

COMMON C FUNCTIONS

Elementary Math Functions (Text page 66)

ceil(x) exp(x) fabs(x) floor(x)

log(x) log10(x) pow(x,y) sqrt(x)

Trigonometric Functions (Text page 67)

acos(x) asin(x) atan(x) atan2(y,x)

cos(x) sin(x) tan(x)

Character Functions (Text page 71)

isalnum(c) isalpha(c) iscntrl(c)

isdigit(c) isgraph(c) islower(c)

isprint(c) ispunct(c) isspace(c)

isupper(c) isxdigit(c) tolower(c)

toupper(c)

Character String Functions (Text pages 309-310)

strcat(s,t) strchr(s,c) strcmp(s,t)

strcpy(s,t) strcspn(s,t) strlen(s)

strncat(s,t,n) strcmp(s,t,n) strncpy(s,t,n)

strpbrk(s,t) strrchr(s,c) strspn(s,t)

strstr(s,t)

OPERATOR PRECEDENCE
Precedence Operation Associativity Text pages

1 () [] innermost first pages 45, 47, 208
2 ++ -- + - ! (type) & * unary, right to left pages 45, 46, 49, 56, 286
3 * / % left to right page 45
4 + - left to right page 45
5 < <= > >= left to right page 92
6 == != left to right page 92
7 && left to right page 93
8 || left to right page 93
9 ?: right to left page 98

10 = += -= *= /= %= right to left page 50
11 , left to right page 96

This page intentionally left blank

ENGINEERING
PROBLEM SOLVING

WITH C
FOURTH EDITION

Delores M. Etter
Department of Electrical Engineering

Southern Methodist University
Dallas, TX

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City S~ao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Executive Editor: Tracy Dunkelberger
Editorial Assistant: Emma Snider
Director of Marketing: Patrice Jones
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferranti
Director of Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Kayla Smith-Tarbox
Operations Supervisor: Alan Fischer
Manufacturing Buyer: Lisa McDowell
Art Director: Anthony Gemmellaro
Cover Designer: Anthony Gemmellaro

Manager, Visual Research: Karen Sanatar
Photo Researcher: AV Katy Holihan
Manager, Rights and Permissions: Michael Joyce
Text Permission Coordinator: Nicole Coffineau
Cover Art: Arrin Bristow
Image perms: Katy Holihan, Bill Smith Group
Lead Media Project Manager: Daniel Sandin
Full-Service Project Management: Integra
Composition: Integra
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: 10/12, Times

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on the copyright page.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or
endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2013, 2005 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in
the United States of America. This publication is protected by Copyright, and permission should be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Catologing-in-Publication Data available upon request.

ISBN 10: 0-13-608531-8
ISBN 13: 978-0-13-608531-7

10 9 8 7 6 5 4 3 2 1

Page 2: Chapter 1 opener photo © Caspar Benson | Getty Images USA, Inc.
Page 4: Microprocessor © Marzky Ragsac Jr | Fotolia LLC
Page 4: Moon Landing © Nasa
Page 5: Staellite © Nasa
Page 5: Computer-Aided Design © Urostom/Shutterstock.com
Page 6: Jumbo Jet © dell | Fotolia
Page 7: Advanced Composite Materials © Dominique Landau | Shutterstock
Page 7: Cat Scan © Andesign101 | Dreamstime.com
Page 8: Genetic Engineering © Michal Rózewski | Dreamstime.com
Page 8: Lasers © Georgy Shafeev | Dreamstime.com
Page 9: Fiber Optics © Vyacheslav Kharkin | Fotolia LLC
Page 24: Chapter 2 opener photo © Ferdericb | Dreamstime.com
Insert photo 1: Fingerprint Analysis © picture5479 | Shutterstock
Insert photo 2: Finger Control © Freedigitalphotos.net
Insert photo 3:Commuters on station platform in the morning, elevated view © Elis Years | Getty Images USA, Inc.
Insert photo 4: Iris scan—security system © Michal Mrozek | Shutterstock
Insert photo 5: Young man talking on mobile phone on street in NYC © Winslow Productions | Getty Images USA, Inc.
Page 80: Chapter 3 opener photo © Alan Thornton | Getty Images USA, Inc.
Page 98: Figure 3.7 © BestPhotoStudio |Shutterstock
Page 148: Chapter 4 opener photo: © Delores Etter
Page 212:Chapter 5 opener photo © Lagron49 | Dreamstime.com
Page 288: Chapter 6 opener photo © zentilla | Shutterstock
Page 334: Chapter 7 opener photo © Alexandru-Radu Borzea| Shutterstock
Page 372: Chapter 8 opener photo © picture5479 | Shutterstock

In memory of my dearest Mother,
Muerladene Janice Van Camp

This page intentionally left blank

v

PREFACE

Engineers use computers to solve a variety of problems ranging from the evaluation of a sim-
ple function to solving a system of nonlinear equations. Thus, C has become the language of
choice for many engineers and scientists, not only because it has powerful commands and
data structures, but also because it can easily be used for system-level operations. Since C is a
language that a new engineer is likely to encounter in a job, it is a good choice for an intro-
duction to computing for engineers. Therefore, this text was written to introduce engineering
problem solving with the following objectives:

• to develop a consistent methodology for solving engineering problems;

• to present the fundamental capabilities of C, the language of choice for many prac-
ticing engineers and scientists; and

• to illustrate the problem-solving process with C through a variety of interesting engi-
neering examples and applications.

To accomplish these objectives, Chapter 1 presents a five-step process that is used consis-
tently in the rest of the text for solving engineering problems. Chapters 2 through 7 present
the fundamental capabilities of C for solving engineering problems. Chapter 8 is an intro-
duction to object-oriented programming using C++. Object-oriented programming is
gaining popularity in many fields of engineering and science, and is likely to be seen in the
workplace. Throughout all these chapters, we present a large number of examples from many
different engineering and scientific disciplines. The solutions to these examples are developed
using the five-step process and ANSI C (and ANSI C++ in Chapter 8), which are the stan-
dards developed by the American National Standards Institute.

Changes to the Fourth Edition

• The new theme for this edition is Crime Scene Investigation (CSI). Learning about
the technology behind crime scene investigation is not only very interesting, but it
provides a number of problems for which we can develop C program solutions.

• Section 1.2 has been rewritten to include discussion on current topics such as cloud
computing and kernels.

• A new four-color insert has been added to define an important area of crime scene
investigation—biometrics. Biometrics is a term used to describe the physical or behav-
ioral characteristics that can be used to identify a person. The insert includes discussion
on fingerprints, face recognition, iris recognition, DNA, and speech recognition.

• Each chapter begins with a photo and a related discussion on a technology used in
crime scene investigation. Then, within each chapter after Chapter 1, an associated
application section has been added so that in addition to learning all the key features
of C, you will also learn about forensic anthropology, face recognition and surveil-
lance video, iris recognition, speech analysis and speech recognition, DNA analysis,
fingerprint recognition, and hand recognition. In these application sections, we
develop a C solution to a problem related to the crime scene technology.

vi Preface

Problem-Solving Methodology

The emphasis on engineering and scientific problem solving is an integral part of the text.
Chapter 1 introduces a five-step process for solving engineering problems using the computer.
This five-step problem-solving process was developed by the author of this text early in her
academic career, and it has been successfully used by the many thousands of students who

• New Modify! problems have been added to each new application.

• The material in Chapter 8 on C++ has been updated to reflect the new C++ standards.

Prerequisites

No prior experience with the computer is assumed. The mathematical prerequisites are col-
lege algebra and trigonometry. Of course, the initial material can be covered much faster if
the student has used other computer languages or software tools.

Course Structure

The material in these chapters was selected to provide the basis for a one-term course in en-
gineering computing. These chapters contain the essential topics of mathematical computing,
character data, control structures, functions, arrays, pointers, and structures. Students with a
background in another computer language should be able to complete this material in less than
a semester. A minimal course that provides only an introduction to C can be designed using the
nonoptional sections of the text. (Optional sections are indicated in the table of contents.)
There are three ways to use the text, along with the recommended chapter sections:

• Introduction to C. Many freshman courses introduce the student to several computer
tools in addition to a language. For these courses, we recommend covering the non-
optional sections of Chapters 1 through 5. This material introduces students to the
fundamental capabilities of C, and they will be able to write substantial programs using
mathematical computations, character data, control structures, functions, and arrays.

• Problem solving with C. In a semester course devoted specifically to teaching stu-
dents to master the C language, we recommend covering all non-optional sections
of Chapters 1 through 7. This material covers all the fundamental concepts of the C
language, including mathematical computations, character data, control structures,
functions, arrays, pointers, and structures.

• Problem solving with C and numerical techniques. A number of sections included
in the text cover common numerical techniques, such as linear interpolation, linear
modeling, finding roots of polynomials, and solutions to simultaneous equations. In-
cluding these along with the sections on the C language provides a strong combina-
tion for students who may need to use numerical techniques in their course work.
This coverage would include all sections of Chapters 1 through 7.

Many students may be interested in reading about some of the additional object-oriented
features found in C++. We recommend that students cover all non-optional sections of
Chapters 1 through 7 before reading Chapter 8.

Preface vii

Engineering and Scientific Applications

Throughout the text, emphasis is placed on incorporating real-world engineering and scientif-
ic examples and problems. Some examples to illustrate this wide variety of engineering ap-
plications are

• salinity of sea water

• velocity computation

• amino acid molecular weights

• wind tunnels

• ocean wave interactions

• ozone measurements

• sounding rocket trajectory

• suture packaging

• timber regrowth

• critical path analysis

• weather balloons

• iceberg tracking

• instrumentation reliability

• system stability

• component reliability

• flight simulator wind speeds

• hurricane categories

• molecular weights

• speech signal analysis

• terrain navigation

• electrical circuit analysis

were in her classes or used one of her textbooks. This successful process has also been adopt-
ed by a number of other authors. The five steps are:

1. State the problem clearly.

2. Describe the input and output information.

3. Work a simple example by hand.

4. Develop an algorithm and convert it to a computer program.

5. Test the solution with a variety of data.

To reinforce the development of problem-solving skills, each of these five steps is clear-
ly identified each time that a complete engineering problem is solved. In addition, top-down
design and stepwise refinement are presented with the use of decomposition outlines,
pseudocode, and flowcharts.

viii Preface

• power plant data

• cryptography

• temperature distribution

• El Nin~o–Southern Oscillation

• seismic event detection

• tsunami analysis

• surface wind directions

In addition, each chapter begins with a discussion of some aspect of the new theme.
Later in the chapter, we solve a problem that relates to the introductory discussion on
the technology behind crime scene investigation. These problems address the following
applications:

• forensic anthropology

• face recognition and surveillance video

• iris recognition

• speech analysis

• DNA analysis

• fingerprint recognition

• hand recognition

ANSI C

The statements presented and all programs developed use the C standards developed by the
American National Standards Institute. By using ANSI C, students learn to write portable
code that can be transferred from one computer system to another.

Software Engineering Concepts

Engineers and scientists are expected to develop and implement user-friendly and reusable
computer solutions. Learning software engineering techniques is crucial to successfully de-
veloping these computer solutions. Readability and documentation are stressed in the devel-
opment of programs. Additional topics that relate to software engineering issues are discussed
throughout the text and include issues such as software life cycle, portability, maintenance,
modularity, recursion, abstraction, reusability, structured programming, validation, and
verification.

Four Types of Problems

Learning any new skill requires practice at several different levels of difficulty. Four types of
exercises are used throughout the text to develop problem-solving skills. The first set of exer-
cises is Practice! problems. These are short-answer questions that relate to the section of
the material just presented. Most sections are immediately followed by a set of Practice!
problems so that students can determine whether they are ready to continue to the next sec-
tion. Complete solutions to all the Practice! problems are included at the end of the text.

The Modify! problems are designed to provide hands-on experience with the pro-
grams developed in the Problem Solving Applied sections. In these sections, we develop a

Preface ix

complete C program using the five-step process. The Modify! problems ask students to run the
program with different sets of data to test their understanding of how the program works and of
the relationships among the engineering variables. These exercises also ask the students to
make simple modifications to the program and then run the program to test their changes.
Selected solutions to some of the Modify! problems are included at the end of the text.

Each chapter ends with two sets of problems. The Short-Answer problems include
true/false problems, multiple choice problems, matching problems, syntax problems,
fill-in-the-blank problems, memory snapshot problems, program output problems, and
program segment analysis problems. Complete solutions to all the Short-Answer problems
are included at the end of the text.

The final set of problems in each chapter (except for Chapter 1) are Programming
problems. These are new problems that relate to a variety of engineering applications.
The level of difficulty ranges from very straightforward to longer project assignments. Each
problem requires that the students develop a complete C program or function. Selected solu-
tions to the programming problems are included at the end of the text. Complete solutions to
the programming problems are available for instructors.

Study and Programming Aids

Margin notes are used to help the reader not only identify the important concepts, but also to
easily locate specific topics. In addition, margin notes are used to identify programming style
guidelines and debugging information. Style guidelines show students how to write C pro-
grams that incorporate good software discipline; debugging notes help students recognize
common errors so that they can avoid them. The programming style notes are indicated with
a margin note, and the debugging notes are indicated with a bug icon. Each Chapter Summa-
ry contains a summary of the style notes and debugging notes, plus a list of the Key Terms
from the chapter and a C Statement Summary of the new statements to make the book easi-
er to use as a reference. The combined list of these key terms, along with their definitions, is
included in a Glossary at the end of the text. In addition, the inside of the front cover con-
tains common functions and the precedence table; the inside of the back cover contains
examples of most of the C statements.

Optional Numerical Techniques
Numerical techniques that are commonly used in solving engineering problems are also dis-
cussed in the text, and they include interpolation, linear modeling (regression), root find-
ing, and the solution to simultaneous equations. The concept of a matrix is also introduced
and then illustrated using a number of examples. All of these topics are presented assuming
only a trigonometry and college algebra background.

MATLAB and Visualization

The visualization of the information related to a problem and its solution is a critical com-
ponent in understanding and developing the intuition necessary to be a creative engi-
neer. Therefore, we have included a number of plots of data throughout the text to illustrate
the relationships of the information needed to solve specific problems. All the plots were

x Preface

Nontechnical Skills

The engineer of the twenty-first century needs many skills and capabilities in addition to the
technical ones learned in an engineering program. In Chapter 1, we present a brief discussion
on some of these nontechnical skills that are so important to engineers. Specifically, we dis-
cuss developing both oral and written communications skills, understanding the design/
process/manufacture path that takes an idea and leads to a product, working in inter-
disciplinary teams, understanding the world marketplace, the importance of synthesis as
well as analysis, and the importance of ethics and other societal concerns in engineering so-
lutions. While this text is devoted primarily to teaching problem-solving skills and the C lan-
guage, we have attempted to tie these other nontechnical topics into many of the problems and
discussions in the text.

Acknowledgments

A number of people have made significant contributions to this text. Students are always the
best judge of “what works” and “what doesn’t work.” I appreciate the feedback from students
who had never used the computer when they started this text, to undergraduates who already
knew another language, and to graduate students who wanted to use C to do their research
analysis. The comments and suggestions from these students greatly improved the text.

A constructive, but critical, review is extremely important in improving a text. The many
reviewers who provided this critical guidance included Murali Narayanan (Kansas State
University), Kyle Squires (Arizona State University), Amelia Regan (University of California
at Irvine), Hyeong-Ah Choi (George Washington University), George Friedman (University
of Illinois, Champaign), D. Dandapani (University of Colorado, Colorado Springs), Karl
Mathias (Auburn University), William Koffke (Villanova University), Paul Heinemann

Appendices

To further enhance reference use, the appendices include a number of important topics. Ap-
pendix A contains a discussion of the components in the ANSI C Standard Library. Appen-
dix B presents the ASCII character codes. Appendix C shows how to use MATLAB to plot
data from ASCII files; this allows students to generate ASCII files with their C programs and
to plot the values using MATLAB.

generated using MATLAB, a powerful environment for numerical computations, data
analysis, and visualization. We have also included an appendix that shows how to generate a
simple plot from data that have been stored in a text file; this text file could be generated with
a word processor or it could be generated by a C program.

Additional Resources

All instructor and student resources can be accessed at www.pearsonhighered.com/etter.
Here, students can access student data files for the book, and instructors can register for the
password-protected Instructor’s Resource Center. The IRC contains complete solutions to
all of the Programming Projects found at the end of each chapter, and a complete set of
PowerPoint lecture slides.

www.pearsonhighered.com/etter

Preface xi

(Pennsylvania State University), A. S. Hodel (Auburn University), Armando Barreto (Florida
International University), Arnold Robbins (Georgia Technology College of Computing),
Avelino Gonzalez (University of Central Florida), Thomas Walker (Virginia Polytechnic
Institute and State University), Christopher Skelly (Insight Resource Inc.), Betty Barr (The
University of Houston), John Cordero (University of Southern California), A. R. Marundarajan
(Cal Poly, Pomona), Lawrence Genalo (Iowa State University), Karen Davis (University of
Cincinnati), Petros Gheresus (General Motors Institute), Leon Levine (UCLA), Harry Tyrer
(University of Missouri, Columbia), Caleb Drake (University of Illinois, Chicago), John
Miller (University of Michigan, Dearborn), Elden Heiden (New Mexico State University), Joe
Hootman (University of North Dakota), Nazeih Botros (Southern Illinois University), Mark
C. Petzold (St. Cloud State University), Ali Saman Tosun (University of Texas at San
Antonio), Turgay Korkmaz (University of Texas at San Antonio), Billie Goldstein (Temple
University), Mark S. Hutchenreuther (California Polytechnic State University), Frank
Friedman (Temple University), and Harold Mitchell Jr. (University of Houston).

The outstanding team at Pearson Education continues to be a delight to work with on my
book projects. They include Marcia Horton, Tracy (Dunkelberger) Johnson, Emma Snider,
Kayla Smith-Tarbox, and Eric Arima. I want to thank Jeanine Ingber (University of New
Mexico) for her contributions as a co-author of the second edition; many of her contributions
remain in this fourth edition.

DELORES M. ETTER

Department of Electrical Engineering
Southern Methodist University

Dallas, TX

This page intentionally left blank

xiii

CONTENTS

1 Engineering Problem Solving 3
Crime Scene Investigation
1.1 Engineering in the 21st Century 3

Recent Engineering Achievements 3
Changing Engineering Environment 9

1.2 Computing Systems: Hardware and Software 10
Computer Hardware 10
Computer Software 11

Operating Systems 12
Software Tools 12
Computer Languages 13
Executing a Computer Program 14
Software Life Cycle 15

1.3 An Engineering Problem-Solving Methodology 16
Summary, Key Terms 19
Problems 20

2 Simple C Programs 25
Crime Scene Investigation: Forensic Anthropology
2.1 Program Structure 25
2.2 Constants and Variables 29

Scientific Notation 30
Numeric Data Types 31
Character Data 33
Symbolic Constants 34

2.3 Assignment Statements 35
Arithmetic Operators 36
Priority of Operators 38
Overflow and Underflow 41
Increment and Decrement Operators 41
Abbreviated Assignment Operators 42

2.4 Standard Input and Output 43
printf Function 44
scanf Function 47

2.5 Problem Solving Applied: Estimating Height from Bone Lengths 48
2.6 Numerical Technique: Linear Interpolation 52
2.7 Problem Solving Applied: Freezing Temperature of Seawater 56
2.8 Mathematical Functions 60

Elementary Math Functions 61
Trigonometric Functions 62
Hyperbolic Functions* 64

*Optional section.

2.9 Character Functions 65
Character I/O 65
Character Comparisons 66

2.10 Problem Solving Applied: Velocity Computation 67
2.11 System Limitations 71

Summary, Key Terms 72
C Statement Summary, Style Notes, 73
Debugging Notes, Problems 74

3 Control Structures and Data Files 81
Crime Scene Investigation: Face Recognition
and Surveillance Video
3.1 Algorithm Development 81

Top-Down Design 81
Decomposition Outline 82
Refinement with Pseudocode and Flowcharts 82

Structured Programming 82
Sequence 82
Selection 83
Repetition 84

Evaluation of Alternative Solutions 85
Error Conditions 86
Generation of Test Data 87

3.2 Conditional Expressions 88
Relational Operators 88
Logical Operators 89
Precedence and Associativity 89

3.3 Selection Statements 90
Simple if Statement 90
if/else Statement 92
switch Statement 95

3.4 Problem Solving Applied: Face Recognition 97
3.5 Loop Structures 101

while Loop 102
do/while Loop 103
for Loop 104
break and continue Statements 107

3.6 Problem Solving Applied: Wave Interaction 108
3.7 Data Files 116

I/O Statements 117
Reading Data Files 119

Specified Number of Records 119
Trailer or Sentinel Signals 122
End-of-File 124

Generating a Data File 126
3.8 Numerical Technique: Linear Modeling* 128

*Optional section.

xiv Contents

Contents xv

3.9 Problem Solving Applied: Ozone Measurements* 131
Summary, Key Terms, C Statement Summary 137
Style Notes, Debugging Notes 139
Problems 140

4 Modular Programming with Functions 149
Crime Scene Investigation: Iris Recognition
4.1 Modularity 149
4.2 Programmer-Defined Functions 152

Function Example 152
Function Definition 156
Function Prototype 157
Parameter List 158
Storage Class and Scope 160

4.3 Problem Solving Applied: Computing the Boundaries of the Iris 163
4.4 Problem Solving Applied: Iceberg Tracking 169
4.5 Random Numbers 175

Integer Sequences 175
Floating-Point Sequences 179

4.6 Problem Solving Applied: Instrumentation Reliability 180
4.7 Numerical Technique: Roots of Polynomials* 186

Polynomial Roots 186
Incremental-Search Technique 188

4.8 Problem Solving Applied: System Stability* 190
4.9 Macros* 196
4.10 Recursion* 199

Factorial Computation 200
Fibonacci Sequence 202
Summary, Key Terms, C Statement Summary 204
Style Notes, Debugging Notes, Problems 205

5 Arrays and Matrices 213
Crime Scene Investigation: Speech Analysis
and Speech Recognition
5.1 One-Dimensional Arrays 213

Definition and Initialization 214
Computations and Output 216
Function Arguments 218

5.2 Problem Solving Applied: Hurricane Categories 221
5.3 Problem Solving Applied: Molecular Weights 226
5.4 Statistical Measurements 231

Simple Analysis 231
Maximum and Minimum 232
Average 232
Median 232

*Optional section.

xvi Contents

Variance and Standard Deviation 233
Custom Header File 235

5.5 Problem Solving Applied: Speech Signal Analysis 236
5.6 Sorting Algorithms 242
5.7 Search Algorithms 244

Unordered List 244
Ordered List 245

5.8 Two-Dimensional Arrays 248
Definition and Initialization 249
Computations and Output 251
Function Arguments 253

5.9 Problem Solving Applied: Terrain Navigation 256
5.10 Matrices and Vectors* 260

Dot Product 260
Determinant 261
Transpose 262
Matrix Addition and Subtraction 263
Matrix Multiplication 263

5.11 Numerical Technique: Solution to Simultaneous Equations* 265
Graphical Interpretation 265
Gauss Elimination 270

5.12 Problem Solving Applied: Electrical Circuit Analysis* 272
5.13 Higher Dimensional Arrays* 277

Summary, Key Terms 279
C Statement Summary, Style Notes, Debugging Notes 280
Problems 281

6 Programming with Pointers 289
Crime Scene Investigation: DNA Analysis
6.1 Addresses and Pointers 289

Address Operator 290
Pointer Assignment 292
Address Arithmetic 295

6.2 Pointers to Array Elements 297
One-Dimensional Arrays 298
Two-Dimensional Arrays 300

6.3 Problem Solving Applied: E1 Niño-Southern Oscillation Data 303
6.4 Pointers in Function References 306
6.5 Problem Solving Applied: Seismic Event Detection 309
6.6 Character Strings 314

String Definition and I/O 314
String Functions 315

6.7 Problem Solving Applied: DNA Sequencing 318
6.8 Dynamic Memory Allocation* 321
6.9 A Quicksort Algorithm* 325

*Optional section.

Contents xvii

Summary 328
Key Terms, C Statement Summary, Style Notes,
Debugging Notes, Problems 329

7 Programming with Structures 335
Crime Scene Investigation: Fingerprint Recognition
7.1 Structures 335

Definition and Initialization 336
Input and Output 337
Computations 339

7.2 Using Functions with Structures 340
Structures as Function Arguments 340
Functions that Return Structures 341

7.3 Problem Solving Applied: Fingerprint Analysis 342
7.4 Arrays of Structures 346
7.5 Problem Solving Applied: Tsunami Analysis 349
7.6 Dynamic Data Structures* 353

Additional Dynamic Data Structures 361
Circularly Linked List 361
Doubly Linked List 362
Stack 363
Queue 363
Binary Tree 364

Summary, Key Terms, C Statement Summary 366
Style Notes, Debugging Notes, Problems 367

8 An Introduction to C++ 373
Crime Scene Investigation: Hand Recognition
8.1 Object-Oriented Programming 373
8.2 C++ Program Structure 374
8.3 Input and Output 375

The cout Object 375
Stream Functions 376
The cin Object 377
Defining File Streams 378

8.4 C++ Program Examples 379
Simple Computations 379
Loops 380
Functions, One-Dimensional Arrays, and Data Files 380

8.5 Problem Solving Applied: Hand Recognition 382
8.6 Problem Solving Applied: Surface Wind Directions 385
8.7 Classes 389

Defining a Class Data Type 389
Constructor Functions 392
Class Operators 394

*Optional section.

xviii Contents

8.8 Numerical Technique: Complex Roots 395
Complex Class Definition 396
Complex Roots for Quadratic Equations 399
Summary, Key Terms, C++ Statement Summary 402
Style Notes, Debugging Notes, Problems 403

Appendices
A ANSI C Standard Library 407

<assert.h> 407
<ctype.h> 407
<errno.h> 408
<float.h> 408
<limits.h> 409
<locale.h> 410
<math.h> 410
<setjmp.h> 411
<signal.h> 411
<stdarg.h> 411
<stddef.h> 411
<stdio.h> 411
<stdlib.h> 414
<string.h> 415
<time.h> 416

B ASCII Character Codes 418
C Using MATLAB to Plot Data from Text Files 421

Complete Solutions to Practice! Problems 424

Selected Solutions to Modify! Problems 436

Complete Solutions to End-of-Chapter
Short-Answer Problems 438

Selected Solutions to End-of-Chapter
Programming Problems 442

Glossary 446

Index 454

ENGINEERING APPLICATIONS

Aerospace Engineering
Wind Tunnel Data Analysis (Chapter 2 Problems, p. 78;

Chapter 5 Problems, p. 282)
Sounding Rockets (Chapter 3 Problems, p. 143)
Flight Simulator Wind Speed (Chapter 4 Problems, p. 208)

Biomedical Engineering
Suture Packaging (Chapter 3 Problems, p. 144)

Chemical Engineering
Temperature Conversions (Chapter 3 Problems, p. 143)
Molecular Weights (Section 5.3, p. 226)
Temperature Distribution (Chapter 5 Problems, p. 285)

Computer Engineering
Simulations (Chapter 4 Problems, p. 206)
Cryptography (Chapter 5 Problems, p. 284)
Pattern Recognition (Chapter 6 Problems, p. 332)

Crime Scene Investigation
Forensic Anthropology (Section 2.5, p. 48)
Face Recognition (Section 3.4, p. 97)
Iris Recognition (Section 4.3, p. 163)
Speech Recognition (Section 5.5, p. 236)
DNA Sequencing (Section 6.7, p. 318)
Fingerprint Analysis (Section 7.3, p. 342)
Hand Recogntion (Section 8.5, p. 382)

Electrical Engineering
Electrical Circuit Analysis (Section 5.12, p. 272)
Noise Simulations (Chapter 5 Problems, p. 282)
Power Plant Distribution (Chapter 5 Problems, p. 283)

Enviromental Engineering
Ozone Measurements (Section 3.9, p. 131)
Timber Regrowth (Chapter 3 Problems, p. 144)
Weather Balloons (Chapter 3 Problems, p. 145)
Seismic Event Detection (Section 6.5, p. 309)

xix

Genetic Engineering
Amino Acid Molecular Weights (Chapter 2 Problems, p. 77)

Manufacturing Engineering
Critical Path Analysis (Chapter 3 Problems, p. 145)
Instrumentation Reliability (Section 4.6, p. 180)
Component Reliability (Chapter 4 Problems, p. 207)

Mechanical Engineering
Advanced Turboprop Engine (Section 2.10, p. 67)
System Stability (Section 4.8, p. 190)
Terrain Navigation (Section 5.9, p. 256)

Ocean Engineering
Freezing Temperature of Seawater (Section 2.7, p. 56)
Wave Interaction (Section 3.6, p. 108)
Iceberg Tracking (Section 4.4, p. 169)
Hurricane Categories (Section 5.2, p. 221; Chapter 7 Problems, p. 369)
El Niño–Southern Oscillation Data (Section 6.3, p. 303)
Tsunami Analysis (Section 7.5, p. 349; Chapter 7 Problems, p. 370)
Surface Wind Directions (Section 8.6, p. 385)

xx Engineering Applications

ENGINEERING
PROBLEM SOLVING

WITH C

CHAPTER ONE

Crime Scene Investigation
We are all familiar with the investigation of crime scenes, from movies, books, and TV
shows. However, you may not be aware of the technology behind many aspects of
crime scene investigation. Learning about this technology is not only very interest-
ing, but it also provides a theme that we will use throughout the text as we are
learning about the C language. Starting with Chapter 2, we present in each chapter
an aspect of crime scene investigation and explain more about the technology be-
hind it.We then present a problem related to that aspect of crime scene investiga-
tion and solve the problem using a C language program. Additional information
related to crime scene investigation is included in the four-page color insert that de-
fines biometrics and gives a number of examples of how biometrics and related
technology are used to identify a person.

2

1

CHAPTER OUTLINE

OBJECTIVES In this chapter, we introduce you to

1.1 Engineering in the 21st Century
1.2 Computing Systems: Hardware and Software
1.3 An Engineering Problem-Solving Methodology

Summary, Key Terms, Problems

■ recent outstanding engineering
achievements,

■ the changing engineering environ-
ment and the nontechnical skills
needed to successfully adapt to
this environment,

■ computer systems, in terms of
both hardware and software, and

■ a five-step problem-solving tech-
nique that we will use throughout
the text.

Engineers solve real-world problems using scientific principles from disciplines that include
computer science, mathematics, physics, biology, and chemistry. It is this variety of subjects,
and the challenge of real problems, that makes engineering so interesting and so rewarding. In
this section, we present some of the outstanding engineering achievements of recent years.
We also consider some of the nontechnical skills and capabilities needed by the engineers of
the twenty-first century.

Recent Engineering Achievements
Since the development of the computer in the late 1950s, a number of significant engineering
achievements have occurred. In 1989, the National Academy of Engineering selected the
10 engineering achievements that it considered to be the most important accomplishments
during the previous 25 years. These achievements illustrate the multidisciplinary nature of en-
gineering and demonstrate how engineering has improved our lives and expanded the possi-
bilities for the future while providing a wide variety of interesting and challenging careers.
We now briefly discuss these 10 achievements.

ENGINEERING PROBLEM
SOLVING

1.1 Engineering in the 21st Century

3

10 engineering
achievements

4 Chapter 1 Engineering Problem Solving

The development of the microprocessor, a tiny computer smaller than a postage stamp, is
one of the top engineering achievements of the last 25 years. Microprocessors are used in elec-
tronic equipment, household appliances, toys, and games, as well as in automobiles, aircraft,
and space shuttles, because they provide powerful yet inexpensive computing capabilities.
Microprocessors also provide the computing power inside calculators and smart phones.

MICROPROCESSOR

MOON LANDING

Several of the top 10 achievements relate to the exploration of space. The moon landing
was probably the most complex and ambitious engineering project ever attempted. Major
breakthroughs were required in the design of the Apollo spacecraft, the lunar lander, and the
three-stage Saturn V rocket. Even the design of the spacesuit was a major engineering project
that resulted in a system that included a three-piece suit and backpack, which together
weighed 190 pounds. The computer played a key role not only in the design of the various
systems, but also in the communications required during an individual moon flight. A single
flight required the coordination of over 450 people in the launch control center and over 7000
others on nine ships, in 54 aircraft, and at stations located around the earth.

Microprocessor

Moon landing

Section 1.1 Engineering in the 21st Century 5

The space program also provided much of the impetus for the development of application
satellites that are used to provide weather information, relay communication signals, map un-
charted terrain, and provide environmental updates on the composition of the atmosphere.
The Global Positioning System (GPS) is a constellation of 24 satellites that broadcasts posi-
tion, velocity, and time information worldwide. GPS receivers measure the time it takes for
signals to travel from the GPS satellite to the receiver. Using information received from four
satellites, a microprocessor in the receiver can determine very precise measurements of the
receiver’s location; its accuracy varies from a few meters to centimeters, depending on the
computation techniques used.

SATELLITE

Another of the top engineering achievements recognizes the contributions of computer-
aided design and manufacturing (CAD/CAM). CAD/CAM has generated a new industrial
revolution by increasing the speed and efficiency of many types of manufacturing processes.
CAD allows the design to be done using the computer, which then produces the final
schematics, parts lists, and computer simulation results. CAM uses design results to control
machinery or industrial robots to manufacture, assemble, and move components.

Application
satellites

Computer-aided
design and
manufacturing

COMPUTER-AIDED DESIGN

6 Chapter 1 Engineering Problem Solving

The aircraft industry was also the first industry to develop and use advanced
composite materials that consist of materials that can be bonded together in such a way
that one material reinforces the fibers of the other material. Advanced composite materi-
als were developed to provide lighter, stronger, and more temperature-resistant materials
for aircraft and spacecraft. New markets for composites now exist in sporting goods. For
example, downhill snow skis use layers of woven Kevlar fibers to increase their strength
and reduce weight, and golf club shafts of graphite and epoxy are stronger and lighter
than the steel in conventional shafts. Composite materials are also used in the design of
prosthetics for artificial limbs.

The areas of medicine, bioengineering, and computer science were teamed for the de-
velopment of the CAT (computerized axial tomography) scanner machine. This instru-
ment can generate three-dimensional images or two-dimensional slices of an object using X
rays that are generated from different angles around the object. Each X ray measures a den-
sity from its angle, and complicated computer algorithms combine the information from all
the X rays to reconstruct a clear image of the inside of the object. CAT scans are routinely
used to identify tumors, blood clots, and brain abnormalities.

JUMBO JET

The jumbo jet originated from the U.S. Air Force C-5A cargo plane that began opera-
tional flights in 1969. Much of the success of the jumbo jets can be attributed to the high-
bypass fanjet that allows them to fly farther with less fuel and with less noise than previous
jet engines. The core of the engine operates like a pure turbojet, in which compressor blades
pull air into the engine’s combustion chamber. The hot expanding gas thrusts the engine for-
ward, and at the same time spins a turbine that drives the compressor and the large fan on the
front of the engine. The spinning fan provides the bulk of the engine’s thrust.

Jumbo jet

Advanced compos-
ite materials

Computerized
axial tomography

Section 1.1 Engineering in the 21st Century 7

CAT SCAN

Genetic engineering, combining the work of geneticists and engineers, has resulted in
many new products, ranging from insulin, to growth hormones, to infection-resistant vegeta-
bles. A genetically engineered product is produced by splicing a gene that produces a valuable
substance from one organism into another organism that will multiply itself and the foreign
gene along with it. The first commercial genetically engineered product was human insulin,
which appeared under the trade name Humulin. Current work is investigating the use of ge-
netically altered microbes to clean up toxic waste and to degrade pesticides.

ADVANCED COMPOSITE MATERIALS

Genetic
engineering

8 Chapter 1 Engineering Problem Solving

Lasers are light waves that have the same frequency and travel in a narrow beam that can
be directed and focused. lasers are used to drill holes in materials that range from ceramics
to composite materials. Lasers are also used in medical procedures to weld detached retinas,
seal leaky blood vessels, vaporize brain tumors, and perform delicate inner-ear surgery.
Three-dimensional pictures called holograms are also generated with lasers.

CO2

GENETIC ENGINEERING

Fiber-optic communications use optical fiber, a transparent glass thread that is thinner
than a human hair. This optical fiber can carry more information than either radio waves or
electric waves in copper telephone wires, and it does not produce electromagnetic waves that

LASERS

Lasers

Optical fiber

Section 1.1 Engineering in the 21st Century 9

FIBER OPTICS

Communication
skills

Design/process/
manufacture path

Interdisciplinary
teams

can cause interference on communication lines. Transoceanic fiber-optic cables provide com-
munication channels between continents. Fiber optics are also used in medical instrumenta-
tion to allow surgeons to thread light into the human body for examination and laser surgery.

Changing Engineering Environment
The engineer of the twenty-first century works in an environment that requires many nontechni-
cal skills and capabilities [2]. Although the computer will be the primary computational tool of
most engineers, the computer will also be useful in developing additional nontechnical abilities.

Engineers need strong communication skills both for oral presentations and for the
preparation of written materials. Computers provide the software to assist in writing outlines
and developing materials, such as graphs, for presentations and technical reports. The prob-
lems at the end of this chapter include written and oral presentations to provide practice of
these important skills.

The design/process/manufacture path, which consists of taking an idea from a concept
to a product, is one that engineers must understand firsthand. Computers are used in every step
of this process, from design analysis, machine control, robotic assembly, quality assurance, and
market analysis. Several problems in the text relate to these topics. For example, in Chapter 4,
programs are developed to simulate the reliability of systems that use multiple components.

Engineering teams of the future will be interdisciplinary teams, just as the engineering
teams of today are interdisciplinary teams. The discussions of the top 10 engineering achieve-
ments of the last 25 years clearly show the interdisciplinary nature of those achievements. Learn-
ing to interact in teams and to develop organizational structures for effective team communication
is important for engineers. A good way to begin developing engineering team skills is to organize
teams to study for exams. Assign specific topics to members of the team; then have them review
these topics for the team, with examples and potential test questions.

10 Chapter 1 Engineering Problem Solving

Engineers need to understand the world marketplace. This involves understanding
different cultures, political systems, and business environments. Courses in these topics
and in foreign languages help provide some understanding, but exchange programs with
international experiences provide invaluable knowledge in developing a broader world un-
derstanding.

Engineers are problem solvers, but problems are not always formulated carefully. An en-
gineer must be able to extract a problem statement from a problem discussion and then deter-
mine the important issues. This involves not only developing order, but also learning to
correlate chaos. It means not only analyzing the data, but also synthesizing a solution using
many pieces of information. The integration of ideas can be as important as the decomposi-
tion of the problem into manageable pieces. A problem solution may involve not only abstract
thinking about the problem, but also experimental learning from the problem environment.

Problem solutions must also be considered in their societal context. Environmental con-
cerns should be addressed as alternative solutions to problems that are being considered. Engi-
neers must also be conscious of ethical issues in providing test results, quality verifications, and
design limitations. Ethical issues are never easy to resolve, and some of the exciting new tech-
nological achievements will bring more ethical issues with them. For example, the mapping of
the genome will potentially provide ethical, legal, and social implications. Should the gene ther-
apy that allows doctors to combat diabetes also be used to enhance athletic ability? Should
prospective parents be given detailed information related to the physical and mental characteris-
tics of an unborn child? What kind of privacy should an individual have over his or her genetic
code? Very complicated issues arise with any technological advancement because the same ca-
pabilities that can do a great deal of good can often be applied in ways that are harmful.

The material presented in this text is only one step in building the knowledge, confidence,
and understanding needed by engineers. We begin the process with an introduction to the
range of computing systems available to engineers and an introduction to a problem-solving
methodology that will be used throughout this text as we use C to solve engineering problems.

1.2 Computing Systems: Hardware and Software

Computer

Program
Hardware
Software

Processor

Before we begin discussing the language C, a brief discussion on computing is useful, espe-
cially for those who have not had lots of experience with computers. A computer is a ma-
chine that is designed to perform operations that are specified with a set of instructions called
a program. Computer hardware refers to the computer equipment, such as a notebook com-
puter, a thumb drive, a keyboard, a flat-screen monitor, or a printer. Computer software refers
to the programs that describe the steps we want the computer to perform. This can be software
that we have written, or it can be programs that we download or purchase, such as computer
games. Our computer hardware/software can be self-contained, as in a notebook computer. A
computer can also access both hardware and software through a computer network, and
through access to the Internet. In fact, cloud computing provides access to hardware, soft-
ware, and large data sets through remote networks.

Computer Hardware
All computers have a common internal organization as shown in Figure 1.1. The processor is
the part of the computer that controls all the other parts. It accepts input values (from a device
such as a keyboard or a data file) and stores them in memory. It also interprets the instructions

World marketplace

Analyzing
Synthesizing

Societal context

Network
Internet
Cloud computing

Output

Internal
memory

External
memory

Processor

ALU

CPU

Input

Figure 1.1 Internal organization of a computer.

in a computer program. If we want to add two values, the processor will retrieve the values
from memory and send them to the arithmetic logic unit (ALU). The ALU performs the ad-
dition, and the processor then stores the result in memory. The processing unit and the ALU
use internal memory composed of read-only memory (ROM) and random access memory
(RAM); data can also be stored in external storage devices such as external drives or thumb
drives. The processor and the ALU together are called the central processing unit (CPU). A
microprocessor is a CPU that is contained in a single integrated-circuit chip, which contains
millions of components in an area much smaller than a postage stamp.

Many inexpensive printers today use ink-jet technology to print both color copies and
black-and-white copies. We can also store information on a variety of digital memory de-
vices, including CDs and DVDs. A printed copy of information is called a hard copy, and a
digital copy of information is called an electronic copy or a soft copy. Many printers today
can also perform other functions such as copying, faxing, and scanning.

Computers come in all sizes, shapes, and forms. In fact, most of our phones today contain
CPUs and store programs that they can execute. Smartphones also contain a graphics process-
ing unit, a significant amount of RAM, and are trending to multicore (or multiprocessor), low-
power CPUs. Many homes today have personal computers that are used for a variety of
applications, including e-mail, financial budgeting, and games; these computers are typically
desktop computers with separate monitors and keyboards. Notebook computers contain all their
hardware in a small footprint, and thus become very convenient. For some people, tablet com-
puters (such as the iPad) and smartphones are even replacing the use of desktop and notebook
computers.

Computer Software
Computer software contains the instructions or commands that we want the computer to per-
form. There are several important categories of software, including operating systems, soft-
ware tools, desktop applications, and language compilers. Figure 1.2 illustrates the interaction
among these categories of software and the computer hardware. We now discuss each of these
software categories in more detail.

Central processing
unit
Microprocessor

Section 1.2 Computing Systems: Hardware and Software 11

Arithmetic logic
unit (ALU)

Hard copy

Memory

Smartphones

Electronic copy
Soft copy

12 Chapter 1 Engineering Problem Solving

User

Application software

Operating system

Hardware

(
D

ell, Apple, iPad, .
. .

)

(W
indows, Unix, Linux, Android, .

. .
)

(Compilers, word processors, spreadsheets,

. .
.)

(Students, engineers, scientists, accountants, lawyers,
. .

.)

Figure 1.2 Software interface to the computer.

Operating Systems. Some software, such as an operating system, typically comes with
the computer hardware when it is purchased. The operating system supplies an interface be-
tween you (the user) and the hardware by providing a convenient and efficient environment in
which you can select and execute the software application on your system. The component of
the operating system that manages the interface between the hardware and software applica-
tions is called a kernel. Examples of desktop operating systems include Windows, Mac OS,
Unix, and Linux. Operating systems for smartphones include Android (a Linux variant) and
iOS (a Unix variant).

Operating systems also contain a group of programs called utilities that allow you to per-
form functions such as printing files, copying files from one folder to another, and listing the
files in a folder. Most operating systems today simplify the use of these utilities through icons
and menus.

Software Tools. Software tools are programs that have been written to perform com-
mon operations. For example, word processors such as Microsoft Word are programs that
allow you to enter and format text. They allow you to download information from the Internet
into a file and allow you to enter mathematical equations. They can also check your grammar
and spelling. Most word processors allow you to produce documents that have figures, con-
tain images, and can print in two columns. These capabilities allow you to perform desktop
publishing, from a notebook computer.

Spreadsheet programs such as Microsoft Excel are software tools that allow you to
easily work with data that can be displayed in a grid of rows and columns. Spreadsheets were

Operating system

Utilities

Kernel

Word processors

Desktop publishing

Spreadsheet
programs

Section 1.2 Computing Systems: Hardware and Software 13

initially developed to be used for financial and accounting applications, but many science
and engineering problems can also be easily solved with spreadsheets. Most spreadsheet
packages include plotting capabilities, so they are especially useful in analyzing and dis-
playing information in charts. Database management tools allow you to analyze and
“mine” information from large data sets.

Another important category of software tools is mathematical computation tools. This
category includes MATLAB, Mathematica, and Maple. Not only do these tools have very
powerful mathematical commands, but they are also graphics tools that provide extensive
capabilities for generating graphs. This combination of computational and visualization
power makes them particularly useful tools for engineers.

If an engineering problem can be solved using a software tool, it is usually more
efficient to use the software tool than to write a program in a computer language. The dis-
tinction between a software tool and a computer language is becoming less clear, as some of
the more-powerful software tools include their own language in addition to having special-
ized operations. (In fact, many people would call MATLAB a programming language.)

Computer Languages. Computer languages can be described in terms of generations.
The first generation of computer languages (1GL) is machine languages. Machine languages
are tied closely to the design of the computer hardware and are often written in binary strings
consisting of 0s and 1s (also called bits). Therefore, machine language is also called binary
language.

An assembly language is also unique to a specific computer design, but its instructions
are written in symbolic statements instead of binary. Assembly languages usually do not
have many statements; thus, writing programs in assembly language can be tedious. In addi-
tion, to use an assembly language you must also have information that relates to the specif-
ic hardware. Instrumentation that contains microprocessors often requires that the programs
operate very fast; thus, the programs are called real-time programs. These real-time pro-
grams are usually written in assembly language to take advantage of specific computer hard-
ware in order to perform the steps faster. Assembly languages are second-generation
languages (2GL).

High-level languages, or third-generation languages (3GL), use English-like com-
mands. These languages include C, C++, C#, and Java. Writing programs in a high-level lan-
guage is certainly easier than writing programs in machine language or in assembly language.
However, a high-level language contains a large number of commands and an extensive set of
syntax (or grammar) rules for using these commands.

C is a general-purpose language that evolved from two languages, BCPL and B, which
were developed at Bell Laboratories in the late 1960s. In 1972, Dennis Ritchie developed
and implemented the first C compiler at Bell Laboratories. The language became very
popular for system development because it was hardware-independent. Because of its popu-
larity in both industry and academia, it became clear that a standard definition for it was
needed. A committee of the American National Standards Institute (ANSI) was created in
1983 to provide a machine-independent and unambiguous definition of C. In 1989, the
ANSI C standard was approved; that language is described in this text.

Bjarne Stroustrup of AT&T Bell Laboratories developed C++ in the early 1980s. While
C++ is a superset of C, it should really be considered a new language because of its expand-
ed object-oriented features. Java is a pure object-oriented language that is especially useful
for developing Internet-based applications and for devices that communicate over networks,
due to its ease of use.

Database
management tools

Machine languages

Assembly language

Real-time
programs

Bits
Binary

Mathematical
computation tools

High-level
languages

ANSI C

14 Chapter 1 Engineering Problem Solving

C is still the language of choice for many engineers and scientists because of its power-
ful commands and data structures and because it can easily be used for operating system op-
erations. Once you learn C, it is much easier to move to C++ and Java. Therefore, our
objective is to establish a solid foundation in C by covering the most important features of the
language using a number of practical, real-world examples.

To finish our discussion of the different generations of language, fourth-generation lan-
guages (4GL) tend to be similar to human language (or natural language) and are usually do-
main-specific, such as in database development. The fifth generation of languages (5GL) is
designed around constraints instead of algorithms and exists mainly in artificial intelligence (AI)
research.

Executing a Computer Program. A program written in a high-level language such as
C must be translated into machine language before the instructions can be executed by the
computer. A special program called a compiler is used to perform this translation. Thus, in
order to write and execute C programs, we must have a C compiler. The C compilers are
available as separate software packages for use with specific operating systems.

If any errors (often called bugs) are detected by the compiler during compilation,
corresponding error messages are printed. We must correct our program statements and
then perform the compilation step again. The errors identified during this stage are called
compiler errors or compile-time errors. For example, if we want to divide the value
stored in a variable called sum by 3, the correct expression in C is sum/3; if we incor-
rectly write the expression using the backslash, as in sum\3, we will get a compiler error.
The process of compiling, correcting statements (or debugging), and recompiling is
often repeated several times before the program compiles without compiler errors. When
there are no compiler errors, the compiler generates a program in machine language that
performs the steps specified by the original C program. The original C program is re-
ferred to as the source program, and the machine language version is called an object
program. Thus, the source program and the object program specify the same steps; but
the source program is written in a high-level language, and the object program is spec-
ified in machine language.

Once the program has compiled correctly, additional steps are necessary to prepare
the object program for execution. This preparation involves linking other machine lan-
guage statements to the object program and then loading the program into memory. After
this linking/loading, the program steps are executed by the computer. New errors called
execution errors, run-time errors, or logic errors may be identified in this stage; they are
also called program bugs. Execution errors often cause the termination of a program. For
example, the program statements may attempt to perform a division by zero, which gen-
erates an execution error. Some execution errors do not stop the program from executing,
but they cause incorrect results to be computed. These types of errors can be caused by
programmer errors in determining the correct steps in the solutions and by errors in the
data processed by the program. When execution errors occur due to errors in the program
statements, we must correct the errors in the source program and then begin again with
the compilation step. Even when a program appears to execute properly, we must check
the answers carefully to be sure that they are correct. The computer will perform the
steps precisely as we specify, and if we specify the wrong steps, the computer will exe-
cute these wrong (but syntactically legal) steps and thus present us with an answer that is
incorrect.

Bugs

Compiler

Compiler errors

Debugging

Source program

Object program

Execution

Logic errors

Section 1.2 Computing Systems: Hardware and Software 15

The processes of compilation, linking/loading, and execution are outlined in Figure 1.3. The
process of converting an assembly language program to binary is performed by an assembler
program, and the corresponding processes are called assembly, linking/loading, and execution.

Software Life Cycle. The cost of a computer solution to a problem can be estimated in
terms of the cost of the hardware and the cost of the software. The majority of the cost in a
computer solution today is in the cost of the software, and thus, a great deal of attention has
been given to understanding the development of a software solution.

The development of a software project generally follows definite steps or cycles that are
collectively called the software life cycle. These steps typically include project definition,
detailed specification, coding and modular testing, integrated testing, and maintenance.
(These steps will be explained in more detail in later chapters.) Software maintenance is a
significant part of the cost of a software system. This maintenance includes adding enhance-
ments to the software, fixing errors identified as the software is used, and adapting the soft-
ware to work with new hardware and software. The ease of providing maintenance is directly
related to the original definition and specification of the solution, because these steps lay the
foundation for the rest of the project. The problem-solving process that we present in the
next section emphasizes the need to define and specify the solution carefully before begin-
ning to code or test it.

One of the techniques that has been successful in reducing the cost of software devel-
opment both in time and cost is the development of software prototypes. Instead of wait-
ing until the software system is developed and then letting the users work with it, a
prototype of the system is developed early in the life cycle. This prototype does not have
all the functions required of the final software, but it allows the user to use it early in the
life cycle and to make desired modifications to the specifications. Making changes earlier
in the life cycle is both cost- and time-effective. It is not uncommon for a software proto-
type to be developed using a software tool such as MATLAB and then for the final system
to be developed in another language.

As an engineer, it is very likely that you will need to modify or add additional capabilities
to existing software that has been developed using a software tool or a high-level language.
These modifications will be much simpler if the existing software is well structured and read-
able and if the documentation that accompanies the software is up to date and clearly written.
For these reasons, we stress developing good habits that make programs more readable and
self-documenting.

C language
program

Machine
language
program

Program
output

Input data

Execution

Compile

Linking / loadingCompilation

Link /
load Execute

Figure 1.3 Program compilation/linking/execution.

Software life cycle

Assembler

Software
prototypes

16 Chapter 1 Engineering Problem Solving

1.3 An Engineering Problem-Solving Methodology
Problem solving is a key part of engineering courses, as well as courses in computer science,
mathematics, physics, and chemistry. Therefore, it is important to have a consistent approach
to solving problems. It is also helpful if the approach is general enough to work for all these
different areas, so that we do not have to learn one technique for mathematics problems, a dif-
ferent technique for physics problems, and so on. The problem-solving process that we pres-
ent works for engineering problems and can be tailored to solve problems in other areas as
well; however, it does assume that we are using the computer to help solve the problem.

The process or methodology for problem solving that we will use throughout this text has
five steps:

1. State the problem clearly.
2. Describe the input and output information.
3. Work the problem by hand (or with a calculator) for a simple set of data.
4. Develop a solution and convert it to a computer program.
5. Test the solution with a variety of data.

We now discuss each of these steps using an example of computing the distance between two
points in a plane.

1. PROBLEM STATEMENT

The first step is to state the problem clearly. It is extremely important to give a clear, con-
cise problem statement to avoid any misunderstandings. For this example, the problem
statement is the following:

Compute the straight-line distance between two points in a plane.

2. INPUT/OUTPUT DESCRIPTION

The second step is to carefully describe the information that is given to solve the problem
and then identify the values to be computed. These items represent the input and the output
for the problem and collectively can be called input/output (I/O). For many problems, a di-
agram that shows the input and output is useful. At this point, the program is an “abstrac-
tion” because we are not defining the steps to determine the output; instead, we are only
showing the information that is used to compute the output. The I/O diagram for this
example follows:

I/O diagram

Point 1

Point 2
Distance between points

Problem-solving
process

Section 1.3 An Engineering Problem-Solving Methodology 17

side1

(1, 5)

distance
(4, 7)

y

side2

x

FIGURE 1.4 Straight-line distance between two points.

3. HAND EXAMPLE

The third step is to work the problem by hand or with a calculator, using a simple set of
data. This is a very important step, and should not be skipped even for simple problems.
This is the step in which you work out the details of the problem solution. If you cannot
take a simple set of numbers and compute the output (either by hand or with a calculator),
then you are not ready to move on to the next step; you should read the problem again and
perhaps consult reference material. The solution by hand for this specific example is as
follows:

Let the points and have the following coordinates:

We want to compute the distance between the two points, which is the hypotenuse of a right
triangle, as shown in Figure 1.4. Using the Pythagorean theorem, we can compute the dis-
tance with the following equation:

 = 3.61.

 = 213

 = 214 - 122 + 17 - 522
 distance = 21side122 + 1side222

p1 = 11, 52; p2 = 14, 72.
p2p1

18 Chapter 1 Engineering Problem Solving

4. ALGORITHM DEVELOPMENT

Once you can work the problem for a simple set of data, you are ready to develop an
algorithm, or a step-by-step outline, of the problem solution. For simple problems such as
this one, the algorithm can be listed as operations that are performed one after another. This
outline of steps decomposes the problem into simpler steps, as shown by the following out-
line of the steps required to compute and print the distance between two points:

Decomposition Outline

1. Give values to the two points.

2. Compute the lengths of the two sides of the right triangle generated by the two points.

3. Compute the distance between the two points, which is equal to the length of the hy-
potenuse of the triangle.

4. Print the distance between the two points.

This decomposition outline is then converted to C commands so that we can use the com-
puter to perform the computations. From the following solution, you can see that the
commands are very similar to the steps used in the hand example. The details of these com-
mands are explained in Chapter 2.

/*–––*/
/* Program chapter1_1 */
/* */
/* This program computes the */
/* distance between two points. */

#include <stdio.h>
#include <math.h>

int main(void)
{

/* Declare and initialize variables. */
double x1=1, y1=5, x2=4, y2=7,

side_1, side_2, distance;

/* Compute sides of a right triangle. */
side_1 = x2 � x1;
side_2 = y2 � y1;
distance = sqrt(side_1*side_1 + side_2*side_2);

/* Print distance. */
printf("The distance between the two points is "

"%5.2f \n",distance);

/* Exit program. */
return 0;

}
/*––*/

Algorithm

Decomposition
outline

Key Terms 19

5. TESTING

The final step in our problem-solving process is testing the solution. We should first test the
solution with the data from the hand example because we have already computed the solu-
tion. When the C statements in this solution are executed, the computer displays the follow-
ing output:

The distance between the two points is 3.61

This output matches the value that we calculated by hand. If the C solution did not match
the hand-calculated solution, then we should review both solutions to find the error. Once
the solution works for the hand-calculated example, we should also test it with additional
sets of data to be sure that the solution works for other valid sets of data.

The set of steps demonstrated in this example are used in developing the programs in
the Problem Solving Applied sections in the chapters that follow.

SUMMARSUMMARYY A group of outstanding recent engineering achievements was presented to demonstrate the
diversity of engineering applications. We also discussed some of the nontechnical skills required
to be a successful engineer. Because most engineering problems will be solved by computer, we
also presented a summary of the components of a computer system, from computer hardware to
computer software. We also introduced a five-step problem-solving methodology that we will
use to develop a computer solution to a problem. These five steps are as follows:

1. State the problem clearly.
2. Describe the input and output information.
3. Work the problem by hand (or with a calculator) for a simple set of data.
4. Develop an algorithm and convert it to a computer program.
5. Test the solution with a variety of data.

This process will be used throughout the text as we develop solutions to problems.
Finally, we introduced you to the theme of this new edition—the technology behind crime
scene investigation.

algorithm
ANSI C
arithmetic logic unit (ALU)
assembler
assembly language
binary
bit
bug
central processing unit (CPU)
cloud computing
compiler
compiler error

computer
database management tool
debug
debugger
decomposition outline
desktop publishing
electronic copy
execution
hardware
high-level language
I/O diagram
kernel

KEY TERMS

20 Chapter 1 Engineering Problem Solving

linking/loading
logic error
machine language
memory
microprocessor
network
object program
operating system
personal computer (PC)
problem-solving process
processor
program

real-time program
software
software life cycle
software maintenance
software prototype
software tool
source program
spreadsheet
syntax
utility
word processor

PROBLEMS

SHORSHORTT ANSWER PRANSWER PROBLEMSOBLEMS

True–False Problems
Indicate whether the following statements are true (T) or false (F):
1. A CPU consists of an ALU, memory, and a processor. T F

2. Linking/loading is the step that prepares the object program for execution. T F

3. An algorithm describes the problem solution step by step, while a
computer program solves the problem in one step. T F

4. A computer program is the implementation of an algorithm. T F

5. A utility program converts C to binary. T F

6. A microprocessor is a processor that is very small. T F

7. Data can be communicated between internal memory and external
memory through an ALU. T F

8. Spreadsheets are useful to manipulate objects graphically. T F

9. Computer-aided design is used only to design microcomputers. T F

10. A word processor allows us to enter and edit text. T F

11. Math software tools are very powerful both in computation
and in visualization. T F

12. To correct logic errors, we repeat only the execution step. T F

13. The compilation step identifies all the bugs in the program. T F

14. An algorithm gives the steps used to solve a problem. T F

15. A computer program is a set of instructions to solve a problem. T F

16. A program is completely tested if it works for one set of data. T F

17. A kernel is a piece of hardware. T F

18. C was one of the first high-level languages developed. T F

19. Software maintenance is an insignificant part of the cost of today’s
software systems. T F

20. Programs written in machine language can be represented as binary strings. T F

Problems 21

Multiple Choice Problems

Circle the letter for the best answer to complete each statement:

21. Instructions and data are stored in
(a) the arithmetic logic unit (ALU).
(b) the control unit (processor).
(c) the central processing unit (CPU).
(d) the memory.
(e) the keyboard.

22. An operating system is
(a) the software that is designed by users.
(b) a convenient and efficient interface between the user and the hardware.
(c) the set of utilities that allows us to perform common operations.
(d) a set of software tools.

23. Source code is
(a) the result of compiler operations.
(b) the process of getting information from the processor.
(c) the set of instructions in a computer language that solves a specific problem.
(d) the data stored in the computer memory.
(e) the values entered through the keyboard.

24. Object code is
(a) the result of compiler operations on the source code.
(b) the process of obtaining information from the processor.
(c) a computer program.
(d) a process involving the listing of commands required to solve a

specific problem.
(e) the result of the linking/loading process.

25. An algorithm refers to
(a) a step-by-step solution to solve a specific problem.
(b) a collection of instructions that the computer can understand.
(c) a code that allows us to type in text materials.
(d) stepwise refinement.
(e) a set of math equations to derive the solution to a problem.

26. A hard copy is
(a) the information stored on a hard disk.
(b) the information printed out on paper.
(c) the information shown on the screen.
(d) a computer program.
(e) all of the above.

27. Computer hardware consists of
(a) a keyboard.
(b) a printer.
(c) disk drives.
(d) a terminal screen.
(e) all of the above.

1

22 Chapter 1 Engineering Problem Solving

28. An example of software is
(a) a printer.
(b) a screen.
(c) a computer code.
(d) all of the above.

29. High-level languages are
(a) good for real-time programming.
(b) the second generation of computer languages.
(c) called natural languages.
(d) written in English-like words.

30. The difference between the source program and the object program is
(a) the source program possibly contains some bugs, and the object program does not

contain any bugs.
(b) the source program is the original code, and the object program is a modified code.
(c) the source program is specified in a high-level language, and the object program is

specified in machine language.
(d) the object program is also a source program.
(e) the source program can be executed, and the object program cannot be executed.

31. The place to start when solving a problem is
(a) to develop an algorithm.
(b) to write the program.
(c) to compile the source program.
(d) to link to the object program.

32. A hand example means
(a) doing arithmetic on your hands.
(b) working out the details of the problem solution using a simple set of data.
(c) outlining a solution to a problem.
(d) expanding the outline of a solution.
(e) testing the algorithm step by step with a calculator.

33. A computer program is
(a) a collection of components containing input and output devices.
(b) a list of instructions needed to solve a problem.
(c) a set of instructions to be performed by the computer and written in a language that

the computer can understand.
(d) a step-by-step procedure for solving a problem.
(e) an outline that decomposes the problem into simpler steps.

Matching Problems

Select the correct term for each of the following definitions from this list:

algorithm
ANSI C
arithmetic logic unit (ALU)
central processing unit (CPU)
cloud computing
compilation
debugging

grammar
hardware
input devices
logic errors
machine language
memory
microprocessor

Problems 23

natural language
network
operating systems
output devices
program
software life cycle

software maintenance
spreadsheet
syntax
system software
word processor

34. A set of instructions that tells a computer what to do

35. The machinery that is part of the computer

36. The brain of the computer

37. Devices used to show the results of programs

38. Compilers and other programs that help run the computer

39. The steps to solve a problem

40. The process that converts a C program into machine language

41. A software tool designed to work with data stored in a grid or a table

42. The rules that define the punctuation and words that can be used in a program

43. The interface between the user and the hardware

44. The part of a computer that performs the mathematical computations

45. The process of removing errors from a program

46. Errors discovered during the execution of a program

47. The specific definition of the C language approved by the American National Standards
Institute

48. A central processing unit contained in a single integrated-circuit chip

49. A technique for accessing large amounts of information remotely

50. The representation of a program in binary

ADDITIONAL PRADDITIONAL PROBLEMSOBLEMS

The following problems combine an assignment in which you will learn more about one of
the topics in this chapter with an opportunity to improve your written communication skills.
(Perhaps your professor will even select some of the written reports for oral presentation in
class.) Each report should include at least two references. Prepare your report using word
processor software. If you do not already know how to use a word processor, ask your profes-
sor for guidance on locating manuals or seminars to teach you to use one of the word proces-
sors available on your university’s computer systems.

51. Write a short report on one of these outstanding engineering achievements:

Moon landing Application satellites
Microprocessors CAD/CAM
CAT scans Composite materials
Jumbo jets Lasers
Fiber optics Genetically engineered products

52. Write a short report discussing an ethical issue that you think relates to one of the ten out-
standing engineering achievements. Present several potential ways in which the issue
might be viewed.

1

CHAPTER TWO

Crime Scene Investigation:
Forensic Anthropology
Forensic anthropology is a field of study that combines the knowledge of physical and
biological anthropology with the investigation of identify and the circumstances of death.
Forensic anthropologists typically work with skeletal remains, but they may also work
with decomposed,burned,or partial remains.Their work may be based on a single bone,
or they may be working with many bones from mass fatalities caused by airplane crashes,
explosions, or natural disasters. For example, the terrorist attack on the World Trade
Centers killed 2,016 people; only 289 bodies were found intact. Another mass fatality
was caused by the 2011 Joplin tornado that was more than a mile wide when it passed
through Joplin, Missouri, killing 162 people. Forensic anthropologists often work with
forensic odontologists (dental experts), radiologists, fingerprint experts, and law enforce-
ment officers to identify remains and to provide clues relative to the circumstances of
death. Later in this chapter, we discuss the relationship between the length of certain
bones and the height of an individual. Then we develop a C program to estimate a per-
son’s height from the length of the femur (the leg bone between the hip and the knee)
and from the humerus (the bone that connects the shoulder to the elbow).

24

2

CHAPTER OUTLINE

OBJECTIVES In this chapter, we develop problem solutions containing

2.1 Program Structure
2.2 Constants and Variables
2.3 Assignment Statements
2.4 Standard Input and Output
2.5 Problem Solving Applied: Estimating Height from Bone Lengths
2.6 Numerical Technique: Linear Interpolation
2.7 Problem Solving Applied: Freezing Temperature of Seawater
2.8 Mathematical Functions
2.9 Character Functions
2.10 Problem Solving Applied: Velocity Computation
2.11 System Limitations

Summary, Key Terms, C Statement Summary,
Style Notes, Debugging Notes, Problems

In this section, we analyze the structure of a specific C program, and then we present the gen-
eral structure of a C program. The program that follows was first introduced in Chapter 1; it
computes and prints the distance between two points.

/*–––*/
/* Program chapter1_1 */
/* */
/* This program computes the */
/* distance between two points. */

#include <stdio.h>
#include <math.h>

SIMPLE C PROGRAMS

2.1 Program Structure

25

■ simple arithmetic computations,
■ user-supplied information from

the keyboard,

■ information printed on the screen,
and

■ linear interpolation techniques.

26 Chapter 2 Simple C Programs

Comments

Preprocessor
directives

int main(void)
{

/* Declare and initialize variables. */
double x1=1, y1=5, x2=4, y2=7,

side_1, side_2, distance;

/* Compute sides of a right triangle. */
side_1 = x2 - x1;
side_2 = y2 - y1;
distance = sqrt(side_1*side_1 + side_2*side_2);

/* Print distance. */
printf("The distance between the two points is "

"%5.2f \n",distance);

/* Exit program. */
return 0;

}
/*–––*/

We now briefly discuss the statements in this specific example; each of the statements is dis-
cussed in detail in later sections of this chapter.

The first five lines of this program contain comments that give the program a name
(chapter1_1) and that document its purpose:

/*–––*/
/* Program chapter1_1 */
/* */
/* This program computes the */
/* distance between two points. */

Comments begin with the characters /* and end with the characters */. A comment can be on
a line by itself, or it can be on the same line as a command; a comment can also extend over
several lines. Each of these comment lines is a separate comment because each line begins
with /* and ends with */. Although comments are optional, good style requires that com-
ments be used throughout a program to improve its readability and to document the computa-
tions. In the programs in this text, we always use initial comments to give a name to the
program and to describe the general purpose of the program; additional explanation com-
ments are also included throughout the program. ANSI C allows comments and statements to
begin anywhere on a line; we begin the initial comments of a program in the first column.

Preprocessor directives provide instructions that are performed before the program is
compiled. The most common directive inserts additional statements in the program; it con-
tains the statement #include, followed by the name of the file containing the additional
statements. This program contains the following two preprocessor directives:

#include <stdio.h>
#include <math.h>

These directives specify that statements in the files stdio.h and math.h should be included
in place of these two statements before the program is compiled. The and characters
around the file names indicate that the files are included with the Standard C library; this
library is contained in the files that accompany an ANSI C compiler. The stdio.h file
contains information related to the output statement used in this program, and the math.h file

76
Standard C library

Section 2.1 Program Structure 27

Declarations
Initial values

contains information related to the function used in this program to compute the square root of
a value. The .h extension on these filenames specifies that they are header files; more infor-
mation on header files is included later in this chapter and in Chapter 4. Preprocessor directives
are generally included after the initial comments describing the program’s purpose.

Every C program contains a set of statements called a main function. The keyword int
indicates that the function returns an integer value to the operating system. The keyword void
indicates that the function is not receiving any information from the operating system. The
body of the function is enclosed by braces, { }. In order to easily identify the body of the
function, we place these braces on lines by themselves. Thus, the two lines following the pre-
processor directives specify the beginning of the main function:

int main(void)
{

The main function contains two types of commands: declarations and statements. The
declarations define the memory locations that will be used by the statements and therefore
must precede the statements. The declarations may or may not give initial values to be stored
in the memory locations. A comment precedes the declaration statement in this program:

/* Declare and initialize variables. */
double x1=1, y1=5, x2=4, y2=7,

side_1, side_2, distance;

These declarations specify that the program will use seven variables named x1, y1, x2, y2,
side_1, side_2, and distance. The term double indicates that the variables will store
double-precision floating-point values; these variables can store values such as 12.5 and

with many digits of precision. In addition, this statement specifies that x1 should be
initialized (given an initial value) to the value 1, y1 should be initialized to the value 5, x2
should be initialized to the value 4, and y2 should be initialized the value 7. The initial values
of side_1, side_2, and distance are not specified and should not be assumed to be ini-
tialized to zero. Because the declaration was too long for one line, we split it over two lines;
the indenting of the second line indicates that it is a continuation of the previous line. The in-
denting is a matter of style and readability. It is not required.

The statements that specify the operations to be performed in the example program are
the following:

/* Compute sides of a right triangle. */
side_1 = x2 - x1;
side_2 = y2 - y1;
distance = sqrt(side_1*side_1 + side_2*side_2);

/* Print distance. */
printf("The distance between the two points is "

"%5.2f \n",distance);

These statements compute the lengths of the two sides of the right triangle formed by two
points (see Figure 1.4), and then they compute the length of the hypotenuse of the right trian-
gle. The details of the syntax of these statements are discussed later in the chapter. After the
distance is computed, it is printed with the printf statement. This output statement is too
long for a single line, so we separate the statement into two lines; the indenting of the second
line again indicates that it is a continuation of the previous line. Additional comments were
used to explain the computations and the output statement. Also, note that the declarations
and statements are all required to end with a semicolon.

-0.0005

Statements

28 Chapter 2 Simple C Programs

1. Create a file containing the sample program discussed in this section. Use either an edi-
tor that is part of your C compiler or use a word processor.* Then compile and execute
the program. You should get this output:

The distance between the two points is 3.61

2. Change the values given to the two points to the coordinates and (2, 4). Run the
program with these new values. Did the distance change? Explain.

3. Change the values given to the two points to the coordinates (1, 0) and (5, 7). Check the
program’s answer with your calculator.

4. Change the values given to the two points to the coordinates (2, 4) and (2, 4). Does the
program given the correct answer?

1-1, 62

MODIFY!MODIFY!

To end execution of the program and return control to the operating system, we use a
return 0; statement:

/* Exit program. */
return 0;

This statement returns a value of 0 to the operating system. A value of zero indicates a suc-
cessful end of execution.

The body of the main function then ends with the right brace on a line by itself and an-
other comment line to delineate the end of the main function:

}
/*–––*/

Note that we have also included blank lines (also called white space) in the program to
separate different components. These blank lines make a program more readable and easier
to modify. The declarations and statements within the main function were indented to show
the structure of the program. This spacing provides a consistent style, and makes our pro-
grams easier to read.

Now that we have closely examined the C program from Chapter 1, we can compare its
structure to the general form of a C program:

preprocessing directives
int main(void)
{

declarations;
statements;

}

This structure is evident in the programs developed in this chapter and in following chapters.

*If you use a word processor to generate the file, make sure you save it as a text file.

general form

Section 2.2 Constants and Variables 29

double
side_1, side_2, distance;

1

7

?

5

?

4

?

x1 y1 x2

y2 side_1 side_2

distance

x1=1, y1=5, x2=4, y2=7,

2.2 Constants and Variables
Constants and variables represent values that we use in our programs. Constants are specific
values, such as 2, 3.1416, ‘a’, or “hello”, that we include in the C statements, and
variables are memory locations that are assigned a name or identifier. The identifier is used
to reference the value stored in the memory location. A useful analogy for a memory location
and its corresponding identifier is a mailbox that is associated with the name of an individual;
the memory location (or mailbox) then contains a value. The following diagram shows the
variables, their identifiers, and their initial values after the following declaration statement
from program Chapter1_1:

-1.5,

Garbage values

Memory snapshot

Case sensitive

The values of variables that were not given initial values are unspecified, and thus indicated
with a question mark; sometimes these values are called garbage values because they are val-
ues from the previous program. A diagram that shows a variable along with its identifier and
its value is called a memory snapshot, because it shows the contents of a memory location at
a specified point in the execution of the program. The preceding memory snapshot shows the
variables and their contents as specified by the declaration statement. We frequently use
memory snapshots to show the contents of a variable both before and after a statement is exe-
cuted in order to show its effect.

The rules for selecting a valid identifier are as follows:

• an identifier must begin with an alphabetic character or the underscore character (_);

• alphabetic characters in an identifier can be lowercase or uppercase letters;

• an identifier can contain digits, but not as the first character; and

• an identifier can be of any length, but the first 31 characters of the identifier must be
unique.

C is case sensitive, and thus uppercase letters are different from lowercase letters; thus,
Total, TOTAL and total represent three different variables. Also, note that the variable
distance_in_miles_from_earth_to_mars would not be distinguished from
distance_in_miles_from_earth_to_venus because the first 31 characters are the
same. C also includes keywords with special meaning to the C compiler that cannot be used
for identifiers; a complete list of keywords is given in Table 2.1.

Examples of valid identifiers are distance, x_1, X_sum, average_measurement, and
initial_time. Examples of invalid identifiers are 1x (begins with a digit), switch (is a key-
word), $sum (contains an invalid character, $), and rate% (contains an invalid character, %).

Keywords

Constants

Variables
Identifier

30 Chapter 2 Simple C Programs

Table 2.1 Keywords

auto double ints struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Floating-point
Scientific notation

An identifier name should be carefully selected so that it reflects the contents of the vari-
able. If possible, the name should also indicate the units of measurement. For example, if a
variable represents a temperature measurement in degrees Fahrenheit, use an identifier such
as temp_F or degrees_F. If a variable represents an angle, name it theta_rad to indicate
that the angle is measured in radians or theta_deg to indicate that the angle is measured in
degrees.

The declarations at the beginning of the main function (and also at the beginning of other
C functions that we write) must not only include all identifiers of the variables that we plan to
use in our program, but also specify the types of values that will be stored in the variables.
These data types are presented after a discussion on scientific notation.

Exponential
notation

Scientific Notation
A floating-point value is one that can represent both integer and noninteger values, such as
2.5, –0.004, and 15.0. A floating-point value expressed in scientific notation is rewritten as a
mantissa times a power of 10, where the mantissa has an absolute value greater than or equal
to 1.0 and less than 10.0. For example, in scientific notation, 25.6 is written as
–0.004 is written as and 1.5 is written as In exponential notation,
the letter e is used to separate the mantissa from the exponent of the power of 10. Thus, in ex-
ponential notation, 25.6 is written as 2.56e1, –0.004 is written as and 1.5 is written
as 1.5e0.

–4.0e-3,

1.5 * 100.–4.0 * 10-3,
2.56 * 101,

Determine which of the following names are valid identifiers. If a name is not a valid identi-
fier, give the reason that it is not acceptable, and suggest a valid replacement.

PRACTICE!PRACTICE!

1. density 2. area 3. Time

4. xsum 5. x_sum 6. tax-rate

7. perimeter 8. sec^2 9. degrees_C

10. break 11. #123 12. x&y

13. count 14. void 15. f(x)

16. f2 17. Final_Value 18. w1.1

19. reference1 20. reference_1 21. m/s

Section 2.2 Constants and Variables 31

In Problems 1 through 6, express the value in scientific notation.

1. 35.004 2. 0.00042

3. –50,000 4. 3.15723

5. –0.0999 6. 10,000,002.8

In Problems 7 through 12, express the value in floating-point notation.

7. 1.03e–5 8. –1.05e5

9. –3.552e6 10. 6.67e–4

11. 9.0e–2 12. –2.2e–2

PRACTICE!PRACTICE!

long doubledoublefloatlongintshort

numeric data types

integers floating-point values

The number of digits allowed by the computer for the decimal portion of the mantissa
determines the precision, and the number of digits allowed for the exponent determines the
range. Thus, values with two digits of precision and an exponent range of –8 to 7 could in-
clude values such as (233,000) and (0.0000000592). This precision
and exponent range would not be sufficient for many of the types of values that we use in en-
gineering problem solutions. For example, the distance in miles from Mars to the Sun is
141,517,510 or to represent this value, we would need at least seven dig-
its of precision and an exponent range that included the integer 8.

1.4151751 * 108;

5.92 * 10-82.33 * 105

Numeric Data Types
Numeric data types are used to specify the types of numbers that will be contained in vari-
ables. In C, numeric values are either integers or floating-point values. The following dia-
gram shows the numeric data types that are discussed in the next few paragraphs:

32 Chapter 2 Simple C Programs

Table 2.2 Example Data-Type Limits*

Integers

short
int
long

Floating Point

float 6 digits of precision
Maximum exponent 38
Maximum value

double 15 digits of precision
Maximum exponent 308
Maximum value

long double 15 digits of precision
Maximum exponent 308
Maximum value

*Microsoft Visual C++ 2010 Express compiler.

1.797693e+308

1.797693e+308

3.402823e+38

Maximum = 2,147,483,647
Maximum = 2,147,483,647
Maximum = 32,767

The type specifiers for signed integers are short, int, and long, for short integer,
integer, and long integer, respectively. The specific ranges of values are system depend-
ent, which means that the ranges can vary from one system to another. In the last section
of this chapter, we present a program that you can use to determine the ranges of the nu-
meric data types on your system. On many systems, the short integer and the integer data
types range from –32,768 to 32,767, and the long integer type often represents values from
–2,147,483,648 to 2,147,483,647. (The unusual limits such as 32,767 and 2,147,483,647 re-
late to conversions of binary values to decimal values.) C also allows an unsigned qualifier to
be added to integer specifiers, where an unsigned integer represents only positive values.
Signed and unsigned integers can represent the same number of values, but the ranges are dif-
ferent. For example, if an unsigned short has the range of values from 0 to 65,535, then a
short integer has the range of values from –32,768 to 32,767; both variables can represent a
total of 65,536 values.

The type specifiers for floating-point values are float (single precision), double (dou-
ble precision), and long double (extended precision). The following statement from pro-
gram chapter1_1 thus defines seven variables that all contain double-precision floating-point
values:

double x1=1, y1=5, x2=4, y2=7,
side_1, side_2, distance;

The difference between the float, double, and long double types relates to the preci-
sion (or accuracy) and the range of the values represented. The precision and range are system
dependent. Table 2.2 contains precision and range information for integers and floating-point
values used by the Microsoft Visual C++ compiler that can be used to run C programs, as well
as C++ programs. (C++ is an extension of C.) A program given in Section 2.10 allows you to
obtain this information for your computer system. On most systems, a double data type
stores about twice as many decimal digits of precision as are stored with a float data type.

Type specifiers
System dependent

Section 2.2 Constants and Variables 33

Table 2.3 Examples of ASCII Codes

Character ASCII Code Integer Equivalent

newline, \n 0001010 10
% 0100101 37
3 0110011 51
A 1000001 65
a 1100001 97
b 1100010 98
c 1100011 99

In addition, a double value will have a wider range of exponent values than a float value.
The long double value may have more precision and a still wider exponent range, but this is
again system-dependent. A floating-point constant such as 2.3 is assumed to be a double con-
stant. To specify a float constant or a long double constant, the letter (or suffix) F or L must
be appended to the constant. Thus, 2.3F and 2.3L represent a float constant and a long
double constant, respectively.

Character Data
Character data is an important type of information to represent and to manipulate in engi-
neering programming problems. In order to work with characters, we need to understand
more about their representation in the computer’s memory. Recall that all information stored
in a computer is represented internally as sequences of binary digits (0 and 1). Each charac-
ter corresponds to a binary code value. The most commonly used binary codes are ASCII
(American Standard Code for Information Interchange) and EBCDIC (Extended Binary
Coded Decimal Interchange Code). In the discussions that follow, we assume that ASCII
code is used to represent characters. Table 2.3 contains a few characters, their binary form in
ASCII, and the integer values that correspond to the binary values. The character ‘a’ is repre-
sented by the binary value 1100001, which is equivalent to the integer value of 97. A total of
128 characters can be represented in the ASCII code. A complete ASCII code table is given
in Appendix B.

Character data can be represented by constants or by variables. A character constant is
enclosed in single quotes, such as 'A', 'b', and '3'. A variable that is going to contain a
character is defined as an integer or as a character data type. The type specifier for characters
is char.

Once a character is stored in memory as a binary value, the binary value can be inter-
preted as a character or as an integer. Thus, when we define a variable for storing a character,
we can define it as either a character variable to store the ASCII value or as an integer vari-
able to store the integer equivalent value. However, it is important to note that the binary
ASCII representation for a character digit is not equal to the binary representation for an
integer digit. From Table 2.3, we see that the ASCII binary representation for the character
digit 3 is 0110011, which is equivalent to the binary representation of the integer value 51.
Thus, performing a computation with the character representation of a digit does not yield the
same result as performing the computation with the integer representation of the digit. The
following program illustrates the use of character data. The details of the program are dis-
cussed later in the chapter.

Characters

Binary code
ASCII
EBCDIC

/*––*/
/* Program chapter2_1 */
/* */
/* This program prints two values */
/* as characters and integers. */

#include <stdio.h>

int main(void)
{

/* Declare and initialize variables. */
char ch='a';
int i=97;

/* Print both values as characters. */
printf("value of ch: %c; value of i: %c \n",ch,i);

/* Print both values as integers. */
printf("value of ch: %i; value of i: %i \n",ch,i);

/* Exit program. */
return 0;

}
/*––*/

The output from this program is

value of ch: a; value of i: a
value of ch: 97; value of i: 97

Symbolic Constants
A symbolic constant is defined with a preprocessor directive that assigns an identifier to the
constant. The directive can appear anywhere in a C program; the compiler will replace each
occurrence of the directive identifier with the constant value in all statements that follow the
directive. Engineering constants such as or g (the acceleration due to gravity) are good can-
didates for symbolic constants. For example, consider the following preprocessing directive
to assign the value 3.141593 to the variable PI:

#define PI 3.141593

Statements that need to use the value of would then use the symbolic constant identifier PI in-
stead of 3.141593, as illustrated in the following statement which computes the area of a circle:

area = PI*radius*radius;

Symbolic constants are usually defined with uppercase identifiers (as in PI instead of pi)
to indicate that they are symbolic constants, and, of course, the identifiers should be selected so
that they are easy to remember. Finally, only one symbolic constant can be defined in a direc-
tive; if several symbolic constants are desired, separate directives are required. Note that pre-
processor directives, which include the #define statement, do not end with a semicolon.

In the next section, we discuss C statements that allow us to assign values to variables.
These assignment statements could be used to assign constant values to variables, but we will
see later that there are often some special advantages to using symbolic constants.

p

p

34 Chapter 2 Simple C Programs

Symbolic constant

Section 2.3 Assignment Statements 35

Give the preprocessor directives to assign symbolic constants for these constants:

1. Speed of light,

2. Charge of an electron,

3. Avogadro’s number,

4. Acceleration of gravity,

5. Acceleration of gravity,

6. Mass of the Earth,

7. Radius of the Moon,

8. Unit of length, Unit_Length = ‘m’

9. Unit of time, Unit_Length = ‘s’

r = 1.74 * 106 m

ME = 5.98 * 1024 kg

g = 32 ft/s2
g = 9.8 m/s2

NA = 6.022 * 1023 mol-1
e = 1.602177 * 10-19 C

c = 2.99792 * 108 m/s

PRACTICE!PRACTICE!

sum x1 ch10.5 3 'a'

2.3 Assignment Statements

In the previous example, the statements on the left define and initialize the variables at the
same time; the assignment statements on the right could be used at any point in the program,
and thus may be used to change (as opposed to initialize) the values in variables.

Multiple assignments are also allowed in C, as in the following statement, which assigns
a value of zero to each of the variables x, y, and z:

x = y = z = 0;

Multiple assignments are discussed further at the end of this section.

An assignment statement is used to assign a value to an identifier. The general form of the
assignment statement is

identifier = expression;

where an expression can be a constant, another variable, or the result of an operation. Con-
sider the following two sets of statements that declare and give values to the variables sum,
x1, and ch:

double sum=10.5; double sum;
int x1=3; int x1;
char ch='a'; char ch;

...

sum = 10.5;
x1 = 3;
ch = 'a';

After either set of statements is executed, the value of sum is 10.5, the value of x1 is 3, and the
value of ch is ‘a’, as shown in the following memory snapshot:

Assignment state-
ment

Expression

36 Chapter 2 Simple C Programs

Before: rate state_tax

After: rate state_tax

?

0.06

0.06

0.06

a 12

We can also assign a value from one variable to another with an assignment statement:

rate = state_tax;

The equal sign should be read as “is assigned the value of ”; thus, this statement is “rate is as-
signed the value of state_tax.” If state_tax contains the value 0.06, then rate also con-
tains the value 0.06 after the statement is executed; the value in state_tax is not changed. Thus,
the memory snapshots before and after this statement is executed are the following:

If we assign a value to a variable that has a different data type, then a conversion must
occur during the execution of the statement. Sometimes the conversion can result in informa-
tion being lost. For example, consider the following declaration and assignment statement:

int a;
...
a = 12.8;

Because a is defined as an integer, it cannot store a value with a nonzero decimal portion.
Therefore, in this case, the memory snapshot after executing the assignment statement is the
following:

To determine whether a numeric conversion will work properly or not, we use the fol-
lowing order (from high to low):

high: long double
double
float
long integer
integer

low: short integer

If a value is moved to a data type that is higher in order, no information will be lost; if a value
is moved to a data type that is lower in order, information may be lost. Thus, moving an inte-
ger to a double will work properly, but moving a float to an integer may result in the loss of
some information or in an incorrect result. In general, use only assignments that do not cause
potential conversion problems. (Unsigned integers were not included in the list because errors
can occur in both directions.)

Arithmetic Operators
An assignment statement can be used to assign the result of an arithmetic operation to a vari-
able, as shown in this statement that computes the area of a square:

area_square = side*side;

where * is used to indicate multiplication. The symbols + and � are used to indicate addition
and subtraction, respectively, and the symbol / is used for division. Thus, each of the follow-
ing statements is a valid computation for the area of a triangle:

area_triangle = 0.5*base*height;
area_triangle = (base*height)/2;

The use of parentheses in the second statement is not required, but is used for readability.
Consider this assignment statement:

x = x + 1;

In algebra, this statement is invalid, because a value cannot be equal to itself plus 1. However,
this assignment statement should not be read as an equality; instead, it should be read as “x is
assigned the value of x plus 1.” With this interpretation, the statement indicates that the value
stored in the variable x is incremented by 1. Thus, if the value of x is 5 before this statement
is executed, then the value of x will be 6 after the statement is executed.

C also includes a modulus operator (%) that is used to compute the remainder in a divi-
sion between two integers. For example, 5%2 is equal to 1, 6%3 is equal to 0, and 2%7 is equal
to 2. (The quotient of 2/7 is zero with a remainder of 2.) If a and b are integers, then the ex-
pression a/b computes the integer quotient, whereas the expression a%b computes the integer
remainder. Thus, if a is equal to 9 and b is equal to 4, the value of a/b is 2, and the value of
a%b is 1. An execution error occurs if the value of b is equal to zero in either a/b or a%b
because the computer cannot perform division by zero. If either of the integer values in a and
b is negative, the result of a%b is system-dependent.

The modulus operator is useful in determining if an integer is a multiple of another num-
ber. For example, if a%2 is equal to zero, then a is even; otherwise, a is odd. If a%5 is equal to
zero, then a is a multiple of 5. We will use the modulus operator frequently in the develop-
ment of engineering solutions.

The five operators (+, -, *, /, %) discussed in the previous paragraphs are binary
operators—operators that operate on two values. C also includes unary operators—operators
that operate on a single value. For example, plus and minus signs can be unary operators when
they are used in an expression such -x.

The result of a binary operation with values of the same type is another value of the same
type. For example, if a and b are double values, then the result of a/b is also a double
value. Similarly, if a and b are integers, then the result of a/b is also an integer; however, an
integer division can sometimes produce unexpected results, because any decimal portion of
the integer division is dropped; thus, the result is a truncated result, not a rounded result.
Thus, 5/3 is equal to 1, and 3/6 is equal to 0.

An operation between values with different types is a mixed operation. Before the operation
is performed, the value with the lower type is converted or promoted to the higher type (as
discussed in conversions within assignment statements), and thus the operation is performed with
values of the same type. For example, if an operation is specified between an int and a float, the
int will be converted to a float before the operation is performed; the result will be a float.

Suppose that we want to compute the average of a set of integers. If the sum and the count
of the integers have been stored in the integer variables sum and count, it would seem that the
following statements should correctly compute the average:

int sum, count;

Section 2.3 Assignment Statements 37

Modulus

Binary operators
Unary operators

Truncated result

Mixed operation

38 Chapter 2 Simple C Programs

Cast operator

float average;
...
average = sum/count;

However, the division between two integers gives an integer result that is then converted to a
float value. Thus, if sum is 18, and count is 5, then the value of average is 3.0, not 3.6. To
compute this sum correctly, we use a cast operator—a unary operator that allows us to spec-
ify a type change in the value before the next computation. In this example, the cast (float)
is applied to sum:

average = (float)sum/count;

The value of sum is converted to a float value before the division is performed. The division
is then a mixed operation between a float value and an integer, so the value of count is con-
verted to a float value; the result of the division is then a float value that is stored in
average. If the value of sum is 18 and the value of count is 5, the value of average is now
correctly computed to be 3.6. Note that the cast operator affects only the value used in the
computation; it does not change the value stored in the variable sum.

Precedence

Give the value computed by each of the following sets of statements:

PRACTICE!PRACTICE!

1. int a=27, b=6, c;

...

c = b%a;

2. int a=27, b=6;

float c;

...
c = a/(float)b;

3. int a;

float b=6, c=18.6;

...
a = c/b;

4. int b=6;

float a, c=18.6;

...
a = (int)c/b;

Priority of Operators
In an expression that contains more than one arithmetic operator, we need to be concerned
about the order in which the operations are performed. Table 2.4 contains the precedence of
the arithmetic operators, which matches the standard algebraic precedence. Operations with-
in parentheses are always evaluated first; if the parentheses are nested, the operations within
the innermost parentheses are evaluated first. Unary operators are evaluated before the binary
operations *, /, and %; binary addition and subtraction are evaluated last. If there are several
operators of the same precedence level in an expression, the variables or constants are
grouped (or associated) with the operators in a specific order, as specified in Table 2.4. For
example, consider the following expression:

a*b + b/c*d

Section 2.3 Assignment Statements 39

Table 2.4 Precedence of Arithmetic Operators

Precedence Operator Associativity

1 Parentheses: () Innermost first
2 Unary operators: Right to left

+ – (type)
3 Binary operators: Left to right

* / %
4 Binary operators: Left to right

+ –

Because multiplication and division have the same precedence level, and because the
associativity (the order for grouping the operations) is from left to right, this expression will
be evaluated as if it contained the following:

(a*b) + ((b/c)*d)

The precedence order does not specify whether a*b is evaluated before (b/c)*d; the order
of evaluation of these terms is system-dependent (but does not affect the final value).

The spacing within an arithmetic expression is a style issue. Some people prefer to put
spaces around each operator. We prefer to put spaces only around binary addition and sub-
traction, because they are evaluated last. Choose the spacing style that you prefer, but then
use it consistently.

Assume that we want to compute the area of a trapezoid and that we have declared four
double variables: base, height_1, height_2, and area. Assume further that the vari-
ables base, height_1, and height_2 already have values. A statement to correctly com-
pute the area of the trapezoid is

area = 0.5*base*(height_1 + height_2);

Suppose that we omitted the parentheses in the expression:

area = 0.5*base*height_1 + height_2;

The statement would be executed as if it were this statement:

area = ((0.5*base)*height_1) + height_2;

Note that although an incorrect answer has been computed, there is no error message to alert
us to the error. Therefore, it is important to be very careful when converting expressions into
C. In general, use parentheses to indicate the order of operations in a complicated expression;
this will avoid confusion and make sure that the expression is evaluated in the desired manner.

You may have noticed that there is no operator for exponentiation to compute values
such as A special mathematical function will be discussed later in this chapter to perform
exponentiations. Of course, exponentiations with integer exponents, such as can be com-
puted with repeated multiplications, as in a*a.

The evaluation of long expressions should be broken into several statements. For exam-
ple, consider the following equation:

f =
x3 - 2x2 + x - 6.3

x2 + 0.05005x - 3.14
.

a2,
x4.

Associativity

40 Chapter 2 Simple C Programs

If we try to evaluate the expression in one statement, it becomes too long to be easily read:

f = (x*x*x - 2*x*x + x - 6.3)/(x*x + 0.05005*x - 3.14);

We could break the statement into two lines:

f = (x*x*x - 2*x*x + x - 6.3)/
(x*x + 0.05005*x - 3.14);

Another solution is to compute the numerator and denominator separately:

numerator = x*x*x - 2*x*x + x - 6.3;
denominator = x*x + 0.05005*x - 3.14;
f = numerator/denominator;

The variables x, numerator, denominator, and f must be floating-point variables in order
to compute the correct value of f.

In Problems 1 through 3, give C statements to compute the indicated values. Assume that the
identifiers in the expressions have been defined as double variables and have also been as-
signed appropriate values. Use the following constant:

Acceleration of gravity:

1. Distance traveled:

2. Tension in a cord:

3. Fluid pressure at the end of a pipe:

In Problems 4 through 6, give the mathematical equations computed by the C statements.
Assume that the following symbolic constants have been defined, where the units of G are

#define PI 3.141593
#define G 6.67259e-11

4. Centripetal acceleration:

centripetal = 4*PI*PI*r/(T*T);

5. Potential energy:

potential_energy = -G*M_E*m/r;

6. Change in potential energy:

change = G*M_E*m*(1/R_E - 1/(R_E + h));

m3/1kg # s22:

P2 = P1 +
rv2

21A2
2 - A1

22
2A1

2 .

Tension =
2m1m2

m1 + m2
* g.

