4
<

Effective STL

50 Specific Ways to Improve-
Your Use of the Standard
Templaté Library

Scott Meyers

>
=)
)
@
¢)
7
=
m
w
o
m
-
o
A
0
O
m
w
1
o)
Z
>
=
Q
e)
z
£
€
=
Z
()
W
%
A
m
o

Effective STL

Addison-Wesley Professional Computing Series

Brian W. Kernighan, Consulting Editor

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library

David R. Butenhof, Programming with POSIX® Threads

Brent Callaghan, NFS Illustrated

Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition: Repelling
the Wily Hacker

David A. Curry, UNIX® System Security: A Guide for Users and System Administrators

Stephen C. Dewhurst, C++ Gofchas: Avoiding Common Problems in Coding and Design

Dan Farmer/Wietse Venema, Forensic Discovery

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable Object-
Oriented Software

Peter Haggar, Practical Java™ Programming Language Guide

David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software

Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tcl and Tk

Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++

Brian W. Kernighan/Rob Pike, The Practice of Programming

S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network

John Lakos, Large-Scale C++ Software Design

Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs

Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve Your Programs and Designs

Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library

Robert B. Murray, C++ Strategies and Tactics

David R. Musser/Gillmer J. Derge /Atul Saini, STL Tutorial and Reference Guide, Second Edition:
C++ Programming with the Standard Template Library

John K. Ousterhout, Tcl and the Tk Toolkit

Craig Partridge, Gigabit Networking

Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols

Stephen A. Rago, UNIX® System V Network Programming

Eric S. Raymond, The Art of UNIX Programming

Marc J. Rochkind, Advanced UNIX Programming, Second Edition

Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX®
Domain Protocols

W. Richard Stevens/Bill Fenner/ Andrew M. Rudoff, UNIX Network Programming Volume 1, Third Edition: The
Sockets Networking API

W. Richard Stevens/Stephen A. Rago, Advanced Programming in the UNIX® Environment, Second Edition

W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set

John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right Way

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation

Ruixi Yuan/W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

™

Visit www.awprofessional.com/series/professionalcomputing for more information about these titles.

http://www.awprofessional.com/series/professionalcomputing

Effective STL

50 Specific Ways to Improve Your Use of the
Standard Template Library

Scott Meyers

A
vy

ADDISON-WESLEY

Boston ¢ San Francisco ¢ New York ¢ Toronto ¢ Montreal
London ¢ Munich ¢ Paris ¢« Madrid
Capetown ¢ Sydney ¢ Tokyo ¢ Singapore ¢ Mexico City

This e-book reproduces in electronic form the printed book content of Effective STL: 50 Specific Ways
to Improve Your Use of the Standard Template Library, by Scott Meyers. Copyright © 2001 by Addison-
Wesley, an imprint of Pearson Education, Inc. ISBN: 0-201-74962-9.

LICENSE FOR PERSONAL USE: For the convenience of readers, this e-book is licensed and sold in
its PDF version without any digital rights management (DRM) applied. Purchasers of the PDF version
may, for their personal use only, install additional copies on multiple devices and copy or print excerpts
for themselves. The duplication, distribution, transfer, or sharing of this e-book’s content for any pur-
pose other than the purchaser’s personal use, in whole or in part, by any means, is strictly prohibited.

PERSONALIZATION NOTICE: To discourage unauthorized uses of this e-book and thereby allow its
publication without DRM, each copy of the PDF version identifies its purchaser. To encourage a DRM-
free policy, please protect your files from access by others.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in the original printed book and this e-book, and we were
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of the original printed book and this e-book,
but make no expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The excerpt from How the Grinch Stole Christmas! by Dr. Seuss is trademarked and copyright ©
Dr. Seuss Enterprises, L.P., 1957 (renewed 1985). Used by permission of Random House Children’s
Books, a division of Random House, Inc.

DISCOUNTS AND SITE LICENSES: The publisher offers discounted prices on this e-book when pur-
chased with its corresponding printed book or with other e-books by Scott Meyers. The publisher also
offers site licenses for these e-books (not available in some countries). For more information, please
visit: www.ScottMeyers-EBooks.com or www.informit.com/aw

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

E-book ISBN 13: 978-0-321-51580-3
E-book ISBN 10: 0-321-51580-3
Second e-book release, April 2011 (essentially identical to the 13th Paper Printing).

http://www.ScottMeyers-EBooks.com
http://www.informit.com/aw
http://www.amazon.com/gp/product/0394800796?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0394800796

For Woofieland.

This page intentionally left blank

Preface

Contents

Acknowledgments

Introduction

Chapter

Item 1:
Item 2:
Item 3:

Item 4:
Item 5:

Item 6:
Item 7:

Item 8:
Item 9:
Item 10:
Item 11:
Item 12:

Chapter

Item 13:
Item 14:
Item 15:

1: Containers

Choose your containers with care.
Beware the illusion of container-independent code.

Make copying cheap and correct for objects
in containers.

Call empty instead of checking size() against zero.

Prefer range member functions to their single-element
counterparts.

Be alert for C++’s most vexing parse.

When using containers of newed pointers, remember to
delete the pointers before the container is destroyed.

Never create containers of auto_ptrs.

Choose carefully among erasing options.

Be aware of allocator conventions and restrictions.
Understand the legitimate uses of custom allocators.

Have realistic expectations about the thread safety
of STL containers.

2: vector and string

Prefer vector and string to dynamically allocated arrays.
Use reserve to avoid unnecessary reallocations.
Be aware of variations in string implementations.

xi

11

11
15

20
23

24
33

36
40
43
48
54

58

63

63
66
68

viii Contents

Item 16: Know how to pass vector and string data to legacy APIs.

Item 17:
Item 18:

Chapter
Item 19:

Item 20:
Item 21:

Item 22:
Item 23:

Item 24:

Item 25:

Chapter
Item 26:

Item 27:
Item 28:

Item 29:

Chapter

Item 30:
Item 31:
Item 32:

Item 33:

Item 34:
Item 35:

Item 36:

Use “the swap trick” to trim excess capacity.
Avoid using vector<bool>.

3: Associative Containers

Understand the difference between equality and
equivalence.

Specify comparison types for associative containers
of pointers.

Always have comparison functions return false for
equal values.

Avoid in-place key modification in set and multiset.

Consider replacing associative containers with
sorted vectors.

Choose carefully between map::operator[] and
map:insert when efficiency is important.

Familiarize yourself with the nonstandard hashed
containers.

4: Iterators

Prefer iterator to const_iterator, reverse_iterator, and
const_reverse_iterator.

Use distance and advance to convert a container’s
const_iterators to iterators.

Understand how to use a reverse_iterator’s base iterator.
Consider istreambuf_iterators for character-by-character

input.

5: Algorithms

Make sure destination ranges are big enough.
Know your sorting options.

Follow remove-like algorithms by erase if you really
want to remove something.

Be wary of remove-like algorithms on containers of
pointers.

Note which algorithms expect sorted ranges.
Implement simple case-insensitive string

comparisons via mismatch or lexicographical_compare.

Understand the proper implementation of copy_if.

Effective STL

74
77
79

83

83

88

92
95

100

106

111

116

116

120
123

126

128

129
133

139

143
146

150
154

Effective STL Contents

Item 37:

Chapter

Item 38:
Item 39:
Item 40:
Item 41:

Item 42:

Chapter

Item 43:
Item 44:

Item 45:
Item 46:

Item 47:
Item 48:
Item 49:
Item 50:

Use accumulate or for_each to summarize ranges.

6: Functors, Functor Classes,
Functions, etc.

Design functor classes for pass-by-value.
Make predicates pure functions.
Make functor classes adaptable.

Understand the reasons for ptr_fun, mem_fun, and
mem_fun_ref.
Make sure less<T> means operator<.

7: Programming with the STL

Prefer algorithm calls to hand-written loops.

Prefer member functions to algorithms with the
same names.

Distinguish among count, find, binary_search,
lower_bound, upper_bound, and equal_range.

Consider function objects instead of functions as
algorithm parameters.

Avoid producing write-only code.

Always #include the proper headers.

Learn to decipher STL-related compiler diagnostics.
Familiarize yourself with STL-related web sites.

Bibliography

Appendix A: Locales and Case-Insensitive

String Comparisons

Appendix B: Remarks on Microsoft’s

Index

STL Platforms

ix

156

162

162
166
169

173
177

181
181

190

192

201
206
209
210
217

225

229

239

245

This page intentionally left blank

Preface

It came without ribbons! It came without tags!
It came without packages, boxes or bags!

— Dr. Seuss, How the Grinch Stole
Christmas!, Random House, 1957

I first wrote about the Standard Template Library in 1995, when I
concluded the final Item of More Effective C++ with a brief STL over-
view. I should have known better. Shortly thereafter, I began receiving
mail asking when I'd write Effective STL.

I resisted the idea for several years. At first, I wasn’t familiar enough
with the STL to offer advice on it, but as time went on and my experi-
ence with it grew, this concern gave way to other reservations. There
was never any question that the library represented a breakthrough in
efficient and extensible design, but when it came to using the STL,
there were practical problems I couldn’t overlook. Porting all but the
simplest STL programs was a challenge, not only because library im-
plementations varied, but also because template support in the un-
derlying compilers ranged from good to awful. STL tutorials were hard
to come by, so learning “the STL way of programming” was difficult,
and once that hurdle was overcome, finding comprehensible and ac-
curate reference documentation was a challenge. Perhaps most
daunting, even the smallest STL usage error often led to a blizzard of
compiler diagnostics, each thousands of characters long, most refer-
ring to classes, functions, or templates not mentioned in the offending
source code, almost all incomprehensible. Though I had great admira-
tion for the STL and for the people behind it, I felt uncomfortable rec-
ommending it to practicing programmers. I wasn’t sure it was possible
to use the STL effectively.

Then I began to notice something that took me by surprise. Despite
the portability problems, despite the dismal documentation, despite
the compiler diagnostics resembling transmission line noise, many of

http://www.amazon.com/gp/product/0394800796?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0394800796
http://www.amazon.com/gp/product/0394800796?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0394800796
http://www.amazon.com/gp/product/020163371X?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020163371X

xii Preface Effective STL

my consulting clients were using the STL anyway. Furthermore, they
weren't just playing with it, they were using it in production code!
That was a revelation. I knew that the STL featured an elegant design,
but any library for which programmers are willing to endure portabil-
ity headaches, poor documentation, and incomprehensible error mes-
sages has a lot more going for it than just good design. For an
increasingly large number of professional programmers, I realized,
even a bad implementation of the STL was preferable to no implemen-
tation at all.

Furthermore, I knew that the situation regarding the STL would only
get better. Libraries and compilers would grow more conformant with
the Standard (they have), better documentation would become avail-
able (it has — consult the bibliography beginning on page 225), and
compiler diagnostics would improve (for the most part, we're still wait-
ing, but Item 49 offers suggestions for how to cope while we wait). I
therefore decided to chip in and do my part for the STL movement.
This book is the result: 50 specific ways to improve your use of C++’s
Standard Template Library.

My original plan was to write the book in the second half of 1999, and
with that thought in mind, I put together an outline. But then I
changed course. I suspended work on the book and developed an in-
troductory training course on the STL, which I then taught several
times to groups of programmers. About a year later, I returned to the
book, significantly revising the outline based on my experiences with
the training course. In the same way that my Effective C++ has been
successful by being grounded in the problems faced by real program-
mers, it's my hope that Effective STL similarly addresses the practical
aspects of STL programming — the aspects most important to profes-
sional developers.

I am always on the lookout for ways to improve my understanding of
C++. If you have suggestions for new guidelines for STL programming
or if you have comments on the guidelines in this book, please let me
know. In addition, it is my continuing goal to make this book as accu-
rate as possible, so for each error in this book that is reported to me —
be it technical, grammatical, typographical, or otherwise — I will, in
future printings, gladly add to the acknowledgments the name of the
first person to bring that error to my attention. Send your suggested
guidelines, your comments, and your criticisms to estl@aristeia.com.

I maintain a list of changes to this book since its first printing, includ-
ing bug-fixes, clarifications, and technical updates. The list is avail-
able at the Effective STL Errata web site, http://www.aristeia.com/
BookErrata/estl1e-errata.html.

http://www.aristeia.com/BookErrata/estl1e-errata.html
http://www.aristeia.com/BookErrata/estl1e-errata.html
mailto:estl@aristeia.com
http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876

Effective STL Preface xiii

If you'd like to be notified when I make changes to this book, I encour-
age you to join my mailing list. I use the list to make announcements
likely to be of interest to people who follow my work on C++. For de-
tails, consult http://www.aristeia.com/MailingList/.

ScoTT DOUGLAS MEYERS STAFFORD, OREGON
http://www.aristeia.com/ APRIL 2001

http://www.aristeia.com/
http://www.aristeia.com/MailingList/

This page intentionally left blank

Acknowledgments

I had an enormous amount of help during the roughly two years it
took me to make some sense of the STL, create a training course on it,
and write this book. Of all my sources of assistance, two were particu-
larly important. The first is Mark Rodgers. Mark generously volun-
teered to review my training materials as I created them, and I learned
more about the STL from him than from anybody else. He also acted
as a technical reviewer for this book, again providing observations and
insights that improved virtually every Item.

The other outstanding source of information was several C++-related
Usenet newsgroups, especially comp.lang.c++.moderated (“clcm”),
comp.std.c++, and microsoft.public.vc.stl. For well over a decade, I've de-
pended on the participants in newsgroups like these to answer my
questions and challenge my thinking, and it’s difficult to imagine what
I'd do without them. I am deeply grateful to the Usenet community for
their help with both this book and my prior publications on C++.

My understanding of the STL was shaped by a variety of publications,
the most important of which are listed in the Bibliography. I leaned
especially heavily on Josuttis’ The C++ Standard Library [3].

This book is fundamentally a summary of insights and observations
made by others, though a few of the ideas are my own. I've tried to
keep track of where I learned what, but the task is hopeless, because
a typical Item contains information garnered from many sources over
a long period of time. What follows is incomplete, but it's the best I
can do. Please note that my goal here is to summarize where I first
learned of an idea or technique, not where the idea or technique was
originally developed or who came up with it.

In Item 1, my observation that node-based containers offer better sup-
port for transactional semantics is based on section 5.11.2 of Josuttis’
The C++ Standard Library [3]. Item 2 includes an example from Mark
Rodgers on how typedefs help when allocator types are changed.

xvi Acknowledgments Effective STL

Item 5 was motivated by Reeves’ C++ Report column, “STL
Gotchas” [17]. Item 8 sprang from Item 37 in Sutter’s Exceptional
C++ [8], and Kevlin Henney provided important details on how con-
tainers of auto_ptrs fail in practice. In Usenet postings, Matt Austern
provided examples of when allocators are useful, and I include his ex-
amples in Item 11. Item 12 is based on the discussion of thread safety
at the SGI STL web site [21]. The material in Item 13 on the perfor-
mance implications of reference counting in a multithreaded environ-
ment is drawn from Sutter’s writings on this topic [20]. The idea for
Item 15 came from Reeves’ C++ Report column, “Using Standard string
in the Real World, Part 2,” [18]. In Item 16, Mark Rodgers came up
with the technique I show for having a C API write data directly into a
vector. Item 17 includes information from Usenet postings by Siemel
Naran and Carl Barron. I stole Item 18 from Sutter’'s C++ Report col-
umn, “When Is a Container Not a Container?” [12]. In Item 20, Mark
Rodgers contributed the idea of transforming a pointer into an object
via a dereferencing functor, and Scott Lewandowski came up with the
version of Dereferenceless I present. Item 21 originated in a Doug Har-
rison posting to microsoft.public.vcstl, but the decision to restrict the
focus of that Item to equality was mine. I based Item 22 on Sutter’s
C++ Report column, “Standard Library News: sets and maps” [13];
Matt Austern helped me understand the status of the Standardization
Committee’s Library Issue #103. Item 23 was inspired by Austern’s
C++ Report article, “Why You Shouldn’'t Use set — and What to Use
Instead” [15]; David Smallberg provided a neat refinement for my im-
plementation of DataCompare. My description of Dinkumware’s hashed
containers is based on Plauger’s C/C++ Users Journal column, “Hash
Tables” [16]. Mark Rodgers doesn’t agree with the overall advice of
Item 26, but an early motivation for that Item was his observation
that some container member functions accept only arguments of type
iterator. My treatment of Item 29 was motivated and informed by
Usenet discussions involving Matt Austern and James Kanze; I was
also influenced by Kreft and Langer’s C++ Report article, “A Sophisti-
cated Implementation of User-Defined Inserters and Extractors” [25].
Item 30 is due to a discussion in section 5.4.2 of Josuttis’ The C++
Standard Library [3]. In Item 31, Marco Dalla Gasperina contributed
the example use of nth_element to calculate medians, and use of that
algorithm for finding percentiles comes straight out of section 18.7.1
of Stroustrup’s The C++ Programming Language [7]. Iltem 32 was influ-
enced by the material in section 5.6.1 of Josuttis’ The C++ Standard
Library [3]. Item 35 originated in Austern’s C++ Report column “How
to Do Case-Insensitive String Comparison” [11], and James Kanze’s
and John Potter’s clcm postings helped me refine my understanding of
the issues involved. Stroustrup’s implementation for copy_if, which I

Effective STL Acknowledgments xvii

show in Item 36, is from section 18.6.1 of his The C++ Programming
Language [7]. Item 39 was largely motivated by the publications of Jo-
suttis, who has written about “stateful predicates” in his The C++
Standard Library [3], in Standard Library Issue #92, and in his C++
Report article, “Predicates vs. Function Objects” [14]. In my treatment,
I use his example and recommend a solution he has proposed, though
the use of the term “pure function” is my own. Matt Austern con-
firmed my suspicion in Item 41 about the history of the terms
mem_fun and mem_fun_ref. Item 42 can be traced to a lecture I got
from Mark Rodgers when I considered violating that guideline. Mark
Rodgers is also responsible for the insight in Item 44 that non-mem-
ber searches over maps and multimaps examine both components of
each pair, while member searches examine only the first (key) compo-
nent. Item 45 contains information from various clcm contributors, in-
cluding John Potter, Marcin Kasperski, Pete Becker, Dennis Yelle, and
David Abrahams. David Smallberg alerted me to the utility of
equal_range in performing equivalence-based searches and counts
over sorted sequence containers. Andrei Alexandrescu helped me un-
derstand the conditions under which “the reference-to-reference prob-
lem” I describe in Item 50 arises, and I modeled my example of the
problem on a similar example provided by Mark Rodgers at the Boost
Web Site [22].

Credit for the material in Appendix A goes to Matt Austern, of course.
I'm grateful that he not only gave me permission to include it in this
book, he also tweaked it to make it even better than the original.

Good technical books require a thorough pre-publication vetting, and
I was fortunate to benefit from the insights of an unusually talented
group of technical reviewers. Brian Kernighan and Cliff Green offered
early comments on a partial draft, and complete versions of the manu-
script were scrutinized by Doug Harrison, Brian Kernighan, Tim
Johnson, Francis Glassborow, Andrei Alexandrescu, David Smallberg,
Aaron Campbell, Jared Manning, Herb Sutter, Stephen Dewhurst,
Matt Austern, Gillmer Derge, Aaron Moore, Thomas Becker, Victor
Von, and, of course, Mark Rodgers. Katrina Avery did the copyediting.

One of the most challenging parts of preparing a book is finding good
technical reviewers. I thank John Potter for introducing me to Jared
Manning and Aaron Campbell.

Herb Sutter kindly agreed to act as my surrogate in compiling, run-
ning, and reporting on the behavior of some STL test programs under
a beta version of Microsoft’s Visual Studio .NET, while Leor Zolman
undertook the herculean task of testing all the code in this book. Any
errors that remain are my fault, of course, not Herb’s or Leor’s.

xviii Acknowledgments Effective STL

Angelika Langer opened my eyes to the indeterminate status of some
aspects of STL function objects. This book has less to say about func-
tion objects than it otherwise might, but what it does say is more
likely to remain true. At least I hope it is.

This printing of the book is better than earlier printings, because I
was able to address problems identified by the following sharp-eyed
readers: Jon Webb, Michael Hawkins, Derek Price, Jim Scheller, Carl
Manaster, Herb Sutter, Albert Franklin, George King, Dave Miller,
Harold Howe, John Fuller, Tim McCarthy, John Hershberger, Igor
Mikolic-Torreira, Stephan Bergmann, Robert Allan Schwartz, John
Potter, David Grigsby, Sanjay Pattni, Jesper Andersen, Jing Tao
Wang, André Blavier, Dan Schmidt, Bradley White, Adam Petersen,
Wayne Goertel, Gabriel Netterdag, Jason Kenny, Scott Blachowicz,
Seyed H. Haeri, Gareth McCaughan, Giulio Agostini, Fraser Ross,
Wolfram Burkhardt, Keith Stanley, Leor Zolman, Chan Ki Lok, Motti
Abramsky, Kevlin Henney, Stefan Kuhlins, Phillip Ngan, Jim Phillips,
Ruediger Dreier, Guru Chandar, Charles Brockman, Day Barr, Eric
Niebler, Sharad Kala, Declan Moran, Nick de Smith, David Callaway,
Shlomi Frank, Andrea Griffini, Hans Eckardt, David Smallberg, Matt
Page, Andy Fyfe, Vincent Stojanov, Randy Parker, Thomas Schell,
Cameron Mac Minn, Mark Davis, Giora Unger, Julie Nahil, Martin
Rottinger, Neil Henderson, Andrew Savige, and Molly Sharp. I'm grate-
ful for their help in improving Effective STL.

My collaborators at Addison-Wesley included John Wait (my editor
and now a senior VP), Alicia Carey and Susannah Buzard (his assis-
tants n and n+1), John Fuller (the production coordinator), Karin
Hansen (the cover designer), Jason Jones (all-around technical guru,
especially with respect to the demonic software spewed forth by
Adobe), Marty Rabinowitz (their boss, but he works, too), and Curt
Johnson, Chanda Leary-Coutu, and Robin Bruce (all marketing peo-
ple, but still very nice).

Abbi Staley made Sunday lunches a routinely pleasurable experience.

As she has for the six books and one CD that came before it, my wife,
Nancy, tolerated the demands of my research and writing with her
usual forbearance and offered me encouragement and support when I
needed it most. She never fails to remind me that there’s more to life
than C++ and software.

And then there’s our dog, Persephone. As I write this, it is her sixth
birthday. Tonight, she and Nancy and I will visit Baskin-Robbins for
ice cream. Persephone will have vanilla. One scoop. In a cup. To go.

Introduction

You're already familiar with the STL. You know how to create contain-
ers, iterate over their contents, add and remove elements, and apply
common algorithms, such as find and sort. But you're not satisfied.
You can’t shake the sensation that the STL offers more than you're
taking advantage of. Tasks that should be simple aren’t. Operations
that should be straightforward leak resources or behave erratically.
Procedures that should be efficient demand more time or memory
than you’re willing to give them. Yes, you know how to use the STL,
but you're not sure you're using it effectively.

I wrote this book for you.

In Effective STL, 1 explain how to combine STL components to take full
advantage of the library’s design. Such information allows you to de-
velop simple, straightforward solutions to simple, straightforward
problems, and it also helps you design elegant approaches to more
complicated problems. I describe common STL usage errors, and I
show you how to avoid them. That helps you dodge resource leaks,
code that won't port, and behavior that is undefined. I discuss ways to
optimize your code, so you can make the STL perform like the fast,
sleek machine it is intended to be.

The information in this book will make you a better STL programmer.
It will make you a more productive programmer. And it will make you
a happier programmer. Using the STL is fun, but using it effectively is
outrageous fun, the kind of fun where they have to drag you away
from the keyboard, because you just can’t believe the good time you're
having. Even a cursory glance at the STL reveals that it is a won-
drously cool library, but the coolness runs broader and deeper than
you probably imagine. One of my primary goals in this book is to con-
vey to you just how amazing the library is, because in the nearly 30
years I've been programming, I've never seen anything like the STL.
You probably haven't either.

2 Introduction Effective STL

Defining, Using, and Extending the STL

There is no official definition of “the STL,” and different people mean
different things when they use the term. In this book, “the STL”
means the parts of C++’s Standard Library that work with iterators.
That includes the standard containers (including string), parts of the
iostream library, function objects, and algorithms. It excludes the
standard container adapters (stack, queue, and priority_queue) as well
as the containers bitset and valarray, because they lack iterator sup-
port. It doesn’t include arrays, either. True, arrays support iterators in
the form of pointers, but arrays are part of the C++ language, not the
library.

Technically, my definition of the STL excludes extensions of the stan-
dard C++ library, notably hashed containers, singly linked lists, ropes,
and a variety of nonstandard function objects. Even so, an effective
STL programmer needs to be aware of such extensions, so I mention
them where it's appropriate. Indeed, Item 25 is devoted to an overview
of nonstandard hashed containers. They’re not in the STL now, but
something similar to them is almost certain to make it into the next
version of the standard C++ library, and there’s value in glimpsing the
future.

One of the reasons for the existence of STL extensions is that the STL
is a library designed to be extended. In this book, however, I focus on
using the STL, not on adding new components to it. You'll find, for ex-
ample, that I have little to say about writing your own algorithms, and
I offer no guidance at all on writing new containers and iterators. I be-
lieve that it’s important to master what the STL already provides be-
fore you embark on increasing its capabilities, so that’s what I focus
on in Effective STL. When you decide to create your own STLesque
components, you'll find advice on how to do it in books like Josuttis’
The C++ Standard Library [3] and Austern’s Generic Programming and
the STL [4]. One aspect of STL extension I do discuss in this book is
writing your own function objects. You can’t use the STL effectively
without knowing how to do that, so I've devoted an entire chapter to
the topic (Chapter 6).

Citations

The references to the books by Josuttis and Austern in the preceding
paragraph demonstrate how I handle bibliographic citations. In gen-
eral, I try to mention enough of a cited work to identify it for people
who are already familiar with it. If you already know about these au-
thors’ books, for example, you don’t have to turn to the Bibliography
to find out that [3] and [4] refer to books you already know. If you're

Effective STL Introduction 3

not familiar with a publication, of course, the Bibliography (which be-
gins on page 225) gives you a full citation.

I cite three works often enough that I generally leave off the citation
number. The first of these is the International Standard for C++ [5],
which I usually refer to as simply “the Standard.” The other two are
my earlier books on C++, Effective C++ [1] and More Effective C++ [2].

The STL and Standards

I refer to the C++ Standard frequently, because Effective STL focuses
on portable, standard-conformant C++. In theory, everything I show in
this book will work with every C++ implementation. In practice, that
isn’t true. Shortcomings in compiler and STL implementations con-
spire to prevent some valid code from compiling or from behaving the
way it's supposed to. Where that is commonly the case, I describe the
problems, and I explain how you can work around them.

Sometimes, the easiest workaround is to use a different STL imple-
mentation. Appendix B gives an example of when this is the case. In
fact, the more you work with the STL, the more important it becomes
to distinguish between your compilers and your library implementa-
tions. When programmers run into difficulties trying to get legitimate
code to compile, it’s customary for them to blame their compilers, but
with the STL, compilers can be fine, while STL implementations are
faulty. To emphasize the fact that you are dependent on both your
compilers and your library implementations, I refer to your STL plat-
Jorms. An STL platform is the combination of a particular compiler
and a particular STL implementation. In this book, if I mention a com-
piler problem, you can be sure that I mean it's the compiler that’s the
culprit. However, if I refer to a problem with your STL platform, you
should interpret that as “maybe a compiler bug, maybe a library bug,
possibly both.”

I generally refer to your “compilers” — plural. That's an outgrowth of
my longstanding belief that you improve the quality (especially the
portability) of your code if you ensure that it works with more than
one compiler. Furthermore, using multiple compilers generally makes
it easier to unravel the Gordian nature of error messages arising from
improper use of the STL. (Item 49 is devoted to approaches to decod-
ing such messages.)

Another aspect of my emphasis on standard-conforming code is my
concern that you avoid constructs with undefined behavior. Such con-
structs may do anything at runtime. Unfortunately, this means they
may do precisely what you want them to, and that can lead to a false

4 Introduction Effective STL

sense of security. Too many programmers assume that undefined be-
havior always leads to an obvious problem, e.g., a segmentation fault
or other catastrophic failure. The results of undefined behavior can
actually be much more subtle, e.g., corruption of rarely-referenced
data. They can also vary across program runs. I find that a good work-
ing definition of undefined behavior is “works for me, works for you,
works during development and QA, but blows up in your most impor-
tant customer’s face.” It's important to avoid undefined behavior, so I
point out common situations where it can arise. You should train
yourself to be alert for such situations.

Reference Counting

It’s close to impossible to discuss the STL without mentioning refer-
ence counting. As you’ll see in Items 7 and 33, designs based on con-
tainers of pointers almost invariably lead to reference counting. In
addition, many string implementations are internally reference
counted, and, as Item 15 explains, this may be an implementation de-
tail you can’t afford to ignore. In this book, I assume that you are fa-
miliar with the basics of reference counting. If you're not, most
intermediate and advanced C++ texts cover the topic. In More Effective
C++, for example, the relevant material is in Items 28 and 29. If you
don’t know what reference counting is and you have no inclination to
learn, don’t worry. You'll get through this book just fine, though there
may be a few sentences here and there that won't make as much
sense as they otherwise would.

string and wstring

Whatever I say about string applies equally well to its wide-character
counterpart, wstring. Similarly, any time I refer to the relationship be-
tween string and char or char*, the same is true of the relationship be-
tween wstring and wchar_t or wchar_t*. In other words, just because I
don’t explicitly mention wide-character strings in this book, don’t as-
sume that the STL fails to support them. It supports them as well as
char-based strings. It has to. Both string and wstring are instantiations
of the same template, basic_string.

Terms, Terms, Terms

This is not an introductory book on the STL, so I assume you know
the fundamentals. Still, the following terms are sufficiently important
that I feel compelled to review them:

Effective STL Introduction 5

vector, string, deque, and list are known as the standard sequence
containers. The standard associative containers are set, multiset,
map, and multimap.

Iterators are divided into five categories, based on the operations
they support. Very briefly, input iterators are read-only iterators
where each iterated location may be read only once. Output itera-
tors are write-only iterators where each iterated location may be
written only once. Input and output iterators are modeled on read-
ing and writing input and output streams (e.g., files). It’s thus un-
surprising that the most common manifestations of input and
output iterators are istream_iterators and ostream_iterators, respec-
tively.

Forward iterators have the capabilities of both input and output it-
erators, but they can read or write a single location repeatedly.
They don’t support operator--, so they can move only forward with
any degree of efficiency. All standard STL containers support iter-
ators that are more powerful than forward iterators, but, as you'll
see in Item 25, one design for hashed containers yields forward it-
erators. Containers for singly linked lists (considered in Item 50)
also offer forward iterators.

Bidirectional iterators are just like forward iterators, except they
can go backward as easily as they go forward. The standard asso-
ciative containers all offer bidirectional iterators. So does list.

Random access iterators do everything bidirectional iterators do,
but they also offer “iterator arithmetic,” i.e., the ability to jump for-
ward or backward in a single step. vector, string, and deque each
provide random access iterators. Pointers into arrays act as ran-
dom access iterators for the arrays.

Any class that overloads the function call operator (i.e., operator())
is a functor class. Objects created from such classes are known as
Jfunction objects or functors. Most places in the STL that work with
function objects work equally well with real functions, so I often
use the term “function objects” to mean both C++ functions as
well as true function objects.

The functions bind1st and bind2nd are known as binders.

A revolutionary aspect of the STL is its complexity guarantees. These
guarantees bound the amount of work any STL operation is allowed to
perform. This is wonderful, because it can help you determine the rel-
ative efficiency of different approaches to the same problem, regard-
less of the STL platform you're using. Unfortunately, the terminology

6 Introduction Effective STL

behind the complexity guarantees can be confusing if you haven’t
been formally introduced to the jargon of computer science. Here’s a
quick primer on the complexity terms I use in this book. Each refers
to how long it takes to do something as a function of n, the number of
elements in a container or range.

= An operation that runs in constant time has performance that is
unaffected by changes in n. For example, inserting an element into
a list is a constant-time operation. Regardless of whether the list
has one element or one million, the insertion takes about the same
amount of time.

Don'’t take the term “constant time” too literally. It doesn’t mean
that the amount of time it takes to do something is literally con-
stant, it just means that it’s unaffected by n. For example, two STL
platforms might take dramatically different amounts of time to
perform the same “constant-time” operation. This could happen if
one library has a much more sophisticated implementation than
another or if one compiler performs substantially more aggressive
optimization.

A variant of constant time complexity is amortized constant time.
Operations that run in amortized constant time are usually con-
stant-time operations, but occasionally they take time that de-
pends on n. Amortized constant time operations typically run in
constant time.

= An operation that runs in logarithmic time needs more time to run
as n gets larger, but the time it requires grows at a rate propor-
tional to the logarithm of n. For example, an operation on a million
items would be expected to take only about three times as long as
on a hundred items, because log n® = 3 log n. Most search opera-
tions on associative containers (e.g., set:find) are logarithmic-time
operations.

= The time needed to perform an operation that runs in linear time
increases at a rate proportional to increases in n. The standard al-
gorithm count runs in linear time, because it has to look at every
element of the range it’s given. If the range triples in size, it has to
do three times as much work, and we’d expect it to take about
three times as long to do it.

As a general rule, a constant-time operation runs faster than one re-
quiring logarithmic time, and a logarithmic-time operation runs faster
than one whose performance is linear. This is always true when n gets
big enough, but for relatively small values of n, it’s sometimes possible
for an operation with a worse theoretical complexity to outperform an
operation with a better theoretical complexity. If you'd like to know
more about STL complexity guarantees, turn to Josuttis’ The C++
Standard Library [3].

Effective STL Introduction 7

As a final note on terminology, recall that each element in a map or
multimap has two components. I generally call the first component the
key and the second component the value. Given

map<string, double> m;
for example, the string is the key and the double is the value.

Code Examples

This book is filled with example code, and I explain each example
when I introduce it. Still, it’s worth knowing a few things in advance.

You can see from the map example above that I routinely omit #in-
cludes and ignore the fact that STL components are in namespace std.
When defining the map m, I could have written this,

#include <map>
#include <string>

using std::map;
using std:string;
map<string, double> m;

but I prefer to save us both the noise.

When I declare a formal type parameter for a template, I use typename
instead of class. That is, instead of writing this,

template<class T>
class Widget{...};

I write this:

template<typename T>
class Widget {...};

In this context, class and typename mean exactly the same thing, but I
find that typename more clearly expresses what I usually want to say:
that any type will do; T need not be a class. If you prefer to use class to
declare type parameters, go right ahead. Whether to use typename or
class in this context is purely a matter of style.

It is not a matter of style in a different context. To avoid potential
parsing ambiguities (the details of which I'll spare you), you are re-
quired to use typename to precede type names that are dependent on
formal type parameters. Such types are known as dependent types,
and an example will help clarify what I'm talking about. Suppose
you'd like to write a template for a function that, given an STL con-
tainer, returns whether the last element in the container is greater
than the first element. Here’s one way to do it:

8 Introduction Effective STL

template<typename C>
bool lastGreaterThanFirst(const C& container)

{
if (container.empty()) return false;

typename C::const_iterator begin(container.begin());
typename C:const_iterator end(container.end());

return *--end > *begin;

}

In this example, the local variables begin and end are of type
C:const_iterator. const_iterator is a type that is dependent on the formal
type parameter C. Because C:const_iterator is a dependent type, you
are required to precede it with the word typename. (Some compilers in-
correctly accept the code without the typenames, but such code isn’t
portable.)

I hope you've noticed my use of color in the examples above. It's there
to focus your attention on parts of the code that are particularly im-
portant. Often, I highlight the differences between related examples,
such as when I showed the two possible ways to declare the parame-
ter T in the Widget example. This use of color to call out especially
noteworthy parts of examples carries over to diagrams, too. For in-
stance, this diagram from Item 5 uses color to identify the two point-
ers that are affected when a new element is inserted into a list:

Node being
inserted
—»{ next > next next > next > next —»
~<— prev |= prev |= prev = prev |= prev |e——
data data data data data

Additional /‘
nodes will be
inserted here

I also use color for chapter numbers, but such use is purely gratu-
itous. This being my first two-color book, I hope you'll forgive me a lit-
tle chromatic exuberance.

Two of my favorite parameter names are lhs and rhs. They stand for
“left-hand side” and “right-hand side,” respectively, and I find them
especially useful when declaring operators. Here’s an example from
Item 19:

class Widget{...};
bool operator==(const Widget& Ihs, const Widget& rhs);

Effective STL Introduction 9

When this function is called in a context like this,

if x==y) ... // assume x and y are Widgets

x, which is on the left-hand side of the “==", is known as lhs inside op-
erator==, and y is known as rhs.

As for the class name Widget, that has nothing to do with GUIs or tool-
kits. It’s just the name I use for “some class that does something.”
Sometimes, as on page 7, Widget is a class template instead of a class.
In such cases, you may find that I still refer to Widget as a class, even
though it’s really a template. Such sloppiness about the difference be-
tween classes and class templates, structs and struct templates, and
functions and function templates hurts no one as long as there is no
ambiguity about what is being discussed. In cases where it could be
confusing, I do distinguish between templates and the classes,
structs, and functions they generate.

Efficiency Items

I considered including a chapter on efficiency in Effective STL, but I
ultimately decided that the current organization was preferable. Still,
a number of Items focus on minimizing space and runtime demands.
For your performance-enhancing convenience, here is the table of
contents for the virtual chapter on efficiency:

Item 4: Call empty instead of checking size() against zero. 23
Item 5: Prefer range member functions to their single-element

counterparts. 24
Item 14: Use reserve to avoid unnecessary reallocations. 66
Item 15: Be aware of variations in string implementations. 68
Item 23: Consider replacing associative containers with

sorted vectors. 100
Item 24: Choose carefully between map::operator[] and

map:insert when efficiency is important. 106
Item 25: Familiarize yourself with the nonstandard hashed

containers. 111
Item 29: Consider istreambuf_iterators for character-by-character

input. 126
Item 31: Know your sorting options. 133
Item 44: Prefer member functions to algorithms with the

same names. 190

Item 46: Consider function objects instead of functions as
algorithm parameters. 201

10 Introduction Effective STL

The Guidelines in Effective STL

The guidelines that make up the 50 Items in this book are based on
the insights and advice of the world’s most experienced STL program-
mers. These guidelines summarize things you should almost always
do — or almost always avoid doing — to get the most out of the Stan-
dard Template Library. At the same time, they’re just guidelines. Un-
der some conditions, it makes sense to violate them. For example, the
title of Item 7 tells you to invoke delete on newed pointers in a con-
tainer before the container is destroyed, but the text of that Item
makes clear that this applies only when the objects pointed to by
those pointers should go away when the container does. This is often
the case, but it’s not universally true. Similarly, the title of Item 35 be-
seeches you to use STL algorithms to perform simple case-insensitive
string comparisons, but the text of the Item points out that in some
cases, you'll be better off using a function that’s not only outside the
STL, it’s not even part of standard C++!

Only you know enough about the software you're writing, the environ-
ment in which it will run, and the context in which it’s being created
to determine whether it’s reasonable to violate the guidelines I
present. Most of the time, it won’t be, and the discussions that accom-
pany each Item explain why. In a few cases, it will. Slavish devotion to
the guidelines isn’t appropriate, but neither is cavalier disregard. Be-
fore venturing off on your own, you should make sure you have a good
reason.

Containers

Sure, the STL has iterators, algorithms, and function objects, but for
most C++ programmers, it's the containers that stand out. More pow-
erful and flexible than arrays, they grow (and often shrink) dynami-
cally, manage their own memory, keep track of how many objects they
hold, bound the algorithmic complexity of the operations they sup-
port, and much, much more. Their popularity is easy to understand.
They're simply better than their competition, regardless of whether
that competition comes from containers in other libraries or is a con-
tainer type you’d write yourself. STL containers aren’t just good.
They're really good.

This chapter is devoted to guidelines applicable to all the STL contain-
ers. Later chapters focus on specific container types. The topics
addressed here include selecting the appropriate container given the
constraints you face; avoiding the delusion that code written for one
container type is likely to work with other container types; the signifi-
cance of copying operations for objects in containers; difficulties that
arise when pointers or auto_ptrs are stored in containers; the ins and
outs of erasing; what you can and cannot accomplish with custom
allocators; tips on how to maximize efficiency; and considerations for
using containers in a threaded environment.

That’'s a lot of ground to cover, but don’t worry. The Items break it
down into bite-sized chunks, and along the way, you're almost sure to
pick up several ideas you can apply to your code now.

Item 1: Choose your containers with care.

You know that C++ puts a variety of containers at your disposal, but
do you realize just how varied that variety is? To make sure you
haven’t overlooked any of your options, here’s a quick review.

= The standard STL sequence containers, vector, string, deque, and
list.

12 Item 1 Containers

= The standard STL associative containers, set, multiset, map, and
multimap.

* The nonstandard sequence containers slist and rope. slist is a sin-
gly linked list, and rope is essentially a heavy-duty string. (A “rope”
is a heavy-duty “string.” Get it?) You'll find a brief overview of
these nonstandard (but commonly available) containers in
Item 50.

* The nonstandard associative containers hash_set, hash_multiset,
hash_map, and hash_multimap. I examine these widely available
hash-table-based variants on the standard associative containers
in Item 25.

= vector<char> as a replacement for string. [tem 13 describes the
conditions under which such a replacement might make sense.

= vector as a replacement for the standard associative contain-
ers. As Item 23 makes clear, there are times when vector can out-
perform the standard associative containers in both time and
space.

= Several standard non-STL containers, including arrays, bitset,
valarray, stack, queue, and priority_queue. Because these are non-
STL containers, I have little to say about them in this book,
though Item 16 mentions a case where arrays are preferable to
STL containers and Item 18 explains why bitset may be better than
vector<bool>. It’s also worth bearing in mind that arrays can be
used with STL algorithms, because pointers can be used as array
iterators.

That’s a panoply of options, and it's matched in richness by the range
of considerations that should go into choosing among them. Unfortu-
nately, most discussions of the STL take a fairly narrow view of the
world of containers, ignoring many issues relevant to selecting the one
that is most appropriate. Even the Standard gets into this act, offering
the following guidance for choosing among vector, deque, and list:

vector, list, and deque offer the programmer different complexity
trade-offs and should be used accordingly. vector is the type of
sequence that should be used by default. list should be used
when there are frequent insertions and deletions from the mid-
dle of the sequence. deque is the data structure of choice when
most insertions and deletions take place at the beginning or at
the end of the sequence.

If your primary concern is algorithmic complexity, I suppose this con-
stitutes reasonable advice, but there is so much more to be concerned
with.

Containers Item 1 13

In a moment, we’ll examine some of the important container-related
issues that complement algorithmic complexity, but first I need to
introduce a way of categorizing the STL containers that isn’t dis-
cussed as often as it should be. That is the distinction between contig-
uous-memory containers and node-based containers.

Contiguous-memory containers (also known as array-based containers)
store their elements in one or more (dynamically allocated) chunks of
memory, each chunk holding more than one container element. If a
new element is inserted or an existing element is erased, other ele-
ments in the same memory chunk have to be shifted up or down to
make room for the new element or to fill the space formerly occupied
by the erased element. This kind of movement affects both perfor-
mance (see Items 5 and 14) and exception safety (as we’ll soon see).
The standard contiguous-memory containers are vector, string, and
deque. The nonstandard rope is also a contiguous-memory container.

Node-based containers store only a single element per chunk of
(dynamically allocated) memory. Insertion or erasure of a container
element affects only pointers to nodes, not the contents of the nodes
themselves, so element values need not be moved when something is
inserted or erased. Containers representing linked lists, such as list
and slist, are node-based, as are all the standard associative contain-
ers. (They're typically implemented as balanced trees.) The nonstand-
ard hashed containers use varying node-based implementations, as
you'll see in Item 25.

With this terminology out of the way, we're ready to sketch some of
the questions most relevant when choosing among containers. In this
discussion, I omit consideration of non-STL-like containers (e.g.,
arrays, bitsets, etc.), because this is, after all, a book on the STL.

= Do you need to be able to insert a new element at an arbitrary posi-
tion in the container? If so, you need a sequence container; asso-
ciative containers won’t do.

® Do you care how elements are ordered in the container? If not, a
hashed container becomes a viable choice. Otherwise, you'll want
to avoid hashed containers.

®* Must the container be part of standard C++? If so, that eliminates
hashed containers, slist, and rope.

= What category of iterators do you require? If they must be random
access iterators, you're technically limited to vector, deque, and
string, but you’d probably want to consider rope, too. (See Item 50

14 Item 1 Containers

for information on rope.) If bidirectional iterators are required, you
must avoid slist (see Item 50) as well as one common implementa-
tion of the hashed containers (see Item 25).

® [s it important to avoid movement of existing container elements
when insertions or erasures take place? If so, you'll need to stay
away from contiguous-memory containers (see Item 5).

= Does the data in the container need to be layout-compatible with C?
If so, you're limited to vectors (see Item 16).

= s lookup speed a critical consideration? If so, you’'ll want to look at
hashed containers (see Item 25), sorted vectors (see Item 23), and
the standard associative containers — probably in that order.

= Do you mind if the underlying container uses reference counting? If
so, you'll want to steer clear of string, because many string imple-
mentations are reference-counted (see Item 13). You'll need to
avoid rope, too, because the definitive rope implementation is
based on reference counting (see Item 50). You have to represent
your strings somehow, of course, so you'll want to consider vec-
tor<char>.

" Do you need transactional semantics for insertions and erasures?
That is, do you require the ability to reliably roll back insertions
and erasures? If so, you’ll want to use a node-based container. If
you need transactional semantics for multiple-element insertions
(e.g., the range form — see Item 5), you’ll want to choose list, be-
cause list is the only standard container that offers transactional
semantics for multiple-element insertions. Transactional seman-
tics are particularly important for programmers interested in writ-
ing exception-safe code. (Transactional semantics can be achieved
with contiguous-memory containers, too, but there is a perfor-
mance cost, and the code is not as straightforward. To learn more
about this, consult Item 17 of Sutter’s Exceptional C++ [8].)

" Do you need to minimize iterator, pointer, and reference invalida-
tion? If so, you'll want to use node-based containers, because in-
sertions and erasures on such containers never invalidate
iterators, pointers, or references (unless they point to an element
you are erasing). In general, insertions or erasures on contiguous-
memory containers may invalidate all iterators, pointers, and ref-
erences into the container.

® Do you care if using swap on containers invalidates iterators, point-
ers, or references? If so, you'll need to avoid string, because string is
alone in the STL in invalidating iterators, pointers, and references
during swaps.

Containers Item 2 15

= Would it be helpful to have a sequence container with random ac-
cess iterators where pointers and references to the data are not in-
validated as long as nothing is erased and insertions talke place
only at the ends of the container? This is a very special case, but if
it’s your case, deque is the container of your dreams. (Interest-
ingly, deque’s iterators may be invalidated when insertions are
made only at the ends of the container. deque is the only standard
STL container whose iterators may be invalidated without also in-
validating its pointers and references.)

These questions are hardly the end of the matter. For example, they
don’t take into account the varying memory allocation strategies
employed by the different container types. (Items 10 and 14 discuss
some aspects of such strategies.) Still, they should be enough to con-
vince you that, unless you have no interest in element ordering, stan-
dards conformance, iterator capabilities, layout compatibility with C,
lookup speed, behavioral anomalies due to reference counting, the
ease of implementing transactional semantics, or the conditions
under which iterators are invalidated, you have more to think about
than simply the algorithmic complexity of container operations. Such
complexity is important, of course, but it’s far from the entire story.

The STL gives you lots of options when it comes to containers. If you
look beyond the bounds of the STL, there are even more options.
Before choosing a container, be sure to consider all your options. A
“default container”? I don’t think so.

Item 2: Beware the illusion of container-independent
code.

The STL is based on generalization. Arrays are generalized into con-
tainers and parameterized on the types of objects they contain. Func-
tions are generalized into algorithms and parameterized on the types
of iterators they use. Pointers are generalized into iterators and
parameterized on the type of objects they point to.

That’s just the beginning. Individual container types are generalized
into sequence and associative containers, and similar containers are
given similar functionality. Standard contiguous-memory containers
(see Item 1) offer random-access iterators, while standard node-based
containers (again, see Item 1) provide bidirectional iterators. Sequence
containers support push_front and/or push_back, while associative
containers don’t. Associative containers offer logarithmic-time
lower_bound, upper_bound, and equal_range member functions, but
sequence containers don't.

16 Item 2 Containers

With all this generalization going on, it's natural to want to join the
movement. This sentiment is laudable, and when you write your own
containers, iterators, and algorithms, you’ll certainly want to pursue
it. Alas, many programmers try to pursue it in a different manner.
Instead of committing to particular types of containers in their soft-
ware, they try to generalize the notion of a container so that they can
use, say, a vector, but still preserve the option of replacing it with
something like a deque or a list later — all without changing the code
that uses it. That is, they strive to write container-independent code.
This kind of generalization, well-intentioned though it is, is almost
always misguided.

Even the most ardent advocate of container-independent code soon
realizes that it makes little sense to try to write software that will work
with both sequence and associative containers. Many member func-
tions exist for only one category of container, e.g., only sequence con-
tainers support push_front or push_back, and only associative
containers support count and lower_bound, etc. Even such basics as
insert and erase have signatures and semantics that vary from category
to category. For example, when you insert an object into a sequence
container, it stays where you put it, but if you insert an object into an
associative container, the container moves the object to where it
belongs in the container’s sort order. For another example, the form of
erase taking an iterator returns a new iterator when invoked on a
sequence container, but it returns nothing when invoked on an asso-
ciative container. (Iltem 9 gives an example of how this can affect the
code you write.)

Suppose, then, you aspire to write code that can be used with the
most common sequence containers: vector, deque, and list. Clearly,
you must program to the intersection of their capabilities, and that
means no uses of reserve or capacity (see Item 14), because deque and
list don’t offer them. The presence of list also means you give up opera-
tor[], and you limit yourself to the capabilities of bidirectional itera-
tors. That, in turn, means you must stay away from algorithms that
demand random access iterators, including sort, stable_sort,
partial_sort, and nth_element (see Item 31).

On the other hand, your desire to support vector rules out use of
push_front and pop_front, and both vector and deque put the kibosh on
splice and the member form of sort. In conjunction with the con-
straints above, this latter prohibition means that there is no form of
sort you can call on your “generalized sequence container.”

Containers Item 2 17

That’s the obvious stuff. If you violate any of those restrictions, your
code will fail to compile with at least one of the containers you want to
be able to use. The code that will compile is more insidious.

The main culprit is the different rules for invalidation of iterators,
pointers, and references that apply to different sequence containers.
To write code that will work correctly with vector, deque, and list, you
must assume that any operation invalidating iterators, pointers, or
references in any of those containers invalidates them in the container
you're using. Thus, you must assume that every call to insert invali-
dates everything, because deque:insert invalidates all iterators and,
lacking the ability to call capacity, vector:insert must be assumed to
invalidate all pointers and references. (Item 1 explains that deque is
unique in sometimes invalidating its iterators without invalidating its
pointers and references.) Similar reasoning leads to the conclusion
that, unless you're eraseing the last element of a container, calls to
erase must also be assumed to invalidate everything.

Want more? You can’t pass the data in the container to a C interface,
because only vector supports that (see Item 16). You can’t instantiate
your container with bool as the type of objects to be stored, because,
as Item 18 explains, vector<bool> doesn’t always behave like a vector,
and it never actually stores bools. You can’t assume list’s constant-
time insertions and erasures, because vector and deque take linear
time to perform those operations.

When all is said and done, you're left with a “generalized sequence
container” where you can’t call reserve, capacity, operator[], push_front,
pop_front, splice, or any algorithm requiring random access iterators; a
container where every call to insert and erase takes linear time and
invalidates all iterators, pointers, and references; and a container
incompatible with C where bools can’t be stored. Is that really the
kind of container you want to use in your applications? I suspect not.

If you rein in your ambition and decide you're willing to drop support
for list, you still give up reserve, capacity, push_front, and pop_front; you
still must assume that all calls to insert and erase take linear time and
invalidate everything; you still lose layout compatibility with C; and
you still can’t store bools.

If you abandon the sequence containers and shoot instead for code
that can work with different associative containers, the situation isn’t
much better. Writing for both set and map is close to impossible,
because sets store single objects while maps store pairs of objects.
Even writing for both set and multiset (or map and multimap) is tough.
The insert member function taking only a value has different return
types for sets/maps than for their multi cousins, and you must reli-

18 Item 2 Containers

giously avoid making any assumptions about how many copies of a
value are stored in a container. With map and multimap, you must
avoid using operator[], because that member function exists only for
map.

Face the truth: it’s not worth it. The different containers are different,
and they have strengths and weaknesses that vary in significant
ways. They're not designed to be interchangeable, and there’s little
you can do to paper that over. If you try, you're merely tempting fate,
and fate doesn’t like to be tempted.

Still, the day will dawn when you’ll realize that a container choice you
made was, er, suboptimal, and you’ll need to use a different container
type. You now know that when you change container types, you’ll not
only need to fix whatever problems your compilers diagnose, you'll
also need to examine all the code using the container to see what
needs to be changed in light of the new container’s performance char-
acteristics and rules for invalidation of iterators, pointers, and refer-
ences. If you switch from a vector to something else, you'll also have to
make sure you're no longer relying on vector’'s C-compatible memory
layout, and if you switch to a vector, you’ll have to ensure that you're
not using it to store bools.

Given the inevitability of having to change container types from time
to time, you can facilitate such changes in the usual manner: by
encapsulating, encapsulating, encapsulating. One of the easiest ways
to do this is through the liberal use of typedefs for container types.
Hence, instead of writing this,

class Widget{... };

vector<Widget> vw;

Widget bestWidget;

// give bestWidget a value

vector<Widget>:iteratori= // find a Widget with the
find(vw.begin(), vw.end(), bestWidget); // same value as bestWidget

write this:
class Widget {...};
typedef vector<Widget> WidgetContainer;
WidgetContainer cw;
Widget bestWidget;

WidgetContainer:iterator i = find(cw.begin(), cw.end(), bestWidget);

Containers Item 2 19

This makes it a lot easier to change container types, something that’s
especially convenient if the change in question is simply to add a cus-
tom allocator. (Such a change doesn’t affect the rules for iterator/
pointer/reference invalidation.)

class Widget {...};

template<typename T> // see Item 10 for why this
SpecialAllocator { ... }; // needs to be a template
typedef vector<Widget, SpecialAllocator<Widget> > WidgetContainer;
WidgetContainer cw; // still works

Widget bestWidget;

WidgetContainer:iteratori=
find(cw.begin(), cw.end(), bestWidget); // still works

If the encapsulating aspects of typedefs mean nothing to you, you're
still likely to appreciate the work they can save, especially for iterator
types. For example, if you have an object of type

map< string,
vector<Widget>:iterator,
CIStringCompare> // CIStringCompare is “case-
// insensitive string compare;”
// 1tem 19 describes it

and you want to walk through the map using const_iterators, do you
really want to spell out

map<string, vector<Widget>:iterator, CIStringCompare>::const_iterator

more than once? Once you've used the STL a little while, you’ll realize
that typedefs are your friends.

A typedef is just a synonym for some other type, so the encapsulation
it affords is purely lexical. A typedef doesn’t prevent a client from
doing (or depending on) anything they couldn’t already do (or depend
on). You need bigger ammunition if you want to limit client exposure
to the container choices you've made. You need classes.

To limit the code that may require modification if you replace one con-
tainer type with another, hide the container in a class, and limit the
amount of container-specific information visible through the class
interface. For example, if you need to create a customer list, don’t use
a list directly. Instead, create a CustomerList class, and hide a list in its
private section:

20 Item 3 Containers

class CustomerList {

private:
typedef list<Customer> CustomerContainer;
typedef CustomerContainer:iterator CClterator;

CustomerContainer customers;

public: // limit the amount of list-specific
// information visible through
L // this interface

At first, this may seem silly. After all a customer list is a list, right?
Well, maybe. Later you may discover that you don’t need to insert or
erase customers from the middle of the list as often as you'd antici-
pated, but you do need to quickly identify the top 20% of your cus-
tomers — a task tailor-made for the nth_element algorithm (see
Item 31). But nth_element requires random access iterators. It won’t
work with a list. In that case, your customer “list” might be better
implemented as a vector or a deque.

When you consider this kind of change, you still have to check every
CustomerList member function and every friend to see how they’ll be
affected (in terms of performance and iterator/pointer/reference
invalidation, etc.), but if you've done a good job of encapsulating Cus-
tomerList’s implementation details, the impact on CustomerList clients
should be small. You can’t write container-independent code, but they
might be able to.

Item 3: Make copying cheap and correct for objects
in containers.

Containers hold objects, but not the ones you give them. Instead,
when you add an object to a container (via, e.g., insert or push_back,
etc.), what goes into the container is a copy of the object you specitfy.

Once an object is in a container, it’s not uncommon for it to be copied
further. If you insert something into or erase something from a vector,
string, or deque, existing container elements are typically moved (cop-
ied) around (see Items 5 and 14). If you use any of the sorting algo-
rithms (see Item 31); next_permutation or previous_permutation; remove,
unique, or their ilk (see Item 32); rotate or reverse, etc., objects will be
moved (copied) around. Yes, copying objects is the STL way.

Containers Item 3 21

It may interest you to know how all this copying is accomplished.
That's easy. An object is copied by using its copying member func-
tions, in particular, its copy constructor and its copy assignment oper-
ator. (Clever names, no?) For a user-defined class like Widget, these
functions are traditionally declared like this:

class Widget {
public:
Widget(const Widget&); // copy constructor
Widget& operator=(const Widget&); // copy assignment operator
\

As always, if you don’t declare these functions yourself, your compil-
ers will declare them for you. Also as always, the copying of built-in
types (e.g., ints, pointers, etc.) is accomplished by simply copying the
underlying bits. (For details on copy constructors and assignment
operators, consult any introductory book on C++. In Effective C++,
Items 11 and 27 focus on the behavior of these functions.)

With all this copying taking place, the motivation for this Item should
now be clear. If you fill a container with objects where copying is
expensive, the simple act of putting the objects into the container
could prove to be a performance bottleneck. The more things get
moved around in the container, the more memory and cycles you’ll
blow on making copies. Furthermore, if you have objects where “copy-
ing” has an unconventional meaning, putting such objects into a con-
tainer will invariably lead to grief. (For an example of the kind of grief
it can lead to, see Item 8.)

In the presence of inheritance, of course, copying leads to slicing. That
is, if you create a container of base class objects and you try to insert
derived class objects into it, the derivedness of the objects will be
removed as the objects are copied (via the base class copy constructor)
into the container:

vector<Widget> vw;

class SpecialWidget: // SpecialWidget inherits from
public Widget { ... }; // Widget above

SpecialWidget sw;

vw.push_back(sw); // sw is copied as a base class

// objectinto vw. Its specialness
// is lost during the copying

The slicing problem suggests that inserting a derived class object into
a container of base class objects is almost always an error. If you want

22 Item 3 Containers

the resulting object to act like a derived class object, e.g., invoke
derived class virtual functions, etc., it is always an error. (For more
background on the slicing problem, consult Effective C++, Item 22.
For another example of where it arises in the STL, see Item 38.)

An easy way to make copying efficient, correct, and immune to the
slicing problem is to create containers of pointers instead of contain-
ers of objects. That is, instead of creating a container of Widget, create
a container of Widget*. Copying pointers is fast, it always does exactly
what you expect (it copies the bits making up the pointer), and noth-
ing gets sliced when a pointer is copied. Unfortunately, containers of
pointers have their own STL-related headaches. You can read about
them in Items 7 and 33. As you seek to avoid those headaches while
still dodging efficiency, correctness, and slicing concerns, you'll prob-
ably discover that containers of smart pointers are an attractive
option. To learn more about this option, turn to Item 7.

If all this makes it sound like the STL is copy-crazy, think again. Yes,
the STL makes lots of copies, but it’s generally designed to avoid copy-
ing objects unnecessarily. In fact, it's generally designed to avoid cre-
ating objects unnecessarily. Contrast this with the behavior of C’s and
C++’s only built-in container, the lowly array:

Widget wimaxNumWidgets]; // create an array of maxNumWidgets
// Widgets, default-constructing each one

This constructs maxNumWidgets Widget objects, even if we normally
expect to use only a few of them or we expect to immediately overwrite
each default-constructed value with values we get from someplace
else (e.g., a file). Using the STL instead of an array, we can use a vector
that grows when it needs to:

vector<Widget> vw; // create a vector with zero Widget
// objects that will expand as needed

We can also create an empty vector that contains enough space for
maxNumWidgets Widgets, but where zero Widgets have been con-
structed:

vector<Widget> vw;
vw.reserve(maxNumWidgets); // see Item 14 for details on reserve

Compared to arrays, STL containers are much more civilized. They
create (by copying) only as many objects as you ask for, they do it only
when you direct them to, and they use a default constructor only
when you say they should. Yes, STL containers make copies, and yes,
you need to understand that, but don’t lose sight of the fact that
they’re still a big step up from arrays.

Containers Item 4 23

Item 4: Call empty instead of checking size() against
zero.

For any container ¢, writing
if (c.size() ==0) ...
is essentially equivalent to writing

if (c.empty()) ...

That being the case, you might wonder why one construct should be
preferred to the other, especially in view of the fact that empty is typi-
cally implemented as an inline function that simply returns whether
size returns O.

You should prefer the construct using empty, and the reason is sim-
ple: empty is a constant-time operation for all standard containers,
but for some list implementations, size may take linear time.

But what makes list so troublesome? Why can'’t it, too, offer a con-
stant-time size? The answer has much to do with the range form of
list's unique splicing functions. Consider this code:

list<int> list1;

list<int> list2;

list1.splice(// move all nodes in list2
list1.end(), list2, // from the first occurrence
find(list2.begin(), list2.end(), 5), // of 5 through the last

find(list2.rbegin(), list2.rend(), 10).base() // occurrence of 10 to the
); // end of list1. See Item 28
// for info on the “base()” call

This code won’t work unless list2 contains a 10 somewhere beyond a
5, but let’s assume that’s not a problem. Instead, let’s focus on this
question: how many elements are in list1 after the splice? Clearly, list1
after the splice has as many elements as it did before the splice plus
however many elements were spliced into it. But how many elements
were spliced into it? As many as were in the range defined by
find(list2.begin(), list2.end(), 5) and find(list2.rbegin(), list2.rend(), 10).base().
Okay, how many is that? Without traversing the range and counting
them, there’s no way to know. And therein lies the problem.

