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Preface

This book is designed for students taking introductory data structure courses and soft-
ware professionals studying on their own. It has two purposes. The first is to provide a
solid grounding in the theory and application of data structures, including familiarity with
the fundamental data structures that every serious programmer should know. The sec-
ond is to teach a modern style of data structure implementation and use known as data ab-
straction.

Motivation

What is most difficult about programming is managing complexity. Almost everything
about this book’s approach to data structure theory, design, implementation, and appli-
cation is motivated by the importance of reducing complexity. The most powerful tool
for reducing complexity is decomposition — breaking a complex system into weakly inter-
acting subsystems. The primary skill needed is the ability to perceive the joints in a com-
plex structure. With the joints identified, the system can be teased apart into smaller, less
complex entities that are easier to work with.

The earliest approach to program decomposition was sequential — a program
would be split into separate execution phases. The first part of the program would run,
output interim results, and exit. Then the second part would start, read the interim results
left behind by the first, perform further computations, output its results, and exit. This
would continue until all the phases of a program had executed and the final result had
been produced. In part this approach was motivated by the inability to fit an entire large
program into the extremely limited memories of early machines, but programmers also
found sequential modularization a convenient way to divide a complicated problem into
several simpler ones.

The predominant decomposition paradigm for many years has been functional — a
program is divided into groups of related subroutines: all the input/output in one module,
all the mathematical computations in another, the data managementin a third, etc. Struc-
tured programming techniques tend to encourage this approach. Functional decomposi-
tion is reasonable and convenient, but it turns out not to be the most powerful way to
organize a large system. The primary problem is that modifying the representation of
data within the program requires changing code in many different modules.

The modern approach to decomposition is structural — a program is divided into
many relatively small modules, most of which implement a single data type. These type

xi



xii Preface

modules combine the representation of the type with the operations that act on it in one
module. By using only these operations the code in other modules is completely shielded
from changes to the type’s representation. This approach is known as data abstraction
and will be discussed thoroughly in Chapter 1.

Relation to the €S2 Curriculum

Although no longer the official recommendation, the Acm CS2 curriculum effectively de-
scribed the modern practice in second-semester courses for computer science majors. In-
troductory data structures textbooks have had to proclaim their adherence to this
standard and explain their deviations. The current Acm curriculum recommendations
do not propose specific course content, presenting instead a range of topics to be covered
and a variety of course sequences as examples of how they could be integrated into a par-
ticular program. However effective this might be for computer science curricula in gen-
eral, this new approach is likely to leave the CS2 “standard” intact for introductory data
structures courses.

This is a book for a CS2-like course, addressing the same overall subject matter as
previous textbooks for such a course. However, the approach followed here is oriented
more toward structures and less toward algorithms than is traditional. The importance
and beauty of data structures lie in the representational and architectural lessons they
teach. Algorithms have their own beauty and importance, too, and of course structures
and algorithms are closely related. Nevertheless, algorithmic concerns are different from
structural concerns, and I strongly believe they should not play a major role in a data
structures course. (A course on the design, implementation, and analysis of algorithms
would be a natural follow-up to one using this text.)

Rather than an ad hoc selection of topics, this book presents an organized sequence
of truly fundamental data structures; other structures are just variants of the ones
included. What data structures to cover, the relative importance of algorithmic issues,
and the ordering of topics are dictated here by a particular conceptual framework. The
resulting choices conflict somewhat with more traditional treatments. The benefits of this
approach include a more coherent presentation of data structures and their fundamental
operations. Heresies include the following:

- Searchingis not a separate topic, but a natural part of the implementation of many
data structures and the particular province of an entire class of data structures —
the “association structures” studied at the end of the book.

+ Sorting is considered separately, but as part of the discussion of lists, since for the
most part it is only sequential and linked lists that are sorted (as opposed to the
association structures that maintain their elements in order).

+ The discussions of sorting and searching, and the discussions of efficiency analy-
sis that accompany them, are less comprehensive than in many texts. The basic
ideas of algorithm analysis are discussed, including “Big O” notation (see in par-
ticular Section 8.3, page 251) but not in any great depth. Enough is included here
to provide a foundation for the understanding and use of sorting and searching al-
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gorithms without unduly distracting the reader from the central structure-orient-
ed themes of the material.

* There is little explicit discussion of alternative representations. Instructors who
like to emphasize this theme in their courses will have no trouble adding it to lec-
tures and pursuing it through exercises. Although the idea of representation-in-
variant interfaces to implementations of data abstractions is crucial, in truth few
of the fundamental structures in this text allow much room for variation. The
most common variations involve things like switching between sequential and
linked lists used to support a higher-level structure. In this book, stacks and
queues are considered before lists are studied, and are therefore shown using ar-
rays directly instead of some kind of list structure. Subsequent exercises explore
their reimplementation using lists.

+ Certain common data structures that are often assumed to belong in a book like
this — in particular strings and sets — are not treated systematically. Such struc-
tures are not themselves representationally fundamental: they are basically appli-
cations of the structures discussed here. The implementation of sets and strings
is a fine theme to pursue in exercises, but they don’t introduce any new ideas and
don’t fit within the conceptual framework of this book’s presentation.

+ File-based data structures (such as indexed sequential files}, once a major topic in
data structure books, have been omitted. They are no longer central to main-
stream computer science and should be relegated to advanced courses dealing
specifically with file management and database implementation.

- Verylittle is said about coding efficiency. Qualitative efficiency is important (jus-
tifying, for instance, the use of a balanced search tree over an ordinary one), but
fine-tuning of code only distracts from the central data structure topics and makes
code harder to read and write.

+ Recursion is not highlighted as prominently as in many traditional texts, paradox-
ically because it is treated as a significant application of stacks and a fundamental
programming mechanism to be used routinely. The intent is that students learn
to use and understand recursion by studying the code examples in this book and
doing its programming exercises. My teaching experience has convinced me that
students new to recursion learn best by jumping in and usingit, then later coming
to an understanding of its mysteries. I am not moved by the routine examples of
recursive functions that could easily be programmed iteratively, such as the facto-
rial function. For the purposes of this course, recursive programming is neces-
sary to support recursive data structures, and can be easily learned when
presented in that spirit.

Programming Language

To show how fundamental data structures are implemented we have to use a program-
ming language. Almost any kind will do, even an abstract pseudo-language made up for
the purpose. However, the whole enterprise will be vastly more successful if we can use a
language that is both supportive of data abstraction and accessible to readers.
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Using a mainstream language makes a book available to a wider audience than using
an exotic one would. Virtually all students and professional programmers know at least
one standard algorithmic language. Itis much easier to move from one of these to anoth-
er than it is to move from one of these to a language with a completely different computa-
tional model. The topic of the book is data structures, and while it is reasonable to ask the
reader to learn a new language similar to a familiar one, it would be unreasonable to expect
the reader to learn a new kind of language while also studying a new subject. Thus, to be
accessible means that the language should already be known to the reader or be straight-
forward to learn given the language(s) the reader does know.

Procedural abstraction was an implicit central theme in computer programming
from the earliest days of the field. Early in the 1980s, it became an explicit foundation of
modern programming textbooks and courses. Data abstraction is as important for pro-
gramming as procedural abstraction. Data abstraction has long been an important im-
plicit part of computer programming, but it does not generally get the explicit attention in
textbooks and courses that it deserves. This book presents traditional data structure ma-
terial inside the more modern framework of data abstraction. As a result, it needs a lan-
guage that supports data abstraction.

Thus, the requirements of accessibility and the technical demands of the material
lead to the use of a conventional kind of language that supports data abstraction. Being
accessible means not only that the language be familiar or easily learned, but also that it be
available on the computers the student will use for doing programming exercises.

When this book was written C++ was unquestionably the most conventional and
available language with thorough support for data abstraction. In fact, C++ goes further
than data abstraction and supports a style of programming known as “object-oriented,”
but the object-oriented features of C++ aren’t needed to study data structures. The way
itis used in this book (and often in practice), C++ is justa richer C. Everything youknow
(or can quickly learn) about C is part of C++. Although it can be used unconventionally
(for object-oriented programming), C++ is fundamentally an extension of C, a conven-
tional language. Its support for data abstraction is excellent. Availability has been a con-
cern until recently. However, use of C++ has grown rapidly, and since it was intentionally
designed for portability, it is available on a wide variety of computers. In particular, sev-
eral good implementations are available for personal computers.

What about learning C++? This book shows how to use C++ for data abstraction
programming. A working knowledge of C, though not necessarily proficiency, is
assumed. The first chapter will review some important features of ANst C — the more
modern C standard — for the benefit of readers whose C experience is with pre-ansi
compilers. It will also introduce some small improvements C++ makes to aANs1 C. The
second chapter introduces the data abstraction mechanisms of C++. In short, all that is
needed to get started with this book is some experience with classic C, and only those fea-
tures of C++ needed for this book are presented.

Be warned, though: becoming adept at C++ is a challenge for even the very experi-
enced C programmer. Many powerful features are provided through subtle variations to
C. Mechanisms are frequently invoked “behind the scenes,” without the programmer re-
alizing it. My experience teaching C++ in a variety of contexts has shown me the impor-
tance of insisting on a careful introduction with plenty of hands-on practice. Even though
the more advanced features of the language, including those specifically added for object-
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oriented programming, are not used in this text, there are still plenty of new concepts and
intricate details to learn. Even though students and instructors will be impatient to get to
the meat of this book, a deliberate study of the preliminary chapters will be very much
rewarded. The C++ conceptsintroduced there are not hard to understand, but many will
be quite unfamiliar to most readers. I strongly recommend beginning with lots of short
programming exercises, like études for a musical instrument,

Code Examples

This book contains a lot of code. One wonders how much of the vast amounts of code in-
cluded in programming and data structure books is actually looked at by readers. It is
with a certain amount of reluctance that all this code is included in this text, and I hope
that certain features of this code will attract more than the average attention given to such
examples. To improve readability, most of the code here is broken up into relatively small
chunks. Indentation and white space is used to show the conceptual structure of a piece
of code more clearly than the more commonly used styles tend to do.

The code shown has been tested using various C++ systems, on both pc-compati-
bles and Unix workstations. The code requires a compiler that supports templates. In
mid-1993, some vendors were still shipping compilers that didn’t. Other vendors were
shipping compilers that did not completely implement the template facility or had serious
bugs hindering its use.

A lot of work went into simplifying the use of templates in the code so that it could
be processed by the greatest number of compilers possible, even though that sometimes
meant using a less elegant formulation of some particular detail. In particular, nested
classes had to be avoided — for example, 19st_node is a separate class, not a class node
nested inside the class 1ist. Initialization of static members was another problem area,
and a few ambitious initialization schemes had to be weakened somewhat. In general, the
code uses templates in only the most straightforward ways. Compilers that provide the
necessary support include the following:

+ Borland C++ 3.1

* Unix cfront-based compilers from various vendors
+ Digital’s C++ compiler for Ultrix

* GNU g++ from the Free Software Foundation

Every choice in formulating the book’s code examples has been made based on what
would best serve the presentation of the conceptual material. The modules shown are de-
signed for clarity and generality, not to be the ultimate implementation of their data
structure. Simplicity, readability, and consistency have been favored over efficiency, sub-
tlety, and conformity to professional large-scale programming practice. Whatis useful in
a three-year twenty-person development effort will often have adverse effects in the con-
text of an introductory course. There are many places where the coding of an individual
function might strike the experienced professional, classically trained academic, or C++
expert as deviant. I ask you to evaluate these situations in light of the goals of this book
and the importance of a delicate touch in presenting material that forms the foundation of
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so much programming and computer science. Students introduced to this cognitively
oriented style of coding have found that it greatly facilitates their work, both academicand
professional.

I claim no rights and make no restrictions to the use of any code shown here (as op-
posed to the text proper, for which I do assert the usual proprietary rights). [ would, how-
ever, appreciate hearing about ways in which it may have proved useful beyond the scope
of this book and a course using it. As the object revolution matures, may it soon be the
case that the only time anyone ever has to write code for any of these data structures is for
the exercises of an introductory course!

Provided Code

The diskette accompanying this book contains complete implementations of the data
structures discussed. For the most part these consist of the code shown in the chapters
plus programs to test the modules and, in some cases, small programs showing their use.
The diskette is set up to facilitate access to the code from a pc: follow its README instruc-
tions to unpack the archive it contains and use the directory tree that results. The disk
contains mechanisms to facilitate porting the code to a Unix environment, but readers
with Internet access will find it easier to obtain already prepared code by anonymous ftp
or by gopher,

I plan to maintain the code and periodically make updates available on the
Internet. I expect to provide versions for both pc and Unix systems. The archive site is
prenhall.com. The directory for ftp access is /ftp/pub/software/for_PH_texts/
model. Don’t forget to use binary mode for the transfer of code archives. For further in-
formation see the README and similar files on that directory. The files can also be accessed
with gopher atgopher.prenhall, com; follow instructions that appear on your screen.

The code on disk is not exactly the same as appears in the book. Comments tend to
be more elaborate in the disk files than in the code shown here, since they are not support-
ed by surrounding text. Some of the structures have been given additional functionality
to support their use by other structures later in the book. Some C++ details that are fi-
nessed for pedagogical purposes in the book are handled slightly differently in the online
files; in particular, the online code makes many reference arguments const that are not
const inthebook. Finally, errors and omissions will continue to be detected and fixed af-
ter the book goes to press — if a piece of code in the book looks suspicious, compare it to
the code in the latest version of the corresponding file.

Punctuation, Grammar, and Typography

Writing about programming presents difficult challenges in the areas of punctuation,
grammar, and typography. Part of the difficulty stems from the incessant intermixing of
two linguistic domains: the ordinary English of what one is trying to say and the program-
ming language constructs one is talking about. Sentences full of technical terms, function
and variable names, and different kinds of quoting need whatever assistance that can be
mustered. Conventional American usage has been moving in the direction of simplifica-
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oriented programming, are not used in this text, there are still plenty of new concepts and
intricate details to learn. Even though students and instructors will be impatient to get to
the meat of this book, a deliberate study of the preliminary chapters will be very much
rewarded. The C++ concepts introduced there are not hard to understand, but many will
be quite unfamiliar to most readers. I strongly recommend beginning with lots of short
programming exercises, like études for a musical instrument.

Code Examples

This book contains a lot of code. One wonders how much of the vast amounts of code in-
cluded in programming and data structure books is actually looked at by readers. It is
with a certain amount of reluctance that all this code is included in this text, and I hope
that certain features of this code will attract more than the average attention given to such
examples. Toimprove readability, most of the code here is broken up into relatively small
chunks. Indentation and white space is used to show the conceptual structure of a piece
of code more clearly than the more commonly used styles tend to do.

The code shown has been tested using various C++ systems, on both pc-compati-
bles and Unix workstations. The code requires a compiler that supports templates. In
mid-1993, some vendors were still shipping compilers that didn’t. Other vendors were
shipping compilers that did not completely implement the template facility or had serious
bugs hindering its use.

A lot of work went into simplifying the use of templates in the code so that it could
be processed by the greatest number of compilers possible, even though that sometimes
meant using a less elegant formulation of some particular detail. In particular, nested
classes had to be avoided — for example, 11st_node is a separate class, not a class node
nested inside the class 1ist. Initialization of static members was another problem area,
and a few ambitious initialization schemes had to be weakened somewhat. In general, the
code uses templates in only the most straightforward ways. Compilers that provide the
necessary support include the following. Unfortunately, at the time of this writing, GNU
gcc does not provide sufficient template support to compile the book’s code.

* Borland C++ 3.1
* Unix cfront-based compilers from various vendors

+ Digital’s C++ compiler for Ultrix

Every choice in formulating the book’s code examples has been made based on what
would best serve the presentation of the conceptual material. The modules shown are de-
signed for clarity and generality, not to be the ultimate implementation of their data
structure. Simplicity, readability, and consistency have been favored over efficiency, sub-
tlety, and conformity to professional large-scale programming practice. What is useful in
a three-year twenty-person development effort will often have adverse effects in the con-
text of an introductory course. There are many places where the coding of an individual
function might strike the experienced professional, classically trained academic, or C++
expert as deviant. I ask you to evaluate these situations in light of the goals of this book
and the importance of a delicate touch in presenting material that forms the foundation of
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binding, or polymorphism. Appendix D (page 471) briefly discusses additional features
of C++ that support object-oriented programming. Second, this is not a handbook for the
implementation of a robust, general-purpose collection library. The design and implemen-
tation of data structure modules to be used for serious application development raise
many issues that are outside the scope of this book.

Consequently, certain C++ details that must be carefully attended to in a profes-
sional data structure library have been purposely ignored here, to avoid over-complicat-
ing the presentation and code. {Some of these are discussed in Appendix E, page 479.)
For example, most reference arguments and many functions in the modules shown here
should be const, but substantial complexities arise in such uses of const that would sig-
nificantly distract from the discussion here while contributing nothing. Similarly, the
C++ community has widely adopted a strategy of using separate iterator structs to sup-
port traversal over the elements of a collection, but here traversal functions are built right
into the data structures themselves. Although there are many important reasons why it is
better to use separate iterator structs in serious development work, they offer no advan-
tages for the topics of this book that would compensate for the complexity their use would
add. Professionals from the C++ community (programmers, teachers, consultants, au-
thors, etc.) will easily find many superficial aspects of the code shown here that offend
their sensibilities. I ask that C++ professionals keep in mind the purposes and intended
audiences of this book while evaluating it. This book is not designed to teach professional
software development in C++, although it would be a good foundation for that.

All discussion in this book is presented within a conceptual framework of funda-
mental operations common to all data structures. It is not easy to work out a clear, con-
sistent, complete framework for talking about data structures, categorizing and naming
functions, determining what to include in an implementation, and so on. This book dis-
tills fifteen years of experience refining the conceptual approach and using it in my teach-
ing and programming. Lots of small details could be handled differently. (Should the
function be called empty? is_empty? EmptyP? somethingelse?) The components of the
scheme are highly interdependent and stabilized quite a while ago. The importance of a
scheme like this is not the exact way it names or classifies functions but that it provide a
structured context that facilitates discussion and guides students in their programming.
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Part One:

Preliminaries

This book is divided into five main parts. Each of the parts after this one is devoted to a
particular class of data structure. An additional sixth part contains various appendices.
This first part considers data structures in general and data abstraction programming. It
also introduces the features of C++ needed for the book’s examples and exercises.
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Introduction

The main purpose of this book is to teach you about data structures. We’ll look at data
structures in general as well as specific structures that every programmer should know
how to use. A secondary purpose of this book is to teach you good programming practic-
es that support the use of data structures, following a powerful modern approach known
as data abstraction.

0.1 Data Structures

What’s a data structure? Computer hardware represents information in the simplest
form possible: sequences of bits, each in one of two possible states. Bits are grouped into
bytes, which are sequentially numbered locations constituting the computer’s memory.
Computer hardware is designed to store bits to and fetch bits from a specified location.
Locations are designated by addresses. Figure 0.1 depicts a sequence of bytes starting at
location 4000200.

Data types are mechanisms for interpreting bit sequences to give them program-lev-
el meaning. Programming languages like Pascal and C provide a vocabulary of primitive
types and a grammar of ways they may be manipulated. In using these primitive types, a
programmer relies on the compiler to maintain the illusion that there are such things as
numbers and characters in the computer. For instance, in Figure 0.1 the first byte could
be interpreted as the character 'D" or part of a 4-byte integer (among other things), de-
pending on the type the compiler expects to find there. Of course primitive types do cor-
respond fairly well to the range of bit interpretations supported by hardware operations,
which is why they are primitive. Computer hardware directly supports operations such as
integer addition, floating-point multiplication, and character comparison.
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Figure 0.1 Memory as a Sequence of Bytes

0.1.1 Structure

Data structures are higher-level interpretative constructs built out of primitive types and
structuring mechanisms. Programming languages typically provide strings, records, ar-
rays, and some kind of support for input and output. Asa system-programminglanguage
(rather than a “high-level” language), C is a little less rich, but it still provides records
(structs), simulates arrays, and supports strings and input/output through library facili-
ties.

