pthread_join

&threads[t]
drink_lotspthread_create

threads[t]threads

Begin with 2 million beers.

Each thread will run this function.

The function will reduce the
beers variable by 100,000.

To save space, this example skips
testing for errors, but don’t you do
that!

You’ll create 20 threads
that run the function.

This code waits for all the
extra threads to finish.

510   Chapter 12

beer solved

Beer Magnets Solution
It’s time for a really BIG party. This code runs 20 threads that count the
number of beers down from 2,000,000. You were to spot the missing
code.

int beers = 2000000;

void* drink_lots(void *a)

{

 int i;

 for (i = 0; i < 100000; i++) {

 beers = beers - 1;

 }

 return NULL;

}

int main()

{

 pthread_t threads[20];

 int t;

 printf("%i bottles of beer on the wall\n%i bottles of beer\n", beers, beers);

 for (t = 0; t < 20; t++) {

 (, NULL, , NULL);

 }

 void* result;

 for (t = 0; t < 20; t++) {

 (threads[t], &result);

 }

 printf("There are now %i bottles of beer on the wall\n", beers);

 return 0;

}

pthread_join

&threads[t] drink_lotspthread_create

threads[t]threads

To save space, we’ve skipped testing
for errors—but don’t you do that!

you are here 4   511

threads

Test Drive
Let’s take a closer look at that last program. If you compile
and run the code a few times, this happens:

> ./beer
2000000 bottles of beer on the wall
2000000 bottles of beer
There are now 0 bottles of beer on the wall
> ./beer
2000000 bottles of beer on the wall
2000000 bottles of beer
There are now 883988 bottles of beer on the wall
> ./beer
2000000 bottles of beer on the wall
2000000 bottles of beer
There are now 945170 bottles of beer on the wall
>

File Edit Window Help Don’tLoseTheThread

The code usually doesn’t reduce the beers
variable to zero.

That’s really odd. The beers variable begins with a value
of 2 million. Then 20 threads each try to reduce the value
by 100,000. Shouldn’t that mean that the beers variable
always goes to zero?

Look carefully at the code again, and try to imagine what will happen if several
threads are running it at the same time. Why is the result unpredictable? Why
doesn’t the beers variable get set to zero when all the threads have run? Write
your answer below.

The 20 threads have reduced
the beers variable to 0.

Hey, wait…

WTF?????

Where’s The Froth?

512   Chapter 12

not thread-safe

The code is not thread-safe
The great thing about threads is that lots of different tasks can run at
the same time and have access to the same data. The downside is that
all those different threads have access to the same data…

Unlike the first program, the threads in the second program are all
reading and changing a shared piece of memory: the beers variable.
To understand what’s going on, let’s see what happens if two threads
try to reduce the value of beers using this line of code:

beers = beers - 1;
Imagine two threads are running this
line of code at the same time.

Even though both of the threads were trying to reduce the value of
beers by 1, they didn’t succeed. Instead of reducing the value by
2, they only decreased it by 1. That’s why the beers variable didn’t
get reduced to zero—the threads kept getting in the way of each
other.

And why was the result so unpredictable? Because the threads didn’t
always run the line of code at exactly the same time. Sometimes the
threads didn’t crash into each other, and sometimes they did.

beers
= 37

beers
= 37

beers-1
= 36 beers-1

= 36

beers
= 36

beers
= 36

Thread 1

Thread 1

Thread 1

Thread 2

Thread 2

Thread 2

Both threads are getting
the same value. Can you
see where this is going?

First of all, both threads will need to read the current value of the beers variable.1

Then, each thread will subtract 1 from the number.2

Finally, each thread stores the value for beers–1 back into the beers variable.3

	 Be careful to look
out for code that
isn’t thread-safe.

How will you know?
Usually, if two threads

read and write to the same variable,
it’s not.

you are here 4   513

threads

You need to add traffic signals
Multithreaded programs can be powerful, but they can also
behave in unpredictable ways, unless you put some controls
in place.

Imagine two cars want to pass down the same narrow
stretch of road. To prevent an accident, you can add traffic
signals. Those traffic signals prevent the cars from getting
access to a shared resource (the road) at the same time.

It’s the same thing when you want two or more threads
to access a shared data resource: you need to add traffic
signals so that no two threads can read the data and write it
back at the same time.

The traffic signals that prevent threads from crashing into
each other are called mutexes, and they are one of the
simplest ways of making your code thread-safe.

Mutexes are sometimes just
called locks.

MUT-EX =
MUTually
EXclusive.

Shared
variable

A

B

The traffic signals prevent the two
threads from accessing the same
shared variable at the same time.

The two cars represent two threads. They both want to access the same shared variable.

514   Chapter 12

mutex

Use a mutex as a traffic signal
To protect a section of code, you will need to create a mutex
lock like this:

pthread_mutex_t a_lock = PTHREAD_MUTEX_INITIALIZER;

The mutex needs to be visible to all of the threads that might
crash into each other, so that means you’ll probably want to
create it as a global variable.

PTHREAD_MUTEX_INITIALIZER is actually a macro.
When the compiler sees that, it will insert all of the code your
program needs to create the mutex lock properly.

Red means stop.
At the beginning of your sensitive code section, you need to place your first
traffic signal. The pthread_mutex_lock() will let only one thread
get past. All the other threads will have to wait when they get to it.

1

pthread_mutex_lock(&a_lock);

/* Sensitive code starts here... */

Only one thread at a time will get past this.

Green means go.
When the thread gets to the end of the sensitive code, it makes a call
to pthread_mutex_unlock(). That sets the traffic signal back to
green, and another thread is allowed onto the sensitive code:

2

/* ...End of sensitive code */

pthread_mutex_unlock(&a_lock);

Now that you know how to create locks in your code, you have
a lot of control over exactly how your threads will work.

A

A

B

B

C

C

you are here 4   515

threads

Passing Long Values to Thread Functions Up Close
Thread functions can accept a single void pointer parameter and return
a single void pointer value. Quite often, you will want to pass and
return integer values to a thread, and one trick is to use long values.
longs can be stored in void pointers because they are the same size.

void* do_stuff(void* param)

{

 long thread_no = (long)param;

 printf("Thread number %ld\n", thread_no);

 return (void*)(thread_no + 1);

}

int main()

{

 pthread_t threads[20];

 long t;

 for (t = 0; t < 3; t++) {

 pthread_create(&threads[t], NULL, do_stuff, (void*)t);

 }

 void* result;

 for (t = 0; t < 3; t++) {

 pthread_join(threads[t], &result);

 printf("Thread %ld returned %ld\n", t, (long)result);

 }

 return 0;

}

A thread function can accept a single
void pointer parameter.

Convert it back to a long.

Cast it back to a void pointer
when it’s returned.

Convert the long t value
to a void pointer.

Convert the return value to a
long before using it.

> ./param_test
Thread number 0
Thread 0 returned 1
Thread number 1
Thread number 2
Thread 1 returned 2
Thread 2 returned 3
>

File Edit Window Help Don’tLoseTheThread

Each thread receives its
thread number.

Each thread returns its
thread number + 1.

516   Chapter 12

exercise

There’s no simple way to decide where to put the locks in your code. Where you put them will
change the way the code performs. Here are two versions of the drink_lots() function
that lock the code in different ways.

pthread_mutex_t beers_lock = PTHREAD_MUTEX_INITIALIZER;

void* drink_lots(void *a)

{

 int i;

 pthread_mutex_lock(&beers_lock);

 for (i = 0; i < 100000; i++) {

 beers = beers - 1;

 }

 pthread_mutex_unlock(&beers_lock);

 printf("beers = %i\n", beers);

 return NULL;

}

pthread_mutex_t beers_lock = PTHREAD_MUTEX_INITIALIZER;

void* drink_lots(void *a)

{

 int i;

 for (i = 0; i < 100000; i++) {

 pthread_mutex_lock(&beers_lock);

 beers = beers - 1;

 pthread_mutex_unlock(&beers_lock);

 }

 printf("beers = %i\n", beers);

 return NULL;

}

Version A

Version B

you are here 4   517

threads

Both pieces of code use a mutex to protect the beers variable, and each now displays the value of beers before
they exit, but because they are locking the code in different places, they generate different output on the screen.

Can you figure out which version produced each of these two runs?

> ./beer
2000000 bottles of beer on the wall
2000000 bottles of beer
beers = 1900000
beers = 1800000
beers = 1700000
beers = 1600000
beers = 1500000
beers = 1400000
beers = 1300000
beers = 1200000
beers = 1100000
beers = 1000000
beers = 900000
beers = 800000
beers = 700000
beers = 600000
beers = 500000
beers = 400000
beers = 300000
beers = 200000
beers = 100000
beers = 0
There are now 0 bottles of beer on the wall
>

File Edit Window Help Don’tLoseTheThread

> ./beer_fixed_strategy_2
2000000 bottles of beer on the wall
2000000 bottles of beer
beers = 63082
beers = 123
beers = 104
beers = 102
beers = 96
beers = 75
beers = 67
beers = 66
beers = 65
beers = 62
beers = 58
beers = 56
beers = 51
beers = 41
beers = 36
beers = 30
beers = 28
beers = 15
beers = 14
beers = 0
There are now 0 bottles of beer on the wall
>

File Edit Window Help Don’tLoseTheThread

Match the code to
the output.

518   Chapter 12

exercise solved

There’s no simple way to decide where to put the locks in your code. Where you put them will
change the way the code performs. Here are two versions of the drink_lots() function
that lock the code in different ways.

pthread_mutex_t beers_lock = PTHREAD_MUTEX_INITIALIZER;

void* drink_lots(void *a)

{

 int i;

 pthread_mutex_lock(&beers_lock);

 for (i = 0; i < 100000; i++) {

 beers = beers - 1;

 }

 pthread_mutex_unlock(&beers_lock);

 printf("beers = %i\n", beers);

 return NULL;

}

pthread_mutex_t beers_lock = PTHREAD_MUTEX_INITIALIZER;

void* drink_lots(void *a)

{

 int i;

 for (i = 0; i < 100000; i++) {

 pthread_mutex_lock(&beers_lock);

 beers = beers - 1;

 pthread_mutex_unlock(&beers_lock);

 }

 printf("beers = %i\n", beers);

 return NULL;

}

Version A

Version B

you are here 4   519

threads

Both pieces of code use a mutex to protect the beers variable, and each now displays the value of beers before
they exit, but because they are locking the code in different places, they generate different output on the screen.

You were to figure out which version produced each of these two runs.

> ./beer
2000000 bottles of beer on the wall
2000000 bottles of beer
beers = 1900000
beers = 1800000
beers = 1700000
beers = 1600000
beers = 1500000
beers = 1400000
beers = 1300000
beers = 1200000
beers = 1100000
beers = 1000000
beers = 900000
beers = 800000
beers = 700000
beers = 600000
beers = 500000
beers = 400000
beers = 300000
beers = 200000
beers = 100000
beers = 0
There are now 0 bottles of beer on the wall
>

File Edit Window Help Don’tLoseTheThread

> ./beer_fixed_strategy_2
2000000 bottles of beer on the wall
2000000 bottles of beer
beers = 63082
beers = 123
beers = 104
beers = 102
beers = 96
beers = 75
beers = 67
beers = 66
beers = 65
beers = 62
beers = 58
beers = 56
beers = 51
beers = 41
beers = 36
beers = 30
beers = 28
beers = 15
beers = 14
beers = 0
There are now 0 bottles of beer on the wall
>

File Edit Window Help Don’tLoseTheThread

Match the code to
the output.