Suppose you’re responsible for implementing list. list isn’t just any
container, it’s a standard container, so you know your class will be
widely used. You naturally want your implementation to be as efficient
as possible. You figure that clients will commonly want to find out
how many elements are in a list, so you’d like to make size a constant-

24 Item 5 Containers

time operation. You'd thus like to design list so it always knows how
many elements it contains.

At the same time, you know that of all the standard containers, only
list offers the ability to splice elements from one place to another with-
out copying any data. You reason that many list clients will choose list
specifically because it offers high-efficiency splicing. They know that
splicing a range from one list to another can be accomplished in con-
stant time, and you know that they know it, so you certainly want to
meet their expectation that splice is a constant-time member function.

This puts you in a quandary. If size is to be a constant-time operation,
each list member function must update the sizes of the lists on which
it operates. That includes splice. But the only way for the range ver-
sion of splice to update the sizes of the lists it modifies is for it to count
the number of elements being spliced, and doing that would prevent it
from achieving the constant-time performance you want for it. If you
eliminate the requirement that the range form of splice update the
sizes of the lists it’s modifying, splice can be made constant-time, but
then size becomes a linear-time operation. In general, it will have to
traverse its entire data structure to see how many elements it con-
tains. No matter how you look at it, something — size or the range
form of splice — has to give. One or the other can be a constant-time
operation, but not both.

Different list implementations resolve this conflict in different ways,
depending on whether their authors choose to maximize the efficiency
of size or the range form of splice. If you happen to be using a list imple-
mentation where a constant-time range form of splice was given higher
priority than a constant-time size, you’ll be better off calling empty
than size, because empty is always a constant-time operation. Even if
you're not using such an implementation, you might find yourself
using such an implementation in the future. For example, you might
port your code to a different platform where a different implementa-
tion of the STL is available, or you might just decide to switch to a dif-
ferent STL implementation for your current platform.

No matter what happens, you can’t go wrong if you call empty instead
of checking to see if size() == 0. So call empty whenever you need to
know whether a container has zero elements.

Item 5: Prefer range member functions to their
single-element counterparts.

Quick! Given two vectors, vl and v2, what’'s the easiest way to make
vl’s contents be the same as the second half of v2’s? Don’t agonize

Containers Item 5 25

over the definition of “half” when v2 has an odd number of elements,
just do something reasonable.

Time’s up! If your answer was

vl.assign(v2.begin() + v2.size() / 2, v2.end());

or something quite similar, you get full credit and a gold star. If your
answer involved more than one statement, but didn’t use any kind of
loop, you get nearly full credit, but no gold star. If your answer
involved a loop, you've got some room for improvement, and if your
answer involved multiple loops, well, let’s just say that you really need
this book.

By the way, if your response to the answer to the question included
“Huh?”, pay close attention, because you're going to learn something
really useful.

This quiz is designed to do two things. First, it affords me an opportu-
nity to remind you of the existence of the assign member function, a
convenient beast that too many programmers overlook. It's available
for all the standard sequence containers (vector, string, deque, and list).
Whenever you have to completely replace the contents of a container,
you should think of assignment. If you're just copying one container
to another of the same type, operator= is the assignment function of
choice, but as this example demonstrates, assign is available for the
times when you want to give a container a completely new set of val-
ues, but operator= won’t do what you want.

The second reason for the quiz is to demonstrate why range member
functions are superior to their single-element alternatives. A range
member function is a member function that, like STL algorithms, uses
two iterator parameters to specify a range of elements over which
something should be done. Without using a range member function to
solve this Item’s opening problem, you’d have to write an explicit loop,
probably something like this:

vector<Widget> v1, v2; // assume v1 and v2 are vectors
// of Widgets
vi.clear();
for (vector<Widget>:const_iterator ci = v2.begin() + v2.size() / 2;
cil=v2.end();
++ci)

v1.push_back(*ci);

Item 43 examines in detail why you should try to avoid writing explicit
loops, but you don’t need to read that Item to recognize that writing
this code is a lot more work than is writing the call to assign. As we’ll

26 Item 5 Containers

see shortly, the loop also happens to impose an efficiency penalty, but
we’ll deal with that in a moment.

One way to avoid the loop is to follow the advice of Item 43 and employ
an algorithm instead:

vl.clear();
copy(v2.begin() + v2.size() / 2, v2.end(), back_inserter(v1));

Writing this is still more work than writing the call to assign. Further-
more, though no loop is present in this code, one certainly exists
inside copy (see Item 43). As a result, the efficiency penalty remains.
Again, I'll discuss that below. At this point, I want to digress briefly to
observe that almost all uses of copy where the destination range is
specified using an insert iterator (i.e., via inserter, back_inserter, or
front_inserter) can be — should be — replaced with calls to range mem-
ber functions. Here, for example, the call to copy can be replaced with
a range version of insert:

vl.insert(vl.end(), v2.begin() + v2.size() / 2, v2.end());

This involves slightly less typing than the call to copy, but it also says
more directly what is happening: data is being inserted into v1. The
call to copy expresses that, too, but less directly. It puts the emphasis
in the wrong place. The interesting aspect of what is happening is not
that elements are being copied, it's that v1 is having new data added
to it. The insert member function makes that clear. The use of copy
obscures it. There’s nothing interesting about the fact that things are
being copied, because the STL is built on the assumption that things
will be copied. Copying is so fundamental to the STL, it’s the topic of
Item 3 in this book!

Too many STL programmers overuse copy, so the advice I just gave
bears repeating: Almost all uses of copy where the destination range is
specified using an insert iterator should be replaced with calls to
range member functions.

Returning to our assign example, we've already identified two reasons
to prefer range member functions to their single-element counter-
parts:

= Jt's generally less work to write the code using the range member
functions.

= Range member functions tend to lead to code that is clearer and
more straightforward.

In short, range member functions yield code that is easier to write and
easier to understand. What's not to like?

Containers Item 5 27

Alas, some will dismiss these arguments as matters of programming
style, and developers enjoy arguing about style issues almost as much
as they enjoy arguing about which is the One True Editor. (As if
there’s any doubt. It's Emacs.) It would be helpful to have a more uni-
versally agreed-upon criterion for establishing the superiority of range
member functions to their single-element counterparts. For the stan-
dard sequence containers, we have one: efficiency. When dealing with
the standard sequence containers, application of single-element mem-
ber functions makes more demands on memory allocators, copies
objects more frequently, and/or performs redundant operations com-
pared to range member functions that achieve the same end.

For example, suppose you'd like to copy an array of ints into the front
of a vector. (The data might be in an array instead of a vector in the
first place, because the data came from a legacy C API. For a discus-
sion of the issues that arise when mixing STL containers and C APIs,
see Item 16.) Using the vector range insert function, it’s honestly triv-
ial:

int data[numValues]; // assume numValues is

// defined elsewhere
vector<int> v;

v.insert(v.begin(), data, data + numValues); // insert the ints in data
// into v at the front

Using iterative calls to insert in an explicit loop, it would probably look
more or less like this:

vector<int>:iterator insertLoc(v.begin());

for (inti=0;i < numValues; ++i) {
insertLoc = v.insert(insertLoc, datalil);
++insertLoc;

}

Notice how we have to be careful to save the return value of insert for
the next loop iteration, then increment the returned iterator. If we
didn’t update insertLoc after each insertion, we’d have two problems.
First, all loop iterations after the first would yield undefined behavior,
because each insert call would invalidate insertLoc. Second, even if
insertLoc remained valid, we’d always insert at the front of the vector
(i.e., at v.begin()), and the result would be that the ints copied into v
would end up in reverse order.

If we follow the lead of Item 43 and replace the loop with a call to copy,
we get something like this:

copy(data, data + numValues, inserter(v, v.begin()));

28 Item 5 Containers

By the time the copy template has been instantiated, the code based
on copy and the code using the explicit loop will be almost identical, so
for purposes of an efficiency analysis, we’ll focus on the explicit loop,
keeping in mind that the analysis is equally valid for the code employ-
ing copy. Looking at the explicit loop just makes it easier to under-
stand where the efficiency hits come from. Yes, that’s “hits,” plural,
because the code using the single-element version of insert levies up to
three different performance taxes on you, none of which you pay if
you use the range version of insert.

The first tax consists of unnecessary function calls. Inserting numVal-
ues elements into v one at a time naturally costs you numValues calls to
insert. Using the range form of insert, you pay for only one function
call, a savings of numValues-1 calls. Of course, it’s possible that inlin-
ing will save you from this tax, but then again, it’s possible that it
won’t. Only one thing is sure. With the range form of insert, you defi-
nitely won’t pay it.

Inlining won’t save you from the second tax, which is the cost of ineffi-
ciently moving the existing elements in v to their final post-insertion
positions. Each time insert is called to add a new value to v, every ele-
ment above the insertion point must be moved up one position to
make room for the new element. So the element at position p must be
moved up to position p+1, etc. In our example, we're inserting numVal-
ues elements at the front of v. That means that each element in v prior
to the insertions will have to be shifted up a total of numValues posi-
tions. But each will be shifted up only one position each time insert is
called, so each element will be moved a total of numValues times. If v
has n elements prior to the insertions, a total of n*numValues moves
will take place. In this example, v holds ints, so each move will proba-
bly boil down to an invocation of memmove, but if v held a user-
defined type like Widget, each move would incur a call to that type’s
assignment operator or copy constructor. (Most calls would be to the
assignment operator, but each time the last element in the vector was
moved, that move would be accomplished by calling the element’s
copy constructor.) In the general case, then, inserting numValues new
objects one at a time into the front of a vector<Widget> holding n ele-
ments exacts a cost of n*numValues function calls: (n-1)*numValues
calls to the Widget assignment operator and numValues calls to the
Widget copy constructor. Even if these calls are inlined, you're still
doing the work to move the elements in v numValues times.

In contrast, the Standard requires that range insert functions move
existing container elements directly into their final positions, i.e., at a
cost of one move per element. The total cost is n moves, numValues to

Containers Item 5 29

the copy constructor for the type of objects in the container, the
remainder to that type’s assignment operator. Compared to the single-
element insert strategy, the range insert performs n*(numValues-1) fewer
moves. Think about that for a minute. It means that if numValues is
100, the range form of insert would do 99% fewer moves than the code
making repeated calls to the single-element form of insert!

Before I move on to the third efficiency cost of single-element member
functions vis-a-vis their range counterparts, I have a minor correc-
tion. What I wrote in the previous paragraph is the truth and nothing
but the truth, but it’s not quite the whole truth. A range insert func-
tion can move an element into its final position in a single move only if
it can determine the distance between two iterators without losing its
place. This is almost always possible, because all forward iterators
offer this functionality, and forward iterators are nearly ubiquitous.
All iterators for the standard containers offer forward iterator func-
tionality. So do the iterators for the nonstandard hashed containers
(see Item 25). Pointers acting as iterators into arrays offer such func-
tionality, too. In fact, the only standard iterators that don’t offer for-
ward iterator capabilities are input and output iterators. Thus,
everything I wrote above is true except when the iterators passed to
the range form of insert are input iterators (e.g. istream_iterators — see
Item 6). In that case only, range insert is allowed to move elements into
their final positions one place at a time, and if it's implemented that
way, its advantage as regards number of element movements ceases
to exist. (For output iterators, this issue fails to arise, because output
iterators can’t be used to specify a range for insert.)

The final performance tax levied on those so foolish as to use repeated
single-element insertions instead of a single range insertion has to do
with memory allocation, though it has a nasty copying side to it, too.
As Item 14 explains, when you try to insert an element into a vector
whose memory is full, the vector allocates new memory with more
capacity, copies its elements from the old memory to the new memory,
destroys the elements in the old memory, and deallocates the old
memory. Then it adds the element that is being inserted. Item 14 also
explains that vector implementations increase their capacity by some
multiplicative factor each time they run out of memory, so inserting
numValues new elements often results in new memory being allocated a
number of times proportional to the logarithm of numValues. Inserting
1000 elements one at a time into a vector with a growth rate of 1.5
could thus result in 18 new allocations’ (including their incumbent
copying of elements). In contrast (and, by now, predictably), a range
insertion can figure out how much new memory it needs before it
starts inserting things (assuming it is given forward iterators), so it

t Because log; 51000 = 18 (rounding up to an integer).

30 Item 5 Containers

need not reallocate a vector's underlying memory more than once. As
you can imagine, the savings can be considerable.

The analysis I've just performed is for vectors, but the same reasoning
applies to strings, too. For deques, the reasoning is similar, but deques
manage their memory differently from vectors and strings, so the argu-
ment about repeated memory allocations doesn’t apply. The argument
about moving elements an unnecessarily large number of times, how-
ever, generally does apply (though the details are different), as does
the observation about the number of function calls.

Among the standard sequence containers, that leaves only list, but
here, too, there is a performance advantage to using a range form of
insert instead of a single-element form. The argument about repeated
function calls continues to be valid, of course, but, because of the way
linked lists work, the copying and memory allocation issues fail to
arise. Instead, there is a new problem: repeated superfluous assign-
ments to the next and prev pointers of some nodes in the list.

Each time an element is added to a linked list, the list node holding
that element must have its next and prev pointers set, and of course
the node preceding the new node (let’s call it B, for “before”) must set
its next pointer and the node following the new node (we’ll call it A, for
“after”) must set its prev pointer:

Node being
Node B inserted Node A
— next » next next »| hext » next ——»
-<— prev |« prev |« prev | prev - prev e——o
data data data data data

Additional /‘
nodes will be
inserted here

When a series of new nodes is added one by one by calling list’s single-
element insert, all but the last new node will set its next pointer twice,
once to point to A, a second time to point to the element inserted after
it. A will set its prev pointer to point to a new node each time one is
inserted in front of it. If numValues nodes are inserted in front of A,
numValues-1 superfluous assignments will be made to the inserted
nodes’ next pointers, and numValues-1 superfluous assignments will
be made to A’s prev pointer. All told, that’s 2*(numValues-1) unneces-
sary pointer assignments. Pointer assignments are cheap, of course,
but why pay for them if you don’t have to?

Containers Item 5 31

By now it should be clear that you don’t have to, and the key to evad-
ing the cost is to use list’s range form of insert. Because that function
knows how many nodes will ultimately be inserted, it can avoid the
superfluous pointer assignments, using only a single assignment to
each pointer to set it to its proper post-insertion value.

For the standard sequence containers, then, a lot more than program-
ming style is on the line when choosing between single-element inser-
tions and range insertions. For the associative containers, the
efficiency case is harder to make, though the issue of extra function
call overhead for repeated calls to single-element insert continues to
apply. Furthermore, certain special kinds of range insertions may lead
to optimization possibilities in associative containers, too, but as far
as I can tell, such optimizations currently exist only in theory. By the
time you read this, of course, theory may have become practice, so
range insertions into associative containers may indeed be more effi-
cient than repeated single-element insertions. Certainly they are never
less efficient, so you have nothing to lose by preferring them.

Even without the efficiency argument, the fact remains that using
range member functions requires less typing as you write the code,
and it also yields code that is easier to understand, thus enhancing
your software’s long-term maintainability. Those two characteristics
alone should convince you to prefer range member functions. The effi-
ciency edge is really just a bonus.

Having droned on this long about the wonder of range member func-
tions, it seems only appropriate that I summarize them for you. Know-
ing which member functions support ranges makes it a lot easier to
recognize opportunities to use them. In the signatures below, the
parameter type iterator literally means the iterator type for the con-
tainer, i.e, container::iterator. The parameter type Inputlterator, on the
other hand, means that any input iterator is acceptable.

= Range construction. All standard containers offer a constructor
of this form:

container:containeflnputlterator begin, // beginning of range
Inputlterator end); // end of range

When the iterators passed to this constructor are istream_iterators
or istreambuf_iterators (see Item 29), you may encounter C++’s most
astonishing parse, one that causes your compilers to interpret this
construct as a function declaration instead of as the definition of a
new container object. Item 6 tells you everything you need to know
about that parse, including how to defeat it.

32

Item 5 Containers

Range insertion. All standard sequence containers offer this form
of insert:

void container:insert(iterator position, // where to insert the range
Inputlterator begin, //start of range to insert
Inputlteratorend); // end of range to insert

Associative containers use their comparison function to determine
where elements go, so they offer a signature that omits the posi-
tion parameter:

void container:insert(Inputlterator begin, Inputlterator end);

When looking for ways to replace single-element inserts with range
versions, don’t forget that some single-element variants camou-
flage themselves by adopting different function names. For exam-
ple, push_front and push_back both insert single elements into
containers, even though they’re not called insert. If you see a loop
calling push_front or push_back, or if you see an algorithm such as
copy being passed front_inserter or back_inserter as a parameter,
you've discovered a place where a range form of insert is likely to
be a superior strategy.

Range erasure. Every standard container offers a range form of
erase, but the return types differ for sequence and associative con-
tainers. Sequence containers provide this,

iterator container:erase(iterator begin, iterator end);

while associative containers offer this:

void container:erase(iterator begin, iterator end);

Why the difference? The claim is that having the associative con-
tainer version of erase return an iterator (to the element following
the one that was erased) would incur an unacceptable perfor-
mance penalty. I'm one of many who find this claim specious, but
the Standard says what the Standard says, and what the Stan-
dard says is that sequence and associative container versions of
erase have different return types.

Most of this Item’s efficiency analysis for insert has analogues for
erase. The number of function calls is still greater for repeated
calls to single-element erase than for a single call to range erase. El-
ement values must still be shifted one position at a time towards
their final destination when using single-element erase, while
range erase can move them into their final positions in a single
move.

One argument about vector’s and string’s insert that fails to apply to
erase has to do with repeated allocations. (For erase, of course, it

Containers Item 6 33

would concern repeated deallocations.) That’s because the mem-
ory for vectors and strings automatically grows to accommodate
new elements, but it doesn’t automatically shrink when the num-
ber of elements is reduced. (Item 17 describes how you may re-
duce the unnecessary memory held by a vector or string.)

One particularly important manifestation of range erase is the
erase-remove idiom. You can read all about it in Item 32.

= Range assignment. As | noted at the beginning of this Item, all
standard sequence containers offer a range form of assign:

void container:assign(Inputlterator begin, Inputlterator end);

So there you have it, three solid arguments for preferring range mem-
ber functions to their single-element counterparts. Range member
functions are easier to write, they express your intent more clearly,
and they exhibit higher performance. That's a troika that’s hard to
beat.

Item 6: Be alert for C++’s most vexing parse.

Suppose you have a file of ints and you’d like to copy those ints into a
list. This seems like a reasonable way to do it:

ifstream dataFile("ints.dat");

list<int> data(istream_iterator<int>(dataFile), //warning! this doesn't do
istream_iterator<int>()); // what you think it does

The idea here is to pass a pair of istream_iterators to list’s range con-
structor (see Item 5), thus copying the ints in the file into the list.

This code will compile, but at runtime, it won’'t do anything. It won’t
read any data out of a file. It won’t even create a list. That’s because
the second statement doesn’t declare a list and it doesn’t call a con-
structor. What it does is ... well, what it does is so strange, I dare not
tell you straight out, because you won'’t believe me. Instead, I have to
develop the explanation, bit by bit. Are you sitting down? If not, you
might want to look around for a chair...

We'll start with the basics. This line declares a function f taking a dou-
ble and returning an int:

int f(double d);

This next line does the same thing. The parentheses around the
parameter name d are superfluous and are ignored:

int f(double (d)); // same as above; parens around d are ignored

34 Item 6 Containers

The line below declares the same function. It simply omits the param-
eter name:

int f(double); // same as above; parameter name is omitted

Those three declaration forms should be familiar to you, though the
ability to put parentheses around a parameter name may have been
new. (It wasn’t long ago that it was new to me.)

Let’'s now look at three more function declarations. The first one
declares a function g taking a parameter that’s a pointer to a function
taking nothing and returning a double:

int g(double (*pf)()); // g takes a pointer to a function as a parameter

Here’s another way to say the same thing. The only difference is that
pf is declared using non-pointer syntax (a syntax that’s valid in both C
and C++):

int g(double pf()); // same as above; pf is implicitly a pointer

As usual, parameter names may be omitted, so here’s a third declara-
tion for g, one where the name pf has been eliminated:

int g(double ()); // same as above; parameter name is omitted

Notice the difference between parentheses around a parameter name
(such as d in the second declaration for f) and standing by themselves
(as in this example). Parentheses around a parameter name are
ignored, but parentheses standing by themselves indicate the exist-
ence of a parameter list; they announce the presence of a parameter
that is itself a pointer to a function.

Having warmed ourselves up with these declarations for f and g, we
are ready to examine the code that began this Item. Here it is again:

list<int> data(istream_iterator<int>(dataFile),
istream_iterator<int>());

Brace yourself. This declares a function, data, whose return type is
list<int>. The function data takes two parameters:

® The first parameter is named dataFile. Its type is istream_iterator<int>.
The parentheses around dataFile are superfluous and are ignored.

® The second parameter has no name. Its type is pointer to function
taking nothing and returning an istream_iterator<int>.

Amazing, huh? But it’s consistent with a universal rule in C++, which
says that pretty much anything that can be parsed as a function dec-
laration will be. If you've been programming in C++ for a while, you've

Containers Item 6 35

almost certainly encountered another manifestation of this rule. How
many times have you seen this mistake?

class Widget {...}; // assume Widget has a default constructor
Widget w(); // uh oh...

This doesn’t declare a Widget named w, it declares a function named w
that takes nothing and returns a Widget. Learning to recognize this
Jaux pas is a veritable rite of passage for C++ programmers.

All of which is interesting (in its own twisted way), but it doesn’t help
us say what we want to say, which is that a list<int> object should be
initialized with the contents of a file. Now that we know what parse we
have to defeat, that’s easy to express. It's not legal to surround a for-
mal parameter declaration with parentheses, but it is legal to sur-
round an argument to a function call with parentheses, so by adding
a pair of parentheses, we force compilers to see things our way:

list<int> data((istream_iterator<int>(dataFile)), // note new parens
istream_iterator<int>()); // around first argument
// to list’s constructor

This is the proper way to declare data, and given the utility of
istream_iterators and range constructors (again, see Item 5), it's worth
knowing how to do it.

Unfortunately, not all compilers currently know it themselves. Of the
several I tested, almost half refused to accept data’s declaration unless
it was incorrectly declared without the additional parentheses! To pla-
cate such compilers, you could roll your eyes and use the declaration
for data that I've painstakingly explained is incorrect, but that would
be both unportable and short-sighted. After all, compilers that cur-
rently get the parse wrong will surely correct it in the future, right?
(Surely!)

A better solution is to step back from the trendy use of anonymous
istream_iterator objects in data’s declaration and simply give those iter-
ators names. The following code should work everywhere:

ifstream dataFile("ints.dat");

istream_iterator<int> dataBegin(dataFile);
istream_iterator<int> dataknd;

list<int> data(dataBegin, datakEnd);

This use of named iterator objects runs contrary to common STL pro-
gramming style, but you may decide that’s a price worth paying for
code that’s unambiguous to both compilers and the humans who
have to work with them.

36 Item 7 Containers

Item 7: When using containers of newed pointers,
remember to delete the pointers before the
container is destroyed.

Containers in the STL are remarkably smart. They serve up iterators
for both forward and reverse traversals (via begin, end, rbegin, etc.);
they tell you what type of objects they contain (via their value_type
typedef); during insertions and erasures, they take care of any neces-
sary memory management; they report both how many objects they
hold and the most they may contain (via size and max_size, respec-
tively); and of course they automatically destroy each object they hold
when they (the containers) are themselves destroyed.

Given such brainy containers, many programmers stop worrying
about cleaning up after themselves. Heck, they figure, their containers
will do the worrying for them. In many cases, they're right, but when
the containers hold pointers to objects allocated with new, they’re not
right enough. Sure, a container of pointers will destroy each element it
contains when it (the container) is destroyed, but the “destructor” for
a pointer is a no-op! It certainly doesn’t call delete.

As a result, the following code leads straight to a resource leak:

void doSomething()
{

vector<Widget*> vwp;

for (inti=0; i < SOME_MAGIC_NUMBER; ++i)
vwp.push_back(new Widget);

// use vwp
} // Widgets are leaked here!

Each of vwp’s elements is destroyed when vwp goes out of scope, but
that doesn’t change the fact that delete was never used for the objects
conjured up with new. Such deletion is your responsibility, not that of
your vector. This is a feature. Only you know whether the pointers
should be deleted.

Usually, you want them to be. When that’s the case, making it happen
seems easy enough:

void doSomething()

vector<Widget*> vwp;
// as before

Containers Item 7 37

for(vector<Widget*>:iterator i = vwp.begin();
i I=vwp.end();
+-+i)
delete *i;

}

This works, but only if you're not terribly picky about what you mean
by “works”. One problem is that the new for loop does pretty much
what for_each does, but it’s not as clear as using for_each (see
Item 43). Another is that the code isn’t exception safe. If an exception
is thrown between the time vwp is filled with pointers and the time
you get around to deleteing them, you've leaked resources again. For-
tunately, both problems can be overcome.

To turn your for_each-like loop into an actual use of for_each, you need
to turn delete into a function object. That’s child’s play, assuming you
have a child who likes to play with the STL:

template<typename T>
struct DeleteObject: // Item 40 describes why
public unary_function<const T*, void> { // this inheritance is here

void operator()(const T* ptr) const

delete ptr;
}

L
Now you can do this:

void doSomething()
{

// as before

for_each(vwp.begin(), vwp.end(), DeleteObject<Widget>());
}

Unfortunately, this makes you specify the type of objects that Dele-
teObject will be deleting (in this case, Widget). That’s annoying. vwp is
a vector<Widget*>, so of course DeleteObject will be deleting Widget*
pointers! Duh! This kind of redundancy is more than just annoying,
because it can lead to bugs that are difficult to track down. Suppose,
for example, somebody ill-advisedly decides to inherit from string:

class SpecialString: public string {... };

This is risky from the get-go, because string, like all the standard STL
containers, lacks a virtual destructor, and publicly inheriting from
classes without virtual destructors is a major C++ no-no. (For details,
consult any good book on C++. In Effective C++, the place to look is

38 Item 7 Containers

Item 14.) Still, some people do this kind of thing, so let’s consider how
the following code would behave:

void doSomething()

deque<SpecialString*> dssp;

for_each(dssp.begin(), dssp.end(), // undefined behavior! Deletion

DeleteObject<string>()); // of a derived object via a base
} // class pointer where there is

// no virtual destructor

Note how dssp is declared to hold SpecialString* pointers, but the
author of the for_each loop has told DeleteObject that it will be deleting
string* pointers. It’s easy to understand how such an error could arise.
SpecialString undoubtedly acts a lot like a string, so one can forgive its
clients if they occasionally forget that they are using SpecialStrings
instead of strings.

We can eliminate the error (as well as reduce the number of key-
strokes required of DeleteObject’s clients) by having compilers deduce
the type of pointer being passed to DeleteObject:operator(). All we need
to do is move the templatization from DeleteObject to its operator():

struct DeleteObject { // templatization and base
// class removed here

template<typename T> // templatization added here
void operator()(const T* ptr) const

delete ptr;
}

y
Compilers know the type of pointer being passed to DeleteObject:oper-
ator(), so we have them automatically instantiate an operator() taking
that type of pointer. The downside to this type deduction is that we
give up the ability to make DeleteObject adaptable (see Item 40). Con-
sidering how DeleteObject is designed to be used, it’s difficult to imag-
ine how that could be a problem.

With this new version of DeleteObject, the code for SpecialString clients
looks like this:

void doSomething()
{

deque<SpecialString*> dssp;

Containers Item 7 39

for_each(dssp.begin(), dssp.end(),
DeleteObject()); // ah! well-defined behavior!
}

Straightforward and type-safe, just the way we like it.

But still not exception-safe. If an exception is thrown after the Special-
Strings are newed but before invocation of the call to for_each, it’s
Leakapalooza. That problem can be addressed in a variety of ways,
but the simplest is probably to replace the container of pointers with a
container of smart pointers, typically reference-counted pointers. (If
you're unfamiliar with the notion of smart pointers, you should be
able to find a description in any intermediate or advanced C++ book.
In More Effective C++, the material is in Item 28.)

The STL itself contains no reference-counting smart pointer, and writ-
ing a good one — one that works correctly all the time — is tricky
enough that you don’t want to do it unless you have to. I published
the code for a reference-counting smart pointer in More Effective C++
in 1996, and despite basing it on established smart pointer implemen-
tations and submitting it to extensive pre-publication reviewing by
experienced developers, a small parade of valid bug reports has trick-
led in for years. The number of subtle ways in which reference-count-
ing smart pointers can fail is remarkable. (For details, consult the
More Effective C++ errata list [28].)

Fortunately, there’s rarely a need to write your own, because proven
implementations are not difficult to find. One such smart pointer is
shared_ptr in the Boost library (see Item 50). With Boost’s shared_ptr,
this Item’s original example can be rewritten as follows:

void doSomething()
{

typedef boost::shared_ptr<Widget> SPW; // SPW = “shared_ptr
// to Widget”
vector<SPW> vwp;
for (inti=0; i < SOME_MAGIC_NUMBER; ++i)
vwp.push_back(SPW(new Widget)); // create an SPW from a
// Widget*, then do a
// push_back on it

// use vwp

} // no Widgets are leaked here, not
// even if an exception is thrown
// in the code above

One thing you must never be fooled into thinking is that you can
arrange for pointers to be deleted automatically by creating containers

40 Item 8 Containers

of auto_ptrs. That's a horrible thought, one so perilous, I've devoted
Item 8 to why you should avoid it.

All you really need to remember is that STL containers are smart, but
they’re not smart enough to know whether to delete the pointers they
contain. To avoid resource leaks when you have containers of pointers
that should be deleted, you must either replace the pointers with
smart reference-counting pointer objects (such as Boost’s shared_ptr)
or you must manually delete each pointer in the container before the
container is destroyed.

Finally, it may have crossed your mind that if a struct like DeleteOb-
ject can make it easier to avoid resource leaks for containers holding
pointers to objects, it should be possible to create a similar DeleteArray
struct to make it easier to avoid resource leaks for containers holding
pointers to arrays. Certainly it is possible, but whether it is advisable
is a different matter. Item 13 explains why dynamically allocated
arrays are almost always inferior to vector and string objects, so before
you sit down to write DeleteArray, please review Item 13 first. With
luck, you’ll decide that DeleteArray is a struct whose time will never
come.

Item 8: Never create containers of auto_ptrs.

Frankly, this Item shouldn’t need to be in Effective STL. Containers of
auto_ptr (COAPs) are prohibited. Code attempting to use them
shouldn’t compile. The C++ Standardization Committee expended
untold effort to arrange for that to be the case. I shouldn’t have to say
anything about COAPs, because your compilers should have plenty to
say about such containers, and all of it should be uncomplimentary.

Alas, many programmers use STL platforms that fail to reject COAPs.
Alas even more, many programmers see in COAPs the chimera of a
simple, straightforward, efficient solution to the resource leaks that
often accompany containers of pointers (see Items 7 and 33). As a
result, many programmers are tempted to use COAPs, even though
it’s not supposed to be possible to create them.

I'll explain in a moment why the spectre of COAPs was so alarming
that the Standardization Committee took specific steps to make them
illegal. Right now, I want to focus on a disadvantage that requires no
knowledge of auto_ptr, or even of containers: COAPs aren’t portable.
How could they be? The Standard for C++ forbids them, and better

t If you're interested in the tortured history of auto_ptr standardization, point your web
browser to the auto_ptr Update page [29] at the More Effective C++ web site.

Containers Item 8 41

STL platforms already enforce this. It’s reasonable to assume that as
time goes by, STL platforms that currently fail to enforce this aspect of
the Standard will become more compliant, and when that happens,
code that uses COAPs will be even less portable than it is now. If you
value portability (and you should), you’ll reject COAPs simply because
they fail the portability test.

But maybe you're not of a portability mind-set. If that’s the case,
kindly allow me to remind you of the unique — some would say
bizarre — definition of what it means to copy an auto_ptr.

When you copy an auto_ptr, ownership of the object pointed to by the
auto_ptr is transferred to the copying auto_ptr, and the copied auto_ptr
is set to NULL. You read that right: to copy an auto_ptr is to change its
value:

auto_ptr<Widget> pw1(new Widget); //pw1 points to a Widget

auto_ptr<Widget> pw2(pw1); // pw2 points to pw1’s Widget;
// pw1 is set to NULL. (Ownership
// of the Widget is transferred
// from pw1 to pw2.)

pw1 = pw2; // pw1 now points to the Widget
// again; pw2 is set to NULL

This is certainly unusual, and perhaps it’s interesting, but the reason
you (as a user of the STL) care is that it leads to some very surprising
behavior. For example, consider this innocent-looking code, which
creates a vector of auto_ptr<Widget> and then sorts it using a function
that compares the values of the pointed-to Widgets:

bool widgetAPCompare(const auto_ptr<Widget>& lhs,
const auto_ptr<Widget>&rhs)
{

return *lhs < *rhs; // for this example, assume that
} // operator< exists for Widgets

vector<auto_ptr<Widget> > widgets; // create a vector and then fill it
. // with auto_ptrs to Widgets;

// remember that this should

// notcompile!

sort(widgets.begin(), widgets.end(), // sort the vector
widgetAPCompare);

Everything here looks reasonable, and conceptually, everything is rea-
sonable, but the results need not be reasonable at all. For example,
one or more of the auto_ptrs in widgets may have been set to NULL dur-
ing the sort. The act of sorting the vector may have changed its con-
tents! It is worthwhile understanding how this can be.

42 Item 8 Containers

It can be because one approach to implementing sort — a common
approach, as it turns out — is to use some variation on the quicksort
algorithm. The fine points of quicksort need not concern us, but the
basic idea is that to sort a container, some element of the container is
chosen as the “pivot element,” then a recursive sort is done on the val-
ues greater than and less than or equal to the pivot element. Within
sort, such an approach could look something like this:

template<class RandomAccesslterator, // this declaration for
class Compare> // sort is copied straight
void sort(RandomAccesslterator first, // out of the Standard

RandomAccesslterator last,
Compare comp)

// this typedef is described below
typedef typename iterator_traits<RandomAccesslterator>:value_type
ElementType;

RandomAccesslterator i;
// make i point to the pivot element

ElementType pivotValue(*i); // copy the pivot element into a
// local temporary variable; see
// discussion below

// do the rest of the sorting work
}

Unless you're an experienced reader of STL source code, this may look
intimidating, but it’s really not that bad. The only tricky part is the
reference to iterator_traits<RandomAccesslterator>:value_type, and that’s
just the fancy STL way of referring to the type of object pointed to by
the iterators passed to sort. (When we refer to iterator_traitskRandomAc-
cesslterator>:value_type, we must precede it by typename, because it’s
the name of a type that’s dependent on a template parameter, in this
case, RandomAccesslterator. For more information about this use of
typename, turn to page 7.)

The troublesome statement in the code above is this one,

ElementType pivotValue(*i);

because it copies an element from the range being sorted into a local
temporary object. In our case, the element is an auto_ptr<Widget>, so
this act of copying silently sets the copied auto_ptr — the one in the
vector — to NULL. Furthermore, when pivotValue goes out of scope, it
will automatically delete the Widget it points to. By the time the call to
sort returns, the contents of the vector will have changed, and at least
one Widget will have been deleted. It’s possible that several vector ele-
ments will have been set to NULL and several Widgets will have been

Containers Item 9 43

deleted, because quicksort is a recursive algorithm, so it could well
have copied a pivot element at each level of recursion.

This is a nasty trap to fall into, and that’'s why the Standardization
Committee worked so hard to make sure you're not supposed to be
able to fall into it. Honor its work on your behalf, then, by never creat-
ing containers of auto_ptrs, even if your STL platforms allow it.

If your goal is a container of smart pointers, this doesn’'t mean you're
out of luck. Containers of smart pointers are fine, and Item 50
describes where you can find smart pointers that mesh well with STL
containers. It’s just that auto_ptr is not such a smart pointer. Not at
all.

Item 9: Choose carefully among erasing options.

Suppose you have a standard STL container, ¢, that holds ints,

Container<int> c;

and you’d like to get rid of all the objects in ¢ with the value 1963.
Surprisingly, the way to accomplish this task varies from container
type to container type; no single approach works for all of them.

If you have a contiguous-memory container (vector, deque, or string —
see Item 1), the best approach is the erase-remove idiom (see Item 32):

c.erase(remove(c.begin(), cend(), 1963), //the erase-remove idiom is
c.end(); // the best way to get rid of
// elements with a specific
// value when cis a vector,
// string, or deque

This approach works for lists, too, but, as Item 44 explains, the list
member function remove is more efficient:

c.remove(1963); // the remove member function is the
// best way to get rid of elements with
// a specific value when c is a list

When c is a standard associative container (i.e., a set, multiset, map, or
multimap), the use of anything named remove is completely wrong.
Such containers have no member function named remove, and using
the remove algorithm might overwrite container values (see Item 32),
potentially corrupting the container. (For details on such corruption,
consult Item 22, which also explains why trying to use remove on
maps and multimaps won’t compile, and trying to use it on sets and
multisets may not compile.)

44 Item 9 Containers

No, for associative containers, the proper way to approach the prob-
lem is to call erase:

c.erase(1963); // the erase member function is the
// best way to get rid of elements with
// a specific value when cis a
// standard associative container

Not only does this do the right thing, it takes only logarithmic time for
set and map, and, for multiset and multimap, time linear in the number
of elements with the specified value. (The remove-based techniques for
sequence containers require time linear in the number of elements in
the container.) Furthermore, the associative container erase member
function has the advantage of being based on equivalence instead of
equality, a distinction whose importance is explained in Item 19.

Let’s now revise the problem slightly. Instead of getting rid of every
object in c that has a particular value, let’s eliminate every object for
which the following predicate (see Item 39) returns true:

bool badValue(int x); // returns whether x is “bad”

For the sequence containers (vector, string, deque, and list), all we need
to do is replace each use of remove with remove_if, and we’re done:

c.erase(remove_if(c.begin(), cend(), badValue), // thisis the best way to
c.end()); // get rid of objects
// where badValue
// returns true when cis
// a vector, string, or
// deque

c.remove_if(badValue); // this is the best way to get rid of
// objects where badValue returns
// true when cis a list

For the standard associative containers, it’s not quite so straightfor-
ward. There are two ways to approach the problem, one easier to code,
one more efficient. The easier-but-less-efficient solution uses
remove_copy_if to copy the values we want into a new container, then
swaps the contents of the original container with those of the new one:

AssocContainer<int> c; // cis now one of the
// standard associative
// containers

AssocContainer<int> goodValues; // temporary container
// to hold unremoved
// values
remove_copy_if(c.begin(), c.end(), // copy desired
inserter(goodValues, // values from c to
goodValues.end()), // goodValues
badValue);
c.swap(goodValues); // swap the contents of

// c and goodValues

Containers Item 9 45

The drawback to this approach is that it involves copying all the ele-
ments that aren’t being removed, and such copying might cost us
more than we're interested in paying.

We can dodge that bill by removing the elements from the original
container directly. However, because associative containers offer no
member function akin to remove_if, we must write a loop to iterate
over the elements in c, erasing elements as we go.

Conceptually, the task is simple, and in fact, the code is simple, too.
Unfortunately, the code that does the job correctly is rarely the code
that springs to mind. For example, this is what many programmers
come up with first:

AssocContainer<int> c;

for (AssocContainer<int>:iterator i = c.begin(); // clear, straightforward,

i!=cend(); // and buggy code to
++i) { // erase every element
if (badValue(*i)) c.erase(i); // in c where badValue
} // returns true; don’t
// do this!

Alas, this has undefined behavior. When an element of a container is
erased, all iterators that point to that element are invalidated. Once
c.erase(i) returns, i has been invalidated. That’s bad news for this loop,
because after erase returns, i is incremented via the ++i part of the for
loop.

To avoid this problem, we have to make sure we have an iterator to
the next element of ¢ before we call erase. The easiest way to do that is
to use postfix increment on i when we make the call:

AssocContainer<int> c;

for (AssocContainer<int>:iterator i = c.begin(); //the 3rd part of the for

i I=c.end(); // loop is empty; i is now
/¥ nothing */) { // incremented below
if (badValue(*i)) c.erase(i++); // for bad values, pass the
else ++i; // current i to erase and
} // increment i as a side

// effect; for good values,
// justincrement i

This approach to calling erase works, because the value of the expres-
sion i++ is i’'s old value, but as a side effect, i is incremented. Hence,
we pass i’s old (unincremented) value to erase, but we also increment i
itself before erase begins executing. That’s exactly what we want. As I

46 Item 9 Containers

said, the code is simple, it’s just not what most programmers come up
with the first time they try.

Let’s now revise the problem further. Instead of merely erasing each
element for which badValue returns true, we also want to write a mes-
sage to a log file each time an element is erased.

For the associative containers, this is as easy as easy can be, because
it requires only a trivial modification to the loop we just developed:

ofstream logFile; // log file to write to
AssocContainer<int> ¢;

for (AssocContainer<int>:iterator i = c.begin(); //loop conditions are the

il=c.end();){ // same as before
if (badValue(*i)) {

logFile << "Erasing " << *i << \n’; // write log file

c.erase(i++); // erase element
}
else ++i;

}

It’s vector, string, and deque that now give us trouble. We can’t use the
erase-remove idiom any longer, because there’s no way to get erase or
remove to write the log file. Furthermore, we can’t use the loop we just
developed for associative containers, because it yields undefined
behavior for vectors, strings, and deques! Recall that for such contain-
ers, invoking erase not only invalidates all iterators pointing to the
erased element, it also invalidates all iterators beyond the erased ele-
ment. In our case, that includes all iterators beyond i. It doesn’t mat-
ter if we write i++, ++i, or anything else you can think of, because
none of the resulting iterators is valid.

We must take a different tack with vector, string, and deque. In partic-
ular, we must take advantage of erase’s return value. That return
value is exactly what we need: it’s a valid iterator pointing to the ele-
ment following the erased element once the erase has been accom-
plished. In other words, we write this:

for (SeqContainer<int>:iterator i = c.begin();
il=cend();){

if (badValue(*i)) {

logFile << "Erasing " << *i << "\n’;

i = c.erase(i); // keep ivalid by assigning
} // erase’s return value to it
else ++i;

Containers Item 9 47

This works wonderfully, but only for the standard sequence contain-
ers. Due to reasoning one might question (Item 5 does), erase’s return
type for the standard associative containers is void.! For those con-
tainers, you have to use the postincrement-the-iterator-you-pass-to-
erase technique. (Incidentally, this kind of difference between coding
for sequence containers and coding for associative containers is an
example of why it’s generally ill-advised to try to write container-inde-
pendent code — see Item 2.)

Lest you be left wondering what the appropriate approach for list is, it
turns out that for purposes of iterating and erasing, you can treat list
like a vector/string/deque or you can treat it like an associative con-
tainer; both approaches work for list.

If we take stock of everything we've covered in this Item, we come to
the following conclusions:

= To eliminate all objects in a container that have a particular
value:

If the container is a vector, string, or deque, use the erase-remove id-
iom.
If the container is a list, use list:remove.

If the container is a standard associative container, use its erase
member function.

= To eliminate all objects in a container that satisfy a particular
predicate:

If the container is a vector, string, or deque, use the erase-remove_if
idiom.
If the container is a list, use list:remove_if.

If the container is a standard associative container, use
remove_copy_if and swap, or write a loop to walk the container ele-
ments, being sure to postincrement your iterator when you pass it
to erase.

* To do something inside the loop (in addition to erasing ob-
jects):

If the container is a standard sequence container, write a loop to
walk the container elements, being sure to update your iterator
with erase’s return value each time you call it.

+ This is true only for the forms of erase that take iterator arguments. Associative con-
tainers also offer a form of erase taking a value argument, and that form returns the
number of elements erased. Here, however, we're concerned only with eraseing things
via iterators.

48 Item 10 Containers

If the container is a standard associative container, write a loop to
walk the container elements, being sure to postincrement your it-
erator when you pass it to erase.

As you can see, there’s more to erasing container elements effectively
than just calling erase. The best way to approach the matter depends
on how you identify which objects to erase, the type of container
they’re stored in, and what (if anything) you want to do while you're
erasing them. As long as you're careful and heed the advice in this
Item, you’ll have no trouble. If you're not careful, you run the risk of
producing code that’s needlessly inefficient or that yields undefined
behavior.

Item 10: Be aware of allocator conventions and
restrictions.

Allocators are weird. They were originally developed as an abstraction
for memory models that would allow library developers to ignore the
distinction between near and far pointers in certain 16-bit operating
systems (i.e., DOS and its pernicious spawn), but that effort failed.
Allocators were also designed to facilitate the development of memory
managers that are full-fledged objects, but it turned out that that
approach led to efficiency degradations in some parts of the STL. To
avoid the efficiency hits, the C++ Standardization Committee added
wording to the Standard that emasculated allocators as objects, yet
simultaneously expressed the hope that they would suffer no loss of
potency from the operation.

There’s more. Like operator new and operator new[], STL allocators are
responsible for allocating (and deallocating) raw memory, but an allo-
cator’s client interface bears little resemblance to that of operator new,
operator new[], or even malloc. Finally (and perhaps most remarkable),
most of the standard containers never ask their associated allocator
for memory. Never. The end result is that allocators are, well, alloca-
tors are weird.

That’s not their fault, of course, and at any rate, it doesn’t mean
they're useless. However, before I explain what allocators are good for
(that’s the topic of Item 11), I need to explain what theyre not good
for. There are a number of things that allocators seem to be able to do,
but can’t, and it’'s important that you know the boundaries of the field
before you try to start playing. If you don’t, youll get injured for sure.
Besides, the truth about allocators is so peculiar, the mere act of sum-
marizing it is both enlightening and entertaining. At least I hope it is.

The list of restrictions on allocators begins with their vestigial typedefs
for pointers and references. As I mentioned, allocators were originally
conceived of as abstractions for memory models, and as such it made

Containers Item 10 49

sense for allocators to provide typedefs for pointers and references in
the memory model they defined. In the C++ standard, the default allo-
cator for objects of type T (cunningly known as allocator<T>) offers the
typedefs allocator<T>:pointer and allocator<T>:reference, and it is
expected that user-defined allocators will provide these typedefs, too.

Old C++ hands immediately recognize that this is suspect, because
there’s no way to fake a reference in C++. Doing so would require the
ability to overload operator. (“operator dot”), and that’s not permitted.
In addition, creating objects that act like references is an example of
the use of proxy objects, and proxy objects lead to a number of prob-
lems. (One such problem motivates Item 18. For a comprehensive dis-
cussion of proxy objects, turn to Item 30 of More Effective C++, where
you can read about when they work as well as when they do not.)

In the case of allocators in the STL, it’s not any technical shortcom-
ings of proxy objects that render the pointer and reference typedefs
impotent, it’s the fact that the Standard explicitly allows library imple-
menters to assume that every allocator’s pointer typedef is a synonym
for T* and every allocator’s reference typedef is the same as T&. That’s
right, library implementers may ignore the typedefs and use raw
pointers and references directly! So even if you could somehow find a
way to write an allocator that successfully provided new pointer and
reference types, it wouldn’t do any good, because the STL implemen-
tations you were using would be free to ignore your typedefs. Neat,
huh?

While youre admiring that quirk of standardization, I'll introduce
another. Allocators are objects, and that means they may have mem-
ber functions, nested types and typedefs (such as pointer and refer-
ence), etc., but the Standard says that an implementation of the STL
is permitted to assume that all allocator objects of the same type are
equivalent and always compare equal. Offhand, that doesn’t sound so
awful, and there’s certainly good motivation for it. Consider this code:

template<typename T> // a user-defined allocator

class SpecialAllocator { ... }; // template

typedef SpecialAllocator<Widget> SAW; // SAW = “SpecialAllocator
/! for Widgets”

list<Widget, SAW> L1;
list<Widget, SAW> L2;

L1.splice(L1.begin(), L2); // move L2's nodes to the
// front of L1

Recall that when list elements are spliced from one list to another,
nothing is copied. Instead, a few pointers are adjusted, and the list

50 Item 10 Containers

nodes that used to be in one list find themselves in another. This
makes splicing operations both fast and exception-safe. In the exam-
ple above, the nodes that were in L2 prior to the splice are in L1 after
the splice.

When L1 is destroyed, of course, it must destroy all its nodes (and
deallocate their memory), and because it now contains nodes that
were originally part of L2, L1’s allocator must deallocate the nodes that
were originally allocated by L2’s allocator. Now it should be clear why
the Standard permits implementers of the STL to assume that alloca-
tors of the same type are equivalent. It's so memory allocated by one
allocator object (such as L2’s) may be safely deallocated by another
allocator object (such as L1’s). Without being able to make such an
assumption, splicing operations would be more difficult to implement.
Certainly they wouldn’t be as efficient as they can be now. (The exist-
ence of splicing operations affects other parts of the STL, too. For
another example, see Item 4.)

That’s all well and good, but the more you think about it, the more
you’ll realize just how draconian a restriction it is that STL implemen-
tations may assume that allocators of the same type are equivalent. It
means that portable allocator objects — allocators that will function
correctly under different STL implementations — may not have state.
Let’s be explicit about this: it means that portable allocators may not
have any nonstatic data members, at least not any that affect their
behavior. None. Nada. That means, for example, you can’'t have one
SpecialAllocator<int> that allocates from one heap and a different Spe-
cialAllocator<int> that allocates from a different heap. Such allocators
wouldn't be equivalent, and STL implementations exist where
attempts to use both allocators could lead to corrupt runtime data
structures.

Notice that this is a runtime issue. Allocators with state will compile
just fine. They just may not run the way you expect them to. The
responsibility for ensuring that all allocators of a given type are equiv-
alent is yours. Don’t expect compilers to issue a warning if you violate
this constraint.

In fairness to the Standardization Committee, I should point out that
it included the following statement immediately after the text that per-
mits STL implementers to assume that allocators of the same type are
equivalent:

Implementors are encouraged to supply libraries that ... sup-
port non-equal instances. In such implementations, ... the

Containers Item 10 51

semantics of containers and algorithms when allocator
instances compare non-equal are implementation-defined.

This is a lovely sentiment, but as a user of the STL who is considering
the development of a custom allocator with state, it offers you next to
nothing. You can take advantage of this statement only if (1) you know
that the STL implementations you are using support inequivalent allo-
cators, (2) you are willing to delve into their documentation to deter-
mine whether the implementation-defined behavior of “non-equal”
allocators is acceptable to you, and (3) youre not concerned about
porting your code to STL implementations that may take advantage of
the latitude expressly extended to them by the Standard. In short, this
paragraph — paragraph 5 of section 20.1.5, for those who insist on
knowing — is the Standard’s “I have a dream” speech for allocators.
Until that dream becomes common reality, programmers concerned
about portability will limit themselves to custom allocators with no
state.

I remarked earlier that allocators are like operator new in that they
allocate raw memory, but their interface is different. This becomes
apparent if you look at the declaration of the most common forms of
operator new and allocator<T>:allocate:

void* operator new(size_t bytes);

pointer allocator<T>::allocate(size_type numObjects);
// recall that “pointer” is a typedef
// that’s virtually always T*

Both take a parameter specifying how much memory to allocate, but
in the case of operator new, this parameter specifies a certain number of
bytes, while in the case of allocator<T>:allocate, it specifies how many T
objects are to fit in the memory. On a platform where sizeof(int) == 4,
for example, you'd pass 4 to operator new if you wanted enough mem-
ory to hold an int, but you'd pass 1 to allocator<int>:allocate. (The type
of this parameter is size_t in the case of operator new, while it’s alloca-
tor<T>usize_type in the case of allocate. In both cases, it’s an unsigned
integral type, and typically allocator<T>:size_type is a typedef for size_t,
anyway.) There’s nothing “wrong” about this discrepancy, but the
inconsistent conventions between operator new and allocator<T>:allo-
cate complicate the process of applying experience with custom ver-
sions of operator new to the development of custom allocators.

operator new and allocator<T>:allocate differ in return types, too. opera-
tor new returns a void*, which is the traditional C++ way of represent-
ing a pointer to uninitialized memory. allocator<T>:allocate returns a T*
(via the pointer typedef), which is not only untraditional, it’s premedi-
tated fraud. The pointer returned from allocator<T>:allocate doesn’t

52 Item 10 Containers

point to a T object, because no T has yet been constructed! Implicit in
the STL is the expectation that allocator<T>:allocate’s caller will eventu-
ally construct one or more T objects in the memory it returns (possibly
via allocator<T>:construct, via uninitialized_fill, or via some application of
raw_storage_iterators), though in the case of vector:reserve or
string:reserve, that may never happen (see Item 14). The difference in
return type between operator new and allocator<T>:allocate indicates a
change in the conceptual model for uninitialized memory, and it again
makes it harder to apply knowledge about implementing operator new
to the development of custom allocators.

That brings us to the final curiosity of STL allocators, that most of the
standard containers never make a single call to the allocators with
which they are instantiated. Here are two examples:

list<int> L; // same as list<int, allocator<int> >;
// allocator<int> is never asked to
// allocate memory!

set<Widget, SAW> s; // recall that SAW is a typedef for
// SpecialAllocator<Widget>; no
// SAW will ever allocate memory!

This oddity is true for list and all the standard associative containers
(set, multiset, map, and multimap). That’s because these are node-based
containers, i.e., containers based on data structures in which a new
node is dynamically allocated each time a value is to be stored. In the
case of list, the nodes are list nodes. In the case of the standard asso-
ciative containers, the nodes are usually tree nodes, because the stan-
dard associative containers are typically implemented as balanced
binary search trees.

Think for a moment about how a list<T> is likely to be implemented.
The list itself will be made up of nodes, each of which holds a T object
as well as pointers to the next and previous nodes in the list:

template<typename T, // possible list
typename Allocator = allocator<T> > // implementation
class list {
private:
Allocator alloc; // allocator for objects of type T
struct ListNode { // nodes in the linked list
T data;

ListNode *prev;
ListNode *next;

L

L

Containers Item 10 53

When a new node is added to the list, we need to get memory for it
from an allocator, but we don’t need memory for a T, we need memory
for a ListNode that contains a T. That makes our Allocator object all but
useless, because it doesn’t allocate memory for ListNodes, it allocates
memory for Ts. Now you understand why list never asks its Allocator to
do any allocation: the allocator can’t provide what list needs.

What list needs is a way to get from the allocator type it has to the cor-
responding allocator for ListNodes. This would be tough were it not
that, by convention, allocators provide a typedef that does the job. The
typedef is called other, but it’s not quite that simple, because other is a
typedef nested inside a struct called rebind, which itself is a template
nested inside the allocator — which itself is a template!

Please don't try to think about that last sentence. Instead, look at the
code below, then proceed directly to the explanation that follows.

template<typename T> // the standard allocator is declared
class allocator { // like this, but this could be a user-
public: // written allocator template, too

template<typename U>
struct rebind {
typedef allocator<U> other;

!

-

In the code implementing list<T>, there is a need to determine the type
of the allocator for ListNodes that corresponds to the allocator we have
for Ts. The type of the allocator we have for Ts is the template parame-
ter Allocator. That being the case, the type of the corresponding alloca-
tor for ListNodes is this:

Allocator:rebind<ListNode>::other

Stay with me here. Every allocator template A (e.g., std:allocator, Spe-
cialAllocator, etc.) is expected to have a nested struct template called
rebind. rebind takes a single type parameter, U, and defines nothing
but a typedef, other. other is simply a name for A<U>. As a result,
list<T> can get from its allocator for T objects (called Allocator) to the
corresponding allocator for ListNode objects by referring to Alloca-
tor:zrebind<ListNode>:other.

Maybe this makes sense to you, maybe it doesn’t. (If you stare at it
long enough, it will, but you may have to stare a while. I know I had
to.) As a user of the STL who may want to write a custom allocator,
you don’t really need to know how it works. What you do need to know
is that if you choose to write allocators and use them with the stan-

54 Item 11 Containers

dard containers, your allocators must provide the rebind template,
because standard containers assume it will be there. (For debugging
purposes, it’s also helpful to know why node-based containers of T
objects never ask for memory from the allocators for T objects.)

Hallelujah! We are finally done examining the idiosyncrasies of alloca-
tors. Let us therefore summarize the things you need to remember if
you ever want to write a custom allocator.

= Make your allocator a template, with the template parameter T
representing the type of objects for which you are allocating mem-

ory.

= Provide the typedefs pointer and reference, but always have pointer
be T* and reference be T&.

= Never give your allocators per-object state. In general, allocators
should have no nonstatic data members.

= Remember that an allocator’s allocate member functions are
passed the number of objects for which memory is required, not
the number of bytes needed. Also remember that these functions
return T* pointers (via the pointer typedef), even though no T ob-
jects have yet been constructed.

= Be sure to provide the nested rebind template on which standard
containers depend.

Most of what you have to do to write your own allocator is reproduce a
fair amount of boilerplate code, then tinker with a few member func-
tions, notably allocate and deallocate. Rather than writing the boiler-
plate from scratch, I suggest you begin with the code at Josuttis’
sample allocator web page [23] or in Austern’s article, “What Are Allo-
cators Good For?” [24].

Once you've digested the information in this Item, you’ll know a lot
about what allocators cannot do, but that's probably not what you
want to know. Instead, you’d probably like to know what allocators
can do. That’s a rich topic in its own right, a topic I call “Item 11.”

Item 11: Understand the legitimate uses of custom
allocators.

So you've benchmarked, profiled, and experimented your way to the
conclusion that the default STL memory manager (i.e., allocator<T>) is
too slow, wastes memory, or suffers excessive fragmentation for your
STL needs, and you're certain you can do a better job yourself. Or you
discover that allocator<T> takes precautions to be thread-safe, but

Containers Item 11 55

you're interested only in single-threaded execution and you don’t want
to pay for the synchronization overhead you don’t need. Or you know
that objects in certain containers are typically used together, so you'd
like to place them near one another in a special heap to maximize
locality of reference. Or you'd like to set up a unique heap that corre-
sponds to shared memory, then put one or more containers in that
memory so they can be shared by other processes. Congratulations!
Each of these scenarios corresponds to a situation where custom allo-
cators are well suited to the problem.

For example, suppose you have special routines modeled after malloc
and free for managing a heap of shared memory,

void* mallocShared(size_t bytesNeeded);

void freeShared(void *ptr);
and you’d like to make it possible to put the contents of STL contain-
ers in that shared memory. No problem:

template<typename T>
class SharedMemoryAllocator {
public:

pointer allocate(size_type numObjects, const void *localityHint = 0)

{

return static_cast<pointer>(mallocShared(numObijects * sizeof(T)));

}

void deallocate(pointer ptrToMemory, size_type numObjects)

freeShared(ptrToMemory);
}

-

For information on the pointer type as well as the cast and the multi-
plication inside allocate, see Item 10.

You could use SharedMemoryAllocator like this:

// convenience typedef
typedef
vector<double, SharedMemoryAllocator<double> > SharedDoubleVec;

{ // begin some block

SharedDoubleVec v; // create a vector whose elements
// are in shared memory

b // end the block

56 Item 11 Containers

The wording in the comment next to v's definition is important. v is
using a SharedMemoryAllocator, so the memory v allocates to hold its
elements will come from shared memory. v itself, however — including
all its data members — will almost certainly not be placed in shared
memory. V is just a normal stack-based object, so it will be located in
whatever memory the runtime system uses for all normal stack-based
objects. That’s almost never shared memory. To put both v’s contents
and v itself into shared memory, you'd have to do something like this:

void *pVectorMemory = // allocate enough shared
mallocShared(sizeof(SharedDoubleVec)); // memory to hold a
// SharedDoubleVec object

SharedDoubleVec *pv = // use “placement new” to
new (pVectorMemory) SharedDoubleVec; // create a SharedDoubleVec
// object in the memory;
// see below

// use the object (via pv)

pv->~SharedDoubleVec(); // destroy the object in the
// shared memory

freeShared(pVectorMemory); // deallocate the initial
// chunk of shared memory

I hope the comments make clear how this works. Fundamentally, you
acquire some shared memory, then construct a vector in it that uses
shared memory for its own internal allocations. When you’re done
with the vector, you invoke its destructor, then release the memory
the vector occupied. The code isn’t terribly complicated, but it’s a lot
more demanding than just declaring a local variable as we did above.
Unless you really need a container (as opposed to its elements) to be
in shared memory, I encourage you to avoid this manual four-step
allocate/construct/destroy/deallocate process.

In this example, you've doubtless noticed that the code ignores the
possibility that mallocShared might return a null pointer. Obviously,
production code would have to take such a possibility into account.
Also, construction of the vector in the shared memory is accomplished
by “placement new.” If you're unfamiliar with placement new, your
favorite C++ text should be able to introduce you. If that text happens
to be More Effective C++, you’ll find that the pleasantries are
exchanged in Item 8.

As a second example of the utility of allocators, suppose you have two
heaps, identified by the classes Heap1 and Heap2. Each heap class has
static member functions for performing allocation and deallocation:

Containers Item 11 57

class Heap1 {
public:

static void* alloc(size_t numBytes, const void *memoryBlockToBeNear);
static void dealloc(void *ptr);

-

class Heap2{...}; // has the same alloc/dealloc interface

Further suppose you’d like to co-locate the contents of some STL con-
tainers in different heaps. Again, no problem. First you write an allo-
cator designed to use classes like Heap1 and Heap2 for the actual
memory management:

template<typename T, typename Heap>
class SpecificHeapAllocator {
public:

pointer allocate(size_type numObijects, const void *localityHint = 0)

{
return static_cast<pointer> (Heap::alloc(numObjects * sizeof(T),
localityHint));
}

void deallocate(pointer ptrToMemory, size_type numObjects)

Heap::dealloc(ptrToMemory);
}

L

Then you use SpecificHeapAllocator to cluster containers’ elements
together:

vector<int, SpecificHeapAllocator<int, Heap1> > v; // put both v’s and
set<int, SpecificHeapAllocator<int, Heap1> > s; // s's elements in
// Heap1
list< Widget,
SpecificHeapAllocator<Widget, Heap2> > L; // put both L's and
map<int, string, less<int>, // m’s elements in
SpecificHeapAllocator<pair<const int, string>, // Heap2
Heap2> > m;

In this example, it’s quite important that Heap1 and Heap2 be types
and not objects. The STL offers a syntax for initializing different STL
containers with different allocator objects of the same type, but I'm
not going to show you what it is. That’s because if Heap1 and Heap2
were objects instead of types, they’d be inequivalent allocators, and

58 Item 12 Containers

that would violate the equivalence constraint on allocators that is
detailed in Item 10.