Distance = x0 + v0t + 1
2at

2.

g = 9.80665 m/s2

PRACTICE!PRACTICE!

Overflow and Underflow
The values stored in a computer have a wide range of allowed values. However, if the result of
a computation exceeds the range of allowed values, an error occurs. For example, assume that
the exponent range of a floating-point value is from –38 to 38. This range should accommo-
date most computations, but it is possible for the results of an expression to be outside of this
range. For example, suppose that we execute the following commands:

x = 2.5e30;
y = 1.0e30;
z = x*y;

The values of x and y are within the allowable range. However, the value of z should be
2.5e60, but this value exceeds the range. This error is called exponent overflow, because the
exponent of the result of an arithmetic operation is too large to store in the memory assigned
to the variable. The action generated by an exponent overflow is system dependent.

Exponent underflow is a similar error that occurs when the exponent of the result of an
arithmetic operation is too small to store in the memory assigned to the variable. Using the
same allowable range as in the previous example, we obtain an exponent underflow with the
following commands:

x = 2.5e-30;
y = 1.0e30;
z = x/y;

Again, the values of x and y are within the allowable range, but the value of z should be
Because the exponent is less than the minimum value allowed, we have caused an

exponent underflow. Again, the action generated by an exponent underflow is system depend-
ent; on some systems, the result of an operation with exponent underflow is set to zero.

Increment and Decrement Operators
The C language contains unary operators for incrementing and decrementing variables; these
operators cannot be used with constants or expressions. The increment operator ++ and the
decrement operator �� can be applied either in a prefix position (before the identifier), as in
++count, or in a postfix position (after the identifier) as in count++. If an increment or
decrement operator is used by itself, it is equivalent to an assignment statement that incre-
ments or decrements the variable. Thus, the statement

y--;

is equivalent to the statement

y = y - 1;

If the increment or decrement operator is used in an expression, then the expression must
be evaluated carefully. If the increment or decrement operator is in a prefix position, the iden-
tifier is modified, and then the new value is used in evaluating the rest of the expression. If the
increment or decrement operator is in a postfix position, the old value of the identifier is used
to evaluate the rest of the expression, and then the identifier is modified. Thus, the execution
of the statement

w = ++x - y; (2.1)

2.5e–60.

Section 2.3 Assignment Statements 41

Overflow

Underflow

Prefix
Postfix

42 Chapter 2 Simple C Programs

is equivalent to the execution of this pair of statements:

x = x + 1;
w = x - y;

Similarly, the statement

w = x++ - y; (2.2)

is equivalent to this pair of statements:

w = x - y;
x = x + 1;

When executing either Equation (2.1) or (2.2), if we assume that the value of x is equal to 5
and that the value of y is equal to 3, then the value of x increases to 6. However, after execut-
ing Equation (2.1), the value of w is 3; but after executing Equation (2.2), the value of w is 2.

The increment and decrement operators have the same precedence as the other unary op-
erators. If several unary operators are in an expression, they are associated from right to left.

Abbreviated Assignment Operators
C allows simple assignment statements to be abbreviated. For example, each pair of state-
ments contains equivalent statements:

x = x + 3;
x += 3;

sum = sum + x;
sum += x;

d = d/4.5;
d /= 4.5;

r = r%2;
r %= 2;

In fact, any statement of the form

identifier = identifier operator expression;

can be written in this form:

identifier operator = expression;

Abbreviated assignment statements are usually used because they are shorter.
Earlier in this section, we used the following multiple-assignment statement:

x = y = z = 0;

The interpretation of this statement is clear, but the interpretation of the following statement is
not as evident:

a = b += c + d;

To evaluate this properly, we use Table 2.5, which indicates that the assignment operators are
evaluated last and their associativity is right to left. Thus, the statement is equivalent to the
following:

a = (b += (c + d));

Abbreviated
assignment

Multiple-
assignment

Section 2.4 Standard Input and Output 43

If we replace the abbreviated forms with the longer forms of the operations, we have

a = (b = b + (c + d));

or

b = b + (c + d);
a = b;

Evaluating this statement was good practice with the precedence/associativity table, but state-
ments used in a program should be more readable. Therefore, using abbreviated assignment
statements in a multiple-assignment statement is not recommended. Also, note that the spac-
ing convention that we use inserts spaces around abbreviated operators and multiple-assign-
ment operators because these operators are evaluated after the arithmetic operators.

Table 2.5 Precedence of Arithmetic and Assignment Operators

Precedence Operator Associativity

1 Parentheses: () Innermost first
2 Unary operators: Right to left

+ – ++ –– (type)
3 Binary operators: Left to right

* / %
4 Binary operators: Left to right

+ –
5 Assignment operators: Right to left

= += –= *= /= %=

Give a memory snapshot after each statement is executed, assuming that x is equal to 2 and
that y is equal to 4 before the statement is executed. Also, assume that all the variables are
integers.

1. z = x++*y; 2. z = ++x*y;

3. x += y; 4. y %= x;

PRACTICE!PRACTICE!

2.4 Standard Input and Output
We have discussed statements for declaring variables and then using the variables to compute
new values. We now present a statement that allows us to print these new values. In addition,
we also discuss a statement that allows us to enter values from the keyboard when the pro-
gram is executed. To use either of these statements in a program, we must include the follow-
ing preprocessor directive:

#include <stdio.h>

44 Chapter 2 Simple C Programs

Control string

This directive gives the compiler the information that it needs to check references to the
input/output functions in the Standard C library.

printf Function
The printf function allows us to print values and explanatory text to the screen. For exam-
ple, consider the following statement that prints the value of a double variable named angle
along with the corresponding units:

printf("Angle = %f radians \n",angle);

This printf statement contains two arguments: a control string and an identifier to specify
the value to be printed. A control string is enclosed in double quotation marks, and can con-
tain text, conversion specifiers, or both. A conversion specifier describes the format to use in
printing the value of a variable. In the previous example, the control string specifies that the
characters Angle = are to be printed. The next group of characters (%f) represents a conver-
sion specifier that indicates that a value is to be printed next, which will then be followed by
the characters radians. The next combination of characters (\n) represents a new line indi-
cator; it causes a skip to a new line on the screen after the information has been printed. The
second argument in the printf statement is a variable angle; it is matched to the conversion
specifier in the control string. Thus, the value in angle is printed according to the specifica-
tion %f, which will be explained later. If the value of angle is 2.84, then the output generat-
ed by the previous statement is

Angle = 2.840000 radians

Now that we have analyzed a simple statement and its corresponding output, we are ready to
take a closer look at the conversion specifiers.

To select a conversion specifier for a value to be printed, first select the correct type of
specifier as indicated in Table 2.6. For example, to print a short or an int, use an %i (in-
teger) or %d (decimal) specifier (either specifier gives the same results). To print a long,
use an %li or %ld specifier. To print a float or a double, use an %f (floating-point form),

Conversion specifier

Table 2.6 Conversion Specifiers for Output Statements

Variable Type Output Type Specifier

Integer Values

short, int int %i, %d
int short %hi, %hd
long long %li, %ld
int unsigned int %u
int unsigned short %hu
long unsigned long %lu

Floating-Point Values

float, double double %f, %e, %E, %g, %G
long double long double %LF, %Le, %LE, %Lg, %LG

Character Values

char char %c

%e (exponential form, as in 2.3e+02), or %E (exponential form, as in 2.3E+02). The %g
(general) specifier prints the value using an %f or %e specifier, depending on the size of the
value; the %G specifier is the same as the %g, except that it prints the value using an %f or %E
specifier.

After selecting the correct specifier, additional information can be added. A minimum
field width can be specified, along with an optional precision that controls the number of
characters printed. The field width and the precision can be used together or separately. If the
precision is omitted, a default of 6 is used for the %f specifier. The decimal portion of a value
is rounded to the specified precision; thus, the value 14.51678 will be printed as 14.52 if a
%.2f specification is used. The specification %5i indicates that a short or an int is to be
printed with a minimum field width of 5. The field width will be increased if necessary to
print the corresponding value. If the field width specifies more positions than are needed for
the value, the value is right justified, which means that the extra positions are filled with
blanks on the left of the value. To left justify a value, a minus sign is inserted before the field
width, as in %-8i. If a plus sign is inserted before the field width, as in %+6f, a sign will al-
ways be printed with the value.

The following list shows several conversion specifiers and the resulting output fields for
a given value; the character b is used to indicate the location of blanks within the field. In these
examples, assume that the corresponding integer value is �145:

Specifier Value Printed

%i -145
%4d -145
%3i -145
%6i bb-145
%-6i -145bb

The next list shows several conversion specifiers and the resulting output fields for the
double value 157.8926:

Specifier Value Printed

%f 157.892600
%6.2f 157.89
%+8.2f b+157.89
%7.5f 157.89260
%e 1.578926e+02
%.3E 1.579E+02
%g 157.893

Note the rounding that occurred with the last two specifiers.
If a control argument contains three conversion specifiers, then three corresponding iden-

tifiers or expressions would need to follow the control string, as in this statement:

printf("Results: x = %5.2f, y = %5.2f, z = %5.2f \n",
x,y,z+3);

An example output from this statement is

Results: x = 4.52, y = 0.15, z = -1.34

Section 2.4 Standard Input and Output 45

Field width
Precision

Right justified
Left justify

46 Chapter 2 Simple C Programs

Note that the last conversion specifier matches to an arithmetic expression instead of a simple
variable.

The backslash (\) is called an escape character when it is used in a control string. The
compiler combines it with the character that follows it and then attaches a special meaning to
the combination of characters. For example, we have already seen that \n represents a skip to
a new line. In addition, the sequence \\ is used to insert a single backslash in a control string,
and the sequence \" will insert a double quote in a control string. Thus, the output of the
statement

printf("\"The End.\"\n");

is a line containing

"The End."

The other escape sequences recognized by C are as follows:

Sequence Character Represented

\a alert (bell) character
\b backspace
\f formfeed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\? question mark
\' single quote
\" double quote

If a printf statement is long, you should split it into two lines. In general, long lines
should be split at a point that preserves readability. However, to split text that is contained in
quotation marks, you should split the text into two separate pieces of text, each in its own set
of quotation marks. The following statements show several different ways to correctly sepa-
rate a statement:

printf("The distance between the points is %5.2f \n",
distance);

printf("The distance between the points is"
" %5.2f \n",distance);

printf("The distance between the "
"points is %5.2f \n",distance);

Conversion specifiers can be used to make the output of your program readable and us-
able. For engineering values, it is also very important to include the corresponding units in the
output along with the numerical values.

Although the purpose of the printf function is to print information, it also returns a
value that represents the number of characters printed.

Escape character

Section 2.4 Standard Input and Output 47

Assume that the integer variable sum contains the value 65, the double variable average
contains the value 12.368, and the char variable ch contains the value ‘b’. Show the output
line (or lines) generated by the following statements (use b to indicate spaces):

1. printf("Sum = %5i; Average = %7.1f \n", sum, average);

2. printf("Sum = %4i \n Average = %8.4f \n", sum, average);

3. printf("Sum and Average \n\n %d %.1f \n", sum, average);

4. printf("Character is %c; Sum is %c \n", ch, sum);

5. printf("Character is %i; Sum is %i \n", ch, sum);

6. printf("%7.2f is the average; \n", average);

printf("%8d is the sum \n", sum);

7. printf("%7.2f is the average; ", average);

printf("%8d is the sum \n", sum);

PRACTICE!PRACTICE!

scanf Function
The scanf function allows you to enter values from the keyboard when the program is exe-
cuted. For example, suppose that a program computes the number of acres of new forest
growth after a specified period elapses. If the time elapsed is a constant in the program, we
would have to change the value of the constant, and then recompile and reexecute the pro-
gram to obtain the output for a different period. Alternatively, if we use the scanf function to
read the time period, we do not need to recompile the program; we only need to reexecute it
and enter the desired period from the keyboard.

The first argument of the scanf function is a control string that specifies the types of the
variables whose values are to be entered from the keyboard. The type specifiers are shown in
Table 2.7; thus, for example, the specifiers for an integer variable are %i or %d; the specifiers

Table 2.7 Conversion Specifiers for Input Statements

Variable Type Specifier

Integer Values

int %i, %d
short %hi, %hd
long int %li, %ld
unsigned int %u
unsigned short %hu
unsigned long %lu

Floating-Point Values

float %f, %e, %E, %g, %G
double %lf, %le, %lE, %lg, %lG
long double %Lf, %Le, %LE, %Lg, %LG

Character Values

char %c

48 Chapter 2 Simple C Programs

Address operator

for a float variable are %f, %e, and %g; and the specifiers for a double variable are %lf,
%le, and %lg. It is very important to use a correct specifier. For example, errors will occur if
you use an %f specifier to read the value for a double variable. The remaining arguments in
the scanf function are memory locations that correspond to the specifiers in the control
string. These memory locations are indicated with the address operator &. This operator is a
unary operator that determines the memory address of the identifier with which it is associat-
ed. Thus, if the value to be entered through the keyboard is an integer that is to be stored in the
variable year, we could use this statement to read the value:

scanf("%i",&year);

The precedence level of the address operator is the same as the other unary operators; if there
are several unary operators in the same statement, they are associated from right to left. A
common error in scanf statements is to omit the address operator for the identifiers.

If we wish to read more than one value from the keyboard, we can use statements such as
the following:

scanf("%lf %c",&distance,&unit_length);

When this statement is executed, the program will read two values from the keyboard and
convert them into one double value and one character value. The values must be separated
by at least one blank; they can be on the same line or on different lines. In order to prompt the
program user to enter the values, a scanf statement is usually preceded by a printf state-
ment that describes the information that the user should enter from the keyboard:

printf("Enter the distance and the units (m for meters, f for "
"feet): \n");

scanf("%lf %c",&distance,&unit_length);

The control string of the printf statement ended with a new line specifier, so the values en-
tered by the user will be on the line (or lines) following the prompt text. Thus, after the previ-
ous statements are executed and the user has responded to the prompt, an example of the
information on the screen is

Enter the distance and the units (m for meters, f for feet):
10 m

If the characters entered by the user cannot be successfully converted to the types of val-
ues indicated by conversion specifiers in the scanf statement, the result is system dependent.
These conversion errors include entering values such as 14.2 for integer values, including
commas in large values, and forgetting to separate values with blanks.

Although the main purpose of the scanf function is to read input from the keyboard, it
also returns a value that is equal to the number of successful conversions. This value is used in
programs in later chapters.

Prompt

2.5 Problem Solving Applied: Estimating Height from Bone Lengths
In this section, we use the new statements presented in this chapter to solve a problem related
to forensic anthropology. Recall from the chapter opening discussion that skeletal remains
can be used to determine information about the identity of a person. We now consider esti-
mating the height of an adult from bone lengths.

Section 2.5 Problem Solving Applied: Estimating Height from Bone Lengths 49

An adult skeleton typically contains 206 bones, ranging from the longest bone (the
femur, the leg bone between the hip and the knee) to the small bones in the middle ear (the
malleus, incus, and stapes). The hands alone contain 54 bones. Some of the bones com-
monly used to estimate height are the femur, the tibia (the larger of the two bones that
connect the knee to the ankle), and the humerus (connecting the shoulder to the elbow).
Bones are supported by ligaments, tendons, muscles, and cartilage, and together they pro-
vide protection to the body’s organs such as the heart, lungs, and brain. Bones represent
about a third of the body’s weight.

The femur is the largest bone in a human body. Its length can be used to estimate the
height of a person; height can also be estimated from the humerus. There are a number of
different equations available for estimating an adult person’s height from a bone length.
These are generally derived from making many measurements from bones of people with
known heights, and then finding the least-squares linear model to the data. (This technique is
described in detail in the next chapter.) Many of such equations are derived specifically for
males or for females. The ones we will use for this problem are the following, where the
bone lengths are in inches:

Height estimation from femur length:
female height � femur length � 1.94 � 28.7

male height � femur length � 1.88 � 32

Height estimation from humerus length:
female height � humerus length � 2.8 � 28.2

male height � humerus length � 2.9 � 27.9

Write a C program that will ask the user to enter the lengths of a femur bone and a humerus
bone from the same person. The program will compute the heights for both males and females
from each bone and print those values.

1. PROBLEM STATEMENT

Estimate a person’s height from the length of the femur and from that of the humerus.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the inputs to the program are the lengths of the two
bones, and the outputs are the heights determined from each of the inputs. Because we
don’t know if the bones are from a male or female, we will compute both height estimates.

humerus

femur
femur, female height

humerus, female height

humerus, male height

femur, male height

50 Chapter 2 Simple C Programs

3. HAND EXAMPLE

Suppose that the length of the femur is 15 in, and the length of the humerus is 12 in. Then
the height estimates are:

femur_height_female � femur_length � 1.94 � 28.7 � 57.8 in � 4.82 ft � 4 ft 9.8 in

femur_height_male � femur_length � 1.88 � 32 = 60.2 in � 5.02 ft � 5 ft .24 in

humerus_height_female � humerus_length � 2.8 � 28.2 � 61.8 in � 5.15 ft � 5 ft 1.8 in

humerus_height_male � humerus � 2.9 � 27.9 � 62.7 in = 5.23 ft � 5 ft 2.76 in

4. ALGORITHM DEVELOPMENT

The first step in the development of an algorithm is the decomposition of the problem solu-
tion into a set of sequentially executed steps.

Decomposition Outline

1. Read the lengths of the femur and the humerus.

2. Compute the height estimates.

3. Print the height estimates.

This program has a simple structure, so we can convert the decomposition directly into C.

/*–––*/
/* Program chapter2_2 */
/* */
/* This program estimates a person's height from the length */
/* of the femur and from the length of the humerus. */

#include <stdio.h>
#include <math.h>

int main(void)
{

/* Declare variables. */
double femur, femur_ht_f, femur_ht_m, humerus, humerus_ht_f,
humerus_ht_m;

/* Get user input from the keyboard. */
printf("Enter Values in Inches. \n");
printf("Enter femur length: \n");
scanf("%lf",&femur);
printf("Enter humerus length: \n");
scanf("%lf",&humerus);

/* Compute height estimates. */
femur_ht_f = femur*1.94 + 28.7;
femur_ht_m = femur*1.88 + 32;
humerus_ht_f = humerus*2.8 + 28.2;
humerus_ht_m = humerus*2.9 + 27.9;

Section 2.5 Problem Solving Applied: Estimating Height from Bone Lengths 51

/* Print height estimates. */
printf("\nHeight Estimates in Inches \n");
printf("Femur Female Estimate: %5.1f \n",femur_ht_f);
printf("Femur Male Estimate: %5.1f \n",femur_ht_m);
printf("Humerus Female Estimate: %5.1f \n",humerus_ht_f);
printf("Humerus Male Estimate: %5.1f \n",humerus_ht_m);

/* Exit program. */
return 0;
}
/*––*/

5. TESTING

We first test the program using the data from the hand example. This generates the follow-
ing interaction:

Enter Values in Inches.
Enter femur length:
15
Enter humerus length:
12

Height Estimates in Inches
Femur Female Estimate: 57.8
Femur Male Estimate: 60.2
Humerus Female Estimate: 61.8
Humerus Male Estimate: 62.7

The values computed match the hand example, so we can then test the program with additional
lengths. If the values computed had not matched the result from the hand example, we would
then need to determine if the error is in the hand example or in the C program.

These problems relate to the program developed in this section for computing height
estimates from bone lengths.

1. Modify the program so that it converts the output values from inches to feet. The input
would still be entered in inches. Use a single value for the output, such as 6.5 feet.

2. Modify the program so that it asks the user to enter the values in feet. The program would
then need to convert the values in feet to centimeters before doing the computations. The
output would also print the output heights in feet, as in 6.5 feet.

3. Modify the program so that it reads the input values in inches and then estimates the
output heights using feet and inches. (Note that you are printing two output values for
each height estimate.)

MODIFY!MODIFY!

52 Chapter 2 Simple C Programs

Linear interpolation

Write a short program that can be modified to include the following errors. How does your
system respond to each of these errors?

1. Division by zero

2. Input conversion error:
Enter 1,245 instead of 1245 for an %i specifier.

3. Input conversion error:

Use %f for the input of an integer variable.

4. Input conversion error:

Use %f for the input of a double variable.

5. Exponent overflow error:

Use the example statements in the related discussion in this section.

6. Exponent underflow error:

Use the example statements in the related discussion in this section.

MODIFY!MODIFY!

we want to estimate the value of f(b), where we could assume that a straight line
joined f(a) and f(c), and then use linear interpolation to obtain the value of f(b). If we as-
sume that the points f(a) and f(c) are joined by a cubic (third-degree) polynomial, we could
use a cubic spline interpolation method to obtain the value of f(b). Most interpolation prob-
lems can be solved using one of these two methods. Figure 2.1 contains a set of six data
points that have been connected with straight-line segments and that have been connected
with cubic degree polynomial segments. It should be clear that the values determined for the
function between sample points depend on the type of interpolation that we select. In this sec-
tion, we discuss linear interpolation.

a 6 b 6 c,

2.6 Numerical Technique: Linear Interpolation
The collection of data from an experiment or from observing a physical phenomenon is an
important step in developing a problem solution. These data points can generally be consid-
ered to be coordinates of points of a function f (x). We would often like to use these data
points to determine estimates of the function f (x) for values of x that were not part of the
original set of data. For example, suppose that we have data points (a, f (a)) and (c, f (c)). If

4. Modify the program so that it reads the input values in feet and inches, and then estimates
the output heights using feet and inches. (Note that you are reading two input values for
each bone and you are printing two output values for each height estimate.)

5. Modify the program so that it reads the bone values in centimeters and outputs the
height estimates in centimeters. (Recall that 1 in = 2.54 cm.)

Section 2.6 Numerical Technique: Linear Interpolation 53

A graph with two arbitrary data points f(a) and f(c) is shown in Figure 2.2. If we assume
that the function between the two points can be estimated by a straight line, we can then com-
pute the function value at any point f(b) using an equation derived from similar triangles:

Recall that we are also assuming that
To illustrate using this interpolation equation, assume that we have a set of temperature

measurements taken from the cylinder head in a new engine that is being tested for possible
use in a race car. These data are plotted with straight lines connecting the points in Figure 2.3,
and they are also listed here:

Time, s Temperature, °F

0.0 0.0
1.0 20.0
2.0 60.0
3.0 68.0
4.0 77.0
5.0 110.0

a 6 b 6 c.

f1b2 = f1a2 +
b - a
c - a [f1c2 - f1a2].

�1 0 1 2 3 4 5 6
�20

20

40

60

80

100

120

Time, s

Te
m

pe
ra

tu
re

, d
eg

re
es

 F

Linear and cubic spline interpolation

linear equation

cubic spline

0

Figure 2.1 Linear and cubic spline interpolation.

54 Chapter 2 Simple C Programs

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

Time, s

Te
m

pe
ra

tu
re

, d
eg

re
es

 F

Cylinder head temperatures

Figure 2.3 Cylinder head temperatures.

Assume that we want to interpolate a temperature to correspond to the value 2.6 seconds. We
then have the following situation:

a 2.0 60.0 f(a)
b 2.6 ? f(b)
c 3.0 68.0 f(c)

Using the interpolation formula, we have

= 64.8.

= 60.0 +
0.6

1.0
18.02

f1b2 = f1a2 +
b - a
c - a [f1c2 - f1a2]

�
f (a) � f (b)

b � a
f (a) � f (c)

c � a

f (c)

f (a)
y

x
a b c

f (b)

Figure 2.2 Similar triangles.

Section 2.6 Numerical Technique: Linear Interpolation 55

Assume that we have the following set of data points, which is also plotted in Figure 2.4:

Time, s Temperature, °F

0.0 72.5
0.5 78.1
1.0 86.4
1.5 92.3
2.0 110.6
2.5 111.5
3.0 109.3

PRACTICE!PRACTICE!

In this example, we used linear interpolation to find the temperature that corresponds to a
specified time. We could also interchange the roles of temperature and time, so that we plot
temperature on the x-axis and time on the y-axis. In this case, we can use the same process to
compute the time that a specified temperature occurred, assuming that we have a pair of data
points with temperatures below and above the specified temperature.

FIGURE 2.4 Temperature values.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
70

80

90

100

110

120

Time, s

Te
m

pe
ra

tu
re

, d
eg

re
es

 F

Experimental time and temperature data

Time, s Temperature, °F

3.5 110.2
4.0 110.5
4.5 109.9
5.0 110.2

1. Use your calculator to compute temperatures at the following times using linear interpo-
lation:

0.3, 1.25, 2.36, 4.48.

2. Use your calculator to compute time values that correspond to the following tempera-
tures using linear interpolation:

81, 96, 100, 106.

56 Chapter 2 Simple C Programs

2.7 Problem Solving Applied: Freezing Temperature of Seawater

In this section, we use the new statements presented in this chapter along with linear interpo-
lation to solve a problem related to the salinity of seawater.

The salinity of seawater is a measure of the amount of dissolved material in the seawater.
Seawater is primarily water with about 3.5% dissolved materials (salts, metals, and gases) from
volcanic eruptions and the weathering of rocks. The salinity of seawater is a measure of the
amount of dissolved material in the seawater. Chlorine represents about 55% of the con-
stituents in seawater, while sodium represents about 30.6%. The remaining primary con-
stituents are sulfate (7.7%), magnesium (3.7%), calcium (1.2%), and potassium (1.1%).
Salinity varies from one location to another in the ocean, but typically falls in the range of 33
to 38 parts per thousand (ppt), or a percentage of 3.3 to 3.8.

Salinity is often measured using an instrument that measures the electrical conductivity
of the water; the more dissolved materials in the water, the better it conducts electricity. Mea-
surements of salinity are especially important in colder regions because the temperature at
which seawater freezes is dependent upon its salinity. The higher the salinity, the lower the
temperature at which the seawater freezes. The following table [7] contains a set of salinity
measurements and corresponding freezing temperatures:

Salinity (ppt) Freezing Temperature (ºF)

0 (fresh water) 32
10 31.1
20 30.1
24.7 29.6
30 29.1
35 28.6

FIGURE 2.5 Time values.

70 75 80 85 90 95 100 105 110 115
0

1

2

3

4

5

Temperature, degrees F

T
im

e,
 s

Experimental time and temperature data

Salinity

3. Suppose Problem 2 asked you to compute the time value that corresponds to the temper-
ature 110°F. What complicates this problem? How many time values correspond to the
temperature 110°F? Find each of the corresponding time values using linear interpola-
tion. (You may want to refer to Figure 2.5, which contains a plot of these data with the
temperature data on the x-axis and the time values on the y-axis.)

Section 2.7 Problem Solving Applied: Freezing Temperature of Seawater 57

0 5 10 15 20 25 30 35
20

25

30

35

40
Freezing Temperature of Seawater

Salinity (ppt)

Te
m

pe
ra

tu
re

, �
F

Figure 2.6 Freezing temperature of seawater.

The preceding values are also plotted in Figure 2.6.
Assume that we would like to use linear interpolation to determine the freezing tempera-

ture of water for which we have measured the salinity. Write a program that allows the user to
enter the data for two points and a salinity measure between those points. The program should
then compute the corresponding freezing temperature.

1. PROBLEM STATEMENT

Use linear interpolation to compute a new freezing temperature for water with a specified
salinity.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the input to the program includes two consecutive points
(a, f (a)) and (c, f(c)) and the new salinity measurement b, while the output is the new freez-
ing temperature:

Data point (a, f (a))

Data point (c, f (c))

New salinity b

New freezing temperature f (b)

58 Chapter 2 Simple C Programs

3. HAND EXAMPLE

Suppose that we want to determine the freezing temperature for water with a salinity meas-
urement of 33 ppt. From the data, we see that this point falls between 30 and 35 ppt:

a 30 29.1 f(a)
b 33 ? f(b)
c 35 28.6 f(c)

Using the linear equation formula, we can compute f(b):

As expected, this value falls between f(a) and f(c).

4. ALGORITHM DEVELOPMENT

The first step in the development of an algorithm is the decomposition of the problem solu-
tion into a set of sequentially executed steps:

Decomposition Outline

1. Read the coordinates of the adjacent points and the new salinity value.

2. Compute the new freezing temperature.

3. Print the new freezing temperature.

This program has a simple structure, so we can convert the decomposition directly into C.

/*–––*/
/* Program chapter2_3 */
/* */
/* This program uses linear interpolation to */
/* compute the freezing temperature of seawater. */

#include <stdio.h>
#include <math.h>

int main(void)
{

/* Declare variables. */
double a, f_a, b, f_b, c, f_c;

/* Get user input from the keyboard. */
printf("Use ppt for salinity values. \n");
printf("Use degrees F for temperatures. \n");
printf("Enter first salinity and freezing temperature: \n");
scanf("%lf %lf",&a,&f_a);
printf("Enter second salinity and freezing temperature: \n");
scanf("%lf %lf",&c,&f_c);
printf("Enter new salinity: \n");
scanf("%lf",&b);

 = 28.8.

 = 29.1 + 3/5 # 128.6 - 29.12
 f1b2 = f1a2 + 1b - a2>1c - a2 # 1f1c2 - f1a22

/* Use linear interpolation to compute */
/* new freezing temperature. */
f_b = f_a + (b-a)/(c-a)*(f_c - f_a);

/* Print new freezing temperature. */
printf("New freezing temperature in degrees F: %4.1f \n",f_b);

/* Exit program. */
return 0;

}
/*–––*/

5. TESTING

We first test the program using the data from the hand example. This generates the
following interaction:

Use ppt for salinity values.
Use degrees F for temperatures.
Enter first salinity and freezing temperature:
30 29.1
Enter second salinity and freezing temperature:
35 28.6
Enter new salinity:
33
New freezing temperature in degrees F: 28.8

The value computed matches the hand example, so we can then test the program with
other time values. If the new coefficient value had not matched the result from the hand exam-
ple, we would then need to determine if the error is in the hand example or in the C program.

For the linear interpolation to work properly, the new salinity measurement must be be-
tween the first and second values that we entered. For this program, we assume that this re-
lationship is maintained. In the next chapter, we learn how to use new C commands to make
sure that the new salinity measurement is between the first and second measurements.

Section 2.7 Problem Solving Applied: Freezing Temperature of Seawater 59

These problems relate to the program developed in this section for computing new freezing
points with linear interpolation.

1. Use the program to determine the freezing temperatures to go with the following salinity
measurements in ppt:

3 8.5 19 23.5 26.8 30.5

2. Modify the program so that it converts and prints the new temperature in degrees
Centigrade. (Recall that when represents a temperature in de-
grees Fahrenheit and represents a temperature in degrees Centigrade.)TC

TFTF = 9/5 TC + 32,

MODIFY!MODIFY!

60 Chapter 2 Simple C Programs

Arithmetic expressions that solve engineering problems often require computations other than
addition, subtraction, multiplication, and division. For example, many expressions require the
use of exponentiation, logarithms, exponentials, and trigonometric functions. In this section, we
discuss the mathematical functions that are available in the Standard C library. The following
preprocessor directive should be used in programs referencing the mathematical functions:

#include <math.h>

This directive specifies that information be added to the program to aid the compiler when it
converts references to the mathematical functions in the Standard C library.

Before we discuss the rules relating to functions, we present a specific example. The fol-
lowing statement computes the sine of an angle theta and stores the result in the variable b:

b = sin(theta);

The sin function assumes that the argument is in radians. If the variable theta contains a
value in degrees, we can convert the degrees to radians with a separate statement. (Recall that

) The following statements are illustrative:

#define PI 3.141593
...
theta_rad = theta*PI/180;
b = sin(theta_rad);

The conversion can also be specified within the function reference:

b = sin(theta*PI/180);

180° = p radians.

2.8 Mathematical Functions

FIGURE 2.7 Salinity at the freezing temperature of seawater.

0

10

20

30

40
Sa

lin
it

y
(p

pt
)

28 28.5 29 29.5 30 30.5 31.5 3331 32.5
Temperature, �F

Salinity at the Freezing Temperature of Seawater

32

3. Suppose that the data used with the program contained values with the degrees in
Centigrade. Would the program need to be changed? Explain.

4. Modify the program so that it interpolates for a salinity, instead of a new freezing tem-
perature. (You may want to refer to Figure 2.7, which contains a plot of this data with
the freezing temperature on the x-axis and the salinity on the y-axis.)

Section 2.8 Mathematical Functions 61

Parameters
Arguments

Composition

Performing the conversion with a separate statement is usually preferable, because it is easier
to understand.

A function reference, such as sin(theta), represents a single value. The parentheses
following the function name contain the inputs to the function, which are called
parameters or arguments. A function may contain no arguments, one argument, or many
arguments, depending on its definition. If a function contains more than one argument, it is
very important to list the arguments in the correct order. Some functions also require that
the arguments be in specific units. For example, the trigonometric functions assume that ar-
guments are in radians. Most of the mathematical functions assume that the arguments are
double values; if a different type argument is used, it is converted to a double before the
function is executed.

A function reference can also be part of the argument of another function reference. For
example, the following statement computes the logarithm of the absolute value of x:

b = log(fabs(x));

When one function is used to compute the argument of another function, be sure to enclose
the argument of each function in its own set of parentheses. This nesting of functions is also
called composition of functions.

We now discuss several categories of functions that are commonly used in engineering
computations. Other functions will be presented throughout the remaining chapters as we dis-
cuss relevant subjects. Tables of common functions are included on the inside front cover. Ap-
pendix A also contains more information on the functions included in the Standard C library.

Elementary Math Functions
The elementary math functions include functions to perform a number of common computa-
tions, such as computing the absolute value of a number and the square root of a number. In
addition, they also include a group of functions used to perform rounding. These functions as-
sume that the type of all arguments is double, and the functions all return a double value; if
an argument is not a double, a conversion will occur using the rules described in Section 2.3.
We now list these functions with a brief description:

fabs(x) This function computes the absolute value of x.

sqrt(x) This function computes the square root of x, where x ≥ 0.

pow(x,y) This function is used for exponentiation, and computes the value of
x to the y power, or xy. Errors occur if x = 0 and y or if x
and y is not an integer.

ceil(x) This function rounds x to the nearest integer toward (infinity).
For example, ceil(2.01) is equal to 3.

floor(x) This function rounds x to the nearest integer toward (negative
infinity). For example, floor(2.01) is equal to 2.

exp(x) This function computes the value of ex, where e is the base for natu-
ral logarithms, or approximately 2.718282.

log(x) This function returns ln x, the natural logarithm of x to the base e.
Errors occur if x

log10(x) This function returns x, the common logarithm of x to the base
10. Errors occur if x … 0.

log10

… 0.

-q

q

6 0… 0,

Math functions

62 Chapter 2 Simple C Programs

Trigonometric Functions
The trigonometric functions assume that all arguments are of type double and that they re-
turn values of type double. In addition, as previously stated, the trigonometric functions also
assume that angles are represented in radians. To convert radians to degrees, or degrees to ra-
dians, use the following statements:

#define PI 3.141593
...
angle_deg = angle_rad*(180/PI);
angle_rad = angle_deg*(PI/180);

The trigonometric functions are included in the Standard C library, and a preprocessor direc-
tive including the information in math.h should be used with these functions. Following is a
brief summary of these functions:

sin(x) This function computes the sine of x, where x is in radians.

cos(x) This function computes the cosine of x, where x is in radians.

tan(x) This function computes the tangent of x, where x is in radians.

asin(x) This function computes the arcsine or inverse sine of x, where x
must be in the range The function returns an angle in radi-
ans in the range

acos(x) This function computes the arccosine or inverse cosine of x, where
x must be in the range The function returns an angle in ra-
dians in the range

atan(x) This function computes the arctangent or inverse tangent of x. The
function returns an angle in radians in the range

atan2(y,x) This function computes the arctangent or inverse tangent of the
value y/x. The function returns an angle in radians in the range
[-p, p].

[-p/2, p/2].

[0, p].
[-1, 1].

[-p/2, p/2].
[-1, 1].

Trigonometric
functions

Remember that the logarithm of a negative value or zero does not exist, and thus an execution
error occurs if you use a logarithm function with a negative value for its argument.

An additional mathematical function that you may find useful is the abs function. This
function computes the absolute value of an integer, and returns an integer value. The header
file containing information relative to this function is stdlib.h, and it should be included in
programs referencing this function.

Evaluate the following expressions:

1. floor(-2.6) 2. ceil(-2.6)

3. pow(2,-3) 4. sqrt(floor(10.7))

5. fabs(-10*2.5) 6. floor(ceil(10.8))

7. log10(100) + log10(0.001) 8. fabs(pow(-2,5))

PRACTICE!PRACTICE!

Section 2.8 Mathematical Functions 63

Note that the atan function always returns an angle in Quadrant I or IV, whereas the atan2
function returns an angle that can be in any quadrant, depending on the signs of x and y. Thus,
in many applications, the atan2 function is preferred over the atan function.

The other trigonometric and inverse trigonometric functions can be computed with the
use of the following equations:

Using degrees instead of radians is a common error in programs with trigonometric functions.

 cotx =
1

tanx
 acotx = acosa x21 + x2

b

 cscx =
1

sinx
 acscx = asina 1

x
b

 secx =
1

cosx
 asecx = acosa 1

x
b

In Problems 1 through 3, give assignment statements for computing the indicated values,
assuming that the variables have been declared and given appropriate values. Also assume
that the following declarations have been made:

#define g 9.8
#define PI 3.141593

1. Velocity computation:

2. Length contraction:

3. Distance of the center of gravity from a reference plane in a hollow cylinder sector:

In Problems 4 through 6, give the equations that correspond to the assignment statement.

4. Electrical oscillation frequency:

frequency = 1/sqrt(2*pi*c/L);

5. Range for a projectile:

range = (v0*v0/g)*sin(2*theta);

6. Speed of a disk at the bottom of an incline:

v = sqrt(2*g*h/(1 + I/(m*pow(r,2))));

Center =
38.19721r3 - s32sina

1r2 - s22 # a .

Length = kC1 - av
c
b2

.

Velocity = 2v0
2 + 2a1x - x02.

PRACTICE!PRACTICE!

64 Chapter 2 Simple C Programs

*Optional section.

Hyperbolic Functions*
Hyperbolic functions are functions of the natural exponential function the inverse hyper-
bolic functions are functions of the natural logarithm function ln x. These functions are useful
in specialized applications, such as the design of some types of digital filters. C includes sev-
eral hyperbolic functions, as shown in the following descriptions:

sinh(x) This functions computes the hyperbolic sine of x, which is equal to

cosh(x) This function computes the hyperbolic cosine of x, which is equal to

tanh(x) This function computes the hyperbolic tangent of x, which is equal to

Additional hyperbolic functions and the inverse hyperbolic functions can be computed
with these relationships:

Many of the hyperbolic functions and inverse trigonometric functions have restrictions on the
range of acceptable values for arguments. If the arguments are entered from the keyboard, re-
mind the user of the range restrictions. In the next chapter, we introduce C statements that
allow you to determine if a value is in the proper range within the program.

 acschx = lna 1
x

+
21 + x2

ƒx ƒ
b 1for x Z 02.

 asechx = lna1 + 21 - x2

x
b 1for 0 6 x … 12.

 acothx =
1

2
lnax + 1

x - 1
b 1for ƒx ƒ 7 12.

 atanhx =
1

2
lna1 + x

1 - x
b 1for ƒx ƒ 6 12.

 acoshx = ln1x + 2x2 - 12 1for x Ú 12.
 asinhx = ln1x + 2x2 + 12.
 cschx =

1

sinhx
.

 sechx =
1

coshx
.

 cothx =
coshx

sinhx
1forx Z 02.

sinhx

coshx
.

ex + e-x

2
.

ex - e-x

2
.

ex;Hyperbolic
functions

Section 2.9 Character Functions 65

Give assignment statements for calculating the following values, given the value of x. (As-
sume that the value of x is in the proper range of values for the calculations.)

1. coth x 2. sec x

3. csc x 4. acoth x

5. acosh x 6. acsc x

PRACTICE!PRACTICE!

2.9 Character Functions
Numerous functions are available to use with character data. There are functions designed for
character input and output, functions to convert characters between uppercase and lowercase,
and functions to perform character comparisons. In this section, we will discuss these charac-
ter functions.

Character I/O
Although printf and scanf functions can be used to print and read characters using the %c
specifier, C also contains special functions for reading and printing characters. The getchar
function reads the next character from the keyboard and returns the integer value of the char-
acter; the putchar function prints a character to the computer screen.

The putchar function takes one integer argument and returns an integer value. The exe-
cution of the putchar function causes the character that corresponds to the integer argument
to be written to the computer screen. If several putchar function references are made in a
row, the characters are printed one after another on the same line, until a newline character is
printed. Thus, the following statements cause the characters ab to be printed on one line, fol-
lowed by the character c on the next line:

putchar('a');
putchar('b');
putchar('\n');
putchar('c');

The same information could be printed using the integer values that correspond to the charac-
ters (see Table 2.3):

putchar(97);
putchar(98);
putchar(10);
putchar(99);

The getchar function reads the next character from the keyboard and returns the integer
value of the character. If several getchar function references are made in a row, the process-
ing of characters continues until an EOF is received. The EOF is a special value defined as a
symbolic constant in stdio.h. Recall that a variable defined with the char data type can
represent only the 128 ASCII characters. The value of EOF is outside of this range. Because
an integer variable can represent more than 128 values, we use an int type instead of a char

EOF

66 Chapter 2 Simple C Programs

type to receive the value returned by the getchar function so that we can store the EOF and
detect the end of data. The following statements cause one character to be read from the key-
board and printed on a new line:

int c;
...
putchar('\n');
c = getchar();
putchar(c);
putchar('\n');

The actual value of the EOF is system dependent. The EOF character is often represented
by the control-z character. A control-z is entered from the keyboard by pressing the control (ctrl)
key, and then pressing the z key while the control key is still pressed. This combination of char-
acters is often written as ^z (control-z), but is not the same as pressing the ^ key with the z key.
The use of EOF will be discussed in more detail in Chapter 3.

Character Comparisons
The Standard C library contains additional functions for use with characters. These character
functions fall into two categories; one set of functions is used to convert characters between
uppercase and lowercase, and the other set is used to perform character comparisons. The fol-
lowing preprocessor directive should be used in programs referencing these character functions:

#include <ctype.h>

The following statement converts the lowercase letter stored in the variable ch to an up-
percase character and stores the result in the character variable upper:

upper = toupper(ch);

If ch is a lowercase letter, the function toupper returns the corresponding uppercase letter;
otherwise, the function returns ch. Note that no change is made to the variable ch.

Each character function requires an integer argument, and each function returns an inte-
ger value. The character comparison functions return a nonzero value if the comparison is
true; otherwise, they return a zero. We now list these functions with a brief explanation:

tolower(ch) If ch is an uppercase letter, this function returns the corresponding
lowercase letter; otherwise, it returns ch.

toupper(ch) If ch is a lowercase letter, this function returns the corresponding up-
percase letter; otherwise, it returns ch.

isdigit(ch) This function returns a nonzero value if ch is a decimal digit; other-
wise, it returns a zero.

islower(ch) This function returns a nonzero value if ch is a lowercase letter; oth-
erwise, it returns a zero.

isupper(ch) This function returns a nonzero value if ch is an uppercase letter;
otherwise, it returns a zero.

isalpha(ch) This function returns a nonzero value if ch is an uppercase letter or a
lowercase letter; otherwise, it returns a zero.

isalnum(ch) This function returns a nonzero value if ch is an alphabetic character
or a numeric digit; otherwise, it returns a zero.

Character
functions

iscntrl(ch) This function returns a nonzero value if ch is a control character; oth-
erwise, it returns a zero. (The control characters have integer codes
of 0 through 21, and 127.)

isgraph(ch) This function returns a nonzero value if ch is a character that can be
printed, as opposed to a character that cannot be printed, such as a
control character or a tab; otherwise, it returns a zero. (The printing
characters have integer codes from 32 through 126.)

isprint(ch) This function returns a nonzero value if ch is a printing character
(does include a space); otherwise, it returns a zero.

ispunct(ch) This function returns a nonzero value if ch is a printing character
(with the exception of a space or a letter or a digit); otherwise, it re-
turns a zero.

isspace(ch) This function returns a nonzero value if ch is a space, formfeed, new-
line, carriage return, horizontal tab, or vertical tab (these characters
are also referred to as white space); otherwise, the function returns a
zero.

isxdigit(ch) This functions returns a nonzero value if ch is a hexadecimal digit,
which is a decimal digit or an alphabetic character A through F (or a
through f); otherwise, it returns a zero.

Section 2.10 Problem Solving Applied: Velocity Computation 67

Control characters

Show the output line (or lines) generated by the following statements:

1. putchar('x');

2. putchar(65);

3. putchar(tolower(65));

4. putchar('\n');
putchar(97);
putchar('c');
putchar('\n');
putchar(toupper('c'));

PRACTICE!PRACTICE!

2.10 Problem Solving Applied:Velocity Computation

Open-rotor jet engines are a promising propulsion technology with many potential benefits.
For example, test programs demonstrated a significant reduction in fuel consumption. How-
ever, there are also technical challenges. For example, there are strict guidelines on the
noise produced by a commercial engine, because airports are often near residential areas, so
additional noise reduction may be required. Testing on scale-model and full-size engines is
done in wind tunnels, before testing moves to actual flight tests. (Problems related to wind
tunnel analysis are included at the end of this chapter.)

68 Chapter 2 Simple C Programs

Aircraft velocity

Aircraft acceleration

0 20 40 60 80 100 120 140
180

190

200

210

220

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Time, s

Time, s

V
el

oc
it

y,
 m

/s
A

cc
el

er
at

io
n,

 m
/s

^
2

Figure 2.8 Aircraft velocity and acceleration.

During a test flight of an open-rotor aircraft, the test pilot has set the engine power
level at 40,000 newtons, which causes the 20,000-kg aircraft to attain a cruise speed of
180 m/s (meters/second). The engine throttles are then set to a power level of 60,000
newtons, and the aircraft begins to accelerate. As the speed of the plane increases, the
aerodynamic drag increases in proportion to the square of the airspeed. Eventually, the
aircraft reaches a new cruise speed where the thrust from the engines is just offset by the
drag. The equations used to estimate the velocity and acceleration of the aircraft from
the time that the throttle is reset until the plane reaches its new cruise speed (at approxi-
mately 120 s) are as follows:

Plots of these functions are shown in Figure 2.8. Note that the acceleration approaches zero as
the velocity approaches its new cruise speed.

Write a program that asks the user to enter a time value that represents the time elapsed
(in seconds) since the power level was increased. Compute and print the corresponding accel-
eration and velocity of the aircraft at the new time value.

 Acceleration = 3 - 0.000062 velocity2.

+ 0.75795 time + 181.3566,

 Velocity = 0.00001 time3 - 0.00488 time2

Section 2.10 Problem Solving Applied: Velocity Computation 69

1. PROBLEM STATEMENT

Compute the new velocity and acceleration of the aircraft after a change in power level.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the input to the program is a time value, and that the out-
put of the program is the pair of new velocity and acceleration values:

3. HAND EXAMPLE

Suppose that the new time value is 50 seconds. Using the equations given for the velocity
and acceleration, we can compute these values:

4. ALGORITHM DEVELOPMENT

The first step in the development of an algorithm is the decomposition of the problem solu-
tion into a set of sequentially executed steps:

Decomposition Outline

1. Read new time value.

2. Compute corresponding velocity and acceleration values.

3. Print new velocity and acceleration.

Because this program is a very simple program, we can convert the decomposition directly to C:

/*––*/
/* Program chapter2_4 */
/* */
/* This program estimates new velocity and */
/* acceleration values for a specified time. */

#include <stdio.h>
#include <math.h>

int main(void)
{

/* Declare variables. */
double time, velocity, acceleration;

Acceleration = 0.31 m/s2.

Velocity = 208.3 m/s,

Time
Velocity

Acceleration

These problems relate to the program developed in this section for computing velocity and
acceleration values.

1. Enter different values of time until you find one that gives a velocity between 210
and 211 m/s.

2. Enter different values of time until you find one that gives an acceleration between
and

3. Modify the program so that the input values are entered in minutes instead of seconds.
Remember that the equations will still assume that the time values are in seconds.

4. Modify the program so that the output values are printed in feet per second, and feet per
(Recall that)1 meter = 39.37 inches.second2.

0.6 m/s2.0.5 m/s2

MODIFY!MODIFY!

/* Get time value from the keyboard. */
printf("Enter new time value in seconds: \n");
scanf("%lf",&time);

/* Compute velocity and acceleration. */
velocity = 0.00001*pow(time,3) - 0.00488*pow(time,2)

+ 0.75795*time + 181.3566;
acceleration = 3 - 0.000062*velocity*velocity;

/* Print velocity and acceleration. */
printf("Velocity = %8.3f m/s \n",velocity);
printf("Acceleration = %8.3f m/sˆ2 \n",acceleration);

/* Exit program. */
return 0;

}
/*–––*/

5. TESTING

We first test the program using the data from the hand example. This generates the follow-
ing interaction:

Enter new time value in seconds:
50
Velocity = 208.304 m/s
Acceleration = 0.310 m/sˆ2

Because the values computed match the hand example, we can then test the program
with other time values. If the values had not matched the hand example, we would need to
determine if the error is in the hand example or in the program.

70 Chapter 2 Simple C Programs

Section 2.11 System Limitations 71

2.11 System Limitations

In Section 2.2, we presented a table that contained the maximum values for the various types
of integers and floating-point values for the Microsoft Visual C++ 2010 Express compiler. To
print a similar table for your system, use the following program. Note that the program
includes three header files. The stdio.h header file is necessary because the program refer-
ences output functions; the limits.h header file is necessary because it contains information
relative to the ranges of integer types; and the float.h header file is necessary because it
contains information relative to the ranges of floating-point types. Appendix A contains more
information on the constants and limits that are system dependent.

/*––*/
/* Program chapter2_5 */
/* */
/* This program prints the system limitations. */

#include <stdio.h>
#include <limits.h>
#include <float.h>

int main(void)
{

/* Print integer type maximums. */
printf("short maximum: %i \n",SHRT_MAX);
printf("int maximum: %i \n",INT_MAX);
printf("long maximum: %li \n\n",LONG_MAX);

/* Print float precision, range, maximum. */
printf("float precision digits: %i \n",FLT_DIG);
printf("float maximum exponent: %i \n",

FLT_MAX_10_EXP);
printf("float maximum: %e \n\n",FLT_MAX);

/* Print double precision, range, maximum. */
printf("double precision digits: %i \n",DBL_DIG);
printf("double maximum exponent: %i \n",

DBL_MAX_10_EXP);
printf("double maximum: %e \n\n",DBL_MAX);

/* Print long precision, range, maximum. */
printf("long double precision digits: %i \n",LDBL_DIG);
printf("long double maximum exponent: %i \n",

LDBL_MAX_10_EXP);
printf("long double maximum: %Le \n\n",LDBL_MAX);

/* Exit program. */
return 0;

}
/*–––*/

72 Chapter 2 Simple C Programs

SUMMARSUMMARYY In this chapter, we presented the C statements necessary to write simple programs that com-
pute and print new values. We also presented the statement that allows us to enter informa-
tion through the keyboard when the program is executing. The computations that were
presented included the standard arithmetic operations and a large number of functions that
can be used to perform the types of computations needed for engineering solutions. We also
included a discussion and example program using linear interpolation.

KEY TERMS

abbreviated assignment
address operator
argument
ASCII code
assignment statement
associativity
binary code
binary operator
case sensitive
cast operator
character
character function
comment
composition
constant
control character
control string
conversion specifier
declaration
EBCDIC code
EOF character
escape character
exponential notation
expression
field width
floating-point value
garbage value
hyperbolic function
identifier

initial value
keyword
left justify
linear interpolation
math function
memory snapshot
mixed operation
modulus
multiple assignment
overflow
parameter
postfix
precedence
precision
prefix
preprocessor directive
prompt
right justify
scientific notation
Standard C library
statement
symbolic constant
system dependent
trigonometric function
truncate
type specifier
unary operator
underflow
variable

Once you have run this program, change the conversion specifiers so that the following val-
ues are printed with full precision, instead of the default six digits of precision:

1. float maximum,

2. double maximum,

3. long double maximum.

MODIFY!MODIFY!

Notes 73

C STATEMENT SUMMARY

Preprocessor directives to include information from the files in the Standard C library:

#include <stdio.h>
#include <math.h>
#include <ctype.h>

Preprocessor directive to define a symbolic constant:

#define PI 3.141593

Declarations for integers:

short sum=0;
int year_1, year_2;
long k;

Declarations for floating-point values:

float height_1, height_2;
double length=10, side1, side2;
long double distance, velocity;

Assignment statement:

area = 0.5*base*(height_1 + height_2);

Keyboard input statement:

scanf("%i",&year);

Screen output statement:

printf("The area is %f square feet. \n",area);

Program exit statement:

return 0;

Directive to read a character from keyboard:

c = getchar();

Directive to print a character to the screen:

putchar(c);

NOTES

1. Use comments throughout a program to improve the readability and to document the
steps in it.

2. Use blank lines and indenting to identify the structure of a program.
3. Use the units in a variable name when possible.
4. Symbolic constants should be used for engineering constants such as and they should

be uppercase so that they are easily identified.
5. Use consistent spacing around arithmetic and assignment operators.
6. Use parentheses in complicated expressions to improve readability.

p,

2

74 Chapter 2 Simple C Programs

7. The evaluation of long expressions should be broken into several statements.
8. Be sure to include units along with numerical values in the output of a program.
9. Use a prompt to the user to describe the information and units for values to be entered

from the keyboard.

DEBUGGING NOTES

1. Remember that declarations and C statements must end with a semicolon.

2. Preprocessor directives do not end with a semicolon.

3. If possible, avoid assignments that could potentially cause information to be lost.
4. Use parentheses in a long expression to be sure that it is evaluated as desired.
5. Use double precision or extended precision to avoid problems with exponent overflow or

underflow.
6. Be sure that the specifier matches the variable type in a scanf statement.
7. Errors can occur if user input values cannot be converted correctly to the specifier vari-

able type in a scanf statement.
8. Do not forget the address operator with identifiers in the scanf statement.
9. Remember that symbolic constant definitions do not end with a semicolon.
10. In nested function references, each set of arguments must be in its own set of parenthe-

ses.
11. Remember that the logarithm functions cannot be used with negative values for arguments.
12. Be sure to use angles in radians with the trigonometric functions.
13. Remember that many of the inverse trigonometric functions and hyperbolic functions

have restrictions on the ranges of allowable input values.
14. Remember that the integer representation for a character digit is not the same as the inte-

ger representation of the numerical digit.
15. Store the value returned by the getchar function in an integer variable so that the EOF

character can be stored.

PROBLEMS

SHORSHORTT-ANSWER PR-ANSWER PROBLEMSOBLEMS

True–False Problems
Indicate whether the following statements are true (T) or false (F):

1. The execution of a program begins with the main function. T F
2. C is not case sensitive. T F
3. Declarations can be placed anywhere in the program. T F
4. Statements and declarations must end with a semicolon. T F
5. The result of an integer division is a rounded result. T F

Syntax Problems
Indicate whether the declaration statements that follow are correct or not. If the statement is
incorrect, modify it so that it is a correct statement:

6. int i, j, k,

7. float fl=11, f2=202.00;
8. DOUBLE D1, D2, D3;

Problems 75

9. float a1=a2;
10. int n, m_m;

Multiple Choice

Circle the letter of the best answer to complete the statement or answer the question:

11. Which is NOT a C keyword?
(a) const
(b) goto
(c) static
(d) when
(e) unsigned

12. In a declaration, the type specifier and the variable name are separated by
(a) a period. (b) a space.
(c) an equal sign. (d) a semicolon.
(e) none of the above.

13. Which of the following declarations would properly define x, y, and z as double
variables?
(a) double x, y, z;
(b) long double x, y, z;
(c) double x, y, z;
(d) double x=y=z;
(e) double X, Y, Z;

14. In C, the binary operator % is applied to compute
(a) integer division.
(b) floating-point division.
(c) the remainder of integer division.
(d) the remainder of floating-point division.
(e) none of the above.

15. Which of the following assignments produces a value of zero?
(a) result = 9%3 – 1;
(b) result = 8%3 – 1;
(c) result = 2 – 5%2;
(d) result = 2 – 6%2;
(e) result = 2 – 8%3;

Memory Snapshot Problems
Give the corresponding snapshots of memory after each of the following sets of statements
are executed:
16. int x1;

...
x1 = 3 + 4%5 � 5;

17. double a=3.8, x;

int n=2, y;
...
x = (y = a/n)*2;

2

76 Chapter 2 Simple C Programs

Program Output Problems
Give the output generated by the following sets of statements:

18. float value_1=5.78263;
...
printf ("value_1 = %5.3f",value_1);

19. double value_4=66.45832;

...
printf ("value_4 = %10.2e",value_4);

20. int value_5=7750;
...
printf ("value_5 = % + 6d",value_5);

PRPROGRAMMING PROGRAMMING PROBLEMSOBLEMS

Conversions. This set of problems involves converting a value in one unit to a value in an-
other unit. Each program should prompt the user for a value in the specified units and then
print the converted value, along with the new units.

21. Write a program to convert miles to kilometers. (Recall that)

22. Write a program to convert meters to miles. (Recall that)

23. Write a program to convert pounds to kilograms. (Recall that)

24. Write a program to convert newtons to pounds. (Recall that)

25. Write a program that converts degrees Fahrenheit to degrees Rankin (Recall
that)

26. Write a program that converts degrees Celsius to degrees Rankin (Recall that
and that)

27. Write a program that converts degrees Kelvin to degrees Fahrenheit (Recall
that and that)

Areas and Volumes. These problems involve computing an area or a volume using input from
the user. Each program should include a prompt to the user to enter the variables needed.

28. Write a program to compute the area of a rectangle with sides a and b. (Recall that
)

29. Write a program to compute the area of a triangle with base b and height h. (Recall that

30. Write a program to compute the area of a circle with radius r. (Recall that)

31. Write a program to compute the area of a sector of a circle when is the angle in radians
between the radii. (Recall that where is in radians.)

32. Write a program to compute the area of a sector of a circle when d is the angle in degrees
between the radii. (Recall that where is in radians.)

33. Write a program to compute the area of an ellipse with semiaxes a and b. (Recall that
)A = pa * b.

uA = r2u/2,

uA = r2u/2,
u

A = pr2.

A = 1/21b * h2.2
A = a * b.

TF = TR - 459.67°R.TR = 19/52 TK
1TF2.1TK2

TF = 19/52 TC + 32°F.TF = TR - 459.67°R
1TR2.1TC2

TF = TR - 459.67°R.
1TR2.1TF2

1 lb = 4.448 N.

1 kg = 2.205 lb.

1 mi = 1.6093440 km.

1 mi = 1.6093440 km.

Problems 77

34. Write a program to compute the area of the surface of a sphere of radius r. (Recall that
)

35. Write a program to compute the volume of a sphere of radius r. (Recall that)

36. Write a program to compute the volume of a cylinder of radius r and height h. (Recall
that)

Amino Acid Molecular Weights. The amino acids in proteins are composed of atoms of
oxygen, carbon, nitrogen, sulfur, and hydrogen, as shown in Table 2.8. The molecular weights
of the individual elements follow:

Element Atomic Weight

Oxygen 15.9994
Carbon 12.011
Nitrogen 14.00674
Sulfur 32.066
Hydrogen 1.00794

V = pr2h.

V = 14/32pr3.

A = 4pr2.

2

Table 2.8 Amino Acid Molecules

Amino Acid O C N S H

Alanine 2 3 1 0 7
Arginine 2 6 4 0 15
Asparagine 3 4 2 0 8
Aspartic 4 4 1 0 6
Cysteine 2 3 1 1 7
Glutamic 4 5 1 0 8
Glutamine 3 5 2 0 10
Glycine 2 2 1 0 5
Histidine 2 6 3 0 10
Isoleucine 2 6 1 0 13
Leucine 2 6 1 0 13
Lysine 2 6 2 0 15
Methionine 2 5 1 1 11
Phenylalanine 2 9 1 0 11
Proline 2 5 1 0 10
Serine 3 3 1 0 7
Threonine 3 4 1 0 9
Tryptophan 2 11 2 0 11
Tyrosine 3 9 1 0 11
Valine 2 5 1 0 11

37. Write a program to compute and print the molecular weight of glycine.

38. Write a program to compute and print the molecular weights of glutamic and glutamine.

78 Chapter 2 Simple C Programs

39. Write a program that asks the user to enter the number of atoms of each of the five elements
for an amino acid. Then compute and print the molecular weight for this amino acid.

40. Write a program that asks the user to enter the number of atoms of each of the five ele-
ments for an amino acid. Then compute and print the average weight of the atoms in the
amino acid.

Logarithms to the Base b. To compute the logarithm of x to base b, we can use the follow-
ing relationship:

41. Write a program that reads a positive number and then computes and prints the logarithm
of the value to base 2. For example, the logarithm of 8 to base 2 is 3 because

42. Write a program that reads a positive number and then computes and prints the logarithm
of the value to base 8. For example, the logarithm of 64 to base 8 is 2 because

Wind Tunnels. A wind tunnel is a test chamber built to generate different wind speeds, or
Mach numbers (which is the wind speed divided by the speed of sound). Accurate scale mod-
els of aircraft can be mounted on force-measuring supports in the test chamber, and then
measurements of the forces on the model can be made at many different wind speeds and an-
gles. At the end of an extended wind tunnel test, many sets of data have been collected and
can be used to determine the coefficient of lift, drag, and other aerodynamic performance
characteristics of the new aircraft at its various operational speeds and positions. Data collect-
ed from a wind tunnel test are plotted in Figure 2.9 and are listed in the following table:

Flight-Path Angle (degrees) Coefficient of Lift

0 0.097
2 0.238
4 0.421
6 0.479
8 0.654

10 0.792
12 0.924
14 1.035
15 1.076
16 1.103
17 1.120
18 1.121
19 1.121
20 1.099
21 1.059

43. Assume that we would like to use linear interpolation to determine the coefficient of lift for
additional flight-path angles that are between –4 degrees and 21 degrees. Write a program

-0.056-2
-0.182-4

82 = 64.

23 = 8.

logbx =
logex

logeb
.

Problems 79

2

�5 0 5 10 15 20 25
�0.5

0

0.5

1

1.5

Flight path angle, degrees

C
oe

ff
ic

ie
nt

 o
f l

if
t

Wind tunnel data

Figure 2.9 Wind tunnel data.

that allows the user to enter the data for two points and a flight-path angle between those
points. The program should then compute the corresponding coefficient of lift.

44. Modify the program developed in Problem 43 so that it prints the new angle in radians.
The input range should also be in radians. (Recall that)

45. Modify the program developed in Problem 43 so that it interpolates for a new angle, in-
stead of a new coefficient. Therefore, the user would enter the data for two points and a
coefficient of lift between those two points. The program should then compute the corre-
sponding angle in degrees.

180 degrees = p radians.

Crime Scene Investigation: Face
Recognition and Surveillance Video
Face recognition is a commonly used technique to identify an individual from an image or from a
single frame (also an image) taken from a surveillance video. By itself, face recognition is not as
accurate as fingerprint recognition. As a result, face recognition is often used with another
biometric or another security measure for access to secure areas. For example, a security system
may use a face image to select the three most likely matches to faces in a master database and
present those faces to a security guard.The security guard then makes the decision as to whether
the person requesting entry is authorized for access.A number of commercial applications now
use face recognition. Google’s Picasa digital image organizer uses face recognition to search a
group of images, looking for faces that match a specified image. Other applications that use face
recognition include Apple’s iPhoto (a photo organizer),Sony’s Picture Motion Bowser (tags images
with identical faces), and Facebook. Face recognition has also been used to solve crimes and to
identify terrorists. It was used to help identify some of the 9/11 terrorists using airport surveil-
lance video. Face recognition was also used in the identification of the subway bomber in London
in 2005. Facial recognition was used with surveillance cameras at Super Bowl XXXV in January
2001 in Tampa Bay, Florida, to identify people with criminal records as a test of the system;
19 people with minor criminal backgrounds were potentially identified. Later in this chapter, we
discuss the details of one facial recognition algorithm, and then we develop a C program to
compare information from two faces, to determine if they might be the same person.

80

3
CHAPTER THREE

CHAPTER OUTLINE

OBJECTIVES In this chapter, we develop problem solutions containing

3.1 Algorithm Development
3.2 Conditional Expressions
3.3 Selection Statements
3.4 Problem Solving Applied: Face Recognition
3.5 Loop Structures
3.6 Problem Solving Applied: Wave Interaction
3.7 Data Files
3.8 Numerical Technique: Linear Modeling*
3.9 Problem Solving Applied: Ozone Measurements*

Summary, Key Terms, C Statement Summary,
Style Notes, Debugging Notes, Problems

■ selection structures that allow us
to provide alternative paths in a
program,

■ repetition structures that allow us
to repeat a set of steps as long as
a condition is true,

■ information read from data files
and information written to data
files, and

■ linear modeling techniques.

In Chapter 2, the C programs that we developed were very simple. The steps were sequential
and typically involved reading information from the keyboard, computing new information,
and then printing the new information. In solving engineering problems, most of the solutions
require more complicated steps, and thus we need to expand the algorithm development part
of our problem-solving process.

Top-Down Design
Top-down design presents a “big picture” description of the problem solution in sequential
steps. This overall description of the problem is then refined until the steps are detailed
enough to translate to language statements.

CONTROL STRUCTURES
AND DATA FILES

3.1 Algorithm Development

81

Top-down design

*Optional sections.

82 Chapter 3 Control Structures and Data Files

Divide-and-conquer

Stepwise refinement

Pseudocode
Flowchart

Structured program

Sequence
Selection

Decomposition Outline. We used decomposition outlines in Chapters 1 and 2 to provide
the first definition of a problem solution. This outline is written in sequential steps and can be
shown in a diagram or a step-by-step outline. For very simple problems, such as the one that was
developed in Chapter 2, we can go from the decomposition outline directly to the C statements:

Decomposition Outline

1. Read the new time value.
2. Compute the corresponding velocity and acceleration values.
3. Print the new velocity and acceleration.

However, for most problem solutions, we need to refine the decomposition outline into a
description with more detail. This process is often referred to as a divide-and-conquer strategy,
because we keep breaking the problem solution into smaller and smaller portions. To describe
this stepwise refinement, we use pseudocode or flowcharts.

Refinement with Pseudocode and Flowcharts. The refinement of an outline into
more detailed steps can be done with pseudocode or a flowchart. Pseudocode uses English-
like statements to describe the steps in an algorithm, and a flowchart uses a diagram to
describe the steps in an algorithm. The fundamental steps in most algorithms are shown in
Figure 3.1, along with the corresponding notation in pseudocode and flowcharts.

Pseudocode and flowcharts are tools to help us determine the order of steps to solve a
problem. Both tools are commonly used, although they are not generally both used with the
same problem. In order to give examples of both tools, some problem solutions will use
pseudocode and others will use flowcharts; the choice between pseudocode and flowcharts is
usually a personal preference. Sometimes we need to go through several levels of pseudocode or
flowcharts to develop complex problem solutions; this is the stepwise refinement that we
previously discussed. Decomposition outlines, pseudocode, and flowcharts are working models
of the solution, and thus are not unique. Each person working on a solution will have a different
decomposition outline and pseudocode or a flowchart description, just the C programs
developed by different people will vary, although they solve the same problem.

Structured Programming
A structured program is written using simple control structures to organize the solution to a
problem. A simple structure is usually defined to be a sequence, a selection, or a repetition.
A sequence structure contains steps that are performed one after another; a selection structure
contains one set of steps that is performed if a condition is true, and another set of steps that is
performed if the condition is false; and a repetition structure contains a set of steps that is
repeated as long as a condition is true. We now discuss each of these simple structures, and
use pseudocode and flowcharts to give specific examples.

Sequence. A sequence contains steps that are performed one after another. All the
programs developed in Chapter 2 have a sequence structure. For example, the pseudocode for
the program that performed the linear interpolation is as follows:

Refinement in Pseudocode
main: read a, f_a

read c, f_c
read b
set f_b to f_a

print f_b

+
b - a
c - a

(f_c–f_a)

Repetition

Decomposition
outline

Section 3.1 Algorithm Development 83

area � � � radius2

print radius, area

is
radius 	 0

?

start main

stop main

read radius read radius

set area to � � radius2

print radius, area

if radius 	 0 then …

main:

Pseudocode NotationBasic Operation Flowchart Symbol

No

Yes

Input

Computation

Output

Comparisons

Beginning of
algorithm

End of
algorithm

Figure 3.1 Pseudocode notation and flowchart symbols.

The flowchart for the program that computed the velocity and acceleration of the aircraft with
an open-rotor engine is shown in Figure 3.2.

Selection. A selection structure contains a condition that can be evaluated as either
true or false. If the condition is true, then one set of statements is executed; if the condition is
false, then another set of statements is executed. For example, suppose that we have
computed values for the numerator and denominator of a fraction. Before we compute the
division, we want to be sure that the denominator is not close to zero. Therefore, the condition
that we want to test is “denominator close to zero.” If the condition is true, then we want to
print a message indicating that we cannot compute the value. If the condition is false, which
means that the denominator is not close to zero, then we compute and print the value of the
fraction. In defining this condition, we need to define “close to zero.” For this example, we will

Condition

84 Chapter 3 Control Structures and Data Files

start main

read time

velocity � 0.00001 � time3 � 0.00488 time2

� 0.75795 � time � 181.3566

acceleration � 3 � 0.000062 � velocity2

print velocity,
acceleration

stop main

Figure 3.2 Flowchart for open-rotor problem
solution from Section 2.10.

assume that “close to zero” means that the absolute value is less than 0.0001. A pseudocode
description is as follows:

if |denominator| < 0.0001
print “Denominator close to zero”

else
set fraction to numerator/denominator
print fraction

A flowchart description of this structure is shown in Figure 3.3. Note that the structure also
contains a sequence structure (e.g., compute a fraction and then print the fraction) that is exe-
cuted when the condition is false. We will give more variations of the selection structure later
in this chapter.

Repetition. The repetition structure allows us to repeat (or loop through) a set of steps
as long as a condition is true. For example, we might want to compute a set of velocity values
that correspond to time values of 0, 1, 2, 10 seconds. We do not want to develop a
sequential structure that has a statement to compute the velocity for a time of 0, then another
statement to compute the velocity for a time of 1, and then another statement to compute the
velocity for a time of 2, and so on. Although this structure would require only 11 statements

Á ,

Loop

Section 3.1 Algorithm Development 85

No Yes

print "Denominator
close to zero"

print fraction

fraction �
numerator

denominator

Is
denominator 	 0.0001

?

Figure 3.3 Flowchart for selection structure.

in this case, it could require hundreds of statements if we wanted to compute the velocity
values over a long period. If we use the repetition structure, we can develop a solution in
which we initialize the time to 0. Then, as long as the time value is less than or equal to 10, we
compute and print a velocity value and increment the time value by 1. When the time value is
greater than 10, we exit the structure. Figure 3.4 contains the flowchart for this repetition
structure, and the pseudocode is as follows:

set time to 0
while time ≤ 10

compute velocity
print velocity
increment time by 1

In the remaining sections of this chapter, we present the C statements for performing se-
lections and repetitions, and then we develop example programs that use these structures.

Evaluation of Alternative Solutions
There are usually many ways to solve the same problem. In most cases, there is not a single
best solution, although some solutions are better than others. Selecting a good solution be-
comes easier with experience. In this text, we will give examples of the elements that con-
tribute to a good solution. For example, a good solution is readable; therefore, it is not
necessarily the shortest solution, because short solutions are often not very readable. We will
strive to avoid subtle or clever steps that shorten a program but are difficult to understand.

As you begin to develop a solution to a problem, it is a good idea to try to think of sever-
al ways to solve it. Sketch the decomposition outline and pseudocode or flowchart for several
solutions. Then choose the solution that you think will be the easiest to translate into C state-
ments. Some algorithms fit different languages better than others, so you also want to pick a
solution that is a good fit to the C language. Occasionally, other aspects of a solution must
also be considered, such as execution speed and memory requirements.

86 Chapter 3 Control Structures and Data Files

compute velocity

No

Yes

print velocity

increment time by 1

time � 0

is
time
 10

?

Figure 3.4 Flowchart for repetition structure.

Error Conditions
As we develop an algorithm, we usually assume that the input data are correct. However, in
real applications, there are often errors in the input data. Therefore, it may be important to test
the input data for errors that could occur and would cause the program to work incorrectly.
As we compute new values, there may also be conditions that could arise and could cause
problems. For example, suppose that we are performing a computation in which the denomi-
nator value for a division operation turns out to be zero. Or suppose that the result of an
altitude computation is negative. These are examples of error conditions (which are separate
from errors in the algorithm) that could occur when a program is run.

Some error conditions can be checked within the program itself using statements that we
present in this chapter. But if we check for every possible error condition, our programs be-
come long and a large percentage of the statements are checking for error conditions. There-
fore, how do we decide which error conditions to check in our programs? Sometimes, the
problem statement will include information on error conditions that could occur, as well as
the response to take if they are detected. Usually, though, error conditions are not mentioned.
In these cases, we suggest that you develop an algorithm based on the problem statement, and

Error conditions

Section 3.1 Algorithm Development 87

Data file

Test data

then generate a list of potential error conditions that could arise. If possible, discuss these with
the person or group that will be using the program. Otherwise, include error checks that seem
to catch the most common types of errors, and then include written documentation with the
program. This documentation should describe the error conditions that your program will
catch and the ones that your program will not catch.

Once you have decided which error conditions you will incorporate in your algorithm,
you still need to decide what to do if one of the error conditions occurs. There are usually two
possibilities—you can exit the program or you can attempt to correct the error and continue
with the program. In either case, you should probably print an error message that describes
the error condition that occurred and the action that you are taking. Make sure that the error
message gives as much information as possible. Instead of printing “Error occurred in input
data,” print messages such as “Temperature out of bounds,” “Time value is negative,” or
“Pressure exceeds safety limits.”

In this chapter, we discuss how to read and write data files, which are files (similar to
program files) that contain information used in other programs. Sometimes programs called
data filters are written that check the information in the data files for error conditions. Then,
programs that use the data files do not need to check for the same error conditions.

Generation of Test Data
The generation of test data is a very important part of developing problem solutions. Test
data should include data to test each of the error conditions that is checked in our programs.
Test data should also test each path through our program. As programs become longer, gener-
ating test data to completely test the program becomes very difficult. Entire courses and
books are based on this validation and verification topic.

We now give some suggestions on generating test data sets. First, use the data from the
hand example. If this does not work properly, we are not off to a good start! Once the program
works correctly for these data, begin using test data that cover different ranges of values.
Be sure to use test data that test the boundary conditions, or limits, if the data are supposed to
be in certain ranges. Once the program seems to work for valid data, then begin including the
error conditions to see if the program handles them properly. In general, use many small sets
of data instead of one large set of data to test the program.

If you find an error in testing the program, go back to the algorithm development step.
Correct the error in the decomposition outline and the pseudocode or flowchart, and then
correct the C program. When you make a major change in the program, you should com-
pletely retest the program. Sometimes changes affect parts of the program that we had not
anticipated. This retesting is easier if we keep a log of the test sets used so that we can repeat
them.

Finally, we want to mention a technique called a program walkthrough that is com-
monly used in industry in the development of large programs. In a program walkthrough, the
people who have developed an algorithm for a complicated problem present their solution to
a small group of people who are knowledgeable about the problem, but did not take part in the
algorithm development. The interaction between the people who developed the algorithm and
the people who are analyzing it usually results in identifying potential problems with the
algorithm and the generation of potential test data for the software after it is coded. The result
is that the final program is completed sooner with more confidence in its accuracy. You might
try simple program walkthroughs with other students in your class as you solve more compli-
cated problems.

Validation and
verification

Program
walkthrough

88 Chapter 3 Control Structures and Data Files

3.2 Conditional Expressions
Because both selection and repetition structures use conditions, we must discuss conditions
before presenting the statements that implement selection and repetition structures. A condi-
tion is an expression that can be evaluated to be true or false, and it is composed of expres-
sions combined with relational operators; a condition can also include logical operators. In
this section, we present relational operators and logical operators and discuss the evaluation
order when they are combined in a single condition.

Relational Operators
The relational operators that can be used to compare two expressions in C are shown in the
following list:

Relational Operator Interpretation

< is less than
<= is less than or equal to
> is greater than
>= is greater than or equal to
== is equal to
!= is not equal to

Blanks can be used on either side of a relational operator, but blanks cannot be used to separate
a two-character operator, such as ==.

Example of conditions are the following:

a < b
x+y >= 10.5
fabs(denominator) < 0.0001

Given the values of the identifiers in these conditions, we can evaluate each one to be true or
false. For example, if a is equal to 5 and b is equal to 8.4, then a<b is a true condition. If x is
equal to 2.3 and y is equal to 4.1, then x+y >= 10.5 is a false condition. If denominator
is equal to then fabs(denominator) < 0.0001 is a false condition. Note that
we use spaces around the relational operator in a logial expression, but not around the arith-
metic operators in the conditions.

In C, a true condition is assigned a value of 1 and a false condition is assigned a value of
zero. Therefore, the following statement is valid:

d = b>c;

If b>c, then the value of d is 1; otherwise, the value of d is zero. A single value can be used in
place of a condition. For example, consider the following statement:

if (a)
count++;

If the condition value is zero, then the condition is assumed to be false; if the value is nonzero,
then the condition is assumed to be true. Therefore, in the previous statement, the value of
count will be incremented if a is nonzero.

-0.0025,

Relational operators

Section 3.2 Conditional Expressions 89

Logical Operators
Logical operators can also be used within conditions. However, logical operators compare
conditions, not expressions. C supports three logical operators: and, or, and not. These logi-
cal operators are represented by the following symbols:

Logical Operator Symbol

and &&
or ||
not !

For example, consider the following condition:

a<b && b<c

The relational operators have higher precedence than logical operators; therefore, this condi-
tion is read “a is less than b, and b is less than c.” In order to make a logical statement more
readable, we insert spaces around the logical operator, but not around the relational operators.
Given values for a, b, and c, we can evaluate this condition as true or false. For example, if a
is equal to 1, b is equal to 5, and c is equal to 8, then the condition is true. If a is equal to
b is equal to 9, and c is equal to 2, then the condition is false.

If A and B are conditions, then the logical operators can be used to generate new conditions
A && B, A || B, !A, and !B. The condition A && B is true only if both A and B are true.
The condition A || B is true if either or both of A and B are true. The ! operator changes the
value of the condition with which it is used. Thus, the condition !A is true only if A is false, and
the condition !B is true only if B is false. These definitions are summarized in Table 3.1.

When expressions with logical operators are executed, C will only evaluate as much of
the expression as necessary to evaluate it. For example, if A is false, then the expression A && B
is also false, and there is no need to evaluate B. Similarly, if A is true, then the expression A || B
is true, and there is no need to evaluate B.

Precedence and Associativity
A condition can contain several logical operators, as in the following:

!(b==c || b==5.5)

The hierarchy, from highest to lowest, is !, &&, and ||, but parentheses can be used to change
the hierarchy. In the previous example, the expressions b==c and b==5.5 are evaluated first.
Suppose b is equal to 3 and c is equal to 5. Then neither expression is true, so the expression
b==c || b==5.5 is false. We then apply the ! operator to the false condition, which gives a
true condition. Blanks cannot be used to separate the characters in either the || or &&. A com-
mon error is to use = instead of == in a logical expression.

-2,

Logical operators

Table 3.1 Logical Operators

A B A && B A || B !A !B

False False False False True True
False True False True True False
True False False True False True
True True True True False False

90 Chapter 3 Control Structures and Data Files

A condition can contain both arithmetic operators and relational operators, as well as
logical operators. Table 3.2 contains the precedence and the associativity order for the
elements in a condition.

3.3 Selection Statements
The if statement allows us to test conditions and then perform statements based on whether
the conditions are true or false. C contains two forms of if statements—the simple if state-
ment and the if/else statement. C also contains a switch statement that allows us to test
multiple conditions and then execute groups of statements based on whether the conditions
are true or false.

Simple if Statement
The simplest form of an if statement has the following general form:

if (condition)
statement 1;

If the condition is true, we execute statement 1; if the condition is false, we skip statement 1.
The statement within the if statement is indented so that it is easier to visualize the structure
of the program from the statements.

Table 3.2 Operator Precedence for Arithmetic, Relational,
and Logical Operators

Precedence Operation Associativity

1 () Innermost first
2 ++ -- + - ! (type) Right to left (unary)
3 * / % Left to right
4 + - Left to right
5 < <= > >= Left to right
6 == != Left to right
7 && Left to right
8 || Left to right
9 = += -= *= /= %= Right to left

Determine if the following conditions in Problems 1 through 8 are true or false. Assume that
the following variables have been declared and given these values:

a = 5.5 b = 1.5 k = -3

PRACTICE!PRACTICE!

1. a < 10.0+k

3. a+b >= 6.5

5. k != a-b

7. b-k > a

2. !(a == 3*b)

4. -k <= k+6

6. a<10 && a>5

8. fabs(k)>3 || k<b-a

Section 3.3 Selection Statements 91

If we wish to execute several statements (or a sequence structure) when the condition is
true, we use a compound statement, or block, which is composed of a set of statements
enclosed in braces. The location of the braces is a matter of style; two common styles are shown:

Style 1 Style 2
if (condition) if (condition) {
{ statement 1;

statement 1; statement 2;
statement 2; …
… statement n;
statement n; }

}

In the text solutions, we use the first style convention; thus, both braces are on lines by themselves.
Although this makes the program a little longer, it also makes it easier to notice if a brace has been
mistakenly omitted. Figure 3.5 contains flowcharts of the control flow with simple if statements
containing either one statement to execute, or several statements to execute, if the condition is true.

A specific example of an if statement follows:

if (a < 50)
{

++count;
sum += a;

}

Compound
statement

No

Yes

No

Yes

.

.

.

is
condition

true
?

statement 1

is
condition

true
?

statement 1

statement 2

statement n

Figure 3.5 Flowcharts for selection statements.

If a is less than 50, then count is incremented by 1 and a is added to sum; otherwise, these
two statements are skipped.

If statements can also be nested; the following example includes an if statement within
an if statement:

if (a < 50)
{

++count;
sum += a;
if (b > a)

b = 0;
}

If a is less than 50, we increment count by 1 and add a to sum. In addition, if b is greater than
a, then we also set b to zero. If a is not less than 50, then we skip all these statements. Be sure
to indent the statements in each if statement when they are nested.

if/else Statement
An if/else statement allows us to execute one set of statements if a condition is true and
a different set if the condition is false. The simplest form of an if/else statement is the
following:

if (condition)
statement 1;

else
statement 2;

Statements 1 and 2 can also be replaced by compound statements. Statement 1 or statement 2
can also be an empty statement, which is just a semicolon. If statement 2 is an empty state-
ment, then the if/else statement should probably be posed as a simple if statement. There
are situations in which it is convenient to use an empty statement for statement 1; however,
these statements can also be rewritten as simple if statements with the conditions reversed.
For example, the following two statements are equivalent:

if (a < b) if (a >= b)
; count++;

else
count++;

Consider this if/else statement:

if (d <= 30)
velocity = 0.425 + 0.00175*d*d;

else
velocity = 0.625 + 0.12*d - 0.0025*d*d;

In this example, velocity is computed with the first assignment statement if the distance d
is less than or equal to 30; otherwise, velocity is computed with the second assignment
statement. A flowchart for this if/else statement is shown in Figure 3.6.

92 Chapter 3 Control Structures and Data Files

Empty statement

Section 3.3 Selection Statements 93

Another example of the if/else statement is the following:

if (fabs(denominator) < 0.0001)
printf("Denominator close to zero");

else
{

x = numerator/denominator;
printf("x = %f \n",x);

}

In this example, we examine the absolute value of the variable denominator. If this value is
close to zero, we print a message indicating that we cannot perform the division. If the value
of denominator is not close to zero, we compute and print the value of x. The flowchart for
this statement was shown in Figure 3.3.

Consider the following set of nested if/else statements:

if (x > y)
if (y < z)

k++;
else

m++;
else

j++;

The value of k is incremented when x > y and y < z. The value of m is incremented when
x > y and y >= z. The value of j is incremented when x <= y. With careful indenting, this
statement is easy to follow. Suppose that we now eliminate the else portion of the inner if
statement. If we keep the same indention, the statements become the following:

if (x > y)
if (y < z)

k++;
else

j++;

NoYes is
d � 30

?

velocity � 0.625
� 0.12d � 0.0025d2

velocity � 0.425
� 0.00175d2

Figure 3.6 Flowchart for if/else statement.

It might appear that j is incremented when x <= y, but that is not correct. The C compiler
will associate an else statement with the closest if statement within a block. Therefore, no
matter what indenting is used, the previous statement is executed as if it were the following:

if (x > y)
if (y < z)

k++;
else

j++;

Thus, j is incremented when x > y and y >= z. If we intended for j to be incremented when
x <= y, then we would need to use braces to define the inner statement as a block:

if (x > y)
{

if (y < z)
k++;

}
else

j++;

To avoid confusion and possible errors when using nested if/else statements, you should
routinely use braces to clearly define the blocks of statements that go together.

C allows a conditional operator to be used in place of a simple if/else statement.
This conditional operator is a ternary operator, because it has three arguments—a condi-
tion, a statement to perform if the condition is true, and a statement to perform if the condi-
tion is false. The operation is indicated with a question mark following the condition, and
with a colon between the two statements. To illustrate, the following two statements are
equivalent:

if (a<b) a<b ? count++ : c = a + b;
count++;

else
c = a + b;

The conditional operator (specified as ?:) is evaluated before assignment operators, and if
there is more than one conditional operator in an expression, they are associated from right
to left.

In this section, we have presented a number of ways to compare values in selection
statements. A caution is necessary when comparing floating-point values. As we saw in
Chapter 2, floating-point values can sometimes be slightly different than we expect them to
be because of the conversions between binary and decimal values. For example, earlier in
this section, we did not compare denominator to zero, but instead used a condition to see
if the absolute value of denominator was less than a small value. Similarly, if we wanted
to know if y was close to the value 10.5, we should use a condition such as fabs(y-10.5)
<= 0.0001 instead of y == 10.5. In general, do not use the equality operator with
floating-point values.

94 Chapter 3 Control Structures and Data Files

Conditional
operator

Section 3.3 Selection Statements 95

switch Statement
The switch statement is used for multiple-selection decision making. In particular, it is often
used to replace nested if/else statements. Before giving the general discussion of the
switch statement, we present a simple example that uses nested if/else statements and
then an equivalent solution that uses the switch statement.

Suppose that we have a temperature reading from a sensor inside a large piece of
machinery. We want to print a message on the control screen to inform the operator of the
temperature status. If the status code is 10, the temperature is too hot and the equipment
should be turned off; if the status code is 11, the operator should check the temperature every
5 minutes; if the status code is 13, the operator should turn on the circulating fan; for all other
status codes, the equipment is operating in a normal mode. The correct message could be
printed with the following set of nested if/else statements:

if (code == 10)
printf("Too hot - turn equipment off \n");

else
{

if (code == 11)
printf("Caution - recheck in 5 minutes \n");

else
{

if (code == 13)
printf("Turn on circulating fan \n");

else
printf("Normal mode of operation \n");

}
}

In Problems 1 through 7, draw a flowchart to perform the steps indicated. Then give the cor-
responding C statements. Assume that the variables have been declared and have reasonable
values.

1. If time is greater than 15.0, increment time by 1.0.
2. When the square root of poly is less than 0.5, print the value of poly.
3. If the difference between volt_1 and volt_2 is larger than 10.0, print the values of

volt_1 and volt_2.
4. If the value of den is less than 0.05, set result to zero; otherwise, set result equal to

num divided by den.
5. If the natural logarithm of x is greater than or equal to 3, set time equal to zero and

decrement count.
6. If dist is less than 50.0 and time is greater than 10.0, increment time by 2; otherwise,

increment time by 2.5.
7. If dist is greater than or equal to 100.0, increment time by 2.0. If dist is between 50

and 100, increment time by 1. Otherwise, increment time by 0.5.

PRACTICE!PRACTICE!

An equivalent statement is the following switch statement:

switch (code)
{

case 10:
printf("Too hot - turn equipment off \n");
break;

case 11:
printf("Caution - recheck in 5 minutes \n");
break;

case 13:
printf("Turn on circulating fan \n");
break;

default:
printf("Normal temperature range \n");
break;

}
Statement 1;

The break statement causes the execution of the program to continue with the statement follow-
ing the switch statement (Statement 1), thus skipping the rest of the statements in the braces.

Nested if/else statements do not always easily translate to a switch statement. However,
when the conversion works, the switch statement is usually easier to read. It is also easier to
determine the punctuation needed for the switch statement. In fact, if the punctuation is not
correct in the if/else statements, the compiler may not execute the statements as expected.

The switch statement selects the statements to perform based on a controlling expres-
sion, which must be an expression of type integer or character. In the general form that fol-
lows, case labels (label_1, label_2, . . .) determine which statements are executed,
and thus, in some languages, this structure is called a case structure. The statements execut-
ed are the ones that correspond to the case for which the label is equal to the controlling ex-
pression. The case labels must be unique constants; an error occurs if two or more of the case
labels have the same value. The default label provides a statement to execute if no other
statement is executed; the default label is optional. Here is the code:

switch (controlling expression)
{

case label_1:
statements;

case label_2:
statements;

...
default:

statements;
}

The statements in the switch structure usually contain the break statement. When the
break statement is executed, the execution of the program breaks out of the switch structure,
and continues executing with the statement following the switch structure. Without the
break statement, the program will execute all statements that follow the ones selected with
the case label.

96 Chapter 3 Control Structures and Data Files

Controlling
expression

Case labels
Case structure

Default label

Section 3.4 Problem Solving Applied: Face Recognition 97

Although the default clause in the switch statement is optional, we recommend that it be in-
cluded so that the steps are clearly specified for the situation in which none of the case labels is
equal to the controlling expression. We also use the break statement in the default clause to
emphasize that the program continues with the statement following the switch statement.

It is valid to use several case labels with the same statement, as in the following:

switch (op_code)
{

case 'N': case 'R':
printf("Normal operating range \n");
break;

case 'M':
printf("Maintenance needed \n");
break;

default:
printf("Error in code value \n");
break;

}

When more than one case label is used for the same statement, the evaluation is performed as
if the logical operator || joined the cases. For this example, the first statement is executed if
op_code is equal to 'N' or if op_code is equal to 'R'.

Convert the following nested if/else statements to a switch statement:

if (rank==1 || rank==2)
printf("Lower division \n");

else
{

if (rank==3 || rank==4)
printf("Upper division \n");

else
{

if (rank==5)
printf("Graduate student \n");

else
printf("Invalid rank \n");

}
}

PRACTICE!PRACTICE!

3.4 Problem Solving Applied: Face Recognition
In this section, we use the new statements presented in this chapter to solve a problem related
to facial recognition.

One technique for comparing faces uses ratios of distances between key points on a face,
as indicated in Figure 3.7. These ratios might include the distance between the eyes divided
by the distance between the nose and the chin. Because these measurements are ratios, they

98 Chapter 3 Control Structures and Data Files

1. PROBLEM STATEMENT

Given information on three faces, use ratios to determine the two faces that are the most
similar.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the inputs to the program are the distance between the
outer edges of the eyes and the distance between the tip of the chin and the tip of the nose,
for three different images. The output is the image numbers for the two images that are most
similar based on ratios of these distances.

Figure 3.7 Key points for face
recognition.

can be computed from images of different sizes and should still be similar for the same face.
The computer programs that compute these measurements must be able to locate a face in an
image and then also locate the eyes and other key points on the face. There are additional
challenges if the head is turned in a different direction in one of the images.

For this problem, assume that we have three images of a person looking at the camera.
We would like to determine if the two images are likely to be of the same person. The
technique that we will use is one that compares ratios of the distances between the outer edges
of the eyes to the distances between the tip of the chin and the tip of the nose. Write a C pro-
gram to read the two distances for each face, compute the ratios, and then determine which
two images have the closest ratios.

eye distance, image 1

nose to chin distance, image 2

nose to chin distance, image 1

eye distance, image 2

eye distance, image 3
nose to chin distance, image 3

image number

image number

Section 3.4 Problem Solving Applied: Face Recognition 99

3. HAND EXAMPLE

Assume that the following distances are measured from the three images, in cm:

Image 1 Image 2 Image 3

Outer eye distance 5.7 6.0 6.0
Nose to chin distance 5.3 5.0 5.6

We can then compute the ratio of the outer eye distance to the nose to chin distance for
each image:

ratio_1 = 5.7/5.3 =1.08

ratio_2 = 6.0/5.0 = 1.20

ratio_3 = 6.0/5.6 = 1.07

We then compute the differences between each pair of ratios, using an absolute value so that
each difference is a positive number:

diff_1_2 = | ratio_1 – ratio_2 | = | 1.08 – 1.20 | = 0.12

diff_1_3 = | ratio_1 – ratio_3 | = | 1.08 – 1.07 | = 0.01

diff_2_3 = | ratio_2 – ratio_3 | = | 1.20 – 1.07 | = 0.13

The difference with the smallest value then determines the two images that are the most
similar, using these two distances. In this case, image 1 and image 3 are the closest. Note
that it is possible that all these differences are large, and thus the smallest of the three
may still not represent a good match. Commercial face recognition systems that use dis-
tances use a large number of distances in order to improve their accuracy.

4. ALGORITHM DEVELOPMENT

The first step in the development of an algorithm is the decomposition of the problem
solution into a set of sequentially executed steps.

Decomposition Outline

1. Read the distances for each image.

2. Compute the ratios for each image.

3. Compute the differences between each pair of ratios.

4. Find the minimum difference.

5. Print the corresponding image numbers as the best match.

This program has a simple structure, so we can convert the decomposition directly into C.

/*–––*/
/* Program chapter3_1 */
/* */
/* This program selects the two images that are most similar */
/* using the distance between the eyes and the distance */
/* between the nose and the chin.