520   Chapter 12

congratulations!

	 Congratulations! You’ve (almost)
reached the end of the book. Now it’s
time to crack open one of those

2,000,000 bottles of beer and celebrate!
You’re now in a great position to decide what kind of C coder you
want to be. Do you want to be a Linux hacker using pure C? Or
a maker writing embedded C in small devices like the Arduino?

Maybe you want to go on to be a games developer in C++? Or a Mac
and iOS programmer in Objective-C?

Whatever you choose to do, you’re now part of the community that uses and loves
the language that has created more software than any other. The language behind the
Internet and almost every operating system. The language that’s used to write almost
all the other languages. And the language that can write for almost every processor in
existence, from watches and phones to planes and satellites.

New C Hacker, we salute you!

Q: Does my machine have to
have multiple processors to support
threads?

A: No. Most machines have processors
with multiple cores, which means that
their CPUs contain miniprocessors that
can do several things at once. But even
if your code is running on a single core/
single processor, you will still be able to
run threads.

Q: How?

A: The operating system will switch
rapidly between the threads and make it
appear that it is running several things at
once.

Q: Will threads make my programs
faster?

A: Not necessarily. While threads can
help you use more of the processors and
cores on your machine, you need to be
careful about the amount of locking your
code needs to do. If your threads are
locked too often, your code may run as
slowly as single-threaded code.

Q: How can I design my thread code
to be fast?

A: Try to reduce the amount of data
that threads need to access. If threads
don’t access a lot of shared data, they
won’t need to lock each other out so often
and will be much more efficient.

Q: Are threads faster than separate
processes?

A: They usually are, simply because
it takes a little more time to create
processes than it does to create extra
threads.

Q: I’ve heard that mutexes can lead
to “deadlocks.” What are they?

A: Say you have two threads, and they
both want to get mutexes A and B. If the
first thread already has A, and the second
thread already has B, then the threads will
be deadlocked. This is because the first
thread can’t get mutex B and the second
thread can’t get mutex A. They both come
to a standstill.

you are here 4   521

threads

Your C Toolbox

You’ve got Chapter 12 under
your belt, and now you’ve

added threads to your toolbox.
For a complete list of tooltips in the

book, see Appendix ii.

CHAPT
ER 12

Simple
processes do
one thing at a

time.

Threads allow
a process to do
more than one
thing at the
same time. Threads are

“lightweight
processes.”POSIX threads

(pthread) is
a threading
library.

pthread_create()
creates a thread
to run a function.

pthread_join()

will wait for
a thread to
finish.

Threads
share the
same global
variables.

If two threads read and update the same variable, your code will be unpredictable.

Mutexes are
locks that
protect shared
data.

pthread_mutex_lock()
creates a mutex on code.

pthread_mutex_unlock()
releases the mutex.

C# Lab   523

Name: Date:

C Lab   523

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve gained
over the last few chapters.
This project is bigger than the ones you’ve seen so far.
So read the whole thing before you get started, and
give yourself a little time. And don’t worry if you get
stuck; there are no new C concepts in here, so you
can move on in the book and come back to the lab
later.
We’ve filled in a few design details for you, and we’ve
made sure you’ve got all the pieces you need to write
the code.
It’s up to you to finish the job, but we won’t give you
the code for the answer.

C Lab 3
Blasteroids

524  

Blasteroids

Write the arcade game Blasteroids
Of course, one of the real reasons people want to learn C is so
they can write games. In this lab, you’re going to pay tribute to
one of the most popular and long-lived video games of them all.
It’s time to write Blasteroids!

This is your score.

These are the number of lives you have left. You lose a life when you get hit by an asteroid. When you run out of lives, it’s game over.

These are asteroids you
have to shoot. You get
points for each asteroid
you shoot.

Pow! Pow! You
shoot asteroids by
firing bullets.

This is your spaceship. Use
your keyboard to fly your
spaceship, firing at asteroids
while avoiding getting hit.

   525

Blasteroids

Your mission: blast the asteroids without getting hit
Sinister. Hollow. And all strangely similar. The asteroids are the
bad guys in this game. They float and rotate slowly across the
screen, promising instant death to any passing space traveler who
happens to meet them.

Welcome to the starship Vectorize! This is the ship that you will
fly around the screen using your keyboard. It’s armed with a
cannon that can fire at passing asteroids.

If an asteroid is hit by a blast from the spaceship’s cannon, it
immediately splits into two, and the player’s score increases by
100 points. Once an asteroid has been hit a couple of times, it’s
removed from the screen.

If the ship gets hit by an asteroid, you lose a life. You have three
lives, and when you lose the last one, that’s the end of the game.

526  

Blasteroids

Allegro
Allegro is an open source game development library that allows
you to create, compile, and run game code across different
operating systems. It works with Windows, Linux, Mac OS, and
even phones.

Allegro is pretty straightforward to use, but just because it’s a
simple library doesn’t mean it lacks power. Allegro can deal
with sound, graphics, animation, device handling, and even 3D
graphics if your machine supports OpenGL. OpenGL is an open standard for

graphics processors. You describe
your 3D objects to OpenGL, and it
handles (most) of the math for you.

Installing Allegro
You can get the source for Allegro over at the Allegro
SourceForge website:

http://alleg.sourceforge.net/

The Web gets updated more often than
books, so this URL might be different.
Check on your favorite search engine.

You can download, build, and install the latest code from the
source repository. There are instructions on the site that will tell
you exactly how to do that for your operating system.

You may need CMake
When you build the code, you will probably also need to install
an extra tool called CMake. CMake is a build tool that makes it
a little easier to build C programs on different operating systems.
If you need CMake, you will find all you need over at
http://www.cmake.org.

	 The code
we’ve
supplied
in this lab
is for

version 5 of Allegro.

If you download and
install a newer version,
you may need to make a
few changes.

   527

Blasteroids

What does Allegro do for you?
The Allegro library deals with several things:

GUIs
Allegro will create a simple window to contain your game. This might not
seem like a big deal, but different operating systems have very different ways
of creating windows and then allowing them to interact with the keyboard
and the mouse.

¥

Events
Whenever you hit a key, move a mouse, or click on something, your system
generates an event. An event is just a piece of data that says what happened.
Events are usually put onto queues and then sent to applications. Allegro
makes it simple to respond to events so that you can easily, say, write code
that will run if a user fires her canyon by hitting the spacebar.

¥

Timers
You’ve already looked at timers at the system level. Allegro provides a
straightforward way to give your game a heartbeat. All games have some
sort of heartbeat that runs so many times a second to make sure the game
display is continuously updated. Using a timer, you can create a game that,
for example, displays a fresh version of the screen at 60 frames per second
(FPS).

¥

Graphics buffering
To make your game run smoothly, Allegro uses double buffering. Double
buffering is a game-development technique that allows you to draw all
of your graphics in an offscreen buffer before displaying it on the screen.
Because an entire frame of animation is displayed all at once, your game will
run much more smoothly.

¥

Graphics and transformations
Allegro comes with a set of built-in graphics primitives that allow you
to draw lines, curves, text, solids, and pictures. If you have an OpenGL
driver for your graphics card, you can even do 3D. In addition to all of this,
Allegro also supports transformations. Transformations allow you to
rotate, translate, and scale the graphics on the screen, which makes it easy
to create animated spaceships and floating rocks that can move and turn on
the screen.

¥

Sounds
Allegro has a full sound library that will allow you to build sounds into your
game.

¥

528  

Blasteroids

Building the game
You’ll need to decide how you’re going to structure your source
code. Most C programmers would probably break down the
code into separate source files. That way, not only will you be
able to recompile your game quicker, but you’ll also be dealing
with smaller chunks of code at a time. That will make the whole
process a lot less confusing.

There are many, many ways of splitting up your code, but one
way is to have a separate source file for each element that will be
displayed in the game:

asteroid.c

A file containing all of the source code to track
and display the latest position of an asteroid.

blast.c

The spaceship will be able to fire its cannon at
passing asteroids, so you will need code to draw
and move a cannon blast across the screen.

spaceship.c

The hero of your game, the plucky little spaceship.
Unlike with the asteroids, you will probably need
to manage only one of these at a time.

blasteroids.c

It’s always good to have a separate source file to deal with the core of the game. The code in here will need to listen for keypresses, run a timer, and also tell all of the other spaceships, rocks, and
blasts to draw themselves on the screen.

   529

Blasteroids

The spaceship
When you’re controlling lots of objects on a screen, it’s useful to
create a struct for each one. Use this for the spaceship:

typedef struct {

 float sx;

 float sy;

 float heading;

 float speed;

 int gone;

 ALLEGRO_COLOR color;

} Spaceship;

What the spaceship looks like
If you set up your code to draw around the origin (discussed later),
then you could draw the ship using code like this:

The variable s is a pointer to a Spaceship struct. Make the
ship green.

al_draw_line(-8, 9, 0, -11, s->color, 3.0f);

al_draw_line(0, -11, 8, 9, s->color, 3.0f);

al_draw_line(-6, 4, -1, 4, s->color, 3.0f);

al_draw_line(6, 4, 1, 4, s->color, 3.0f);

Where it is on
the screen

The direction it's pointing

Is it dead?

Collisions
If your spaceship collides with a rock, it dies immediately and
the player loses a life. For the first five seconds after a new ship is
created, it doesn’t check for collisions. The new ship should appear
in the center of the screen.

530  

Blasteroids

Spaceship behavior
The spaceship starts the game stationary in the center of the screen.
To make it move around the screen, you need to make it respond to
keypresses:

Make sure the ship doesn’t accelerate too much. You probably don’t
want the spaceship to move forward more than a couple hundred
pixels per second. The spaceship should never go into reverse.

SPACE

 LEFT RIGHT

DOWN

UP

The left arrow
turns the spaceship
counterclockwise.

The right arrow turns the spaceship clockwise.

The up and down
arrows accelerate
and decelerate the
spaceship.

Fire!

   531

Blasteroids

Reading keypresses
The C language is used to write code for almost every piece of
computer hardware in the world. But the strange thing is, there’s
no standard way to read a keypress using C. All of the standard
functions, like fgets(), read only the keys once the return key has
been pressed. But Allegro does allow you to read keypresses. Every
event that’s sent to an Allegro game comes in via a queue. That’s just
a list of data that describes which keys have been pressed, where the
mouse is, and so on. Somewhere, you’ll need a loop that waits for an
event to appear on the queue.

ALLEGRO_EVENT_QUEUE *queue;

queue = al_create_event_queue();

ALLEGRO_EVENT event;

al_wait_for_event(queue, &event);

You create an event queue like this.

This waits for an event from the queue.

Once you receive an event, you need to decide if it represents a
keypress or not. You can do that by reading its type.

if (event.type == ALLEGRO_EVENT_KEY_DOWN) {

 switch(event.keyboard.keycode) {

 case ALLEGRO_KEY_LEFT:

 break;

 case ALLEGRO_KEY_RIGHT:

 break;

 case ALLEGRO_KEY_SPACE:

 break;

 }

}

Turn the ship left.

Turn right.

Fire!

Even functions such as getchar()
tend to buffer any characters you
type until you hit return.