As these examples demonstrate, allocators are useful in a number of
contexts. As long as you obey the constraint that all allocators of the
same type must be equivalent, you’ll have no trouble employing cus-
tom allocators to control general memory management strategies,
clustering relationships, and use of shared memory and other special
heaps.

Item 12: Have realistic expectations about the thread
safety of STL containers.

The world of standard C++ is rather sheltered and old-fashioned. In
this rarefied world, all executables are statically linked. Neither mem-
ory-mapped files nor shared memory exist. There are no window sys-
tems, no networks, no databases, no other processes. That being the
case, you should not be surprised to learn that the Standard says not
a word about threading. The first expectation you should have about
the thread safety of the STL, then, is that it will vary from implemen-
tation to implementation.

Of course, multithreaded programs are common, so most STL vendors
strive to make their implementations work well in a threaded environ-
ment. Even when they do a good job, however, much of the burden
remains on your shoulders, and it’s important to understand why.
There’s only so much STL vendors can do to ease your multithreading
pain, and you need to know what it is.

The gold standard in support for multithreading in STL containers
(and the aspiration of most vendors) has been defined by SGI and is
published at their STL Web Site [21]. In essence, it says that the most
you can hope for from an implementation is the following.

= Multiple readers are safe. Multiple threads may simultaneously
read the contents of a single container, and this will work cor-
rectly. Naturally, there must not be any writers acting on the con-
tainer during the reads.

= Multiple writers to different containers are safe. Multiple
threads may simultaneously write to different containers.

That’s all, and let me make clear that this is what you can hope for,
not what you can expect. Some implementations offer these guaran-
tees, but some do not.

Containers Item 12 59

Writing multithreaded code is hard, and many programmers wish that
STL implementations were completely thread safe out of the box. Were
that the case, programmers might hope to be relieved of the need to
attend to concurrency control themselves. There’s no doubt this
would be a convenient state of affairs, but it would also be very diffi-
cult to achieve. Consider the following ways a library might try to
implement such comprehensive container thread safety:

= Lock a container for the duration of each call to its member func-
tions.

= Lock a container for the lifetime of each iterator it returns (via,
e.g., calls to begin or end).

= Lock a container for the duration of each algorithm invoked on
that container. (This actually makes no sense, because, as Item 32
explains, algorithms have no way to identify the container on
which they are operating. Nevertheless, we’ll examine this option
here, because it’s instructive to see why it wouldn’t work even if it
were possible.)

Now consider the following code. It searches a vector<int> for the first
occurrence of the value 5, and, if it finds one, changes that value to O.

vector<int> v;

vector<int>:iterator first5(find(v.begin(), v.end(), 5)); // Line 1
if (first5 != v.end()) { // Line 2

*first5 = 0; // Line 3
}

In a multithreaded environment, it's possible that a different thread
will modify the data in v immediately after completion of Line 1. If that
were to happen, the test of first5 against v.end on Line 2 would be
meaningless, because v’s values would be different from what they
were at the end of Line 1. In fact, such a test could yield undefined
results, because another thread could have intervened between Lines
1 and 2 and invalidated first5, perhaps by performing an insertion that
caused the vector to reallocate its underlying memory. (That would
invalidate all the vector’s iterators. For details on this reallocation
behavior, turn to Item 14.) Similarly, the assignment to *first5 on Line
3 is unsafe, because another thread might execute between Lines 2
and 3 in such a way as to invalidate first5, perhaps by erasing the ele-
ment it points to (or at least used to point to).

None of the approaches to locking listed above would prevent these
problems. The calls to begin and end in Line 1 both return too quickly

60 Item 12 Containers

to offer any help, the iterators they generate last only until the end of
that line, and find also returns at the end of that line.

For the code above to be thread safe, v must remain locked from Line
1 through Line 3, and it’s difficult to imagine how an STL implementa-
tion could deduce that automatically. Bearing in mind the typically
high cost of synchronization primitives (e.g., semaphores, mutexes,
etc.), it'’s even more difficult to imagine how an implementation could
do it without imposing a significant performance penalty on programs
that knew a priori — that were designed in such a way — that no more
than one thread had access to v during the course of Lines 1-3.

Such considerations explain why you can’t expect any STL implemen-
tation to make your threading woes disappear. Instead, you’ll have to
manually take charge of synchronization control in these kinds of sce-
narios. In this example, you might do it like this:

vector<int>v;

getMutexFor(v);

vector<int>:iterator first5(find(v.begin(), v.end(), 5));
if (first5 = v.end()) { // this is now safe
*first5 =0; // sois this

}

releaseMutexFor(v);

A more object-oriented solution is to create a Lock class that acquires
a mutex in its constructor and releases it in its destructor, thus mini-
mizing the chances that a call to getMutexFor will go unmatched by a
call to releaseMutexFor. The essence of such a class (really a class tem-
plate) is this:

template<typename Container> // skeletal template for classes
class Lock { // that acquire and release mutexes
public: // for containers; many details

// have been omitted

Lock(const Container& container)
: c(container)

{
getMutexFor(c); // acquire mutex in the constructor
~Lock()
{
releaseMutexFor(c); // release it in the destructor
}
private:

const Container&c;
|3

Containers Item 12 61

The idea of using a class (like Lock) to manage the lifetime of resources
(such as mutexes) is generally known as resource acquisition is initial-
ization, and you should be able to read about it in any comprehensive
C++ textbook. A good place to start is Stroustrup’s The C++ Program-
ming Language [7], because Stroustrup popularized the idiom, but
you can also turn to Item 9 of More Effective C++. No matter what
source you consult, bear in mind that the above Lock is stripped to the
bare essentials. An industrial-strength version would require a num-
ber of enhancements, but such a fleshing-out would have nothing to
do with the STL. Furthermore, this minimalist Lock is enough to see
how we could apply it to the example we’'ve been considering:

vector<int> v;

{ // create new block
Lock<vector<int> > lock(v); // acquire mutex
vector<int>:iterator first5(find(v.begin(), v.end(), 5));

if (first5 = v.end()) {
*first5 = 0;
}

} // close block, automatically
// releasing the mutex

Because a Lock object releases the container’s mutex in the Lock’s
destructor, it’s important that the Lock be destroyed as soon as the
mutex should be released. To make that happen, we create a new
block in which to define the Lock, and we close that block as soon as
we no longer need the mutex. This sounds like we're just trading the
need to call releaseMutexFor with the need to close a new block, but
that’s not an accurate assessment. If we forget to create a new block
for the Lock, the mutex will still be released, but it may happen later
than it should — when control reaches the end of the enclosing block.
If we forget to call releaseMutexFor, we never release the mutex.

Furthermore, the Lock-based approach is robust in the presence of
exceptions. C++ guarantees that local objects are destroyed if an
exception is thrown, so Lock will release its mutex even if an exception
is thrown while we're using the Lock object.’ If we relied on manual
calls to getMutexFor and releaseMutexFor, we’d never relinquish the
mutex if an exception was thrown after calling getMutexFor but before
calling releaseMutexFor.

Exceptions and resource management are important, but they're not
the subject of this Item. This Item is about thread safety in the STL.
When it comes to thread safety and STL containers, you can hope for

t There’s a loophole in the guarantee. If an exception is not caught at all, the program
will terminate. In that case, local objects (such as lock) may not have their destructors
called. Some compilers call them, some do not. Both behaviors are valid.

62 Item 12 Containers

a library implementation that allows multiple readers on one con-
tainer and multiple writers on separate containers. You can’t hope for
the library to eliminate the need for manual concurrency control, and
you can’t rely on any thread support at all.

vector and string

All the STL containers are useful, but if you're like most C++ program-
mers, you'll find yourself reaching for vector and string more often than
their compatriots. That’s to be expected. vector and string are designed
to replace most applications of arrays, and arrays are so useful,
they’ve been included in every commercially successful programming
language from COBOL to Java.

The Items in this chapter cover vectors and strings from a number of
perspectives. We begin with a discussion of why the switch from
arrays is worthwhile, then look at ways to improve vector and string
performance, identify important variations in string implementations,
examine how to pass vector and string data to APIs that understand
only C, and learn how to eliminate excess memory allocation. We con-
clude with an examination of an instructive anomaly, vector<bool>,
the little vector that couldn’t.

Each of the Items in this chapter will help you take the two most use-
ful containers in the STL and refine their application. By the time
we’re done, you'll know how to make them serve you even better.

Item 13: Prefer vector and string to dynamically
allocated arrays.

The minute you decide to use new for a dynamic allocation, you adopt
the following responsibilities:

1. You must make sure that somebody will later delete the alloca-
tion. Without a subsequent delete, your new will yield a resource
leak.

2. You must ensure that the correct form of delete is used. For an
allocation of a single object, “delete” must be used. For an array
allocation, “delete []” is required. If the wrong form of delete is

64 Item 13 vector and string

used, results will be undefined. On some platforms, the program
will crash at runtime. On others, it will silently blunder forward,
sometimes leaking resources and corrupting memory as it goes.

3. You must make sure that delete is used exactly once. If an allo-
cation is deleted more than once, results are again undefined.

That’s quite a set of responsibilities, and I can’t understand why you’d
want to adopt them if it wasn’t necessary. Thanks to vector and string,
it isn’t necessary anywhere near as often as it used to be.

Any time you find yourself getting ready to dynamically allocate an
array (i.e., plotting to write “new T[...]”), you should consider using a
vector or a string instead. (In general, use string when T is a character
type and use vector when it’s not, though later in this Item, we’ll
encounter a scenario where a vector<char> may be a reasonable design
choice.) vector and string eliminate the burdens above, because they
manage their own memory. Their memory grows as elements are
added to these containers, and when a vector or string is destroyed, its
destructor automatically destroys the elements in the container and
deallocates the memory holding those elements.

In addition, vector and string are full-fledged STL sequence containers,
so they put at your disposal the complete arsenal of STL algorithms
that work on such containers. True, arrays can be used with STL
algorithms, too, but arrays don’t offer member functions like begin,
end, and size, nor do they have nested typedefs like iterator,
reverse_iterator, or value_type. And of course char* pointers can hardly
compete with the scores of specialized member functions proffered by
string. The more you work with the STL, the more jaundiced the eye
with which you’ll come to view built-in arrays.

If you're concerned about the legacy code you must continue to sup-
port, all of which is based on arrays, relax and use vectors and strings
anyway. Item 16 shows how easy it is to pass the data in vectors and
strings to APIs that expect arrays, so integration with legacy code is
generally not a problem.

Frankly, I can think of only one legitimate cause for concern in replac-
ing dynamically allocated arrays with vectors or strings, and it applies
only to strings. Many string implementations employ reference count-
ing behind the scenes (see Item 15), a strategy that eliminates some
unnecessary memory allocations and copying of characters and that
can improve performance for many applications. In fact, the ability to
optimize strings via reference counting was considered so important,
the C++ Standardization Committee took specific steps to make sure it
was a valid implementation.

vector and string Item 13 65

Alas, one programmer’s optimization is another’s pessimization, and if
you use reference-counted strings in a multithreaded environment,
you may find that the time saved by avoiding allocations and copying
is dwarfed by the time spent on behind-the-scenes concurrency con-
trol. (For details, consult Sutter’s article, “Optimizations That Aren't
(In a Multithreaded World)” [20].) If you're using reference-counted
strings in a multithreaded environment, then, it makes sense to keep
an eye out for performance problems arising from their support for
thread safety.

To determine whether you're using a reference-counting implementa-
tion for string, it’s often easiest to consult the documentation for your
library. Because reference counting is considered an optimization,
vendors generally tout it as a feature. An alternative is to look at the
source code for your libraries’ implementations of string. I don’t gener-
ally recommend trying to figure things out from library source code,
but sometimes it’s the only way to find out what you need to know. If
you choose this approach, remember that string is a typedef for
basic_string<char> (and wstring is a typedef for basic_string<wchar_t>),
so what you really want to look at is the template basic_string. The eas-
iest thing to check is probably the class’s copy constructor. Look to
see if it increments a reference count somewhere. If it does, string is
reference counted. If it doesn’t, either string isn’t reference counted or
you misread the code. Ahem.

If the string implementations available to you are reference counted
and you are running in a multithreaded environment where you've
determined that string’s reference counting support is a performance
problem, you have at least three reasonable choices, none of which
involves abandoning the STL. First, check to see if your library imple-
mentation is one that makes it possible to disable reference counting,
often by changing the value of a preprocessor variable. This won’t be
portable, of course, but given the amount of work involved, it's worth
investigating. Second, find or develop an alternative string implemen-
tation (or partial implementation) that doesn’t use reference counting.
Third, consider using a vector<char> instead of a string. vector imple-
mentations are not allowed to be reference counted, so hidden multi-
threading performance issues fail to arise. Of course, you forgo string’s
fancy member functions if you switch to vector<char>, but most of that
functionality is available through STL algorithms anyway, so you're
not so much giving up functionality as you are trading one syntax for
another.

66 Item 14 vector and string

The upshot of all this is simple. If youre dynamically allocating
arrays, you're probably taking on more work than you need to. To
lighten your load, use vectors or strings instead.

Item 14: Use reserve to avoid unnecessary
reallocations.

One of the most marvelous things about STL containers is that they
automatically grow to accommodate as much data as you put into
them, provided only that you don’t exceed their maximum size. (To
discover this maximum, just call the aptly named max_size member
function.) For vector and string, growth is handled by doing the moral
equivalent of a realloc whenever more space is needed. This realloc-like
operation has four parts:

1. Allocate a new block of memory that is some multiple of the con-
tainer’s current capacity. In most implementations, vector and
string capacities grow by a factor of between 1.5 and 2 each time.

2. Copy all the elements from the container’s old memory into its
NEW Memory.

3. Destroy the objects in the old memory.
4. Deallocate the old memory.

Given all that allocation, deallocation, copying, and destruction, it
should not stun you to learn that these steps can be expensive. Natu-
rally, you don’'t want to perform them any more frequently than you
have to. If that doesn’t strike you as natural, perhaps it will when you
consider that each time these steps occur, all iterators, pointers, and
references into the vector or string are invalidated. That means that the
simple act of inserting an element into a vector or string may also
require updating other data structures that use iterators, pointers, or
references into the vector or string being expanded.

The reserve member function allows you to minimize the number of
reallocations that must be performed, thus avoiding the costs of real-
location and iterator/pointer/reference invalidation. Before I explain
how reserve can do that, however, let me briefly recap four interrelated
member functions that are sometimes confused. Among the standard
containers, only vector and string offer all of these functions.

= size() tells you how many elements are in the container. It does not
tell you how much memory the container has allocated for the ele-
ments it holds.

vector and string Item 14 67

® capacity() tells you how many elements the container can hold in
the memory it has already allocated. This is how many total ele-
ments the container can hold in that memory, not how many more
elements it can hold. If you'd like to find out how much unoccu-
pied memory a vector or string has, you must subtract size() from
capacity(). If size and capacity return the same value, there is no
empty space in the container, and the next insertion (via insert or
push_back, etc.) will trigger the reallocation steps above.

= resize(Container:size_type n) forces the container to change to n the
number of elements it holds. After the call to resize, size will return
n. If n is smaller than the current size, elements at the end of the
container will be destroyed. If n is larger than the current size, new
elements will be added to the end of the container, either by copy-
ing a default-constructed element or by copying an object you pro-
vide via an additional parameter. If n is larger than the current
capacity, a reallocation will take place before elements are added.

= reserve(Container:size_type n) forces the container to change its ca-
pacity to at least n, provided n is no less than the current size.
This typically forces a reallocation, because the capacity needs to
be increased. (If n is less than the current capacity, vector ignores
the call and does nothing. string may reduce its capacity to the
maximum of size() and n, but the string’s size definitely remains
unchanged. In my experience, using reserve to trim the excess ca-
pacity from a string is generally less successful than using “the
swap trick,” which is the topic of Item 17.) Note that calling reserve
never changes the number of elements in a container (i.e., its size).

This recap should make it clear that reallocations (including their
constituent memory allocations and deallocations, object copying and
destruction, and invalidation of iterators, pointers, and references)
occur whenever an element needs to be inserted and the container’s
capacity is insufficient. The key to avoiding reallocations, then, is to
use reserve to set a container’s capacity to a sufficiently large value as
soon as possible, ideally right after the container is constructed.

For example, suppose you'd like to create a vector<int> holding the
values 1-1000. Without using reserve, you might do it like this:

vector<int>v;
for (inti=1;i<=1000; ++i) v.push_back(i);

This code will typically result in between two and 18 reallocations
during the course of the loop.

68 Item 15 vector and string

Modifying the code to use reserve gives us this:

vector<int>v;
v.reserve(1000);

for (inti=1;i <= 1000; ++i) v.push_back(i);
This should result in zero reallocations during the loop.

The relationship between size and capacity makes it possible to predict
when an insertion will cause a vector or string to perform a realloca-
tion, and that, in turn, makes it possible to predict when an insertion
will invalidate iterators, pointers, and references into a container. For
example, given this code,

string s;

if (s.size() < s.capacity()) {
s.push_back('x");

}
the call to push_back can’t invalidate iterators (other than to s’s end),
pointers, or references into the string, because the string’s capacity is
guaranteed to be greater than its size. If, instead of performing a
push_back, the code did an insert into an arbitrary location in the string,
we’d still be guaranteed that no reallocation would take place during
the insertion, but, in accord with the usual rule for iterator invalidation
accompanying a string insertion, all iterators/pointers/references from
the insertion point to the end of the string would be invalidated.

Getting back to the main point of this Item, there are two common
ways to use reserve to avoid unneeded reallocations. The first is appli-
cable when you know exactly or approximately how many elements
will ultimately end up in your container. In that case, as in the vector
code above, you simply reserve the appropriate amount of space in
advance. The second way is to reserve the maximum space you could
ever need, then, once you've added all your data, trim off any excess
capacity. The trimming part isn’t difficult, but I'm not going to show it
here, because there’s a trick to it. To learn the trick, turn to Item 17.

Item 15: Be aware of variations in string
implementations.

Bjarne Stroustrup once wrote an article with the curious title, “Six-
teen Ways to Stack a Cat” [27]. It turns out that there are almost as
many ways to implement strings. As experienced and sophisticated
software engineers, of course, we're supposed to pooh-pooh “imple-

vector and string Item 15 69

mentation details,” but if Einstein is right and God is in the details,
reality requires that we sometimes get religion. Even when the details
don’t matter, having some idea about them puts us in a position to be
sure they don’t matter.

For example, what is the size of a string object? In other words, what
value does sizeof(string) return? This could be an important question if
you're keeping a close eye on memory consumption, and you're think-
ing of replacing a raw char* pointer with a string object.

The news about sizeof(string) is “interesting,” which is almost certainly
what you do not want to hear if you're concerned about space. While
it’s not uncommon to find string implementations in which strings are
the same size as char* pointers, it’s also easy to find string implemen-
tations where each string is seven times that size. Why the difference?
To understand that, we have to know what data a string is likely to
store as well as where it might decide to store it.

Virtually every string implementation holds the following information:
= The size of the string, i.e., the number of characters it contains.

= The capacity of the memory holding the string’s characters. (For a
review of the difference between a string’s size and its capacity,
see Item 14.)

= The value of the string, i.e., the characters making up the string.
In addition, a string may hold

= A copy of its allocator. For an explanation of why this field is op-
tional, turn to Item 10 and read about the curious rules governing
allocators.

string implementations that depend on reference counting also contain
= The reference count for the value.

Different string implementations put these pieces of information
together in different ways. To demonstrate what I mean, I'll show you
the data structures used by four different string implementations.
There’s nothing special about these selections. They all come from
STL implementations that are commonly used. They just happen to be
the string implementations in the first four libraries I checked.

In implementation A, each string object contains a copy of its allocator,
the string’s size, its capacity, and a pointer to a dynamically allocated
buffer containing both the reference count (the “RefCnt”) and the
string’s value. In this implementation, a string object using the default
allocator is four times the size of a pointer. With a custom allocator,

70 Item 15 vector and string

the string object would be bigger by about the size of the allocator
object:

Allocator
Size
Capacity
Pointer
string object

| RefCnt | Value & 4 |

Implementation A

Implementation B’s string objects are the same size as a pointer,
because they contain nothing but a pointer to a struct. Again, this
assumes that the default allocator is used. As in Implementation A, if
a custom allocator is used, the string object’s size will increase by
about the size of the allocator object. In this implementation, use of
the default allocator requires no space, thanks to an optimization
present here but not present in Implementation A.

The object pointed to by B’s string contains the string’s size, capacity,
and reference count, as well as a pointer to a dynamically allocated
buffer holding the string’s value. The object also contains some addi-
tional data related to concurrency control in multithreaded systems.
Such data is outside our purview here, so I've just labeled that part of
the data structure “Other:”

Size

string object Capacity
RefCnt

Pointer ——{ Value 4 4 |

Other

Implementation B

The box for “Other” is larger than the other boxes, because I've drawn
the boxes to scale. If one box is twice the size of another, the larger
box uses twice as many bytes as the smaller one. In Implementation
B, the data for concurrency control is six times the size of a pointer.

string objects under Implementation C are always the size of a pointer,
but this pointer points to a dynamically allocated buffer containing
everything related to the string: its size, capacity, reference count, and

vector and string Item 15 71

value. There is no per-object allocator support. The buffer also holds
some data concerning the shareability of the value, a topic we’ll not
consider here, so I've labeled it “X”. (If you're interested in why a refer-
ence counted value might not be shareable in the first place, consult
Item 29 of More Effective C++.)

| Size |Capacity| RefCnt [X]| Value 4 4]

string object
Implementation C

Implementation D’s string objects are seven times the size of a pointer
(still assuming use of the default allocator). This implementation
employs no reference counting, but each string contains an internal
buffer large enough to represent string values of up to 15 characters.
Small strings can thus be stored entirely within the string object, a
feature sometimes known as the “small string optimization.” When a
string’s capacity exceeds 15, the first part of the buffer is used as a
pointer to dynamically allocated memory, and the string’s value
resides in that memory:

Allocator Allocator
Pointer ——{ Value 4 4 |
Value Unused
Buffer
Space
Size Size
Capacity Capacity
string object string object
(capacity < 15) (capacity > 15)

Implementation D

These diagrams do more than just prove I can read source code and
draw pretty pictures. They also allow you to deduce that creation of a
string in a statement such as this,

string s("Perse"); // Our dog is named “Persephone’ but we
// usually just call her “Perse’ Visit her web site
// at http://www.aristeia.com/Persephone/

will cost you zero dynamic allocations under Implementation D, one
under Implementations A and C, and two under Implementation B
(one for the object pointed to by the string object, one for the character

http://www.aristeia.com/Persephone/

72 Item 15 vector and string

buffer pointed to by that object). If you're concerned about the num-
ber of times you dynamically allocate and deallocate memory, or if
you’re concerned about the memory overhead that often accompanies
such allocations, you might want to shy away from Implementation B.
On the other hand, the fact that Implementation B’s data structure
includes specific support for concurrency control in multithreaded
systems might mean that it meets your needs better than implemen-
tations A or C, the number of dynamic allocations notwithstanding.
(Implementation D requires no special support for multithreading,
because it doesn’t use reference counting. For more on the interaction
of threading and reference counted strings, see Item 13. For informa-
tion on what you may reasonably hope for in the way of threading
support in STL containers, consult Item 12.)

In a design based on reference counting, everything outside the string
object can be shared by multiple strings (if they have the same value),
so something else we can observe from the diagrams is that Imple-
mentation A offers less sharing than B or C. In particular, Implemen-
tations B and C can share a string’s size and capacity, thus potentially
reducing the amortized per-object cost of storing that data. Interest-
ingly, the fact that Implementation C fails to support per-object allo-
cators means that it is the only implementation that can share
allocators: all strings must use the same one! (Again, for details on the
rules governing allocators, turn to Item 10.) Implementation D shares
no data across string objects.

An interesting aspect of string behavior you can'’t fully deduce from the
diagrams is the policy regarding memory allocation for small strings.
Some implementations refuse to allocate memory for fewer than a cer-
tain number of characters, and Implementations A and D are among
them. Look again at this statement:

string s("Perse"); // sis a string of size 5

Implementation A has a minimum allocation size of 32 characters, so
though s’s size is 5 under all implementations, its capacity under
Implementation A is 31. (The 32nd character is presumably reserved
for a trailing null, thus making it easy to implement the c_str member
function.) Implementation D’s minimum buffer size is 16, including
room for a trailing null, so under Implementation D, s’s capacity is 15.
Of course, what distinguishes Implementation D in this area is that
the memory for strings with capacity less than 16 is contained within
the string object itself. Implementation B has no minimum allocation,
and under Implementation B, s’s capacity is 7. (Why it’s not 6 or 5, I
don’t know. I didn’t read the source code that closely, sorry.)

vector and string Item 15 73

I hope it’s obvious that the various implementations’ policies on mini-
mum allocations might be important to you if you expect to have lots
of short strings and either (1) your release environment has very little
memory or (2) you are concerned about locality of reference and want
to cluster strings on as few pages as possible.

Clearly, string implementations have more degrees of freedom than are
apparent at first glance, and equally clearly, different implementers
have taken advantage of this design flexibility in different ways. Let’s
summarize the things that vary:

= string values may or may not be reference counted. By default,
many implementations do use reference counting, but they usu-
ally offer a way to turn it off, often via a preprocessor macro.
Item 13 gives an example of specific conditions under which you
might want to turn it off, but you might want to do so for other
reasons, too. For example, reference counting helps only when
strings are frequently copied, and some applications just don’t
copy strings often enough to justify the overhead.

® string objects may range in size from one to at least seven times
the size of char* pointers.

® Creation of a new string value may require zero, one, or two dy-
namic allocations.

® string objects may or may not share information on the string’s
size and capacity.

® strings may or may not support per-object allocators.

= Different implementations have different policies regarding mini-
mum allocations for character buffers.

Now, don’t get me wrong. I think string is one of the most important
components of the standard library, and I encourage you to use it as
often as you can. Item 13, for example, is devoted to why you should
use string in place of dynamically allocated character arrays. At the
same time, if you're to make effective use of the STL, you need to be
aware of the variability in string implementations, especially if you're
writing code that must run on different STL platforms and you face
stringent performance requirements.

Besides, string seems so conceptually simple. Who’d have thought the
implementations could be so interesting?

74 Item 16 vector and string

Item 16: Know how to pass vector and string data to
legacy APIs.

Since C++ was standardized in 1998, the C++ elite haven’t been terri-
bly subtle in their attempt to nudge programmers away from arrays
and towards vectors. They've been similarly overt in trying to get devel-
opers to shift from char* pointers to string objects. There are good rea-
sons for making these changes, including the elimination of common
programming errors (see Item 13) and the ability to take full advan-
tage of the power of the STL algorithms (see, e.g., Item 31).

Still, obstacles remain, and one of the most common is the existence
of legacy C APIs that traffic in arrays and char* pointers instead of vec-
tor and string objects. Such APIs will exist for a long time, so we must
make peace with them if we are to use the STL effectively.

Fortunately, it's easy. If you have a vector v and you need to get a
pointer to the data in v that can be viewed as an array, just use &v[0].
For a string s, the corresponding incantation is simply s.c_str(). But
read on. As the fine print in advertising often points out, certain
restrictions apply.

Given

vector<int>v;

the expression v[0] yields a reference to the first element in the vector,
so &v[0] is a pointer to that first element. The elements in a vector are
constrained by the C++ Standard to be stored in contiguous memory,
just like an array, so if we wish to pass v to a C API that looks some-
thing like this,

void doSomething(const int* pints, size_t numints);

we can do it like this:

doSomething(&v[0], v.size());

Maybe. Probably. The only sticking point is if v is empty. If it is, v.size()
is zero, and &v[0] attempts to produce a pointer to something that
does not exist. Not good. Undefined results. A safer way to code the
call is this:

if ('v.empty()) {
doSomething(&v[0], v.size());
}

If you travel in the wrong circles, you may run across shady charac-
ters who will tell you that you can use v.begin() in place of &v[0],
because (these loathsome creatures will tell you) begin returns an iter-

vector and string Item 16 75

ator into the vector, and for vectors, iterators are really pointers. That’s
often true, but as Item 50 reveals, it’s not always true, and you should
never rely on it. The return type of begin is an iterator, not a pointer,
and you should never use begin when you need to get a pointer to the
data in a vector. If you're determined to type v.begin() for some reason,
type &*v.begin(), because that will yield the same pointer as &v[0],
though it’s more work for you as a typist and more obscure for people
trying to make sense of your code. Frankly, if you're hanging out with
people who tell you to use v.begin() instead of &v[0], you need to
rethink your social circle.

The approach to getting a pointer to container data that works for vec-
tors isn’t reliable for strings, because (1) the data for strings are not
guaranteed to be stored in a single chunk of contiguous memory, and
(2) the internal representation of a string is not guaranteed to end with
a null character. This explains the existence of the string member
function c_str, which returns a pointer to the value of the string in a
form designed for C. We can thus pass a string s to this function,

void doSomething(const char *pString);
like this:

doSomething(s.c_str());

This works even if the string is of length zero. In that case, c_str will
return a pointer to a null character. It also works if the string has
embedded nulls. If it does, however, doSomething is likely to interpret
the first embedded null as the end of the string. string objects don’t
care if they contain null characters, but char*-based C APIs do.

Look again at the doSomething declarations:

void doSomething(const int* pints, size_t numints);
void doSomething(const char *pString);

In both cases, the pointers being passed are pointers to const. The vec-
tor or string data are being passed to an API that will read it, not mod-
ify it. This is by far the safest thing to do. For strings, it’s the only thing
to do, because there is no guarantee that c_str yields a pointer to the
internal representation of the string data; it could return a pointer to
an unmodifiable copy of the string’s data, one that’s correctly format-
ted for a C APIL (If this makes the efficiency hairs on the back of your
neck rise up in alarm, rest assured that the alarm is probably false. I
don’t know of any contemporary library implementation that takes
advantage of this latitude.)

For a vector, you have a little more flexibility. If you pass v to a C API
that modifies v’s elements, that’s typically okay, but the called routine

76 Item 16 vector and string

must not attempt to change the number of elements in the vector. For
example, it must not try to “create” new elements in a vector’s unused
capacity. If it does, v will become internally inconsistent, because it
won't know its correct size any longer. v.size() will yield incorrect
results. And if the called routine attempts to add data to a vector
whose size and capacity (see Item 14) are the same, truly horrible
things could happen. I don’t even want to contemplate them. They’re
just too awful.

Did you notice my use of the word “typically” in the phrase “that’s typ-
ically okay” in the preceding paragraph? Of course you did. Some vec-
tors have extra constraints on their data, and if you pass a vector to
an API that modifies the vector’s data, you must ensure that the addi-
tional constraints continue to be satisfied. For example, Item 23
explains how sorted vectors can often be a viable alternative to asso-
ciative containers, but it’s important for such vectors to remain
sorted. If you pass a sorted vector to an API that may modify the vec-
tor’s data, you'll need to take into account that the vector may no
longer be sorted after the call has returned.

If you have a vector that you’d like to initialize with elements from a C
API, you can take advantage of the underlying layout compatibility of
vectors and arrays by passing to the API the storage for the vector’s
elements:

// C API: this function takes a pointer to an array of at most arraySize

// doubles and writes data to it. It returns the number of doubles written,
// which is never more than arraySize.

size_t fillArray(double *pArray, size_t arraySize);

vector<double> vd(maxNumDoubles); // create a vector whose
// size is maxNumDoubles
vd.resize(fillArray(&vd[0], vd.size())); // have fillArray write data

// into vd, then resize vd
// to the number of
// elements fillArray wrote

This technique works only for vectors, because only vectors are guar-
anteed to have the same underlying memory layout as arrays. If you
want to initialize a string with data from a C API, however, you can do
it easily enough. Just have the API put the data into a vector<char>,
then copy the data from the vector to the string:

// C API: this function takes a pointer to an array of at most arraySize
// chars and writes data to it. It returns the number of chars written,
// which is never more than arraySize.

size_t fillString(char *pArray, size_t arraySize);

vector and string Item 17 77

vector<char> vc(maxNumChars); // create a vector whose
// size is maxNumChars

size_t charsWritten = fillString(&vc[0], vc.size()); // have fillString write
//into vc

string s(vc.begin(), vc.begin()+charsWritten); // copy data fromvctos
// via range constructor
// (see ltem 5)

In fact, the idea of having a C API put data into a vector and then copy-
ing the data into the STL container you really want it in always works:

size_t fillArray(double *pArray, size_t arraySize); // as above
vector<double> vd(maxNumbDoubles); // also as above
vd.resize(fillArray(&vd[0], vd.size()));
deque<double> d(vd.begin(), vd.end()); // copy data into

// deque
list<double> I(vd.begin(), vd.end()); // copy data into list
set<double> s(vd.begin(), vd.end()); // copy data into set

Furthermore, this hints at how STL containers other than vector or
string can pass their data to C APIs. Just copy each container’s data
into a vector, then pass it to the API:

void doSomething(const int* pints, size_t numints); // C API (from above)

set<int> intSet; // set that will hold
// data to pass to API
vector<int> v(intSet.begin(), intSet.end()); // copy set data into
// a vector
if ('v.empty()) doSomething(&v[0], v.size()); // pass the data to
// the API

You could copy the data into an array, too, then pass the array to the
C API, but why would you want to? Unless you know the size of the
container during compilation, you’'d have to allocate the array dynam-
ically, and Item 13 explains why you should prefer vectors to dynami-
cally allocated arrays anyway.

Item 17: Use “the swap trick” to trim excess capacity.

So you're writing software to support the TV game show Give Me Lots
Of Money — Now!, and you're keeping track of the potential contes-
tants, whom you have stored in a vector:

class Contestant { ... };

vector<Contestant> contestants;

78 Item 17 vector and string

When the show puts out a call for new contestants, it’s inundated
with applicants, and your vector quickly acquires a lot of elements. As
the show’s producers vet the prospective players, however, a relatively
small number of viable candidates get moved to the front of the vector
(perhaps via partial_sort or partition — see Item 31), and the candidates
no longer in the running are removed from the vector (typically by
calling a range form of erase — see Item 5). This does a fine job of
reducing the size of the vector, but it does nothing to reduce its capac-
ity. If your vector held a hundred thousand potential candidates at
some point, its capacity would continue to be at least 100,000, even if
later it held only, say, 10.

To avoid having your vector hold onto memory it no longer needs,
you’d like to have a way to reduce its capacity from the maximum it
used to the amount it currently needs. Such a reduction in capacity is
commonly known as “shrink to fit.” Shrink-to-fit is easy to program,
but the code is — how shall I put this? — something less than intui-
tive. Let me show it to you, then I'll explain how it works.

This is how you trim the excess capacity from your contestants vector:

vector<Contestant>(contestants.begin(), contestants.end()).swap(contestants);

The expression vector<Contestant>(contestants.begin(), contestants.end())
creates a temporary vector that is a copy of contestants; vector’s range
constructor (see Item 5) does the work. The resulting temporary vector
has no excess capacity. We then swap the data in the temporary vector
with that in contestants. By the time we’re done, contestants has the
trimmed capacity of the temporary, and the temporary holds the
bloated capacity that used to be in contestants. At that point (the end
of the statement), the temporary vector is destroyed, thus freeing the
memory formerly used by contestants. Voila! Shrink-to-fit.

The same trick is applicable to strings:

string s;
// make s large, then erase most
// of its characters
string(s.begin(), s.end()).swap(s); // do a “shrink-to-fit" on s

Now, the language police require that I inform you that there’s no
guarantee that this technique will truly eliminate excess capacity.
Implementers are free to give vectors and strings excess capacity if they
want to, and sometimes they want to. For example, they may have a
minimum capacity below which they never go, or they may constrain a
vector’s or string’s capacity to be a power of two. (In my experience,

vector and string Item 18 79

such anomalies are more common in string implementations than in
vector implementations. For examples, see Item 15.) This approach to
“shrink-to-fit,” then, doesn’t really mean “make the capacity as small
as possible,” it means “make the capacity as small as this implemen-
tation is willing to make it given the current size of the container.”
Short of switching to a different implementation of the STL, however,
this is the best you can do, so when you think “shrink-to-fit” for vec-
tors and strings, think “the swap trick.”

As an aside, a variant of the swap trick can be used both to clear a
container and to reduce its capacity to the minimum your implemen-
tation offers. You simply do the swap with a temporary vector or string
that is default-constructed:

vector<Contestant> v;

string s;

//usevands
vector<Contestant>().swap(v); // clear v and minimize its capacity
string().swap(s); // clear s and minimize its capacity

Item 18: Avoid using vector<bool>.

As an STL container, there are really only two things wrong with vec-
tor<bool>. First, it's not an STL container. Second, it doesn’t hold
bools. Other than that, there’s not much to object to.

An object doesn’t become an STL container just because somebody
says it's one. An object becomes an STL container only if it fulfills all
the container requirements laid down in section 23.1 of the Standard
for C++. Among the requirements is that if c is a container of objects of
type T and c supports operator[], the following must compile:

T *p = &c[0]; // initialize a T* with the address
// of whatever operator[] returns

In other words, if you use operator[] to get at one of the T objects in a
Container<T>, you can get a pointer to that object by taking its
address. (This assumes that T hasn’t perversely overloaded operator&.)
If vector<bool> is to be a container, then, this code must compile:

vector<bool> v;

bool *pb = &v[0]; // initialize a bool* with the address of
// what vector<bool>:operator[] returns

80 Item 18 vector and string

But it won’t compile. It won’t, because vector<bool> is a pseudo-con-
tainer that contains not actual bools, but a packed representation of
bools that is designed to save space. In a typical implementation, each
“bool” stored in the “vector” occupies a single bit, and an eight-bit byte
holds eight “bools.” Internally, vector<bool> uses the moral equivalent
of bitfields to represent the bools it pretends to be holding.

Like bools, bitfields represent only two possible values, but there is an
important difference between true bools and bitfields masquerading
as bools. You may create a pointer to a real bool, but pointers to indi-
vidual bits are forbidden.

References to individual bits are forbidden, too, and this posed a prob-
lem for the design of vector<bool>’s interface, because the return type
of vector<T>:operator[] is supposed to be T&. That wouldn’t be a prob-
lem if vector<bool> really held bools, but because it doesn’t, vec-
tor<bool>:operator[] would need somehow to return a reference to a
bit, and there’s no such thing.

To deal with this difficulty, vector<bool>:operator[] returns an object
that acts like a reference to a bit, a so-called proxy object. (You don’t
need to understand proxy objects to use the STL, but they're a C++
technique worth knowing about. For information about them, consult
Item 30 of More Effective C++ as well as the “Proxy” chapter in Gamma
et al’s Design Patterns [6].) Stripped down to the bare essentials, vec-
tor<bool> looks like this:

template <typename Allocator>
vector<bool, Allocator> {
public:

class reference{...}; // class to generate proxies for
// references to individual bits

reference operator[](size_type n); // operator[] returns a proxy

|3

Now it’s clear why this code won’t compile:

vector<bool> v;

bool *pb = &v[0]; // error! the expression on the right is
// of type vector<bool>:reference¥,
// not bool*

Because it won't compile, vector<bool> fails to satisfy the require-
ments for STL containers. Yes, vector<bool> is in the Standard, and
yes, it almost satisfies the requirements for STL containers, but
almost just isn’t good enough. The more you write your own templates

vector and string Item 18 81

designed to work with the STL, the more you’ll appreciate that. The
day will come, I assure you, when you’ll write a template that will
work only if taking the address of a container element yields a pointer
to the contained type, and when that day comes, you'll suddenly
understand the difference between being a container and almost being
a container.

You may wonder why vector<bool> is in the Standard, given that it’s
not a container and all. The answer has to do with a noble experiment
that failed, but let me defer that discussion for a moment while I
address a more pressing question. To wit, if vector<bool> should be
avoided because it’s not a container, what should you use when you
need a vector<bool>?

The standard library provides two alternatives that suffice almost all
the time. The first is deque<bool>. A deque offers almost everything a
vector does (the only notable omissions are reserve and capacity), and a
deque<bool> is an STL container that really contains bools. Of course,
the underlying memory for a deque isn’t contiguous, so you can’t pass
the data behind a deque<bool> to a C API' that expects an array of
bool (see Item 16), but you couldn’t do that with a vector<bool> any-
way because there’s no portable way to get at the data for a vec-
tor<bool>. (The techniques that work for vectors in Item 16 fail to
compile for vector<bool>, because they depend on being able to get a
pointer to the type of element contained in the vector. Have I men-
tioned that a vector<bool> doesn’t contain bools?)

The second alternative to vector<bool> is bitset. bitset isn’t an STL con-
tainer, but it is part of the standard C++ library. Unlike STL contain-
ers, its size (number of elements) is fixed during compilation, so there
is no support for inserting or erasing elements. Furthermore, because
it’s not an STL container, it offers no support for iterators. Like vec-
tor<bool>, however, it uses a compact representation that devotes only
a single bit to each value it contains. It offers vector<bool>’s special flip
member function, as well as a number of other special member func-
tions that make sense for collections of bits. If you can live without
iterators and dynamic changes in size, you’ll probably find that a bit-
set will serve you well.

And now let me discuss the noble experiment that failed, the one that
left behind as its residue the STL non-container vector<bool>. I men-
tioned earlier that proxy objects are often useful in C++ software
development. The members of the C++ Standardization Committee

t This would presumably be a C99 API, because bool was added to C only as of that ver-
sion of the language.

82 Item 18 vector and string

were well aware of this, so they decided to develop vector<bool> as a
demonstration of how the STL could support containers whose ele-
ments are accessed via proxies. With this example in the Standard,
they reasoned, practitioners would have a ready reference for imple-
menting their own proxy-based containers.

Alas, what they discovered was that it was not possible to create
proxy-based containers that satisfy all the requirements of STL con-
tainers. For one reason or another, however, their failed attempt at
developing one remained in the Standard. One can speculate on why
vector<bool> was retained, but practically speaking, it doesn’t matter.
What does matter is this: vector<bool> doesn’t satisfy the require-
ments of an STL container; youre best off not using it; and
deque<bool> and bitset are alternative data structures that will almost
certainly satisfy your need for the capabilities promised by vec-
tor<bool>.

Associative
Containers

Somewhat like the polychromatic horse in The Wizard of Oz movie, the
associative containers are creatures of a different color. True, they
share many characteristics with the sequence containers, but they
differ in a number of fundamental ways. For example, they automati-
cally keep themselves sorted; they view their contents through the
lens of equivalence instead of equality; sets and maps reject duplicate
entries; and maps and multimaps generally ignore half of each object
they contain. Yes, the associative containers are containers, but if
you’ll excuse my likening vectors and strings to Kansas, we are defi-
nitely not in Kansas any more.

In the Items that follow, I explain the critical notion of equivalence,
describe an important restriction on comparison functions, motivate
custom comparison functions for associative containers of pointers,
discuss the official and practical sides of key constness, and offer
advice on improving the efficiency of associative containers.

At the end of the chapter, I examine the STL’s lack of containers based
on hash tables, and I survey two common (nonstandard) implementa-
tions. Though the STL proper doesn’t offer hash tables, you need not
write your own or do without. High-quality implementations are
readily available.

Item 19: Understand the difference between equality
and equivalence.

The STL is awash in comparisons of objects to see if they have the
same value. For example, when you ask find to locate the first object
in a range with a particular value, find has to be able to compare two
objects to see if the value of one is the same as the value of the other.
Similarly, when you attempt to insert a new element into a set,
setuinsert has to be able to determine whether that element’s value is
already in the set.

84 Item 19 Associative Containers

The find algorithm and set’s insert member function are representative
of many functions that must determine whether two values are the
same. Yet they do it in different ways. find’s definition of “the same” is
equality, which is based on operator==. set:insert’s definition of “the
same” is equivalence, which is usually based on operator<. Because
these are different definitions, it’s possible for one definition to dictate
that two objects have the same value while the other definition
decrees that they do not. As a result, you must understand the differ-
ence between equality and equivalence if you are to make effective use
of the STL.

Operationally, the notion of equality is based on operator==. If the
expression “x ==y” returns true, x and y have equal values, otherwise
they don’t. That’s pretty straightforward, though it's useful to bear in
mind that just because x and y have equal values does not necessarily
imply that all of their data members have equal values. For example,
we might have a Widget class that internally keeps track of its last
time of access,

class Widget {
public:

private:
TimeStamp lastAccessed;

L
and we might have an operator== for Widgets that ignores this field:

bool operator==(const Widget& |hs, const Widget& rhs)
{

// code that ignores the lastAccessed field
}

In that case, two Widgets would have equal values even if their lastAc-
cessed fields were different.

Equivalence is based on the relative ordering of object values in a
sorted range. Equivalence makes the most sense if you think about it
in terms of the sort order that is part of every standard associative
container (i.e., set, multiset, map, and multimap). Two objects x and y
have equivalent values with respect to the sort order used by an asso-
ciative container c if neither precedes the other in C’s sort order. That
sounds complicated, but in practice, it’s not. Consider, as an example,
a set<Widget> s. Two Widgets w1 and w2 have equivalent values with
respect to s if neither precedes the other in s’s sort order. The default
comparison function for a set<Widget> is less<Widget>, and by default
less<Widget> simply calls operator< for Widgets, so w1l and w2 have
equivalent values with respect to operator< if the following expression
is true:

Associative Containers Item 19 85

(w1l <w2) // it's not true that w1 < w2
&& // and
w2 <wl) // it's not true that w2 < w1

This makes sense: two values are equivalent (with respect to some
ordering criterion) if neither precedes the other (according to that cri-
terion).

In the general case, the comparison function for an associative con-
tainer isn’t operator< or even less, it’s a user-defined predicate. (See
Item 39 for more information on predicates.) Every standard associa-
tive container makes its sorting predicate available through its
key_comp member function, so two objects x and y have equivalent
values with respect to an associative container ¢’'s sorting criterion if
the following evaluates to true:

Ic.key_comp()(x, y) &&Ic.key_comp()(y,x) //it’s not true that x precedes
//'yin c's sort order and it's
// also not true that y precedes
// xin c's sort order

The expression !c.key_comp()(x, y) looks nasty, but once you under-
stand that c.key_comp() is returning a function (or a function object),
the nastiness dissipates. Ic.key_comp()(x, y) is just calling the function
(or function object) returned by key_comp, and it’s passing x and y as
arguments. Then it negates the result. c.key_comp()(x, y) returns true
only when x precedes y in C’s sort order, so !c.key_comp()(x, y) is true
only when x doesn’t precede y in C’s sort order.

To fully grasp the implications of equality versus equivalence, con-
sider a case-insensitive set<string>, i.e., a set<string> where the set’s
comparison function ignores the case of the characters in the strings.
Such a comparison function would consider “STL” and “stL” to be
equivalent. Item 35 shows how to implement a function, ciStringCom-
pare, that performs a case-insensitive comparison, but set wants a
comparison function type, not an actual function. To bridge this gap,
we write a functor class whose operator() calls ciStringCompare:

struct CIStringCompare: // class for case-insensitive
public // string comparisons;
binary_function<string, string, bool> { // see Item 40 for info on

// this base class
bool operator()(const string& lhs,
const string& rhs) const
{

return ciStringCompare(lhs, rhs); // see Iltem 35 for how
} // ciStringCompare is
// implemented
5

Given ClIStringCompare, it’s easy to create a case-insensitive set<string>:

set<string, CIStringCompare> ciss; // ciss = “case-insensitive
// string set”

86 Item 19 Associative Containers

If we insert “Persephone” and “persephone” into the set, only the first
string is added, because the second one is equivalent to the first:

ciss.insert("Persephone"); // a new element is added to the set
ciss.insert("persephone"); // no new element is added to the set

If we now search for the string “persephone” using set’s find member
function, the search will succeed,

if (ciss.find("persephone") != ciss.end()) ... // this test will succeed

but if we use the non-member find algorithm, the search will fail:

if (find(ciss.begin(), ciss.end(),
"persephone”) = ciss.end()) ... // this test will fail

That’s because “persephone” is equivalent to “Persephone” (with respect
to the comparison functor CIStringCompare), but it's not equal to it
(because string("persephone") 1= string("Persephone")). This example dem-
onstrates one reason why you should follow the advice in Item 44 and
prefer member functions (like set:find) to their non-member counter-
parts (like find).

You might wonder why the standard associative containers are based
on equivalence instead of equality. After all, most programmers have
an intuition about equality that they lack for equivalence. (Were that
not the case, there’d be no need for this Item.) The answer is simple at
first glance, but the more closely you look, the more subtle it becomes.

The standard associative containers are kept in sorted order, so each
container must have a comparison function (less, by default) that
defines how to keep things sorted. Equivalence is defined in terms of
this comparison function, so clients of a standard associative con-
tainer need to specify only one comparison function (the one deter-
mining the sort order) for any container they use. If the associative
containers used equality to determine when two objects have the
same value, each associative container would need, in addition to its
comparison function for sorting, a second comparison function for
determining when two values are equal. (By default, this comparison
function would presumably be equal_to, but it’s interesting to note
that equal_to is never used as a default comparison function in the
STL. When equality is needed in the STL, the convention is to simply
call operator== directly. For example, this is what the non-member find
algorithm does.)

Let’s suppose we had a set-like STL container called set2CF, “set with
two comparison functions.” The first comparison function would be
used to determine the sort order of the set, the second would be used

Associative Containers Item 19 87

to determine whether two objects had the same value. Now consider
this set2CF:

set2CF<string, CIStringCompare, equal_to<string> > s;

Here, s sorts its strings internally without regard to case, and the
equality criterion is the intuitive one: two strings have the same value
if they are equal to one another. Let’s insert our two spellings of
Hades’ reluctant bride (Persephone) into s:

s.insert("Persephone");
s.insert("persephone");

What should this do? If we observe that “Persephone” != “persephone”
and insert them both into s, what order should they go in? Remember
that the sorting function can’t tell them apart. Do we insert them in
some arbitrary order, thus giving up the ability to traverse the con-
tents of the set in deterministic order? (This inability to traverse asso-
ciative container elements in a deterministic order already afflicts
multisets and multimaps, because the Standard places no constraints
on the relative ordering of equivalent values (for multisets) or keys (for
multimaps).) Or do we insist on a deterministic ordering of s’s contents
and ignore the second attempted insertion (the one for “persephone”)?
If we do that, what happens here?

if (s.find("persephone") I=s.end()) ... // does this test succeed or fail?

Presumably find employs the equality check, but if we ignored the sec-
ond call to insert in order to maintain a deterministic ordering of the
elements in s, this find will fail, even though the insertion of “perse-
phone” was ignored on the basis of its being a duplicate value!

The long and short of it is that by using only a single comparison
function and by employing equivalence as the arbiter of what it means
for two values to be “the same,” the standard associative containers
sidestep a whole host of difficulties that would arise if two comparison
functions were allowed. Their behavior may seem a little odd at first
(especially when one realizes that member and non-member find may
return different results), but in the long run, it avoids the kind of con-
fusion that would arise from mixing uses of equality and equivalence
within standard associative containers.

Interestingly, once you leave the realm of sorted associative contain-
ers, the situation changes, and the issue of equality versus equiva-
lence can be — and has been — revisited. There are two common
designs for nonstandard (but widely available) associative containers
based on hash tables. One design is based on equality, while the other
is based on equivalence. I encourage you to turn to Item 25 to learn

88 Item 20 Associative Containers

more about these containers and the design decisions they've
adopted.

Item 20: Specify comparison types for associative
containers of pointers.

Suppose you have a set of string* pointers and you insert the names of
some animals into the set:

set<string*> ssp; // ssp = “set of string ptrs”

ssp.insert(new string("Anteater"));
ssp.insert(new string("Wombat"));
ssp.insert(new string("Lemur"));

ssp.insert(new string("Penguin™));

You then write the following code to print the contents of the set,
expecting the strings to come out in alphabetical order. After all, sets
keep their contents sorted.

for (set<string*>::const_iterator i = ssp.begin(); // you expect to see
i !=ssp.end(); // this: “Anteater’
++i) // “Lemur’ “Penguin’
cout << *i << end|; // "Wombat”

The comment describes what you expect to see, but you don’t see that
at all. Instead, you see four hexadecimal numbers. They are pointer
values. Because the set holds pointers, *i isn’t a string, it’'s a pointer to
a string. Let this be a lesson that reminds you to adhere to the guid-
ance of Item 43 and avoid writing your own loops. If you'd used a call
to the copy algorithm instead,

copy(ssp.begin(), ssp.end(), // copy the strings in
ostream_iterator<string>(cout, "\n")); // ssp to cout (but this
// won't compile)

you'd not only have typed fewer characters, you’d have found out
about your error sooner, because this call to copy won't compile.
ostream_iterator insists on knowing the type of object being printed, so
when you tell it it’s a string (by passing that as the template parame-
ter), your compilers detect the mismatch between that and the type of
objects stored in ssp (which is string*), and they refuse to compile the
code. Score another one for type safety.

If you exasperatedly change the *i in your explicit loop to **i, you might
get the output you want, but you probably won’t. Yes, the animal
names will be printed, but the chances of their coming out in alpha-

Associative Containers Item 20 89

betical order are only 1 in 24. ssp keeps its contents in sorted order,
but it holds pointers, so it sorts by pointer value, not by string value.
There are 24 possible permutations for four pointer values, so there
are 24 possible orders for the pointers to be stored in. Hence the odds
of 1 in 24 of your seeing the strings in alphabetical order."

To surmount this problem, it helps to recall that
set<string*> ssp;
is shorthand for this:
set<string*, less<string*> > ssp;
Well, to be completely accurate, it’s shorthand for
set<string*, less<string*>, allocator<string*> > ssp;
but allocators don’t concern us in this Item, so we’ll ignore them.

If you want the string* pointers to be stored in the set in an order
determined by the string values, you can’t use the default comparison
functor class less<string*>. You must instead write your own compari-
son functor class, one whose objects take string* pointers and order
them by the values of the strings they point to. Like this:

struct StringPtrLess:

public binary_function<const string*, // see Item 40 for the
const string*, // reason for this base
bool> { // class

bool operator()(const string *ps1, const string *ps2) const
return *ps1 < *ps2;
}
5
Then you can use StringPtrLess as ssp’s comparison type:
typedef set<string*, StringPtrLess> StringPtrSet;

StringPtrSet ssp; // create a set of strings and order
// them as defined by StringPtrLess

// insert the same four strings as
// before

Now your loop will finally do what you want it to do (provided you've
fixed the earlier problem whereby you used *i instead of **i):

t Practically speaking, the 24 permutations are not equally likely, so the “1 in 24” state-
ment is a bit misleading. Still, there are 24 different orders, and you could get any one
of them.

90 Item 20 Associative Containers

for (StringPtrSet::const_iterator i = ssp.begin(); // prints “Anteater’,

il=ssp.end(); // "Lemur’
++i) // "Penguin’
cout << **ji << endl; // “Wombat”

If you want to use an algorithm instead, you could write a function
that knows how to dereference string* pointers before printing them,
then use that function in conjunction with for_each:

void print(const string *ps) // print to cout the
// object pointed to
cout << *ps << end|; // by ps
}
for_each(ssp.begin(), ssp.end(), print); // invoke print on each

// elementin ssp
Or you could get fancy and write a generic dereferencing functor class,
then use that with transform and an ostream_iterator:

// when functors of this type are passed a T*, they return a const T&
struct Dereference {

template <typename T>
const T& operator()(const T *ptr) const

{
return *ptr;
}
L
transform(ssp.begin(), ssp.end(), // "transform” each
ostream_iterator<string>(cout, "\n"), //elementin ssp by
Dereference()); // dereferencing it,
// writing the results
// to cout

Replacement of loops with algorithms, however, is not the point, at
least not for this Item. (It is the point for Item 43.) The point is that
anytime you create a standard associative container of pointers, you
must bear in mind that the container will be sorted by the values of
the pointers. Only rarely will this be what you want, so you'll almost
always want to create your own functor class to serve as a comparison

type.

Notice that I wrote “comparison type.” You may wonder why you have
to go to the trouble of creating a functor class instead of simply writ-
ing a comparison function for the set. For example, you might think to
try this:

Associative Containers Item 20 91

bool stringPtrLess(const string* ps1, // would-be comparison
const string* ps2) // function for string*
{ // pointers to be sorted by
return *ps1 < *ps2; // string value
set<string®, stringPtrLess> ssp; // attempt to use stringPtrLess

// as ssp's comparison function;
// this won’t compile

The problem here is that each of the set template’s three parameters is
a type. Unfortunately, stringPtrLess isn’t a type, it’s a function. That’s
why the attempt to use stringPtrLess as set’s comparison function won’t
compile. set doesn’t want a function, it wants a type that it can inter-
nally instantiate to create a function.

Anytime you create associative containers of pointers, figure you're
probably going to have to specify the container’s comparison type, too.
Most of the time, your comparison type will just dereference the point-
ers and compare the pointed-to objects (as is done in StringPtrLess
above). That being the case, you might as well keep a template for
such comparison functors close at hand. Like this:

struct Dereferenceless { // see Item 7 for why we're using
// a class containing a templatized
// operator()
template <typename PtrType>
bool operator()(PtrType pT1, // parameters are passed by
PtrType pT2) const // value, because we expect them
{ // to be (or to act like) pointers
return *pT1 < *pT2;
}
5

Such a template eliminates the need to write classes like StringPtrLess,
because we can use Dereferenceless instead:

set<string*, Dereferenceless> ssp; // behaves the same as
// set<string*, StringPtrLess>

Oh, one more thing. This Item is about associative containers of point-
ers, but it applies equally well to containers of objects that act like
pointers, e.g., smart pointers and iterators. If you have an associative
container of smart pointers or of iterators, plan on specifying the com-
parison type for it, too. Fortunately, the solution for pointers tends to
work for pointeresque objects, too. Just as Dereferenceless is likely to
be suitable as the comparison type for an associative container of T*,
it’s likely to work as the comparison type for containers of iterators
and smart pointers to T objects, too.

92 Item 21 Associative Containers

Item 21: Always have comparison functions return
false for equal values.

Let me show you something kind of cool. Create a set where less_equal
is the comparison type, then insert 10 into the set:

set<int, less_equal<int> > s; // s is sorted by “<="

s.insert(10); // insert the value 10
Now try inserting 10 again:

s.insert(10);

For this call to insert, the set has to figure out whether 10 is already
present. We know that it is, but the set is dumb as toast, so it has to
check. To make it easier to understand what happens when the set
does this, we’ll call the 10 that was initially inserted 10, and the 10
that we're trying to insert 10g.

The set runs through its internal data structures looking for the place
to insert 10g. It ultimately has to check 10g to see if it’s the same as
104. The definition of “the same” for associative containers is equiva-
lence (see Item 19), so the set tests to see whether 10g is equivalent to
10,. When performing this test, it naturally uses the set’s comparison
function. In this example, that’s operator<=, because we specified
less_equal as the set’s comparison function, and less_equal means oper-
ator<=. The set thus checks to see whether this expression is true:

(104 <=10g) && (105 <=10,) // test 10, and 10g for equivalence

Well, 10, and 10g are both 10, so it's clearly true that 10, <= 10g.
Equally clearly, 10g <= 10,. The above expression thus simplifies to

I(true) && !(true)
and that simplifies to

false && false

which is simply false. That is, the set concludes that 10, and 10g are
not equivalent, hence not the same, and it thus goes about inserting
10 into the container alongside 10,. Technically, this action yields
undefined behavior, but the nearly universal outcome is that the set
ends up with two copies of the value 10, and that means it’s not a set
any longer. By using less_equal as our comparison type, we've cor-
rupted the container! Furthermore, any comparison function where
equal values return true will do the same thing. Isn’t that cool?

Associative Containers Item 21 93

Okay, maybe your definition of cool isn’t the same as mine. Even so,
you'll still want to make sure that the comparison functions you use
for associative containers always return false for equal values. You'll
need to be vigilant, however. It's surprisingly easy to run afoul of this
constraint.

For example, Item 20 describes how to write a comparison function
for containers of string* pointers such that the container sorts its con-
tents by the values of the strings instead of the values of the pointers.
That comparison function sorts them in ascending order, but let's
suppose you're in need of a comparison function for a container of
string* pointers that sorts in descending order. The natural thing to do
is to grab the existing code and modify it. If you're not careful, you
might come up with this, where I've highlighted the changes to the
code in Item 20:

struct StringPtrGreater: // highlights show how
public binary_function<const string*, // this code was changed
const string*, // from page 89. Beware,
bool> { // this code is flawed!

bool operator()(const string *ps1, const string *ps2) const

return !(*ps1 < *ps2); // just negate the old test;
} // this is incorrect!

L
The idea here is to reverse the sort order by negating the test inside
the comparison function. Unfortunately, negating “<” doesn’t give you
“>” (which is what you want), it gives you “>=". And you now under-

stand that “>=", because it will return true for equal values, is an
invalid comparison function for associative containers.

The comparison type you really want is this one:

struct StringPtrGreater: // this is a valid
public binary_function<const string*, // comparison type for
const string*, // associative containers
bool> {

bool operator()(const string *ps1, const string *ps2) const

return *ps2 < *psf; // return whether *ps2
} // precedes *ps1 (i.e., swap
// the order of the
b // operands)

To avoid falling into this trap, all you need to remember is that the
return value of a comparison function indicates whether one value
precedes another in the sort order defined by that function. Equal val-

94 Item 21 Associative Containers

ues never precede one another, so comparison functions should
always return false for equal values.

Sigh.

I know what you're thinking. You're thinking, “Sure, that makes sense
for set and map, because those containers can’t hold duplicates. But
what about multiset and multimap? Those containers may contain
duplicates, so what do I care if the container thinks that two objects of
equal value aren’t equivalent? It will store them both, which is what
the multi containers are supposed to do. No problem, right?”