100 Chapter 3 Control Structures and Data Files

#include <stdio.h>
#include <math.h>

int main(void)
{

/* Declare variables. */
double eyes_1, eyes_2, eyes_3, nose_chin_1, nose_chin_2,

nose_chin_3, ratio_1, ratio_2, ratio_3, diff_1_2,
diff_2_3, diff_1_3;

/* Get user input from the keyboard. */
printf("Enter values in cm. \n");
printf("Enter eye distance and nose-chin distance for image 1: \n");
scanf("%lf %lf",&eyes_1,&nose_chin_1);
printf("Enter eye distance and nose-chin distance for image 2: \n");
scanf("%lf %lf",&eyes_2,&nose_chin_2);
printf("Enter eye distance and nose-chin distance for image 3: \n");
scanf("%lf %lf",&eyes_3,&nose_chin_3);

/* Compute ratios. */
ratio_1 = eyes_1/nose_chin_1;
ratio_2 = eyes_2/nose_chin_2;
ratio_3 = eyes_3/nose_chin_3;

/* Compute differences. */
diff_1_2 = fabs(ratio_1 – ratio_2);
diff_1_3 = fabs(ratio_1 – ratio_3);
diff_2_3 = fabs(ratio_2 – ratio_3);

/* Find minimum difference and print image numbers. */
if ((diff_1_2 <= diff_1_3)) && (diff_1_2 <= diff_2_3)

printf("Best match is between images 1 and 2 \n");
if ((diff_1_3 <= diff_1_2)) && (diff_1_3 <= diff_2_3)

printf("Best match is between images 1 and 3 \n");
if ((diff_2_3 <= diff_1_3)) && (diff_2_3 <= diff_1_2)

printf("Best match is between images 2 and 3 \n");

/* Exit program. */
return 0;

}
/*––*/

5. TESTING

We first test the program with the data from the hand example. This generates the following
interaction:

Enter values in cm.
Enter eye distance and nose-chin distance for image 1:
5.7 5.3

Section 3.5 Loop Structures 101

Enter eye distance and nose-chin distance for image 2:
6.0 5.0
Enter eye distance and nose-chin distance for image 3:
6.0 5.6
Best match is between images 1 and 3

The answer matches the hand example, so we can then test the program with additional
lengths. Print an image of each of three different friends and see if you can predict
which pair would be the best match for this very simple face recognition system.
Run the program with information from two different images of the same person and a
third person to see if this technique selects the two images that are from the same
person.

These problems relate to the program developed in this section for finding the best matching
pair from three images.

1. Modify the program so that it also prints out all three differences. This gives additional
information about the quality of the match; if the differences are small, the quality of
the match is better.

2. What would the output be if two of the ratios were the same minimum value? What
would the output be if all three of the ratios were the same value? Generate data to
make these cases happen and check your answers.

3. Modify the program to use a nested if statement in the solution instead of three
independent if statements. Does the answer to Problem 2 change with this solution?

4. Modify the program to print the image numbers for the two images that are the most
different.

5. Modify the program to print the best match between four images. (Note that this
causes the program to get longer, because with four images there are six possibilities.
In Chapter 5 we will learn additional C language functionality that allows us to handle
situations such as this one without ever increasing lines of code.)

MODIFY!MODIFY!

3.5 Loop Structures
Loops are used to implement repetitive structures. C contains three different loop structures—
the while loop, the do/while loop, and the for loop. In addition, C allows us to use two ad-
ditional statements with loops to modify their performance—the break statement (which we
used with the switch statement) and the continue statement.

Before presenting these loop structures, we would like to present two debugging sugges-
tions that are useful when trying to find errors in programs that contain loops. When compil-
ing longer programs, it is not uncommon to have a large number of compiler errors. Rather
than trying to find each error separately, we suggest that you recompile your program after
correcting several obvious syntax errors. One error will often generate several error messages.
Some of these error messages may describe errors that are not in your program, but were
printed because the original error confused the compiler.

The second debugging suggestion relates to errors inside a loop. When you want to de-
termine if the steps in a loop are working the way that you want, include printf statements
in the loop to provide a memory snapshot of key variables each time the loop is executed.
Then, if there is an error, you have much of the information that you need to determine the
cause of the error.

while Loop
The general form of a while loop follows:

while (condition)
{

statements;
}

The condition is evaluated before the statements within the loop are executed. If the condition
is false, the loop statements are skipped, and execution continues with the statement follow-
ing the while loop. If the condition is true, then the loop statements are executed, and the
condition is evaluated again. If it is still true, then the statements are executed again, and the
condition is evaluated again. This repetition continues until the condition is false. The state-
ments within the loop must modify variables that are used in the condition; otherwise, the
value of the condition will never change, and we will either never execute the statements in
the loop or we will never be able to exit the loop. An infinite loop is generated if the condi-
tion in a while loop is always true. Most systems have a system-defined limit on the amount
of time that can be used by a program and will generate an execution error when this limit is
exceeded. Other systems require that the user enter a special set of characters, such as the con-
trol key followed by the character c (abbreviated as) to stop or abort the execution of a pro-
gram. Nearly everyone eventually writes a program that inadvertently contains an infinite
loop, so be sure that you know the special characters to abort the execution of a program for
your system.

The following pseudocode and program use a while loop to generate a conversion table
for converting degrees to radians (note that the degree values start at 0°, increment by 10°, and
go through 360°):

Refinement in Pseudocode
main: set degrees to zero

while degrees ≤ 360
convert degrees to radians
print degrees, radians
add 10 to degrees

¿c

102 Chapter 3 Control Structures and Data Files

Infinite loop

/*––*/
/* Program chapter3_2 */
/* */
/* This program prints a degree-to-radian table */
/* using a while loop structure. */

#include <stdio.h>
#define PI 3.141593

int main(void)
{

/* Declare and initialize variables. */
int degrees=0;
double radians;

/* Print radians and degrees in a loop. */
printf("Degrees to Radians \n");
while (degrees <= 360)
{

radians = degrees*PI/180;
printf("%6i %9.6f \n",degrees,radians);
degrees += 10;

}

/* Exit program. */
return 0;

}
/*––*/

The first few lines of output from the program are the following:

Degrees to Radians
0 0.000000
10 0.174533
20 0.349066
. . .

do/while Loop
The do/while loop is similar to the while loop except that the condition is tested at the end of
the loop instead of at the beginning of the loop. Testing the condition at the end of the loop en-
sures that the do/while loop is always executed at least once; a while loop may not be execut-
ed at all if the condition is initially false. The general form of the do/while loop is as follows:

do
{

statements;
} while (condition);

The following pseudocode and program print the degree-to-radian conversion table using
a do/while loop instead of a while loop:

Section 3.5 Loop Structures 103

Refinement in Pseudocode
main: set degrees to zero

do
convert degrees to radians
print degrees, radians
add 10 to degrees

while degrees ≤ 360

/*––*/
/* Program chapter3_3 */
/* */
/* This program prints a degree-to-radian table */
/* using a do-while loop structure. */

#include <stdio.h>
#define PI 3.141593

int main(void)
{

/* Declare and initialize variables. */
int degrees=0;
double radians;

/* Print radians and degrees in a loop. */
printf("Degrees to Radians \n");
do
{

radians = degrees*PI/180;
printf("%6i %9.6f \n",degrees,radians);
degrees += 10;

} while (degrees <= 360);

/* Exit program. */
return 0;

}
/*––*/

for LOOP
Many programs require loops that are based on the value of a variable that increments (or
decrements) by the same amount each time through the loop. When the variable reaches a
specified value, we will want to exit the loop. This type of loop can be implemented as a
while loop, but it can also be easily implemented with the for loop. The general form of the
for loop is as follows:

for (expression_1; expression_2; expression_3)
{

statements;
}

104 Chapter 3 Control Structures and Data Files

for loop

Expression_1 is used to initialize the loop-control variable, expression_2 specifies the con-
dition that should be true to continue the loop repetition, and expression_3 specifies the mod-
ification to the loop-control variable.

For example, if we want to execute a loop 10 times, with the value of the variable k going
from 1 to 10 in increments of 1, we could use the following for loop structure:

for (k=1; k<=10; k++)
{

statements;
}

Use consistent placement of braces.
If we want to execute a loop with the value of the variable n going from 20 to 0 in incre-

ments of we could use this loop structure:

for (n=20; n>=0; n-=2)
{

statements;
}

The for loop could also have been written in this form:

for (n=20; n>=0; n=n–2)
{

statements;
}

Both forms are valid, but the abbreviated form is commonly used because it is shorter.
The following expression computes the number of times that a for loop will be executed:

If this value is negative, the loop is not executed. Thus, if a for statement has the structure

for (k=5; k<=83; k+=4)
{

statements;
}

it would be executed the following number of times:

The value of k would be 5, then 9, then 13, and so on, until the final value of 81. The loop would
not be executed with the value of 85, because the loop condition is not true when k is equal to 85.

Consider the following set of nested for statements:

for (k=1; k<=3; k++)
for (j=0; j<=1; j++)

count++;

floora83 - 5

4
b + 1 = floora78

4
b + 1 = 20.

floora final value - initial value

increment
b + 1.

-2,

Section 3.5 Loop Structures 105

Loop-control
variable

106 Chapter 3 Control Structures and Data Files

The outer for loop will be executed 3 times. The inner for loop will be executed twice each
time the outer for loop is executed. Thus, the variable count will be incremented 6 times.

The following pseudocode and program print the degree-to-radian conversion table
shown earlier with a while loop, now modified to use a for loop (note that the pseudocode
for the while loop solution to this problem and the pseudocode for the for loop solution to
this problem are identical):

Refinement in Pseudocode
main: set degrees to zero

while degrees ≤ 360
convert degrees to radians
print degrees, radians
add 10 to degrees

/*––*/
/* Program chapter3_4 */
/* */
/* This program prints a degree-to-radian table */
/* using a for loop structure. */

#include <stdio.h>
#define PI 3.141593

int main(void)
{

/* Declare variables. */
int degrees;
double radians;

/* Print radians and degrees in a loop. */
printf("Degrees to Radians \n");
for (degrees=0; degrees<=360; degrees+=10)
{

radians = degrees*PI/180;
printf("%6i %9.6f \n",degrees,radians);

}

/* Exit program. */
return 0;

}
/*––*/

Observe that the value of degrees did not need to be initialized in the declaration because it
is initialized in the for loop statement.

The initialization and modification expressions in a for loop can contain more than one
statement, as shown in this statement that initializes and updates two variables in the loop:

for (k=1, j=5; k<=10; k++, j++)
{

sum_1 += k;
sum_2 += j;

}

Section 3.5 Loop Structures 107

break AND continue STATEMENTS
We used the break statement in a previous section with the switch statement. The break
statement can also be used with any of the loop structures presented in this section to immedi-
ately exit from the loop in which it is contained. In contrast, the continue statement is used to
skip the remaining statements in the current pass, or iteration, of the loop and then continue
with the next iteration of the loop. Thus, in a while loop or a do/while loop, the condition is
evaluated after the continue statement is executed to determine if the statements in the loop
are to be executed again. In a for loop, the loop-control variable is modified, and then the rep-
etition-continuation condition is evaluated to determine whether the statements in the loop are
to be executed again. Both the break and continue statements are useful in exiting either the
current iteration or the entire loop when error conditions are encountered.

Iteration

Determine the number of times that the following for loops are executed.

1. for (k=3; k<=20; k++)
{

statements;
}

2. for (k=3; k<=20; ++k)
{

statements;
}

3. for (count=-2; count<=14; count++)
{

statements;
}

4. for (k=2; k>=-10; k--)
{

statements;
}

5. for (time=10; time>=5; time++)
{

statements;
}

6. What is the value of count after the nested for loops are executed?
int k, j, count=0;
for (k=-1; k<=3; k++)

for (j=3; j>=1; j--)
count++;

PRACTICE!PRACTICE!

When more than one statement is used, they are separated by commas and are executed from
left to right. This comma operator is executed last in operator precedence.

108 Chapter 3 Control Structures and Data Files

To illustrate the difference between the break and the continue statements, consider
the following loop that reads values from the keyboard:

sum = 0;
for (k=1; k<=20; k++)
{

scanf("%lf",&x);
if (x > 10.0)

break;
sum += x;

}
printf("Sum = %f \n",sum);

This loop reads up to 20 values from the keyboard. If all 20 values are less than or equal to
10.0, then the statements compute the sum of the values and print the sum. But if a value is
greater than 10.0, then the break statement causes control to break out of the loop and exe-
cute the printf statement. Thus, the sum printed is only the sum of the values lower than
10.0 and excludes the value greater than 10.0.

Now, consider this variation of the previous loop:

sum = 0;
for (k=1; k<=20; k++)
{

scanf("%lf",&x);
if (x > 10.0)

continue;
sum += x;

}
printf("Sum = %f \n",sum);

In this loop, the sum of all 20 values is printed if all values are less than or equal to 10.0. How-
ever, if a value is greater than 10.0, then the continue statement causes control to skip the
rest of the statements in that iteration of the loop, and it will continue with the next iteration
of the loop. Hence, the sum printed is the sum of all values in the 20 values that are less than
or equal to 10.0.

3.6 Problem Solving Applied: Wave Interaction
The state of the sea, commonly called the sea state, is defined in terms of the wind speed and
the corresponding waves. As shown in Table 3.3, sea states are defined from 0 to 12, and they
cover wind speeds up to and over 70 mph (hurricane speeds). For example, in sea state 1,
there is a light breeze (from 1 to 3 miles per hour) and small ripples on the water. In sea state
4, there is a moderate breeze (between 13 and 18 mph), and the sea has small waves with nu-
merous whitecaps. In sea state 6, there is a strong breeze (between 25 and 31 mph), large
waves have formed, whitecaps are everywhere, and there is sea spray in the air.

As discussed in the beginning of the chapter, a simple individual wave has crests (high
points) and troughs (low points). The vertical distance between a crest and trough is the wave
height, and the horizontal distance from crest to crest is the wavelength. Deepwater waves
occur where the water depth is greater than one-half the wavelength, and are often generated by
winds at the ocean surface. The water depth does not affect the speed of deepwater waves. Shal-
low-water waves occur where the ocean depth is less than 1/20 of the wavelength, and include tide

Sea state

Wavelength

Table 3.3 Sea State Number
Sea Surface

Number Description Wind (mph) Appearance

0 Calm none mirror-like
1 Light air 1-3 ripples
2 Light breeze 4-7 small wavelets
3 Gentle breeze 8-12 scattered whitecaps
4 Moderate breeze 13-18 small waves
5 Fresh Breeze 19-24 many whitecaps
6 Strong breeze 25-31 large waves
7 Near gale 32-38 white foam from breaking waves
8 Gale 39-46 moderately high waves
9 Strong gale 47-54 high waves
10 Storm 55-63 very high waves
11 Violent storm 64-72 exceptionally high waves
12 Hurricane >73 covered with foam and spray

Section 3.6 Problem Solving Applied: Wave Interaction 109

waves. The speed of shallow-water waves is determined by the water depth—the greater the
depth, the higher is the wave speed. The speed of transitional waves (those in depths between
one-half and 1/20 of the wavelength) are determined by wavelength and water depth. As the ve-
locity of the waves decreases due to friction with the ocean bottom, the wave height increases.
When the water depth is 1.3 times the wave height, the wave breaks upon the shore.

In the ocean, waves are generated by many sources, and they come together from many
directions. The interaction of individual waves creates a complex set of waves with varying
peaks and troughs. If we consider two waves at a time, the combination can be constructive
interference in which crests occur at the same time and the troughs occur at the same time,
and thus the result has higher crests and lower troughs. The combination is a destructive in-
terference if the crest of one wave occurs at the same time as the trough of another wave, be-
cause the sum can cancel the highs and lows. In mixed interference, the two waves have
different lengths and heights; thus, the sum is more complicated because it can have compo-
nents of both constructive and destructive interference.

To investigate the interference patterns of two waves, we now develop a program that
will allow the user to enter the wave period and wave height from two different waves. The
program will then determine and print the wavelengths of the two waves, and then compute the
maximum wave height (assuming that the two waves do not have a phase shift between them).
Before we can develop the solution, we first need to discuss sine waves. We will use these sine
waves to model the wave and to compute the wavelength of a wave from its period.

Recall that a sine function is a function of an angle that varies between and and
has a period of as shown in Figure 3.8. A sinusoid is a form of a sine function that is ex-
pressed as a function of time, instead of as a function of angle—for example,

where A is the amplitude,
f is the frequency in cycles per second (or hertz), and

is the phase shift in radians.

The period of a sinusoid is 1/f in seconds.

f

s1t2 = A sin12pft + f2
2p,

-1+1

Interference
patterns

Sinusoid

Source: Harold V. Thurman and Elizabeth A Burton. Introductory Oceanography, 9th ed. Prentice-Hall, Upper
Saddle River, NJ, 2001.

110 Chapter 3 Control Structures and Data Files

Consider the following three functions:

Function has an amplitude of 3, and functions and have amplitudes of 5. Function
has a frequency of 1 Hz and thus a period of 1 s; function has a frequency of 0.2 Hz and
thus a period of 5 s; and function has a frequency of 0.5 Hz and thus a period of 2 s. The
phase shift for all three functions is zero. Figure 3.9 contains plots of these three sinusoids.

A property that we will not prove, but that will be useful in analyzing the interaction of
waves, is that a sum of two sinusoids is also a periodic signal with a period that is equal to the
least common multiple (LCM) of the periods of the two individual sinusoids. Thus, if the two
periods are 3 s and 6 s, the period of the combined sinusoids is 6 s. If the two periods are 3 s
and 5 s, the period of the combined signal is 15 s. If the two periods are and the period

of the combined signal is 1 s. If the two periods are and 2 s, the period of the combined
signal is 6 s. Developing an algorithm to determine the least common multiple for two numbers
is a nontrivial exercise. Since we want to focus on the characteristics of the wave interaction,
we will assume that the wave periods entered into the program will be integers (in seconds).
With this assumption, the least common multiple can be shown to be less than or equal to the
product of the two integers. Thus, if we use the product as the period for the combined wave, we
know that the maximum peak will be in this period. Figure 3.10 contains the sums of each pair of
sinusoids in Figure 3.9. Note that the period of is 5 (the LCM of 1 and 5), the period of

is 10 (the LCM of 5 and 2), and the period of is 2 (the LCM of 1 and 2).
We now need to consider the relationship between the wavelength L and the period T of a

wave. For a wave in deep water [5], this relationship is

where T is in seconds and L is in feet. This relationship does not hold for shallow-water
waves. We now have all the pieces to describe a solution to the problem presented at the
beginning of this section.

Write a program that will allow the user to enter the period and wave height for two waves,
where the period (in seconds) is an integer and the wave height is measured in feet. The program
should compute and print the wavelength for each wave. It should also compute 200 points of the
sum of the two waves over a period equal to the product of the two individual periods. It should then
find the maximum of the 200 points of the sum, and print that as an estimate of the maximum wave
height of the combined waves, assuming that the phase difference between the two waves is zero.

L = 5.13 T2,

s1 + s3s2 + s3
s1 + s2

2
3 s

1
3 s,1

2 s

s3

s2

s1s3s2s1

s31t2 = 5 sin1pt2.
s21t2 = 5 sin10.4pt2, and

s11t2 = 3 sin12pt2,

0 2 4 6 8 10 12 14 16 18 20

�1

0

1

Sine Function

Angle, radians

Figure 3.8 Plot of a sine function.

Least common
multiple

Section 3.6 Problem Solving Applied:Wave Interaction 111

0 1 2 3 4 5 6 7 8 9 10

�10

�5

0

5

10

s 1
�

s 2

Sum of Sinusoids

0 1 2 3 4 5 6 7 8 9 10

�10

�5

0

5

10

s 2
�

s 3

0 1 2 3 4 5 6 7 8 9 10

�10

�5

0

5

10

s 1
�

s 3

Time, s

Figure 3.10 Plot of sums of pairs of sinusoids.

0 1 2 3 4 5 6 7 8 9 10

�5

0

5

Three Sinusoids

s 1

0 1 2 3 4 5 6 7 8 9 10

�5

0

5

s 2

0 1 2 3 4 5 6 7 8 9 10

�5

0

5

s 3

Time, s

Figure 3.9 Plot of three sinusoids.

112 Chapter 3 Control Structures and Data Files

1. PROBLEM STATEMENT

Determine the wavelength of two waves and the maximum possible wave height from the
combination of the two waves.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the input to the program is the period and wave height
for each wave. The output is the two individual wavelengths and the maximum wave height
from the combination of the two waves.

3. HAND EXAMPLE

Assume that we have measured the wave period and wave height (distance between crest
and trough) for two waves:

Period (s) Height (ft)

Wave 1 4 0.5
Wave 2 10 1.0

We first compute the wavelength for each wave using the equation given earlier in this
section:

For the combined wave period, we use the product of the periods of the two waves, or 40 s.
Thus, the increment in time between the 200 points is 40/200, or 0.2 s. Using 10 points for
the hand example (instead of 200), we have the following set of information:

t

0 0 0 0
0.2000 0.0773 0.0627 0.1399
0.4000 0.1469 0.1243 0.2713
0.6000 0.2023 0.1841 0.3863
0.8000 0.2378 0.2409 0.4786
1.0000 0.2500 0.2939 0.5439
1.2000 0.2378 0.3423 0.5800
1.4000 0.2023 0.3853 0.5875
1.6000 0.1469 0.4222 0.5691
1.8000 0.0773 0.4524 0.5297

The maximum height for the combined wave (in the first 10 points) is 2(0.5875) ft, or 1.175 ft.

w11t2 + w21t2w21t2w11t2

 wavelength 2 = 5.13 T2
2 = 513 ft.

 wavelength 1 = 5.13 T1
2 = 82.08 ft, and

Period 1

Height 1

Period 2

Height 2

Maximum possible height

Individual wavelengths

Section 3.6 Problem Solving Applied:Wave Interaction 113

4. ALGORITHM DEVELOPMENT

The first step in the development of an algorithm is the decomposition of the problem solu-
tion into a set of sequentially executed steps:

Decomposition Outline

1. Read the periods and wave heights of the two waves to be combined.

2. Compute and print the wavelengths of the individual waves.

3. Compute 200 values of the sum of the two waves and determine the maximum value.

4. Print the maximum value.

The third step in the decomposition outline involves a loop in which we compute 200
values of the new combined wave. Before the loop, we need to compute the period of the
combined wave that will be used for the analysis. Since we assume that the wave periods
are integers, we can use the product of these periods as the period for the sum of the two
waves. (The actual period may be smaller.) We need to think carefully about finding the
maximum wave height. Recall the hand example. Once the table has been printed, it is
easy to read it and select the maximum height. However, when the program is computing
the values for the two waves and adding them, it does not have all the data at one time; it
only has the information for the values in the current pass through the loop. Therefore, to
keep track of the maximum, we must specify a separate variable to store the maximum
value. Each time that we compute a new wave height, we will compare that value to the
maximum value. If the new value is larger, we replace the maximum with this new value.
Therefore, the refinement in pseudocode is as follows:

Refinement in Pseudocode
main: read the period and wave height for wave 1

read the period and wave height for wave 2
compute and print the wavelength for each wave
set new period to the product of the wave periods
set time increment to new period/200
set wavemax to 0
set time to 0
set steps to 0
while steps <= 199

set sum to wave 1 + wave 2
if sum > wavemax

set wavemax to sum
add 1 to steps

print wavemax

The steps in the pseudocode are now detailed enough to convert into C:

/*––*/
/* Program chapter3_5 */
/* */
/* This program determines the maximum height */
/* of a wave that is the sum of two specified waves. */

114 Chapter 3 Control Structures and Data Files

#include <stdio.h>
#include <math.h>
#define PI 3.141593

int main(void)
{

/* Declare variables. */
int k;
double A1, A2, freq1, freq2, height1, height2, length1, length2;
double T1, T2, w1, w2, sum, new_period, new_height, time_incr, t;
double maxwave=0;

/* Get user input from the keyboard. */
printf("Enter integer wave period (s) and wave height (ft) \n");
printf("for wave 1: \n");
scanf("%lf %lf",&T1,&height1);
printf("Enter integer wave period (s) and wave height (ft) \n");
printf("for wave 2: \n");
scanf("%lf %lf",&T2,&height2);
/* Determine and print wavelengths. */
length1 = 5.13*T1*T1;
length2 = 5.13*T2*T2;
printf("Wavelengths (in ft) are: %.2f %.2f \n",length1,length2);

/* Determine period of combined waves. */
new_period = T1*T2;

/* Compute 200 points of the combined waves over the */
/* period specified, then find the maximum height. */
time_incr = new_period/200;
A1 = height1/2;
A2 = height2/2;
freq1 = 1/T1;
freq2 = 1/T2;
for (k=0; k<=199; k++)
{

t = k*time_incr;
w1 = A1*sin(2*PI*freq1*t);
w2 = A2*sin(2*PI*freq2*t);
sum = w1 + w2;
if (sum > maxwave)

maxwave = sum;
}
new_height = maxwave*2;

/* Print new wave maximum. */
printf("Maximum combined wave height is %.2f ft \n",new_height);

/* Exit program. */
return 0;

}
/*–––*/

Section 3.6 Problem Solving Applied:Wave Interaction 115

5. TESTING

To test the program using the data from the hand example, we need to modify the program
so that it only computes ten points. Thus, we replace the first line of the for loop with this
line:

for (k=0; k<=9; k++)

This generates the following interaction:

Enter integer wave period (s) and wave height (ft)
for wave 1:
4 0.5
Enter integer wave period (s) and wave height (ft)
for wave 2:
10 1
Wavelengths (in ft) are: 82.08 513.00
Maximum combined wave height is 1.18 ft

0 5 10 15 20 25 30 35 40
�1

�0.5

0

0.5

1

w
1

Sum of Sinusoids

0 5 10 15 20 25 30 35 40
�1

�0.5

0

0.5

1

w
2

0 5 10 15 20 25 30 35 40
�1

�0.5

0

0.5

1

w
1

�
w

2

Time, s

Figure 3.11 Plot of combined waves.

116 Chapter 3 Control Structures and Data Files

3.7 Data Files
Engineering problem solutions often involve large amounts of data. These data can be output
data generated by the program, or they can be input data that are used by the program. It is not
generally feasible to either print large amounts of data to the screen or to read large amounts
of data from the keyboard. In these cases, we usually use data files to store the data. These
data files are similar to the program files that we create to store our C program. In fact, a C
program file is an input data file to the C compiler, and the object program is an output file
from the C compiler. In this section, we discuss the C statements for interacting with data files
and give examples that generate and read information from data files.

The value computed matches the hand example, so we can then test the program. First, we
must change the for statement, so it once again specifies that the program should complete
the loop two hundred times. The output from this program is

Enter integer wave period (s) and wave height (ft)
for wave 1:
4 0.5
Enter integer wave period (s) and wave height (ft)
for wave 2:
10 1
Wavelengths (in ft) are: 82.08 513.00
Maximum combined wave height is 1.46 ft

Figure 3.11 contains the two waves and their sums for this example.

These problems relate to the program developed in this section for computing maximum
wave height.

1. Modify the program so that it finds the maximum crest and the minimum trough for the
combined waves.

2. Modify the program so that it also allows the user to enter a time, then the program
computes and prints the combined wave height at that time.

3. Modify the program so that it allows the user to specify the number of points to com-
pute for determining the maximum combined wave height over the specified period of
time. Should this make any difference in the answer? Explain.

4. Modify the program so that it allows the user to specify a phase shift between the two
waves. This phase shift should be used as the phase shift for the second wave; the phase
shift for the first wave should still be zero. Experiment with different phase shifts to see
if they change the maximum possible wave height.

5. Modify the program so that it uses units of meters and seconds, instead of feet and sec-
onds. Remember to modify the program that computes the wavelengths appropriately.

MODIFY!MODIFY!

Section 3.7 Data Files 117

When debugging programs read information from data files, echo (or print) the informa-
tion read from the file to be sure that the data are being read properly. If the data values are all
zero, or are unusual numbers, it may be possible that the program cannot find the file because
it is in a directory that the program cannot access. The solution is either to move the file to a
directory that the program can access or to change some of the operating system parameters
so that the program can find the file.

In the examples that follow, we use data files containing sensor data. For this discussion,
we assume that the sensor is a seismometer. Seismometers are usually buried near the surface
of the earth and record earth motion. These sensors are very sensitive and can record tidal
motion, even though they may be located hundreds of miles from the ocean. Seismometer
data are collected from sensors all over the earth, and are sent by satellite to central locations
for collection and analysis. By studying this motion, scientists and engineers may someday
be able to predict earthquakes from seismometer data.

I/O Statements
Each data file used in a program must have a file pointer associated with it. If a program uses
two files, then each file requires a different file pointer. A file pointer is defined with a FILE
declaration, as in

FILE *sensor1;

The FILE data type is defined in the header file stdio.h, and thus the word FILE is capital-
ized to match the definition in the header file. The asterisk before the identifier specifies that
the identifier is a pointer. Later chapters include more information on pointers; in this section,
we present only the statements needed to work with file pointers.

After a file pointer is defined, it must then be associated with a specific file. The fopen
function obtains the information needed to assign a file pointer to a specific file. The two ar-
guments for this function are the file name and a character that indicates the file status, which
is also called the file open mode; both the file name and the character need to be enclosed in
double quotes. If we are going to read information from a file with a program, the file open
mode is r for read. If we are going to write information to a file with a program, the file open
mode is w for write. Thus, the following statement specifies that the file pointer sensor is
going to be used with a file named sensor.txt, from which we will read information:

sensor = fopen("sensor1.txt","r");

If a data file cannot be opened, fopen returns a value of NULL. (NULL is a symbolic constant
defined in <stdio.h> and has the value of a character zero.) A common reason that a pro-
gram might not be able to open a data file is because the file cannot be found by the program.
Therefore, to be sure that our programs find their data files, it is good practice to check the
value returned by fopen to ensure that the file was successfully opened. The following state-
ments open a file referenced by file1; if the file is not successfully found, an error message
is printed and the rest of the if statement is skipped:

file1 = fopen(FILENAME,"r");
if (file1 == NULL)

printf("Error opening input file \n");
else
{

...
}

File pointer

File open mode

118 Chapter 3 Control Structures and Data Files

One way to be sure that your program can find a data file is to store the data file in the same
folder as your program file.

Once an input file and its pointer have been specified, we can read information from the
file as we would read information from the keyboard. However, instead of using the scanf
function, we use the fscanf function. If each line in the sensor1.txt file contains a time
and sensor reading, we can read one line of this information and store the values in the vari-
ables t and motion with this statement:

fscanf(sensor,"%lf %lf",&t,&motion);

Note that the difference between the scanf function and the fscanf function is that the first
argument in the fscanf function is the file pointer. Otherwise, both statements are the same.
The scanf statement converts the characters received from the keyboard to values, and the
fscanf statement converts the characters received from the lines in the data file to values.

If the file is an output file, we can write information to the file with the fprintf func-
tion. The first argument of the fprintf statement is the file pointer, and the rest of the argu-
ments define the variables and the form in which the corresponding values are to be written in
the file. For example, consider the program developed earlier in this chapter that computed
the sum of two waves. If we want to modify this program so that it generates a data file con-
taining this set of data, we could use a pointer waves that would be associated with an output
file named waves1.txt using these statements:

FILE *waves;
...
waves = fopen("waves1.txt","w");

Then, as we compute the information, we can write it to the file with this statement:

fprintf(waves,"%.2f %.2f %.2f %.2f\n","%f %f %f\n",
t,w1,w2,sum);

The newline indicator causes a skip to a new line after each group of four values is written to
the file.

The fclose function is used to close a file after we are finished with it; the function ar-
gument is the file pointer. To close the two files used in these sample statements, we use the
following statements:

fclose(sensor);
fclose(waves);

There is no distinction between closing an input file and closing an output file. If a file has not
been closed when the return statement is executed, it will automatically be closed.

A preprocessor directive is often used to specify the data file name because we frequent-
ly use the same program with different data files. It is easier to modify the preprocessor direc-
tive than it is to search through the statements for the fopen function. An example of a
preprocessor directive and a corresponding fopen function are shown in the following code:

#define FILENAME "sensor1.txt"
...
sensor = fopen(FILENAME,"r");

For the remainder of this textbook, this combination of statements is used in all the example
programs that use files.

Section 3.7 Data Files 119

Reading Data Files
In order to read information from a data file, we must first know some details about the file.
Obviously, we must know the file name, so that we can use the fopen statement to associate
the file with its pointer. We must also know the order and data type of the values stored in the
file, so that we can declare corresponding identifiers correctly. Finally, we need to know if
there is any special information in the file, so we can help determine the length of the file. If
we attempt to execute an fscanf statement after we have read all the data in the file, an error
occurs. In order to avoid this error, we need to know when we have read all the data.

Data files generally have one of three common structures. Some files have been generat-
ed so that the first line in the file contains the number of lines (also called records) with infor-
mation that follow. For example, suppose that a file containing sensor data has 150 sets of
time and sensor information. The data file could be constructed so that the first line contains
only the value 150, and that line would then be followed by 150 lines containing the sensor
data. To read the data from this file, we read the value from the first line in the file, and then
use a for loop to read the rest of the information. This type of loop is also called a counter-
controlled loop.

Another form of file structure uses a trailer signal or sentinel signal. These signals are
special data values that are used to indicate or signal the last record of a file. For example, the
sensor data file constructed with a sentinel signal would contain the 150 lines of information
followed by a line with special values, such as for the time and sensor value. In order
to avoid confusion, these sentinel signals must be values that could not appear as regular data.
To read data from this type of file, we use a while loop with a condition that is true as long
as the data value is not the sentinel signal. This type of loop is also called a sentinel-controlled
loop.

The third data file structure does not contain an initial line with the number of valid data
records that follow, and it does not contain a trailer or sentinel signal. For this type of data file,
we use the value returned by the fscanf function to help us determine when we have reached
the end of the file. To read data from this type of file, we use a while loop with a condition
that is true as long as we are not at the end of the file.

Since some operating systems are case sensitive, we will use all lowercase letters in file
names to avoid any potential problems. The data file used with a program often changes, so it
is helpful if the file name is easy to locate and change. Therefore, use a preprocessor directive
to define the filename; otherwise, the filename becomes embedded in the program and cannot
be easily changed.

We now present programs for reading sensor information and printing a summary report
that contains the number of sensor readings, the average value, the maximum value, and the
minimum value. Each of the three common file formats discussed will be used in the pro-
grams that follow.

Specified Number of Records. Assume that the first record in the sensor data file con-
tains an integer that specifies the number of records of sensor information that follow. Each of
the following lines contains a time and sensor reading in a file named sensor1.txt:

10
0.0 132.5
0.1 147.2
0.2 148.3
0.3 157.3

-999.0

Trailer signal
Sentinel signal

120 Chapter 3 Control Structures and Data Files

0.4 163.2
0.5 158.2
0.6 169.3
0.7 148.2
0.8 137.6
0.9 135.9

The process of first reading the number of data points and then using that to specify the num-
ber of times to read data and accumulate information is easily described using a variable-
controlled loop. In the following pseudocode and program, the first actual data value is used
to initialize the min and max values. If we set the min value initially to zero and all the sensor
values are greater than zero, the program will print the erroneous value of zero for the mini-
mum sensor reading.

The pseudocode and program for this solution are as follows:

Refinement in Pseudocode
main: set sum to zero

if file cannot be opened
print error message

else
read number of data points
set k to 1
while k ≤ number of data points

read time, motion
if k=1

set max to motion
set min to motion

add motion to sum
if motion > max

set max to motion
if motion < min

set min to motion
increment k by 1

set average to sum/number of data points
print average, max, min

/*––*/
/* Program chapter3_6 */
/* */
/* This program generates a summary report from */
/* a data file that has the number of data points */
/* in the first record. */

#include <stdio.h>
#define FILENAME "sensor1.txt"

Section 3.7 Data Files 121

int main(void)
{

/* Declare and initialize variables. */
int num_data_pts, k;
double time, motion, sum=0, max, min;
FILE *sensor;

/* Open file and read the number of data points. */
sensor = fopen(FILENAME,"r");
if (sensor == NULL)

printf("Error opening input file. \n");
else
{

fscanf(sensor,"%d",&num_data_pts);

/* Read data and compute summary information. */
for (k=1; k<=num_data_pts; k++)
{

fscanf(sensor,"%lf %lf",&time,&motion);
if (k == 1)

max = min = motion;
sum += motion;
if (motion > max)

max = motion;
if (motion < min)

min = motion;
}

/* Print summary information. */
printf("Number of sensor readings: %d \n",

num_data_pts);
printf("Average reading: %.2f \n",

sum/num_data_pts);
printf("Maximum reading: %.2f \n",max);
printf("Minimum reading: %.2f \n",min);

/* Close file and exit program. */
fclose(sensor);

}

/* Exit program. */
return 0;

}
/*––*/

The following report will be printed by this program using the sensor1.txt file:

Number of sensor readings: 10
Average reading: 149.77
Maximum reading: 169.30
Minimum reading: 132.50

122 Chapter 3 Control Structures and Data Files

Trailer or Sentinel Signals. Assume that the data file sensor2.txt contains the same
information as the sensor1.txt file, but instead of giving the number of valid data records
at the beginning of the file, a final record contains a trailer signal. The time value on the last
line in the file will contain a negative value so that we know that it is not a valid line of infor-
mation. A second number must be included on the trailer line, since the statement that reads
each line expects two values; otherwise, an error occurs. The contents of the data file named
sensor2.txt are as follows:

0.0 132.5
0.1 147.2
0.2 148.3
0.3 157.3
0.4 163.2
0.5 158.2
0.6 169.3
0.7 148.2
0.8 137.6
0.9 135.9
-99 -99

The process of reading and accumulating information until we read the trailer signal is easi-
ly described using a do/while loop structure, as shown in the following pseudocode and
program:

Refinement in Pseudocode
main: set sum to zero

set number of points to 0
if file cannot be opened

print error message
else

read time, motion
set max to motion
set min to motion
do

add motion to sum
if motion > max

set max to motion
if motion < min

set min to motion
increment number of points by 1
read time, motion

while time ≥ 0
set average to sum/number of data points
print average, max, min

Section 3.7 Data Files 123

/*––*/
/* Program chapter3_7 */
/* */
/* This program generates a summary report from */
/* a data file that has a trailer record with */
/* negative values. */

#include <stdio.h>
#define FILENAME "sensor2.txt"

int main(void)
{

/* Declare and initialize variables. */
int num_data_pts=0;
double time, motion, sum=0, max, min;
FILE *sensor;

/* Open file and read the first data point. */
sensor = fopen(FILENAME,"r");
if (sensor == NULL)

printf("Error opening input file. \n");
else
{

fscanf(sensor,"%lf %lf",&time,&motion);

/* Initialize variables using first data point. */
max = min = motion;

/* Update summary data until trailer record read. */
do
{

sum += motion;
if (motion > max)

max = motion;
if (motion < min)

min = motion;
num_data_pts++;
fscanf(sensor,"%lf %lf",&time,&motion);

} while (time >= 0);

/* Print summary information. */
printf("Number of sensor readings: %d \n",

num_data_pts);
printf("Average reading: %.2f \n",

sum/num_data_pts);
printf("Maximum reading: %.2f \n",max);
printf("Minimum reading: %.2f \n",min);

/* Close file. */
fclose(sensor);

}

/* Exit program. */
return 0;

}
/*––*/

124 Chapter 3 Control Structures and Data Files

The report printed by this program using the sensor2.txt file is exactly the same as the re-
port printed using the sensor1.txt file.

End-of-File. A special end-of-file indicator is inserted at the end of every data file; the
feof function in the Standard C library can be used to detect when this indicator has been
reached in a data file. The fscanf function can also be used to detect when the end of the
data has been reached in a file. Recall that the fscanf function returns the number of values
successfully read each time that it is executed. Thus, if the function returns a value that is dif-
ferent from the number of values that it was supposed to read, then the end of the data file has
been reached, or there are errors in the information in the data file. If the information in the
data file is valid, then the fscanf function can be used to determine when the end of the data
file is reached. Consider the following statements:

while ((fscanf(data,"%lf",&x)) == 1)
{

count++;
sum += x;

}
ave = sum/count;

The fscanf function attempts to read a value for x from a data file. If a value is read, the
function returns a value of 1, and the statements within the loop are executed. If the end of the
data file is reached, there is no more data; thus, the function does not return a value of 1, and
control passes to the statement following the while loop.

We now assume that the data file sensor3.txt contains the same information as the
sensor2.txt file, except it does not include the trailer signal. In the following pseudocode
and program, we read and accumulate information until we reach the end of the data file:

Refinement in Pseudocode
main: set sum to zero

set number of points to 0
if file cannot be opened

print error message
else

while not at the end of the file
read time, motion
add 1 to the number of points
if k=1

set max to motion
set min to motion

add motion to sum
if motion > max

set max to motion
if motion < min

set min to motion
set average to sum/number of data points
print average, max, min

End-of-file indicator

Section 3.7 Data Files 125

/*–––*/
/* Program chapter3_8 */
/* */
/* This program generates a summary report from */
/* a data file that does not have a header record */
/* or a trailer record. */

#include <stdio.h>
#define FILENAME "sensor3.txt"

int main(void)
{

/* Declare and initialize variables. */
int num_data_pts=0;
double time, motion, sum=0, max, min;
FILE *sensor;

/* Open file. */
sensor = fopen(FILENAME,"r");
if (sensor == NULL)

printf("Error opening input file. \n");
else
{

/* While not at the end of the file, */
/* read and accumulate information. */
while ((fscanf(sensor,"%lf %lf",&time,&motion)) == 2)
{

num_data_pts++;

/* Initialize variables using first data point. */
if (num_data_pts == 1)

max = min = motion;

/* Update summary data. */
sum += motion;
if (motion > max)

max = motion;
if (motion < min)

min = motion;
}

/* Print summary information. */
printf("Number of sensor readings: %d \n",

num_data_pts);
printf("Average reading: %.2f \n",

sum/num_data_pts);
printf("Maximum reading: %.2f \n",max);
printf("Minimum reading: %.2f \n",min);

/* Close file. */
fclose(sensor);

}

/* Exit program. */
return 0;

}
/*–––*/

126 Chapter 3 Control Structures and Data Files

In two of the programs developed in this chapter, the loop contained a condition that tested
for the first time that the loop was executed. When the condition was true, the max and min
values were initialized to the first motion value. If the data files used with these programs
were long, the time required to execute this selection statement could be substantial. One
way to avoid this test is to read the first set of data and initialize the variables before entering
the loop. This change may also require other changes in the program.

1. Modify program chapter3_5 to remove the condition that tests for the first time that
the loop is executed.

2. Modify program chapter3_7 to remove the condition that tests for the first time that
the loop is executed.

MODIFY!MODIFY!

The report printed using the sensor3.txt file is exactly the same as the report printed using
sensor1.dat or sensor2.txt.

All three file structures are commonly used in engineering and scientific applications.
Therefore, it is important to know which type of structure is used when you work with a data
file. If you make the wrong assumption, you may get incorrect answers instead of an error
message. Sometimes the only way to be sure of the file structure is to print the first few lines
and the last few lines of the file.

Generating a Data File
Generating a data file is similar to printing a report; however, instead of writing the line to the
terminal screen, we write it to a data file. Before we generate the data file, though, we must
decide what file structure we want to use. In the previous discussion, we presented the three
most common file structures—files with an initial record giving the number of valid records
that follow, files with a trailer or sentinel record to indicate the end of the valid data, and files
with only valid data records and no special beginning or ending records.

There are advantages and disadvantages to each of the three file structures discussed. If the
initial record in the data file contains the number of lines of actual data, we must know how many
lines of data will be in the file before we generate the file. It may not always be easy to determine
this number. A file with a trailer signal is simple to use, but choosing a value for the trailer signal
must be done carefully so that it does not contain values that could occur in the valid data. The sim-
plest file to generate is the one that contains only the valid information, with no special information
at the beginning or end of the file. If the information in the file is going to be used with a plotting
package, it is usually best to use this third file structure, which includes only valid information.

We now set forth a modification of the program presented earlier in the chapter. The
previous program determined the wavelength of two waves and then computed the maxi-
mum wave height of the sum of the two waves if the phase angles were zero. In this pro-
gram, we also write to a data file the time and wave amplitudes for the two individual waves
and for the sum of the two waves. Compare this program with the one in Section 3.6.

/*––*/
/* Program chapter3_9 */
/* */
/* This program determines the maximum height */
/* of a wave that is the sum of two specified waves. */

Section 3.7 Data Files 127

#include <stdio.h>
#include <math.h>
#define PI 3.141593
#define FILENAME "waves1.txt"

int main(void)
{

/* Declare variables. */
int k;
double A1, A2, freq1, freq2, height1, height2, length1, length2;
double T1, T2, w1, w2, sum, new_period, new_height, time_incr, t;
double maxwave=0;
FILE *waves;

/* Open output file. */
waves = fopen(FILENAME,"w");

/* Get user input from the keyboard. */
printf("Enter integer wave period (s) and wave height (ft) \n");
printf("for wave 1: \n");
scanf("%lf %lf",&T1,&height1);
printf("Enter integer wave period (s) and wave height (ft) \n");
printf("for wave 2: \n");
scanf("%lf %lf",&T2,&height2);

/* Determine and print wavelengths. */
length1 = 5.13*T1*T1;
length2 = 5.13*T2*T2;
printf("Wavelengths (in ft) are: %.2f %.2f \n",length1,length2);

/* Determine period of combined waves. */
new_period = T1*T2;

/* Compute 200 points of the combined waves over the */
/* period specified, and find the maximum height. */
time_incr = new_period/200;
A1 = height1/2;
A2 = height2/2;
freq1 = 1/T1;
freq2 = 1/T2;
for (k=0; k<=199; k++)
{

t = k*time_incr;
w1 = A1*sin(2*PI*freq1*t);
w2 = A2*sin(2*PI*freq2*t);
sum = w1 + w2;
fprintf(waves,"%.4f %.4f %.4f %.4f \n",t,w1,w2,sum);
if (sum > maxwave)

maxwave = sum;
}
new_height = maxwave*2;

128 Chapter 3 Control Structures and Data Files

Linear modeling is the name given to the process that determines the linear equation that is
the best fit to a set of data points in terms of minimizing the sum of the squared distances
between the line and the data points. (This process is also called linear regression.) To
understand this process, we first consider the set of temperature values presented in
Section 2.6 that were collected from the cylinder head of a new engine:

Time, s Temperature, °F

0.0 0.0
1.0 20.0
2.0 60.0
3.0 68.0
4.0 77.0
5.0 110.0

3.8 Numerical Technique: Linear Modeling*
Linear modeling

Linear regression

*Optional sections.

/* Print new wave maximum. */
printf("Maximum combined wave height is %.2f ft \n",new_height);

/* Close file and exit program. */
fclose(waves);
return 0;

}
/*––*/

The first few lines of a data file generated by this program using the input values for the hand
example are shown below:

0.0000 0.0000 0.0000 0.0000
0.2000 0.0773 0.0627 0.1399
0.4000 0.1469 0.1243 0.2713
0.6000 0.2023 0.1841 0.3863

This file is in a form that can be easily plotted using a package such as MATLAB (discussed
in Appendix C); a plot of this specific file was shown in Figure 3.11.

1. Modify program chapter3_8 so that it generates a file in which the last line of the data
file contains negative values for all four values.

2. Modify program chapter3_8 so that it generates a file in which the first line contains a
number that specifies the number of valid lines of data that follow in the data file.

MODIFY!MODIFY!

Section 3.8 Numerical Technique: Linear Modeling 129

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

Time, s

Te
m

pe
ra

tu
re

, �
F

A linear estimate to a set of points

Figure 3.12 A linear estimate to model a set of points.

If we plot these data points, we find that they appear to be close to a straight line. In fact, we
could determine a good estimate of a straight line through these points by drawing it on a
graph and then computing the slope and y-intercept. Figure 3.12 contains a plot of the points
(with time on the x-axis and temperature on the y-axis) along with the straight line with the
equation

To measure the quality of the fit of this linear estimate to the data, we first determine the
vertical distance from each point to the linear estimate; these distances are shown in Figure
3.13. The first two points fall exactly on the line, so and are zero. The value of is
equal to or 20.0; the rest of the distances can be computed in a similar way. If
we compute the sum of the distances, some of the positive and negative values would cancel
each other and give a sum that is smaller than it should be. To avoid this problem, we could
add absolute values or squared values; linear regression uses squared values. Therefore, the
measure of the quality of the fit of this linear estimate is the sum of the squared distances be-
tween the points and the linear estimates. This sum can be easily computed; it is 573.

If we drew another line through the points, we could compute the sum of squares that
corresponds to this new line. Of the two lines, the better fit is provided by the line with the
smaller sum of squared distances. To find the line with the smallest sum of squared distances,
we begin with a general linear equation:

We then write an equation that computes the sum of the squared distances between the given
data points and this general equation. Using techniques from calculus, we can then compute
the derivatives of the equation with respect to m and b, and set the derivatives equal to zero.
The values of m and b that are determined in this way represent the straight line with the min-
imum sum of squared distances, or the least-squares distance. Before giving these equations
for m and b, we define summation notation.

The set of data points given at the beginning of this section can be represented by the
points (x1, y1), (x2, y2) ..., (x6, y6). The symbol represents a summation; thus,
the sum of the x-coordinates can be expressed in the following notation:

a
6

k=1
xk.

g

y = mx + b.

60.0 - 40.0,
d3d2d1

y = 20x.

Least-squares
Summation notation

130 Chapter 3 Control Structures and Data Files

This summation is read as the sum of as k goes from 1 to 6. The value of this summation for
the example data points is or 15. Other sums that could be com-
puted by using the example data points are as follows:

We now return to the problem of finding the best linear fit to a set of points. Using the
preceding procedure, which is based on results from calculus, we find that the slope and y-
intercept for the best linear fit to a set of n data points in a least-squares sense, are the
following:

(3.1)

(3.2)

For the sample set of data, the optimum value for m is 20.83 and the optimum value for
b is 3.76. The set of data points and this best fit linear equation are shown in Figure 3.14.
The sum of squares for this best fit is 356.82, as compared with 573 for the straight line in
Figure 3.13.

b =
a
n

k=1
xk # a

n

k=1
xkyk - a

n

k=1
xk

2 # a
n

k=1
yk

aa
n

k=1
xkb

2

- n # a
n

k=1
xk

2

.

m =
a
n

k=1
xk # a

n

k=1
yk - n # a

n

k=1
xkyk

aa
n

k=1
xkb

2

- n # a
n

k=1
xk

2

,

a
6

k=1
xkyk = 0 # 0 + 1 # 20 + 2 # 60 + 3 # 68 + 4 # 77 + 5 # 110 = 1,202.

a
6

k=1
yk

2 = 02 + 202 + 602 + 682 + 772 + 1102 = 26,653,

a
6

k=1
yk = 0 + 20 + 60 + 68 + 77 + 110 = 335,

10 + 1 + 2 + 3 + 4 + 52,xk

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

Time, s

Te
m

pe
ra

tu
re

, �
F

Distances from a linear estimate to a set of points

d3

d4

d5

d6

Figure 3.13 Distances between points and the linear estimate.

Section 3.9 Problem Solving Applied: Ozone Measurements 131

One of the advantages of performing a linear regression for a set of data points that is
nearly linear in nature is that we can then estimate or predict points for which we had no data.
For example, in the cylinder-head temperature example, suppose that we want to estimate the
temperature for the cylinder head at 3.3 seconds. By using the equation computed with linear
regression, the estimated temperature is

With an equation model, we can compute estimates that we could not compute with lin-
ear interpolation. For example, using the linear model, we can compute an estimate of the
temperature for 8 seconds, but we could not compute an estimate at 8 seconds using linear in-
terpolation, because we do not have a point with a time greater than 8 seconds. (This would be
extrapolation, not interpolation.)

It is also important to remember that linear models do not provide a good fit to all sets of
data. Therefore, it is important to first determine if a linear model is a good model for the data
before using it to predict new data points.

In the next section, we develop a problem solution that determines the best fit for a set of
sensor data collected from a satellite, and then we use that model to estimate or predict other
sensor values.

= 72.5.

= 120.83213.32 + 3.76
y = mx + b

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

Time, s

Te
m

pe
ra

tu
re

, �
F

The best fit to a set of points computed using linear regression

Figure 3.14 Least-squares linear regression model.

3.9 Problem Solving Applied: Ozone Measurements*
Satellite sensors can be used to measure many different pieces of information that help
us understand more about the atmosphere, which is composed of a number of layers
around the earth. Starting at the earth’s surface, the layers are the troposphere, strato-
sphere, mesosphere, thermosphere, and exosphere, as shown in Figure 3.15. Each layer of the
atmosphere can be characterized by its temperature profile. The troposphere is the inner

*Optional sections.

Troposphere

Extrapolation

132 Chapter 3 Control Structures and Data Files

Troposphere

Stratosphere

Mesosphere

Thermosphere

Exosphere

Earth

Figure 3.15 Atmospheric layers around the earth.

layer of the atmosphere, varying in height from approximately 5 km at the poles to 18 km at
the equator. Most cloud formations occur in the troposphere, where there is a steady fall of
temperature with increasing altitude. The stratosphere is characterized by relatively uniform
temperatures over considerable differences in altitude. It extends from the troposphere to ap-
proximately 50 km (about 31 miles) above the earth. Pollutants that drift into the stratosphere
may remain there for many years before they drift back to the troposphere, where they can be
diluted and removed by the weather. The mesosphere extends from 50 km to approximately
85 km (about 53 miles) above the earth’s surface. In this layer, the air mixes fairly readily.
Above the mesosphere is the thermosphere, which extends from 85 km to about 140 km
(about 87 miles) above the earth. This region is heated by the absorption of solar energy by
atomic oxygen. The ionosphere is a relatively dense band of charged particles within the
thermosphere. Some types of communications use the reflection of radio waves off the iono-
sphere. Finally, the exosphere is the highest region of the atmosphere. In the exosphere, the
air density is so low that an air molecule moving upward is more likely to escape the atmos-
phere than it is to hit another molecule.

Consider a set of data measuring the ozone-mixing ratio in parts per million volume
(ppmv). Over small regions, these data are nearly linear, and thus we can use a linear model
to estimate the ozone at altitudes other than ones for which we have specific data. Write a
program that reads a data file named zone1.txt containing the altitude in kilometers and
the corresponding ozone-mixing ratios in parts per million volume for a region over which
we want to determine a linear model. The data file contains only valid data, and thus does not
have a special header line or trailer line. Use the least-squares technique presented in the pre-
vious section to determine and print the model. In addition, print the beginning and ending al-
titudes to indicate the region over which the model is accurate.

Stratosphere

Mesosphere

Thermosphere

Ionosphere

Exosphere

Section 3.9 Problem Solving Applied: Ozone Measurements 133

1. PROBLEM STATEMENT

Use the least-squares technique to determine a linear model for estimating the ozone-mixing
ratio at a specified altitude.

2. INPUT/OUTPUT DESCRIPTION

The following I/O diagram shows that the input is the data file zone1.txt, and the output
is the range of altitudes and the linear model:

3. HAND EXAMPLE

Assume that the data consist of the four data points in the following table.

Altitude (km) Ozone Mixing Ratio (ppmv)

20 3
24 4
26 5
28 6

We now need to evaluate Equations (3.1) and (3.2), which are repeated here for convenience:

To evaluate these equations using the data from the hand example, we need to compute the
following group of sums:

 a
4

k=1
xk = 20 + 24 + 26 + 28 = 98,

 b =
a
n

k=1
xk # a

n

k=1
xkyk - a

n

k=1
xk

2 # a
n

k=1
yk

aa
n

k=1
xkb

2

- n # a
n

k=1
xk

2

.

 m =
a
n

k=1
xk # a

n

k=1
yk - n # a

n

k=1
xkyk

aa
n

k=1
xkb

2

- n # a
n

k=1
xk

2

;

Range of altitudes

Linear model for the ozone-mixing ratio

zone1.txt

134 Chapter 3 Control Structures and Data Files

Using these sums, we can now compute the values of m and b:

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline.

Decomposition Outline

1. Read data file values and compute corresponding sums and ranges.

2. Compute slope and y-intercept.

3. Print range of altitudes and linear model.

The first step in the decomposition outline involves a loop in which we read the data from
the file and, at the same time, add the corresponding values to the sums needed for comput-
ing the linear model. We will also need to determine the number of data points as we read
the file. The condition to exit the loop will be a test for the end of the file because there is
no header or trailer information. Because we want to keep track of the altitude ranges, we
also need to save the first altitude value and the last altitude value. Therefore, the refine-
ment in pseudocode is as follows:

Refinement in Pseudocode
Main:set count to zero

set sumx, sumy, sumxy, sumx2 to zero
if file cannot be opened

print error message
else

while not at the end of the file
read x, y
increment count by 1
if count = 1

set first to x
add x to sumx
add y to sumy
add x2 to sumx2
add x.y to sumxy

set last to x
compute slope and y intercept
print first, last, slope, y intercept

 b = -4.6. m = 0.37,

 a
4

k=1
xkyk = 20 # 3 + 24 # 4 + 26 # 5 + 28 # 6 = 454.

 a
4

k=1
xk

2 = 12022 + 12422 + 12622 + 12822 = 2436,

 a
4

k=1
yk = 3 + 4 + 5 + 6 = 18,

Section 3.9 Problem Solving Applied: Ozone Measurements 135

The steps in the pseudocode are now detailed enough to convert into C:

/*––*/
/* Program chapter3_10 */
/* */
/* This program computes a linear model for a set */
/* of altitude and ozone mixing ratio values. */

#include <stdio.h>
#define FILENAME "zone1.txt"

int main(void)
{

/* Declare and initialize variables. */
int count=0;
double x, y, first, last, sumx=0, sumy=0, sumx2=0,

sumxy=0, denominator, m, b;
FILE *zone;

/* Open input file. */
zone = fopen(FILENAME,"r");
if (zone == NULL)

printf("Error opening input file. \n");
else
{

/* While not at the end of the file, */
/* read and accumulate information. */
while ((fscanf(zone,"%lf %lf",&x,&y)) == 2)
{

++count;
if (count == 1)

first = x;
sumx += x;
sumy += y;
sumx2 += x*x;
sumxy += x*y;

}
last = x;

/* Compute slope and y-intercept. */
denominator = sumx*sumx - count*sumx2;
m = (sumx*sumy - count*sumxy)/denominator;
b = (sumx*sumxy - sumx2*sumy)/denominator;

136 Chapter 3 Control Structures and Data Files

/* Print summary information. */
printf("Range of altitudes in km: \n");
printf("%.2f to %.2f \n\n",first,last);
printf("Linear model: \n");
printf("ozone-mix-ratio = %.2f altitude + %.2f \n",

m,b);

/* Close file. */
fclose(zone);

}

/* Exit program. */
return 0;

}
/*––*/

5. TESTING

Using the data from the hand example as the contents of the data file zone1.txt, we get
the following program output:

Range of altitudes in km:
20.00 to 28.00

Linear model:
ozone-mix-ratio = 0.37 altitude + -4.60

This matches the values computed from the hand example.

These problems relate to the program developed in this section. You may need to use the fol-
lowing relationship in some of the problems:

1. Add statements to the program so that it allows you to enter an altitude in kilometers.
The program should use the model to estimate the corresponding ozone mix ratio.

2. Modify the program in Problem 1 so that it checks the altitude that you enter to deter-
mine whether it is appropriate for this model.

3. Modify the program in Problem 2 so that it allows you to enter the altitude in miles.
(The program should convert miles to kilometers.)

4. Modify the original program so that it also prints a linear model so that it can be used
with altitudes that are in miles instead of kilometers. Assume that the data file still con-
tains altitudes in kilometers.

1 km = 0.621 mi.

MODIFY!MODIFY!

C Statement Summary 137

In this chapter, we covered the use of conditions and if statements to select the proper state-
ments to be executed. We also presented techniques for repeating sets of statements in loops.
These loops can be implemented as while loops or for loops. Selection and repetition
structures are used in most programs. In addition, we included the statements necessary to
read information from a data file so that we could use the information in the program. We
also presented the statements to generate a data file from a program. Data files are common-
ly used in solving engineering problems; therefore, this concept was presented early in the
text so that we could use it in many of the later problem solutions. Finally, we covered the
concept of generating a linear model for a set of data points and included the equations for
determining the best fit in terms of least squares.

KEY TERMS

SUMMARSUMMARYY

case label
case structure
compound statement
condition
conditional operator
controlling expression
data file
default label
divide and conquer
empty statement
end-of-file indicator
error condition
file open mode
file pointer
flowchart
for loop
iteration
least squares
linear modeling

linear regression
logical operator
loop
loop control variable
program walkthrough
pseudocode
relational operator
repetition
selection
sequence
sentinel signal
stepwise refinement
structured program
summation notation
test data
top-down design
trailer signal
validation and verification
while loop

C STATEMENT SUMMARY

Declaration for file pointer:

FILE *sensor;

if statement:

if (temp > 100)
printf("Temperature exceeds limit \n");

temp>100 ? printf("Caution \n"): printf("Normal \n");

if/else statement:

if (d <= 30)
velocity = 4.25 + 0.00175*d*d;

else
velocity = 0.65 + 0.12*d - 0.0025*d*d;

3

138 Chapter 3 Control Structures and Data Files

switch statement:

switch (op_code)
{

case 'n': case 'r':
printf("Normal operating range \n");
break;

case 'm':
printf("Maintenance needed \n");
break;

default:
printf("Error in code value \n");
break;

}

while loop:

while (degrees <= 360)
{

radians = degrees*PI/180;
printf("%6.0f %9.6f \n",degrees,radians);
degrees += 10;

}

do/while loop:

do
{

radians = degrees*PI/180;
printf("%6.0f %9.6f \n",degrees,radians);
degrees += 10;

} while (degrees <= 360);

for loop:

for (degrees=0; degrees<=360; degrees+=10)
{

radians = degrees*PI/180;
printf("%6.0f %9.6f \n",degrees,radians);

}

break statement:

break;

continue statement:

continue;

File open function:

sensor = fopen("sensor1.txt","r");
waves = fopen(FILENAME,"w");

Debugging Notes 139

File input function:

fscanf(sensor,"%lf %lf",&t,&motion);

File output function:

fprintf(waves,"%.2f %.2f %.2f %.2f \n",t,w1,w2,sum);

File close function:

fclose(sensor);

NOTES

1. Use spaces around the relational operator in a logical expression in a simple condition;
use spaces around the logical operator and not around the relational operators in a com-
plicated condition.

2. Indent the statements within a compound statement or inside a loop. If loops or compound
statements are nested, indent each nested set of statements from the previous statement.

3. Even when they are not required, use braces to clearly identify the structure of a compli-
cated statement.

4. Use the default case within the switch statement to emphasize the action to take when
none of the case labels matches the controlling expression.

5. Put each brace on a line by itself so that the body of the loop is easily identified.

6. Define file names with preprocessor directives so that they can easily be changed.

DEBUGGING NOTES

1. When you discover and correct an error in a program, start the testing step over again. In
particular, rerun the program with all the test data sets.

2. Be sure to use the relational operator == instead of = in a condition for equality.

3. Put the braces surrounding a block of statements on lines by themselves; this will help
you avoid omitting them.

4. Do not use the equality operator with floating-point values; instead, test for values “close
to” a desired value.

5. Recompile your program frequently when correcting syntax errors; correcting one error
may remove many error messages.

6. When debugging loops, use the printf statement to give memory snapshots of the val-
ues of key variables.

7. Be sure you know the special characters needed to abort the execution of a program on your
system if it goes into an infinite loop. It is easier than you think to generate an infinite loop.

8. When debugging a program that reads data from a data file, print the values as soon as
they are read. This will help you check for errors in reading the information.

9. When debugging a program that reads a data file, be sure that your program can access
the directory that contains the data file.

10. To avoid problems with operating systems that are not case sensitive, use file names with
lowercase letters.

3

140 Chapter 3 Control Structures and Data Files

PROBLEMS

SHORSHORTT ANSWER PRANSWER PROBLEMSOBLEMS

True–False Problems

Indicate whether the following statements are true (T) or false (F):
1. If a condition’s value is zero, then the condition is evaluated as false. T F

2. If the condition’s value is neither zero nor 1, then it is an invalid condition. T F

3. The expression a == 2 is used to determine if the value of a is equal
to 2, and the expression a = 2 assigns the value of 2 to the variable a. T F

4. The logical operators && and || have the same precedence level. T F

5. The reserved word else is always associated with the closest if
statement unless braces are used to define blocks of statements. T F

6. To debug a loop, we can use printf statements in the loop to
provide memory snapshots of variables. T F

Syntax Problems

Identify any syntax errors in the following statements (assume that the variables have all been
defined as integers):

7. for (b=1, b=<25, b++)

8. while (k=1)

9. switch (sqrt(x))

{
case 1:

printf("Too low. \n");
break;

case 2:
printf("Correct range. \n");
break;

case 3:
printf("Too high. \n");
break;

}

Multiple Choice Problems

Circle the letter for the best answer to complete each statement or for the correct answer to
each question.

10. Consider the following statement:

int i=100, j=0;

Which of the following statements are true?
(a) i<3
(b) !(j<1)
(c) (i>0) || (j>50)
(d) (j<i) && (i<=10)

Problems 141

11. If a1 is true and a2 is false, then which of the following expressions are true?
(a) a1 && a2
(b) a1 || a2
(c) !(a1 || a2)
(d) !a1 && a2

12. Which of the following are unary operators?
(a) !
(b) ||
(c) &&

13. The expression (!((3-4%3) < 5 && (6/4 >3))) is
(a) true.
(b) false.
(c) invalid.
(d) none of the above.

Problems 14–16 refer to the following statements:

int sum=0, count;
...
for (count=0; count<=4; count++)

sum += count;
printf("sum= %i \n",sum);

14. What would you find on the screen?
(a) sum = 1 (b) sum = 6
(c) sum = 10 (d) an error message

15. What is the value of count after execution of the for loop?
(a) 0 (b) 4
(c) 5 (d) an unpredictable integer

16. How many times are the statements inside the loop executed?
(a) 0 (b) 4
(c) 5 (d) 6

Memory Snapshot Problems

Give the corresponding snapshots of memory after the following set of statements is executed.

17. int a = 750;
...
if (a>0)

if (a >= 1000)
a = 0;

else
if (a < 500)

a *= 2;
else

a *= 10;
else

a += 3;

3

142 Chapter 3 Control Structures and Data Files

PRPROGRAMMING PROGRAMMING PROBLEMSOBLEMS

Unit Conversions. The following problems generate tables of unit conversions. Include a
table heading and column headings for the tables. Choose the number of decimal places based
on the values to be printed.

18. Generate a table of conversions from radians to degrees. Start the radian column at 0.0,
and increment by until the radian amount is

19. Generate a table of conversions from degrees to radians. The first line should contain the
value for 0° and the last line should contain the value for 360°. Allow the user to enter the
increment to use between lines in the table.

20. Generate a table of conversions from inches to centimeters. Start the inches column at 0.0
and increment by 0.5 in. The last line should contain the value 20.0 in. (Recall that

)

21. Generate a table of conversions from miles per hour to feet per second. Start the mph col-
umn at 0, and increment by 5 mph. The last line should contain the value 65 mph. (Recall
that)

22. Generate a table of conversions from feet per second to miles per hour. Start the ft/s col-
umn at 0 and increment by 5 ft/s. The last line should contain the value 100 ft/s. (Recall
that)

Currency Conversions. The following problems generate tables of currency conversions.
Use title and column headings. Assume the following conversion rates:

(£) (UK)

23. Generate a table of conversions from Euros to dollars. Start the Euros column at 5 Euros
and increment by 5 Euros. Print 25 lines in the table.

24. Generate a table of conversions from pounds (£) to dollars. Start the pounds column at 1 £
and increment by 2 £. Print 30 lines in the table.

25. Generate a table of conversions from yen to pounds. Start the yen column at 100 Y and
print 25 lines, with the final line containing the value 10,000 Y.

26. Generate a table of conversions from dollars to Euros, yen, and pounds. Start the column
with $1 and increment by $1. Print 50 lines in the table.

1 dollar 1$2 = 0.632293 pounds

1 yen 1Y2 = $0.013005

1 dollar 1$2 = 0.737938 Euro 1Europe2

1 mi = 5280 ft.

1 mi = 5280 ft.

1 in = 2.54 cm.

2p.p/10,

Problems 143

Temperature Conversions. The following problems generate temperature-conversion ta-
bles. Use the following equations that give relationships between temperatures in degrees
Fahrenheit degrees Celsius degrees Kelvin and degrees Rankin

27. Write a program to generate a table of conversions from Fahrenheit to Celsius for values
from 0°F to 100°F. Print a line in the table for each 5° change. Use a while loop in your
solution.

28. Write a program to generate a table of conversions from Fahrenheit to Kelvin for values
from 0°F to 200°F. Allow the user to enter the increment in degrees Fahrenheit between
lines. Use a do while loop in your solution.

29. Write a program to generate a table of conversions from Celsius to Rankin. Allow the
user to enter the starting temperature and increment between lines. Print 25 lines in the
table. Use a for loop in your solution.

Sounding Rocket Trajectory. Sounding rockets are used to probe different levels of the at-
mosphere to collect information (such as that used to monitor the levels of ozone in the atmos-
phere). In addition to carrying the scientific package for collecting data in the upper
atmosphere, the rocket also carries a telemetry system to transmit scientific data to a receiver at
the launch site. Performance measurements on the rocket itself are also transmitted, so they can
be monitored by range safety personnel and later analyzed by engineers. These performance
data include altitude, velocity, and acceleration data. Assume that this information is stored in
a file and that each line contains four values—time, altitude, velocity, and acceleration. As-
sume that the units are seconds, meters, meters/second, and respectively.

30. Assume that the file rocket1.txt contains an initial line that contains the number of
actual data lines that follows. Write a program that reads these data and determines the
time at which the rocket begins falling back to earth. (Hint: Determine the time at which
the altitude begins to decrease.)

31. The number of stages in the rocket can be determined by the number of times that the ve-
locity increases to some peak and then begins decreasing. Write a program that reads these
data and determines the number of stages on the rocket. Use the data file rocket2.txt.
It contains a trailer line with the value for all four values.

32. Modify the program in Problem 31 so that it prints the times that correspond to the firing
of each stage. Assume that the firing corresponds to the point at which the velocity begins
to increase.

33. After each stage of the rocket is fired, the acceleration will initially increase and then de-
crease to which is the downward acceleration due to gravity. Find the time pe-
riods of the rocket flight during which the acceleration is due only to gravity. Allow the
acceleration to range up to 65% of the theoretical value for these time periods. Use the
data file rocket3.txt, which does not contain a header line or a trailer line.

-9.8 m/s2,

-99

meters/second2,

TR = 19/52TK
TF = 19/52TC + 32° F

TF = TR - 459.67° R

1TR2:1TK2,1TC2,1TF2,

3

144 Chapter 3 Control Structures and Data Files

Suture Packaging. Sutures are strands or fibers used to sew living tissue together after an in-
jury or an operation. Packages of sutures must be sealed carefully before they are shipped to
hospitals so that contaminants cannot enter the packages. The object that seals the package is
referred to as a sealing die. Generally, sealing dies are heated with an electric heater. For the
sealing process to be a success, the sealing die is maintained at an established temperature and
must contact the package with a predetermined pressure for an established time period. The
time period in which the sealing die contacts the package is called the dwell time. Assume
that the acceptable range of parameters for an acceptable seal are the following:

34. A data file named suture1.txt contains information on batches of sutures that have been
rejected during a one-week period. Each line in the data file contains the batch number,
temperature, pressure, and dwell time for a rejected batch. The quality control engineer
must analyze this information, and needs a report that computes the percent of the batch-
es rejected due to temperature, the percent rejected due to pressure, and the percent re-
jected due to dwell time. It is possible that a specific batch may have been rejected for
more than one reason, and it should be counted in all applicable totals. Write a program
to compute and print these three percentages.

35. Modify the program developed in Problem 34 such that it also prints the number of
batches in each rejection category and the total number of batches rejected. (Remember
that a rejected batch should appear only once in the total, but could appear in more that
one rejection category.)

36. Write a program to read the data file suture1.txt and make sure that the information
relates only to batches that should have been rejected. If any batch should not be in the
data file, print an appropriate message with the batch information.

Timber Regrowth. One problem in timber management is to determine how much of an
area to leave uncut so that the harvested area is reforested in a certain period of time. It is as-
sumed that reforestation takes place at a known rate per year, depending on climate and soil
conditions. A reforestation equation expresses this growth as a function of the amount of tim-
ber standing and the reforestation rate. For example, if 100 acres are left standing after har-
vesting and the reforestation rate is 0.05, then or 105 acres, are forested at
the end of the first year. At the end of the second year, the number of acres forested is

or 110.25 acres.

37. Assume that the area has a total of 14,000 acres, with 2500 acres uncut and a reforesta-
tion rate of 0.02. Print a table showing the number of acres forested at the end of each
year, for a total of 20 years.

38. Modify the program developed in Problem 37 so that the user can enter the number of
years to be used for the table.

105 + (0.05 # 105),

100 + (0.05 # 100),

Temperature: 150–170°C,

Pressure: 60–70 psi,

Dwell time: 2–2.5 s.

Problems 145

39. Modify the program developed in Problem 37 so that the user can enter a number of acres
and the program will determine how many years are required for the number of acres to
be completely reforested.

Critical Path Analysis. A critical path analysis is a technique used to determine the time
schedule for a project. This information is important in the planning stages before a project is
begun, and it is also useful to evaluate the progress of a project that is partially completed.
One method for this analysis starts by dividing a project into sequential events and then di-
viding each event into various tasks. Although one event must be completed before the next
one is started, various tasks within an event can occur simultaneously. The time it takes to
complete an event, therefore, depends on the number of days required to finish its longest
task. Similarly, the total time it takes to finish a project is the sum of time it takes to finish
each event.

Assume that the critical path information for a major construction project has been
stored in a data file. Each line of the data file contains an event number, a task number, and the
number of days required to complete the task. The data have been stored such that all the task
data for the first event are followed by all the task data for the second event, and so on. A typ-
ical set of data is shown in the following table.

Event Task Number of Days

1 15 3
1 27 6
1 36 4
2 15 5
3 18 4
3 26 1
4 15 2
4 26 7
4 27 7
5 16 4

40. Write a program to read the critical path information and to print a project completion
timetable that lists each event number, the maximum number of days for a task within the
event, and the total number of days for the project completion.

41. Write a program to read the critical path information and to print a report that lists the
event number and task number for all tasks requiring more than five days.

42. Write a program to read the critical path information and to print a report that lists the
number of each event and a count of the number of tasks within the event.

Weather Balloons. Weather balloons are used to gather temperature and pressure data at var-
ious altitudes in the atmosphere. The balloon rises because the density of the helium inside
the balloon is less than the density of the surrounding air outside the balloon. As the balloon
rises, the surrounding air becomes less dense, and thus the balloon’s ascent slows until it

3

146 Chapter 3 Control Structures and Data Files

reaches a point of equilibrium. During the day, sunlight warms the helium trapped inside the
balloon, which causes the helium to expand and become less dense; thus, the balloon will rise
higher. During the night, however, the helium in the balloon cools and becomes more dense;
thus, the balloon will descend to a lower altitude. The next day, the sun heats the helium again
and the balloon rises. Over time, this process generates a set of altitude measurements that can
be approximated with a polynomial equation. Assume that the following polynomial repre-
sents the altitude or height in meters during the first 48 hours following the launch of a weath-
er balloon:

where the units of t are hours. The corresponding polynomial model for the velocity in meters
per hour of the weather balloon is

Figure 3.16 contains a plot of the altitude and velocity of the balloon for a period of 48 hours.
From the plots, we can see the periods during which the balloon rises or falls.

v1t2 = -0.48t 3 + 36t 2 - 760t + 4100.

alt1t2 = –0.12t4 + 12t3 - 380t2 + 4100t + 220,

0 5 10 15 20 25 30 35 40 45 50
�1

�0.5

0

0.5

1

1.5

Time, hr

V
el

oc
it

y,
 m

et
er

s/
se

c

Balloon Velocity

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2
� 104

Time, hr

A
lt

it
ud

e,
 m

et
er

s

Balloon Altitude

Figure 3.16 Velocity and altitude data for a weather balloon.

Problems 147

43. Write a program that will print a table of the altitude and the velocity for this weather
balloon using units of meters and meters per second. Let the user enter the start time, the
increment in time between lines of the table, and the ending time, where all the time val-
ues must be less than 48 hours. Use the program to generate a table showing the weather
balloon information every 10 minutes over a 2-hour period, starting 4 hours after the bal-
loon was launched.

44. Modify the program in Problem 43 so that it also prints the peak altitude and its corre-
sponding time.

45. Modify the program in Problem 43 so that it will check to be sure that the final time is
greater than the initial time. If it is not, ask the user to reenter the complete set of report
information.

46. The preceding equations are accurate only for the time from 0 to 48 hours, so modify the
program generated in Problem 43 so that it prints a message to the user that specifies an
upper bound of 48 hours. Also, check the user input to make sure that it stays within the
proper bounds. If there are errors, ask the user to reenter the complete set of report infor-
mation.

47. Modify the program in Problem 43 so that it stores the time, altitude, and velocity infor-
mation in a data file named balloon1.txt.

3

Crime Scene Investigation:
Iris Recognition
Iris recognition is based on matching patterns in the iris, the donut-shaped colored part of
the eye. Iris recognition is performed with an image collected by an IR (infrared) camera that
takes a picture of the eyeball. IR images are in black and white, so the color information is not
part of the image. However, IR images can capture the patterns in very dark brown eyes—
something not possible with visible light images. Iris recognition is one of the most accurate
biometrics because of the complex structure in the iris.The patterns, or striations, in the iris
are formed by tearing of the membrane when a baby is still in the womb.Your left iris is very
different from your right iris, and the irises of identical twins are different.The iris is also one
of the few biometrics that does not change as a person ages. For example, faces change over
time, and bones change as a child grows to be an adult. Iris recognition has been showcased
in a number of movies, but the technology is not always represented accurately. For example,
most iris recognition systems contain “liveness” testing.This means that they include tests to
determine if an eyeball is part of a living person.These liveness tests can include checks such
as of the jitter of the eye.All eyes have a very small of amount of jitter, and if an eye is en-
countered with none, then it would not be a live eyeball.Another liveness test can be done
by changing the light illumination of the collection system. Such a change should cause the
pupil to change size; if it does not, then, again, it is not a live eyeball.Thus, cutting out eyeballs
to spoof an iris recognition system—as was done in the movie Minority Report—would not
work in real life!

148

4
CHAPTER FOUR

CHAPTER OUTLINE

OBJECTIVES In this chapter, we develop problem solutions containing:

4.1 Modularity
4.2 Programmer-Defined Functions
4.3 Problem Solving Applied: Computing the Boundaries of the Iris
4.4 Problem Solving Applied: Iceberg Tracking
4.5 Random Numbers
4.6 Problem Solving Applied: Instrumentation Reliability
4.7 Numerical Technique: Roots of Polynomials*
4.8 Problem Solving Applied: System Stability*
4.9 Macros*
4.10 Recursion*

Summary, Key Terms, C Statement Summary,
Style Notes, Debugging Notes, Problems

■ modules from the Standard C
library,

■ programmer-defined modules,
■ functions that generate random

numbers,

■ macro functions,
■ recursive functions, and
■ techniques for finding real roots

to polynomials.

The execution of a C program begins with the statements in the main function. A program
may also contain other functions, and it may refer to functions in another file or in a library.
These functions, or modules, are sets of statements that typically perform an operation or
that compute a value. For example, the printf function prints a line of information on the
terminal screen, and the sqrt function computes the square root of a value.

To maintain simplicity and readability in longer and more complex problem solutions,
we develop programs that use a main function and additional functions, instead of using one
long main function. By separating a solution into a group of modules, each module is easier
to understand, thus adhering to the basic guidelines of structured programming presented in
Chapter 3.

MODULAR PROGRAMMING
WITH FUNCTIONS

4.1 Modularity

149
*Optional section.

Functions
Modules

150 Chapter 4 Modular Programming with Functions

Reusablity

Modularity

Abstraction

The process of developing a problem solution is often one of “divide and conquer,” as
was discussed in Chapter 3 when we first discussed the decomposition outline. The decompo-
sition outline is a set of sequentially executed steps that solves the problem, so it provides a
good starting point for selecting potential functions. In fact, it is not uncommon for each step
in the decomposition outline to correspond to one or more function references in the main
function.

Breaking a problem solution into a set of modules has many advantages. Because a mod-
ule has a specific purpose, it can be written and tested separately from the rest of the problem
solution. An individual module is smaller than the complete solution, so testing it is easier.
Also, once a module has been carefully tested, it can be used in new problem solutions with-
out being retested. For example, suppose that a module is developed to find the average of a
group of values. Once this module is written and tested, it can be used in other programs that
need to compute an average. This reusability is a very important issue in the development of
large software systems, because it can save development time. In fact, libraries of commonly
used modules (such as the Standard C library) are often available on computer systems.

The use of modules (called modularity) often reduces the overall length of a program
because many problem solutions include steps that are repeated several places in the program.
By incorporating these steps that are repeated in a function, the steps can be referenced with a
single statement each time that they are needed.

Several programmers can work on the same project if it is separated into modules, be-
cause the individual modules can be developed and tested independently of each other. This
allows the development schedule to be accelerated, because some of the work can be done in
parallel.

The use of modules that have been written to accomplish specific tasks supports the con-
cept of abstraction. The modules contain the details of the tasks, and we can reference the
modules without worrying about these details. The I/O diagrams that we use in developing a
problem solution are an example of abstraction—we specify the input information and the out-
put information without giving the details of how the output information is determined. In a
similar way, we can think of modules as “black boxes” that have a specified input and that
compute specified information; we can use these modules to help develop a solution. Thus, we
are able to operate at a higher level of abstraction to solve problems. For example, the Standard
C library contains functions that compute the logarithms of values. We can reference these
functions without being concerned about the specific details, such as whether the functions are
using infinite series approximations or lookup tables to compute the specified logarithms. By
using abstraction, we can reduce the software development time while we increase its quality.

To summarize, there are several advantages to using modules in a problem solution:

• A module can be written and tested separately from other parts of the solution, and
thus module development can be done in parallel for large projects.

• A module is a small part of the solution, and thus testing it separately is easier.

• Once a module is tested carefully, it does not need to be retested before it can be used
in new problem solutions.

• The use of modules usually reduces the length of a program, making it more readable.

• The use of modules promotes the concept of abstraction, which allows us to “hide” the
details in modules; this allows us to use modules in a functional sense without being
concerned about the specific details.

Additional benefits of modules will be pointed out as we progress through this chapter.

Section 4.1 Modularity 151

Structure charts

Module charts

Speech signal
analysis

(page 239)

std_dev ave_power ave_magn crossings

main

variance

mean

main

Equipment
reliability
(page 183)

rand_float

main

Gauss
elimination
(page 275)

back_
substituteeliminate

main

Roots of
polynomials
(page 193)

check_
roots

poly

Figure 4.1 Examples of structure charts.

Structure charts, or module charts, show the module structure of a program. The main
function references additional functions, which may also reference other functions them-
selves. Figure 4.1 contains some of the structure charts for the programs developed in the
Problem Solving Applied sections in this chapter and the next chapter. Note that a structure

152 Chapter 4 Modular Programming with Functions

chart does not indicate the sequence of steps that are contained in the decomposition outline.
The structure chart shows the separation of the program tasks into modules and indicates
which modules reference other modules. Therefore, both the decomposition outline and the
structure chart provide different but useful views of a problem solution. Also, note that the
structure chart does not contain the modules referenced from the Standard C library because
they are used so frequently and because they are an integral part of the C environment.

As we begin to develop solutions to more complicated problems, the programs become
longer. Therefore, three steps will help us debug longer programs. First, it may be helpful to
run a program using a different compiler because different compilers have different error mes-
sages; in fact, some compilers have extensive error messages, whereas others give very little
information about some errors. Another useful step in debugging a long program is to add
comment indicators (/* and */) around some sections of the code so that you can focus on
other parts of the program. Of course, you must be careful; do not comment out statements
that affect variables needed for the parts of the program that you want to test. Finally, test
complicated functions by themselves. This is usually done with a special program called a
driver, whose purpose is to provide a simple interface between you and the function that you
are testing. Typically, this program asks you to enter the parameters that you want passed to
the function, and then it prints the value returned by the function. The usefulness of a driver
program will become more apparent as we cover the next few sections.

Driver program

4.2 Programmer-Defined Functions

Invoked

Library function

The execution of a program always begins with the main function. Additional functions are
called, or invoked, when the program encounters function names. These additional functions
must be defined in the file containing the main function or in another available file or library
of files. (If the function is included in a system library file, such as the sqrt function, it is
often called a library function; other functions are usually called programmer-written or
programmer-defined functions.) After executing the statements in a function, the program
execution continues with the statement that called the function.

Function Example
The sinc(x) function, plotted in Figure 4.2, is commonly used in many engineering applica-
tions. The most common definition for sinc(x) is the following:

(The sinc(x) function is also occasionally defined to be sin(x)/x.) The values of this function
can be easily computed, except for sinc(0), which gives an indeterminant form of 0/0. In this
case, l’Hôpital’s theorem from calculus can be used to prove that

Assume that we want to develop a program that allows the user to enter interval limits, a
and b. The program should then compute and print 21 values of sinc(x) for values of x evenly
spaced between a and b, inclusively. Thus, the first value of x should be a. An increment
should then be added to obtain the next value of x, and so on, until the twenty-first value,
which should be b. Therefore, the increment in x is

x_increment =
interval width

20
=
b - a

20
.

sinc102 = 1.

=
sin1px2
px

.

f1x2 = sinc1x2

Programmer–
defined functions

Section 4.2 Programmer-Defined Functions 153

�6 �4 �2 0 2 4 6
�0.5

0

0.5

1

1.5
Sinc Function

x

Figure 4.2 Sinc function in [-20, 20].

Select values for a and b, and convince yourself that, with this increment and with a as the
first value, the twenty-first value will be b.

Because sinc(x) is not part of the mathematical functions provided by the Standard C li-
brary, we implement this problem solution in two ways. In one solution, we include the state-
ments to perform the computations of sinc(x) in the main function; in the other solution, we
write a programmer-defined function to compute sinc(x), and then reference the programmer-
defined function each time that the computations are needed. Both solutions are now presented
so that you can compare them.

Solution 1

/*––*/
/* Program chapter4_1 */
/* */
/* This program prints 21 values of the sinc */
/* function in the interval [a,b] using */
/* computations within the main function. */

#include <stdio.h>
#include <math.h>
#define PI 3.141593

int main(void)
{

/* Declare variables. */
int k;
double a, b, x_incr, new_x, sinc_x;

/* Get interval endpoints from the user. */
printf("Enter endpoints a and b (a<b): \n");
scanf("%lf %lf",&a,&b);
x_incr = (b - a)/20;

/* Compute and print table of sinc(x) values. */
printf("x and sinc(x) \n");

154 Chapter 4 Modular Programming with Functions

for (k=0; k<=20; k++)
{

new_x = a + k*x_incr;
if (fabs(new_x) < 0.0001)

sinc_x = 1.0;
else

sinc_x = sin(PI*new_x)/(PI*new_x);
printf("%f %f \n",new_x,sinc_x);

}

/* Exit program. */
return 0;

}
/*––*/

Solution 2

/*––*/
/* Program chapter4_2 */
/* */
/* This program prints 21 values of the sinc function */
/* using a programmer-defined function. */

#include <stdio.h>
#include <math.h>
#define PI 3.141593

int main(void)
{

/* Declare variables. */
int k;
double a, b, x_incr, new_x;
double sinc(double x);

/* Get interval endpoints from the user. */
printf("Enter endpoints a and b (a<b): \n");
scanf("%lf %lf",&a,&b);
x_incr = (b - a)/20;

/* Compute and print table of sinc(x) values. */
printf("x and sinc(x) \n");
for (k=0; k<=20; k++)
{

new_x = a + k*x_incr;
printf("%f %f \n",new_x,sinc(new_x));

}

/* Exit program. */
return 0;

}

Section 4.2 Programmer-Defined Functions 155

/*–––*/
/* This function evaluates the sinc function. */

double sinc(double x)
{

if (fabs(x) < 0.0001)
return 1.0;

else
return sin(PI*x)/(PI*x);

}
/*––*/

The following output represents an example interaction that could occur with either program:

Enter endpoints a and b (a<b):
-2 2
x and sinc(x)
-2.000000 0.000000
-1.800000 -0.103943
-1.600000 -0.189207
-1.400000 -0.216236
-1.200000 -0.155915
-1.000000 0.000000
-0.800000 0.233872
-0.600000 0.504551
-0.400000 0.756827
-0.200000 0.935489
0.000000 1.000000
0.200000 0.935489
0.400000 0.756827
0.600000 0.504551
0.800000 0.233872
1.000000 0.000000
1.200000 -0.155915
1.400000 -0.216236
1.600000 -0.189207
1.800000 -0.103943
2.000000 0.000000

Figure 4.3 contains plots of the 21 values computed for four different intervals [a, b].
The program computes only 21 values, so the resolution in the plots is affected by the
size of the interval—a smaller interval has better resolution than a larger interval. Note
that the main function of Solution 2 is easier to read because it is shorter than the main
function in the first solution. Now that you have an example of a program with a pro-
grammer-defined function, we present a more general discussion of the statements in a
function.

Function Definition
A function consists of a definition statement followed by declarations and statements. The
first part of the definition statement defines the type of value that is computed by the function
(double, in our example); if the function does not compute a value, the type is void. The
function name and parameter list follow the return_type. Thus, the general form of a function is

return_type function_name (parameter_declarations)
{

declarations;
statements;

}

The parameter declarations represent the information passed to the function; if there are no
input parameters (also called arguments), then the parameter declarations should be void.
Additional variables used by a function are defined in the declarations. The declarations and
the statements within a function are enclosed in braces. The function name should be selected
to help document the purpose of the function. Comments should also be included within the
function to further describe the purpose of the function and to document the steps. We also
use a comment line with dashes to separate a programmer-defined function from the main
function and from other programmer-defined functions.

156 Chapter 4 Modular Programming with Functions

Figure 4.3 Program output for four intervals.

�0.5

0

1

0.5

Interval [�5, 5]

�5 0 5
�0.5

0

1

0.5

Interval [�2, 2]

�2 �1 0 21

�0.5

0

1

0.5

Interval [0, 3]

0 21
x x

3
�0.5

0

1

0.5

Interval [�2, �1]

�2 �1.8 �1.6 �1�1.2�1.4

Section 4.2 Programmer-Defined Functions 157

All functions should include a return statement, which has the following general form:

return expression;

The expression specifies the value to be returned to the statement that referenced the function.
The expression type should match the return_type indicated in the function definition to avoid
potential errors. The cast operator (discussed in Chapter 2) can be used to explicitly specify
the type of the expression if necessary. A void function does not return a value, and thus has
this general definition statement:

void function_name(parameter declarations)

The return statement in a void function does not contain an expression and has this form:

return;

Functions can be defined before or after the main function. (Remember that a right brace
specifies the end of the main function.) However, one function must be completely defined
before another function begins; function definitions cannot be nested within each other. In our
programs, we include the main function first, and then additional functions are included in
the order in which they are referenced in the program.

We now look closer at the interaction between a statement that references a function and
the function itself.

Function Prototype
The main function presented in program chapter4_2 contained the following statement in
its declarations:

double sinc(double x);

This statement is a function prototype statement. It informs the compiler that the main func-
tion will reference a function named sinc, that the sinc function expects a double parame-
ter, and that the sinc function returns a double value. The identifier x is not being defined as
a variable; it is just used to indicate that a value is expected as an argument by the sinc func-
tion. In fact, it is valid to include only the argument types in the function prototype statement:

double sinc(double);

Both of these prototype statements give the same information to the compiler. We recom-
mend using parameter identifiers in prototype statements because the identifiers help docu-
ment the order and definition of the parameters.

A function prototype can be included with preprocessor directives, or, because a function
prototype is defining the type of value being returned by the function, it can also be included
with other variable declarations. For example, the declarations of program chapter4_2 are

/* Declare variables and function prototypes. */
int k;
double a, b, x_incr, new_x;
double sinc(double x);

Function prototype

158 Chapter 4 Modular Programming with Functions

Formal parameters

These statements could also have been written in the following form:

/* Declare variables and function prototypes. */
int k;
double a, b, x_incr, new_x, sinc(double x);

In our programs, we list function prototypes on separate declaration statements to make it eas-
ier to identify them.

Function prototype statements should be included for all functions referenced in a pro-
gram. Header files, such as stdio.h and math.h, contain the prototype statements for many
of the functions in the Standard C library; otherwise, we would need to include individual
prototype statements for functions such as printf and sqrt in our programs. If a programmer-
defined function references other programmer-defined functions, then it will also need addi-
tional prototype statements.

If a program references a large number of programmer-defined functions, it becomes
cumbersome to include all the function prototype statements. In these cases, a custom header
file can be defined that contains the function prototypes and any related symbolic constants. A
header file should have a file name that ends with a suffix of .h. The file is then referenced
with an include statement, using double quotes around the file name. In Chapter 5, we de-
velop a set of functions for computing common statistics from a set of values. If a header file
containing the corresponding function prototypes is named stat_lib.h, then the prototypes
are all included in a program with this statement:

#include "stat_lib.h"

Custom header files are often used to accompany routines that are shared by programmers.

Parameter List
The definition statement of a function defines the parameters that are required by the function;
these are called formal parameters. Any statement that references the function must include
values that correspond to the parameters; these are called actual parameters. For example,
consider the sinc function developed earlier in this section. The definition statement of this
function is

double sinc(double x)

and the statement from the main program that references the function is

printf("%f %f \n",new_x,sinc(new_x));

Thus, the variable x is the formal parameter, and the variable new_x is the actual parameter.
When the reference to the sinc function in the printf statement is executed, the value in the
actual parameter is copied to the formal parameter, and the steps in the sinc function are ex-
ecuted using the new value in x. The value returned by the sinc function is then printed. It is
important to note that the value in the formal parameter is not moved back to the actual pa-
rameter when the function is completed. We illustrate these steps with a memory snapshot
that shows the transfer of the value from the actual parameter to the formal parameter, assum-
ing that the value of new_x is 5.0:

Actual parameters

Section 4.2 Programmer-Defined Functions 159

After the value in the actual parameter is copied to the formal parameter, the steps in the sinc
function are executed. When debugging a function, it is a good idea to use printf statements
to provide a memory snapshot of the actual parameters before the function is referenced, as
well as a memory snapshot of the formal parameters at the beginning of the function.

Valid references to the sinc function can also include expressions or other function ref-
erences, as shown in these example references to the sinc function:

printf("%f \n",sinc(x+2.5));

scanf("%lf",&y);
printf("%f \n",sinc(y));

z = x*x + sinc(2*x);

w = sinc(fabs(y));

In all these example references, the formal parameter is still x, but the actual parameter is
x+2.5, or y, or 2*x, or fabs(y), depending on the reference selected.

If a function has more than one parameter, the formal parameters and the actual parame-
ters must match in number, type, and order. A mismatch between the number of formal pa-
rameters and actual parameters can be detected by the compiler using the function prototype
statement. If the type of an actual parameter is not the same as the corresponding formal pa-
rameter, then the value of the actual parameter will be converted to the appropriate type; this
conversion is also called coercion of arguments and may or may not cause errors. The coer-
cion occurs according to the discussion given in Chapter 2, which discussed moving values
stored as one type to a variable with a different type. Converting values to a higher type (such
as from float to double) generally works correctly; converting values to a lower type (such
as from float to int) often introduces errors.