532  

Blasteroids

The blast
Take that, you son of a space pebble! The spaceship’s cannon can
fire blasts across the screen, and it’s your job to make sure they
move across the screen. This is the struct for a blast:

typedef struct {

 float sx;

 float sy;

 float heading;

 float speed;

 int gone;

 ALLEGRO_COLOR color;

} Blast;

Blast appearance
The blast is a dashed line. If the user hits the fire key rapidly, the
blasts will overlay each other and the line will look more solid. That
way, rapid firing will give the impression of increased firepower.

Blast behavior
Unlike the other objects you’ll be animating, blasts that disappear
off the screen won’t reappear. That means you’ll need to write code
that can easily create and destroy blasts. Blasts are always fired in
the direction the ship is heading, and they always travel in a straight
line at a constant speed—say, three times the maximum speed of
the ship. If a blast collides with an asteroid, the asteroid will divide
into two.

   533

Blasteroids

The asteroid
Use this struct for each asteroid:

Asteroid appearance
This is the code to draw an asteroid around the origin:

 al_draw_line(-20, 20, -25, 5, a->color, 2.0f);

 al_draw_line(-25, 5, -25, -10, a->color, 2.0f);

 al_draw_line(-25, -10, -5, -10, a->color, 2.0f);

 al_draw_line(-5, -10, -10, -20, a->color, 2.0f);

 al_draw_line(-10, -20, 5, -20, a->color, 2.0f);

 al_draw_line(5, -20, 20, -10, a->color, 2.0f);

 al_draw_line(20, -10, 20, -5, a->color, 2.0f);

 al_draw_line(20, -5, 0, 0, a->color, 2.0f);

 al_draw_line(0, 0, 20, 10, a->color, 2.0f);

 al_draw_line(20, 10, 10, 20, a->color, 2.0f);

 al_draw_line(10, 20, 0, 15, a->color, 2.0f);

 al_draw_line(0, 15, -20, 20, a->color, 2.0f);

typedef struct {

 float sx;

 float sy;

 float heading;

 float twist;

 float speed;

 float rot_velocity;

 float scale;

 int gone;

 ALLEGRO_COLOR color;

} Asteroid;

Where it is on the screen

Which way it's headed
Current rotation

Speed of rotation per frame
Scaling factor to change its size

Has it been destroyed?

534  

Blasteroids

How the asteroid moves
Asteroids move in a straight line across the screen. Even though they
move in a straight line, they continually rotate about their centers. If
an asteroid drifts off one side of the screen, it immediately appears
on the other.

When the asteroid is hit by a blast
If an asteroid is hit by a blast from the spaceship’s cannon, it
immediately splits into two. Each of these parts will be half the
size of the original asteroid. Once an asteroid has been hit/split a
couple of times, it is removed from the screen. The player’s score
increases with each hit by 100 points. You will need to decide how
you will record the set of asteroids on the screen. Will you create
one huge array? Or will you use a linked list?

The game status
There are a couple of things you need to display on the screen: the
number of lives you have left and the current score. When you’ve
run out of lives, you need to display “Game Over!” in big, friendly
letters in the middle of the screen.

   535

Blasteroids

Use transformations to move things around
You’ll need to animate things around the screen. The spaceship
will need to fly, and the asteroids will need to rotate, drift, and even
change size. Rotations, translations, and scaling require quite a lot
of math to work out. But Allegro comes with a whole bunch of
transformations built in.

When you’re drawing an object, like a spaceship, you should
probably just worry about drawing it around the origin. The origin
is the top-left corner of the screen and has coordinates (0, 0). The
x-coordinates go across the screen, and the y-coordinates go down.
You can use transformations to move the origin to where the object
needs to be on the screen and then rotate it to point the correct way.
Once that’s all done, all you need to do is draw your object at the
origin and everything will be in the right place.

For example, this is one way you might draw the spaceship on the
screen:

void draw_ship(Spaceship* s)

{

 ALLEGRO_TRANSFORM transform;

 al_identity_transform(&transform);

 al_rotate_transform(&transform, DEGREES(s->heading));

 al_translate_transform(&transform, s->sx, s->sy);

 al_use_transform(&transform);

 al_draw_line(-8, 9, 0, -11, s->color, 3.0f);

 al_draw_line(0, -11, 8, 9, s->color, 3.0f);

 al_draw_line(-6, 4, -1, 4, s->color, 3.0f);

 al_draw_line(6, 4, 1, 4, s->color, 3.0f);

}

536  

Blasteroids

The finished product
When you’re done, it’s time to play Blasteroids!

There are lots of other things you
could do to enhance the game. As
an example, why not try to get it
working with OpenCV? Let us know
how you get on at Head First Labs.

you are here 4   537

Leaving town…

It’s been great having you here in Cville!

We’re sad to see you leave, �but there’s nothing like taking what you’ve learned

and putting it to use. There are still a few more gems for you in the back of the book and

an index to read through, and then it’s time to take all these new ideas and put them into

practice. We’re dying to hear how things go, so drop us a line at the Head First Labs

website, www.headfirstlabs.com, and let us know how C is paying off for YOU!

this is an appendix   539

The top ten things
(we didn’t cover)

leftoversi

Even after all that, there’s still a bit more.�
There are just a few more things we think you need to know. We wouldn’t feel right about

ignoring them, even though they need only a brief mention, and we really wanted to give

you a book you’d be able to lift without extensive training at the local gym. So before you

put the book down, read through these tidbits.

Oh my, look at all
the tasty treats we
have left…

540   appendix i

operators

#1. Operators
We’ve used a few operators in this book, like the basic arithmetic
operators +, -, *, and /, but there are many other operators
available in C that can make your life easier.

Increments and decrements
An increment and a decrement increase and decrease a number by
1. That’s a very common operation in C code, particularly if you
have a loop that increments a counter. The C language gives you
four simple expressions that simplify increments and decrements:

++i

i++

--i

i--

Increase i by 1, then
return the new value.
Increase i by 1, then
return the old value.

Decrease i by 1, then
return the new value.
Decrease i by 1, then
return the old value.

Each of these expressions will change the value of i. The position
of the ++ and -- say whether or not to return the original value
of i or its new value. For example:

int i = 3;

int j = i++; After this line, j == 3 and i == 4.

The ternary operator
What if you want one value if some condition is true, and a
different value if it’s false?

if (x == 1)

 return 2;

else

 return 3;

C has a ternary operator that allows you to compress this code right
down to the following:

return (x == 1) ? 2 : 3;

First, the condition Next comes the value if the condition is true

Finally, the value if the condition is false

you are here 4   541

leftovers

Bit twiddling
C can be used for low-level programming, and it has a set of
operators that let you calculate a new series of bits:

The << operator can be used as a quick way of multiplying an
integer by 2. But be careful that numbers don’t overflow.

Commas to separate expressions
You’ve seen for loops that perform code at the end of each
loop:

for (i = 0; i < 10; i++) This increment will happen at the end of each loop.

But what if you want to perform more than one operation at
the end of a loop? You can use the comma operator:

for (i = 0; i < 10; i++, j++) Increment i and j.

The comma operator exists because there are times when you
don’t want to separate expressions with semicolons.

Operator Description
~a The value of a with all the bits flipped
a&b AND the bits of a and b together
a | b OR the bits of a and b together
a^b XOR the bits of a and b together
<< Shift bits to the left (increase)
>> Shift bits to the right (decrease)

542   appendix i

preprocessor directives

#2. Preprocessor directives
You use a preprocessor directive every time you compile a program
that includes a header file:

#include <stdio.h> This is a preprocessor directive.

The preprocessor scans through your C source file and generates
a modified version that will be compiled. In the case of the
#include directive, the preprocessing inserts the contents of the
stdio.h file. Directives always appear at the start of a line, and they
always begin with the hash (#) character. The next most common
directive after #include is #define:

#define DAYS_OF_THE_WEEK 7

...

printf("There are %i days of the week\n", DAYS_OF_THE_WEEK);

The #define directive creates a macro. The preprocessor will
scan through the C source and replace the macro name with the
macro’s value. Macros aren’t variables because they can never
change at runtime. Macros are replaced before the program even
compiles. You can even create macros that work a little like
functions:

#define ADD_ONE(x) ((x) + 1)

...

printf("The answer is %i\n", ADD_ONE(3));

x is a parameter to the macro.
Be careful to use parentheses with macros.

This is will output “The answer is 4.”

The preprocessor will replace ADD_ONE(3) with ((3) + 1)
before the program is compiled.

Conditions
You can also use the preprocessor for conditional
compilation. You can make it switch parts of the source
code on or off:

#ifdef SPANISH

char *greeting = "Hola";

#else

char *greeting = "Hello";

#endif

If the SPANISH macro exists…
…include this code.

If not, include this code.

This code will be compiled differently if there is (or isn’t) a
macro called SPANISH defined.

you are here 4   543

leftovers

#3. The static keyword
Imagine you want to create a function that works like a counter.
You could write it like this:

int count = 0;

int counter()

{

 return ++count;

}

Use this to count the calls.

Increment the count each time.

What’s the problem with this code? It uses a global variable called
count. Any other function can change the value of count
because it’s in the global scope. If you start to write large programs,
you need to be careful that you don’t have too many global
variables because they can lead to buggy code. Fortunately, C lets
you create a global variable that is available only inside the local
scope of a function:

int counter()

{

 static int count = 0;

 return ++count;

}

count is still a global variable, but it can only be accessed
inside this function.

The static keyword will store the variable inside the global area
of memory, but the compiler will throw an error if some other
function tries to access the count variable.

static can also make things private
You can also use the static keyword outside of functions.
static in this case means “only code in this .c file can use this.”
For example:

static int days = 365;

static void update_account(int x) {

...

}

The static keyword controls the scope of something. It will
prevent your data and functions from being accessed in ways that
they weren’t designed to be.

You can use this variable only
inside the current source file.

You can call this
function only
from inside this
source file.

The static keyword means
this variable will keep its value
between calls to counter().

544   appendix i

sizes

#4. How big stuff is
You’ve seen that the sizeof operator can tell you how much
memory a piece of data will occupy. But what if you want to
know what range of values it will hold? For example, if you
know that an int occupies 4 bytes on your machine, what’s the
largest positive number you can store in it? Or the largest negative
number? You could, theoretically, work that out based on the
number of bytes it uses, but that can be tricky.

Instead, you can use the macros defined in the limits.h header.
Want to know what the largest long value you can use is? It’s
given by the LONG_MAX macro. How about the most negative
short? Use SHRT_MIN. Here’s an example program that shows
the ranges for ints and shorts:

#include <stdio.h>

#include <limits.h>

int main()

{

 printf("On this machine an int takes up %lu bytes\n", sizeof(int));

 printf("And ints can store values from %i to %i\n", INT_MIN, INT_MAX);

 printf("And shorts can store values from %i to %i\n", SHRT_MIN, SHRT_MAX);

 return 0;

}

On this machine an int takes up 4 bytes
And ints can store values from -2147483648 to 2147483647
And shorts can store values from -32768 to 32767

File Edit Window Help HowBigIsBig

The macro names come from the data types: INT (int), SHRT
(short), LONG (long), CHAR (char), FLT (float), DBL
(double). Then, you either add _MAX (most positive) or _MIN
(most negative). You can optionally add the prefix U (unsigned),
S (signed), or L (long) if you are interested in a more specific
data type.

you are here 4   545

leftovers

#5. Automated testing
It’s always important to test your code, and life becomes a lot
simpler if you automate the tests. Automated tests are now used
by virtually all developers, and there are many, many testing
frameworks used by C programmers. One that’s popular at Head
First Labs is called AceUnit:

http://aceunit.sourceforge.net/

AceUnit is very similar to the xUnit frameworks in other languages
(like nUnit and jUnit).