The built-in data structures of a language are used on their own for a wide variety of
programming purposes. In addition, they are used to construct higher-level data struc-
tures, either by application programmers or by developers of software libraries used by
application programmers.

The study of data structures lies at the heart of computer science. This book pro-
vides both a conceptual framework for understanding data structures in general and an
introduction to the techniques used in the design and implementation of particular im-
portant ones. There are many data structures known, but most are variants of the dozen
or so fundamental ones discussed in this book. To study or use a specific kind of data
structure requires knowing both how to describe, or declare, instances of that structure as
well as how to manipulate, or process, them. The term ‘data structures’ emphasizes their
passive representation, but active behavior is also part of each structure’s nature.
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The essence of a data structure is the organization it imposes on the otherwise un-
differentiated sequence of bytes in the computer’s memory. A data structure is an
interpretation — a way of seeing a sequence of bytes as the components of a compound
entity with certain behavior. For instance, the sequence of bytes shown in Figure 0.1 can
be interpreted as the C string "Data Structures”, including the NUL character that by
definition ends strings in C. There is nothing in those bytes that dictates that interpreta-
tion, however — it’s imposed entirely by the program that accesses the bytes.

Another example of the interpretation of memory bytes is shown in Figure 0.2,
which depicts the layout of a C struct representing information about a person as it might
appear in a payroll program: a pointer to a string representing the person’s name, a struct
representing a birth date, an int for a Social Security number, and a doub1e for a salary.
As the diagram shows, this is a two-level interpretation, since the birth date isitself a struc-
ture, represented as three 2-byte shorts for the month, day, and year.

pointer to name

birthdate [ _ | day
— — — — - month
— — — — — year
ss number |_ _ _ _ ]
- _
salary | _— _ _ _|

Figure 0.2 A Structure Is an Interpretation

More specifically, a structure’s representation is the way its components are ar-
ranged, including their types and the organization principle that assigns them their role in
the structure’s interpretation. Each component is itself another structure or else a primi-
tive value, but either way it is a further interpretation of raw memory. In the case ofa C
string, the representation is a sequence of bytes ordered as they appear in the string termi-
nated by a NUL byte. That is a natural representation, but nothing would prevent, say,
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storing all the odd-numbered characters before all the even-numbered characters — the
important thing is that the interpretation is consistent across all uses of the bytes.

In more formal terms, a structure’s representation is a mapping from a conceptual
program-level expression to a set of bytes in memory. We store information through that
mapping, which transforms the program-level expression into a set of operations on
memory, and we get the information out by passing it back through the same transforma-
tion (or, more accurately, its inverse). As long as the value returned when a specified
component is accessed is the same as was stored previously, it really doesn’t matter how
the bytes are stored. For instance, many Pascal compilers happen to allocate the bytes
constituting a record structure in the reverse order of their appearance in the declaration,
but few Pascal programmers ever realize that. As long as a particular field of a record
means the same thing all throughout the program, it doesn’t matter whether that field is
stored first, last, or somewhere in between.

Another example is the storage of multidimensional arrays in languages that sup-
port them. Consider the following two-dimensional array of characters:

ABCD
abocd

We could store the rows first, storing the bytes in the order ABCDabcd, or we could store
the columns first, yielding the order AaBbCcDd. We could also store the characters in re-
verse order: dcbaDCBA or dDcCbBaA. All that matters is that when we request, say, the el-
ement in the second column of the first row we get back B.

For structures directly supported by a language — arrays, records, strings, etc. —
the compiler implements a representation by turning a particular access expression, such
as chars[01[1], into references to particular bytes in memory. Higher-level structures
are implemented through declarations and operations defined by a programmer in terms
of language types and other programmer-defined structures.

0.1.2 Fundamental Data Structures

Fundamental data structures can be grouped into four categories. Appendix A summa-
rizes the categories and data structures discussed in this book. Each category is the sub-
ject of a separate section. Each kind of data structure is the subject of a separate chapter.

The basic structures provided by a programming language directly control memory
layout. We’ll call these storage structures to emphasize their direct role in storing data.
Storage structures section the computer’s linear sequence of raw memory bytes into indi-
vidual computational entities with internal organization. The essential storage structures
are the array, record, and stream.

State structures are those used to keep track of the tasks a process needs to perform.
The main state structures are stacks, queues, and priority queues. Generally, these are rep-
resented as arrays or lists with special rules governing their manipulation.

The third kind of fundamental structures are the linked structures. The basic linked
structures are lists, trees, and graphs. Linked structures are usually implemented using
special support records called nodes. Since each node contains one or more pointers to
other nodes, we could also call these recursive structures.
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Finally, association structures implement correspondences between access keys and
other data. Tables are association structures built on arrays or lists. Search trees store
datain trees, ordered by their keys. Indexed files are also association structures, and many
older data structure texts featured them prominently; however, as technology has ad-
vanced, the study of file organization techniques has become less central to computer sci-
ence, so they are not covered in this book.

There’s another important kind of data structure that is not included in this
categorization. They are omitted because although frequently used, they aren’t very, well,
structural. The most prominent members of this group are strings and sets. These are
more like primitive types, and in fact many high-level languages include them. As prim-
itive types are little more than interpretations of the fundamental bits and bytes of the
computer hardware, these simple data structures are little more than interpretations of
other fundamental data structures. For example, a C string is nothing more than part of
an array of chars, running from the first component of the array through the first NUL
character. Operations on these structures — those provided by the C string library, for
example — must adhere to their representational conventions, but they don’t introduce
any new structuring mechanisms. These simple structures are excellent material for ex-
amples and exercises, but there wouldn’t be much to say about their structural aspects, so
they aren’t explicitly covered in the text.

0.2 C++ Basics

With that preliminary characterization of data structures behind us, we can turn our at-
tention to C++, the programming language used in this book. C++ was developed to
support three kinds of programming:

1. traditional programming
2. data abstraction programming

3. object-oriented programming

C++ features that support traditional programming are discussed in this section. The
next chapter discusses using C++ for data abstraction programming. Object-oriented
programming is not needed for an introductory discussion of data structures, so C++ fea-
tures that support it are not discussed here. (However, Appendix D presents an overview
of object-oriented programming and the C++ features that supportit.)

To get started with C++, we’ll look first at some simple ways in which the language
improves on classic C. (Appendix B reviews data declaration in C, which is otherwise as-
sumed to be familiar.) This chapter and the next will present only the features of C++ that
will be needed for the examples, implementations, and exercises of this book. This is
therefore not a thorough introduction to the language.

This might seem odd. Most widely used languages are reasonably concise, and to
use them in any kind of serious programming requires knowing most of their features.
C++ is not like that, however: it offers an unusually wide range of mechanisms and sup-
ports a variety of programming styles. C++ extends C, which is itself reasonably rich, so
it shouldn’t be surprising that it is more elaborate than most languages. Studying the en-
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tire language is a rather substantial enterprise that would go far beyond the needs of this
text.

0.2.1 ANSIC

C++ is based on Ans1 C, so we’ll start by considering the ways ans1 C differs from classic
C. ans1 C was the result of an effort to standardize C and various developments of that
language since it was introduced. It also provided an opportunity to resolve some ambi-
guities that plagued the classic language as well as introduce a few new mechanisms whose
absence had become a problem.

Function Prototypes

The only really significant change Ans1 C introduced into C is the way arguments to func-
tions are specified. In Ans1 C the argument types are included within the parentheses of
function declarations, unlike classic C, in which only the parentheses appear. In function
definitions, the types are specified along with the arguments, rather than after the paren-
thesized argument list, as in classic C. The following classic C function

char* append();

char* append(strl, str2)
char *strl, *str2;
{

}

would appear in aAns1 C as

char* append(char*, char*);

char* append(char *strl, char *str2)
{

}

This fuller kind of declaration is called a function prototype. Note that a type is
needed for each argument: you can’t omit the second char in the above ans1 C example
as you could in a variable declaration. In declarations, argument names are optional;
some people always include them while some include only those that seem helpful as
documentation. In definitions, of course, arguments names must be specified for the ar-
gument to be referenced. (Actually, argument names can be omitted from function defi-
nitions too. An unnamed argument indicates one that is never used. The compiler may
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issue warnings about named arguments that are never used; omitting the name is a way to
suppress those warnings.)

ANs1 C also permits old-style function declarations, with no arguments inside the
parentheses. However, this makes it impossible for the compiler to tell whether fn() is
meant to be an old-style declaration of a function with any number of arguments or a new-
style declaration of a function with no arguments. ans1 C resolves this ambiguity by re-
quiring that functions of no arguments be declared as fn(void). C++ allows, but does
not require, this form — in C++, fn() too is a function of no arguments. C++ does not
allow old-style function declarations, so there is no ambiguity — function declarations
must always contain the types of their arguments.

Constants

ANsi C introduces a new type specifier, const, which replaces many uses of #define. The
type specifier const may be added to any type and designates values that may not be
altered. In particular, the value of a const variable cannot be changed.

const double PI = 3.141593;

PI = 3.0; /* illegal */

In more advanced programming, const is used in other contexts too, especially function
arguments and return values. Writing professional C++ code requires careful thought to
the appropriate use of const. However, in this book const will be used only for global
variables of built-in types, simply as a replacement for the less accurate #define. Other
uses involve surprising subtleties that are best avoided for the purposes at hand (see the
discussion of const in Appendix E, page 481 ff.).!

The type void

Although not in the original language, the type void found its way into most implemen-
tations of C and was accepted for Anst C. Used as a function’s return type, void signifies
that the function does not return a value. As the type of a pointer, void is used to escape
the type system — it signifies ‘any type’. Thus, the declaration

void* ptr;

indicates that ptr can point to anything.
A function declared as

void DrawShape(void* shape, enum shapetype shtyp);

takes a pointer to anything and an enum as its arguments and returns no value. Any
pointer can be assigned to a void* variable or passed as a vo i d* argument without explicit
cast, in both Anst C and C++. In order to use the contents of a void* variable, the pointer

'You may, however, notice constant arguments in the declarations oflibrary functions. These are there
to allow pointers to const values to be passed to functions that don’t change the objects passed to them through
pointers. The compiler can always promote a non-const to a const, just as it can promotea short toan int.
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must be cast to a specific type. ans1 C allows that cast to be left implicit, but C++ requires
an explicit cast. Thus, the following is permitted in ANs1 C, but not in C++-.

void DrawSquare(square* s);
void DrawCircle(circle* ¢);
void Drawline(line* 1);

void DrawShape(void* shape, enum shapetype shtyp)
{
switch (shtyp)
{
square:
DrawSquare(shape);
break;
circle:
DrawCircle(shape);
break;
line:
DrawLine(shape);
break;

In C++, shape would have to be explicitly cast to the appropriate type.

void DrawSquare(square* s);
void DrawCircle(circle* c);
void DrawlLine(line* 1);

void DrawShape(void* shape, enum shapetype shtyp)

{
switch (shtyp)
{
square:
DrawSquare((square*) shape);
break;
circle:
DrawCircle((circle*) shape);
break;
line:
DrawlLine((1line*) shape);
break;
}
}

In classic C, char* is used to mean both ‘pointer to anything’ and ‘string’. Using
char* to mean ‘pointer to anything’ worked only because char happens to be C’s funda-
mental unit of storage, equivalent to 1 byte. Having a void type allows distinguishing a
‘pointer to anything’ from a ‘pointer to char’ (or *string’). Ans1 Cinterprets pointer types
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more rigorously than classic C, so char* arguments no longer accept arbitrary type
values — that’s what void~* is for.

The assert Macro

ANs!I C specifies an extremely useful assertion macro, defined in assert. h. It takes an in-
teger-valued expression as its argument and expands to a test of that condition. If the
condition is true the expansion does nothing, but if the condition is false a message is
printed out that indicates the file name, line number, and condition of the assertion.

Assertions simplify code by performing tests that the rest of a function doesn’t have
to worry about. Assertions are also a way to document program assumptions explicitly.
They can be considered an active form of comments such as “N should always be posi-
tive.” or “Assumes the pointer is not null.” They are superior to such comments because
they actually test the documented assumption, as in this example.

void DrawShape(void* shape, enum shapetype shtyp)

{
assert(shape != 0);

Assertions can even be used to write test programs. Most test programs print out-
putand expect a person to check that the output is correct. Thisleaves open the possibil-
ity of an error slipping by the person reading the output. Itisalso difficult to automate the
testing process. An interesting alternative approach is to write a program consisting en-
tirely of assertion statements. If everything is correct, the program runs to completion; if
not, then it stops at the first problem and outputs an explanation. Nohuman intervention
is required to run the test.

0.2.2 Minor C++ Features

C++ offers a variety of improvements on AnsI C in the area of standard programming.
Some are trivial, some are nice conveniences, and a few are quite important.
Type Checking

The mostimportant of the improvements is that C++ enforces type consistency to amuch
greater extent than C does. In particular, function declarations are checked across sepa-
rately compiled files as they are linked together into an executable program. You’ll see
some consequences of serious type checking when you start using a C++ compiler.

Single-Line Comments

C++ users have a choice between traditional C comments and a single-line comment
form: // starts a comment that goes to end of line. For example:

const int bufsize = 512; // size of buffer
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Declaration Statements

In C++, declarations are statements and can appear wherever other statements can. This
encourages the use of initializers, since a variable’s declaration can be deferred until its ini-
tial value has been determined. Defining a local variable without an initializer allows ac-
cidental attempts to use the variable before it has been initialized. Deferring the definition
until the initial value is known avoids such errors.

Similarly, C++ interprets the syntax of for statements slightly differently from the
way C does: the first clause may be either an expression or a declaration statement. The
scope of a variable defined inside a for is the rest of the enclosing block, so its value is
available after the loop. However, this means that it would be an error to declare the same
variable in a subsequent for within the same block. Instead, the variable should just be
used normally in subsequent statements in the same block.

double average(double values[], int size)

{
fprintf(stderr, "Computing the average. . . \n");
le total = 0, 0;
for (int { = 0; i < size; i++) total += values[i];
return total/size;
}

enumand struct

In C++ enum and struct define type names as well as types. If you’ve defined
enum direction {up, down, left, right};

then you declare a variable or function argument as
direction d;

instead of having to say
enum direction d;

There is therefore no need to use typedef to define type names for enums and structs.

Two struct types with exactly the same field names and types are nevertheless differ-
ent types. Each enumeration is a separate type; in particular, values from one enumera-
tion cannot be assigned to a variable of another, and an enumerator can be part of just one
enumeration.

Optional Arguments

C++ functions can have optional arguments. A function declaration makes an argument
optional by providing a default value for it. If an optional argument is omitted in a func-
tion call, the compiler substitutes the default value. All optional arguments must follow
allrequired ones — otherwise there would be no way for the compiler to tell thata call had
omitted an optional argument between two required ones.
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date* MakeDate(int day_= CURDAY,int month_=_CURMONTH,int year_= CURYEAR);

date* d = MakeDate(4, 7, 1776);

date* d = MakeDate(4,7); /! July 4th of this year
date* d = MakeDate(4): /7 4th day of this month
date* d = MakeDate(); // current date

Generalized Initialization of Static Variables
Static variables can be initialized with any legal expression, not just constants as in C.
int CURDAY = get_currentday();

Undefined global variables are given a default definition that zeros the storage they
occupy. Initialization expressions that cannot be completely evaluated during compila-
tion constants are evaluated at the start of execution.

More Convenient Dynamic Allocation

C, like many other languages, maintains a heap for dynamic memory. C’s malloc func-
tion allocates a number of bytes from the heap and returns a pointer to the first one. If no
chunk of space of the specified size is available on the heap, ma11oc returns 0.

To dynamically allocate an instance of a type requires callingmal1oc with the num-
ber of bytes to allocate for that type. C provides the sizeof pseudo-function for this
purpose. The compiler replaces calls to sizeof with the number of bytes taken by its ar-
gument, a detail the compiler of course knows. For example, in many implementations
sizeof(int)is4.

The pointer malloc returns is a void*. To assign that pointer to a variable whose
type is a pointer to the struct being created requires acast. (In ans1 C that can often be left
implicit, but in C++ it must be made explicit.) Altogether, then, the idiom for allocating
a new instance of any type T is

(T*) malloc(sizeof(T))

C++ provides an additional operator, new, to package this idiom. Instead of the
above, you can just say

new T
To allocate an array of n Ts in C, you’d have to multiple T’s size by n:

(T*) malloc(n _* _sizeof(T))

In C++, you would just write
new T[n]

For example, the following C code dynamically allocate an instance of a date struct
and assigns a pointer to it to a variable.

date* d = (date*) malioc(sizeof(date));

The equivalent in C++ would be simply
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date* d = new date;

We'll see later that the new operator has another important aspect, but for now we can
consider it simply a convenient replacement for standard ma11oc idioms.

Both ma11oc and new return zero if they fail to allocate the requested space. Serious
code should test the return and take appropriate action when zero. However, itis not nec-
essary to do so in an educational context, and since the tests can add distracting detail they
will not be included in the code shown in this book.

In C, data allocated with malloc is deallocated with free. The argument to free is
a pointer to the space to be deallocated, as in this example.

date* d = (date*) malloc(sizeof (date)):

free(d);

The amount of space allocated by malloc is recorded on the heap so free can tell how
much space to deallocate. Deallocated storage can be reused by ma11locc.

C++ provides another operator, delete, in place of C’s free function. It shares the
other feature of new that we aren’t going to discuss yet, but otherwise is just like free.

date* d = new date;

delete d;

To delete an array allocated with new delete must be followed by a pair of square brackets
to indicate that it is an array being deleted rather than a single instance.

date* dates = new date[20];

delete[] dates;

Data allocated with new should be released with delete; data allocated with malloc
should be released with free. There is rarely any reason to use malloc in a C++
program. Note, however, that a few ansi Clibrary functions return pointers to data allo-
cated with ma11oc; these must be deallocated with free, notdelete.

0.2.3 Reference Types

Reference types are an important C++ feature. References are specified with ampersands
the way pointer types are specified with asterisks. Although confusing at first, they soon
seem natural — so much so, thatitis generally better to references than pointers. The fol-
lowing defines d as a reference to TODAY.
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date TODAY;
date& d = TODAY;

Functions can take reference arguments and return reference values just as they can take
and return pointers. This section provides a first look at references. Later chapters will
say more about them.

The main use for references is to pass arguments and return values “by reference”
where traditional C programs pass pointers. (Otherlanguages also make mechanisms for
this available, such as var parameters in Pascal.) Arrays and functions are automatically
passed as pointers (i.e., by address) in C and C++, but everything would otherwise be
passed (copied) as a value. Using references prevents unwanted (inefficient) copying as
well as allowing functions to change external values passed to them.

void enter(entry&, tabled);

void increment_count(entry& e)

{

e.count++; // modifies the entry passed to the function
}
main()
{

table tbl;

entry e;

e.count = 0O;

increment_count(e);

printf("%d\n", e.count); // prints "1*"

enter(e, tbl); // arguments passed by reference (address)
}

Functions can even return references as values, and a function that does can appear
on the left side of an assignment statement! In a program to manage a corporate phone
directory we might have the following.

int& Tookup(table& tbl, char* str);

int get_extension(char* name)
/! return the phone extension for a person

{
return lookup(extensions, name);
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void set_extension(char* name, int newext)
// Change the phone extension for a person to newext
{
look xtension nam = newext;
}

The assignment statement in set_extension works because what 10okup returns is actu-
ally the address of the place in some table where the integer representing the person’s
phone extension is stored. The compiler generates appropriate code for dereferencing
that address where its value is needed, as in get_extension.