To illustrate the coercion of arguments, consider the following function that returns the
maximum of two values:

/*––*/
/* This function returns the maximum of two */
/* integer values. */

int max(int a,int b)
{

if (a > b)
return a;

else
return b;

}
/*––*/

Coercion of
arguments

5.0 5.0

actual parameter formal parameter

new_x x

160 Chapter 4 Modular Programming with Functions

Assume that a reference to this function is max(x_sum,y_sum) and that x_sum and y_sum
are integers containing the values 3 and 8, respectively. Then, the following memory snapshot
shows the transfer of values from the actual parameters to the formal parameters when the ref-
erence max(x_sum,y_sum) is made:

The statements in the function will then return the value 8 as the value of the reference
max(x_sum,y_sum).

Now suppose that a reference to the function max is made using float variables t_1 and
t_2. If t_1 and t_2 contain the values 2.8 and 4.6, then the following transfer of parameters
occurs when the reference max(t_1,t_2) is executed:

Call-by-value
Reference-by value

Call-by-reference
Reference-by-
address

The statements in the function will then return the value 4 to the statement containing the ref-
erence max(t_1,t_2). Obviously, the wrong value has been returned by the function. How-
ever, the problem is not in the function; the problem is that the function was referenced with
the wrong types of actual parameters.

Additional errors can be introduced if the actual parameters are out of order. These errors
may not be detected by the compiler, and they can be difficult to locate; therefore, be espe-
cially careful that the order of the formal parameters and the actual parameters match.

The function reference in the sinc example is a call-by-value reference, or a reference-
by value. When a function reference is made, the value of the actual parameter is passed to
the function and is used as the value of the corresponding formal parameter. In general, a C
function cannot change the value of an actual parameter. Exceptions occur when the actual
parameters are arrays (discussed in Chapter 5) or are pointers (discussed in Chapter 6); these
exceptions generate a call-by-reference or a reference-by-address, which will be discussed
in these later chapters.

Storage Class and Scope
In the sample programs presented thus far, we have declared variables within a main function
and within programmer-defined functions. It is also valid to define a variable before the main
function. Therefore, it is important to be able to determine the scope of a function or a vari-
able, where scope refers to the portion of the program in which it is valid to reference the
function or variable; scope is also sometimes defined in terms of the portion of the program in

3 3

8 8

actual parameters formal parameters

x_sum a

y_sum b

Scope

2.8 2

4.6 4

actual parameters formal parameters

t_1 a

t_2 b

Section 4.2 Programmer-Defined Functions 161

Consider the following function:

/*––*/
/* This function counts positive parameters. */

int positive(double a,double b,double c)
{

int count;

count = 0;
if (a >= 0)

count++;
if (b >= 0)

count++;
if (c >= 0)

count++;
return count;

}
/*––*/

Assume that the function is referenced with the following statements:

x = 25;
total = positive(x,sqrt(x),x-30);

1. Show the memory snapshot of the actual parameters and the formal parameters.

2. What is the new value of total?

PRACTICE!PRACTICE!

Local variables

Global variables

Automatic storage
class

which the function or variable is visible or accessible. Because the scope of a variable is di-
rectly related to its storage class, we also discuss the four storage classes—automatic, exter-
nal, static, and register.

First, we define the difference between local variables and global variables. Local vari-
ables are defined within a function, and thus include the formal parameters and any other
variables declared in the function. A local variable can be accessed only in the function that
defines it. A local variable has a value when its function is being executed, but its value is not
retained when the function is completed. Global variables are defined outside the main func-
tion or other programmer-defined functions. The definition of a global variable is outside of
all functions, so it can be accessed by any function within the program. However, to reference
a global variable, some compilers require that the declaration within the function include the
keyword extern before the type designation to tell the computer to look outside the function
for the variable. The automatic storage class is used to represent local variables; this is the
default storage class, but it can also be specified with the keyword auto before the type des-
ignation. The external storage class is used to represent global variables; the extern desig-
nation must be used within functions, and it is optional in the original definition of a global
variable.

External storage
class

Storage class

Consider a program that contains the following statements:

#include <stdio.h>
int count=0;
...
int main(void)
{

int x, y, z;
...

}
int calc(int a,int b)
{

int x;
extern int count;
...

}
void check(int sum)
{

extern int count;
...

}

The variable count is a global variable that can be referenced by the functions calc and
check. The variables x, y, and z are local variables that can be referenced only in the main pro-
gram; similarly, the variables a, b, and x are local variables that can be referenced only in the
function calc, and sum is a local variable that can be referenced only in the function check.
Note that there are two local variables x—these are two different variables with different scopes.

The memory assigned to an external variable is retained for the duration of the program.
Although an external variable can be referenced from a function using the proper declaration,
using global variables is generally discouraged. In general, parameters are preferred for trans-
ferring information to a function because the parameter is evident in the function prototype,
whereas the external variable is not visible in the function prototype. The use of global vari-
ables should be avoided whenever possible.

Function names also have an external storage class, and thus can be referenced from other
functions. Function prototypes included outside of any function are also external references,
and thus are available to all other functions in the program; this explains why we do not need
to include math.h in every function that references a mathematical function. However, the pa-
rameter variables in the function prototype are known only in the function prototype statement.

The static storage class is used to specify that the memory for a local variable should be
retained during the entire program execution. Therefore, if a local variable in a function is
given a static storage class assignment by using the keyword static before its type specifi-
cation, the variable will not lose its value when the program exits the function in which it is
defined. A static variable could be used to count the number of times that a function was
invoked, because the value of the count would be preserved from one function call to another.

The keyword register is used before the type designation of a variable to specify that
it should be placed in a register, as opposed to a memory location. Accessing registers is
faster than accessing memory, so this storage class is used for frequently accessed values. Be-
cause the number of registers available is system dependent, and because the time required for
a memory access is steadily being reduced, this type of storage class is seldom used.

162 Chapter 4 Modular Programming with Functions

Static

Register

Section 4.3 Problem Solving Applied: Computing the Boundaries of the Iris 163

Using the program on page 183 in Section 4.6, give the following information (you do not
need to understand the program to determine the requested information):

1. List the external identifiers.

2. List the local variables and identify their scope.

Using the program on page 193 in Section 4.8, give the following information (you do not
need to understand the program to determine the requested information):

3. List the external identifiers.

4. List the local variables and identify their scope.

PRACTICE!PRACTICE!

4.3 Problem Solving Applied: Computing the Boundaries of the Iris

In this section, we use the new statements presented in this chapter to solve a problem related
to iris recognition. Most techniques for performing iris recognition first start with a segmen-
tation operation. This operation identifies the iris/pupil boundary and the boundary between
the iris and the sclera (or the white of the eye), as shown in Figure 4.4. This is an easy step
for us to accomplish visually, but segmentation is a very complex process to carry out auto-
matically with a computer algorithm. For some analysis, a manual segmentation program is
used in which a user is presented with an image of an eye on the screen, and the user then
clicks on three points on the pupil boundary and three points on the boundary between the iris
and the sclera. With three points, the computer can compute the equation of the circle. Hence,
we can then compute the equations of the circles that form the boundaries of the iris. With this
information, we can extract the iris and continue the process of iris recognition.

The problem that we will solve in this section is the one of taking three points on a plane and
then computing the equation for the circle through these points. We will also compute the loca-
tion of the center of the circle. There are a number of techniques for finding the equation of a cir-
cle from three points on the circle. The one that we use is based on finding the equation of a line
through points and , and the equation of the line through points and . If we assume thatP3P2P2P1

Figure 4.4 Image of an eye with iris boundaries identified.

164 Chapter 4 Modular Programming with Functions

these two lines are not parallel, then the lines perpendicular to these two line segment (and
), that also go through the midpoints of the line segments, intersect in the center of the circle.

(See Figure 4.5). We are not going to go through the details of the derivation of these equations,
but a number of derivations are available on the Internet. We now present the equations for com-
puting the equations of the lines and and for computing the equations of the lines per-
pendicular to these line segments through their midpoints. We then present the equation for
finding the intersection point of these perpendicular lines; this point is also the center of the cir-
cle represented by the three original points. Once we have the center point, we can make use of
the points on the circle to compute the radius. Here are the equations needed for this function,
assuming that the coordinates of , , and are (), (), and (), respectively:

• Slope of line :

(4.1)

• Slope of line :

(4.2)

• Equation of line :

(4.3)

• Equation of line :

(4.4)

• Equation of line perpendicular to line that bisects the line segment:

(4.5)

• Equation of line perpendicular to line that bisects the line segment:

(4.6)yp23 = -
1
m23
ax -

x2 + x3

2
b + a y2 + y3

2
b

P2P3

yp12 = -
1
m12
ax -

x1 + x2

2
b + a y1 + y2

2
b

P1P2

y23 = m23 (x - x2) + y2

P2P3

y12 = m12(x - x1) + y1

P1P2

m23 =
y3 - y2
x3 - x2

P2P3

m12 =
y2 - y

1

x2 - x1

P1P2

x3, y3x2, y2x1, y1P3P2P1

P2P3P1P2

P2P3

P1P2

P3

P2

P1

x

y

Figure 4.5 Relationship between
points on a circle and the center.

Section 4.3 Problem Solving Applied: Computing the Boundaries of the Iris 165

• Equation for x coordinate of the center of the circle:

(4.7)

• Equation for y coordinate of the center of the circle:

(4.8)

• Equation for radius of the circle:

(4.9)

We are now ready to develop the solution in C.

r = 2(x1 - xc)2 + (y1 - yc)2

yc = -
1
m12

 axc -
x1 + x2

2
b + a y1 + y2

2
b

xc =
m12m23 (y1 - y3) + m23 (x1 + x2) - m12 (x2 + x3)

2(m23 - m12)

1. PROBLEM STATEMENT

Given three points in a plane, determine the coordinates of the center of the circle and the
radius of the circle that contains the three points.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the inputs to the program are the x, y coordinates of
three points. The outputs are the coordinates of the center and the radius of the circle.

3. HAND EXAMPLE

Using the equations provided earlier in this section, we now compute the center of the
corresponding circle and its radius. Assume that we start with the following three points
on a circle:

Using equations (4.1) and (4.2), we can compute the slopes m12 and m23 for the lines P1P2

and P2P3:

 m23 = -2/2 = -1

 m12 = 2/2 = 1

P3 = (3, -1)

P2 = (1, 1)

P1 = (-1, -1)

point 2: x2, y2

point 3: x3, y3

point 1: x1, y1
circle center: xc, yc

circle radius

166 Chapter 4 Modular Programming with Functions

Using equations (4.3) and (4.4), we can compute the equations for the line P1P2 and
P2P3:

Using Equations (4.5) and (4.6), we can compute the equations for the lines perpendicular to
P1P2 and P2P3 that bisect the line segment:

Using equations (4.7) and (4.8), we can compute the coordinates of the center point:

Using equation (4.9), we can compute the radius of the circle:

Thus, the equation for the circle is:

(Recall that the equation for a circle with center coordinates of (xc, yc) and radius r is:

where the center coordinates are (xc, yc) and the radius is r.)
When we substitute the coordinates for points P1, P2, and P3 in this equation, we confirm

that these points are on the circle.

4. ALGORITHM DEVELOPMENT

Because there are several equations to evaluate to compute the coordinates of the cen-
ter of the circle, this is a good candidate for a function. If we look back at the hand ex-
ample, we see that most of the equations are computing intermediate values needed for
the computation of the x coordinate of the center of the circle. Let’s put these computa-
tions into a function, and then the main program will be shorter and thus easier to un-
derstand. We now develop the decomposition outline for the main program and for the
function.

Decomposition Outline of the main program:

1. Read the coordinates of the three points.

2. Use a function to determine the x coordinate of the center of the circle.

3. Compute the y coordinate of the center of the circle.

4. Compute the radius of the circle.

5. Print the coordinates of the center of the circle and the radius.

(x - xc)2 + (y - yc)2 = r2

(x - 1)2 + (y + 1)2 = 4

r = 2

 yc = -1

 xc = 1

 yp23 = x - 2

 yp12 = -x

 y23 = -x + 2

 y12 = x

Section 4.3 Problem Solving Applied: Computing the Boundaries of the Iris 167

Decomposition Outline of the function (assuming the coordinates of the three points are
input parameters to the function and the output of the function is the x coordinate of the cen-
ter of the circle):

1. Compute the equations for the two lines connecting the three points.

2. Compute the equations for the two lines perpendicular to the lines connecting the three
points that also bisect the line segments.

3. Compute the x coordinate of the center of the circle.

Both the main program and the function have simple structures, so we can convert the
decomposition directly into C.

/*–––*/
/* Program chapter4_3 */
/* */
/* This program reads the coordinates of three points and then */
/* references a function to determine the coordinates of the */
/* center of a circle through the points and the radius of the */
/* circle. */

#include <stdio.h>
#include <math.h>

int main(void)
{

/* Declare variables. */
double x1, x2, x3, y1, y2, y3, m12, xc, yc, r;
double circle_x_coord(double x1,double y1,double x2,double y2,

double x3,double y3);

/* Get user input from the keyboard. */
printf("Enter x and y coordinates for first point: \n");
scanf("%lf %lf",&x1,&y1);
printf("Enter x and y coordinates for second point: \n");
scanf("%lf %lf",&x2,&y2);
printf("Enter x and y coordinates for third point: \n");
scanf("%lf %lf",&x3,&y3);

/* Use a function to determine the x coordinate of the center. */
xc = circle_x_coord(x1,y1,x2,y2,x3,y3);

/* Compute the y coordinate of the center. */
m12 = (y2 – y1)/(x2 – x1);
yc = -(1/m12)*(xc – (x1 + x2)/2) + (y1 + y2)/2);

/* Compute the radius of the circle. */
r = sqrt((x1 - xc)*(x1 - xc) + (y1 – yc)*(y1 – yc));

/* Print circle parameters. */
printf("\nCenter of Circle: (%.1f,%.1f) \n",xc,yc);
printf("Radius of Circle: %.1f \n",r);

168 Chapter 4 Modular Programming with Functions

/* Exit program. */
return 0;

}
/*---*/
/* This function computes the x coordinate of the center of a */
/* circle given three points on the circle. */

double circle_x_coord(double x1,double y1,double x2,double y2,
double x3,double y3)

(
/* Declare variables. */
double m12, m23, xc_num, xc_den, xc;
/* Compute slopes of the two lines between points. */
m12 = (y2 – y1)/(x2 – x1);
m23 = (y3 – y2)/(x3 – x2);

/* Compute the x coordinate of the center of the circle. */
xc_num = m12*m23*(y1 – y3) + m23*(x1 + x2) – m12*(x2 + x3);
xc_den = 2*(m23 – m12);
xc = xc_num/xc_den;

/* Return the x coordinate of the center. */
return xc;

)
/*–––---–––––––––*/

5. TESTING

We first test the program with the data from the hand example. This generates the following
interaction:

Enter x and y coordinates for first point:
-1 -1
Enter x and y coordinates for second point:
1 1
Enter x and y coordinates for third point:
3 -1
Center of Circle: (1.0,-1.0)
Radius of Circle: 2.0

The answer matches the hand example, so we can then test the program with additional
points.

Section 4.4 Problem Solving Applied: Iceberg Tracking 169

These problems relate to the program developed in this section for finding the center and the
radius of a circle given three points on the circle.

1. Modify the program so that it also prints the equation of the circle.

2. If either line is vertical, then the corresponding slope is infinite. Determine if this
occurs, and print an error message before exiting the program.

3. If line P1P2 is vertical, exchange the values of P1 with P3. Then check to see if this now
yields two non-vertical lines. If so, continue processing.

4. If line P2P3 is vertical, exchange the values of P2 with P1. Then check to see if this now
yields two non-vertical lines. If so, continue processing.

5. Combine the solutions to problems 3 and 4 above. This solution will now work properly
unless all three points are vertical, but that indicates an error in the points, because they
cannot all three be on the same circle.

MODIFY!MODIFY!

4.4 Problem Solving Applied: Iceberg Tracking

Large icebergs are tracked by satellites, and their location is specified using latitude and lon-
gitude. It is important to be able to determine the distance between the iceberg and nearby
ships. In this section, we will develop a program that determines the distance between two ob-
jects when we are given their latitudes and longitudes. Before developing the program, we
need to briefly discuss latitudes and longitudes and develop the equation that allows us to de-
termine the distance between two points using latitudes and longitudes.

Assume that the earth is represented by a sphere with a radius of 3960 miles. We can then
define a position on the earth’s surface in terms of a grid determined by a latitude and a longi-
tude measurement. To understand these measurements, we first need to review the definition
of a great circle—a circle formed by the intersection of a sphere and a plane that passes
through the center of the sphere. If the plane does not pass through the center of the sphere, it
will be a circle with a smaller circumference and hence is not a great circle. The prime
meridian is a north–south great circle that passes through Greenwich, just outside London,
and through the North Pole. The equator is an east–west great circle that is equidistant from
the North Pole and South Pole. Thus, we can define a rectangular coordinate system such that
the origin is the center of the earth, the z-axis goes from the center of the earth through the
North Pole, and the x-axis goes from the center of the earth through the point where the prime
meridian intersects the equator (see Figure 4.6). The latitude is an angular distance, is meas-
ured in degrees, and extends northward or southward from the equator (as in 25°N); and the
longitude is an angular distance, is measured in degrees, and extends westward or eastward
from the prime meridian (as in 120° W).

The Global Positioning System (GPS), originally developed for military use, uses 24
satellites circling the earth to pinpoint a location on the surface. Each satellite broadcasts a
coded radio signal indicating the time and the satellite’s exact position 11,000 miles above the
earth. The satellites are equipped with atomic clocks that are accurate to within one second
every 70,000 years. A GPS receiver picks up the satellite signal and measures the time be-
tween the signal’s transmission and its reception. By comparing signals from at least three
satellites, the receiver can determine the latitude, longitude, and altitude of its position.

Great circle

Prime meridian

Equator

Latitude

Longitude

Global Positioning
System

170 Chapter 4 Modular Programming with Functions

Figure 4.7 Spherical Coordinate System.

z

y

North
Pole

Greenwich

Equator

x

Figure 4.6 Rectangular Coordinate
System for the Earth.

The shortest distance between two points on a sphere is shown to be on the arc of the great
circle containing them. If we know the angle between vectors from the center of the earth to the
two points defining the arc, we can then estimate the distance as a proportion of the earth’s cir-
cumference. To illustrate, suppose that the angle between two vectors from the center of the earth
is 45°. Then the angle is 45/360, or 1/8 of a complete revolution. Hence, the distance between the
two points is 1/8 of the earth’s circumference (times twice the radius) or 3,110 miles.

The best way to compute the shortest distance between two points that are specified in
latitude and longitude is through a series of coordinate transformations. Recall that the spherical
coordinates of a point P in a rectangular coordinate system represent the length (rho)
of the vector connecting the point to the origin, the angle (phi) between the positive z-axis
and the vector, and the angle (theta) between the x-axis and the projection of the vector in
the xy-plane (see Figure 4.7). We then convert the spherical coordinates to rectangular coordi-
nates (x, y, z). Finally, a simple trigonometric equation computes the angle between two points (or
vectors) in rectangular coordinates. Once we know the angle between the two points, we can then
use the technique described in the previous paragraph to find the distance between the two points.

We need to use equations that relate latitude and longitude to spherical coordinates, that
convert spherical coordinates to rectangular coordinates, and that compute the angle between
two vectors. Figure 4.7 is useful in relating the notation to the following equations:

u

f

r1r, f, u2

p

z

North pole

Greenwich,
England

y

P

x

a

r

u

f

b

Section 4.4 Problem Solving Applied: Iceberg Tracking 171

• Latitude/longitude and spherical coordinates:

• Spherical and rectangular coordinates:

• Angle between two vectors a and b:

where is the dot product of a and b and is the length of the vector a.

• Dot product of two vectors and in rectangular coordinates:

• Length of a vector in rectangular coordinates:

• Great circle distance:

Pay close attention to the angle units in these equations. Unless otherwise specified, it is as-
sumed that the angles are measured in radians. (Recall that an angle in degrees can be con-
verted to radians by multiplying it by the factor)

Write a program that asks the user to enter the latitude and longitude coordinates for two
points in the Northern Hemisphere. Then compute and print the shortest distance between the
two points.

p/180.

= g # 3960.

 distance = 1g/12p221earth’s circumference2 = 1g/12p221p # 2 radius2

ƒa ƒ = 21xa2 + ya2 + za22
1xa, ya, za2

a # b = xaxb + yayb + zazb

1xb, yb, zb21xa, ya, za2
ƒa ƒa # b

cos g = a # b/1 ƒa ƒ ƒb ƒ2
g

x = r sin f cos u, y = r sin f sin u, z = r cos u

a = 90° - f, b = 360° - u

1. PROBLEM STATEMENT

Compute the shortest distance between two points in the Northern Hemisphere.

2. INPUT/OUTPUT DESCRIPTION

For this program, the input is the latitude and longitude of two points in the Northern
Hemisphere. The output is the shortest distance between the points, as shown in the fol-
lowing diagram:

longitude 1

latitude 2

longitude 2

latitude 1

great circle distance
between the points

3. HAND EXAMPLE

For a hand example, we will compute the great circle distance between New York and Lon-
don. The latitude and longitude of New York is 40.75° N and 74° W, respectively, and the
latitude and longitude of London is 51.5° N and 0° W, respectively.

The spherical coordinates for New York are

The rectangular coordinates for New York (to two decimal places) are

Similarly, the rectangular coordinates for London can be computed to be

The cosine of the angle between the two vectors is equal to the dot product of the two vectors
divided by the product of their lengths, or 0.6408. Using an inverse cosine function, can be
determined to be 0.875 radians. Finally, the distance between New York and London is

4. ALGORITHM DEVELOPMENT

To develop the algorithm, we must first decompose the problem solution into a set of se-
quentially executed steps, as follows:

Decomposition Outline

1. Read latitude and longitude for the two locations.

2. Compute the distance between the two locations.

3. Print the distance computed.

After completing the hand example, converting the decomposition to pseudocode is
straightforward. Since other programs may also need to determine the distance between two
points that are specified with latitude and longitude, we will develop the computations using
a function.

Refinement in Pseudocode
main: read latitude and longitude for the two points

compute great circle distance using a function, gc_distance
print distance

gc_distance(lat1N,long1W,lat2N,long2W):
convert latitude and longitude to spherical coordinates
convert spherical coordinates to rectangular coordinates
compute the angle between the two vectors
compute the great circle distance for the arc between the two vectors

0.875 # 3960 = 3466 miles.

g

x = 2465.16, y = 0, z = 3099.13.

 z = r cos u = 2584.93.

 y = r sin f sin u = –2883.74

 x = r sin f cos u = 826.90

 r = 3960.

 u = 1360 - 742° = 2861p/1802 = 4.9916

 f = 190 - 40.752° = 49.251p/1802 = 0.8596

172 Chapter 4 Modular Programming with Functions

The steps in the pseudocode are now detailed enough to convert into C:

/*––-*/
/* Program chapter4_4 */
/* */
/* This program determines the distance between two points */
/* that are specified with latitude and longitude values */
/* that are in the Northern Hemisphere. */

#include <stdio.h>
#include <math.h>
#define PI 3.141593

int main(void)
{

/* Declare variables and function prototype. */
double lat1, long1, lat2, long2;
double gc_distance(double lat1,double long1,

double lat2,double long2);

/* Get locations of two points. */
printf("Enter latitude north and longitude west ");
printf("for location 1: \n");
scanf("%lf %lf",&lat1,&long1);
printf("Enter latitude north and longitude west ");
printf("for location 2: \n");
scanf("%lf %lf",&lat2,&long2);

/* Print great circle distance. */
printf("Great Circle Distance: %.0f miles \n",

gc_distance(lat1,long1,lat2,long2));

/* Exit program. */
return 0;

}
/*–––*/
/* This function computes the distance between two */
/* points using great circle distances. */

double gc_distance(double lat1,double long1,
double lat2,double long2)

{
/* Declare variables. */
double rho, phi, theta, gamma, dot, dist1, dist2,

x1, y1, z1, x2, y2, z2;

/* Convert latitude,longitude to rectangular coordinates. */
rho = 3960;
phi = (90 - lat1)*(PI/180.0);
theta = (360 - long1)*(PI/180.0);
x1 = rho*sin(phi)*cos(theta);
y1 = rho*sin(phi)*sin(theta);
z1 = rho*cos(phi);
phi = (90 - lat2)*(PI/180.0);
theta = (360 - long2)*(PI/180.0);

Section 4.4 Problem Solving Applied: Iceberg Tracking 173

174 Chapter 4 Modular Programming with Functions

These problems relate to the preceding program, which computes the great circle distance
between two points in the Northern Hemisphere.

1. Write a function that computes the angle (in radians) between two vectors. Use the fol-
lowing prototype statement:

double angle(double x1, double y1, double z1,
double x2, double y2, double z2)

2. Modify the program developed in this section so that it uses the function in Problem 1.

3. Modify the program so that it will allow the user to enter a latitude in the Northern
Hemisphere or the Southern Hemisphere. The program should ask the user to enter the
latitude value; then it should ask the user to enter either N or S to specify the hemi-
sphere. If the latitude is in the Southern Hemisphere, change the sign of the value to a
negative number to give an N reference. Note that you do not need to change the
gc_distance function—but you do need to make the adjustment to a Southern Hemi-
sphere reference (so that the calculations start with a northern reference).

4. Modify the program so that it will allow the user to enter a longitude in either the west
or the east. The program should ask the user to enter the longitude value; then it should
ask the user to enter either W or E to specify the hemisphere. If the longitude is a refer-
ence to the east, subtract the number from 360 to give a western reference. Note that

x2 = rho*sin(phi)*cos(theta);
y2 = rho*sin(phi)*sin(theta);
z2 = rho*cos(phi);

/* Compute angle between vectors. */
dot = x1*x2 + y1*y2 + z1*z2;
dist1 = sqrt(x1*x1 + y1*y1 + z1*z1);
dist2 = sqrt(x2*x2 + y2*y2 + z2*z2);
gamma = acos(dot/(dist1*dist2));

/* Compute and return great circle distance. */
return gamma*rho;

}
/*––*/

5. TESTING

We start testing with the hand example, which gives the following interaction:

Enter latitude north and longitude west for location 1:
40.75 74
Enter latitude north and longitude west for location 2:
51.5 0
Great Circle Distance: 3466 miles

MODIFY!MODIFY!

Section 4.5 Random Numbers 175

you do not need to change the gc_distance function—but you do need to make the
adjustment to an eastern reference (so that the calculations start with a western refer-
ence).

5. Modify the program so that it combines the modifications in Problems 3 and 4. Thus,
the user can enter a latitude with a northern or southern reference, and a longitude with
a western or eastern reference. Again, the function does not need to be modified.

4.5 Random Numbers

A sequence of random numbers is not defined by an equation; instead, it has certain
characteristics that define it. These characteristics include the minimum and maximum
values and the average. They also indicate whether the possible values are equally likely to
occur or whether some values are more likely to occur than others. Sequences of random
numbers can be generated from experiments, such as tossing a coin, rolling a die, or se-
lecting numbered balls. Sequences of random numbers can also be generated using the
computer.

Many engineering problems require the use of random numbers in the development of a
solution. In some cases, the numbers are used to develop a simulation of a complicated prob-
lem. The simulation can be run over and over to analyze the results; each repetition represents
a repetition of the experiment. We also use random numbers to approximate noise sequences.
For example, the static that we hear on a radio is a noise sequence. If our test program uses an
input data file that represents a radio signal, we may want to generate noise and add it to a
speech signal or a music signal to provide a more realistic signal.

Engineering applications often require random numbers distributed between specified
values. For example, we may want to generate random integers between 1 and 500, or we may
want to generate random floating-point values between 5 and We now present discus-
sions on generating random numbers between two specified values. The random numbers
generated are equally likely to occur; that is, if the random number is supposed to be an inte-
ger between 1 and 5, each of the integers in the set is equally likely to occur.
Another way of saying this is that each integer should occur approximately 20% of the time.
Random numbers that are equally likely to be any value in a specified set are also called uni-
form random numbers, or uniformly distributed random numbers.

Integer Sequences
The Standard C library contains a function rand that generates a random integer between 0
and RAND_MAX, where RAND_MAX is a system-dependent integer defined in stdlib.h. (A
common value for RAND_MAX is 32,767.) The rand function has no input arguments and is
referenced by the expression rand(). Thus, to generate and print a sequence of two random
numbers, we could use this statement:

printf("random numbers: %i %i \n",rand(),rand());

Each time that a program containing this statement is executed, the same two values are print-
ed, because the rand function generates integers in a specified sequence. (Because this se-
quence eventually begins to repeat, it is sometimes called a pseudo-random sequence instead

51, 2, 3, 4, 56

-5.

Random numbers

Pseudo-random

Uniform random
numbers,

176 Chapter 4 Modular Programming with Functions

of a random sequence.) However, if we generate additional random numbers in the same pro-
gram, they will be different. Thus, this pair of statements generates four random numbers:

printf("random numbers: %i %i \n",rand(),rand());
printf("random numbers: %i %i \n",rand(),rand());

Each time that the rand function is referenced in a program, it generates a new value; howev-
er, each time that the program is run, it generates the same sequence of values.

In order to cause a program to generate a new sequence of random values each time that
it is executed, we need to give a new random-number seed to the random-number generator.
The function srand (from stdlib.h) specifies the seed for the random-number generator;
for each seed value, a new sequence of random numbers is generated by rand. The argument
of the srand function is an unsigned integer that is used in computations that initialize the se-
quence; the seed value is not the first value in the sequence. If an srand function is not used
before the rand function is referenced, the computer assumes that the seed value is 1. There-
fore, if you specify a seed value of 1, you will get the same sequence of values from the rand
function that you will get without specifying a seed value.

In the next program, the user is asked to enter a seed value, and then the program gener-
ates 10 random numbers. Each time the user executes the program and enters the same seed,
the same set of 10 random integers is generated. Each time a different seed is entered, a dif-
ferent set of 10 random integers is generated. The function prototype statements for rand and
srand are included in stdlib.h. Here is the program:

/*––*/
/* Program chapter4_5 */
/* */
/* This program generates and prints ten */
/* random integers between 1 and RAND_MAX. */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

/* Declare variables. */
unsigned int seed;
int k;

/* Get seed value from the user. */
printf("Enter a positive integer seed value: \n");
scanf("%u",&seed);
srand(seed);

/* Generate and print ten random numbers. */
printf("Random Numbers: \n");
for (k=1; k<=10; k++)

printf("%i ",rand());
printf("\n");

/* Exit program. */
return 0;

}
/*––*/

Random-number
seed

Section 4.5 Random Numbers 177

A sample output follows, using the Microsoft Visual C++ 2010 Express compiler:

Enter a positive integer seed value:
123
Random Numbers:
440 19053 23075 13104 32363 3265 30749 32678 9760 28064

Experiment with the program on your computer system; use the same seed to generate the
same numbers, and use different seeds to generate different numbers.

Because the prototype statements for rand and srand are included in stdlib.h, we do
not need to include them separately in a program. However, it is instructive to analyze these
prototype statements. Because the rand function returns an integer and has no input, its pro-
totype statement is

int rand(void);

Because the srand function returns no value and has an unsigned integer as an argument, its
prototype statement is

void srand(unsigned int);

Generating random integers over a specified range is simple with the rand function. For
example, suppose that we want to generate random integers between 0 and 7. The following
statement first generates a random number that is between 0 and RAND_MAX; then it uses the
modulus operator to compute the modulus of the random number and the integer 8:

x = rand()%8;

The result of the modulus operation is the remainder after rand() is divided by 8, so the
value of x can assume integer values between 0 and 7.

Suppose that we want to generate a random integer between and 25. The total num-
ber of possible integers is 51, and a single random number in this range can be computed with
this statement:

y = rand()%51 - 25;

This statement first generates a value between 0 and 50. Then it subtracts 25 from the value,
yielding a new value between and 25.

We can now write a function that generates an integer between two specified integers, a
and b. The function first computes n, which is the number of all integers between a and b, in-
clusive; this value is equal to The function then uses the modulus operation with
the rand function to generate a new integer between 0 and Finally, the lower limit, a,
is added to the new integer to give a value between a and b. All three steps can be combined
in one expression in the return statement in the function:

/*––*/
/* This function generates a random integer */
/* between specified limits a and b (a<b). */

int rand_int(int a,int b)
{

return rand()%(b-a+1) + a;
}

/*––*/

n - 1.
b - a + 1.

-25

-25

178 Chapter 4 Modular Programming with Functions

To illustrate the use of this function, the following program generates and prints 10 random
integers between user-specified limits (the user also enters the seed to initiate the sequence):

/*––*/
/* Program chapter4_6 */
/* */
/* This program generates and prints ten random */
/* integers between user-specified limits. */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

/* Declare variables and function prototype. */
unsigned int seed;
int a, b, k;
int rand_int(int a,int b);

/* Get seed value and interval limits. */
printf("Enter a positive integer seed value: \n");
scanf("%u",&seed);
srand(seed);
printf("Enter integer limits a and b (a<b): \n");
scanf("%i %i",&a,&b);

/* Generate and print ten random numbers. */
printf("Random Numbers: \n");
for (k=1; k<=10; k++)

printf("%i ",rand_int(a,b));
printf("\n");

/* Exit program. */
return 0;

}
/*–––*/
/* This function generates a random integer */
/* between specified limits a and b (a<b). */

int rand_int(int a,int b)
{

return rand()%(b-a+1) + a;
}
/*––*/

A sample set of values generated from this program is as follows:

Enter a positive integer seed value:
13
Enter integer limits a and b (a<b):
-5 5
Random Numbers:

-1 3 1 4 -2 -3 5 0 -2 4

Section 4.5 Random Numbers 179

Remember that the values generated are system dependent; you should not expect to get this
same set of random numbers from a different compiler.

Using different seed values, modify the preceding program to generate several sets of ran-
dom integers in each of the following ranges:

1. 0 through 500

2. through 200

3. through

4. through 5-5

-10-50

-10

MODIFY!MODIFY!

Floating-Point Sequences
In many engineering problems, we need to generate random floating-point values in a speci-
fied interval [a, b]. The computation to convert an integer between 0 and RAND_MAX to a
floating-point value between a and b has three steps. The value from the rand function is
first divided by RAND_MAX to generate a floating-point value between 0 and 1. The value be-
tween 0 and 1 is then multiplied by (the width of the interval [a, b]) to give a value
between 0 and The value between 0 and is then added to a to adjust it so
that it will be between a and b. These three steps are combined in the expression on the
return statement in the following function:

/*––*/
/* This function generates a random */
/* double value between a and b. */

double rand_float(double a,double b)
{

return ((double)rand()/RAND_MAX)*(b-a) + a;
}

/*––*/

Note that a cast operator was needed to convert the integer rand() to a double value so that
the result of the division would be a double value.

The program presented earlier in this section can be easily modified to generate and print
floating-point values. A sample set of values from such a modification is shown in the fol-
lowing sequence:

Enter a positive integer seed value:
82
Enter limits a and b (a<b):
-5 5
Random Numbers:
-4.906613 -3.671834 -1.478164 -2.086093 -4.181494 -3.135624
-4.559923 1.599628 1.382031 0.490280

1b - a21b - a2. 1b - a2

180 Chapter 4 Modular Programming with Functions

Component
1

Component
2

Component
3a b

(a) Series design.

Component
4

Component
5

Component
6

a b

(b) Parallel design.

Figure 4.8 Series and parallel configurations.

Modify the program for generating integers so that it generates 10 random floating-point
values within a user-specified range. Then, using different seed values, generate several sets
of numbers from each of the following ranges:

1. 0.0 through 1.0 2. through 1.0

3. through 4. 5.1 through 5.1-4.5-5.0

-0.1

MODIFY!MODIFY!

4.6 Problem Solving Applied: Instrumentation Reliability
Equations for analyzing the reliability of instrumentation can be developed from the study
of statistics and probability, where the reliability is the proportion of the time that the com-
ponent works properly. Thus, if a component has a reliability of 0.8, then it should work
properly 80% of the time. The reliability of combinations of components can also be deter-
mined if the individual component reliabilities are known. Consider the diagrams in Figure 4.8.
In order for information to flow from point a to point b in the series design, all three compo-
nents must work properly. In the parallel design, only one of the three components must
work properly for information to flow from point a to point b. If we know the reliability of
an individual component, then the reliability of a specific combination of components can be

Reliability

determined in two ways; an analytical reliability can be computed using theorems and results
from probability and statistics, and a computer simulation can be developed to give an esti-
mate of the reliability.

Consider the series configuration of Figure 4.8(a). If r is the reliability of a component,
and if all three components have the same reliability, then it can be shown that the reliability
of the series configuration is Thus, if the reliability of each component is 0.8 (which means
that a component works properly 80% of the time), then the analytical reliability of the series
configuration is or 0.512. Thus, this series configuration should work properly 51.2%
of the time.

Consider the parallel configuration of Figure 4.8(b). If r is the reliability of a compo-
nent, and if all three components have the same reliability, then it can be shown that the reli-
ability of the parallel configuration is Thus, if the reliability of each component
is 0.8, then the analytical reliability of the parallel configuration is
or 0.992. The parallel configuration should work properly 99.2% of the time. Your intuition
probably tells you that the parallel configuration is more reliable because only one of the
components must be working for the overall configuration to perform properly, whereas
all three components must work properly in order for the series configuration to perform
properly.

We can also estimate the reliability of these two designs using random numbers from
a computer simulation. First, we need to simulate the performance of a single compo-
nent. If the reliability of a component is 0.8, then it works properly 80% of the time. To
simulate this performance, we could generate a random value between 0 and 1. If the
value is between 0 and 0.8, we can assume that the component worked properly; other-
wise, it failed. (We could also have used the values 0 to 0.2 for a failure and 0.2 to 1.0 for
a component that worked properly.) To simulate the series design with three components,
we would generate three floating-point random numbers between 0 and 1. If all three
numbers are less than or equal to 0.8, then the design works for this one trial; if any one of
the numbers is greater than 0.8, then the design does not work for this one trial. If we run
hundreds or thousands of trials, we can compute the proportion of the time that the over-
all design works. This simulation estimate is an approximation to the analytically comput-
ed reliability.

To estimate the reliability of the parallel design with a component reliability of 0.8, we
again generate three random floating-point numbers between 0 and 1. If any one of the three
numbers is less than or equal to 0.8, then the design works for this one trial; if all of the num-
bers are greater than 0.8, then the design does not work for one trial. To estimate the reliability
determined by the simulation, we divide the number of trials for which the design works by
the total number of trials performed.

As indicated by the previous discussion, we can use computer simulations to provide
a validation for the analytical results because the simulated reliability should approach the
analytically computed reliability as the number of trials increases. There are also cases in
which it is very difficult to analytically compute the reliability of a piece of instrumenta-
tion. In these cases, a computer simulation can be used to provide a good estimate of the
reliability.

Develop a program to compare the analytical reliabilities of the series and parallel con-
figurations in Figure 4.8 with simulation results. Allow the user to enter the individual com-
ponent reliability and the number of trials to use in the simulation.

+ 10.823,310.82 - 310.822
3r - 3r2 + r3.

10.823,

r3.

Section 4.6 Problem Solving Applied: Instrumentation Reliability 181

Computer
simulation

182 Chapter 4 Modular Programming with Functions

1. PROBLEM STATEMENT

Compare the analytical and simulation reliabilities for a series configuration with three
components and for a parallel configuration with three components. Assume that all com-
ponents have the same reliability.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows that the input values are the component reliability, the number of tri-
als, and a random-number seed for initiating the sequence. The output consists of the analyt-
ical reliability and the simulation reliability for the series and the parallel configurations.

3. HAND EXAMPLE

For the hand example, we use a component reliability of 0.8 and three trials. Since each trial
requires three random numbers, assume that the first nine random numbers generated are
the following (they were generated from the rand_float function using a seed of 47 for
values between 0 and 1).

First set of three random values:

0.005860 0.652303 0.271187

Second set of three random values:

0.589007 0.064699 0.992248

Third set of three random values:

0.719565 0.786615 0.001923

From each group of three random numbers, we can determine whether a series configuration
would work properly and whether a parallel configuration would work properly. For the first
group of three random numbers, all the values are less than 0.8; so both the series and paral-
lel configurations would work properly. One of the values in the second set of numbers is
greater than 0.8, so only the parallel configuration would work properly. Both configurations
work properly with the third set of random numbers. Thus, the analytical results (computed
earlier in this section) and the simulation results for three trials are the following:

Analytical Reliability:
Series: 0.512 Parallel: 0.992
Simulation for 3 Trials
Series: 0.667 Parallel: 1.000

Number of trials

Random seed

Component reliability
Analytical reliability

Simulation reliability

Section 4.6 Problem Solving Applied: Instrumentation Reliability 183

As we increase the number of trials, the simulation results should approach the analytical
results. If we change the random number seed, the simulation results may also change even
with only three trials.

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a series of
sequential steps:

Decomposition Outline

1. Read component reliability, number of trials, and random number seed.

2. Compute analytical reliabilities.

3. Compute simulation reliabilities.

4. Print comparison of reliabilities.

Step 1 prompts the user to enter the necessary information and then read it. Step 2 uses the
equations given earlier to compute the analytical reliabilities. Because the computations are
straightforward, we compute them in the main function. Step 3 involves a loop to generate
the random numbers and to determine whether the configurations would perform properly
for each trial. The rand_float function is used to compute the random numbers in the
loop. In step 4, we print the results of the computations. The structure chart for this solution
was shown in Figure 4.1. The refinement in pseudocode is the following:

Refinement in Pseudocode
main: read component reliability, number of trials,

and random number seed
compute analytical reliabilities
set series_success to zero
set parallel_success to zero
set k to 1
while k ≤ number of trials

generate three random numbers between 0 and 1
if each number ≤ component reliability,

increment series_success by 1
If any number ≤ component reliability,

increment parallel_success by 1
increment k by 1

print analytical reliabilities
print simulation reliabilities

The steps in the pseudocode are now detailed enough to convert to C. We also include the
rand_float function in the program:

/*––*/
/* Program chapter4_7 */
/* */
/* This program estimates the reliability of a series and */
/* a parallel configuration using a computer simulation. */

184 Chapter 4 Modular Programming with Functions

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{

/* Declare variables and function prototypes. */
unsigned int seed;
int n, k;
double component_reliability, a_series, a_parallel,

series_success=0, parallel_success=0,
num1, num2, num3;

double rand_float(double a,double b);

/* Get information for the simulation. */
printf("Enter individual component reliability: \n");
scanf("%lf",&component_reliability);
printf("Enter number of trials: \n");
scanf("%i",&n);
printf("Enter unsigned integer seed: \n");
scanf("%u",&seed);
srand(seed);
printf("\n");

/* Compute analytical reliabilities. */
a_series = pow(component_reliability,3);
a_parallel = 3*component_reliability

- 3*pow(component_reliability,2)
+ pow(component_reliability,3);

/* Determine simulation reliability estimates. */
for (k=1; k<=n; k++)
{

num1 = rand_float(0,1);
num2 = rand_float(0,1);
num3 = rand_float(0,1);
if (((num1<=component_reliability) &&

(num2<=component_reliability)) &&
(num3<=component_reliability))

series_success++;
if (((num1<=component_reliability) ||

(num2<=component_reliability)) ||
(num3<=component_reliability))

parallel_success++;
}
/* Print results. */
printf("Analytical Reliability \n");
printf("Series: %.3f Parallel: %.3f \n",

a_series,a_parallel);
printf("Simulation Reliability, %i trials \n",n);
printf("Series: %.3f Parallel: %.3f \n",

(double)series_success/n,
(double)parallel_success/n);

Section 4.6 Problem Solving Applied: Instrumentation Reliability 185

/* Exit program. */
return 0;

}
/*–––*/
/* This function generates a random */
/* double value between a and b (a<b). */

double rand_float(double a,double b)
{

return ((double)rand()/RAND_MAX)*(b-a) + a;
}
/*–––*/

5. TESTING

If we use the data from the hand example, we have the following interaction, wherein out-
put matches the data that we computed by hand:

Enter individual component reliability:
0.8
Enter number of trials:
3
Enter unsigned integer seed:
47

Analytical Reliability
Series: 0.512 Parallel: 0.992
Simulation Reliability, 3 trials
Series: 0.667 Parallel: 1.000

Here are results from two more simulations which demonstrate that the simulation re-
sults approach the analytical results as the number of trials increases:

Enter individual component reliability:
0.8
Enter number of trials:
100
Enter unsigned integer seed:
123

Analytical Reliability
Series: 0.512 Parallel: 0.992
Simulation Reliability, 100 trials
Series: 0.470 Parallel: 1.000

Enter individual component reliability:
0.8
Enter number of trials:
1000
Enter unsigned integer seed:
3535

Analytical Reliability
Series: 0.512 Parallel: 0.992
Simulation Reliability, 1000 trials
Series: 0.530 Parallel: 0.990

186 Chapter 4 Modular Programming with Functions

Roots

These problems relate to the program developed in this section, which compares the analyti-
cal and simulated reliabilities.

1. Use this program to compute information comparing the simulation results for 10, 100,
1000, and 10000 trials, assuming that the component reliability is 0.85.

2. Use this program to compute information comparing the simulation results for 1000 trials,
using five different random-number seeds. Assume that the component reliability is 0.75.

3. What component reliability is necessary to give a series reliability of 0.7? (Hint: Use the
analytical reliability equation.) Validate your answer using this program.

4. What component reliability is necessary to give a parallel reliability of 0.9? Using the
analytical reliability equation is not as easy in this case. If your calculator does not find
roots of polynomial equations, just experiment with the program until you are close to
the desired reliability.

MODIFY!MODIFY!

4.7 Numerical Technique: Roots of Polynomials*

*Optional section.

A polynomial is a function of a single variable that can be expressed in the following general
form:

(4.10)

where the variable is x and the coefficients are represented by The degree of a
polynomial is equal to the largest nonzero exponent. Therefore, the general form for a cubic
(degree 3) polynomial is

and a specific example of a cubic polynomial is

Note that, for each term in the equation, the sum of the coefficient subscript and the variable
exponent is equal to the polynomial degree using the notation in Equation (4.10).

Polynomial Roots
The solutions to many engineering problems involve finding the roots of an equation of the
form

where the roots are the values of x for which y is equal to zero. Examples of applications in
which we need to find roots of equations include designing the control system for a robotic
arm, designing springs and shock absorbers for an automobile, analyzing the response of a
motor, and analyzing the stability of a digital filter.

If a function f (x) is a polynomial of degree N, then f (x) has exactly N roots. These N
roots may contain real roots or complex roots, as shown in the following examples. If we

y = f1x2,

h1x2 = x3 - 2x2 + 0.5x - 6.5.

g1x2 = a0x
3 + a1x

2 + a2x + a3,

a0, a1, Á aN.

f1x2 = a0x
N + a1x

N-1 + a2x
N-2 + Á + aN-2x

2 + aN-1x + aN,

Section 4.7 Numerical Technique: Roots of Polynomials 187

assume that the coefficients of the polynomial are real values, then complex
roots will always occur in complex conjugate pairs. (Recall that a complex number can be ex-
pressed as where The complex conjugate of is)

If a polynomial is factored into linear terms, it is easy to identify the roots of the polyno-
mial by setting each term to zero. For example, consider the following equation:

If f(x) is equal to zero, we have the following:

The roots of the equation, or the values of x for which f(x) is equal to zero, are then and
These roots also correspond to the values of x where the polynomial crosses the x-

axis, as shown in Figure 4.9.
If a quadratic equation (polynomial of degree 2) cannot easily be factored, we can use the

quadratic formula to determine the two roots of the equation. Recall that for a general quad-
ratic equation

the roots can be computed as follows:

Thus, for the quadratic equation

the roots are

x1 =
-3 + 2-3

2
= -1.5 + 0.872-1,

f1x2 = x2 + 3x + 3,

x2 =
-b - 2b2 - 4ac

2a
.

x1 =
-b + 2b2 - 4ac

2a
,

y = ax2 + bx + c,

x = -3.
x = 2

1x - 221x + 32 = 0.

= 1x - 221x + 32.
f1x2 = x2 + x - 6

a - ib.a + ibi = 2-1.a + ib,

1a0, a1, Á , aN2

�5 �4 �3 �2 �1 0 1 2 3 4 5
�10

0

10

20

30

x

f(
x)

Quadratic polynomial

Figure 4.9 Polynomial with two real roots.

188 Chapter 4 Modular Programming with Functions

and

Because a cubic polynomial has degree 3, it has exactly three roots. If we assume that the co-
efficients are real, then there are only these four possibilities:

• 3 real roots at different values (distinct roots)

• 3 real roots at the same value (multiple roots)

• 2 real roots at the same value (double root) and 1 real root at a distinct value, or

• 1 real root and a complex conjugate pair of roots.

Examples of functions that illustrate each of these cases are as follows:

Figure 4.10 contains plots of these functions. Note again that the real roots correspond to the
points where the function crosses the x axis.

It is relatively easy to determine the roots of polynomials of degree 1 or 2, but it can be
difficult to determine the roots of polynomials of degree 3 and higher. A number of numerical
techniques exist for determining the roots of polynomials. Techniques such as the incremen-
tal search, the bisection method, and the false-position technique identify the real roots by
searching for intervals in which the function changes sign because this indicates that the func-
tion has crossed the x-axis. Additional techniques, such as the Newton–Raphson method, can
be used to find complex roots.

Incremental-Search Technique
The incremental-search technique is often used to determine the real roots of a function in an
interval [a, b]. This technique searches for a subinterval such that the function value
is negative on one end and positive on the other. We are then assured that there is at least one
root in this subinterval.

There are many variations of the incremental-search technique. The one that we discuss
begins with the selection of a step size that is used to subdivide the original interval into a
group of smaller subintervals, as shown in Figure 4.11. For each subinterval, we evaluate the
function at both endpoints.

If the product of the function values is negative, then there is a root in this subinterval. (A
negative product implies that one function value is positive, whereas the other function value

[ak, bk]

= x3 - 2x2 - 3x + 10.

f41x2 = 1x + 22[x - 12 + i2][x - 12 - i2]
= x3 - 12x + 16,

f31x2 = 1x + 421x - 222
= x3 - 6x2 + 12x - 8,

f21x2 = 1x - 223
= x3 - 3x2 - x + 3,

f11x2 = 1x - 321x + 121x - 12

x2 =
-3 - 23

2
= -1.5 - 0.872-1.

Incremental-search

Section 4.7 Numerical Technique: Roots of Polynomials 189

is negative; hence, the function must cross the x axis in the interval.) At this point, we can es-
timate the root to be the midpoint of this small segment, as shown in Figure 4.12(a). It is also
possible that one of the subinterval endpoints might be a root, or be very close to a root, as
shown in Figure 4.12(b). Remember that it is not likely that a floating-point value will be ex-
actly equal to zero, so the test to determine if an endpoint is a root should compare the func-
tion value to a very small number, but not to zero.

�200

�150

�100

�50

0

50

f 1
(x

)

Distinct real roots

�400

�300

�200

�100

0

100

f 2
(x

)

Triple real roots

�60

�40

�20

0

20

40

f 3
(x

)

Single root, double root

�5 0 5
�150

�100

�50

0

50

x
�5 0 5

x

�5 0 5
x

�5 0 5
x

f 4
(x

)

Single root, complex roots

Figure 4.10 Cubic polynomials.

Subinterval

Original interval

f(b)

f(a)

a
b

Figure 4.11 Incremental search.

190 Chapter 4 Modular Programming with Functions

Subinterval

Root

Midpoint

(a)

Subinterval

(b)

Root

Figure 4.12 Subinterval analysis.

4.8 Problem Solving Applied: System Stability*

*Optional section.

The term system is often used to represent instrumentation or equipment for which specified
inputs generate specified outputs or actions. Examples of systems include the cooling equip-
ment connected to the supports of a pipeline, a robotic arm used in a manufacturing facility,
and a fast “bullet” train. A simple definition of a stable system is the following: A system is
stable if a reasonable input causes a reasonable output. For example, consider the control sys-
tem of a robotic arm. A reasonable input to the system would specify that the arm should
move in a direction that is valid for the robotic arm. If a reasonable input causes the arm to be-
come erratic or to attempt to move in invalid directions, then the system is not stable. The
analysis of the stability of the design of a system involves determining dynamic properties of
the system. A discussion of the types of analyses involved, or of the functions involved, is be-
yond the scope of this text, but one component of the analysis requires the determination of the
roots of polynomials. Usually, both the real and complex roots are needed, but the techniques
for finding complex roots involve using the derivative of the polynomial, and thus become

System

Stable system

It is also important to recognize that there are cases in which this incremental-search
technique fails. For example, suppose that there are two roots in one of the subintervals. In
this case, because the function values at the endpoints will have the same sign, their product
will be positive and the algorithm will skip to the next subinterval. As another example, con-
sider the case with three roots in one of the subintervals. In this case, because the function
values at the endpoints have different signs, the estimate of the root is the midpoint of the
subinterval. We then continue with the next subinterval, and thus miss the other two roots in
the previous subinterval. These examples are used to illustrate the fact that the incremental-
search technique has some flaws, although, in general, it works reasonably well. If we need
a technique with better performance characteristics, other root-finding methods should be
investigated.

Section 4.8 Problem Solving Applied: System Stability 191

1. PROBLEM STATEMENT

Determine the real roots of a cubic polynomial.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows that the input values are the polynomial coefficients, the interval
endpoints, and the step size of the subintervals, while the output values are the roots identi-
fied in the specified interval:

3. HAND EXAMPLE

For the hand example, we use the equation

This function can be described as a cubic polynomial with and
If we set the polynomial to zero, we easily observe that the root is equal to 2. To

examine the incremental-search technique, we first use a step size such that the root falls on
one of the endpoints of a subinterval; then we use a step size such that the root does not fall
on one of the endpoints of a subinterval. If the root falls on an endpoint, we can easily iden-
tify it because the polynomial value will be very close to zero. If the root falls within a
subinterval, the product of the function values at the endpoints will be negative, and we then
estimate the root to be the midpoint of the interval.

First, consider the interval [1, 3] with a step size of 0.5. The subintervals and the corre-
sponding information derived from them are as follows:

Subinterval 1: [1.0, 1.5]

No root in this interval.
Subinterval 2: [1.5, 2.0]

When we evaluate the endpoints, we detect the root at
x = 2.0.

f11.02 # f11.52 = 1-22 # 1-12 = 2

a3 = -4.
a0 = 0, a1 = 0, a2 = 2,

y = 2x - 4.

Interval endpoints

Subinterval step

Polynomial coefficients

Polynomial roots

more mathematically involved. Therefore, we reduce the scope of this problem to finding
only the real roots of a polynomial given a specified interval in which to search. We also as-
sume that the polynomial is a cubic polynomial, but the solution can easily be extended to
handle higher degree polynomials.

Develop a program to determine the real roots of a cubic polynomial. Allow the user to
enter the coefficients of the polynomial, the interval to be searched, and the step size of the
subintervals used in the search.

192 Chapter 4 Modular Programming with Functions

Subinterval 3: [2.0, 2.5]
When we evaluate the endpoints, we again detect the root
at Note that we will need to be careful that we do
not identify this root twice in the program.

Subinterval 4: [2.5, 3.0]

No root in this interval.

We now consider the interval [1, 3] with a step size of 0.3. The subintervals and the
corresponding information derived from them are as follows:

Subinterval 1: [1.0, 1.3]

No root in this interval.
Subinterval 2: [1.3, 1.6]

No root in this interval.
Subinterval 3: [1.6, 1.9]

No root in this interval.
Subinterval 4: [1.9, 2.2]

The root in this interval is estimated to occur at the midpoint:

Subinterval 5: [2.2, 2.5]

No root in this interval.
Subinterval 6: [2.5, 2.8]

No root in this interval.
Subinterval 7: [2.8, 3.1]

Note that the right endpoint exceeds the overall endpoint. In
the program, we will modify such an interval so that it ends on
the original right endpoint.

No root in this interval.

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it breaks the solution into a series of
sequential steps:

Decomposition Outline

1. Read polynomial coefficients, interval of interest, and step size.

2. Locate roots using subintervals.

f12.82 # f13.02 = 11.62 # 12.02 = 3.2

f12.52 # f12.82 = 11.02 # 11.62 = 1.6

f12.22 # f12.52 = 10.42 # 11.02 = 0.4

x =
1.9 + 2.2

2
= 2.05.

f11.92 # f12.22 = 1-0.22 # 10.42 = -0.08

f11.62 # f11.92 = 1-0.82 # 1-0.22 = 1.6

f11.32 # f11.62 = 1-1.42 # 1-0.82 = 1.12

f11.02 # f11.32 = 1-22 # 1-1.42 = 2.8

f12.52 # f13.02 = 112 # 122 = 2

x = 2.0.

Section 4.8 Problem Solving Applied: System Stability 193

Step 1 involves prompting the user to enter the necessary information and then reading it.
Step 2 requires a loop to compute the subinterval endpoints and then to determine if a root
occurs on an endpoint or in the subinterval. When a root is located, a corresponding mes-
sage is printed. There are a number of operations involved in Step 2, so we should consider
using functions to keep the main function from getting long. Because we need to evaluate
the cubic polynomial several places in the program, it is a good candidate for a function.
Within each subinterval, we need to search for a root; this search is also a good candidate
for a function. The structure chart for this solution was shown in Figure 4.1. The refinement
in pseudocode is the following:

Refinement in Pseudocode
main: read coefficients, interval endpoints a and b,

and step size
compute the number of subintervals, n
set k to 0
while k ≤ n–1

compute left subinterval endpoint
compute right subinterval endpoint
check_roots (left, right, coefficients)
increment k by 1

check_roots (b,b,coefficients)
check_roots (left, right, coefficients):

set f_left to poly(left,coefficients)
set f_right to poly(right,coefficients)
if f_left is near zero

print root at left endpoint
else

if f_left . f_right < 0
print root at midpoint of subinterval

return
poly(x,a0,a1,a2,a3):

return a0x
3 + a1x

2 + a2x + a3

Note in the pseudocode for the check_roots function that we check to see if the left
subinterval endpoint is a root, but we do not check the right subinterval endpoint. This is
necessary to avoid identifying the same root twice—the first time, it is a right endpoint for
one interval; the second time, it is a left endpoint for the next subinterval. Because we only
check the left endpoints, we need to check the final point in the interval because it never be-
comes a left endpoint.

The steps in the pseudocode are detailed enough to convert to C:

/*––*/
/* Program chapter4_8 */
/* */
/* This program estimates the real roots of a */
/* polynomial function using incremental search. */

#include <stdio.h>
#include <math.h>

int main(void)
{

194 Chapter 4 Modular Programming with Functions

/* Declare variables and function prototype. */
int n, k;
double a0, a1, a2, a3, a, b, step, left, right;
void check_roots(double left,double right,double a0,

double a1,double a2,double a3);

/* Get user input. */
printf("Enter coefficients a0, a1, a2, a3: \n");
scanf("%lf %lf %lf %lf",&a0,&a1,&a2,&a3);
printf("Enter interval limits a, b (a<b): \n");
scanf("%lf %lf",&a,&b);
printf("Enter step size: \n");
scanf("%lf",&step);

/* Check subintervals for roots. */
n = ceil((b - a)/step);
for (k=0; k<=n-1; k++)
{

left = a + k*step;
if (k == n-1)

right = b;
else

right = left + step;
check_roots(left,right,a0,a1,a2,a3);

}

/* Exit program. */
return 0;

}
/*––*/
/* This function checks a subinterval for a root. */
void check_roots(double left,double right,double a0,

double a1,double a2,double a3)
{

/* Declare variables and function prototype. */
double f_left, f_right;
double poly(double x,double a0,double a1,

double a2,double a3);
/* Evaluate subinterval endpoints and test for roots. */
f_left = poly(left,a0,a1,a2,a3);
f_right = poly(right,a0,a1,a2,a3);
if (fabs(f_left) < 0.1e-04)

printf("Root detected at %.3f \n",left);
else

if (fabs(f_right) < 0.1e-04)
;

else
if (f_left*f_right < 0)

printf("Root detected at %.3f \n",(left+right)/2);
return;

}
/*––*/

/* This function evaluates a cubic polynomial. */

double poly(double x,double a0,double a1,double a2,double a3)
{

return a0*x*x*x + a1*x*x + a2*x + a3;
}
/*––*/

5. TESTING
If we use the data from the hand example, we have the following interaction with the pro-
gram. The roots match the ones that we computed by hand:

Enter coefficients a0, a1, a2, a3:
0 0 2 -4
Enter interval limits a, b (a<b):
1 3
Enter step size:
0.5
Root detected at 2.000

Enter coefficients a0, a1, a2, a3:
0 0 2 -4
Enter interval limits a, b (a<b):
1 3
Enter step size:
0.3
Root detected at 2.050

Use the polynomials given on page 188 to test this program. Use intervals and step sizes so
that the roots do not always fall on subinterval endpoints.

Section 4.8 Problem Solving Applied: System Stability 195

1. The size of the interval affects the estimate of the root if the root is not on an endpoint
of a subinterval. Using the polynomial from the hand example and the interval [0.5, 3],
experiment with several step sizes, including 1.1, 0.75, 0.5, 0.3, and 0.14.

2. Using the first cubic polynomial given on page 188, test the program using intervals in
which the roots fall on the endpoints of the interval [a, b] entered as input.

3. Using the first cubic polynomial given on page 188, find a step size that causes the pro-
gram to miss some of the roots for an initial interval of Explain why the
roots were missed by the program. Is this an error in the program?

4. Modify the program so that it can accept and locate the real roots of a fourth-degree
polynomial.

5. Use this program to help answer Problem 4 of the previous problems on page 186.

[-10, 10].

MODIFY!MODIFY!

196 Chapter 4 Modular Programming with Functions

4.9 Macros*

*Optional section.

Before compiling a program, the preprocessor performs any actions specified by preprocess-
ing directives, such as the inclusion of header files or the symbolic definition of constants. A
simple operation can also be specified by a preprocessing directive called a macro, which has
the following general form:

#define macro_name(parameters) macro_text

The macro_text replaces references to the macro_name in the program. If the macro does not
have parameters, then it is essentially a symbolic constant. If a macro has parameters, then it
can represent a simple function. If the description of the macro takes more than one line, a
backslash (\) must be used at the end of each line but the last to indicate that the line is con-
tinued on the next line.

An advantage of using a macro instead of a function is that the macro does not need to be
defined in a separate module; thus, the compilation and linking/loading process is simplified,
and the execution time is reduced. During preprocessing, each reference to the macro is re-
placed with the macro text.

To illustrate, consider the following simple program that converts degrees Fahrenheit to
degrees Centigrade:

/*––*/
/* Program chapter4_9 */
/* */
/* This program converts a temperature in */
/* Fahrenheit to Centigrade. */

#include <stdio.h>
#define degrees_C(x) (((x) - 32)*(5.0/9.0))

int main(void)
{

/* Declare variables. */
double temp;

/* Get temperature in Fahrenheit. */
printf("Enter temperature in degrees Fahrenheit: \n");
scanf("%lf",&temp);

/* Convert and print temperature in Centigrade. */
printf("%f degrees Centigrade \n",degrees_C(temp));

/* Exit program. */
return 0;

}
/*––*/

When the printf statement from the program is compiled, the macro text replaces the
macro reference, giving the following:

printf("%f degrees Centigrade \n",(((temp) - 32)*(5.0/9.0)));

Macro

Section 4.9 Macros 197

When this statement is executed, the value in temp is correctly converted from degrees
Fahrenheit to degrees Centigrade before it is printed.

It is important to include parentheses around each individual argument and around the
complete macro_text in the macro definition so that the macro will work properly when it is
referenced with an expression as an actual parameter. To illustrate, consider these macros that
convert temperatures in degrees Centigrade to degrees Fahrenheit:

#define degrees1_F(x) ((x)*(9.0/5.0) + 32)
#define degrees2_F(x) x*(9.0/5.0) + 32

When these macros are used with a variable as an actual parameter, they both work properly.
For example, the statements

max_temp1 = degrees1_F(temp);
max_temp2 = degrees2_F(temp);

are correctly compiled as the following equivalent computations:

max_temp1 = ((temp)*(9.0/5.0) + 32);
max_temp2 = temp*(9.0/5.0) + 32;

However, the statements

max_temp1 = degrees1_F(temp+10);
max_temp2 = degrees2_F(temp+10);

are compiled as the following statements, which do not yield the same values:

max_temp1 = ((temp+10)*(9.0/5.0) + 32);
max_temp2 = temp+10*(9.0/5.0) + 32;

Therefore, the parentheses around the macro arguments and around the macro_text are neces-
sary to ensure correct calculations.

The following macro computes the area of a triangle with a specified base and height as
shown in Figure 4.13:

#define area_tri(base,height) (0.5*(base)*(height))

Note that parentheses are included around each argument and around the complete macro_text
in the macro definition.

height

base

Figure 4.13 Triangle.

Give macros to compute the following values, and, along with each macro, give an example
of a statement that references it:

1. Area of a square:

2. Area of a rectangle:

3. Area of a parallelogram:

4. Area of trapezoid:

5. Volume of a sphere:

6. Volume of a pyramid:

V = 1/3 * area of the base * height.

V = 4/3 p * radius3.

A = 1/2 base * 1height1 + height22.
A = base * height.

A = side1 * side2.

A = side2.

198 Chapter 4 Modular Programming with Functions

radius

PRACTICE!PRACTICE!

height1

height2

base

height

base

7. Volume of a right circular cone:

8. Volume of a cube:

9. Volume of a rectangular parallelepiped:

V = length * width * height.

V = side3.

V = 1/3 p * radius3 * height.

Section 4.10 Recursion 199

radius

height

side

length
width

height

4.10 Recursion*
A function that invokes itself (or calls itself) is a recursive function. Recursion can be a pow-
erful tool for solving certain classes of problems in which the solution can be defined in terms
of a similar but smaller problem, and then the smaller problem can be defined in terms of a
similar but still smaller problem. This redefinition of the problem into smaller problems con-
tinues until the smaller problem has a unique solution that is then used to determine the over-
all solution. There are system-dependent limitations to the number of times that a recursive
function can call itself as it is continually redefining a problem into smaller and smaller prob-
lems, but these limitations do not usually cause difficulties.

Recursive function

*Optional section.

200 Chapter 4 Modular Programming with Functions

In the next two examples, we illustrate problems that can be solved with a recursive algo-
rithm. In the examples, note the two parts to a recursive solution. First, the solution has to be
redefined in terms of a similar, but smaller, problem; second, the smaller problems must reach
a point at which there is a unique solution.

Factorial Computation
A simple example of recursion can be shown using the factorial computation. Recall that k!
(read as k factorial) is defined as

where k is a nonnegative integer, and where Thus,

We could also compute 5! using the following steps:

Thus, we have defined a factorial in terms of a product that involves smaller factorials.
The smaller factorial is continually redefined until we reach 0!. We substitute the value of
0! in the last equation, and then begin going back up the list of equations, substituting
values for the factorials:

We have now developed a recursive algorithm for computing a factorial.
We present a program with two functions to compute a factorial. The first function is a

nonrecursive (iterative) function, and the second is a recursive function. A factorial value be-
comes large quickly, so we use long integers for the factorial value. Note that both functions
are referenced similarly in the main function:

/*––*/
/* Program chapter4_10 */
/* */
/* This program compares a recursive function and */
/* a nonrecursive function for computing factorials. */

#include <stdio.h>

int main(void)
{

/* Declare variables and function prototypes. */
int n;

 5! = 5 # 4! = 120.

 4! = 4 # 3! = 24
 3! = 3 # 2! = 6
 2! = 2 # 1! = 2
 1! = 1 # 1

 0! = 1.

 1! = 1 # 0!
 2! = 2 # 1!
 3! = 3 # 2!
 4! = 4 # 3!
 5! = 5 # 4!

5! = 5 # 4 # 3 # 2 # 1 = 120.

0! = 1.

k! = 1k21k - 121k - 22Á 132122112,

Factorial

Section 4.10 Recursion 201

long factorial(int k);
long factorial_r(int k);

/* Get user input. */
printf("Enter positive integer: \n");
scanf("%i",&n);

/* Compute and print factorials. */
printf("Nonrecursive: %i! = %li \n",n,factorial(n));
printf("Recursive: %i! = %li \n",n,factorial_r(n));

/* Exit program. */
return 0;

}
/*–––*/
/* This function computes a factorial with a loop. */

long factorial(int k)
{

/* Declare variables. */
int j;
long term;

/* Compute factorial with multiplication. */
term = 1;
for (j=2; j<=k; j++)

term *=j;

/* Return factorial value. */
return term;

}
/*–––*/
/* This function computes a factorial recursively. */

long factorial_r(int k)
{

/* Use recursive reference until k=0. */
if (k == 0)

return 1;
else

return k*factorial_r(k-1);
}
/*–––*/

The condition k == 0 keeps the recursive routine from becoming an infinite loop; this
routine calls itself recursively with an argument that is continually being decremented by 1,
until the argument reaches zero.

For large values of k, the value of k! can exceed even long integers. In these cases, the
computations should be done using double or long double values. An interesting approx-
imation to k! is also discussed in the end-of-chapter problems.

202 Chapter 4 Modular Programming with Functions

Fibonacci Sequence
A Fibonacci sequence is a sequence of numbers in which the first two
values (and) are equal to 1, and each succeeding number is the sum of the previous two
numbers. Thus, the first few values of the Fibonacci sequence are

This sequence was first described in the year 1202, and it has applications that range from
biology to electrical engineering. For example, Fibonacci sequences are often used in studies
of rabbit population growth.

A function to compute the kth value in the Fibonacci sequence is a good candidate for a
recursive function because each new value in the sequence is computed from the two previous
values. The following functions implement both nonrecursive and recursive algorithms for
computing a Fibonacci number:

/*––*/
/* Program chapter4_11 */
/* */
/* This program compares a recursive function and a */
/* nonrecursive function for computing Fibonacci numbers. */

#include <stdio.h>

int main(void)
{

/* Declare variables and function prototypes. */
int n;
int fibonacci(int k);
int fibonacci_r(int k);

/* Get user input. */
printf("Enter positive integer: \n");
scanf("%i",&n);

/* Compute and print factorials. */
printf("Nonrecursive: Fibonacci number = %li \n",

fibonacci(n));
printf("Recursive: Fibonacci number = %li \n",

fibonacci_r(n));

/* Exit program. */
return 0;

}
/*–––*/
/* This function computes the kth Fibonacci */
/* number using a nonrecursive algorithm. */

int fibonacci(int k)
{

/* Declare variables. */
int term, prev1, prev2, n;

1 1 2 3 5 8 13 21 34 Á

f1f0

5f0, f1, f2, f3, Á 6Fibonacci sequence

Section 4.10 Recursion 203

1. Use the program chapter4_12 to compute values of 1!, 2!, and so on, until you reach
the limits for long integers. What kind of error message occurred when the value of k!
exceeded the limits on your system?

2. Modify chapter4_12 so that it uses double values instead of integers to compute fac-
torials. Explain why the number of digits of precision determines the maximum value of
k! that can be correctly computed using double values. What is the maximum value of
k! that can be computed using double values on your system?

MODIFY!MODIFY!

/* Compute kth Fibonacci number with a loop. */
term = 1;
if (k > 1)
{

prev1 = prev2 = 1;
for (n=2; n<=k; n++)
{

term = prev1 + prev2;
prev2 = prev1;
prev1 = term;

}
}

/* Return kth Fibonacci number. */
return term;

}
/*–––*/
/* This function computes the kth Fibonacci */
/* number using a recursive algorithm. */

int fibonacci_r(int k)
{

/* Declare variables. */
int term;

/* Compute kth Fibonacci number recursively until k=1. */
term = 1;
if (k > 1)

term = fibonacci_r(k-1) + fibonacci_r(k-2);

/* Return kth Fibonacci number. */
return term;

}
/*–––*/

In the recursive function, the condition k > 1 keeps the function from going into an infinite loop.

204 Chapter 4 Modular Programming with Functions

C STATEMENT SUMMARY

Function definition:

return_type function_name(parameter types)
{

declarations;
statements;

}

Return statement:

return;
return (a + b)/2;

Function prototype:

double sinc(double x);
double sinc(double);
void check_roots(double left,double right,double a0,

double a1,double a2,double a3)

Macro:

#define degrees_C(x) (((x) - 32)*(5.0/9.0))

SUMMARSUMMARYY Most programs in C benefit from using both library and programmer-defined functions.
Functions allow us to reuse software and to employ abstraction in our solution and, hence,
reduce development time and increase the quality of the software. Numerous examples were
developed to illustrate using programmer-defined functions to solve problems, including ex-
amples of macros and recursive functions. Specific applications were presented to illustrate
generating random numbers (integers or floating-point values) and to implement the incre-
mental search technique for identifying real roots of polynomials.

KEY TERMS

abstraction
actual parameter
automatic class
call-by-reference
call-by-value
coercion of arguments
computer simulation
driver program
external class
factorial
Fibonacci sequence
formal parameter
function
function prototype
global variable
incremental search
invoke
library function

local variable
macro
modularity
module
module chart
programmer-defined function
pseudorandom
random number
random number seed
recursion
register class
reusability
root
scope
static class
storage class
structure chart

Problems 205

NOTES

1. A program with several modules is easier to read and understand than one long main
function.

2. Select the name of the function to indicate the purpose of the function.

3. Use a special line, such as a line of dashes, to separate programmer-defined functions
from the main function and other programmer-defined functions.

4. Use a consistent order for functions. For instance, place the main function first, followed
by additional functions in the order in which they are referenced.

5. Use parameter identifiers in prototype statements to help document the order and defini-
tion of the parameters.

6. List the function prototypes on separate lines so that they are easy to identify.
7. Use the parameter list instead of external variables to transmit information to a function.

DEBUGGING NOTES

1. If you are having difficulty understanding the error messages from a compiler, try run-
ning the program on another compiler to obtain different error messages.

2. When debugging a long program, add comment indicators (/* and */) around some sec-
tions of the code so that you can focus on other parts of the program.

3. Test a complicated function by itself using a driver program.
4. Make sure that the value returned from a function matches the function return type. If

necessary, use the cast operator to convert a value to the proper type.
5. Functions can be defined before or after the main function, but not within it.
6. Always use function prototype statements to avoid errors in parameter passing.
7. Use printf statements to generate memory snapshots of the actual parameters before a

function is referenced, and of the formal parameters at the beginning of the function.
8. Carefully match the type, order, and number of actual parameters with the formal param-

eters of a function.
9. In a macro definition, each argument and the entire body should be enclosed in its own

set of parentheses.
10. System-dependent limitations can occasionally cause problems with recursive solutions

to a problem.

PROBLEMS

SHORSHORTT-ANSWER PR-ANSWER PROBLEMSOBLEMS

True–False Problems

Indicate whether the following statements are true (T) or false (F):

1. The body of a function is contained in braces. T F
2. The parameter list (or argument list) contains all variables

used by the function. T F
3. In a call-by-value reference, a function cannot change the value

of an actual parameter. T F
4. A static variable is declared inside a function, but it retains its value

from one reference call to another. T F

4

206 Chapter 4 Modular Programming with Functions

Multiple Choice Problems

Circle the letter for the best answer to complete each statement or for the correct answer to
each question.

5. Which of the following is a valid function definition statement?
(a) function cube(double x)
(b) double cube(double x)
(c) double cube(x)
(d) cube(double x)

6. In a function call, the actual parameters are separated by
(a) commas.
(b) semicolons.
(c) colons.
(d) spaces.

7. The definition of the statements in which an identifier is known (or can be used) is
(a) global.
(b) local.
(c) static.
(d) scope.

Program Analysis

Use the following function for Problems 8–11:

/*–––*/
/* This function returns 0 or 1. */

int fives(int n)
{

/* Compute result to return. */
if ((n%5) == 0)

return 1;
else

return 0;
}
/*–––*/

8. What is the value of fives(15);

9. What is the value of fives(26);

10. What is the value fives(ceil(sqrt(62.5)));
(Hint: you don’t need a calculator to determine this value.)

11. Does this function work properly for all integers? If not, what are its limitations?

PRPROGRAMMING PROGRAMMING PROBLEMSOBLEMS

Simple Simulations. In the following problems, develop simple simulations using the func-
tions rand_int and rand_float:

12. Write a program to simulate tossing a “fair” coin. Allow the user to enter the number of
tosses. Print the number of tosses that yield heads and the number of tosses that yield
tails. What should be the percentage distribution of heads and tails?

Problems 207

13. Write a program to simulate tossing a coin that has been weighted such that it lands with
heads up 60% of the time. Allow the user to enter the number of tosses. Print the number
of tosses that yield heads and the number of tosses that yield tails.

14. Write a program to simulate rolling a six-sided “fair” die with one dot on one side, two
dots on another side, three dots on another side, and so on. Allow the user to enter the
number of rolls. Print the number of rolls that gave one dot, the number of rolls that gave
two dots, and so on. What should be the percentage distribution of the number of dots
from the rolls?

15. Write a program to simulate an experiment rolling two six-sided “fair” dice. Allow the
user to enter the number of rolls of the dice to simulate. What percentage of the time does
the sum of the dots on the dice equal 8 in the simulation?

16. Write a program to simulate a lottery drawing that uses balls numbered from 1 through
10. Assume that three balls are drawn at random. Allow the user to enter the number of
lottery drawings to simulate. What percentage of the time does the result contain three
even numbers in the simulation? What percentage of the time does the number 7 occur in
the three numbers in the simulation? What percentage of the time do the numbers 1, 2,
and 3 occur in the simulation?

Component Reliability. The problems that follow specify computer simulations to evaluate
the reliability of several component configurations. Use the function rand_float developed
in this chapter.

17. Write a program that simulates the design shown in Figure 4.14 using a component relia-
bility of 0.8 for component 1, 0.85 for component 2, and 0.95 for component 3. Print the
estimate of the reliability, using 5000 simulations. (The analytical reliability of this sys-
tem is 0.794.)

18. Write a program that simulates the design shown in Figure 4.15 using a component relia-
bility of 0.8 for components 1 and 2, and 0.95 for components 3 and 4. Print the estimate
of the reliability, using 5,000 simulations. (The analytical reliability of this system is
0.9649.)

19. Write a program that simulates the design shown in Figure 4.16 using a component relia-
bility of 0.95 for all components. Print the estimate of the reliability, using 5000 simula-
tions. (The analytical reliability of this system is 0.99976.)

a

Component
1

Component
3

b

Component
2

Figure 4.14 Configuration 1.

4

208 Chapter 4 Modular Programming with Functions

Flight-Simulator Wind Speed. This set of problems relates to a computer simulation of
wind speed for a flight simulator. Assume that the wind speed for a particular region can be
modeled using an average value and a range of gust values that is added to the average. For
example, the wind speed might be 10 miles an hour, with added noise (that represents gusts)
that range from -2 miles per hour to 2 miles per hour, as shown in Figure 4.17. Use the func-
tion rand_float developed in this chapter.

20. Write a program to generate a data file named wind1.dat that contains 1 hour of simu-
lated wind speeds. Each line of the data file should contain the time in seconds and the
corresponding wind speed. The time should start with 0 seconds. The increment in time
should be 10 seconds, and the final line of the data file should correspond to 3600 sec-
onds. The user should be prompted to enter the average wind speed and the range of val-
ues of the gusts.

21. Redo Problem 20, but assume that we want the flight-simulator wind data to include a
0.5% possibility of encountering a small storm at each time step. Therefore, modify the
solution to Problem 20 so that the average wind speed is increased by 10 mph for a peri-
od of 5 minutes when a storm is encountered. A plot of an example data file with three
storms is shown in Figure 4.18.

22. Redo Problem 21, but assume that there is a 1% possibility of encountering a microburst
at each time step in a small storm. Therefore, modify the solution to Problem 21 so that

a

Component
2

Component
4

b

Component
1

Component
3

Figure 4.16 Configuration 3.

a

Component
2

Component
4

b

Component
1

Component
3

Figure 4.15 Configuration 2.

Problems 209

0 500 1000 1500 2000 2500 3000 3500 4000
5

10

15

20

25

Time, s

W
in

d
sp

ee
d,

 m
ph

Simulated Wind Speed

Figure 4.18 Simulated wind speeds with three storms.

the wind speed is increased by 50 mph over the storm values for a period of 1 minute if a
microburst is encountered. A plot of an example data file with a microburst within a
storm is shown in Figure 4.19.

23. Modify the program in Problem 21 so that the user enters the possibility of encountering
a storm.

24. Modify the program in Problem 21 so that the user enters the length in minutes for the
duration of a storm.

25. Modify the program in Problem 21 so that the length of a storm is a random number that
varies between 3 and 5 minutes.

Roots of Functions. The following problems relate to finding real roots for functions:

26. Write a program to determine the real roots of a quadratic equation, assuming that the
user enters the coefficients of the quadratic equation. If the roots are complex, print an
appropriate message.

27. Modify Problem 26 so that the program also computes the real and imaginary parts of the
roots if they are complex.

28. Write a C function to evaluate the mathematical function

f1x2 = 0.1x2 - x ln x.

0 500 1000 1500 2000 2500 3000 3500 4000
8

9

10

11

12

Time, s

W
in

d
sp

ee
d,

 m
ph

Simulated Wind Speed

Figure 4.17 Simulated wind speed.

4

210 Chapter 4 Modular Programming with Functions

a c b x

f(a)

f(b)

f(c)

Figure 4.20 Straight line intersection
in (a,b).

Assume that the corresponding function prototype is

double f(double x);

Then modify the program developed in Section 4.8 so that it searches for roots of this
new function instead of searching for roots of polynomials. Test the program by search-
ing for a root in [1, 2] for this new function.

29. Modify the program developed in Section 4.8 to find the roots of this function in a user-
specified interval:

Use the sinc function developed in this chapter.

30. In the program developed in Section 4.8 we searched for subintervals for which the func-
tion values at the endpoints had different signs; we then estimated the root location to be
the midpoint of the subinterval. A more accurate estimate of the root location is usually
the intersection of a straight line through the function values with the x axis, as shown in
Figure 4.20. Using similar triangles, it can be shown that the intersection point c can be
computed using the equation

Modify program chapter4_7 to estimate the root of a subinterval using this approximation.

c =
a # f1b2 - b # f1a2
f1b2 - f1a2 .

f1x2 = sinc1x2.

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

Time, s

W
in

d
sp

ee
d,

 m
ph

Simulated Wind Speed

Figure 4.19 Simulated wind speeds with a microburst.

Factorials. The following set of problems relates to computing factorials. If you did not
cover the section on recursion, read the material on pages 200–201 for the definition of a fac-
torial and then review the nonrecursive function for computing the factorial.

31. A convenient approximation for computing the factorial n! for large values of n is given
by the Stirling formula

where e is the base for natural logarithms, or approximately 2.718282. Write an integer
function for computing this approximation to a factorial. Assume that the corresponding
prototype is

int n_fact(int n);

32. Suppose that we have n distinct objects. There are many different orders that we can se-
lect to line up the objects in a row. In fact, there are n! orderings, or permutations, that
can be obtained with n objects. If we have n objects, and select k of the objects, then there
are possible orderings of k objects. That is, the number of different permu-
tations of n different objects taken k at a time is Write a function named
permute that receives values for n and k, and then returns the number of permutations of
the n objects taken k at a time. (If we consider the set of digits the different per-
mutations of two digits are and) Assume
that the corresponding prototype is

int permute(int n,int k);

33. Whereas permutations (Problem 32) are concerned with order, combinations are not.
Thus, given n distinct objects, there is only one combination of n objects taken n at a
time, but there are n! permutations of n distinct objects taken n at a time. The number of
combinations of n objects, taken k at a time is equal to Write a func-
tion named combine that receives values for n and k and then returns the number of com-
binations of the n objects taken k at a time. (If we consider the set of digits the
different combinations of two digits are and) Assume that the cor-
responding prototype is

int combine(int n, int k);

34. The cosine of an angle can be computed from the following infinite series:

Write a program that reads an angle x (in radians) from the keyboard. Then, in a function,
compute the cosine of the angle using the first five terms of this series. Print the value
computed along with the value of the cosine computed using the C library function.

35. Modify the program in Problem 34 so that the approximation uses terms from the series
as long as the absolute value of a term is greater than 0.0001. Print the number of terms
used in the series approximation.

cos x = 1 -
x2

2!
+
x4

4!
-
x6

6!
+ Á .

52, 36.51, 26, 51, 36, 51, 2, 36,
n!>11k!21n - k2!2.

53, 26.51, 26, 52, 16, 51, 36, 53, 16, 52, 36,51, 2, 36,
n!>1n - k2!.n!>1n - k2!

n! = 22pnan
e
bn,

Problems 211

Combinations

Permutations

4

CHAPTER FIVE

212

5

Crime Scene Investigation:
Speech Analysis and Speech
Recognition
In the four-color insert in Chapter 1 on biometrics,we discussed the use of speech recognition as
a biometric.We also pointed out that speaker recognition (identifying people by their speech
signals) is a very challenging problem.Some of the challenges relate to the fact that things can cause
a voice to change. For example,when you have a cold, your voice is different;when you are emo-
tional or stressed, your voice is different. Current research has advanced enough that there are
some examples of speech recognition (identifying the words in the speech, but not who is speak-
ing) in commercial systems. A new fifth-generation fighter aircraft, the Joint Strike Fighter, is being
designed with special speech recognition capabilities. In the initial checkout before a flight, the pilot
will load the characteristics of his/her speech, and then during missions, the pilot will be able to
verbally ask for information from the on-board computers.Speech analysis is a very common part
of both commercial systems and crime scene investigations. For example, speech analysis can
include analyzing audio signals to reduce the noise in the signals. It can also isolate background
sounds such as sirens or aircraft noise to attempt to determine the location where the signal was
collected. If there are a lot of speech data to analyze, automated routines can be written to do a
number of things such as convert speech signals to text, determine the language being spoken,
determine if the speaker is male or female,and even identify a regional dialect in the speech. In this
chapter,we will develop a C program to perform some common speech analysis routines.

CHAPTER OUTLINE

OBJECTIVES In this chapter, we develop problem solutions containing:

5.1 One-Dimensional Arrays
5.2 Problem Solving Applied: Hurricane Categories
5.3 Problem Solving Applied: Molecular Weights
5.4 Statistical Measurements
5.5 Problem Solving Applied: Speech Signal Analysis
5.6 Sorting Algorithms
5.7 Search Algorithms
5.8 Two-Dimensional Arrays
5.9 Problem Solving Applied:Terrain Navigation
5.10 Matrices and Vectors*
5.11 Numerical Technique: Solution to Simultaneous Equations*
5.12 Problem Solving Applied: Electrical Circuit Analysis*
5.13 Higher Dimensional Arrays

Summary, Key Terms, C Statement Summary,
Style Notes, Debugging Notes, Problems

*

When solving engineering problems, it is important to be able to visualize the data related to
the problem. Sometimes the data consist of just a single number, such as the radius of a circle.
At other times, the data may be a coordinate in a plane that can be represented as a pair of
numbers, with one number representing the x-coordinate and the other number representing
the y-coordinate. There are also times when we want to work with a set of similar data values,
but we do not want to give each value a separate name. For example, suppose that we have a
set of 100 temperature measurements that we want to use to perform several computations.

ARRAYS AND MATRICES

5.1 One-Dimensional Arrays

213

■ one-dimensional arrays,
■ programmer-defined modules for

the statistical analysis of data,
■ functions that sort information

and search for information,

■ two-dimensional arrays,
■ vector and matrix computations,

and
■ techniques for solving a system of

simultaneous equations.

*Optional section.

214 Chapter 5 Arrays and Matrices

Obviously, we do not want to use 100 different names for the temperature measurements, so
we need a method for working with a group of values using a single identifier. One solution to
this problem uses a data structure called an array. A one-dimensional array can be visual-
ized as a list of values arranged in either a row or a column, as follows:

Array

One-Dimensional
Array

Elements We assign an identifier to an array, and then we distinguish between elements or values in the
array using subscripts. In C, the subscripts always start with 0 and increment by 1. Thus, by
using the example arrays, the first value in the s array is referenced by s[0], the third value
in the t array is referenced by t[2], and the last value in the array v is referenced by v[4].

Arrays are convenient for storing and handling large amounts of data, so there is a tenden-
cy to use them in algorithms when they are not necessary. Arrays are more complicated to use
than simple variables, and thus make programs longer and more difficult to debug. Therefore,
use arrays only when it is necessary to have the complete set of data available in memory.

Definition and Initialization
An array is defined using declaration statements. The identifier is followed by an integer ex-
pression in brackets that specifies the number of elements in the array. Note that all elements
in an array must be the same data type. The declaration statements for the three example ar-
rays are as follows:

int s[6];
char v[5];
double t[4];

An array can be initialized with declaration statements or with program statements. To
initialize the array with a declaration statement, the values are specified in a sequence that is
separated by commas and enclosed in braces. To define and initialize the sample arrays s, v,
and t, use the following statements:

int s[6]={5,0,-1,2,15,2};
char v[5]={'a','e','i','o','u'};
double t[4]={0.0,0.1,0.2,0.3};

If the initializing sequence is shorter than the array, then the rest of the values are initialized to
zero. Hence, if we want to define an integer array of 100 values, where each value is also ini-
tialized to zero, we would use the following statement:

int s[100]={0};

Subscripts

s[0] s[1] s[2] s[3] s[4] s[5]

v[0] v[1] v[2] v[3] v[4]

t[0]

t[1]

t[2]

t[3]

05 2152

'e' 'i' 'o' 'u''a'0.0

0.1

0.2

0.3

-1

Section 5.1 One-Dimensional Arrays 215

If an array is specified without a size, but with an initialization sequence, the size is defined to
be equal to the number of values in the sequence, as follows:

int s[]={5,0,-1,2,15,2};
double t[]={0.0,0.1,0.2,0.3};

The size of an array must be specified in the declaration statement by using either a constant
within brackets or by an initialization sequence within braces.

Arrays can also be initialized with program statements. For example, suppose that we
want to fill a double array g with the values Because there are 21
values, listing the values on the declaration statement would be tedious. Thus, we use the fol-
lowing statements to define and initialize this array:

/* Declare variables. */
int k;
double g[21];
...
/* Initialize the array g. */
for (k=0; k<=20; k++)

g[k] = k*0.5;

It is important to recognize that the condition in this for statement must specify a final sub-
script value of 20, and not 21, since the array elements are g[0] through g[20]. It is a common
mistake to specify a subscript that is one value more than the largest valid subscript, and this
error can be very difficult to find because it accesses values outside the array. Accessing val-
ues outside of an array can produce execution errors such as “segmentation fault” or “bus
error”. More often, this error is not detected during the program execution, but will cause un-
predictable program results, since your program has modified a memory location outside of
your array. It is important to be careful about exceeding the array subscripts. In our programs,
we select conditions in for loops that specifically use the final value as a reminder to our-
selves to carefully write the condition to avoid errors. Thus, in this example, we use the con-
dition k<=20 instead of k<21, although both work properly. Also, we will generally use k as
the subscript for a one-dimensional array.

Arrays are often used to store information that is read from data files. For example, sup-
pose that we have a data file named sensor3.txt that contains 10 time and motion meas-
urements collected from a seismometer. To read these values into arrays named time and
motion, we could use these statements:

/* Declare variables. */
int k;
double time[10], motion[10];
FILE *sensor;
...
/* Open file and read data into arrays. */
sensor = fopen("sensor3.txt","r");
for (k=0; k<=9; k++)

fscanf(sensor,"%lf %lf",&time[k],&motion[k]);

0.0, 0.5, 1.0, 1.5, Á , 10.0.

216 Chapter 5 Arrays and Matrices

Show the contents of the arrays defined in each of the following sets of statements:

1. int x[10]={-5,4,3};

2. char letters[]={'a','b','c'};

3. double z[4];
. . .
z[1] = -5.5;
z[2] = z[3] = fabs(z[1]);

4. int k;
double time[9];
...
for (k=0; k<=8; k++)

time[k] = (k-4)*0.1;

PRACTICE!PRACTICE!

Computations and Output
Computations with array elements are specified just like computations with simple vari-
ables, but a subscript must be used to specify an individual array element. To illustrate, the
program that follows reads an array y of 100 floating-point values from a data file, deter-
mines the average value of the array, and then stores it in y_ave. Then, the program will
determine the number of values in the array y that are greater than the average, count them
and print the count. If the purpose of this program had been to determine the average of the
values in the data file, an array would not have been necessary. The loop to read values
could read each value into the same variable and add its value to a sum before the next value
is read. However, because we needed to compare each value to the average in order to count
the number of values greater than the average, an array was needed to access each value
again.

/*–––*/
/* Program chapter5_1 */
/* */
/* This program reads 100 values from a data file and */
/* determines the number of values greater than the average. */

#include <stdio.h>
#define N 100
#define FILENAME "lab1.txt"

int main(void)
{

/* Declare and initialize variables. */
int k, count=0;
double y[N], y_ave, sum=0;
FILE *lab;

Section 5.1 One-Dimensional Arrays 217

/* Open file, read data into an array, */
/* and compute a sum of the values. */
lab = fopen(FILENAME,"r");
if (lab == NULL)

printf("Error opening input file. \n");
else
{

/* Input and process data. */
for (k=0; k<=N-1; k++)
{

fscanf(lab,"%lf",&y[k]);
sum += y[k];

}

/* Compute average and count values that */
/* are greater than the average. */
y_ave = sum/N;
for (k=0; k<=N-1; k++)

if (y[k] > y_ave)
count++;

/* Print count and close file. */
printf("%d values greater than the average \n",count);
fclose(lab);

}

/* Exit program. */
return 0;

}
/*–––-*/

Array values are printed using a subscript to specify the individual value desired. For ex-
ample, to print the first and last values of the array y from the previous example, we would
use the following statement:

printf("first and last array values: \n");
printf("%f %f \n",y[0],y[N-1]);

To print all 100 values of y, one per line, we use the following loop:

printf("y values: \n");
for (k=0; k<=N-1; k++)

printf("%f \n",y[k]);

When printing a large array, such as this one, we probably would like to print several numbers
on the same line. To invoke the modulus operator to skip to a new line before each group of
five values is printed, we would use the following statements:

218 Chapter 5 Arrays and Matrices

printf("y values: \n");
for (k=0; k<=N-1; k++)

if (k%5 == 0)
printf("\n %f ",y[k]);

else
printf("%f ",y[k]);

printf("\n");

Similar statements can also be used to write array values to a data file. For example, to print the
value of y[k] on a line in a data file with a file pointer sensor, we use the following statement:

fprintf(sensor,"%f \n",y[k]);

Since the newline indicator is included, the next value written to the file will be on a new line.
The number of elements in an array is used in the array declaration and is used in loops

to access the elements in the array. If the number of elements is changed, then there are sever-
al places in the program that need to be modified. Changing the size of an array is simplified
if a symbolic constant is used to specify the size of the array. To change the size, only the pre-
processor directive needs to be changed. This style suggestion is especially important in pro-
grams that contain many modules, or in programming environments in which several
programmers are working on the same software project. Many of the following programs il-
lustrate the use of a symbolic constant to define the size of an array.