Wrong. To see why, let’s go back to the original example, but this time
we’ll use a multiset:

multiset<int, less_equal<int> > s; // s is still sorted by “<="
s.insert(10); // insert 10,
s.insert(10); // insert 10g

s now has two copies of 10 in it, so we’d expect that if we do an
equal_range on it, we’ll get back a pair of iterators that define a range
containing both copies. But that’s not possible. equal_range, its name
notwithstanding, doesn’t identify a range of equal values, it identifies
a range of equivalent values. In this example, s’s comparison function
says that 104 and 10g are not equivalent, so there’s no way that both
can be in the range identified by equal_range.

You see? Unless your comparison functions always return false for
equal values, you break all standard associative containers, regard-
less of whether they are allowed to store duplicates.

Technically speaking, comparison functions used to sort associative
containers must define a “strict weak ordering” over the objects they
compare. (Comparison functions passed to algorithms like sort (see
Item 31) are similarly constrained.) If you're interested in the details of
what it means to be a strict weak ordering, you can find them in many
comprehensive STL references, including Josuttis’ The C++ Standard
Library [3], Austern’s Generic Programming and the STL [4], and the
SGI STL Web Site [21]. I've never found the details terribly illuminat-
ing, but one of the requirements of a strict weak ordering bears
directly on this Item. That requirement is that any function defining a
strict weak ordering must return false if it’s passed two copies of the
same value.

Hey! That is this Item!

Associative Containers Item 22 95

Item 22: Avoid in-place key modification in set and
multiset.

The motivation for this Item is easy to understand. Like all the stan-
dard associative containers, set and multiset keep their elements in
sorted order, and the proper behavior of these containers is dependent
on their remaining sorted. If you change the value of an element in an
associative container (e.g., change a 10 to a 1000), the new value
might not be in the correct location, and that would break the sorted-
ness of the container. Simple, right?

It's especially simple for map and multimap, because programs that
attempt to change the value of a key in these containers won’t compile:

map<int, string> m;

.r.r.w.begin()—>first =10; // error! map keys can’t be changed
multimap<int, string> mm;

'r'r'mm.begin()—>ﬁrst =20; // error! multimap keys can’t
// be changed, either

That’s because the elements in an object of type map<K, V> or multi-
map<K, V> are of type pair<const K, V>. Because the type of the key is
const K, it can’t be changed. (Well, you can probably change it if you
employ a const_cast, as we’ll see below. Believe it or not, sometimes
that’s what you want to do.)

But notice that the title of this [tem doesn’t mention map or multimap.
There’s a reason for that. As the example above demonstrates, in-
place key modification is impossible for map and multimap (unless you
use a cast), but it may be possible for set and multiset. For objects of
type set<T> or multiset<T>, the type of the elements stored in the con-
tainer is simply T, not const T. Hence, the elements in a set or multiset
may be changed anytime you want to. No cast is required. (Actually,
things aren’t quite that straightforward, but we’ll come to that pres-
ently. There’s no reason to get ahead of ourselves. First we crawl.
Later we crawl on broken glass.)

Let us begin with an understanding of why the elements in a set or
multiset aren’t const. Suppose we have a class for employees:

class Employee {

public:
const string& name() const; // get employee name
void setName(const string& name); // set employee name
const string& title() const; // get employee title
void setTitle(const string& title); // set employee title
intidNumber() const; // get employee ID number

-

96 Item 22 Associative Containers

As you can see, there are various bits of information we can get about
employees. Let us make the reasonable assumption, however, that
each employee has a unique ID number, a number that is returned by
the idNumber function. To create a set of employees, then, it could eas-
ily make sense to order the set by ID number only, like this:

struct IDNumberLess:
public binary_function<Employee, Employee, bool> { // see Item 40

bool operator()(const Employee& lhs,
const Employee& rhs) const
{

return lhs.idNumber() < rhs.idNumber();
}

L
typedef set<Employee, IDNumberlLess> EmplDSet;

EmplDSet se; // se is a set of employees
// sorted by ID number

Practically speaking, the employee ID number is the key for the ele-
ments in this set. The rest of the employee data is just along for the
ride. That being the case, there’s no reason why we shouldn’t be able
to change the title of a particular employee to something interesting.
Like so:

Employee selectedID; // variable to hold employee
// with selected ID number

EmplDSet:iterator i = se.find(selectedID);
if (i 1= se.end()) {
i->setTitle("Corporate Deity"); // give employee new title;
} /1 this shouldn’t compile —
// see next page for why

Because all we're doing here is changing an aspect of an employee
that is unrelated to the way the set is sorted (a non-key part of the
employee), this code can’t corrupt the set. That’'s why it’'s reasonable.
But such reasonable code precludes having the elements of a set/mul-
tiset be const. And that’s why they aren’t.

Why, you might wonder, doesn’t the same logic apply to the keys in
maps and multimaps? Wouldn't it make sense to create a map from
employees to, say, the country in which they live, a map where the
comparison function was IDNumberLess, just as in the previous exam-
ple? And given such a map, wouldn’t it be reasonable to change an
employee’s title without affecting the employee’s ID number, just as in
the previous example?

To be brutally frank, I think it would. Being equally frank, however, it
doesn’t matter what I think. What matters is what the Standardization
Committee thought, and what it thought is that map/multimap keys
should be const and set/multiset values shouldn’t be.

Associative Containers Item 22 97

Because the values in a set or multiset are not const, attempts to
change them may compile. The purpose of this Item is to alert you
that if you do change an element in a set or multiset, you must be sure
not to change a key part — a part of the element that affects the sort-
edness of the container. If you do, you may corrupt the container,
using the container will yield undefined results, and it will be your
fault. On the other hand, this constraint applies only to the key parts
of the contained objects. For all other parts of the contained elements,
it’s open season; change away!

Except for the broken glass. Remember the broken glass I referred to
earlier? We're there now. Grab some bandages and follow me.

Even if set and multiset elements aren’t const, there are ways for imple-
mentations to keep them from being modified. For example, an imple-
mentation could have operator* for a set<T>:iterator return a const T&.
That is, it could have the result of dereferencing a set iterator be a ref-
erence-to-const element of the set. Under such an implementation,
there’d be no way to modify set or multiset elements, because all the
ways of accessing the elements would add a const before letting you at
them.

Are such implementations legal? Arguably yes. And arguably no. The
Standard is inconsistent in this area, and in accord with Murphy’s
Law, different implementers have interpreted it in different ways. The
result is that it’s not uncommon to find STL implementations where
this code compiles and others where it does not:

EmplDSet se; // as before, se is a set of employees
// sorted by ID number

Employee selectedID; // as before, selectedID is a dummy
// employee with the selected ID
// number

EmplDSet:iterator i = se.find(selectedID);
if (i = se.end()) {
i->setTitle("Corporate Deity"); // some STL implementations
} // accept this line, others reject it

Because of the equivocal state of the Standard and the differing inter-
pretations it has engendered, code that attempts to modify elements
in a set or multiset isn’t portable.’

+ The Standardization Committee has since clarified that elements in a set or map should
not be modifiable without a cast. However, versions of the STL implemented prior to
this clarification continue to be used, so, practically speaking, the material in this Item
continues to apply.

98 Item 22 Associative Containers

So where do we stand? Encouragingly, things aren’t complicated:

= If portability is not a concern, you want to change the value of an
element in a set or multiset, and your STL implementation will let
you get away with it, go ahead and do it. Just be sure not to
change a key part of the element, i.e., a part of the element that
could affect the sortedness of the container.

= If you value portability, assume that the elements in sets and mul-
tisets cannot be modified, at least not without a cast.

Ah, casts. We've seen that it can be entirely reasonable to change a
non-key portion of an element in a set or a multiset, so I feel compelled
to show you how to do it. How to do it correctly and portably, that is.
It’s not hard, but it requires a subtlety too many programmers over-
look: you must cast to a reference. As an example, look again at the
setTitle call we just saw that failed to compile under some implementa-
tions:

EmplDSet:iterator i = se.find(selectedID);
if (i 1= se.end()) {
i->setTitle("Corporate Deity"); // some STL implementations will
} // reject this line because *i is const

To get this to compile and behave correctly, we must cast away the
constness of *i. Here’s the correct way to do it:

if (i 1= se.end()) { // cast away
const_cast<Employee&>(*i).setTitle("Corporate Deity"); // constness
} // of *i

This takes the object pointed to by i, tells your compilers to treat the
result of the cast as a reference to a (non-const) Employee, then invoke
setTitle on the reference. Rather than explain why this works, I'll
explain why an alternative approach fails to behave the way people
often expect it to.

Many people come up with this code,

if (i 1= se.end()) { // cast *i
static_cast<Employee>(*i).setTitle("Corporate Deity"); //toan
} // Employee
which is equivalent to the following:
if (i I=se.end()) { // same as above,
((Employee)(*i)).setTitle("Corporate Deity"); // but using C

// cast syntax

Both of these compile, and because these are equivalent, they're
wrong for the same reason. At runtime, they don’t modify *i! In both
cases, the result of the cast is a temporary anonymous object that is a

Associative Containers Item 22 99

copy of *i, and setTitle is invoked on the anonymous object, not on *i! *i
isn’t modified, because setTitle is never invoked on that object, it’s
invoked on a copy of that object. Both syntactic forms are equivalent
to this:

if (i = se.end()) {
Employee tempCopy(¥i); // copy *i into tempCopy
tempCopy.setTitle("Corporate Deity"); // modify tempCopy

Now the importance of a cast to a reference should be clear. By cast-
ing to a reference, we avoid creating a new object. Instead, the result
of the cast is a reference to an existing object, the object pointed to by
i. When we invoke setTitle on the object indicated by the reference,
we're invoking setTitle on *i, and that’s exactly what we want.

What I've just written is fine for sets and multisets, but when we turn
to maps and multimaps, the plot thickens. Recall that a map<K, V> or a
multimap<K, V> contains elements of type pair<constK, V>. That const
means that the first component of the pair is defined to be const, and
that means that attempts to modify it (even after casting away its con-
stness) are undefined. If you're a stickler for following the rules laid
down by the Standard, you’ll never try to modify an object serving as a
key to a map or multimap.

You've surely heard that casts are dangerous, and I hope this book
makes clear that I believe you should avoid them whenever you can.
To perform a cast is to shuck temporarily the safety of the type sys-
tem, and the pitfalls we've discussed exemplify what can happen
when you leave your safety net behind.

Most casts can be avoided, and that includes the ones we’ve just con-
sidered. If you want to change an element in a set, multiset, map, or
multimap in a way that always works and is always safe, do it in five
simple steps:

1. Locate the container element you want to change. If you're not
sure of the best way to do that, Item 45 offers guidance on how
to perform an appropriate search.

2. Make a copy of the element to be modified. In the case of a map
or multimap, be sure not to declare the first component of the
copy const. After all, you want to change it!

3. Modify the copy so it has the value you want to be in the con-
tainer.

100 Item 23 Associative Containers

4. Remove the element from the container, typically via a call to
erase (see Item 9).

5. Insert the new value into the container. If the location of the new
element in the container’s sort order is likely to be the same or
adjacent to that of the removed element, use the “hint” form of
insert to improve the efficiency of the insertion from logarithmic-
time to amortized constant-time. Use the iterator you got from
Step 1 as the hint.

Here’s the same tired employee example, this time written in a safe,
portable manner:

EmplDSet se; // as before, se is a set of employees
// sorted by ID number

Employee selectedID; // as before, selectedID is a dummy
// employee with the desired ID number

EmplDSet:iterator i =

se.find(selectedID); // Step 1: find element to change
if (i 1= se.end()) {
Employee e(*i); // Step 2: copy the element

e.setTitle("Corporate Deity"); // Step 3: modify the copy

se.erase(i++); // Step 4: remove the element;
// increment the iterator to maintain
// its validity (see Item 9)

se.insert(i, e); // Step 5:insert new value; hint that its
// location is the same as that of the
} // original element

You'll excuse my putting it this way, but the key thing to remember is
that with set and multiset, if you perform any in-place modifications of
container elements, you are responsible for making sure that the con-
tainer remains sorted.

Item 23: Consider replacing associative containers
with sorted vectors.

Many STL programmers, when faced with the need for a data struc-
ture offering fast lookups, immediately think of the standard associa-
tive containers, set, multiset, map, and multimap. That’s fine, as far as
it goes, but it doesn’t go far enough. If lookup speed is really impor-
tant, it's almost certainly worthwhile to consider the nonstandard

Associative Containers Item 23 101

hashed containers as well (see Item 25). With suitable hashing func-
tions, hashed containers can be expected to offer constant-time look-
ups. (With poorly chosen hashing functions or with table sizes that
are too small, the performance of hash table lookups may degrade sig-
nificantly, but this is relatively uncommon in practice.) For many
applications, the expected constant-time lookups of hashed contain-
ers are preferable to the guaranteed logarithmic-time lookups that are
the hallmark of set, map and their multi companions.

Even if logarithmic-time lookup is what you want, the standard asso-
ciative containers may not be your best bet. Counterintuitively, it’s
not uncommon for the standard associative containers to offer perfor-
mance that is inferior to that of the lowly vector. If you want to make
effective use of the STL, you need to understand when and how a vec-
tor can offer faster lookups than a standard associative container.

The standard associative containers are typically implemented as bal-
anced binary search trees. A balanced binary search tree is a data
structure that is optimized for a mixed combination of insertions, era-
sures, and lookups. That is, it's designed for applications that do
some insertions, then some lookups, then maybe some more inser-
tions, then perhaps some erasures, then a few more lookups, then
more insertions or erasures, then more lookups, etc. The key charac-
teristic of this sequence of events is that the insertions, erasures, and
lookups are all mixed up. In general, there’s no way to predict what
the next operation on the tree will be.

Many applications use their data structures in a less chaotic manner.
Their use of data structures fall into three distinct phases, which can
be summarized like this:

1. Setup. Create a new data structure by inserting lots of elements
into it. During this phase, almost all operations are insertions
and erasures. Lookups are rare or nonexistent.

2. Lookup. Consult the data structure to find specific pieces of in-
formation. During this phase, almost all operations are lookups.
Insertions and erasures are rare or nonexistent. There are so
many lookups, the performance of this phase makes the perfor-
mance of the other phases incidental.

3. Reorganize. Modify the contents of the data structure, perhaps
by erasing all the current data and inserting new data in its
place. Behaviorally, this phase is equivalent to phase 1. Once
this phase is completed, the application returns to phase 2.

For applications that use their data structures in this way, a vector is
likely to offer better performance (in both time and space) than an

102 Item 23 Associative Containers

associative container. But not just any vector will do. It has to be a
sorted vector, because only sorted containers work correctly with the
lookup algorithms binary_search, lower_bound, equal_range, etc. (see
Item 34). But why should a binary search through a (sorted) vector
offer better performance than a binary search through a binary
search tree? Because some things are trite but true, and one of them
is that size matters. Others are less trite but no less true, and one of
those is that locality of reference matters, too.

Consider first the size issue. Suppose we need a container to hold Wid-
get objects, and, because lookup speed is important to us, we are con-
sidering both an associative container of Widgets and a sorted
vector<Widget>. If we choose an associative container, we’ll almost cer-
tainly be using a balanced binary tree. Such a tree would be made up
of tree nodes, each holding not only a Widget, but also a pointer to the
node’s left child, a pointer to its right child, and (typically) a pointer to
its parent. That means that the space overhead for storing a Widget in
an associative container would be at least three pointers.

In contrast, there is no overhead when we store a Widget in a vector;
we simply store a Widget. The vector itself has overhead, of course, and
there may be empty (reserved) space at the end of the vector (see
Item 14), but the per-vector overhead is typically insignificant (usually
three machine words, e.g., three pointers or two pointers and an int),
and the empty space at the end can be lopped off via “the swap trick” if
necessary (see Item 17). Even if the extra space is not eliminated, it’s
unimportant for the analysis below, because that memory won't be
referenced when doing a lookup.

Assuming our data structures are big enough, they’ll be split across
multiple memory pages, but the vector will require fewer pages than
the associative container. That’s because the vector requires no per-
Widget overhead, while the associative container exacts three pointers
per Widget. To see why this is important, suppose you're working on a
system where a Widget is 12 bytes in size, pointers are 4 bytes, and a
memory page holds 4096 (4K) bytes. Ignoring the per-container over-
head, you can fit 341 Widgets on a page when they are stored in a vec-
tor, but you can fit at most 170 when they are stored in an associative
container. You’'ll thus use about twice as much memory for the asso-
ciative container as you would for the vector. If you're working in an
environment where virtual memory is available, it's easy to see how
that can translate into a lot more page faults, therefore a system that
is significantly slower for large sets of data.

I'm actually being optimistic about the associative containers here,
because I'm assuming that the nodes in the binary trees are clustered

Associative Containers Item 23 103

together on a relatively small set of memory pages. Most STL imple-
mentations use custom memory managers (implemented on top of the
containers’ allocators — see Items 10 and 11) to achieve such cluster-
ing, but if your STL implementation fails to take steps to improve
locality of reference among tree nodes, the nodes could end up scat-
tered all over your address space. That would lead to even more page
faults. Even with the customary clustering memory managers, asso-
ciative containers tend to have more problems with page faults,
because, unlike contiguous-memory containers such as vector, node-
based containers find it more difficult to guarantee that container ele-
ments that are close to one another in a container’s traversal order
are also close to one another in physical memory. Yet this is precisely
the kind of memory organization that minimizes page faults when per-
forming a binary search.

Bottom line: storing data in a sorted vector is likely to consume less
memory than storing the same data in a standard associative con-
tainer, and searching a sorted vector via binary search is likely to be
faster than searching a standard associative container when page
faults are taken into account.

Of course, the big drawback of a sorted vector is that it must remain
sorted! When a new element is inserted, everything beyond the new
element must be moved up by one. That’s as expensive as it sounds,
and it gets even more expensive if the vector has to reallocate its
underlying memory (see Item 14), because then all the elements in the
vector typically have to be copied. Similarly, if an element is removed
from the vector, all the elements beyond it must be moved down.
Insertions and erasures are expensive for vectors, but they’re cheap
for associative containers. That's why it makes sense to consider
using a sorted vector instead of an associative container only when
you know that your data structure is used in such a way that lookups
are almost never mixed with insertions and erasures.

This Item has featured a lot of text, but it's been woefully short on
examples, so let’s take a look at a code skeleton for using a sorted vec-
tor instead of a set:

vector<Widget> vw; // alternative to set<Widget>

// Setup phase: lots of insertions,
// few lookups

sort(vw.begin(), vw.end()); // end of Setup phase. (When
// simulating a multiset, you might
// prefer stable_sort instead see
// 1tem 31.) When emulating a set,
// be sure vw holds no duplicates!

104 Item 23 Associative Containers

Widget w; // object for value to look up
// start Lookup phase
if (binary_search(vw.begin(), vw.end(), w)) ... // lookup via binary_search

vector<Widget>:iterator i =
lower_bound(vw.begin(), vw.end(), w); // lookup via lower_bound;
if (i 1= vw.end() && (w < *i)) ... // see Item 19 for an explana-
// tion of the “l(w < *i)" test

pair<vector<Widget>:iterator,
vector<Widget>:iterator> range =
equal_range(vw.begin(), vw.end(), w); // lookup via equal_range
if (range.first I= range.second) ...
// end Lookup phase, start
// Reorganize phase

sort(vw.begin(), vw.end()); // begin new Lookup phase...

As you can see, it’s all pretty straightforward. The hardest thing about
it is deciding among the search algorithms (e.g., binary_search,
lower_bound, etc.), and Item 45 helps you do that.

Things get a bit more interesting when you decide to replace a map or
multimap with a vector, because the vector must hold pair objects. After
all, that's what map and multimap hold. Recall, however, that if you
declare an object of type map<K, V> (or its multimap equivalent), the
type of elements stored in the map is pair<constK, V>. To emulate a
map or multimap using a vector, you must omit the const, because
when you sort the vector, the values of its elements will get moved
around via assignment, and that means that both components of the
pair must be assignable. When using a vector to emulate a map<K, V>,
then, the type of the data stored in the vector will be pair<K, V>, not
pair<const K, V>.

maps and multimaps keep their elements in sorted order, but they look
only at the key part of the element (the first component of the pair) for
sorting purposes, and you must do the same when sorting a vector.
You'll need to write a custom comparison function for your pairs,
because pair’s operator< looks at both components of the pair.

Interestingly, you’ll need a second comparison function for performing
lookups. The comparison function you’ll use for sorting will take two
pair objects, but lookups are performed given only a key value. The
comparison function for lookups, then, must take an object of the key
type (the value being searched for) and a pair (one of the pairs stored
in the vector) — two different types. As an additional twist, you can’t
know whether the key value or the pair will be passed as the first argu-
ment, so you really need two comparison functions for lookups: one

Associative Containers Item 23 105

where the key value is passed first and one where the pair is passed
first.

Here’s an example of how to put all the pieces together:

typedef pair<string, int> Data; // type held in the “map”
// in this example
class DataCompare { // class for comparison
public: // functions
bool operator()(const Data& |hs, // comparison func
const Data& rhs) const // for sorting
{
return keyLess(lhs first, rhs.first); // keyLess is below
bool operator()(const Data& |hs, // comparison func
const Data:first_type& k) const // for lookups
{ // (form 1)
return keyLess(lhs.first, k);
bool operator()(const Data:first_type& k, // comparison func
const Data& rhs) const // for lookups
{ // (form 2)
return keyLess(k, rhs.first);
}
private:
bool keyLess(const Data:first_type& k1, // the “real”
const Data:first_type& k2) const // comparison
{ // function
return k1 < k2;
}

L

In this example, we assume that our sorted vector will be emulating a
map<string, int>. The code is pretty much a literal translation of the
discussion above, except for the presence of the member function key-
Less. That function exists to ensure consistency among the various
operator() functions. Each such function simply compares two key val-
ues, so rather than duplicate the logic, we put the test inside keylLess
and have the operator() functions return whatever keylLess does. This
admirable act of software engineering enhances the maintainability of
DataCompare, but there is a minor drawback. Its provision for opera-
tor() functions with different parameter types renders the resulting
function objects unadaptable (see Item 40). Oh well.

Using a sorted vector as a map is essentially the same as using it as a
set. The only major difference is the need to use DataCompare objects
as comparison functions:

106 Item 24 Associative Containers

vector<Data> vd; // alternative to
// map<string, int>

// Setup phase: lots of
// insertions, few lookups

sort(vd.begin(), vd.end(), DataCompare()); //end of Setup phase. Simu-
// lated maps must avoid
// dupes; simulated multimaps
// might use stable_sort

string s; // object for value to look up
// start Lookup phase

if (binary_search(vd.begin(), vd.end(), s,
DataCompare())) ... // lookup via binary_search

vector<Data>:iteratori=
lower_bound(vd.begin(), vd.end(), s,

DataCompare()); // lookup via lower_bound;
if (i 1= vd.end() && !DataCompare()(s, *i))... // again, see Item 19 for info
// on the

// “\DataCompare()(s, *i)" test

pair<vector<Data>:iterator,
vector<Data>:iterator> range =
equal_range(vd.begin(), vd.end(), s,
DataCompare()); // lookup via equal_range
if (range.first = range.second) ...

// end Lookup phase, start
// Reorganize phase

sort(vd.begin(), vd.end(), DataCompare()); // begin new Lookup phase...

As you can see, once you've written DataCompare, things pretty much
fall into place. And once in place, they’ll often run faster and use less
memory than the corresponding design using a real map as long as
your program uses the data structure in the phased manner described
on page 101. If your program doesn’t operate on the data structure in
a phased manner, use of a sorted vector instead of a standard associa-
tive container will almost certainly end up wasting time.

Item 24: Choose carefully between map::operator[] and
map:insert when efficiency is important.

Let’'s suppose we have a Widget class that supports default construc-
tion as well as construction and assignment from a double:

class Widget {

public:
Widget();
Widget(double weight);

Widget& operator=(double weight);
\

Associative Containers Item 24 107

Let’s now suppose we’d like to create a map from ints to Widgets, and
we’d like to initialize the map with particular values. 'Tis simplicity
itself:

map<int, Widget> m;

m[1]=1.50;
m[2] = 3.67;
m([3]=10.5;
m[4] = 45.8;
m[5] =0.0003;

In fact, the only thing simpler is forgetting what’s really going on.
That's too bad, because what’s going on could incur a considerable
performance hit.

The operator[] function for maps is a novel creature, unrelated to the
operator[] functions for vectors, deques, and strings and equally unre-
lated to the built-in operator[] that works with arrays. Instead,
map::operator[] is designed to facilitate “add or update” functionality.
That is, given

map<K, V> m;

the expression
mlk] =v;

checks to see if the key k is already in the map. If not, it’s added, along
with v as its corresponding value. If k is already in the map, its associ-
ated value is updated to v.

The way this works is that operator[] returns a reference to the value
object associated with k. v is then assigned to the object to which the
reference (the one returned from operator[]) refers. This is straightfor-
ward when an existing key’s associated value is being updated,
because there’s already a value object to which operator[] can return a
reference. But if k isn’t yet in the map, there’s no value object for oper-
ator[] to refer to. In that case, it creates one from scratch by using the
value type’s default constructor. operator[] then returns a reference to
this newly-created object.

Let’s look again at the first part of our original example:
map<int, Widget> m;
m[1] =1.50;

The expression m[1] is shorthand for m.operator[](1), so this is a call to
map::operator[]. That function must return a reference to a Widget,
because m’s mapped type is Widget. In this case, m doesn’t yet have
anything in it, so there is no entry in the map for the key 1. operator(]

108 Item 24 Associative Containers

therefore default-constructs a Widget to act as the value associated
with 1, then returns a reference to that Widget. Finally, the Widget
becomes the target of an assignment; the assigned value is 1.50.

In other words, the statement
m[1] = 1.50;

is functionally equivalent to this:

typedef map<int, Widget> IntWidgetMap; // convenience
// typedef
pair<IntWidgetMap::iterator, bool> result = // create new map
m.insert(IntWidgetMap::value_type(1, Widget())); //entry with key 1
// and a default-

// constructed value
// object; see below
// for a comment on
// value_type

result.first->second = 1.50; // assign to the
// newly-constructed
// value object

Now it should be clear why this approach may degrade performance.
We first default-construct a Widget, then we immediately assign it a
new value. If it’s measurably more efficient to construct a Widget with
the value we want instead of default-constructing the Widget and then
doing the assignment, we’d be better off replacing our use of operator(]
(including its attendant construction plus assignment) with a
straightforward call to insert:

m.insert(IntWidgetMap::value_type(1, 1.50));

This has precisely the same ultimate effect as the code above, except it
replaces construction (and later destruction) of a temporary plus an
assignment with construction of a temporary from a pair of values (fol-
lowed by later destruction of that temporary); there’s no assignment.
The more expensive the cost of assignment of the value part of the
pair, the more you save by using map:insert instead of map::operator[].

The code above takes advantage of the value_type typedef that’s pro-
vided by every standard container. There’s nothing particularly signif-
icant about this typedef, but it’s important to remember that for map
and multimap (as well as the nonstandard containers hash_map and
hash_multimap — see Item 25), the type of the contained elements will
always be some kind of pair.

Associative Containers Item 24 109

I remarked earlier that operator[] is designed to facilitate “add or
update” functionality, and we now understand that when an “add” is
performed, insert is more efficient than operator[]. The situation is
reversed when we do an update, i.e., when an equivalent key (see
Item 19) is already in the map. To see why that is the case, look at our
update options:

mlk] =v; // use operator[]
// to update k’s
// value to be v

m.insert(IntWidgetMap::value_type(k, v))first->second = v; // use insert to
// update k’s
// value to be v

The syntax alone is probably enough to convince you to favor opera-
tor[], but we're focusing on efficiency here, so we’ll overlook that.

The call to insert requires an argument of type IntWidgetMap::value_type
(i.e., pair<int, Widget>), so when we call insert, we must construct and
destruct an object of that type. That costs us a pair constructor and
destructor. That, in turn, entails a Widget construction and destruc-
tion, because a pair<int, Widget> itself contains a Widget object. opera-
tor[] uses no pair object, so it constructs and destructs no pair and no
Widget.

Efficiency considerations thus lead us to conclude that insert is prefer-
able to operator[] when adding an element to a map, and both effi-
ciency and aesthetics dictate that operator[] is preferable when
updating the value of an element that’s already in the map.

It would be nice if the STL provided a function that offered the best of
both worlds, i.e., efficient add-or-update functionality in a syntacti-
cally attractive package. For example, it's not hard to envision a call-
ing interface such as this:

iterator affectedPair = /1 if key kisn'tin map m, efficiently
efficientAddOrUpdate(m, k, v); // add pair (k,v) to m; otherwise
// efficiently update to v the value
// associated with k. Return an
// iterator to the added or
// modified pair

There’s no function like this in the STL, but, as the code below dem-
onstrates, it’s not terribly hard to write yourself. The comments sum-
marize what’s going on, and the paragraphs that follow provide some
additional explanation.

110 Item 24 Associative Containers

template< typename MapType, // type of map
typename KeyArgType, // see below for why
typename ValueArgType> // KeyArgType and
// ValueArgType are type
typename MapType:iterator // parameters
efficientAddOrUpdate(MapType& m,
const KeyArgType& k,
const ValueArgType& v)
{
typename MapType:iterator Ib = // find where k is or should
m.lower_bound(k); // be; see page 7 for why
// "typename” is needed
// here
if (Ib '=m.end() && // if Ib points to a pair
I(m.key_comp()(k, Ib->first))) { // whose key is equiv to k...
Ib->second =v; // update the pair’s value
return lb; // and return an iterator
} // to that pair
else {
typedef typename MapType::value_type MVT;
return m.insert(lb, MVT(k, v)); // add pair(k, v) to m and
} // return an iterator to the
} // new map element

To perform an efficient add or update, we need to be able to find out if
k’'s value is in the map; if so, where it is; and if not, where it should be
inserted. That job is tailor-made for lower_bound (see Item 45), so
that’s the function we call. To determine whether lower_bound found
an element with the key we were looking for, we perform the second
half of an equivalence test (see Item 19), being sure to use the correct
comparison function for the map; that comparison function is avail-
able via map:key_comp. The result of the equivalence test tells us
whether we're performing an add or an update.

If it’'s an update, the code is straightforward. The insert branch is more
interesting, because it uses the “hint” form of insert. The construct
m.insert(lb, MVT(k, v)) “hints” that Ib identifies the correct insertion loca-
tion for a new element with key equivalent to k, and the Standard guar-
antees that if the hint is correct, the insertion will occur in amortized
constant, rather than logarithmic, time. In efficientAddOrUpdate, we
know that Ib identifies the proper insertion location, so the call to
insert is guaranteed to be an amortized constant-time operation.

An interesting aspect of this implementation is that KeyArgType and
ValueArgType need not be the types stored in the map. They need only
be convertible to the types stored in the map. The alternative would be
to eliminate the type parameters KeyArgType and ValueArgType, using

Associative Containers Item 25 111

instead MapType:key_type and MapType:mapped_type. However, if we
did that, we might force unnecessary type conversions to occur at the
point of call. For instance, look again at the definition of the map
we’'ve been using in this Item’s examples:

map<int, Widget> m; // as before
And recall that Widget accepts assignment from a double:

class Widget { // also as before
public:

Widget& operator=(double weight);

5
Now consider this call to efficientAddOrUpdate:
efficientAddOrUpdate(m, 10, 1.5);

Suppose that it’s an update operation, i.e., m already contains an ele-
ment whose key is 10. In that case, the template above deduces that
ValueArgType is double, and the body of the function directly assigns
1.5 as a double to the Widget associated with the key 10. That’s
accomplished by an invocation of Widget::operator=(double). If we had
used MapType:mapped_type as the type of efficientAddOrUpdate’s third
parameter, we’d have converted 1.5 to a Widget at the point of call,
and we’d thus have paid for a Widget construction (and subsequent
destruction) we didn’t need.

Subtleties in the implementation of efficientAddOrUpdate may be inter-
esting, but they’re not as important as the main point of this Item,
which is that you should choose carefully between map::operator[] and
map:insert when efficiency is important. If you're updating an existing
map element, operator[] is preferable, but if you're adding a new ele-
ment, insert has the edge.

Item 25: Familiarize yourself with the nonstandard
hashed containers.

It generally doesn’t take much time for STL programmers to begin to
wonder, “Vectors, lists, maps, sure, but where are the hash tables?”
Alas, there aren’t any hash tables in the standard C++ library. Every-
one agrees that this is unfortunate, but the Standardization Commit-
tee felt that the work needed to add them would have unduly delayed
completion of the Standard. It’s a foregone conclusion that the next
version of the Standard will include hash tables, but for the time
being, the STL doesn’t do hashing.

112 Item 25 Associative Containers

If you like hash tables, however, take heart. You need not do without
or roll your own. STL-compatible hashed associative containers are
available from multiple sources, and they even have de facto standard
names: hash_set, hash_multiset, hash_map, and hash_multimap.

Behind these common names, different implementations, er, differ.
They differ in their interfaces, their capabilities, their underlying data
structures, and the relative efficiency of the operations they support.
It’s still possible to write reasonably portable code using hash tables,
but it's not as easy as it would be had the hashed containers been
standardized. (Now you know why standards are important.)

Of the several available implementations for hashed containers, the
two most common are from SGI (see Item 50) and Dinkumware (see
Appendix B), so in what follows, I restrict myself to the designs of the
hashed containers from these vendors. STLport (again, see Item 50)
also offers hashed containers, but the STLport hashed containers are
based on those from SGI. For purposes of this Item, assume that
whatever I write about the SGI hashed containers applies to the
STLport hashed containers, too.

Hashed containers are associative containers, so it should not sur-
prise you that, like all associative containers, they need to know the
type of objects stored in the container, the comparison function for
such objects, and the allocator for these objects. In addition, hashed
containers require specification of a hashing function. That suggests
the following declaration for hashed containers:

template<typename T,
typename HashFunction,
typename CompareFunction,
typename Allocator = allocator<T> >
class hash_container,

This is quite close to the SGI declaration for hashed containers, the
primary difference being that SGI provides default types for HashFunc-
tion and CompareFunction. The SGI declaration for hash_set looks
essentially like this (I've tweaked it a bit for presentation purposes):

template<typenameT,
typename HashFunction = hash<T>,
typename CompareFunction = equal_to<T>,
typename Allocator = allocator<T> >

class hash_set;

A noteworthy aspect of the SGI design is the use of equal_to as the
default comparison function. This is a departure from the conventions
of the standard associative containers, where the default comparison
function is less. This design decision signifies more than a simple

Associative Containers Item 25 113

change in default comparison functions. SGI's hashed containers
determine whether two objects in a hashed container have the same
value by testing for equality, not equivalence (see Item 19). For hashed
containers, this is not an unreasonable decision, because hashed
associative containers, unlike their standard (typically tree-based)
counterparts, are not kept in sorted order.

The Dinkumware design for hashed containers adopts some different
strategies. It still allows you to specify object types, hash function
types, comparison function types, and allocator types, but it moves
the default hash and comparison functions into a separate traits-like
class called hash_compare, and it makes hash_compare the default
argument for the HashingInfo parameter of the container templates. (If
you're unfamiliar with the notion of a “traits” class, open a good STL
reference like Josuttis’ The C++ Standard Library [3] and study the
motivation and implementation of the char_traits and iterator_traits tem-
plates.)

For example, here’s the Dinkumware hash_set declaration (again,
tweaked for presentation):

template<typename T, typename CompareFunction>
class hash_compare;

template<typename T,
typename Hashinglnfo = hash_compare<T, less<T> >,
typename Allocator = allocator<T> >

class hash_set;

The interesting part of this interface design is the use of Hashinginfo.
The container’s hashing and comparison functions are stored there,
but the Hashinglnfo type also holds enums controlling the minimum
number of buckets in the table as well as the maximum allowable
ratio of container elements to buckets. When this ratio is exceeded,
the number of buckets in the table is increased, and some elements in
the table are rehashed. (SGI provides member functions that afford
similar control over the number of table buckets and, hence, the ratio
of table elements to buckets.)

After some tweaks for presentation, hash_compare (the default value
for HashingInfo) looks more or less like this:

template<typename T, typename CompareFunction = less<T> >
class hash_compare {
public:

enum {
bucket_size =4, // max ratio of elements to buckets
min_buckets =8 // minimum number of buckets

3

114 Item 25 Associative Containers

size_t operator()(const T&) const; // hash function

bool operator()(const T&, // comparison function
const T&) const;

// a few things omitted, including
L // the use of CompareFunction

The overloading of operator() (in this case, to implement both the hash-
ing and comparison functions) is a strategy that crops up more fre-
quently than you might imagine. For another application of the same
idea, take a look at Item 23.

The Dinkumware design allows you to write your own hash_compare-
like class (possibly by deriving from hash_compare itself), and as long
as your class provides definitions for bucket_size, min_buckets, two
operator() functions (one taking one argument, one taking two), plus a
few things I've left out, you can use it to control the configuration and
behavior of a Dinkumware hash_set or hash_multiset. Configuration
control for hash_map and hash_multimap is similar.

Notice that with both the SGI and the Dinkumware designs, you can
leave all the decision-making to the implementations and simply write
something like this:

hash_set<int> intTable; // create a hashed set of ints

For this to compile, the hash table must hold an integral type (such as
int), because the default hashing functions are generally limited to
integral types. (SGI's default hashing function is slightly more flexible.
Item 50 will tell you where to find all the details.)

Under the hood, the SGI and Dinkumware implementations go their
very separate ways. SGI employs a conventional open hashing scheme
composed of an array (the buckets) of pointers to singly linked lists of
elements. Dinkumware also employs open hashing, but its design is
based on a novel data structure consisting of an array of iterators
(essentially the buckets) into a doubly linked list of elements, where
adjacent pairs of iterators identify the extent of the elements in each
bucket. (For details, consult Plauger’s aptly titled column, “Hash
Tables” [16].)

As a user of these implementations, it’s likely you’ll be interested in
the fact that the SGI implementation stores the table elements in sin-
gly linked lists, while the Dinkumware implementation uses a doubly
linked list. The difference is noteworthy, because it affects the iterator
categories for the two implementations. SGI's hashed containers offer
forward iterators, so you forgo the ability to perform reverse iterations;
there are no rbegin or rend member functions in SGI's hashed contain-

Associative Containers Item 25 115

ers. The iterators for Dinkumware’s hashed containers are bidirec-
tional, so they offer both forward and reverse traversals. In terms of
memory usage, the SGI design is a bit more parsimonious than that
from Dinkumware.

Which design is best for you and your applications? I can’t possibly
know. Only you can determine that, and this Item hasn’t tried to give
you enough information to come to a reasonable conclusion. Instead,
the goal of this Item is to make sure you know that though the STL
itself lacks hashed containers, STL-compatible hashed containers
(with varying interfaces, capabilities, and behavioral trade-offs) are
not difficult to come by. In the case of the SGI and STLport implemen-
tations, you can even come by them for free, because they're available
for free download.

Iterators

At first glance, iterators appear straightforward. Look more closely,
however, and you’ll notice that the standard STL containers offer four
different iterator types: iterator, const_iterator, reverse_iterator, and
const_reverse_iterator. From there it's only a matter of time until you
note that of these four types, only one is accepted by containers in
certain forms of insert and erase. That's when the questions begin.
Why four iterator types? What is the relationship among them? Are
they interconvertible? Can the different types be mixed in calls to
algorithms and STL utility functions? How do these types relate to
containers and their member functions?

This chapter answers these questions, and it introduces an iterator
type that deserves more notice than it usually gets: istreambuf_iterator.
If you like the STL, but youre unhappy with the performance of
istream_iterators when reading character streams, istreambuf_iterator
could be just the tool you're looking for.

Item 26: Prefer iterator to const_iterator, reverse_iterator,
and const_reverse_iterator.

As you know, every standard container offers four types of iterator.
For a container<T>, the type iterator acts like a T*, while const_iterator
acts like a const T* (which you may also see written as a T const *; they
mean the same thing). Incrementing an iterator or a const_iterator
moves you to the next element in the container in a traversal starting
at the front of the container and proceeding to the back.
reverse_iterator and const_reverse_iterator also act like T* and const T*,
respectively, except that incrementing these iterator types moves you
to the next element in the container in a traversal from back to front.

Let me show you two things. First, take a look at some signatures for
insert and erase in vector<T>:

Iterators Item 26 117

iterator insert(iterator position, const T& x);
iterator erase(iterator position);
iterator erase(iterator rangeBegin, iterator rangeEnd);

Every standard container offers functions analogous to these, though
the return types vary, depending on the container type. The thing to
notice is that these functions demand parameters of type iterator. Not
const_iterator, not reverse_iterator, not const_reverse_iterator. Always iter-
ator. Though containers support four iterator types, one of those types
has privileges the others do not have. That type is iterator. iterator is
special.

The second thing I want to show you is this diagram, which displays
the conversions that exist among iterator types.

const_iterator
base()

iterator ﬁ\
LS

reverse_iterator————» const_reverse_iterator
base()

The diagram shows that there are implicit conversions from iterator to
const_iterator, from iterator to reverse_iterator, and from reverse_iterator
to const_reverse_iterator. It also shows that a reverse_iterator may be
converted into an iterator by using the reverse_iterator's base member
function, and a const_reverse_iterator may similarly be converted into a
const_iterator via base. The diagram does not show that the iterators
obtained from base may not be the ones you want. For the story on
that, turn to Item 28.

You'll observe that there is no way to get from a const_iterator to an iter-
ator or from a const_reverse_iterator to a reverse_iterator. This is impor-
tant, because it means that if you have a const_ iterator or a
const_reverse_iterator, you’'ll find it difficult to use those iterators with
some container member functions. Such functions demand iterators,
and since there’s no conversion path from the const iterator types
back to iterator, the const iterator types are largely useless if you want
to use them to specify insertion positions or elements to be erased.

Don’t be fooled into thinking that this means const iterators are use-
less in general. They're not. They're perfectly useful with algorithms,
because algorithms don’t usually care what kind of iterators they
work with, as long as they are of the appropriate category. const itera-
tors are also acceptable for many container member functions. It's
only some forms of insert and erase that are picky.

I wrote that const iterators are “largely” useless if you want to specify
insertion positions or elements to be erased. The implication is that

118 Item 26 Iterators

they are not completely useless. That’s true. They can be useful if you
can find a way to get an iterator from a const_iterator or from a
const_reverse_iterator. That’s often possible. It isn’t always possible,
however, and even when it is, the way to do it isn’t terribly obvious. It
may not be terribly efficient, either. The topic is meaty enough to jus-
tify its own Item, so turn to Item 27 if you're interested in the details.
For now, we have enough information to understand why it often
makes sense to prefer iterators to const and reverse iterators:

= Some versions of insert and erase require iterators. If you want to
call those functions, you're going to have to produce iterators.
const and reverse iterators won't do.

= It’s not possible to implicitly convert a const_iterator to an iterator,
and the technique described in Item 27 for generating an iterator
from a const_iterator is neither universally applicable nor guaran-
teed to be efficient.

= Conversion from a reverse_iterator to an iterator may require iterator
adjustment after the conversion. Item 28 explains when and why.

All these things conspire to make working with containers easiest,
most efficient, and least likely to harbor subtle bugs if you prefer itera-
tors to their const and reverse colleagues.

Practically speaking, you are more likely to have a choice when it
comes to iterators and const_iterators. The decision between iterator and
reverse_iterator is often made for you. You either need a front-to-back
traversal or a back-to-front traversal, and that’s pretty much that. You
choose the one you need, and if that means choosing reverse_iterator,
you choose reverse_iterator and use base to convert it to an iterator (pos-
sibly preceded by an offset adjustment — see Item 28) when you want
to make calls to container member functions that require iterators.

When choosing between iterators and const_iterators, there are reasons
to choose iterators even when you could use a const_iterator and when
you have no need to use the iterator as a parameter to a container
member function. One of the most irksome involves comparisons
between iterators and const_iterators. I hope we can all agree that this
is reasonable code:

typedef deque<int> IntDeque; // STL container and
typedef IntDequeiterator lter; // iterator types are easier
typedef IntDeque::const_iterator Constlter; // to work with if you

// use some typedefs
Iter i;
Constlter ci;

Iterators Item 26 119

// make i and ci point into
// the same container

if (i==ci).. // compare an iterator
// and a const_iterator

All we're doing here is comparing two iterators into a container, the
kind of comparison that’s the bread and butter of the STL. The only
twist is that one object is of type iterator and one is of type
const_iterator. This should be no problem. The iterator should be
implicitly converted into a const_iterator, and the comparison should
be performed between two const_iterators.

With well-designed STL implementations, this is precisely what hap-
pens, but with other implementations, the code will not compile. The
reason is that such implementations declare operator== {for
const_iterators as a member function instead of as a non-member
function, but the cause of the problem is likely to be of less interest to
you than the workaround, which is to swap the order of the iterators,
like this:

if (ci==1) ... // workaround for when the
// above won't compile

This kind of problem can arise whenever you mix iterators and
const_iterators (or reverse_iterators and const_reverse_iterators) in the
same expression, not just when you are comparing them. For exam-
ple, if you try to subtract one random access iterator from another,

if (i-ci>=3).. //ifiis at least 3 beyond ci ...

your (valid) code may be (incorrectly) rejected if the iterators aren’t of
the same type. The simplest workaround in this case is to turn the
iterator into a const_iterator through a (safe) cast:

if (static_cast<Constlter>(i) - ci >= 3) ... // workaround for when the
// above won't compile

The easiest way to guard against these kinds of problems is to mini-
mize your mixing of iterator types, and that, in turn, leads back to
preferring iterators to const_iterators. From the perspective of const cor-
rectness (a worthy perspective, to be sure), staying away from
const_iterators simply to avoid potential implementation shortcomings
(all of which have workarounds) seems unjustified, but in conjunction
with the anointed status of iterators in some container member func-
tions, it’s hard to avoid the practical conclusion that const_iterators are
not only less useful than iterators, sometimes they’re just not worth
the trouble.

120 Item 27 Iterators

Item 27: Use distance and advance to convert a
container’s const_iterators to iterators.

Item 26 points out that some container member functions that take
iterators as parameters insist on /terators; const_iterators won’t do. So
what do you do if you have a const_iterator in hand and you want to,
say, insert a new value into a container at the position indicated by
the iterator? Somehow you've got to turn your const_iterator into an
iterator, and you have to take an active role in doing it, because, as
Item 26 explains, there is no implicit conversion from const_iterator to
iterator.

I know what you’re thinking. You're thinking, “When all else fails, get
a bigger hammer.” In the world of C++, that can mean only one thing;:
casting. Shame on you for such thoughts. Where do you get these
ideas?

Let us confront this cast obsession of yours head on. Look what hap-
pens when you try to cast a const_iterator to an iterator:

typedef deque<int> IntDeque; // convenience typedefs
typedef IntDeque:iterator Iter;
typedef IntDeque::const_iterator Constlter;

Constlter ci; // ci is a const_iterator

Iter i(ci); // error! no implicit conversion from
// const_iterator to iterator

Iter i(const_cast<lIter>(ci)); // still an error! can’t cast a
// const_iterator to an iterator

This example happens to use deque, but the outcome would be the
same for list, set, multiset, map, multimap, and the hashed containers
described in Item 25. The line using the cast might compile in the case
of vector or string, but those are special cases we’ll consider in a
moment.

The reason the cast won’t compile is that for these container types,
iterator and const_iterator are different classes, barely more closely
related to one another than string and complex<double>. Trying to cast
one type to the other is nonsensical, and that’s why the const_cast is
rejected. static_cast, reinterpret_cast, and a C-style cast would lead to
the same end.

Alas, the cast that won't compile might compile if the iterators’ con-
tainer were a vector or a string. That’s because it is common for imple-
mentations of these containers to use pointers as iterators. For such

Iterators Item 27 121

implementations, vector<T>:iterator is a typedef for T*, vec-
tor<T>:const_iterator is a typedef for const T*, string:iterator is a typedef
for char*, and string::const_iterator is a typedef for const char*. With such
implementations, the const_cast from a const_iterator to an iterator will
compile and do the right thing, because the cast is converting a
constT* into a T*. Even under such implementations, however,
reverse_iterators and const_reverse_iterators are true classes, so you
can’'t const_cast a const_reverse_iterator to a reverse_iterator. Also, as
Item 50 explains, even implementations where vector and string itera-
tors are pointers might use that representation only when compiling
in release mode. All these factors lead to the conclusion that casting
const iterators to iterators is ill-advised even for vector and string,
because its portability is doubtful.

If you have access to the container a const_iterator came from, there is
a safe, portable way to get its corresponding iterator,’ and it involves
no circumvention of the type system. Here’s the essence of the solu-
tion, though it must be modified slightly before it will compile:

typedef deque<int> IntDeque; // as before
typedef IntDeque:iterator lter;
typedef IntDeque::const_iterator Constlter;

IntDeque d;

Constlter ci;

// make ci pointintod
Iter i(d.begin()); // initialize i to d.begin()
advance(i, distance(i, ci)); // move i up to where ci is

// (but see below for why this must
// be tweaked before it will compile)

This approach is so simple and direct, it's startling. To get an iterator
pointing to the same container element as a const_iterator, create a
new iterator at the beginning of the container, then move it forward
until it’s as far from the beginning of the container as the const_iterator
is! This task is facilitated by the function templates advance and dis-
tance, both of which are declared in <iterator>. distance reports how far
apart two iterators into the same container are, and advance moves an
iterator a specified distance. When i and ci point into the same con-
tainer, the expression advance(i, distance(i, ci)) makes i and ci point to
the same place in the container.

Well, it would if it would compile, but it won’t. To see why, look at the
declaration for distance:

t I have since discovered that the approach described here may fail for string implemen-
tations that use reference counting. For details, consult jep’s 8/22/01 comment re-
garding page 121 of this book at http://www.aristeia.com/BookErrata/estl1e-errata.html.

http://www.aristeia.com/BookErrata/estl1e-errata.html

122 Item 27 Iterators

template <typename Inputlterator>
typename iterator_traits<Inputlterator>:difference_type
distance(Inputlterator first, Inputlterator last);

Don’t get hung up on the fact that the return type of the function is 56
characters long and mentions dependent types like difference_type.
Instead, focus your attention on the uses of the type parameter Inputl-
terator:

template <typename Inputlterator>
typename iterator_traits<Inputlterator>:difference_type
distance(Inputlterator first, Inputlterator last);

When faced with a call to distance, your compilers must deduce the
type represented by Inputlterator by examining the arguments used in
the call. Look again at the call to distance in the code I said wasn’t
quite right:

advance(i, distance(i, ci)); // move i up to where ci is

Two parameters are passed to distance, i and ci. i is of type Iter, which
is a typedef for deque<int>:iterator. To compilers, that implies that
Inputlterator in the call to distance is deque<int>:iterator. ci, however, is
of type Constlter, which is a typedef for deque<int>:const_iterator. That
implies that Inputlterator is of type deque<int>:const_iterator. It's not
possible for Inputlterator to be two different types at the same time, so
the call to distance fails, typically yielding some long-winded error
message that may or may not indicate that the compiler couldn’t fig-
ure out what type Inputlterator is supposed to be.

To get the call to compile, you must eliminate the ambiguity. The eas-
iest way to do that is to explicitly specify the type parameter to be
used by distance, thus obviating the need for your compilers to figure
it out for themselves:

advance(i, distance<Constlter>(i, ci)); //figure the distance between
// iand ci (as const_iterators),
// then move i that distance

We now know how to use advance and distance to get an iterator corre-
sponding to a const_iterator, but we have so far sidestepped a question
of considerable practical interest: How efficient is this technique? The
answer is simple. It’s as efficient as the iterators allow it to be. For
random access iterators (such as those sported by vector, string, and
deque), it’s a constant-time operation. For bidirectional iterators (i.e.,
those for all other standard containers and for some implementations
of the hashed containers (see Item 25)), it’s a linear-time operation.

Because it may take linear time to produce an iterator equivalent to a
const_iterator, you may wish to rethink designs that require producing

Iterators Item 28 123

iterators from const_iterators. Such a consideration, in fact, helps moti-
vate Item 26, which advises you to prefer iterators over const and
reverse iterators when dealing with containers.

Item 28: Understand how to use a reverse_iterator’s base
iterator.

Invoking the base member function on a reverse_iterator yields the “cor-
responding” iterator, but it's not really clear what that means. As an
example, take a look at this code, which puts the numbers 1-5 in a
vector, sets a reverse_iterator to point to the 3, and initializes an iterator
to the reverse_iterator’s base:

vector<int> v;
v.reserve(5); // see Iltem 14

for (inti=1;i<=5; ++i) { // put 1-5 in the vector
v.push_back(i);

vector<int>:reverse_iterator ri = // make ri point to the 3
find(v.rbegin(), v.rend(), 3);
vector<int>:iterator i(ri.base()); // make i the same as ri’s base

After executing this code, things can be thought of as looking like this:
rend() " rbegin()

SN

1121345

I

begin() ' end()

This picture is nice, displaying the characteristic offset of a
reverse_iterator and its corresponding base iterator that mimics the off-
set of rbegin() and rend() with respect to begin() and end(), but it doesn’t
tell you everything you need to know. In particular, it doesn’t explain
how to use i to perform operations you’d like to perform on ri.

As Item 26 explains, some container member functions accept only
iterators as iterator parameters, so if you want to, say, insert a new
element at the location identified by ri, you can’t do it directly; vector’s
insert function won’t take reverse_iterators. You'd have a similar prob-
lem if you wanted to erase the element pointed to by ri. The erase

124 Item 28 Iterators

member functions reject reverse_iterators, insisting instead on iterators.
To perform insertions or erasures, you must convert reverse_iterators
into iterators via base, then use the iterators to get the jobs done.

So let’s suppose you do want to insert a new element into v at the
position indicated by ri. In particular, let’s assume you want to insert
the value 99. Bearing in mind that ri is part of a traversal from right to
left in the picture above and that insertion takes place in front of the
element indicated by the iterator used to specify the insertion posi-
tion, we’'d expect the 99 to end up in front of the 3 with respect to a
reverse traversal. After the insertion, then, v would look like this:

11213(9914]|5

Of course, we can't use ri to indicate where to insert something,
because it’s not an iterator. We must use i instead. As noted above,
when ri points at 3, i (which is ribase()) points at 4. That’s exactly
where i needs to point for an insertion if the inserted value is to end
up where it would have had we been able to use ri to specify the inser-
tion location. Conclusion?

= To emulate insertion at a position specified by a reverse_iterator ri,
insert at the position ri.base() instead. For purposes of insertion, ri
and ri.base() are equivalent, and ri.base() is truly the iterator corre-
sponding to ri.

Let us now consider erasing an element. Look again at the relation-
ship between ri and i in the original vector (i.e., prior to the insertion of
99):

1121345

T

If we want to erase the element pointed to by ri, we can’t just use i,
because i doesn’t point to the same element as ri. Instead, we must
erase the element preceding i. Hence,

® To emulate erasure at a position specified by a reverse_iterator ri,
erase at the position preceding ri.base() instead. For purposes of
erasure, ri and ri.base() are not equivalent, and ri.base() is not the it-
erator corresponding to ri.

Iterators Item 28 125

It’s worth looking at the code to perform such an erasure, because it
holds a surprise.

vector<int>v;
// as above, put 1-5inv

vector<int>:reverse_iterator ri = // as above, make ri point to the 3
find(v.rbegin(), v.rend(), 3);
v.erase(--ri.base()); // attempt to erase at the position

// preceding ri.base(); for a vector,
// this will typically notcompile

There’s nothing wrong with this design. The expression --ri.base() cor-
rectly specifies the element we’d like to erase. Furthermore, this code
will work with every standard container except vector and string. It
might work with vector and string, too, but for many vector and string
implementations, it won’t compile. In such implementations, iterators
(and const_iterators) are implemented as built-in pointers, so the result
of ri.base() is a pointer.

Both C and C++ dictate that pointers returned from functions shall
not be modified, so for STL platforms where string and vector iterators
are pointers, expressions like --ribase() won't compile. To portably
erase something at a position specified by a reverse_iterator, then, you
must take pains to avoid modifying base’s return value. No problem. If
you can’'t decrement the result of calling base, just increment the
reverse_iterator and then call base!

// as above

v.erase((++ri).base()); // erase the element pointed to by
// ri; this should always compile

Because this approach works with every standard container, it is the
preferred technique for erasing an element pointed to by a
reverse_iterator.

It should now be clear that it's not accurate to say that a
reverse_iterator's base member function returns the “corresponding”
iterator. For insertion purposes, it does, but for erasure purposes, it
does not. When converting reverse_iterators to iterators, it’s important
that you know what you plan to do with the resulting iterator, because
only then can you determine whether the iterator you have is the one
you need.

126 Item 29 Iterators

Item 29: Consider istreambuf_iterators for character-by-
character input.

Let’s suppose you'd like to copy a text file into a string object. This
seems like a pretty reasonable way to do it:

ifstream inputFile("interestingData.txt");

string fileData((istream_iterator<char>(inputFile)), //read inputFile into
istream_iterator<char>()); // fileData; see below
// for why this isn't
// quite right, and see
// Item 6 for a warning
// about this syntax

It wouldn’t take long before you'd notice that this approach fails to
copy whitespace in the file into the string. That's because
istream_iterators use operator>> functions to do the actual reading,
and, by default, operator>> functions skip whitespace.

Assuming you’d like to retain the whitespace, all you need to do is
override the default. Just clear the skipws flag for the input stream:

ifstream inputFile("interestingData.txt");

inputFile.unsetf(ios::skipws); // disable the skipping of
// whitespace in inputFile

string fileData((istream_iterator<char>(inputFile)),
istream_iterator<char>());

Now all the characters in inputFile are copied into fileData.

Alas, you may discover that they aren’t copied as quickly as you’'d like.
The operator>> functions on which istream_iterators depend perform
formatted input, and that means they must undertake a fair amount
of work on your behalf each time you call one. They have to create and
destroy sentry objects (special iostream objects that perform setup and
cleanup activities for each call to operator>>), they have to check
stream flags that might affect their behavior (e.g., skipws), they have to
perform comprehensive checking for read errors, and, if they encoun-
ter a problem, they have to check the stream’s exception mask to
determine whether an exception should be thrown. Those are all
important activities if you're performing formatted input, but if all you
want to do is grab the next character from the input stream, it’'s over-
kill.

A more efficient approach is to use one of the STL’s best kept secrets:
istreambuf_iterators. You use istreambuf_iterators like istream_iterators,
but where istream_iterator<char> objects use operator>> to read individ-
ual characters from an input stream, istreambuf_iterator<char> objects

Iterators Item 29 127

go straight to the stream’s buffer and read the next character directly.
(More specifically, an istreambuf_iterator<char> object reading from an
istream s will call s.rdbuf()->sgetc() to read s’s next character.)

Modifying our file-reading code to use istreambuf_iterators is so easy,
most Visual Basic programmers need no more than two tries to get it
right:

ifstream inputFile("interestingData.txt");

string fileData((istreambuf_iterator<char>(inputFile)),
istreambuf_iterator<char>());

Notice how there’s no need to “unset” the skipws flag here.
istreambuf_iterators never skip any characters. Whatever’s next in the
stream bulffer, that’s what they grab.

Compared to istream_iterators, they grab it quickly — up to 40% faster
in the simple benchmarks I performed, though don’t be surprised if
your mileage varies. Don’t be surprised if the speed advantage
increases over time, too, because istreambuf_iterators inhabit a seldom-
visited corner of the STL where implementers haven’t yet spent a lot of
time on optimizations. For example, in one implementation I used,
istreambuf_iterators were only about 5% faster than istream_iterators on
my primitive tests. Such implementations clearly have lots of room to
streamline their istreambuf_iterator implementations.

If you need to read the characters in a stream one by one, you don’t
need the power of formatted input, and you care about how long it
takes to read the stream, typing three extra characters per iterator is
a small price to pay for what is often a significant increase in perfor-
mance. For unformatted character-by-character input, you should
always consider istreambuf_iterators.

While you’re at it, you should also consider ostreambuf_iterators for the
corresponding unformatted character-by-character output opera-
tions. They avoid the overhead (and flexibility) of their ostream_iterator
cousins, so they generally outperform them, too.

Algorithms

I noted at the beginning of Chapter 1 that containers get the lion’s
share of the STL acclaim. In a sense, that’s understandable. The con-
tainers are remarkable accomplishments, and they make life easier
for legions of C++ programmers on a daily basis. Still, the STL algo-
rithms are significant in their own right, equally capable of lightening
a developer’s burden. In fact, given that there are over 100 algorithms,
it’s easy to argue that they offer programmers a more finely honed tool
set than the containers (a mere eight strong) could ever hope to
match. Perhaps their number is part of the problem. Making sense of
eight distinct container types is surely less work than remembering 70
algorithm names and trying to keep track of which does what.

I have two primary goals in this chapter. First, I want to introduce you
to some lesser-known algorithms by showing you how they can make
your life easier. Rest assured that I'm not going to punish you with
lists of names to memorize. The algorithms I show you are in this
chapter because they solve common problems, like performing case-
insensitive string comparisons, efficiently finding the n most desirable
objects in a container, summarizing the characteristics of all the
objects in a range, and implementing the behavior of copy_if (an algo-
rithm from the original HP STL that was dropped during standardiza-
tion).

My second goal is to show you how to avoid common usage problems
with the algorithms. You can’t call remove, for example, or its cousins
remove_if and unique unless you understand exactly what these algo-
rithms do (and do not do). This is especially true when the range from
which you’re removeing something holds pointers. Similarly, a number
of algorithms work only with sorted ranges, so you need to under-
stand which ones they are and why they impose that constraint.
Finally, one of the most common algorithm-related mistakes involves
asking an algorithm to write its results to a place that doesn’t exist, so
I explain how this absurdity can come about and how to ensure that
you're not afflicted.

Algorithms Item 30 129

By the end of the chapter, you may not hold algorithms in the same
high regard you probably already accord containers, but I'm hopeful
you’ll be willing to let them share the limelight more often than you
have in the past.

Item 30: Make sure destination ranges are big enough.

STL containers automatically expand themselves to hold new objects
as they are added (via insert, push_front, push_back, etc.). This works so
well, some programmers lull themselves into the belief that they never
have to worry about making room for objects in containers, because
the containers themselves take care of things. If only it were so!

The problems arise when programmers think about inserting objects
into containers, but don'’t tell the STL what they’re thinking. Here’s a
common way this can manifest itself:

int transmogrify(int x); // this function produces
// some new value from x

vector<int> values;
// put data into values

vector<int> results; // apply transmogrify to
transform(values.begin(), values.end(), // each object in values,
results.end(), // appending the return
transmogrify); // values to results; this

// code has a bug!