Code written using references is often clearer than equivalent code using pointers.
Compare the following

/! pointer-based definition
void int_exchange(int *a, int *b)

{
int ¢ = *a;
*3 = *b;
*h = ¢;
}
// pointer-based call
int x, y;
int_exchange(&x, &y); // using addresses

to the more natural

// reference-based definition
void int_exchange{(int &a, int &b)

{
int ¢ = a;
a=>b;
b = C;
}
// reference-based
int x, y;
int_exchange(x, y); // more natural

In effect, specifying reference arguments to a function directs the compiler to insert
pointer-dereferencing asterisks for you. Your code is relieved of all those distracting as-
terisks, but the end result is the same. Note, however, that you cannot distinguish an or-
dinary argument from a reference argument by looking at the call — you have to consult
the function declaration.
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0.3 Some Important Distinctions

Our study of data structures requires a better understanding of some important concepts
at the foundations of C than most programmers can be expected to have, even after years
of professional experience. Most readers will find these familiar to some extent, but a
clear understanding of some distinctions presented here will significantly facilitate diges-
tion and exploration of the material in the rest of the book.

0.3.1 Variable Scope and Extent

Two fundamental characteristics govern the use of variables in programming languages:
scope and extent. You probably have an intuitive notion of these, butas C jumbles the two
ideas somewhat you probably aren’t very clear about them. Further, C++ introduces new
variations on C’s variable scope rules. Thus, although fundamental, these aspects of vari-
ables often cause confusion and therefore warrant review.?

A variable is an identifier together with its value. The scope of an identifier is the
part of a program that knows about it during compilation. The extent of a value is the
time when it exists during execution (i.e., when storage is allocated for it). Scope is a phe-
nomenon in the spatial dimension of program text; extent is a phenomenon in the tempo-
ral dimension of program execution.

There are three possible scopes for C identifiers:

local only code in the same block can refer to the identifier
file only code in the same file can refer to the identifier
global any code in any file can refer to the identifier

There are three possible extents for C values:

local allocated on block entry; deallocated on block exit
static exists for lifetime of program

dynamic allocated by a call to ma11oc (or, in C++, new); deallocated by a call to
free (or, in C++, delete)

Note that dynamically allocated memory can, and typically does, survive the exit of the
block in which it was created. Strictly speaking, variable values never have dynamic
extent. However, variable values can be pointers to dynamically allocated storage — the
kind you get when you usemalloc (in C) or new (in C++).

C has various kinds of variables, with a confused mixture of scopes and extents. The
two basic kinds of variables and their default scope and extent are as follows.

*The description here is somewhat informal. For instance, the term block, common to other program-
ming languages, is used to mean what technically would be either a compound statement or a function body.
Some relatively arcane details are omitted, such as register variables. Also ignored is the fact that a variable
is known from the point in a compilation unit where it is first declared, not from the beginning of the compila-
tion unit.
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automatic>  variables declared in a block, including function arguments (which be-
long to their function’s outermost block)

scope:  local
extent:  local

external®  variables accessible outside the file in which they are defined
scope:  global
extent:  static

C allows variables to be qualified by a storage class specifier, two of which are com-
monly used: extern and static. These storage class specifiers are used to change scope
or extent from the default, Declaring an identifier extern (without providing an initial-
izer) means that it is not a new identifier but rather a reference to another module’s global
variable that will be resolved by the linker. The most confusing aspect of all this is the ef-
fect of declaring an identifier static: used with a file-level variable static changes the
scope of the identifier to file, but used with a variable defined inside a block static chang-
es the extent of the value to static,

0.3.2 Name Spacesin Cand C++

C permits the same identifier to be used for different purposes at the same time. (Whether
it is advisable to take advantage of this is a different question!) There are five separate
identifier classes, or name spaces, in C. An identifier in one class is entirely independent
of an identifier in another class that happens to have the same name. The name spaces are:
* preprocessor macro names
+ statement labels

+ structure, union, and enumeration names

+ structure and union field names

everything else (variables, functions, typedefs, enumeration values)

C++ originally put everything except preprocessor macro names, statement labels,
and field names in the same class, but objections were raised concerning certain inconve-
niences and incompatibilities this caused. A compromise was developed that allows rea-
sonable traditional uses of the same name for identifiers of different classes (e.g., having a
function and a structure with the same name). It is probably best to avoid difficulties in
this area by simply never using a name for more than one kind of thing (function, variable,
etc.) in any scope. (Of course there’s no problem with two identifiers in different scopes;
in particular, an automatic variable in one block may have the same name as one in anoth-
er block without any interference.) The issue of name spaces is raised here only to warn
knowledgeable C programmers of an area in which C++ is subtly different from C.

*Local in most programming languages.
“Global in most programming languages.
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0.3.3 Miscellaneous Clarifications

Our discussion of C++ basics ends by clarifying some terms that will be used a lot in this
book. Probably your previous training and experience in computer science introduced
you to these, but just to make sure and also to remove some potential ambiguity, they’ll be
reviewed briefly here,

Compile Time versus Run Time

Programs are processed in three major phases: compilation, linkage, and execution.
Some languages, including C, add an additional preprocessor phase. What gets done in
each of these phases depends partly on the language definition and partly on its
implementation. The C preprocessor strips comments, expands #de fine macros, inserts
the text of ##include files, and removes the text of false branches of #if and related
conditionals. The compiler checks syntax, builds a table of symbols and their definitions,
checks for syntactic and semantic consistency, generates code, and so on. The linker
combines the symbol tables and code of the separate compiled (i.e., ‘object’) files, extracts
definitions from libraries, and checks for missing functions and variables. During execu-
tion, functions are called, local variables are allocated on the stack, space is allocated from
the heap, and interaction between the program and the outside environment is managed
in cooperation with the operating system.

Sometimes it is important to distinguish when a particular mechanism is active or a
particular kind of event occurs (errors, in particular). The terms compile time, link time,
and run time are used to refer to things that happen during compliation, linking, and ex-
ecution, respectively.”

Stack versus Heap

The program stack is a data structure used to manage the call and return of subroutines,
including passing parameters and returning results. The stack is manipulated by the run
time environment; most languages give the programmer no way to reference it directly.
Stacks in general are the topic of Chapter 5, so you’ll learn how they work there, if you
don’talready know. For present purposes it’s enough to understand that automatic vari-
ables are allocated on the stack (or in a closely related data structure) and managed by the
run-time support system without any programmer intervention. (Global variables may
be allocated in a special chunk of memory and don’t participate in the block entry and exit
mechanisms the stack is there to support.)

The topic of dynamic memory allocation was discussed briefly when the C-++ new
operator was introduced above. Many readers will not have had any experience using dy-
namic allocation, which will therefore seem quite mysterious. Dynamic memory alloca-
tion is based on another data structure of the run-time support system, called the heap.
Storage allocated dynamically, by using malloc (in C) or new (in C++), is allocated from
the heap. Allocation consists of finding the requested number of bytes in a contiguous

S0Other terms include ‘compilation time’ and ‘execution time’. ‘Link time’ is not a common term, pre-
sumably because in most languages little of interest to the programmer happens at link time. C++ implemen-
tations may perform several kinds of significant actions during linking, however, including cross-module type
checking and template instantiation.
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chunk somewhere in the heap and returning a pointer to the first one. The heap manage-
ment code keeps track of the size of each allocated piece and which parts of the heap are
available {as opposed to having been allocated and not yet released).

The program stack and heap are similar in that storage space is allocated from both
structures. They are separate because their storage management strategies support differ-
ent kinds of allocation: the stack provides space that is automatically allocated and deallo-
cated, while the heap supplies space that is explicitly allocated and deallocated by the
programmer.

Declarations versus Definitions

Informally, declaration and definition are often used interchangeably, but there are signif-
icant differences with real consequences in C. A declaration of a variable or function
specifies its type. A definition also specifies the type of a variable or function, but goes
further. The definition of a variable causes storage to be allocated for it. The definition of
a function causes code to be generated. For the most part, header files contain declara-
tions, and other files contain definitions.

A variable or function may be declared any number of times within a compilation
unit (a file plus its #inc1ude files). All declarations of a variable or function in the same
compilation unit must agree with one another. For the most part, declarations are used
only by the compiler. Definitions, however are used in all phases of program
processing — compilation, linkage, and execution.

A function may be declared without being defined as long as it is never called, but a
call to an undefined function results in alink-time error. There can only be one definition
of each function, If there are more, the linker complains about the multiple definitions,
even if they are identical.

C was originally ambiguous about whether a declared variable had to be defined,
whether it could have multiple (mutually consistent) definitions, and how to decide which
declarations were definitions. ansi C resolved much of this ambiguity, but C++ goes
further. In C++, a variable declaration is a definition unless it contains the extern spec-
ifier and no initializer, and there must be exactly one definition of each variable in a
program. (There can, of course, be many declarations as long as they are consistent with
one another.) One interesting case of a definition in C++ that is not necessarily a defini-
tion in ANsI Cis

int a;

This is interpreted exactly the same in C++ as
int a = 0;

Initialization versus Assignment

Variable definitions usually include initialization expressions:
int cur = -1;

Initializations look just like assignments:

cur = -1;
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However, the two are different constructs. There are a few minor places where this differ-
ence matters in C — in particular, an array-valued variable may not be assigned to, but it
may be initialized. However, in C++ the difference becomes quite significant, as you will
see later, especially when we consider copying of structures.

Objects

Finally, the term object will be used loosely in this text, as it is in discussions of traditional
C, to mean any kind of computational value. There wouldn’t be any problem with this,
except for confusion with terms from the rapidly growing popularity of object-oriented
programming and other aspects of object technology, including object-oriented analysis,
object-oriented design, object-oriented user interfaces, and object-oriented databases.
Since C++ is one of the predominant languages used for object-oriented programming
there is special opportunity for confusion in this book.®

The term object has additional ramifications in the context of object technology, but
all we mean in this text by the term object (except for the discussion of object-oriented
technology in Appendix D) is a computational value — a piece of data in memory. Un-
fortunately, there just isn’t another commonly used generic term for the entities in
memory. Often, the term object is used in a way that implies a structure instance, rather
than a value of a primitive type such as int, but it really means any computational value,
including primitives. (That generality is what makes the term so usefully
noncommittal.) The term is often used to emphasize the integrity, or independence, of
the computational entity as opposed to the sequence of bytes that comprise it.

Sometimes, object is used in yet another way — to distinguish structure instances
from pointers to structure instances. For instance, we can note that declaring a pointer-
valued automatic variable does not cause space to be allocated for the object to which the
pointer points when its block is entered during execution. In designing and using data
structures there is often an important choice to be made as to whether a particular value
or component will be a pointer or an object. Generally, both are meaningful choices, but
they have different consequences.

0.4 EXERCISES

1. Get an existing C program to work with C++. If it was already in ANsI C, this should require
few if any changes. If it was not already in ANsI C, change all function declarations and defini-
tions to use function prototypes. Then,

(a) Look through the program for places where a C++ feature would have been more conve-
nient, and change the program to use those features.

(b) Did you discover any mistakes or problems in your old program? If so, describe and ex-
plain them and how C++ helped you find them.

2. Practice using mal1oc then new in a simple program.

SA different meaning of object, as used in the term object file from the early days of programming lan-
guages, shouldn’t cause any confusion because ‘object’ would never be used with this other meaning apart from
phrases such as object file, object deck, and object code.
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(a) For instance, write a C program that reads text from stdin and writes it to stdout in re-
verse order. Read each line into a buffer. Then, dynamically allocate a long enough array
of characters to hold the line (including the final null byte) and copy the buffer to the dy-
namically allocated string. Store a pointer to the string in an array used to hold all the lines
of the program.

(b) Change the malloc calls to new and compile with a C++ compiler.

Use some of the C++ features discussed above to write a program that represents a date as a
struct with fields day, month, and year. Include at least the following. (MakeDate should al-
locate memory from the heap.)
(a) date* MakeDate(int day=CURDAY, int month=CURMONTH, int year=CURYEAR):
// CUR variables initialized at start of program
(b) int diff(date& dl, date& d2);
// number of days separating dl and d2
(c) void incr(date& d, int n = 1);
// change d to n days later
(d) date* CopyDate(dated d);
// allocate a new date and copy field values from d
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Data Abstraction in C++

Data abstraction is an approach to programming that insulates users of a data structure
from its implementation. In particular, details of a structure’s representation are known
only to the functions that embody the most fundamental operations on the data
structure. Those details are entirely hidden from code that uses the structure. This infor-
mation hiding is a critical tool in the never-ending battle against program complexity. It
enables a programmer to use a data structure without having to deal with all the tedious
details of its implementation. Because programs are expressed in terms of abstract data
structure operations, the conceptual level of application code is raised, allowing it to be ex-
pressed more naturally.

Modularization is an organizational technique that decomposes a program into
pieces that interact only weakly. Ideally, changes inside one module have relatively little
effect on code in other modules. Data abstraction emphasizes decomposition based on
data structures. It contrasts with the more traditional approach of procedural abstrac-
tion, which bases decomposition on functionality by putting together functions that per-
form similar or related actions. Good modern programming requires both approaches,
but structural modularization provides a more stable foundation and should be the start-
ing point of all program development.

1.1 Modularization

C, and therefore C++, provides a very direct mechanism for dividing a program up into
separate modules. Programmers write two kinds of files: implementation and header.
Implementation files are compiled into object files, which are linked together into execut-
able files — programs that can be run on the computer. Header files are incorporated
into C implementation files by the #inc1ude directive.

One header file can be included by many implementation files. The primary pur-
pose of header files is to provide shared declarations for macros, types, functions, and
variables used throughout the program. There is no direct expression of the module con-

25
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cept in C++, but informally a module usually consists of an implementation file together
with a header file that publicizes declarations of some of its functions.

Data abstraction is best supported by putting each data type into a separate
module. The header file specifies the interface to the type — the ways its instances can be
manipulated by other code. The implementation file supplies the definitions of the func-
tions declared in the header file, along with internal functions used in those definitions.
In this style, each header file defines a new type and declares the functions that constitute
its interface. Normally, each header file would define only one type, but sometimes it is
reasonable to define a supporting type in the same header file.

1.1.1 An Example

Let’s look at a simple implementation of a string type. In place of the null-terminated
strings of C we’ll define a struct that has a size and an array of characters (without a final
NUL). We’ll start with a straight aAnst C implementation, then develop it through several
stages to illustrate the application of some of the C-++ features discussed in the previous
chapter and some new ones that support structural modularization. Along the way, we
will see code that does not reflect good C++ practice — this is a pedagogical sequence that
motivates the various features introduced, and until all the features have been introduced
we can’t show the kind of code we’d want to see in a realistic implementation.

In all of this book’s examples, code from header files appears between double-
line rules, while other code appears between single-line rules.

A Basic C Module

/* stringt.h, version 1: straight C */

#ifndef STRINGT_H
ffdefine STRINGT_H

#include <stdio.h> /* needed by write_string */

struct _string
{
int size;
char* chars;
};

typedef struct _string string;

/* A standard C trick to turn a struct into a type name.
With just “struct string", all uses of the struct name
would have to be preceded by 'struct’.’

*/

/* Argument names are omitted here. */
string* make_string(int);

string* convert_to_string(char¥*);

void destroy_string(string*);

char string_char(string*, int);
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void string_replace(string*, int, char);
int string_length(string*);

string* concatenate(string*, string#*);
int string_equal(string*, string*);

int string_lessthan(string*, string*);
void write_string(string*, FILE*);

#endif /* STRINGT_H */

There are various ways to pass strings as arguments to functions. Here, the choice
was made to always create strings dynamically and pass them around as pointers. As we
consider the rest of the C++ features to be discussed we’ll see better ways to create strings,
pass them as arguments, and return them as values.

There are advantages and disadvantages to putting #includes in header files. The
main advantage is that the header file is self-contained — to use a module users need only
to include a header file; they do not need to specify the #includes the module needs.
However, including a header file multiple times would cause multiple definition errors
and other chaos. To prevent these problems, it is common practice to enclose the entire
header file in a conditional that sets and tests a “guard” symbol indicating that the header
file has already been included during a compilation. Several different conventions are
widely used for naming these guard symbols; we’ll use the approach that appends _H to the
capitalized name of the struct the module defines.

#ifndef STRINGT_H
#define STRINGT_H

. header file contents .

#endif /* STRINGT_H */

The first time such a header file is included during a file’s compilation, its guard
symbol will not have been defined, so the rest of the file will get processed. For subsequent
inclusions within the same compilation, the guard symbol will be defined, so the rest of the
file will be skipped. Even with a guard symbol time is still spent opening the file and scan-
ning for the matching #endi f, which can be significant in long, complex compilations.
Also, this technique requires that all system files as well as files from other users all incor-
porate guards. Other disadvantages arise in practice, including preprocessor limitations
on deeply nested headers. As aresult, it often ends up in practice that header files do not
#include all headers they need, requiring the user to add those to programs using that
header. Even so, header files should always be enclosed in an #1i fndef guard.

lMaking the typedef be forapointer to _stringis perhaps the more common approach, butit is useful
to see the asterisks explicitly in this example. It is even possible in ANSI C to use the same name for both the
struct and the typedef. Another approach is to combine the two in one statement:

typedef struct string { } string;

and even to omit the name of the struct in doing so.



28 Data Abstraction in C++ Chap. 1

It is often appropriate to begin designing a new module by writing its header file.
After the header file is ready, writing the code that implements the declared functions will
often reveal inadequacies and mistakes in the header file, which can then be corrected.
Writing a test program for the module will also reveal inadequacies and errors, and the
module can be extended or corrected to fix those. For instance, this string module was
originally written without convert_to_string. That function was added when the test
program was written, to provide a convenient way to initialize a string from a C string in-
stead of having to store characters one ata time. (It could be argued that this string mod-
ule should not provide a way to modify individual characters.)

/* stringt.c, version 1: straight C */

#include "stringt.h"

f##include <string.h> /* for strlen, memcpy., etc. */
##include <stdlib.h> /* for malloc */

f##include <assert.h>

string* make_string(int siz)

{

assert(siz >=0);

string* str = (string*) malloc(sizeof(string)):

/* Technically, we should test str -- malloc returns 0 if fail.
However, we will not bother with this nicety in this book.

*/

str->size = siz;

str->chars = (char*) malloc (str->size * sizeof(char));

return str;

}
string* convert_to_string(char* cstr)
{

assert(cstr = 0);

string* str = (string*) malloc(sizeof(string));

str->size = strlen{cstr); /* not +1: don't need final null */

str->chars = (char*) malloc (str->size * sizeof(char));

memcpy (str->chars, cstr, str->size);

/* memcpy Ts a standard C library function that we’ll use instead of a
for loop to copy bytes; not using strcpy because our strings don’t
end in a null byte.