Table 5.1 gives an updated precedence order that includes subscript brackets. Brackets
and parentheses are associated before the other operators. If parentheses and brackets are in
the same statement, they are associated from left to right; if they are nested, the innermost set
is evaluated first.

Assume that the variable k and the array s have been defined with the following statement:

int k, s[]={3,8,15,21,30,41};

Using a hand calculation, determine the output for each of the following sets of statements:

1. for (k=0; k<=5; k+=2)
printf("%d %d \n",s[k],s[k+1]);

2. for (k=0, k<=5; k++)
if (s[k]%2 == 0)

printf("%d ",s[k]);
printf("\n");

PRACTICE!PRACTICE!

Function Arguments
When the information in an array is passed to a function, two parameters are usually used;
one parameter specifies a particular array, and the other parameter specifies the number of el-
ements used in the array. By specifying the number of elements of the array, the function be-
comes more flexible. For example, if the function specifies an integer array, then the function
can be used with any integer array; the parameter that specifies the number of elements as-
sures that we use the correct size. Also, the number of elements used in an array may vary
from one time to another. For example, the array may use elements read from a data file; the

Section 5.1 One-Dimensional Arrays 219

Table 5.1 Operator Precedence

Precedence Operation Associativity

1 () [] Innermost first
2 ++ -- + - ! (type) Right to left (unary)
3 * / % Left to right
4 + - Left to right
5 < <= > >= Left to right
6 == != Left to right
7 && Left to right
8 || Left to right
9 ?: Right to left

10 = += -= *= /= %= Right to left
11 , Left to right

number of elements then depends on the specific data file used when the program is run. In all
these examples, the array must be declared to be a maximum size, and then the actual number
of elements used can be less than or equal to that maximum size.

The next program reads an array from a data file and then references a function to deter-
mine the maximum value in the array. The variable npts is used to specify the number of val-
ues in the array; the value of npts can be less than or equal to the defined size of the array,
which is 100. The function has two arguments—the name of the array and the number of
points in the array, as indicated in the function prototype statement.

This program assumes that there will not be more than 100 values in the file; otherwise,
this program will not work correctly. Arrays must be specified to be as large as, or larger than,
the maximum number of values to be read into them.

The purpose of program chapter5_2 is to illustrate the use of an array as a function ar-
gument. If the purpose of this program was to determine the maximum of the data values in
the file, an array would not have been necessary; the maximum could have been determined
as the data values were read.

/*–––*/
/* Program chapter5_2 */
/* */
/* This program reads values from a data file and */
/* determines the maximum value with a function. */

#include <stdio.h>
#define N 100
#define FILENAME "lab2.txt"

int main(void)
{

/* Declare variables and function prototype. */
int k=0, npts;
double y[N];
FILE *lab;
double max(double x[],int n);

220 Chapter 5 Arrays and Matrices

/* Open file, read data into an array. */
lab = fopen(FILENAME,"r");
if (lab == NULL)

printf("Error opening input file. \n");
else
{

while ((fscanf(lab,"%lf",&y[k])) == 1)
k++;

npts = k;

/* Find and print the maximum value. */
printf("Maximum value: %f \n",max(y,npts));

/* Close file and exit program. */
fclose(lab);

}
/* Exit program. */
return 0;

}

/*––-*/
/* This function returns the maximum value in an array x */
/* with n elements. */

double max(double x[],int n)
{

/* Declare variables. */
int k;
double max_x;

/* Determine maximum value in the array. */
max_x = x[0];
for (k=1; k<=n-1; k++)

if (x[k] > max_x)
max_x = x[k];

/* Return maximum value. */
return max_x;

}
/*––-*/

There is a very significant difference between using simple values as function parameters
and using arrays as parameters. When a simple variable is used as a parameter, the value is
passed to the formal argument in the function, and thus the value of the original variable cannot
be changed; this is a call-by-value reference. When an array is used as a parameter, the memo-
ry address of the array is passed to the function instead of the entire set of values in the array.
Therefore, the function references values in the original array; this is a call-by-address refer-
ence. Because a function accesses the original array values, we must be very careful that we do
not inadvertently change values in an array within a function. Of course, there may be occasions
when we wish to change the values in the array, as we will see in examples in this chapter.

Call-by-value

Call-by-address

Section 5.2 Problem Solving Applied: Hurricane Categories 221

Assume that we have defined the following variables:

int k=6;
double data[]={1.5,3.2,-6.1,9.8,8.7,5.2};

Using the max function presented in this section, give the value of each of the following
expressions:

1. max(data,6);

2. max(data,5);

3. max(data,k-3);

4. max(data,k%5);

PRACTICE!PRACTICE!

5.2 Problem Solving Applied: Hurricane Categories
Hurricanes are tropical storms with very strong winds and heavy rains. (They are called
typhoons in the western North Pacific Ocean and cyclones in the Indian Ocean.) These tropi-
cal storms, or cyclones, are low-pressure cells that typically form in the summer and early
fall. The large rotating air masses are easily seen on satellite images, and the storms are care-
fully tracked because of the potential for damage in populated areas. If the storm’s winds are
between 38 and 74 miles per hour, it called a tropical storm; if the winds exceed 74 miles per
hour, the storm is a tropical cyclone, or hurricane. The Saffir–Simpson scale defines cate-
gories of hurricane intensity based on the wind speed. In this section, we define the
Saffir–Simpson scale in more detail, and we then develop a program that reads a data file
containing current storms and their peak wind speeds. Finally we will analyze the wind
speeds, and we will print a report with information on the storms that are strong enough to be
classified as hurricanes.

The Saffir–Simpson scale of hurricane intensities is used to classify hurricanes according
to the amount of damage that the storm is likely to generate if it hits a populated area. The
main characteristics of the five categories are as follows:

Category 1 wind speeds of 74 to 95 mph
storm surge of 4 to 5 feet
minimal damage to property

Category 2 wind speeds of 96 to 110 mph
storm surge of 6 to 8 feet
moderate damage to property

Category 3 wind speeds of 111 to 130 mph
storm surge of 9 to 12 feet
extensive damage to property

Category 4 wind speeds of 131 to 155 mph
storm surge of 13 to 18 feet
extreme damage to property

Hurricanes

Saffir–Simpson
scale

1. PROBLEM DESCRIPTION

Determine which storms are hurricanes, using a data file of current storm information.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows the data file as the input and the hurricane information as output.

222 Chapter 5 Arrays and Matrices

Table 5.2 Strong Hurricanes in the U.S. during 1950–2002

Hurricane Year Category

Hazel 1954 4
Audrey 1957 4
Donna 1960 4
Carla 1961 4
Camille 1969 5
Celia 1970 3
Frederic 1979 3
Allen 1980 3
Gloria 1985 3
Hugo 1989 4
Andrew 1992 5
Opal 1995 3

Category 5 wind speeds over 155 mph
storm surge greater than 18 feet
catastrophic damage to property

Table 5.2 contains a list of the 12 strongest hurricanes to hit the United States from 1950 to 2002.
The most destructive hurricane ever in the United States was Hurricane Katrina in August

2005. The winds were over 125 mph, but the winds were not the most destructive part of the hur-
ricane. The rains caused Lake Pontchartrain near New Orleans to flood, and a number of levees
were breached. Over 80% of New Orleans was underwater, and over 1,800 lives were lost.

Each year, there are over 100 storms with the potential to become hurricanes. Write a
program that will read a data file containing information on the current storms; assume that
the data file consists of an identification number and the highest wind speed (in miles per
hour) measured from the storm. The program should print a list of all storms that have wind
speeds high enough to classify them as hurricanes. In addition to the identification number (an
integer), print the peak wind speed and the corresponding hurricane intensity category. Also,
print an asterisk after the identification number of the hurricane with the largest wind speed.

Hurricane peak winds

Hurricane categories

Hurricane Identification Numbers

storms1.txt

Section 5.2 Problem Solving Applied: Hurricane Categories 223

3. HAND EXAMPLE

Assume that the data file contains the following five sets of data:

Identification Peak Wind

142 38
153 135
162 59
177 76
181 63

Our program should produce the following report:

Storms that Qualify as Hurricanes

Identification Peak Wind (mph) Category

153 135 4
177 76 1

Recall that the asterisk identifies the storm with the largest wind speed.

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a series of
sequential steps. To print the information for storms that are hurricanes, we do not need an
array. We could determine this information as we read through the file, since the hurricane
status is dependent only on the wind speed. However, since we are required to use an aster-
isk to indicate the storm with the peak wind, we need to store all the information in arrays.
After we have determined the maximum wind speed, we can then go back through the data,
and we can print the hurricane information with the asterisk on the correct line.

Decomposition Outline

1. Read the storm data into arrays, and determine the maximum wind speed.

2. Compute the intensity categories and print information for storms that are hurricanes;
place an asterisk at the maximum.

We will put the steps that determine the intensity category into a function:

Refinement in Pseudocode

main: if file cannot be opened
print error message

else
read data into arrays, and determine max speed, npts
set k to 0
while k ≤ npts-1

if mph[k] > 74
if mph[k] = max speed

print id[k], *, mph[k], cateory(mph[k])
else

print id[k], mph[k], category(mph[k])
add 1 to k

*

224 Chapter 5 Arrays and Matrices

category(mph):
category =1;
if mph ≥ 96

category =2
if mph ≥ 111

category =3
if mph ≥ 131

category = 4
if mph ≥ 155

category = 5

The steps in the pseudocode are now detailed enough to convert into C:

/*––-*/
/* Program chapter5_3 */
/* */
/* This program reads storm values from a data file */
/* and prints a hurricane report. */

#include <stdio.h>
#define N 500
#define FILENAME "storms1.txt"

int main(void)
{

/* Declare and initialize variables. */
int k=0, npts, id[N];
double mph[N], max=0;
FILE *storms;
int category(double speed);

/* Open file, read data into an array, */
/* and determine maximum wind speed. */
storms = fopen(FILENAME,"r");
if (storms == NULL)

printf("Error opening input file. \n");
else
{

/* Read data and determine maximum mph. */
while ((fscanf(storms,"%d %lf",&id[k],&mph[k])) == 2)
{

if (mph[k] > max)
max = mph[k];

k++;
}
npts = k;

/* Print hurricane report. */
if (max >= 74)
{

printf("Storms that Qualify as Hurricanes \n");
printf("Identification Peak Wind (mph) Category \n");

}
else

printf("No hurricanes in the file \n");
for (k=0; k<=npts-1; k++)

if (mph[k] >= 74)
if (mph[k] == max)

printf("%d* %.0f %d \n",
id[k],mph[k],category(mph[k]));

else
printf("%d %.0f %d \n",

id[k],mph[k],category(mph[k]));

/* Close file. */
fclose(storms);

}

/* Exit program. */
return 0;

}
/*––-*/
/* This function determines the hurricane intensity */
/* category. */

int category(double speed)
{

/* Declare variables. */
int intensity=1;

/* Determine category. */
if (speed >= 96)

intensity = 2;
if (speed >= 111)

intensity = 3;
if (speed >= 131)

intensity = 4;
if (speed >= 155)

intensity = 5;

/* Return intensity. */
return intensity;

}
/*––-*/

Section 5.2 Problem Solving Applied: Hurricane Categories 225

226 Chapter 5 Arrays and Matrices

These problems relate to the preceding program for printing a hurricane intensity report.

1. Modify the program so that it only prints the information for the hurricane with the
largest wind speed.

2. Modify the program so that it also prints the number of storms from the data file.

3. Modify the program so that it also prints the number of hurricanes from the data file.

4. Modify the program so that it prints the number of hurricanes in each category.

MODIFY!MODIFY!

5.3 Problem Solving Applied: Molecular Weights
Chemical reactions play an important role in many scientific and engineering systems. Un-
derstanding and controlling chemical reactions allows petroleum engineers to improve the ef-
ficiency of the refineries necessary to process oil and gas resources. Understanding the
behavior and reactions of fully ionized gases at very high temperatures under the influence of
strong magnetic fields will be an important step in developing controlled nuclear fusion. In
genetic engineering, the identification of amino acids in DNA is a key step in developing tech-
niques to synthesize new products.

Computing the molecular weight from a chemical formula is a common task in any appli-
cation that involves chemical reactions. Write a program that reads a chemical formula from the
keyboard and then computes the corresponding molecular weight. We will assume that this pro-
gram will be used in a genetic engineering laboratory working with the amino acids in proteins.
Amino acids contain only atoms of oxygen (O), carbon (C), nitrogen (N), sulfur (S), and hydro-
gen (H). For example, the chemical formula for alanine is thus, alanine contains two
atoms of oxygen, three atoms of carbon, one atom of nitrogen, and seven atoms of hydrogen.
(Table 5.3 contains the atoms in amino acids.) The input to the program is a set of characters that
specifies the chemical formula. The valid characters are the abbreviations O, C, N, S, and H, and
we will allow these characters to be either uppercase or lowercase. One or two digits that speci-
fy the number of atoms in the element may also follow each element. Thus, the input characters
for alanine could include O2C3NH7 or o2c3nh7. Errors occur if the element is not one of the five
specified elements or if the formula begins with a number. Use the following molecular weights:

oxygen 15.9994 sulfur 32.066
carbon 12.011 hydrogen 1.00794.
nitrogen 14.00674

O2C3NH7;

5. TESTING

We will test our program with a file containing the hand example. This produces the fol-
lowing interaction:

Storms that Qualify as Hurricanes
Identification Peak Wind (mph) Category
153* 135 4
177 76 1

Section 5.3 Problem Solving Applied: Molecular Weights 227

Table 5.3 Amino Acid Molecules

Amino Acid O C N S H

Alanine 2 3 1 0 7
Arginine 2 6 4 0 15
Asparagine 3 4 2 0 8
Aspartic 4 4 1 0 6
Cysteine 2 3 1 1 7
Glutamic 4 5 1 0 8
Glutamine 3 5 2 0 10
Glycine 2 2 1 0 5
Histidine 2 6 3 0 10
Isoleucine 2 6 1 0 13
Leucine 2 6 1 0 13
Lysine 2 6 2 0 15
Methionine 2 5 1 1 11
Phenylalanine 2 9 0 1 11
Proline 2 5 1 0 10
Serine 3 3 1 0 7
Threonine 3 4 1 0 9
Tryptophan 2 11 2 0 11
Tyrosine 3 9 1 0 11
Valine 2 5 1 0 11

1. PROBLEM STATEMENT

Compute the molecular weight of a chemical formula for an amino acid.

2. INPUT/OUTPUT DESCRIPTION

The input to the program is a chemical formula entered from the keyboard, and the output
is the corresponding molecular weight displayed on the computer screen.

3. HAND EXAMPLE

If the input is the chemical formula for alanine, which is O2C3NH7, then the corresponding
output should be computed in the following way:

Two atoms of oxygen:

2 # 15.9994 = 31.9988

Molecular
weight

Chemical
formula

228 Chapter 5 Arrays and Matrices

Three atoms of carbon:

One atom of nitrogen:

Seven atoms of hydrogen:

The total molecular weight is 89.09412.

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline, because it breaks the solution into a series of
sequential steps:

Decomposition Outline

1. Read the chemical formula.

2. Compute the molecular weight.

3. Print the molecular weight.

Step 1 involves reading the characters from the keyboard and storing them in an integer
array. Step 2 involves examining the characters (also called parsing) to first determine each
element and then determine the number of atoms for each element. Because this compari-
son will require several steps, we will implement this computation in a function. In the
main function, we will multiple the individual atomic weights by the appropriate number of
atoms; then we will add the values to a total. Note that we will need to convert the number
of atoms from character digits to a numerical value in order to perform the multiplication.
Since digits are consecutive in the collating sequence, the numerical equivalent of a digit
can be obtained by subtracting the value '0' from it.

Step 3 involves printing the final molecular weight. In this step, we will also print an
error message if the input characters could not be analyzed properly. The refinement in
pseudocode for the main function and the atomic_wt function can now be developed:

Refinement in Pseudocode

main: print message to the user
set k to 0
while more characters

read formula[k]
increment k by 1

set k to 0
while more characters

convert current character to uppercase
determine atomic weight
determine if digits follow
compute weight and add to total

print molecular weight

7 # 1.00794 = 7.05558

1 # 14.00674 = 14.00674

3 # 12.011 = 36.033

Parsing

Section 5.3 Problem Solving Applied: Molecular Weights 229

The steps in the pseudocode are now detailed enough to convert into C.

/*––*/
/* Program chapter5_4 */
/* */
/* This program computes the molecular weight of an amino */
/* acid from its chemical formula. */

#include <stdio.h>
#include <ctype.h>
#define NEWLINE '\n'

int main(void)
{

/* Declare variables and function prototypes. */
int k=0, formula[20], n, current=0, done=0, d1, d2;
double error=0, weight, total=0;
double atomic_wt(int atom);

/* Read chemical formula from keyboard. */
printf("Enter chemical formula for amino acid: \n");
while ((formula[k]=getchar()) != NEWLINE)

k++;
n = k;

/* Identify individual elements and add weights. */
while (current<=(n-1) && done==0)
{

if (isalpha(formula[current]))
{

formula[current] = toupper(formula[current]);
weight = atomic_wt(formula[current]);
if (weight == 0)

done = 1;
else
{

if (current < n-1)
d1 = isdigit(formula[current+1]);

else
d1 = 0;

if (d1 && current<(n-2))
d2 = isdigit(formula[current+2]);

else
d2 = 0;

if (d1 && d2)
{

weight *= ((formula[current+1]-'0')*10 +
(formula[current+2]-'0'));

current += 3;
}
else

if (d1)
{

weight *= (formula[current+1]-'0');
current += 2;

}
else

current++;
}
total += weight;

}
else

done = 1;
}
/* Print formula and weight. */
printf("Formula: \n");
for (k=0; k<=n-1; k++)

putchar(formula[k]);
printf("\n");
if (done == 0)

printf("Molecular Weight: %f \n",total);
else

printf("Error in formula. \n");

/* Exit program. */
return 0;

}
/*––-*/
/* This function returns the molecular weight of an element */
/* in an amino acid. */

double atomic_wt(int atom)
{

/* Declare and initialize variables. */
int k=0, element[5]={'H','C','N','O','S'};
double m_wt[5]={1.00794,12.011,14.00674,

15.9994,32.066}, weight;

/* Search for element. */
while (k<=4 && element[k]!=atom)

k++;

/* Return corresponding atomic weight. */
if (k <= 4)

weight = m_wt[k];
else

weight = 0;
return weight;

}
/*––-*/

230 Chapter 5 Arrays and Matrices

Section 5.4 Statistical Measurements 231

These problems relate to the program developed in this section for computing the molecular
weight of an amino acid.

1. Test the program using an amino acid that has more than nine atoms of one of the
elements.

2. Allow the user to compute the molecular weights for several amino acids. The program
should stop when a period is entered. (Be sure to tell the user to enter a period when
done.)

MODIFY!MODIFY!

5.4 Statistical Measurements
Analyzing data collected from engineering experiments is an important part of evaluating the
experiments. This analysis ranges from simple computations on the data, such as calculating
the average value, to more complicated analyses. Many of the computations or measurements
using data are statistical measurements because they have statistical properties that change
from one set of data to another. For example, the sine of 60° is an exact value that is the same
value every time we compute it, but the number of miles to the gallon that we get with our
car is a statistical measurement, because it varies depending on parameters such as the tem-
perature, the speed that we travel, the type of road, and whether we are in the mountains or
the desert.

Simple Analysis
When evaluating a set of experimental data, we often compute the maximum value, minimum
value, mean or average value, and the median. In this section, we develop functions that can
be used to compute these values using an array as input. These functions (stored in a file
stat_lib.c) will be useful in many of the programs that we develop later in the text and in
solutions to problems at the end of the chapters. However, it is important to note that these
functions assume that there is at least one value in the array.

5. TESTING

Using the data from the hand example, the output from the program is as follows:

Enter chemical formula for amino acid:
O2C3NH7
Molecular Weight: 89.094116

232 Chapter 5 Arrays and Matrices

Median

Mean value

Maximum and Minimum. A function for determining the maximum value in an array
was presented in the previous section; a similar function can be written to determine the min-
imum value. Both functions assume that the array contains double values; simple changes
could be used to convert these functions to specify integer values.

Average. The Greek symbol (mu) is used to represent the average or mean value. An
equation, which uses summation notation, is as follows:

(5.1)

where

The average of a set of values is always a floating-point value, even if all the data values are
integers. To compute the mean value of a double array of n values, we will use the following
function:

/*–––*/
/* This function returns the average or mean value of an */
/* array x with n elements. */

double mean(double x[],int npts)
{

/* Declare and initialize variables. */
int k;
double sum=0;
/* Determine mean value. */
for (k=0; k<=npts-1; k++)

sum += x[k];

/* Return mean value. */
return sum/n;

}
/*–––*/

Note that the variable sum was initialized to zero in the declaration statement. It could also
have been initialized to zero with an assignment statement. In either case, the value of sum is
initialized to zero when the function is referenced.

Median. The median is the value in the middle of a group of values, assuming that the
values are sorted. If there is an odd number of values, the median is the value in the middle; if
there is an even number of values, the median is the average of the values in the two middle
positions. For example, the median of the values is the middle value, or 18;
the median of the values is the average of the two middle values, or

or 28.5. Assume that a group of sorted values are stored in an array and that n
contains the number of values in the array. If n is odd, then the subscript of the middle
value can be represented by floor(n/2), as in floor(5/2), which is 2. If n is even,
then the subscripts of the two middle values can be represented by floor(n/2)-1 and
floor(n/2), as in floor(6/2)-1 and floor(6/2), which are 2 and 3, respectively.

118 + 392>2,
51, 6, 18, 39, 86, 916 51, 6, 18, 39, 866

a
n-1

k=0
xk = x0 + x1 + x2 + Á + xn-1.

m =
a
n-1

k=0
xk

n
,

m

The following function determines the median of a set of values stored in an array. We as-
sume that the values are sorted (into either ascending or descending order). If the array is
not sorted, a function developed later in this chapter can be referenced from the median
function to sort the values.

/*–––*/
/* This function returns the median value in the sorted */
/* array x with npts elements. */

double median(double x[],int npts)
{

/* Declare variables. */
int k;
double median_x;

/* Determine median value. */
k = floor(npts/2);
if (n%2 != 0)

median_x = x[k];
else

median_x = (x[k-1] + x[k])/2;

/* Return median value. */
return median_x;

}
/*–––*/

Go through this function by hand using the two sets of data values given in this discussion.

Variance and Standard Deviation
One of the most important statistical measurements for a set of data is the variance. Before we
give the mathematical definition for variance, we should develop an intuitive understanding.
Consider the values of arrays data1 and data2, which are plotted in Figure 5.1. If we at-
tempted to draw a horizontal line through the middle of the values in each plot, this line would
be at approximately 3.0. Thus, both arrays have approximately the same average or mean
value of 3.0. However, the data in the two arrays clearly have some distinguishing character-
istics. The values in data2 vary more from the mean, or deviate more from the mean value.
The variance of a set of values is defined as the average squared deviation from the mean; the
standard deviation is defined as the square root of the variance. Thus, the variance and the
standard deviation of the values in data2 are greater than the variance and standard deviation
for the values in data1. Intuitively, the larger the variance (or the standard deviation), the fur-
ther the values fluctuate around the mean value.

Mathematically, the variance is represented by where is the Greek symbol sigma.
The variance for a set of data values (which we assume are stored in an array x) can be com-
puted using the following equation:

(5.2)

This equation is a bit intimidating at first, but if you look at it closely, it becomes much sim-
pler. The term is the difference between and the mean, or the deviation of fromxkxkxk - m

s2 =
a
n-1

k=0
1xk - m22
n - 1

.

ss2,

Section 5.4 Statistical Measurements 233

Variance
Standard deviation

234 Chapter 5 Arrays and Matrices

the mean. This value is squared so that we always have a positive value. We then add the
squared deviations for all data points. This sum is then divided by which approximates
an average. The definition of variance has two forms: The denominator of a sample variance
is and the denominator of a population variance is n. Most engineering applications
use the sample variance, as shown in Equation (5.2). Thus, Equation (5.2) computes the aver-
age squared deviation of the data from the mean. The standard deviation is defined to be the
square root of the variance:

(5.3)

Both the variance and the standard deviation are commonly used in analyzing engineer-
ing data, so we give functions for computing both values. Note that the function for comput-
ing the standard deviation references the variance function and that the variance function
references the mean function; thus, these functions must include the proper function proto-
type statements. Also, note that there must be at least two values in the array, or the
variance function will attempt to divide by zero. Here are the two functions:

/*–––*/
/* This function returns the variance of an array x */
/* with npts elements. */

s = 2s2.

n - 1,

n - 1,

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

k

Random numbers in data1

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

k

Random numbers in data2

Figure 5.1 Random sequences.

double variance(double x[],int npts)
{

/* Declare variables and function prototypes. */
int k;
double sum=0, mu;
double mean(double x[],int npts);

/* Determine variance. */
mu = mean(x,npts);
for (k=0; k<=n-1; k++)

sum += (x[k] - mu)*(x[k] - mu);

/* Return variance. */
return sum/(npts-1);

}
/*–––*/
/* This function returns the standard deviation of an array x */
/* with npts elements. */

double std_dev(double x[],int npts)
{

/* Declare function prototypes. */
double variance(double x[],int npts);

/* Return standard deviation. */
return sqrt(variance(x,npts));

/*–––*/

Custom Header File
The functions developed in this section are frequently used in solving engineering problems.
To facilitate their use, we generate a custom header file that contains the prototype statements
for these functions. Then, instead of including all the prototype statements in a main function,
we can use a preprocessor directive that includes the custom header file.

The custom header file named stat_lib.h contains the following function prototype
statements:

double max(double x[],int n);
double min(double x[],int n);
double mean(double x[],int n);
double median(double x[],int n);
double variance(double x[],int n);
double std_dev(double x[],int n);

The statement that includes these function prototype statements in a main function is

#include "stat_lib.h"

The use of this custom header is illustrated in the next section.
In addition to accessing the custom header file with the include statement, a program

must also have access to the file stat_lib.c, which contains the statistical functions. The

Section 5.4 Statistical Measurements 235

236 Chapter 5 Arrays and Matrices

Power

Zero crossings

5.5 Problem Solving Applied: Speech Signal Analysis
A speech signal is an acoustical signal that can be converted into an electrical signal with a
microphone. The electrical signal can then be converted into a series of numbers that repre-
sents the amplitudes of the electrical signal values. These numbers can be stored in data files
so that the speech signal can be analyzed using computer programs. Suppose that we are in-
terested in analyzing speech signals for the words “zero,” “one,” “two,” “nine.” The goal
of this analysis is to develop ways of identifying the correct digit from a data file containing
the utterance of an unknown digit.

Figure 5.2 contains a plot of an utterance of the digit “zero.” The analysis of this type of
complicated signal often starts with computing some of the statistical measurements dis-
cussed in the last section. Other measurements used with speech signals include the average
magnitude, or average absolute value, which is computed as

(5.4)

where n is the number of data values.
Another metric used in speech analysis is the average power of the signal, which is the

average squared value:

(5.5)

The number of zero crossings in a speech signal is also a useful statistical measurement. This
value is the number of times that the speech signal makes a transition from a negative to a pos-
itive value or from a positive to a negative value. A transition from a nonzero value to a zero
value is not a zero crossing.

Average power =
a
n-1

k=0
xk

2

n
.

Average magnitude =
a
n-1

k=0
|xk|

n
,

Á ,

specific details of providing this access are system dependent and may involve adding a file name
to the operating system command that performs the compilation and linking/loading operations.

Assume that the array x is defined and initialized with the following statement:

double x[]={2.5,5.5,6.0,6.25,9.0};

Using a hand calculation, compute the values returned by the following function references:

1. max(x,5) 2. median(x,5)

3. variance(x,5) 4. std_dev(x,5)

5. min(x,4) 6. median(x,4)

PRACTICE!PRACTICE!

Utterance

Magnitude

Section 5.5 Problem Solving Applied: Speech Signal Analysis 237

Write a program to read a speech signal from a data file named zero1.txt. This file
contains values that represent an utterance of the word “zero.” Each line of the file contains a
single value representing a measurement from the microphone taken in time increments of
0.000125 second, so 8000 measurements represent 1 second of data. The data file contains
only valid data, with no header or trailer line; a maximum of 2500 values is contained in the
file. Compute and print the following statistical measurements from the file: mean, standard
deviation, variance, average power, average magnitude, and number of zero crossings.

0 0.05 0.1 0.15 0.2 0.25 0.3
�0.2

�0.1

0

0.1

0.2

0.3
Speech Signal

Time, s

Figure 5.2 Utterance of the word “zero.”

1. PROBLEM DESCRIPTION

Compute the following statistical measurements for a speech utterance: mean, standard de-
viation, variance, average power, average magnitude, and number of zero crossings.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows the data file as the input and the statistical measurements as output.

zero1.txt

Standard deviation

Variance

Average power

Average magnitude

Mean

Zero crossings

238 Chapter 5 Arrays and Matrices

3. HAND EXAMPLE

For a hand example, assume that the file contains the following values:

2.5 8.2 -1.1 -0.2 1.5

Using a calculator, we can compute the following values:

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a series of
sequential steps:

Decomposition Outline

1. Read the speech signal into an array.

2. Compute and print statistical measurements.

Step 1 involves reading the data file and determining the number of data points. Step 2 in-
volves computing and printing the statistical measurements; use the functions already devel-
oped when possible. The structure chart shown in Figure 4.1 illustrates an example of a main
function that references several programmer-defined functions. The refinement in pseudocode
for the main function and for the necessary additional statistical functions follows:

Refinement in Pseudocode

main: read speech signal from data file and
determine the number of points, npts

compute and print mean
compute and print standard deviation
compute and print variance

 Number of zero crossings = 2.

= 2.7

Average magnitude =
1ƒ 2.5 ƒ + ƒ 8.2 ƒ + ƒ -1.1 ƒ + ƒ -0.2 ƒ + ƒ 1.5 ƒ2

5

= 15.398

Average power =
[12.522 + 18.222 + 1-1.122 + 1-0.222 + 11.522]

5
.

= 3.648

Standard deviation = 213.307

= 13.307

+ 1-0.2 - m22 + 11.5 - m22]>4
Variance = [12.5 - m22 + 18.2 - m22 + 1-1.1 - m22

= 2.18

Mean = m =
12.5 + 8.2 - 1.1 - 0.2 + 1.52

5

Section 5.5 Problem Solving Applied: Speech Signal Analysis 239

compute and print average power
compute and print average magnitude
compute and print zero crossings

Additional functions
ave_power(x, npts):

set sum to zero
set k to zero
while k ≤ npts – 1

add (x[k])2 to sum
increment k by 1

return sum/npts
ave_magn (x, npts):

set sum to zero
set k to zero
while k ≤ npts – 1

add | x[k] | to sum
increment k by 1

return sum/npts
crossings(x, npts):

set count to zero
set k to zero
while k ≤ npts – 2

if x[k] . x [k + 1] < 0
increment count by 1

increment k by 1
return count

/*–––*/
/* Program chapter5_5 */
/* */
/* This program computes a set of statistical measurements */
/* from a speech signal. */

#include <stdio.h>
#include <math.h>
#include "stat_lib.h"
#define MAXIMUM 2500
#define FILENAME "zero1.txt"

int main(void)
{

/* Declare variables and function prototypes. */
int k=0, npts;
double speech[MAXIMUM];
FILE *file_in;
double ave_power(double x[],int npts);
double ave_magn(double x[],int npts);
int crossings(double x[],int npts);

240 Chapter 5 Arrays and Matrices

/* Read information from a data file. */
file_in = fopen(FILENAME,"r");
if (file_in == NULL)

printf ("Error opening input file. \n");
else
{

while ((fscanf(file_in,"%lf",&speech[k])) == 1)
k++;

npts = k;

/* Compute and print statistics. */
printf("speech statistics \n");
printf(" mean: %f \n",mean(speech,npts));
printf(" standard deviation: %f \n",

std_dev(speech,npts));
printf(" variance: %f \n",variance(speech,npts));
printf(" average power: %f \n",

ave_power(speech,npts));
printf(" average magnitude: %f \n",

ave_magn(speech,npts));
printf(" zero crossings: %d \n",

crossings(speech,npts));

/* Close file and exit program. */
fclose(file_1);

}
/* Exit program. */
return 0;

}
/*–––*/
/* This function returns the average power of an array x */
/* with npts elements. */

double ave_power(double x[],int npts)
{

/* Declare and initialize variables. */
int k;
double sum=0;

/* Determine average power. */
for (k=0; k<=npts-1; k++)

sum += x[k]*x[k];
/* Return average power. */
return sum/npts;

}
/*–––*/
/* This function returns the average magnitude of an array x */
/* with npts elements.

Section 5.5 Problem Solving Applied: Speech Signal Analysis 241

double ave_magn(double x[],int npts)
{

/* Declare and initialize variables. */
int k;
double sum=0;

/* Determine average power. */
for (k=0; k<=npts-1; k++)

sum += fabs(x[k]);

/* Return average magnitude. */
return sum/npts;

}
/*–––*/
/* This function returns a count of the number of zero */
/* crossings in an array x with npts values. */

int crossings(double x[],int npts)
{

/* Declare and initialize variables. */
int count=0, k;

/* Determine number of zero crossings. */
for (k=0; k<=npts-2; k++)

if (x[k]*x[k+1] < 0)
count++;

/* Return number of zero crossings. */
return count;

}
/*–––*/

Note that the number of potential zero crossings for a set of n data points is n-1 crossings,
because each crossing is determined by a pair of values. Thus, the last pair of values tested
will be at subscripts n-2 and n-1.

5. TESTING

This program requires access to the stat_lib.h header file and to the stat_lib.c file
developed in the previous section. The following values were computed for the utterance
“zero” using the file zero1.txt:

Speech Statistics
mean: -0.000208
standard deviation: 0.077035
variance: 0.00534
average power: 0.005932
average magnitude: 0.060567
zero crossings: 124

242 Chapter 5 Arrays and Matrices

Selection sort

Exchange the minimum with the value in the first position:

1231 958

Original order:

1235 918

5.6 Sorting Algorithms
Sorting a group of data values is another operation that is routinely used when analyzing data. En-
tire texts are available that present many different sorting algorithms. One of the reasons that there
are so many sorting algorithms is that there is not one “best” sorting algorithm. Some algorithms are
faster if the data are already close to the correct order, but these algorithms may be very inefficient if
the order is random or close to the opposite order. Therefore, to choose the best sorting algorithm for
a particular application, you usually need to know something about the order of the original data.
Rather than try to present a complete discussion of sorting algorithms, we present two algorithms. In
this section, we present a selection sort that is simple to understand and simple to code in a function.
In Chapter 6, we present a quicksort function that uses a recursive algorithm to sort a set of values;
this algorithm is presented in Chapter 6 because it requires material presented in that chapter.

The selection sort algorithm begins by finding the minimum value and exchanging it
with the value in the first position in the array. Then the algorithm finds the minimum value
beginning with the second element, and it exchanges this minimum with the second element.
This process continues until reaching the next-to-last element, which is compared with the
last element; the values are exchanged if they are out of order. At this point, the entire array
of values will be in ascending order. This process is illustrated in the following sequences:

Sorting

Most computers have ports for connecting a microphone. Ask your instructor or laboratory
assistant to help you use tools that are widely available on the Internet for collecting speech
signals, to use with the program developed in this section. Collect three separate files of your
speech for the word “zero.” Also collect separate files of your speech for the words for the ad-
ditional digits: “one,” “two,” and “three.”

1. Run this program on all three files of your speech for the word “zero.” Note how the
statistics can vary significantly from one signal to another from the same speaker.

2. Run this program on the files for the words “one,” “two,” and “three.” The statistics for
these different words should vary even more than for the ones for the same word.

3. When working with speech signals, we often compute the average value and then subtract
that from each value in the file so that the resulting set of values has a zero mean. Add the fea-
ture to this program so that the rest of the statistics are computed using the zero-mean signal.

4. Modify this program to include a line in the output from this program that prints the
number of data points in the file.

5. Modify this program to include a line in the output that prints the maximum value from
the data file.

MODIFYMODIFY

Section 5.6 Sorting Algorithms 243

Array values are now in ascending order:

531 1298

Exchange the next minimum with the value in the third position:

531 9128

Exchange the next minimum with the value in the second position:

1231 958

Exchange the next minimum with the value in the fourth position:

Exchange the next minimum with the value in the fifth position:

531 1298

531 9128

The steps in the next function are short, but it is still a good idea to go through this
function using the data in this example. Follow the changes in the subscripts k, m, and j
within the loops. Also, note that it takes three steps (not two) to exchange values in two
variables. Because the function does not return a value, its return type is void. Here is the
function:

/*–––*/
/* This function sorts an array x with npts values into */
/* ascending order. */

void sort(int x[],int npts)
{

/* Declare variables. */
int k, j, m;
double hold;

/* Implement selection sort algorithm. */
for (k=0; k<=npts-2; k++)
{

/* Exchange minimum with next array value. */
m = k;
for (j=k+1; j<=npts-1; j++)

if (x[j] < x[m])
m = j;

hold = x[m];
x[m] = x[k];
x[k] = hold;

}

/* Void return. */
return;

}
/*–––*/

244 Chapter 5 Arrays and Matrices

Another very common operation performed with arrays is searching the array for a specific
value. We may want to know if a particular value is in the array, how many times it occurs in
the array, or where it first occurs in the array. Each of these searches determines a single value
and thus is a good candidate for a function. In this section, we will develop several functions
for searching an array; then, when we need to perform a search in a program, we can proba-
bly use one of these functions with little or no modification.

Searching algorithms fall into two groups: those for searching an unordered list and those
for searching an ordered list.

Unordered List
We first consider searching an unordered list; thus, we assume that the elements are not nec-
essarily sorted into an ascending numerical order (or any other order that may aid us in
searching the array). The algorithm to search an unordered array is just a simple sequential
search: it will check the first element, check the second element, and so on. There are sever-
al ways that we could implement this function. We could develop it as an integer function
that either returns the position of the desired value in the array or returns a if the desired
value is not in the array. We could develop the function as an integer function that returns the
number of times the element occurs in the array. We could also develop the function as a log-
ical function that returns a value of true (1) if the element is in the array or false (0) if the el-
ement is not in the array. All of these ideas represent valid functions, and we could think of
programs that would use each of these forms. We have developed a function that either re-
turns the position of the desired value in an unordered array or returns a if the value is
not found:

-1

-1

5.7 Search Algorithms

Sequential search

To change this function into one that sorts an array in descending values, the inner loop
should search for a maximum value instead of a minimum value.

The function prototype statement that should be used to refer to this sort function is

void sort(int x[], int npts);

It is also important to note that this function modifies the original array. To keep the original
order, an array should be copied into another array before this function is executed. Then the
data are available in both the original order and the sorted order.

The ordering of characters in a code (such as ASCII), from low to high, is called a col-
lating sequence. Sorting ASCII characters into an ascending order will yield an alphabetical
order.

1. Write a main function that initializes an array, references this sort function, and then
prints the array values in the new order.

2. Modify the sort function so that it sorts values in descending order instead of ascending
order. Test the function with the program written in Problem 1.

MODIFY!MODIFY!

Collating sequence

Section 5.7 Search Algorithms 245

/*–––*/
/* This function searches for a value in an unordered list. */
/* If it finds the value, it returns the index of the item */
/* in the list (0 for first position, 1 for second position, */
/* and so on). If it does not find the value, the function */
/* returns the value -1. */

int search1(int x[],int npts,int value)
{

/* Declare variables. */
int k=0, index=-1;

/* Search for value. */
while (k<=npts-1 && x[k]!=value)

k++;
if (k != npts)

index = k;

/* Return index. */
return index;

}
/*–––*/

Ordered List
We now consider searching an ordered or sorted list of values. Assume that we have a list of
ordered values, and we are searching for the value 25:

-7
2
14
38
52
77
105

As soon as we reach the value 38, we will know that 25 is not in the list because we know the
list is ordered in ascending numerical order. Therefore, we do not have to search the entire
list, as we would have to do for an unordered list; we only need to search past the point where
our desired value should have been. If the list is in ascending order, we search until the current
value is larger than our desired value; if the list is in descending order, we search until the cur-
rent value is smaller than our desired value. The next function performs a sequential search on
an ordered list. The function either returns the position of the desired value in an ordered array
or returns a if the value is not found:

/*–––*/
/* This function searches for a value in an ordered */
/* (ascending) list. If it finds the value, it returns */
/* the index of the item in the list (0 for first position, */
/* 1 for second position, and so on). If it does not find */
/* the value, the function returns the value -1. */

-1

246 Chapter 5 Arrays and Matrices

int search2(int x[],int npts,int value)
{

/* Declare variables. */
int k=0, index=-1;

/* Search for value. */
while (k<=npts-1 && x[k]<value)

k++;
if (k <= npts-1)

if (x[k] == value)
index = k;

/* Return index value. */
return index;

}
/*–––*/

Another popular and more efficient algorithm for searching an ordered list is a technique
called a binary search. In this technique, we first check the middle of the array and determine
whether our desired value is in the first half of the array or the second half of the array. If it is
in the first half, we then check the middle of the first half and determine whether our desired
value is in the first fourth of the array or the second fourth of the array. The process of divid-
ing the array into smaller and smaller pieces continues until we find the element or find the
position where it should have been. Since this technique continually divides our search area in
half, it is called a binary search.

We can illustrate a binary search algorithm with an ordered list of values (2, 14,
38, 52, 77, 105) using the diagram on the next page. Assume that we are searching for the
value 25. Use the variable first to store the subscript of the first value in the array, and
use the variable last to store the subscript of the last value in the array. Compute the sub-
script of the middle position by adding first to last, and dividing by 2. (This should be
done as an integer division.) Since the array contains seven values, first will contain the
value 0 and last will contain the value 6; middle will be computed to be 3. Thus, we
compare the value with a subscript of 3 to our desired value. Since 38 is larger than 25, we
can narrow our search to the top half of the array. The variable first still contains 0, and
we change the value of last to the position above the middle position, or 2. We now di-
vide that part of the array in half and compute the midpoint, which is or 1. The
value with subscript 1 is 2, which is smaller than 25, so we can narrow our search to the
second quarter of the array. The value of first now becomes the subscript for the first
position past the middle position, or 2, and the value of last is also 2. When first and
last are the same, we have determined the position where the value should be located.
Thus, we have either found the value or determined that it is not in the array. In this case,
the value with a subscript of 2 is 14, so the value 25 is not in the array. However, when the
number of elements in the array is even, it is possible for the position of first to be
greater than last if the desired value is not in the list.

10 + 22/2,

-7,

Binary search

We now present a function that implements the binary search algorithm.

/*–––*/
/* This function searches for a value in an ordered */
/* (ascending) list using a binary search algorithm. If it */
/* finds the value, the function returns the index of the */
/* item in the list (0 for first position, 1 for second */
/* position, and so on). If it does not find the value, */
/* the function returns the value -1. */

int search3(double x[],int npts,int value)
{

/* Declare variables. */
int done=0, top=0, bottom, mid;
double index=-1;

/* Search for value. */
bottom = npts-1;
while (top<=bottom && done==0)
{

/* Determine middle. */
mid = (top + bottom)/2;

/* Check value in middle. */
if (x[mid] == value)

done = 1;
else

* Is value in top or bottom half? */
if (x[mid] > value)

bottom = mid - 1;
else

top = mid + 1;
}

Section 5.7 Search Algorithms 247

�7

2

14

38

52

77

105

First

Middle

Last

�7

2

14

38

52

77

105

First

Middle

Last

�7

2

14

38

52

77

105

38 � 25 so
choose top half

2 	 25 so
choose bottom
half

14
 25 and
first � last so
25 is not in the
list

First

Middle

Last

248 Chapter 5 Arrays and Matrices

Two-dimensional
array

5.8 Two-Dimensional Arrays
A set of data values that is visualized as a row or column is easily represented by a one-
dimensional array. However, there are many examples in which the best way to visualize a set
of data is with a grid or a table of data, which has both rows and columns. An array with four
rows and three columns is shown in the following diagram:

-132

5-30

362

410-2

row 1

row 2

column 2

column 1

column 0

row 3

row 0

1. Modify either of the sequential search functions to search an array of characters. Write a
driver to test your function.

2. Modify the sequential search on an ordered list to return a count of the number of times
a specified value occurred in an ordered list.

3. Modify the binary search function so that it correctly searches a list that is in descend-
ing order instead of ascending order. Write a driver to test your function.

MODIFY!MODIFY!

/* Determine index value. */
if (done == 1)

index = mid;

/* Return index value. */
return index;

}
/*–––*/

In C, a grid or table of data is represented with a two-dimensional array. Each element
in a two-dimensional array is referenced using an identifier followed by two subscripts—a
row subscript and a column subscript. The subscript values for both rows and columns begin
with 0, and each subscript has its own set of brackets. Thus, assuming that the previous array
has an identifier x, the value in position x[2][1] is 6. Common errors in array references in-
clude using parentheses instead of brackets, as in x(2)(3), or using only one set of brackets or
parentheses, as in x[2,3] or x(2,3).

Section 5.8 Two-Dimensional Arrays 249

We can also visualize this grid or table of data as a one-dimensional array, where each el-
ement is also an array. Thus, the array in the previous diagram can be interpreted as a one-di-
mensional array with four elements, each of which is a one-dimensional array with three
elements:

-132

5-30

362

410-2

x[0]

x[1]

x[2]

x[3]

position 2
position 1

position 0

By using this representation, the notation x[2][1] can be interpreted as referring to position
[1] within the one-dimensional array represented by x[2]; thus, the value of x[2][1] is 6.
In general, we prefer to discuss two-dimensional arrays in terms of a grid with rows and
columns, as opposed to an array of arrays.

All values in an array must have the same type. An array cannot have a column of inte-
gers followed by a column of floating-point numbers, and so on.

Definition and Initialization
To define a two-dimensional array, we specify the number of rows and the number of
columns in the declaration statement. The row number is written first. Both the row number
and the column number are in brackets, as shown in this statement:

int x[4][3];

A two-dimensional array can be initialized with a declaration statement. The values are
specified in a sequence separated by commas, and each row is contained in braces. An addi-
tional set of braces is included around the complete set of values, as shown in the following
statement:

int x[4][3]={{2,3,-1},{0,-3,5},{2,6,3},{-2,10,4}};

If the initializing sequence is shorter than the array, then the rest of the values are initialized to
zero. If the array is specified with the first subscript empty, but with an initialization sequence,
the size is determined by the sequence. Thus, the array x can also be defined with the follow-
ing statement:

int x[][3]={{2,3,-1},{0,-3,5},{2,6,3},{-2,10,4}};

250 Chapter 5 Arrays and Matrices

000 0

111 1

222 2

333 3

444 4

Arrays can also be initialized with program statements. For two-dimensional arrays, two
nested for loops are usually required to initialize an array; i and j are commonly used as
subscripts. To define and initialize an array such that each row contains the row number, use
the following statements:

/* Declare variables. */
int i, j, t[5][4];
...
/* Initialize array. */
for (i=0; i<=4; i++)

for (j=0; j<=3; j++)
t[i][j] = i;

After these statements are executed, the values in the array t are as follows:

Two-dimensional arrays can also be initialized with values read from a data file. In the
next set of statements, we assume that a data file contains 50 temperature values that we read
and store in the array. Symbolic constants NROWS and NCOLS are used to represent the num-
ber of rows and columns. Changing the size of an array is easier to do when the numbers of
rows and columns are specified as symbolic constants; otherwise, the change requires modi-
fications to several statements. Here are the statements.

#define NROWS 10
#define NCOLS 5
#define FILENAME "engine1.txt"
...
/* Declare variables. */
int i, j;
double temps[NROWS][NCOLS};
file *sensor;
...
/* Open file and read data into array. */
sensor = fopen(FILENAME,"r");
for (i=0; i<=NROWS-1; i++)

for (j=0; j<=NCOLS-1; j++)
fscanf(sensor,"%lf",&temps[i][j]);

Section 5.8 Two-Dimensional Arrays 251

Computations and Output
Computations and output with two-dimensional arrays must always specify two subscripts when
referencing an array element. To illustrate, consider a program that reads a data file containing
power output for an electrical plant for an 8-week period. Each line of the data file contains seven
values representing the daily power output for a week. The data are stored in a two-dimensional
array. Then a report provides the average power for the first day of the week during the period, the
average power for the second day of the week during the period, and so on. Here is the program:

/*–––*/
/* Program chapter5_6 */
/* */
/* This program computes power averages over ten weeks. */

#include <stdio.h>
#define NROWS 8
#define NCOLS 7
#define FILENAME "power1.txt"

int main(void)
{

/* Declare variables. */
int i, j;
int power[NROWS][NCOLS], col_sum;
FILE *file_in;

Show the contents of the arrays defined in each set of statements. Use a question mark to
indicate an element that has not been initialized.

1. int d[3][1]={{1},{4},{6}};

2. int g[6][2]={{5,2},{�2,3}};

3. float h[4][4]={{0,0}};

4. int k, p[3][3]={{0,0,0}};
...
for (k=0; k<=2; k++)

p[k][k] = 1;

5. int i, j, g[5][5];
...
for (i=0; i<=4; i++)

for (j=0; j<=4; j++)
g[i][j] = i + j;

6. int i, j, g[5][5];
...
for (i=0; i<=4; i++)

for (j=0; j<=4; j++)
g[i][j] = pow(-1,j);

PRACTICE!PRACTICE!

252 Chapter 5 Arrays and Matrices

/* Read information from a data file. */
file_in = fopen(FILENAME,"r");
if (file_in == NULL)

printf("Error opening input file. \n");
else
{

for (i=0; i<=NROWS-1; i++)
for (j=0; j<=NCOLS-1; j++)

fscanf(file_in,"%d",&power[i][j]);

/* Compute and print daily averages. */
for (j=0; j<=NCOLS-1; j++)
{

col_sum = 0;
for (i=0; i<=NROWS-1; i++)

col_sum += power[i][j];
printf("Day %d: Average = %.2f \n",

j+1,(double)col_sum/NROWS)
}

/* Close file. */
fclose(file_in);

}

/* Exit program. */
return 0;

}
/*–––*/

Note that the daily averages are computed by adding each column and then dividing the column
sum by the number of rows (which is also the number of weeks). The column number is then
used to compute the day number. A sample output from this program is as follows:

Day 1: Average = 253.75
Day 2: Average = 191.50
Day 3: Average = 278.38
Day 4: Average = 188.63
Day 5: Average = 273.13
Day 6: Average = 321.38
Day 7: Average = 282.50

Writing information from a two-dimensional array to a data file is similar to writing
the information from a one-dimensional array. In both cases, a newline indicator must be
used to specify when the values are to begin a new line. To write a set of distance meas-
urements to a data file named dist1.txt with five values per line, use the following
statements:

/* Declare variables. */
int i, j;
double dist[20][5];

Function Arguments
When arrays are used as function parameters, the references are call-by-address instead of
call-by-value. In Section 5.1, which discussed one-dimensional arrays, we learned that array
references in a function refer to the original array and not to a copy of the array. Thus, we
must be careful so we do not unintentionally change values in the original array. Of course, an
advantage of a call-by-address reference is that we can make changes in the array values, in
addition to returning a value from the function call.

Section 5.8 Two-Dimensional Arrays 253

FILE *file_out;
...
/* Write information from the array to a file. */
file_out = fopen("dist1.txt","w")
for (i=0, i<=19; i++)
{

for (j=0; j<=4; j++)
fprintf(file_out,"%f ",dist[i][j]);

fprintf(file_out,"\n");
}

The space after the conversion specifier in the fprintf statement is necessary in order to
have the values separated by a space.

Assume the array g has the following declaration:

int i, j, g[3][3]={{0,0,0},{1,1,1},{2,2,2}};

Give the value of sum after each set of statements is executed.

1. sum = 0;
for (i=0; i<=2; i++)

for (j=0; j<=2; j++)
sum += g[i][j];

2. sum = 1;
for (i=1; i<=2; i++)

for (j=0; j<=1; j++)
sum *= g[i][j];

3. sum = 0;
for (j=0; j<=2; j++)

sum -= g[2][j];

4. sum = 0;
for (i=0; i<=2; i++)

sum += g[i][1];

PRACTICE!PRACTICE!

254 Chapter 5 Arrays and Matrices

When using a one-dimensional array as a function argument, the function needs only the
address of the array, which is specified by the array name; when using a two-dimensional
array as a function argument, the function also needs information about the size of the array.
In general, the function declaration and prototype statement should give complete informa-
tion about the size of a two-dimensional array. To illustrate, suppose that we need to write a
program that computes the sum of the elements in an array containing four rows and four
columns. Computing this sum requires two nested loops; thus, the program will be more read-
able if we use a function to contain the steps to compute the sum. The program can then ref-
erence the function with a single statement, as in the following statements:

/* Declare variables and function prototypes. */
int a[4][4];
int sum(int x[4][4]);
...
/* Use function to compute array sum. */
printf("Array sum = %i \n",sum(a));

If we need to recompute the array sum in several places in the program, the function becomes
even more effective. And, of course, if there are several different arrays of the same size, we
can use the same function to compute their sums, as in the following statements:

/* Declare variables and function prototypes. */
int a[4][4], b[4][4];
int sum(int x[4][4]);
...
/* Use function to compute array sums. */
printf("Sum of a = %i \n",sum(a));
printf("Sum of b = %i \n",sum(b));

We now present the function referenced in these statements:

/*––-*/
/* This function returns the sum of the values in an array */
/* with four rows and four columns. */

int sum(int x[4][4])
{

/* Declare and initialize variables. */
int i, j, total=0;

/* Compute a sum of the array values. */
for i=0; i<=3; i++)

for (j=0; j<=3; j++)
total += x[i][j];

/* Return sum of array values. */
return total;

/*––-*/

In this example, we included the number of rows and number of columns in the function
definition and prototype. C allows us to omit the first subscript size, and thus we could have
replaced the function definition and prototype with the following statements:

Section 5.8 Two-Dimensional Arrays 255

/* Declare variables and function prototypes. */
int sum(int x[][4]);

For documentation purposes, we prefer listing both the row size and the column size of
arrays in the formal argument list and in the function prototype.

In a final example, we develop a function that computes a partial sum of the elements in
an array. The elements to be summed are assumed to be in a subarray in the upper-left corner
of the array. The arguments of the function include the original array and the numbers of rows
and columns in the subarray. The function prototype is

/* function prototype */
int partial_sum(int x[4][4], int r, int c);

Thus, we would use the reference partial_sum(a,2,3) if we want to sum the elements
shown in the shaded area in the following array a

-132 9

5-30 7

362 2

410-2 6

This reference should then compute the sum of the elements in the subarray beginning in the
upper-left corner and consisting of two rows and three columns. The function should return a
value of 6. This function is as follows:

/*–––*/
/* This function returns the sum of the values in a */
/* subarray of an array with four rows and four columns. */

int partial_sum(int x[4][4],int r,int c)
{

/* Declare and initialize variables. */
int i, j, total=0;

/* Compute a sum of the subarray values. */
for i=0; i<=r-1; i++)

for (j=0; j<=c-1; j++)
total += x[i][j];

/* Return sum of subarray values. */
return total;

/*–––*/

When working with one-dimensional arrays, we do not have to specify the size of the
array in the function; instead, we include an argument in the function definition that gives the
number of values in the array. Thus, the function could be used with arrays of different sizes.
For example, in Section 4.2, we developed a function to compute the average of a one-
dimensional array. To use the function to compute the mean (or average) of an array a with 10
elements, the reference would be mean(a,10). If we want to compute the mean value of an

256 Chapter 5 Arrays and Matrices

Assume that a main function contains the following statement:

int a[4][4]={{2,3,�1,9},{0,�3,5,7},
{2,6,3,2},{�2,10,4,6}};

Using hand calculations determine the values of these references to the partial_sum function
developed in this section:

1. partial_sum(a,1,4); 2. partial_sum(a,1,1);

3. partial_sum(a,4,2); 4. partial_sum(a,2,4);

PRACTICE!PRACTICE!

5.9 Problem Solving Applied: Terrain Navigation
Terrain navigation is a key component in the design of unmanned aerial vehicles (UAVs). Ve-
hicles such as a robot or a car, can travel on land; and vehicles such as a drone or a plane, can
fly above the land. A UAV system contains an onboard computer that has stored the terrain in-
formation for the area in which it is to be operated. Because it knows where it is at all times
(often using a global positioning system [GPS] receiver), the vehicle can then select the best
path to get to a designated spot. If the destination changes, the vehicle can refer to its internal
maps and recompute the new path.

The computer software that guides these vehicles must be tested over a variety of land
formations and topologies. Elevation information for large grids of land is available in com-
puter databases. One way of measuring the “difficulty” of a land grid with respect to terrain
navigation is to determine the number of peaks in the grid, where a peak is a point that has
lower elevations all around it. For this problem, we want to determine whether the value in
grid position [m][n] is a peak. Assume that the values in the four positions shown are adja-
cent to grid position [m][n]:

grid[m][n]

grid[m-1][n]

grid[m][n+1]grid[m][n-1]

grid[m+1][n]

array y with 50 elements, we use the reference mean(y,50). To write a function that can be
used with two-dimensional arrays of various sizes, it is necessary to use pointers as function
arguments; this technique is discussed in Chapter 6.

The next four sections contain examples that use two-dimensional arrays. Section 5.9
contains an application related to terrain navigation; Section 5.10 uses two-dimensional
arrays to represent matrices; and Sections 5.11 and 5.12 discuss and develop a solution to
a system of simultaneous equations using a two-dimensional array to store the equation
coefficients.

Section 5.9 Problem Solving Applied: Terrain Navigation 257

Write a program that reads elevation data from a data file named grid1.txt, and then prints the
number of peaks and their locations. Assume that the first line of the data file contains the number
of rows and the number of columns for the grid of information. These values are then followed by
the elevation values, in row order. The maximum size of the grid is 25 rows by 25 columns.

1. PROBLEM STATEMENT

Determine and print the number of peaks and their locations in an elevation grid.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows that the input is a file containing the elevation data and that the out-
put is a listing of the locations of the peaks.

3. HAND EXAMPLE

Assume that the following data represent elevation for a grid that has six points along the
side and seven points along the top (the peaks have been underlined):

5039 5127 5238 5259 5248 5310 5299
5150 5392 5410 5401 5320 5820 5321
5290 5560 5490 5421 5530 5831 5210
5110 5429 5430 5411 5459 5630 5319
4920 5129 4921 5821 4722 4921 5129
5023 5129 4822 4872 4794 4862 4245

To specify the location of the peaks, we need to assign an addressing scheme to the data.
Because we are going to implement this solution in C, we choose its two-dimensional array
subscripting notation. Thus, we assume that the top left corner is position [0][0], the row
numbers increase by 1 as we move down the page, and the column numbers increase by 1
as we move to the right. These peaks then occur at positions [2][1], [2][5], and [4][3].

To determine the peaks, we compare a potential peak with its four neighboring points.
If all four neighboring points are less that the potential peak, then the potential peak is a real
peak. Note that the points on the edges of the array or grid cannot be potential peaks be-
cause we do not have elevation information on all four sides of the points.

4. ALGORITHM DEVELOPMENT

First, we develop the decomposition outline because it divides the solution into a series of
sequential steps.

grid1.txt

Peak locations

258 Chapter 5 Arrays and Matrices

Decomposition Outline

1. Read the terrain data into an array.

2. Determine and print the location of the peaks.

Step 1 involves reading the data file and storing the information in a two-dimensional array.
Step 2 is a loop that evaluates all potential peaks, and prints their locations if they are de-
termined to be real peaks. There are not obvious candidates for additional functions, so we
develop the refinement in pseudcode using only a main function:

Refinement in Pseudocode
main: read nrows and ncols from the data file

read the terrain data into an array called elevation
set i to 1
while i ≤ nrows – 2

set j to 1
while j ≤ ncols – 2

if elevation[i][j] > its four neighbors
print peak location

increment j by 1
increment i by 1

The steps in the pseudocode are now detailed enough to convert to C:

/*–––*/
/* Program chapter5_7 */
/* */
/* This program determines the locations of peaks in an */
/* grid of elevation data. */

#include <stdio.h>
#define N 25
#define FILENAME "grid1.txt"

int main(void)
{

/* Declare variables. */
int nrows, ncols, i, j;
double elevation[N][N];
FILE *grid;

/* Read information from a data file. */
grid = fopen(FILENAME,"r");
if (grid == NULL)

printf("Error opening input file\n");
else
{

fscanf(grid,"%d %d",&nrows,&ncols);
for (i=0; i<=nrows-1; i++)

for (j=0; j<=ncols-1; j++)
fscanf(grid,"%lf",&elevation[i][j]);

Section 5.9 Problem Solving Applied: Terrain Navigation 259

/* Determine and print peak locations. */
printf("Top left point defined as row 0, column 0 \n");
for (i=1; i<=nrows-2; i++;)

for (j=1; j<=ncols-2; j++)
if ((elevation[i-1][j]<elevation[i][j]) &&

(elevation[i+1][j]<elevation[i][j]) &&
(elevation[i][j-1]<elevation[i][j]) &&
(elevation[i][j+1]<elevation[i][j]))
printf("Peak at row: %d column: %d \n",i,j)

/* Close file. */
fclose(grid);

}

/* Exit program. */
return 0;

}
/*–––—*/

5. TESTING

The following output was printed using a data file that corresponds to the hand example:

Top left point defined as row 0, column 0
Peak at row: 2 column: 1
Peak at row: 2 column: 5
Peak at row: 4 column: 3

Recall that this file must contain a special first line that specifies the number of rows
and columns in the elevation data.

Modify program chapter5_7 to determine the following information for a grid of elevation
data:

1. Print a count of the number of peaks in the grid.

2. Print the location of valleys instead of peaks. Assume that a valley is a point with an el-
evation lower than the four surrounding elevations.

3. Find and print the location and elevation of the highest point and the lowest point in the
elevation data.

4. Assuming that the distance between points in a vertical and horizontal direction is 100
feet, give the location of the peaks in feet from the lower left corner of the grid.

5. Use all eight neighboring points, instead of only four neighboring points, to determine a
peak.

MODIFY!MODIFY!

260 Chapter 5 Arrays and Matrices

A matrix is a set of numbers arranged in a rectangular grid with rows and columns. Consider a ma-
trix with four rows and three columns; the size of this matrix is also specified as as shown:

Note that the values within a matrix are written within large brackets. A matrix with one row
is called a row vector, and a matrix with one column is called a column vector. The term
vector by itself does not distinguish between a row vector and a column vector.

In mathematical notation, matrices are usually given names with uppercase boldface let-
ters. To refer to individual elements in the matrix, the row and column number are used, with
both the row and column numbers starting with the value 1. In formal mathematical notation,
the uppercase name refers to the entire matrix, and the lowercase name with subscripts refers
to a specific element. Thus, by using the matrix A, the value of is If a matrix has the
same number of rows and columns, it is a square matrix.

A two-dimensional array can be used to store a matrix, but we must be careful translating
equations in matrix notation into C statements because of the difference in subscripting. Ma-
trix notation assumes that the row and column numbers begin with the value 1, whereas C
statements assume that the row and column numbers of a two-dimensional array begin with
the value 0. Although a vector could be stored as a two-dimensional array with either one row
or one column, vectors are more commonly stored as one-dimensional arrays; thus, they do
not usually keep the distinction of a row vector or a column vector.

Matrix operations are frequently used in engineering problem solutions, so we now pres-
ent common operations with matrices and vectors. We will include C statements for perform-
ing some of the operations; the problems at the end of the chapter relate to developing C
statements for the remaining operations.

Dot Product
The dot product is a number computed from two vectors of the same size. This value is the
sum of the products of the values in corresponding positions in the vectors, as shown in this
summation equation, which assumes that there are n elements in the vectors A and B:

To illustrate, assume that A and B are the following vectors:

The dot product is then

The dot product is also called an inner product.

= -7.

= 1-82 + 1-52 + 6

A # B = 4 # 1-22 + 1-12 # 5 + 3 # 2

A = [4 -1 3] B = [-2 5 2].

Dot product = A # B = a
n

k=1
akbk.

-2.a3,2

A = D -1 0 0

1 1 0

1 -2 3

0 2 1

T .

4 * 3,

Inner product

5.10 Matrices and Vectors*

*Optional section.

Matrix

Vector

Square matrix

Dot product

Row vector
Column vector

In C, we can compute the dot product of two one-dimensional vectors with a function:

/*–––*/
/* This function returns the dot product of two vectors. */

double dot_product(double a[],double b[],int n)
{

/* Declare and initialize variables. */
int k;
double sum=0;

/* Compute dot product. */
for (k=0; k<=n-1; k++)

sum += a[k]*b[k];

/* Return dot product. */
return sum;

}
/*––*/

Note that the equation subscripts of 1 to n were changed to 0 to for the C program.

Determinant
The determinant of a matrix is a value computed from the entries in the matrix. Determi-
nants have various applications in engineering, including computing inverses and solving
systems of simultaneous equations. For a matrix A, the determinant is defined to be
the following:

Therefore, the determinant of A is equal to 8 for the following matrix:

For a matrix A, the determinant is defined to be the following:

If A is the matrix

then is equal to or 10.
A more involved process is necessary for computing determinants of matrices with

more than three rows and columns. This process is discussed in the problems at the end of
this chapter.

5 + 6 + 0 - 0 - 4 - 1-32,ƒA ƒ

A = C 1 3 0

-1 5 2

1 2 1

S ,

- a3,2a2,3a1,1 - a3,3a2,1a1,2.

ƒA ƒ = a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 - a3,1a2,2a1,3

3 * 3

A = c 1 3

-1 5
d .

Determinant of A = ƒA ƒ = a1,1a2,2 - a2,1a1,2.

2 * 2

n - 1

Section 5.10 Matrices and Vectors 261

Determinant

262 Chapter 5 Arrays and Matrices

Transpose
The transpose of a matrix is a new matrix in which the rows of the original matrix are the
columns of the new matrix. We use a superscript T after a matrix name to refer to the trans-
pose. For example, consider the following matrix and its transpose:

If we consider a couple of the elements, we see that the value in position (3, 1) has now moved
to position (1, 3) and that the value in position (4, 2) has now moved to position (2, 4). In fact,
we have interchanged the row and column subscript so that we are moving the value in posi-
tion (i, j) to position (j, i). Also, note that the size of the transpose is different than the size of
the original matrix (unless the original is a square matrix).

We now develop a function that generates the transpose of a matrix. The formal argu-
ments of the function must include two-dimensional arrays that represent the original matrix
and the matrix that is to contain the transpose of the original matrix. To allow some flexibili-
ty with this function, we assume that we have defined symbolic constants that specify the
number of rows and the number of columns in the original matrix. These symbolic constants
are NROWS and NCOLS. Because using a symbolic constant is equivalent to using the value it
has been given, we can then use NROWS and NCOLS in the array definition and in the prototype
statement. Note that the function does not return a value; hence, the return type is void. Also
note that the symbolic constants NROWS and NCOLS must be defined in a program that uses
this function:

/*––-*/
/* This function generates a matrix transpose. NROWS and */
/* NCOLS are symbolic constants that must be declared */
/* in the calling program. */

void transpose(int b[NROWS][NCOLS],int bt[NCOLS][NROWS])
{

/* Declare variables. */
int i, j;

/* Transfer values to the transpose matrix. */
for (i=0; i<=NROWS-1; i++)

for (j=0; j<=NCOLS-1; j++)
bt[j][i] = b[i][j];

/* Void return. */
return;

}
/*––-*/

B = D 2 5 1

7 3 8

4 5 21

16 13 0

T , BT = C2 7 4 16

5 3 5 13

1 8 21 0

S .

Transpose

Matrix Addition and Subtraction
The addition (or subtraction) of two matrices is performed by adding (or subtracting) the ele-
ments in corresponding positions in the matrices. Therefore, matrices that are added (or sub-
tracted) must be the same size; the result of the operation is another matrix of the same size.
Consider the following matrices:

Several matrix sums and differences follow:

Matrix Multiplication
Matrix multiplication is not computed by multiplying corresponding elements of the two
matrices. The value in position of the product C of two matrices A and B is the dot prod-
uct of row i of the first matrix and column j of the second matrix, as shown in this summation
equation:

Since the dot product requires that the vectors have the same number of elements, the
first matrix (A) must have the same number of elements in each row as the second matrix (B)
has in each column. Thus, if A and B both have five rows and five columns, their product has
five rows and five columns. Furthermore, for these matrices, we can compute both AB and
BA, but, in general, they will not be equal.

If A has two rows and three columns, and B has three rows and three columns, the prod-
uct AB will have two rows and three columns. To illustrate, consider the following matrices:

The first element in the product is

= 2.

= 2 # 1 + 5 # 1-12 + 1 # 5
= a1,1b1,1 + a1,2b2,1 + a1,3b3,1

C1,1 = a
3

k=1
a1kbk1

C � AB

A = c2 5 1

0 3 -1
d , B = C 1 0 2

-1 4 -2

5 2 1

S .

ci,j = a
n

k=1
ai,kbk,j.

ci,j

B - A = c -1 -5 1

-1 1 -1
d .

A + B = c 3 5 3

-1 7 -3
d , A - B = c1 5 -1

1 -1 1
d ,

A = c2 5 1

0 3 -1
d , B = c 1 0 2

-1 4 -2
d .

Section 5.10 Matrices and Vectors 263

Matrix
multiplication

264 Chapter 5 Arrays and Matrices

Similarly, we can compute the rest of the elements in the product of A and B:

In this example, we cannot compute BA, because B does not have the same number of ele-
ments in each row as A has in each column.

An easy way to decide if a matrix product exists is to write the sizes of the two matrices side
by side. If the two inside numbers are the same, the product exists; the two outside numbers de-
termine the size of the product. To illustrate, in the previous example, the size of A is and
the size of B is Therefore, if we want to compute AB, we write the sizes side by side: 3 * 3.

2 * 3,

AB = C = c 2 22 -5

-8 10 -7
d .

The two inner numbers are both the value 3, so AB exists, and its size is determined by the two
outer numbers, If we want to compute BA, we again write the sizes side by side:2 * 3.

The two inner numbers are not the same, so BA does not exist.
We now present a function to compute the product In this function, the arrays

are each of size where N is a symbolic constant:

/*––-*/
/* This function performs a matrix multiplication of two */
/* NxN matrices using sums of products. N is a symbolic */
/* constant that must be defined in the calling program. */

void matrix_mult(int a[N][N],int b[N][N],int c[N][N])
{

/* Declare variables. */
int i, j, k;

/* Compute sums of products. */
for (i=0; i<=N-1; i++)

for (j=0; j<=N-1; j++)
{

c[i][j] = 0;
for (k=0; k<=N-1; k++)

c[i][j] += a[i][k]*b[k][j];
}

/* Void return. */
return;

}
/*––-*/

N * N,
C � AB.

2 � 3 3 � 3

� 3 2 � 33

The problems at the end of the chapter use the matrix operations discussed in this section;
they also define additional matrix operations.

Section 5.11 Numerical Technique: Solution to Simultaneous Equations 265

Use hand calculations to evaluate the expressions in these problems. Then write programs to
test your answers using the functions developed in this section. Use the following matrices
and vectors:

1. 2.

3. 4. DB.

5. 6. 1CB2DT.B1CT2.
CT + AT.

ƒB ƒ .D # D.

C = C 3 2

-1 -2

0 2

S , D = [1 2]

A = C2 1

0 -1

3 0

S , B = c -2 2

-1 5
d ,

PRACTICE!PRACTICE!

5.11 Numerical Technique: Solution to Simultaneous Equations*

*Optional section.

The need to solve a system of simultaneous equations occurs frequently in engineering prob-
lems. A number of methods exist for solving a system of equations, and each method has its
advantages and disadvantages. In this section, we present the Gauss elimination method of
solving a set of simultaneous linear equations. The equations are called linear equations be-
cause the equations contain only linear (degree 1) terms such as x, y, and z. However, before
we present the details of this technique, we first present a graphical interpretation of the solu-
tion to a set of equations.

Graphical Interpretation
A linear equation with two variables, such as defines a straight line and is often
written in the form where m represents the slope of the line, and b represents
the y-intercept. Thus, can also be written as If we have two linear
equations, they can represent two different lines that intersect in a single point, they can rep-
resent two parallel lines that never intersect, or they can represent the same line; these possi-
bilities are shown in Figure 5.3. Equations that represent two intersecting lines can be easily
identified because they will have different slopes, as in and Equa-
tions that represent two parallel lines will have the same slope but different y-intercepts, as in

and Equations that represent the same line have the same slope and
y-intercept, as in and 3y = 6x - 9.y = 2x - 3

y = 2x + 1.y = 2x - 3

y = -x + 3.y = 2x - 3

y = 2x - 3.2x - y = 3
y = mx + b,

2x - y = 3,

Simultaneous linear
equations

266 Chapter 5 Arrays and Matrices

(a)

l2

l1

Point of
intersection

Figure 5.3 Two lines.

(b)

l2 l1

l1

l2

(c)

If a linear equation contains three variables, x, y, and z, then it represents a plane in three-
dimensional space. If we have two equations with three variables, they can represent two
planes that intersect in a straight line, they can represent two parallel planes, or they can rep-
resent the same plane; these possibilities are shown in Figure 5.4. If we have three equations
with three variables, the three planes can intersect in a single point, they can intersect in a
plane, they can have no common intersection point, or they can represent the same plane. Ex-
amples of the possibilities that exist if the three equations define three different planes are
shown in Figure 5.5.

Section 5.11 Numerical Technique: Solution to Simultaneous Equations 267

x

y

z

(a)

Figure 5.4 Two planes.

x

y

z

(b)

x

y

(c)

z

Hyperplane

System of equations

These ideas can be extended to more than three variables, although it is harder to visual-
ize the corresponding situations. We call the set of points defined by an equation with more
than three variables a hyperplane. In general, we consider a set of m linear equations that
contain n unknowns, where each equation defines a hyperplane that is not identical to another
hyperplane in the set of equations. If then the system is underspecified, and a unique
solution does not exist. If then a unique solution will exist if none of the equations
represents parallel hyperplanes. If then the system is overspecified and a unique solu-
tion does not exist. A set of equations is also called a system of equations. A system with a
unique solution is called a nonsingular system of equations, and a system with no unique so-
lution is called a singular set of equations.

As a specific example, consider this system of equations:

The solution to this set of equations is the point Substitute these values in each
of the questions to confirm that this point is a solution to the set of equations.

The material on matrices is not required for the development of the solution presented in
this section. However, if you did cover that material, it is interesting to observe that a system

1-2, 5, -62.
x - y - z = -1.

-x + 3y + 2z = 5,

 3x + 2y - z = 10,

m 7 n,
m = n,

m 6 n,

Nonsingular

268 Chapter 5 Arrays and Matrices

x

y

z

(a)

Point of
intersection

x

y

z

(b)

Line of
intersection

x

y

z

(c)

Figure 5.5 Three distinct planes.

Section 5.11 Numerical Technique: Solution to Simultaneous Equations 269

x

y

z

(d)

x

y

z

(e)

of linear equations can be expressed in terms of a matrix multiplication. To illustrate, let the
information in the previous equations be expressed using the following matrices:

Then, using matrix multiplication, the system of equations can be written in this form:

Go through the multiplication to convince yourself that this matrix equation yields the origi-
nal set of equations.

In many engineering problems, we want to determine whether a common solution exists
to a system of equations. If the common solution exists, then we want to find it. In the next
part of this section, we present the Gauss elimination technique for solving a set of simulta-
neous linear equations.

AX = B.

A = C 3 2 -1

-1 3 2

1 -1 -1

S , X = Cxy
z

S , B = C 10

5

-1

S .

Figure 5.5 (Continued)

270 Chapter 5 Arrays and Matrices

Gauss Elimination
Before presenting a general description of the Gauss elimination technique, we illustrate the
technique with a specific example, using the set of equations presented earlier:

The first step is an elimination step, in which the first variable is eliminated from each equa-
tion that follows the first equation. This elimination is achieved by adding a scaled form of the
first equation to each of the other equations. The term involving the first variable, x, in the sec-
ond equation is Therefore, if we multiply the first equation by 1/3 and add it to the sec-
ond equation, we obtain a new equation in which the x variable has been eliminated:

The modified set of equations is then

We now eliminate the first variable from the third equation, using a similar process:

The modified set of equations is then

We have now eliminated the first variable in all equations except for the first equation.
The next step is to eliminate the second variable in all equations except for the first and

second equations. Thus, we will add the equations to a scaled form of the second equation:

 0x -
5

3
y -

2

3
z = -

13

3
.

 0x +
11

3
y +

5

3
z =

25

3
,

 3x + 2y - z = 10,

 0x -
5

3
y -

2

3
z = -

13

3
1sum2.

-x -
2

3
y +

1

3
z = -

10

3
afirst equation times -

1

3
b ,

x - y - z = -1 1third equation2,

-1.=z-y-x

25

3
,=

5

3
z+

11

3
y+0x

10,=z-2y+3x

1sum2.25

3
=

5

3
z+

11

3
y+0x

afirst equation times
1

3
b ,

10

3
=

1

3
z-

2

3
y+x

1second equation2,5=2z+3y+-x

-x.

x - y - z = -1 1third equation2.
-x + 3y + 2z = 5 1second equation2,
3x + 2y - z = 10 1first equation2,

Elimination

Gauss elimination

The modified set of equations is then

Because there are no equations following the third equation, this part of the algorithm is
completed.

We now perform a back substitution to determine the solution to the equations. The last
equation has only one variable, so we can multiply the equation by a scale factor chosen to make
the variable’s coefficient equal to 1. Thus, we multiply the last equation by or 11, giving

This value of z is substituted in the next-to-last equation, giving

Reducing the equation so that all constant terms are on the right side, we have

This equation has only one variable, so we now multiply it by a scale factor chosen to make
the new coefficient equal to 1:

We back up to the next equation, which is the last equation in this example:

Substituting the values already determined, we have

or

Thus, the value of x is
The Gauss elimination technique thus has two parts—elimination and back substitution.

First, the equations are modified such that the kth variable is eliminated in all equations fol-
lowing the kth equation. Then, starting with the last equation, we compute the value of the last
variable. Using this value and the next-to-last equation, we compute the value of the next-to-
last variable. This back substitution continues until we have determined the values of all the

-2.

3x = -6.

3x + 2152 - 1-62 = 10,

3x + 2y - z = 10.

0x + y = 5.

0x +
11

3
y =

55

3
.

0x +
11

3
y +

5

3
1-62 =

25

3
.

0x + 0y + z = -6.

33
3 ,

 0x + 0y +
3

33
z = -

18

33
.

 0x +
11

3
y +

5

3
z =

25

3
,

 3x + 2y - z = 10,

 0x + 0y +
3

33
z = -

18

33
1sum2.

 0x +
5

3
y +

25

33
z =

125

33
asecond equation times

5

11
b ,

 0x -
5

3
y -

2

3
z = -

13

3
1third equation2,

Section 5.11 Numerical Technique: Solution to Simultaneous Equations 271

Back substitution

272 Chapter 5 Arrays and Matrices

Use the Gauss elimination numerical technique to find the solution to these sets of simulta-
neous linear equations:

1.

2.

 x - 2y - 3z = -1.

 2x + 3y - z = 1

 3x + 5y + 2z = 8

x + y = 3.

-2x + y = -3

PRACTICE!PRACTICE!

i1 i2 i3R2

R1

R4

R3 R5

V1 V2
�
�

�
�

Figure 5.6 Circuit with two voltage sources.

variables. The system is ill-conditioned, or does not have a unique solution, if all the coeffi-
cients for a variable are zero or are very close to zero.

A process called pivoting can be applied to improve the accuracy of Gauss elimination.
Row pivoting involves reordering the rows before performing Gauss elimination, and column
pivoting involves reordering the columns before performing the process. Complete pivoting
involves reordering both rows and columns. These processes are discussed in the problems at
the end of the chapter.

Ill-conditioned

5.12 Problem Solving Applied: Electrical Circuit Analysis*

*Optional section.

The analysis of an electrical circuit frequently involves finding the solution to a set of simul-
taneous equations. These equations are often derived using either current equations that describe
the currents entering and leaving a node or using voltage equations that describe the voltages
around mesh loops in the circuit. For example, consider the circuit shown in Figure 5.6. The
voltages around the three loops can be described with the following equations:

= 0.V2+R5i3+R41i3 - i22
= 0,R41i2 - i32+R3i2+R21i2 - i12
= 0,R21i1 - i22+R1i1+-V1

Pivoting

Section 5.12 Problem Solving Applied: Electrical Circuit Analysis 273

If we assume that the values of the resistors (and) and the voltage sources
(and) are known, then the mesh currents (and) are unknown. We can then re-
arrange the system of equations as follows:

Write a program that allows the user to enter the values of the five resistors and the values of
the two voltage sources. The program should then compute the three mesh currents.

= -V2.1R4 + R52i3+R4 i2-0i1

= 0,R4 i3-1R2 + R3 + R42i2+-R2 i1

= V1,0i3+R2 i2-1R1 + R22i1

i3i1, i2,V2V1

R5R1, R2, R3, R4,

1. PROBLEM DESCRIPTION

Compute the three mesh currents in the circuit shown in Figure 5.6.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows that the resistor values and the voltage values are the input values.
The three mesh currents are the output values.

3. HAND EXAMPLE

By using the resistor values and the voltage values, a system of three equations can be de-
fined using this rearranged set of equations from the problem definition:

For example, suppose that each of the resistor values is 1 ohm, and assume that both of the
voltage sources are 5 volts. Then, the corresponding set of equations is the following:

Once the system of equations is determined, the solution follows the steps illustrated in the
hand example in the previous section. For this set of equations, the solution is
and i3 = -2.5.

i1 = 2.5, i2 = 0,

= -5.2i3+i2-0i1

= 0, i3-3i2+- i1
= 5, 0i3+i2-2i1

= -V2.1R4 + R52i3+R4 i2-0i1

= 0, R4 i3-1R2 + R3 + R42i2+-R2 i1

= V1, 0i3+R2 i2-1R1 + R22i1

Resistor values

Voltage values
Current values

274 Chapter 5 Arrays and Matrices

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it breaks the solution into a series of se-
quential steps:

Decomposition Outline

1. Read the resistor values and the voltage values.

2. Specify the coefficients for the system of equations.

3. Perform Gauss elimination to determine currents.

4. Print currents.

Step 1 reads the information necessary to specify the circuit values. Step 2 uses this in-
formation to specify the coefficients for the system of equations. Step 3 develops the details
of the elimination and back substitution steps. To keep the main function short and read-
able, functions are used for both the elimination and back substitution. The structure chart
for this solution was used in Figure 4.1.

The coefficients of the simultaneous equations are stored in a two-dimensional array;
the solution is stored in a one-dimensional array. The variable index indicates which vari-
able is being eliminated in the elimination function; this variable ranges from 0 to

to match the subscripting in C.
The algorithm for Gauss elimination is a difficult algorithm to describe in pseudocode

because of the detailed subscripting that must be specified. Go through this pseudocode
with the hand example to be sure that you are comfortable with the subscript handling:

Refinement in Pseudocode

main: read resistor values and voltage values
specify array coefficients, a[i][j]
set index to zero
while index ≤ n – 2

eliminate(a,n,index)
increment index by 1

back_substitute(a,n,soln)
print current values

eliminate(a,n,index):
set row to index + 1
while row ≤ n – 1

set scale_factor to

set a[row][index] to zero
set col to index + 1
while col ≤ n

add a[index][col] · scale_factor
to a[row][col]

increment col by 1
increment row by 1

–a[row][index]

a[index][index]

n - 1

back_substitute(a,n,soln):

set soln[n – 1] to

set row to n – 2
while row ≥ 0

set col to n – 1
while col ≥ row + 1

subtract soln[col] · a[row][col]
from a[row][n]

subtract 1 from col

set soln[row] to

subtract 1 from row

Once we are comfortable with the pseudocode, it is relatively straightforward to convert it to C.

/*–––*/
/* Program chapter5_8 */
/* */
/* This program uses Gauss elimination to determine the */
/* mesh currents for a circuit. */

#include <stdio.h>
#define N 3 /* number of unknown currents */

int main(void)
{

/* Declare variables and function prototypes. */
int index;
double r1, r2, r3, r4, r5, v1, v2, a[N][N+1], soln[N];
void eliminate(double a[N][N+1],int n,int index);
void back_substitute(double a[N][N+1],int n,

double soln[N]);

/* Get user input. */
printf("Enter resistor values in ohms: \n");
printf("(R1, R2, R3, R4, R5) \n");
scanf("%lf %lf %lf %lf %lf",&r1,&r2,&r3,&r4,&r5);
printf("Enter voltage values in volts: \n");
printf("(V1, V2) \n");
scanf("%lf %lf",&v1,&v2);

/* Specify equation coefficients. */
a[0][0] = r1 + r2;
a[0][1] = a[1][0] = -r2;
a[0][2] = a[2][0] = a[1][3] = 0;
a[1][1] = r2 + r3 + r4;
a[1][2] = a[2][1] = -r4;
a[2][2] = r4 + r5;
a[0][3] = v1;
a[2][3] = -v2;

a[row][n]

a[row][row]

–a[n-1][n]

a[n-1][n-1]

Section 5.12 Problem Solving Applied: Electrical Circuit Analysis 275

276 Chapter 5 Arrays and Matrices

/* Perform elimination step. */
for (index=0; index<=N-2; index++)

eliminate(a,N,index);

/* Perform back substitution step. */
back_substitute(a,N,soln);

/* Print solution. */
printf("\n");
printf("Solution: \n");
for (index=0, index<=N-1; index++)

printf("Mesh Current %d: %f \n",index+1,soln[index]);

/* Exit program. */
return 0;

}
/*––*/
/* This function performs the elimination step. */

void eliminate(double a[N][N+1],int n,int index)
{

/* Declare variables. */
int row, col;
double scale_factor;

/* Eliminate variable from equations. */
for (row=index+1; row<=n-1; row++)
{

scale_factor = -a[row][index]/a[index][index];
a[row][index] = 0;
for (col=index+1; col<=n; col++)

a[row][col] += a[index][col]*scale_factor;
}

/* Void return. */
return;

}
/*–––*/
/* This function performs the back substitution. */

void back_substitute(double a[N][N+1],int n,
double soln[N])

{
/* Declare variables. */
int row, col;

/* Perform back substitution in each equation. */
soln[n-1] = a[n-1][n]/a[n-1][n-1];
for (row=n-2; row>=0; row--)
{

for (col=n-1; col>=row+1; col--)
a[row][n] -= soln[col]*a[row][col];

soln[row] = a[row][n]/a[row][row];
}

/* Void return. */
return;

}
/*–––*/

Section 5.13 Higher Dimensional Arrays 277

To handle larger systems of equations, the symbolic constant N must be changed; the
steps in the Gauss elimination do not need any modifications.

5. TESTING

The program interaction using the data from the hand example follows:

Enter resistor values in ohms:
(R1, R2, R3, R4, R5)
1 1 1 1 1
Enter voltage values in volts:
(V1, V2)
5 5

Solution:
Mesh Current 1: 2.500000
Mesh Current 2: 0.000000
Mesh Current 3: -2.500000

The program assumes that the system of equations has a solution, which means that none of
the equations represents the same equation or parallel equations. We could modify this pro-
gram to check for these conditions by adding additional statements or functions.

Use the program developed in this section to answer the following questions:

1. Determine the mesh currents if all five resistors are 5 ohms and both voltage sources are
10 volts.

2. Verify your answer in Problem 1 by using matrix multiplication as discussed in this section.
(This problem assumes that you covered the previous section on matrices and vectors.)

3. Determine the mesh currents if the resistors have the values of 2, 8, 6, 6, and 4 ohms,
and the voltage sources have the values of 40 and 20 volts.

4. Verify your answer to Problem 3 by substituting your answer back into the original set
of three equations.

MODIFY!MODIFY!

5.13 Higher Dimensional Arrays*

*Optional section.

C allows arrays to be defined with more than two subscripts. For example, this statement de-
fines a three-dimensional array:

int b[3][4][2];

The three subscripts, which are necessary to specify a specific element, will correspond to the
x-, y-, and z-coordinates if you position the array at the origin of a three-dimensional space, as
shown in Figure 5.7. Thus, the position that is shaded corresponds to b[2][0][1].

Three-dimensional
array

278 Chapter 5 Arrays and Matrices

Most engineering problems that need arrays can be solved using one-dimensional or two-
dimensional arrays. However, there are occasionally problems that are good candidates for
using higher dimensional arrays. These problems typically involve data that are specified by
several parameters; in addition, the parameters are either integers that are sequential or pa-
rameters that can easily be converted into sequential parameters. For example, suppose that a
set of data representing temperature measurements is taken from the floor of a large chemical
reaction chamber. Furthermore, this set of temperatures is taken at specified intervals of time
during a chemical reaction. In this case, we might choose to use a three-dimensional array,
using the first subscript to indicate a specific time and the other two subscripts to indicate the
location within the floor. The subscripts would need to begin with zero to match the require-
ments of C subscripts. The subscripts [3][2][5] would then specify the value taken at the
fourth time value, and at position [2][5] in the grid of temperatures.

Arrays with over three subscripts are seldom used, because it is difficult to visualize
them. However, a simple way to visualize arrays with over three subscripts can be developed.
First, imagine that a three-dimensional array is a building. The building has floors, and it also
has a rectangular grid of rooms on each floor. Assume each room can contain a single value.
The three-dimensional array representing the building uses three subscripts to specify a room;
the first subscript is the floor number and the other two subscripts specify the row and column
number of the room on the specified floor.

A four-dimensional array is a row of buildings, as shown in Figure 5.8. The first subscript
specifies the building, and the remaining three subscripts specify the room in the building.

x

z

y

Figure 5.7 Three-dimensional array.

Figure 5.8 Four-dimensional array.

Four-dimensional
array

A five-dimensional array is a block of buildings, as shown in Figure 5.9. The first two
subscripts specify the building in the block, and the remaining three subscripts specify the
room in the building.

This analogy could continue with a row of blocks, then a city of blocks, then a group of
cities, then a state of cities, and so on. Although we have shown you how to visualize higher
dimensional arrays, we also want to caution you about using them. Higher order arrays have a
lot of overhead related to the subscripting; not only are there extra subscripts required, but
extra loops are necessary each time you want to work with groups of values in the array. In
general, higher order arrays also complicate the debugging and maintenance of the program.
Therefore, higher order arrays should only be used when they simplify the overall visualiza-
tion of the problem and the steps to solve it.

Key Terms 279

Figure 5.9 Five-dimensional array.

SUMMARSUMMARYY An array is a data structure often used to store engineering data that are analyzed in a pro-
gram. If the data are best represented by a list of information, a one-dimensional array is
used; if the data are best represented by a table or grid of information, a two-dimensional
array is used. Many examples were developed in this chapter to illustrate array definitions,
array initializations, computations with arrays, input and output with arrays, and arrays as
function parameters. A set of statistical functions was developed for computing statistical in-
formation for analyzing or sorting one-dimensional arrays. The Gauss elimination technique
for solving a system of simultaneous linear equations was also presented, and a C program
was developed to implement this technique.

KEY TERMS

array
binary search
call-by-address
collating sequence
determinant
dot product
element

Gauss elimination
hyperplane
ill conditioned
inner product
magnitude
matrix
matrix multiplication

Five-dimensional
array

5

280 Chapter 5 Arrays and Matrices

C STATEMENT SUMMARY

Array declaration:

int a[5], b[]={2,3,-1};
char vowels[]={'a','e','i','o','u'};
double x[10][5];

NOTES

1. The variable k is commonly used as a subscript for a one-dimensional array.

2. Use symbolic constants to declare the size of an array so that it is easy to modify.

3. In documentation, describe a two-dimensional array as a grid with rows and columns.

4. The variables i and j are commonly used as subscripts for a two-dimensional array.

5. List both the row size and the column size of arrays in the formal argument list and in the
function prototype statement.

DEBUGGING NOTES

1. Only use arrays when it is necessary to keep all the data available in memory.

2. Be careful not to exceed the maximum subscript value when referencing an element in an
array.

3. Select conditions in for loops to specifically use an equality with the maximum sub-
script value; this helps avoid errors with subscript ranges.

4. An array must be declared to be as large as, or larger than, the maximum number of val-
ues to be stored in it.

5. Because an array reference in a function is a call-by-address reference, be careful that
you do not inadvertently change values in an array in the function.

6. Be sure to enclose each subscript in its own set of brackets when referencing elements of
a multidimensional array.

7. When translating matrix notation to C, remember that the first row and column in a ma-
trix is referenced with a subscript 1, not 0.

8. Multidimensional matrices complicate the logic of a program, and they should be used
only when they are necessary.

mean
median
nonsingular
one-dimensional array
parsing
power
selection sort algorithm
sequential search
simultaneous linear equations
sorting

square matrix
standard deviation
subscripts
system of equations
transpose
two-dimensional array
variance
vector
zero crossing

PROBLEMS

SHORSHORTT ANSWER PRANSWER PROBLEMSOBLEMS

True–False Problems

Indicate whether the following statements are true (T) or false (F):
1. If the initializing sequence is shorter than an array, then the rest

of the values are initialized to zero. T F
2. If an array is defined without a size, but with an initialization

sequence, then the array size is arbitrary. T F
3. When the value of a subscript or index is greater than the largest

valid subscript of an array, it will always cause an execution error. T F
4. All values of an array are printed if we specify the identifier of the

array without subscripts. T F

Multiple Choice

5. An array is
(a) a group of values that all have a common variable name and all have the same data type.
(b) a collection of elements of different data types that are stored in adjacent memory

locations.
(c) a variable that contains multiple values of the same data type.
(d) a location in memory that holds multiple values of the same data type.

6. An individual element in the array is addressed by specifying
(a) the name of the array and the number of the element.
(b) the name of the array.
(c) the number of the element within the array followed by the name of the array.
(d) the number of the element in the array.

7. The subscript identifies the _____ of a particular element in the array.
(a) location
(b) value
(c) range
(d) name

8. The following code will _____:
sum = 0;
for (row=0; row<N_ROW; row++)

sum += table[row][2];

(a) sum the values of row 2.
(b) sum the values of column 2.
(c) sum the values of row N_ROW.
(d) none of the above.