In this example, transform is told that the beginning of its destination
range is results.end(), so that's where it starts writing the results of
invoking transmogrify on every element of values. Like every algorithm
that uses a destination range, transform writes its results by making
assignments to the elements in the destination range. transform will
thus apply transmogrify to values[0] and assign the result to
*results.end(). It will then apply transmogrify to values[1] and assign the
result to *(results.end()+1). This can lead only to disaster, because there
is no object at *results.end(), much less at *(results.end()+1)! The call to
transform is wrong, because it’'s asking for assignments to be made to
objects that don’t exist. (Item 50 explains how a debugging implemen-
tation of the STL can detect this problem at runtime.)

Programmers who make this kind of mistake almost always intend for
the results of the algorithm they’re calling to be inserted into the desti-
nation container. If that's what you want to happen, you have to say
so. The STL is a library, not a psychic. In this example, the way to say
“please put transform’s results at the end of the container called results”

130 Item 30 Algorithms

is to call back_inserter to generate the iterator specifying the beginning
of the destination range:

vector<int> results; // apply transmogrify to
transform(values.begin(), values.end), // each object in values,
back_inserter(results), // inserting the return
transmogrify); // values at the end of
// results

Internally, the iterator returned by back_inserter causes push_back to
be called, so you may use back_inserter with any container offering
push_back (i.e., any of the standard sequence containers: vector, string,
deque, and list). If you'd prefer to have an algorithm insert things at
the front of a container you can use front_inserter. Internally,
front_inserter makes use of push_front, so front_inserter works only for
the containers offering that member function (i.e, deque and list):

// same as before

list<int> results; // results is now a list

transform(values.begin(), values.end(), // insert transform'’s
front_inserter(results), // results at the front of
transmogrify); // results /n reverse order

Because front_inserter causes each object added to results to be
push_fronted, the order of the objects in results will be the reverse of the
order of the corresponding objects in values. This is one reason why
front_inserter isn’t used as often as back_inserter. Another reason is that
vector doesn’t offer push_front, so front_inserter can’t be used with vec-
tors.

If you want transform to put its output at the front of results, but you
also want the output to be in the same order as the corresponding
objects in values, just iterate over values in reverse order:

list<int> results; // same as before

transform(values.rbegin(), values.rend(), // insert transform’s
front_inserter(results), // results at the front of
transmogrify); // results; preserve the

// relative object ordering

Given that front_inserter lets you force algorithms to insert their results
at the front of a container and back_inserter lets you tell them to put
their results at the back of a container, it’s little surprise that inserter
allows you to force algorithms to insert their results into containers at
arbitrary locations:

vector<int> values; // as before

Algorithms Item 30 131

vector<int> results; // as before, except now
// results has some data
// in it prior to the call to

// transform
transform(values.begin(), values.end(), // insert the
inserter(results, results.begin() + results.size() / 2), // results of
transmogrify); // the trans-
// mogrifica-
// tions at
// the middle

// of results

Regardless of whether you use back_inserter, front_inserter, or inserter,
each insertion into the destination range is done one object at a time.
Item 5 explains that this can be expensive for contiguous-memory
containers (vector, string, and deque), but Item 5’s suggested solution
(using range member functions) can’t be applied when it's an algo-
rithm doing the inserting. In this example, transform will write to its
destination range one value at a time, and there’s nothing you can do
to change that.

When the container into which you’re inserting is a vector or a string,
you can minimize the expense by following the advice of Item 14 and
calling reserve in advance. You'll still have to absorb the cost of shift-
ing elements up each time an insertion takes place, but at least you’ll
avoid the need to reallocate the container’s underlying memory:

vector<int> values; // as above
vector<int> results;

results.reserve(results.size() + values.size()); // ensure that results has
// the capacity for at least
// values.size() more

// elements
transform(values.begin(), values.end(), // as above,
inserter(results, results.begin() + results.size() / 2), // butresults
transmogrify); // won't do
// any reallo-
// cations

When using reserve to improve the efficiency of a series of insertions,
always remember that reserve increases only a container’s capacity;
the container’s size remains unchanged. Even after calling reserve, you
must use an insert iterator (e.g., one of the iterators returned from
back_inserter, front_inserter, or inserter) with an algorithm when you
want that algorithm to add new elements to a vector or string.

1 Unlike back_inserter and front_inserter, which just call push_back and push_front, respec-
tively, inserter returns an iterator that keeps track of its most recent insertion location.
Subsequent insertions take place following the most recently inserted element.

132 Item 30 Algorithms

To make this absolutely clear, here is the wrong way to improve the
efficiency of the example at the beginning of this Item (the one where
we append to results the outcome of transmogrifying the data in values):

vector<int> values; // as above
vector<int> results;

results.reserve(results.size() + values.size()); // as above

transform(values.begin(), values.end(), // write the results of
results.end(), // the transmogrifications
transmogrify); // to uninitialized memory;

/] behavior is undefined!

In this code, transform blithely attempts to make assignments to the
raw, uninitialized memory at the end of results. In general, this will fail
at runtime, because assignment is an operation that makes sense
only between two objects, not between one object and a chunk of pri-
mordial bits. Even if this code happens to do what you want it to,
results won’t know about the new “objects” transform “created” in its
unused capacity. As far as results would be aware, its size would be
the same after the call to transform as it was before. Similarly, its end
iterator would point to the same place it did prior to the call to trans-
form. Conclusion? Using reserve without also using an insert iterator
leads to undefined behavior inside algorithms as well as to corrupted
containers.

The correct way to code this example uses both reserve and an insert
iterator:

vector<int> values; // as above
vector<int> results;

results.reserve(results.size() + values.size()); // as above

transform(values.begin(), values.end(), // write the results of
back_inserter(results), // the transmogrifications
transmogrify); // to the end of results,

// avoiding reallocations
// during the process

So far, I've assumed that you want algorithms like transform to insert
their results as new elements into a container. This is a common
desire, but sometimes you want to overwrite the values of existing
container elements instead of inserting new ones. When that’s the
case, you don’'t need an insert iterator, but you still need to follow the
advice of this Item and make sure your destination range is big
enough.

Algorithms Item 31 133

For example, suppose you want transform to overwrite results’ ele-
ments. As long as results has at least as many elements as values does,
that’s easy. If it doesn’t, you must either use resize to make sure it
does,

vector<int> values;
vector<int> results;

if (results.size() < values.size()) { // make sure results is at

results.resize(values.size()); // least as big as values is
}
transform(values.begin(), values.end(), // overwrite the first
results.begin(), // values.size() elements of
transmogrify); // results

or you can clear results and then use an insert iterator in the usual
fashion:

results.clear(); // destroy all elements in
// results
results.reserve(values.size()); // reserve enough space
transform(values.begin(), values.end(), // put transform’s return
back_inserter(results), // values into results
transmogrify);

This Item has demonstrated a number of variations on a theme, but I
hope the underlying melody is what sticks in your mind. Whenever
you use an algorithm requiring specification of a destination range,
ensure that the destination range is big enough already or is
increased in size as the algorithm runs. To increase the size as you go,
use insert iterators, such as ostream_iterators or those returned by
back_inserter, front_inserter, or inserter. That’s all you need to remember.

Item 31: Know your sorting options.

How can I sort thee? Let me count the ways.

When many programmers think of ordering objects, only a single algo-
rithm comes to mind: sort. (Some programmers think of gsort, but
once they've read Item 46, they recant and replace thoughts of gsort
with those of sort.)

Now, sort is a wonderful algorithm, but there’s no point in squander-
ing wonder where you don’t need it. Sometimes you don’t need a full
sort. For example, if you have a vector of Widgets and you’d like to

134 Item 31 Algorithms

select the 20 highest-quality Widgets to send to your most loyal cus-
tomers, you need to do only enough sorting to identify the 20 best Wid-
gets; the remainder can remain unsorted. What you need is a partial
sort, and there’s an algorithm called partial_sort that does exactly what
the name suggests:

bool qualityCompare(const Widget& |hs, const Widget& rhs)
{

// return whether lhs’s quality is greater than rhs’s quality

}

partial_sort(widgets.begin(), // put the best 20 elements

widgets.begin() + 20, // (in order) at the front of
widgets.end(), // widgets

qualityCompare);
// use widgets...

After the call to partial_sort, the first 20 elements of widgets are the
best in the container and are in order, i.e., the highest-quality Widget
is widgets[0], the next highest is widgets[1], etc. That makes it easy to
send your best Widget to your best customer, the next best Widget to
your next best customer, etc.

If all you care about is that the 20 best Widgets go to your 20 best cus-
tomers, but you don’t care which Widget goes to which customer,
partial_sort gives you more than you need. In that case, all you need is
the 20 best Widgets in any order. The STL has an algorithm that does
exactly what you want, though the name isn't likely to spring to mind.
It’s called nth_element.

nth_element sorts a range so that the element at position n (which you
specify) is the one that would be there if the range had been fully
sorted. In addition, when nth_element returns, none of the elements in
the positions up to n follow the element at position n in the sort order,
and none of the elements in positions following n precede the element
at position n in the sort order. If that sounds complicated, it's only
because I have to select my words carefully. I'll explain why in a
moment, but first let’'s look at how to use nth_element to make sure
the best 20 Widgets are at the front of the widgets vector:

nth_element(widgets.begin(), // put the best 20 elements
widgets.begin() + 19, // at the front of widgets,
widgets.end(), // but don't worry about

qualityCompare); // their order

Algorithms Item 31 135

As you can see, the call to nth_element is essentially identical to the
call to partial_sort. The only difference in their effect is that partial_sort
sorts the elements in positions 1-20, while nth_element doesn’t. Both
algorithms, however, move the 20 highest-quality Widgets to the front
of the vector.

That gives rise to an important question. What do these algorithms do
when there are elements with the same level of quality? Suppose, for
example, there are 12 elements with a quality rating of 1 (the best
possible) and 15 elements with a quality rating of 2 (the next best). In
that case, choosing the 20 best Widgets involves choosing the 12 with
a rating of 1 and 8 of the 15 with a rating of 2. How should partial_sort
and nth_element determine which of the 15 to put in the top 20? For
that matter, how should sort figure out which order to put elements in
when multiple elements have equivalent values?

partial_sort and nth_element order elements with equivalent values any
way they want to, and you can’t control this aspect of their behavior.
(See Item 19 for what it means for two values to be equivalent.) In our
example, when faced with the need to choose Widgets with a quality
rating of 2 to put into the last 8 spots in the vector’s top 20, they’d
choose whichever ones they wanted. That's not unreasonable. If you
ask for the 20 best Widgets and some Widgets are equally good, you're
in no position to complain as long as the 20 you get back are at least
as good as the ones you didn’t.

For a full sort, you have slightly more control. Some sorting algo-
rithms are stable. In a stable sort, if two elements in a range have
equivalent values, their relative positions are unchanged after sorting.
Hence, if Widget A precedes Widget B in the (unsorted) widgets vector
and both have the same quality rating, a stable sorting algorithm will
guarantee that after the vector is sorted, Widget A still precedes
Widget B. An algorithm that is not stable would not make this guaran-
tee.

partial_sort is not stable. Neither is nth_element. sort, too, fails to offer
stability, but there is an algorithm, stable_sort, that does what its
name suggests. If you need stability when you sort, you'll probably
want to use stable_sort. The STL does not contain stable versions of
partial_sort or nth_element.

Speaking of nth_element, this curiously named algorithm is remark-
ably versatile. In addition to letting you find the top n elements of a
range, it can also be used to find the median value in a range or to
find the value at a particular percentile:

136 Item 31 Algorithms

vector<Widget>:iterator begin(widgets.begin()); // convenience vars
vector<Widget>:iterator end(widgets.end()); // for widgets’ begin
// and end iterators

vector<Widget>:iterator goalPosition; // iter indicating where
// the widget of interest
//is located

// The following code finds the Widget with
// the median level of quality

goalPosition = begin + widgets.size() / 2; // the widget of interest
// would be in the middle
// of the sorted vector

nth_element(begin, goalPosition, end, // find the median quality
qualityCompare); // value in widgets

// goalPosition now points
// to the Widget with a
// median level of quality

// The following code finds the Widget with
// a level of quality at the 75th percentile

vector<Widget>:size_type goalOffset = // figure out how far from
0.25 * widgets.size(); // the beginning the
// Widget of interest is

nth_element(begin, begin + goalOffset, end, //find the quality value at
qualityCompare); // the 75th percentile

// begin+goalOffset now
// points to the Widget

// with the 75th percentile
// level of quality

sort, stable_sort, and partial_sort are great if you really need to put
things in order, and nth_element fills the bill when you need to identify
the top n elements or the element at a particular position, but some-
times you need something similar to nth_element, but not quite the
same. Suppose, for example, you didn’t need to identify the 20 high-
est-quality Widgets. Instead, you needed to identify all the Widgets
with a quality rating of 1 or 2. You could, of course, sort the vector by
quality and then search for the first one with a quality rating worse
than 2. That would identify the beginning of a range of poor-quality
Widgets.

A full sort can be a lot of work, however, and that much work is not
necessary for this job. A better strategy is to use the partition algo-
rithm, which reorders elements in a range so that all elements satisfy-
ing a particular criterion are at the beginning of the range.

Algorithms Item 31 137

For example, to move all the Widgets with a quality rating of 2 or bet-
ter to the front of widgets, we define a function that identifies which
Widgets make the grade,

bool hasAcceptableQuality(const Widget& w)
{

// return whether w has a quality rating of 2 or better;

}

then pass that function to partition:

vector<Widget>:iterator goodEnd = // move all widgets satisfying
partition(widgets.begin(), // hasAcceptableQuality to
widgets.end(), // the front of widgets, and
hasAcceptableQuality); // return an iterator to the first

// widget that isn't satisfactory

After this call, the range from widgets.begin() to goodEnd holds all the
Widgets with a quality of 1 or 2, and the range from goodEnd to wid-
gets.end() contains all the Widgets with lower quality ratings. If it were
important to maintain the relative positions of Widgets with equivalent
quality levels during the partitioning, we’d naturally reach for
stable_partition instead of partition.

The algorithms sort, stable_sort, partial_sort, and nth_element require
random access iterators, so they may be applied only to vectors,
strings, deques, and arrays. It makes no sense to sort elements in
standard associative containers, because such containers use their
comparison functions to remain sorted at all times. The only container
where we might like to use sort, stable_sort, partial_sort, or nth_element,
but can’t, is list, and list compensates somewhat by offering its sort
member function. (Interestingly, list:sort performs a stable sort.) If you
want to sort a list, then, you can, but if you want to use partial_sort, or
nth_element on the objects in a list, you have to do it indirectly. One
indirect approach is to copy the elements into a container with ran-
dom access iterators, then apply the desired algorithm to that.
Another is to create a container of list:iterators, use the algorithm on
that container, then access the list elements via the iterators. A third
is to use the information in an ordered container of iterators to itera-
tively splice the list’s elements into the positions you'd like them to be
in. As you can see, there are lots of options.

partition and stable_partition differ from sort, stable_sort, partial_sort,
and nth_element in requiring only bidirectional iterators. You can
therefore use partition and stable_partition with any of the standard
sequence containers.

Let’s summarize your sorting options.

138 Item 31 Algorithms

= If you need to perform a full sort on a vector, string, deque, or ar-
ray, you can use sort or stable_sort.

= If you have a vector, string, deque, or array and you need to put
only the top n elements in order, partial_sort is available.

= If you have a vector, string, deque, or array and you need to identify
the element at position n or you need to identify the top n elements
without putting them in order, nth_element is at your beck and
call.

= If you need to separate the elements of a standard sequence con-
tainer or an array into those that do and do not satisfy some crite-
rion, you're probably looking for partition or stable_partition.

= If your data is in a list, you can use partition and stable_partition di-
rectly, and you can use list:sort in place of sort and stable_sort. If
you need the effects offered by partial_sort or nth_element, you’ll
have to approach the task indirectly, but there are a number of
options, as I sketched above.

In addition, you can keep things sorted at all times by storing your
data in a standard associative container. You might also consider the
standard non-STL container priority_queue, which also keeps its ele-
ments ordered all the time. (priority_queue is traditionally considered
part of the STL, but, as I noted in the Introduction, my definition of
“the STL” requires that STL containers support iterators, and
priority_queue doesn’t do iterators.)

“But what about performance?”, you wonder. Excellent question.
Broadly speaking, algorithms that do more work take longer to do it,
and algorithms that must sort stably take longer than algorithms that
can ignore stability. We can order the algorithms we've discussed in
this Item as follows, with algorithms that tend to use fewer resources
(time and space) listed before those that require more:

1. partition 4. partial_sort
2. stable_partition 5. sort
3. nth_element 6. stable_sort

My advice on choosing among the sorting algorithms is to make your
selection based on what you need to accomplish, not on performance
considerations. If you choose an algorithm that does only what you
need to do (e.g., a partition instead of a full sort), you're likely to end up
with code that’s not only the clearest expression of what you want to
do, it’s also the most efficient way to accomplish it using the STL.

Algorithms Item 32 139

Item 32: Follow remove-like algorithms by erase if you
really want to remove something.

I begin this Item with a review of remove, because remove is the most
confusing algorithm in the STL. Misunderstanding remove is easy, and
it’s important to dispel all doubt about what remove does, why it does
it, and how it goes about doing it.

Here is the declaration for remove:

template<class Forwardlterator, class T>
Forwardlterator remove(Forwardlterator first, Forwardlterator last,
const T& value);

Like all algorithms, remove receives a pair of iterators identifying the
range of elements over which it should operate. It does not receive a
container, so remove doesn’t know which container holds the elements
it’s looking at. Furthermore, it's not possible for remove to discover
that container, because there is no way to go from an iterator to the
container corresponding to that iterator.

Think for a moment about how one eliminates elements from a con-
tainer. The only way to do it is to call a member function on that con-
tainer, almost always some form of erase. (list has a couple of member
functions that eliminate elements and are not named erase, but
they're still member functions.) Because the only way to eliminate an
element from a container is to invoke a member function on that con-
tainer, and because remove cannot know the container holding the
elements on which it is operating, it is not possible for remove to elimi-
nate elements from a container. That explains the otherwise baffling
observation that removeing elements from a container never changes
the number of elements in the container:

vector<int>v; // create a vector<int> and fill it with
v.reserve(10); // the values 1-10. (See Item 14 for an
for (inti=1;i<=10; ++i) { // explanation of the reserve call.)

v.push_back(i);
}

cout << v.size(); // prints 10

v[3] = v[5] =Vv[9] = 99; // set 3 elements to 99
remove(v.begin(), v.end(), 99); // remove all elements with value 99
cout << v.size(); // still prints 10!

To make sense of this example, memorize the following:

remove doesn’t “really” remove anything, because it can’t.

140 Item 32 Algorithms

Repetition is good for you:
remove doesn’t “really” remove anything, because it can'’t.

remove doesn’'t know the container it’s supposed to remove things
from, and without that container, there’s no way for it to call the mem-
ber functions that are necessary if one is to “really” remove some-
thing.

That explains what remove doesn’'t do, and it explains why it doesn’t
do it. What we need to review now is what remove does do.

Very briefly, remove moves elements in the range it’s given until all the
“unremoved” elements are at the front of the range (in the same rela-
tive order they were in originally). It returns an iterator pointing one
past the last “unremoved” element. This return value is the “new logi-
cal end” of the range.

In terms of our example, this is what v looks like prior to calling
remove,

v.begin() \‘ '/ v.end()

11213(99151(99(7|8]|9(99

and if we store remove’s return value in a new iterator called newEnd,

vector<int>:iterator newEnd(remove(v.begin(), v.end(), 99));
this is what v looks like after the call:

v.begin() \‘ '/ v.end()

112(3(5(7|18|9]|?|7?7]7?

newEnd /‘

Here I've used question marks to indicate the values of elements that
have been conceptually removed from v but continue to exist.

It seems logical that if the “unremoved” elements are in v between
v.begin() and newEnd, the “removed” elements must be between new-
End and v.end(). This is not the case! The “removed” values aren’t nec-
essarily in v any longer at all. remove doesn’t change the order of the
elements in a range so that all the “removed” ones are at the end, it
arranges for all the “unremoved” values to be at the beginning.
Though the Standard doesn’t require it, the elements beyond the new

Algorithms Item 32 141

logical end of the range typically retain their old values. After calling
remove, v looks like this in every implementation I know:

v.begin() \‘ V/v.end()

112135171819 |8]|9]99

newknd j

As you can see, two of the “99” values that used to exist in v are no
longer there, while one “99” remains. In general, after calling remove,
the values removed from the range may or may not continue to exist
in the range. Most people find this surprising, but why? You asked
remove to get rid of some values, so it did. You didn’t ask it to put the
removed values in a special place where you could get at them later,
so it didn’t. What’s the problem? (If you don’t want to lose any values,
you should probably be calling partition or stable_partition instead of
remove. partition and stable_partition are described in Item 31.)

remove’s behavior sounds spiteful, but it’'s simply a fallout of the way
the algorithm operates. Internally, remove walks down the range, over-
writing values that are to be “removed” with later values that are to be
retained. The overwriting is accomplished by making assignments to
the elements holding the values to be overwritten.

You can think of remove as performing a kind of compaction, where
the values to be removed play the role of holes that are filled during
compaction. For our vector v, it plays out as follows.

1. remove examines v[0], sees that its value isn’t supposed to be re-
moved, and moves on to v[1]. It does the same for v[1] and v[2].

2. It sees that v[3] should be removed, so it notes that v[3]'s value
may be overwritten, and it moves on to v[4]. This is akin to not-
ing that v[3] is a “hole” that needs to be filled.

3. It sees that v[4]'s value should be retained, so it assigns v[4] to
v[3], notes that v[4] may now be overwritten, and moves on to
v[5]. Continuing the compaction analogy, it “fills” v[3] with v[4]
and notes that v[4] is now a hole.

4. It finds that v[5] should be removed, so it ignores it and moves
on to v[6]. It continues to remember that v[4] is a hole waiting to
be filled.

5. It sees that v[6] is a value that should be kept, so it assigns v[6]
to v[4], remembers that v[5] is now the next hole to be filled, and
moves on to v[7].

142 Item 32 Algorithms

6. In a manner analogous to the above, it examines v[7], v[8] and
v[9]. It assigns v[7] to v[5] and v[8] to v[6], ignoring v[9], because
the value at v[9] is to be removed.

7. It returns an iterator indicating the next element to be overwrit-
ten, in this case the element at v[7].

You can envision the values moving around in v as follows:

FN ¥ N
112[3/99/5(99(7|8]9[9
L

As Item 33 explains, the fact that remove overwrites some of the val-
ues it is removing has important repercussions when those values are
pointers. For this Item, however, it's enough to understand that
remove doesn’t eliminate any elements from a container, because it
can’t. Only container member functions can eliminate container ele-
ments, and that’s the whole point of this Item: You should follow
remove by erase if you really want to remove something.

The elements you want to erase are easy to identify. They’re the ele-
ments of the original range that start at the “new logical end” of the
range and continue until the real end of the range. To get rid of these
elements, all you need to do is call the range form of erase (see Item 5)
with these two iterators. Because remove itself conveniently returns
the iterator for the new logical end of the range, the call is straightfor-
ward:

vector<int> v; // as before

v.erase(remove(v.begin(), v.end(), 99), v.end()); // reallyremove all
// elements with value 99

cout << v.size(); // now returns 7

Passing remove’s return value as the first argument to the range form
of erase is so common, it's idiomatic. In fact, remove and erase are so
closely allied, the two are merged in the list member function remove.
This is the only function in the STL named remove that eliminates ele-
ments from a container:

list<int> li; // create a list

// put some values into it

li.remove(99); // eliminate all elements with value 99;
// this really removes elements, so li’s
// size may change

Algorithms Item 33 143

Frankly, calling this function remove is an inconsistency in the STL.
The analogous function in the associative containers is called erase,
and list’s remove should be called erase, too. It’s not, however, so we all
have to get used to it. The world in which we frolic may not be the best
of all possible worlds, but it is the one we've got. (On the plus side,
Item 44 points out that, for lists, calling the remove member function
is more efficient than applying the erase-remove idiom.)

Once you understand that remove can’t “really” remove things from a
container, using it in conjunction with erase becomes second nature.
The only other thing you need to bear in mind is that remove isn’t the
only algorithm for which this is the case. There are two other “remove-
like” algorithms: remove_if and unique.

The similarity between remove and remove_if is so straightforward, I
won’t dwell on it, but unique also behaves like remove. It is asked to
remove things (adjacent repeated values) from a range without having
access to the container holding the range’s elements. As a result, you
must also pair calls to unique with calls to erase if you really want to
remove elements from a container. unique is also analogous to remove
in its interaction with list. Just as list:remove really removes things
(and does so more efficiently than the erase-remove idiom), list:unique
really removes adjacent duplicates (also with greater efficiency than
would erase-unique).

Item 33: Be wary of remove-like algorithms on
containers of pointers.

So you conjure up a bunch of dynamically allocated Widgets, each of
which may be certified, and you store the resulting pointers in a vec-
tor:

class Widget {
public:

bool isCertified() const; // whether the Widget is certified
I
vector<Widget*> v; // create a vector and fill it with
// pointers to dynamically
v.push_back(new Widget); // allocated Widgets

After working with v for a while, you decide to get rid of the uncertified
Widgets, because you don’'t need them any longer. Bearing in mind
Item 43’s admonition to prefer algorithm calls to explicit loops and

144 Item 33 Algorithms

having read Item 32’s discourse on the relationship between remove
and erase, your thoughts naturally turn to the erase-remove idiom,
though in this case it’s remove_if you employ:

v.erase(remove_if(v.begin(), v.end(), // erase ptrs to
not1(mem_fun(&Widget:isCertified))), // uncertified
v.end()); // Widgets; see
// 1tem 41 for
// info on
// mem_fun

Suddenly you begin to worry about the call to erase, because you
dimly recall Item 7’s discussion of how destroying a pointer in a con-
tainer fails to delete what the pointer points to. This is a legitimate
worry, but in this case, it comes too late. By the time erase is called,
there’s an excellent chance you have already leaked resources. Worry
about erase, yes, but first, worry about remove_if.

Let’s assume that prior to the remove_if call, v looks like this, where
I've indicated the uncertified Widgets.

v.begin() ———»| Widget A

Widget B | uncertified

Widget C| uncertified

Widget D

i

vend() ———» Widget E

After the call to remove_if, v will typically look like this (including the
iterator returned from remove_if):

v.begin() ———» Widget A

!

Widget B

remove_if’s Widget C
return value

Widget D

vend() ———»

If this transformation makes no sense, kindly turn to Item 32,
because it explains exactly what happens when remove — or, in this
case, remove_if — is called.

Algorithms Item 33 145

The reason for the resource leak should now be apparent. The
“removed” pointers to Widgets B and C have been overwritten by later
“unremoved” pointers in the vector. Nothing points to the two uncerti-
fied Widgets, they can never be deleted, and their memory and other
resources are leaked.

Once both remove_if and erase have returned, the situations looks as
follows:

v.begin() ——» Widget A

Widget B
Widget D

Widget C

il

Widget E
vend() ————

This makes the resource leak especially obvious, and it should now be
clear why you should try to avoid using remove and similar algorithms
(i.e., remove_if and unique) on containers of pointers to dynamically
allocated objects. In many cases, you'll find that the partition algo-
rithm (see Item 31) is a reasonable alternative.

If you can’t avoid using remove on such containers, one way to elimi-
nate this problem is to delete the pointers and set them to null prior to
applying the erase-remove idiom, then eliminate all the null pointers in
the container:

void delAndNullifyUncertified(Widget*& pWidget) //if *pWidget is an

// uncertified Widget,
if (pWidget->isCertified()) { // delete the pointer
delete pWidget; // and set it to null
pWidget = 0;
}
for_each(v.begin(), v.end(), // delete and set to
delAndNullifyUncertified); // null all ptrs to
// uncertified widgets
v.erase(remove(v.begin(), v.end(), // eliminate null ptrs
static_cast<Widget*>(0)), // from v; 0 must be
v.end()); // cast to a ptr so C++
// correctly deduces
// the type of

// remove’s 3rd param

Of course, this assumes that the vector doesn’t hold any null pointers
you’d like to retain. If it does, you’ll probably have to write your own
loop that erases pointers as you go. Erasing elements from a container

146 Item 34 Algorithms

as you traverse that container has some subtle aspects to it, so be
sure to read Item 9 before considering that approach.

If you're willing to replace the container of pointers with a container of
smart pointers that perform reference counting, the remove-related
difficulties wash away, and you can use the erase-remove idiom
directly:

template<typename T> // RCSP = “Reference Counting
class RCSP{...}; // Smart Pointer”
typedef RCSP<Widget> RCSPW; // RCSPW = “RCSP to Widget”
vector<RCSPW> v; // create a vector and fill it with
// smart pointers to dynamically
v.push_back(RCSPW(new Widget)); // allocated Widgets
v.erase(remove_if(v.begin(), v.end(), // erase the ptrs
not1(mem_fun(&Widget:isCertified))), //touncertified
v.end()); // Widgets; no
// resources are
// leaked

For this to work, it must be possible to implicitly convert your smart
pointer type (e.g., RCSP<Widget>) to the corresponding built-in pointer
type (e.g., Widget*). That’s because the container holds smart pointers,
but the member function being called (e.g., Widget:isCertified) insists
on built-in pointers. If no implicit conversion exists, your compilers
will squawk.

If you don’t happen to have a reference counting smart pointer tem-
plate in your programming toolbox, you owe it to yourself to check out
the shared_ptr template in the Boost library. For an introduction to
Boost, take a look at Item 50.

Regardless of how you choose to deal with containers of dynamically
allocated pointers, be it by reference counting smart pointers, manual
deletion and nullification of pointers prior to invoking a remove-like
algorithm, or some technique of your own invention, the guidance of
this Item remains the same: Be wary of remove-like algorithms on con-
tainers of pointers. Failure to heed this advice is just asking for
resource leaks.

Item 34: Note which algorithms expect sorted ranges.

Not all algorithms are applicable to all ranges. For example, remove
(see Items 32 and 33) requires forward iterators and the ability to
make assignments through those iterators. As a result, it can’'t be
applied to ranges demarcated by input iterators, nor to maps or multi-

Algorithms Item 34 147

maps, nor to some implementations of set and multiset (see Item 22).
Similarly, many of the sorting algorithms (see Item 31) demand ran-
dom access iterators, so it’s not possible to invoke these algorithms on
the elements of a list.

If you violate these kinds of rules, your code won’'t compile, an event
likely to be heralded by lengthy and incomprehensible error messages
(see Item 49). Other algorithm preconditions, however, are more sub-
tle. Among these, perhaps the most common is that some algorithms
require ranges of sorted values. It’s important that you adhere to this
requirement whenever it applies, because violating it leads not to
compiler diagnostics, but to undefined runtime behavior.

A few algorithms can work with sorted or unsorted ranges, but they
are most useful when they operate on sorted ranges. You should
understand how these algorithms work, because that will explain why
sorted ranges suit them best.

Some of you, I know, are into brute-force memorization, so here’s a
list of the algorithms that require the data on which they operate to be
sorted:

binary_search lower_bound
upper_bound equal_range

set_union set_intersection
set_difference set_symmetric_difference
merge inplace_merge

includes

In addition, the following algorithms are typically used with sorted
ranges, though they don’t require them:

unique unique_copy

We’ll see shortly that the definition of “sorted” has an important con-
straint, but first, let me try to make sense of this collection of algo-
rithms. It’s easier to remember which algorithms work with sorted
ranges if you understand why such ranges are needed.

The search algorithms binary_search, lower_bound, upper_bound, and
equal_range (see Item 45) require sorted ranges, because they look for
values using binary search. Like the C library’s bsearch, these algo-
rithms promise logarithmic-time lookups, but in exchange, you must
give them values that have already been put into order.

Actually, it’s not quite true that these algorithms promise logarithmic-
time lookup. They guarantee such performance only when they are
passed random access iterators. If they’re given less powerful iterators

148 Item 34 Algorithms

(such as bidirectional iterators), they still perform only a logarithmic
number of comparisons, but they run in linear time. That’s because,
lacking the ability to perform “iterator arithmetic,” they need linear
time to move from place to place in the range being searched.

The quartet of algorithms set_union, set_intersection, set_difference, and
set_symmetric_difference offer linear-time performance of the set-theo-
retical operations their names suggest. Why do they demand sorted
ranges? Because without them, they couldn’t do their work in linear
time. If you're beginning to detect a trend suggesting that algorithms
requiring sorted ranges do so in order to offer better performance than
they’d be able to guarantee for ranges that might not be sorted, you're
right. Stay tuned. The trend will continue.

merge and inplace_merge perform what is in effect a single pass of the
mergesort algorithm: they read two sorted ranges and produce a new
sorted range containing all the elements from both source ranges.
They run in linear time, something they couldn’t do if they didn’t
know that the source ranges were already sorted.

The final algorithm that requires sorted source ranges is includes. It’s
used to determine whether all the objects in one range are also in
another range. Because includes may assume that both its ranges are
sorted, it promises linear-time performance. Without that guarantee,
it would generally run slower.

Unlike the algorithms we've just discussed, unique and unique_copy
offer well-defined behavior even on unsorted ranges. But look at how
the Standard describes unique’s behavior (the italics are mine):

Eliminates all but the first element from every consecutive
group of equal elements.

In other words, if you want unique to eliminate all duplicates from a
range (i.e., to make all values in the range “unique”), you must first
make sure that all duplicate values are next to one another. And
guess what? That’s one of the things sorting does. In practice, unique
is usually employed to eliminate all duplicate values from a range, so
you'll almost always want to make sure that the range you pass
unique (or unique_copy) is sorted. (Unix developers will recognize a
striking similarity between STL’s unique and Unix’s uniq, a similarity I
suspect is anything but coincidental.)

Incidentally, unique eliminates elements from a range the same way
remove does, which is to say that it only “sort of” eliminates them. If
you aren’t sure what this means, please turn to Items 32 and 33
immediately. It is not possible to overemphasize the importance of

Algorithms Item 34 149

understanding what remove and remove-like algorithms (including
unique) do. Having a basic comprehension is not sufficient. If you
don’t know what they do, you will get into trouble.

Which brings me to the fine print regarding what it means for a range
to be sorted. Because the STL allows you to specify comparison func-
tions to be used during sorting, different ranges may be sorted in dif-
ferent ways. Given two ranges of ints, for example, one might be sorted
the default way (i.e., in ascending order) while the other is sorted
using greater<int>, hence in descending order. Given two ranges of
Widgets, one might be sorted by price and another might be sorted by
age. With so many different ways to sort things, it’s critical that you
give the STL consistent sorting-related information to work with. If
you pass a sorted range to an algorithm that also takes a comparison
function, be sure that the comparison function you pass behaves the
same as the one you used to sort the range.

Here’s an example of what you do not want to do:

vector<int> v; // create a vector, put some
// data into it, sort it into
sort(v.begin(), v.end(), greater<int>()); // descending order

// work with the vector
// (without changing it)

bool a5Exists = // search for a 5 in the vector,
binary_search(v.begin(), v.end(), 5); // assuming it sorted in
// ascending order!

By default, binary_search assumes that the range it's searching is
sorted by “<* (i.e., the values are in ascending order), but in this
example, the vector is sorted in descending order. You should not be
surprised to learn that you get undefined results when you invoke
binary_search (or lower_bound, etc.) on a range of values that is sorted
in a different order from what the algorithm expects.

To get the code to behave correctly, you must tell binary_search to use
the same comparison function that sort did:

bool a5Exists = // searchfora5
binary_search(v.begin(), v.end(), 5, greater<int>()); // using greater as
// the comparison
// function

All the algorithms that require sorted ranges (i.e., all the algorithms in
this Item except unique and unique_copy) determine whether two val-
ues are “the same” by using equivalence, just like the standard asso-
ciative containers (which are themselves sorted). In contrast, the
default way in which unique and unique_copy determine whether two

150 Item 35 Algorithms

objects are “the same” is by using equality, though you can override
this default by passing these algorithms a predicate defining an alter-
native definition of “the same.” For a detailed discussion of the differ-
ence between equivalence and equality, consult Item 19.

The eleven algorithms that require sorted ranges do so in order to
offer greater efficiency than would otherwise be possible. As long as
you remember to pass them only sorted ranges, and as long as you
make sure that the comparison function used by the algorithms is
consistent with the one used to do the sorting, you'll revel in trouble-
free search, set, and merge operations, plus you’ll find that unique and
unique_copy eliminate all duplicate values, as you almost certainly
want them to.

Item 35: Implement simple case-insensitive string
comparisons via mismatch or
lexicographical_compare.

One of the most frequently asked questions by STL newbies is “How
do I use the STL to perform case-insensitive string comparisons?”
This is a deceptively simple question. Case-insensitive string compari-
sons are either really easy or really hard, depending on how general
you want to be. If you're willing to ignore internationalization issues
and restrict your concern to the kinds of strings strcmp is designed for,
the task is easy. If you want to be able to handle strings of characters
in languages where strcmp wouldn’t apply (i.e., strings holding text in
just about any language except English) or where programs use a
locale other than the default, the task is very hard.

In this Item, I'll tackle the easy version of the problem, because that
suffices to demonstrate how the STL can be brought to bear. (A harder
version of the problem involves no more of the STL. Rather, it involves
locale-dependent issues you can read about in Appendix A.) To make
the easy problem somewhat more challenging, I'll tackle it twice. Pro-
grammers desiring case-insensitive string comparisons often need two
different calling interfaces, one similar to strcmp (which returns a neg-
ative number, zero, or a positive number), the other akin to operator<
(which returns true or false). I'll therefore show how to implement both
calling interfaces using STL algorithms.

First, however, we need a way to determine whether two characters
are the same, except for their case. When internationalization issues
are taken into account, this is a complicated problem. The following
character-comparing function is a simplistic solution, but it’s akin to

Algorithms Item 35 151

the strcmp approach to string comparison, and since in this Item I
consider only strings where a strcmp-like approach is appropriate,
internationalization issues don’t count, and this function will do:

int ciCharCompare(char c1, char c2) // case-insensitively compare chars

{ // c1 and c2, returning -1 if c1 < c2,
//0ifc1==c2,and Tifc1 >c2
int Ic1 = tolower(static_cast<unsigned char>(c1)); // see below for
int Ic2 = tolower(static_cast<unsigned char>(c2)); // info on these

// statements
if (Ic1 < Ic2) return -1;
if (Ic1 > 1c2) return 1;
return O;

}

This function follows the lead of strcmp in returning a negative num-
ber, zero, or a positive number, depending on the relationship between
c1 and c2. Unlike strcmp, ciCharCompare converts both parameters to
lower case before performing the comparison. That’s what makes it a
case-insensitive character comparison.

Like many functions in <cctype> (and hence <ctype.h>), tolower’s
parameter and return value is of type int, but unless that int is EOF, its
value must be representable as an unsigned char. In both C and C++,
char may or may not be signed (it's up to the implementation), and
when char is signed, the only way to ensure that its value is represent-
able as an unsigned char is to cast it to one before calling tolower. That
explains the casts in the code above. (On implementations where char
is already unsigned, the casts are no-ops.) It also explains the use of
int instead of char to store tolower’s return value.

Given ciCharCompare, it’s easy to write the first of our two case-insen-
sitive string comparison functions, the one offering a strcmp-like inter-
face. This function, ciStringCompare, returns a negative number, zero,
or a positive number, depending on the relationship between the
strings being compared. It's built around the mismatch algorithm,
because mismatch identifies the first position in two ranges where the
corresponding values are not the same.

Before we can call mismatch, we have to satisfy its preconditions. In
particular, we have to make sure that if one string is shorter than the
other, the shorter string is the first range passed. We'll therefore farm
the real work out to a function called ciStringComparelmpl and have ciS-
tringCompare simply make sure the arguments are passed in the cor-

152 Item 35 Algorithms

correct order, adjusting the return value if the arguments have to be
swapped:

int ciStringComparelmpl(const string& s1, // see below for
const string& s2); // implementation

int ciStringCompare(const string& s1, const string& s2)
if (s1.size() <= s2.size()) return ciStringComparelmpl(s1, s2);
else return -ciStringComparelmpl(s2, s1);

}

In ciStringComparelmpl, the heavy lifting is performed by mismatch. It
returns a pair of iterators indicating the locations in the ranges where
corresponding characters first fail to match:

int ciStringComparelmpl(const string& s1, const string& s2)

typedef pair<string::const_iterator, // PSCI = “pair of
string::const_iterator> PSCI; // string::const_iterator”
PSCl p = mismatch(// see below for an
s1.begin(), s1.end(), // explanation of why
s2.begin(), // we need not2; see

not2(ptr_fun(ciCharCompare))); // Item 41 for why we
// need ptr_fun

if (p.first == s1.end()) { // if true, either s1 and
if (p.second == s2.end()) return 0; // s2 are equal or
else return -1; // s1is shorter than s2
}
return ciCharCompare(*p.first, *p.second); // the relationship of the
} // strings is the same as
// that of the

// mismatched chars

With any luck, the comments make pretty clear what is going on. Fun-
damentally, once you know the first place where the strings differ, it’s
easy to determine which string, if either, precedes the other. The only
thing that may seem odd is the predicate passed to mismatch, which is
not2(ptr_fun(ciCharCompare)). This predicate is responsible for return-
ing true when the characters match, because mismatch will stop when
the predicate returns false. We can’t use ciCharCompare for this purpose,
because it returns -1, 1, or 0, and it returns O when the characters
match, just like strcmp. If we passed ciCharCompare as the predicate to
mismatch, C++ would convert ciCharCompare’s return type to bool, and
of course the bool equivalent of zero is false, precisely the opposite of
what we want! Similarly, when ciCharCompare returned 1 or -1, that
would be interpreted as true, because, as in C, all nonzero integral val-
ues are considered true. Again, this would be the opposite of what we

Algorithms Item 35 153

want. To fix this semantic inversion, we throw a not2 and a ptr_fun in
front of ciCharCompare, and we all live happily ever after.

Our second approach to ciStringCompare yields a conventional STL
predicate; such a function could be used as a comparison function in
associative containers. The implementation is short and sweet,
because all we have to do is modify ciCharCompare to give us a charac-
ter-comparison function with a predicate interface, then turn the job
of performing a string comparison over to the algorithm with the sec-
ond-longest name in the STL, lexicographical_compare:

bool ciCharlLess(char c1, char c2) // return whether c1
{ // precedes c2 in a case-
return // insensitive comparison;

tolower(static_cast<unsigned char>(c1)) < //Item 46 explains why a
tolower(static_cast<unsigned char>(c2)); // function object might
} // be preferable to this
// function

bool ciStringCompare(const string& s1, const string& s2)

return lexicographical_compare(s1.begin(), s1.end(), //see below for
s2.begin(), s2.end(), //adiscussion of
ciCharlLess); // this algorithm
} // call

No, I won’t keep you in suspense any longer. The longest algorithm
name is set_symmetric_difference.

If you're familiar with the behavior of lexicographical_compare, the code
above is as clear as clear can be. If you're not, it’s probably about as
clear as concrete. Fortunately, it's not hard to replace the concrete
with glass.

lexicographical_compare is a generalized version of strcmp. Where strcmp
works only with character arrays, however, lexicographical_compare
works with ranges of values of any type. Also, while strcmp always
compares two characters to see if their relationship is equal, less
than, or greater than one another, lexicographical_compare may be
passed an arbitrary predicate that determines whether two values sat-
isfy a user-defined criterion.

In the call above, lexicographical_compare is asked to find the first posi-
tion where s1 and s2 differ, based on the results of calls to ciCharlLess.
If, using the characters at that position, ciCharLess returns true, so
does lexicographical_compare: if, at the first position where the charac-
ters differ, the character from the first string precedes the correspond-
ing character from the second string, the first string precedes the
second one. Like strcmp, lexicographical_compare considers two ranges

154 Item 36 Algorithms

of equal values to be equal, hence it returns false for such ranges: the
first range does not precede the second. Also like strcmp, if the first
range ends before a difference in corresponding values is found,
lexicographical_compare returns true: a prefix precedes any range for
which it is a prefix.

Enough about mismatch and lexicographical_compare. Though I focus
on portability in this book, I would be remiss if I failed to mention that
case-insensitive string comparison functions are widely available as
nonstandard extensions to the standard C library. They typically have
names like stricmp or strcmpi, and they typically offer no more support
for internationalization than the functions we've developed in this
Item. If you're willing to sacrifice some portability, you know that your
strings never contain embedded nulls, and you don’t care about inter-
nationalization, you may find that the easiest way to implement a
case-insensitive string comparison doesn’t use the STL at all. Instead,
it converts both strings to const char* pointers (see Item 16) and then
uses stricmp or strcmpi on the pointers:

int ciStringCompare(const string& s1, const string& s2)

return stricmp(s1.c_str(), s2.c_str()); // the function name on
} // your system might
// not be stricmp

Some may call this a hack, but stricmp/strcmpi, being optimized to do
exactly one thing, typically run much faster on long strings than do
the general-purpose algorithms mismatch and lexicographical_compare.
If that’'s an important consideration for you, you may not care that
you're trading standard STL algorithms for nonstandard C functions.
Sometimes the most effective way to use the STL is to realize that
other approaches are superior.

Item 36: Understand the proper implementation of
copy._if.

One of the more interesting aspects of the STL is that although there
are 11 algorithms with “copy” in their names,

copy copy_backward
replace_copy reverse_copy
replace_copy_if unique_copy
remove_copy rotate_copy
remove_copy_if partial_sort_copy

uninitialized_copy

none of them is copy_if. That means you can replace_copy_if, you can
remove_copy_if, you can both copy_backward and reverse_copy, but if

Algorithms Item 36 155

you simply want to copy the elements of a range that satisfy a predi-
cate, you're on your own.

For example, suppose you have a function to determine whether a
Widget is defective:

bool isDefective(const Widget& w);

and you’d like to write all the defective Widgets in a vector to cerr. If
copy_if existed, you could simply do this:

vector<Widget> widgets;

copy_if(widgets.begin(), widgets.end(), // this won't compile;

ostream_iterator<Widget>(cerr, "\n"), // there is no copy._if
isDefective); /1 in the STL

Ironically, copy_if was part of the original Hewlett Packard STL that
formed the basis for the STL that is now part of the standard C++
library. In one of those quirks that occasionally makes history inter-
esting, during the process of winnowing the HP STL into something of
a size manageable for standardization, copy_if was one of the things
that got left on the cutting room floor.

In The C++ Programming Language [7], Stroustrup remarks that it's
trivial to write copy_if, and he’s right, but that doesn’t mean that it’'s
necessarily easy to come up with the correct trivia. For example,
here’s a reasonable-looking copy_if that many people (including me)
have been known to come up with:

template< typename Inputlterator, // a not-quite-right
typename Outputlterator, // implementation of
typename Predicate> // copy_if

Outputlterator copy_if(Inputlterator begin,
Inputlterator end,
Outputlterator destBegin,
Predicate p)

{

return remove_copy_if(begin, end, destBegin, not1(p));

}

This approach is based on the observation that although the STL
doesn’t let you say “copy everything where this predicate is true,” it
does let you say “copy everything except where this predicate is not
true.” To implement copy_if, then, it seems that all we need to do is
throw a not1 in front of the predicate we’d like to pass to copy_if, then

156 Item 37 Algorithms

pass the resulting predicate to remove_copy_if. The result is the code
above.

If the above reasoning were valid, we could write out our defective Wid-
gets this way:

copy_if(widgets.begin(), widgets.end(), // well-intentioned code
ostream_iterator<Widget>(cerr, \n"), //that will not compile
isDefective);

Your STL platforms will take a jaundiced view of this code, because it
tries to apply notl to isDefective. (The application takes place inside
copy_if). As Item 41 tries to make clear, not1 can’t be applied directly
to a function pointer; the function pointer must first be passed
through ptr_fun. To call this implementation of copy_if, you must pass
not just a function object, but an adaptable function object. That’s
easy enough to do, but clients of a would-be STL algorithm shouldn’t
have to. Standard STL algorithms never require that their functors be
adaptable, and neither should copy_if. The above implementation is
decent, but it's not decent enough.

Here’s the correct trivial implementation of copy_if:

template< typename Inputlterator, // a correct
typename Outputlterator, // implementation of
typename Predicate> // copy_if

Outputlterator copy_if(Inputlterator begin,
Inputlterator end,
Outputlterator destBegin,
Predicate p)
{
while (begin !=end) {
if (p(*begin)) *destBegin++ = *begin;
++begin;
}

return destBegin;

}
Given how useful copy_if is, plus the fact that new STL programmers
tend to expect it to exist anyway, there’s a good case to be made for
putting copy_if — the correct one! — into your local STL-related utility
library and using it whenever it’'s appropriate.

Item 37: Use accumulate or for_each to summarize
ranges.

Sometimes you need to boil an entire range down to a single number,
or, more generally, a single object. For commonly needed information,
special-purpose algorithms exist to do the jobs. count tells you how

Algorithms Item 37 157

many elements with a particular value are in a range, for example,
while count_if tells you how many elements satisfy a predicate. The
minimum and maximum values in a range are available via
min_element and max_element.

At times, however, you need to summarize a range in some custom
manner, and in those cases, you need something more flexible than
count, count_if, min_element, or max_element. For example, you might
want the sum of the lengths of the strings in a container. You might
want the product of a range of numbers. You might want the average
coordinates of a range of points. In each of these cases, you need to
summarize a range, but you need to be able to define the summary
you want. Not a problem. The STL has the algorithm for you. It's
called accumulate. You might not be familiar with accumulate, because,
unlike most algorithms, it doesn’t live in <algorithm>. Instead, it’'s
located with three other “numeric algorithms” in <numeric>. (The three
others are inner_product, adjacent_difference, and partial_sum.)

Like many algorithms, accumulate exists in two forms. The form taking
a pair of iterators and an initial value returns the initial value plus the
sum of the values in the range demarcated by the iterators:

list<double> Id; // create a list and put
// some doubles into it

double sum = accumulate(ld.begin(), Id.end(), 0.0); // calculate their sum,
// starting at 0.0

In this example, note that the initial value is specified as 0.0, not sim-
ply 0. That’s important. The type of 0.0 is double, so accumulate inter-
nally uses a variable of type double to store the sum it's computing.
Had the call been written like this,

double sum = accumulate(ld.begin(), Id.end(), 0); // calculate their sum,
// starting at O; this
/1 is not correct!

the initial value would be the int 0, so accumulate would internally use
an int to store the value it was computing. That int would ultimately
become accumulate’s return value, and it would be used to initialize
the variable sum. The code would compile and run, but sum’s value
would be incorrect. Instead of holding the true sum of a list of doubles,
it would hold the result of adding all the doubles together, but convert-
ing the result to an int after each addition.

accumulate requires only input iterators, so you can use it even with
istream_iterators and istreambuf_iterators (see Item 29):

cout << "The sum of the ints on the standard inputis" // print the sum of
<< accumulate(istream_iterator<int>(cin), // the ints in cin
istream_iterator<int>(),
0);

158 Item 37 Algorithms

It is this default behavior of accumulate that causes it to be labeled a
numeric algorithm. But when accumulate is used in its alternate form,
one taking an initial summary value and an arbitrary summarization
function, it becomes much more general.

As an example, consider how to use accumulate to calculate the sum of
the lengths of the strings in a container. To compute the sum, accumu-
late needs to know two things. First, as above, it must know the start-
ing sum. In our case, it is zero. Second, it must know how to update
this sum each time a new string is seen. To do that, we write a func-
tion that takes the sum so far and the new string and returns the
updated sum:

string::size_type // see below for info

stringLengthSum(string:size_type sumSoFar, // on string::size_type
const string& s)

{

return sumSoFar + s.size();

}

The body of this function reveals that what is going on is trivial, but
you may find yourself bogged down in the appearances of
string:size_type. Don’t let that happen. Every standard STL container
has a typedef called size_type that is the container’s type for counting
things. This is the type returned by the container’s size function, for
example. For all the standard containers, size_type must be size_t, but,
in theory, nonstandard STL-compatible containers might use a differ-
ent type for size_type (though I have a hard time imagining why they’d
want to). For standard containers, you can think of Container:size_type
as a fancy way of writing size_t.

stringLengthSum is representative of the summarization functions accu-
mulate works with. It takes a summary value for the range so far as
well as the next element of the range, and it returns the new summary
value. In general, that means the function will take parameters of dif-
ferent types. That’s what it does here. The summary so far (the sum of
the lengths of the strings already seen) is of type string:size_type, while
the type of the elements being examined is string. As is typically the
case, the return type here is the same as that of the function’s first
parameter, because it’s the updated summary value (the one taking
the latest element into account).

We can use stringLengthSum with accumulate like this:

set<string> ss; // create container of strings,
// and populate it

Algorithms Item 37 159

string::size_type lengthSum = // set lengthSum to the result
accumulate(ss.begin(), ss.end(), // of calling stringLengthSum on
static_cast<string::size_type>(0), // each element in ss, using 0
stringLengthSum); // as the initial summary value

Nifty, huh? Calculating the product of a range of numbers is even eas-
ier, because we don’t have to write our own summation function. We
can use the standard multiplies functor class:

vector<float> vf; // create container of floats

// and populate it

float product = // set product to the result of
accumulate(vf.begin(), vf.end(), // calling multiplies<float> on

1.0f, multiplies<float>()); //each element in vf, using 1.0f
// as the initial summary value

The only tricky thing here is remembering to use one (as a float, not as
an int!) as the initial summary value instead of zero. If we used zero as
the starting value, the result would always be zero, because zero times
anything is zero, right?

Our final example is a bit more ambitious. It involves finding the aver-
age of a range of points, where a point looks like this:

struct Point {
Point(double initX, double initY): x(initX), y(initY) {}
double x, y;

L

The summation function will be an object of a functor class called
PointAverage, but before we look at PointAverage, let’s look at its use in
the call to accumulate:

list<Point> Ip;

Point avg = // average the points in Ip
accumulate(lp.begin(), Ip.end(),
Point(0, 0), PointAverage());

Simple and straightforward, the way we like it. In this case, the initial
summary value is a Point object located at the origin, and all we need
to remember is not to take that point into account when computing
the average of the range.

PointAverage works by keeping track of the number of points it has
seen, as well as the sum of their x and y components. Each time it is
called, it updates these values and returns the average coordinates of
the points so far examined. Because it is called exactly once for each
point in the range, it divides the x and y sums by the number of points

160 Item 37 Algorithms

in the range; the initial point value passed to accumulate is ignored, as
it should be:

class PointAverage:

public binary_function<Point, Point, Point> { // see Item 40
public:

PointAverage(): numPoints(0), xSum(0), ySum(0) {}

const Point operator()(const Point& avgSoFar, const Point& p)

{
++numPoints;
xSum +=p.x;
ySum +=p.y;
return Point(xSum/numPoints, ySum/numPoints);

}

private:
size_t numPoints;
double xSum;
double ySum;

7

This works fine, and it is only because I sometimes associate with an
inordinately demented group of people (many of them on the Stan-
dardization Committee) that I can envision STL implementations
where it could fail. Nevertheless, PointAverage runs afoul of paragraph 2
of section 26.4.1 of the Standard, which, as I'm sure you recall, for-
bids side effects in the function passed to accumulate. Modification of
the member variables numPoints, xSum, and ySum constitutes a side
effect, so, technically speaking, the code I've just shown you yields
undefined results. In practice, it’s hard to imagine it not working, but
I'm surrounded by menacing language lawyers as I write this, so I've
no choice but to spell out the fine print on this matter.

That’s okay, because it gives me a chance to mention for_each, another
algorithm that can be used to summarize ranges and one that isn’'t
constrained by the restrictions imposed on accumulate. Like accumu-
late, for_each takes a range and a function (typically a function object)
to invoke on each element of the range, but the function passed to
for_each receives only a single argument (the current range element),
and for_each returns its function when it’s done. (Actually, it returns a
copy of its function — see Item 38.) Significantly, the function passed
to (and later returned from) for_each may have side effects.

Ignoring the side effects issue, for_each differs from accumulate in two
primary ways. First, the name accumulate suggests an algorithm that
produces a summary of a range. for_each sounds like you simply want
to do something to every element of a range, and, of course, that is the

Algorithms Item 37 161

algorithm’s primary application. Using for_each to summarize a range
is legitimate, but it’s not as clear as accumulate.

Second, accumulate returns the summary we want directly, while
for_each returns a function object, and we must extract the summary
information we want from this object. In C++ terms, that means we
must add a member function to the functor class to let us retrieve the
summary information we're after.

Here’s the last example again, this time using for_each instead of accu-
mulate:

struct Point{...}; // as before
class PointAverage:

public unary_function<Point, void> { // see ltem 40
public:

PointAverage(): numPoints(0), xSum(0), ySum(0) {}
void operator()(const Point& p)

++numPoints;
xSum += p.x;
ySum +=p.y;

Point result() const

{

return Point(xSum/numPoints, ySum/numPoints);

}

private:
size_t numPoints;
double xSum;
double ySum;

b

list<Point> Ip;

Point avg = for_each(lp.begin(), Ip.end(), PointAverage()).result();

Personally, I prefer accumulate for summarizing, because I think it
most clearly expresses what is going on, but for_each works, too, and
the issue of side effects doesn’t dog for_each as it does accumulate.
Both algorithms can be used to summarize ranges. Use the one that
suits you best.

You may be wondering why for_each’s function parameter is allowed to
have side effects while accumulate’s is not. This is a probing question,
one that strikes at the heart of the STL. Alas, gentle reader, there are
some mysteries meant to remain beyond our ken. Why the difference
between accumulate and for_each? I've yet to hear a convincing expla-
nation.

Functors,
Functor Classes,
Functions, etc.

Like it or not, functions and function-like objects — functors — per-
vade the STL. Associative containers use them to keep their elements
in order, some algorithms (e.g., find_if) use them to control their
behavior, others (e.g., for_each and transform) are meaningless without
them, and adapters like not1 and bind2nd actively produce them.

Yes, everywhere you look in the STL, you see functors and functor
classes. Including in your source code. It’s not possible to make effec-
tive use of the STL without knowing how to write well-behaved func-
tors. That being the case, most of this chapter is devoted to explaining
how to make your functors behave the way the STL expects them to.
One Item, however, is devoted to a different topic, one sure to appeal
to those who’ve wondered about the need to litter their code with
ptr_fun, mem_fun, and mem_fun_ref. Start with that Item (Item 41), if
you like, but please don’t stop there. Once you understand those
functions, you’ll need the information in the remaining Items to
ensure that your functors work properly with them, as well as with
the rest of the STL.

Item 38: Design functor classes for pass-by-value.

Neither C nor C++ allows you to truly pass functions as parameters to
other functions. Instead, you must pass pointers to functions. For
example, here’s a declaration for the standard library function gsort:

void gsort(void *base, size_t nmemb, size_t size,
int (*cmpfcn)(const void*, const void*));

Item 46 explains why the sort algorithm is typically a better choice
than the gsort function, but that’s not at issue here. What is at issue
is the declaration for gsort’s parameter cmpfcn. Once you've squinted
past all the asterisks, it becomes clear that the argument passed as
cmpfcn, which is a pointer to a function, is copied (i.e., passed by

Functors, Functor Classes, Functions, etc. Item 38 163

value) from the call site to gsort. This is representative of the rule fol-
lowed by the standard libraries for both C and C++, namely, that
function pointers are passed by value.

STL function objects are modeled after function pointers, so the con-
vention in the STL is that function objects, too, are passed by value
(i.e., copied) when passed to and from functions. This is perhaps best
demonstrated by the Standard’s declaration of for_each, an algorithm
which both takes and returns a function object by value:

template<class Inputlterator,

class Function>
Function // note return-by-value
for_each(Inputlterator first,

Inputlterator last,

Function f); // note pass-by-value

In truth, the pass-by-value case is not quite this iron-clad, because
for_each’s caller could explicitly specify the parameter types at the
point of the call. For example, the following would cause for_each to
pass and return its functor by reference:

class DoSomething:

public unary_function<int, void> { // 1tem 40 explains base class
public:

void operator()(intx) { ...}

5
typedef deque<int>:iterator Dequelntlter; // convenience typedef
deque<int> di;

DoSomething d; // create a function object
for_each<Dequelntlter, // call for_each with type
DoSomething&>(di.begin(), // parameters of Dequelntlter
di.end(), // and DoSomething&;
d); // this forces d to be

// passed and returned
// by reference

Users of the STL almost never do this kind of thing, however, and
some implementations of some STL algorithms won’t even compile if
function objects are passed by reference. For the remainder of this
Item, I'm going to pretend that function objects are always passed by
value. In practice, that’s virtually always true.

Because function objects are passed and returned by value, the onus
is on you to make sure that your function objects behave well when

164 Item 38 Functors, Functor Classes, Functions, etc.

passed that way (i.e., copied). This implies two things. First, your
function objects need to be small. Otherwise they will be too expensive
to copy. Second, your function objects must be monomorphic (i.e., not
polymorphic) — they must not use virtual functions. That’s because
derived class objects passed by value into parameters of base class
type suffer from the slicing problem: during the copy, their derived
parts are removed. (For another example of how the slicing problem
affects your use of the STL, see Item 3.)

Efficiency is important, of course, and so is avoiding the slicing prob-
lem, but not all functors are small, and not all are monomorphic,
either. One of the advantages of function objects over real functions is
that functors can contain as much state as you need. Some function
objects are naturally hefty, and it’s important to be able to pass such
functors to STL algorithms with the same ease as we pass their anor-
exic counterparts.

The prohibition on polymorphic functors is equally unrealistic. C++
supports inheritance hierarchies and dynamic binding, and these fea-
tures are as useful when designing functor classes as anyplace else.
Functor classes without inheritance would be like, well, like C++ with-
out the “++”. Surely there’s a way to let function objects be big and/or
polymorphic, yet still allow them to mesh with the pass-functors-by-
value convention that pervades the STL.