*/

return str;

}

void destroy_string(string* str)
{
assert(str 1= 0);

free(str->chars);
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free(str);
}
char string _char(string* str, int n)
{
assert(str = 0);
assert{n >= 0 && n < str->size);
return str->chars[n];
}

void string_replace(string* str, int n, char ch)
{
assert(str 1= 0);
assert(n >= 0 & & n < str->size);
str->chars[n] = ch;

}
int string_length(string* str)
{
assert(str = Q);
return str->size;
1

string* concatenate(string* strl, string* str2)

assert(strl != 0);
assert(str2z = 0);
string* str = make_string(strl->size + str2->size);

memcpy (str->chars, strl->chars, strl->size);
memcpy(str->chars+strl->size, strZ2->chars, str2->size);

return str;
}
int string_equal(string* strl, string* str2)
{
assert(strl != Q);
assert(str2 != 0);
int i;
if (strl->size != str2->size)
return 0;
else
for (i=0; i<strl->size; i++)
if (strl->chars{i] != str2->chars[i])
return 0;
return 1;
}

static int min(int a, int b)
{

return (a<b ? a : b);
}

29
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int string_lessthan(string* strl, string* str2)

{
assert(strl !'= 0);
assert(strz 1= 0):
int i;
for (i=0; i < min(strl->size, strz->size); i++)
if (strl->chars[i] < str2->chars[i])
return 1;
else if (strl->chars(i] > str2->chars[i])
return 0;
return (strl->size < str2->size);
}
void write_string(string* str, FILE* fil)
{
assert(str 1= 0);
int i;
for (i=0; i<str->size; i++) putc(str->chars[i], fil);
}

There are two forms to #include directives: double quotes indicate that the file is a
user file, while angle brackets indicate a system file. Double quotes cause user
directories — in particular, the current? one — to be searched before system directories.

Next is a short test program. This is far from an adequate test, but it gives enough
examples for us to explore the language features we’ll discuss. Note that a minimal appli-
cation using a data structure module will involve at least three files: the header file for the
module, the implementation file for the module, and the application program itself. The
module implementation file and the application file get compiled separately then linked
together into an executable program. Both include the header file.

// stringt tst.c, version 1

#include "stringt.h”
#include <assert.h>

main()
{
string *strl, *strZ;

“But what does ‘current’ mean? In Unix implementations double quotes mean “first search the directory
of the file with the #include’, whereas in pos implementations double quotes mean ‘search starting in the di-
rectory from which the compiler was originally invoked’. A problem with the pos interpretation is that if the
path of an included file has directories in it and that file uses double quotes to include others in its directory, the
preprocessor will look for them in the directory from which the compiler was invoked. Since it won’t find it
there, the other directory would have to be added to the list of system directories to search, even though the
original #inc1ude explicitly specified a full path. In Unix implementations this wouldn’t be necessary.
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strl = convert_to_string("abc");

assert('a' == string_char(strl, 0) &&% 'b’' == string_char(strl, 1) &&
'c' == string_char(strl, 2)

assert(string_length(strl) = 3);

str2z = concatenate(strl, convert_to_string("def”));

assert('a' == string_char(str2, 0) && 'b' == string_char(str2, 1) &&
'c' == string_char(str2, 2) && 'd’' == string_char(str2, 3) &&
'e' == string_char(str2, 4) &% 'f' == string_char(str2, 5)
)

assert(string_length(str2) == 6);

assert(string_equal(strl,strl));
assert(string_lessthan(strl,str2));

printf(”"The concatenation of '");

write_string(strl, stdout);

printf("' and 'def' is '");

write_string(str2, stdout);

printf(”', which has %d characters.\n"”, string_length(str2));

destroy_string(strl);

destroy_string(str2);

/* Notice that a string was created from "def" that didn't get
assigned to anything, so there's no way now to free its storage.

*/

printf("Test completed.\n");
return 0;

A Basic C++ Module

Next we’ll rewrite the string module using some of the simple C++ features discussed
earlier. Changes from the previous version are underlined. Different C++ systems have
different conventions for the extension to be given to the names of header and implemen-
tation files. In this book we’ll use H and C, analogous to the h and ¢ used for C files.?

/! stringt.H, version 2: using simple C++ features
// Single line comments are convenient.
// Note that the extension is now H instead of h.

#ifndef STRINGT_H
#idefine STRINGT_H

f#include <iostream.h> // replaces stdio.h

struct string /! no typedef needed in C++

3This assumnes an operating systemn that is case-sensitive. Dos, in particular, is not, so either a different
convention must be used, or the environment must be set up so thatall . ¢ files are processed by a C++ compiler.
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int size;
char* chars;
1

string* make_string(int);

string* convert_to_string(char¥*);

void destroy_string(string*);

char string_char(string*, int);

void string_replace(string*, int, char);

int string_length(string*);

string* concatenate(string*,string*);

int string_equal(string*, string*);

int string_lessthan(string*, string*);

void write_string(string*, ostream& = cout);
// default argument; can appear with or without name

Jfendif /* STRINGT_H */

Chap. 1

/! stringt.C, version 2: using simple C++ features
// The extension is now 'C' instead of ’c’.

#include "stringt.H"”
#include <string.h>
// for string functions used in convert and for memcpy
##include <assert.h>

string* make_string(int siz)
{
assert(siz >=0);
string* str = new string;
// replaces (string*) malloc(sizeof(string))

str->size = siz;

str->chars = new char[str->sizel;

/* new works with primitive types too; since we previously had:

(char*) malloc (str->size * sizeof(char))

which is an example of the malloc array-allocation idiom with

T = char, we replace it as Sshown.
*/

return str;
}

string* convert_to_string(char* c¢str)
{
assert(cstr 1= 0);
string* str = new string;
/! see note in make_string, above

str->size = strlen(cstr); // not +1: don‘t need final null
str->chars = new char[str->size]; // see note in make_string, above

memcpy (str->chars, cstr, str->size);
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return str;
}
void destroy_string(string* str)
{
assert(str = 0);
delete [1 str->chars:
delete str;
}
char string_char(string* str, int n)
{
assert(str != 0);
assert(n >= 0 & n < str->size);
return str->charsinl;
1

void string_replace(string* str, int n, char ch)

{
assert(str !=0);
assert(n >= 0 && n < str->size);

str->chars[n] = ch;

}
int string_length(string* str)
{ assert(str != 0);
return str->size;
}

string* concatenate(string* strl, string* str2)

{
assert(strl != 0);
assert(str2 != 0);
string* str = make_string(strl->size + str2->size);

memcpy(str->chars, strl->chars, strl->size);
memcpy(str->chars+strl->size, str2->chars, str2->size);

return str;

int string_equal{string* strl, string* str2)

assert(strl 1= Q);
asserti{str2 != 0);

if (strl->size l!= str2->size)
return 0;
else
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for (int i=0; i<strl->size: i++)
// eliminated deciaration at start of block and moved here
if (strl->chars[i] !'= str2->chars[i])

return 0;
return 1;
}
static int min(int a, int b)
{
return (a<b 7 a : b);
}
int string_lessthan(string* strl, string* str2)
{
assert(strl != 0);
assert(str2 != 0);
for (int i=0; i < min(strl->size, str2->size); i++)
// eliminated declaration at start of block and moved here
if (strl->chars(i] < str2->chars(i]l)
return 1;
else if (strl->chars(i] > str2->chars[i])
return QO;
return (strl->size < str2->size);
}

void write_string(string* str, ostream& strm)

// Note that the default argument appears only in the header file.

// The compiler inserts default arguments into the calls; the function
// itself is unaffected.

{

assert(str != 0);

for (int i=0; i<str->size; i++) strm << str->chars(i]l;

/* Notice how much more compact this function looks without the
initial declaration of i and with the use of the insertion operator
for output.
str->chars[i1] could be replaced by string_char(str,i) and str->size
by string_length(str).

*/

}

1.1.2 Overloading

Most of the functions in the string module are the sort that would appear in many different
kinds of modules. We’d see names like write_date and write_name analogous to
write_string; date_equal and name_equal analogous to string_equal, and so on.
These kinds of names soon get tedious. Not only are they awkward, but they may be con-
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structed according to various conventions, and it is easy to get confused: is it write_
string, string_write, WriteString, StringWrite, STRWrite, or what?* Wouldn’t it
be nice to be able to just call these functions write, equal, and so on, and let the compiler
figure out which version to use?

C++ allows you to do just that. You can give any number of functions the same
name. The compiler chooses the appropriate one for any call by matching the types of the
arguments in the call to the types of the arguments in the declarations of each of the func-
tionts with the same name. The name of a function together with its sequence of types con-
stitutes its signature. The ability to use the same name with different argument patterns is
called overloading.

Atfirst, this seems pretty exotic, but actually overloading is presentin alimited form
in traditional languages. The machine code generated for an expression like a+b depends
on the types of a and b, since computers have different instructions for different kinds of
arithmetic (integer, floating-point, etc.). Traditional languages, however, overload only
operators, not function names, and they give the programmer no way to define new
overloadings. C++ allows you to overload function names as well as define new overload-
ings for built-in operators.

An Example of Function Overloading

Here’s a simple example of overloading. Instead of having int_exchange, char_ex-
change, double_exchange, and date_exchange (assuming a date struct), we can just
call all of them exchange. Note the use of reference arguments in the example and the
lack of anything special in calls to the functions using them.

// exchange.H

void exchange(int& a, int& b);

void exchange(char& a, char& b);
void exchange(double& a, double& b);
void exchange(date& a, date& b);

#include "exchange.H"

void exchange(int& a, int& b)

{
int ¢ = a;
a=nb;
b =rc;
}
void exchange(char& a, char& b)
{
char ¢ = a;
a=>b;
b =¢;
}

void exchange(double& a, double& b)
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{
double ¢ = a;
a=m>n;
b = c;
}
void exchange(date& a, date& b)
{
date ¢ = a;
a=>nb;
b =c;
}

#include "exchange.H"

. ..

main()

{
int x, y;
date dept_mtg, dept party;
//
exchange(x,y);
exchange(dept mtg, dept_party):
//

}

Two kinds of overloadings can be distinguished: intermodule and intramodule.
Having one write that takes a string and another that takes a date would be intermodule
overloading. Intramodule overloading is also useful — itallows an operation to have dif-
ferent patterns of arguments without your having to use a different name for each
pattern. For instance, we could have definitions of convert_to_string taking an int
(to get a string with the characters representing an integer), a double (similar to int), or
a FILE* (which might read the contents of the corresponding file into a string).

Operator Overloading

In C++, operators can be overloaded in the same way functions are. In fact, to define an
operator overloading you do define a function. The only trick is knowing the name of the
function to define.

The name of a function specifying an operator overloading is composed of the key-
word operator and the operator’s symbol. For instance, we could replace string_
equal(string&, string&) with operator==(string&, string&). Then, instead of
calling string_equal{strl, str2) we could write the more C-like expression
strl==str2. We could also explicity call the operator function as
operator==(strl, str2), but there’s rarely any reason to do that. Note also that
string_equal was changed here to take references to strings instead of pointers to
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strings — operator functions normally work with objects rather than pointers. White
space is permitted between the keyword operator and the operator symbol in the func-
tion name.

C++ includes a sophisticated input/output library that replaces the stdio.h
facility, Itis accessed by including iostream.h. You should immediately start using its
basic feature — operator overloadings for simple input and output. (Other features will
be discussed in a Chapter 4.)

Here’s how it works. The global variables cin, cout, and cerr replace stdin, std-
out, and stderr, respectively. Two operators are used: << for output (called insertion)
and >> for input (called extraction). Overloadings are provided for all the built-in types,
plus char* and void*. These operators return their stream argument, so they can be
chained:

cout << "The sum of the " << n << " integers is "
<< total << "\n';

You will find the insertion operator quite convenient. Other features of the stream library
provide enough control over I/O that you would rarely have to use printf or scanf,

The real power of the stream operators is that it is straightforward to define over-
loadings for the types you define. We can see by the way the insertion operation is used
that its first (left) argument must be an ostream (output stream) and its second (right) ar-
gument the kind of thing being printed. Both are passed as references, the stream because
the function must modify it and the thing being printed to avoid copying. Finally, to sup-
port chaining, the function must return the stream. The signature for a user-defined in-
sertion operator for a type T will therefore always be

ostream& operator<<(ostream&, const T&).
In the string module, for instance, we can replace
void write string(string*, FILE*)
with
ostream& operator<<(ostream&, const string&).

The extraction operator works similarly. Notice that operator>> does not return
what it extracts — like operator<< it returns its stream argument. An already allocated
value (primitive or struct instance) is passed (by reference) as the second argument to re-
ceive the input.

Here’s the whole module and test program again, this time using overloading and
operators wherever appropriate. That turns out to be many places — we can even over-
load operators like [ ] for index operations!  (So much has changed here that the changes
are not underlined.) A major advantage of the ability to overload operators is that it
makes it possible to write expressions with your types in terms of the usual operators,
Without overloading, a programmer’s types could be manipulated only by functions, re-
ducing them to a second-class role.
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/! stringt.H, version 3: using function and operator overloading

#ifndef STRINGT H
#define STRINGT_H

#include <iostream.h>

struct string
{
int size;
char* chars;
3

string* make_string(int);

void destroy(string*); It "_string” omitted

// two overloadings of convert_to_string:

string* convert_to_string(char*);

string* convert_to_string(istream&); // declared, but not defined

char& nth(string&, int);
// Because it returns a reference (!), this version of nth can be used
// instead of string_replace!

int Jength(stringd&);

string operator+(string&,stringd);

int operator=—(string&, string&);

int operator<(string&, string&);
ostream& operator<<(ostream&, stringd);
// no longer has a default file argument

#endif /* STRINGT_H */

!/l stringt.C, version 3: using function and operator overloading

f#include “stringt.H"
#include <string.h>
#include <assert.h>

string* make_string(int siz)
{

assert(siz >=0);

string* str = new string;

str->size = siz;
str->chars = new char[str->size];

return str;
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string* convert_to_string(char* cstr)

{
assert(cstr != 0);
string* str = new string;
str->size = strlen(cstr);
str->chars = new char[str->size];
memcpy(str->chars, cstr, str->size);
return str;

}

void destroy(string* str)

{
// no need to test str -- references can't be null!
delete [] str->chars;
delete str;

}

char& nth(string& str, int n)

{
// no need to test str -- references can't be null/
assert(n >= 0 && n < str.size);
return str.chars[n];

}

int length(string& str)

{
// no need to test str -- references can't be null!
return str.size;

}

string& operator+(string& strl, stringd& str2)

{
// no need to test strl and str2 -- references can't be null!
string* str = make_string(strl->size + str2->size);
memcpy(str->chars, strl->chars, strl->size);
memcpy (str->chars+strl->size, str2->chars, str2->size);
return *str;
// returning a value now, instead of a pointer

}

int operator==(string& strl, string& str2)

{
// no need to test strl and str? -- references can't be null!
if (&strl == &str2) return 1; // strl and str2 are the same!
if (strl.size 1= str2.size)

return 0;

else

for (int i=0; i<strl.size; i++)
if (strl.chars[i] != str2.chars[i]) return 0;

39
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return 1;
1
static int min(int a, int b)
{
return (a<b ? a : b);
}
int operator<(string& strl, string& str2)
{
// no need to test strl and strZ2 -- references can't be null!
if (&strl == &str2) return 0; /! strl and str2 are the same!
for (int i=0; i < min(strl.size, str2.size); i++)
if (strl.chars[i] < str2.chars[i])
return 1;
else if (strl.chars{i] > str2.chars{il)
return 0;
return (strl.size < str2.size):
}
ostream& operator<<(ostream& strm, string& str)
{
// no need to test str -- references can't be null!
for (int i=0; i<str.size; i++) strm << str.chars[i];
return strm;
/1 All operator << and >> functions end this way, to support chaining.
}

// stringt tst.C, version 3: using overloading

ffinclude "stringt.h"
#include <assert.h>

main()
{
stringd strl = *convert_to_string(”abc");
/! We switch to a object perspective instead of a pointer.
assert('a' == nth(strl, 0) & 'b' == nth(strl, 1) &&
'c' == nth(strl, 2)
)
assert(length(strl) == 3);
// 'string’ has been removed from many function names.

string& temp = *convert_to_string("def”);

// Result given a name so we can delete it later
string str2 = strl + temp;

// str2 is now an object, not a pointer

// Note use of + operation on string objects.
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assert(’'a' == nth(str2, 0) & 'b' == nth(str2, 1) &&
'c' == nth(str2, 2) && 'd’ == nth(str2, 3) &&
'e' == nth(str2, 4) && 'f' == nth(str2, 5)

)
assert(length(str2) = 6);

assert(strl == strl); !/ Note use of operator==.
assert(strl < str2); // Note use of operator<.

cout << "The concatenation of '™ << strl << "' and ‘def' is '" << str2
<< "', which has " << length(str2) << " characters.\n";

destroy(&strl);
destroy(&str2);
destroy(&temp);

cout << "Test completed.\n";
return 0;

Limits on Operator Overloading

Operator overloading is a very convenient and powerful feature of C++. Nevertheless, it
is not completely unrestricted. The basic rule is that while operators can be defined for
various overloadings, an operator’s basic characteristics cannot be changed:

+ number of arguments
+ precedence
* associativity

There are other restrictions, but in practice these rarely prevent you from using
operator functions where appropriate. Only operators already in the language can be
overloaded — there is no way to define new ones. Every operator function must have at
least one struct argument — operators that act entirely on built-in types may not be
overloaded. Operator functions may not have optional arguments.

It is up to the programmer to enforce any standard meanings of, or equivalences be-
tween, operators. For instance, if the result of += should be just like the combination of +
and =, then operator+= must be defined accordingly. The compiler will not generate
operator+=from the definitions of operator+and operator=

1.1.3 Encapsulation

The functions of the string module versions above are only loosely connected to the type
definition. For full support of data abstraction we want to bind its operations more tightly
with the data structure. We really want the operations to be part of the string type. C++
provides an effective mechanism for doing this: structs can include functions as well as
data. Functions included in a struct are called member functions (not ‘function
member’). We thereofore say that a C++ struct declaration can include both data mem-
bers and member functions.
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Grouping the functions that operate on a data structure with its representation is
called encapsulation. Member function definitions are entitled to use any of the structural
details of the type they manipulate — the names of its fields in particular. Outside the im-
plementation module, code using the module has access only to a restricted interface de-
fined by the member functions the type makes available.

Look back at version 3 of the header for the string module (page 38). Notice that
most of the functions take a string* as their first argument. These functions should be
moved into the struct definition. This first argument becomes implicit — it is omitted
from the argument list of both declarations and definitions. The compiler automatically
adds it to declarations inside the struct, giving it the name this. This is a pivotal change:
the structure begins to play a more prominent role and become more self-sufficient, rather
than being just another argument to some function.

Here’s the header file with some of the functions made members of the string
structure. The ones not made members don’t have an initial string* argument. We’ve
also changed nth to operator[ 1, extending our use of operator functions.

// stringt.H, version 4: functions encapsulated with data

ffifndef STRINGT_H
jidefine STRINGT_H

#Hinclude <iostream.h>

struct string

{
// data members
int size;
char* chars;

// member functions
void destroy();
char& operator[](int n);
int Tength();
string operator+(stringd);
int operator——=(stringk);
int operator<(string&);

};

string* make_string(int);

string* convert_to_string(char*);
ostream& operator<<{ostream&, string&);

ffendif /* STRINGT_H */

Making a function a member affects calls to it in addition to its declaration. Mem-
ber functions are invoked with a slightly different syntax than ordinary (nonmember)
functions. Calls to member functions use the same sort of member access syntax as is
used for data members, for example:

str.length()
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The function’s argument list follows the access of the member. In the case of Tength, the
argument list is empty. Here is an example of a member function call with arguments:
strl.operator+(str2)
which of course could also be expressed simply as
strl + str2

Here’s our test program again. The only changes are to the calls to nth and de-
stroy.