If you’re writing a command-line tool and you have a Unix-style
command shell, then another great tool is called shunit2.

http://code.google.com/p/shunit2/

shunit2 lets you create shell scripts that test scripts and
commands.

546   appendix i

gcc

#6. More on gcc
You’ve used the GNU Compiler Collection (gcc) throughout this book,
but you’ve only scratched the surface of what this compiler can do
for you. gcc is like a Swiss Army knife. It has an immense number
of features that give you a tremendous amount of control over the
code it produces.

Optimization
gcc can do a huge amount to improve the performance of your
code. If it sees that you’re assigning the same value to a variable
every time a loop runs, it can move that assignment outside the
loop. If you have a small function that is used only in a few places,
it can convert that function into a piece of inline code and insert it
into the right places in your program.

It can do lots of optimizations, but most of them are switched off
by default. Why? Because optimizations take time for the compiler
to perform, and while you’re developing code you normally want
your compiles to be fast. Once your code is ready for release, you
might want to switch on more optimization. There are four levels
of optimization:

Flag Description
-O If you add a -O (letter O) flag to your gcc command, you will get the

first level of optimizations.
-O2 For even more optimizations and a slower compile, choose -O2.
-O3 For yet more optimizations, choose -O3. This will include all of the

optimization checks from -O and -O2, plus a few extras.
-Ofast The maximum amount of optimization is done with -Ofast. This is

also the slowest one to compile. Be careful with -Ofast because the
code it produces is less likely to conform to the C standards.

gcc

you are here 4   547

leftovers

Warnings
Warnings are displayed if the code is technically valid but does
something suspicious, like assign a value to a variable of the
wrong type. You can increase the number of warning checks with
-Wall:

gcc fred.c -Wall -o fred

The -Wall option means “All warnings,” but for historic reasons
is doesn’t actually display all of the warnings. For that, you should
also include -Wextra:

gcc fred.c -Wall -Wextra -o fred

Also, if you want to have really strict compilation, you can make the
compile fail if there are any warnings at all with -Werror:

gcc fred.c -Werror -o fred This means “treat warnings as errors.”

-Werror is useful if several people are working on the same code
because it will help maintain code quality.

For more gcc options, see:

http://gcc.gnu.org/onlinedocs/gcc

548   appendix i

make

#7. More on make
make is an incredibly powerful tool for building C applications,
but you’ve only had a very simple introduction to it in this book.
For more details on the amazing things you can do with make, see
Robert Mecklenburg’s Managing Projects with GNU Make:

http://shop.oreilly.com/product/9780596006105.do

For now, here are just a few of its features.

Variables
Variables are a great way of shortening your makefiles. For
example, if you have a standard set of command-line options you
want to pass to gcc, you can define them with a variable:

CFLAGS = -Wall -Wextra -v

fred: fred.c

 gcc fred.c $(CFLAGS) -o fred

You define a variable using the equals sign (=) and then read its
value with $(...).

Using %, ^, and @
Most of the time, a lot of your compile commands are going to
look pretty similar:

fred: fred.c

gcc fred.c -Wall -o fred

In which case, you might want to use the % symbol to write a more
general target/recipe:

This looks a little weird because of all the symbols. If you want
to make a file called fred, this rule tells make to look for a file
called fred.c. Then, the recipe will run a gcc command to create
the target fred (given by the special symbol $@) using the given
dependency (given by $@).

%: %.c

gcc $^ -Wall -o $@

If you’re creating <file>, then look for <file>.c.
$^ is the dependency
value (the .c file).

$@ is name of the target.

you are here 4   549

leftovers

Implicit rules
The make tool knows quite a lot about C compilation, and it can
use implicit rules to build files without you telling it exactly how.
For example, if you have a file called fred.c, you can compile it
without a makefile by typing:

> make fred
cc fred.c -o fred

File Edit Window Help MakeMyDaycc will usually be another name for gcc.

This compile command was
created by make, without
us telling it how.

This is an implicit rule.

That’s because make comes with a bunch of built-in recipes. For
more on make, see:

http://www.gnu.org/software/make/

550   appendix i

development tools

#8. Development tools
If you’re writing C code, you probably care a lot about
performance and stability. And if you’re using the GNU Compiler
Collection to compile your code, you’ll probably want to take a look
at some of the other GNU tools that are available.

gdb
The GNU Project Debugger (gdb) lets you study your compiled
program while it’s running. This is invaluable if you’re trying to
chase down some pesky bug. gdb can be used from the command
line or using an integrated development environment like Xcode or Guile.

http://sourceware.org/gdb/download/onlinedocs/gdb/index.html

gprof
If your code isn’t as fast as you’d hoped, it might be worth profiling
it. The GNU Profiler (gprof) will tell you which parts of your
program are the slowest so that you can tune the code in the most
appropriate way. gprof lets you compile a modified version of
your program that will dump a performance report when it’s
finished. Then the gprof command-line tool will let you analyze
the performance report to track down the slow parts of your code.

http://sourceware.org/binutils/docs-2.22/gprof/index.html

gcov
Another profiling tool is GNU Coverage (gcov). But while gprof
is normally used to check the performance of your code, gcov is
used to check which parts of your code did or didn’t run. This is
important if you’re writing automated tests, because you’ll want to
be sure that your tests are running all of the code you’re expecting
them to.

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

you are here 4   551

leftovers

#9. Creating GUIs
You haven’t created any graphical user interface (GUI) programs in
any of the main chapters of this book. In the labs, you used the
Allegro and OpenCV libraries to write a couple of programs that
were able to display very simple windows. But GUIs are usually
written in very different ways on each operating system.

Linux — GTK
Linux has a number of libraries that are used to create GUI
applications, and one of the most popular is the GIMP toolkit
(GTK+):

http://www.gtk.org/

GTK+ is available on Windows and the Mac, as well as Linux,
although it’s mostly used for Linux apps.

Windows
Windows has very advanced GUI libraries built-in. Windows
programming is a really specialized area, and you will probably
need to spend some time learning the details of the Windows
application programming interfaces (APIs) before you can easily build
GUI applications. An increasing number of Windows applications
are written in languages based on C, such as C# and C++. For an
online introduction to Windows programming, see:

http://www.winprog.org/tutorial/

The Mac — Carbon
The Macintosh uses a GUI system called Aqua. You can create
GUI programs in C on the Mac using a set of libraries called
Carbon. But the more modern way of programming the Mac is
using the Cocoa libraries, which are programmed using another
C-derived language called Objective-C. Now that you’ve reached the
end of this book, you’re in a very good position to learn Objective-C.
Here at Head First Labs, we love the books and courses on Mac
programming available at the Big Nerd Ranch:

http://www.bignerdranch.com/

552   appendix i

reference material

#10. Reference material
Here’s a list of some popular books and websites on C programming.

Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language
(Prentice Hall; ISBN 978-0-131-10362-7)

Samuel P. Harbison and Guy L. Steele Jr., C: A Reference Manual
(Prentice Hall; ISBN 978-0-130-89592-9)

Peter van der Linden, Expert C Programming
(Prentice Hall; ISBN 978-0-131-77429-2)

Steve Oualline, Practical C Programming
(O’Reilly; ISBN 978-1-565-92306-5)

Websites
For standards information, see:
http://pubs.opengroup.org/onlinepubs/9699919799/

For additional C coding tutorials, see:
http://www.cprogramming.com/

For general reference information, see:
http://www.cprogrammingreference.com/

For a general C programming tutorial, see:
http://www.crasseux.com/books/ctutorial/

This is the book that defined the original C programming language, and
almost every C programmer on Earth has a copy.

This is an excellent C reference book that you will want by your side as
you code.

For more advanced programming, see Peter van der Linden’s excellent book.

This book outlines the practical details of C development.

this is an appendix   553

Revision roundup

c topicsii

Ever wished all those great C facts were in one place?�
This is a roundup of all the C topics and principles we’ve covered in the book. Take a look

at them, and see if you can remember them all. Each fact has the chapter it came from

alongside it, so it’s easy for you to refer back if you need a reminder. You might even want

to cut these pages out and tape them to your wall.

554   appendix ii

basics

Basics

Simple statements are
commands.

CH
AP

T
ER

 1

Block statements are
surrounded by { and }.

CH
AP

T
ER

 1

if statements run code if
something is true.

CH
AP

T
ER

 1

switch statements efficiently
check for multiple values of a
variable.

CH
AP

T
ER

 1

You can combine conditions
together with && and ||.

CH
AP

T
ER

 1

Every program needs a main
function.

CH
AP

T
ER

 1

#include includes external
code for things like input and
output.

CH
AP

T
ER

 1

Your source files should have a
name ending in .c.

CH
AP

T
ER

 1

you are here 4   555

revision roundup

You need to compile your C
program before you run it.

CH
AP

T
ER

 1

gcc is the most popular C
compiler.

CH
AP

T
ER

 1

You can use the && operator on
the command line to only run
your program if it compiles.

CH
AP

T
ER

 1

-o specifies the output file.

CH
AP

T
ER

 1
count++ means add 1 to count.

CH
AP

T
ER

 1

count-- means subtract 1
from count.

CH
AP

T
ER

 1

while repeats code as long as a
condition is true.

CH
AP

T
ER

 1

do-while loops run code at
least once.

CH
AP

T
ER

 1

for loops are a more compact
way of writing loops.

CH
AP

T
ER

 1

556   appendix ii

pointers

Pointers and memory

scanf(“%i”, &x) will allow a user
to enter a number x directly.

CH
AP

T
ER

 2

A char pointer variable x is
declared as char *x.

CH
AP

T
ER

 2

Initialize a new array with a
string, and it will copy it.

CH
AP

T
ER

 2

&x returns the address of x.

CH
AP

T
ER

 2

&x is called a pointer to x.

CH
AP

T
ER

 2

Local variables are stored on
the stack.

CH
AP

T
ER

 2

Array variables can be used as
pointers.

CH
AP

T
ER

 2

Read the contents of an
address a with *a.

CH
AP

T
ER

 2

fgets(buf, size, stdin) is a
simpler way to enter text.

CH
AP

T
ER

 2

you are here 4   557

revision roundup

Strings

Literal strings are stored in
read-only memory.

CH
AP

T
ER

 2

The string.h header contains
useful string functions.

CH
AP

T
ER

 2
.5

strstr(a, b) will return the
address of string b in string a.

CH
AP

T
ER

 2
.5

An array of strings is an array
of arrays.

CH
AP

T
ER

 2
.5

You create an array of arrays
using char strings [...][...].

CH
AP

T
ER

 2
.5

strcmp() compares two strings.
CH

AP
T

ER
 2

.5

strcat() concatenates two
strings together.

CH
AP

T
ER

 2
.5

strchr() finds the location of
a character inside a string.

CH
AP

T
ER

 2
.5

strcpy() copies one string to
another.

CH
AP

T
ER

 2
.5

strlen() finds the length of a
string.

CH
AP

T
ER

 2
.5

558   appendix ii

data streams

Data streams

C functions like printf() and
scanf() use the Standard
Output and Standard Input to
communicate. CH

AP
T

ER
 3

The Standard Output goes to
the display by default.

CH
AP

T
ER

 3

The Standard Input reads
from the keyboard by default.