Memory Snapshot Problems

Give the corresponding snapshots of memory after each of the following sets of statements is
executed (use a question mark to indicate an array element that is not initialized):

9. int k, t[5];
...

t[0] = 5;
for (k=0; k<=3; k++)

t[k+1] = t[k] + 3;

Problems 281

5

282 Chapter 5 Arrays and Matrices

10. int r, c, x[4][5];
...
for (r=0; r<=3; r++)

for (c=0; c<=4; c++)
x[r][c] = r + c;

Program Output

Problems 11 and 12 refer to the following statements:
int sum, k, i, j;
int x[4][4]={{1,2,3,4},{5,6,7,8},{9,8,7,3},{2.1,7,1}};

11. Give the value in sum after the following statements are executed:

sum = x[0][0];
for (k=1; k<=3; k++)

sum += x[k][k];

12. Give the value in sum after the following statements are executed:

sum = 0;
for (i=1; i<=3; i++)

for (j=0; j<=3; j++)
if (x[i][j] > x[i-1][j])
sum++;

PRPROGRAMMING PROGRAMMING PROBLEMSOBLEMS

Linear Interpolation. The following problems refer to wind-tunnel test data available on the
companion website. The file contains a flight-path angle (in degrees) and its corresponding
coefficient of lift on each line in the file. The flight-path angles will be in ascending order.

13. Write a program that reads the wind-tunnel test data, and then allows the user to enter a
flight-path angle. If the angle is within the bounds of the data set, the program should use
linear interpolation to compute the corresponding coefficient of lift. (You may need to
refer to the section on linear interpolation in Section 2.5.)

14. Modify the program in Problem 13 so that it prints a message to the user. The message
should give the range of angles that are covered in the data file after reading the values.

15. Write a function that could be used to verify that the flight-path angles are in ascending
order. The function should return a 0 if the angles are not in order and a 1 if they are in
order. Assume that the corresponding function prototype is

int ordered(double x[],int num_pts);

16. Write a function that receives two one-dimensional arrays that correspond to the flight-
path angles and their coefficients of lift. The function should sort the flight-path angles
into ascending order while maintaining the correspondence between the flight-path an-
gles and their coefficients of lift. Assume that the corresponding function prototype is

void reorder(double x[],double y[],int num_pts);

17. Modify the program developed in Problem 14 such that it uses the function developed in
Problem 15 to determine whether or not the data are in the desired order. If they are not
in the desired order, use the function developed in Problem 16 to reorder them.

Noise Signals. In engineering simulations, we often want to generate a floating-point sequence
of values with a specified mean and variance. The function developed in Chapter 4 allows us
to generate numbers between limits a and b, but it does not allow us to specify the mean and

variance. By using results from probability, we can derive the relationship between the limits of
a uniform random sequence and its theoretical mean and variance

18. Write a program that uses the rand_float function developed in Chapter 4 to generate
sequences of random floating-point values between 4 and 10. Then compare the comput-
ed mean and variance with the computed theoretical values. As you use more and more
random numbers, the computed values and the theoretical values should become closer.

19. Write a program that uses the rand_float function developed in Chapter 4 to generate two
sequences of 500 points. Each sequence should have a theoretical mean of 4, but one se-
quence should have a variance of 0.5 and the other should have a variance of 2. Check the
computed means and compare them with the theoretical means. (Hint: Use the two previous
equations to write two equations with two unknowns. Then solve for the unknowns by hand.)

20. Write a program that uses the rand_float function developed in Chapter 4 to generate two
sequences of 500 points. Each sequence should have the same variance of 3.0, but one se-
quence should have a mean of 0.0 and the other should have a mean of Compare the
theoretical and computed values for mean and variance. (Hint: Use the two previous equa-
tions to write two equations with two unknowns. Then solve for the unknowns by hand.)

21. Write a function named rand_mv that generates a random floating-point value with a
specified mean and variance that are input parameters to the function. Assume that the
corresponding function prototype is

double rand_mv(double mean,double var);

Use the rand_float function developed in Chapter 4.

Power Plant Data. The data file power1.dat contains a power plant output in megawatts
over a period of 8 weeks. Each row of data contains 7 integers that represent 1 week’s data. In
developing the following programs, use symbolic constants NROWS and NCOLS to represent
the number of rows and the number of columns in the array used to store the data. (Generate
a file to test these problems.)

22. Write a program to compute and print the average power output over this period of time.
Also print the number of days with greater-than-average power output.

23. Write a program to print the day of the week and the number of the week on which the
minimum power output occurred. If there are several days with the minimum power out-
put, print the information for each day.

24. Write a function to compute the average of a specified column of a two-dimensional
array that has NROWS rows and NCOLS columns. The parameters should be the integer
array and the desired column. Assume that the corresponding function prototype is

double col_ave(int x[NROWS,NCOLS],int col);

25. Write a program that uses the function written in Problem 24 to print a report that lists the
average power output for the first day of the week, then for the second day of the week,
and so on. Print the information in this format:

Day x: Average Power Output in Megawatts: xxxx.xx

26. Write a function to compute the average of a specified row of a two-dimensional array
that has NROWS rows and NCOLS columns. The parameters should be the integer array and

-4.0.

s2 =
1b - a22

12
, m =

a + b
2

.

s2:m

Problems 283

5

284 Chapter 5 Arrays and Matrices

the desired row. Assume that the corresponding function prototype is

double row_ave(int x[NROWS,NCOLS],int row);

27. Write a program that uses the function written in Problem 26 to print a report that lists the
average power output for the first week, then for the second week, and so on. Print the in-
formation in this format:

Week x: Average Power Output in Megawatts: xxxx.xx

28. Write a program to compute and print the mean and variance of the power plant output data.

Cryptography. The science of developing secret codes has interested many people for centuries.
Some of the simplest codes involve replacing a character, or a group of characters, with another
character, or group of characters. To easily decode these messages, the decoder needs the “key”
that shows the replacement characters. In recent times, computers have been used very success-
fully to decode many codes that initially were assumed to be unbreakable. The next set of prob-
lems considers simple codes and schemes for decoding them. Generate files to test the programs.

29. A simple code can be developed by replacing each character by another character that is
a fixed number of positions away in the collating sequence. For example, if each charac-
ter is replaced by the character that is two characters to the right, then the letter ‘a’ is re-
placed by the letter ‘c,’ the letter ‘b’ is replaced by the letter ‘d,’ and so on. Write a
program that reads the text in a file, and then generates a new file that contains the coded
text using this scheme. Do not change the newline characters or the EOF character.

30. Write a program to decode the scheme presented in Problem 29. Test the program using
files generated by Problem 29.

31. One step in decoding a simple code (such as the one described in Problem 29) without
knowing the coding scheme involves counting the number of occurrences of each charac-
ter. Then, knowing that the most common letter in English is ‘e,’ the letter that occurs
most commonly in the coded message is replaced by ‘e.’ Similar replacements are then
made based on the number of occurrences of characters in the coded message and the
known occurrences of characters in the English language. This decoding often provides
enough of the correct replacements that the incorrect replacements can then be deter-
mined. For this problem, write a program that reads a data file and determines the num-
ber of occurrences of each of the characters in the file. Then, print the characters and the
number of times that they occurred. If a character does not occur, do not print it. (Hint:
Use an array to store the occurrences of the characters, based on their ASCII codes.)

32. Another simple code encodes a message in text such that the true message is represented by
the first letter of each word. There are no spaces between the words, but the decoded string
of characters can easily be separated into words by a person. Write a program to read a data
file and determine the secret message stored by the sequence of first letters of the words.

33. Assume that the true secret message in Problem 32 is stored in the second letter of each
word. Write a program to read a data file and determine the secret message stored in the file.

34. Assume that the true secret message in Problem 32 is represented by the characters that
are three characters to the right in the collating sequence from the first letters of the
words. Write a program to read a data file and determine the secret message stored in the
file using this decoding scheme.

35. Write a program that encodes the text in a data file using an integer array named key that
contains 26 characters. This key is read from the keyboard; the first letter contains the
character that is to replace the letter a in the data file, the second letter contains the letter

that is to replace the letter b in the data file, and so on. Assume that all punctuation is to
be replaced by spaces. Check to be sure that the key does not map two different charac-
ters to the same one during the encoding.

36. Write a program that decodes the file that is the output of Problem 35. Assume that the
same integer key is read from the keyboard by this program, and is used in the decoding
steps. Note that you will not be able to restore the punctuation characters.

Temperature Distribution. The temperature distribution in a thin metal plate with constant
(or isothermal) temperatures on each side can be modeled using a two-dimensional grid, as
shown in Figure 5.10. Typically, the number of points in the grid are specified, as are the con-
stant temperatures on the four sides. The temperatures of the interior points are usually ini-
tialized to zero, but they change according to the temperatures around them. Assume that
the temperature of an interior point can be computed as the average of the four adjacent
temperatures; the points shaded in Figure 5.10 represent the adjacent temperatures for the
point labeled x in the grid. Each time that the temperature of an interior point changes, the
temperatures of the points adjacent to it change. These changes continue until a thermal equi-
librium is achieved and all temperatures become constant.

37. Write a program to model this temperature distribution for a grid with six rows and eight
columns. Allow the user to enter the temperatures for the four sides. Use one array to
store the temperatures. Thus, when a point is updated, its new value is used to update the
next point. Continue updating the points, moving across the rows until the temperature
differences for all updates are less than a user-entered tolerance value.

38. Modify the program generated in Problem 37 so that the updates are performed down the
columns. Compare the equilibrium values for the two programs using different tolerance
values. The equilibrium values should be very close for small tolerance values.

39. Modify the program in Problem 37 so that two arrays are used and so that the program
can perform the updates as if they all happen at the same time. Thus, all temperatures are
updated using one set of array values. The two arrays are needed so that all the old tem-
peratures are available to compute each new temperature.

Gauss Elimination. The accuracy of the Gauss elimination technique can be improved using
a process called pivoting. To perform row pivoting, we first reorder the equations so that the
equation with the largest absolute value for the first coefficient is the first equation. We then
eliminate the first variable from the equations that follow the first equation. Then, starting
with the second equation, we reorder the equations such that the second equation has the
largest coefficient (in absolute value) for the second variable. We then eliminate the second

Problems 285

5

x
rightleft

top

bottom

Figure 5.10 Temperature grid
in a metal plate.

286 Chapter 5 Arrays and Matrices

variable from all equations after the second equation. The process continues similarly for the
rest of the variables. Assume that a symbolic constant N contains the number of equations.

40. Use the program developed in Section 5.12 as a guide to develop a function that receives
a double array a of size N by N. A second parameter is a double array soln of size N.
The function should solve the system of equations represented by array a, and return the
solution in array soln. Assume that the corresponding function prototype is

void gauss(double a[N][N+1],double soln[N]);

41. Write a function that receives a two-dimensional array and a pivot value that specifies the
coefficient of interest, j. The function should then reorder all equations starting with the
jth equation such that the jth equation will have the largest coefficient (in absolute value)
in the jth position. Assume that the function can reference the size of the array as N by
N+1 and that the corresponding function prototype is

void pivot_r(double a[N][N+1],int j);

42. Modify the function developed for Problem 40 so that the row pivoting is performed be-
fore each variable is eliminated. Use the function developed in Problem 41.

43. Column pivoting is performed in a similar fashion to row pivoting: by exchanging columns
such that the largest coefficient (in absolute value) will be in the position of interest. When
columns are exchanged, it is important to keep track of the changes in the order of the vari-
ables. Write a function to perform column pivoting. Include parameters to specify changes
in the order of the variables. Assume that the corresponding function prototype is

void pivot_c(double a[N][N+1],int j,int reorder k[N]);

44. Modify the function developed for Problem 40 so that column pivoting is performed be-
fore each variable is eliminated. Use the function developed in Problem 43.

45. Modify the function developed for Problem 40 so that both row pivoting and column piv-
oting are performed before each variable is eliminated. Use the functions developed in
Problems 41 and 43.

Determinants. The following problems define cofactors and minors of a square matrix and
then use them to evaluate a determinant.

46. The minor of an element of a matrix A is the determinant of the matrix obtained by
removing the row and column to which the given element belongs. Thus, if the origi-
nal matrix has four rows and columns, the minor is the determinant of a matrix with three
rows and columns. Write a function to compute the minor of a square matrix with four
rows and four columns. The input arguments should be the matrix A and the values of i
and j. Assume that the corresponding function prototype is

double minor(double a[4][4],int i,int j);

47. A cofactor of a matrix A is the product of the minor of and the factor
Write a function to compute a cofactor of a square matrix with four rows and four columns.
The arguments should be the matrix A and the values of i and j. You may want to reference
the function in Problem 46. Assume that the corresponding function prototype is:

double cofactor(double a[4][4],int i,int j);

1-12i+j.ai,jAi,j

ai,j

ai,j

48. The determinant of a square matrix A can be computed in the following way:

(a) Select any column.
(b) Multiply each element in the column by its cofactor.
(c) Add the products obtained in step (b).

Write a function det_c to compute the determinant of a square matrix with four rows
and four columns using this technique. You may want to reference the function developed
in Problem 47. Assume that the corresponding function prototype is

double det_c(double a[4][4]);

49. The determinant of a square matrix A can be computed in the following way:

(a) Select any row.
(b) Multiply each element in the row by its cofactor.
(c) Add the products obtained in step (b).

Write a function det_r to compute the determinant of a square matrix with four rows
and four columns using this technique. You may want to reference the function developed
in Problem 47. Assume that the corresponding function prototype is

double det_r(double a[4][4]);

Normalization Technique. There are a number of ways to normalize, or scale, a set of val-
ues. One common normalization technique scales the values such that the minimum value
goes to 0, the maximum value goes to 1, and other values are scaled accordingly. For exam-
ple, using this normalization, we can normalize the values in the following array:

Problems 287

5

Array values

2–1–2 0

Normalized array values

0.250.0 1.0 0.5

The equation that computes the normalized value from a value in the array is

where and represent the minimum and maximum values in the array x, re-
spectively. If you substitute the minimum value for in this equation, the numerator is
zero, and thus the normalized value for the minimum is zero. If you substitute the maxi-
mum value for in this equation, the numerator and denominator are the same value,
and hence the normalized value for the maximum is 1.0.

50. Write a function that has a one-dimensional double array and the number of values in
the array as its arguments. Normalize the values in the array using the technique present-
ed. Assume that the corresponding function prototype is

void norm_1D(double x[],int num_pts);

51. Write a function that has a two-dimensional double array as an argument. Normalize the
values in the array using the technique presented. Assume that symbolic contants NROWS
and NCOLS specify the size of the array and that these are available to the function. As-
sume that the corresponding function prototype is

void norm_2D(double x[NROWS][NCOLS]);

xk

xk

maxxminx

Normalized xk =
xk - minx

maxx - minx
,

xk

288

6

Crime Scene Investigation: DNA
Analysis
A match between the DNA of a suspect and a DNA sample collected from a crime
scene is considered to be a very strong piece of evidence. The FBI has a database
called CODIS (Combined DNA Index System) containing over nine million DNA
profiles.These profiles contain the sequence of nucleotides from a given DNA frag-
ment. The DNA nucleotides are either adenine (A), cytosine (C), guanine (G), or
thymine (T).Thus, a DNA profile is a character string that consists of letters repre-
senting the order of nucleotides, such as AAACGTACAGGT. While 99.9% of human
DNA sequences are the same in every person, there are still enough differences to
do DNA matching. A DNA match between an unknown DNA string and one from a
database is based on a number of matches of short strings (called short tandem re-
peats, or STRs) between the two strings. Forensic DNA became a viable tool for law
enforcement when DNA sequencing machines were developed that could automat-
ically determine the nucleotide sequence of a given DNA fragment. These instru-
ments use lasers to analyze light signals from fluorochromes that are attached to
nucleotides. DNA matching, also called genetic fingerprinting, was developed in 1984
by Sir Alec John Jeffreys, a British geneticist who developed the techniques that are
the basis of DNA matching today. In this chapter,we will develop a C program to find
small strings of DNA in a larger string.

CHAPTER SIX

CHAPTER OUTLINE

OBJECTIVES In this chapter, we develop problem solutions containing:

6.1 Addresses and Pointers
6.2 Pointers to Array Elements
6.3 Problem Solving Applied: El Niño–Southern Oscillation Data
6.4 Pointers in Function References
6.5 Problem Solving Applied: Seismic Event Detection
6.6 Character Strings
6.7 Problem Solving Applied: DNA Sequencing
6.8 Dynamic Memory Allocation*
6.9 A Quicksort Algorithm*

Summary, Key Terms, C Statement Summary,
Style Notes, Debugging Notes, Problems

When a C program is executed, memory locations are assigned to the variables used in the
program. Each of these memory locations has a positive integer address that uniquely defines
the location. When a variable is assigned a value, this value is stored in the corresponding
memory location. The value of a variable can be used by statements in the program, and it can
be changed by statements in the program. The specific addresses used for the variables are de-
termined each time that the program is executed and may vary from one execution to another.

It is sometimes helpful to compare memory allocation to the allocation of a group of post
office boxes. If the post office has 100 mailboxes numbered from 1 to 100, then the mailbox
number corresponds to the memory address. Each mailbox is assigned to an individual, using
the individual’s name; this name corresponds to the identifier assigned to a memory location.
The contents of the mailbox correspond to the value in the memory location; this value can be
examined and it can be changed.

PROGRAMMING
WITH POINTERS

6.1 Addresses and Pointers

289

■ pointers to variables;
■ pointers to arrays;
■ pointers in function references;

■ pointers with character strings;
and

■ dynamic memory allocation.

*Optional section.

Address

290 Chapter 6 Programming with Pointers

post office box number individual name contents
78 John Ruiz catalog

memory address identifier contents
66572 x 105

This analogy is not completely valid, because two individuals might have the same name, but
two identifiers cannot be exactly the same. Also, a mailbox might be empty, or it might con-
tain a number of items, whereas a memory location always contains a single value.

Address Operator
In C, the address of a variable can be referenced using the address operator &. This operator
was introduced in Chapter 2 in conjunction with the scanf statement. For example, a statement
to read a floating-point value from the keyboard and to store it in the variable x is the following:

scanf("%f",&x);

This statement specifies that the value read from the keyboard is to be stored at the address
specified by &x, the address of x.

To illustrate the use of the address operator to obtain the memory address of a variable,
consider the following program:

/*––*/
/* Program chapter6_1 */
/* */
/* This program demonstrates the relationship between */
/* variables and addresses. */

#include <stdio.h>

int main(void)
{

/* Declare and initialize variables. */
int a=1, b=2;

/* Print the contents and addresses of a and b. */
printf("a = %d; address of a = %u \n",a,&a);
printf("b = %d; address of b = %u \n",b,&b);

/* Exit program. */
return 0;

}
/*––*/

Note that the address is printed with a %u specification that is used for printing unsigned
integers. A sample output from this program is the following:

a = 1; address of a = 1245052
b = 2; address of b = 1245048

The following memory snapshot shows the values in the two memory locations at the time
that the printf statements are executed:

1 2a b

Address operator

Section 6.1 Addresses and Pointers 291

We do not usually indicate the memory addresses in these diagrams because the addresses
used are system dependent.

We can modify the program so that no initial values are given to variables a and b. This
modification is shown in the following program:

/*––*/
/* Program chapter6_2 */
/* */
/* This program demonstrates the relationship between */
/* variables and addresses. */

#include <stdio.h>

int main(void)
{

/* Declare and initialize variables. */
int a, b;

/* Print the contents and addresses of a and b. */
printf("a = %d; address of a = %u \n",a,&a);
printf("b = %d; address of b = %u \n",b,&b);

/* Exit program. */
return 0;

}
/*–––*/

A memory snapshot at the time that the printf statements are executed should show a
question mark in the variable contents because the values are undefined:

A sample output from this program is the following:

a = -858993460; address of a = 1245052
b = -858993460; address of b = 1245048

While we see that there are values in the variables (even though we have not assigned any in the
program), we should not assume anything about these values. This example illustrates the impor-
tance of being sure that a program initializes a variable before using its value in other statements.

? ?a b

1. Run program chapter6_1 two times on the computer that you are using for class as-
signments. Did your computer use the same addresses or different addresses? Compare
the results with those of your classmates.

2. Run program chapter6_2 presented in this section. What values were in the locations
assigned to a and b? If these values are zero, your compiler may automatically assign
the value of zero to undefined variables. This is not an ANSI standard, and you should
not assume that undefined variables will have a value of zero. Do the values change
from one execution of the program to another?

MODIFY!MODIFY!

292 Chapter 6 Programming with Pointers

Pointer Assignment
The C language allows us to store the address of a memory location in a special type of vari-
able called a pointer. When a pointer is defined, the type of variable to which it will point
must also be defined. Thus, a pointer defined to point to an integer variable cannot also be
used to point to a floating-point variable.

Consider a statement that defines two integer variables and a pointer to an integer value.
C uses an asterisk to indicate that the variable is a pointer; this asterisk is also called a
dereferencing or indirection operator. This statement could be written as follows:

int a, b, *ptr;

This statement specifies that memory addresses should be assigned to three variables—two
integer variables and a pointer to an integer variable. The statement does not specify the initial
values for a and b, and it also does not specify an address to be stored in ptr. Thus, the mem-
ory snapshot after this declaration indicates that the initial contents of all variables are not
specified; the diagram uses an arrow to indicate that ptr is a pointer variable:

To specify that ptr should point to the variable a, we could use an assignment statement
that stores the address of a in ptr:

int a, b, *ptr;
ptr = &a;

This assignment could also have been made on the declaration statement:

int a, b, *ptr=&a;

In either case, the memory snapshot after the declaration is the following:

Note that it is not necessary to show the contents of ptr as long as the variable to which it
points is specified.

Consider this set of statements:

/* Declare and initialize variables. */
int a=5, b=9, *ptr=&a;
...
/* Assign the value pointed to by ptr to b. */
b = *ptr;

This last statement is read as "b is assigned the value at the address contained in ptr" or "b
is assigned the value pointed to by ptr." The memory snapshot after the declaration state-
ment is executed is the following:

5 9a b

ptr

? ?a b

ptr

? ? ?ptra b

Pointer

Dereferencing
Indirection

Section 6.1 Addresses and Pointers 293

The memory snapshot after the assignment statement is executed is the following:

Thus, b is assigned the value pointed to by ptr.
Now consider this set of statements:

/* Declare and initialize variables. */
int a=5, b=9, *ptr=&a;
...
/* Assign the value of b to the variable */
/* to which ptr points. */
*ptr = b;

The memory snapshot before the assignment statement is executed is the following:

The memory snapshot after the assignment statement is executed is the following:

Thus, the value pointed to by ptr is assigned the value in b.
We now extend program chapter6_1 to demonstrate the relationship between variables,

addresses, and pointers. Consider the following program:

/*–––*/
/* Program chapter6_3 */
/* */
/* This program demonstrates the relationship between */
/* variables, addresses, and pointers. */

#include <stdio.h>

int main(void)
{

/* Declare and initialize variables. */
int a=1, b=2, *ptr=&a;

/* Print the variable and pointer contents. */
printf("a = %d; address of a = %u \n",a,&a);
printf("b = %d; address of b = %u \n",b,&b);

9 9a b

ptr

5 9a b

ptr

5 5a b

ptr

Pointers were used in Chapter 3 to access data files. Recall that a pointer to a file (called
a file descriptor) was defined using a FILE declaration, as in

FILE *sensor;

where the FILE data type is defined in <stdio.h>. The pointer was associated with a specif-
ic file using the fopen statement, as shown in the following statement:

sensor = fopen("sensor1.txt","r");

294 Chapter 6 Programming with Pointers

printf("ptr = %u; address of ptr = %u \n",ptr,&ptr);
printf("ptr points to the value %d \n",*ptr);

/* Exit program. */
return 0;

}
/*–––*/

A sample output from this program is the following:

a = 1; address of a = 1245052
b = 2; address of b = 1245048
ptr = 1245052; address of ptr = 1245044
ptr points to the value 1

Note that the values of the pointer to a and the address of a are the same.

Give memory snapshots after each of these sets of statements is executed:

PRACTICE!PRACTICE!

1. int a=1, b=2, *ptr;

...

ptr = &b;

2. int a=1, b=2, *ptr=&b;

...

a = *ptr;

3. int a=1, b=2, c=5, *ptr=&c;

...

b = *ptr;

*ptr = a;

4. int a=1, b=2, c=5, *ptr;

...

ptr = &c;

c = b;

a = *ptr;

Section 6.1 Addresses and Pointers 295

This statement also indicates that sensor1.txt is an input file because we will be reading
information from it, as specified by the parameter "r". The pointer is used again with the
fscanf statement to point to the file from which we want to read data:

fscanf(sensor,"%f %f",&t,&motion);

The file pointer is necessary in the fscanf function because we may be reading information
from several files in the same program. A pointer variable is used in a similar manner with an
output file and the fprintf function.

Address Arithmetic
The operations that can be performed with pointers (or addresses) are limited to the following:

• A pointer can be assigned to another pointer of the same type;

• An integer value can be added to or subtracted from a pointer;

• A pointer can be assigned to or compared with the integer zero or to the symbolic con-
stant NULL, which is defined in <stdio.h>; and

• Pointers to elements of the same array can be subtracted or compared as a means to
accessing elements in the array.

A pointer can point to only one location, but several pointers can point to the same location.
Both ptr_1 and ptr_2 point to the same variable after we execute the following statements:

/* Declare and initialize variables. */
int x=-5, y=8, *ptr_1, *ptr_2;
...
/* Assign both pointers to x. */
ptr_1 = &x;
ptr_2 = ptr_1;

The memory snapshot after these statements are executed is the following:

To illustrate some common errors that can be made when working with pointers, we now
present several invalid statements using these variables:

&y = ptr_1; /* invalid statement - attempts */
/* to change the address of y */

ptr_1 = y; /* invalid statement - attempts */
/* to change ptr_1 to a */
/* nonaddress value */

ptr_1 = ptr_2; / invalid statement - attempts */
/* to move an address to an */
/* integer variable */

-5 8x y

ptr_1 ptr_2

NULL

ptr_1 = *ptr_2; /* invalid statement - attempts */
/* to change ptr_1 to a */
/* nonaddress value */

It is instructive to attempt to draw memory snapshots of these invalid statements; in each
statement, we are attempting to store a variable value in a pointer, or we are attempting to
store a pointer in a variable. To help avoid these errors, use identifier names for pointers that
clearly indicate that the identifiers are associated with pointers.

When simple variables are defined, we should not make any assumptions about the rela-
tionships of the memory locations assigned to the variables. For example, if a declaration
statement defines two integers, a and b, we should not assume that the values are adjacent in
memory; we also should not make assumptions about which value occurs first in memory.
The memory assignment of a simple variable is system dependent. However, the memory as-
signment for an array is guaranteed to be a sequential group of memory locations. Thus, if
array x contains five integers, then the memory location for x[1] will immediately follow the
memory location for x[0], and the memory location for x[2] will immediately follow the
memory location for x[1], and so on. Therefore, if ptr_x is a pointer to an integer, we can
initialize it to point to the integer x[0] with this statement:

ptr_x = &x[0];

To move the pointer to x[1], we can increment ptr_x by 1, which causes it to point to the
value that follows x[0], or we can assign ptr_x the address of x[1]. Thus, we could cause
ptr_x, which currently points to x[0], to be changed to point to x[1] by using only the fol-
lowing statements:

++ptr_x; /* increment ptr_x to point to the */
/* next value in memory */

ptr_x++; /* increment ptr_x to point to the */
/* next value in memory */

ptr_x += 1; /* increment ptr_x to point to */
/* the next value in memory */

ptr_x = &x[1]; /* ptr_x is assigned the */
/* address of x[1] */

Similarly, the statement

ptr_x += k;

refers to the address of the value that is k values past the one to which ptr_x pointed before
this statement was executed. These are all examples of adding integers to pointers. Similarly,
integers can also be subtracted from pointers. Section 6.2 expands this discussion for one-
dimensional arrays and for multidimensional arrays.

When an integer value is added to or subtracted from a pointer, we assume that the inte-
ger refers to the number of values from the one referenced by the pointer before the addition
or subtraction is performed. For example, the statement

ptr++;

indicates that ptr should be modified such that it points to the next value in memory, which
is the value that follows the one referenced by ptr before it is incremented. Because different

296 Chapter 6 Programming with Pointers

Section 6.2 Pointers to Array Elements 297

Table 6.1 Operator Precedence

Precedence Operation Associativity

1 ()[] innermost first
2 ++ -- + - ! (type) & * right to left (unary)
3 * / % left to right
4 + - left to right
5 < <= > >= left to right
6 == != left to right
7 && left to right
8 || left to right
9 ?: right to left

10 = += -= *= /= %= right to left
11 , left to right

types of values require different amounts of memory, the actual value added to ptr depends
on the variable type. A floating-point value requires more memory than a short integer, and
thus the address increment for a floating-point value will be greater than an address increment
for a short integer. For example, the memory addresses for consecutive short integers might be
45530 and 45532, and memory addresses for consecutive floating-point values might be
50200 and 50204. Fortunately, the compiler will determine the correct memory address when
we add an integer to a pointer or when we subtract an integer from a pointer.

A pointer operation can be included in a statement with other operations, so it is impor-
tant to be sure that the operator precedence is specified correctly. An address operator is a
unary operation, and thus it is performed before a binary operation. Unary operations are also
performed from right to left. These precedence rules are summarized in Table 6.1. Remember
that parentheses can always be used to change the precedence of operations.

Errors with pointers can cause problems that are difficult to debug. Even worse, pointer
errors can often cause a program to give incorrect results while appearing to work properly.
Many pointer errors are caused by pointers that were not initialized before being used. There-
fore, it is a good habit to initialize all pointers at the beginning of the program. If a pointer is
not initially assigned to a memory location, give it a NULL value to indicate that the pointer
has not been assigned to a memory location. To determine whether the pointer named ptr_1
has been assigned to a memory location at some point in the program, use an if statement
that contains a condition such as (ptr_1 == NULL). Work the problems in the practice! ex-
ercises on the next page before continuing with Section 6.2.

6.2 Pointers to Array Elements
In Chapter 5, we covered arrays and array handling extensively, using subscripts to specify in-
dividual array elements. Pointers can also be used to specify individual array elements. Array
references using pointers and addresses are almost always faster than references using sub-
scripts; thus, pointer references for arrays are generally preferred if speed is a concern. As dis-
cussed in Section 6.1, pointer references to array values are based on the knowledge that
memory assignment of array values is always sequential.

298 Chapter 6 Programming with Pointers

One-Dimensional Arrays
Consider the following declaration that defines and initializes a one-dimensional array with
floating-point values:

double x[6]={1.5,2.2,4.3,7.5,9.1,10.5};

The memory snapshot after this statement is executed is the following:

Reference x[0] refers to the first element in the array, reference x[1] refers to the second
element in the array, and reference x[k] refers to the k + 1 element in the array. Similar
references can be generated with pointers. Assume that a pointer ptr has been defined to
reference double values and is then initialized with this statement:

ptr = &x[0];

The address of the first element in the array is then stored in the pointer. Thus, reference *ptr
refers to x[0], reference *(ptr+1) refers to x[1], and reference *(ptr+k) refers to x[k].

10.5

9.1

7.5

4.3

2.2

1.5

x[5]

x[0]

x[4]

x[3]

x[2]

x[1]

For each problem, give a memory snapshot that includes both variables and pointer references
after the problem statements are executed. Include as much information as possible. Use
question marks to indicate memory locations that have not been initialized.

1. double x=15.6, y=10.2, *ptr_1=&y, *ptr_2=&x;
...
*ptr_1 = *ptr_2 + x;

2. int w=10, x=2, *ptr_2=&x;
...
*ptr_2 -= w;

3. int x[5]={2,4,6,8,3};
int *ptr_1=NULL, *ptr_2=NULL, *ptr_3=NULL;
...
ptr_3 = &x[0];
ptr_1 = ptr_2 = ptr_3 + 2;

4. int w[4], *first_ptr=NULL, *last_ptr=NULL;
...
first_ptr = &w[0];
last_ptr = first_ptr + 3;

PRACTICE!PRACTICE!

Section 6.2 Pointers to Array Elements 299

The value of k in reference *(ptr+k) is often referred to as an offset from the beginning el-
ement in the array. The following diagram shows the memory allocation for the array used in
this example with the offsets added:

We can compute the sum of the values in the array x using subscripts and a for loop:

/* Declare and initialize variables. */
int k;
double x[6], sum=0;
...
/* Sum the values in the array x. */
for (k=0; k<=5; k++)

sum += x[k];

An equivalent set of statements that uses pointers instead of subscripts is the following:

/* Declare and initialize variables. */
int k;
double x[6], sum=0, *ptr=&x[0];
...
/* Sum the values in the array x. */
for (k=0; k<=5; k++)

sum += *(ptr+k);

Note that reference *(ptr+k) requires parentheses to perform the operations in the correct
order; k is added to the address in ptr, and then the indirection operator refers to the value
pointed to by ptr+k. Reference *ptr+k would not work correctly because it would be com-
puted as if it were (*ptr)+k because a unary operator has precedence over a binary operator.

In the discussion on arrays in Chapter 5, we saw that using an array name as a function
parameter passed the address of the first element of the array to the associated procedure. An
array name can also be used to represent the address of the first element of the array in other
statements. For example, the following two statements are equivalent:

ptr = &x[0];
ptr = x;

Similarly, reference *(ptr+k) is also equivalent to *(x+k). Thus, the statements to sum
array x can be simplified to these:

10.5

9.1

7.5

4.3

2.2

1.5x[0]

x[5]

x[4]

x[3]

x[2]

x[1]

0

1

2

3

4

5

offset

Offset

300 Chapter 6 Programming with Pointers

/* Declare and initialize variables. */
int k;
double x[6], sum=0;
...
/* Sum the values in the array x. */
for (k=0; k<=5; k++)

sum += *(x+k);

This example illustrates the use of an array name as an address. In most statements, the array
name can replace a pointer, but it cannot be used on the left side of an assignment statement,
because its value cannot be changed.

Assume that an array g is defined with the following statement:

int g[]={2,4,5,8,10,32,78};

int *ptr1=&g[0], *ptr2=&g[3];

Give a diagram of the memory allocation, including the array values. Also indicate the offset
values from the initial value in the array. Using this information, give the value of the follow-
ing references:

1. *g 2. *(g+1)

3. *g+1 4. *(g+5)

5. *ptr1 6. *ptr2

7. *(ptr1+1) 8. *(ptr2+2)

PRACTICE!PRACTICE!

Two-Dimensional Arrays
A two-dimensional array is stored in sequential memory locations, in row order, as we will
show in an array definition, array diagram, and corresponding memory allocation map. Note
that the memory allocation map also shows the offset from the initial value in the array:

3

6

5

4

1

2

3

5

1

6

4

2
Memory allocation:

s[0][0]

s[0][1]

s[0][2]

s[1][0]

s[1][1]

s[1][2]

0

1

2

3

4

5

offset

Array definition: int s[2][3] = {{2,4,6},{1,5,3}};

Arrary diagram:

Section 6.2 Pointers to Array Elements 301

A pointer can be used to reference an element in a two-dimensional array using the offset
from the initial element in the array. If pointer ptr has been initialized to point to s[0][0],
then reference *(ptr+k) accesses the array element with the offset of k. To illustrate, sup-
pose that we want to compute the sum of the elements in an array s with two rows and three
columns. The following statements compare a solution using subscripts and a solution using
indirection references with pointers:

Solution 1

/* Declare and initialize variables. */
int s[2][3], srows=2, scols=3, i, j, sum=0;
...
/* Sum the values in the array s. */
for (i=0; i<=srows-1; i++)

for (j=0; j<=scols-1; j++)
sum += s[i][j];

Solution 2

/* Declare and initialize variables. */
int s[2][3], s_count=6, k, sum=0, *ptr=&s[0][0];
...
/* Sum the values in the array s. */
for (k=0; k<=s_count-1; k++)

sum += *(ptr+k);

Both solutions correctly compute the sum of the array elements. Note that the first solution re-
quired nested loops, because both a row subscript and a column subscript were needed. How-
ever, the second solution required only a single loop to specify the offset from the initial array
value. It is also interesting to observe that both solutions add the elements in an order that
moves across the rows. Solution 1 could be modified to add the elements in an order that
moves down the columns; this could be accomplished by interchanging the two for loops.

Draw the memory allocation for each of the following arrays, and indicate the values stored in
the locations. Use a question mark to indicate positions that are not initially assigned a value.
Also indicate the offset from the initial array value for each of the array elements.

1. int d[4][2]={{1,6}};

2. int g[3][4]={{5,2,�2,3},{1,2,3,4}};

3. float h[3][3]={{0}};

PRACTICE!PRACTICE!

Assume that an integer array x is defined by the following statements:

int x[2][4]={{1,8,7,6},{2,4,-1,0}}, *xptr=&x[0][0];

Draw a memory allocation diagram, and give the value indicated by each of the follow-
ing references:

1. *xptr 2. *(xptr+2)

3. *xptr + 2 4. *(xptr+1) + *(xptr+3)

PRACTICE!PRACTICE!

302 Chapter 6 Programming with Pointers

To convert reference s[i][j] to an offset from pointer sptr, which has been initialized
to &s[0][0], the number of columns in the array must be known. If we assume that scols
contains the number of columns used in the memory allocation for s, then the offset for the
value in row i and column j is equal to i*scols + j. To demonstrate the validity of this off-
set formula, consider the memory allocation for array s with the offset included:

3

5

1

6

4

2Memory allocation: s[0][0]

s[0][1]

s[0][2]

s[1][0]

s[1][1]

s[1][2]

0

1

2

3

4

5

offset

Suppose that we wish to convert reference s[0][1] to an offset from the initial value in
the array. According to the formula, the offset should be 0*scols + 1, or 1; a corresponding
reference is *(sptr+1). Similarly, because this array has three columns, a reference
s[1][2] has an offset of 1*scols + 2, or 5; a corresponding reference is *(sptr+5). Sim-
ilar formulas can be developed to convert higher dimensional array references to an offset
from the first array value.

In C, a two-dimensional array can also be considered to be a one-dimensional array
with each element being another one-dimensional array. For example, array s with two
rows and three columns can be considered to be a one-dimensional array (with two ele-
ments), with each element being another one-dimensional array (with three elements).
Thus, reference s[1][0] is equivalent to *s[1] because s[1] represents the address of
the first element in row 1. Similarly *(s[0]+4) references the value in position
s[1][1]. For readability, we usually use pointers with an offset instead of a one-dimen-
sional reference with an offset when we want to use an indirect reference to a two-dimen-
sional array.

Assume that array a has been defined to contain four rows and six columns. Also assume that
values have been read into the array from a data file. Use pointers with an offset to perform
the following operations:

1. Find the sum of the second row of values.

2. Find the sum of the third column of values.

3. Find the maximum in the first three rows of values.

4. Find the minimum in the last four columns of values.

PRACTICE!PRACTICE!

Section 6.3 Problem Solving Applied: El Niño–Southern Oscillation Data 303

6.3 Problem Solving Applied: El Niño–Southern Oscillation Data
Along the equator, normal sea-surface temperatures are warm on the western side of the
Pacific Ocean and cold on the eastern side of the Pacific Ocean. In a reoccurring phenome-
non, a warm current causes the ocean temperatures on the eastern side of the Pacific (along
the western shores of California, Mexico, and South America) to increase as much as 18°F.
This phenomenon often occurs near Christmas; thus, it is often called El Niño. (In Spanish, el
niño means a male child.) A reverse phenomenon also occurs in which the temperatures on
the western side of the Pacific Ocean become colder; this is called La Niña. (In Spanish, la
niña means a female child.) These conditions relate to the southern oscillation between warm
currents and east–west atmospheric pressure changes. The El Niño–Southern Oscillation
(ENSO) index is a metric that is computed from a number of variables, including atmospheric
pressure, wind, and ocean temperature. When the ENSO index is positive, the ocean temper-
atures represent the El Niño condition; when the ENSO index is negative, the ocean tempera-
tures represent the La Niña condition. The larger the index, the larger the variation in
temperatures from normal. Write a program that reads a data file that contains the year, quar-
ter, and ENSO index for that period of time. The program should determine and print the year
and quarter with the strongest El Niño conditions.

1. PROBLEM DESCRIPTION

Determine the year and quarter with the strongest El Niño conditions.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows the data file as the input and the year and quarter as output.

3. HAND EXAMPLE

Assume that the data file contains the following data:

Year Quarter ENSO Index

1990 1 0.6
1991 1 0.2
1992 1 1.1
1993 1 0.5
1994 1 0.1

Year with strongest
El Niño condition

Quarter with strongest
El Niño condition

ENS01.txt

El Niño

La Niña

ENSO

304 Chapter 6 Programming with Pointers

Year Quarter ENSO Index

1995 1 1.2
1996 1 �0.3
1997 1 �0.1
1998 1 2.2
1999 1 �0.7
2000 1 �1.1

The corresponding output would then be the following report:

Maximum El Nino Conditions in Data file
Year: 1998, Quarter: 1

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a set of
sequential steps.

Decomposition Outline

1. Read the ENSO data into arrays and determine the maximum positive index.

2. Print the year and quarter that match the maximum intensity.

The refinement in pseudocode follows:

Refinement in Pseudocode

main: if file cannot be opened

print error message

else

read data and determine maximum intensity

print the year and quarter that go with maximum intensity

The steps in the pseudocode are now detailed enough to convert to C.

/*––-*/
/* Program chapter6_4 */
/* */
/* This program reads a data file of ENSO index values and */
/* determines the maximum El Nino condition in the file. */

#include <stdio.h>
#define FILENAME "ENSO1.txt"
#define MAX_SIZE 1000

int main(void)
{

/* Declare variables and function prototypes. */
int k=0, year[MAX_SIZE], qtr[MAX_SIZE], max_k=0;
double index[MAX_SIZE];
FILE *enso;

Section 6.3 Problem Solving Applied: El Niño–Southern Oscillation Data 305

/* Read sensor data file. */
enso = fopen(FILENAME,"r");
if (enso == NULL)

printf("Error opening input file. \n");
else
{

while (fscanf(enso,"%d %d %lf",
year+k,qtr+k,index+k)==3)

{
if (*(index+k) > *(index+max_k))

max_k = k;
k++;

}

/* Print data for maximum El Nino condition. */
printf("Maximum El Nino Conditions in Data File \n");
printf("Year: %d, Quarter: %d \n",

(year+max_k),(qtr+max_k));

/* Close file. */
fclose(enso);

}

/* Exit program. */
return 0;

}
/*––-*/

5. TESTING

The output from the program using the data from the hand example is as follows:

Maximum El Nino Conditions in Data File
Year: 1998, Quarter: 1

1. Modify the program to find and print the maximum La Niña conditions.

2. Modify the program to find the conditions closest to zero. These would be the condi-
tions that are closest to normal.

3. Modify the program so that it prints all years and quarters with El Niño conditions.

MODIFY!MODIFY!

306 Chapter 6 Programming with Pointers

In problem solutions that switch several values, it would be convenient to access a function to
perform the switch. Consider the following function, which attempts to perform the switch
using simple variable parameters (call-by-value):

/*–––*/
/* Incorrect function to switch values in two variables. */

void switch1(int a, int b)
{

/* Declare variables. */
int hold;

/* Switch values in a and b. */
hold = a;
a = b;
b = hold;

/* Void return. */
return;

}
/*–––*/

6.4 Pointers in Function References
In C, most function references are call-by-value references. Thus, the values of the actual pa-
rameters are copied to the formal parameters. All computations in the function use the formal
parameters, and thus an actual parameter cannot be changed in a function. One exception to
this rule was presented in Chapter 4; when an array name is used as an argument in a function
reference, the address of the array is transferred to the function, and all references to array val-
ues use the actual array locations. Thus, values in an array can be modified by statements with-
in a function. Other exceptions can be implemented using pointers as function parameters.

To illustrate the use of pointers as function parameters, we develop a function that ex-
changes the contents of two memory locations. Recall that it takes three statements to switch
the values in two locations; the correct statements and corresponding memory snapshots are
as follows:

5 10 ?

5 10 5

10 10 5

10 5 5

a b hold

hold = a;

a b hold

a = b;

a b hold

b = hold;

a b hold

Section 6.4 Pointers in Function References 307

Assume that the following statement references this function:

switch1(x,y);

If x and y contain the values 5 and �2, then the transfer of the values from the actual parameters
to the formal parameters at the beginning of the function execution is the following:

5 5

-2 -2

actual parameters formal parameters

x a

y b

5 -2

-2 5

actual parameters formal parameters

x a

y b

After the function is executed, the values of the actual parameters and formal parameters are
as follows:

Since this function uses a call-by-value reference, the value of the actual parameters (not the
address), is passed to the formal parameters. The values have been switched in the formal pa-
rameters, but these values are not transferred back to the actual parameters.

After considering this incorrect solution, we are now ready to develop a function that
switches the contents of two simple variables using pointers. The function has two parameters
that are pointers to the two variables that we want to switch. A prototype statement for this
function is the following:

void switch2 (int *a,int *b);

Thus, the function does not return a value, and its two parameters are pointers to integers. The
correct function will appear as follows:

/*–––*/
/* Correct function to switch values in two variables. */

void switch2(int *a,int *b)
{

/* Declare variables. */
int hold;

/* Switch values in a and b. */
hold = *a;
*a = *b;
*b = hold;

/* Void return. */
return;

}
/*–––*/

308 Chapter 6 Programming with Pointers

If x and y are simple variables, then a valid call to this function is

switch2(&x,&y);

If ptr_1 points to variable x, and ptr_2 points to the variable y, then the values in x and y
can be switched with this reference:

switch2(ptr_1,ptr_2);

Elements x[i] and x[j] could also be switched with the statements

switch2(&x[i],&x[j]);
switch2(x+i,x+j);

but not with the statement

switch2(x[i],x[j]); /* invalid statement */

The actual parameter that corresponds to a pointer argument must be an address or pointer.

Consider the references to the switch2 function. For invalid references, explain why the ref-
erence is invalid. For valid references, give a memory snapshot before and after the reference.

1. float x=1.5, y=3.0, *ptr_x=&x, *ptr_y=&y;

...

switch2(ptr_x,ptr_y);

2. int f=2, g=7, *ptr_f=&f, *ptr_g=&g;

...

switch2(ptr_f,ptr_g);

3. int f=2, g=7, *ptr_f=&f, *ptr_g=&g;

...

switch2(*ptr_f,*ptr_g);

4. int f=2, g=7, *ptr_f=&f, *ptr_g=&g;

...

switch2(&ptr_f,&ptr_g);

5. int f=2, g=7, *ptr_f=&f, *ptr_g=&g;

...

switch2(&f,&g);

6. int f=2, g=7, *ptr_f=&f, *ptr_g=&g;

...

switch2(f,g);

PRACTICE!PRACTICE!

Section 6.5 Problem Solving Applied: Seismic Event Detection 309

6.5 Problem Solving Applied: Seismic Event Detection
Special sensors called seismometers are used to collect earth motion information. These
seismometers can be used in a passive environment, in which they record the earth’s motion,
including earthquakes and tidal motion. By using data from several seismometers to analyze
ground motion from an earthquake, it is possible to determine the epicenter of the earth-
quake and the intensity of the earthquake. The intensity is usually measured using the
Richter scale, which is a scale from 1 to 10 named after U.S. seismologist C. F. Richter.

Write a program that reads a set of seismometer data from a data file named
seismic1.txt. The first line of the file contains two values—the number of seismometer
data readings that follow in the file and the time interval in seconds that occurred between con-
secutive measurements. This time interval is a floating-point value, and we assume that all the
measurements were taken with the same time interval between them. After reading and storing
the data measurements, the program should then identify possible earthquakes, which are also
called seismic events, using a power ratio. At a specific point in time, this ratio is the quotient
of a short-time power measurement divided by a long-time power measurement. If the ratio
is greater than a given threshold, an event may have occurred at that point in time. Given a
specific point in the data measurements, the short-time power is the average power, or average
squared value, of the measurements using the specified point plus a small number of points that
occurred just previous to the specified point. The long-time power is the average power of the
measurements using the specified point plus a larger number of points that occurred just
previous to the specified point. (The set of points used in a calculation is sometimes referred to
as a data window.) The threshold is generally greater than 1 to avoid detecting events in con-
stant data, because the short-time power is equal to the long-time power if the data values are
all the same value. Assume that the numbers of measurements for the short-time power and for
the long-time power are read from the keyboard. Set the threshold value to 1.5.

1. PROBLEM STATEMENT

Determine the locations of possible seismic events using a set of seismometer measure-
ments from a data file.

2. INPUT/OUTPUT DESCRIPTION

The inputs are a data file named seismic1.txt and the number of measurements to use
for short-time power and long-time power. The output is a report giving the times of poten-
tial seismic events.

Short-time power window size

seismic1.txt

Long-time power window size
Seismic event times

Seismometers

Richter scale

Data window

Seismic events

Short-time power

Long-time power

Threshold

310 Chapter 6 Programming with Pointers

3. HAND EXAMPLE

Suppose that a data file contains the following data, which include the number of points to
follow (11) and time interval between points (0.01), followed by the 11 values that corre-
spond to a sequence of values x0, x1, . . . x10:

11 0.01
1 2 1 1 1 5 4 2 1 1 1

If the short-time power measurement is made using two samples, and the long-time power
measurement is made using five measurements, then we can compute power ratios, begin-
ning with the rightmost point in a window:

1 2 1 1 1 5 4 2 1 1 1

long window

Point x7: Short-time power � (4 � 16)/2 � 10,
Long-time power � (4 � 16 � 25 � 1 � 1)/5 � 9.4,
Ratio � 10/9.4 � 1.06.

short window

1 2 1 1 1 5 4 2 1 1 1

long window

Point x6: Short-time power � (16 � 25)/2 � 20.5,
Long-time power � (16 � 25 � 1 � 1 � 1)/5 � 8.8,
Ratio � 20.5/8.8 � 2.33.

short window

1 2 1 1 1 5 4 2 1 1 1

long window

Point x5: Short-time power � (25 � 1)/2 � 13,
Long-time power � (25 � 1 � 1 � 1 � 4)/5 � 6.4,
Ratio � 13/6.4 � 2.03.

short window

1 2 1 1 1 5 4 2 1 1 1

long window

Point x4: Short-time power � (1 � 1)/2 � 1,
Long-time power � (1 � 1 � 1 � 4 � 1)/5 � 1.6,
Ratio � 1/1.6 � 0.63.

short window

Section 6.5 Problem Solving Applied: Seismic Event Detection 311

By using the ratios previously computed, possible seismic events occurred at points x5 and x6.
Because the time interval between points is 0.01 second, the times that correspond to the
seismic events are 0.05 and 0.06 second. (We assume that the first point in the file occurred at
0.0 second.)

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a series of
sequential steps:

Decomposition Outline

1. Read seismic data from the data file and read numbers of measurement for power from
the keyboard.

2. Compute power ratios and print possible seismic event times.

Step 1 involves reading the data file and storing the information in an array. Because we do not
know the exact size of the array, we will need to specify a maximum size in the array definition.
We will read the numbers of measurements for the power computations from the keyboard.
Step 2 involves computing power ratios and comparing them to the threshold to determine if

1 2 1 1 1 5 4 2 1 1 1

long window

Point x10: Short-time power � (1 � 1)/2 � 1,
Long-time power � (1 � 1 � 1 � 4 � 16)/5 � 4.6,
Ratio � 1/4.6 � 0.22.

short window

1 2 1 1 1 5 4 2 1 1 1

long window

Point x9: Short-time power � (1 � 1)/2 � 1,
Long-time power � (1 � 1 � 4 � 16 � 25)/5 � 9.4,
Ratio � 1/9.4 � 0.11.

short window

1 2 1 1 1 5 4 2 1 1 1

long window

Point x8: Short-time power � (1 � 4)/2 � 2.5,
Long-time power � (1 � 4 � 16 � 25 � 1)/5 � 9.4,
Ratio � 2.5/9.4 � 0.27.

short window

312 Chapter 6 Programming with Pointers

a possible event occurred. Because we need to compute two power measurements for each
possible event location, we implement the power measurement as a function. The refinement in
pseudocode for the main function and the power function can now be developed:

Refinement in Pseudocode
main: set threshold to 1.5

read npts and time-interval
read the values into sensor array
read short-window, long-window from keyboard
set k to long-window - 1
while k
 npts-1

set short-power to power(sensor,short-window,k)
set long-power to power(sensor,long-window,k)
set ratio to short-power/long-power
if ratio � threshold

print k . time-interval
increment k by 1

power(x,length,n):
set xsquare to zero
set k to n
while k > n-length+1

add x[k] . x [k] to xsquare
return xsquare/length

We are now ready to convert the pseudocode to C.

/*––-*/
/* Program chapter6_5 */
/* */
/* This program reads a seismic data file and then */
/* determines the times of possible seismic events. */

#include <stdio.h>
#define FILENAME "seismic1.txt"
#define MAX_SIZE 1000
#define THRESHOLD 1.5

int main(void)
{

/* Declare variables and function prototypes. */
int k, npts, short_window, long_window;
double sensor[MAX_SIZE], time_incr, short_power,

long_power, ratio;
FILE *file_ptr;
double power_w(double *ptr,int n);

/* Read sensor data file. */
file_ptr = fopen(FILENAME,"r");
if (file_ptr == NULL)

printf("Error opening input file. \n");

Section 6.5 Problem Solving Applied: Seismic Event Detection 313

else
{

fscanf(file_ptr,"%d %lf",&npts,&time_incr);
if (npts > MAX_SIZE)

printf("Data file too large for array. \n");
else
{

/* Read data into an array. */
for (k=0; k<=npts-1; k++)

fscanf(file_ptr,"%lf",&sensor[k]);

/* Read window sizes from the keyboard. */
printf("Enter number of points for short window: \n");
scanf("%d",&short_window);
printf("Enter number of points for long window: \n");
scanf("%d",&long_window);

/* Compute power ratios and search for events. */
for (k=long_window-1; k<=npts-1; k++)
{

short_power = power_w(&sensor[k],short_window);
long_power = power_w(&sensor[k],long_window);
ratio = short_power/long_power;
if (ratio > THRESHOLD)

printf("Possible event at %f seconds \n",
time_incr*k);

}

/* Close file. */
fclose(file_ptr);

}
}
/* Exit program. */
return 0;

}
/*––-*/
/* This function computes the average power in a specified */
/* window of a double array. */

double power_w(double *ptr, int n)
{

/* Declare and initialize variables. */
int k;
double xsquare=0;

/* Compute sum of values squared in the array x. */
for (k=0; k<=n-1; k++)

xsquare += *(ptr-k)*(*(ptr-k));

/* Return the average squared value. */
return xsquare/n;

}
/*––-*/

314 Chapter 6 Programming with Pointers

A character array is defined as an array in which the individual elements are stored as characters.
A character string is a character array in which the last array element is a null character '\0',
which has an ASCII integer equivalent of zero. In this section, we focus on character strings.

String Definition and I/O
Character string constants are enclosed in double quotes, as in "sensor1.txt", "r", and
"15762". A character string array can be initialized using string constants, or using character
constants, as shown in the following equivalent statements:

char filename[12] = "sensor1.txt";
char filename[] = "sensor1.txt";
char filename[] = {'s','e','n','s','o','r',

'1','.','t','x','t','\0'};

To read a line from the keyboard and store it as a character string, we use the following
statements:

/* Declare variables. */
int k=0, nchars;
char line[50];
...
/* Read characters into string until newline is read. */
while ((line[k]=getchar()) != '\n')

k++;
line[k] = '\0';
nchars = k + 1;

Modify the event-detection program to include the following new capabilities:

1. Allow the user to enter the threshold value. Check the value to be sure that it is a posi-
tive value greater than 1.

2. Print the number of events detected by the program. (Assume that events with contiguous
times are all part of the same event. Thus, for the hand example, one event was detected.)

MODIFY!MODIFY!

6.6 Character Strings

Character string

5. TESTING

The program’s output, using the data file from the hand example, is as follows:

Enter number of points for short-window:
2
Enter number of points for long-window:
5
Possible event at 0.050000 seconds
Possible event at 0.060000 seconds

Section 6.6 Character Strings 315

A similar set of statements can be used to read a character string from a line in a data file. To
print the values in this character string, we can use the following statements:

for (k=0; k<=nchars-2; k++)
putchar(line[k]);

putchar('\n');

Note that we did not print the last character, line[nchar-1], since it is a null character;
however, we did print a newline character so that the information printed will be on a separate
line from any remaining output. We can also print a character string using the %s specifier;
this specifier does not print the null character. Thus, the string line could be printed using
this statement:

printf("String: %s \n",line);

If a string printed with an %s specifier does not end with a null character, the characters fol-
lowing the string will be printed until a null character is encountered.

String Functions
First, we present a programmer-defined function that uses a character string argument, and
then we present a group of library functions that use character strings. Consider a programmer-
defined function that determines the length of a character string argument, where the length of
a character string is defined to be the number of characters up to, but not including, the null
character. The prototype for this function is the following:

/*––-*/
/* This function determines the length of a string. */
int strg_len_1(char s[])
{

/* Declare variables. */
int k=0;
/* Count characters. */
while (s[k] != '\0')

k++;
/* Return string length. */
return k;

}
/*––-*/

The Standard C library contains a number of functions for working with strings. As we
discuss these functions and their arguments, assume that s and t are character strings. The
variable n is of type size_t, which is an unsigned integer; c is an integer that is converted to
a character. Note that some of these functions return pointers to strings. The prototype state-
ments for these functions are included in the header file string.h.

strlen(s) This function returns the length of the string s.
strcpy(s,t) This function copies string t to string s. The function returns

a pointer to s.
strncpy(s,t,n) This function copies a maximum of n characters from string t

to string s. If t has fewer characters than s, then s is padded
with null characters. The function returns a pointer to s.

316 Chapter 6 Programming with Pointers

strcat(s,t) This function concatenates string t to the end of string s.
Thus, string s will contain the characters of s followed by
the characters of t; the first character of t overwrites the null
character at the end of s. The function returns a pointer to s.

strncat(s,t,n) This function concatenates a maximum of n characters of
string t to string s. If t has more than n characters, then only
the first n characters of t are concatenated to s. The initial
character of t overwrites the null character at the end of s; a
null character is added to the new end of s. The function re-
turns a pointer to s.

strcmp(s,t) This function compares string s to string t in an element-by-
element comparison, starting with s[0] and t[0]. A negative
value is returned if s<t, zero is returned if s is equal to t, and
a positive value is returned if s>t.

strncmp(s,t,n) This function compares a maximum of n characters of string s
to string t in an element-by-element comparison, starting with
s[0] and t[0]. A negative value is returned if s<t, zero is re-
turned if s is equal to t, and a positive value is returned if s>t.

strchr(s,c) This function returns a pointer to the first occurrence of the
character c in the string s. If the character does not occur in
s, a NULL pointer is returned.

strrchr(s,c) This function returns a pointer to the last occurrence of the
character c in the string s. If the character does not occur in
s, a NULL pointer is returned.

strstr(s,t) This function returns a pointer to the start of the string t within
the string s. If t does not occur in s, a NULL pointer is returned.

strspn(s,t) This function returns the initial number of characters of
string s that consists entirely of characters in string t.

strcspn(s,t) This function returns the initial number of characters of
string s that consists entirely of characters not in string t.

strpbrk(s,t) This function returns a pointer to the first occurrence in
string s of any character of string t. If none of the characters
in t occurs in s, a NULL pointer is returned.

To illustrate the use of a few of these functions, we now present a simple example:

/*––-*/
/* Program chapter6_6 */
/* */
/* This program illustrates the use of string functions. */

#include <stdio.h>
#include <string.h>

int main(void)
{

/* Declare and initialize variables. */
char strg1[]="Engineering Problem Solving: ";
char strg2[]="Fundamental Concepts", strg3[50];

concatenates

Section 6.6 Character Strings 317

/* print the length of strings. */
printf("String lengths: %d %d \n",

strlen(strg1),strlen(strg2));

/* Combine two strings into one. */
strcpy(strg3,strg1);
strcat(strg3,strg2);
printf("strg3: %s \n",strg3);
printf("strg3 length: %d \n",strlen(strg3));

/* Exit program. */
return 0;

}
/*––-*/

The output from this program is the following:

String lengths: 29 20
strg3: Engineering Problem Solving: Fundamental Concepts
strg3 length: 49

Character strings are used in many engineering applications, including cryptography and
pattern recognition. It is often convenient to manipulate character strings via pointers to the
strings. Many of the previously discussed string functions require pointers to characters as ar-
guments, and many return pointers to characters. Now, we will look at the syntax required to
reference character strings using pointers.

Earlier in this section, we wrote a programmer-defined function using subscripts within
a while loop to determine the length of a string. We will now rewrite this function using a
pointer:

/*––-*/
/* This function determines the length of a string */
/* using a pointer with a while loop. */

int strg_len_2(char *s)
{

/* Declare variables. */
int count=0;

/* Count characters. */
while (*s != '\0')
{

count++;
s++;

}

/* Return string length. */
return count;

}
/*––-*/

318 Chapter 6 Programming with Pointers

The preceding function counts every character in a character string until the null character is
found. The Standard C library includes a function named strlen that returns the length of a
string; thus it would be preferable to use the strlen function rather than write your own. An-
other function included in the Standard C library is the function named strstr. The function
strstr(s,t) takes a pointer to character string s and a pointer to character string t as argu-
ments and returns a pointer to the start of the string t within the string s. If t does not occur
in s, a NULL pointer is returned. We will use this function in the next section.

6.7 Problem Solving Applied: DNA Sequencing
In this section, we use the new statements presented in this chapter to solve a problem related
to DNA sequencing. Recall from the chapter opening discussion that a DNA profile is a char-
acter string that consists of letters representing the order of nucleotides, such as AAACG-
TACAGGT. A DNA match between an unknown DNA string and one from a database is based
on a number of matches of short strings (called short tandem repeats, or STRs) between the
two strings.

In this section, we will count the number of occurrences of a short string in a longer string
and also print the relative locations of these matches. The previous discussion with character
string functions provides the basis for this solution.

1. PROBLEM STATEMENT

Given a long character string and a short character string, find the number of occur-
rences of the short string in the long string, and print the beginning locations of each
occurrence.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the inputs to the program are a long character string and
a short character string. The outputs are the locations of the occurrences of the short string
in the first string and a count of the number of occurrences.

3. HAND EXAMPLE

Assume that the long character string is AAACTGACATTGGACCTACTTTGACT and the
short character string is ACT. There are three occurrences of the shorter string, and they
occur at positions 3, 18, and 24.

short character string

long character string

number of occurrences

list of locations

Section 6.7 Problem Solving Applied: DNA Sequencing 319

4. ALGORITHM DEVELOPMENT

This solution will use the character function strstr discussed in the previous section. This
function will return a pointer to the start of the first occurrence of the short string in the longer
string, or it will return a NULL point if the short string is not found. In order to find the next oc-
currence of the shorter string, we need to search the portion of the string that follows the first
position of the occurrence of the shorter string. The strstr function will then return a point-
er to the beginning of the first occurrence of the shorter string in the new portion of the longer
string. We repeat this process until the strstr function returns a NULL value.

Decomposition Outline

1. Initialize a long character string and a short character string.

2. Compute and print the location and the number of times the shorter string occurs in the
longer string.

Step 2 involves a loop in which we continue counting occurrences until we reach the end of
the longer string. The refinement in pseudocode can now be developed:

Refinement in Pseudocode

main: initialize a long character string and a short character string
set count to zero
set ptr1 to the beginning of the long string
set ptr2 to the beginning of the short string
while not at the end of the long string

if short string is in remaining long string
increment count by 1
print location
increment pointer to long string

print count

We are now ready to convert the pseudocode to C.

/*––-*/
/* Program chapter6_7 */
/* */
/* This program initializes a long character string and a short */
/* character string. It then prints the locations of the short */
/* string in the long string. It also prints the number of */
/* occurrences of the short string in the long string. */

#include <stdio.h>
#include <string.h>

int main(void)
{

/* Declare and initialize variables. */
int count=0;
char long_str[]="AAACTGACATTGGACCTACTTTGACT",

short_str[]="ACT";
char *ptr1=long_str, *ptr2=short_str;

320 Chapter 6 Programming with Pointers

/* Count the number of occurrences of short_str in long_str. */
/* While the function strstr does not return NULL, increment */
/* count and move ptr1 to next character of the long string. */
while ((ptr1=strstr(ptr1,ptr2)) != NULL)
{

printf("location %i \n",ptr1-long_str+1);
count++;
ptr1++;

}

/* Print number of occurrences. */
printf("number of occurrences: %i \n",count);

/* Exit program. */
return 0;

}
/*––-*/

5. TESTING

We first test the program with the data from the hand example. This generates the following
interaction:

location 3
location 18
location 24
number of occurrences: 3

The answer matches the hand example, so we can now test the program with additional points.

These problems relate to the program developed in this section for finding short strings in
longer strings.

1. Modify the program so that it prints the long string and the short string.

2. Modify the program so that it allows the user to enter the long string and the short string.

3. Modify the program so that the long string is read from a data file and the short string is
input from the user.

4. Modify the program so that it will work with either lowercase or uppercase characters.

5. Modify the program so that it checks to be sure that the length of the short string is less
than the length of the long string.

MODIFY!MODIFY!

Section 6.8 Dynamic Memory Allocation 321

6.8 Dynamic Memory Allocation*
Dynamic memory allocation allows us to allocate memory when a program is executed
instead of allocating it when the program is compiled. This is especially important when
a program uses an array whose size is not determined until the program is executed; with-
out dynamic memory allocation, the program would have to specify the maximum size
anticipated for the array. For systems with limited memory, it is possible that there would
not be enough memory to run a program if all arrays had to be specified to the maximum
size anticipated.

Dynamic memory allocation is specified using either the malloc function or the
calloc function, which perform a “memory allocation” or a “cleared allocation.” Both
functions reserve a group of contiguous memory locations; in addition, calloc initializes
the memory locations to a binary zero. The argument of the malloc function is the number
of bytes of memory required, where a byte is a unit of memory that contains 8 bits. The
arguments of the calloc function are the number of memory locations needed and the num-
ber of bytes for each memory location. We now give the prototype statements (which are
contained in the header file <stdlib.h>) for these functions, and then give further explana-
tion of the parameters and the values returned by these functions:

void *malloc(size_t m);
void *calloc(size_t n,size_t size);

Because the number of bytes used for storing a value with a specific data type (such as an
int) is system dependent, a special operator called sizeof is used to determine the number
of bytes needed for a specific data type. The expression sizeof(int) represents the number
of bytes used to store an integer, and sizeof(double) represents the number of bytes used
to store a double value. The sizeof operator computes an unsigned integer that is a size_t
type value, where the size_t type is system dependent, but is usually either an unsigned
int or an unsigned long. Thus, to request memory for 200 integers, we could use either of
these sets of statements:

num_pts = 200;
int *p;
p = (int *)malloc(num_pts*sizeof(int));

num_pts = 200;
int *p;
p = (int *)calloc(num_pts,sizeof(int));

Both functions return a value to a pointer. If the memory is available, the pointer will
contain the address of the memory; if the allocation cannot be made, the pointer will contain
a NULL value. The pointer returned by these functions is called a void pointer because it
does not specify the type of variables to be stored in the memory allocation. Therefore, a cast
operator should be used with the pointer value returned by the functions in order to coerce it
to the proper pointer type.

*Optional section.

Dynamic memory
allocation

Byte

void pointer

322 Chapter 6 Programming with Pointers

To illustrate, assume that we want to dynamically allocate memory to store a double array
named x containing npts elements. (In this example, we give a value to npts, but it could be
computed by other statements or read from the keyboard or a data file.) To specify the desired
allocation, we could use either of the following sets of statements:

Solution 1
/* Declare variables. */
int npts = 500;
double *x;
...
/* Dynamically allocate memory. */
x = (double *)malloc(npts*sizeof(double));

Solution 2
/* Declare variables. */
int npts = 500;
double *x;
...
/* Dynamically allocate memory. */
x = (double *)calloc(npts,sizeof(double));

If the calloc function is used, then the memory values will also be initialized to zero. With
either of these solutions, we should compare the value of x to the constant NULL. This will
make sure that the memory was allocated, as shown in following statement:

if (x == NULL)
printf('Memory requested not available. \n");

After we have determined that the memory has been allocated, references to the array x, such
as x[k], are valid in the program.

To release memory that has been dynamically allocated, use the free function, which
has the following prototype:

void free(void *ptr);

Thus, the memory allocated to array x is released with this statement:

free(x);

In general, you should free dynamically allocated memory when it is no longer needed. Then
it becomes available for possible use with another dynamic allocation.

The realloc function can be used to change the size of the memory requested by a
calloc, malloc, or previously executed realloc function. Its prototype statement is

void *realloc(void *ptr,size_t size);

If ptr contains the value NULL, this function operates like the malloc function. If ptr contains
a value returned earlier in a program by a calloc, malloc, or previously executed realloc
function, then the size of the corresponding memory allocation is changed to the new size re-
quested. If the new size is larger, the values of the newly allocated space are undetermined. If the
new size is smaller, the values in the new size are unchanged. If the additional space cannot be
allocated, the original space is unchanged and the function returns a value of NULL.

Section 6.8 Dynamic Memory Allocation 323

With the use of dynamic memory allocations and dynamic memory allocation releases, a
program can be designed to operate with a minimal amount of memory reserved at any time
during its execution. On systems that run multiple programs at the same time, the use of
dynamic memory allocation and dynamic memory release may allow more programs to run
simultaneously.

The next program allows you to determine the maximum amount of contiguous memory
that can be dynamically allocated during its execution. This maximum amount of memory
available is generally a function of the other users on the system and the other software that is
stored on the system; thus, you may get different results when you run the program on differ-
ent systems and at different times. Here is the program:

/*–––*/
/* Program chapter6_8 */
/* */
/* This program determines the maximum contiguous */
/* memory allocation that can be reserved during a */
/* specific program execution. */

#include <stdio.h>
#include <stdlib.h>
#define UNIT 1000000

int main(void)
{

/* Declare and initialize variables. */
int k=1, *ptr;

/* Find maximum amount of contiguous memory */
/* available in units of millions of integers. */
ptr = (int *)malloc(UNIT*sizeof(int));
while (ptr != NULL)
{

free(ptr);
k++;
ptr = (int *)malloc(k*UNIT*sizeof(int));

}

/* Print maximum amount of memory available. */
printf("Maximum contiguous memory available: \n");
printf("%k integers \n",(k-1)*UNIT);

/* Exit program. */
return 0;

}
/*–––*/

A typical output for this program using a personal computer is the following:

Maximum contiguous memory available:
31000000 integers

324 Chapter 6 Programming with Pointers

In the previous section, we developed a program that read a set of seismic data from a data file
and determined possible seismic event locations within the data. The program used a symbol-
ic constant MAX_SIZE to allocate an array to store the data. If the number of points in the data
file exceeded MAX_SIZE, then the program terminated with an error message. In the follow-
ing, we present statements that use dynamic memory allocation so that the maximum array
size does not have to be allocated when the program is compiled (instead, the array memory
is dynamically allocated based on the size of the seismic data file):

/*–––*/
/* Program chapter6_5mod */
/* */
/* This program reads a seismic data file and then */
/* determines the times of possible seismic events. */
/* Dynamic memory allocation is used. */

#include <stdio.h>
#define FILENAME "seismic1.txt"
#define THRESHOLD 1.5

int main(void)
{

/* Declare variables and function prototypes. */
int k, npts, short_window, long_window;
double *sensor, time_incr, short_power,

long_power, ratio;
FILE *file_ptr;
double power_w(double *ptr,int n);

/* Read data header and allocate memory. */
file_ptr = fopen(FILENAME,"r");
if (file_ptr == NULL)

printf("Error opening input file. \n");
else
{

fscanf(file_ptr,"%d %lf",&npts,&time_incr);
sensor = (double *)malloc(npts*sizeof(double));
if (sensor == NULL)

printf("Not enough memory available. \n");
else

(no changes in the remainder of program chapter6_5 on page 312)

Modify program chapter6_8 such that it determines the number of thousands of contigu-
ous values that can be stored for the data types indicated in the following:

1. long integers, 2. doubles, and 3. long doubles.

MODIFY!MODIFY!

Section 6.9 A Quicksort Algorithm 325

6.9 A Quicksort Algorithm*
In this section, a quicksort algorithm is implemented with a recursive function (see Section
4.8) that uses pointers as function parameters.

The quicksort algorithm selects a value, called a pivot value, and then separates the rest
of the values into two groups—one group containing values less than the pivot value and one
group containing values greater than the pivot value. For our purposes, we will select the
pivot value to be the first element in the list, but the midpoint of the list is also often used as
the pivot value. When this separation is done, the correct position in the list for the pivot
value is determined; it goes between the two groups of values. Since the values in the two
groups are not necessarily in the correct order, we take the group of smaller values and select
a new pivot value. This group is separated into two new groups of values—ones smaller than
the new pivot value and ones larger than the new pivot value. This process continues until we
eventually have a group of smaller values that contains no values, one value, or two values.
If this group contains two values, their order is switched if necessary, and then the original
group of values smaller than the original pivot value are in order. We repeat this process with
the original group of values that are larger than the original pivot value. When these are in
order, the entire list is in order. This algorithm can be described recursively because each
step is defined in terms of a similar process with a smaller group of values, and because it
has a stopping point that is encountered when the group of values has two or fewer values. A
hand example follows:

Original list:
4 10 3 6 �1 0 2 5
Separate into groups of values smaller and larger than the pivot value:
[3 �1 0 2] 4 [10 6 5]
Separate each remaining group into groups of values smaller and larger than the pivot
value of each group:
[�1 0 2] 3 4 [6 5] 10
Separate each remaining group into groups of values smaller and larger than the pivot of
each group:
�1 [0 2] 3 4 5 6 10
Separate each remaining group into groups of values smaller and larger than the pivot of
each group:
�1 0 2 3 4 5 6 10

The implementation of the quicksort algorithm that we present references an additional
function named separate. This function switches values in the array that it receives such that
the pivot value is correctly positioned in the position referenced by break_pt. All values less
than the pivot value are to the left in the array (if we visualize the array as a row), and all val-
ues greater than the pivot value are to the right. Then, the quicksort function is recursively
called using a statement which specifies that a total of break_pt values, starting with x[0],
should be sorted:

quicksort(x, break_pt);

*Optional section.

Quicksort

Pivot value

326 Chapter 6 Programming with Pointers

The quicksort function is also recursively called using a statement that specifies that a total
of n-break_pt-1 values, starting with x[break_pt+1], should be sorted:

quicksort(&x[break_pt+1],n-break_pt-1];

Note that the actual argument uses &x[break_pt+1], a reference to the address of
x[break_pt+1]. This address reference is necessary because using x[break_pt+1] gener-
ates a call-by-value, not a call-by-reference. The quicksort function and the separate
function use the switch2 function developed in Section 6.2. Since the quicksort algorithm is
a complicated algorithm, a good way to begin is to use the hand example and work through
the statements using that data.

/*–––*/
/* Program chapter6_9 */
/* */
/* This program tests the quicksort function. */

#include <stdio.h>

int main(void)
{

/* Declare and initialize variables. */
int x[8]={4,10,3,6,-1,0,2,6}, npts=8, k;
void quicksort(int w[],int n);
int separate(int y[],int m);
void switch2(int *a,int *b);

/* Sort and print the array. */
printf("Before: ");
for (k=0; k<=7; k++)

printf("%d ",x[k]);
printf("\n");
quicksort(x,npts);
printf("After: ");
for (k=0; k<=7; k++)

printf("%d ",x[k]);
printf("\n");

/* Exit program. */
return 0;

}

/*–––*/
/* This function implements a quicksort algorithm. */

void quicksort(int w[],int n)
{

/* Declare variables and function prototypes. */
int break_pt;
int separate(int y[],int m);
void switch2(int *a,int *b);

Section 6.9 A Quicksort Algorithm 327

/* If only two elements, order them correctly. */
if (n == 2)
{

if (w[0] > w[1])
switch2(&w[0],&w[1]);

{
else
/* If more than two elements, separate into those */
/* greater than and those less than a breakpoint. */

if (n > 2)

{

break_pt = separate(w,n);
quicksort(w,break_pt);
quicksort(&w[break_pt+1],n-break_pt-1);

}

/* Void return. */
return;

}

/*–––*/
/* This function reorders the array such that y[0] is */
/* correctly positioned and the values less than it are */
/* to the right and the values greater are to the left. */

int separate(int y[],int m)
{

/* Declare variables and function prototypes. */
int k1=1, k2=1, count=0, pivot;
void switch2(int *a,int *b);

/* Separate values into two groups. */
pivot = y[0];
while (k1<m && k2<m)
{

while ((k1<m) && (y[k1]>pivot))
k1++;

while ((k2<m) && (y[k2]<pivot))
k2++;

if ((k1<m) && (k2<m))
{

switch2(&y[k1],&y[k2]);
count++;

}
}

328 Chapter 6 Programming with Pointers

/* Put pivot value in correct position. */
if (count > 0)

switch2(&y[0],&y[count]);
else
{

k1 = 0;
while ((k1<m-1) && (y[k1]>y[k1+1]))
{

switch2(&y[k1],&y[k1+1]);
k1++;

}
count = k1;

}

/* Return count. */
return count;

}
/*–––*/
/* Correct function to switch values in two variables. */

void switch2(int *a,int *b)
{

/* Declare variables. */
int hold;

/* Switch values in a and b. */
hold = *a;
*a = *b;
*b = hold;

/* void return. */
return;

}
/*–––*/

The focus of this chapter was the relationship between a pointer and the variable to which
it points. Examples were presented that demonstrated how to define pointers and how to
initialize them. The valid types of operations that can be performed with pointers were
listed, and the precedence relationships for operators were updated to include the address
operator and the indirection operator. Examples of pointers used as function parameters
and in references to arrays were given. We also presented a group of functions that work
with character strings; many of these functions use pointers as function parameters.
Finally, we presented the C statements that allow us to do dynamic memory allocation
using pointers.

SUMMARSUMMARYY

Problems 329

address
address operator
byte
character string
concatenate
dereference

dynamic memory allocation
indirection
NULL character
offset
pointer
void pointer

KEY TERMS

C STATEMENT SUMMARY
Pointer declaration:

int *ptr_1;
double a, *ptr_2=&a;

Dynamic memory allocation:

x = (double *)malloc(npts*sizeof(double));
x = (double *)calloc(npts,sizeof(double));

NOTES

1. Choose identifiers for pointers that clearly indicate that the identifiers are associated with
pointer variables.

2. If a pointer is not initially assigned to a memory location, give it a value of NULL to indi-
cate that it has not yet been assigned.

DEBUGGING NOTES

1. Be sure that a program initializes a variable before using its value in other statements.

2. Be sure that a pointer variable is initialized before it is used to reference a value.

3. The actual parameter that corresponds to a pointer argument in a function must be an ad-
dress or a pointer.

PROBLEMS

SHORSHORTT ANSWER PRANSWER PROBLEMSOBLEMS

True–False Problems

Indicate whether the following statements are true (T) or false (F).

1. Both the address operator and the indirection operator are unary operators. T F

2. A pointer provides an indirect means of accessing the value of a
particular data item. T F

3. A variable must always be declared and initialized before a
pointer can point to it. T F

4. The memory locations given to dynamic memory space are determined
when the program is compiled. T F

6

330 Chapter 6 Programming with Pointers

Multiple Choice Problems

Circle the letter for the best answer to complete each statement or for the correct answer of
each question.

5. A location in memory
(a) is reserved whenever a variable is declared.
(b) is reserved when a variable is used in a program.
(c) can hold several different values at the same time.
(d) cannot be reused once it is assigned a value.

6. A pointer variable
(a) contains the data stored at a location in memory.
(b) contains the address of a memory location.
(c) can be used in input statements, but cannot be used in output statements.
(d) can be changed to different values in both input and output statements.

7. How would you assign the value of a variable referenced by the pointer a to a variable name?
(a) a = &name;
(b) name = &a;
(c) a = *name;
(d) name = *a;

8. Assume that a and b are pointers to integers and that a points to the variable name.
Choose the sentence that best describes the effect of this statement:

b = a;
(a) The value of name is copied into b.
(b) The memory address stored in a is copied into b.
(c) The memory address stored in b is copied into a.
(d) The pointer a is now pointing to a different variable.

Memory Snapshot Problem

9. Assuming that the address of name is 10 and the address of x is 14 (that is, name is stored
in memory location 10, and x is stored in memory location 14), give the corresponding
snapshots of memory after the following set of statements is executed:

float name, x=20.5;
float *a = &x;
...
name = *a;

Program Analysis

Problems 10–13 refer to the following statements:

int i1, i2;
int *p1, *p2;
...
i1 = 5;
p1 = &i1;
i2 = *p1/2 + 10;
p2 = p1;

10. What is the value of i1?

11. What is the value of i2?

Problems 331

12. What is the value of *p1?

13. What is the value of *p2?

PROGRAMMING PROBLEMS

General Functions. Pointers are often used as function arguments when we want to return
more than one value from the function. In each of the following problems, write the indicated
function, and then develop a main function for testing the function:

14. Write a function that converts radius, diameter, and area measurements for a circle from
units of inches and square inches to units of feet and square feet. Assume that the corre-
sponding function prototype statement is

void convert_ft(double *r,double *d,double *a);

where r, d, and a are pointers to the radius, diameter, and area variables.

15. Write a function that reorders the values in three integer variables such that the values are
in ascending order. Assume that the corresponding function prototype statement is

void reorder(int *a,int *b,int *c);

where a, b, and c are pointers to the three variables.

16. Write a function that determines the maximum and minimum values from a one-dimen-
sional integer array. Assume that the corresponding function prototype statement is

void ranges(int x[],int npts,int *max_ptr,
int *min_ptr);

where npts contains the number of values in array x, and max_ptr and min_ptr are
pointers to the variables in which to store the maximum and minimum values in the
array.

17. Write a function that returns the double average value of a one-dimensional integer
array, in addition to determining the number of values in the array that are greater than
the average. Assume that the corresponding function prototype statement is

double average(int x[],int npts,int *gtr);

where npts contains the number of values in array x and gtr is a pointer to the variable
that stores the number of values in x that are greater than the average.

18. Write a function that returns the number of positive values, zero values, and negative val-
ues in an integer array. Assume that the corresponding function prototype statement is

void signs(int x[],int npts,int *npos,
int *nzero,int *nneg);

where npts contains the number of values in the array x and npos, nzero, and nneg
are pointers to variables to store the numbers of positive values, zero values, and negative
values in the array.

Vector Functions. A vector is a group of numerical values that can be represented by a
one-dimensional array. These problems develop functions for manipulating values within
a vector. Then a reference to the function is requested, to show how to use the function to
manipulate groups of values within the vector, instead of manipulating the complete set of

6

332 Chapter 6 Programming with Pointers

values in the vector. Use pointer references instead of subscripts in the functions. Assume
that the first position in an array is the position referenced with a zero subscript.

19. Write a function that fills a vector with zeros. Assume that the function prototype statement is

void zeros(int x[],int n);

where x is a one-dimensional array with n elements. Give a reference to the function that
fills positions 20 to 25 of an array a with zeros.

20. Write a function that fills a vector with ones. Assume that the function prototype state-
ment is

void ones(int x[],int n);

where x is a one-dimensional array with n elements. Give a reference to the function that
fills positions 5 through k of array y with ones.

21. Write a function that computes the sum of a vector. Assume that the function prototype
statement is the

int v_sum(int x[],int n);

where x is a one-dimensional array with n elements. Give a reference to the function that
computes the sum of the last 10 values in array y, which has npts elements.

22. Write a function that reverses the order of the values in a vector. Assume that the function
prototype statement is

void v_rev(int x[],int n);

where x is a one-dimensional array with n elements. Give a reference to the function that
reverses the values in positions 5 through 20 of array z.

23. Write a function that replaces values in an array with their absolute values. Assume that
the function prototype statement is

void v_abs(int x[],int n);

where x is a one-dimensional array with n elements. Give a reference to the function that
replaces all the values of array t (except the first five values) with their absolute values,
where t has npts elements.

Character Functions. Many areas of engineering use problem solutions in which we search
for a specific pattern of information in a signal. The following problems develop a set of func-
tions for this purpose.

24. Write a function that receives a pointer to a character string and a character. The function
should return the number of times that the character occurred in the string. Assume that
the function has the following prototype statement:

int charcnt(char *ptr,char c);

25. Write a function that receives a pointer to a character string and returns the number of re-
peated characters that occur in the string. For example, the string "Mississippi" has
three repeated characters. Do not count repeated blanks in the string. If a character occurs
more than two times, it should still only count as one repeated character; thus,

Problems 333

"hisssss" would have only one repeated character. Assume that the function has the
following prototype statement:

int repeat(char *ptr);

26. Rewrite the function from Problem 25 such that each pair of characters is counted as a re-
peat. Thus, the string "hisssss" would have four repeated characters. Assume that the
function has the following prototype statement:

int repeat2(char *ptr);

27. Write a function that receives pointers to two character strings and returns a count of the
number of times that the second character string occurs in the first character string. Do
not allow overlap of the occurrences. Thus, the string "110101" contains only one oc-
currence of "101." Assume that the function has the following prototype statement:

int pattern(char *ptr1,char *ptr2);

28. Rewrite the function from Problem 27 such that overlap of the occurrences of the second
string in the first string is allowed. Thus, the string "110101" contains two occurrences
of "101." Assume that the function has the following prototype statement:

int overlap(char *ptr1,char *ptr2);

Table Function. The problems that follow develop a set of functions for computing values
from a two-dimensional array or a table of data. Use pointer references instead of subscript
references in the functions.

29. Write a function that computes the sum of the ith row in a table containing 10 rows and
8 columns of values. Assume that the function prototype statement is the following:

double row_sum(double table[10][8],int i);

30. Write a function that computes the sum of the jth column in a table containing 10 rows
and 8 columns of values. Assume that the function prototype statement is the following:

double col_sum(double table[10][8],int j);

6

Crime Scene Investigation:
Fingerprint Recognition
Fingerprints are the oldest form of biometrics. Some of the earliest references to recogniz-
ing people from fingerprints date back to the 1600s at the University of Bologna, Italy. In the
late 1800s, a number of British researchers recognized the potential in the swirls and pat-
terns on the fingertips for recognizing people, and their work lead to the worldwide systems
of fingerprint databases. AFIS, the Automatic Fingerprint Identification System of the FBI, con-
tains over 200 million digital fingerprints. Law enforcement officers around the country have
access to this database. Soldiers on critical missions in Iraq were able to collect fingerprints
of suspected terrorists/criminals, send the fingerprints wirelessly through satellite connec-
tions to the AFIS database in West Virginia, and get a report on potential matches in less than
15 minutes. Fingerprint information can be from a single finger (usually an index finger), or
they can be “10 prints,” which are prints from all 10 fingers.“Slaps” are collections of multi-
ple fingerprints taken at the same time. Latent prints are those recovered from a crime scene
that contain only part of a fingerprint; these prints often require chemical methods or alter-
native light sources for recovery. The matching of fingerprints is done through matching the
overall structure of the ridges with categories of loops, whorls, and arches. If a match is made
of the overall structure, then the matching is done on individual points in the fingerprint
called minutiae points. These minutiae points include ridge bifurcations, ridge endings, and
ridge islands. In Section 7.3, we will develop a C function to help analyze fingerprints.

334

7
CHAPTER SEVEN

CHAPTER OUTLINE

OBJECTIVES In this chapter, we develop problem solutions containing:
■ structures in the main function;
■ structures in functions;

■ arrays of structures; and
■ dynamic data structures.

When solving engineering problems, it is often necessary to work with large amounts of data. In
Chapter 5, we used arrays to provide a convenient way to store and manipulate large data sets.
But arrays work only if all the data are of the same type. In many cases, the data that represent
an object or a set of information has multiple data types. For example, recall from Chapter 5 that
hurricanes are given names, and they are categorized by the intensity of their winds. Thus, to
represent a hurricane, we might include the hurricane’s name, the year in which it occurred, and
its intensity category. A character string could represent the name, and integers could represent
the year and intensity. A structure defines a set of data, but the individual parts of the data do
not have to be the same type. Thus, a structure can be defined to represent a hurricane as follows:

struct hurricane
{

char name[10];
int year, category;

};

We can now define variables, and even arrays, of type struct hurricane. Each variable or
array element would contain three data values—a character string and two integers.

Structures are often called aggregate data types, because they allow multiple data values
to be collected into a single data type. Individual data values within a structure are called data
members, and each data member is given a name. In our previous example, the names of the

PROGRAMMING WITH
STRUCTURES

7.1 Structures

7.1 Structures
7.2 Using Functions with Structures
7.3 Problem Solving Applied: Fingerprint Analysis
7.4 Arrays of Structures
7.5 Problem Solving Applied:Tsunami Analysis
7.6 Dynamic Data Structures

Summary, Key Terms, C Statement Summary,
Style Notes, Debugging Notes, Problems

Data members

Structure

335

336 Chapter 7 Programming with Structures

data members are name, year, and category. A data member is referenced using the struc-
ture variable name followed by a period (called the structure member operator) and a data
member name. Note the difference between referencing a value in a structure and in an array:
A value in an array is referenced with the array name and a subscript.

Definition and Initialization
To use a structure in a program, you must first define the structure. The keyword struct is
used to define the name of the structure (also called the structure tag) and the data members
that are included in the structure. After the structure has been defined, structure variables can
be defined using declaration statements. Consider the previous definition for a structure rep-
resenting a hurricane. The name of the structure is hurricane. The three data members are
name, year, and category. Note that a semicolon is required after the structure definition.
The statements to define a structure can appear before the main function but they are often
stored in a header file. It is important to note that these statements do not reserve any memo-
ry—they only define the structure. To define a variable of this structure type, we use the fol-
lowing statement in the declaration section of our program:

struct hurricane h1;

The preceding statement defines a variable named h1 that has three data members; this is
shown in the following diagram:

The declaration statement allocates memory for the three data members, but initial values
have not been assigned; thus, their values are unknown.

The data members of a structure can be initialized in a declaration statement or with pro-
gram statements. To initialize a structure with a declaration statement, the values are specified
in a sequence that is separated by commas and enclosed in braces. The following declaration
statement defines and initializes the example structure h1:

struct hurricane h1={"Camille",1969,5};

The data members of h1 are now initialized:

Structure member
operator

To initialize the structure h1 using program statements, we can use statements such as the
following:

h1.name = "Camille";
h1.year = 1969;
h1.category = 5;

Tag

?

?

?h1 name

category

year

5

1969

"Camille"h1 name

category

year

Section 7.1 Structures 337

Consider the following structure:

struct hurricane
{

char name[10];
int year, category;

};

Show the contents of the data members of the structures defined in each set of statements.

1. struct hurricane h1={"Andrew",1969,5};

2. struct hurricane h2;

3. struct hurricane h3;
...
h3.name = "Hugo";

PRACTICE!PRACTICE!

Thus, to reference an individual data member, we use the structure variable name and the data
member name separated by a period.

Input and Output
We can use scanf or fscanf statements to read values into the data members of a structure,
and printf or fprintf to print the values of the data members. The structure member op-
erator must be used to specify an individual data member. In the next program, the informa-
tion for a group of hurricanes is read from a file named storms2.txt, and the information
is printed to the screen.

/*––*/
/* Program chapter7_1 */
/* */
/* This program reads the information for a hurricane */
/* from a data file and then prints it. */

#include <stdio.h>
#define FILENAME "storms2.txt"

/* Define structure to represent a hurricane. */
struct hurricane
{

char name[10];
int year, category;

};

int main(void)
{

/* Declare variables. */
struct hurricane h1;
FILE *storms;

338 Chapter 7 Programming with Structures

/* Read and print information from the file. */
storms = fopen(FILENAME,"r");
if (storms == NULL)

printf("Error opening data file. \n");
else
{

while (fscanf(storms,"%s %d %d",h1.name,&h1.year,
&h1.category) == 3)

{
printf("Hurricane: %s \n",h1.name);
printf("Year: %d, Category: %d \n",h1.year,

h1.category);
}
fclose(storms);

}
/* Exit program. */
return 0;

}
/*––*/

Note that the reference in the fscanf statement for the hurricane name is h1.name instead of
&h1.name. Since name is a character string, the variable name represents an address or pointer.

Assume that a sample run of this program contains the information in Table 5.2, page
222. The first few lines would appear as follows:

Hurricane: Hazel
Year: 1954, Category: 4
Hurricane: Audrey
Year: 1957, Category: 4

Assume that the structure variables h1 and h2 have been defined with the following statements:

struct hurricane
{

char name[10];
int year, category;

};

int main(void)
{

/* Declare variables. */
struct hurricane h1={"Audrey",1957,4};
struct hurricane h2={"Frederic",1979,3};

Show the output for each of the following sets of statements.

1. printf("%s \n%s \n",h2.name,h1.name);

2. printf("Category %d hurricane: %s \n",h1.category,h1.name);

PRACTICE!PRACTICE!

Section 7.1 Structures 339

Computations
We have seen that the structure member operator (.) is used with the name of the structure
variable to access individual data members of the structure. When the name of the structure
variable is used without the structure member operator, it refers to the entire structure. The as-
signment operator can be used with the structure variables of the same type to assign an entire
structure to another structure, as shown in these statements:

struct hurricane
{

char name[10];
int year, category;

};

int main(void)
{

/* Declare variables. */
struct hurricane h1={"Audrey",1957,4}, h2;

...
h2 = h1;

However, relational operators cannot be applied to an entire structure. To compare one struc-
ture with another, you must compare the individual data members.

To illustrate computations with structures, consider a program that reads storms2.txt,
a file containing hurricane information, and then prints the names of all category 5 hurricanes.

/*––*/
/* Program chapter7_2 */
/* */
/* This program reads hurricane information from a data */
/* file and then prints the names of category 5 hurricanes. */

#include <stdio.h>
#define FILENAME "storms2.txt"

/* Define structure to represent a hurricane. */
struct hurricane
{

char name[10];
int year, category;

};

int main(void)
{

/* Declare variables. */
struct hurricane h1;
FILE *storms;

340 Chapter 7 Programming with Structures

/* Read and print information from the file. */
storms = fopen(FILENAME,"r");
if (storms == NULL)

printf("Error opening data file. \n");
else
{

printf("Category 5 Hurricanes: \n");
while (fscanf(storms,"%s %d %d",h1.name,&h1.year,

&h1.category) == 3)
if (h1.category == 5)

printf("%s \n",h1.name);
fclose(storms);

}

/* Exit program. */
return 0;

}
/*––*/

7.2 Using Functions with Structures
Structures can be used as arguments to functions, and functions can return structures. We will
consider each of these cases separately.

Structures as Function Arguments
Entire structures can be passed as arguments to functions. When a structure is used as a function
argument, it is a call-by-value reference. When a function reference is made, the value of each
data member of the actual parameter is passed to the function and is used as the value of the cor-
responding data member of the formal parameter. Thus, changing the value of a formal parame-
ter does not change the corresponding actual parameter. We have modified the program in the
previous section. In this program, the information for a hurricane is printed from a function.