/! stringt tst.C, version 4: using member functions

#include "stringt.h"
{Hinclude <assert.h>

main()
{
string& strl = *convert_to_string("abc"):
assert('a' == strl[0] && 'b' == strlfl] && 'c' == strif21);
// Note use of operator[]
assert(strl.length() == 3); /! member function notation now

string& temp = *convert_to_string("def");
string str2z = strl + temp;

assert(’a' == str2[01 && 'b" == str2[1] && 'c' == str2[2]1 &&
'd' == str2[3] && 'e' == str2[4]1 && 'f' == str2[51);
assert(str2.length() == 6);

assert(strl == strl): /! Note use of operator.
assert(strl < str2);

cout << "The concatenation of '" << strl << "' and ‘'def' is '" << str2

<< "', which has " << str2.length() << " characters.\n";
strl.destroy(); /! member function notation
stre.destroy(); // member function notation
temp.destroy(); /! member function notation

cout << "Test completed.\n";
return 0;

Calls to a member function within the implementation file will also use the new
form. For instance, if a function with str as an argument had called 1ength(str), that
call would be replaced by str->1ength(). If str had been the first argument of the func-
tion and therefore omitted in the new format, it would be omitted from the call to Tength
too — we’d just write Tength(). This is just shorthand the language allows in place of
this->Tength(). In effect, the compiler adds this-> before every member (data or
function) used on its own (i.e., not following a dot or arrow).
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Thus, a member function definition involves a new kind of identifier scope in which
all references to members implicitly apply to the this argument, unless they explicitly
specify a different value and a dot or arrow. One problem remains. How does the com-
piler know the type with which a member function definition is associated? The declara-
tion is inside the struct itself, so there the type is clear. However, in the implementation
file there is no indication other than the inclusion of a particular header file, which is too
subtle a clue for the compiler to use. Besides, nothing says you can’t put definitions of
member functions of more than one data type in the same file, although structural modu-
larization discourages that. You could also spread the definitions of a type’s member
functions over more than one file.

In short, although the implementation file is conventionally associated with the type
by name as well as by use of include directives, there’s no formal connection between a file
and a type. Therefore, each function must indicate the type with which it is associated.
This is accomplished by using a new compile-time operator introduced by C++, the scope
operator, written as two colons. The full name of the 1ength function in the string mod-
ule would be string::1ength. Normally, such full names are used only at the beginning
of a function definition, not in its body, since the full name at the beginning establishes
that type as the scope for the statements in the body.

Each struct introduces a new scope in C++. This adds a fourth scope —
structure — to the threelisted in Section 0.3.1, page 19. Structure members are accessible
only in the following contexts:

- in a member function of the structure

- after the . operator applied to an instance of the structure

+ after the -> operator applied to a pointer to an instance of the structure

« after the : : scope resolution operator applied to the name of the structure

Notice that only the names of member functions include the name of the type that
declares them. Nonmember functions do not have an implicit this argument, so the
problem doesn’t arise for them. Strictly speaking, nonmember functions defined in a
type’s module aren’t part of the type’s definition — they are just loosely associated with
it. Their names are not qualified with the scope resolution operator since they have glo-
bal, not structure, scope.

In certain specialized situations, you may have to call a globally scoped function
when there is another function of the same name in the scope from which the function is
to be called. You do this by using the scope resolution operator without a preceding
name, for example : :make_string.

Here’s the implementation file for the string module, with some of the functions
modified to be members, corresponding to the new version of the header file.

// stringt.C, version 4: functions encapsulated with data
#Hinclude "stringt.H"

#include <string.h>

#include <assert.h>

string* make_ string(int siz)
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// not string::make_string because it is a global, not a member, function.
{

assert(siz >=0);

string* str = new string;

str->size = siz;
str->chars = new char[str->size]:;

return str;
}

string* convert_to_string(char* cstr)
// not string:: because it 7s a glebal, not a member, function
{

assert(cstr != 0);

string* str = new string;

str->size = strlen(cstr);
str->chars = new char[str->size];
memcpy{str->chars, cstr, str->size);

return str;

}
void string::destroy() // Note absence of argument
{
delete [] chars; // equivalent to this->chars
delete this; // explicit use of this
}
char& string::operator[J(int n)
{
assert(n >= 0 && n < size);
// size s a data member, implicitly this->size
return chars[n];
}
int string::length()
{
return size;
// size is a data member, implicitly this->size
}
string string::operator+(stringd& str2)
{
string* str = make_string(size + str2.size);
memcpy (str->chars, chars, size);
memcpy(str->chars+size, str2.chars, str2.size);
return *str;
}

int string::operator==(string& str)
{
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if (this == &str) return 1; // same strings!
if (size != str.size)
return 0;
else
for (int i=0; i<size: i++)
if (chars[i] != str.chars[i]) return 0;
return 1:
}
static int min(int a, int b)
{
return (a<b ? a : b);
}
int string::operator<(string& str)
{
for (int i=0; i < min(size, str.size); i++)
if (chars[i] < str.chars[i])
return 1;
else if (chars[i] > str.chars[i])
return 0;
return (size < str.size);
}

ostream& operator<<(ostream& strm, string& str)
// not string::operator<< because it is a global, not member, function

{
for (int i=0; i<str.size; i++) strm << str.chars[i]:

return strm;

1.1.4 Information Hiding

As developed so far, the string module binds together a representation and a set of
operations. However, its representation details are actually still available to user
modules. We could add comments indicating which of the members are meant for users
and which are only part of the implementation, but the compiler would not be able to de-
tect violation of the encapsulation. User code could still refer to the internal details of the
representation even though the documentation says not to.

What we really want is a way to enforce the distinction between information avail-
able to users and information available only to the type itself. This kind of protection is
called information hiding — we want details of the representation, especially the names
and types of data members, to be enforceably hidden from users of the module. C++ does
provide such a mechanism, allowing each member (data or function) to be declared either
public or private. The compiler enforces the privacy of private members, allowing only
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member functions of the type to access them. Public members, however, can be accessed
from anywhere.

Public and Private Members

The struct definition is divided into public and private sections by the access specifiers
public and private, each followed by a colon. An access specifier designates the acces-
sibility of all of the members that follow it, until a different one appears. Thus, you can
have any number of public and private sections. In the beginning of the struct declaration
the members are public, until a private appears. There is no way to make a nonmember
function private.

With this feature, we are atlast in a position to define a truly modularized data type,
including:

- the name of the type

+ the type’s representation — a sequence of fields, each with a name and a type
+ aset of operations that act on instances of the type

» aspecification of which operations and fields are available to users of the type

Furthermore, in most approaches to data abstraction, data members are never
publicized — the public interface is entirely procedural,

All of the string module’s operations should be available to users. Therefore, we
want all its data members to be private and allits function members to be public. (Its non-
member functions are necessarily public.) This kind of extreme division into all private
data members and all public member functions is fairly common, especially with relatively
simple structures. More complex structures might have private member functions.
These would support the implementation of other member functions but would not be
part of the public interface.

Here’s the header file for this version. The implementation file and test program are
unaffected. In this particular version, we do not take advantage of the default being
public — we explicitly indicate public or private right from the beginning. Remember
also that you can organize your struct into any number of private and public sections.

/{ stringt.H, version k: information hiding added (public vs. private)

#ifndef STRINGT_H
fidefine STRINGT H

struct string
{
private:
// data members
int size;
char* chars;

public:
// member functions
void destroy():
char& operator[](int n);
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int length() const;

string operator+(stringd);
int operator==(string&);
int operator<(string&);

};
// necessarily public because global:
string* make_string(int):

string* convert_to_string(char¥*);
ostream& operator<<(ostreamk, stringd);

ffendif /* STRINGT_H */

Thus, the (public) member functions of a struct constitute its public interface. Users
of the struct need only consult the public parts of its declaration to find out what they can
do withit. There is nothing a user can do with a private member, so it would really be bet-
ter if there were two header files for each struct — a public one for people and compilers
to read and a private one that only the compiler sees. No such distinction is available,
however, so users just have to learn to ignore the private parts. In a commercially deliv-
ered header file, it is customary to put the public parts first, to facilitate human reading.
Since this book is about the implementation of data structures, however, the basic repre-
sentation is shown at the beginning of its struct declarations.

Friendship

Version 5 still isn’t quite right. Look at the definitions (from version 4, page 44) of the
module’s global (i.e. nonmember) functions. They use field names of the struct. How-
ever, all the field names are private, and only member functions of a struct can use its pri-
vate members. Here’s an example of an invalid attempt to access a private member.

ostream& operator<<(ostream& strm, string& str)

{
for (int i=0; i<str,size; i++) strm << str.chars[i];
// error: no access to private members size and chars!
return strm;
}

One option is to rewrite these to use the public interface, as follows.
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ostream& operator<<(ostream& strm, string& str)

{
for (int 1=0; i<str.length{(}; i++) strm << str[i];
// repiacing size (private) with length() (pubiic) and
// using public operator[] instead of .chars
return strm;
}

There is an alternative, however, that is sometimes more attractive or even necessary.
C++ allows a struct declaration to declare a nonmember function (either a global function
or a member of a different struct) to be a friend. Friends of a type have all the access priv-
ileges of the type’s own member functions — they can access any of the type’s members.
Friendship is granted by the struct in its declaration. The friend function is declared
inside the struct, preceded by the keyword friend. (It doesn’t matter whether this goes
in a private or public section of the struct declaration.) That’s all. The definition of the
friend function doesn’t change, but its access privileges do. The friend declaration inside
the struct is a declaration of the function — the function need not be declared outside the
struct too. The function’s scope remains global — it’s a friend, not a member function.
Some functions, in particular operator<<, must be made friends if their definitions
make use of private members. They couldn’tbe made members of the struct because their
first argument is of another already defined type. Similarly, functions that are associated
with a type even though they don’t operate on one of its instances, such as convert_to_
string, must be made friends if they require access to internal implementation details.

One struct can make all the member functions of another its friend by declaring the
other struct a friend. For example, if there was a class character that string functions
used, the class character could declare string a friend by including in its definition the
declaration.

friend struct string;

Sometimes it is better to make a function global even when it could be a member.
In particular, binary operators should usually be global rather than members. First ofall,
since they are symmetric they seem more natural expressed as a function of two argu-
ments, rather than as a member function of one. Second, they are rarely called using the
member access notation, since the infix operator syntax is so convenient and familiar,
(Expressions using the operator functions would look the same whether they were mem-
bers or friends.) Finally, there is a subtle loss of flexibility when member functions are
used: in the case of a function of two arguments, the compiler can attempt to coerce given
arguments to the types of the required ones, but types through which member functions
are called using access notation are not coerced. It would be strange to have a binary
operator for which the first argument couldn’t be coerced but the second could (especially
when the operator is commutative), so it is generally better to declare these friends rather
than members.

Global functions can be made friends if they need access to internal details, but often
they don’t. Infact, one style of defining operator functions has them turn around and call
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a regular member function, giving user’s a choice of either operator or function call
notation. A side effect of declaring global functions friends is that the declarations move
inside the struct with the rest of the type’s interface. This makes the functions look like
they are truly encapsulated inside the type, even though they are still global, Presenting
this impression may be reason enough to make the global functions friends even if they
don’t need access to private members.

Here’s the header file for the string module with the global functions and binary op-
erators as friends.

// stringt,.H, version 6: information hiding + friendship

#Hi fndef STRINGT H
fidefine STRINGT_H

#include <iostream.h>

struct string
{
private:
// data members
int size;
char* chars;

public:
// member functions
void destroy();
char& operator[](int n);
int Tength();

/! friend operator functions

friend string operator+(string&, string&);
friend int operator=—(string&, string&);
friend int operator<(string&, string&);

// friend functions

friend string* make_string(int);

friend string* convert_to_string(char*);

friend ostream& operator<<{(ostream&, string&);
}s

fendif /* STRINGT_H */

Since they are no longer member functions, the operator function definitions return
to the form they had in version 3, before we made the data members private. Actually, we
could use operator[] in place of ->chars, and Tength() instead of ->size. Then,
operator==and operator< could be ordinary, nonfriend, global functions placed out-
side the struct definition. There’s no compelling reason for doing this, however, and
functions inside the struct definition seem more clearly part of the interface than those
placed outside, so we’ll leave them as is. In fact, it seems odd to take advantage of an ac-
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cess function for one field, but not the other; since we’re leaving these as friends we’ll use
the internal field names directly.

// operator functions from stringt.C, version 6: information hiding
/! Note that friendship is declared in the header, but not here

char& string::operator[J(int n)

{
return chars[n]:
}
int string::length()
{
return size;
}
string operator+(string& strl, string& str2)
{
string* str = make_string(strl.size + str2.size):
memcpy{str->chars, strl.chars, strl.size);
memcpy (str->chars+strl.size, str2.chars, str2.size);
return *str;
}
int operator==(string& strl, stringk str2)
{
if (&strl == &str2) return 1; // same strings!
if (strl.size l= str2.size)
return 0;
else
for (int 1=0; i<strl.size; i++)
if (strl.chars[i] != str2.chars[i]) return 0;
return 1;
}
static int min(int a, int b)
{
return (a<b ? a : b);
}

int operator<(string& strl, string& str2)
{
for (int i=0; i < min(strl.size, str2,size); i++)
if (strl.chars[i] < str2.chars[i])
return 1;
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else if (strl.chars[i] > strZ.chars[i])
return QO

return (strl.size < str2.size);

Static Members

Consider the function make_string, now a friend.

string* make_string(int siz)

{
assert(siz >=0);
string* str = new string;
str->size = siz:;
str->chars = new char[str->size];
return str;

}

Unlike some of the other friend functions we’ve seen, there is simply no way to write
this one using only the public interface. It could be made a friend, but there’s a better
mechanism available, You can declare them static, which makes them part of the encap-
sulated type but independent of any instances of the struct. Both data members and
member functions may be made static.

Static data members are essentially global variables of struct scope. Inside member
function definitions, they are accessed normally, since member functions are within the
struct’s scope. Toaccess a static data member outside a member function of its struct, you
must prefix its name with the struct name and the scope resolution operator (::). For ex-
ample, string might declare a member nul1. Since there’s no need for each string to
have its own personal nu11 string, nu11 would be declared static. Inside string member
functions null would be accessed normally. Qutside, it would be referred to as
string::null.

There are many uses for static data members. Global variables should be avoided
wherever possible in data abstraction programming. Most variables you’d be tempted to
make global should really be static data members. In particular, global variables of file
scope (i.e., static global variables) act as module-level global variables by virtue of the fact
that they are accessible from within the function definitions in their file but not from out-
side the file. Where the file is the implementation of a data type, such file-scoped global
variables should be made static data members of the type.

Static member functions are just global functions with struct scope. Like static data
members, they are accessed normally from within member functions and by names qual-
ified with the struct name and scope operator outside. Static member functions are used
for actions that are clearly part of the type, but not associated with any particular
instance. Since they do notact on an instance, they don’t have an implicit this argument.
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You won’t see many static members in this book. They are usually found in appli-
cation-level structs, not implementations of fundamental data structures. In this section
they are used to create new instances of string. Functions that create new instances must
be static (or global) because before the instance is created it doesn’t exist, so the instance
can’tbe used to call an ordinary member function. However, C++ features discussed a bit
later make explicit creation functions unnecessary, so this use of static member functions
here is mostly for pedagogical purposes.

Static members follow the usual rules of access according to whether they are public
or private, with one exception. As global variables, static data members must be initial-
ized at the file level. File level is outside of any function scope, so they must be qualified
with the name of the struct. Normally, there would be no way to access a private member
atfile scope (we can make functions friends, but not files). Because there would otherwise
be no way to initialize a private static data member, an exception is made to allow private
static members to be defined at file scope.

Makingmake_stringand convert_to_string staticinstead of friends gives us the
next version of the string module. Code calling these functions must use the scope reso-
lution operator to explicitly identify the struct from which they come — string: :make_
string, for example. Thus, the syllable string in the names of these functions is really
redundant and can be omitted. Note that there are no longer any functions declared out-
side the struct — those that used to be outside are now either friends or static declared in-
side the struct.

/! stringt.H, version 7: using static members

#H fndef STRINGT_H
#define STRINGT_H

#include <iostream,h>

struct string
{
private:
// data members
int size;
char* chars;

public:
// member functions
static string* make(int):
static string* convert(char¥*);
void destroy():
char& operator[](int n);
int Tength():

/! friend operator functions
friend string operator+(string&, string&);
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friend int operator==(string&, string&):
friend int operator<{string&, string&);
friend ostream& operator<<{ostream&, stringd);
};
ffendif /* STRINGT_H */

Here are the definitions of the two static member functions. The definition of
operator+isalso affected: its call tomake_string becomesacallto string::make.

// static functions from stringt.C, version 7
// Note that members are declared static in the header, but not here.

string* string::make(int siz)
{

assert(siz >=0);

string* str = new string;

str->size = siz;
str->chars = new char[str->sizel;

return str;

string* string::convert(char* cstr)

assert(cstr != 0):
string* str = new string;

str->size = strlen(cstr);
str->chars = new char[str->size];

memcpy(str->chars, cstr, str->size);

return str;

string operator+(string& strl, string& str2)
string* str = string::make(strl.size + str2.size);

memcpy (str->chars, strl.chars, strl.size);
memcpy(str->chars+strl.size, str2.chars, str2.size);

return *str;

The test program is similarly affected: calls to convert_string become calls to
string::convert,



Sec. 1.2 Fundamental Operations 55

/! stringt tst.C, version 7: using static member functions

#include “stringt.h”
f#include <assert.h>

main()
{

string& strl = *string::convert(™abc”);

// convert is now a static member function of string
assert(’a’ = strl[0] && 'b' == strl[1] && 'c' == strl[2]);
assert(strl.length() == 3);

string& temp — *string::convert(“def");
string str2 = strl + temp;

[
§

str2[2] &&
str2[5]1);

assert(’a’ == str2[0] && 'b’" == str2[1] && 'c’
‘d’ == str2[3] && ‘'e' == str2[4] && 'f°
assert(stré.Yength() == §);

H
]

assert(strl == strl);
assert(strl < str2);

cout << "The concatenation of '" << strl << "' and ‘'def® is '™ << str2
<< "', which has " << str2.,length() << " characters.\n";

strl.destroy();
str2.destroy();
temp.destroy();

cout << "Test completed.\n";
return 0;

This is as much as needs to be said about data abstraction for now. This section has
introduced some important new features that C++ adds to C. Most of these will be used
extensively throughout the rest of this book. This first glance is only an introduction —
the implementations of various data structures that begin in the next chapter will further
clarify their use.

1.2 Fundamental Operations

Once you've implemented a few data structure modules, you begin to notice that certain
operations show up over and over again. These operations are fundamental in several
senses:

* They are common basic operations that should be understood by anyone using
and implementing data structures.

* They are intimately tied up with the representation of a data structure,
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* They define the essential behavior of instances of the data structure.

There are some things we can say about fundamental operations abstractly, inde-
pendent of any particular datatype. The schematic overview presented in this section will
be used to organize the implementations of the data structures shown in the rest of the
book. You should use them to help you think about and organize the data structures that
you use and implement, too. Appendix A includes a summary of the fundamental oper-
ations.