CH
AP

T
ER

 3

You can change where the
Standard Input, Output, and
Error are connected to using
redirection. CH

AP
T

ER
 3

The Standard Error is a
separate output intended for
error messages.

CH
AP

T
ER

 3

You can print to the Standard
Error using fprintf(stderr,...).

CH
AP

T
ER

 3

You can create custom data
streams with fopen(“filename”,
mode).

CH
AP

T
ER

 3

The mode can be “w” to write,
“r” to read, or “a” to append.

CH
AP

T
ER

 3

you are here 4   559

revision roundup

Command-line arguments are
passed to main() as an array of
string pointers.

CH
AP

T
ER

 3

The getopt() function makes it
easier to read command-line
options.

CH
AP

T
ER

 3

560   appendix ii

data types

Data types

chars are numbers.

CH
AP

T
ER

 4

ints are different sizes on
different machines.

CH
AP

T
ER

 2

Use longs for really big whole
numbers.

CH
AP

T
ER

 4

Use shorts for small whole
numbers.

CH
AP

T
ER

 4

Use ints for most whole
numbers.

CH
AP

T
ER

 4

Use floats for most floating
points.

CH
AP

T
ER

 4

Use doubles for really precise
floating points.

CH
AP

T
ER

 4

you are here 4   561

revision roundup

Multiple files

Split function declarations
from definitions.

CH
AP

T
ER

 4

Put declarations in a header
file.

CH
AP

T
ER

 4

#include <> for library
headers.

CH
AP

T
ER

 4

#include “ ” for local headers.
CH

AP
T

ER
 4

Save object code into files to
speed up your builds.

CH
AP

T
ER

 4

Use make to manage your
builds.

CH
AP

T
ER

 4

562   appendix ii

structs

Structs

A struct combines data types
together.

CH
AP

T
ER

 5

You can read struct fields with
dot notation.

CH
AP

T
ER

 5

You can intialize structs with
{array, like, notation}.

CH
AP

T
ER

 5

-> notation lets you easily
update fields using a struct
pointer.

CH
AP

T
ER

 5

typedef lets you create an
alias for a data type.

CH
AP

T
ER

 5

Designated initializers let you
set struct and union fields by
name.

CH
AP

T
ER

 5

you are here 4   563

revision roundup

Unions and bitfields

unions can hold different data
types in one location.

CH
AP

T
ER

 5

enums let you create a set of
symbols.

CH
AP

T
ER

 5

Bitfields give you control over
the exact bits stored in a
struct.

CH
AP

T
ER

 5

564   appendix ii

data structures

Data structures

A linked list is more extensible
than an array.

CH
AP

T
ER

 6

Data can be inserted easily
into a linked list.
CH

AP
T

ER
 6

Dynamic data structures use
recursive structs.

CH
AP

T
ER

 6

A linked list is a dynamic data
structure.

CH
AP

T
ER

 6

Recursive structs contain one
or more links to similar data.

CH
AP

T
ER

 6

you are here 4   565

revision roundup

Dynamic memory

The stack is used for local
variables.

CH
AP

T
ER

 6

Unlike the stack, heap memory
is not automatically released.

CH
AP

T
ER

 6
malloc() allocates memory on
the heap.

CH
AP

T
ER

 6

free() releases memory on the
heap.

CH
AP

T
ER

 6

strdup() will create a copy of
a string on the heap.

CH
AP

T
ER

 6

A memory leak is allocated
memory you can no longer
access.

CH
AP

T
ER

 6

valgrind can help you track
down memory leaks.

CH
AP

T
ER

 6

566   appendix ii

advanced functions

Advanced functions

Function pointers let you pass
functions around as if they
were data.

CH
AP

T
ER

 7

Function pointers are the only
pointers that don’t need the
* and & operators, but you can
use them if you want to.CH

AP
T

ER
 7

The name of every function is
a pointer to the function.

CH
AP

T
ER

 7

qsort() will sort an array.

CH
AP

T
ER

 7

Each sort function needs
a pointer to a comparator
function.

CH
AP

T
ER

 7

Comparator functions decide
how to order two pieces of
data.

CH
AP

T
ER

 7

Arrays of function pointers
can help run different
functions for different types
of data. CH

AP
T

ER
 7

you are here 4   567

revision roundup

Functions with a variable
number of arguments are
called “variadic.”

CH
AP

T
ER

 7

stdarg.h lets you create
variadic functions.

CH
AP

T
ER

 7

568   appendix ii

static and dynamic libraries

Static and dynamic libraries

#include <> looks in standard
directories such as /usr/include.

CH
AP

T
ER

 8

-L<name> adds a directory to
the list of standard library
directories.

CH
AP

T
ER

 8

-l<name> links to a file in
standard directories such as
/usr/lib.

CH
AP

T
ER

 8

-I<name> adds a directory to
the list of standard include
directories.

CH
AP

T
ER

 8

The ar command creates a
library archive of object files.

CH
AP

T
ER

 8

Library archives have names
like libsomething.a.

CH
AP

T
ER

 8

Library archives are statically
linked.

CH
AP

T
ER

 8

“gcc -shared” converts object
files into dynamic libraries.

CH
AP

T
ER

 8

you are here 4   569

revision roundup

Dynamic libraries are linked at
runtime.

CH
AP

T
ER

 8

Dynamic libraries have
different names on different
operating systems.

CH
AP

T
ER

 8

Dynamic libraries have .so,
.dylib, .dll, or .dll.a extensions.

CH
AP

T
ER

 8

570   appendix ii

processes and communication

Processes and communication

system() will run a string like a
console command.

CH
AP

T
ER

 9

fork() duplicates the current
process.

CH
AP

T
ER

 9
fork() + exec()
creates a child process.

CH
AP

T
ER

 9 execl() = list of args.
execle() = list of args + environment.
execlp() = list of args + search on path.
execv() = array of args.
execve() = array of args + environment.
execvp() = array of args + search on path.

CH
AP

T
ER

 9

Processes can communicate
using pipes.

CH
AP

T
ER

 10

pipe() creates a communication
pipe.

CH
AP

T
ER

 10

exit() stops the program
immediately.

CH
AP

T
ER

 10

waitpid() waits for a process
to finish.

CH
AP

T
ER

 10

you are here 4   571

revision roundup

fileno() finds the descriptor.

CH
AP

T
ER

 10

dup2() duplicates a data
stream.

CH
AP

T
ER

 10

Signals are messages from the
O/S.

CH
AP

T
ER

 10

sigaction() lets you handle
signals.

CH
AP

T
ER

 10

A program can send signals to
itself with raise().

CH
AP

T
ER

 10

alarm() sends a SIGALRM
after a few seconds.

CH
AP

T
ER

 10

The kill command sends a signal.

CH
AP

T
ER

 10

Simple processes do one thing
at a time.

CH
AP

T
ER

 12

572   appendix ii

sockets and networking

Sockets and networking

telnet is a simple network
client.

CH
AP

T
ER

 11

Create sockets with the
socket() function.

CH
AP

T
ER

 11
Use fork() to cope with
several clients at once.

CH
AP

T
ER

 11

Servers BLAB:
B = bind()
L = listen()
A = accept()
B = Begin talking. CH

AP
T

ER
 11

DNS = Domain name system.

CH
AP

T
ER

 11

getaddrinfo() finds addresses
by domain.

CH
AP

T
ER

 11

you are here 4   573

revision roundup

Threads

Threads allow a process to do
more than one thing at the
same time.

CH
AP

T
ER

 12

Threads are “lightweight
processes.”

CH
AP

T
ER

 12

POSIX threads (pthread) is a
threading library.

CH
AP

T
ER

 12

pthread_create() creates a
thread to run a function.

CH
AP

T
ER

 12
pthread_join() will wait for a
thread to finish.

CH
AP

T
ER

 12

Threads share the same global
variables.

CH
AP

T
ER

 12

If two threads read and
update the same variable, your
code will be unpredictable.

CH
AP

T
ER

 12

Mutexes are locks that
protect shared data.

CH
AP

T
ER

 12

pthread_mutex_lock() creates
a mutex on code.

CH
AP

T
ER

 12

pthread_mutex_unlock()
releases the mutex.

CH
AP

T
ER

 12

this is the index   575

Index

Symbols & Numbers
$ (dollar sign), $%, $^, and $@ compiler commands for

makefiles 548

\0 sentinel character 12

& (ampersand)

bitwise AND operator 20, 541

&& (logical AND) operator 18, 20

reference operator 43, 48

< > (angle brackets)

>> (bitwise shift left) operator 541

in header files 180, 354

redirecting Standard Input with < 111

redirecting Standard Output with > 112, 430

redirection using > and 2> operators 432

* (asterisk)

accessing array elements 61

indirection operator 48

in variable declarations 74

^ (caret), bitwise XOR operator 541

, (comma)

separating expressions 541

separating values in enums 255

{ } (curly braces)

enclosing function body 6

enclosing statements 14

. dot notation, setting value of unions 248

. (dot) operator, reading struct fields 222

... (ellipsis) 345

= (equals sign)

assignment operator 13

== (equality) operator 13

! (exclamation mark), not operator 18

(hash mark), beginning preprocessor directives 542

- (minus sign)

-- (decrement) operator 13, 540

negative numbers and command-line arguments 155

prefacing command-line options 155

-= (subtraction and assignment) operator 13

() (parentheses), caution with, when using structs 240

% (percent sign)

%li format string 52

%p format string 48, 52

| (pipe symbol)

bitwise OR operator 20, 541

connecting input and output with a pipe 131

|| (logical OR) operator 18, 20

+ (plus sign)

+= (addition and assignment) operators 13

++ (increment) operator 13, 540

-> pointer notation 241, 245

? (question mark) 540

?: (ternary) operator 540

“” (quotation marks, double)

enclosing strings 13

in header files 180, 354

‘’ (quotation marks, single) in strings 13

576   index

the index

; (semicolon), separating values in structs and unions 255

/ (slash)