There is. Take the data and/or the polymorphism you’d like to put in
your functor class, and move it into a different class. Then give your
functor class a pointer to this new class. For example, if you'd like to
create a polymorphic functor class containing lots of data,

template<typename T>

class BPFC: // BPFC =" Big Polymorphic

public // Functor Class”
unary_function<T, void> { // Item 40 explains this
// base class

private:
Widget w; // this class has lots of data,
int x; // so it would be inefficient
// to pass it by value

public:

virtual void operator()(const T& val) const; // this is a virtual function,
// so slicing would be bad
L

create a small, monomorphic class that contains a pointer to an
implementation class, and put all the data and virtual functions in the
implementation class:

Functors, Functor Classes, Functions, etc. Item 38 165

template<typename T> // new implementation class
class BPFClmpl: // for modified BPFC
public unary_function<T, void> {
private:
Widget w; // all the data that used to
intx; // be in BPFC are now here
virtual ~BPFCImpl(); // polymorphic classes need

// virtual destructors
virtual void operator()(const T& val) const;

friend class BPFC<T>; // let BPFC access the data
L
template<typename T>
class BPFC: // small, monomorphic
public unary_function<T, void> { // version of BPFC
private:
BPFCImpl<T> *plmpl; // this is BPFC's only data
public:
void operator()(const T& val) const // this is now nonvirtual;
{ // it forwards to BPFCImpl

plmpl->operator()(val);

L

The implementation of BPFC::operator() exemplifies how all BPFC would-
be virtual functions are implemented: they call their truly virtual
counterparts in BPFCImpl. The result is a functor class (BPFC) that’s
small and monomorphic, yet has access to a large amount of state
and acts polymorphically.

I'm glossing over a fair number of details here, because the basic tech-
nique I've sketched is well known in C++ circles. Effective C++ treats it
in Item 34. In Design Patterns by Gamma et al. [6], this is called the
“Bridge Pattern.” Sutter calls this the “Pimpl Idiom” in his Exceptional
C++ [8].

From an STL point of view, the primary thing to keep in mind is that
functor classes using this technique must support copying in a rea-
sonable fashion. If you were the author of BPFC above, you'd have to
make sure that its copy constructor did something reasonable about
the BPFCImpl object it points to. Perhaps the simplest reasonable thing
would be to reference count it, using something like Boost’s
shared_ptr, which you can read about in Item 50.

In fact, for purposes of this Item, the only thing you'd have to worry
about would be the behavior of BPFC’s copy constructor, because func-
tion objects are always copied — passed by value, remember? — when

166 Item 39 Functors, Functor Classes, Functions, etc.

passed to or returned from functions in the STL. That means two
things. Make them small, and make them monomorphic.

Item 39: Make predicates pure functions.

I hate to do this to you, but we have to start with a short vocabulary
lesson.

= A predicate is a function that returns bool (or something that can
be implicitly converted to bool). Predicates are widely used in the
STL. The comparison functions for the standard associative con-
tainers are predicates, and predicate functions are commonly
passed as parameters to algorithms like find_if and the various
sorting algorithms. (For an overview of the sorting algorithms,
turn to Item 31.)

= A pure function is a function whose return value depends only on
its parameters. If f is a pure function and x and y are objects, the
return value of f(x, y) can change only if the value of x or y changes.

In C++, all data consulted by pure functions are either passed in
as parameters or are constant for the life of the function. (Natu-
rally, such constant data should be declared const.) If a pure func-
tion consulted data that might change between calls, invoking the
function at different times with the same parameters might yield
different results, and that would be contrary to the definition of a
pure function.

That should be enough to make it clear what it means to make predi-
cates pure functions. All I have to do now is convince you that the
advice is well founded. To help me do that, I hope you'll forgive me for
burdening you with one more term.

= A predicate class is a functor class whose operator() function is a
predicate, i.e., its operator() returns true or false (or something that
can be implicitly converted to true or false). As you might expect,
any place the STL expects a predicate, it will accept either a real
predicate or an object of a predicate class.

That’s it, I promise! Now we're ready to study why this Item offers
guidance worth following.

Item 38 explains that function objects are passed by value, so you
should design function objects to be copied. For function objects that
are predicates, there is another reason to design them to behave well
when they are copied. Algorithms may make copies of functors and
hold on to them a while before using them, and some algorithm imple-

Functors, Functor Classes, Functions, etc. Item 39 167

mentations take advantage of this freedom. A critical repercussion of
this observation is that predicate functions must be pure_functions.

To appreciate why this is the case, let's suppose you were to violate
this constraint. Consider the following (badly designed) predicate
class. Regardless of the arguments that are passed, it returns true
exactly once: the third time it is called. The rest of the time it returns
false.

class BadPredicate: // see Item 40 for info
public unary_function<Widget, bool> { // on the base class
public:
BadPredicate(): timesCalled(0) {} // init timesCalled to 0

bool operator()(const Widget&)
{

return ++timesCalled == 3;

}

private:
size_t timesCalled;
L
Suppose we use this class to eliminate the third Widget from a vec-
tor<Widget>:

vector<Widget> vw; // create vector and put some
// Widgets into it
vw.erase(remove_if(vw.begin(), // eliminate the third Widget;
vw.end(), // see Item 32 for info on how
BadPredicate()), // erase and remove_if relate
vw.end());

This code looks quite reasonable, but with many STL implementa-
tions, it will eliminate not just the third element from vw, it will also
eliminate the sixth!

To understand how this can happen, it’s helpful to see how remove_if
is often implemented. Bear in mind that remove_if does not have to be
implemented this way.

template <typename Fwdlterator, typename Predicate>
Fwdlterator remove_if(Fwdlterator begin, Fwdlterator end, Predicate p)
{

begin = find_if(begin, end, p);

if (begin == end) return begin;
else {
Fwdlterator next = begin;
return remove_copy_if(++next, end, begin, p);
}
}

168 Item 39 Functors, Functor Classes, Functions, etc.

The details of this code are not important, but note that the predicate
p is passed first to find_if, then later to remove_copy_if. In both cases,
of course, p is passed by value — is copied — into those algorithms.
(Technically, this need not be true, but practically, it is true. For
details, see Item 38.)

The initial call to remove_if (the one in the client code that wants to
eliminate the third element from vw) creates an anonymous BadPredi-
cate object, one with its internal timesCalled member set to zero. This
object (known as p inside remove_if) is then copied into find_if, so
find_if also receives a BadPredicate object with a timesCalled value of O.
find_if “calls” that object until it returns true, so it calls it three times.
find_if then returns control to remove_if. remove_if continues to exe-
cute and ultimately calls remove_copy_if, passing as a predicate
another copy of p. But p’s timesCalled member is still 0! find_if never
called p, it called only a copy of p. As a result, the third time
remove_copy_if calls its predicate, it, too, will return true. And that’s
why remove_if will ultimately remove two Widgets from vw instead of
just one.

The easiest way to keep yourself from tumbling into this linguistic cre-
vasse is to declare your operator() functions const in predicate classes.
If you do that, your compilers won't let you change any class data
members:

class BadPredicate:
public unary_function<Widget, bool> {

public:
bool operator()(const Widget&) const
{
return ++timesCalled == 3; // error! can't change local data
} // in a const member function

5

Because this is such a straightforward way of preventing the problem
we just examined, I very nearly entitled this Item “Make operator()
const in predicate classes.” But that doesn’t go far enough. Even const
member functions may access mutable data members, non-const local
static objects, non-const class static objects, non-const objects at
namespace scope, and non-const global objects. A well-designed predi-
cate class ensures that its operator() functions are independent of
those kinds of objects, too. Declaring operator() const in predicate
classes is necessary for correct behavior, but it’s not sufficient. A well-
behaved operator() is certainly const, but it’s more than that. It’s also a
pure function.

Functors, Functor Classes, Functions, etc. Item 40 169

Earlier in this Item, I remarked that any place the STL expects a pred-
icate function, it will accept either a real function or an object of a
predicate class. That’s true in both directions. Any place the STL will
accept an object of a predicate class, a predicate function (possibly
modified by ptr_fun — see Item 41) is equally welcome. We now under-
stand that operator() functions in predicate classes should be pure
functions, so this restriction extends to predicate functions, too. This
function is as bad a predicate as the objects generated from the Bad-
Predicate class:

bool anotherBadPredicate(const Widget&, const Widget&)
{

static int timesCalled = 0; // No! No! No! No! No! No! No!
return ++timesCalled == 3; // Predicates should be pure functions,
} // and pure functions have no state

Regardless of how you write your predicates, they should always be
pure functions.

Item 40: Make functor classes adaptable.

Suppose I have a list of Widget* pointers and a function to determine
whether such a pointer identifies a Widget that is interesting:

list<Widget*> widgetPtrs;
bool isInteresting(const Widget *pw);

If I'd like to find the first pointer to an interesting Widget in the list, it'd
be easy:

list<Widget*>:iterator i = find_if(widgetPtrs.begin(), widgetPtrs.end(),
isInteresting);

if (i I= widgetPtrs.end()) {
// process the first
} // ptr to an interesting
// Widget

If I'd like to find the first pointer to a Widget that is not interesting,
however, the obvious approach fails to compile:

list<Widget*>:iteratori=
find_if(widgetPtrs.begin(), widgetPtrs.end(),
not1(isInteresting)); // error! won't compile

Instead, I must apply ptr_fun to isInteresting before applying not1:

list<Widget*>:iteratori=
find_if(widgetPtrs.begin(), widgetPtrs.end(),
not1(ptr_fun(isinteresting))); // fine

if (i I= widgetPtrs.end()) {
// process the first ptr
} // to a dull Widget

170 Item 40 Functors, Functor Classes, Functions, etc.

That leads to some questions. Why do I have to apply ptr_fun to isInter-
esting before applying not1? What does ptr_fun do for me, and how
does it make the above work?

The answer is somewhat surprising. The only thing ptr_fun does is
make some typedefs available. That’s it. These typedefs are required
by not1, and that’s why applying notl1 to ptr_fun works, but applying
notl to isinteresting directly doesn’'t work. Being a lowly function
pointer, isInteresting lacks the typedefs that not1 demands.

not1 isn’t the only component in the STL making such demands. Each
of the four standard function adapters (notl, not2, bind1st, and
bind2nd) requires the existence of certain typedefs, as do any non-
standard STL-compatible adapters written by others (e.g., those avail-
able from SGI and Boost — see Item 50). Function objects that provide
the necessary typedefs are said to be adaptable, while function objects
lacking these typedefs are not adaptable. Adaptable function objects
can be used in more contexts than can function objects that are not
adaptable, so you should make your function objects adaptable when-
ever you can. It costs you nothing, and it may buy clients of your
functor classes a world of convenience.

I know, I know, I'm being coy, constantly referring to “certain type-
defs” without telling you what they are. The typedefs in question
are argument_type, first_argument_type, second_argument_type, and
result_type, but it’s not quite that straightforward, because different
kinds of functor classes are expected to provide different subsets of
these names. In all honesty, unless you're writing your own adapters
(a topic not covered in this book), you don’t need to know anything
about these typedefs. That's because the conventional way to provide
them is to inherit them from a base class, or, more precisely, a base
struct. For functor classes whose operator() takes one argument, the
struct to inherit from is std:unary_function. For functor classes whose
operator() takes two arguments, the struct to inherit from is
std:binary_function.

Well, sort of. unary_function and binary_function are templates, so you
can’'t inherit from them directly. Instead, you must inherit from
structs they generate, and that requires that you specify some type
arguments. For unary_function, you must specify the type of parameter
taken by your functor class’s operator(), as well as its return type. For
binary_function, you specify three types: the types of your operator()’s
first and second parameters, and your operator()’s return type.

Here are a couple of examples:

Functors, Functor Classes, Functions, etc. Item 40 171

template<typename T>
class MeetsThreshold: public std::unary_function<Widget, bool> {
private:

const T threshold;

public:
MeetsThreshold(const T& threshold);

bool operator()(const Widget&) const;

5

struct WidgetNameCompare:
public std:binary_function<Widget, Widget, bool> {

bool operator()(const Widget& lhs, const Widget& rhs) const;
L
In both cases, notice how the types passed to unary_function or
binary_function are the same as the types taken and returned by the
functor class’s operator(), though it is a bit of an oddity that operator()’s

return type is passed as the last argument to unary_function or
binary_function.

You may have noticed that MeetsThreshold is a class, while WidgetNam-
eCompare is a struct. MeetsThreshold has internal state (its threshold
data member), and a class is the logical way to encapsulate such
information. WidgetNameCompare has no state, hence no need to make
anything private. Authors of functor classes where everything is pub-
lic often declare structs instead of classes, probably for no other rea-
son than to avoid typing “public” in front of the base class and the
operator() function. Whether to declare such functors as classes or
structs is purely a matter of personal style. If you're still refining your
personal style and would like to emulate the pros, note that stateless
functor classes within the STL itself (e.g., less<T>, plus<T>, etc.) are
generally written as structs.

Look again at WidgetNameCompare:
struct WidgetNameCompare:
public std::binary_function<Widget, Widget, bool> {
bool operator()(const Widget& lhs, const Widget& rhs) const;
L
Even though operator()’s arguments are of type const Widget&, the type
passed to binary_function is Widget. In general, non-pointer types
passed to unary_function or binary_function have consts and references

stripped off. (Don’t ask why. The reasons are neither terribly good nor
terribly interesting. If you're dying to know anyway, write some pro-

172 Item 40 Functors, Functor Classes, Functions, etc.

grams where you don't strip them off, then dissect the resulting com-
piler diagnostics. If, having done that, you're still interested in the
matter, visit boost.org (see Item 50) and check out their work on call
traits and function object adapters.)

The rules change when operator() takes pointer parameters. Here's a
struct analogous to WidgetNameCompare, but this one works with Wid-
get* pointers:

struct PtrWidgetNameCompare:
public std::binary_function<const Widget*, const Widget*, bool> {

bool operator()(const Widget* lhs, const Widget* rhs) const;
7
Here, the types passed to binary_function are the same as the types
taken by operator(). The general rule for functor classes taking or

returning pointers is to pass to unary_function or binary_function what-
ever types operator() takes or returns.

Let’s not forget the fundamental reason for all this unary_function and
binary_function base class gobbledegook. These classes supply type-
defs that are required by function object adapters, so inheritance from
those classes yields adaptable function objects. That lets us do things
like this:

list<Widget> widgets;
list<Widget>:reverse_iterator il = // find the last widget
find_if(widgets.rbegin(), widgets.rend(), // that fails to meet the
not1(MeetsThreshold<int>(10))); // threshold of 10

// (whatever that means)
Widget w(constructor arguments);

list<Widget>:iterator i2 = // find the first widget
find_if(widgets.begin(), widgets.end(), // that precedes w in the
bind2nd(WidgetNameCompare(), w)); // sort order defined by
// WidgetNameCompare

Had we failed to have our functor classes inherit from unary_function
or binary_function, neither of these examples would compile, because
not1 and bind2nd both work only with adaptable function objects.

STL function objects are modeled on C++ functions, and a C++ func-
tion has only one set of parameter types and one return type. As a
result, the STL implicitly assumes that each functor class has only
one operator() function, and it’'s the parameter and return types for
this function that should be passed to unary_function or binary_function
(in accord with the rules for reference and pointer types we just dis-

Functors, Functor Classes, Functions, etc. Item 41 173

cussed). This means that, tempting though it might be, you shouldn’t
try to combine the functionality of WidgetNameCompare and PtrWidget-
NameCompare by creating a single struct with two operator() functions.
If you did, the functor would be adaptable with respect to at most one
of its calling forms (whichever one you used when passing parameters
to binary_function), and a functor that’s adaptable only half the time
might just as well not be adaptable at all.

Sometimes it makes sense to give a functor class multiple invocation
forms (thereby abandoning adaptability), and Items 7, 20, 23, and 25
give examples of situations where that is the case. Such functor
classes are the exception, however, not the rule. Adaptability is impor-
tant, and you should strive to facilitate it each time you write a func-
tor class.

Item 41: Understand the reasons for ptr_fun, mem_fun,
and mem_fun_ref.

What is it with this ptr_fun/mem_fun/mem_fun_ref stuff? Sometimes
you have to use these functions, sometimes you don’t, and what do
they do, anyway? They just seem to sit there, pointlessly hanging
around function names like ill-fitting garments. They're unpleasant to
type, annoying to read, and resistant to comprehension. Are these
things additional examples of STL artifacts (such as the ones
described in Items 10 and 18), or just some syntactic joke foisted on
us by members of a Standardization Committee with too much free
time and a twisted sense of humor?

Calm yourself. The names are less than inspired, but ptr_fun,
mem_fun, and mem_fun_ref do important jobs, and as far as syntactic
jokes go, one of the primary tasks of these functions is to paper over
one of C++’s inherent syntactic inconsistencies.

If I have a function f and an object x, I wish to invoke f on x, and I'm
outside x’s member functions, C++ gives me three different syntaxes
for making the call:

f(x); // Syntax #1: When fis a
// non-member function
x.f(); // Syntax #2: When f is a member

// function and x is an object or
// areference to an object

p->f(); // Syntax #3: When f is a member
// function and p is a pointer to x

Now, suppose I have a function that can test Widgets,

174 Item 41 Functors, Functor Classes, Functions, etc.

void test(Widget& w); // test w and mark it as “failed” if
// it doesn’t pass the test

and I have a container of Widgets:

vector<Widget> vw; // vw holds widgets

To test every Widget in vw, I can use for_each in the obvious manner:

for_each(vw.begin(), vw.end(), test); // Call #1 (compiles)

But imagine that test is a member function of Widget instead of a non-
member function, i.e., that Widget supports self-testing:

class Widget {
public:

void test(); // perform a self-test; mark *this
// as “failed” if it doesn't pass
L

In a perfect world, I'd also be able to use for_each to invoke Widget:test
on each object in vw:

for_each(vw.begin(), vw.end(),
&Widget:test); // Call #2 (won’t compile)

In fact, if the world were really perfect, I'd be able to use for_each to
invoke Widget:test on a container of Widget* pointers, too:

list<Widget*> lpw; // lpw holds pointers to widgets

for_each(Ipw.begin(), [pw.end(),
&Widget:test); // Call #3 (also won’t compile)

But think of what would have to happen in this perfect world. Inside
the for_each function in Call #1, we’d be calling a non-member func-
tion with an object, so we’d have to use Syntax #1. Inside the for_each
function in Call #2, we’d have to use Syntax #2, because we'd have an
object and a member function. And inside the for_each function in Call
#3, we’'d need to use Syntax #3, because we’'d be dealing with a mem-
ber function and a pointer to an object. We’'d therefore need three dif-
ferent versions of for_each, and how perfect would that world be?

In the world we do have, we possess only one version of for_each. It’s
not hard to envision an implementation:

template<typename Inputlterator, typename Function>
Function for_each(Inputlterator begin, Inputlterator end, Function f)

while (begin != end) f(*begin++);
}

Functors, Functor Classes, Functions, etc. Item 41 175

Here I've highlighted the fact that for_each uses Syntax #1 when mak-
ing the call. This is a universal convention in the STL: functions and
function objects are always invoked using the syntactic form for non-
member functions. This explains why Call #1 compiles while Calls #2
and #3 don’t. It’s because STL algorithms (including for_each) hard-
wire in Syntax #1, and only Call #1 is compatible with that syntax.

Perhaps it’'s now clear why mem_fun and mem_fun_ref exist. They
arrange for member functions (which must ordinarily be called using
Syntax #2 or #3) to be called using Syntax #1.

The way mem_fun and mem_fun_ref do this is simple, though it’s a lit-
tle clearer if you take a look at a declaration for one of these functions.
They're really function templates, and several variants of the mem_fun
and mem_fun_ref templates exist, corresponding to different numbers
of parameters and the constness (or lack thereof) of the member func-
tions they adapt. Seeing one declaration is enough to understand how
things are put together:

template<typename R, typename C> // declaration for mem_fun for

mem_fun_t<R,C> // non-const member functions

mem_fun(R (C:*pmf)()); // taking no parameters. C is the
// class, Ris the return type of the
// pointed-to member function

mem_fun takes a pointer to a member function, pmf, and returns an
object of type mem_fun_t. This is a functor class that holds the mem-
ber function pointer and offers an operator() that invokes the pointed-
to member function on the object passed to operator(). For example, in
this code,

list<Widget*> lpw; // same as above

for_each(lpw.begin(), Ipw.end(),
mem_fun(&Widget:test)); // this will now compile
for_each receives an object of type mem_fun_t holding a pointer to Wid-
get:test. For each Widget* pointer in lpw, for_each “calls” the mem_fun_t
object using Syntax #1, and that object immediately invokes Wid-
get:test on the Widget* pointer using Syntax #3.

Overall, mem_fun adapts Syntax #3, which is what Widget:test
requires when used with a Widget* pointer, to Syntax #1, which is
what for_each uses. It’s thus no wonder that classes like mem_fun_t
are known as function object adapters. It should not surprise you to
learn that, completely analogously with the above, the mem_fun_ref
functions adapt Syntax #2 to Syntax #1 and generate adapter objects
of type mem_fun_ref_t.

176 Item 41 Functors, Functor Classes, Functions, etc.

The objects produced by mem_fun and mem_fun_ref do more than
allow STL components to assume that all functions are called using a
single syntax. They also provide important typedefs, just like the
objects produced by ptr_fun. The story behind these typedefs is told in
Item 40, so I won't repeat it here. However, this puts us in a position
to understand why this call compiles,

for_each(vw.begin(), vw.end(), test); // as above, Call #1;
// this compiles

while these do not:

for_each(vw.begin(), vw.end(), &Widget:test); // as above, Call #2;
// doesn’t compile

for_each(lpw.begin(), Ipw.end(), &Widget:test); // as above, Call #3;
// doesn't compile

The first call (Call #1) passes a real function, so there’s no need to
adapt its calling syntax for use by for_each; the algorithm will inher-
ently call it using the proper syntax. Furthermore, for_each makes no
use of the typedefs that ptr_fun adds, so it’s not necessary to use
ptr_fun when passing test to for_each. On the other hand, adding the
typedefs can’t hurt anything, so this will do the same thing as the call
above:

for_each(vw.begin(), vw.end(), ptr_fun(test)); // compiles and behaves
// like Call #1 above

If you get confused about when to use ptr_fun and when not to, con-
sider using it every time you pass a function to an STL component.
The STL won’t care, and there is no runtime penalty. About the worst
that can be said is that some people reading your code might raise an
eyebrow when they see an unnecessary use of ptr_fun. How much that
bothers you depends, I suppose, on your sensitivity to raised eye-
brows.

An alternative strategy with respect to ptr_fun is to use it only when
you're forced to. If you omit it when the typedefs are necessary, your
compilers will balk at your code. Then you’ll have to go back and add
it.

The situation with mem_fun and mem_fun_ref is fundamentally differ-
ent. You must employ them whenever you pass a member function to
an STL component, because, in addition to adding typedefs (which
may or may not be necessary), they adapt the calling syntaxes from
the ones normally used with member functions to the one used every-
where in the STL. If you don’t use them when passing member func-
tion pointers, your code will never compile.

Functors, Functor Classes, Functions, etc. Item 42 177

Which leaves just the names of the member function adapters, and
here, finally, we have a genuine historical STL artifact. When the need
for these kinds of adapters first became apparent, the people working
on the STL focused on containers of pointers. (Given the drawbacks of
such containers described in Items 7, 20, and 33, this might seem
surprising, but remember that containers of pointers support poly-
morphism, while containers of objects do not.) They needed an
adapter for member functions, so they chose mem_fun. Only later did
they realize that they needed a different adapter for containers of
objects, so they hacked up the name mem_fun_ref for that. No, it’s not
very elegant, but these things happen. Tell me you’ve never given any
of your components a name that you later realized was, er, difficult to
generalize... .

Item 42: Make sure less<T> means operator<.

As all Widget-savvy people are aware, Widgets have both a weight and
a maximum speed:

class Widget {
public:

size_t weight() const;
size_t maxSpeed() const;

L

Also well known is that the natural way to sort Widgets is by weight.
operator< for Widgets reflects this:

bool operator<(const Widget& Ihs, const Widget& rhs)
{

return Ihs.weight() < rhs.weight();
}

But suppose we’d like to create a multiset<Widget> where the Widgets
are sorted by maximum speed. We know that the default comparison
function for multiset<Widget> is less<Widget>, and we know that
less<Widget>, by default, does its work by calling operator< for Widgets.
That being the case, it seems clear that one way to get a multiset<Wid-
get> sorted by maximum speed is to sever the tie between less<Wid-
get> and operator< by specializing less<Widget> to look only at a
Widget’'s maximum speed:

178 Item 42 Functors, Functor Classes, Functions, etc.

template<> // This is a specialization
struct std:less<Widget>: // of std:less for Widget;
public // it's also a very bad idea
std:binary_function<Widget,
Widget, // See Item 40 for info
bool> { // on this base class

bool operator()(const Widget& lhs, const Widget& rhs) const

return lhs.maxSpeed() < rhs.maxSpeed();

}
L

This both looks ill-advised and is ill-advised, but it may not be ill-
advised for the reason you think. Does it surprise you that it compiles
at all? Many programmers point out that the above isn’t just a special-
ization of a template, it’s a specialization of a template in the std
namespace. “Isn’t std supposed to be sacred, reserved for library
implementers and beyond the reach of mere programmers?” they ask.
“Shouldn’t compilers reject this attempt to tamper with the workings
of the C++ immortals?” they wonder.

As a general rule, trying to modify components in std is indeed forbid-
den (and doing so typically transports one to the realm of undefined
behavior), but under some circumstances, tinkering is allowed. Spe-
cifically, programmers are allowed to specialize templates in std for
user-defined types. Almost always, there are alternatives that are
superior to specializing std templates, but on rare occasions, it’s a rea-
sonable thing to do. For instance, authors of smart pointer classes
often want their classes to act like built-in pointers for sorting pur-
poses, so it’s not uncommon to see specializations of std:less for smart
pointer types. The following, for example, is part of the Boost library’s
shared_ptr, a smart pointer you can read about in Items 7 and 50:

namespace std {

template<typename T> // this is a spec. of std::less
struct less< boost:shared_ptr<T> >: // for boost::shared_ptr<T>
public // (boost is a namespace)

binary_function<boost:shared_ptr<T>,
boost::shared_ptr<T>, // thisis the customary
bool> { // base class (see Item 40)

bool operator()(const boost::shared_ptr<T>& a,
const boost:shared_ptr<T>& b) const
{

return less<T*>()(a.get(),b.get()); // shared_ptr::get returns
} // the built-in pointer that’s
// in the shared_ptr object

Functors, Functor Classes, Functions, etc. Item 42 179

This isn’t unreasonable, and it certainly serves up no surprises,
because this specialization of less merely ensures that sorting smart
pointers behaves the same as sorting their built-in brethren. Alas, our
tentative specialization of less for Widget does serve up surprises.

C++ programmers can be forgiven certain assumptions. They assume
that copy constructors copy, for example. (As Item 8 attests, failure to
adhere to this convention can lead to astonishing behavior.) They
assume that taking the address of an object yields a pointer to that
object. (Turn to Item 18 to read about what can happen when this
isn’t true.) They assume that adapters like bind1st and not2 may be
applied to function objects. (Item 40 explains how things break when
this isn’t the case.) They assume that operator+ adds (except for
strings, but there’s a long history of using “+” to mean string concate-
nation), that operator- subtracts, that operator== compares. And they
assume that using less is tantamount to using operator<.

operator< is more than just the default way to implement less, it’'s what
programmers expect less to do. Having less do something other than
call operator< is a gratuitous violation of programmers’ expectations. It
runs contrary to what has been called “the principle of least astonish-
ment.” It’s callous. It's mean. It’s bad. You shouldn’t do it.

Especially when there’s no reason to. There’s not a place in the STL
using less where you can’t specify a different comparison type instead.
Returning to our original example of a multiset<Widget> ordered by
maximum speed, all we need to do to get what we want is create a
functor class called almost anything except less that performs the
comparison we're interested in. Why, here’s one now:

struct MaxSpeedCompare:
public binary_function<Widget, Widget, bool> {

bool operator()(const Widget& lhs, const Widget& rhs) const
return lhs.maxSpeed() < rhs.maxSpeed();
}
I
To create our multiset, we use MaxSpeedCompare as the comparison

type, thus avoiding use of the default comparison type (which is, of
course, less<Widget>):

multiset<Widget, MaxSpeedCompare> widgets;

This code says exactly what it means. It creates a multiset of Widgets
sorted as defined by the functor class MaxSpeedCompare.

Contrast that with this:
multiset<Widget> widgets;

180 Item 42 Functors, Functor Classes, Functions, etc.

This says that widgets is a multiset of Widgets sorted in the default
manner. Technically, that means it uses less<Widget>, but virtually
everybody is going to assume that really means it’s sorted by opera-
tor<.

Don’t mislead all those programmers by playing games with the defi-
nition of less. If you use less (explicitly or implicitly), make sure it
means operator<. If you want to sort objects using some other crite-
rion, create a special functor class that’s not called less. It’s really as
simple as that.

Programming
with the STL

It’s traditional to summarize the STL as consisting of containers, iter-
ators, algorithms, and function objects, but programming with the STL
is much more than that. Programming with the STL is knowing when
to use loops, when to use algorithms, and when to use container
member functions. It's knowing when equal_range is a better way to
search than lower_bound, knowing when lower_bound is preferable to
find, and knowing when find beats equal_range. It's knowing how to
improve algorithm performance by substituting functors for functions
that do the same thing. It's knowing how to avoid unportable or
incomprehensible code. It’s even knowing how to read compiler error
messages that run to thousands of characters. And it’s knowing about
Internet resources for STL documentation, STL extensions, even com-
plete STL implementations.

Yes, programming with the STL involves knowing many things. This
chapter gives you much of the knowledge you need.

Item 43: Prefer algorithm calls to hand-written loops.

Every algorithm takes at least one pair of iterators that specify a range
of objects over which to do something. min_element finds the smallest
value in the range, for example, while accumulate summarizes some
information about the range as a whole (see Item 37) and partition sep-
arates all the elements of a range into those that do and do not satisfy
some criterion (see Item 31). For algorithms to do their work, they
must examine every object in the range(s) they are passed, and they
do this in the way you’d expect: they loop from the beginning of the
range(s) to the end. Some algorithms, such as find and find_if, may
return before they complete the traversal, but even these algorithms
internally contain a loop. After all, even find and find_if must look at
every element of a range before they can conclude that what they are
looking for is not present.

182 Item 43 Programming with the STL

Internally, then, algorithms are loops. Furthermore, the breadth of
STL algorithms means that many tasks you might naturally code as
loops could also be written using algorithms. For example, if you have
a Widget class that supports redrawing,

class Widget {
public:

void redraw() const;

-

and you’d like to redraw all the Widgets in a list, you could do it with a
loop, like this,

list<Widget> lw;

for (list<Widget>:iterator i = lw.begin(); i != lw.end(); ++i) {
i->redraw();

}

but you could also do it with the for_each algorithm:

for_each(Ilw.begin(), lw.end(), // see Item 41 for info
mem_fun_ref(&Widget::redraw)); // on mem_fun_ref

For many C++ programmers, writing the loop is more natural than
calling the algorithm, and reading the loop is more comfortable than
making sense of mem_fun_ref and the taking of Widget:redraw’s
address. Yet this Item argues that the algorithm call is preferable. In
fact, this Item argues that calling an algorithm is usually preferable to
any hand-written loop. Why?

There are three reasons:

= Efficiency: Algorithms are often more efficient than the loops pro-
grammers produce.

= Correctness: Writing loops is more subject to errors than is call-
ing algorithms.
= Maintainability: Algorithm calls often yield code that is clearer
and more straightforward than the corresponding explicit loops.
The remainder of this Item lays out the case for algorithms.

From an efficiency perspective, algorithms can beat explicit loops in
three ways, two major, one minor. The minor way involves the elimina-
tion of redundant computations. Look again at the loop we just saw:

for (list<Widget>:iterator i = Iw.begin(); i = lw.end(); ++i) {
i->redraw();

}

Programming with the STL Item 43 183

I've highlighted the loop termination test to emphasize that each time
around the loop, i will be checked against lw.end(). That means that
each time around the loop, the function list:end will be invoked. But
we don’t need to call end more than once, because we're not modifying
the list. A single call to end would suffice, and, if we look again at the
algorithm invocation, we’ll see that that’s exactly how many times end
is evaluated:

for_each(lw.begin(), lw.end(), // this call evaluates
mem_fun_ref(&Widget:redraw)); // lw.end() exactly once

To be fair, STL implementers understand that begin and end (and sim-
ilar functions, such as size) are used frequently, so they're likely to
design them for maximal efficiency. They’ll almost certainly inline
them and strive to code them so that most compilers will be able to
avoid repeated computations by hoisting their results out of loops like
the one above. Experience shows that implementers don’t always suc-
ceed, however, and when they don’t, the avoidance of repeated compu-
tations is enough to give the algorithm a performance edge over the
hand-written loop.

But that’s the minor efficiency argument. The first major argument is
that library implementers can take advantage of their knowledge of
container implementations to optimize traversals in a way that no
library user ever could. For example, the objects in a deque are typi-
cally stored (internally) in one or more fixed-size arrays. Pointer-based
traversals of these arrays are faster than iterator-based traversals,
but only library implementers can use pointer-based traversals,
because only they know the size of the internal arrays and how to
move from one array to the next. Some STLs contain algorithm imple-
mentations that take their deque’s internal data structures into
account, and such implementations have been known to clock in at
more than 20% faster than the “normal” implementations of the algo-
rithms.

The point is not that STL implementations are optimized for deques (or
any other specific container type), but that implementers know more
about their implementations than you do, and they can take advan-
tage of this knowledge in algorithm implementations. If you shun
algorithm calls in favor of your own loops, you forgo the opportunity to
benefit from any implementation-specific optimizations they may have
provided.

The second major efficiency argument is that all but the most trivial
STL algorithms use computer science algorithms that are more
sophisticated — sometimes much more sophisticated — than anything
the average C++ programmer will be able to come up with. It’s next to

184 Item 43 Programming with the STL

impossible to beat sort or its kin (see Item 31); the search algorithms
for sorted ranges (see Items 34 and 45) are equally good; and even
such mundane tasks as eliminating some objects from contiguous-
memory containers are more efficiently accomplished using the erase-
remove idiom than the loops most programmers come up with (see
Item 9).

If the efficiency argument for algorithms doesn’t persuade you, per-
haps you’re more amenable to a plea based on correctness. One of the
trickier things about writing your own loops is making sure you use
only iterators that (a) are valid and (b) point where you want them to.
For example, suppose you have an array (presumably due to a legacy
C API — see Item 16), and you’d like to take each array element, add
41 to it, then insert it into the front of a deque. Writing your own loop,
you might come up with this (which is a variant on an example from
Item 16):

// C API: this function takes a pointer to an array of at most arraySize
// doubles and writes data to it. It returns the number of doubles written.
size_t fillArray(double *pArray, size_t arraySize);

double data[maxNumDoubles]; // create local array of
// max possible size

deque<double> d; // create deque, put
// data into it

size_t numDoubles =

fillArray(data, maxNumDoubles); // get array data from API
for (size_ti=0;i < numDoubles; ++i) { // for each i in data,
d.insert(d.begin(), datali] + 41); // insert data[i]+41 at the
} // front of d; this code
// has a bug!

This works, as long as you're happy with a result where the newly
inserted elements are in the reverse order of the corresponding ele-
ments in data. Because each insertion location is d.begin(), the last ele-
ment inserted will go at the front of the deque!

If that’s not what you wanted (and admit it, it’s not), you might think
to fix it like this:

deque<double>:iterator insertLocation = d.begin(); // remember d's
// begin iterator

for (size_ti=0;i < numDoubles; ++i) { // insert data[i]+41
d.insert(insertLocation++, datali] + 41); // at insertLocation, then
} // increment

// insertLocation; this
// code is also buggy!

Programming with the STL Item 43 185

This looks like a double win, because it not only increments the itera-
tor specifying the insertion position, it also eliminates the need to call
begin each time around the loop; that eliminates the minor efficiency
hit we discussed earlier. Alas, this approach runs into a different
problem: it yields undefined results. Each time deque:insert is called,
it invalidates all iterators into the deque, and that includes insertLoca-
tion. After the first call to insert, insertLocation is invalidated, and sub-
sequent loop iterations are allowed to head straight to looneyland.

Once you puzzle this out (possibly with the aid of STLport’s debug
mode, which is described in Item 50), you might come up with the fol-
lowing:

deque<double>:iterator insertLocation =

d.begin(); // as before
for (size_ti=0; i < numDoubles; ++i) { // update insertLocation
insertLocation = // each time insert is
d.insert(insertLocation, data[i] + 41); // called to keep the
++insertLocation; // iterator valid, then
} // increment it

This code finally does what you want, but think about how much work
it took to get here! Compare that to the following call to transform:

transform(data, data + numDoubles, // copy all elements
inserter(d, d.begin()), // from data to the front
bind2nd(plus<double>(), 41)); // of d, adding 41 to each

The “bind2nd(plus<double>(), 41)” might take you a couple of minutes to
get right (especially if you don’t use STL’s binders very often), but the
only iterator-related worries you have are specifying the beginning
and end of the source range (which was never a problem) and being
sure to use inserter as the beginning of the destination range (see
Item 30). In practice, figuring out the correct initial iterators for
source and destination ranges is usually easy, or at least a lot easier
than making sure the body of a loop doesn’t inadvertently invalidate
an iterator you need to keep using.

This example is representative of a broad class of loops that are diffi-
cult to write correctly, because you have to be on constant alert for
iterators that are incorrectly manipulated or are invalidated before
you're done using them. To see a different example of how inadvertent
iterator invalidation can lead to trouble, turn to Item 9, which
describes the subtleties involved in writing loops that call erase.

Given that using invalidated iterators leads to undefined behavior,
and given that undefined behavior has a nasty habit of failing to show

186 Item 43 Programming with the STL

itself during development and testing, why run the risk if you don’t
have to? Turn the iterators over to the algorithms, and let them worry
about the vagaries of iterator manipulation.

I've explained why algorithms can be more efficient than hand-written
loops, and I've described why such loops must navigate a thicket of
iterator-related difficulties that algorithms avoid. With luck, you are
now an algorithm believer. Yet luck is fickle, and I'd prefer a more
secure conviction before I rest my case. Let us therefore move on to
the issue of code clarity. In the long run, the best software is the clear-
est software, the software that is easiest to understand, the software
that can most readily be enhanced, maintained, and molded to fit new
circumstances. The familiarity of loops notwithstanding, algorithms
have an advantage in this long-term competition.

The key to their edge is the power of a known vocabulary. There are 70
algorithm names in the STL — a total of over 100 different function
templates, once overloading is taken into account. Each of those algo-
rithms carries out some well-defined task, and it is reasonable to
expect professional C++ programmers to know (or be able to look up)
what each does. Thus, when a programmer sees a transform call, that
programmer recognizes that some function is being applied to every
object in a range, and the results of those calls are being written
somewhere. When the programmer sees a call to replace_if, he or she
knows that all the objects in a range that satisfy some predicate are
being modified. When the programmer comes across an invocation of
partition, she or he understands that the objects in a range are being
moved around so that all the objects satisfying a predicate are
grouped together (see Item 31). The names of STL algorithms convey a
lot of semantic information, and that makes them clearer than any
random loop can hope to be.

When you see a for, while, or do, all you know is that some kind of loop
is coming up. To acquire even the faintest idea of what that loop does,
you have to examine it. Not so with algorithms. Once you see a call to
an algorithm, the name alone sketches the outline of what it does. To
understand exactly what will happen, of course, you must inspect the
arguments being passed to the algorithm, but that’s often less work
than trying to divine the intent of a general looping construct.

Simply put, algorithm names suggest what they do. “for,” “while,” and
“do” don’t. In fact, this is true of any component of the standard C or
C++ library. Without doubt, you could write your own implementa-
tions of strlen, memset, or bsearch, if you wanted to, but you don’t. Why

Programming with the STL Item 43 187

not? Because (1) somebody has already written them, so there’s no
point in your doing it again; (2) the names are standard, so everybody
knows what they do; and (3) you suspect that your library imple-
menter knows some efficiency tricks you don’t know, and you're
unwilling to give up the possible optimizations a skilled library imple-
menter might provide. Just as you don’t write your own versions of
strlen et al., it makes no sense to write loops that duplicate functional-
ity already present in STL algorithms.

I wish that were the end of the story, because I think it's a strong fin-
ish. Alas, this is a tale that refuses to go gentle into that good night.

Algorithm names are more meaningful than bare loops, it’s true, but
specifying what to do during an iteration can be clearer using a loop
than using an algorithm. For example, suppose you’'d like to identify
the first element in a vector whose value is greater than some x and
less than some y. Here’s how you could do it using a loop:

vector<int> v;

intx,y;

vector<int>:iterator i = v.begin(); // iterate from v.begin() until an

for(;i'=v.end(); ++i) { // appropriate value is found or
if (*i > x && *i < y) break; // v.end() is reached

}

// i now points to the value or is
// the same as v.end()

It is possible to pass this same logic to find_if, but it requires that you
use a nonstandard function object adapter like SGI's compose2 (see
Item 50):

vector<int>:iteratori =
find_if(v.begin(), v.end(), // find the first value va/
compose2(logical_and<bool>(), // where the “and” of
bind2nd(greater<int>(), x), // va/>xand
bind2nd(less<int>(), y))); // val<y
//is true

Even if this didn’'t use nonstandard components, many programmers
would object that it’s nowhere near as clear as the loop, and I have to
admit to being sympathetic to that view (see Item 47).

The find_if call can be made less imposing by moving the test logic into
a separate functor class,

188 Item 43 Programming with the STL

template<typename T>
class BetweenValues:

public unary_function<T, bool> { // see ltem 40
public:
BetweenValues(const T& lowValue,
const T& highValue) // have the ctor save the
: lowVal(lowValue), highVal(highValue) // values to be between
{
bool operator()(const T& val) const // return whether
{ // val is between the
return val > lowVal && val < highVal; // saved values
}
private:
T lowVal;
T highVal;

L

vector<int>:iterator i = find_if(v.begin(), v.end(),
BetweenValues<int>(x, y));

but this has its own drawbacks. First, creating the BetweenValues tem-
plate is a lot more work than writing the loop body. Just count the
lines. Loop body: one; BetweenValues template: fourteen. Not a very
good ratio. Second, the details of what find_if is looking for are now
physically separate from the call. To really understand the call to
find_if, one must look up the definition of BetweenValues, but Between-
Values must be defined outside the function containing the call to
find_if. If you try to declare BetweenValues inside the function contain-
ing the call to find_if, like this,

{ // beginning of function

template <typename T>
class BetweenValues: public unary_function<T, bool> { ... };

vector<int>:iterator i = find_if(v.begin(), v.end(),
BetweenValues<int>(x, y));

} // end of function

you’ll discover that it won't compile, because templates can’t be
declared inside functions. If you try to avoid that restriction by mak-
ing BetweenValues a class instead of a template,

Programming with the STL Item 43 189

{ // beginning of function

class BetweenValues: public unary_function<int, bool>{... };

vector<int>:iterator i = find_if(v.begin(), v.end(),
BetweenValues(x, y));

} // end of function

you’ll find that you're still out of luck, because classes defined inside
functions are known as local classes, and local class types can’t be
bound to template type arguments (such as the type of the functor
taken by find_if). Sad as it may seem, functor classes and functor
class templates are not allowed to be defined inside functions, no mat-
ter how convenient it would be to be able to do it.

In the ongoing tussle between algorithm calls and hand-written loops,
the bottom line on code clarity is that it all depends on what you need
to do inside the loop. If you need to do something an algorithm already
does, or if you need to do something very similar to what an algorithm
does, the algorithm call is clearer. If you need a loop that does some-
thing fairly simple, but would require a confusing tangle of binders
and adapters or would require a separate functor class if you were to
use an algorithm, youre probably better off just writing the loop.
Finally, if you need to do something fairly long and complex inside the
loop, the scales tilt back toward algorithms, because long, complex
computations should generally be moved into separate functions, any-
way. Once you've moved the loop body into a separate function, you
can almost certainly find a way to pass that function to an algorithm
(often for_each) such that the resulting code is direct and straightfor-
ward.

If you agree with this Item that algorithm calls are generally preferable
to hand-written loops, and if you also agree with Item 5 that range
member functions are preferable to loops that iteratively invoke sin-
gle-element member functions, an interesting conclusion emerges:
well-crafted C++ programs using the STL contain far fewer loops than
equivalent programs not using the STL. This is a good thing. Any time
we can replace low-level words like for, while, and do with higher-level
terms like insert, find, and for_each, we raise the level of abstraction in
our software and thereby make it easier to write, document, enhance,
and maintain.

190 Item 44 Programming with the STL

Item 44: Prefer member functions to algorithms with
the same names.

Some containers have member functions with the same names as STL
algorithms. The associative containers offer count, find, lower_bound,
upper_bound, and equal_range, while list offers remove, remove_if,
unique, sort, merge, and reverse. Most of the time, you’ll want to use the
member functions instead of the algorithms. There are two reasons for
this. First, the member functions are faster. Second, they integrate
better with the containers (especially the associative containers) than
do the algorithms. That’s because algorithms and member functions
that share the same name typically do not do exactly the same thing.

We'll begin with an examination of the associative containers. Sup-
pose you have a set<int> holding a million values and you’d like to find
the first occurrence of the value 727, if there is one. Here are the two
most obvious ways to perform the search:

set<int>s; // create set, put
// 1,000,000 values
//into it
set<int>:iterator i = s.find(727); // use find member
if (i 1= s.end()) ... // function
set<int>:iterator i = find(s.begin(), s.end(), 727); // use find algorithm
if (i I=s.end()) ...

The find member function runs in logarithmic time, so, regardless of
whether 727 is in the set, set:find will perform no more than about 40
comparisons looking for it, and usually it will require only about 20.
In contrast, the find algorithm runs in linear time, so it will have to
perform 1,000,000 comparisons if 727 isn’t in the set. Even if 727 is
in the set, the find algorithm will perform, on average, 500,000 com-
parisons to locate it. The efficiency score is thus

Member find: About 40 (worst case) to about 20 (average case)
Algorithm find: 1,000,000 (worst case) to 500,000 (average case)

As in golf, the low score wins, and as you can see, this matchup is not
much of a contest.

I have to be a little cagey about the number of comparisons required
by member find, because it’s partially dependent on the implementa-
tion used by the associative containers. Most implementations use
red-black trees, a form of balanced tree that may be out of balance by
up to a factor of two. In such implementations, the maximum number
of comparisons needed to search a set of a million values is 38, but for
the vast majority of searches, no more than 22 comparisons are

Programming with the STL Item 44 191

required. An implementation based on perfectly balanced trees would
never require more than 21 comparisons, but in practice, the overall
performance of such perfectly balanced trees is inferior to that of red-
black trees. That’s why most STL implementations use red-black
trees.

Efficiency isn’t the only difference between member and algorithm
find. As Item 19 explains, STL algorithms determine whether two
objects have the same value by checking for equality, while associative
containers use equivalence as their “sameness” test. Hence, the find
algorithm searches for 727 using equality, while the find member
function searches using equivalence. The difference between equality
and equivalence can be the difference between a successful search
and an unsuccessful search. For example, Item 19 shows how using
the find algorithm to look for something in an associative container
could fail even when the corresponding search using the find member
function would succeed! You should therefore prefer the member form
of find, count, lower_bound, etc., over their algorithm eponyms when
you work with associative containers, because they offer behavior that
is consistent with the other member functions of those containers.
Due to the difference between equality and equivalence, algorithms
don’t offer such consistent behavior.

This difference is especially pronounced when working with maps and
multimaps, because these containers hold pair objects, yet their mem-
ber functions look only at the key part of each pair. Hence, the count
member function counts only pairs with matching keys (a “match,”
naturally, is determined by testing for equivalence); the value part of
each pair is ignored. The member functions find, lower_bound,
upper_bound, and equal_range behave similarly. If you use the count
algorithm, however, it will look for matches based on (a) equality and
(b) both components of the pair; find, lower_bound, etc., do the same
thing. To get the algorithms to look at only the key part of a pair, you
have to jump through the hoops described in Item 23 (which would
also allow you to replace equality testing with equivalence testing).

On the other hand, if you are really concerned with efficiency, you
may decide that Item 23’s gymnastics, in conjunction with the loga-
rithmic-time lookup algorithms of Item 34, are a small price to pay for
an increase in performance. Then again, if you're really concerned
with efficiency, you’ll want to consider the non-standard hashed con-
tainers described in Item 25, though there you’ll again confront the
difference between equality and equivalence.

For the standard associative containers, then, choosing member func-
tions over algorithms with the same names offers several benefits.

192 Item 45 Programming with the STL

First, you get logarithmic-time instead of linear-time performance.
Second, you determine whether two values are “the same” using
equivalence, which is the natural definition for associative containers.
Third, when working with maps and multimaps, you automatically deal
only with key values instead of with (key, value) pairs. This triumvi-
rate makes the case for preferring member functions pretty iron-clad.

Let us therefore move on to list member functions that have the same
names as STL algorithms. Here the story is almost completely about
efficiency. Each of the algorithms that list specializes (remove,
remove_if, unique, sort, merge, and reverse) copies objects, but list-spe-
cific versions copy nothing; they simply manipulate the pointers con-
necting list nodes. The algorithmic complexity of the algorithms and
the member functions is the same, but, under the assumption that
manipulating pointers is less expensive than copying objects, list’s ver-
sions of these functions should offer better performance.

It’s important to bear in mind that the list member functions often
behave differently from their algorithm counterparts. As Item 32
explains, calls to the algorithms remove, remove_if, and unique must be
followed by calls to erase if you really want to eliminate objects from a
container, but list’s remove, remove_if, and unique member functions
honestly get rid of elements; no subsequent call to erase is necessary.

A significant difference between the sort algorithm and list’s sort func-
tion is that the former can’t be applied to lists. Being only bidirectional
iterators, list’s iterators can’t be passed to sort. A gulf also exists
between the behavior of the merge algorithm and list’s merge. The algo-
rithm isn’t permitted to modify its source ranges, but list:merge
always modifies the lists it works on.

So there you have it. When faced with a choice between an STL algo-
rithm or a container member function with the same name, you
should prefer the member function. It’s almost certain to be more effi-
cient, and it’s likely to be better integrated with the container’s usual
behavior, too.

Item 45: Distinguish among count, find, binary_search,
lower_bound, upper_bound, and equal_range.

So you want to look for something, and you have a container or you
have iterators demarcating a range where you think it’'s located. How
do you conduct the search? Your quiver is fairly bursting with arrows:
count, count_if, find, find_if, binary_search, lower_bound, upper_bound,
and equal_range. Decisions, decisions! How do you choose?

Programming with the STL Item 45 193

Easy. You reach for something that’s fast and simple. The faster and
simpler, the better.

For the time being, we’ll assume that you have a pair of iterators spec-
ifying a range to be searched. Later, we’ll consider the case where you
have a container instead of a range.

In selecting a search strategy, much depends on whether your itera-
tors define a sorted range. If they do, you can get speedy (usually log-
arithmic-time — see Item 34) lookups via binary_search, lower_bound,
upper_bound, and equal_range. If the iterators don’t demarcate a sorted
range, you're limited to the linear-time algorithms count, count_if, find,
and find_if. In what follows, I'll ignore the _if variants of count and find,
just as I'll ignore the variants of binary_search, lower_ and upper_bound,
and equal_range taking a predicate. Whether you rely on the default
search predicate or you specify your own, the considerations for
choosing a search algorithm are the same.

If you have an unsorted range, your choices are count or find. They
answer slightly different questions, so it’s worth taking a closer look at
them. count answers the question, “Is the value there, and if so, how
many copies are there?” while find answers the question, “Is it there,
and if so, where is it?”

Suppose all you want to know is whether some special Widget value w
is in a list. Using count, the code looks like this:

list<Widget> Iw; // list of Widgets
Widget w; // special Widget value

if (count(lw.begin(), lw.end(), w)) {

// wisinlw
}else{
}

This demonstrates a common idiom: using count as an existence test.

count returns either zero or a positive number, so we rely on the con-

version of nonzero values to true and zero to false. It would arguably be
clearer to be more explicit about what we are doing,

// it's not

if (count(lw.begin(), Iw.end(), w) !=0) ...

and some programmers do write it that way, but it's quite common to
rely on the implicit conversion, as in the original example.

Compared to that original code, using find is slightly more compli-
cated, because you have to test find’s return value against the list’s
end iterator:

194 Item 45 Programming with the STL

if (find(lw.begin(), lw.end(), w) = Iw.end()) {
Jelse {
}

For existence testing, the idiomatic use of count is slightly simpler to
code. At the same time, it’s also less efficient when the search is suc-
cessful, because find stops once it’s found a match, while count must
continue to the end of the range looking for additional matches. For
most programmers, find’s edge in efficiency is enough to justify the
slight increase in usage complexity.

Often, knowing whether a value is in a range isn't enough. Instead,
you’ll want to know the first object in the range with the value. For
example, you might want to print the object, you might want to insert
something in front of it, or you might want to erase it (but see Item 9
for guidance on erasing while iterating). When you need to know not
just whether a value exists but also which object (or objects) has that
value, you need find:

list<Widget>:iterator i = find(lw.begin(), Iw.end(), w);

if (i '=lw.end()) {

// found it, i points to the first one
}else {
}

For sorted ranges, you have other choices, and you’ll definitely want
to use them. count and find run in linear time, but the search algo-
rithms for sorted ranges (binary_search, lower_bound, upper_bound, and
equal_range) run in logarithmic time.

// didn't find it

The shift from unsorted ranges to sorted ranges leads to another shift:
from using equality to determine whether two values are the same to
using equivalence. Item 19 comprises a discourse on equality versus
equivalence, so I won’t repeat it here. Instead, I'll simply note that the
count and find algorithms both search using equality, while
binary_search, lower_bound, upper_bound, and equal_range employ
equivalence.

To test for the existence of a value in a sorted range, use binary_search.
Unlike bsearch in the standard C library (and hence also in the stan-
dard C++ library), binary_search returns only a bool: whether the value
was found. binary_search answers the question, “Is it there?,” and its
answer is either yes or no. If you need more information than that,
you need a different algorithm.

Programming with the STL Item 45 195

Here’s an example of binary_search applied to a sorted vector. (You can
read about the virtues of sorted vectors in Item 23.)

vector<Widget> vw; // create vector, put
// data into it, sort the
sort(vw.begin(), vw.end()); // data

Widget w; // value to search for

if (binary_search(vw.begin(), vw.end(), w)) {

// wisinvw
}else {
}

If you have a sorted range and your question is, “Is it there, and if so,
where is it?” you want equal_range, but you may think you want
lower_bound. We’ll discuss equal_range shortly, but first, let's examine
lower_bound as a way of locating values in a range.

// it's not

When you ask lower_bound to look for a value, it returns an iterator
pointing to either the first copy of that value (if it's found) or to the
proper insertion location for that value (if it’s not). lower_bound thus
answers the question, “Is it there? If so, where is the first copy, and if
it’s not, where would it go?” As with find, the result of lower_bound
must be tested to see if it’s pointing to the value you're looking for.
Unlike find, you can’t just test lower_bound’s return value against the
end iterator. Instead, you must test the object lower_bound identifies
to see if that’s the value you want.

Many programers use lower_bound like this:

vector<Widget>:iterator i = lower_bound(vw.begin(), vw.end(), w);

if (i I= vw.end() && *i == w) { // make sure i points to an object;
// make sure the object has the
// correct value; this has a bug!

// found the value, i points to the
// first object with that value
}else{

-

This works most of the time, but it’s not really correct. Look again at
the test to determine whether the desired value was found:

if (i '=vw.end() && *i == w) ...

This is an equality test, but lower_bound searched using equivalence.
Most of the time, tests for equivalence and equality yield the same
results, but Item 19 demonstrates that it’s not that hard to come up

// not found

196 Item 45 Programming with the STL

with situations where equality and equivalence are different. In such
situations the code above is wrong.

To do things properly, you must check to see if the iterator returned
from lower_bound points to an object with a value that is equivalent to
the one you searched for. You could do that manually (Item 19 shows
you how, and Item 24 provides an example of when it can be worth-
while), but it can get tricky, because you have to be sure to use the
same comparison function that lower_bound used. In general, that
could be an arbitrary function (or function object). If you passed a
comparison function to lower_bound, you’d have to be sure to use the
same comparison function in your hand-coded equivalence test. That
would mean that if you changed the comparison function you passed
to lower_bound, you’d have to make the corresponding change in your
check for equivalence. Keeping the comparison functions in sync isn’t
rocket science, but it is another thing to remember, and I suspect you
already have plenty you're expected to keep in mind.

There is an easier way: use equal_range. equal_range returns a pair of
iterators, the first equal to the iterator lower_bound would return, the
second equal to the one upper_bound would return (i.e., the one-past-
the-end iterator for the range of values equivalent to the one searched
for). equal_range, then, returns a pair of iterators that demarcate the
range of values equivalent to the one you searched for. A well-named
algorithm, no? (equivalent_range would be better, of course, but
equal_range is still pretty good.)

There are two important observations about equal_range’s return
value. First, if the two iterators are the same, that means the range of
objects is empty; the value wasn’t found. That observation is the key
to using equal_range to answer the question, “Is it there?” You use it
like this:

vector<Widget> vw;

sort(vw.begin(), vw.end();

typedef vector<Widget>:iterator VWIter; // convenience typedefs
typedef pair<VWIter, VWIter> VWIterPair;

VWiterPair p = equal_range(vw.begin(), vw.end(), w);

if (p.first = p.second) { // if equal_range didn’t return
// an empty range...

// found it, p.first points to the

// first one and p.second

// points to one past the last
}else {

Programming with the STL Item 45 197

// not found, both p.first and
// p.second point to the

} // insertion location for
// the value searched for

This code uses only equivalence, so it is always correct.

The second thing to note about equal_range’s return value is that the
distance between its iterators is the number of objects in the range,
i.e., the objects with a value equivalent to the target of the search. For
types where equality and equivalence yield the same results, then,
equal_range does the job of both find and count for sorted ranges. To
locate the Widgets in vw with a value equivalent to w and then print
out how many such Widgets exist, for example, you could do this:

VWiterPair p = equal_range(vw.begin(), vw.end(), w);

cout << "There are " << distance(p.first, p.second)
<< " elements in vw equivalent to w.";

So far, our discussion has assumed we want to search for a value in a
range, but sometimes we're more interested in finding a location in a
range. For example, suppose we have a Timestamp class and a vector of
Timestamps that’s sorted so that older timestamps come first:

class Timestamp { ... };

bool operator<(const Timestamp& lhs, // returns whether Ihs

const Timestamp& rhs); // precedes rhs in time
vector<Timestamp> vt; // create vector, fill it with
// data, sort it so that older
sort(vt.begin(), vt.end()); // times precede newer ones

Now suppose we have a special timestamp, agelLimit, and we want to
remove from vt all the timestamps that are older than ageLimit. In this
case, we don’t want to search vt for a Timestamp equivalent to ageLimit,
because there might not be any elements with that exact value.
Instead, we need to find a location in vt: the first element that is no
older than agelimit. This is as easy as easy can be, because
lower_bound will give us precisely what we need:

Timestamp ageLimit;

vt.erase(vt.begin(), lower_bound(vt.begin(), // eliminate from vt all
vt.end(), // objects that precede
ageLimit)); // ageLimit’s value

If our requirements change slightly so that we want to eliminate all
the timestamps that are at least as old as ageLimit, we need to find the
location of the first timestamp that is younger than ageLimit. That's a
job tailor-made for upper_bound:

198 Item 45 Programming with the STL

vt.erase(vt.begin(), upper_bound(vt.begin(), // eliminate from vt all
vt.end(), // objects that precede
ageLimit)); // or are equivalent

// to ageLimit’s value

upper_bound is also useful if you want to insert things into a sorted
range so that objects with equivalent values are stored in the order in
which they were inserted. For example, we might have a sorted list of
Person objects, where the objects are sorted by name:

class Person {
public:

const string& name() const;

-

struct PersonNamelLess:
public binary_function<Person, Person, bool> { // see Item 40

bool operator()(const Person& Ihs, const Person& rhs) const
return lhs.name() < rhs.name();
}
L

list<Person> Ip;
Ip.sort(PersonNameLess()); // sort Ip using

// PersonNameLess

To keep the list sorted the way we desire (by name, with equivalent
names stored in the order in which they are inserted), we can use
upper_bound to specify the insertion location:

Person newPerson;

Ip.insert(upper_bound(lp.begin(), // insert newPerson after

Ip.end(), // the last object in Ip

newPerson, // that precedes or is

PersonNamelLess()), // equivalent to
newPerson); // newPerson

This works fine and is quite convenient, but it’s important not to be
misled by this use of upper_bound into thinking that we’re magically
looking up an insertion location in a list in logarithmic time. We’re not.
Item 34 explains that because we're working with a list, the lookup
takes linear time, but it performs only a logarithmic number of com-
parisons.

Programming with the STL Item 45 199

Up to this point, we have considered only the case where you have a
pair of iterators defining a range to be searched. Often you have a con-
tainer, not a range. In that case, you must distinguish between the
sequence and associative containers. For the standard sequence con-
tainers (vector, string, deque, and list), you follow the advice we've out-
lined in this Item, using the containers’ begin and end iterators to
demarcate the range.

The situation is different for the standard associative containers (set,
multiset, map, and multimap), because they offer member functions for
searching that are generally better choices than the STL algorithms.
Item 44 goes into the details of why they are better choices, but
briefly, it's because they're faster and they behave more naturally.
Fortunately, the member functions usually have the same names as
the corresponding algorithms, so where the foregoing discussion rec-
ommends you choose algorithms named count, find, equal_range,
lower_bound, or upper_bound, you simply select the same-named mem-
ber functions when searching associative containers. binary_search
calls for a different strategy, because there is no member function
analogue to this algorithm. To test for the existence of a value in a set
or map, use count in its idiomatic role as a test for membership:

set<Widget> s; // create set, put data into it
Widget w; // w still holds the value to search for

if (s.count(w)) {

// a value equivalent to w exists
}else{
}

To test for the existence of a value in a multiset or multimap, find is gen-
erally superior to count, because find can stop once it’s found a single
object with the desired value, while count, in the worst case, must
examine every object in the container. (This isn’t a problem when
working with sets and maps, because sets don’t allow duplicate values
and maps don’t allow duplicate keys.)