There are four broad classes of fundamental operations:

Lifetime the core of a structure’s implementation

Traversal mechanisms for performing actions on each of a collection’s compo-
nents

Content manipulations based on the meaning of the type and the states of its
instances

Support auxiliary operations less intimately tied to the implementation, but

still common to most structures

Each of these groups contains various generic fundamental operations. In this
book these will be distinguished typographically by capitalization and a different
typeface — Modify, for example. Some generic operations have several manifestations in
a particular data type, so really we have four groups of kinds of operations. For instance,
Modify includes Add, Remove, Replace, and Exchange. Even something as specific as Add
might be implemented by several different functions: for example, add_at_front and
add_at_back.

1.2.1 Lifetime Operations

Lifetime operations provide the core of a structure’s implementation. The operations
could also be called existential operations because they deal with an instance’s existence.
Figure 1.1 illustrates the lifetime of a computational object.

Access

Initialize Finalize :
————————

EEEEEE—

Create Destroy

Modify
Figure 1.1 The Lifetime of a Data Object
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An object’s life begins when it is created and ends when it is destroyed. Our string
module has make and destroy, as well as convert, a variation on make. The definitions
of make and convert really perform two separate actions: allocate space for the object and
establish a meaningful initial state. We’ll call the first of these Create, since once space is
allocated the object exists, and the second Initialize.

Traditional programming style often combines Create and Initialize into one opera-
tion, as in make and convert. That makes sense since we don’t want to allow an object to
be used before it is initialized. However, Create and Initialize are conceptually distinct op-
erations and should be recognized as such. Alanguage may support these two fundamen-
tal operations with different mechanisms, as, in fact, C++ does. Also, we may want the
ability to reinitialize a used object, requiring operations that initialize without creating.

Just as we don’t want to use an object before it is initialized, we don’t want it to be
destroyed before any necessary cleanup actions are performed. As the diagram shows, a
Finalize action should precede any Destroy. (The term ‘finalize’ is chosen as the opposite
of ‘initialize’, in that ‘final’ is the opposite of ‘Initial’; other terms could be used, including
‘terminate’ and ‘cleanup’.)

In between Create-Initialize and Finalize-Destroy is the object’s useful lifetime. Atthe
lowest level of interpretation, the only things we really can do to a computational object is
Access and Modify its components. Several kinds of Modify operations are common, in-
cluding Add, Remove, Replace, and Exchange. Collection structures often provide Clear
(Remove all). Our string module provides operator[], which, since it returns a refer-
ence, can be used for both Access and Replace. Remove and Exchange are not provided,
though they could be. (Cf. Exercise 1.)

1.2.2 Traversal Operations

Some data structures represent individual entities, and some represent collections of
entities. The representation and implementation of individual entities are usually very
simple and straightforward, so for the most part studying data structures means studying
collections. Given a collection of objects, it is frequently necessary to traverse, or go
through, the entire collection performing some operation. There are two ways to traverse
a collection: an iterator performs some action for every element of a collection, while a
generator supplies one element each time it is invoked.

Several of the string module functions contain for loops. These loops are examples
of “open-coded” iterations — traversals expressed directly in the programming
language. It would be wonderful if the language provided a generalized foreach state-
ment, so we could just write something like.

foreach ch in str de fn(ch);

Some avant garde languages provide such constructs, but C++ doesn’t.

Open-coded traversals are a source of a large percentage of programming errors: ex-
pressing initialization, stepping calculations, accesses, and termination tests just right can
be tricky and may require a detailed understanding of the implementation of the collec-
tion structure. It is better to encapsulate traversal operations in functions than to open-
code them. Traversals involve four basic actions: initializing the process, stepping to the
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next component, accessing the current component, and testing for termination. Ideally,
each data structure should provide traversal operations as part of its implementation, so
that users never have to worry about these details.

One approach to encapsulating traversal is to provide iterator functions. A travers-
al using an iterator function would be expressed in C++ as follows:

str.foreach(fn);

Another kind of iterator function not only performs some operation on each component
of a collection, but collects the result into a new instance of the type. Unfortunately, iter-
ator functions get awkward in C-based languages for technical reasons having to do with
parameter typing. (Cf. Appendix C, page 465.) Because there is no way to conveniently
generalize iterators in C++, the more common approach is to use generators.

Iterator operations would support the most common kinds of collection traversals.
They would handle initialization, stepping actions, component access, and termination
tests all in one construct. Generators are similar, but they provide these aspects of travers-
al separately. To traverse an entire collection using a generator requires code in a form
something like

initialize-generation();
while (! termination-test())
{ generate-next(); use-current(); }

Because generators are a lower-level mechanism, they can be used to construct spe-
cialized loops that would not be handled by routine iterators. Generators can be used
wherever iterators would be, though less conveniently. It turns out to be fairly straight-
forward to express generators in C++.? Generator operations are therefore used
throughout this book, including situations which would call for iterators in a language
that facilitated their implementation and use. Section 1.3.5 below shows a simple ap-
proach to the implementation of basic generator operationsin C++.

A difficult problem to deal with is the consequences of modifying a structure while
in the midst of traversing it. Will newly added elements be seen by the traversal? Will re-
moving an element cause another to be missed by the traversal? The implementation ap-
proach taken by a commercial data structure library would have to confront these issues,
but they are beyond the scope of our discussions here. The assumption in this book is
therefore that traversals are “read-only” regarding the contents of the structure which
they traverse. The individual elements may be modified, but there are no guarantees on
what will happen if elements are added or removed between steps of a traversal.

1.2.3 Content Operations

Operations that reflect the meaning of a type will be called content operations. There are
several different kinds:

4C++ makes generators so straightforward to implement and use and makes iterator functions so diffi-
cult that iterator functions are almost never used, and the term ‘iterator’ is used in the C++ community to de-
scribe what is more accurately termed a ‘generator’. In any case, the rest of this book will simply refer to
‘traversal’,
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Attribute special states or properties, either predicative (e.g., empty) or quan-
titative (e.g., Tength)

Compare comparison of two objects for equality, order, etc.

Combine combination of two objects in type-dependent ways, broadly subdi-

vided into Add (e.g,, set union}, Subtract (e.g., set difference), and
Multiply (e.g., set intersection)

Our string module contains several typical content operators.

Attribute: length
Combine: +
Compare: ==, {

All collection structures inherently have an attribute that indicates the number of el-
ements they contain. However, different spatial metaphors are used in talking about dif-
ferent kinds of collections, and ‘length’ only applies to structures pictured as linear, such
as arrays and lists. Other similar terms include ‘depth’ for stacks and ‘cardinality’ for sets.

It will be convenient to use a single term for this attribute for all kinds of structures.
Candidates for a generic term meaning ‘number of elements’ include ‘size’, ‘count’, and
‘cardinality’. All of these have problems: ‘size’ is easily confused with the number of bytes
the structure occupies in storage, ‘count’ sounds more like something to do than an at-
tribute, and ‘cardinality’ technically applies only to sets. Some theorists also use ‘cardi-
nality’ to denote the number of values a type can have: the cardinality of Boolean is two,
and the cardinality of C’s char is 256. One possible solution would be to use ‘number_of_
elements’, which clearly indicates its meaning; however, that name is inconveniently long
for a function that will be used frequently.

This issue will be resolved by using ‘size’ in the rest of the book to mean the number
of elements in a collection. To talk about the amount of storage a structure occupies, the
term ‘space’ will be used. Implementations of structures that maintain an internal count
of elements will store that count in a data member called ‘length’. This works well because
typically it is only linear collections that store such a count, and ‘length’ is entirely appli-
cable to them. Other kinds of structures must compute their size somehow. The use of
the terms ‘length’ and ‘string’ in the string example will be left as is, however — ‘length’
the Attribute function and ‘size’ the internal count. In part this is because C’s strien
function conditions programmers to think about string ‘length’ and in part because
strings really aren’t full-fledged collections like the other structures studied in this book.

1.2.4 Support Operations

The last group of fundamental operations is to some extent a catch-all for the ones that
don’t fit neatly into any of the other three groups. For the most part these operations are
so commonly used that data structure implementations should provide them as a
convenience. Manydon’tneed access to internal details and can beimplemented in terms
of more fundamental operations. For some, however, implementation is simpler or more
efficient when the internal representation is accessed directly. Occasionally such access is
necessary. Categories of support operations include the following:
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Copy various kinds: partial or full, same order or reverse, etc.
Process Sort, Search
Input/Output text and graphics: Read, Write, Display, etc.

The only example (so far) from the string module is operator<< (Write). Others we
could add include operator>>, reverse, and copy. Itis a lot easier to specify a general
output operator for a structure than a general input operator. Input gets very messy in
that all sorts of validation tests have to be performed on the characters being parsed, and
different formats may have to be accommodated. To simplify things, the structuresin this
book don’t define Read operators.

1.2.5 Summary

The summary of fundamental operations in Table 1 shows categories of fundamental
operations. For a given structure, a particular category may have several manifestations.
For instance, Access operations on a set type might include Add, Remove, and Replace.
Those manifestations can be given generic names, but often specific names are used for a
particular kind of structure. Inasetmodule, for example, Combine would be Union (Add),
Difference (Subtract), and Intersection (Multiply).

Lifetime Traversal Content Support
Create/Destroy Foreach Attributes Copy
Initialize/Finalize Collect Compare Process
Access/Modify Generate Combine Input/Qutput

Table 1 Summary of Fundamental Operation Categories

Convert

There’s one more category of operation that might theoretically be included in this
scheme: Convert. Conversion plays a major role in C programming; various kinds of sca-
lar values are converted to each other, pointers of one type are converted to pointers of an-
other, etc. Some conversions are performed automatically by the compiler and some
because the programmer has written an explicit cast. C++ extends the concept of casting
to cover one-argument constructors that can be used by the compiler or programmer to
convert the argument type to the constructor’s type, as will be seen in the next section.

Conversion has wider meaning that just casts. C library functions that parse strings
into numbers are often called text conversions. Input and output can even be considered
conversion between text strings and a program’s values. A function that returns the num-
ber of characters in a string or elements in a set could be considered a conversion from a
collection structure to an integer.

Not only does conversion have wide applicability, butit plays the kind of central role
that other fundamental operations do. Many conversion operations, in particular one-
argument constructors, are unavoidably linked to internal implementation details.
Clearly Convert qualifies as a fundamental operation.
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Why isn’t Convert included here then? Partly because of the introductory level of
this text and partly because C++ implements conversion operations with too varied a
range of mechanisms, considering Convert as a separate fundamental operation would de-
tract from the discussions here more than it would add to them. One-argument construc-
tors can be considered special kinds of Initialize operations, rather than ConvertFrom.
Treating input and output as conversion between structures and text streams is an inter-
esting approach but doesn’t really contribute anything to the way data structures are de-
signed or implemented. Sophisticated uses of ConvertTo operations usually appear only
within a carefully integrated library of related data structures, not in the simple stand-
alone types described here. Simple uses of ConvertTo, like converting a collection to an int
indicating whether or not it is empty, can easily be treated as ordinary predicate opera-
tions.

1.3 C++ Support for Fundamental Operations

C++ provides various kinds of mechanisms that help make the principled implementa-
tion and use of fundamental operations quite natural. The simplest is the availability of
operator overloading, since so many fundamental operations can be naturally expressed
as operators. More substantial support is provided for Create/Destroy, Initialize/Finalize,
and Copy. C++ also supplies mechanisms for defining operations that convert an object
of one type to an object of another type, which will be described even though not used in
the rest of the book.

1.3.1 Create and Destroy

Create and Destroy in C++ are implemented through the operators new and delete.
Variable declarations also lead to objects being created and destroyed. Global definitions
are supplied for new and delete.

Structs can define their own version of these operators. Furthermore, both global
and struct-specific versions can be defined for various signatures. The details of over-
loading new and delete are beyond the scope of this text, but it is worth mentioning this
here to show that C-++ does give programmers control over the behavior of Create and De-
stroy for their types. The default global definitions of new and delete are entirely suffi-
cient for of the purposes in this book.

1.3.2 Initialize and Finalize

Looking at the code for string: :make we can see that the Create operation is performed
by the C++ new operator. The rest of the function performs the Initialize actions. Simi-
larly, string: :destroy performs Finalize actions and then invokes delete to actually
deallocate the space (i.e., Destroy the instance). Functions that combine Create and Initial-
ize, and Finalize and Destroy, are common in traditional data structure implementations.
As pointed out earlier, however, there are advantages to splitting these dual-purpose op-
erations into separate functions.
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In any case, C++ has special mechanisms for initialization and finalization, which
lead to entirely separate implementations of Create, Initialize, Finalize, and Destroy. Keep-
ing Initialize and Finalize operations independent has another very important advantage
beyond the ones mentioned earlier: the combined functions (Create-Initialize and Finalize-
Destroy) manage only dynamically allocated objects, whereas the C++ mechanisms apply
also to global and local object-valued variables.

In C++, a special initialization function, called a constructor, is automatically in-
voked whenever an instance of a struct is allocated (created), whether it be the value of a
local or global variable or dynamically created with new. Similarly, before any struct in-
stance is destroyed — either by a variable going out of scope or by a delete of a dynami-
cally allocated instance — a special finalization function, called a destructor, is
automatically invoked. Constructors are member functions with the same name as their
struct and no return type (not even void). Destructors are member functions whose
name is the name of their struct preceded by a tilde and no return type.

A constructor (but not a destructor) may take arguments. In fact, a struct may de-
fine several constructors, each with its own signature (pattern of argument types). A con-
structor that can be called with no arguments (either it has no arguments or all its
arguments are optional) is called a default constructor. Arguments are passed to a con-
structor by putting them in an argument list that follows the variable name (for global and
local variables) or the struct name (in a new expression). (There are further syntactic
forms for specifying initialization arguments that won’t be discussed just yet.)

struct date

{

oL (E11ipsis comments represent omitted details.)
public:

date(); // default constructor
date(int day, int month, int year); // other constructor
~date(); // destructor
!/

}

/..

main()

{
date dl; // default constructor called
date d2(4, 7, 1776); // other constructor called
//
// destructor for dl and d2 called on exit

J

Most default constructors take no arguments, as shown in the above declaration. Howev-
er, it is often convenient to specify a default constructor with all optional arguments.
Thus, the two dat e constructors above could be combined as
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date(int day = CURDAY,
int month = CURMONTH,
int year = CURYEAR);

Because in C++ constructors are called whenever an instance of a struct is created,
we don’t really need functions like string: :make. We do need a constructor (initializer)
called string: :string, but Create in C++ is handled by the new operator and the mech-
anisms that allocate space for global and local variables. Similarly, Destroy is handled by
the delete operator and the mechanisms that deallocate global and local variables when
their scope is exited. In short, basic language mechanisms take care of Create and Destroy
for us, including always invoking the appropriate Initialize and Finalize operations. Our
data structure implementations just need to supply constructors (for Initialize) and a de-
structor (for Finalize).

Constructors and Destructors in the String Module

Here is the header file for the string module modified to use constructors and destructors
in place of make, convert, and destroy. The constructors and destructors implement
Initialize and Finalize, whereas the old functions also performed Create and Destroy
operations. In C++, we don’t need functions that both create and initialize or both final-
ize and destroy. Create and Destroy are invoked through the mechanisms of variable allo-
cation and operators new and delete. Initialize and Finalize are automatically invoked
whenever Create and Destroy operations are performed. All the programmer needs to do
is define the appropriate constructors and destructors.

// stringt.H, version 8: constructors and destructors added

#ifndef STRINGT_H
fdefine STRINGT_H

f#Hinclude <iostream.h>

struct string
{
private:
// data members
int size;
char* chars;

public:
// member functions

// make, convert, and destroy replaced by constructors and destructors:

string{int): // constructor (initializer)
string(char*}: /! constructor (initializer)
~string(}; // destructor (finalizer)

char& operator[]}(int n);
int Tength();

// friend operator functions
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friend string& operator+(string&, stringd);
friend int operator==(stringd, stringd);
friend int operator<(string&, stringd);

friend ostreamd operator<<(ostream&, stringd);

The constructors and destructor are defined as follows. They replace the static
functions make, convert, and destroy, though they only initialize and finalize strings,
not create and destroy them. Create and Destroy are handled by C-++ variable definitions,
new,and delete.

// Constructors and Destructors, version 8

// Note the absence of a return type.
string::string(int siz) // In place of make-string
{
assert(siz >=0);
// Note that there's no new here: the string has
// already been created by the time this is called.

size = siz;
// Note that there’s no str-> here or anywhere else in these defs
chars = new char[siz];

// Note the absence of a return.
}

// Note the absence of a return type.
string::string(char* cstr)

{
assert(cstr = Q);
// Note that there's no new here.
size = strlen(cstr);
chars = new char[sizel;
memcpy{chars, cstr, size);
// Note the absence of a return.
}
// Note the absence of a return type.
string::~string() // In place of destroy
{

cout << "Deleting string at address " << this << "\n';
delete [] chars;
// Note that there's no delete this — the string gets destroyed later

Next is the test program modified to use constructors and destructors. Note that
the strings are now created as objects instead of pointers — the variable definitions cause
space to be allocated, so dynamic allocation using new is not needed here.
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// stringt tst.C, version 8: using constructors and destructors

ffinclude “stringt.h"”
ffinclude <assert.h>

main()

{
string strl(™abc”);
// Note absence of function call: the initializer is called
// automatically and passed the argument “abc".
assert('a' == strl[0] && 'b' == strl[1l] && 'c’' == strl[2] );
assert(strl.length() == 3);

string temp("def");
// Note absence of function call:
// The initializer is called automatically.

string str2 = strl + temp;

assert('a' == str2[0] && 'b’ == str2[1] && 'c' == str2[2] &&
'd' == str2[3] && 'e' == str2[4] && 'f' = str2[5]);
assert(str2.length() == 6);

assert(strl == strl):
assert(strl < str2);

cout << "The concatenation of '" << strl << "' and 'def' is '" << str2
<< "', which has " << str2.length() << " characters.\n";

// Finalizers are called automatically when the strings go out of
// scope (when the function returnsj. Their calls don’'t appear in code.

cout << "Test completed.\n";
return 0;

One-argument constructors can be interpreted as conversions from the argument
type to the constructor’s type. In fact, that’s what was done in this last implementation of
the string module: string: :convert(char*) became an initializer. The compiler is free
to use one-argument constructors for type casting whenever it wants to cast something of
a constructor’s argument type to the constructor’s type. Notall one-argument construc-
tors are meant as conversion constructors: string: :make(int) initializes the string to
hold a certain number of characters, but it would not be reasonable to interpret this as a
conversion from int to string. Unfortunately, there’s no way for the compiler to know
which one-argument constructors do make sense as conversion operations and which
don’t, and problems sometimes arise when the compiler unexpectedly uses a one-argu-
ment constructor in a way the programmer didn’t intend.

Note that the string module does not have a default constructor. In this implemen-
tation it would be pretty meaningless to create a string without specifying either its size or
its characters. Ifa default constructor is needed for a struct that doesn’t provide any con-
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structors, the compiler will normally generate one that does nothing. However, aslongas
the struct defines at least one constructor, the compiler will not generate a default one.

Member Initialization Lists

One final detail of constructors remains to be discussed. What happens if a data member
is a reference or a const (e.g., a person’s Social Security number)? How could it ever be
initialized, since an assignment would be flagged as an error? To get around this problem,
constructors can have a member initialization list, which specifies initial values for
members. This distinction is just like that between initialization of local variables and as-
signment to already declared local variables. The (comma-separated) list specifies mem-
bers and their initial values in the format

memberli(value), member2(value), ... , membern(value)

The member initialization list is placed after a colon following the argument list in the
constructor’s definition.