/*––*/
/* Program chapter7_3 */
/* */
/* This program reads the information for a hurricane */
/* from a data file and then prints it, using a function. */

#include <stdio.h>
#define FILENAME "storms2.txt"

/* Define structure to represent a hurricane. */
struct hurricane
{

char name[10];
int year, category;

};

int main(void)
{

/* Declare variables and function prototype. */
struct hurricane h1;
FILE *storms;
void print_hurricane(struct hurricane h);

/* Read and print information from the file. */
storms = fopen(FILENAME,"r");
if (storms == NULL)

printf("Error opening data file. \n");
else
{

while (fscanf(storms,"%s %d %d",h1.name,&h1.year,
&h1.category) == 3)

print_hurricane(h1);
fclose (storms);

}

/* Exit program. */
return 0;

}
/*–––*/
/* This function prints the hurricane information. */

void print_hurricane(struct hurricane h)
{

printf("Hurricane: %s \n",h.name);
printf("Year: %d, Category: %d \n",h.year,h.category);
return;

}
/*–––*/

When functions are written to modify the value of a data member within a structure, we
must use a pointer to the structure as the function argument. This allows the function direct
access to the data members of the structure. When data members are accessed via a pointer to
the structure, the pointer operator (->) is used instead of the structure member operator.
This technique is demonstrated in Section 7.6, where we present dynamic data structures.

Functions that Return Structures
A function can be defined to return a value of type struct. After the function is called, an en-
tire structure is returned to the calling function. To illustrate, we present a new structure that
relates to tsunamis. Assume that we are working with information related to a tsunami. The
information includes the date (month, day, year) of the tsunami, its maximum height in feet,
the number of fatalities, and the location. The month, day, year, and number of fatalities are
represented by integers, a floating-point number represents the maximum height, and the
location is represented by a character string. Thus, a structure to represent the information
could be defined as follows:

struct tsunami
{

int mo, da, yr, fatalities;
double max_height;
char location[20];

);

We now present a function that reads information entered from the keyboard, saves it in the struc-
ture, and then returns the information to the main function. Assume that the preceding structure is
defined in the main function and that a function prototype is defined with the following statement:

struct tsunami get_info(void);

Section 7.2 Using Functions with Structures 341

Pointer operator

342 Chapter 7 Programming with Structures

1. Write a function that reads the user’s information for a variable of the structure type
hurricane.

2. Write a function that prints the tsunami information from a variable of the structure type
tsunami.

MODIFY!MODIFY!

We will use a function that interacts with the user to get the information and then returns it in
a structure. The code is as follows:

/*–––*/
/* This function gets information from the user to enter */
/* into a tsunami structure. */

struct tsunami get_info(void)
{

/* Declare variables. */
struct tsunami t1;

printf("Enter information for tsunami in following order: \n");
printf("Enter month, day, year, number of deaths: \n");
scanf("%d %d %d %d",&t1.mo,&t1.da,&t1.yr,&t1.fatalities);
printf("Enter location (<20 characters, no spaces): \n");
scanf("%s",t1.location);

return(t1);
}
/*–––*/

7.3 Problem Solving Applied: Fingerprint Analysis

In this section, we use the new statements presented in this chapter to solve a problem relat-
ed to fingerprint analysis. Fingerprints can be divided into three categories: loops, whorls,
and arches. Approximately 60% to 65% of all fingerprints are loops; approximately 30% to
35% are whorls, and approximately 5% are arches. In order to reduce the number of finger-
prints in a database that need to be matched to an unknown fingerprint, we can eliminate
matches to fingers that do not have the same category. For example, there is no need to
match a fingerprint that is a whorl to a fingerprint that is an arch. In fact, there have been
some techniques developed that can look at the categories of all 10 fingers and immediately
eliminate much of a database from comparison. These techniques are roughly based on the
Henry technique, one of the early methods for doing fingerprint recognition.

Assume that the technique that we are going to implement assigns a number to a finger-
print record with 10 fingers. We are going to assign a number to each fingertip based on
whether or not it is a whorl. The fingertips will be identified as R (for right) or L (for left). In
addition, a second letter will identify the finger as t (for thumb), i for (index), m (for middle),

Section 7.3 Problem Solving Applied: Fingerprint Analysis 343

r (for ring), and p (for pinky, or little finger). The value for each fingertip is assigned as
below:

If Rt or Ri is a whorl, its value is 16.

If Rm or Rr is a whorl, its value is 8.

If Rp or Lt is a whorl, its value is 4.

If Li or Lm is a whorl, its value is 2.

All other values are zero.

We now compute the following fraction:

Note that this category cannot be 0, and the denominator cannot be 0. When this category
is computed, it is then stored in the record with the fingerprints. Once the category of the
unknown fingerprint is computed, then there is a small range of categories that could match
from the database. Thus, a search for a match may only need to compare a few thousands
fingerprints instead of many millions. This search would then compare the details of the
minutiae points of the unknown to the minutiae points of the fingerprints with an overall
category value close to the unknown’s overall category value.

In this section, we will develop a C function that receives the set of information on a
fingerprint that is stored in a structure. We will compute the overall category of the finger-
print and store that in the structure. Thus, this function could be used to assign the overall
category number to an unknown, or it could be used in a loop to compute the overall cate-
gory numbers for the fingerprints in a database.

(Rt + Rm + Rp + Li + Lr + 1)
overall category = (Ri + Rr + Lt + Lm + Lp + 1)/

1. PROBLEM STATEMENT

Write a function that will compute the overall category number for a fingerprint.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the inputs to the program are the categories for the 10
fingerprints. The output is the overall category computed from this information.

3. HAND EXAMPLE

Assume that the whorls from a 10-print occur in the right thumb, right ring finger, and
left middle finger. The values of the individual fingers are all 0, with these exceptions:

Rt � 16
Rr � 8

Lm � 2

categories of 10 fingerprints overall category

344 Chapter 7 Programming with Structures

If we then compute the overall category, we have:

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a set of
sequential steps.

Decomposition Outline for function

1. Get the fingerprint data from the function inputs.
2. Compute the overall category from the fingerprint information.
3. Store the overall category in the fingerprint structure.

We will also need to develop a program that can be used to test this function. The decom-
position outline for the test program is the following:

Decomposition Outline for the test program

1. Read fingerprint information from the user.
2. Use function to compute the overall category.
3. Print the overall category.

These are straightforward algorithms, so we can go directly to the C code from the decom-
position outlines.

/*––-–––*/
/* Program chapter7_4 */
/* */
/* This program stores fingerprint information in a structure. */
/* It then references a function to compute the overall category.*/

#include <stdio.h>

/* Define a structure for the fingerprint information. */
/* The order for fingertips is right hand, thumb to pinky, */
/* and left hand, thumb to pinky. The codes are L for loops, */
/* W for whorls, and A for arches. */

struct fingerprint
{
int ID_number;
double overall_category;
char fingertip[10];

};

int main(void)

{

/* Declare and initialize variables. */
struct fingerprint new_print;
double compute_category(struct fingerprint f);

overall category = (8 + 2 + 1)/(16 + 1) = 11/17 = 0.65

Section 7.3 Problem Solving Applied: Fingerprint Analysis 345

/* Specify information for the new fingerprint. */
new_print.ID_number = 2491009;
new_print.overall_category = 0;
new_print.fingertip[0] = 'W';
new_print.fingertip[1] = 'L';
new_print.fingertip[2] = 'L';
new_print.fingertip[3] = 'W';
new_print.fingertip[4] = 'A';
new_print.fingertip[5] = 'L';
new_print.fingertip[6] = 'L';
new_print.fingertip[7] = 'W';
new_print.fingertip[8] = 'A';
new_print.fingertip[9] = 'L';

/* Reference function to compute overall category. */
new_print.overall_category = compute_category(new_print);

/* Print overall category computed by the function. */
printf("Fingerprint Analysis for ID: %i \n",

new_print.ID_number);
printf("Overall Category: %.2f \n",new_print.overall_category);

/* Exit program. */
return 0;

}

/*--*/
/* This function computes the overall category */
/* for a fingerprint. */

double compute_category(struct fingerprint f)
{

/* Declare and initialize variables. */
double Rt=0, Ri=0, Rm=0, Rr=0, Rp=0, Lt=0, Li=0, Lm=0, Lr=0,

Lp=0, num, den;

/* Set values based on whorls. */
if (f_fingertip[0] == 'W')

Rt = 16;
if (f_fingertip[1] == 'W')

Ri = 16;
if (f_fingertip[2] == 'W')

Rm = 8;
if (f_fingertip[3] == 'W')

Rr = 8;
if (f_fingertip[4] == 'W')

Rp = 4;
if (f_fingertip[5] == 'W')

Lt = 4;
if (f_fingertip[6] == 'W')

Li = 2;
if (f_fingertip[7] == 'W')

Lm = 2;

346 Chapter 7 Programming with Structures

/* Compute the numerator and denominator for overall category. */
num = Ri + Rr + Lt + Lm + Lp + 1;
den = Rt + Rm + Rp + Li + Lr + 1;

return num/den;
}

/*---*/

Note that we printed the overall category from the structure just to be sure that the value
was stored back in the structure.

5. TESTING

The test program has initialized the fingertip categories to match those from the hand
example. The output from the program is the following:

Fingerprint Analysis for ID Number 24910049
Overall Category: 0.65

The answer matches the hand example, so we can now test the program with additional data
by changing the values in the test program.

These problems relate to the program developed in this section.

1. Modify the program so that it also counts and prints the number of whorls for the
hand.

2. Modify the program so that it also counts and prints the number of arches for the hand.

3. Modify the program so that it also counts and prints the number of loops for the hand.

4. Modify the program so that it combines problems 1, 2, and 3 and thus prints the num-
bers of the three different categories for the fingertips.

5. Modify the program in problem 4 so that it prints the percentages of the three different
categories for the fingertips.

MODIFY!MODIFY!

7.4 Arrays of Structures
In engineering applications, it is often convenient to store information in arrays for analysis.
However, an array can contain only a single type of information, such as an array of integers or
an array of character strings. If we need to use an array to store information that contains

Section 7.4 Arrays of Structures 347

…

?

?

…

?

?

…

? ? ?

?

?

…

h[0]

h[24]

h[1]

different types of values, then we can use an array of structures. For example, if we want to
store an array of information for hurricanes, we can use an array of the structure type
hurricane; if we need to store an array of information for tsunamis, we can use an array of
the structure type tsunami. We can write a statement to define an array of 25 elements, each
of the type hurricane (we will repeat the definition of the structure type hurricane
here, too):

struct hurricane
{
char name[10];
int year, category;

};
...
struct hurricane h[25];

Each element in the array is a structure containing the three variables, as illustrated in the fol-
lowing diagram:

To access an individual data member of a structure in the array, we must specify the array
name, a subscript, and the data member name. As an example, we will assign values to the
first hurricane in the array h:

h[0].name = "Camille";
h[0].year = 1969;
h[0].category = 5;

To access an entire structure within the array, we must specify the name of the array and a
subscript. As an example, we can call the output function defined in Section 7.1. We will
print the first hurricane in the array with this statement:

print_hurricane(h[0]);

The output would be

Hurricane: Camille
Year: 1969, Category: 5

We will now present a program that reads the information for a group of hurricanes from a
data file into an array. The program determines the maximum category in the array and
then prints the names of all hurricanes with the maximum category. It should be clear that
we cannot print this information as we read the data file. We will not know the maximum
category until we have reviewed all the information in the file. At that point, we must go
back through the file to print the information for hurricanes with the maximum category.

348 Chapter 7 Programming with Structures

/*––*/
/* Program chapter7_5 */
/* */
/* This program reads hurricane information from a data */
/* file and then prints the names of all hurricanes that */
/* have the maximum category in the file. */

#include <stdio.h>
#define FILENAME "storms2.txt"

/* Define structure to represent a hurricane. */
struct hurricane
{

char name[10];
int year, category;

};

int main(void)
{

/* Declare variables and function prototype. */
int max_category=0, k=0, npts;
struct hurricane h[100];
FILE *storms;
void print_hurricane(struct hurricane h);

/* Read and print information from the file. */
storms = fopen(FILENAME,"r");
if (storms == NULL)

printf("Error opening data file. \n");
else
{

printf("Hurricanes with Maximum Category \n");
while (fscanf(storms, "%s %d %d",h[k].name,&h[k].year,

&h[k].category) == 3)
{

if (h[k].category > max_category)
max_category = h[k].category;

k++;
}
npts = k;

for (k=0; k<=npts-1; k++)
if (h[k].category == max_category)

print_hurricane(h[k]);

fclose(storms);
}

/* Exit program */
return 0;

}

/*–––*/
/* This function prints the hurricane information. */

void print_hurricane(struct hurricane h)
{

printf("Hurricane: %s \n",h.name);
printf("Year: %d, Category: %d \n",h.year,h.category);
return;

}
/*–––*/

Section 7.5 Problem Solving Applied: Tsunami Analysis 349

7.5 Problem Solving Applied: Tsunami Analysis
A tsunami is a large destructive wave. These large waves typically are generated by sudden
changes in the seafloor—changes caused by earthquakes, underwater volcanic eruptions, and
underwater landslides. In shallow water, these waves can travel more than 125 miles per hour; in
deep water, they can travel over 400 miles per hour. Along the coast of Chile and Peru, records of
tsunamis go back hundreds of years. For example, on October 28, 1562, an earthquake in Chile
generated a wave with a height of 52 feet.

Table 7.1 Large Tsunamis from the 1990s
Date Location Maximum Wave (m) Fatalities

September 2, 1992 Nicaragua 10 170
December 2, 1992 Flores Island 26 1,000*
July 12, 1993 Okushiri, Japan 31 239
June 3, 1994 Eastern Java 14 238
November 14, 1994 Mindoro Island 7 49
October 9, 1995 Jalisco, Mexico 11 1
January 1, 1996 Sulawesi Island 3.4 9
February 17, 1996 Irian Jaya 7.7 161
February 21, 1996 Peru 5 12
July 17, 1998 Papua, New Guinea 15 2,200*

*This is an estimate of the number of fatalities.

Some of the larger tsunamis on record include one on September 10, 1899, in the Gulf of
Alaska. This tsunami was the result of an earthquake and landslide that generated a wave with
a height of 197 feet. On March 28, 1964, again in the Gulf of Alaska, an earthquake caused a
tsunami with a height of 230 feet. More recently, on June 3, 1994, an earthquake in eastern
Java, Indonesia, generated a tsunami with a height of 197 feet. On July 17, 1998, an earthquake
in Papua, New Guinea, brought with it a tsunami with a height of 49 feet; this was clearly not
among the largest tsunamis, but it caused over 2,200 fatalities. On March 11, 2011, a magni-
tude 9.0 earthquake off the coast of Japan caused a tsunami with a height over 130 feet. The
tsunami also caused over 13,000 deaths.

We now develop a program that will read a file containing information on large tsunamis
from the 1990s (see Table 7.1) and print a report identifying the tsunami with the largest wave
height (in feet), the average wave height, and the locations of all tsunamis with waves above the
average.

Source: Harold V. Thurman and Alan P. Trujillo. Essentials of Oceanography, 7th ed. Prentie-Hall, Upper Saddle
River, NJ, 2002.

350 Chapter 7 Programming with Structures

1. PROBLEM STATEMENT

Print a report giving the maximum wave height for the tsunamis in a data file named
waves2.txt. Include the average wave height (in feet) and the location of all tsunamis
with a wave height higher than the average.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows the data file as the input and the report information as the output.

3. HAND EXAMPLE

If we assume that the data file contained the information in Table 7.1, then the maximum
wave height is 31 meters. Add all of the wave heights, and divide by 10, to compute the
average wave height; this computation gives a value that needs to be converted to feet.
(Recall that one meter is equal to 3.28 feet.) We can print this information, along with
the locations of tsunamis with wave heights larger than the average, in the following
report:

Summary Information for Tsunamis
Maximum Wave Height (in feet): 101.68
Average Wave Height (in feet): 42.67
Tsunamis with greater than the average height:
Flores_Island
Okushiri,_Japan
Eastern_Java
Papua,_New_Guinea

In the data file, we have replaced spaces with underscores in the character strings so that
they will be read as a single character string.

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a set of
sequential steps.

Decomposition Outline

1. Read the tsunami data into arrays and determine the maximum and average wave height.
2. Print the maximum and average wave heights.
3. Print the locations with a wave height greater than the average.

Maximum wave height

Average wave height

Tsunami locations with
waves higher than the
average heightwaves2.txt

Section 7.5 Problem Solving Applied: Tsunami Analysis 351

Refinement in Pseudocode

main: if file cannot be opened
print error message

else
read data and determine maximum height and average height
print the maximum height and average height
print all locations with heights greater than the average

The steps in the pseudocode are now detailed enough to convert to C.

/*–––*/
/* Program chapter7_6 */
/* */
/* This program reads tsunami information from a data */
/* file and then prints the maximum wave height, the average */
/* wave height, and the location of all tsunamis with */
/* greater-than-average wave heights. */

#include <stdio.h>
#define FILENAME "waves2.txt"

/* Define structure to represent a tsunami. */
struct tsunami
{
int mo, da, yr, fatalities;
double max_height;
char location[20];

};

int main(void)
{

/* Declare variables. */
int k=0, npts;
double max=0, sum=0, ave;
struct tsunami t[100];
FILE *waves;

/* Read and print information from the file. */
waves = fopen(FILENAME,"r");
if (waves == NULL)

printf("Error opening data file. \n");
else
{

while (fscanf(waves,"%d %d %d %d %lf %s",&t[k].mo,&t[k].da,
&t[k].yr,&t[k].fatalities,&t[k].max_height,
t[k].location) == 6)

{
sum = sum + t[k].max_height;
if (t[k].max_height > max)

max = t[k].max_height;
k++;

}
npts = k;

352 Chapter 7 Programming with Structures

ave = sum/npts;
printf("Summary Information for Tsunamis \n");
printf("Maximum Wave Height (in feet): %.2f \n",max*3.28);
printf("Average Wave Height (in feet): %.2f \n",ave*3.28);
printf("Tsunamis with greater than average heights: \n");
for (k=0; k<=npts-1; k++)

if (t[k].max_height > ave)
printf("%s \n",t[k].location);

fclose(waves);
}

/* Exit program. */
return 0;

}
/*–––*/

5. TESTING

The output from the program using the data from the hand example follows:

Summary Information for Tsunamis
Maximum Wave Height (in feet): 101.68
Average Wave Height (in feet): 42.67
Tsunamis with greater than the average heights:
Flores_Island
Okushiri,_Japan
Eastern_Java
Papua,_New_Guinea

These problems relate to the program developed in this section to analyze tsunami data.

1. Modify the program to find and print the number of tsunamis in the file during the same
year as the maximum wave height.

2. Modify the program to find and print the date of the tsunami with the largest number of
fatalities.

3. Modify the program to find and print the locations for all tsunamis with over
100 fatalities.

4. Modify the program so that it counts the number of tsunamis that occurred during the
month of July.

5. Modify the program so that it prints the number of tsunamis in Peru. Assume that the
location might also include the city in Peru, so you will need to search the character
string for the substring "Peru".

MODIFY!MODIFY!

Section 7.6 Dynamic Data Structures 353

7.6 Dynamic Data Structures*
Static data structures, such as arrays, have a fixed size during the execution of a program. Re-
call from Chapter 5 that the size of an array must be declared using a constant. When an array
is defined in a declaration statement, a contiguous block of memory is allocated and the ele-
ments of the array are referenced using the name of the array (address of first element) and a
subscript (offset from first element). Static data structures require that the programmer has in-
formation about the size of the data set being used so that sufficient memory is allocated but
not wasted, and care must be taken not to exceed the maximum size of the data structure.
Dynamic data structures are data structures that can grow and shrink during the execution of
a program. Memory is allocated and freed as needed, and pointers are used to connect the data
since the data is not necessarily stored in a contiguous memory space.

We will use a linked list to illustrate the use of dynamic data structures. A linked list is
organized as a group of nodes that are connected by pointers. A node consists of data (which
may be a collection of one or more variables) and a pointer to the next node. We generally as-
sume that there is some order to the data stored in the nodes, such as an ascending order, and
that we may want to insert new nodes or delete old nodes from this ordered list. The simplest
way to think of a linked list is to visualize a small group of nodes (each containing some in-
formation) that are linked together by pointers. Figure 7.1 shows a linked list with four nodes,
containing the ordered information 10, 14, 21, and 35. A separate pointer, which we will call
head, points to the first node in the linked list.

To access this linked list, we use the pointer head to reference the information in the first
node (the one containing the value 10). Then, since the first node contains a pointer to the next
node (the one containing the value 14), we can move to the second node. Similarly, we use the
pointer in the second node to move to the third node (the one containing the value 21). The
last node in a linked list will contain a pointer value of NULL to indicate that we are at the last
node in the list. We will use the symbol to indicate the end of the list in our diagrams.
(Omega, is the last letter in the Greek alphabet.)

To implement a linked list in C, you can begin to see the steps that are required. Each
node of the linked list is a structure. For our example, the structure would contain an inte-
ger value and a pointer to the next node. The memory for each node is allocated, as it is
needed, using one of the dynamic memory allocation statements. The pointer in the last
node is a NULL pointer.

To insert a value in a linked list, we need to find the location for the insertion. We use
the pointer to the first node to access the first data value in the list. If the data value is less than
the value to be inserted, we move to the next data value in the list using the pointer in the

Æ,
Æ

Dynamic data
structures

Linked list
Nodes

10 �352114

head

Figure 7.1 Linked list.

Head

*Optional section.

354 Chapter 7 Programming with Structures

current node. We will assume that if the data value to be inserted is already in the list, we
should print a message, but not insert a duplicate data value. (Depending on the application, it
may be valid to insert duplicate data values.) The desired insertion location can be one of four
places—before the first node, between two nodes, after the last node, or in an empty list. We
must handle each of these cases carefully, so we can make sure that the pointers are updated
properly. Figures 7.2 through 7.5 outline each of these cases assuming that we started with the
linked list given in Figure 7.1 for each of the first three cases.

10

3

�352114

head

Figure 7.2 Insert before the first node (requires updating the head pointer).

10 �352114

18

head

Figure 7.3 Insert between two nodes.

10

48 �

352114

head

Figure 7.4 Insert after last node.

�2

head

Figure 7.5 Insert in an empty list (require updating the head pointer).

Section 7.6 Dynamic Data Structures 355

10 �352114

head

Figure 7.6 Delete first node (requires updating the head pointer).

10 �352114

head

Figure 7.7 Delete a node between two nodes.

10 �� 352114

head

Figure 7.8 Delete the last node.

To delete a value from a linked list, we need to find the node to be deleted. We again use
the pointer to the head of the list to access the first data value in the list. We then move from
one node to another using the pointer in the current node. If we reach a data value greater than
the one to be deleted, we print a message that the value to be deleted is not in the list. The
node to be deleted can be the first node, a node between two other nodes, or the last node. We
must handle each of these cases carefully, so we can make sure that the pointers are updated
properly. Figures 7.6 through 7.8 outline each of these three cases. For each case, we start
with the linked list given in Figure 7.2. Note that there are nodes (and data values) that cannot
be accessed after these deletions. For example, in Figure 7.6, we can no longer access the
value 10; in Figure 7.7, we can no longer access the value 21; and in Figure 7.8, we can no
longer access the value 35. Also, note that deleting the first node may result in an empty list if
the list only contains one node.

We will now develop a set of four functions to create and maintain a linked list. The first
function determines if a linked list is an empty list, the second function prints the contents of a
linked list, the third function inserts a node in its correct ordered position, and the fourth
function deletes a node. Each node in the linked list will be represented by the following
structure:

struct node
{

int data;
struct node *link;

};

Empty list

356 Chapter 7 Programming with Structures

The structure node has two data members: an integer to store the data value and a pointer to
the next node in the linked list. The function to determine if a list is empty has the following
prototype:

int empty(struct node *head);

The function empty examines the head of a linked list and returns a value of 1 if the linked
list is empty and a value of zero otherwise. This function will be used by the remaining three
functions.

/*–––*/
/* This function returns a value of one if the linked list */
/* is empty. */

int empty(struct node *head)
{

/* Declare variables. */
int k=0;

/* Determine if the list is empty. */
if (head == NULL)

k = 1;

/* Return integer. */
return k;

}
/*–––*/

The prototype for the function that prints the list is

void print_list(struct node *head);

The print_list function begins at the start of the list and prints the data value of each node
until the end of the list is reached. The condition in the if statement in this function is the ref-
erence to the empty function:

if (empty(head))
...

Recall that if the condition is a numerical value, then the value zero is considered to be “false”
and a non-zero value is “true.” Therefore, if the list is empty, the function returns a value of 1,
and hence is “true”; otherwise, the function returns a value of zero, and the condition is then
“false.”

/*–––*/
/* This function prints a linked list. */

void print_list(struct node *head)
{

/* Declare variables. */
struct node *next;

Section 7.6 Dynamic Data Structures 357

/* Print linked list. */
if (empty(head))

printf("Empty list \n")
else
{

printf("List Values: \n");
next = head;
while (next->link != NULL)
{

printf("%d \n",next->data);
next = next->link;

}
printf("%d \n",next->data);

}

/* Void return. */
return;

}
/*–––*/

The insert function begins at the head of the list and inserts the new node in the correct lo-
cation in the list. If the new data value is already in the list, a message will be printed and the
new node will not be inserted. Recall that the head of a linked list is a pointer to the first node
in the list. When a pointer is used as a function argument, it is a call-by-value reference. Since
it is necessary to update the head pointer when a node is inserted before the first node or a
node is inserted in an empty list, we must pass a pointer to the head pointer so that it will be a
call-by-address reference. This allows us to update the head pointer when necessary inside the
function. Look carefully at the syntax.

/*–––*/
/* This function inserts a new node in a linked list. */

void insert(struct node **ptr_to_head, struct node *nw)
{

/* Declare variables and function prototypes. */
struct node **next;

/* Check for insert to empty list. */
if (empty(*ptr_to_head))

*ptr_to_head = nw;
else
/* Traverse list to find location for insert. */
{

next = ptr_to_head;
while (((*next)->data < nw->data) &&

((*next)->link != NULL))
next = &(*next)->link;

/* Check for duplicate data. */
if ((*next)->data == nw->data)

printf("Node already in list. \n");

358 Chapter 7 Programming with Structures

else
/* Check for insert after last node. */

if ((*next)->data < nw->data)
(*next)->link = nw;

else
{

nw->link = *next;
*next = nw;

}
}
/* Void return. */
return;

}
/*–––*/

The prototype for the function to delete nodes is:

void remove(struct node **ptr_to_head, int old);

The function begins at the head of the list and searches for the node with a data value of old.
If old is not found in the list, a message is printed. If old is found, the node is deleted and
memory is freed. Since the head pointer must be updated whenever the first node in the list is
deleted, we must pass a pointer to the head of the list. (We did not use the name delete be-
cause many compilers use this as a reserved word.)

/*–––*/
/* This function deletes a node from a linked list. */

void remove(struct node **ptr_to_head, int old)
{

/* Declare variables and function prototypes. */
struct node *next, *last, *hold, *head;

/* Check for delete to empty list. */
head = *ptr_to_head
if (empty(head))

printf("Empty list. \n");
else
/* Check for deletion of first node. */
{

if (head->data == old)
{

/* Delete first node. */
hold = head;
*ptr_to_head = head->link;
free(hold);

}
else
/* Traverse list to find old node. */
{

next = head->link;
last = head;

while ((next->data < old)) &&
(next->link != NULL))

{
last = next;
next = next->link;

}
/* Delete node if found. */
if (next->data == old)
{

hold = last;
last->link = next->link;
free(hold);

}
else

printf("Value %d not in list. \n",old);
}

}

/* Void return. */
return;

}
/*–––*/

We will now present a main function to test these functions. The print_list function is called
after every call to insert and remove to verify that the functions are working correctly.

/*–––*/
/* Program chapter7_7 */
/* */
/* This program tests the functions to insert and delete */
/* items in a linked list. */

#include <stdio.h>
#include <stdlib.h>

/* Define structure to represent a node in a linked list. */
struct node
{

int data;
struct node *link;

};

int main(void)
{

/* Declare variables and function prototypes. */
int k=0, old, value;
struct node *head, *next, *previous, *nw, **ptr_to_head=&head;
void insert(struct node **ptr_to_head, struct node *nw);
void remove(struct node **ptr_to_head, int n);
int empty(struct node *head);
void print_list(struct node *head);

/* Generate and print a linked list with five nodes. */
head = (struct node *)malloc(sizeof(struct node));
next = head;

Section 7.6 Dynamic Data Structures 359

360 Chapter 7 Programming with Structures

for (k=1: k<=5; k++)
{

next->data = k*5;
next->link = (struct node *)malloc(sizeof(struct node));
previous = next;
next = next->link;

}
previous->link = NULL;
print_list(head);

/* Allow user to insert or delete nodes in the list. */
while (k != 2)
{

printf("Enter 0 to delete node, 1 to add node, 2 to quit. \n");
scanf("%d",&k);
if (k == 0)
{

printf("Enter data value to delete: \n");
scanf("%d,&old);
remove(ptr_to_head,old);
print_list(head);

}
else

if (k == 1)
{

prinf("Enter data value to add: \n");
scanf("%d,&value);
nw = (struct node *)malloc(sizeof(struct node));
nw->data = value;
nw->link = NULL;
insert(ptr_to_head,nw);
print_list(head);

}
}

/* Exit program. */
return 0;

}
/*–––*/

A sample run of this program generates the following output:

List Values:
5
10
15
20
25
Enter 0 to delete node, 1 to add node, 2 to quit.
1

Section 7.6 Dynamic Data Structures 361

Enter data value to delete:
16
List Values:
5
10
15
16
20
25
Enter 0 to delete node, 1 to add node, 2 to quit.
0
Enter data value to delete:
10
List Values:
5
15
16
20
25

Additional Dynamic Data Structures
We will present five additional linked data structures that are very powerful. Although each
of these data structures could be the topic of a separate section, we will introduce them in
this section to illustrate some of the special structures that can be developed with linked
lists.

Circularly Linked List. A circularly linked list is generated when the last node in a
linked list points to the first node in the list as shown in Figure 7.9. Note that the NULL
constant is not used with the circularly linked list because there really is not an end to the
list. However, in an empty circularly linked list, the pointer first will contain the NULL
constant.

Inserting and deleting in a circularly linked list is very similar to inserting and deleting in a
regular linked list. We do need to be careful that we properly handle the pointer first, because
it points to the beginning of the list and also determines when we have followed the links back
around to the beginning.

data_1

data_2

data_k

…

first

Figure 7.9 Circularly linked list.

Circularly linked
list

362 Chapter 7 Programming with Structures

Doubly linked list

data_1�

data_2

data_k �

…

first

Figure 7.10 Doubly linked list.

Operating systems, which are really very sophisticated programs, have a number of ap-
plications suitable to a circularly linked list. For example, suppose that a particular program in
an operating system is keeping track of the interactive users on the system. Each time a new
user logs into the system, the user is added to the list; each time a user logs off the system, the
user is deleted from the list. This list has an order because new users are added at the end.
When running interactive programs, the computer executes a number of steps in the first
user’s program, then a number of steps in the next user’s program, and so on, until it is back
to the first program. It then continues again and again, in a circle. Thus, the information about
the number of users on a system and the order in which the system will step through them is
an ideal application for a circularly linked list. This type of circularly linked list is sometimes
called a round-robin data structure.

Doubly Linked List. In a linked list, the pointer in each node is used to point ahead to
the next node. There are applications in which we would like to have the data linked together
so that we can move forward or backward in the list; this type of list is called a doubly linked
list. Figure 7.10 contains a linked list with both forward links and backward links.

Although there is clearly an advantage to being able to move in either direction in a
linked list, the routines for manipulating such a list become longer. For example, each inser-
tion requires changing two forward links and two backward links. We must also be sure that
the backward link of the first node in the list contains the NULL constant, as well as the for-
ward link of the last node in the list.

Doubly linked lists are useful when we want to be able to insert or delete items without
returning to the beginning of the list for each insertion or deletion. For example, suppose
we have just inserted a new data value at the tenth item of the list. If we now wish to insert
another item, then, instead of starting at the beginning of the list, we can compare the new
item to the one that we are currently accessing in the list. If the new item should come be-
fore the one that we are accessing, we can use the backward links to back through the list
until we find the proper spot for the new insertion. If the new item should follow the one
that we are accessing, we can use the forward links to continue through the list until we find
the proper spot for the new insertion. This type of insertion can be very efficient in certain
situations.

Section 7.6 Dynamic Data Structures 363

Stack. A stack is one of the most frequently–used dynamic data structures. It is often
described in terms of a bucket, as shown in Figure 7.11. Adding an item to a stack is analo-
gous to dropping it in the bucket. The top item on the stack is always the last item added.
Thus, when we remove an item from a stack, it is the top item, or the last item that we added.
This data structure is called a LIFO, or last in–first out structure. The function for adding
items to a stack is called a push function, and the function for removing items from a stack is
called a pop function. Figure 7.12 illustrates the contents of a stack as items are added (push
functions) and deleted (pop functions). From the diagram, it is clear that a stack is a dynamic
data structure. Thus, it can be implemented with a linked structure as shown in Figure 7.13.

The routines for handling the push and pop functions must track both the links between
nodes in the stack and the top and bottom of the stack. The top of the stack is the position for
the next insertion. Thus, if the top of the stack and the bottom of the stack point to the same
position, the stack must be empty.

Stacks are used in a wide variety of applications. For example, if we want to print a set of
values in reverse order, we can access the values in their regular order and place each item in
the stack. When we reach the end of the values, we begin removing them from the stack.
Since the last item added to the stack is the first one removed, we remove the items from the
stack in the reverse order in which we added them. There are also a number of applications in
which we need to hold values temporarily and then retrieve the most recently stored values
first. Compilers frequently need this type of storage as they analyze the syntax in a program
statement and convert it into machine language or assembly language.

Queue. The data structure called a queue (pronounced “cue”) should be very familiar,
although you may not have realized that this structure had a name. Every time you stand in
line, whether it is at the grocery store, the video store, or the fast-food restaurant, you are in a
queue. A queue is a data structure in which items are added at one end and removed from the
other, as shown in Figure 7.14. The queue is also called a FIFO, or first in–first out, structure.

Queues are commonly used in operating systems to track users waiting for some computer
resource. For example, suppose a computer network has one color printer. If several users at-
tempt to print reports at the same time, the operating system will generally “queue” the users
so that the reports are printed one at a time, in the order in which the requests are made.

The functions for handling the queue data structure must be able to handle the steps of in-
serting at one end of the queue and deleting from the other end. Thus, we need pointers for the
front of the queue and for the back of the queue (sometimes called the head and tail, respec-
tively). Obviously, we also need to be able to detect an empty queue. The links within the
queue are similar to the regular linked list, but we can only insert at one end and delete from
the other. Figure 7.15 shows how the links and pointers are used to implement the queue.

data_3

data_2

data_1

Top of stack

Bottom of stack

Stack

Figure 7.11 Stack structure.

Stack

LIFO

Queue

FIFO

364 Chapter 7 Programming with Structures

Stack is initially empty

data_1

Adds
data_1 to
top of stack

push data_1

data_2

data_1

Adds
data_2 to
top of stack

push data_2
data_3

data_2

data_1

Adds
data_3 to
top of stack

push data_3

data_2

data_1

Removes
data_3 from
top of
stack

pop

Figure 7.12 Push and pop operations.

Binary Tree. The final dynamic data structure that we present is a binary tree. A bina-
ry tree is a data structure that begins with a single node, often called the root of the tree. This
node has a left branch and a right branch. The node at each branch also has a left branch and
a right branch. The overall structure of a binary tree is shown in Figure 7.16.

Binary trees are especially useful in certain types of searches. For example, assume that
the data stored in a tree are ordered, and the smaller values are always on the left, with the

Binary tree

data_3

data_2

data_1

data_4Top

Figure 7.13 Implementation of a
stack using a linked list.

Section 7.6 Dynamic Data Structures 365

data_k data_2 data_1

Data
in

Data
out

Back of
the queue

Front of
the queue

…

Figure 7.14 Queue structure.

…data_k

back front

� data_2 data_1

Figure 7.15 Implementation of a queue using a linked list.

data_1

data_2

data_4 data_5 data_7

data_3

data_6

Figure 7.16 Tree structure.

larger values always on the right. Thus, the algorithm to determine whether a particular value
is in the list is very efficient. We first compare the root to the value for which we are search-
ing. The results of the comparison immediately determine which half of the tree must be
searched. The comparison in the first branch of the correct half of the tree reduces the search
to one-fourth of the tree and so on. This process can be illustrated using Figure 7.17. Suppose
we wish to determine if the number 189 is contained in the tree. We begin with the root node.
Since 189 is greater than 157, we know we must search the right branch. The first right

157

92

41 98

21 42 96 142 209 262

251

208

179

Figure 7.17 An ordered list stored in a tree.

366 Chapter 7 Programming with Structures

branch contains the value 208, which is greater than the number 189. We thus take the left
branch at the value 208. The branch value 179 represents the end of the branch, and we now
know that the value 189 is not in the tree. If we wanted to insert it in the tree, we are now at
the correct position to perform the insertion.

The routines to search a tree and to add and delete nodes in the tree require the use of the
root position and the left and right links. The implementation of the tree using a linked data
structure can be performed as shown in Figure 7.18.

SUMMARSUMMARYY

data_1

data_2 data_3

Figure 7.18 Implementation of a tree using a linked list.

Structures provide a convenient way to define a collection of data values that may or may
not be of the same data type. Several examples illustrated how structures are used in C pro-
grams. Dynamic data structures were introduced and an algorithm for implementing a linked
list was presented. Other dynamic structures were discussed, including circularly linked lists,
doubly linked lists, queues, stacks, and trees.

KEY TERMS

binary tree
circularly linked list
data member
doubly linked list
dynamic data structures
empty list
FIFO structure
head
LIFO structure

linked list
node
pointer operator
queue
stack
structure
structure member operator
tag

C STATEMENT SUMMARY

Structure definition:

struct tsunami
{

int mo, da, yr, fatalities;
double max_height;
char location[20];

};

Problems 367

7

struct node
{

int data;
struct node *link;

};

Structure declaration:

struct tsunami t1;
struct node n1, n2=(2,NULL);

Accessing data members:

t1.mo = 10;
n1.link = &n2;

Arrays of structures:

struct tsunami t2[100];

NOTES

1. Structure definitions are often included in .h files outside of main.

DEBUGGING NOTES

1. A structure definition does not allocate memory. To allocate memory, a variable must be
declared after the structure has been defined.

2. The structure member operator must be used with the name of the structure variable to
reference individual data members.

3. The name of the structure variable without the structure member operator refers to the en-
tire structure.

4. The relational operators cannot be used on an entire structure.

PROBLEMS

SHORSHORTT-ANSWER PR-ANSWER PROBLEMSOBLEMS

True–False Problems

Indicate if the following statements are true (T) or false (F).

1. It is possible for a structure to have data members of different data types. T F

2. To reference a data member of a structure, use the name of the structure
followed by parentheses and an offset. T F

3. To print the values of all four data members of the structure r1, use
the following statement: T F

printf("The values of r1 are: %f %f %f %f \n",r1);

368 Chapter 7 Programming with Structures

4. The structure member operator is used with the name of a structure
to reference a data member of a structure. T F

5. The pointer operator is used with a pointer to a structure to access
the data members of a structure. T F

Multiple Choice Problems

Use the following structure definition to answer Problems 6 through 10:

struct computer
{

char manufacturer[10];
double price;
int speed;

};
struct computer pc1, pc2;

6. The correct function header to input values for the structure pc1 is
(a) void get_pc(computer pc1);
(b) void get_pc(struct computer pc1);
(c) void get_pc(struct computer *pc1);
(d) void get_pc(struct *pc1);
(e) void get_pc(computer *pc1);

7. The correct function header to print the value of the structure pc1 is
(a) void print_pc(computer pc1);
(b) void print_pc(struct computer pc1);
(c) void print_pc(struct computer.pc1);
(d) void print_pc(struct *pc1);

8. The correct statement to assign a value of $800 to the data member price in the struc-
ture pc1 is
(a) struct price = 800;
(b) struct computer.price = 800;
(c) struct pc1->price = 800;
(d) pc1.price = 800;
(e) pc1->price = 800;

9. The correct set of statements to define a pointer to the structure pc1 is
(a) struct computer pc1, *ptr_pc1;

...
pc1 = ptr_pc1;

(b) struct computer pc1, *ptr_pc1;
...
ptr_pc1 = pc1;

(c) struct computer pc1, *ptr_pc1;
...
ptr_pc1 = &pc1;

(d) struct computer pc1, *ptr_pc1;
...
ptr_pc1 = *pc1;

Problems 369

7

Memory Snapshot Problem

Use the following structure definition to answer Problems 10 through 13:

struct date
{

int month, day, year;
};

Give the corresponding snapshot of memory for the structures start_date and end_date;
assume that each statement builds on the previous statements.

10. struct date start_date, end_date;

11. start_date.month = 9;

12. start_date.year = 2005;

end_date.year = start_date.year + 3;

13. if (end_date.month < 7)

end_date.day = 1;
else

end.date.day = 30;

PRPROGRAMMING PROGRAMMING PROBLEMSOBLEMS

Hurricanes. In this chapter, we defined a structure that can be used to represent information
for hurricanes:

struct hurricane
{

char name[20];
int year, category;

};

These problems refer to the file storms2.txt, which contains information for the strongest
hurricanes in the United States during 1950 to 2002. Note that the information in the file is or-
dered by year.

14. Write a program to read the information in storms2.txt. Use the preceding structure
and print a report with the average category of these hurricanes. Use an output format
similar to the following:

Hurricane Summary for Strongest Hurricanes in 1950-2002
Average Category: xx.x

Note: You do not need an array to solve this problem.

15. Write a program to read the information in storms2.txt. Use the preceding structure and
print the number of hurricanes in each category. Use an output format similar to the following:

Hurricane Summary for Strongest Hurricanes in 1950-2002
Category Hurricanes
1 x
2 x
3 x

Note: You do not need an array to solve this problem.

370 Chapter 7 Programming with Structures

16. Write a program to read the information in storms2.txt. Use the preceding structure
and print the information for the hurricanes that occurred between 1960 and 1969. Use an
output format similar to the following:

Strongest Hurricanes between 1960 and 1969
Name Year Category

Note: You do not need an array to solve this problem.

17. Write a program to read the information in storms2.txt. Use the preceding structure
and print the information for the hurricanes that occurred between two years entered by
the user. Use an output format similar to the following:

Hurricane Summary for Strongest Hurricanes between x and x
Name Year Category

Note: You do not need an array to solve this problem.

18. Write a program to read the information in storms2.txt. Use the preceding structure
and print the information for the hurricanes such that you first print the information for
category 5 hurricanes, then the information for category 4 hurricanes, and so on.

Strongest Hurricanes between 1950 and 2002
Category Number of Hurricanes

Instead of sorting the information in the file, read it into an array and then make multiple
passes through the array.

19. Write a program to read the information in storms2.txt. Use the preceding structure
and print the hurricane names in alphabetical order:

Strongest Hurricanes between 1950 and 2002
Hurricane Name

You may want to review the sections on sorting data in arrays (Chapter 5).

20. Write a program to read the information in storms2.txt. Use the preceding structure
and print the hurricane names in alphabetical order, along with the other information:

Strongest Hurricanes between 1950 and 2002
Hurricane Year Category

Hint: First solve the problem presented in Problem 19. Then modify the program so that
each time you switch values in the hurricane name array, you do the same switches in the
year array and the category array.

Tsunamis. In this chapter, we defined a structure that can be used to represent information
for tsunamis:

struct tsunami
{

int mo, da, yr, fatalities;
double max_height;
char location[20];

};

Problems 371

7

The following set of problems refers to the file waves2.txt that contains information for
large tsunamis from the 1990s. Note that the information in the file is ordered by date.

21. Write a program to read the information in waves2.txt. Use the preceding structure
and print a report with the number of tsunamis per year in the file. Use an output format
similar to the following:

Information for Large Tsunamis from the 1990s
Year Number of Tsunamis
xxxx xx

Note: You do not need an array to solve this problem.

22. Write a program to read the information in waves2.txt. Use the preceding structure
and print a report with the total number of fatalities per year in the file. Use an output for-
mat similar to the following:

Information for Large Tsunamis from the 1990s
Year Number of Fatalities
xxxx xx

Note: You do not need an array to solve this problem.

23. Write a program to read the information in waves2.txt. Use the preceding structure
and print a report with the locations of the tsunamis for each year. Use an output format
similar to the following:

Information for Large Tsunamis from the 1990s
Year and Locations
1992

Nicaragua
Flores_Island

1993
...
Note: You do not need an array to solve this problem.

24. Write a program to read the information in waves1.txt. Use the preceding using the
structure, and then read a year from the keyboard. Then print the information for all
tsunamis from that year. Use an output format similar to the following:

Information for Large Tsunamis from the 1990s
Date Location Maximum Wave (m) Fatalities

Note: You do not need an array to solve this problem.

25. Write a program to read the information in waves1.txt. Use the preceding using the
structure and print a report with the year containing the largest number of tsunamis. Use
an output format similar to the following:

Information for Large Tsunamis from the 1990s
Year xxxx had maximum number of xxx tsunamis.

Note: You do not need an array to solve this problem.

Crime Scene Investigation: Hand
Recognition
Hand recognition systems are typically used for access control. For example, Disney World
uses hand recognition for entrance by people with season passes. Many athletic gyms use
hand recognition for entrance instead of a swipe card. These systems allow high-volume
traffic use in applications that do not need high security. Hand recognition is a good biomet-
ric for these applications because the measurements can be taken very quickly and the
computations are not complicated. However, hand recognition is not typically used by itself
in applications that need very accurate identification, because the accuracy is not as good as
for fingerprint or iris recognition.To use hand recognition, you slide your hand into a struc-
ture that has pins that fit between your fingers and that hold your hand in place.The system
measures the length, width, and height of your fingers, as well as the distances between finger
joints. In fact, most hand recognition systems make a total of nearly 100 measurements. Using
these measurements, the system can compare the measurements of your hand to informa-
tion stored in a master database. If the measurements of your hand are close enough to
those of one of the hands in the database, you will be granted access to the system. If there
is not a close match, you may be required to show identification in order to gain access. In
Section 8.5 we develop a C function to help analyze measurements taken from a hand in a
hand recognition system.

372

8
CHAPTER EIGHT

CHAPTER OUTLINE

OBJECTIVES In this chapter, we develop problem solutions containing:

8.1 Object-Oriented Programming
8.2 C++ Program Structure
8.3 Input and Output
8.4 C++ Program Examples
8.5 Problem Solving Applied: Hand Recognition
8.6 Problem Solving Applied: Surface Wind Directions
8.7 Classes
8.8 Numerical Technique: Complex Roots

Summary, Key Terms, C++ Statement Summary,
Style Notes, Debugging Notes, Problems

AN INTRODUCTION TO C++

8.1 Object-Oriented Programming

373

■ C++ language objects for standard
input and output;

■ C++ language objects for file input
and output; and

■ C++ user-defined classes.

Bjarne Stroustrup of AT&T Bell Laboratories developed C++ in the early 1980s. C++ is essen-
tially C with additional features to support object-oriented programming. C++ supports all C
operators and control structures, as well as the definition and use of functions. The C++ language
is a superset of C, so most C programs can be compiled using a C++ compiler. The reverse, how-
ever, is not true: C compilers will not recognize the additional object-oriented features of C++.

Object-oriented programming requires a change in the way we think about problems that
we want to solve. When approaching the task of designing an object-oriented program to
solve a problem, we begin by identifying the key elements in the problem. We identify what
defines these elements and how these elements will be created, modified, and used within the
program. Since the elements we identify often do not match an existing data type, we choose
to define our own data type. In C++, new data types are defined using classes.

Object-oriented programming is characterized by the use of classes, objects, polymorphism,
and inheritance. A class is a programmer-defined data type that includes both data and functions
that operate on the data. An object is a variable of a defined class type, often referred to as an
instance of a class. Objects call functions that are defined for their class. These functions are called

Class
Object

Object-oriented
programming

374 Chapter 8 An Introduction to C++

member functions, and they operate on the data members of the calling object. Polymorphism is
the ability to assign many meanings to the same name. Overloading of functions is one example of
polymorphism in C++. The same function name can be given multiple definitions. At run time, the
system can determine which function definition to invoke. Inheritance allows a class to inherit
attributes from an existing class. The new class (referred to as the child class or derived class) inherits
all of the data and functions from the existing class (referred to as the parent class or the base class)
and may have additional data members or member functions of its own. Inheritance is a key concept
to object-oriented design, but the discussion of inheritance is beyond the scope of this chapter.

Member functions

8.2 C++ Program Structure
In this section, we begin our discussion of C++ by illustrating some of the differences be-
tween the basic structure of a C++ program and a C program. We will use the program intro-
duced in Chapter 1 on page 18 as our example; it computes and prints the distance between
two points. That program, converted to C++, is shown below:

//–––
// Program chapter8_1
//
// This program computes the distance between two points.

#include <iostream>
#include <cmath>
using namespace std;

int main(void)
{

// Declare and initialize variables.
double x1=1, y1=5, x2=4, y2=7,

side_1, side_2, distance;

// Compute sides of a right triangle.
side_1 = x2 - x1;
side_2 = y2 - y1;
distance = sqrt(side_1*side_1 + side_2*side_2);

// Print distance.
cout.setf(ios::fixed);
cout.precision(2);
cout << "The distance between the two points is "

<< distance << endl;

// Exit program.
return 0;

}
//–––

Many new include files exist for C++. The file iostream is included for standard
input and output and will be discussed in the next section.

Multiline comments can be enclosed within /* and */. C++ also recognizes the double
slash (//) as the delimiter for a one-line comment. The // delimiter may be used anywhere on
the line. On a program line, everything to the right of the // is treated as a comment.

Polymorphism

Inheritance

Section 8.3 Input and Output 375

8.3 Input and Output
C++ uses the predefined object cin (pronounced see-in) to perform standard input and the
predefined object cout (pronounced see-out) to perform standard output. These objects are
defined in the header file iostream. To use either of these objects in a program, we must
include the following preprocessor directive:

#include <iostream>

This directive includes the ostream and istream class definitions, as well as other informa-
tion necessary to use the cin and cout objects. Note that cout is an object of the ostream
class, and cin is an object of the istream class.

The preprocessor directive for the math library is:

#include <cmath>

Another directive tells the compiler to use the library filenames declared in namespace std,
and it should be used along with the other preprocessor directives:

using namespace std;

The cout Object
The cout object is defined to stream output to the standard output device. The word stream sug-
gests a continual stream of characters that is generated by the program and sent to the output
device. The stream insertion operator (<<) is used with cout (or any ostream object). Any
combination of values may be sent to the output device. For our examples, we will assume that the
standard output device is the screen. The following statement outputs four values to the screen:

cout << "The radius of the circle is " << radius << " centimeters"
<< endl;

Each value to be output must be preceded by the << operator. In the preceding example, the
first value to be output is the string "The radius of the circle is", the second value
to be output is the value of the variable radius, the third value to be output is the string
"centimeters", and the fourth value is the predefined iostream manipulator endl. Since
endl inserts a newline character into the output stream, it causes the line to be printed.

Another use of cout can be illustrated by the following example:

double radius=10, area;
const double PI=3.141579;
...
cout << "The radius of the circle is: " << radius << " centimeters"

<< endl
<< "The area is " << PI*radius*radius << " square centimeters"
<< endl;

In this example, we use the modifier const to declare a named constant for PI. The output
from these statements is

The radius of the circle is: 10 centimeters
The area is 314.158 square centimeters

Notice that no decimal point is displayed in the value of radius, even though radius is declared
to be of type double. You can control the format of your output in C++ using stream functions
and manipulators.

Insertion operator

Stream

376 Chapter 8 An Introduction to C++

Stream Functions
Recall that cout is an object of the ostream class. Stream functions are member functions of
the ostream class and can be called by ostream objects. A special operator called the dot
operator (.) is used when objects call member functions. In this example, we will show you a
few of the stream functions and format flags that can be used to format output. The setf
function is used to set the format flags. The precision function, when used with
ios::fixed, specifies how many places to print to the right of the decimal point. When the
precision function is used without setting ios::fixed, it specifies the number of significant
digits to be displayed. Table 8.1 lists several of the more commonly used format flags.

double radius = 10, area;
const double PI=3.141579;

//set format flags
cout.setf(ios::fixed); // setf function is called by cout
cout.setf(ios::showpoint);
cout.precision(2); //set precision
...
cout << "The radius of the circle is: " << radius << " centimeters"

<< endl
<< "The area is " << PI*radius*radius << " square centimeters"
<< endl;

The output from these statements is as follows:

The radius of the circle is: 10.00 centimeters
The area is 314.16 square centimeters

Format flags

Assume that the integer variable sum contains the value 150 and that the double variable
average contains the value 12.368. Show the output generated by the following code segments:

1. cout << sum << average;

2. cout << sum;
cout << average;

3. cout << sum << endl << average;

4. cout.precision(2);
cout << sum << endl << average;

5. cout.setf(ios::showpoint);
cout.precision(3);
cout << sum << ',' << average;

6. cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(3);
cout << sum << ',' << average;

PRACTICE!PRACTICE!

Dot operator

Section 8.3 Input and Output 377

Table 8.1 Common Format Flags
Flag Meaning

ios::showpoint display the decimal point
ios::fixed decimal notation
ios::scientific scientific notation
ios::right print right justified
ios::left print left justified

The cin Object
The cin object is defined to stream input from the standard input device. For our examples,
we will assume that the standard input device is the keyboard. The stream extraction oper-
ator (>>) is used with cin (or any istream object) to input values and assign a value to a
variable. The >> operator discards all white space (i.e., blanks, tabs, and newlines). The
following statement inputs three values from the keyboard:

cin >> var1 >> var2 >> var3;

The cin statement waits for input. In the foregoing example, the first value typed into the
keyboard will be assigned to the variable var1, the second value to var2, and the third
value to var3. The input is not read until the Enter key is pressed. This allows for
backspacing and correcting mistakes. The values entered from the keyboard must be sepa-
rated by white space, but it does not matter how much white space is present. The cin
statement will continue to discard white space until it receives values for each of the vari-
ables in the statement. The values entered should be compatible with the data type of the
variables in the cin statement.

The use of cin is illustrated by the following example:

int id;
double rate, hours;
char code;
...
cin >> rate >> hours >> id >> code;
cout << rate << end1 << hours << end1 << id << end1

<< code << end1;

Assume that the input stream from the keyboard contains the following two lines of input:

10.5 40
556 r

Then the variables in the input statement would be assigned the following values:

Extraction operator

rate

hours

id

code

556

40

10.5

'r'

White space

378 Chapter 8 An Introduction to C++

The cout statement would print the following output to the screen:

10.5
40
556
r

No specifiers are required with cin. The >> operator interprets the input value according to
the data type of the variable that follows it. The >> operator also discards all white space. For
some applications requiring character data, it may not be desirable to discard white space. The
member function get can be used with istream objects to get a single character from the
input stream. The statements

char ch;
cin.get(ch);

will read the next character from the keyboard and assign the character to the variable ch. The
get function does not discard white space; it treats white space as valid character data.

Defining File Streams
We have been using cin to read input from the keyboard and cout to print output to the
screen. If we want to read values from a file or print information to a file, we must define a file
stream object and associate this object with a file.

C++ provides two file stream classes: one for file input and one for file output. The
ifstream class is used to define objects that stream input from a file, and the ofstream class
is used to define objects that stream output to a file. The ifstream class and the ofstream
class are defined in the header file fstream. Declaration statements are used to define
ifstream and ofstream objects, as shown in the following statements:

ifstream indata; //defines indata as an input file stream object
ofstream outdata; //defines outdata as an output file stream object

After a file stream-object has been defined, it must then be associated with a specific file. The
member function open is called by the file stream object, and a file name is passed as an ar-
gument. Thus, the following statements associate a data file with the objects indata and
outdata, respectively:

indata.open("sensor1.txt"); //opens the file sensor1 for input
outdata.open("plot1.txt"); //opens the file plot1 for output

Now that the objects indata and outdata have been defined and each has been associated
with a data file, they can be used for input and output in the same way that cin and cout are
used. If we assume that the data file sensor1 holds some experimental data values, we can
read one value from the file with the following statement:

indata >> x;

We can write the value of x, along with the natural log of x and ex to the output file
plot1.txt, with the following statement:

outdata << x << " " << log(x) << " " << exp(x) << endl;

White space is printed to separate the values.

File stream

Section 8.4 C++ Program Examples 379

The function close is used to close a file after we are finished with it. The file stream object
calls the function. To close the two files used in this example, we use the following statements:

indata.close();
outdata.close();

When opening data files for input, it is always a good idea to verify that the open function has
been successful. If the open function fails to open the file, no error message will be generated,
but all attempts to read from the file will fail. The member function fail can be used to deter-
mine if the open function was successful. The member function eof can be used to determine
when the end of the file has been encountered. The use of these functions is illustrated in the
next section.

8.4 C++ Program Examples
One of the best ways to understand the differences between C and C++ is to compare two pro-
grams that solve the same problem—but one is written in C and the other is written in C++. In this
section, we present several C++ programs that solve the same problems that were solved earlier in
this text. We will include the page number for the C program so that the two programs can easily
be compared. In these programs, most of the differences will be in the input and output statements.

Simple Computations
In Section 2.10, we developed a program to compute new velocity and acceleration for an air-
craft after a change in the power level. Compare the C program developed on page 69 with the
following C++ program:

//––—
// Program chapter8_2
//
// This program estimates new velocity and acceleration
// values for a specified time.

#include <iostream>
#include <cmath>
using namespace std;

int main(void)
{

// Declare variables.
double time, velocity, acceleration;

// Get time value from the keyboard.
cout << "Enter new time value in seconds:" << endl;
cin >> time;

// Compute velocity and acceleration.
velocity = 0.00001*pow(time,3) - 0.00488*pow(time,2)

+ 0.75795*time + 181.3566;
acceleration = 3 - 0.000062*velocity*velocity;

380 Chapter 8 An Introduction to C++

// Print velocity and acceleration.
cout.setf(ios::fixed);
cout.precision(3);
cout << "Velocity = " << velocity << " m/s" << endl;
cout << "Acceleration = " << acceleration << " m/s^2" << endl;

// Exit program.
return 0;

}
//––—

Loops
In Section 3.5, we developed a program to convert degrees to radians. Compare the C pro-
gram developed on page 106 with the following C++ program:

//––
// Program chapter8_3
//
// This program prints a degree-to-radian table using a
// for loop structure.

#include <iostream>
using namespace std;

int main(void)
{

// Declare constants and variables.
const double PI=3.141593;
int degrees;
double radians;

// Print radians and degrees in a loop.
cout.setf(ios::fixed);
cout.precision(6);
cout << "Degrees to Radians" << endl;
for (degrees=0; degrees<=360; degrees+=10)
{

radians = degrees*PI/180;
cout << degrees << " "

<< radians << endl;
}

// Exit program.
return 0;

}
//––--

Functions, One-Dimensional Arrays, and Data Files
In Section 5.1, we developed a program to read up to 100 values from a data file and then
determine the maximum value. The steps to determine the maximum value in the array

Section 8.4 C++ Program Examples 381

were performed using a function. Compare the C program developed on page 219 with the
following C++ program:

//––
// Program chapter8_4
//
// This program reads values from a data file and determines
// the maximum value with a function.

#include <iostream>
#include <fstream>
using namespace std;
#define FILENAME "lab2.txt"

int main(void)
{

// Declare variables and function prototype.
const int N=100;
int k=0, npts=N;
double y[N];
double max(double x[], int n);
ifstream lab;

// Open file, read data into an array.
lab.open(FILENAME);
if (lab.fail())

cout << "Error opening input file." << endl;
else
{

while (!lab.eof())
{

lab >> y[k];
k++;

}
npts = k;

// Find and print the maximum value.
cout << "Maximum value: "

<< max(y,npts)) << endl;

// Close file and exit program.
lab.close();

}

// Exit program.
return 0;

}
//–––
// This function returns the maximum value in an array x
// with n elements.

double max(double x[],int n)
{

// Declare variables.
int k;
double max_x;

// Determine maximum value in the array.
max_x = x[0];
for (k=1; k<=n-1; k++)

if (x[k] > max_x)
max_x = x[k];

// Return maximum value.
return max_x;

}
//–––

382 Chapter 8 An Introduction to C++

8.5 Problem Solving Applied: Hand Recognition
In this section, we use the new C++ statements presented in this chapter to solve a problem
related to hand recognition. For simplicity, we are going to use just five measurements: the
length of the five fingers on the right hand. Write a function that has the inputs from an un-
known hand and one from an entry in the database. The function should compute the sum of
the absolute value of the differences between corresponding fingers. This sum represents
the distance between the two hands. The recognition program would use this function to
compare the unknown to each hand in the database and then choose the hand from the data-
base that is closest to the unknown. If this difference is less than a specified threshold, then
the unknown identify is identified as a match to the database and access is allowed. A pro-
gram will also be developed to allow us to test this function.

1. PROBLEM STATEMENT

Write a function that will compute the overall distance between measurements of two
hands.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the inputs to the function are the 5 finger lengths for the
unknown and the 5 finger lengths from a record in the database. The output is the overall
distance measurement.

lengths of 5 fingers
from unknown

lengths of 5 fingers
from the database

distance measurement

Section 8.5 Problem Solving Applied: Hand Recognition 383

3. HAND EXAMPLE

Assume that these are the distances, in cm:

unknown database entry |difference|
thumb 5.4 6.2 0.8
index finger 7.2 7.0 0.2
middle finger 7.9 8.0 0.1
ring finger 7.4 7.4 0.0
little finger 5.1 5.8 0.7

The sum of the differences is 1.8.

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a set of
sequential steps.

Decomposition Outline for function

1. Get the finger data from the function inputs.

2. Compute the overall distance value.

3. Return the overall distance value.

We will also need to develop a program that can be used to test this function. The decom-
position outline for the test program is the following:

Decomposition Outline for the test program

1. Specify finger lengths for unknown and for database entry.

2. Use function to compute the distance measurement.

3. Print the distance measurement.

These are straightforward algorithms, so we can go directly to C++ code from the decom-
position outlines.

//––
// Program chapter8_5
//
// This program computes and prints the distance between two hand
// measurements.

#include <iostream>
#include <cmath>
using namespace std;

384 Chapter 8 An Introduction to C++

int main(void)
{

//Declare and initialize variables.
double unknown[5]={5.4,7.2,7.9,7.4,5.1},

known[5]={6.2,7.0,8.0,7.4,5.8};
double distance(double hand_1[5],double hand_2[5]);

// Compute and print distance.
cout << "Distance: " << distance(unknown,known) << endl;

// Exit program.
return 0;

}
//---
// This function computes the distance between two hand measurements.
double distance(double hand_1[5],double hand_2[5])
{

// Declare variables.
int k;
double sum=0;

// Compute sum of absolute value differences.
for (k=0; k<=4; k++)

sum = sum + fabs(hand_1[k]-hand_2[k]);

// Return distance value.
return sum;

}
//---

5. TESTING

The test program has initialized the unknown and the known hand measurements to match
those from the hand example. The output from the program is the following:

Distance: 1.8

The answer matches the hand example, so we can now test the program with additional
data by changing the values in the test program. This would be a good problem to solve
using hand measurements from the people in your class. Then take a new measurement
from one of the students and compare the distance measurements with the entire class to
see if the smallest distance is the one that it should match. Also, does it matter which order
you use for the hand measurements in the function? It doesn’t, but try switching the order
to convince yourself. What if the distance measurement was just a sum, instead of an ab-
solute value?

Section 8.6 Problem Solving Applied: Surface Wind Directions 385

These problems relate to the program developed in this section for comparing hand
measurements.

1. Modify the program so that it reads the unknown measurement from the keyboard.

2. Modify the program so that it reads the known measurement from a data file and
contains a loop that compares the unknown to all measurements in the file.

3. Modify the program in problem 2 so that it also prints the minimum distance
measurement.

4. Modify the program in problem 3 so that it prints the entry number with the minimum
distance, as in “Known 4 has best match.”

5. Modify the program in problem 4 so that it prints all entries with the minimum distance.

MODIFY!MODIFY!

8.6 Problem Solving Applied: Surface Wind Directions
Surface winds drive the surface currents in the oceans, while water density drives deep currents.
The surface winds can be measured by satellite, and they tend to follow the major wind belts
around the globe. In the Northern Hemisphere, the trade winds typically blow from the northeast
to the southwest; in the Southern Hemisphere, the trade winds typically blow from the southeast
to the northwest. (These winds are called trade winds because the ocean’s shipping paths were
determined by them.) The boundary between the trade winds and the equator is often referred to
as the “doldrums,” because there are periods of little wind. For sailing ships, this area could be
particularly frustrating because of the slow passage through it. In this section, we develop a
program that will read a file containing surface wind directions for a region of the ocean. Our pro-
gram will determine the main direction that the wind is blowing, and the program will also
compute the percentage of points in the file blowing in that direction.

Figure 8.1 contains a diagram showing the eight directions on a compass. Assume that a
data file contains a set of directions that corresponds to a set of points on a grid in the ocean.
For this example, assume that the grid is 5 points by 5 points, and each row of information is
stored on a separate line in a data file named wind1.txt. The wind directions have been
coded as shown in Table 8.2.

NW

SW SE

NE

EW

N

S

Figure 8.1 Compass directions.

1. PROBLEM STATEMENT

Read a set of wind directions for an ocean grid. Determine and print the main direction of
the wind and the corresponding number of points blowing from that direction.

2. INPUT/OUTPUT DESCRIPTION

The I/O diagram shows the data file as the input and the report information as output.

3. HAND EXAMPLE

Assume that the grid contains the following information:

4 4 5 5 4
3 4 4 4 5
4 5 4 4 4
4 4 4 4 4
4 4 4 4 5

The value 4 occurs 19 out of 25 times, or 76% of the time. Therefore, the output from the
program should appear as follows:

The wind is blowing from the SE 76% of the time.

Main Wind Direction

winds1.txt

386 Chapter 8 An Introduction to C++

Table 8.2 Wind Direction Codes
Direction Code

N 1
NE 2
E 3
SE 4
S 5
SW 6
W 7
NW 8

Section 8.6 Problem Solving Applied: Surface Wind Directions 387

4. ALGORITHM DEVELOPMENT

First, we develop the decomposition outline because it divides the solution into a set of
sequential steps.

Decomposition Outline

1. Read the wind direction data into an array and determine the direction with the maxi-
mum values.

2. Compute and print the percentage of time the wind blows from that direction.

Refinement in Pseudocode

main: if file cannot be opened
print error message

else
read data and determine grid points for each direction
determine the direction with maximum points
compute and print the direction with maximum points

The steps in the pseudocode are now detailed enough to convert to C++:

//–––
// Program chapter8_6
//
// This program reads wind direction information from a data
// file and then determines the direction with the most points.
// The percentage of points with the maximum direction is computed
// and printed.

#include <iostream>
#include <fstream>
using namespace std;

int main(void)
{

/* Declare variables. */
int r, c, k, maxk=0;
int grid[5][5], category[8]={0,0,0,0,0,0,0,0};
double perc;
char* direction[8]={"N ","NE ","E ","SE ","S ",

"SW ","W ","NW "};
ifstream winds;

/* Read and print information from the file. */
winds.open("winds1.txt");
if (winds.fail())

cout << "Error opening input file." << endl;
else
{

for (r=0; r<=4; r++)
winds >> grid[r][0] >> grid[r][1] >> grid[r][2]

>> grid[r][3] >> grid[r][4];

// Determine sums for the direction categories.
for (r=0; r<=4; r++)

for (c=0; c<=4; c++)
{

k = grid[r][c];
category[k]++;

}

// Determine category with maximum sum.
for (k=0; k<=7; k++)

if (category[k] > category[maxk])
maxk = k;

// Print report.
cout.setf(ios::fixed);
cout.precision(1);
perc = (double)category[maxk]/25*100;
cout << "The wind is blowing from the "

<< direction[maxk–1]
<< perc << "% of the time." << endl;

// Close file.
winds.close();

}

// Exit program.
return 0;

}
//–––

5. TESTING

Using the data from the hand example, the output from the program should appear as follows:

The wind is blowing from the SE 76 % of the time.

388 Chapter 8 An Introduction to C++

These problems relate to the program developed in this section for determining primary
wind direction.

1. Modify the program to print the number of values in each category, using direction
notation (such as SE).

2. Modify the program to print more than one output line if there is more than one direction
with the same number of maximum values.

3. Modify the program to print the message “Possible cyclone or hurricane” if there are
winds in all four quadrants of the compass.

4. Modify the program so that it prints a grid to demonstrate the direction of the winds.
For example, it could print the character if the wind is from the W, and if the
wind is from the E. Choose characters for all eight wind directions.

5. Modify the program so that it reads the grid size (number of rows and number of columns)
from the first row of the data file. Assume a maximum of 100 rows by 100 columns.

'6 ''7 '

MODIFY!MODIFY!

Section 8.7 Classes 389

8.7 Classes
In C++, classes are the building blocks of object-oriented programming. A class is simi-
lar to a structure, except that a class is designed to include function members, as well as
data members. A well-designed class can be used as easily as a predefined data type. In-
stances of a class are called objects. We have used predefined classes and objects in the
previous sections of this chapter. For example, we used the cin object and the cout
object to perform standard input and output operations. These objects are also called
functions, including precision and setf. In this section, we will discuss programmer-
defined classes.

Defining a Class Data Type
A class definition consists of two parts: a class declaration and a class implementation. We
will discuss each part separately.

In the class declaration, the name of the class is specified using the keyword class. The
body of the class declaration consists of type declaration statements for the data members
and function prototypes for the function members. Suppose we want to define a data type to
represent a data point that is represented in rectangular coordinates; thus, the data type is rep-
resented by an x-coordinate and a y-coordinate, as shown in Figure 8.2. When designing a
class type, we need to consider the data members that are required to represent the new data
type, as well as the operations that we would like to define for the data type.

The class design is also described in the class declaration. The class design includes func-
tion members to implement the desired operations. Consider the class declaration that we
present for the xy_coordinate class, which consists of two data members to define the
point and two member functions that operate on the coordinates to determine the radius r and
the angle , as shown in Figure 8.2. We will add additional member functions to the design ofu

x axis

y axis

θ

r

(x, y)

Figure 8.2 Rectangular coordinates for a data point.

Data members

Class declaration
Class
implementation

390 Chapter 8 An Introduction to C++

Public members
Private members

the xy_coordinate class later in this section. The class declaration, is typically stored in a
header file, as shown in the following code:

//–––
// Class declaration (version 1)
//
// These statements define a class for xy-coordinates.
// This declaration is stored in xy_coordinate.h.

#include <iostream>
#include <cmath>

class xy_coordinate
{

// Declare function prototypes for public members.
public:

void input()
void print()
double radius();
double angle();

private:
// Declare private data members.

double x, y;
};
//–––

The xy_coordinate class has two data members and four function members. The key-
words public and private are used to control access to the members of the class. Mem-
bers that are specified as public members may be referenced anywhere in the user program.
Members that are specified as private members may only be referenced by member func-
tions of the xy_coordinate class. We recommend that all data members be specified as pri-
vate to adhere to object-oriented design principles. This restricted access is known as
information hiding. If modifications are made to the data representation of a class, only the
member functions need to be modified; no change to the user program is required. Any pri-
vate member functions can only be called by other member functions. These private member
functions are often referred to as helper functions because they are designed to help the other
member functions.

The class implementation consists of all the member function definitions. When
defining a member function, the scope resolution operator (::) is used in the function
definition. This operator is placed between the class name and the function name to specify
that the function is a member of the class. When writing a member function definition, first
specify the type of value being returned by the function. The class name, the scope resolu-
tion operator, the name of the function, and the parameter list will follow. Recall that all
member functions have direct access to the data members, so the data members do not
appear in the parameter list. Helper functions can also be called directly by a member func-
tion. A class implementation can also be stored in a separate file. The xy_coordinate
class implementation is now presented. Note that the function angle is written to compute
a four-quadrant angle.

Scope resolution
operator

//–––
// Class implementation (version 1)
//
// These statements define implementation of an
// xy_coordinate class. They are stored in xy-coordinate.h.

// This function reads the xy coordinates from the keyboard.
void xy_coordinate::input()
{

cin >> x >> y;
}
// This function prints the xy coordinates to the screen.
void xy_coordinate::print()
{

cout << "(" << x << "," << y << ")" << "\n";
}

// This function computes the radius.
double xy_coordinate::radius()
{

return sqrt(x*x + y*y);
}

// This function computes the angle in radians.
double xy_coordinate::angle()
{

// Compute angle of polar form.
double z, pi=3.141593;
if (x >= 0)

z = atan(y/x);
if (x<0 && y>0)

z = atan(y/x) + pi;
if (x<0 && y<=0)

z = atan(y/x) - pi;
if (x==0 && y==0)

z = 0;
return z;

}
//–––

We now present a program to test this new data type.

//––—
// Program chapter8_7
//
// This program demonstrates the use of
// the xy_coordinate class and its functions.

#include <iostream>
#include <cmath>
#include "xy_coordinate.h"
using namespace std;

Section 8.7 Classes 391

392 Chapter 8 An Introduction to C++

int main(void)
{

// Declare and initialize variables.
xy_coordinate pt1;

// Read input point.
cout << "Enter x and y coordinates:" << endl;
pt1.input();

// Print coordinate in xy form and polar form.
cout.setf(ios::fixed);
cout.precision(2);
cout << "Coordinate in xy form:" << endl;
pt1.print()
cout << "Coordinate in polar form:" << endl;
cout << "magnitude: " << pt1.radius() << endl;
cout << "phase (in degrees): << pt1.angle()*180/3.141593 << endl;

// Exit program.
return 0;

}
//––—

To execute this program, you need to be sure that the xy_coordinate header file and the
xy_coordinate implementation file are accessible to the compiler, along with the program
file. This separation of the components allows us to build our own libraries for programmer-
defined classes. These libraries can be used by many application programs in the same way
that the standard libraries, such as iostream are used. The application program must in-
clude the declarations file and be linked to the implementation file. Using these files, we
can now test the program. Here is a sample output from the program:

Enter x and y coordinates:
4 4
Coordinate in xy form:
(4.00,4.00)
Coordinate in polar form:
magnitude: 5.66
phase (in degrees): 45.00

Constructor Functions
When we define a variable, we often want to assign an initial value to the variable, as in

double sum=0;

If we do not initialize a variable at the time we define it, the variable holds an unknown value
until valid data is assigned. Constructor functions are special member functions that are called
automatically when an object of that class is declared. The constructor function is used to ini-
tialize the data members of the object being defined. When designing a class, a complete set of
constructor functions should be provided. Constructor functions have three unique properties:

• a constructor is called automatically when an object of that class is declared;

• the name of a constructor function is the name of the class;

• no return value is associated with a constructor function, and it is not a void function.

Constructor
functions

Section 8.7 Classes 393

To illustrate, we define two constructor functions to initialize the class members. One
function initializes x and y to zero; the other initializes x and y to values in the declaration
statement. The two declarations are the first ones in the public declaration list in the
following code:

//––
// Class declaration (version 2)
//
// These statements define a class for xy-coordinates.
// Assume that this declaration is stored in xy_coordinate.h.
// The update is the addition of two constructor functions.

#include <iostream>
#include <cmath>
using namespace std;

class xy_coordinate
{

// Declare two constructor functions and six function
// prototypes for public members.
public:

xy_coordinate();
xy_coordinate(double a, double b);
void input();
void print();
double radius();
double angle();

// Declare private data members.
private:

double x, y;
};
//––

The default constructor is called automatically whenever an object is defined in a dec-
laration as follows:

xy_coordinate pt1;

Thus pt1 is an object of the class xy-coordinate. The data members of the object pt1 are
initialized to the values assigned by the default constructor function xy-coordinate(). The
constructor function with parameters is called automatically whenever an object is defined in
a declaration statement as follows:

xy_coordinate pt2(3,4);

The data members of the object pt2 will be initialized to the values passed through the pa-
rameter list using the constructor function xy-coordinate(double a, double b). Thus,
x is given the value 3 and y is given the value 4.

Default constructor

394 Chapter 8 An Introduction to C++

Constructor functions are progammer-defined functions. Here are the constructor func-
tions that should be added to the class implementation file:

//––
// This constructor function initializes x and y to zero.
xy_coordinate::xy_coordinate()
{

x = 0;
y = 0;

}

// This constructor function initializes x and y to parameters.
xy_coordinate::xy_coordinate(double a, double b)
{

x = a;
y = b;

}
//––

Class Operators
The assignment operator is defined for objects of the same class type. If pt1 and pt2 are both
xy_coordinate objects, then this statement is a valid statement:

pt1 = pt2;

Each data member of the object pt1 is assigned the value of the corresponding data
member of the object pt2. However, the C++ arithmetic operators and relational opera-
tors cannot automatically be used with a programmer-defined class type. This compari-
son is not valid:

if (pt1 == pt2) (invalid comparison)

A class definition can include a set of operators to be used with objects of the class.
The ability to overload operators is a powerful feature in C++. Overloading operators

allows a programmer-defined data type to be used as easily as any predefined data type. As
an example, consider the arithmetic operators defined in C++. These operators are defined
to operate on all predefined data types. However, they are not defined for objects from pro-
grammer-defined data types. When designing a class data type, a set of arithmetic opera-
tors that work on objects of the class may be included. Operators are included in a class
definition in the same way as member functions, except that the keyword operator is used.
It is followed by the name of the function, where the name of the function is one of the
predefined C++ operators. Only predefined operators may be overloaded. You may not, for
example, define a new operator ** to perform exponentiation since this operator is not one
of the predefined operators in C++. In the next section, we illustrate the use of overloaded
operators in the definition of a complex number class that includes the arithmetic opera-
tors (i.e., +, -, *, /).

Overload

Section 8.8 Numerical Technique: Complex Roots 395

8.8 Numerical Technique: Complex Roots
Complex numbers are needed to solve many problems in science and engineering, partic-
ularly in physics and electrical engineering. Therefore, it is often very useful to define a
complex class in C++. (Some compilers have added a complex class, but since it is not part
of the standards, you will not find it consistently available.) Recall that a complex number
has the form , where i is and a and b are real numbers. Thus, the real part of
the number is represented by a, and the imaginary part of the number is represented by b.
An obvious way to represent a complex number is with an ordered pair of real values.
Thus, complex number representations are very similar to the xy-coordinate representation
in the previous section. In fact, if we just relabel the x-axis to the real axis, and relabel the
y-axis to the imaginary axis, we will have a representation for complex values, as shown in
Figure 8.3.

To input a complex number from the keyboard, we enter two values; hence, the input
function is essentially the same as for xy-coordinates. The output of a complex number is dif-
ferent, because we want to include a reference to i. For example, the complex value repre-
sented the pair of numbers (3, 5) could be printed as If the imaginary part is negative,
then we would prefer the output to be instead of This preference is handled in
the member function definition for printing a complex number.

When an arithmetic operation is performed between two complex values, the result is
also a complex value. The rules for complex arithmetic are not as familiar as those for integers
or real values. Table 8.3 lists the results of the basic operations with two complex numbers.

We often refer to the magnitude and phase of a complex number. These are the r and
values, respectively, shown in Figure 8.3. These are exactly the same as the magnitude and
phase of an xy-coordinate, so we will be able to use similar definitions.

u

3+ -2i.3-2i
3+5i.

2-1a + bi

Real axis

Imaginary axis

u

r

(a, b)

Figure 8.3 Graphical representation of a complex number.

396 Chapter 8 An Introduction to C++

In the class declaration, we need to include the private members for the real and imagi-
nary components of a complex number. In the public members, we include a function to
input a complex number from the keyboard and a function to print a complex number on the
screen. In addition, we need to include member functions to define the arithmetic operators.
The resulting class declaration and class implementation are shown in the following code.

Review these statements carefully to observe the steps. However, this is only an intro-
duction to C++, so we have presented only the details needed for these examples. We have
not tried to give you a complete understanding of class declarations and implementations.

Class Declaration and Implementation:

//–––—
// Class declaration
//
// These statements define a class for complex numbers.
// This declaration is stored in complex.h.

#include <iostream>
#include <cmath>
using namespace std;

class complex
{

// Declare function prototypes for public members.
public:

complex();
complex(double a, double b);
void print();
void input();
double magn(complex);
double angle(complex);
complex operator+(complex);
complex operator-(complex);
complex operator*(complex);
complex operator/(complex);

Table 8.3 Arithmetic Operations with Complex Numbers

Operation Result

1c1 = a1 + b1 i, c2 = a2 + b2 i2
a1 a2 + b1 b2
a2

2 + b2
2 +

a2 b1 - b2 a1
a2

2 + b2
2 ic1/c2

1a1 a2 - b1 b22 + 1a1 b2 + a2 b12ic1 # c2
1a1 - a22 + 1b1 - b22ic1 - c2
1a1 + a22 + 1b1 + b22ic1 + c2

Complex Class Definition
We now develop the class declaration and class implementation for complex numbers. Then,
in the final part of this section, we develop a program that computes and prints the complex
roots for a quadratic equation.

Section 8.8 Numerical Technique: Complex Roots 397

// Declare private members.
private:

double real, imag;
};
//–––—
// Class implementation
//
// These statements define implementation of a complex class.

// This function is the default constructor to initialize a
// complex number that is not given a value.
complex::complex()
{

real = 0;
imag = 0;

}

// This function is the constructor to initialize a complex
// number to a specified value.
complex::complex(double a, double b)

real = a;
imag = b;

// This function prints a complex number.
void complex::print()
{

if (imag > 0)
cout << real << "+" << imag << "i" << endl;

else
if (imag == 0)

cout << real << endl;
else

cout << real << imag << "i" << endl;
}

// This function reads two values for a complex number.
void complex::input()
{

cin >> real >> imag;
}

// This function defines the sum of complex numbers.
complex complex::operator+(complex c)
{

// Definition of complex addition.
complex temp;
temp.real = c.real + real;
temp.imag = c.imag + imag;
return temp;

}

}

{

398 Chapter 8 An Introduction to C++

// This function defines the difference of complex numbers.
complex complex::operator-(complex c)
{

// Definition of complex subtraction.
complex temp;
temp.real = real - c.real;
temp.imag = imag - c.imag;
return temp;

}

// This function defines the product of complex numbers.
complex complex::operator*(complex c)
{

// Definition of complex multiplication.
complex temp;
temp.real = (real*c.real - imag*c.imag);
temp.imag = (imag*c.real + real*c.imag);
return temp;

}

// This function defines the quotient of complex numbers.
complex complex::operator/(complex c)
{

// Definition of complex division.
complex temp;
temp.real = (real*c.real + imag*c.imag)/

(pow(c.real,2) + pow(c.imag,2));
temp.imag = (imag*c.real - real*c.imag)/

(pow(c.real,2) + pow(c.imag,2));
return temp;

}
//–––—

We now present a simple example to test some of the characteristics of the complex class
that we have developed: When building your own classes, test each member function as it is
written. Debugging the complete class definition at once can be difficult.

//–––—
// Program chapter8_8
//
// This program demonstrates the use of
// the complex number class and its operations.

#include <iostream>
#include "ccomplex"
including namespace std;

int main(void)
{

// Declare and initialize variables.
complex c1(4,1), c2(-3,-2), c3;

Section 8.8 Numerical Technique: Complex Roots 399

// Print initial values.
cout << "c1:"
c1.print();
cout << "c2:"
c2.print();
cout << "c3:";
c3.print();

// Compute and print new values.
c3 = c1 + c2;
cout << "c1+c2 = "
c3.print();
c3 = c1 - c2;
cout << "c1-c2 = "
c3.print();
c3 = c1*c2;
cout << "c1*c2 = "
c3.print();
c3 = c1/c2;
cout << "c1/c2 = "
c3.print();

// Exit program.
return 0;

}
//––—

The output from this program is as follows:

c1: 4+1i
c2: -3-2i
c3: 0
c1+c2 = 1-1i
c1-c2 = 7+3i
c1*c2 = -10-11i
c1/c2 = -1.07692+0.384615i

Complex Roots for Quadratic Equations
A general equation for a quadratic equation with real coefficients is

There are two roots to this equation, and they can be computed using the following equations:

 root2 =
-b - 2b2 - 4ac

2a

 root1 =
-b + 2b2 - 4ac

2a

ax2 + bx + c = 0.

400 Chapter 8 An Introduction to C++

The term under the square root symbol, , is called the discriminant. If the discrimi-
nant is greater than or equal to zero, then the two roots are real values, and they can be ex-
pressed as follows:

If the discriminant is less than zero, then the two roots are complex values, and they can be ex-
pressed as follows:

We now present a program that reads the values of a, b, and c for a quadratic equation
from the keyboard. The program then determines and prints the two roots. If the roots are real,
then they appear as real values. If the roots are complex, then they are printed as complex val-
ues. The code is as follows:

//––—
// Program chapter8_9
//
// This program computes and prints the roots of a quadratic
// equation. It uses the user-defined complex class.

#include <iostream>
#include <cmath>
#include "ccomplex"
using namespace std;

int main(void)
{

// Declare and initialize variables.
double a, b, c, term1, disc;
complex root1, root2;

// Read values for a, b, c from the keyboard.
cout << "Enter real values a, b, c:" << endl;
cin >> a >> b >> c;

 root2 = -
b

2a
-
2-discriminant

2a
i

 root1 = -
b

2a
+
2-discriminant

2a
i

 root2 = -
b

2a
-
2discriminant

2a

 root1 = -
b

2a
+
2discriminant

2a

b2 - 4ac

Section 8.8 Numerical Technique: Complex Roots 401

// Compute roots of quadratic equation.
term1 = -b/(2*a);
disc = b*b - 4*a*c;
if (disc >= 0)
{

root1.real = term1 + sqrt(disc)/(2*a);
root2.real = term1 - sqrt(disc)/(2*a);

}
else
{

root1.real = term1;
root1.imag = sqrt(-disc)/(2*a);
root2.real = term1;
root2.imag = -sqrt(-disc)/(2*a);

}

// Print roots.
cout << "Roots:" << endl;
root1.print();
root2.print();

// Exit program.
return 0;

}
//––—

Here are two example interactions with this program:

Enter real values a, b, c:
1 -3 -4
Roots:
4
-1

Enter real values for a, b, c:
1 0 4
Roots:
0+2i
0-2i

C++ STATEMENT SUMMARY

Preprocessor directives to include information for standard I/O and file I/O:

#include <iostream>
#include <fstream>
using namespace std;

One-line comments:
//program chapter8-1

Keyboard input statement:
cin >> data;

402 Chapter 8 An Introduction to C++

SUMMARSUMMARYY The C++ language is a superset of C. We introduced the structure of a C++ program and
presented the C++ statements necessary to perform standard I/O and file I/O. Object-
oriented programming is characterized by the use of classes and objects. A class is a pro-
grammer-defined data type that combines data members and function members. An object
is an instance of a class. Objects call member functions to operate on the data members.
Examples were developed in this chapter to illustrate class definitions and computation
with classes using xy-coordinates and complex numbers.

KEY TERMS

class
class declaration
class implementation
constructor function
data member
default constructor
dot operator
extraction operator
format flag
inheritance
insertion operator

member function
object
object-oriented programming
overload
polymorphism
private member
public member
scope resolution operator
stream
white space

These problems refer to the complex class developed in this section and the program that
computes the roots of a quadratic equation.

1. Test the program with an equation that will give a double root. Does it handle that situa-
tion correctly?

2. Modify the program so that it also prints one of these phrases: "real roots",
"double roots", or "complex roots".

3. Modify the program so that it prints two decimal positions for the roots.

MODIFYMODIFY

Screen output statement:
cout << data;

Class declaration:
class class_name
{
public:

function prototypes;
private:

declarations;
function prototypes;

};

Member function definition:
return_type class_name::function_name(parameter list)
{

declarations;
statements;

}

Declaring an object (instance of a class):
xy_coordinate pt1;

Initializing an object:
xy_coordinate pt2(3,4);

NOTES

1. All data members of a class should be specified as private.

2. A well-designed class should have one or more constructor functions.

DEBUGGING NOTES

1. Test each member function definition as it is written. Coding the complete class imple-
mentation before testing makes debugging very difficult.

PROBLEMS

SHORSHORTT ANSWER PRANSWER PROBLEMSOBLEMS

True–False Problems
Indicate whether the following statements are true (T) or false (F).

1. An object is an instance of a class. T F

2. The cin object streams input to a program from standard input. T F

3. Overloading function names is an example of polymorphism. T F

4. All data members of a class must be of the same data type. T F

Problems 403

8

5. Member functions are called using the dot operator. T F

6. The dot operator is required as part of a member function definition. T F

7. An object is a member function of a class. T F

8. Member functions have access to all private data members. T F

9. Constructor functions are member functions. T F

10. A constructor function may not be overloaded. T F

Multiple Choice Problems
Circle the letter for the best answer to complete each statement or for the correct answer of
each question.

11. Which C++ statement will correctly print the value of two integer variables a and b to
standard output?
(a) cout << a, b;
(b) cout >> a, b;
(c) cout << a << b;
(d) cout >> a >> b;
(e) cout(a,b);

12. Which C++ statement will correctly input two values from standard input and assign the
values to the variables a and b?
(a) cin << a, b;
(b) cin >> a, b;
(c) cin >> a >> b;
(d) cin << a << b;
(e) cin(a,b);

13. Functions designed to initialize data members of a class are called
(a) accessor functions.
(b) constructor functions.
(c) object functions.
(d) class functions.
(e) none of the above.

PRPROGRAMMING PROGRAMMING PROBLEMSOBLEMS

14. Define a class to represent a date. A date is defined using three integer variables: month,
day, and year. Include member function definitions to

• input a date;
• print a date as month/day/year (10/1/1999);
• print a date as month day, year (October 1, 1999);
• initialize a date object.

15. Define a class to represent time. Time is defined using three integer variables, hours,
minutes, and seconds. Time is stored as a military time. Military time is represented
with times ranging from 00:00:00 (12 am) to 23:59:59 (11:59:59 pm). Include func-
tions to

• input a time;
• print a time in 12-hour format;

404 Chapter 8 An Introduction to C++

Problems 405

• calculate the difference between two times;
• initialize a time object.

16. Define a rational number class. A rational number is a number composed of two integers
with division indicated, as in 1/2, 2/3, and 4/5. A rational number is defined using two in-
teger variables: numerator and denominator. Include functions to perform the follow-
ing operations:

a/b + c/d = (a.d + b.c) / (b.d) (addition)
a/b - c/d = (a.d - b.c) / (b.d) (subtraction)
(a/b) . (c/d) = (a.c)/(b.d) (multiplication)
(a/b) / (c/d) = (a.d) / (c.b) (division)

8

This page intentionally left blank

407

APPENDIX A

ANSI C Standard Library
While entire texts have been written to discuss the ANSI C Standard Library, the intent of this
appendix is to present only a short discussion on the information defined in each of the head-
er files in the ANSI C Standard Library. This discussion is not intended to provide all the de-
tails necessary to use the functions, but to give you enough information so that you can
determine whether the functions may be of use in a particular application; you can then obtain
more details from other references. What follows assumes that you are familiar with the vari-
ous data types, including pointers and character strings.

<assert.h>

The header file <assert.h> gives a definition of the assert function that provides diagnostic
information in testing a program. The system-dependent diagnostic information is stored in
the standard error file, which can be accessed after the program is completed.

<ctype.h>

The header file <ctype.h> defines several functions for testing and converting characters.
(See also Chapter 2.) The function prototype statements and corresponding discussions use
the following definitions:

digit one of the characters 0123456789
hexadecimal digit a digit or one of the characters ABCDEFabcdef
uppercase letter one of the characters ABCDEFGHIJKLMNOPQRSTUVWXYZ
lowercase letter one of the characters abcdefghijklmnopqrstuvwxyz
alphabetic character an uppercase or a lowercase letter
alphanumeric character a digit or an alphabetic character
punctuation character one of the characters !"#%&'();<=>?[\]*+,�./:^
graph character an alphanumeric character or a punctuation character
print character a graph character or the space character
motion control character one of the control characters FF (form feed), NL (new line),
CR (carriage return), HT (horizontal tab), and VT (vertical tab)
white space the space character or one of the motion control characters
control character one of the motion control characters or BEL (bell) or BS (backspace)

We now list each function prototype and give a brief definition of the corresponding function:

int isalnum(int c);
returns a nonzero (true) value if and only if the input character is a digit or an upper-
case or a lowercase letter

int isalpha(int c);
returns a nonzero (true) value if and only if the input character is an uppercase or a
lowercase letter

int iscntrl(int c);
returns a nonzero (true) value if and only if the input character is one of the control
characters

int isdigit(int c);
returns a nonzero (true) value if and only if the input character is a digit

int isgraph(int c);
returns a nonzero (true) value if and only if the input character is a graph character

int islower(int c);
returns a nonzero (true) value if and only if the input character is a lowercase letter

int isprint(int c);
returns a nonzero (true) value if and only if the input character is a printing character

int ispunct(int c);
returns a nonzero (true) value if and only if the input character is a punctuation character

int isspace(int c);
returns a nonzero (true) value if and only if the input character is a white-space character

int isupper(int c);
returns a nonzero (true) value if and only if the input character is an uppercase character

int isxdigit(int c);
returns a nonzero (true) value if and only if the input character is a hexadecimal character

int tolower(int c);
converts an uppercase letter to a lowercase letter

int toupper(int c);
converts a lowercase letter to an uppercase letter

<errno.h>

The header file <errno.h> provides a definition of the macros EDOM and ERANGE and an ex-
ternal function errno. EDOM and ERANGE are integer constants with nonzero values that are
system dependent. The purpose of the errno function is to report error conditions, and its use
is system dependent.