// no such value exists

However, count’s role for counting things in associative containers is
secure. In particular, it’s a better choice than calling equal_range and
applying distance to the resulting iterators. For one thing, it’s clearer:
count means “count.” For another, it’s easier; there’s no need to create
a pair and pass its components to distance. For a third, it’s probably a
little faster.

200 Item 45 Programming with the STL

Given everything we've considered in this Item, where do we stand?
The following table says it all.

Algorithm to Use |Member Function to Use

What You Want| .. With a

to Know Unsorted On a With a multiset or

Sorted Range | set or map :
Range multimap

Does thg desired find binary_search count find
value exist?
Does the desired
value exist? If find or
so, where is the find equal_range find lower_bound
first object with (see below)
that value?
Where is the
first object with
a value not pre- | find_if |lower_bound |lower_bound |lower_bound
ceding the
desired value?
Where is the

first object with
a value succeed-] find_if |upper_bound|upper_bound|upper_bound
ing the desired
value?

How many
objects have the | count
desired value?

equal_range,

. count count
then distance

Where are all
the objects with find

the desired (iteratively)
value?

equal_range | equal_range | equal_range

In the column summarizing how to work with sorted ranges, the fre-
quency with which equal_range occurs may be surprising. That fre-
quency arises from the importance of testing for equivalence when
searching. With lower_bound and upper_bound, it's too easy to fall
back on equality tests, but with equal_range, testing only for equiva-
lence is the natural thing to do. In the second row for sorted ranges,
equal_range beats out find for an additional reason: equal_range runs in
logarithmic time, while find takes linear time.

Programming with the STL Item 46 201

For multisets and multimaps, the table lists both find and lower_bound
as candidates when you're looking for the first object with a particular
value. find is a common choice for this job, and you may have noticed
that it’s the one listed in the table for sets and maps. For the multi con-
tainers, however, find is not guaranteed to identify the first element in
the container with a given value if more than one is present; its char-
ter is only to identify one of those elements. If you really need to find
the first object with a given value, you’ll want to employ lower_bound,
and you’ll have to manually perform the second half of the equiva-
lence test described in Item 19 to confirm that you've found the value
you were looking for. (You could avoid the manual equivalence test by
using equal_range, but calling equal_range is more expensive than call-
ing lower_bound.)

Selecting among count, find, binary_search, lower_bound, upper_bound,
and equal_range is easy. Choose the algorithm or member function
that offers you the behavior and performance you need and that
requires the least amount of work when you call it. Follow that advice
(or consult the table), and you should never get confused.

Item 46: Consider function objects instead of
functions as algorithm parameters.

One of the complaints about programming in high-level languages is
that as the level of abstraction gets higher, the efficiency of the gener-
ated code gets lower. In fact, Alexander Stepanov (the inventor of the
STL) once produced a small benchmark suite that tried to measure
the “abstraction penalty” of C++ vis-a-vis C. Among other things, the
results of that benchmark revealed that it’s nearly universal for the
code generated for manipulating a class containing a double to be less
efficient than the corresponding code for manipulating a double
directly. It may thus come as a surprise to learn that passing STL
function objects — objects masquerading as functions — to algo-
rithms typically yields code that is more efficient than passing real
functions.

For example, suppose you need to sort a vector of doubles in descend-
ing order. The straightforward STL way to do it is via the sort algorithm
and a function object of type greater<double>:

vector<double> v;

sort(v.begin(), v.end(), greater<double>());

202 Item 46 Programming with the STL

If you're wary of the abstraction penalty, you might decide to eschew
the function object in favor of a real function, a function that’s not
only real, it’s inline:

inline
bool doubleGreater(double d1, double d2)

{
returndi1 > d2;

}

sort(v.begin(), v.end(), doubleGreater);

Interestingly, if you were to compare the performance of the two calls
to sort (one using greater<double>, one using doubleGreater), you'd
almost certainly find that the one using greater<double> was faster.
For instance, I timed the two calls to sort on a vector of a million dou-
bles using four different STL platforms, each set to optimize for speed,
and the version using greater<double> was faster every time. At worst,
it was 50% faster, at best it was 160% faster. So much for the abstrac-
tion penalty.

The explanation for this behavior is simple: inlining. If a function
object’s operator() function has been declared inline (either explicitly
via inline or implicitly by defining it in its class definition), the body of
that function is available to compilers, and most compilers will hap-
pily inline that function during template instantiation of the called
algorithm. In the example above, greater<double>:operator() is an inline
function, so compilers inline-expand it during instantiation of sort. As
a result, sort contains zero function calls, and compilers are able to
perform optimizations on this call-free code that are otherwise not
usually attempted. (For a discussion of the interaction between inlin-
ing and compiler optimization, see Item 33 of Effective C++ and chap-
ters 8-10 of Bulka and Mayhew’s Efficient C++ [10].)

The situation is different for the call to sort using doubleGreater. To see
how it’s different, we must recall that there’s no such thing as passing
a function as a parameter to another function. When we try to pass a
function as a parameter, compilers silently convert the function into a
pointer to that function, and it’s the pointer we actually pass. Hence,
the call

sort(v.begin(), v.end(), doubleGreater);

doesn’t pass doubleGreater to sort, it passes a pointer to doubleGreater.
When the sort template is instantiated, this is the declaration for the
function that is generated:

Programming with the STL Item 46 203

void sort(vector<double>:iterator first, // beginning of range
vector<double>:iterator last, // end of range
bool (*comp)(double, double)); // comparison function

Because comp is a pointer to a function, each time it's used inside
sort, compilers make an indirect function call — a call through a
pointer. Most compilers won't try to inline calls to functions that are
invoked through function pointers, even if, as in this example, such
functions have been declared inline and the optimization appears to be
straightforward. Why not? Probably because compiler vendors have
never felt that it was worthwhile to implement the optimization. You
have to have a little sympathy for compiler vendors. They have lots of
demands on their time, and they can’t do everything. Not that this
should stop you from asking them for it.

The fact that function pointer parameters inhibit inlining explains an
observation that long-time C programmers often find hard to believe:
C++’s sort virtually always embarrasses C’s gsort when it comes to
speed. Sure, C++ has function and class templates to instantiate and
funny-looking operator() functions to invoke while C makes a simple
function call, but all that C++ “overhead” is absorbed during compila-
tion. At runtime, sort makes inline calls to its comparison function
(assuming the comparison function has been declared inline and its
body is available during compilation) while gsort calls its comparison
function through a pointer. The end result is that sort runs faster. In
my tests on a vector of a million doubles, it ran up to 670% faster, but
don’t take my word for it, try it yourself. It's easy to verify that when
comparing function objects and real functions as algorithm parame-
ters, there’s an abstraction bonus.

There’s another reason to prefer function objects to functions as algo-
rithm parameters, and it has nothing to do with efficiency. It has to do
with getting your programs to compile. For whatever reason, it's not
uncommon for STL platforms to reject perfectly valid code, either
through shortcomings in the compiler or the library or both. For
example, one widely used STL platform rejects the following (valid)
code to print to cout the length of each string in a set:

set<string> s;

transform(s.begin(), s.end(),
ostream_iterator<string::size_type>(cout, "\n"),
mem_fun_ref(&string::size));

204 Item 46 Programming with the STL

The cause of the problem is that this particular STL platform has a
bug in its handling of const member functions (such as string:size). A
workaround is to use a function object instead:

struct StringSize:
public unary_function<string, string::size_type> { // see Item 40

string::size_type operator()(const string& s) const

return s.size();

}
5

transform(s.begin(), s.end(),
ostream_iterator<string:size_type>(cout, "\n"),
StringSize());

There are other workarounds for this problem, but this one does more
than just compile on every STL platform I know. It also facilitates
inlining the call to string:size, something that would almost certainly
not take place in the code above where mem_fun_ref(&string:size) is
passed to transform. In other words, creation of the functor class
StringSize does more than sidestep compiler conformance problems,
it’s also likely to lead to an increase in performance.

Another reason to prefer function objects to functions is that they can
help you avoid subtle language pitfalls. Occasionally, source code that
looks reasonable is rejected by compilers for legitimate, but obscure,
reasons. There are situations, for example, when the name of an
instantiation of a function template is not equivalent to the name of a
function. Here’s one such situation:

template<typename FPType> // return the average
FPType average(FPType val1, FPType val2) // of 2 floating point
{ // numbers

return (vall +val2)/ 2;
}

template<typename Inputlter1,
typename Inputlter2>

void writeAverages(Inputlter1 begin1, // write the pairwise
Inputlter1 end1, // averages of 2
Inputlter2 begin2, // sequencesto a
ostreamé& s) // stream
transform(

begin1, end1, begin2,
ostream_iterator<typename iterator_traits<Inputlter1>:value_type>(s, "\n"),

Programming with the STL Item 46 205

average<typename iterator_traits<Inputlter1>:value_type> // error?
}

Many compilers accept this code, but the C++ Standard appears to
forbid it. The reasoning is that there could, in theory, be another
function template named average that takes a single type parameter. If
there were, the expression average<typename iterator_traits<inputlter1>:
value_type> would be ambiguous, because it would not be clear which
template to instantiate. In this particular example, no ambiguity is
present, but some compilers reject the code anyway, and they are
allowed to do that. No matter. The solution to the problem is to fall
back on a function object:

template<typename FPType>
struct Average:
public binary_function<FPType, FPType, FPType> { // see ltem 40

FPType operator()(FPType val1, FPType val2) const
{

return average(val1, val2);

}
|5

template<typename Inputlter1, typename Inputlter2>

void writeAverages(Inputlter1 begin1, Inputiter1 end1,
Inputlter2 begin2, ostream& s)

{

transform(
begin1, end1, begin2,
ostream_iterator<typename iterator_traits<Inputlter1>:value_type>(s,"\n"),
Average<typename iterator_traits<Inputlter1>:value_type>()

}
Every compiler should accept this revised code. Furthermore, calls to
Average::operator() inside transform are eligible for inlining, something
that would not be true for an instantiation of average above, because
average is a template for functions, not function objects.

Function objects as parameters to algorithms thus offer more than
greater efficiency. They're also more robust when it comes to getting
your code to compile. Real functions are useful, of course, but when it
comes to effective STL programming, function objects are frequently
more useful.

1 In October 2003, the Standardization Committee clarified that this code should be val-
id. This decision doesn’t officially take effect until the next version of the C++ standard
is adopted (anticipated to be around 2011), but compiler vendors are likely to imple-
ment the revised rules sooner.

206 Item 47 Programming with the STL

Item 47: Avoid producing write-only code.

Suppose you have a vector<int>, and you’d like to get rid of all the ele-
ments in the vector whose value is less than x and that occur after the
last value at least as big as y. Does the following instantly spring to
mind?

vector<int>v;
intx,y;

v.erase(
remove_if(find_if(v.rbegin(), v.rend(),
bind2nd(greater_equal<int>(), y)).base(),
v.end(),
bind2nd(less<int>(), x)),
v.end());

One statement, and the job is done. Clear and straightforward. No
problem. Right?

Well, let’s step back for a moment. Does this strike you as reasonable,
maintainable code? “No!” shriek most C++ programmers, fear and
loathing in their voices. “Yes!” squeal a few, delight evident in theirs.
And therein lies the problem. One programmer’s vision of expressive
purity is another programmer’s demonic missive from Hell.

As I see it, there are two causes for concern in the code above. First,
it’s a rat’s nest of function calls. To see what I mean, here is the same
statement, but with all the function names replaced by fn, each n cor-
responding to one of the functions:

v.f1(f2(f3(v.f4(), v.f5(), f6(f7(), ¥)).f8(), v.f(), f6(f100(), X)), v.f90);

This looks unnaturally complicated, because I've removed the inden-
tation present in the original example, but I think it’s safe to say that
any statement involving twelve function calls to ten different functions
would be considered excessive by most C++ software developers. Pro-
grammers weaned on functional languages such as Scheme might feel
differently, however, and my experience has been that the majority of
programmers who view the original code without raising an eyebrow
have a strong functional programming background. Most C++ pro-
grammers lack this background, so unless your colleagues are versed
in the ways of deeply nested function calls, code like the erase call
above is almost sure to confound the next person who is forced to
make sense of what you have written.

The second drawback of the code is the significant STL background
needed to understand it. It uses the less common _if forms of find and

Programming with the STL Item 47 207

remove, it uses reverse iterators (see Item 26), it converts reverse_iterators
to iterators (see Item 28), it uses bind2nd, it creates anonymous func-
tion objects, and it employs the erase-remove idiom (see Item 32).
Experienced STL programmers can swallow that combination without
difficulty, but far more C++ developers will have their eyes glaze over
before they've taken so much as a bite. If your colleagues are well-
steeped in the ways of the STL, using erase, remove_if, find_if, base, and
bind2nd in a single statement may be fine, but if you want your code to
be comprehensible by C++ programmers with a more mainstream
background, I encourage you to break it down into more easily digest-
ible chunks.

Here’s one way you could do it. (The comments aren’t just for this
book. I'd put them in the code, too.)

typedef vector<int>:iterator Vecintlter;

// Initialize rangeBegin to point to the element following the last

// occurrence of a value greater than or equal to y. If there is no such

// value, initialize rangeBegin to v.begin(). If the last occurrence of the

// value is the last element in v, initialize rangeBegin to v.end)).

Vecintlter rangeBegin = find_if(v.rbegin(), v.rend(),
bind2nd(greater_equal<int>(), y)).base();

// from rangeBegin to v.end(), erase everything with a value less than x
v.erase(remove_if(rangeBegin, v.end(), bind2nd(less<int>(), x)), v.end());

This is still likely to confuse some people, because it relies on an
understanding of the erase-remove idiom, but between the comments
in the code and a good STL reference (e.g., Josuttis’ The C++ Standard
Library [3] or SGI's STL web site [21]), every C++ programmer should
be able to figure out what’s going on without too much difficulty.

When transforming the code, it’s important to note that I didn’t aban-
don algorithms and try to write my own loops. Item 43 explains why
that's generally an inferior option, and its arguments apply here.
When writing source code, the goal is to come up with code that is
meaningful to both compilers and humans and that offers acceptable
performance. Algorithms are almost always the best way to achieve
that goal. However, Item 43 also explains how the increased use of
algorithms naturally leads to an increased tendency to nest function
calls and to throw in binders and other functor adapters. Look again
at the problem specification that opened this Item:

Suppose you have a vector<int>, and you’d like to get rid of all
the elements in the vector whose value is less than x and that
occur after the last value at least as big as y.

The outline of a solution does spring to mind:

208 Item 47 Programming with the STL

= Finding the last occurrence of a value in a vector calls for some ap-
plication of find or find_if with reverse iterators.

= Getting rid of elements calls for either erase or the erase-remove id-
iom.

Put those two ideas together, and you get this pseudocode, where
“something” indicates a placeholder for code that hasn’t yet been
fleshed out:

v.erase(remove_if(find_if(v.rbegin(), v.rend(), something).base(),
v.end(),
something)),
v.end());

Once you've got that, figuring out the somethings isn’t terribly difficult,
and the next thing you know, you have the code in the original exam-
ple. That’s why this kind of statement is often known as “write-only”
code. As you write the code, it seems straightforward, because it’'s a
natural outgrowth of some basic ideas (e.g., the erase-remove idiom
plus the notion of using find with reverse iterators). Readers, however,
have great difficulty in decomposing the final product back into the
ideas on which it is based. That’s the calling card of write-only code:
it’s easy to write, but it’s hard to read and understand.

Whether code is write-only depends on who’s reading it. As I noted,
some C++ programmers think nothing of the code in this Item. If
that’s typical in the environment in which you work and you expect it
to be typical in the future, feel free to unleash your most advanced
STL programming inclinations. However, if your colleagues are less
comfortable with a functional programming style and are less experi-
enced with the STL, scale back your ambitions and write something
more along the lines of the two-statement alternative I showed earlier.

It’s a software engineering truism that code is read more often than it
is written. Equally well established is that software spends far more
time in maintenance than it does in development. Software that can-
not be read and understood cannot be maintained, and software that
cannot be maintained is hardly worth having. The more you work with
the STL, the more comfortable you’ll become with it, and the more
you’ll feel the pull to nest function calls and create function objects on
the fly. There’s nothing wrong with that, but always bear in mind that
the code you write today will be read by somebody — possibly you —
someday in the future. Prepare for that day.

Use the STL, yes. Use it well. Use it effectively. But avoid producing
write-only code. In the long run, such code is anything but effective.

Programming with the STL Item 48 209

Item 48: Always #include the proper headers.

Among the minor frustrations of STL programming is that it is easy to
create software that compiles on one platform, yet requires additional
#include directives on others. This annoyance stems from the fact that
the Standard for C++ (unlike the Standard for C) fails to dictate which
standard headers must or may be #included by other standard head-
ers. Given such flexibility, different implementers have chosen to do
different things.

To give you some idea of what this means in practice, I sat down one
day with five STL platforms (let’s call them A, B, C, D, and E), and I
spent a little time throwing toy programs at them to see which stan-
dard headers I could omit and still get a successful compilation. This
indirectly told me which headers #include other headers. This is what I
found:

= With A and C, <vector> #includes <string>.

= With C, <algorithm> #includes <string>.

= With C and D, <iostream> #includes <iterator>.

= With D, <iostream> #includes <string> and <vector>.

= With D and E, <string> #includes <algorithm>.

= With all five implementations, <set> #includes <functional>.

Except for the case of <set> #includeing <functional>, I didn’t find a way
to get a program with a missing header past implementation B.
According to Murphy’s Law, then, you will always develop under a
platform like A, C, D, or E and you will always be porting to a platform
like B, especially when the pressure for the port is greatest and the
time to accomplish it is least. Naturally.

But don’t blame your compilers or library implementations for your
porting woes. It's your fault if you're missing required headers. Any
time you refer to elements of namespace std, you are responsible for
having #included the appropriate headers. If you omit them, your code
might compile anyway, but you’'ll still be missing necessary headers,
and other STL platforms may justly reject your code.

To help you remember what’s required when, here’s a quick summary
of what’s in each standard STL-related header:

= Almost all the containers are declared in headers of the same
name, i.e., vector is declared in <vector>, list is declared in <list>,
etc. The exceptions are <set> and <map>. <set> declares both set
and multiset, and <map> declares both map and multimap.

210 Item 49 Programming with the STL

= All but four algorithms are declared in <algorithm>. The exceptions
are accumulate (see Item 37), inner_product, adjacent_difference, and
partial_sum. Those algorithms are declared in <numeric>.

= Special kinds of iterators, including istream_iterators and
istreambuf_iterators (see Item 29), are declared in <iterator>.

® Standard functors (e.g., less<T>) and functor adapters (e.g., not1,
bind2nd) are declared in <functional>.

Any time you use any of the components in a header, be sure to pro-
vide the corresponding #include directive, even if your development
platform lets you get away without it. Your diligence will pay off in
reduced stress when you find yourself porting to a different platform.

Item 49: Learn to decipher STL-related compiler
diagnostics.

It’s perfectly legal to define a vector with a particular size,

vector<int> v(10); // create a vector of size 10

and strings act a lot like vectors, so you might expect to be able to do
this:

string s(10); // attempt to create a string of size 10

This won’t compile. There is no string constructor taking an int argu-
ment. One of my STL platforms tells me that like this:

example.cpp(20) : error C2664:'__thiscall std::basic_string<char,struct
std::char_traits<char>,class std:allocator<char>
>ustd::basic_string<char,struct std::char_traits<char>,class
std::allocator<char> >(const class std::allocator<char> &)' : cannot convert
parameter 1 from 'const int' to 'const class std:allocator<char> &'

Reason: cannot convert from 'const int' to 'const class std::allocator<char>'

No constructor could take the source type, or constructor overload
resolution was ambiguous

Isn’'t that wonderful? The first part of the message looks as if a cat
walked across the keyboard, the second part mysteriously refers to an
allocator never mentioned in the source code, and the third part says
the constructor call is bad. The third part is accurate, of course, but
let’s first focus our attention on the result of the purported feline
stroll, because it’s representative of diagnostics you’ll frequently see
when using strings.

string isn’t a class, it’s a typedef. In particular, it’s a typedef for this:

Programming with the STL Item 49 211

basic_string<char, char_traits<char>, allocator<char> >

That's because the C++ notion of a string has been generalized to
mean sequences of arbitrary character types with arbitrary character
characteristics (“traits”) and stored in memory allocated by arbitrary
allocators. All string-like objects in C++ are really instantiations of the
template basic_string, and that’s why most compilers refer to the type
basic_string when they issue diagnostics about programs making erro-
neous use of strings. (A few compilers are kind enough to use the
name string in diagnostics, but most aren’t.) Often, such diagnostics
will explicitly note that basic_string (and the attendant helper tem-
plates char_traits and allocator) are in the std namespace, so it’s not
uncommon to see errors involving strings yield diagnostics that men-
tion this type:

std::basic_string<char, std::char_traits<char>, std:allocator<char> >

This is quite close to what’s used in the compiler diagnostic above, but
different compilers use variations on the theme. Another STL platform
I use refers to strings this way,

basic_string<char,string_char_traits<char>,__default_alloc_template<false,0> >

The names string_char_traits and __default_alloc_template are nonstand-
ard, but that’s life. Some STL implementations deviate from the stan-
dard. If you don’t like the deviations in your current STL
implementation, consider replacing it with a different one. Item 50
gives examples of places you can go for alternative implementations.

Regardless of how a compiler diagnostic refers to the string type, the
technique for reducing the diagnostic to something meaningful is the
same: globally replace the basic_string gobbledegook with the text
“string”. If you're using a command-line compiler, it’s usually easy to
do this with a program like sed or a scripting language like perl,
python, or ruby. (Youll find an example of such a script in Zolman’s
article, “An STL Error Message Decryptor for Visual C++” [26].) In the
case of the diagnostic above, we globally replace

std::basic_string<char,struct std::char_traits<char>,class std:allocator<char> >

with string and we end up with this:

example.cpp(20) : error C2664:"__thiscall string::string(const class
std::allocator<char> &)': cannot convert parameter 1 from 'const int' to
‘const class std:allocator<char> &'

This makes clear (or at least clearer) that the problem is in the type of
the parameter passed to the string constructor, and even though the
mysterious reference to allocator<char> remains, it should be easy to

212 Item 49 Programming with the STL

look up the constructor forms for string to see that none exists taking
only a size.

By the way, the reason for the mysterious reference to an allocator is
that each standard container has a constructor taking only an alloca-
tor. In the case of string, it’'s one of three constructors that can be
called with one argument, but for some reason, this compiler figures
that the one taking an allocator is the one you're trying to call. The
compiler figures wrong, and the diagnostic is misleading. Oh well.

As for the constructor taking only an allocator, please don’t use it.
That constructor makes it easy to end up with containers of the same
type but with inequivalent allocators. In general, that’s bad. Very bad.
To find out why, turn to Item 11.

Now let’s tackle a more challenging diagnostic. Suppose you're imple-
menting an email program that allows users to refer to people by nick-
names instead of by email addresses. For example, such a program
would make it possible to use “The Big Cheese” as a synonym for the
email address of the President of the United States (which happens to
be president@whitehouse.gov). Such a program might use a map from
nicknames to email addresses, and it might offer a member function
showEmailAddress that displays the email address associated with a
given nickname:

class NiftyEmailProgram {
private:
typedef map<string, string> NicknameMap;

NicknameMap nicknames; // map from nicknames to
// email addresses
public:

void showEmailAddress(const string& nickname) const;
2

Inside showEmailAddress, you’ll need to find the map entry associated
with a particular nickname, so you might write this:

void NiftyEmailProgram::showEmailAddress(const string& nickname) const

NicknameMap::iterator i = nicknames.find(nickname);
if (i = nicknames.end()) ...

-

Compilers don't like this, and with good reason, but the reason isn’t
obvious. To help you figure it out, here’s what one STL platform help-
fully emits:

mailto:president@whitehouse.gov

Programming with the STL Item 49 213

example.cpp(17) : error C2440: 'initializing' : cannot convert from 'class std:;_Tree<class
std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> >,struct
std::pair<class std::basic_string<char,struct std::char_traits<char>,class
std:allocator<char> > const ,class std::basic_string<char,struct
std::char_traits<char>,class std:allocator<char> > > struct std:map<class
std:basic_string<char,struct std::char_traits<char>,class std::allocator<char> >,class
std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> >,struct
std::less<class std::basic_string<char,struct std:char_traits<char>,class
std::allocator<char> > >,class std:allocator<class std::basic_string<char,struct
std::char_traits<char>,class std::allocator<char> > > >::_Kfn,struct std::less<class
std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > > class
std::allocator<class std::basic_string<char,struct std:char_traits<char>,class
std::allocator<char> > > >::const_iterator' to 'class std::_Tree<class
std:basic_string<char,struct std::char_traits<char>,class std::allocator<char> >,struct
std::pair<class std::basic_string<char,struct std::char_traits<char>,class
std:allocator<char> > const ,class std::basic_string<char,struct
std::char_traits<char>,class std:allocator<char> > > struct std:map<class
std:basic_string<char,struct std::char_traits<char>,class std::allocator<char> >,class
std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> >,struct
std:less<class std::basic_string<char,struct std:char_traits<char>,class
std::allocator<char> > > class std:allocator<class std::basic_string<char,struct
std::char_traits<char>,class std::allocator<char> > > >::_Kfn,struct std::less<class
std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > > class
std::allocator<class std::basic_string<char,struct std:char_traits<char>,class
std:allocator<char> > > >:iterator'

No constructor could take the source type, or constructor overload resolution was
ambiguous
At 2095 characters long, this message looks fairly gruesome, but I've
seen worse. One of my favorite STL platforms produces a diagnostic of
4812 characters for this example. As you might guess, features other
than its error messages are what have engendered my fondness for it.

Let’s reduce this mess to something manageable. We begin with the
replacement of the basic_string gibberish with string. That yields this:

example.cpp(17) : error C2440: 'initializing' : cannot convert from 'class
std::_Tree<class string,struct std::pair<class string const ,class string

> struct std::map<class string,class string,struct std:less<class string
>,class std:allocator<class string > >::_Kfn,struct std:less<class string
>,class std:allocator<class string > >::const_iterator' to 'class
std::_Tree<class string,struct std::pair<class string const ,class string

> struct std::map<class string,class string,struct std:less<class string
>,class std:allocator<class string > >::_Kfn,struct std:less<class string
> class std:allocator<class string > >:iterator'

No constructor could take the source type, or constructor overload
resolution was ambiguous

Much better. Now a svelte 745 characters long, we can start to actu-
ally look at the message. One of the things that is likely to catch our
eye is the mention of the template std::_Tree. The Standard says noth-
ing about a template called _Tree, but the leading underscore in the
name followed by a capital letter jogs our memory that such names

214 Item 49 Programming with the STL

are reserved for implementers. This is an internal template used to
implement some part of the STL.

In fact, almost all STL implementations use some kind of underlying
template to implement the standard associative containers (set, multi-
set, map, and multimap). In the same way that source code using string
typically leads to diagnostics mentioning basic_string, source code
using a standard associative container often leads to diagnostics men-
tioning some underlying tree template. In this case, it’'s called _Tree,
but other implementations I know use __tree or __rb_tree, the latter
reflecting the use of red-black trees, the most common type of bal-
anced tree used in STL implementations.

Setting _Tree aside for a moment, the message above mentions a type
we should recognize: std:map<class string,class string,struct std:less<class
string >,class std::allocator<class string > >. This is precisely the type of
map we are using, except that the comparison and allocator types
(which we chose not to specify when we defined the map) are shown.
The error message will be easier to understand if we replace that type
with our typedef for it, NicknameMap. That leads to this:

example.cpp(17) : error C2440: 'initializing' : cannot convert from 'class
std::_Tree<class string,struct std::pair<class string const ,class string

> struct NicknameMap::_Kfn,struct std:less<class string >,class
std::allocator<class string > >::const_iterator' to 'class std::_Tree<class
string,struct std::pair<class string const ,class string >,struct
NicknameMap::_Kfn,struct std::less<class string >,class std::allocator<class
string > >:iterator'

No constructor could take the source type, or constructor overload
resolution was ambiguous

This message is shorter, but not much clearer. We need to do some-
thing with _Tree. Because _Tree is an implementation-specific tem-
plate, the only way to know the meaning of its template parameters is
to read the source code, and there’s no reason to go rummaging
through implementation-specific source code if we don’t have to. Let’s
try simply replacing all the stuff passed to _Tree with SOMETHING to
see what we get. This is the result:

example.cpp(17) : error C2440: 'initializing' : cannot convert from 'class
std::_Tree<SOMETHING>::const_iterator' to 'class
std::_Tree<SOMETHING>::iterator'

No constructor could take the source type, or constructor overload
resolution was ambiguous

This is something we can work with. The compiler is complaining that
we're trying to convert some kind of const_iterator into an iterator, a

Programming with the STL Item 49 215

clear violation of const correctness. Let’'s look again at the offending
code, where I've highlighted the line raising the compiler’s ire:

class NiftyEmailProgram {
private:
typedef map<string, string> NicknameMap;

NicknameMap nicknames;
public:

void showEmailAddress(const string& nickname) const;

}l

void NiftyEmailProgram::showEmailAddress(const string& nickname) const

{

NicknameMap::iterator i = nicknames.find(nickname);
if (i '= nicknames.end()) ...

}

The only interpretation that makes any sense is that we're trying to
initialize i (which is an iterator) with a const_iterator returned from
map:find. That seems odd, because we're calling find on nicknames, and
nicknames is a non-const object. find should thus return a non-const
iterator.

Look again. Yes, nicknames is declared as a non-const map, but showE-
mailAddress is a const member function, and inside a const member
function, all non-static data members of the class become const!
Inside showEmailAddress, nicknames is a const map. Suddenly the error
message makes sense. We're trying to generate an iterator into a map
we’'ve promised not to modify. To fix the problem, we must either
make i a const_iterator or we must make showEmailAddress a non-const
member function. Both solutions are probably less challenging than
ferreting out the meaning of the error message.

In this Item, I've shown textual substitutions to reduce the com-
plexity of error messages, but once you've practiced a little, you’ll be
able to perform the substitutions in your head most of the time. I'm
no musician (I have trouble turning on the radio), but I'm told that
good musicians can sight-read several bars at a glance; they don’t
need to look at individual notes. Experienced STL programmers
develop a similar skill. They can internally translate things like
std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> >
into string without thinking about it. You, too, will develop this skill,
but until you do, remember that you can almost always reduce
compiler diagnostics to something comprehensible by replacing
lengthy template-based type names with shorter mnemonics. In

216 Item 49 Programming with the STL

many cases, all you have to do is replace typedef expansions with
typedef names you're already using. That’s what we did when we
replaced std:map<class string,class string,struct std:less<class string >,class
std:allocator<class string > > with NicknameMap.

Here are a few other hints that should help you make sense of STL-
related compiler messages:

= For vector and string, iterators are sometimes pointers, so compiler
diagnostics may refer to pointer types if you've made a mistake
with an iterator. For example, if your source code refers to vec-
tor<double>:iterators, compiler messages will sometimes mention
double* pointers. (A noteworthy exception is when you're using the
STL implementation from STLport and you’re running in debug
mode. In that case, vector and string iterators are definitely not
pointers. For more on STLport and its debug mode, turn to
Item 50.)

= Messages mentioning back_insert_iterator, front_insert_iterator, or
insert_iterator almost always mean you've made a mistake calling
back_inserter, front_inserter, or inserter, respectively. (back_inserter
returns an object of type back_insert_iterator, front_inserter returns
an object of type front_insert_iterator, and inserter returns an object
of type insert_iterator. For information on the use of these inserters,
consult Item 30.) If you didn’t call these functions, some function
you called (directly or indirectly) did.

= Similarly, if you get a message mentioning binder1st or binder2nd,
you've probably made a mistake using bind1st or bind2nd. (bind1st
returns an object of type binderl1st, and bind2nd returns an object
of type binder2nd.)

= Qutput iterators (e.g., ostream_iterators, ostreambuf_iterators (see
Item 29), and the iterators returned from back_inserter, front_inserter,
and inserter) do their outputting or inserting work inside assign-
ment operators, so if you've made a mistake with one of these iter-
ator types, youre likely to get a message complaining about
something inside an assignment operator you've never heard of.
To see what I mean, try compiling this code:

vector<string*>v; // try to print a container
copy(v.begin(), v.end(), // of string* pointers as
ostream_iterator<string>(cout, \n")); // string objects

= If you get an error message originating from inside the implemen-
tation of an STL algorithm (i.e., the source code giving rise to the
error is in <algorithm>), there’s probably something wrong with the
types you're trying to use with that algorithm. For example, you

Programming with the STL Item 50 217

may be passing iterators of the wrong category. To see how such
usage errors are reported, edify (and amuse!) yourself by feeding
this to your compilers:

list<int>:iterator i, i2; // pass bidirectional iterators to
sort(i1, i2); // an algorithm requiring random
// access iterators

= If you're using a common STL component like vector, string, or the
for_each algorithm, and a compiler says it has no idea what you're
talking about, you've probably failed to #include a required header
file. As Item 48 explains, this problem can befall code that has
been compiling smoothly for quite some time if you port it to a new
platform.

Item 50: Familiarize yourself with STL-related web
sites.

The Internet is rife with STL information. Ask your favorite search
engine to look for “STL”, and it’s sure to return hundreds of links,
some of which may actually be relevant. For most STL programmers,
however, no searching is necessary. The following sites are likely to
rise to the top of almost everybody’s most-frequently-used list:

= The SGI STL site, http://www.sgi.com/tech/stl/.
= The STLport site, http://www.stlport.org/.
= The Boost site, http://www.boost.org/.

What follows are brief descriptions of why these sites are worth book-
marking.

The SGI STL Web Site

SGI's STL web site tops the list, and for good reason. It offers compre-
hensive documentation on every component of the STL. For many pro-
grammers, this site is their on-line reference manual, regardless of
which STL platform they are using. (The reference documentation was
put together by Matt Austern, who later extended and polished it for
his Generic Programming and the STL [4].) The material here covers
more than just the STL components themselves. Effective STL's dis-
cussion of thread safety in STL containers (see Item 12), for example,
is based on the treatment of the topic at the SGI STL web site.

The SGI site offers something else for STL programmers: a freely
downloadable implementation of the STL. This implementation has
been ported to only a handful of compilers, but the SGI distribution is

http://www.sgi.com/tech/stl/
http://www.stlport.org/
http://www.boost.org/

218 Item 50 Programming with the STL

also the basis for the widely ported STLport distribution, about which
I write more in a moment. Furthermore, the SGI implementation of
the STL offers a number of nonstandard components that can make
STL programming even more powerful, flexible, and fun. Foremost
among these are the following:

= The hashed associative containers hash_set, hash_multiset,
hash_map, and hash_multimap. For more information about these
containers, turn to Item 25.

= A singly linked list container, slist. This is implemented as you'd
imagine, and iterators point to the list nodes you’d expect them to
point to. Unfortunately, this makes it expensive to implement the
insert and erase member functions, because both require adjust-
ment of the next pointer of the node preceding the node pointed to
by the iterator. In a doubly linked list (such as the standard list
container), this isn't a problem, but in a singly linked list, going
“back” one node is a linear-time operation. For SGI's slist, insert
and erase take linear instead of constant time, a considerable
drawback. SGI addresses the problem through the nonstandard
(but constant-time) member functions insert_after and erase_after.
Notes SGI,

If you find that insert_after and erase_after aren't adequate
for your needs and that you often need to use insert and
erase in the middle of the list, you should probably use list
instead of slist.

Dinkumware also offers a singly linked list container called slist,
but it uses a different iterator implementation that preserves the
constant-time performance of insert and erase. For more informa-
tion on Dinkumware, consult Appendix B.

= A string-like container for very large strings. The container is
called rope, because a rope is a heavy-duty string, don’t you see?
SGI describes ropes this way:

Ropes are a scalable string implementation: they are de-
signed for efficient operations that involve the string as a
whole. Operations such as assignment, concatenation, and
substring take time that is nearly independent of the length
of the string. Unlike C strings, ropes are a reasonable rep-
resentation for very long strings, such as edit buffers or
mail messages.

Under the hood, ropes are implemented as trees of reference-
counted substrings, and each substring is stored as a char array.
One interesting aspect of the rope interface is that the begin and

Programming with the STL Item 50 219

end member functions always return const_iterators. This is to dis-
courage clients from performing operations that change individual
characters. Such operations are expensive. ropes are optimized for
actions that involve entire strings (e.g., assignment, concatena-
tion, and taking substrings, as mentioned above); single-character
operations perform poorly.

= A variety of nonstandard function objects and adapters. The
original HP STL implementation included more functor classes
than made it into standard C++. Two of the more widely missed by
old-time STL hackers are select1st and select2nd, because they are
so useful for working with maps and multimaps. Given a pair,
selectlst returns its first component and select2nd returns its sec-
ond. These nonstandard functor class templates can be used as
follows:

map<int, string> m;

// write all the map keys to cout

transform(m.begin(), m.end(),
ostream_iterator<int>(cout, "\n"),
select1st<map<int, string>:value_type>());

// create a vector and copy all the values in the map into it

vector<string> v;

transform(m.begin(), m.end(), back_inserter(v),
select2nd<map<int, string>:value_type>());

As you can see, selectlst and select2nd make it easy to use algo-
rithm calls in places where you might otherwise have to write your
own loops (see Item 43), but, if you use these functors, the fact
that they are nonstandard leaves you open to the charge that you
are writing unportable and unmaintainable code (see Item 47).
Diehard STL aficionados don’t care. They consider it an injustice
that select1st and select2nd didn’t make it into the Standard in the
first place.

Other nonstandard function objects that are part of the SGI imple-
mentation include identity, projectist, project2nd, composel and
compose2. To find out what these do, you’ll have to visit the web
site, though you’ll find an example use of compose2 on page 187 of
this book. By now, I hope it’s clear that visiting the SGI web site
will certainly be rewarding.

SGI's library implementation goes beyond the STL. Their goal is the
development of a complete implementation of the standard C++
library, except for the parts inherited from C. (SGI assumes you

220 Item 50 Programming with the STL

already have a standard C library at your disposal.) As a result,
another noteworthy download available from SGI is an implementa-
tion of the C++ iostreams library. As you might expect, this implemen-
tation integrates well with SGI's implementation of the STL, but it also
features performance that’s superior to that of many iostream imple-
mentations that ship with C++ compilers.

The STLport Web Site

STLport’s primary selling point is that it offers a modified version of
SGI's STL implementation (including iostreams, etc.) that’s been
ported to more than 20 compilers. Like SGI's library, STLport’s is
available for free download. If you're writing code that has to work on
multiple platforms, you may be able to save yourself a wheelbarrow of
grief by standardizing on the STLport implementation and using it
with all your compilers.

Most of STLport’s modifications to SGI's code base focus on improved
portability, but STLport's STL is also the only implementation I know
that offers a “debug mode” to help detect improper use of the STL —
uses that compile but lead to undefined runtime behavior. For exam-
ple, Item 30 uses this example in its discussion of the common mis-
take of writing beyond the end of a container:

int transmogrify(int x); // this function produces
// some new value from x

vector<int> values;
// put data into values
vector<int> results;

transform(values.begin(), values.end(), // this will attempt to
results.end(), // write beyond the
transmogrify); // end of results!

This will compile, but when run, it yields undefined results. If you're
lucky, something horrible will happen inside the call to transform, and
debugging the problem will be relatively straightforward. If you're not
lucky, the call to transform will trash data somewhere in your address
space, but you won'’t discover that until later. At that point, determin-
ing the cause of the memory corruption will be — shall we say? —
challenging.

STLport's debug mode all but eliminates the challenge. When the
above call to transform is executed, the following message is generated
(assuming STLport is installed in the directory C\STLport):

C\STLport\stlport\sth\debug_iterator.h:265 STL assertion failure :
_Dereferenceable(*this)

Programming with the STL Item 50 221

The program then stops, because STLport debug mode calls abort if it
encounters a usage error. If you'd prefer to have an exception thrown
instead, you can configure STLport to do things your way.

Admittedly, the above error message isn’t as clear as it might be, and
it’s unfortunate that the reported file and line correspond to the loca-
tion of the internal STL assertion instead of the line calling transform,
but this is still a lot better than running past the call to transform, then
trying to figure out why your data structures are corrupt. With
STLport’s debug mode, all you need to do is fire up your debugger and
walk the call stack back into the code you wrote, then determine what
you did wrong. Finding the offending source line is generally not a
problem.

STLport’s debug mode detects a variety of common errors, including
passing invalid ranges to algorithms, attempting to read from an
empty container, using an iterator from one container as the argu-
ment to a second container’s member function, etc. It accomplishes
this magic by having iterators and their containers track one another.
Given two iterators, it’s thus possible to check to see if they come from
the same container, and when a container is modified, it’s possible to
invalidate the appropriate set of iterators.

Because STLport uses special iterator implementations in debug
mode, iterators for vector and string are class objects instead of raw
pointers. Hence, using STLport and compiling in debug mode is a
good way to make sure that nobody is getting sloppy about the differ-
ence between pointers and iterators for these container types. That
alone may be reason enough to give STLport’s debug mode a try.

The Boost Web Site

In 1997, when the closing bell rang on the process that led to the
International Standard for C++, some people were disappointed that
library features they’d advocated hadn’t made the cut. Some of these
people were members of the Committee itself, so they set out to lay the
foundation for additions to the standard library during the second
round of standardization. The result is Boost, a web site whose mis-
sion is to “provide free, peer-reviewed, C++ libraries. The emphasis is
on portable libraries which work well with the C++ Standard Library.”
Behind the mission is a motive:

To the extent a library becomes “existing practice”, the likeli-
hood increases that someone will propose it for future
standardization. Submitting a library to Boost.org is one way to
establish existing practice... .

222 Item 50 Programming with the STL

In other words, Boost offers itself as a vetting mechanism to help sep-
arate the sheep from the goats when it comes to potential additions to
the standard C++ library. This is a worthy service, and we should all
be grateful.

Another reason to be grateful is the collection of libraries you’ll find at
Boost. I won’t attempt to describe them all here, not least because
new ones will doubtless have been added by the time you read these
words. For STL users, however, two kinds of libraries are particularly
relevant. The first is the smart pointer library featuring shared_ptr, the
template for reference-counted smart pointers that, unlike the stan-
dard library’s auto_ptr, may safely be stored in STL containers (see
Item 8). Boost’s smart pointer library also offers shared_array, a refer-
ence-counted smart pointer for dynamically allocated arrays, but
Item 13 argues that dynamically allocated arrays are inferior to vec-
tors and strings, and I hope you find its argument persuasive.

Boost’s second attraction for STL fans is its bevy of STL-related func-
tion objects and associated facilities. These libraries comprise a fun-
damental redesign and reimplementation of the ideas behind STL
function objects and adapters, and the results eliminate a host of
restrictions that artificially limit the utility of the standard functors.
As an example of such a restriction, you’ll find that if you try to use
bind2nd with mem_fun or mem_fun_ref (see Item 41) to bind an object
to a member function’s parameter and that member function takes its
parameter by reference, your code is unlikely to compile. You'll find
the same if you try to use notl or not2 with ptr_fun and a function
declaring a by-reference parameter. The cause in both cases is that
during template instantiation, most STL platforms generate a refer-
ence to a reference, and references to references are not legal in C++.
(The Standardization Committee is mulling over a change in the Stan-
dard to address this matter.) Here’s an example of what has become
known as “the reference-to-reference problem:”

class Widget {
public:
mt readStream(istream& stream); // readStream takes
// its parameter by
3 // reference

vector<Widget*> vw;

Programming with the STL Item 50 223

for_each(// most STL platforms
vw.begin(), vw.end(), // try to generate a
bind2nd(mem_fun(&Widget:readStream), cin) // referenceto a
); // reference in this
// call; such code
// won't compile

Boost’s function objects avoid this and other issues, plus they expand
the expressiveness of function objects considerably.

If you're intrigued by the potential of STL function objects and you
want to explore it further, hurry over to Boost right away. If you abhor
function objects and think they exist only to pacify a vocal minority of
Lisp apologists turned C++ programmers, hurry over to Boost anyway.
Boost’s function object libraries are important, but they make up only
a small part of what you'll find at the site.

This page intentionally left blank

Bibliography

Most of the publications below are cited in this book, though many ci-
tations occur only in the Acknowledgments. Uncited publications are
bulleted instead of having a number.

Given the instability of Internet URLs, I hesitated before including
them in this bibliography. In the end, I decided that even if a URL is
broken by the time you try it, knowing where a document used to re-
side should help you find it at a different URL.

Things I Wrote

(1]

(2]

Scott Meyers, Effective C++: 50 Specific Ways to Improve Your
Programs and Designs (second edition), Addison-Wesley, 1998,
ISBN 0-201-92488-9. Also available on Effective C++ CD (see
below).

Scott Meyers, Effective C++: 55 Specific Ways to Improve Your
Programs and Designs (third edition), Addison-Wesley, 2005,
ISBN 0-321-33487-6.

Scott Meyers, More Effective C++: 35 New Ways to Improve Your
Programs and Designs, Addison-Wesley, 1996, ISBN 0-201-
63371-X. Also available on Effective C++ CD (see below).

Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve
Your Programs and Designs, Addison-Wesley, 1999, ISBN O-
201-31015-5. Contains Effective C++ (second edition), More Ef-
Jective C++, and several related magazine articles.

Things I Didn’t Write (But Wish I Had)

(3]

Nicolai M. Josuttis, The C++ Standard Library: A Tutorial and
Reference, Addison-Wesley, 1999, ISBN 0-201-37926-0. An in-
dispensable book. Every C++ programmer should have ready
access to a copy.

http://www.amazon.com/gp/product/0201924889?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201924889
http://www.amazon.com/gp/product/0201924889?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201924889
http://www.amazon.com/gp/product/0201924889?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201924889
http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876
http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876
http://www.amazon.com/Effective-Cd-Addison-Wesley-Professional-Computing/dp/0201310155/
http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876
http://www.amazon.com/gp/product/020163371X?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020163371X
http://www.amazon.com/gp/product/020163371X?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020163371X
http://www.amazon.com/gp/product/0201310155?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201310155
http://www.amazon.com/gp/product/0201310155?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201310155
http://www.amazon.com/gp/product/0201379260?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201379260
http://www.amazon.com/gp/product/0201379260?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201379260

226

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Bibliography Effective STL

Matthew H. Austern, Generic Programming and the STL, Addi-
son-Wesley, 1999, ISBN 0-201-30956-4. This book is essen-
tially a printed version of the material at the SGI STL Web
Site [21].

ISO/IEC, International Standard, Programming Languages —
C++ (second edition), Reference Number ISO/IEC 14882:2003(E),
2003. The official document describing C++. Available in PDF
from ANSI at http://webstore.ansi.org/ansidocstore/default.asp.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995, ISBN 0-201-63361-2. Also
available as Design Patterns CD, Addison-Wesley, 1998, ISBN
0-201-63498-8. The definitive book on design patterns. Every
practicing C++ programmer should be familiar with the pat-
terns described here and should have easy access to the book
or the CD.

Bjarne Stroustrup, The C++ Programming Language (third edi-
tion), Addison-Wesley, 1997, ISBN 0-201-88954-4. The ‘“re-
source acquisition is initialization” idiom I mention in Item 12
is discussed in section 14.4.1 of this book, and the code I refer
to in Item 36 is on page 530.

Herb Sutter, Exceptional C++: 47 Engineering Puzzles, Program-
ming Problems, and Solutions, Addison-Wesley, 2000, ISBN O-
201-61562-2. An exemplary complement to my Effective
books, I'd laud this even if Herb hadn’t asked me to write the
Foreword for it.

Herb Sutter, More Exceptional C++: 40 New Engineering Puz-
zles, Programming Problems, and Solutions, Addison-Wesley,
2001, ISBN 0-201-70434-X. This book is every bit as good as
its predecessor [8].

Dov Bulka and David Mayhew, Efficient C++: Performance Pro-
gramming Techniques, Addison-Wesley, 2000, ISBN 0-201-
37950-3. The only book devoted to efficiency in C++, hence the
best.

Matt Austern, “How to Do Case-Insensitive String Compari-
son,” C++ Report, May 2000. This article is so useful, it’s repro-
duced as Appendix A of this book.

http://www.sgi.com/tech/stl/
http://webstore.ansi.org/ansidocstore/default.asp
http://www.amazon.com/gp/product/0201309564?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201309564
http://www.amazon.com/gp/product/0201633612?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201633612
http://www.amazon.com/gp/product/0201633612?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201633612
http://www.amazon.com/gp/product/0201634988?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201634988
http://www.amazon.com/gp/product/0201889544?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201889544
http://www.amazon.com/gp/product/0201889544?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201889544
http://www.amazon.com/gp/product/0201889544?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201889544
http://www.amazon.com/gp/product/0201615622?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201615622
http://www.amazon.com/gp/product/0201615622?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201615622
http://www.amazon.com/C-Programming-Language-3rd/dp/0201889544/
http://www.amazon.com/gp/product/020170434X?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020170434X
http://www.amazon.com/gp/product/020170434X?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020170434X
http://www.amazon.com/gp/product/0201379503?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201379503
http://www.amazon.com/gp/product/0201379503?ie=UTF8&tag=estl1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201379503

Effective STL Bibliography 227

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

Herb Sutter, “When Is a Container Not a Container?,” C++ Re-
port, May 1999. Available at http://www.gotw.ca/publications/
mill09.htm. Revised and updated as Item 6 in More Exceptional
C++ [9].

Herb Sutter, “Standard Library News: sets and maps,” C++ Re-
port, October 1999. Available at http://www.gotw.ca/publications/
mill11.htm. Revised and updated as Item 8 in More Exceptional
C++ [9].

Nicolai M. Josuttis, “Predicates vs. Function Objects,” C++ Re-
port, June 2000.

Matt Austern, “Why You Shouldn’t Use set — and What to Use
Instead,” C++ Report, April 2000.

P. J. Plauger, “Hash Tables,” C/C++ Users Journal, November
1998. Describes the Dinkumware approach to hashed contain-
ers (discussed in Item 25) and how it differs from competing
designs.

Jack Reeves, “STL Gotcha’s,” C++ Report, January 1997. Avail-
able at http://www.bleading-edge.com/Publications/C++Report/
v9701/abstract.htm.

Jack Reeves, “Using Standard string in the Real World, Part 2,”
C++ Report, January 1999. Available at http://www.bleading-
edge.com/Publications/C++Report/v9901/abstract.htm.

Andrei Alexandrescu, “Traits: The else-if-then of Types,” C++
Report, April 2000. Available at http://erdani.org/publications/
traits.html.

Herb Sutter, “Optimizations That Aren't (In a Multithreaded
World),” C/C++ Users Journal, June 1999. Available at http://
www.gotw.ca/publications/optimizations.htm. Revised and up-
dated as Item 16 in More Exceptional C++ [9].

The SGI STL web site, http://www.sgi.com/tech/stl/. Item 50
summarizes the material at this important site. The page on
thread safety in STL containers (which motivated Item 12) is at
http://www.sgi.com/tech/stl/thread_safety.html.

The Boost web site, http://www.boost.org/. Item 50 summarizes
the material at this important site.

Nicolai M. Josuttis, “User-Defined Allocator,” http://www.josut-
tis.com/cppcode/allocator.html. This page is part of the web site
for Josuttis’ excellent book on C++’s standard library [3].

http://www.gotw.ca/publications/mill09.htm
http://www.gotw.ca/publications/mill09.htm
http://www.gotw.ca/publications/mill11.htm
http://www.gotw.ca/publications/mill11.htm
http://www.bleading-edge.com/Publications/C++Report/v9701/abstract.htm
http://www.bleading-edge.com/Publications/C++Report/v9701/abstract.htm
http://www.bleading-edge.com/Publications/C++Report/v9901/abstract.htm
http://www.bleading-edge.com/Publications/C++Report/v9901/abstract.htm
http://erdani.org/publications/traits.html
http://erdani.org/publications/traits.html
http://www.gotw.ca/publications/optimizations.htm
http://www.gotw.ca/publications/optimizations.htm
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/thread_safety.html
http://www.boost.org/
http://www.josuttis.com/cppcode/allocator.html
http://www.josuttis.com/cppcode/allocator.html

228

(24]

(25]

(26]

(27]

Bibliography Effective STL

Matt Austern, “The Standard Librarian: What Are Allocators
Good For?,” C/C++ Users Journal's C++ Experts Forum (an on-
line extension to the magazine), December 2000, http://
www.cuj.com/documents/s=8000/cujcexp1812austern/. Good infor-
mation on allocators is hard to come by. This column comple-
ments the material in Items 10 and 11. It also includes a
sample allocator implementation.

Klaus Kreft and Angelika Langer, “A Sophisticated Implemen-
tation of User-Defined Inserters and Extractors,” C++ Report,
February 2000.

Leor Zolman, “An STL Error Message Decryptor for Visual
C++,” C/C++ Users Journal, July 2001. This article and the
software it describes are available at http://www.bdsoft.com/
tools/stlfilt.html.

Bjarne Stroustrup, “Sixteen Ways to Stack a Cat,” C++ Report,
October 1990. Available at http://www.research.att.com/~bs/
stack_cat.pdf.

Herb Sutter, “Guru of the Week #74: Uses and Abuses of vec-
tor,” September 2000, http://www.gotw.ca/gotw/074.htm. This
quiz (and accompanying solution) does a good job of making
you think about such vector-related issues as size vs. capacity
(see Item 14), but it also discusses why algorithm calls are of-
ten superior to hand-written loops (see Item 43).

Matt Austern, “The Standard Librarian: Bitsets and Bit Vec-
tors,” C/C++ Users Journal's C++ Experts Forum (an on-line
extension to the magazine), May 2001, http://www.ddj.com/cpp/
184401382. This article provides information on bitsets and how
they compare to vector<bool>, topics I briefly examine in
Item 18.

Things I Had To Write (But Wish I Hadn't)

(28]

(29]

The Effective C++ Errata List,
http://www.aristeia.com/BookErrata/ec++3e-errata.html.

The More Effective C++ Errata List,
http://www.aristeia.com/BookErrata/mec++-errata.html.

The Effective C++ CD Errata List,
http://www.aristeia.com/BookErrata/cd1e-errata.html.

The More Effective C++ auto_ptr Update page,
http://www.aristeia.com/BookErrata/auto_ptr-update.html.

http://www.cuj.com/documents/s=8000/cujcexp1812austern/
http://www.bdsoft.com/tools/stlfilt.html
http://www.research.att.com/~bs/stack_cat.pdf
http://www.gotw.ca/gotw/074.htm
http://www.ddj.com/cpp/184401382
http://www.aristeia.com/BookErrata/ec++3e-errata.html
http://www.aristeia.com/BookErrata/mec++-errata.html
http://www.aristeia.com/BookErrata/cd1e-errata.html
http://www.aristeia.com/BookErrata/auto_ptr-update.html
http://www.ddj.com/cpp/184401382
http://www.ddj.com/cpp/184401382
http://www.bdsoft.com/tools/stlfilt.html
http://www.cuj.com/documents/s=8000/cujcexp1812austern/
http://www.research.att.com/~bs/stack_cat.pdf

Locales and
Case-Insensitive
String Comparisons

Item 35 explains how to use mismatch and lexicographical_compare to
implement case-insensitive string comparisons, but it also points out
that a truly general solution to the problem must take locales into ac-
count. This book is about the STL, not internationalization, so I have
next to nothing to say about locales. However, Matt Austern, author of
Generic Programming and the STL [4], addressed the locale aspects of
case-insensitive string comparison in a column in the May 2000 C++
Report [11]. In the interest of telling the whole story on this important
topic, I am pleased to reprint his column here, and I am grateful to
Matt and to 101communications for granting me permission to do so.

How to Do Case-Insensitive String Comparison
by Matt Austern

If you've ever written a program that uses strings (and who hasn’t?),
chances are you've sometimes needed to treat two strings that differ
only by case as if they were identical. That is, you've needed compari-
sons — equality, less than, substring matches, sorting — to disregard
case. And, indeed, one of the most frequently asked questions about
the Standard C++ Library is how to make strings case insensitive.
This question has been answered many times. Many of the answers
are wrong.

First of all, let’s dispose of the idea that you should be looking for a
way to write a case-insensitive string class. Yes, it’s technically possi-
ble, more or less. The Standard Library type std:string is really just an
alias for the template std:basic_string<char, std::char_traits<char>, std:allo-
cator<char> >. It uses the traits parameter for all comparisons, so, by
providing a traits parameter with equality and less than redefined ap-
propriately, you can instantiate basic_string in such a way so that the
< and == operators are case insensitive. You can do it, but it isn’'t
worth the trouble.

230 Locales and Case-Insensitive String Comparisons

= You won’t be able to do I/0, at least not without a lot of pain. The
I/O classes in the Standard Library, like std:basic_istream and
std:basic_ostream, are templatized on character type and traits just
like std:basic_string is. (Again, std:ostream is just an alias for
std::basic_ostream<char, char_traits<char> >.) The traits parameters
have to match. If you're using std:basic_string<char, my_traits_class>
for your strings, you’ll have to wuse std:basic_ostream<char,
my_traits_class> for your stream output. You won’t be able to use
ordinary stream objects like cin and cout.

® Case insensitivity isn’t about an object, it’s about how you use an
object. You might very well need to treat a string as case-sensitive
in some contexts and case-insensitive in others. (Perhaps depend-
ing on a user-controlled option.) Defining separate types for those
two uses puts an artificial barrier between them.

= Jt doesn’t quite fit. Like all traits classes,’ char_traits is small, sim-
ple, and stateless. As we’ll see later in this column, proper case-in-
sensitive comparisons are none of those things.

= Jt isn’t enough. Even if all of basic_string’s own member functions
were case insensitive, that still wouldn’t help when you need to
use nonmember generic algorithms like std:isearch and
std:find_end. It also wouldn’t help if you decided, for reasons of ef-
ficiency, to change from a container of basic_string objects to a
string table.

A better solution, one that fits more naturally into the design of the
Standard Library, is to ask for case-insensitive comparison when
that's what you need. Don’t bother with member functions like
string:find_first_of and string:rfind; all of them duplicate functionality
that’s already there in nonmember generic algorithms. The generic al-
gorithms, meanwhile, are flexible enough to accommodate case-insen-
sitive strings. If you need to sort a collection of strings in case-
insensitive order, for example, all you have to do is provide the appro-
priate comparison function object:

std::sort(C.begin(), C.end(), compare_without_case);

The remainder of this column will be about how to write that function
object.
A first attempt

There’s more than one way to alphabetize words. The next time you're
in a bookstore, check how the authors’ names are arranged: does

t See Andrei Alexandrescu’s column in the April 2000 C++ Report [19].

Locales and Case-Insensitive String Comparisons 231

Mary McCarthy come before Bernard Malamud, or after? (It's a matter
of convention, and I've seen it done both ways.) The simplest kind of
string comparison, though, is the one we all learned in elementary
school: lexicographic or “dictionary order” comparison, where we build
up string comparison from character-by-character comparison.

Lexicographic comparison may not be suitable for specialized applica-
tions (no single method is; a library might well sort personal names
and place names differently), but it’s suitable much of the time and
it’s what string comparison means in C++ by default. Strings are se-
quences of characters, and if x and y are of type std:string, the expres-
sion x <y is equivalent to the expression

std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()).

In this expression, lexicographical_compare compares individual charac-
ters using operator<, but there’s also a version of lexicographical_compare
that lets you choose your own method of comparing characters. That
other version takes five arguments, not four; the last argument is a
function object, a Binary Predicate that determines which of two char-
acters should precede the other. All we need in order to use
lexicographical_compare for case-insensitive string comparison, then, is
to combine it with a function object that compares characters without
regard to case.

The general idea behind case-insensitive comparison of characters is
to convert both characters to upper-case and compare the results.
Here’s the obvious translation of that idea into a C++ function object,
using a well known function from the standard C library:

struct It_nocase
: public std::binary_function<char, char, bool> {

bool operator()(char x, char y) const {
return std:toupper(static_cast<unsigned char>(x))

) <
std:toupper(static_cast<unsigned char>(y));

}
y
“For every complex problem there is a solution that is simple, neat,
and wrong.” People who write books about C++ are fond of this class,
because it makes a nice, simple example. I'm as guilty as anyone else;
I use it in my book a half dozen times. It's almost right, but that’s not
good enough. The problem is subtle.

Here’s one example where you can begin to see the problem:

232 Locales and Case-Insensitive String Comparisons

int main()

const char* s1 = "GEW\334RZTRAMINER";
const char* s2 = "gew\374rztraminer";
printf("s1 = %s, s2 = %s\n", s1, s2);

printf("s1 < s2: %s\n",
std:lexicographical_compare(s1, s1 + 14, 52, s2 + 14, It_nocase())
? "true" : "false");

}

You should try this out on your system. On my system (a Silicon
Graphics O2 running IRIX 6.5), here’s the output:

s1 = GEWURZTRAMINER, s2 = gewdirztraminer
s1 <s2:true

Hm, how odd. If you're doing a case-insensitive comparison, shouldn’t
“gewirztraminer” and “GEWURZTRAMINER” be the same? And now a
slight variation: if you insert the line

setlocale(LC_ALL, "de");
just before the printf statement, suddenly the output changes:

s1 = GEWURZTRAMINER, s2 = gewiirztraminer
s1 < s2:false

Case-insensitive string comparison is more complicated than it looks.
This seemingly innocent program depends crucially on something
most of us would prefer to ignore: locales.

Locales

A char is really nothing more than a small integer. We can choose to
interpret a small integer as a character, but there’s nothing universal
about that interpretation. Should some particular number be inter-
preted as a letter, a punctuation mark, or a nonprinting control char-
acter?

There’s no single right answer, and it doesn’t even make a difference
as far as the core C and C++ languages are concerned. A few library
functions need to make those distinctions: isalpha, for example, which
determines whether a character is a letter, and toupper, which con-
verts lowercase letters to uppercase and does nothing to uppercase
letters or to characters that aren’t letters. All of that depends on local
cultural and linguistic conventions: distinguishing between letters
and nonletters means one thing in English, another thing in Swedish.
Conversion from lower to upper case means something different in the
Roman alphabet than in the Cyrillic, and means nothing at all in He-
brew.

Locales and Case-Insensitive String Comparisons 233

By default the character manipulation functions work with a charac-
ter set that’s appropriate for simple English text. The character \374'
isn’t affected by toupper because it isn’'t a letter; it may look like U
when it’s printed on some systems, but that’s irrelevant for a C library
routine that’s operating on English text. There is no U character in the
ASCII character set. The line

setlocale(LC_ALL, "de");

tells the C library to start operating in accordance with German con-
ventions. (At least it does on IRIX. Locale names are not standard-
ized.) There is a character U in German, so toupper changes U to U.