There are reasons to use member initializers even for members that could be as-
signed to. If amember with built-in type is not mentioned in a member-initialization list,
it won’tbe initialized, and assignment in the body will be fine. However, if a struct-valued
member is not mentioned, it will first be initialized via the default constructor for its type.
That will in general be wasted effort if there’s an assignment to that member in the con-
structor’s body, since the work that assignment will do is usually very similar to the work
done in the structure’s default constructor. Furthermore, if no default constructor is de-
fined or generated for the struct, the compiler will complain if the struct-valued member
is not included in the member initialization list.

In sum, you must use the member initialization list to initialize things that cannot be
assigned to, such as const and reference members, and you should use the member initial-
ization list (instead of assignment) for struct-valued members. (If you want the default
initialization for a struct-valued member, leave it out of the member initialization list.)
Members with nonconst, nonreference built-in types are the only thing left for which as-
signment is acceptable. For consistency it makes sense to use the member initialization
list for these too. About the only time assignment in a constructor is appropriate is inside
a loop used to initialize the individual elements of an array allocated by an expression in
the member initialization list.

// Constructors from string.C, version 9: using member initialization 1ists

string::string(int siz) : size(siz), new char[sizl)
{

// nothing else to do!
}

string::string(char* cstr)
: size(strlen(cstr)), chars(mempcy(new char[size], cstr.size))

{
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// Members are initialized in the order in which they appear in the
// struct declaration, so the memcpy call can use size.

// nothing else to do!

1.3.3 Compare

C provides six comparison operators: ==, 1=, <, <=, >, and >=. Not all kinds of data struc-
ture have natural notions of ordering, but nearly all have natural notions of equality. Note
thatequality of structures is a weaker condition than identity. Identity would be tested by
comparing the addresses of two structures to see if they are actually the same. Equality is
tested by comparing the components of the two structures and, for some kinds, their
shape. Similarly, there are two kinds of equality tests for structures: one based on whether
the components are identical and another based on whether the components are equal.
Unless otherwise stated, equality of structures will in this book be the kind based on equal-
ity, not identity, of components.

The convention adopted for this book is that all structure modules will provide im-
plementations of equal and compare operations. Templates (see Section 1.4.1, page 73
ff. below) in standard.H provide operator functions that call equal and compare, so that
users can program with the more convenient operator notation. Equal functions return
bools. Anenum order isdefinedin standard.H, containing BEFORE, EQUAL,AFTER,and
NO_ORDER. Compare functions return orders. The value NO_ORDER is used when order
comparison is inappropriate or impossible.

Equal should normally be implemented in all structure modules. A function testing
the equality of two structures must be able to test the equality of their components, so all
structure implementations in this book assume that their component type also provides
an equal operation. Similarly, structures for which order comparison makes sense re-
quire component types to implement compare. Because the structures described in the
text can themselves be used as components of each other, they too must always implement
equal and compare. If the operation doesn’t makes sense for that kind of structure, then
its implementation can signal an error indicating that the corresponding function
shouldn’t be called.

1.3.4 Copy

Copy has two manifestations in C++, one for initialization and one for assignment. In the
initialization of one struct instance from another of the same type, the constructor that
takes an argument of that type is invoked. In other words, copy initialization is like a con-
version to a struct instance from another of the same type. For assignment from an in-
stance of the struct to another instance of that struct, operator=is used. In both cases,
the argument is passed as a reference. The signatures of the two operations are always, for
a given type T, as follows.
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T::T(T&); // copy constructor
T& T::operator=(T&); // copy assignment

In both cases, if the struct doesn’t define the appropriate member function the com-
piler will (in most circumstances) generate one automatically if it is needed, but the defi-
nitions generated are usually inappropriate for collection structures. They copy
structures by copying each member. Pointers are copied to the other structure, rather
than what the pointers point to, leading to two collections having members pointing to the
same auxiliary storage — almost always an error.

For a variety of reasons, it is good practice to always define both copy initialization
and copy assignment (presumably with essentially the same external behavior). Inpartic-
ular, wherever a structure instance is passed or returned by value (perhaps accidentally)
the compiler invokes a copy constructor, defining one if necessary. It is better to keep
control over the definition of Copy operations by defining them yourself, even if you don’t
expect users of your module to invoke them. For this reason, all the modules shown in
this book will include copy constructors and assignment operators. Itis especially impor-
tant to define Copy operations when a struct allocates storage in its initializers because
Copy almost always means allocating new storage and copying values from the old. You’ll
find that the definition of the two forms of Copy are quite similar, so a good practice is to
abstract that common code to a private member copy that both call.

It turns out that the code shown to this point has been implicitly using compiler-
generated copy constructors! String’s operator+returnedastring —notastringéor
string*, Returning an object by value is one of the standard situations in which copying
occurs — the operator+ function creates a string, then returns a copy of it. Then, anoth-
er copy operation occurs, as the returned value is used to initialize str2. (A smart com-
piler might optimize away the second copy by making the first one in str2 directly.) The
compiler-generated copy constructors are incorrect, since they copy the chars pointer
rather than the characters to which chars points. Note also that the string dynamically
created inside the operator+ function is never explicitly deleted, a serious design error
that we can finally rectify.

Copy Operations in the String Module

Followingare declarations and code for the Copy operations in the string module. Reverse
is a fairly common operation that can be understood as a variation of Copy, and we’ll in-
clude that here too. Similarly, Copy operations sometimes include only some of the old
structure’s components in the new one; in the case of strings, substring would be an ex-
ample of a partial Copy.

/! stringt.H, version 10: Copy operations added

struct string

{
//

private:
void copy(stringd);



Sec.1.3 C++ Support for Fundamental Operations

public:
string(string& string); // copy initialization
string& operator=(string&); // copy assignment
string reverse(); // reverse copy

string substring(int start, int end = -1); // partial copy

/i
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/! stringt.C, version 10: Copy operations and corrected operator+

// private function supporting copy operations
void string::copy(stringd str)

{
size = str.size;
chars = new char[size];
memcpy(chars, str.chars, size);
1
string::string(string& str)
{
copy(str);
1
string& string::operator=(string& str)
{
if (this != &str) // assign string to itself?!
{
delete [] chars; // must first delete old array
copy(str);
}
return *this;
1
ostream& operator<<(ostream& strm, string& str)
{
str.reset():
while (str.next()) strm << str.current();
return strm;
1

string& string::reverse()
{
string* str = new string(*this);

int mid = size/2;
for (int i = 0; 1 < mid; i++)
exchange(str->chars[i], str->chars[size-i-11);
// exchanges two values (from standard.H, discussed below)

return *str:
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}
string& string::substring(int start, int end)
{
assert(abs(end) <= size && start > 0);
if (end < 0) end += size; // -1 is last, -2 next to last, etc.
// Note that size = lastindex+1
string* str = new string(end - start + 1);
for (int i = start; i <= end; i++)
str->chars[i - start] = chars[i];
return *str;
}
string operator+(string& strl, string& str2)
{
string str(strl,size + str2.size);
memcpy(str->chars, strl.chars, strl.size);
memcpy(str->chars+strl.size, str2.chars, str2.size);
return str;
/!l 0K to return local variable since it will get copied.
}

1.3.5 Traversal

C++ offers no special support for traversal operations. However, it is straightforward to
add member functions to data structures to support them. There are a number of differ-
ent approaches. The one used in this book is the simplest possible: traversals are accom-
plished via an idiom supported by member functions that together provide a generalized
generator facility. Functions are provided that

+ initialize the process
* step to the next component
+ tell whether or not there are any more components to process
+ supply the current component
For convenience, there will also be a function to supply an index or counter as the traversal

proceeds. Here are the member functions for string. Other structs will have the same
functions, differing primarily in the component type (here a char).

// stringt.H, version 11: Traversal operations added
typedef int bool;
struct string

{
/1
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// Traversal

void reset(); // initialize the traversal

bool finished(); // any components left to process?
bool next(); // step and return finished()
char& current(); // current component

int index(); // number of current component

There are many ways to organize traversal operations. The approach used here is
that reset positions the process before the first component, so a next must be performed
before attempting to access the first component. This facilitates using the traversal
operations. Note also that for convenience, since next doesn’t have any other value to re-
turn, it will return the resultof finished. Here are the implementations.

// stringt.C, version 11: Traversal operations
/* Traversal */

void string::reset()

{

cur = -1;
}
bool string::finished()
{

return cur >= size;
}
bool string::next()
{

curtt;

return !finished();
}
char& string::current()
{

return chars[curl;
}

The basic traversal idiom is as follows:

string str;
//

str.reset();
while (str.next())
// do something to str.current()
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Here’s how string: : operator<< would be coded using these traversal operations.

ostream& operator<<(ostream& strm, string& str)

{
str.reset();
while (str.next())
strm << string.current();
return strm;
}

The advantage of using traversal operations in place of the original formulation of
operator<< is that it leaves the function independent of the implementation of string.
If we change to a different representation for strings, this function is unaffected. This is
important not only for arbitrary external code but also for the less central operations of a
structure’s module. To the extent that dependence on a structure’s implementation de-
tails can be minimized, maintenance is facilitated, and many errors are avoided.

There are two major problems with the simplistic approach used here:

- Every instance of the struct incorporates space for the traversal state even when no
traversal is in process.

+ Worse, only one traversal at a time can be in progress on any instance.

More sophisticated approaches use separate “iterator” structs that maintain traversal state
independently of the struct instance. That would resolve these two problems, but for the
purposes of this book the increased complexity of the resulting implementations would
not be worth the trouble.

1.3.6 Input/Output

The basic features of the C++ iostream library were introduced earlier (page 37). Chap-
ter 4, on streams, discusses its facilities further. Although strictly speaking not yet part of
the language (just as printf and related functions were not strictly speaking part of the
classic C language), the iostream facility is supplied as part of virtually all C++
implementations. It providesarich, convenient set of mechanisms for defininginputand
output operators tailored for each data structure. It’s good practice to define an output
(insertion) operator for every struct, if only to support debugging.

Input (extraction) operators are also useful, butit’s much harder to discuss their im-
plementation in general and they are ignored in the rest of this book. The main difficulty
is the range of possible formats (and the code needed to parse and validate input). There’s
more flexibility on output, where any reasonable format can be understood by the human
reader. Forinput, data would have to conform to a specifically defined arrangement, per-
haps one of several. Also, various verification issues arise on input to make sure that the
values read are valid.
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1.4 Other C++ Programming Issues and Features

This section covers a few remaining technical issues of various degrees of significance.
This material will complete the introduction to data abstraction programming in C++.
After this, the central part of the book begins.

1.4.1 Templates

Templates are a major new feature that began appearing in C++ implementations by the
end of 1991. This feature will be used heavily in the code shown in this book, as it required
for the implementation of data structures in a type-safe language. It is also useful for de-
fining a class of simple type-independent utility functions, such as min, max, and ex-
change that would otherwise be defined less safely with macros.

Motivation

Suppose you wanted to implement a set of integers, using an array to hold its elements.
The elements would be stored contiguously in the array, and the struct would need a
member to keep track of the number of elements. The technical term for the number of
elements in a set is cardinality, but ‘size’ is used for the Attribute function here, to be con-
sistent with the way itis used in the rest of the book, as discussed in Section 1.2.3, page 58.
We’ll use ‘cardinality’ for the internal count since sets don’t really have a ‘length’ as do lin-
ear structures. The header file would look something like the following,

/! Sketch of set.H

typedef int bool;
const int set_limit = 1Q0: // assuming fixed size limit

struct set
{
private:

int cardinality;
int elements[set_limit];

public:
set();
int size();
setd& operator+=(int); // add to the set
set& operator-=(int); // remove from the set

bool contains(int);

friend ostreamd operator<<{(ostreamé, setd);
friend bool operator==(setd sl, setd s2);
friend bool operator!=(set& sl. set& s2);
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friend set operator+(set& sl, setd s2); // Union
friend set operator-(set& sl, setd s2); // Difference
friend set operator*(set& sl, setd s2); // Intersection

/! Traversal

void reset(); // initialize the traversal

bool finished(); // any components left to process?
bool next(); // step and return finished()

int& current(); // current component

int index(); // number of current component

Suppose that later, after writing and debugging this module, you are working on an-
other program and you realize that you need a set module again. However, in this pro-
gram sets must contain strings (char*) instead of integers. What do you do? The time-
honored maneuver in this situation is to make a copy of both the header and implemen-
tation files and use an editor to replace every occurrence of int with char*. Careful,
though! Not every int was there because it is the type of the set’s components. For in-
stance, the type of the cardinality member is an int and should stay that way, not be
changed toachar*.

After a few experiences like this, you might hit upon the clever idea of using typedef
to simplify the whole process. You could take your original header and implementation
files and replace all component-type ints with something neutral sounding like e1ement
and add to the beginning of the header file:

typedef int element;

With the typedef inserted, every place the compiler encounters element it will be as if the
file had int instead. The header file would then look something like the following.

// generalized set header file

typedef int bool;
typedef int element:

const int set_limit = 100; // assuming fixed size limit
struct set
{

private:

int cardinality;
element elements[set_limit];

public:
set();

int size();
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setd operator+=(elementd);
setd operator-=(element&);

bool contains(elementd);

friend ostreamd operator<<{ostream&, setd):
friend bool operator=—=(set& sl, setd s2);
friend bool operator!=(set& sl, set& s2);
friend set operator+(setd sl, set& s2);
friend set operator-(setd& sl, setd s2):

friend set operator*(set& sl, set& s2);

// Traversal

void reset(); // initialize the traversal

bool finished(); // any components Jeft to process?
bool next(); // step and return finished{()
element& current(); // current component

int index(); // number of current component

Now, to make a module for sets of strings, you would copy the header and imple-
mentation files (giving the copies new names), change the typedef to say char* instead
of int, and compile the new implementation file. You end up with three files — header,
implementation, and compiled — for each copy of the module that you make. Programs
select which to use by #includeing the appropriate header file in their program text and
including the appropriate compiled file in their list of files to link. You can do this over
and over again, creating a whole library of set-of-whatever types. To make a new set mod-
ule, all you actually change is the typedef in the header and implementation files.

The basis for this trick is the observation that none of the text in the module files de-
pends in any way on the type of the collection’s components. The characters in the different
files are identical except for the single typedef. This trick in effect creates a generic set
module — one that can be instantiated for any particular component type. The compo-
nent type becomes a parameter of the set type. Parameterization is an important aspect of
all collection types: collections must contain elements of some specific type, and nothing
about the component type affects the collection’s implementation.

There are several problems with this approach, however. One is that with the sim-
plistic approach outline so far, any given program can include only one instantiation of a
generic module. Although you might think of each set module as being a set-of-some-
thing module, the compiler would just see definitions of set and its member functions.
Each copy of the module defines a struct named set, so using two of them in the same pro-
gram would lead to many compilation and linkage errors due to multiple definitions. To
solve this problem, you’d have to find some trick to parameterize the name of the type in
addition to the type of the component, to get structures with names like intset and
stringset.

The main problems with this approach arise from the proliferation of module
copies. Each version of the module needs its own name for the struct it defines and the
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files comprising it and takes up space in the file system. Worse, if a bug is fixed in, or a
new feature is added to, the original module, the changes have to be propagated to all the
copies. That is tedious enough, but it may not even be possible to find out where all the
copies are — someone might have made a copy without telling the original author, Copy-
ing modules inevitably leads to all sorts of maintenance headaches.

C++ Support

Historically, various macro-based approaches have been developed that support more so-
phisticated versions of the above copy-and-edit scenario. Ultimately, however, effective
type parameterization requires language support, and C++ now supplies it. The mecha-
nism used is the template, which is essentially a way to specify parameters of a type in both
generic modules and in program declarations. Only one copy of the module text is main-
tained, with the compiler automatically generating the instantiated copies. This elimi-
nates all the maintenance problems associated with multiple copies of modules, the space
necessary to store them, and even the work necessary to produce them. The template fa-
cility also provides syntax for parameterized type names, so that there’s no problem using
several different parameterizations of the same type in one program and no work to do to
generate type-specific collection names. Sophisticated implementations can even avoid
generating functions of a particular instantiation that aren’t used, so the size of the gener-
ated code would be less than if a complete copy had been manually made for each instan-
tiation.

Only the basics of the parameterized type mechanism will be considered here — ad-
vanced features and other ways to use them are beyond the scope of this text. Superficial-
ly, just about the only thing added to C++ syntax for this is a new keyword template and
one new bit of notation: a list of template parameters enclosed in angle brackets. The
template keyword and the type parameter list precede the struct that begins the defini-
tion of a parameterized type. For instance, a vector type could be parameterized on the
number of dimensions by defining the template

template<int ndimensions> struct vector
{

VY AR
}s

Then, throughout that definition, the template parameter can be used just as if it had
been defined with a #define or a typedef. The name of the parameterized type is used
in the definition just as if it were not parameterized. In short, the only thing different
about the definition of a parameterized structis a few extra things thatappear before it; the
body of the definition is unchanged.

Usually, but not always, the parameter is a type name rather than a value such as ap-
pears in the vector example above. C has no mechanism for passing a type as an argu-
ment, so something new is needed: the keyword class in a template parameter list
designates a type argument.” No doubt you have never seen a type passed as a function ar-
gument (as opposed to avalue), but you may have seen type names used as macro argu-
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ments, and the idea here is similar. Here’s the header file for a type-parameterized set

module.

// parameterized set header file

const int set_1imit = 100; // assuming fixed size Timit

typedef int bool;
template <class element> struct set // replaces typedef

{
private:

int cardinality;
element elements[set_1imit];

public:

set();

int size();

setd operator+=(elementd):
set& operator-=(elementd);

bool contains(eTementd);

friend ostream& operator<<(ostream&, setd);

friend
friend

friend
friend
friend

bool operator=—(set& sl, setd s2);
bool operator!=(set& sl, setd& s2);

set operator+(setd sl, setd s2);
set operator-(setd sl, set& s2);
set operator*(setd sl, set& s2);

// Traversal

void reset(); // initialize the traversal

bool finished(); /1 any components left to process?
bool next(): /!l step and return finished()
element& current(); /! current component

int index(); /! number of current component

The only change from the ad hoc typedef-based solution shown earlier is to replace
the typedef with template<class element>. This says that element is a type that will
be specified in declarations that use set. The header and implementation file just use e1 -

5Class’ is used instead of ‘type’ because ‘class’ pretty much means ‘type’ in the object-oriented aspects
of C++ that we are not considering, and ‘type’ is too common a word in existing C programs for C++ to appro-
priate it as a reserved word.,
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ement as if it were really a type — as if it had been defined with fidefine or typedef. Dec-
larations of instances of parameterized types also use the angle brackets.

#include "student.H"

set<{char*> course_names; // a set of C strings
set<{student*> CS1, €S2, CS40; // three sets of student*s

Parameterization is not limited to just one argument. We could make the maxi-
mum size of the set a parameter of the type.

template<class element, int 1imit> struct set

{
private:
int cardinality;
element elements[1imit];
//
};

This would mean that set<int,50> and set<int, 100> are different types. Each param-
eter of a template is either of the form class T, where T is the type argument that will be
used in the template, or type X, where type is an already-defined type and X is the expres-
sion argument that is used in the template. Then, when using the template, type names
are supplied for type parameters, and expressions are supplied for other kinds of param-
eters.