<float.h>

The header file <float.h> provides several macros that give various limits and characteris-
tics pertaining to floating-point values, where a normalized floating-point value has been ex-
pressed in an exponential notation with a mantissa greater than or equal to 1 and less than 10.
The macros and their corresponding definitions are as follows:

int FLT_ROUNDS;
specifies the rounding mode for floating-point addition

int FLT_RADIX;
radix of the exponent representation for floating-point values

int FLT_MANT_DIG;
int DBL_MANT_DIG;
int LDBL_MANT_DIG;

number of radix base digits in the normalized mantissa for a float, double, or
long double value

int FLT_DIG;
int DBL_DIG;
int LDBL_DIG;

number of decimal digits in the normalized mantissa for a float, double, or
long double value

int FLT_MIN_EXP;
int DBL_MIN_EXP;
int LDBL_MIN_EXP;

integer used to determine the minimum radix exponent for a normalized value for a
float, double, or long double value

408 Appendix A ANSI C Standard Library

Appendix A ANSI C Standard Library 409

int FLT_MIN_10_EXP;
int DBL_MIN_10_EXP;
int LDBL_MIN_10_EXP;

integer used to determine the minimum exponent for a base-10 normalized value for a
float, double, or long double value

int FLT_MAX_EXP;
int DBL_MAX_EXP;
int LDBL_MAX_EXP;

integer used to determine the maximum exponent for the radix base for a normalized
value for a float, double, or long double value

int FLT_MAX_10_EXP;
int DBL_MAX_10_EXP;
int LDBL_MAX_10_EXP;

integer used to determine the maximum exponent for a base-10 normalized value for a
float, double, or long double value

float FLT_MIN;
double DBL_MIN;
long double LDBL_MIN;

minimum representable value for a float, double, or long double value
float FLT_MAX;
double DBL_MAX;
long double LDBL_MAX;

maximum representable value for a float, double, or long double value
float FLT_EPSILON;
double DBL_EPSILON;
long double LDBL_EPSILON;

difference between 1 and the smallest value greater than 1 for a float, double, or
long double value

<limits.h>

The header file <limits.h> provides several macros that give various limits and character-
istics pertaining to integer values. These macros and their definitions are as follows:

int CHAR_BIT;
number of bits for the smallest nonbit value

int CHAR_MIN;
int CHAR_MAX;

minimum and maximum values for type char
int INT_MIN;
int INT_MAX;

minimum and maximum values for type int
int LONG_MIN;
int LONG_MAX;

minimum and maximum values for type long int
int MB_LEN_MAX;

maximum number of bytes in a multibyte character
int SCHAR_MIN;
int SCHAR_MAX;

minimum and maximum values for type signed char

int SHRT_MIN;
int SHRT_MAX;

minimum and maximum values for type short int
int UCHAR_MAX;

maximum values for type unsigned char
int UINT_MAX;

maximum value for type unsigned int
int ULONG_MAX;

maximum value for type unsigned long int
int USHRT_MAX;

maximum value for type unsigned short int

<locale.h>

The header file <locale.h> defines two functions, one type, and several macros relative to
the formatting of numeric values. This information allows numeric values to be formatted in
ways that address internationalization issues; included is information relating to monetary
formatting and times.

<math.h>

The header file <math.h> defines functions that are often needed to perform engineering cal-
culations. These functions, also described in detail in Chapter 2, are as follows:

double acos(double x);
computes the arccosine, or inverse cosine, of x, where x must be in the range
returns an angle in radians in the range

double asin(double x);
computes the arcsine, or inverse sine, of x, where x must be in the range re-
turns an angle in radians in the range

double atan(double x);
computes the arctangent, or inverse tangent, of x; returns an angle in radians in the
range

double atan2(double y, double x);
computes the arctangent, or inverse tangent, of the value returns an angle in radians
in the range

int ceil(double x);
rounds x to the nearest integer toward (infinity)

double cos(double x);
computes the cosine of x, where x is in radians

double cosh(double x);
computes the hyperbolic cosine of x, which is equal to

double exp(double x);
computes the value of ex, where e is the base for natural logarithms, or approximately
2.718282

double fabs(double x);
computes the absolute value of x

int floor(double x);
rounds x to the nearest integer toward (negative infinity)

double log(double x);
computes ln x, the natural logarithm of x (to the base e); errors occur if x … 0

-q

1ex + e-x2>2

q

[-p, p]

y
x

;

[-p/2, p/2]

[-p/2, p/2]
[-1, 1];

[0, p]
[-1, 1];

410 Appendix A ANSI C Standard Library

Appendix A ANSI C Standard Library 411

double log10(double x);
computes x, the common logarithm of x (to the base 10); errors occur if x

double pow(double x, double y);
computes the value of x to the yth power, or xy; errors occur if x and y or if
x and y is not an integer

double sin(double x);
computes the sine of x, where x is in radians

double sinh(double x);
computes the hyperbolic sine of x, which is equal to

double sqrt(double x);
computes the square root of x, where x

double tan(double x);
computes the tangent of x, where x is in radians

double tanh(double x);
computes the hyperbolic tangent of x, which is equal to (sinh x)/(cosh x)

<setjmp.h>

The header file <setjmp.h> contains a macro, a function, and a type declaration used to by-
pass the normal function call and return processes. These operations are not generally recom-
mended and thus are not discussed here.

<signal.h>

The header file <signal.h> contains a type definition, two functions, and several macros for
handling various signals, which are conditions that may be reported during the execution of a
program and that are generally considered to be fatal errors. Since signal handling is non-
portable, we do not discuss the information in this header file here. In general, the default han-
dling provided by a system is sufficient for handling signals.

<stdarg.h>

The header file <stdarg.h> contains a type definition and three macros for working with
functions that allow a variable number of arguments. While this capability is very powerful, it
is not commonly used in engineering applications.

<stddef.h>

The header file <stddef.h> contains type definitions and macros that are essentially unre-
lated. These types and macros are not commonly used in engineering applications and thus
are not addressed here.

<stdio.h>

The header file <stdio.h> defines the types, macros, and functions required to perform
input and output. Of the new types defined, the type FILE is the one most useful in engineer-
ing applications, because it is used in conjunction with data files. Many of the input/output
functions are discussed in Chapters 2 and 3; those functions and several additional functions
are summarized here:

void clearerr(FILE *stream);
clears the end-of-file and error indicators for the stream pointed to by stream

int fclose(FILE *stream);
closes the file associated with the file pointer

Ú 0

1ex - e-x2>2

6 0
… 0,= 0

… 0log10

int feof(FILE *stream);
tests the end-of-file indicator for the stream pointed to by stream

int ferror(FILE *stream);
tests the error indicator for the stream pointed to by stream

int fflush(FILE *stream);
causes unwritten data for the stream to be written to the file

int fgetc(FILE *stream);
returns the integer equivalent of the next character in the stream

int fgetpos(FILE *stream, fpos_t *pos);
returns the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos

char *fgets(char *s, int n, FILE *stream);
reads into the array pointed to by s at most one less than the number of characters
specified by n from the stream pointed to by stream

FILE *fopen(const char *filename, const char *mode);
opens the file whose name is a string pointed to by filename

int fprintf(FILE *stream, const char *format, ...);
writes the output to the stream pointed to by stream, using the format specified and
the values that follow the format reference; returns the number of characters printed

int fputc(int c, FILE *stream);
writes the character specified by c to the output stream pointed to by stream

int fputs(const char *s, FILE *stream);
writes the string pointed to by s to the stream pointed to by stream; does not write
the terminating null character

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
reads into the array pointed to by ptr up to nmemb elements whose size is specified by
size from the stream pointed to by stream

FILE *freopen(const char *filename, const char *mode, FILE *stream);
reopens the file whose name is a string pointed to by filename

int fscanf(FILE *stream, const char *format, ...);
reads input from the stream pointed to by stream, using the format specified and the
addresses that follow the format reference; returns the number of input values assigned

int fseek(FILE *stream, long int offset, int whence);
sets the file position indicator for the stream pointed to by stream

int fsetpos(FILE *stream, const fpos_t *pos);
sets the file position indicator for the stream pointed to by stream according to the
value of the object pointed to by pos

long int ftell(FILE *stream);
returns the current value of the file position indicator for the stream pointed to by
stream

size_t fwrite(const void *ptr, size_t size, size_t nmemb,
FILE *stream);

writes from the array pointed to by ptr up to nmemb elements whose size is specified
by size to the stream pointed to by stream

int getc(FILE *stream);
returns the integer equivalent of the next character in the stream

int getchar(void);
returns the integer equivalent of the next character from the standard input stream

412 Appendix A ANSI C Standard Library

Appendix A ANSI C Standard Library 413

char *gets(char *s);
reads characters from the input stream into the array pointed to by s until a new-line
character or end-of-file is encountered; the new-line character is replaced by a null
character in the array

void perror(const char *s);
maps the error number in the integer expression errno to an error message

int printf(const char *format, ...);
writes the output to the standard output stream, using the format specified and the val-
ues that follow the format reference; returns the number of characters printed

int putc(int c, FILE *stream);
writes the character specified by c to the output stream pointed to by stream

int putchar(int c);
writes the character specified by c to the standard output stream

int puts(const char *s);
writes the string pointed to by s to the standard output stream and adds a new-line
character to the output in place of the null character

int remove(const char *filename);
removes accessibility of the file pointed to by filename

int rename(const char *old, const char *new);
changes the file originally pointed to by old to the one pointed to by new

void rewind(FILE *stream);
sets the file position indicator for the stream pointed to by stream to the beginning of
the file

int scanf(const char *format, ...);
reads input from the standard input stream, using the format specified and the addresses
that follow the format reference; returns the number of input values assigned

void setbuf(FILE *stream, char *buf);
specifies the type of buffering to be used with the stream pointed to by stream

int setvbuf(FILE *stream, char *buf, int mode, size_t size);
specifies the type of buffering to be used with the stream pointed to by stream

int sprintf(char *s, const char *format, ...);
writes the output to the array pointed to by s, using the format specified and the values
that follow the format reference; a null character is appended to the end of the charac-
ters written; returns the number of characters printed, not including the null character

int sscanf(const char *s, const char *format, ...);
reads input from the string pointed to by s, using the format specified and the addresses
that follow the format reference; returns the number of input values assigned

FILE *tmpfile(void);
creates a temporary binary file that is automatically removed when it is closed

char *tmpnam(char *s);
generates a string that is a valid file name and is not the same as the name of any exist-
ing file

int ungetc(int c, FILE *stream);
pushes the character specified by c back onto the input stream pointed to by stream

int vfprintf(FILE *stream, const char *format, va_list arg);
writes the output to the stream pointed to by stream, using the format specified and
the values contained in the variable argument list; returns the number of characters
printed

int vprintf(const char *format, va_list arg);
writes the output to the standard output stream, using the format specified and the val-
ues contained in the variable argument list; returns the number of characters printed

int vsprintf(char *s, const char *format, va_list arg);
writes the output to the array pointed to by s, using the format specified and the values
contained in the variable argument list; a null character is appended to the end of the
characters written; returns the number of characters printed, not including the null
character

<stdlib.h>

The header file <stdlib.h> defines types, macros, and functions that do not fit into any of
the other header files. The types div_t and ldiv_t are structures for storing a quotient and
a remainder. The macros are as follows:

NULL
an integer value of binary zero

EXIT_FAILURE
EXIT_SUCCESS

integral expressions used to return unsuccessful or successful termination status,
respectively, to the host

RAND_MAX
an integral expression that is the maximum value returned by the RAND function

MB_CUR_MAX
a positive integer expression whose value is the maximum number of bytes in a multi-
byte character

The functions that are most likely to be used in engineering applications are listed next, with
the function prototype statement and a brief description (many of these functions are dis-
cussed in Chapters 3 and 6):

void abort(void);
causes an abnormal termination of the program

int abs(int k);
long int labs(long int k);

computes the absolute value of the integer k
int atexit(void (*func)(void));

registers the function pointed to by func, called without arguments at normal program
termination

double atof(const char *s);
int atoi(const char *s);
long int atol(const char *s);
double strtod(const char *s, char **endptr);
long int strtol(const char *s, char **endptr, int base);
unsigned long int strtoul(const char *s, char **endptr, int base);

converts the initial portion of the string pointed to by s to a numerical representation
void *bsearch(const void *key, const void *base, size_t n, size_t

size, int(*compar)(const void *,const void *));
searches an array of n objects for the value pointed to by key

void *calloc(size_t n, size_t size);
allocates space for an array of n objects, each of size size

414 Appendix A ANSI C Standard Library

Appendix A ANSI C Standard Library 415

div_t div(int numer, int denom);
ldiv_t ldiv(long int numer, long int denom);

computes the quotient and remainder of the division of numer by denom
void exit(int status);

causes normal program termination to occur
void free(void *ptr);

deallocates the space pointed to by ptr
void *malloc(size_t size);

allocates space for an object of size size
void qsort(void *base, size_t nmemb, size_t size, int

(*compar)(const void*, const void *));
sorts an object of n objects into ascending order

int rand(void);
returns a pseudorandom integer in the range from 0 to RAND_MAX

void *realloc(void *ptr, size_t size);
changes the size of the object pointed to by ptr

void srand(unsigned int seed);
uses the seed seed to initialize a new sequence of values from the RAND function

<string.h>

The header file <string.h> defines the type size_t, which is an unsigned integer, and the
macro NULL, which has the value of binary zero. In addition, the header file defines the fol-
lowing functions for handling strings (these functions are also discussed in Chapter 6):

void *memchr(const void *s, int c, size_t n);
returns a pointer to the first occurrence of c in the initial n characters of the object
pointed to by s

int memcmp(const void *s, const void *t, size_t n);
returns an integer greater than, equal to, or less than zero, accordingly, as the string
pointed to by s is, respectively, greater than, equal to, or less than the string pointed to
by t

void *memcpy(void *s, const void *t, size_t n);
copies n characters from the object pointed to by t into the object pointed to by s

void *memmove(void *s, const void *t, size_t n);
copies n characters from the object pointed to by t into the object pointed to by s,
using a temporary area

void *memset(void *s, int c, size_t n);
copies the value of c into the first n characters of the object pointed to by s

char *strcat(char *s, const char *t);
concatenates the string pointed to by t to the end of the string pointed to by s; returns
a pointer to the string pointed to by s

char *strchr(const char *s, int c);
returns a pointer to the first occurrence of the character c in the string pointed to by s

int strcmp(const char *s, const char *t);
compares string s with string t, element by element; returns an integer greater than,
equal to, or less than zero, accordingly, as the string pointed to by s is, respectively,
greater than, equal to, or less than the string pointed to by t

int strcoll(const char *s, const char *t);
returns an integer greater than, equal to, or less than zero, accordingly, as the string
pointed to by s is, respectively, greater than, equal to, or less than the string pointed to
by t

char *strcpy(char *s, const char *t);
copies the string pointed to by t to the string pointed to by s; returns a pointer to the
string pointed to by s

size_t strcspn(const char *s, const char *t);
returns the initial number of characters in the string pointed to by s that consists en-
tirely of characters not in the string pointed to by t

size_t strlen(const char *s);
returns the length of the string pointed to by s

char *strncat(char *s, const char *t, size_t n);
concatenates at most n characters of string t to string s; returns a pointer to the string
pointed to by s

int strncmp(const char *s, const char *t, size_t n);
compares at most n characters of string s with string t, element by element; returns an
integer greater than, equal to, or less than zero, accordingly, as the string pointed to by
s is, respectively, greater than, equal to, or less than the string pointed to by t

char *strncpy(char *s, const char *t, size_t n);
copies at most n characters from the string pointed to by t to the string pointed to by
s; if t has fewer characters than s, then s is padded with null characters; returns a
pointer to s

char *strpbrk(const char *s, const char *t);
returns a pointer to the first occurrence in the string pointed to by s of any character of
the string pointed to by t

char *strrchr(const char *s, int c);
returns a pointer to the last occurrence of the character c in the string pointed to by s

size_t strspn(const char *s, const char *t);
returns the initial number of characters in the string pointed to by s that consists
entirely of characters in the string pointed to by t

char *strstr(const char *s, const char *t);
returns a pointer to the start of the string pointed to by t within the string pointed to by s

<time.h>

The header file <time.h> defines two macros, four types, and several functions for repre-
senting and manipulating calendar time and local time. The types clock_t and time_t are
arithmetic types capable of representing times, and the structure tm contains a calendar time
broken into seconds (tm_sec), minutes (tm_min), hours (tm_hour), day of the month
(tm_mday), months since January (tm_mon), years since 1900 (tm_year), days since
Sunday (tm_wday), days since January 1 (tm_yday), and a daylight saving time flag
(tm_isdst); the order of the values in the structure is system dependent. The related macros
are the following:

CLOCKS_PER_SEC
number per second of the value returned by the clock function

NULL
an integer representing binary zero

416 Appendix A ANSI C Standard Library

Appendix A ANSI C Standard Library 417

Function prototypes and brief descriptions of their related computations are as follows:
char *asctime(const struct tm *timeptr);

returns a pointer to the string containing a converted time
clock_t clock(void);

returns the current processor time
char *ctime(const time_t *timer);

returns a pointer to a string containing a converted time
double difftime(time_t time1, time_t time0);

computes the difference between two calendar times
struct tm *gmtime(const time_t *timer);

returns a pointer to a time expressed in Coordinated Universal Time
struct tm *localtime(const time_t *timer);

returns a pointer to a time converted from calendar time
time_t mktime(struct tm *timeptr);

converts the structure values for time to a calendar time value
time_t time(time_t *timer)

returns the current calendar time
size_t strftime(char *s, size_t maxsize, const char *format,

const struct tm *timeptr);
converts time into a formatted multibyte character sequence

APPENDIX B

ASCII Character Codes

418

The table that follows lists the 128 ASCII characters and their equivalent integer values and
binary values. The characters that correspond to the integers 1 through 31 have special signif-
icance to the computer system. For example, the character BEL is represented by the integer
7 and causes the bell to sound on the keyboard.

The order of the characters from low to high is the collating sequence and has several in-
teresting characteristics. Note that digits are less than uppercase letters, and uppercase letters
are less than lowercase letters. Note also that special characters are not grouped together—
some are before digits, some are after digits, and some are between uppercase and lowercase
characters. Here is the table:

Character Integer Equivalent Binary Equivalent

NUL (Binary Zero) 0 0000000
SOH (Start of Header) 1 0000001
STX (Start of Text) 2 0000010
ETX (End of Text) 3 0000011
EOT (End of Transmission) 4 0000100
ENQ (Enquiry) 5 0000101
ACK (Acknowledge) 6 0000110
BEL (Bell) 7 0000111
BS (Backspace) 8 0001000
HT (Horizontal Tab) 9 0001001
LF (Line Feed or New Line) 10 0001010
VT (Vertical Tabulation) 11 0001011
FF (Form Feed) 12 0001100
CR (Carriage Return) 13 0001101
SO (Shift Out) 14 0001110
SI (Shift In) 15 0001111
DLE (Data Link Escape) 16 0010000
DC1 (Device Control 1) 17 0010001
DC2 (Device Control 2) 18 0010010
DC3 (Device Control 3) 19 0010011
DC4 (Device Control 4-Stop) 20 0010100
NAK (Negative Acknowledge) 21 0010101
SYN (Synchronization) 22 0010110
ETB (End of Text Block) 23 0010111
CAN (Cancel) 24 0011000
EM (End of Medium) 25 0011001
SUB (Substitute) 26 0011010
ESC (Escape) 27 0011011
FS (File Separator) 28 0011100
GS (Group Separator) 29 0011101
RS (Record Separator) 30 0011110
US (Unit Separator) 31 0011111

Appendix B ASCII Character Codes 419

SP (Space) 32 0100000
! 33 0100001

" 34 0100010
35 0100011
$ 36 0100100
% 37 0100101
& 38 0100110
’ (Closing Single Quote) 39 0100111
(40 0101000
) 41 0101001
* 42 0101010

43 0101011
, (Comma) 44 0101100
- (Hyphen) 45 0101101
. (Period) 46 0101110
/ 47 0101111
0 48 0110000
1 49 0110001
2 50 0110010
3 51 0110011
4 52 0110100
5 53 0110101
6 54 0110110
7 55 0110111
8 56 0111000
9 57 0111001
: 58 0111010
; 59 0111011

60 0111100
61 0111101
62 0111110

? 63 0111111
@ 64 1000000
A 65 1000001
B 66 1000010
C 67 1000011
D 68 1000100
E 69 1000101
F 70 1000110
G 71 1000111
H 72 1001000
I 73 1001001
J 74 1001010
K 75 1001011
L 76 1001100
M 77 1001101
N 78 1001110
O 79 1001111

7
=
6

+

420 Appendix B ASCII Character Codes

P 80 1010000
Q 81 1010001
R 82 1010010
S 83 1010011
T 84 1010100
U 85 1010101
V 86 1010110
W 87 1010111
X 88 1011000
Y 89 1011001
Z 90 1011010
[91 1011011
\ 92 1011100
] 93 1011101

(Circumflex) 94 1011110
_ (Underscore) 95 1011111
‘ (Opening Single Quote) 96 1100000
a 97 1100001
b 98 1100010
c 99 1100011
d 100 1100100
e 101 1100101
f 102 1100110
g 103 1100111
h 104 1101000
i 105 1101001
j 106 1101010
k 107 1101011
l 108 1101100
m 109 1101101
n 110 1101110
o 111 1101111
p 112 1110000
q 113 1110001
r 114 1110010
s 115 1110011
t 116 1110100
u 117 1110101
v 118 1110110
w 119 1110111
x 120 1111000
y 121 1111001
z 122 1111010

123 1111011
124 1111100
125 1111101
126 1111110

DEL (Delete/Rubout) 127 1111111

'
6
ƒ
5

¿

421

APPENDIX C

Using MATLAB to Plot Data from Text Files
To understand engineering problems and engineering solutions to problems, it is important to
be able to visualize the numerical information that is involved. Therefore, the ability to easily
obtain simple xy plots from data files is important in solving engineering problems.

In this appendix, we present a simple C program that generates a data file, and we then show
how to use MATLAB to obtain a plot of the data. We chose MATLAB (MATrix LABoratory) to
generate the plots in this appendix and also in the text chapters because it is an extremely power-
ful software environment for interactive numeric computations, data analysis, and graphics.

In the example that follows, we use a C program to generate a text file and MATLAB to
plot the information. A text file can also be generated by means of a word processor, and then
the same steps can be used to plot the information with MATLAB. If the data file is generat-
ed via a word processor, it is important to select the options for saving the file such that it is
saved as a text file instead of as a word processor file.

The program shown next generates a data file containing 100 lines of information. Each
line contains the corresponding time and function value from the damped sine function

where The statements that open the data file, write infor-
mation to it, and close it are discussed in Chapter 3.

t = 0.0, 0.1, 0.2, Á , 9.9 seconds.

f1t2 = e-t sin12pt2

C Program to Generate a Data File

/*–––*/
/* Program chapterc_1 */
/* */
/* This program generates a data file of values from a */
/* damped sine function. */

#include <stdio.h>
#include <math.h>
#define PI 3.141593
#define FILENAME "dsine.txt"

int main(void)
{

/* Declare variables. */
int k;
double t, f;
FILE *data_out;

/* Generate data file. */
data_out = fopen(FILENAME,"w");
for (k=1; k<=100; k++)
{

t = 0.1*(k-1);
f = exp(-t)*sin(2*pi*t);
fprintf(data_out,"%.1f %.3f \n",t,f);

}

422 Appendix C Using MATLAB to Plot Data from Text Files

/* Close data file and exit program. */
fclose (data_out);
return 0;

}
/*–––*/

Text Data File Generated by the C Program

The data file generated by the sample program contains two numbers per line. The first few
lines of information and the last line of information are as follows:

0.0 0.000
0.1 0.532
0.2 0.779
...
9.9 0.000

Generating a Plot with MATLAB

To generate a plot of this information with MATLAB, we need only two statements. Before
executing the statements below, store the file in the MATLAB work directory (folder). The
first statement loads the file into the MATLAB workarea, and the second statement generates
the xy plot:

>>load dsine.txt
>>plot(dsine(:,1),dsine(:,2))

The plot generated is shown in Figure C.1.
Since it is important to label the information in a plot, we could also add statements to

give the plot a title, to label the axes, and to add a background grid:

>>load dsine.txt
>>plot(dsine(:,1),dsine(:,2)),
>>title('Damped Sine Function'),
>>xlabel('Time, s'),ylabel('f(t)'),grid

The plot with these labels is shown in Figure C.2. The statements also assume that the data
file is stored in the MATLAB work directory.

Figure C.1 Plot of a damped sine function.

0 1 2 3 4 5 6 7 8 9 10
�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

Figure C.2 Enhanced plot of a damped sine function.

0 1 2 3 4 5 6 7 8 9 10
�0.6

�0.4

�0.2

0.2

0.4

0.6

0.8

Time, s

f(
t)

Damped Sine Function

0

424

COMPLETE SOLUTIONS
TO PRACTICE! PROBLEMS

SECTION 2.2, PAGE 30

1. valid

2. valid

3. valid

4. valid

5. valid

6. invalid character (-), replacement tax_rate

7. valid

8. invalid character (^), replacement sec_sqrd

9. valid

10. invalid, keyword, replacement break_1

11. invalid character (#), replacement num_123

12. invalid character (&), replacement x_and_y

13. valid

14. invalid, keyword, replacement void_term

15. invalid characters ((,)), replacement fx

16. valid

17. valid

18. invalid character (.), replacement w1_1

19. valid

20. valid

21. invalid character (/), replacement m_per_s

SECTION 2.2, PAGE 31

1.

2.

3.

4.

5.

6.

7. 0.0000103

8.

9.

10. 0.000667

11. 0.0902

12. -0.022

-3,552,000

-105,000

1.00000028 * 107
-9.99 * 10-2
3.15723 * 100
-5.0 * 104
4.2 * 10-4
3.5004 * 101

SECTION 2.2, PAGE 35

1. #define LIGHT_SPEED 2.99792e08

2. #define CHARGE_E 1.602177e-19

3. #define N_A 6.022e23

4. #define G_MSS 9.8

5. #define G_FTSS 32

6. #define MASS 5.98e24

7. #define MOON_RADIUS 1.74e06

8. #define UNIT_LENGTH 'm'

9. #define UNIT_TIME 's'

SECTION 2.3, PAGE 38

1. 6

2. 4.5

3. 3

4. 3.0

SECTION 2.3, PAGE 40

1. distance = x0 + v0*t + 0.5*a*t*t;

2. tension = (2*m1*m2*g)/(m1 + m2);

3. P2 = P1 + rho*v2*v2*(A2*A2 - A1*A1)/(2*A1*A1);

4.

5.

6.

SECTION 2.3, PAGE 43

change = GMEma 1

RE
-

1

RE + h
b

potential energy =
GMEm

r

centripetal =
4p2r

T2

3 4 8

3 4 12

6 4

2 0

1. x y z

2. x y z

3. x y

4. x y

SECTION 2.4, PAGE 47

1. Sum = 65; Average = 12.4

2. Sum = 65

Average = 12.3680

Complete Solutions to Practice! Problems 425

426 Complete Solutions to Practice! Problems

3. Sum and Average

65 12.4

4. Character is b; Sum is A

5. Character is 98; Sum is 65

6. 12.37 is the average;
65 is the sum

7. 12.37 is the average; 65 is the sum

SECTION 2.6, PAGE 55

1. 75.86° 89.35° 111.25° 109.92°

2. 0.67 1.60 1.71 1.87

3. There are five times that correspond to 110°, as can be seen from Figure 2.5. These val-
ues can be computed to be the following:

1.98 2.84 3.39 4.42 4.67

SECTION 2.8, PAGE 62

1. -3 2. -2 3. 0.125 4. 3.16

5. 25 6. 11 7. -1 8. 32

SECTION 2.8, PAGE 63

1. velocity = sqrt(pow(v0,2) + 2*a*(x - x0));

2. length = k*sqrt(1 - pow(v/c,2));

3. center = 38.1972*(r*r*r - s*s*s)*sin(a)/((r*r - s*s)*a);

4.

5.

6.

SECTION 2.8, PAGE 65

1. cothx = cosh(x)/sinh(x);

2. secx = 1/cos(x);

3. cscx = 1/sin(x);

4. acothx = 0.5*log((x + 1)/(x - 1));

5. acoshx = log(x + sqrt(x*x - 1));

6. acscx = asin(1/x);

v =

Q
2gh

1 +
I

mr2

range =
v0

2

g
sin2u

frequency =
1

A2pc

L

Complete Solutions to Practice! Problems 427

SECTION 2.9, PAGE 67

1. x

2. A

3. a

4.

ac

C

SECTION 3.2, PAGE 90

1. true 2. true 3. true 4. true

5. true 6. true 7. false 8. false

SECTION 3.3, PAGE 95

1. if (time > 15)

time += 1;

2. if (sqrt(poly) < 0.5)

printf("poly = %f \n",poly);

3. if (abs(volt_1-volt_2) > 10)

printf("volt_1: %f, volt_2: %f \n",volt_1,volt_2);

4. if (den < 0.05)

result = 0;

else

result = num/den;

5. if (log(x) >= 3)

{

time = 0;

count--;

}

6. if (dist<50.0 && time>10)

time += 2;

else

time += 2.5;

7. if (dist >= 100)

time += 2;

else

if (dist > 50)

time += 1;

else

time += 0.5;

428 Complete Solutions to Practice! Problems

SECTION 3.3, PAGE 97

1. switch (rank)

{

case 1: case 2:

printf("Lower division \n");

break;

case 3: case 4:

printf("Upper division \n");

break;

case 5:

printf("Graduate student \n");

break;

default:

printf("Invalid rank \n");

break;

}

SECTION 3.5, PAGE 107

1. 18 2. 18 3. 17

4. 9 5. infinite loop 6. 15

SECTION 4.2, PAGE 161

1. Actual Parameters Formal Parameters

x

sqrt(x)

x-30

2. 2

b

a

c

25

-5

25

-5

55

SECTION 4.2, PAGE 163

1. external identifiers: none

2. local variables and scope:

main function:

seed, n, k, component_reliability, a_series,

a_parallel, series_success, parallel_success,

num1, num2, num3, rand_float

Complete Solutions to Practice! Problems 429

rand_float prototype statement:

a, b

rand_float function:

a, b

3. external identifiers: none

4. local variables and scope:

main function:

n, k, a0, a1, a2, a3, a, b, step, left, right

check_roots prototype statement:

left, right, a0, a1, a2, a3

check_roots function:

left, right, a0, a1, a2, a3, f_left, f_right

poly prototype statement:

x, a0, a1, a2, a3

poly function:

x, a0, a1, a2, a3

SECTION 4.9, PAGE 198

1. #define area_sq(side) ((side)*(side))
printf("area: %f \n",area_sq(side1));

2. #define area_rect(side1,side2) ((side1)*(side2))

sum = area_rect(sidea,sideb) + area_rect(sidec,sided);

3. #define area_par(base,height) ((base)*(height))

area1 = area_par(b,h1);

4. #define area_trap(base,height1,height2)

(0.5*(base)*((height1)+(height2)))

area += area_trap(base,left,right);

5. #define vol_sph(radius) (4.0/3.0*3.141593*pow((radius),3))

printf("volume: %f \n",vol_sph(5.5);

6. #define vol_pyr(area,height) (1.0/3.0*(area)*(height))

vol1 = vol_pyr(0.5*baseb*baseht,pyrht);

7. #define vol_cone(radius,height)

(1.0/3.0*3.141593*pow((radius),3)*(height))

vol2 = vol_cone(diameter/2,ht);

8. #define vol_cube(side) ((side)*(side)*(side))

vol3 = vol_cube(sqrt(base_area));

9. #define vol_par(length,width,height)

((length)*(width)*(height))

vol4 = vol_par(side1,side1,side1);

430 Complete Solutions to Practice! Problems

SECTION 5.1, PAGE 216

1.

2.

3.

4.

SECTION 5.1, PAGE 218

1. 3 8 2. 8 30

15 21

30 41

SECTION 5.1, PAGE 221

1. 9.8 2. 9.8 3. 3.2 4. 1.5

SECTION 5.4, PAGE 236

1. 9 2. 6 3. 5.36 4. 2.32

5. 2.5 6. 5.75

SECTION 5.8, PAGE 251

1.

2.

-5 4 3 0 0 0 0 0 0 0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

? -5.5 5.5 5.5

'a' 'b' 'c'

4

6

1

5 2

-2 3

0 0

0 0

0 0

0 0

Complete Solutions to Practice! Problems 431

3.

4.

5.

6.

SECTION 5.8, PAGE 253

1. 9

2. 4

3. -6

4. 3

SECTION 5.8, PAGE 256

1. 13

2. 2

3. 18

4. 22

SECTION 5.10, PAGE 265

1. 5

2.

3. c5 -1 3

3 -3 2
d

-8

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0

0 1 0

0 0 1

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

1 -1 1 -1 1

1 -1 1 -1 1

1 -1 1 -1 1

1 -1 1 -1 1

1 -1 1 -1 1

432 Complete Solutions to Practice! Problems

4.

5.

6.

SECTION 5.11, PAGE 272

1.

2.

SECTION 6.1, PAGE 294

1.

2.

3.

4.

SECTION 6.2, PAGE 298

1.

2.

3.

x = 3, y = -1, z = 2

x = 2, y = 1

C 24

-20

18

S
c -2 -2 4

7 -9 10
d

[-4 12]

a b

ptr

1 2

a b

ptr

2 2

b c

ptr

a 51 1

b c

ptr

a 22 2

x y

ptr_1ptr_2

15.6 31.2

w x

ptr_2

10 -8

ptr_1
ptr_2

x

ptr_3

38642

Complete Solutions to Practice! Problems 433

4.

SECTION 6.2, PAGE 300

offset

g[0] 2 0

g[1] 4 1

g[2] 5 2

g[3] 8 3

g[4] 10 4

g[5] 32 5

g[6] 78 6

1. 2 5. 2

2. 4 6. 8

3. 3 7. 4

4. 32 8. 32

SECTION 6.2, PAGE 301

1. offset

d[0][0] 1 0

d[0][1] 6 1

d[1][0] 0 2

d[1][1] 0 3

d[2][0] 0 4

d[2][1] 0 5

d[3][0] 0 6

d[3][1] 0 7

2. offset

g[0][0] 5 0

g[0][1] 2 1

g[0][2] -2 2

g[0][3] 3 3

g[1][0] 1 4

g[1][1] 2 5

g[1][2] 3 6

g[1][3] 4 7

g[2][0] 0 8

g[2][1] 0 9

g[2][2] 0 10

g[2][3] 0 11

w

first_ptr last_ptr

? ? ? ?

434 Complete Solutions to Practice! Problems

3. offset

h[0][0] 0 0

h[0][1] 0 1

h[0][2] 0 2

h[1][0] 0 3

h[1][1] 0 4

h[1][2] 0 5

h[2][0] 0 6

h[2][1] 0 7

h[2][2] 0 8

SECTION 6.2, PAGE 301

offset

x[0][0] 1 0

x[0][1] 8 1

x[0][2] 7 2

x[0][3] 6 3

x[1][0] 2 4

x[1][1] 4 5

x[1][2] -1 6

x[1][3] 0 7

1. 1 3. 3

2. 7 4. 14

SECTION 6.2, PAGE 302

1. int a[4][6], sum=0, *ptr=&a[1][0];
...
for (k=0; k<=5; k++)

sum += *(ptr+k);

2. int a[4][6], sum=0, *ptr=&a[0][2];
...
for (k=0; k<=3; k++)

sum += *(ptr+k*6);

3. int a[4][6], *ptr=&a[0][0];
...
max = a[0][0];
for (k=0; k<=17; k++)

if (max < *(ptr+k))
max = *(ptr+k);

Complete Solutions to Practice! Problems 435

6. invalid, arguments are not pointers

SECTION 7.1, PAGE 337

1. 2. 3.

SECTION 7.1, PAGE 338

1. Audrey
Frederic

2. Category 4 Hurricane: Audrey

SECTION 8.3, PAGE 376

1. 15012.368

2. 15012.368

3. 150

12.368

4. 150

12

5. 150,12.4

6. 150,12.368

4. int a[4][6], *ptr=&a[0][0];
...
min = a[0][2];
for (i=0; i<=3; i++)

for(j=2; j<=5; j++)
if (min > *(ptr+i*6+j))

min = *(ptr+i*6+j);

SECTION 6.4, PAGE 308

1. invalid, arguments are not pointers to integers

2.

f

ptr_f

g

ptr_g

7 2

f

ptr_f

g

ptr_g

7 2

3. invalid, arguments are not pointers

4. invalid, arguments are not pointers to f and g

5.

h3

?

?

"Hugo"h1

5

1969

"Andrew" h2

?

?

?

436

SELECTED SOLUTIONS
TO MODIFY! PROBLEMS

SECTION 2.4, PAGE 52

1. /*––*/
/* Program chapter2_mod */
/* */
/* This program includes a division by zero */
/* to determine the system response. */

#include <stdio.h>

int main(void)
{

/* Declare and initialize variables. */
double a=5, b=0, c;

/* Execute a division by zero. */
c = a/b;

/* Print the value of c. */
printf("c = %f \n",c);

/* Exit program. */
return 0;

}
/*––*/

SECTION 4.5, PAGE 180

/*–––*/
/* Program chapter4_5mod */
/* */
/* This program generates and prints ten random */
/* floating-point values between user-entered limits. */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

/* Declare variables and function prototypes. */
unsigned int seed;
int k;
double a, b;
double rand_float(double a, double b);

/* Get seed value and interval limits. */
printf("Enter a positive integer seed value: \n");
scanf("%u",&seed);

srand(seed);
printf("Enter limits a and b (a<b): \n");
scanf("%f %f",&a,&b);

/* Generate and print ten random numbers. */
printf("Random Numbers: \n");

for (k=1; k<=10; k++)

printf("%f ",rand_float(a,b));

/* Exit program. */
return 0;

}
/*–––*/

(No changes in the rand_float function from page 179.)
/*–––*/

SECTION 5.6, PAGE 244

1. /*––—*/
/* Program chapter5_mod */
/* */
/* This program initializes an array and then uses */
/* the selection sort to reorder it. */

#include <stdio.h>

int main(void)
{
/* Declare variables and function prototypes. */

int k;
double x[10]={4,8,-2,16,19,6,-4,0,20,3};
void sort(double x[], int n);

/* Print original order. */
printf("Original Order \n");
for (k=0; k<=9; k++)

printf("%.1f ",x[k]);
printf("\n");

/* Sort values. */
sort(x,10);

/* Print new order. */
printf("New Order \n");
for (k=0; k<=9; k++)

printf("%.1f ",x[k]);
printf("\n");

/* Exit program. */
return 0;

}
/*––—*/

(No changes in the sort function from page 243.)
/*––—*/

Selected Solutions to Modify! Problems 437

438

1. F
2. T
3. F
4. T
5. F
6. F
7. F
8. F
9. F

10. T
11. T
12. F
13. F
14. T
15. T
16. F
17. F
18. F
19. F
20. T
21. (d)
22. (b)
23. (c)
24. (a)
25. (a)

26. (b)
27. (e)
28. (c)
29. (d)
30. (c)
31. (a)
32. (b)
33. (c)
34. program
35. hardware
36. central processing unit

37. output devices

38. system software

39. algorithm
40. compilation
41. spreadsheet
42. syntax
43. operating system
44. arithmetic logic unit
45. debugging
46. logic errors
47. ANSI C
48. microprocessor
49. supercomputer
50. machine language

COMPLETE SOLUTIONS TO END-OF-CHAPTER
SHORT-ANSWER PROBLEMS

CHAPTER 1

CHAPTER 2

1. T
2. F
3. F
4. T
5. F
6. incorrect

int i, j, k;
7. correct
8. incorrect

double D1, D2, D3;

9. incorrect
float a1, a2;

10. correct
11. (d)
12. (b)
13. (c)
14. (c)
15. (e)

16.

17.

18. value_1=5.783

19. value_4= 6.65e01

20. value_5= +7750

a 7500

x1 2

CHAPTER 3

1. T

2. F

3. T

4. F

5. T

6. T

7. incorrect; commas should be semi-
colons

8. incorrect; should be k==1

9. incorrect; controlling expression has
to be an integer

10. (c)

11. (b)

12. (a)

13. (a)

14. (c)

15. (c)

16. (c)

17.

CHAPTER 4

1. T

2. F

3. T

4. T

5. (b)

6. (a)

7. (d)

8. 1

9. 0

10. 0

11. If the input integer is negative, the re-
sult is system dependent. Therefore,
the function should be used only with
positive integers.

CHAPTER 5

1. T

2. F

3. F

4. F

5. (a)

6. (a)

7. (a)

8. (b)

Complete Solutions to End-of-Chapter Short-Answer Problems 439

a

x

n

3.8

2

2.8

1. T

2. T

3. F

4. F

5. (a)

6. (b)

7. (d)

8. (b)

9.

10. 5

11. 12

12. 5

13. 5

9.

10.

11. 15

12. 6

440 Complete Solutions to End-of-Chapter Short-Answer Problems

r

x

c

t

k

4 5

0 1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

5 8 11 14 17

4

name

x

a

20.5

14

20.5

CHAPTER 6

CHAPTER 7

1. T

2. F

3. F

4. T

5. T

6. (b)

7. (b)

8. (d)

9. (c)

Complete Solutions to End-of-Chapter Short-Answer Problems 441

1. T

2. T

3. T

4. F

5. T

6. T

7. F

8. T

9. T

10. F

11. (c)

12. (c)

13. (b)

10.

11.

12.

13.

start_date month

day

year

end_date month

day

year

start_date month

day

year

end_date month

day

year

?

?

?

?

?

?

9

?

?

12

?

?

start_date month

day

year

end_date month

day

year

start_date month

day

year

end_date month

day

year

9

?

2005

12

?

2008

9

?

2005

12

30

2008

CHAPTER 8

CHAPTER 2

/*––—*/
/* Program chapter2_prob39 */
/* */
/* This program computes the molecular weight */
/* for an amino acid. */

#include <stdio.h>
#define O 15.9994
#define C 12.011
#define N 14.00674
#define S 32.066
#define H 1.00794

int main(void)
{

/* Declare variables. */
int num_o, num_c, num_n, num_s, num_h;
double weight;

/* Prompt the user for numbers of atoms. */
printf("Enter number of oxygen atoms: \n");
scanf("%i",&num_o);
printf("Enter number of carbon atoms: \n");
scanf("%i",&num_c);
printf("Enter number of nitrogen atoms: \n");
scanf("%i",&num_n);
printf("Enter number of sulfur atoms: \n");
scanf("%i",&num_s);
printf("Enter number of hydrogen atoms: \n");
scanf("%i",&num_h);

/* Compute molecular weight. */
weight = O*num_o + C*num_c + N*num_n +

S*num_s + H*num_h;

/* Print the molecular weight. */
printf("amino acid molecular weight = %.5f \n",

weight);

/* Exit program. */
return 0;

}
/*––—*/

442

SELECTED SOLUTIONS TO END-OF-CHAPTER
PROGRAMMING PROBLEMS

CHAPTER 3

/*––—*/
/* Program chapter3_prob37 */
/* */
/* This program prints a table showing the */
/* number of acres of land reforested at the */
/* end of each year, for 20 years. */

#include <stdio.h>
#define UNCUT 2500
#define RATE 0.02

int main(void)
{

/* Declare variables. */
int year;
double old_forest=UNCUT, new_forest;

/* Print report. */
printf("Reforestation Summary \n");
printf("Year Total Acres Forested \n");
for (year=1; year<=20; year++)
{

new_forest = old_forest*RATE;
old_forest += new_forest;
printf("%4i %10.2f \n",year,old_forest);

}

/* Exit program. */
return 0;

}
/*––—*/

CHAPTER 4

/*––—*/
/* Program chapter4_prob14 */
/* */
/* This program simulates rolling two six-sided */
/* dice and computes the percentage of time that */
/* the sum of the dots on the dice equals 8. */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

/* Declare variables and function prototypes. */
unsigned int seed;
int rolls, k, die_1, die_2, sum=0;
int rand_int(int a, int b);

Selected Solutions to End-of-Chapter Programming Problems 443

/* Get seed value. */
printf("Enter a positive integer seed value: \n");
scanf("%u",&seed);
srand(seed);

/* Prompt user for number of rolls. */
printf("Enter number of rolls of dice: \n");
scanf("%i",&rolls);

/* Simulate rolls of the dice. */
for (k=1; k<=rolls; k++)
{

die_1 = rand_int(1,6);
die_2 = rand_int(1,6);
if (die_1+die_2 == 8)

sum++;
}

/* Compute and print percentage */
/* of rolls with a sum of 8. */
printf("Number of rolls: %i \n",rolls);
printf("Percent with sum of eight: %.2f \n",

sum*100.0/rolls)

/* Exit program. */
return 0;

}
/*––—*/

(Include function rand_int from page 177.)
/*––—*/

444 Selected Solutions to End-of-Chapter Programming Problems

Selected Solutions to End-of-Chapter Programming Problems 445

CHAPTER 6

/*––—*/
/* Function chapter6_prob18 */
/* */
/* This function determines the number of positive, */
/* negative, and zero values in an array. */

void signs(int x[], int npts, int *npos,
int *nzero, int *nneg)

{
/* Declare variables. */
int k;

/* Set sums to zero. */
*npos = *nzero = *nneg = 0;

/* Update corresponding sums. */
for (k=0; k<=npts-1; k++)
{

if (x[k] < 0)
*nneg += 1;

else
if (x[k] > 0)

*npos += 1;
else

*nzero += 1;
}

/* Void return. */
return;

}
/*––—*/

GLOSSARY

abbreviated assignment an assignment statement that uses a shortened format

abstraction a concept in which a programmer can use modules to accomplish specific tasks without
needing to know the details of the steps within the modules

actual parameter a value that corresponds to a formal parameter when a function is invoked

address a positive integer that uniquely defines a memory location

address operator a unary operator that determines the memory address of an identifier

algorithm a step-by-step outline of a solution to a problem

ANSI C an American National Standards Institute standard that provides a system-independent and
unambiguous definition of the language C

argument an input to a function

arithmetic logic unit (ALU) the part of the computer that performs the arithmetic and logical operations

array a data structure that allows a group of values to be represented with the use of a common name
and to be distinguished via subscripts

ASCII American Standard Code for Information Interchange

assembler a program that converts an assembly language program to binary

assembly language a language written in English-like statements and that is specific to a particular
type of CPU

assignment statement a statement that assigns a value to an identifier

associativity the property according to which the operations in an expression are grouped

automatic class a class used to represent local variables

binary two states, usually represented by 0 and 1

binary code a code composed of 0’s and 1’s

binary operator an operator, such as addition, that operates on two values

binary search a search algorithm that reduces the number of values to search in half with each comparison

binary tree a linked list with nodes that have a left branch and a right branch

bit a binary digit, 0 or 1

bug an error in a program

byte a unit of memory that contains 8 bits or binary digits

call-by-address a function reference in which the address of the actual parameter is used as the address
of the corresponding formal parameter

call-by-reference a function reference in which the address of the actual parameter is used as the
address of the corresponding formal parameter

call-by-value a function reference in which the value of the actual parameter is passed to the corre-
sponding formal parameter

case label the expression used to control a case structure

case sensitive having the property such that lowercase and uppercase letters are perceived as different
characters

case structure a structure in which groups of statements are performed in accordance with the value of
a controlling expression

cast operator a unary operator that specifies a type change in the value before the next computation

central processing unit (CPU) the combination of the processor and the ALU

446

Glossary 447

character a data type which represents information that is not restricted to being numeric

character function a function that has character arguments or that returns a character value

character string a character array that ends with a null character

circularly linked list a linked list in which the link in the last node points to the first node in the list

class an abstract data type that consists of both data and functions

class declaration C++ statements that declare the name, data members, and function members of a class

class implementation C++ statements that provide complete function definitions for all function mem-
bers of a class

cloud computing a technique for accessing large amounts of information remotely

coercion of arguments the process of converting the type of a value to another type before using the
value in a computation

collating sequence an ordering of characters for a specific code, from low to high

comment a statement in a program that is not an instruction, but that is used to document the steps in
the program

compiler a program that translates a program in a high-level language into machine language

compiler error an error identified during the compilation of a program

composition nesting of functions

compound statement a set of statements that are enclosed in braces

computer a machine designed to perform operations that are specified with a set of instructions called
a program

computer simulation a computer program that often uses random numbers to model an event

concatenate to place end-to-end

condition an expression that can be evaluated as either true or false

conditional operator a ternary operator that has three arguments: a condition, a statement to perform
if the condition is true, and a statement to perform if the condition is false

constant a value, such as 3.141593, that does not change during the execution of a program

constructor function member function of a class that provides for the automatic initialization of class
objects

control character one of the following characters: FF (form feed), NL (new line), CR (carriage return),
HT (horizontal tab), VT (vertical tab), BEL (bell), BS (backspace)

control string a string in an output statement that specifies the format to use for an output line

controlling expression the expression used in a switch statement

conversion specifier a specifier that describes the format to be used in printing a value

data file a file that contains data that can accessed or generated by a program

data member a variable associated with a structure

database management tool a software tool for manipulating and retrieving information from large
amounts of data

debug to identify and remove bugs or errors from a program

debugger a program that assists in identifying and removing bugs or errors from a program

declaration a statement that defines variables to be stored in memory

decomposition outline an outline of the general steps necessary to solve a problem

default constructor a constructor function that is called when an object is defined but not initialized

default label a label in a switch statement that is used to indicate statements to execute if none of the
other statements are executed

448 Glossary

dereference an operation that references the value contained in an address that is stored in a pointer

desktop publishing the production of professional-looking documents by a powerful word processor
with a high-quality printer

determinant a specific value computed from the entries in a matrix

divide and conquer strategy for solving a large problem by breaking it into smaller problems

dot operator an operator used when objects call member functions

dot product the sum of the products of the values in corresponding positions in two vectors

doubly linked list a linked list in which each node contains a forward link and a backward link

driver program a program whose purpose is to provide a simple interface for testing a function

dynamic data structure a data structure that grows in size by using dynamic memory allocation as
data is added

dynamic memory allocation a technique that allows a programmer to specify a memory allocation
during the execution of a program

EBCDIC Extended Binary Coded Decimal Interchange Code

electronic copy information that is stored in a computer or in a form that the computer can read, such
as on a CD

element a value in an array

empty list a list in which the pointer to the first node contains a NULL character

empty statement a semicolon that is used within an if structure to represent no action

end-of-file indicator a special character at the end of a file to indicate that the end of the file has been
reached

EOF character a special character that indicates the end of a text stream

error condition a condition that should not occur in the desired execution of a program

escape character a backslash (\) used in a control string

execution the process of executing the steps described by a program

exponential notation notation that uses the letter e to separate the mantissa from the exponent in sci-
entific notation, as in 3.1e02

expression a group of terms composed of constants, variables, and operators that can be evaluated as a
single value

external class a class used to represent global variables that have the entire program as their scope

extraction operator the characters 		 used with the cout object

factorial a function of a positive integer that is the product of the integer and all integers between it and 1

Fibonacci sequence a sequence of values that begins with the values 1,1 and continues with each suc-
ceeding value being the sum of the two previous values

field width the value specified that controls the minimum number of positions used to print a value

FIFO structure another term for a queue, or a first-in–first-out structure

file open mode a character that indicates the status of a data file

file pointer a pointer variable that is associated with a data file

floating-point value a value that can represent both integer and noninteger values

flowchart a diagram used to describe the steps in an algorithm

for loop a loop that is executed a specified number of times

formal parameter an identifier used in the definition of a function to represent an input value

format flag a flag used in C++ to format output

Glossary 449

function a module that returns at most one value to the invoking statement

function prototype a statement that identifies the information necessary to invoke a function

garbage value a value from a previous program that is in a memory location until it is initialized

Gauss elimination a numerical technique for finding the solution of a set of simultaneous equations

global variable a variable defined outside the main function or other programmer-defined functions

hardware the computer equipment, such as the keyboard, the mouse, and the hard disk

head a pointer that points to the first node in a linked list

high-level language a language with English-like commands that is not specific to a particular type of CPU

hyperbolic function a function of the natural logarithm function or of the natural exponential function

hyperplane the space represented by an equation with more than three variables

I/O diagram a simple block diagram that defines the input and the output information for a program

identifier name used to reference the value stored in a memory location

ill conditioned lacking a unique solution (said of a system of equations)

incremental search a numerical technique for estimating the roots of a function

indirection an operation that references the value contained in an address that is stored in a pointer

inheritance the ability for a class to inherit attributes from an existing class

initial value the value first given to a variable (often included in the declaration statement)

inner product the dot product

insertion operator the characters �� used with the cin object

invoke to call or reference a function (or module)

iteration one pass through a loop

kernel component of the operating system that manages the interface between the hardware and soft-
ware applications

keyword word with special meaning to the C compiler

least squares a technique that minimizes the square of the difference between a model and a given
function or a given set of data points

left justify an alignment in which there are no spaces to the left of a value

library function a function that is included in the files that accompany a compiler

LIFO structure another term for a stack, or a last-in–first-out structure

linear interpolation a numerical technique for estimating the value of a function by assuming that it
falls between two points on a straight line

linear modeling modeling a set of data values with a straight line

linear regression a numerical technique for determining the equation of a straight line that best fits a
set of data values

linked list a data structure in which each data member includes information that links to the next data
member

linking/loading the process of preparing an object program for execution

local variable a variable whose scope is the function in which it is defined

logic error an error in the logic of the steps used to solve a problem

logical operator an operator that is used to compare conditions

loop a set of statements that are repeated

loop control variable a variable used to control a for loop

machine language a language in which instructions are written as binary strings

450 Glossary

macro a preprocessing directive that can be used to define a simple function

magnitude absolute value

math function a function that computes the value of a common function, such as the square root of x

matrix a set of numbers arranged in a rectangular grid with rows and columns

matrix multiplication an operation between two matrices that determines a new matrix

mean average value of a list of values

median the middle value in a group of sorted values if there is an odd number of values; otherwise, the
average of the two middle values

member function function associated with a class

memory the part of a computer that stores information

memory snapshot a diagram that shows the contents of a memory location at a specified point in the
execution of a program

microprocessor a CPU that is contained in a single integrated circuit chip that is smaller than a postage
stamp

mixed operation an operation between values with different types

modularity the result of the process of separating the solution to a problem into a group of modules

module a set of statements that perform an operation or that compute a value which can be considered
to be a unit in terms of functionality

module chart a diagram that shows the modular structure of a program

modulus an operation that computes the remainder upon division of one integer by another

multiple assignment a statement that allows multiple variables to be assigned values

network an interconnection of computers such that they can share resources and information

node a structure that consists of data plus a pointer to another node

nonsingular a characteristic of a set of equations that have a unique solution

NULL character a constant with the value of binary zero

object an instance of a class

object program a program in machine language

object-oriented programming an approach to programming characterized by the use of classes

offset an integer value that gives the number of positions from the first element in the memory alloca-
tion for an array

one-dimensional array a data structure that can be visualized as a list of values arranged in either a
row or a column

operating system software that provides an interface between the user and the hardware

overflow an error caused when the result of an arithmetic operation is too large to store in the memory
assigned to it

overload to give an operator different meanings, depending on the data type with which it is used

parameter the input to a function; also called an argument

parsing examining the individual characters in an array or a string of characters

personal computer (PC) a small, inexpensive computer that is designed around a microprocessor chip

pointer a variable that contains the memory address of another variable

pointer operator an operator used instead of a structure member operator when data members are
accessed by pointing to a structure

polymorphism the ability to assign many meanings to the same name

Glossary 451

postfix a position after an identifier

power average squared value of a set of values

precedence the order in which operations are evaluated in an expression

precision the number of decimal digits specified by the mantissa of a value in scientific notation

prefix a position before an identifier

preprocessor directive a statement that gives an instruction to the compiler

private member a member function of a class that may be referenced only by other member functions

problem-solving process a methodology for approaching new problems

processor the part of the computer that controls all the other parts

program the set of instructions that describe the operations to be performed by a computer

program walkthrough a technique in which an algorithm or a program designed to solve a compli-
cated problem is presented in detail to a new group of people in order to get their feedback and
suggestions

programmer-defined function a function written by a programmer

prompt a message printed by a program to indicate that information should be entered

pseudocode a set of English-like statements used to describe the steps in an algorithm

public member a member function of a class that can be referenced anywhere in the user program

queue a data structure in which nodes are added at one end and removed from the other end; also called
a first-in–first-out (FIFO) structure

random number a number that is defined by statistical properties rather than an equation

random number seed a value that is used to initialize a random sequence

real-time program a program usually written in assembly language so that it executes very fast

recursion a methodology that implements the solution to a problem using a process that invokes itself

register class a class used to represent variables that need to be accessed frequently

relational operator an operator that is used to compare two expressions

repetition a control structure that contains a set of steps that are repeated as long as a condition is true

reusability the result of a process in which software is developed in modules that can be used in a vari-
ety of solutions to problems

right justify an alignment in which there are no spaces to the right of a value

root a value of x for which f(x) is equal to zero

scientific notation notation that expresses a value as a mantissa times a power of 10, as in 3.1 � 102

scope the portion of a program in which it is valid to reference a function or a variable

scope resolution operator the symbols :: used between a class name and a function name to specify
that the function is a member of the class

selection a control structure that contains one set of steps to perform if a condition is true and another
set of steps to perform if the condition is false

selection sort algorithm a sort algorithm that performs several passes through an array, exchanging
minimum values with values in specified positions

sequence a control structure composed of steps performed one after another

sequential search a search algorithm that begins with the first value in a list, and searches sequentially
for a specified value

sentinel signal a value included at the end of a data file to indicate that the end of the file has been reached

simultaneous linear equations a set of linear equations with a common solution

software the set of programs that describe the steps we want the computer to perform

452 Glossary

software life cycle the stages in the development of a large software project

software maintenance the work necessary to add enhancements to existing software, to fix errors
identified in the software, and to adapt the software so that it works with new hardware and
software

software prototype a software package that does not have all the functions of the final system, but that
has much of the user interface so that it can be evaluated by the user

software tool a program written to perform common useful operations, such as generating a report or
a graph

sorting a technique in which a group of values is put into ascending or descending order

source program a program in a high-level language

spreadsheet a software tool that works with information that can be displayed in a grid of rows and
columns

square matrix a matrix with the same number of rows as columns

stack a linked list in which the last item added to the list is the first item removed from the list; also
called a last-in–first-out (LIFO) structure

Standard C library a library of constants and functions that can be accessed from a C program

standard deviation square root of the variance

statement a comment or an instruction in a program

static class a designation which specifies that the memory allocated for a variable should be retained
during the entire execution of a program

stepwise refinement the process of breaking the solution to a problem into a sequence of smaller and
smaller steps

storage class a designation that determines the scope of a variable

stream a sequence of characters

structure a collection of variables that can be of the same data type or that can be of different data types

structure chart a diagram that shows the modular structure of a program

structure member operator the period used to separate a structure variable name and the data mem-
ber name

structured program a program written with simple control structures to organize the solution to a problem

subscripts integers used to distinguish elements in an array

summation notation a mathematical notation used to describe the sum of a set of values

symbolic constant a constant that is assigned an identifier by a preprocessor directive

syntax the grammatical rules of a language

system dependent the property whereby a feature may not be available on all computer systems

system of equations a set of equations with a common solution

tag the name associated with a defined structure

test data data designed to test the correctness of a program

top-down design a design methodology that starts with a general “big picture” description of the solu-
tion to a problem and then refines the solution

trailer signal a value included at the end of a data file to indicate that the end of the file has been
reached

transpose a matrix generated from another matrix such that the rows of the original matrix form the
columns of the new matrix

trigonometric function a function that computes a value from a trigonometric or inverse trigonomet-
ric function

Glossary 453

truncate to drop the fractional portion of a value

two-dimensional array a data structure that can be visualized as a table or grid of values displayed in
rows and columns

type specifier a term that distinguishes the various types of forms in which C can store numeric values

unary operator an operator (e.g., negation) that operates on a single value

underflow an error caused when the result of an arithmetic operation is too small to store in the mem-
ory assigned to it

utility a program for performing a common function, such as copying a file from a hard disk to a CD

validation and verification two processes aimed at verifying that a program is correctly performing its
objectives and that those objectives solve the problem at hand

variable a memory location that is given a name and whose contents may or may not change during
the execution of a program

variance average squared deviation of a group of values from their mean

vector a matrix composed of one row or of one column

void pointer a pointer returned by a function that does not specify the type of variable to which the
pointer is to point

while loop a loop that is executed as long as a condition is true

white space the space character or one of the following characters: FF (form feed), NL (new line), CR
(carriage return), HT (horizontal tab), VT (vertical tab)

word processor a software tool for entering and formatting text that may be used in reports or in a com-
puter program

zero crossing a point at which a function crosses the x-axis

INDEX

454

() parenthesis, 37; cast
operator, 38

[] subscript brackets, 214
{} braces, 27
<> library header file

indicators, 26
/* begin comment, 26
*/ close comment, 26
++ autoincrement, 41
— autodecrement, 41
+ unary plus, 37; binary

addition, 37
- unary minus, 37; binary

subtraction, 37
! unary not, 89
& address operator, 48, 290
* dereference operator,

292; multiplication
operator, 37

/ division operator, 37
\ backslash, 46
% modulus operator, 37;

conversion specifier,
44, 47

< less than, 88
<= less than or equal to, 88
> greater than, 88
>= greater than or

equal to, 88
== is equal to, 88
!= is not equal to, 88
&& logical and, 89
|| logical or, 89
?: conditional operator, 94
= equals, 36, 37
+= abbreviated addition, 42
-= abbreviated

subtraction, 42
*= abbreviated

multiplication, 42
/= abbreviated division, 42
%= abbreviated modulus, 37
> extraction operator, 377
<< insertion operator, 375
// C++ comment, 374
, comma operator, 107
; semicolon, 27, 92
. dot operator, 376

\a alert or bell
character, 46

\b backspace character, 46
\f formfeed, 46
\n newline, 46
\r carriage return, 46
\t horizontal tab, 46
\v vertical tab, 46
\\ backslash character, 46
\? question mark, 46
\' single quote, 46
\" double quote, 46
#define directive, 34
#include directive, 26
1GL, 13
2GL, 13
3GL, 13
4GL, 14
5GL, 14

A

Abbreviated
assignment, 42
operator, 42

Abort, 102
abs function, 61
Absolute value, 66
Abstraction, 150
acos function, 62
Actual parameter, 158
Addition

matrix, 263
symbol, 37

Address, 289
arithmetic, 295
operator, 48, 290

Advanced composite
materials, 6

Aerospace engineering
examples, 78, 143,
208, 282

Algorithm, 18
search, 244
sort, 242

Allocation of memory, 11, 321
Alphanumeric character, 407
Alternative solutions, 85

ALU, 11
Amino acid, 77
American National Standard

Institute (ANSI), 16
C Standard Library, 13, 407

American Standard Code for
Information Interchange
(ASCII), 41, 418

Analysis, 10
ANSI C, 13

Standard library, 13, 407
Application satellites, 5
Apollo spacecraft, 4
Area, 76, 191, 192
Argument, 61
Arithmetic

floating point, 30
integer, 30
logic unit (ALU), 11
mixed, 37
operations, 36
operator, 37
operator precedence, 38, 39
pointer, 295

Array,
declaration, 214, 249
element, 214
five-dimensional array, 279
four-dimentional array, 278
function argument, 218
higher-dimensional

arrays, 277
initialization, 214
one-dimensional, 213
storage order, 300
subscript, 214
three-dimensional, 277
two-dimensional, 248, 300

ASCII code, 33
table, 418

asin function, 62
Assembler, 15
Assembly language, 13
assert.h standard header

file, 407
Assignment

abbreviated, 42
multiple, 35

Index 455

operator, 35
statement, 35

Associativity, 39
atan function, 62
atan2 function, 62
Atomic weights, 77

elements, 226
Atmospheric layers, 131, 132
Autodecrement, 41
Autoincrement, 41
auto storage class specifier, 161
Automatic storage class, 161
Average, 232

B

B language, 13
Back substitution, 271
Backslash character, 46
BCPL language, 13
Best fit, 129
Binary, 13

code, 33
language, 13
operator, 37
search, 246
tree, 364

Biomedical engineering
example, 144

Biometric, 4-color insert
Bit, 13
Blank line, 28
Block of statements, 91
break statement, 96, 107
Bug, 14
Byte, 321

C

C
language, 13, 14
program structure, 28

C++
language, 13, 14
program structure, 374

CAD/CAM, 5
Call

by address, 160, 220
by reference, 160
by value, 160, 220

calloc function, 321

Case
label, 96
sensitive, 29
structure, 96

Cast operator, 38
CAT scan, 6
ceil function, 61
Central processing unit

(CPU), 11
char data type, 34
Character, 65

comparison, 33, 66
constant, 33
data, 33
function, 66
input/output, 65
string, 314
variable, 33

Chemical engineering
examples, 143, 226, 285

cin object, 377
Circularly linked list, 361
class, 373, 389

declaration, 389
implementation, 389

cloud computing, 10
Code

ASCII, 33
binary, 33
EBCDIC, 33

Coercion of arguments, 159
Cofactor, 286
Collating sequence, 244
Column

pivoting, 272, 286
vector, 260

Combination, 211
Comma operator, 107
Comment, 26
Communication skills, 9
Compile, 14
Compiler, 14

error, 14
Complex

class, 396
data, 396

Composite materials, 6
Composition, 61
Compound statement, 91
Computer, 10

aided design (CAD), 5, 13

aided manufacturing
(CAM), 5

engineering examples, 206,
284, 332

hardware, 10
language, 13
organization, 11
simulation, 181
software, 10, 11

Computerized axial
tomography (CAT), 6

Concatenate, 316
Condition, 83
Conditional

expression, 88
operator, 94

Constant, 29
Constructor function, 392

default, 393
continue statement, 107
Control

character, 67
string, 44
structure, 82

Controlling expression, 96
Conversion

input specifier, 47
output specifier, 44

cos function, 62
cosh function, 64
Counter controlled loop, 104
cout object, 375
CPU, 11
Crime scene investigation,

4-color insert, 2, 24, 48, 97,
163, 236, 318, 342, 382

Critical path analysis, 145
Cryptography, 284
ctype.h standard header file,

73, 407
Cubic spline interpolation, 52
Currency conversions, 142
Custom header file, 235

D

Data
file, 87, 116
member, 335, 389
type, 31
window, 309

Database management, 13
Debug, 14
Debugging, 14
Debugging notes, 27
Declaration, 27
Decomposition

outline, 18, 82
Decrement operator, 41,
Default

constructor function, 393
define directive, 34
define disector, 34
label, 96

Dereference operator, 292
Design/process/manufacture

path, 9
Desktop publishing, 12
Determinant, 261, 286
Directive, 34
Divide and conquer, 82
Division, 37

by zero, 14
DNA analysis, 288, 318
do statement, 103
do/while loop, 103
Dot

operator, 376
product, 260

double
data type, 27, 32
limits, 32

Double precision, 32
Doubly linked list, 362
Driver, 152
Dynamic

data structure, 353
memory allocation, 321

E

EBCDIC, 33
El Nin~o, 303
El Nin~o-Southern Ocillation

(ENSO), 303
Electrical engineering examples,

272, 282, 283
Electronic copy, 11
Element, 214
Empty

list, 355
statement, 92

End-of-file indicator, 124

endl, 375
Engineering

achievements, 3
Problem Solving

methodology, 16
ENSO, 303
Environmental engineering

examples, 131, 144, 145, 309
E0F, 65

character, 65
Error condition, 86
errno.h standard header

file, 408
Equator, 169
Escape

character, 46
sequence, 46

Execution, 14
Exosphere, 132
exp function, 61
Exponent, 30

overflow, 41
underflow, 41

Exponential notation, 30
Exponentiation, 61
Expression, 35
Extended Binary Coded

Decimal Interchange Code
(EBCDIC), 33

extern storage class
specifier, 161

External storage class, 161
Extraction operator, 377
Extrapolation, 131

F

fabs function, 61
Face recognition, 80, 97
Factorial, 200, 211
fclose function, 118
Fibonacci sequence, 202
Field width, 45
FIFO, 363
Fifth generation language

(5GL), 14
File, 116

close, 118
header, 27, 235
input, 117, 119
open mode, 117
output, 126

read, 117
pointer, 117
stream, 378
write, 126

FILE data type, 117
Finger print recognition,

334, 342
First-in-first-out (FIFO), 363
Five-dimensional array, 279
flight simulator, 208
float

data type, 31,32
limits, 32

float.h standard header file,
71, 408

Floating-point, 30
conversion to integer, 36
declaration, 32
limits, 32
number, 30
overflow, 41
precision, 31
underflow, 41
value, 31

floor function, 61
Flowchart, 82
fopen function, 117
for loop, 104
Forensic anthropology, 24, 48
Forestry, 144
Formal parameter, 158
Format flag, 376
Four-dimensional

array, 278
Fourth generation language

(4GL), 14
fprintf function, 118
free function, 321
fscanf function, 118
fstream.h header file, 378
Function, 149, 156

argument, 61
elementary math, 61
hyperbolic, 64
library, 61
macro, 196
parameter, 61
programmer-defined, 152
prototype, 157
recursive, 199
string, 315
trigonometric, 62

456 Index

G

Garbage value, 29
Gauss elimination, 270, 285
General form, 28
General structure of

C program, 28
C++ program, 374

Generations of computer
languages, 14, 15

Genetic engineering, 7
examples, 77

get function, 378
getchar function, 66
Global

Positioning System (GPS),
5, 169, 256

variable, 161
Glossary, 446
GPS, 5, 169, 256
Graph character, 407
Graphics tool, 13
Great circle, 169

H

Hand, recognition, 372, 382
Hard copy, 11
Hardware, 10
Head, 353
Header file, 27, 235, 407

assert.h, 407
custom, 235
ctype.h, 73, 407
complex.h, 397
errno.h, 408
float.h, 71, 408
limits.h, 71, 408
locale.h, 410
math.h, 60, 410
setjmp.h, 411
signal.h, 411
stat_lib.h, 235
stdarg.h, 411
stddef.h, 411
stdio.h, 26, 43, 411
stdlib.h, 61, 414
string.h, 315, 415
time.h, 416
xy_coordinate.h, 389

Helper function, 390
Hexadecimal digit, 67
High-level language, 13

Higher-dimensional arrays, 277
Hurricane, 221, 369
Hyperbolic function, 64
Hyperplane, 267

I

I/O diagram, 16
Iceberg, 169
Identifier, 29
if statement, 90
if/else statement, 92
ifstream class, 378
Ill conditioned, 272
include statement, 26
Increment operator, 41
Incremental search, 188
Indirection operator, 292
Infinite loop, 102
Information hiding, 390
Inheritance, 374
Initial value, 27
Inner product, 260
Input statement, 47
Input/Output (IO), 16
Insertion operator, 375
Instrument reliability, 180
int data type, 31, 32
Integer, 31

declaration, 32
limits, 32

Interdisciplinary team, 9
Interference pattern, 109
Internet, 10
Inverse

hyperbolic functions, 65
trigonometric functions, 62

Invoke, 152
Ionosphere, 132
IOS::fixed, 376, 377
IOS:left, 377
IOS::right, 377
IOS::scientific, 377
IOS::showinput, 376, 377
iostream.h header file, 363
Iris recognition, 148, 163
isalnum function, 66
isalpha function, 66
iscntrl function, 67
isdigit function, 66
isgraph function, 67
islower function, 66

isprint function, 67
ispunct function, 67
isspace function, 67
istream class, 375
isupper function, 66
isxdigit function, 67
Iteration, 107

J

Java, 13, 14
Jumbo jet, 6

K

Kernel, 12
Keyword, 29, 30

input, 73

L

La Nin~a, 303
Language, 13

assembly, 13
binary, 13
computer, 13
high-level, 13
generation, 13
natural, 14
machine, 13

Lasers, 8
Last-in-first-out (LIFO), 363
Latitude, 169
Least

common multiple, 110
squares, 129

Left justified, 45
LIFO, 363
Library function, 152
limits.h standard header file,

409
Linear

equation, 129
interpolation, 52, 53, 282
modeling, 128
regression, 128
simultaneous equations, 265

Linked list, 353
Linking loading, 14, 15
Local variable, 161
locale.h standard header file,

410
log function, 61

Index 457

log10 function, 61
Logarithm, 61, 78
Logic error, 14
Logical expression, 88
Logical operator, 89

and, 89
or, 89
precedence, 89

long
data type, 31
limits, 32

Long-time power, 309
long double data type, 31
Longitude, 169
Loop, 84

control variable, 105
structures, 101

Lowercase, 67

M

Machine language, 13
Macro, 196
main function, 27, 149
Magnitude, 236
malloc function, 321
Mantissa, 30
Manufacturing engineering

examples, 145, 180, 207
Mathematical function, 60
math.h standard header file,

26, 60, 410
Mathematical tool, 13
MATLAB, 13, 421
Matrix, 260

addition, 263
multiplication, 263
square, 260
subtraction, 263
transposition, 262

Maximum, 232
Mean, 232
Mechanical engineering

examples, 67, 190, 256
Median, 232
Member function, 374
Memory, 11

address, 289
allocation 11, 321
RAM, 11
ROM, 11
snapshot, 29

Mesosphere, 132

Microprocessor, 4, 11
Minimum, 232
Minor, 286
Mixed operation, 37
Modularity, 150
Module, 149

chart, 151
Modulus, 37

operator, 37
Molecular weight, 226
Moon landing, 4
Motion control character, 407
Multiple assignment, 42
Multiplication

matrix, 263
symbol, 37

N

National Academy of
Engineering, 3

Natural language, 14
Nested if/else statements, 93
Network, 10
New line indicator, 44
Node, 353
Noise signals, 282
Nonsingular, 267
Normalization technique, 287
NULL, 117, 295
Null

character, 117
pointer, 295

Numeric conversion, 36
data type, 31
integer, 31
floating-point, 31

Numerical techniques, 52, 128,
186, 265, 395

O

Object, 373
declaration, 389
initialization, 390
program, 14

Object-oriented
programming, 373

Ocean
engineering examples, 56,

108, 169, 221, 303, 349,
369, 370

Offset, 299

ofstream class, 378
One-dimensional array, 213
open function, 378
open-rotor engine, 67
Operating system, 12
Operator

abbreviated assignment, 42
address, 48, 290
arithmetic, 36
binary, 37
cast, 38
comma, 107
conditional, 94
decrement, 41
dereference, 292
increment, 41
indirection, 292
logical, 89
overload, 394
priority, 38, 39, 297
relational, 88
sizeof, 321
unary, 37

Optical fiber, 8
Ordered list, 245
ostream class, 375
Output statements, 44
Overflow, 41
Overload, 394
Ozone measurements, 131

P

Parameter, 61
actual, 158
formal, 158
list, 158

Parsing, 228
Permutations, 211
Personal computer (PC), 11
Pivot value, 325
Pivoting, 272

column, 272, 286
row, 272, 285

Plotting data, 421
Pointer, 292

file, 117
operator, 341
void, 321

Polymorphism, 374
Polynomial, 186

root, 186
Postfix, 41

458 Index

pow function, 61
Power, 236

long-time, 309
short-time, 309

Power plant data, 283
Precedence, 38

tables, 39, 43, 90, 219, 297
Precision, 45
precision function, 376
Prefix, 41
Preprocessor directive, 26
Prime Meridian, 169
printf function, 27, 44
Printing character, 71
Priority of operators, 38, 39
Private member, 390
Problem Solving Applied, 48,

56, 67, 97, 108, 131, 163,
169, 180, 190, 221, 226, 236,
256, 272, 303, 309, 318, 342,
349, 382, 385

Problem-solving
methodology, 16
process, 16

Processor, 10
Program, 10

compiliation, 14
execution, 14
structure, 25
walkthrough, 87

Programmer-defined
class, 373, 389
function, 152
structure, 335

Programer-written function, 152
Prompt, 48
Prototype, 157
Pseudocode, 82
Pseudo-random number, 175
Public member, 390
Punctuation character, 407
putchar function, 65

Q

Quadratic equation, 399
Queue, 363
Quicksort algorithm, 325

R

RAM, 11
rand function, 175

RAND_MAX, 179
Random access memory

(RAM), 11
Random number, 175

seed, 176
Range, 32
Read-only memory (ROM), 11
Real roots, 186
Real-time program, 13
realloc function, 321
Rectangular coordinates, 170
Recursion, 199
Recursive function, 199
Reference

by address, 220
by value, 220

Refinement, 82
in flowchart, 82
in pseudocode, 82

Register storage class, 162
Relational

operator, 88
precedence, 89

Reliability, 180, 207
Repetition structure, 82, 84
return statement, 28
Reusability, 150
Richter scale, 309
Right justified, 45
ROM, 11
Root, 186, 209

polynomial, 186
Root-finding technique, 188
Rounding, 61
Row vector, 260
Run-time error, 14

S

Saffir–Simpson scale, 221
Salinity, 56
Satellites, 5
scanf function, 47
Scientific notation, 30
Scope, 160

resolution operator, 390
screen output, 47
Sea

state, 108, 109
surface temperature, 303

Seawater
composition, 56
freezing temperature, 56

Search algorithm, 244
binary, 246
sequential, 244

Seismic event, 309
detection, 309

Seismometer, 309
Selection

sort, 242
statements, 90
structure, 82, 83

Sentinel
controlled loop, 119
signal, 119

Sequence
escape, 46
structure, 82

Sequential search, 244
setf function, 376
setjmp.h standard header

file, 411
short

data type, 31, 32
limits, 32

Short-time power, 309
signal.h standard header

file, 411
Simulation, 181, 206, 208
Simultaneous linear

equations, 265
graphical interpretation, 265

sin function, 62
sinh function, 64
Sinusoid, 109
sizeof operator, 321
Smartphone, 11
Societal context, 10
Soft copy, 11
Software, 10, 11

life cycle, 15
maintenance, 15
prototype, 15
tool, 12

Solutions
End-of-Chapter problems,

438, 442
Modify! problems, 436
Practice! problems, 424
Short Answer problems, 438
Programming problems, 442

Sorting algorithm, 242
Sounding rocket, 143
Source program, 14
Speech analysis, 212

Index 459

Spherical coordinates, 170
Spreadsheet, 12
srand function, 176
sqrt function, 61
Square matrix, 260
Stable system, 190
Stack, 363
Standard

C library, 26, 407
deviation, 233
I/O, 26

Statement, 27
Static Storage class, 162
Statistical measurements, 231
stdarg.h standard header

file, 411
stddef.h standard header

file, 411
stdio.h standard header

file, 26, 43, 411
stdlib.h standard header

file, 61, 414
Stepwise refinement, 82
Storage class, 161

automatic, 161
external, 161
register, 162
static, 162

strcat function, 316
strchr function, 316
strcmp function, 316
strcpy function, 315
strcspn function, 316
Stream, 375
Stratosphere, 132
String, 314
string.h standard header

file, 415
strlen function, 315
strncat function, 316
strncmp function, 316
strncpy function, 315
strpbrk function, 316
strrchr function, 316
strspn function, 316
strstr function, 316
struct statement, 336
Structure, 335

chart, 151

declaration, 336
member operator, 336

Structured program, 82
Subscript, 214
Subtraction

matrix, 263
symbol, 37

Summation notation, 129
Surface winds, 385
Suture packaging, 144
switch statement, 95
Symbolic constant, 34
Syntax, 13
Synthesis, 10
System, 190

dependent, 32
of equations, 267
limitations, 71

T

Tag, 336
tan function, 62
tanh function, 64
Temperature

conversion, 76
distribution, 285

Terrain navigation, 256
Test data, 87
Thermosphere, 132
Three-dimensional array, 277
Threshold, 309
Timber management, 144
time.h standard header file, 416
tolower function, 66
Top-down design, 81
toupper function, 66
Trailer signal, 119
Trajectory, 143
Transpose, 262
Trigonometric function, 62
Troposphere, 131
Truncate, 37
Tsunami, 349, 370
Two-dimensional array, 248, 300
Type specifier, 32

U

Unary operator, 37

Underflow, 41
Uniform random number, 175
Unit conversion, 77, 142
Unmanned aerial vehicle

(UAV), 256
Unordered list, 244
unsigned qualifier, 32
Uppercase, 67
Using directive, 375
Utility, 12
Utterance, 236

V

Validation, 87
Variable, 29

automatic, 161
external, 161
global, 161
local, 161
scope, 160
static, 162

Variance, 233
Velocity computation, 67
Vector, 260

column, 260
row, 260

Verification, 87
void

data type, 27
function, 27, 157
pointer, 321

Volumes, 77

W

Wave characteristics, 108
Wavelength, 108
Weather balloon, 145
while loop, 102
White space, 67, 377
Wind

direction, 385
tunnel, 78

Word processor, 12
World marketplace, 10

Z

Zero crossings, 236

460 Index

TYPICAL PROGRAM STRUCTURE
preprocessing directives
main(void)
{

declarations;
statements;

}

TYPICAL FUNCTION STRUCTURE
return_type function_name(parameter types)
{

declarations;
statements;

}

SELECTED C STATEMENT SUMMARY
Preprocessor Directive (Text pages 34, 42)

#include <stdio.h>
#define PI 3.141593

Declarations (Text pages 35, 37, 41, 117, 157, 208, 243)
int year_1, z[5], b[]={2,3,-1}, *ptr_1;
double length=10, x[10][5];
char c, c1='*';
FILE *sensor1;
double sinc(double)
void check_roots(double left, double right);

Input statements (Text pages 55, 118)
scanf("%i",&year);
fscanf(sensor1,"%lf %lf',&t,&motion);

Output statements (Text pages 52, 118)
printf("The area is %f square feet. \n",area);
fprintf(file1,"%f %f \n',time,height);

If statement (Text pages 94, 96)
if (d <= 30)

velocity = 4.25 + 0.00175*d*d;
else

velocity = 0.65 + 0.12*d - 0.0025*d*d;
While loop (Text page 102)

while (degreees <= 360)
{

...
}

For loop (Text page 104)
for (degrees=0; degrees<=360; degrees+=10)
{

...
}

Do/while loop (Text page 103)
do
{

...
} while (degrees <= 360);

The goal of this text is to teach you how to solve problems using the C computer language. To make the
problems more interesting, we are using a theme of Crime Scene Investigation, or CSI. In this insert,
we will discuss some of the technology behind crime scene investigation. In addition, at the beginning
of each chapter, we present a short discussion that addresses some aspect of crime scene analysis.
Then, later in the chapter, we solve a related problem using the C computer language.

BIOMETRICS FOR IDENTIFYING
PEOPLE

Identifying people involved in a crime
is an important part of crime scene
investigation. These people may be the
victims, the suspects, or the witnesses.
Biometrics is a term used to describe
the physical or behavioral characteristics
that can be used to identify a person.
Common biometrics are fingerprints and
face images. Most biometric identification
can be done automatically by a computer,
or it can be done by people trained in
making identifications. Iris recognition is
another commonly used biometric, but it
is only done automatically.

All biometric identification systems have two processes: enrollment and identification. In the enrollment
process, an individual’s biometric (such as a fingerprint) is collected and stored in a master database.
In the identification process, an individual’s fingerprint is collected, and it is then compared to all the
fingerprints in the master database. If there is a close enough match, then the system will identify the
individual as one that is in the database.

COMMON BIOMETRICS

You are probably familiar with some of the most common biometrics—fingerprint, face, iris, DNA, and
speech. For these five common biometrics, we now point out some of the characteristics of the biometric
that make it unique enough to identify someone, and we discuss the current state of the technology to
collect the biometric and to automatically do the identification. As you would expect, some biometrics
are much more accurate than others.

Crime Scene Investigation

Fingerprints

Fingerprints are the oldest method of identification. Today’s
automatic fingerprint identification system (AFIS) that is
used by the FBI is based on the Henry classification system.
This system classifies a fingerprint first as one of several
types such as a whorl, arch, or loop. After a fingerprint has
been classified with one of these categories, a number of
minutiae points are then identified. Minutiae points are details
within the fingerprint, such as a fingerprint ridge bifurcation
(or split) or an island that is a part of a ridge that is not
connected to other ridges. These minutiae points are then
used to do the actual identification of an individual. The
more minutiae points that match in a fingerprint from a crime
scene to a suspect, the higher the likelihood that the suspect
is identified. (In Chapter 7, we present more information on
fingerprints, and we develop a C program to solve a problem
involving identification using all ten fingerprints.)

Face Recognition

Face recognition is another commonly used technique to identify an individual from an image or from a
single frame (or image) taken from
a surveillance video. One common
technique is to use the ratio of
distances between key points on
a face. These ratios might include
the distance between the eyes
divided by the distance between
the nose and the chin. Since these
measurements are ratios, they can
be computed from images of different
sizes. The computer programs that
compute these measurements must
be able to locate a face in an image,
and then also locate the eyes and
other key points on the face. Face
recognition is not as accurate as
fingerprint recognition. Many face

recognition systems select the top three matches to an unknown from their master database, and then
a person decides if the unknown face is one of the three matches. This process is often used when there
is a security guard to review the faces selected by the automatic face recognition system. (In Chapter 3,
we present more information on face recognition, and we develop a C program to solve a problem that
computes and compares ratios determined from measurements of the face.)

Iris Recognition

Iris recognition is one of the most
accurate biometrics. Commercial iris
recognition systems use an infrared
camera to collect an image of the eye
because an infrared image is not affected
by color. (Digital camera images do not
work well with iris recognition because
the patterns in the iris of a dark brown
eye are not clearly visible.) The infrared
image is a black and white image that
clearly shows the patterns in the iris. Iris
recognition is often used for entry into
secured areas. It is also being used in
India to develop a database of all Indian
citizens as part of the ongoing census

collection. In the final Indian database, more than 1 billion images will be stored in a master database.
(In Chapter 4, we present more information on iris recognition, and we develop a C program to solve a
problem involving the identification of the boundary between the pupil and the iris.)

DNA

DNA is the most accurate biometric, but it typically requires a number of days to obtain the information
regarding a potential match. DNA (deoxyribonucleic acid) is the genetic material found in cells. This
genetic information is contained in genes that are double-helix strands composed of base pairs
(adenine bonded with thymine or cytosine bonded with guanine) arranged in a step-like manner with
phosphate groups along the side. These base pairs can occur in any order and represent the hereditary
information in the gene. The number of base pairs in human DNA has been estimated to be around 3
billion. Matching long strings of these double-helix strands in two samples of DNA provides the most
accurate biometric comparison. (In Chapter 6, we present more information on DNA, and we develop a
C program to match segments of DNA.)

Speech Recognition

Speech is also a biometric. Your speech is
affected by your vocal cords, your mouth,
your tongue, your teeth, your nasal cavity,
and other parts of your anatomy. Therefore,
it can also be used to identify a person.
However, we know that people can train
themselves to sound like someone else, so
a positive identity using speech recognition
is a complex process. It requires collecting
a number of examples of speech by a
person and then developing a model of
his/her speech. This can be done very
accurately but requires significant amounts
of effort. It is much easier to do speech
recognition (determine what words are being
spoken) than it is to do speaker recognition
(determine who is speaking the words). For
example, Apple’s new iPhone 4S has a voice
command feature named “Siri.” This feature
allows users to make calendar appointments, ask for directions, and send messages, all using verbal
commands. (In Chapter 5, we present more information on speech processing, and we develop a C
program to solve a problem involving speech analysis.)

OTHER BIOMETRICS

There are also many other biometrics that can be used to accurately identify someone. In Chapter 2,
we present information on forensic identification with bones, and we develop a C program to solve
a problem involving estimation of height from bones. In Chapter 8, we present information on hand
recognition, and we develop a program on identification from a number of measurements on the hand.
There are also many other biometrics. For example, gait is a biometric. How many times have you seen
someone walking ahead of you and knew who it was just by the way he or she walked? Gait is both a
physical and a behavioral biometric because it is based somewhat on the physical structure of the body,
but it is also a biometric that can be changed by a person deliberately walking differently. Handwriting
is another biometric that is primarily a behavioral characteristic. Your handwriting strokes are patterns
that you have developed over years of writing, and it is very hard for someone to fool a trained expert
in handwriting analysis.

	Cover
	Title Page
	Copyright Page
	Contents
	PREFACE
	Acknowledgments
	1 Engineering Problem Solving
	Crime Scene Investigation
	1.1 Engineering in the 21[sup(st)] Century
	Recent Engineering Achievements
	Changing Engineering Environment

	1.2 Computing Systems: Hardware and Software
	Computer Hardware
	Computer Software

	1.3 An Engineering Problem-Solving Methodology
	Summary
	Key Terms
	Problems

	2 Simple C Programs
	Crime Scene Investigation: Forensic Anthropology
	2.1 Program Structure
	2.2 Constants and Variables
	Scientific Notation
	Numeric Data Types
	Character Data
	Symbolic Constants

	2.3 Assignment Statements
	Arithmetic Operators
	Priority of Operators
	Overflow and Underflow
	Increment and Decrement Operators
	Abbreviated Assignment Operators

	2.4 Standard Input and Output
	printf Function
	scanf Function

	2.5 Problem Solving Applied: Estimating Height from Bone Lengths
	2.6 Numerical Technique: Linear Interpolation
	2.7 Problem Solving Applied: Freezing Temperature of Seawater
	2.8 Mathematical Functions
	Elementary Math Functions
	Trigonometric Functions
	Hyperbolic Functions*

	2.9 Character Functions
	Character I/O
	Character Comparisons

	2.10 Problem Solving Applied: Velocity Computation
	2.11 System Limitations
	Summary
	Key Terms
	C Statement Summary
	Style Notes
	Debugging Notes
	Problems

	3 Control Structures and Data Files
	Crime Scene Investigation: Face Recognition and Surveillance Video
	3.1 Algorithm Development
	Top-Down Design
	Structured Programming
	Evaluation of Alternative Solutions
	Error Conditions
	Generation of Test Data

	3.2 Conditional Expressions
	Relational Operators
	Logical Operators
	Precedence and Associativity

	3.3 Selection Statements
	Simple if Statement
	if/else Statement
	switch Statement

	3.4 Problem Solving Applied: Face Recognition
	3.5 Loop Structures
	while Loop
	do/while Loop
	for Loop
	break and continue Statements

	3.6 Problem Solving Applied: Wave Interaction
	3.7 Data Files
	I/O Statements
	Reading Data Files
	Generating a Data File

	3.8 Numerical Technique: Linear Modeling*
	3.9 Problem Solving Applied: Ozone Measurements*
	Summary
	Key Terms
	C Statement Summary
	Style Notes
	Debugging Notes
	Problems

	4 Modular Programming with Functions
	Crime Scene Investigation: Iris Recognition
	4.1 Modularity
	4.2 Programmer-Defined Functions
	Function Example
	Function Definition
	Function Prototype
	Parameter List
	Storage Class and Scope

	4.3 Problem Solving Applied: Computing the Boundaries of the Iris
	4.4 Problem Solving Applied: Iceberg Tracking
	4.5 Random Numbers
	Integer Sequences
	Floating-Point Sequences

	4.6 Problem Solving Applied: Instrumentation Reliability
	4.7 Numerical Technique: Roots of Polynomials*
	Polynomial Roots
	Incremental-Search Technique

	4.8 Problem Solving Applied: System Stability*
	4.9 Macros*
	4.10 Recursion*
	Factorial Computation
	Fibonacci Sequence

	Summary
	Key Terms
	C Statement Summary
	Style Notes
	Debugging Notes
	Problems

	5 Arrays and Matrices
	Crime Scene Investigation: Speech Analysis and Speech Recognition
	5.1 One-Dimensional Arrays
	Definition and Initialization
	Computations and Output
	Function Arguments

	5.2 Problem Solving Applied: Hurricane Categories
	5.3 Problem Solving Applied: Molecular Weights
	5.4 Statistical Measurements
	Simple Analysis
	Variance and Standard Deviation
	Custom Header File

	5.5 Problem Solving Applied: Speech Signal Analysis
	5.6 Sorting Algorithms
	5.7 Search Algorithms
	Unordered List
	Ordered List

	5.8 Two-Dimensional Arrays
	Definition and Initialization
	Computations and Output
	Function Arguments

	5.9 Problem Solving Applied: Terrain Navigation
	5.10 Matrices and Vectors*
	Dot Product
	Determinant
	Transpose
	Matrix Addition and Subtraction
	Matrix Multiplication

	5.11 Numerical Technique: Solution to Simultaneous Equations*
	Graphical Interpretation
	Gauss Elimination

	5.12 Problem Solving Applied: Electrical Circuit Analysis*
	5.13 Higher Dimensional Arrays*
	Summary
	Key Terms
	C Statement Summary
	Style Notes
	Debugging Notes
	Problems

	6 Programming with Pointers
	Crime Scene Investigation: DNA Analysis
	6.1 Addresses and Pointers
	Address Operator
	Pointer Assignment
	Address Arithmetic

	6.2 Pointers to Array Elements
	One-Dimensional Arrays
	Two-Dimensional Arrays

	6.3 Problem Solving Applied: E1 Niño-Southern Oscillation Data
	6.4 Pointers in Function References
	6.5 Problem Solving Applied: Seismic Event Detection
	6.6 Character Strings
	String Definition and I/O
	String Functions

	6.7 Problem Solving Applied: DNA Sequencing
	6.8 Dynamic Memory Allocation*
	6.9 A Quicksort Algorithm*
	Summary
	Key Terms
	C Statement Summary
	Style Notes
	Debugging Notes
	Problems

	7 Programming with Structures
	Crime Scene Investigation: Fingerprint Recognition
	7.1 Structures
	Definition and Initialization
	Input and Output
	Computations

	7.2 Using Functions with Structures
	Structures as Function Arguments
	Functions that Return Structures

	7.3 Problem Solving Applied: Fingerprint Analysis
	7.4 Arrays of Structures
	7.5 Problem Solving Applied: Tsunami Analysis
	7.6 Dynamic Data Structures*
	Additional Dynamic Data Structures

	Summary
	Key Terms
	C Statement Summary
	Style Notes
	Debugging Notes
	Problems

	8 An Introduction to C++
	Crime Scene Investigation: Hand Recognition
	8.1 Object-Oriented Programming
	8.2 C++ Program Structure
	8.3 Input and Output
	The cout Object
	Stream Functions
	The cin Object
	Defining File Streams

	8.4 C++ Program Examples
	Simple Computations
	Loops
	Functions, One-Dimensional Arrays, and Data Files

	8.5 Problem Solving Applied: Hand Recognition
	8.6 Problem Solving Applied: Surface Wind Directions
	8.7 Classes
	Defining a Class Data Type
	Constructor Functions
	Class Operators

	8.8 Numerical Technique: Complex Roots
	Complex Class Definition
	Complex Roots for Quadratic Equations

	Summary
	Key Terms
	C++ Statement Summary
	Style Notes
	Debugging Notes
	Problems

	Appendices
	A: ANSI C Standard Library
	<assert.h>
	<ctype.h>
	<errno.h>
	<float.h>
	<limits.h>
	<locale.h>
	<math.h>
	<setjmp.h>
	<signal.h>
	<stdarg.h>
	<stddef.h>
	<stdio.h>
	<stdlib.h>
	<string.h>
	<time.h>

	B: ASCII Character Codes
	C: Using MATLAB to Plot Data from Text Files

	Complete Solutions to Practice! Problems
	Selected Solutions to Modify! Problems
	Complete Solutions to End-of-Chapter Short-Answer Problems
	Selected Solutions to End-of-Chapter Programming Problems
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