/* and */ surrounding comments 8

// beginning comments 8

[] (square brackets)

array subindex operator 61

creating arrays and accessing elements 96

in variable declarations 74

~ (tilde), bitwise complement operator 541

_ (underscore), replacing spaces in web page name 498

8-bit operating systems 168

32-bit operating systems 168

size of pointers 54

64-bit operating systems 168

size of pointers 54

A
accept() function 471

AceUnit framework 545

alarm() function 458

calls to, resetting the timer 459

sleep() function and 458

alarm signal, SIGALRM 458

Allegro library 526

creation of game elements 527

AND operator (&) 20, 541

AND operator (&&) 18, 20

animation, using transformations 535

ANSI C 2

Arduino 207–216

Arduino board 209

building the physical device 210

C code for, what it does 212

finished product 215

plant monitor and moisture sensor 208

useful functions 214

writing C code in Arduino IDE 209

args parameter 345

arguments, function 32

fixed argument in variadic functions 345, 346

array functions, execv(), execvp(), and execve() 406

arrays 11

array of arrays versus array of pointers 98

assigned to pointers, pointer decay and 59

char pointers versus char arrays in data structure 286

creating array of arrays 85, 96

fixed length of 268

of function pointers 338–342

indexes 13, 61

length of 13

linked lists versus 274

strings as character arrays 12

structs versus 220, 225

using to copy string literals 74

variables declared as 74

array variables

differences from pointers 59

use as pointers 54

Assembly language, translation of C code into 184

assignments

= (assignment) operator 13

chaining 33

compound assignment operators 13

struct assigned to another variable 226

struct to another struct 238

associated arrays or maps 296

asteroids (Blasteroids game) 533

autoconf tool 202

you are here 4   577

the index

automated testing 545

automating builds with make tool 198

B
binary literals, not supported in C 261, 265

binary numbers 163

binary trees 296

binary values, converting between hexadecimal and 261

binding to a port 470

bitfields 262, 265, 563

using to construct customer satisfaction survey
(example) 263

bit size of computers 168

bits, operators for manipulation of 541

bitwise AND operator (&) 20, 541

bitwise complement operator (~) 541

bitwise OR operator (|) 20, 541

bitwise shift left operator (<<) 541

bitwise XOR operator (^) 541

BLAB: Bind, Listen, Accept, Begin 470

Blasteroids game. See game, Blasteroids project

blasts fired by spaceship (Blasteroids game) 532

block statements 14

body of a function 6

boolean operators 18

boolean values, representation in C 18

bound port, reuse by socket 477

break statements 26, 28, 39

exiting loops 31

not breaking out of if statements 31

buffer overflows caused by scanf() function 66

build tools 202

CMake 526

bus errors 13

C
C

basics of 554

how it works 2

reference materials for programming 552

similarities to and influence on other languages 39

C++ 39

C11 standard 2

c89 notation for first field of a union 248

C99 standard 2

cameras

grabbing image from webcam 392

showing current webcam output 393

taking input from computer camera 392

Carbon libraries 551

card counting 16

program for, writing in C 17, 19–21

modifying program to keep running count of card
game 35

testing program 38

case statements 26, 28

casting floats to whole numbers 164

chaining assignments 33

char** pointer 320, 333

char type 159, 161

arithmetic with 182

char pointers versus char arrays in data structure 286

defined 162

checksum() function 352

child process 420, 450

clients talking to server 486

listening to directly 442

piped commands on command line 443

redirecting Standard Output to file 435–440

running with fork() and exec() 421–425

578   index

the index

classes, structs versus 225

CMake 526

Cocoa libraries 551

collisions 529

command-line arguments

avoiding ambiguity by splitting main arguments from
options using -- 155

execl(), execlp(), and execle() functions 405

main() function with 141

command-line options 148

questions and answers on 155

using getopt() function for 149

command line, piping commands together on 443

command path 409

commands, types of 14

comma-separated data, reading and displaying in JSON
format 105

comma (,), separating expressions 541

comments 5

formatting 8

comparator functions 327–333

writing for different sort descriptions 328–333

compilation 2

automating builds with make tool 198–205

behind-the-scenes look at 184

compiling a program using gcc 9

partial compiles 191–196

precompilation and 180

reason for compiling C 39

speeding up for programs in multiple source files 189

compiled code, saving copies of 190

compilers 9. See also gcc

BE the Compiler exercise 23

C standard supported by 8

debug information from 308

finding standard header file directories 355

interview with gcc 22

conditional compilation 542

connection, accepting from client 471

constants

defined 80

string literals as 73

const char 218, 220

const keyword 76, 79

continue statements 31, 39

control statements 14

convert command 449

count variable 543

create() function, using dynamic allocation 282, 284

fixing with strdup() function 286

CreateProcess() function (Windows systems) 426

C Standard Library 127

Ctrl-C, stopping programs 451

curl/wget programs 449

cvCalcOpticalFlowFarneback() function 393

cvCreateCameraCapture() function 392

cvNamedWindow() function 393

cvQueryFrame() function 392

cvShowImage() function 393

Cygwin 449

fork() function and 426

including PATH variable when passing environment
variables on 407

installing before calling fork() on Windows 420

telnet program 468

D
data entry

capabilities of scanf() versus fgets() 68

fgets() as alternative to scanf() 67

using pointers for 65

data streams

creating your own 138

duplication with dup2() function 433

you are here 4   579

the index

handling in a typical process 431

opening, checking for problems with 147

printing to 122

replacement by redirection 432

sockets 470

summary of important points 558

typical data streams versus sockets 472

data structures

questions and answers about 274

summary of important points 564

types other than linked lists 295

data types 158

bytes in memory occupied by, getting with sizeof 280

casting floats to whole numbers 164

data not having single type 246

errors caused by conflicting types in example program
170

macros determining size of 544

matching type of value to type of variable it’s stored
in 163

no function data type in C 319

parameters in variadic functions 349

pointer variables 62

prefixing with unsigned or long keywords 164

process ID 423

quick guide to 162

size of 167

sizes on different operating systems 168

structs 220

summary of 560

unions 249

values stored in unions 254

deadlocks 520

debugger, gdb 550

decay 59

decimal point numbers. See also floating-point numbers;
float type

computers’ representation of 168

declarations

defined 79

function, splitting from definition 173, 561

decrement operator (--) 13, 540

#define directive 542

definitions, function, splitting from declaration 173, 561

dependencies 198

identifying for make tool 199

dereferencing 48, 52

descriptor table

important points about 440

Standard Input, Output, and Error in 432

designated initializers 248, 265

setting initial values of struct fields 249

design tips for small tools 129

/dev/tty program 441

development tools 550

device drivers 403

DNS (domain name system) 493

domain names 491

connecting client socket to remote domain name 492

creation of sockets with IP addresses or domain names
499

double type 159, 161

defined 162

doubly linked lists 296

do-while loops 29, 39

dup2() function 433

dynamic libraries 351, 568

dynamic memory 565

dynamic storage 276–280, 294

using the heap 278

580   index

the index

E
echo command 401

ellipsis (...) 345

email, sending from command line 449

encrypt() function 352

encryption, XOR 182

enums 255, 260

responses in mail merge program (example) 334

tracking values stored in structs and unions 256–259

environment variables

parameters for execv(), execvp(), and execve()
functions 406

parameters for exel(), execlp(), and execle() functions
405

reading and passing to functions 407

equality operator (==) 13

errno variable 408

error handling, avoiding writing duplicate code for system
calls 434

error messages

converting errno into 408

displaying when Standard Output is redirected 118

Standard Error 120

/etc/services file 472

.exe files (Windows) 10

exec() functions 404, 427

array functions, execv(), execvp(), and execve() 406

failures of calls to 408

important points about 411

list functions, execl(), execlp(), and execle() 405

many versions of 405

order-generation program, Starbuzz coffee (example)
412–415

program searching many RSS feeds at once (example)
418

program termination after call to 420

running child process with fork() and exec() 421–425

running /sbin/ifconfig or ipconfig (example) 409

execle() function 407

failures of 408

program searching many RSS feeds at once (example)
418

executables 2, 185

exit() function 434

called by default signal handler for interrupt signal
451

important points about 441

exit status of child process 439

extern keyword 186

F
Feldman, Stuart 202

fgets() function 450, 451

as alternative to scanf() 67

using for data input, scanf() versus 68

file descriptors 431

descriptor tables 441

fileno() function 433

files, making program work with 109

filters 109

find() function 313–315

other types of searches 321

floating-point numbers 159

handling with floats and doubles 168

float type 159

casting to whole numbers 164

defined 162

finding size of 167

fopen() function 138

problem opening data stream 147

fork() function 420, 427

creating a process for each client 486

important points about 426

running child process with fork() + exec() 421–425

calling fork() 423

you are here 4   581

the index

for loops 30, 39

format strings, passing to scanf() function 65

formatted output, display by printf() function 6

fprintf() function 122

updating example mapping program to use 123

freeaddrinfo() function 493

free() function 279

call interception by valgrind 308

releasing memory with 280

tracking calls to with valgrind 302

fscanf() function 122

functions 5, 311–350

advanced, summary of important points 566

Arduino 214

find() function 313–315

macros versus 346

main() function 6

no function data type in C 319

operators versus 56

order in a program 171

order of running in a program 96

passing as parameter to another function 317–324

creating function pointers 320

identifying function pointers 324

passing code to 316

passing pointer to variable as function parameter 47

passing strings to 53

passing struct to function that updates struct 238

sorting data 325–342

using function pointers to set sort order 326

splitting declaration from definition 173, 561

variables declared inside 43

variadic 343–349

writing example function 347–349

void return type 33

writing 32

G
game, Blasteroids project 523–538

Allegro library 526

asteroids 533

blasting asteroids without being hit 525

blasts fired by spaceship 532

building the game 528

finished product 536

game status 534

reading key presses 531

spaceship 529

spaceship behavior 530

using transformations 535

writing arcade game 524

garbage collection, C and 294

gcc 9

finding standard header file directories 355

GNU Compiler Collection 39

interview with 22

-I option 356

optimizations 546

standards supported 8

warnings 547

gcov (GNU Coverage) 550

gdb (GNU Project Debugger) 550

getaddrinfo() function 493

GET command 490

getenv() function 407

getopt() function 149, 155

gets() function, reasons not to use 67

globals

defined 80

variables declared outside of functions 43

global variables 96

count 543

errno 408

storage in memory 47

582   index

the index

GNU Compiler Collection. See gcc

GNU Coverage (gcov) 550

GNU Profiler (gprof) 550

GNU Project Debugger (gdb) 550

golden rules of failure 408

gprof (GNU Profiler) 550

grep command 443

GTK library 551

GUIs (graphical user interfaces), creating 551

H
hardware, kernel and 403

header files

angle brackets in 354

creating 174

forgetting to include 96

function declarations in 173

quotes and angle brackets in 180

for shared code 186

sharing between programs 355

heap

allocating and releasing memory 289

allocating storage for string copy 285

defined 80

differences from the stack 292

important points about 294

releasing memory when you’re done 279

using for dynamic storage 278

hexadecimal literals 261

hexadecimals, converting between binary and 261

hex format, memory addresses 48, 52

.h files. See header files

hostname 490

HTTP (Hypertext Transfer Protocol) 469, 490

I
IDE, Arduino 209

if statements 14

break statements and 31

checking same value repeatedly 25

replacing sequence of switch statement 27

ignoring signals 459

interrupt signal 456

images

converting image formats 449

grabbing image from webcam 392

#include directive 184, 542

angle brackets in 354

header files at different locations 356

including header file in main program 174

includes section, C programs 5

increment operator (++) 13, 540

indexes, array 13

starting at 0 61

indirection operator (*) 48

infinite loops 39

integers 159

interprocess communication 429–466

avoiding duplicate error-handling code for each
system call 434

catching signals and running your own code 452–456

connecting processes with pipes 443

death of a process 451

duplicating data streams with dup2() 433

examining a typical process 431

finding RSS news stories and opening them in a
browser 444–449

getting descriptor with fileno() 433

listening to child process directly 442

processes redirecting themselves 432

you are here 4   583

the index

program saving output of rssgossip.py script to file 435

program testing math skills (example) 460–464

questions and answers about 441

redirecting input and output 430

redirection replacing data streams 432

resetting and ignoring signals 459

sending alarm signal to processes 458

summary of important points 570

using kill command to send signals 457

using raise() to send signals 457

waitpid() function 438–440

interrupt signal 451

ignoring 456

intruder detector 390

finished product 394

int type 159

compiler assumption as return type for unknown
functions 171, 181

defined 162

finding size of 167

I/O (input/output)