If this doesn’t make you nervous, it should. While toupper may look
like a simple function that takes one argument, it also depends on a
global variable—worse, a hidden global variable. This causes all of the
usual difficulties: a function that uses toupper potentially depends on
every other function in the entire program.

This can be disastrous if you're using toupper for case-insensitive
string comparison. What happens if you've got an algorithm that de-
pends on a list being sorted (binary_search, say), and then a new locale
causes the sort order to change out from under it? Code like this isn’t
reusable; it’s barely usable. You can’t use it in libraries—libraries get
used in all sorts of programs, not just programs that never call setlo-
cale. You might be able to get away with using it in a large program,
but you’ll have a maintenance problem: maybe you can prove that no
other module ever calls setlocale, but can you prove that no other
module in next year’s version of the program will call setlocale?

There’s no good solution to this problem in C. The C library has a sin-
gle global locale, and that’s that. There is a solution in C++.

Locales in C++

A locale in the C++ Standard Library isn’t global data buried deep
within the library implementation. It’s an object of type std:locale, and
you can create it and pass it to functions just like any other object.
You can create a locale object that represents the usual locale, for ex-
ample, by writing

std:locale L = std:locale:classic();,
or you can create a German locale by writing
std:locale L("de");.

(As in the C library, names of locales aren’t standardized. Check your
implementation’s documentation to find out what named locales are
available.)

234 Locales and Case-Insensitive String Comparisons

Locales in C++ are divided into facets, each of which handles a differ-
ent aspect of internationalization, and the function std:use_facet ex-
tracts a specific facet from a locale object.” The ctype facet handles
character classification, including case conversion. Finally, then, if c1
and c2 are of type char, this fragment will compare them in a case-in-
sensitive manner that’s appropriate to the locale L.

const std:ctype<char>& ct = std::use_facet<std:ctype<char> >(L);
bool result = ct.toupper(c1) < ct.toupper(c2);

There’s also a special abbreviation: you can write
std::toupper(c, L),
which (if c is of type char) means the same thing as

std:use_facet<std:ctype<char> >(L).toupper(c).

It’s worth minimizing the number of times you call use_facet, though,
because it can be fairly expensive.

Just as lexicographical comparison isn't appropriate for all applica-
tions, so character-by-character case conversion isn't always appro-
priate. (In German, for example, the lowercase letter “3” corresponds
to the uppercase sequence “SS”.) Unfortunately, however, character-
by-character case conversion is all we've got. Neither the C nor the
C++ standard library provides any form of case conversion that works
with anything more than one character at a time. If this restriction is
unacceptable for your purposes, then you're outside the scope of the
standard library.

A digression: another facet

If you're already familiar with locales in C++, you may have thought of
another way to perform string comparisons: The collate facet exists
precisely to encapsulate details of sorting, and it has a member func-
tion with an interface much like that of the C library function strcmp.
There’s even a little convenience feature: if L is a locale object, you can
compare two strings by writing L(x, y) instead of going through the nui-
sance of calling use_facet and then invoking a collate member function.

The “classic” locale has a collate facet that performs lexicographical
comparison, just like string’s operator< does, but other locales perform

+ Warning: use_facet is a function template whose template parameter appears only in
the return type, not in any of the arguments. Calling it uses a language feature called
explicit template argument specification, and some C++ compilers don’t support that
feature yet. If you're using a compiler that doesn’t support it, your library implementor
may have provided a workaround so that you can call use_facet some other way.

Locales and Case-Insensitive String Comparisons 235

whatever kind of comparison is appropriate. If your system happens
to come with a locale that performs case-insensitive comparisons for
whatever languages you're interested in, you can just use it. That lo-
cale might even do something more intelligent than character-by-
character comparisons!

Unfortunately, this piece of advice, true as it may be, isn’t much help
for those of us who don’t have such systems. Perhaps someday a set
of such locales may be standardized, but right now they aren’t. If
someone hasn’t already written a case-insensitive comparison func-
tion for you, you’ll have to write it yourself.

Case-insensitive string comparison

Using ctype, it’s straightforward to build case-insensitive string com-
parison out of case-insensitive character comparison. This version
isn’t optimal, but at least it’s correct. It uses essentially the same tech-
nique as before: compare two strings using lexicographical_compare,
and compare two characters by converting both of them to uppercase.
This time, though, we're being careful to use a locale object instead of
a global variable. (As an aside, converting both characters to upper-
case might not always give the same results as converting both char-
acters to lowercase: There’s no guarantee that the operations are
inverses. In French, for example, it’s customary to omit accent marks
on uppercase characters. In a French locale it might be reasonable for
toupper to be a lossy conversion; it might convert both ‘é’ and ‘e’ to the
same uppercase character, ‘E'. In such a locale, then, a case-insensi-
tive comparison using toupper will say that ‘¢’ and ‘E' are equivalent
characters while a case-insensitive comparison using tolower will say
that they aren’t. Which is the right answer? Probably the former, but
it depends on the language, on local customs, and on your applica-
tion.)

struct It_str_1
: public std::binary_function<std::string, std::string, bool> {

struct It_char {
const std:ctype<char>&ct;

[t_char(const std::ctype<char>&c) : ct(c) {}

bool operator()(char x, char y) const {
return ct.toupper(x) < ct.toupper(y);
}
L

std:locale loc;
const std::ctype<char>&ct;

236 Locales and Case-Insensitive String Comparisons

It_str_1(const std::locale& L = std::locale::classic())
:loc(L), ct(std::use_facet<std::ctype<char> >(loc)) {}

bool operator()(const std::string& x, const std::string& y) const {
return std:lexicographical_compare(x.begin(), x.end(),

y.begin(), y.end(),
It_char(ct));

}
7
This isn’'t quite optimal yet; it's slower than it ought to be. The prob-
lem is annoying and technical: we're calling toupper in a loop, and the
C++ standard requires toupper to make a virtual function call. Some
optimizers may be smart enough to move the virtual function over-

head out of the loop, but most aren’t. Virtual function calls in loops
should be avoided.

In this case, avoiding it isn’t completely straightforward. It’s tempting
to think that the right answer is another one of ctype’s member func-
tions,

const char* ctype<char>:toupper(char* f, char* I) const,

which changes the case of the characters in the range [f,). Unfortu-
nately, this isn’t quite the right interface for our purpose. Using it to
compare two strings would require copying both strings to buffers and
then converting the buffers to uppercase. Where do those buffers
come from? They can't be fixed size arrays (how large is large
enough?), but dynamic arrays would require an expensive memory al-
location.

An alternative solution is to do the case conversion once for every
character, and cache the result. This isn’t a fully general solution—it
would be completely unworkable, for example, if you were working
with 32-bit UCS-4 characters. If you're working with char, though (8
bits on most systems), it’s not so unreasonable to maintain 256 bytes
of case conversion information in the comparison function object.

struct lt_str_2:
public std::binary_function<std::string, std::string, bool> {

struct It_char {
const char* tab;

It_char(const char* t) : tab(t) {}

bool operator()(char x, char y) const {
return tab[x - CHAR_MIN] < tab[y - CHAR_MIN]J;
}

3
char tab[CHAR_MAX - CHAR_MIN + 1];

Locales and Case-Insensitive String Comparisons 237

It_str_2(const std:locale& L = std::locale:classic()) {
const std:ctype<char>& ct = std::use_facet<std::ctype<char> >(L);

for (int i = CHAR_MIN; i <= CHAR_MAX; ++i)
tabli - CHAR_MIN] = (char) i;

ct.toupper(tab, tab + (CHAR_MAX - CHAR_MIN + 1));

bool operator()(const std::string& x, const std::string& y) const {
return std:lexicographical_compare(x.begin(), x.end(),

y.begin(), y.end(),
It_char(tab));
}

L

As you can see, It_str_1 and It_str_2 aren’t very different. The former
has a character-comparison function object that uses a ctype facet di-
rectly, and the latter a character-comparison function object that
uses a table of precomputed uppercase conversions. This might be
slower if you're creating an It_str_2 function object, using it to compare
a few short strings, and then throwing it away. For any substantial
use, though, It_str_2 will be noticeably faster than It_str_1. On my sys-
tem the difference was more than a factor of two: it took 0.86 seconds
to sort a list of 23,791 words with It_str_1, and 0.4 with It_str_2.

What have we learned from all of this?

= A case-insensitive string class is the wrong level of abstraction.
Generic algorithms in the C++ standard library are parameterized
by policy, and you should exploit that fact.

= Lexicographical string comparisons are built out of character com-
parisons. Once you've got a case-insensitive character comparison
function object, the problem is solved. (And you can reuse that
function object for comparisons of other kinds of character se-
quences, like vector<char>, or string tables, or ordinary C strings.)

= Case-insensitive character comparison is harder than it looks. It’s
meaningless except in the context of a particular locale, so a char-
acter comparison function object needs to store locale informa-
tion. If speed is a concern, you should write the function object to
avoid repeated calls of expensive facet operations.

Correct case-insensitive comparison takes a fair amount of machin-
ery, but you only have to write it once. You probably don’t want to
think about locales; most people don’t. (Who wanted to think about
Y2K bugs in 1990?) You stand a better chance of being able to ignore
locales if you get locale-dependent code right, though, than if you
write code that glosses over the dependencies.

This page intentionally left blank

Remarks on
Microsoft’s
STL Platforms

In the opening pages of this book, I introduced the term STL platform
to refer to the combination of a particular compiler and a particular
implementation of the Standard Template Library. If you are using
version 6 or earlier of a Microsoft Visual C++ compiler (i.e., a compiler
that ships with version 6 or earlier of Microsoft’s Visual Studio), the
distinction between a compiler and a library is particularly important,
because the compiler is sometimes more capable than the accompa-
nying STL implementation suggests. In this appendix, I describe an
important shortcoming of older Microsoft STL platforms and I offer
workarounds that can significantly improve your STL experience.

The information that follows is for developers using Microsoft Visual
C++ (MSVC) versions 4-6. If you're using Visual C++ .NET, your STL
platform doesn’t have the problems described below, and you may ig-
nore this appendix.

Member Function Templates in the STL

Suppose you have two vectors of Widgets and you’d like to copy the
Widgets in one vector to the end of another. That’s easy. Just use vec-
tor’s range insert function (see Item 5):

vector<Widget> vw1, vw2;

vwl.insert(vw1.end(), vw2.begin(), vw2.end()); // append to vw1 a copy
// of the Widgets in vw2

If you have a vector and a deque, you do the same thing:

vector<Widget> vw;
deque<Widget> dw;

vw.insert(vw.end(), dw.begin(), dw.end()); // append to vw a copy
// of the Widgets in dw

240 Remarks on Microsoft’s STL Platforms Effective STL

In fact, you can do this no matter what the type of the container hold-
ing the objects to be copied. Even custom containers work:

vector<Widget> vw;

list<Widget> lw;

vw.insert(vw.begin(), lw.begin(), lw.end()); // prepend to vw a copy
// of the Widgets in lw

set<Widget> sw;

vw.insert(vw.begin(), sw.begin(), sw.end()); // prepend to vw a copy

// of the Widgets in sw
template<typenameT, // template for a custom
typename Allocator = allocator<T> > // STL-compatible
class SpecialContainer {... }; // container

SpecialContainer<Widget> scw;

vw.insert(vw.end(), scw.begin(), scw.end()); // append to vw a copy
// of the Widgets in scw

This flexibility is possible because vector’s range insert function isn’'t a
function at all. Rather, it's a member function template that can be in-
stantiated with any iterator type to generate a specific range insert
function. For vector, the Standard declares the insert template like
this:

template <class T, class Allocator = allocator<T> >
class vector {
public:

template <class Inputlterator>
void insert(iterator position, Inputlterator first, Inputlterator last);

L

Each standard container is required to offer this templatized range in-
sert. Similar member function templates are required for the contain-
ers’ range constructors and for the range form of assign (both of which
are discussed in Item 5).

MSVC Versions 4-6

Unfortunately, the STL implementation that ships with MSVC ver-
sions 4-6 declares no member function templates. This library was

Effective STL Remarks on Microsoft’s STL Platforms 241

originally developed for MSVC version 4, and that compiler, like most
compilers of its day, lacked member function template capabilities.
Between MSVC4 and MSVC6, the compiler added support for these
templates, but, due to legal proceedings that affected Microsoft with-
out directly involving them, the library remained essentially frozen.

Because the STL implementation shipping with MSVC4-6 was de-
signed for a compiler lacking member function templates, the library’s
authors approximated the functionality of such templates by replac-
ing each template with a specific function, one that accepted only iter-
ators from the same container type. For insert, for example, the
member function template was replaced with this:

void insert(iterator position, // “iterator” is the
iterator first, iterator last); // container’s iterator type

This restricted form of range member functions makes it possible to
perform a range insert from a vector<Widget> to a vector<Widget> or
from a list<int> to a list<int>, but not from a vector<Widget> to a
list<Widget> or from a set<int> to a deque<int>. It’s not even possible to
do a range insert (or assign or construction) from a vector<long> to a
vector<int>, because vector<long>:iterator is not the same type as a vec-
tor<int>:iterator. As a result, the following perfectly valid code fails to
compile using MSVC4-6:

istream_iterator<Widget> begin(cin), end; // create begin and end
// iterators for reading
// Widgets from cin
// (see Item 6)

vector<Widget> vw(begin, end); // read cin’s Widgets into vw
// (again, see Iltem 6),; won't
/1 compile with MSV(C4-6

list<Widget> lw;

Iw.assign(vw.rbegin(), vw.rend()); // assign vw'’s contents to lw
// (in reverse order),; won't
/1 compile with MSV(C4-6
SpecialContainer<Widget> scw;

scw.insert(scw.end(), Iw.begin(), lw.end()); // insert at the end of scw a
// copy of the Widgets in Iw;
/1 won't compile with
MSVC4-6

So what do you do if you must use MSVC4-6? That depends on the
MSVC version you are using and whether you are forced to use the
STL implementation that comes with the compiler.

242 Remarks on Microsoft’'s STL Platforms Effective STL

A Workaround for MSVC4-5

Look again at the valid code examples that fail to compile with the STL
that accompanies MSVC4-6:

vector<Widget> vw(begin, end); // rejected by the MSVC4-6
// STL implementation

list<Widget> lw;

i;v.assign(vw.rbegin(), vw.rend()); //also rejected
SpecialContainer<Widget> scw;

's“cw.insert(scw.end(), Iw.begin(), Iw.end()); // ditto

These calls look rather different, but they all fail for the same reason:
missing member function templates in the STL implementation.
There’s a single cure for all of them: use copy and an insert iterator
(see Item 30) instead. Here, for example, are the workarounds for the
examples above:

istream_iterator<Widget> begin(cin), end;

vector<Widget> vw; // default-construct vw;
copy(begin, end, back_inserter(vw)); // then copy the
// Widgets in cin into it

list<Widget> lw;

i;;v.clear(); // eliminate lw’s old
copy(vw.rbegin(), vw.rend(), back_inserter(lw)); // Widgets; copy over
// vw’s Widgets (in

// reverse order)
SpecialContainer<Widget> scw;

gopy(Iw.begin(), lw.end(), // copy lw’'s Widgets to
inserter(scw, scw.end())); // the end of scw

I encourage you to use these copy-based workarounds with the library
that ships with MSVC4-5, but beware! Don't fall into the trap of be-
coming so comfortable with the workarounds, you forget that they are
workarounds. As Item 5 explains, using the copy algorithm is almost
always inferior to using a range member function, so as soon as you
have a chance to upgrade your STL platform to one that supports
member function templates, stop using copy in places where range
member functions are the proper approach.

Effective STL Remarks on Microsoft’s STL Platforms 243

An Additional Workaround for MSVC6

You can use the MSVC4-5 workaround with MSVC6, too, but for
MSVC6 there is another option. The compilers that are part of
MSVC4-5 offer no meaningful support for member function tem-
plates, so the fact that the STL implementation lacks them is immate-
rial. The situation is different with MSVC6, because MSVCG6’s
compiler does support member function templates. It thus becomes
reasonable to consider replacing the STL that ships with MSVC6 with
an implementation that provides the member function templates the
Standard prescribes.

Item 50 explains that both SGI and STLport offer freely downloadable
STL implementations, and both of those implementations count the
MSVC6 compiler as one with which they’ll work. You can also pur-
chase the latest MSVC-compatible STL implementation from Dinkum-
ware. Each option has advantages and disadvantages.

SGI's and STLport’s implementations are free, and I suspect you know
what that means as regards official support for the software: there
isn’t any. Furthermore, because SGI and STLport design their librar-
ies to work with a variety of compilers, you will probably have to man-
ually configure their implementations to get the most out of MSVC6.
In particular, you may have to explicitly enable support for member
function templates, because, working with many compilers as they do,
SGI and/or STLport may not enable that by default. You may also
have to worry about linking with other MSVC6 libraries (especially
DLLs), including things like making sure you use the appropriate
builds for threading and debugging, etc.

If that kind of thing scares you, or if you've been known to grumble
that you can’t afford free software, you may want to look into Din-
kumware’s replacement library for MSVCB6. It’s designed to be drop-in
compatible with the native MSVC6 STL and to maximize MSVC6’s ad-
herence to the Standard as an STL platform. Since Dinkumware au-
thored the STL that ships with MSVC6, there’s a decent chance their
latest STL implementation really is a drop-in replacement. To learn
more about Dinkumware STL implementations, visit the company’s
web site: http://www.dinkumware.com/.

Regardless of whether you choose SGI's, STLport’s, or Dinkumware’s
implementation as an STL replacement, you'll do more than gain an
STL with member function templates. You'll also bypass conformance
problems in other areas of the library, such as string failing to declare
push_back. Furthermore, you'll gain access to useful STL extensions,
including hashed containers (see Item 25) and singly linked lists (slists).

http://www.dinkumware.com/

244 Remarks on Microsoft’'s STL Platforms Effective STL

SGI's and STLport’s implementations also offer a variety of nonstand-
ard functor classes, such as select1st and select2nd (see Item 50).

Even if you're trapped with the STL implementation that ships with
MSVCSB, it’s probably worth your while to visit the Dinkumware web
site. That site lists known bugs in the MSVC6 library implementation
and explains how to modify your copy of the library to reduce its
shortcomings. Needless to say, editing your library headers is some-
thing you do at your own risk. If you run into trouble, don’t blame me.

Index

The example classes and class templates declared or defined in this
book are indexed under example classes/templates. The example
functions and function templates are indexed under example func-

tions/templates.

Before A

__default_alloc_template 211

A

Abrahams, David xvii
abstraction bonus 203
abstraction penalty 201
accumulate
function objects for 158
initial value and 157, 159
side effects and 160
adaptability
algorithm function objects and 156
definition of 170
functor classes and 169-173
overloading operator() and 173
add or update functionality, in map 107
adjacent_difference 157
Adobe, demonic software spewed by xviii
advance
efficiency of 122
to create iterators from
const_iterators 120-123
Alexandrescu, Andrei xvii, 227, 230
algorithms
accumulate 156-161
function objects for 158
initial value and 157, 159
side effects and 160
adaptable function objects and 156
adjacent_difference 157
as a vocabulary 186

binary_search 192-201
container mem funcs vs. 190-192
copy, eliminating calls to 26
copy_if, implementing 154-156
copying func objects within 166-168
count 156, 192-201
equal_range vs., for sorted ranges 197
count_if 157
efficiency, vs. explicit loops 182-184
equal_range 192-201
count vs., for sorted ranges 197
find 192-201
count in multiset, multimap vs. 199
lower_bound in multiset, multimap
vs. 201
using equivalence vs. equality 86
for_each 156-161
side effects and 160
function call syntax in 175
function parameters to 201-205
hand-written loops vs. 181-189
includes 148
inner_product 157
inplace_merge 148
lexicographical_compare 153
longest name 153
loops and 182
lower_bound 192-201
equality vs. equivalence and 195
max_element 157
merge 148, 192
min_element 157
mismatch 151
nth_element 133-138
optimizations in 183

246 Index

partial_sort 133-138
partial_sum 157
partition 133-138
containers of pointers and 145
remove 139-143
on containers of pointers 143-146
remove_copy_if 44
remove_if 44, 144, 145
see also remove
possible implementation of 167
set_difference 148
set_intersection 148
set_symmetric_difference 148, 153
set_union 148
sort 133-138
sorted ranges and 146-150
sorting 133-138
alternatives to 138
stable_partition 133-138
stable_sort 133-138
string member functions vs. 230
transform 129
unique 145, 148, 149
see also remove
unique_copy 148, 149
upper_bound 197-198
All your base are belong to us
allocations
minimizing via reserve 66-68
minimum, in string 72
allocator
allocate interface, vs. operator new 51
allocators
boilerplate code for 54
conventions and restrictions 48-54
fraud in interface 51
in string 69
legitimate uses 54-58
never being called 52
permitted assumptions about 49
rebind template within 53
stateful, portability and 50, 51, 212
summary of guidelines for 54
typedefs within 48
URLs for examples 227, 228
allusions
to Candide 143
to Do Not Go Gentle into that Good
Night 187
to Martin Luther King, Jr. 51
to Matthew 25:32 222
to The Little Engine that Could 63
amortized constant time complexity 6
ANSI Standard for C++
see C++ Standard, The
anteater 88
argument_type 170
array-based containers, definition of 13

Effective STL

arrays
as part of the STL 2
as STL containers 64
containers vs. 22
vector and string vs. 63-66
assignments
assign vs. operator= 25
superfluous, avoiding 31
via range member functions 33
associative containers
see standard associative containers,
hashed containers
Austern, Matt xvi, xvii, 54, 226, 227, 228
see also Generic Programming and the
STL
author, contacting the xii
auto_ptr
as container element 40-43
semantics of copying 41
sorting 41
URL for update page on 228
average, finding, for a range 159-161
Avery, Katrina xvii

B

back_insert_iterator 216
back_inserter 130, 216
push_back and 130
backwards order, inserting elements
in 184
Barron, Carl xvi
base, see reverse_iterator
basic_ostream, relation to ostream 230
basic_string
relation to string 210, 229
relation to string and wstring 4
Becker, Pete xvii
Becker, Thomas xvii
begin/end, relation to rbegin/rend 123
bidirectional iterators
binary search algorithms and 148
definition of 5
standard associative containers and 5
binary_function 170-172
pointer parameters and 172
reference parameters and 171
binary_search 199
bsearch vs. 194
related functions vs. 192-201
bind1st 216
adaptability and 170
bind2nd 210, 216
adaptability and 170
reference-to-reference problem and 222
binderist 216

247 Index

binder2nd 216

binders, definition of 5

bitfields 80

bitset
as alternative to vector<bool> 81
as part of the STL 2

Boost 170, 172, 221-223
shared_array 222
shared_ptr 39, 146, 165, 178, 222
web site URL 217, 227

Bridge Pattern 165

Bruce, Robin xviii

bsearch, vs. binary_search 194

bugs
Dinkumware list for MSVC 244
in this book, reporting xii

Bulka, Dov 226
see also Efficient C++

Buzard, Susannah xviii

C

C++ Programming Language, The 61, 155
bibliography entry for 226
C++ Standard Library, The 2, 6, 94, 113,
207
bibliographic entry for 225
C++ Standard, The
bibliography entry for 226
citation number omitted for 3
guidance on choosing containers 12
reference counting and 64
URL for purchasing 226
Campbell, Aaron xvii
Candide, allusion to 143
capacity
cost of increasing for vector/string 66
minimizing in vector and string 77-79
capacity, vs. size 66-67
Carey, Alicia xviii
case conversions, when not one-for-
one 234
case-insensitive
string class 229-230
string comparisons, see string
casts
const_iterator to iterator 120
creating temporary objects via 98
to references 98
to remove constness 98
to remove map/multimap constness 99
categories, for iterators 5
char_traits 113, 211, 230
choosing
among binary_search, lower_bound,
upper_bound, and
equal_range 192-201
among containers 12

Effective STL

among iterator types 116-119
vector vs. string 64
citations, in this book 2
class vs. typename 7
classes, vs. structs for functor classes 171
clustering, in node-based containers 103
COAPs, see containers, auto_ptr
collate facet 234
color, use in this book 8
comp.lang.c++.moderated xv
comp.std.c++ xv
comparison functions
consistency and 149
equal values and 92-94
for pairs 104
comparisons
see also string, comparisons, compari-
son functions
iterators with const_iterators 118
lexicographic 231
compilers
diagnostics, deciphering 210-217
implementations, vs. STL impls 3
independence, value of 3
optimizations, inlining and 202
problems, see workarounds
complexity
amortized constant time 6
constant time 6
guarantees, in the STL 5-6
linear time 6
logarithmic time 6
composel 219
compose2 187, 219
const_iterator
casting to iterator 120
comparisons with iterators 118
converting to iterator 120-123
other iterator types vs. 116-119
const_reverse_iterator
other iterator types vs. 116-119
constant time complexity 6
amortized, see amortized constant time
constness
casting away 98
of map/multimap elements 95
of set/multiset elements 95
construction, via range mem funcs 31
contacting the author xii
container adapters, as part of the STL 2
container-independent code 16, 47
illusory nature of 15-20
containers
arrays as 64
arrays vs. 22
assign vs. operator= in 25
associative, see standard associative
containers

248 Index

auto_ptrs in 40-43
calling empty vs. size 23-24
choosing among
advice from the Standard 12
iterator types 116-119
contiguous memory
see contiguous-memory containers,
vector, string, deque, rope
converting const_iterators to
iterators 120-123
criteria for selecting 11-15
deleting pointers in 36-40
encapsulating 19
erasing
see also erase-remove idiom
elements in 43-48
iterator invalidation during 14, 45
relation to remove 139-143
exception safety and 14, 37, 39
filling from legacy APIs 77
hashed, see hashed containers
improving efficiency via reserve 66-68
insertions
in reverse order 184
iterator invalidation during 14
iterators
casting among 121
invalidation, see iterators, invalida-
tion
mem funcs vs. algorithms 190-192
node-based
see node-based containers, list, stan-
dard associative containers, slist
object copying and 20-22
of pointers, remove and 143-146
of proxy objects 82
of smart pointers 39
range vs. single-element member
functions 24-33
relation of begin/end, rbegin/rend 123
replacing one with another 18
requirements in the Standard 79
resize vs. reserve 67
rolling back insertions and erasures 14
rope 218
sequence
see standard sequence containers
size vs. capacity 66-67
size_type typedef 158
slist 218
sorted vector vs. associative 100-106
thread safety and 58-62
transactional semantics for insertion
and erasing 14
typedefs for 18-19
value_type typedef 36, 108
vector<bool>, problems with 79-82

Effective STL

contiguous memory

for string 75

for vector 74
contiguous-memory containers

see also vector, string, deque, rope

cost of erasing in 32

cost of insertion 28

definition of 13

iterator invalidation in, see iterators,

invalidation

conventions, for allocators 48-54
conversions

among iterator types 117

from const_iterator to iterator 120-123

when not one-for-one 234
copy

eliminating calls to 26

insert iterators and 26

missing member templates and 242
copy_if, implementing 154-156
copying

auto_ptrs, semantics of 41

function objects

efficiency and 164
within algorithms 166-168

objects in containers 20-22
count 156

as existence test 193

equal_range vs., for sorted ranges 197

related functions vs. 192-201
count_if 157
<cctype>, conventions of functions in 151
<ctype.h>, conventions of functions in 151

D

Dalla Gasperina, Marco xvi
debug mode, see STLport, debug mode
deciphering compiler diagnostics 210-217
definitions
adaptable function object 170
amortized constant time complexity 6
array-based container 13
bidirectional iterator 5
binder 5
COAP 40
constant time complexity 6
container-independent code 16
contiguous-memory container 13
equality 84
equivalence 84-85
forward iterator 5
function object 5
functor 5
functor class 5
input iterator 5
linear time complexity 6

249 Index

local class 189
logarithmic time complexity 6
monomorphic function object 164
node-based container 13
output iterator 5
predicate 166
predicate class 166
pure function 166
random access iterator 5
range member function 25
resource acquisition is initialization 61
stability, in sorting 135
standard associative container 5
standard sequence container 5
STL platform 3
transactional semantics 14
delete
delete[] vs. 63
using wrong form 64
deleting
objects more than once 64
pointers in containers 36-40
dependent types, typename and 7-8
deque
unique invalidation rules for 15
see also iterators, invalidation
deque<bool>, as alternative to
vector<bool> 81
dereferencing functor class 90
Derge, Gillmer xvii
Design Patterns 80, 165
bibliography entry for 226
Design Patterns CD
bibliography entry for 226
destination range, ensuring adequate
size 129-133
destructors, calling explicitly 56
Dewhurst, Stephen xvii
dictionary order comparison, see lexico-
graphic comparison
Dinkumware
bug list for MSVC STL 244
hashed containers implementation 114
interface for hashed containers 113
slist implementation 218
STL replacement for MSVC6 243
web site for 243
disambiguating function and object
declarations 35
distance
declaration for 122
efficiency of 122
explicit template argument specifica-
tion and 122
to convert const_iterators to
iterators 120-123
Do Not Go Gentle into that Good Night,
allusion to 187

Effective STL

documentation, on-line, for the STL 217
Dr. Seuss xi

E

Effective C++
bibliography entry for 225
citation number omitted for 3
inheritance from class without a virtual
destructor discussion in 37
inlining discussion in 202
object copying discussions in 21
pointer to implementation class discus-
sion in 165
slicing problem discussion in 22
URL for errata list for 228
Effective C++ CD
bibliography entry for 225
URL for errata list for 228
Effective STL, web site for xii
efficiency
see also optimizations
advance and 122
algorithms vs. explicit loops 182-184
associative container vs. sorted
vector 100-106
case-insensitive string comparisons
and 154
comparative, of sorting algorithms 138
copy vs. range insert 26
copying
function objects and 164
objects and 21
distance and 122
empty vs. size 23-24
erasing from contiguous-memory
containers 32
function objects vs. functions 201-205
hashed containers, overview of 111-115
hashing and 101
“hint” form of insert and 110
improving via custom allocators 54
increasing vector/string capacity 66
inlining and 202
inserting into contiguous-memory
containers 28
istreambuf_iterators and 126-127
Items on 9
list:remove vs. the erase-remove
idiom 43
logarithmic vs. linear 190
map::operator[] vs. map:insert 106-111
mem funcs vs. algorithms 190-192
minimizing reallocs via reserve 66-68
ostreambuf_iterators and 127
range vs. single-element member
functions 24-33
small string optimization 71
sort vs. gsort 203

250 Index Effective STL

sorting algorithms, overview of 133-138 BadPredicate 167, 168
string implementation trade-offs 68-73 BetweenValues 188, 189
toupper and 236-237 BPFC 164, 165
use_facet and 234 BPFCImpl 165
Efficient C++ 202 ClIStringCompare 85
bibliography entry for 226 Contestant 77
Einstein, Albert 69 CustomerList 20

DataCompare 105
DeleteObject 37, 38
Dereference 90
Dereferenceless 91
DoSomething 163

Emacs 27
email address
for comments on this book xii
for the President of the USA 212
embedded nulls 75, 154

. Employee 95
empty, vs. size 23-24 Heap1 57
encapsulating containers 19 Heap2 57
equal_range 196-197 IDNumberLess 96
count vs., for sorted ranges 197 list 52
related functions vs. 192-201 list:ListNode 52
equal_to 86, 112 Lock 60
equality It_nocase 231
definition of 84 It_str_1 235
equivalence vs. 83-88 It_str_1:lt_char 235
in hashed containers 113 lt_str_2 236
lower_bound and 195 [t_str_2:lt_char 236

MaxSpeedCompare 179
MeetsThreshold 171
NiftyEmailProgram 212, 215
Person 198
PersonNameLess 198

Point 159, 161
PointAverage 160, 161

equivalence
definition of 84-85
equality vs. 83-88
in hashed containers 113
lower_bound and 195
equivalent values, inserting in order 198

erase PtrWidgetNameCompare 172
see also erase-remove idiom RCSP 146
relation to remove algorithm 139-143 SharedMemoryAllocator 55
return types for 32 SpecialAllocator 19, 49
return value for standard sequence SpecialContainer 240
containers 46 SpecialString 37
erase_after 218 SpecialWidget 21
erase-remove idiom 43, 47, 142, 145, 146, SpecificHeapAllocator 57
184, 207 std:less<Widget> 178
limitations of 46 StringPtrGreater 93
list:remove vs. 43 StringPtrLess 89
remove_if variant 144 StringSize 204
erasing Timestamp 197
see also containers, erasing vector 240
base iterators and 124 Widget 7, 18, 19, 21, 35, 84, 106, 111, 143,
elements in containers 43-48 174, 177, 182, 222
rolling back 14 WidgetNameCompare 171
via range member functions 32 example functions/templates
errata list anotherBadPredicate 169
for Effective C++ 228 average 204
for Effective C++ CD 228 Average::operator() 205
for More Effective C++ 228 BadPredicate::BadPredicate() 167
for this book xii BadPredicate::operator() 167, 168
error messages, deciphering 210-217 BetweenValues::BetweenValues 188
example classes/templates BetweenValues::operator() 188
Average 205 BPFC::operator() 164, 165

BPFCImpl::"BPFCImpl 165
BPFCImpl::operator() 165

251 Index

ciCharCompare 151
ciCharLess 153
ciStringCompare 152, 153, 154
ClIStringCompare::operator() 85
ciStringComparelmpl 152
copy_if 155, 156
DataCompare:keylLess 105
DataCompare::operator() 105
delAndNullifyUncertified 145
DeleteObject::operator() 37, 38
Dereference::operator() 90
Dereferenceless::operator() 91
doSomething 36, 37, 38, 39, 74, 75, 77
DoSomething::operator() 163
doubleGreater 202
efficientAddOrUpdate 110
Employee:idNumber 95
Employee:name 95
Employee:setName 95
Employee:setTitle 95
Employee:title 95
fillArray 76, 77, 184
fillString 76
hasAcceptableQuality 137
Heap1:alloc 57
Heap1:dealloc 57
IDNumberLess::operator() 96
isDefective 155
isinteresting 169
lastGreaterThanFirst 8
Lock:"Lock 60
Lock:Lock 60
It_nocase:operator() 231
It_str_1:zlt_char:lt_char 235
It_str_1:lt_char:operator() 235
It_str_1zlt_str_1 236
It_str_1:operator() 236
It_str_2:lt_char:lt_char 236
It_str_2:lt_char:operator() 236
It_str_2:lt_str_2 237
It_str_2:operator() 237
MaxSpeedCompare::operator() 179
MeetsThreshold:MeetsThreshold 171
MeetsThreshold::operator() 171
NiftyEmailProgram::showEmailAddress
212, 215
operator< for Timestamp 197
operator< for Widget 177
operator== for Widget 8, 84
Person::name 198
Person::operator() 198
Point::Point 159
PointAverage:operator() 160, 161
PointAverage::PointAverage 160, 161
PointAverage:result 161
print 90

PtrWidgetNameCompare::operator() 172

qualityCompare 134
SharedMemoryAllocator:allocate 55

Effective STL

SharedMemoryAllocator:deallocate 55
SpecificHeapAllocator::allocate 57
SpecificHeapAllocator::deallocate 57
std::less<Widget>:operator() 178
stringLengthSum 158
StringPtrGreater::operator() 93
stringPtrLess 91
StringPtrLess::operator() 89
StringSize::operator() 204
test 174
transmogrify 129, 220
vector<bool>:operator[] 80
vector<bool>:reference 80
Widget:isCertified 143
Widget:maxSpeed 177
Widget::operator= 21, 106, 111
Widget:readStream 222
Widget:redraw 182
Widget:test 174
Widget:weight 177
Widget:Widget 21, 106
widgetAPCompare 41
WidgetNameCompare::operator() 171
writeAverages 204, 205
exception safety 14, 37, 39, 50, 61
Exceptional C++ 14, 165
bibliography entry for 226
exceptions, to guidelines in this book 10
explicit template argument specification
distance and 122
for_each and 163
use_facet and 234
extending the STL 2

F

facets, locales and 234-235
find
count in multiset, multimap vs. 199
lower_bound in multiset, multimap
vs. 201
related functions vs. 192-201
using equivalence vs. equality 86
first_argument_type 170
for_each
declaration for 163
explicit template argument specifica-
tion and 163
possible implementation of 174
side effects and 160
forward iterators
definition of 5
operator-- and 5
fragmentation, memory, reducing 54
fraud, in allocator interface 51
free STL implementations 217, 220
front_insert_iterator 216

252 Index

front_inserter 130, 216
push_front and 130
Fuller, John xviii
function objects
as workaround for compiler
problems 204
definition of 5
dereferencing, generic 90
for accumulate 158
functions vs. 201-205
monomorphic, definition of 164
pass-by-value and 162-166
slicing 164
functional programming 206
functions
calling forms 173
calling syntax in the STL 175
comparison
equal values and 92-94
for pointers 88-91
declaration forms 33-35
declaring templates in 188
function objects vs. 201-205
in <cctype>, conventions of 151
in <ctype.h>, conventions of 151
pointers to, as formal parameters 34
predicates, need to be pure 166-169
pure, definition of 166
range vs. single-element 24-33
functor classes
adaptability and 169-173
classes vs. structs 171
definition of 5
overloading operator() in 114
pass-by-value and 162-166
functor, see function objects

G

Gamma, Erich 226
see also Design Patterns
Generic Programming and the STL 2, 94,
217, 229
bibliography entry for 226
gewurztraminer 232
glass, broken, crawling on 95, 97
Glassborow, Francis xvii
Green, CIiff xvii
growth factor, for vector/string 66

H

hand-written loops
algorithms vs. 181-189
iterator invalidation and 185
Hansen, Karin xviii

Effective STL

Harrison, Doug xvi, xvii
hashed containers 111-115
Dinkumware interface for 113
equality vs. equivalence in 113
SGI interface for 112
two implementation approaches to 114
headers
#includeing the proper ones 209-210
<algorithm> 210
<cctype> 151
<ctype.h> 151
<functional> 210
<iterator> 210
<list> 209
<map> 209
<numeric> 210
<numeric> 157
<set> 209
<vector> 209
failing to #include 217
summary of 209-210
heaps, separate, allocators and 56-58
Helm, Richard 226
see also Design Patterns
Henney, Kevlin xvi
“hint” form of insert 100, 110
Houw the Grinch Stole Christmas! xi

I

identifiers, reserved 213
identity 219
implementations
compilers vs. the STL 3
variations for string 68-73
includes 148
#includes, portability and 209-210
inlining 202
function pointers and 203
inner_product 157
inplace_merge 148
input iterators
definition of 5
range insert and 29
insert
as member template 240
“hint” form 100, 110
operator[] in map vs. 106-111
return types for 32
insert iterators
see also inserter, back_inserter,
front_inserter
container::reserve and 131
copy algorithm and 26
insert_after 218
insert_iterator 216

253 Index

inserter 130, 216
inserting

see also containers, insertions

base iterators and 124

equivalent values in order 198

in reverse order 184

rolling back 14

via range member functions 32
internationalization

see also locales

strcmp and 150

stricmp/strcmpi and 154
invalidation, see iterators, invalidation
ios:skipws 126
iostreams library, SGI implementation

of 220

ISO Standard for C++

see C++ Standard, The
istream_iterators 157, 210

operator>> and 126

parsing ambiguities and 35
istreambuf_iterators 157, 210

use for efficient I/O 126-127
Items on efficiency, list of 9
iterator

comparisons with const iterators 118

other iterator types vs. 116-119

reverse_iterator’s base and 123-125
iterator_traits 113

value_type typedef 42
iterators

see also istreambuf_iterators,

ostreambuf_iterators

base, erasing and 124

base, insertion and 124

casting 120

categories 5

see also input iterators, output iterator,
forward iterators, bidirectional it-

erators, random access iterators

in hashed containers 114
choosing among types 116-119
conversions among types 117
dereferencing function object for 91
implemented as pointers 120
invalidation

during deque::insert 185

during erasing 14, 45, 46

during insertion 14

during vector reallocation 59

during vector/string insert 68

during vector/string reallocation 66

during vector::insert 27

in hand-written loops 185

in standard sequence containers 17

in STLport STL implementation 221

predicting in vector/string 68

Effective STL

undefined behavior from 27, 45, 46,

185
unique rules for deque 15
pointers in vector vs. 75
relationship between iterator and
reverse_iterator’s base 123-125
typedefs for 18-19
types in containers
see also iterator,

casting among 121
types, mixing 119

J

Johnson, Curt xviii

Johnson, Ralph 226
see also Design Patterns

Johnson, Tim xvii

Jones, Jason xviii

Josuttis, Nicolai xv, xvi, xvii, 225, 227
see also C++ Standard Library, The

K

Kanze, James xvi

Kasperski, Marcin xvii

Kernighan, Brian xvii

key_comp 85, 110

keys, for set/multiset, modifying 95-100
King, Martin Luther, Jr., allusion to 51
Kreft, Klaus xvi, 228

L

Langer, Angelika xvi, xviii, 228
leaks, see resource leaks
Leary-Coutu, Chanda xviii
legacy APIs
filling containers from 77
sorted vectors and 76
vector and string and 74-77
vector<bool> and 81
lemur 88
less 210
operator< and 177-180
less_equal 92
Lewandowski, Scott xvi
lexicographic comparison 231
lexicographical_compare 153
strcmp and 153
use for case-insensitive string
comparisons 150-154
Ihs, as parameter name 8-9

const_iterator,
reverse_iterator, const_reverse_iterator

254 Index

linear time complexity 6
for binary search algorithms with bidi-
rectional iterators 148
logarithmic complexity vs. 190
list
algorithm specializations 192
iterator invalidation in, see iterators,
invalidation
merge 192
remove 142-143
vs. the erase-remove idiom 43
sort 137
splice
exception safety of 50
vs. size 23-24
unique 143
Little Engine that Could, The, allusion
to 63
local classes
definition of 189
type parameters and 189
locales 232-233
case-insensitive string comparisons
and 229-237
facets and 234-235
locality of reference 103
improving via allocators 55
locking objects 60
logarithmic time complexity 6
linear complexity vs. 190
meaning for binary search
algorithms 147
longest algorithm name 153
lookup speed, maximizing 100
lower_bound
equality vs. equivalence and 195
related functions vs. 192-201

M

mailing list for Scott Meyers xiii
Manning, Jared xvii
map
add or update functionality in 107
constness of elements 95
iterator invalidation in, see iterators,
invalidation
key, casting away constness 99
key_comp member function 110
value_type typedef 108
Matthew 25:32, allusion to 222
max_element 157
max_size 66
Mayhew, David 226
see also Efficient C++

Effective STL

mem_fun
declaration for 175
reasons for 173-177
reference-to-reference problem and 222
mem_fun_ref
reasons for 173-177
reference-to-reference problem and 222
mem_fun_ref_t 175
mem_fun_t 175
member funcs, vs. algorithms 190-192
member function templates
see member templates
member templates
avoiding client redundancy with 38
in the STL 239-240
Microsoft’s STL platforms and 239-244
vector:insert as 240
workaround for when missing 242
memory fragmentation, allocators and 54
memory layout
for string 69-71, 75
for vector 74
memory leaks, see resource leaks
memory, shared, allocators and 55-56
merge 148, 192
Meyers, Scott
mailing list for xiii
web site for xiii
Microsoft’s STL platforms 239-244
Dinkumware replacement library
for 243
microsoft.public.vc.stl xv
min_element 157
mismatch 151
use for case-insensitive string
comparisons 150-154
mixing iterator types 119
modifying
components in std 178
const objects 99
set or multiset keys 95-100
monomorphic function objects 164
Moore, Aaron xvii
More Effective C++
auto_ptr and 40
bibliography entry for 225
citation number omitted for 3
errata list 228
smart pointers and 39
placement new discussion in 56
proxy objects discussion in 49, 80
reference counting discussion in 4, 71
resource acquisition is initialization
discussion in 61
smart pointer discussion in 39

255 Index

STL overview in xi
URL for auto_ptr update page for 228
URL for errata list for 228
More Exceptional C++
bibliography entry for 226
multimap
constness of elements 95
find vs. count in 199
find vs. lower_bound in 201
indeterminate traversal order in 87
iterator invalidation in, see iterators,
invalidation
key, casting away constness 99
value_type typedef 108
multiple deletes 64
multiplies 159
multiset
constness of elements 95
corrupting via element modification 97
find vs. count in 199
find vs. lower_bound in 201
indeterminate traversal order in 87
iterator invalidation in, see iterators,
invalidation
keys, modifying 95-100
multithreading
allocators and 54
containers and 58-62
reference counting and 64-65
string and 64-65

N

Naran, Siemel xvi
newsgroups xv
comp.lang.c++.moderated xv
comp.std.c++ xv
microsoft.public.vc.stl xv
node-based containers
see also standard associative contain-
ers, list, slist, hashed containers
allocators and 52
clustering in 103
definition of 13
nonstandard containers
see hashed containers, slist, rope
not1 155, 156, 169, 170, 172, 210, 222
adaptability and 170
not2 152, 222
adaptability and 170
nth_element 133-138
nulls, embedded 75, 154
<numeric> 157

Effective STL

o

objects
copying, in containers 20-22
for locking 60
slicing 21-22, 164
temporary, created via casts 98
One True Editor, the, see Emacs
operator new, interface,
vs.allocator:allocate 51
operator() 5
declaring const 168
functor class and 5
inlining and 202
overloading
adaptability and 173
in functor classes 114
operator++, side effects in 45
operator--, forward iterators and 5
operator. (“operator dot”) 49
operator<, less and 177-180
operator>>
istream_iterators and 126
sentry objects and 126
whitespace and 126
operator[], vs. insert in map 106-111
optimizations
algorithms and 183
function pointers and 203
inlining and 202
istreambuf_iterators and 127
range insertions and 31
reference counting and 64
small strings and 71
stricmp/strcmpi and 154
to reduce default allocator size 70
ostream, relation to basic_ostream 230
ostream_iterators 216
ostreambuf_iterators 216
efficiency and 127
output iterator, definition of 5
overloading, operator() in functor
classes 114

P

page faults 102, 103
pair, comparison functions for 104
parameters
function objects vs. functions 201-205
pointers to functions 34
type, local classes and 189
parentheses
ignored, around parameter names 33
to distinguish function and object
declarations 35

256 Index

parse, most vexing in C++ 33-35
parsing, objects vs. functions 33-35
partial_sort 133-138
partial_sum 157
partition 133-138
containers of pointers and 145
remove vs. 141
pass-by-value
function objects and 163
functor classes and 162-166
penguin 88
Perfect Woman, see Woman, Perfect
performance, see efficiency
Persephone xviii
Pimpl Idiom 165
placement new 56
Plauger, P. J. xvi, 114, 227
pointers
allocator typedef for 48
as iterators 120
as return type from vector:begin 75
assignments, avoiding superfluous 31
comparison functions for 88-91
deleting in containers 36-40
dereferencing function object for 91
destructors for 36
invalidation, see iterators, invalidation
iterators in vector vs. 75
parameters, binary_function and 172
parameters, unary_function and 172
returned from reverse_iterator:base 125
smart, see smart pointers
to bitfields 80
to functions, as formal parameters 34
portability
#includes and 209-210
casting const iterator to iterators 121
container:<auto_ptr>and 41
explicit template argument specifica-
tion and 163
hashed containers, code using 112
identity, projectist, project2nd,
composel, compose2, selectlst,
select2nd and 219
multiple compilers and 3
range construction with
istream_iterators and 35
reverse_iterator:base and 125
set/multiset key modification and 98
stateful allocators and 50, 51
STLport STL implementation and 220
stricmp/strcmpi and 154
Potter, John xvi, xvii
predicate class, definition of 166
predicates
definition of 166
need to be pure functions 166-169

Effective STL

predicting iterator invalidation, in vector/
string 68
principle of least astonishment, the 179
priority_queue 138
as part of the STL 2
projectlst 219
project2nd 219
proxy objects 49
containers of 82
vector<bool> and 80
ptr_fun, reasons for 173-177
pure function, definition of 166
push_back, back_inserter and 130
push_front, front_inserter and 130

qsort 162
declaration for 162
sort vs. 203
queue, as part of the STL 2

R

Rabinowitz, Marty xviii
random access iterators
definition of 5
sorting algorithms requiring 137
range
destination, ensuring adequate
size 129-133
member functions 25
input iterators and 29
single-element versions vs. 24-33
summary of 31-33
pointer assignments in list and 31
sorted, algorithms requiring 146-150
summarizing 156-161
raw_storage_iterator 52
RB trees, see red-black trees
rbegin/rend, relation to begin/end 123
reallocations
invalidation of iterators during 59
minimizing via reserve 66-68
rebinding allocators 53
red-black trees 190, 191, 214
redundant computations, avoiding via
algorithm calls 182
Reeves, Jack xvi, 227
reference counting
disabling, for string 65
multithreading and 64-65
smart pointers 39, 146
see also Boost, shared_ptr
string and 64-65

257 Index

The C++ Standard and 64
this book and 4
references
allocator typedef for 48
casting to 98
invalidation, see iterators, invalidation
parameters, binary_function and 171
parameters, unary_function and 171
to bitfields 80
reference-to-reference problem 222
remove 139-142
see also erase-remove idiom
on containers of pointers 143-146
partition vs. 141
remove_copy_if 44
remove_if 44, 144, 145
see also remove
possible implementation of 167
replace_if 186
replacing STL implementations 243
reporting bugs in this book xii
reserve
insert iterators and 131
resize vs. 67
resize
reallocation and 67
reserve vs. 67
resource acquisition is initialization 61
resource leaks 36, 39, 63, 144, 145
avoiding via smart pointers 39, 146
preventing via classes 61
result_type 170
return type
allocator::allocate vs. operator new 51
for container::begin 75
for distance 122
for erase 32, 117
for function objects for accumulate 158
for insert 17, 32, 117
for vector::operator[] 80
reverse order
inserting elements in 184
reverse_iterator
base member function 123-125
other iterator types vs. 116-119
rhs, as parameter name 8-9
Rodgers, Mark xv, xvi, xvii
rolling back, insertions and erasures 14
rope 218

S

Scheme 206
second_argument_type 170
selectlst 219
select2nd 219

Effective STL

sentry objects, operator<< and 126
separate heaps, allocators and 56-58
sequence containers
see standard sequence containers
set
constness of elements 95
corrupting via element modification 97
iterator invalidation in, see iterators,
invalidation
keys, modifying 95-100
membership test, idiomatic 199
set_difference 148
set_intersection 148
set_symmetric_difference 148, 153
set_union 148
sgetc 127
SGI
hashed containers implementation 114
iostreams implementation 220
slist implementation 218
STL web site 94, 207, 217-220
thread-safety definition at 58
URL for 217, 227
shared memory, allocators and 55-56
shared_ptr, see Boost, shared_ptr
shrink to fit, see swap trick, the
side effects
accumulate and 160
for_each and 160
in operator++ 45
size
Vs. capacity 66-67
vs. empty 23-24
size_type 158
sizeof, variations when applied to string 69
skipws 126
slicing problem 21-22, 164
slist 218
small string optimization 71
Smallberg, David xvi, xvii
smart pointers
see also Boost, shared_ptr
avoiding resource leaks with 39, 146
dereferencing function object for 91
implicit conversions and 146
sort 133-138
gsort vs. 203
sorted range
algorithms requiring 146-150
sorted vectors
associative containers vs. 100-106
legacy APIs and 76
sorting
algorithms for 133-138
auto_ptrs 41
consistency and 149

258 Index

stability, in sorting 135
stable_partition 133-138
stable_sort 133-138
stack, as part of the STL 2
Staley, Abbi xviii
standard associative containers
see also containers
bidirectional iterators and 5
comparison funcs for pointers 88-91
definition of 5
“hint” form of insert 100, 110
iterator invalidation in, see iterators,
invalidation
key_comp member function 85
search complexity of 6
sorted vector vs. 100-106
typical implementation 52, 190
Standard for C++
see C++ Standard, The
standard sequence containers
see also containers
definition of 5
erase’s return value 46
iterator invalidation in, see iterators,
invalidation
push_back, back_inserter and 130
push_front, front_inserter and 130
Standard Template Library, see STL
Stepanov, Alexander 201
STL
algorithms, vs. string member
functions 230
arrays and 2
bitset and 2
complexity guarantees in 5-6
container adapters and 2
containers, selecting among 11-15
definition of 2
documentation, on-line 217
early usage problems with xi
extending 2
free implementations of 217, 220
function call syntax in 175
implementations
compiler implementations vs. 3
Dinkumware bug list for MSVC 244
replacing 243
member templates in 239-240
platform, see STL platform
priority_queue and 2
queue and 2
stack and 2
thread safety and 58-62
valarray and 2
web sites about 217-223
wide-character strings and 4

Effective STL

STL platform
definition of 3
Microsoft’s, remarks on 239-244
STLport 220-221
debug mode 185, 216
detecting invalidated iterators in 221
hashed containers at 112
URL for 217
strcmp 152, 234
internationalization issues and 150
lexicographical_compare and 153
strcmpi 154
streams, relation to string 230
stricmp 154
strict weak ordering 94
string
allocators in 69
alternatives to 65
arrays vs. 63-66
as typedef for basic_string 65
c_str member function 75
comparisons
case-insensitive 150-154, 235-237
using locales 229-237
cost of increasing capacity 66
disabling reference counting 65
embedded nulls and 75, 154
growth factor 66
implementation variations 68-73
inheriting from 37
iterator invalidation in, see iterators,
invalidation
iterators as pointers 120
legacy APIs and 74-77
mem funcs vs. algorithms 230
memory layout for 75
minimum allocation for 72
multithreading and 64-65
reference counting and 64-65
relation to basic_string 4, 210, 229
relation to streams 230
reserve, input iterators and 131
resize vs. reserve 67
shrink to fit 78-79
size vs. capacity 66-67
size_type typedef 158
sizeof, variations in 69
small, optimization for 71
summing lengths of 158
trimming extra capacity from 77-79
vector vs. 64
vector<char> vs. 65
whether reference-counted 65
wstring and 4
string_char_traits 211

259 Index

strings
case-insensitive 229-230
wide-character, see wstring
Stroustrup, Bjarne xvi, 68, 226, 228
see also C++ Programming Language,
The
structs, vs. classes for functor classes 171
summarizing ranges 156-161
Sutter, Herb xvi, xvii, 65, 226, 227, 228
see also Exceptional C++
swap trick, the 77-79

T

templates
declaring inside functions 188
explicit argument specification for 122,
163, 234
instantiating with local classes 189
member
in the STL 239-240
Microsoft’s platforms and 239-244
parameters, declared via class vs.
typename 7
temporary objects, created via casts 98
thread safety, in containers 58-62
see also multithreading
tolower 151
as inverse of toupper 235
toupper
as inverse of tolower 235
cost of calling 236-237
traits classes 113, 211, 230
transactional semantics 14
transform 129, 186
traversal order, in multiset, multimap 87
trees, red-black 190, 191, 214
typedefs
allocator::pointer 48
allocator:reference 48
argument_type 170
container:size_type 158
container::value_type 36
first_argument_type 170
for container and iterator types 18-19
mem_fun and 176
mem_fun_ref and 176
ptr_fun and 170
result_type 170
second_argument_type 170
string as 65
wstring as 65
typename
class vs. 7
dependent types and 7-8

Effective STL

U

unary_function 170-172
pointer parameters and 172
reference parameters and 171
undefined behavior
accessing v[0] when v is empty 74
applying some algorithms to ranges of
unsorted values 147
associative container comparison funcs
yielding true for equal values 92
attempting to modify objects defined to
be const 99
changing a set or multiset key 97
deleting an object more than once 64
deleting derived object via ptr-to-base
with a nonvirtual destructor 38
detecting via STLport’s debug
mode 220-221
modifying components in std 178
multithreading and 59
practical meaning of 3-4
side effects inside accumulate’s function
object 160
specifying uninitialized memory as des-
tination range for algorithms 132
using algorithms with inconsistent sort
orders 149
using the wrong form of delete 64
when using invalidated iterator 27, 45,
46, 185
underscores, in identifiers 213
uninitialized_fill 52
uniq 148
unique 145, 148, 149
see also remove
unique_copy 148, 149
unsigned char, use in <cctype> and
<ctype.h> 151
upper_bound 197-198
related functions vs. 192-201
Urbano, Nancy L., see Perfect Woman
URLSs
for Austern’s sample allocator 228
for auto_ptr update page 228
for Boost web site 217, 227
for Dinkumware web site 243
for Effective C++ CD errata list 228
for Effective C++ errata list 228
for Effective STL errata list xii
for Josuttis’ sample allocator 227
for More Effective C++ errata list 228
for Persephone’s web site 71
for purchasing The C++ Standard 226
for Scott Meyers’ mailing list xiii
for Scott Meyers’ web site xiii
for SGI STL web site 217, 227

260 Index

for STLport web site 217
for this book’s errata list xii
for this book’s web site xii
use_facet 234
cost of calling 234
explicit template argument specifica-
tion and 234
Usenet newsgroups, see newsgroups

\"/

valarray, as part of the STL 2
value_type typedef
in containers 36, 108
in iterator_traits 42
vector
see also vector<bool>, vector<char>
arrays vs. 63-66
contiguous memory for 74
cost of increasing capacity 66
growth factor 66
iterator invalidation in, see iterators,
invalidation
iterators as pointers 120
legacy APIs and 74-77
reserve, input iterators and 131
resize vs. reserve 67
return type from begin 75
shrink to fit 78-79
size vs. capacity 66-67
sorted
legacy APIs and 76
vs. associative containers 100-106
string vs. 64
trimming extra capacity from 77-79
vector:insert, as member template 240
vector<bool>
alternatives to 81
legacy APIs and 81
problems with 79-82
proxy objects and 80
vector<char>, vs. string 65
virtual functions, toupper and 236-237
Visual Basic 127
Visual C++, see Microsoft’s STL platforms
Vlissides, John 226
see also Design Patterns
vocabulary, algorithms as 186
Von, Victor xvii

w

Wait, John xviii
wchar_t 4
web sites
see also URLs
for STL-related resources 217-223

Effective STL

whitespace, operator<< and 126
wide-character strings, see wstring
Widget, use in this book 9
Wizard of Oz, The 83
Woman, Perfect, see Urbano, Nancy L.
wombat 88
workarounds
for improperly declared iterator-related
functions 119
for Microsoft’s STL platforms 242-244
for missing member templates 242
for use_facet 234
function objects as 204
write-only code, avoiding 206-208
writing the author xii
wstring
as typedef for basic_string 65
relation to basic_string 4
string and 4
this book and 4

Y

Yelle, Dennis xvii

Y/

Zolman, Leor xvii, 211, 228

	Title Page
	Copyright Page
	Contents
	Addison-Wesley Professional Computing Series
	Preface
	Acknowledgments
	Introduction
	Chapter 1: Containers
	Item 1: Choose your containers with care.
	Item 2: Beware the illusion of container-independent code.
	Item 3: Make copying cheap and correct for objects in containers.
	Item 4: Call empty instead of checking size() against zero.
	Item 5: Prefer range member functions to their single-element counterparts.
	Item 6: Be alert for C++’s most vexing parse.
	Item 7: When using containers of newed pointers, remember to delete the pointers before the container is destroyed.
	Item 8: Never create containers of auto_ptrs.
	Item 9: Choose carefully among erasing options.
	Item 10: Be aware of allocator conventions and restrictions.
	Item 11: Understand the legitimate uses of custom allocators.
	Item 12: Have realistic expectations about the thread safety of STL containers.

	Chapter 2: vector and string
	Item 13: Prefer vector and string to dynamically allocated arrays.
	Item 14: Use reserve to avoid unnecessary reallocations.
	Item 15: Be aware of variations in string implementations.
	Item 16: Know how to pass vector and string data to legacy APIs.
	Item 17: Use “the swap trick” to trim excess capacity.
	Item 18: Avoid using vector<bool>.

	Chapter 3: Associative Containers
	Item 19: Understand the difference between equality and equivalence.
	Item 20: Specify comparison types for associative containers of pointers.
	Item 21: Always have comparison functions return false for equal values.
	Item 22: Avoid in-place key modification in set and multiset.
	Item 23: Consider replacing associative containers with sorted vectors.
	Item 24: Choose carefully between map::operator[] and map::insert when efficiency is important.
	Item 25: Familiarize yourself with the nonstandard hashed containers.

	Chapter 4: Iterators
	Item 26: Prefer iterator to const_iterator, reverse_iterator, and const_reverse_iterator.
	Item 27: Use distance and advance to convert a container’s const_iterators to iterators.
	Item 28: Understand how to use a reverse_iterator’s base iterator.
	Item 29: Consider istreambuf_iterators for character-by-character input.

	Chapter 5: Algorithms
	Item 30: Make sure destination ranges are big enough.
	Item 31: Know your sorting options.
	Item 32: Follow remove-like algorithms by erase if you really want to remove something.
	Item 33: Be wary of remove-like algorithms on containers of pointers.
	Item 34: Note which algorithms expect sorted ranges.
	Item 35: Implement simple case-insensitive string comparisons via mismatch or lexicographical_compare.
	Item 36: Understand the proper implementation of copy_if.
	Item 37: Use accumulate or for_each to summarize ranges.

	Chapter 6: Functors, Functor Classes, Functions, etc.
	Item 38: Design functor classes for pass-by-value.
	Item 39: Make predicates pure functions.
	Item 40: Make functor classes adaptable.
	Item 41: Understand the reasons for ptr_fun, mem_fun, and mem_fun_ref.
	Item 42: Make sure less<T> means operator<.

	Chapter 7: Programming with the STL
	Item 43: Prefer algorithm calls to hand-written loops.
	Item 44: Prefer member functions to algorithms with the same names.
	Item 45: Distinguish among count, find, binary_search, lower_bound, upper_bound, and equal_range.
	Item 46: Consider function objects instead of functions as algorithm parameters.
	Item 47: Avoid producing write-only code.
	Item 48: Always #include the proper headers.
	Item 49: Learn to decipher STL-related compiler diagnostics.
	Item 50: Familiarize yourself with STL-related web sites.

	Bibliography
	Appendix A: Locales and Case-Insensitive String Comparisons
	Appendix B: Remarks on Microsoft’s STL Platforms
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