connecting input and output with a pipe 131–136

displaying error messages when output is redirected 118

output to more than one file 137

redirecting 430

redirecting output from display to files 109

redirecting Standard Input with < operator 111

redirecting Standard Output with > operator 112

redirection 110

ipconfig 409

IP (Internet Protocol) 469

IP (Internet Protocol) addresses 491

converting domain names to 493

creating socket for an IP address 492

creation of sockets with IP addresses or domain names
499

J
JSON, displaying comma-separated data as 105

K
kernel 403

keypresses, reading 531

kill command, using to send signals 457

L
LED

C code writing to 212

connecting to Arduino board 210

libraries

Allegro game development library 526

GUI (graphical user interface) 551

static and dynamic 568

limits.h header, macros defined in 544

linked lists 269

creating 271

creating and releasing heap memory 287–291

inserting values into 273

linking object code files 185, 191

Linux. See also operating systems

GTK GUI library 551

listen() function 471

listen queue for clients 471

list functions, execl(), execlp(), and execle() 405

local variables, storage in stack 47, 278

locks 513

creating a mutex lock 514

deciding where to put locks in code (example) 516–519

long keyword 164

584   index

the index

LONG_MAX macro 544

long type 159, 161

defined 162

passing long values to thread functions 515

loops

breaking out of with break statement 31

continue statement in 31

running forever, infinite loops 39

structure of 30

M
Mac computers. See also operating systems

Carbon library for GUIs 551

script for talking to plants 215

machine code 2, 185

macros 139

creating 542

functions versus 346

mail/mutt programs 449

main() function 6

with command-line arguments 141

ending program with exit() instead of 441

makefiles 200

on different operating systems 202

generation with autoconf tool 202

make tool 198–205, 225

additional features 548

automating builds with 198

converting Ogg Vorbis music file to Swing version 203

different name on Windows 199

how it works 199

implicit rules to build files 549

uses other than compiling code 202

malloc() function 278

asking for memory with 280

call by strdup() function 294

call interception by valgrind 308

tracking calls to with valgrind 302

memory 41, 565

addresses 47

allocating heap memory and releasing it 289

C toolbox 81

differences between the stack and the heap 292

freeing by calling free() function 279, 280

getting with malloc() function 278

kernel control over 403

order of segments in 79

overview of computer memory 43

and pointers 556

questions and answers about 52

requesting with malloc() function 280

reuse of space with unions 247

string literals stored in read-only memory 73

structs stored in 226

summary of segments 80

memory leaks 279

avoding when using data structures 296

tracking and fixing using valgrind tool 302–308

mingw32-make 199

MinGW, spaces in command-line arguments 405

mkfifo() function 450

moisture sensor

building 210

C code reading from 212

connecting to Arduino 211

movement, detecting 393

mutexes 513

causing deadlocks 520

creating a mutex lock 514

you are here 4   585

the index

N
named pipes 450

nested structs 227

network configuration, commands for 409

networking. See sockets and networking

NMAKE tool 199

not operator (!) 18

NULL value, following last command-line argument in
exec() function parameters 405

O
object code 185

saving copies into files 190

object files, sharing between programs 355

Objective-C 39, 551

object orientation 39

.o files 355. See also object code

Ogg Vorbis music file, converting to Swing version 203

OpenCV 389–394

C code, what it should do 392

defined 391

finished product 394

installing 391

intruder detector 390

operating systems

commands to open a URL 446

controlling programs with signals 451

different sizes of data types on 167, 168

GUI libraries for 551

interview with 127

kernel 403

listing processes running on system 404

makefiles and 202

network configuration commands 409

OpenCV 391

registering new item in file descriptor table 433

Standard Input and Standard Output 110

system calls 398

telnet program 468

operators 540

functions versus 56

precedence of 240, 243

optarg variable 149, 155

optimization 546

optind variable 149

OR operator (|) 20, 541

OR operator (||) 18, 20

P
parameters, function 6, 32

passing by value 238

parent process 420, 450

piped command on command line 443

server 486

partial compiles 191–196

PATH variable 406

including when passing environment variables on
Cygwin 407

performance, analyzing with gprof 550

PIDs (Process Identifiers) 404

pid_status parameter of waitpid() function 441

pid_t in call to fork() 423

waitpid() function parameters 439

pipe() function 450

connecting Standard Output of child and Standard
Input of parent processes 444

586   index

the index

pipes

connecting input and output 131–136

connecting output of rssgossip.py to input of program
444–449

connecting processes with 443

important points about 450

pointer arithmetic

and array index starting at 0 61

and data types of pointer variables 62

important points about 64

pointer notation with structs 241

pointers 42

address of variable in memory 43

array of arrays versus array of pointers 98

array variables as 54

char pointers versus char arrays in data structure 286

conversion to ordinary number 56

C toolbox 81

differences of array variables from 59

file 433

function 318–324, 324, 566

arrays of 338–342

creating 319

summary of important points 342

using to set sort order 326

making it easier for functions to share memory 47

passing pointer to variable as function parameter 47

questions and answers about 52

in recursive structures 271

set to string literals, avoiding 76

sizes on different computers 56

and structs assigned to another variable 226

to structs 239

summary of important points 556

types assigned to pointer variables 62

using for data entry 65

using to read and write data 48

variables declared as function arguments 74

void 506

port, binding to 470

port number for server application, caution in choosing
472

POSIX libraries 149

POSIX thread library (pthread) 506

linking 508

precompilation 180

preprocessing 180

fixing the source 184

preprocessor directives 542

printf() function 6

reading from keyboard and writing to display 110

variable number of arguments 343

printing to data stream with fprintf() function 122

private scope 543

processes. See also interprocess communication

cloning with fork() function 420

communication, summary of important points 570

control by kernel 403

examining a typical process 431

redirecting themselves 432

replacement of current process using exec() functions
404

running child process with fork() + exec() 421–425

server and client, creating processes for clients with
fork() 486

simple, doing one thing at a time 504

speed of, threads versus 520

using for simultaneous tasks, limitations of 503

Process Identifiers. See PIDs

profiling tools 550

programs

compiling and running 9

complete C program 5

exercise, matching candidate block of code with
possible output 34, 36

you are here 4   587

the index

protocols 469, 490

ps -ef command 404

pthread_create() function 507

pthread_join() function 507

PTHREAD_MUTEX_INITIALIZER macro 514

pthread_mutex_lock() function 514

pthread_mutex_unlock() function 514

pthread (POSIX thread) library 506

linking 508

Python

installing 416

RSS Gossip script 416

Q
qsort() function 326

R
raise() command, sending signals with 457

recursive structures 294, 564

creating 271

recv() function 478, 493

redirection 110

child process output to file 435–440

descriptor table and 441

displaying error messages when output is redirected
118

output from display to files 109

processes redirecting themselves 432

programs run from command line 430

replacement of data streams 432

several processes connected with pipes 136

Standard Input, using < operator 111

Standard Output, using > operator 112

reference operator (&) 43, 48

references, pointers versus 52

reserved words in C 181

return statements in functions 32, 39

return type 6

compiler assumptions for unknown functions 171

void return type for thread functions 506

return values, assignments 33

reusing code 182

RSS feeds

program saving output of rssgossip.py script to file 435

program searching many feeds at once (example)
417–425

running rssgossip.py in separate process for each
feed 422

reading news with 416

reading story links from rssgossip.py script 442

running rsscossip.py script and opening stories in
browser 444

RSS Gossip (Python script) 416

running programs 9

S
ifconfig program 409

/sbin/ifconfig program 409

scanf() function 65, 79

causing buffer overflows 66

fgets() function as alternative to 67

passing pointer to variable to scanf() 239

using for data input, fgets() versus 68

screen, redirecting data to, without using Standard
Output 441

security, system calls and 402

send() function 472, 493

sentinel character \0 12

serial port, writing to (C code in Arduino) 212

setitimer() function 459

sharing code 182–187, 355

.h header files 356

588   index

the index

short type 159, 161

defined 162

SHRT_MIN macro 544

shunit2 tool, testing scripts and commands 545

sigaction() function 453

sigaction structs 452

SIGALRM signal 458

SIGKILL signal 457

signals 451

catching and running your own code 452–456

ignoring 459

matching to cause (example) 455

order of sending and receiving 465

program testing math skills (example) 460–464

resetting to default handler 459

sending using kill command 457

sending using raise() 457

signed values in binary 163

SIGTERM signal 457

single statement 14

size limits for data types, macros determining 544

sizeof operator 53, 56

getting bytes in memory occupied by particular data
type 280

use on pointers and array variables 59

using with fgets() function 67

sleep() function 508

alarm() function and 458

small tools

connecting input and output with a pipe 131–136

converting data from one format to another 104–107

designing, tips for 129

different tasks need different tools 130

flexibility of 128

output to multiple files 137

sockets and networking 467–500

clients obtaining a socket and communicating 491

client sockets, creating socket for a domain name 493

client sockets, creation and connection to remote port
492

creation of sockets with IP addresses or domain names
499

C toolbox 500

fork() a process for each client 486

how servers talk to the Internet 470

Internet knock-knock server (example) 468

other useful server functions 479

reading from the client 478

server can only talk to one client at a time 485

server code changed to fork child process for each
client 487–489

server generating random advice for clients (example)
473

sockets not your typical data streams 472

summary of important points 572

writing a web client 490, 494–498

writing code for Internet knock-knock server (example)
480–484

sorting 325–342

using function pointers to set sort order 326

writing comparator functions for different sorts
328–333

source files 2

compiling and running 9

multiple files for code 561

spaceship (Blasteroids game) 529

behavior of 530

stack 43

defined 80

differences from the heap 292

storage in 278

Standard Error 120, 558

default output to display 121

in descriptor table 432

redirecting with 2> 122, 432

standard header directories 355

standard header files 180

you are here 4   589

the index

Standard Input 122, 558

connecting to Standard Output of another process 131

in descriptor table 432

redirecting 110

redirecting with < operator 111

Standard Output 558

connecting to Standard Input of another process 131

in descriptor table 432

redirecting child process output to file 435

redirecting to file 112, 430

standards 2

compiler support of 8

designated initializers 248

POSIX libraries 149

return statements in functions 32

statements 14

static keyword 543

static libraries 351, 568

stdarg.h header 345

storage, flexible 268

strcmp() function 331, 333

strdup() function 285

calling malloc() function 294

fixing create() function that uses dynamic allocation 286

strerror() function 408

string.h header file 86

more information about functions in 95

string literals 13

char pointer set to, avoiding 76

important points about 79

inability to update 72

strings 11, 83–102

array of arrays versus array of pointers 98

BE the Compiler exercise, jukebox program (example)
91

changing, using copy for 74

as character arrays 12

code shuffling letters in 69–72

copying 285

creating array of arrays 85

crossword puzzle (example) 99

C toolbox 101

displaying string backward on screen 97

ending with sentinel character \0 12

passing to functions 53

searching 84, 86

Pool Puzzle example 90

review of jukebox program (example) 94

testing jukebox program (example) 95

Standard Library, string.h 86–88

arrays of, char** pointer to 320

summary of important points 557

using strstr() function 89

strstr() function 89

structs 217–246, 260, 274

arrays versus 220, 225

assignment 238

benefits of using 221

bitfields collected in 262

creating aliases for with typedef 232

designated initializers setting initial value of fields 249

enums tracking values stored in 256–259

holding sequence of single bits for yes/no values 261

in memory 226

nesting 227

pointer notation 241

pointers to 239

reading fields with . (dot) operator 222

recursive structures 271, 294

summary of important points 562

updating 236

using bitfields in customer satisfaction survey
(example) 264

using with unions 249

values separated with semicolon (;) 255

wrapping parameters in 221

590   index

the index

structured data types. See structs

switch statements 26

rewriting code to replace sequence of if statements 27

summary of important points about 28

symbols, storing in enums 255

system calls 398, 427

accept() function 471

avoiding writing duplicate code for error handling 434

checking for errors on 474–477

exec() functions 404–410

failures of 408

order-generation program, Starbuzz coffee
(example) 412–415

program searching many RSS feeds at once
(example) 418

fork() function, cloning processes with 420

getenv() function, reading environment variables 407

important points about 411

listen() function 471

mkfifo() function 450

running child process with fork() and exec() 421–426

security breaches 402

system() function 398, 426, 427

exec() function versus 411

opening a web page in a browser 446

T
tab character, beginning recipe lines for makefiles 200, 202

target files 198

describing in makefiles 200

taskmgr command (Windows) 404

tasks, sequential or parallel 502

telnet program 468

ternary operator (?:) 540

testing, automated 545

threads 501–522

creating 506

using pthread_create() 507

C toolbox 521

deciding where to put locks in code (example) 516–
519

important points about 520

multithreaded programs 505

mutexes 513

passing long values to thread functions 515

program counting down beers (example) 509–511

single threads of execution 504

summary of important points 573

thread safety in code 512

using mutex to control execution 514

timers for processes 459

transformations 535

true and false values 19

typedef command

creasting aliases for structs 232

recursive structures and 271

U
unions 246, 260, 563

enums tracking values stored in 256–259

important points about 265

reuse of memory space 247

setting value of 248

using with structs 249

values separated with semicolon (;) 255

values stored in, data types of 254

unistd.h header 149

unsigned keyword, prefixing data types with 164

URLs, opening on various operating systems in web
browser 446

you are here 4   591

the index

V
valgrind tool, using to find memory leaks 302–308

values

copied when assigning structs 238

matching data type to type of variable it’s stored in
163

parameters passed to functions 238

storing short-range values in bitfields 262

variables

matching data type for value stored in 163

sharing among code files 186

storage in memory 43

using to shorten makefiles 548

variadic functions 343–349

writing example function 347–349

virtual memory size 403

void functions 33, 39

void pointers 327, 506

W
waitpid() function 438–440

important points about 441

parameters 439

warnings, gcc 547

web browsers, opening a web page in 446

websites for C 552

WEXITSTATUS() macro 441

while loops 29

modifying in card counting program to keep running
count 35, 37

structure of 30

summary of important points 39

window, creating in OpenCV 393

Windows systems. See also operating systems

CreateProcess() function instead of fork() 426

.exe files 10

fork() function and 420, 426

GUI libraries 551

ipconfig command 409

listing processes running on system 404

make tools 199

telnet program, built-in versus Cygwin versions 468

X
XOR encryption 182

XOR operator, bitwise XOR (^) 541

	Table of Contents (Summary)
	Table of Contents (the real thing)
	Intro
	Who is this book for?
	We know what you’re thinking
	We know what your brain is thinking
	Metacognition: thinking about thinking
	Here’s what WE did:
	Here’s what YOU can do to bend your brain into submission
	Read me
	The technical review team
	Acknowledgments
	Safari® Books Online

	Chapter 1: Getting Started with C: Diving in
	C is a language for small, fast programs
	But what does a complete C program look like?
	But how do you run the program?
	Two types of command
	Here’s the code so far
	Card counting? In C?
	There’s more to booleans than equals…
	What’s the code like now?
	Pulling the ol’ switcheroo
	Sometimes once is not enough…
	Loops often follow the same structure…
	You use break to break out…
	Your C Toolbox

	Chapter 2: Memory and Pointers: What are you pointing at?
	C code includes pointers
	Digging into memory
	Set sail with pointers
	Set sail sou’east, Cap’n
	Try passing a pointer to the variable
	Using memory pointers
	How do you pass a string to a function?
	Array variables are like pointers…
	What the computer thinks when it runs your code
	But array variables aren’t quite pointers
	Why arrays really start at 0
	Why pointers have types
	Using pointers for data entry
	Be careful with scanf()
	fgets() is an alternative to scanf()
	Anyone for three-card monte?
	Oops…there’s a memory problem…
	String literals can never be updated
	In memory: char *cards=“JQK”;
	If you’re going to change a string, make a copy
	In memory: char cards[]=“JQK”;
	Memory memorizer
	Your C Toolbox

	Chapter 2.5: Strings: String theory
	Desperately seeking Frank
	Create an array of arrays
	Find strings containing the search text
	Using the strstr() function
	It’s time for a code review
	Array of arrays vs. array of pointers
	Your C Toolbox

	Chapter 3: Creating Small Tools: Do one thing and do it well
	Small tools can solve big problems
	Here’s how the program should work
	But you’re not using files…
	You can use redirection
	You can redirect the Standard Input with <…
	…and redirect the Standard Output with >
	But there’s a problem with some of the data…
	Introducing the Standard Error
	By default, the Standard Error is sentto the display
	fprintf() prints to a data stream
	Let’s update the code to use fprintf()
	Small tools are flexible
	Don’t change the geo2json tool
	A different task needs a different tool
	Connect your input and output with a pipe
	The bermuda tool
	But what if you want to output tomore than one file?
	Roll your own data streams
	There’s more to main()
	Overheard at the Head First Pizzeria
	Let the library do the work for you
	Your C Toolbox

	Chapter 4: Using Multiple Source Files: Break it down, build it up
	Your quick guide to data types
	Don’t put something big into something small
	Use casting to put floats into whole numbers
	Oh no…it’s the out-of-work actors…
	Let’s see what’s happened to the code
	Compilers don’t like surprises
	Split the declaration from the definition
	Creating your first header file
	If you have common features…
	You can split the code into separate files
	Compilation behind the scenes
	The shared code needs its own header file
	It’s not rocket science…or is it?
	Don’t recompile every file
	First, compile the source into object files
	It’s hard to keep track of the files
	Automate your builds with the make tool
	How make works
	Tell make about your code with a makefile
	Liftoff!
	Your C Toolbox

	C Lab 1: Arduino
	The spec: make your houseplant talk
	Build the physical device
	Here’s what your code should do
	Here are some useful Arduino functions
	The finished product

	Chapter 5: Structs, Unions, and Bitfields: Roll your own structures
	Sometimes you need to hand around a lot of data
	Cubicle conversation
	Create your own structured data types with a struct
	Just give them the fish
	Read a struct’s fields with the “.” operator
	Can you put one struct inside another?
	How do you update a struct?
	The code is cloning the turtle
	You need a pointer to the struct
	(*t).age vs. *t.age
	Sometimes the same type of thing needs different types of data
	A union lets you reuse memory space
	How do you use a union?
	An enum variable stores a symbol
	Sometimes you want control at the bit level
	Bitfields store a custom number of bits
	Your C Toolbox

	Chapter 6: Data Structures and Dynamic Memory: Building bridges
	Do you need flexible storage?
	Linked lists are like chains of data
	Linked lists allow inserts
	Create a recursive structure
	Create islands in C…
	Inserting values into the list
	Use the heap for dynamic storage
	Give the memory back when you’re done
	Ask for memory with malloc()…
	Oh, no! It’s the out-of-work actors…
	Let’s fix the code using the strdup() function
	Free the memory when you’re done
	Exhibit A: the source code
	An overview of the SPIES system
	Software forensics: using valgrind
	Use valgrind repeatedly to gather more evidence
	Look at the evidence
	The fix on trial
	Your C Toolbox

	Chapter 7: Advanced Functions: Turn your functions up to 11
	Looking for Mr. Right…
	Pass code to a function
	You need to tell find() the name of a function
	Every function name is a pointer to the function…
	…but there’s no function data type
	How to create function pointers
	Get it sorted with the C Standard Library
	Use function pointers to set the order
	Automating the Dear John letters
	Create an array of function pointers
	Make your functions streeeeeetchy
	Your C Toolbox

	Chapter 8: Static and Dynamic Libraries: Hot-swappable code
	Code you can take to the bank
	Angle brackets are for standard headers
	But what if you want to share code?
	Sharing .h header files
	Share .o object files by using the full pathname
	An archive contains .o files
	Create an archive with the ar command…
	Finally, compile your other programs
	The Head First Gym is going global
	Calculating calories
	But things are a bit more complex…
	Programs are made out of lots of pieces…
	Dynamic linking happens at runtime
	Can you link .a at runtime?
	First, create an object file
	What you call your dynamic library depends on your platform
	Your C Toolbox

	C Lab 2: OpenCV
	The spec: turn your computer into an intruder detector
	What your code should do
	The finished product

	Chapter 9: Processes and System Calls: Breaking boundaries
	System calls are your hotline to the OS
	Then someone busted into the system…
	Security’s not the only problem
	The exec() functions give you more control
	There are many exec() functions
	The array functions: execv(), execvp(), execve()
	Passing environment variables
	Most system calls go wrong in the same way
	Read the news with RSS
	exec() is the end of the line for your program
	Running a child process with fork() + exec()
	Your C Toolbox

	Chapter 10: Interprocess Communication: It's good to talk
	Redirecting input and output
	A look inside a typical process
	Redirection just replaces data streams
	fileno() tells you the descriptor
	Sometimes you need to wait…
	Stay in touch with your child
	Connect your processes with pipes
	Case study: opening stories in a browser
	In the child
	In the parent
	Opening a web page in a browser
	The death of a process
	Catching signals and running your own code
	sigactions are registered with sigaction()
	Rewriting the code to use a signal handler
	Use kill to send signals
	Sending your code a wake-up call
	Your C Toolbox

	Chapter 11: Sockets and Networking: There's no place like 127.0.0.1
	The Internet knock-knock server
	Knock-knock server overview
	BLAB: how servers talk to the Internet
	A socket’s not your typical data stream
	Sometimes the server doesn’t start properly
	Why your mom always told you to check for errors
	Reading from the client
	The server can only talk to one person at a time
	You can fork() a process for each client
	Writing a web client
	Clients are in charge
	Create a socket for an IP address
	getaddrinfo() gets addresses for domains
	Your C Toolbox

	Chapter 12: Threads: It's a parallel world
	Tasks are sequential…or not…
	…and processes are not always the answer
	Simple processes do one thing at a time
	Employ extra staff: use threads
	How do you create threads?
	Create threads with pthread_create
	The code is not thread-safe
	You need to add traffic signals
	Use a mutex as a traffic signal
	Your C Toolbox

	C Lab 3: Blasteroids
	Write the arcade game Blasteroids
	Your mission: blast the asteroids without getting hit
	Allegro
	What does Allegro do for you?
	Building the game
	The spaceship
	The blast
	The asteroid
	The game status
	Use transformations to move things around
	The finished product
	Leaving town…
	It’s been great having you here in Cville!

	Appendix i: Leftovers: The top ten things (we didn't cover)
	#1. Operators
	#2. Preprocessor directives
	#3. The static keyword
	#4. How big stuff is
	#5. Automated testing
	#6. More on gcc
	#7. More on make
	#8. Development tools
	#9. Creating GUIs
	#10. Reference material

	Appendix ii: C Topics: Revision roundup
	Basics
	Pointers and memory
	Strings
	Data streams
	Data types
	Multiple files
	Structs
	Unions and bitfields
	Data structures
	Dynamic memory
	Advanced functions
	Static and dynamic libraries
	Processes and communication
	Sockets and networking
	Threads

	Index