Template Functions

Member functions of parameterized types must be parameterized in the same way. Each
template function begins with the same template preface as the declaration of the struct
to which it belongs (either as a member or a friend).

template <class element> bool operator==(set& sl, setd s2)

{
if (sl.cardinality ! = s2.cardinality) return FALSE;

for (int i = 0; 1 < cardinality; i++)
if (! s2.contains(sl.elements[i]))
return FALSE;
// could use traversal operatfons, but that would disturb
// any traversal in progress, so for convenience this is
// implemented directly in terms of the set’s representation.

return TRUE;
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A member function has the template preface and a parameterized name.

template <class element> int set<element>::size()

{
return cardinality;

}

Independent Template Functions

Template functions are also useful independently of parameterized types. Consider a
small function like min.

int min(int i, int j)
{

return (1 < j) 71 : j;
}

What about min for other numeric types? It seems pretty tedious to define a simple
function like min for every kind of numeric type with which it might be called. Templates
make it possible to write just one generic definition that the compiler will instantiate as
needed.

template <type I> T min(T& i, J& J)
{

return (1 < j) 21 : i;
}

That template function can be invoked with any type that defines operator, built-in or
user-defined. Using reference arguments avoids the overhead of copying when T is a
struct type.

Functions like min are typically defined as macros in C. One aspect of the flexibility
macros provide is that the types of their arguments are ignored when they are expanded.
Of course that flexibility is also a danger, and in C++ type safety becomes much more im-
portant a consideration than itisin C. Templates are much better than macros since they
generate real, type-checked functions.

Final Details

Template functions are more like macros than actual functions, since they are used by the
compiler to generate actual function definitions. In many implementations, templates
get included by source files that use them, just as macros are, in which case the implemen-
tation file gets included in addition to the header file. In more sophisticated implementa-
tions, only the header file is included and the compiler places the definitions it generates
into separate files that are later compiled and linked in to the executable. In either ap-
proach, a separate function definition is generated for each type with which the template
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function is called. Simple implementations generate definitions for every template func-
tion in a module whenever any are needed. More sophisticated implementations gener-
ate definitions only for those functions actually called with a particular type.

If a regular function is defined with the same signature as some template function,
then the compiler will not generate a definition for that function from the template. The
regular definition preempts the template. This allows tailoring a module for a specific
type by explicitly defining a few of its functions.

The straightforward approach of generating definitions for every function in the
module whether or not it is called makes certain demands of component types. If a struc-
ture’s template function invokes some function on one of its components, then the com-
ponent type must provide that operation. Given the design of the modules in this book,
there are three functions like this: equal, compare, and operator<x, each of which must
call the corresponding function on the components of the structure. Suppose, however,
you want to use one of these structures with a component type that doesn’t have any rea-
sonable definition of, say, equal. If you try to construct an application, you'll get linker
errors indicating that equal wasn’t found for the component type. Presumably, your
program would not call the structure’s equal operation, since you know that the compo-
nent type you are using doesn’t support equal.

However, in the straightforward approach, a definition of equal would still be gen-
erated, and it would contain an invocation of the component type’s equal, causing the
linker to look for it. For this reason, you would have to define these three functions even
if all they do is complain that they shouldn’t be called. Similarly, for this reason, all the
structure modules shown in this book are given definitions of these three functions in case
they are themselves used as the components of other structures. Of course, a more so-
phisticated template implementation would avoid generating definitions for template
functions that don’t get called, in which case modules would not have to provide functions
that were never going to be invoked.

1.4.2 Exception Handling

As you get comfortable with the process of writing modular data abstractions, you will no-
tice that their fundamental operations should check for certain common aberrant
situations. For instance, set Add should check to see if the underlying array that holds the
components is full before trying to add a new component. The term exception is used to
refer to the identification of such aberrant situations. Exception handling refers to a
mechanism for signalling, or raising, exceptions and responding to them. The term ex-
ception is more general than error, which implies something incorrect has happened. Ex-
ceptions include errors as well as other unusual but expectable situations such as the end
of a file. Consequently, exception handling may be applied to a wider range of situations
than just detecting errors.

We've already seen one primitive exception handling mechanism: the assert mac-
ro (cf, page 13). This is a convenient way to state an expectation and halt the program if
itis violated. It is meant to be used during program development and testing, then turned
off when the program is prepared for delivery. It is too crude a mechanism for applica-
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tions that are actually being used. A better mechanism is needed that allows the program
to detect and handle the exception yet retain control.

Motivation

What should a fundamental operation do when it detects an aberrant situation? Although
a structure’s operations may detect aberrant situations, it can’t really know how to handle
it — the appropriate action really depends on the application and the context. Exception
handling mechanisms are like conditional statements in that they divert the flow of con-
trol if a certain condition occurs. They are unlike conditional statements in that the ac-
tion to perform gets specified somewhere else — typically, in an entirely different part of
the program. A common way of visualizing exception handling is to use a catch-and-
throw metaphor: the code detecting the unusual situation throws an exception and other
code catches it.

A catch-and-throw mechanism must be supported by the language, giving the pro-
grammer a way to express raising and catching exceptions. It also be supported by the
run-time system, which must be able to find a catcher for any exception thrown and divert
control to it. Rudimentary exception handling mechanisms have appeared in some com-
mercial languages for many years — for instance, PL/1 had some in the 1960s. Exception
handling has also been the theme of many experiments in languages and systems, but it
has yet to become a part of the mainstream language paradigm. An exception handling
mechanism has been planned for C++ that, though somewhat limited, is straightforward
and takes care of the most common uses. Unfortunately, commercially available compil-
ers have yet to support it. For this book’s purposes, the assert macro and various error
functions defined in standard.H will be entirely adequate. However, it is worth consid-
ering briefly what the exception handling mechanism proposed for C++ looks like.

The Proposed C++ Exception Handling Mechanism

Handlers will be established with a new kind of statement called a try block. The try block
has two parts, an ordinary compound statement (block) and a sequence of handlers. Each
handler has the form

catch (argument-declaration) compound-statement;

The declaration is like the declaration of a function argument. Exceptions are (created
and) thrown by a throw expression:

throw expression;

When an exception is thrown, control is immediately transferred to the “nearest”
handler that matches the type of the expression thrown. ‘Nearest’ means the handler
whose try-block was most recently entered and not yet exited — i.e., is still on the program
stack. Once control is transferred, all intervening stack function calls are abandoned;
thus, control never returns to where the throw was executed.® When control is trans-

®The alternative of allowing control to continue at the throw was considered and rejected. C++ excep-
tion handling is intended primarily for error handling and will not support some of the more sophisticated con-
trol regimes that require continuation semantics,
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ferred, the value thrown is passed as the argument to the handler, and the handler’s state-
ment is executed.

One of the difficulties in implementing such a mechanism for C++ is that the inter-
vening functions may contain local variables whose values are objects. Normally, enter-
ing a block will cause the constructors of such objects to be invoked, and exiting the block
will cause their destructors to be invoked. If an exception causes a function to be aban-
doned, the exit code that invokes the destructors for its object-valued variables will never
be reached. Therefore, the throw mechanism must somehow explicitly invoke their de-
structors.

Exception Handling Examples

Here’s an example of general-purpose handler that might be part of a try block wrapped
around the body of a program.

main()
{
try
{
doit();
}
catch(char* msgqg)
{
cout << "Sorry, " << msg << ".\n";
exit(l);
}
}

Code anywhere in the program can signal an exception that will print a message and ter-
minate the program by throwing a char*, as in the following example:

set& set::operator+=(element* elt)

{
if (contains(elt)) return; // no duplicates
if (cardinality >= set_limit)
throw "an attempt was made to add to a full set”
elements[cardinality++] = elt;
}

Note that the throw and corresponding catch are in two different files and have no
knowledge whatsoever of each other.

The type of the handler argument is not restricted. You can throw an integer, enu-
merator, or any other kind of value that seems useful. You can throw an instance of a
struct that capture details of the error situation, after creating and filling its fields with ap-
propriate values. Since there can be more than one handler associated with a try block,
try statements can catch exceptions of more than one type.
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The declaration of a handler can be an ellipsis (. . . ), in which case that handler will
catch anything that reaches it. Inside the block of a handler, a throw can be performed
without an argument. That passes the exception the handler caught on to the next han-
dler on the stack whose argument matches it, as if the exception hadn’t been caught.
There is also syntax for declaring what exceptions a function might throw.

1.4.3 Objects, References, or Pointers

When deciding on the type of any variable, data member, or function argument, one is al-
ways faced with a decision whether to use an object (value), a reference, or a pointer. For
the purposes of the code in this book it would be useful to adopt a consistence convention
about what collections will hold and how their components will be passed to and from
functions. There are many issues here, and the requirements of commercial software are
different from those of pedagogical examples. Basically, we want simple, flexible conven-
tions that will support work with the structures that will be discussed.

Consider the set module above as a concrete example. Should the array of elements
hold objects, references, or pointers? A key consideration is the assignment of a compo-
nent to a location within the structure, as when adding a new element to a set. For an ar-
ray-based structure, references are not an option because there’s no way to store
references in an array! (References are synonyms for something else and don’t exist on
their own, so they can’tbe stored.) More flexible kinds of collections, however, use newly
created auxiliary storage for each component they contain and therefore could store
references. However, there would still be no way to replace a reference without replacing
the auxiliary storage.

Storing objects in the array would work, but doesn’t necessarily produce the desired
result with user-defined types, since assigning one value to another copies the first to the
second. One problem with copying is its inefficiency, especially with large objects. More
importantly, copy semantics are not usually what's wanted. Suppose a program creates
an instance of a student struct, stores it in a set, makes some modifications to it, and later
gets it out of the set. Should the student instance reflect changes made to the original af-
ter it was added to the set? If objects are copied into the set, subsequent changes won’t af-
fect the instance in the set, just the original instance outside the set. There will be two
different objects ostensibly representing the same student while potentially having differ-
ent states (values for their data members). (This issue doesn’t arrive with primitives like
integers, because two different integers with the same value are in effect the same integer.)

The simplest, most flexible, and generally most efficient approach is for collection
structures to contain pointers. Using pointers avoids the inefficiency and questionable
semantics of copying, and pointers, unlike references, can be replaced. A further advan-
tage of pointers is the availability of a special null value to indicate ‘nothing here’ or ‘not
found’. It turns out that objects stored in collection structures are usually allocated dy-
namically (via new, which returns a pointer), so it ends up being just as natural to use
pointers as anything else. For commercial libraries of collection types, other consider-
ations apply, and pointers throughout might not be the most appropriate solution, but the
approach is fine for the purposes of an introductory text.
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There is one significant problem with pointer-based implementations, however. In
general, collection structures need to know nothing about the types they contain. Thatis
the fundamental fact making parameterization on the type of the component possible.
Normally collections do nothing with their components except take them in, hold them,
and hand them out. However, there are two kinds of operations on components that op-
erations on collections need to invoke: Output and Compare. A collection’s Output oper-
ation, implemented as operator<<in C++, typically traverses the collection outputting
each component. Similarly, two collections are compared by traversing them in parallel
and comparing their components pair by pair.

Since the collections will be holding pointers, these operations will have to derefer-
ence the pointers to invoke the Output or Compare operations on the objects pointed to.
This may require the component type to supply Output and Compare operations even if
they don’t make sense, since those operations in the collection structure will attempt to in-
voke them. (If the template implementation generates definitions only for those func-
tions called, then these functions would not have to be provided by the component type,
as long as the corresponding function was never called with the collection type.)

The template mechanism offers further flexibility. The modules shown in this book
could be used with primitive types, except for two problems: the Qutput and Compare op-
erations expect to dereference pointers, and in some places, null pointers are interpreted
specially. However, because template functions won’t be used to generate definitions for
functions that are explicitly declared, special-purpose variations on these modules can be
created simply by explicitly defining the few functions that depend on pointers. For ex-
ample, a set module could be used with integers as long as its Output and Compare opera-
tions were replaced by versions that didn’t dereference component pointers.

1.4.4 Missing Types and Operations

C is missing two important types provided by many other languages: string and Boolean.
Strings are represented as arrays of characters conventionally ending in a NUL (0 byte) and
manipulated via the library functions declared in string.h. Although there is no type
string, manipulating character arrays through the library function achieves almost the
same effect as having a built-in type.

Integers are used for Boolean values, with zero meaning false and nonzero true.
However, just as it is better to use void* to mean ‘pointer to anything’ instead of the tech-
nically equivalent char*, it would be better to have a separate type for Booleans to avoid
confusion with other uses of int. Itis common practice to define such a type, along with
values for true and false. There are several of ways of doing so, each with its own advan-
tages and disadvantages. For the work in this book, boo1 will be defined as a synonym for
int and TRUE and FALSE defined as boo1 constants. That allows using the result of a log-
ical expression (e.g., a==b) as if it were a bool. The more obvious approach of making
bool an enum wouldn’t allow using the result of an expression as a Boolean value, too
great an inconvenience to accept, in particular for function returns.

Also missing from C, but frequently needed, are min and max, which, as shown
above, are easily implemented as templates. We'll package boo1, TRUE and FALSE, min
and max, and other useful tidbits into a header file called standard.H. For convenience
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that file will also include fostream.h,string.h,and assert.h, since they are almost al-
ways needed. All implementation files shown in the rest of the book are presumed to in-
clude standard.H.

Section 1.3.3 (page 67) showed that an enum for order comparisons is convenient to
have and will be used frequently here, so that goes in the standard header file, too. That
section showed how functions for the six comparison operators can be defined using a
central comparison function. Because this will be so common, and the operator defini-
tions take up so much space without adding any information, standard.H will have tem-
plate functions for the six operators. Incidentally, if a definition for a template
instantiation is explicitly provided, the compiler won’t generate one, so it is always possi-
ble to define one of these operators specially for some structure even though a template for
it is defined.

Bits and pieces of other conveniences are also found in standard.H. Two of the
functions found there are spaces to print a number of spaces and timestamp to output
the current date and time. Some useful error-reporting macros include error, error2,
warning,and notimp. Similarly, there are macros for issuing a warning and aborting out
of a function — abortv,abort0, abort1 — that differ by what they return from the func-
tion (void,0,and 1, respectively). Another convenience is a template for exchange.

tempiate <class 7> void exchange(7& a, T& b)

{
T¢c=a;
a = b;
b =c;
}

The library functions for manipulating C strings include functions that copy the
characters from one string into another, but they require that the other string already be
allocated. Some versions of string.h include a strdup function, but ans1 C’s doesn’t.
Since st rdup encapsulates such a convenient idiom, standard.H will include a macro for
it. Like many of the other functions and macros in standard. H, this could have been cod-
ed as a macro, a function, or an inline function, and there are various considerations for
and against each approach. One of the reasons it is coded as a macro here is to avoid con-
flicts where strdup happens to be present in string.h. Conditional compilation would
be another option, but there isn’t any way to test whether a particular function has been
declared!

f#idefine strdup(str) (lstr ? 0 : strcpy(new charlstrlen(str)+1]1, str))

The functions in the file really should go in a .C file, but there are only a few, so to
simplify things they are left here. The only disadvantage is that each compilation unit will
contain its own copy of the functions. As you’ll see, the use of templates for the imple-
mentation of all the data structures ends up meaning there will only be one or two compi-
lation units in the programs that use them, so this turns out not to be a significant issue.
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There are a lot of subtle choices involved in formulating utilities like these in C++. The
exact mechanisms used here in each case were the result of pragmatic considerations in-
volving interactions with various compilers and the way these utilities are used in the
book’s data structure modules. The definitions in standard.H are not meant to be rec-
ommendations for how such things should be handled in actual software development
work; they are a compromise designed to make it easier to use the code files accompanying
the book.

1.5 EXERCISES

1. The string module discussed in the chapter does not have any Remave or Exchange operations.
(a) Define some.
(b) Show how they are used.
(c) Discuss advantages and disadvantages to including them from the point of view of the
module’s users,

2. In the first version of the string module (page 26), strings are always dynamically created and
passed to string functions as pointers. What changes could you make to hide the details of the
structure’s definition from module users in straight C?

3. If module users are prohibited from referring to the fields of a struct, why does the struct decla-
ration go in the header file?

4. Why can’tthe stringinthenamesmake_stringand convert_to_string be eliminatedin
version 3 of the string module (page 38)?

5. At the end of the implementation for version 2 of the string module (page 32) the comment is
made that str.chars[i] could be replaced by string_char(str,i) and str.size by
string_length(str). What are the advantages and disadvantages of doing this for version
28

6. In version 3 (page 38), str.chars[i]isreplaced by str[i]in operator==andoperator<,
What are the advantages and disadvantages of doing this? Are any of these affected by the
changes made for version 42 (page 42)

7. Write operator> and operator>=for the string module.

8. What would operator- for the string module mean? Code it.

9. Write operator>> for the string module.

10. Write a complete module for a date type and test it.

11. Write a complete module for 1arge, an integer with as many as 100 digits.
(a) Design a representation for the type.
(b) Define and test appropriate Initialize operations.
(c) Define and test input and output operators.
(d) Define and test arithmetic operators.
(e) What other operations would be useful for this module? Define and test them too.

12. Canyou think of an advantage if the language were changed to allow you to omit parentheses in
a member function call when the function takes no arguments (other than the implicit this)?

13. Implement a module for set of unsigned char, analogous to the string structure shown
in the examples throughout this chapter. Start with a straightforward representation, such asan
array indexed by char with each element a flag indicating whether or not the corresponding
character is in the set.
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(a) Make sure you define an appropriate range of Combine operations, including at least unon
and intersection, and perhapsdifference.

(b) Once everything’s working, try changing the representation to be more compact. Since
there are only a small, fixed number of possible members, you can use a bit-level represen-
tation: have an array of unsigned 1int, with each bit set to 1 if the corresponding character
is in the set, 0 if it’s not. If, for example, your machine has 32-bit integers, then the indica-
tors for characters 0 through 31 would be in the first integer, 32 through 63 in the second
integer, etc.

(¢) How many elements do you need in your array?

(d) Does it matter whether your bit indicators go from left to right or right to left within their
bytes? Why?

14, Define struct word (simply), as for a text-processing application.

(a) Declare simple versions of its fundamental operations.

(b) Define in particular operator<< and operator>>. (Let a word be any contiguous se-
quence of nonwhite characters. Note thatalloperator>> functions stop at white space, so
this should be trivial,)

(c) Write a short program that reads all the words in a file and prints each one on a separate
line, in the order in which they appear in the file. The program should also count the num-
ber of words found and print that out after the last one.

(d) Organize things so that the main program innocently asks for words without ever checking
for end of file, and have word: :operator>> check end of file. Only the main program
should know the number of words read. The main program should catch an exception
thrown by set::operator>>. If your C++ doesn’t have an exception-handling mecha-
nism, use setjmp and Tongjmp, from the ANs1 C library.

15. Parameterize the set module from Exercise 13.

16. Use the parameterized set module to store a set of characters, as in the nonparameterized ver-
sion defined in Exercise 13. You'll have to explicitly declare and define replacements for any of
its functions that treat components as pointers, but otherwise you can use the module as defined
for Exercise 15.






Part Two:

Storage Structures

Storage structures are the fundamental structuring mechanisms of computer languages.
All other data structures are built on top of them. Storage structures directly manage raw
memory, either internal (RaM) or external (disks, tapes, etc.). There are three fundamen-
tal kinds: the array, the record, and the stream. Modern programming languages provide
these either directly in the language itself or as part of a standard run-time library.

Storage structures are little more than containers that hold computational objects.
Arrays provide a fixed sequence of numbered locations into which objects can be stored.
Records provide a fixed set of named locations. Streams do not have a fixed size; their el-
ements are accessed one at a time. Thus, while components of arrays and records are ac-
cessed directly, stream components are accessed sequentiaily. All componentsofanarray
or stream are of the same type, so these are homogeneous structures. Record components
can be of any type, so records are heterogeneous. In sum:

array fixed-size sequence of directly accessible homogeneous components

record fixed-size sequence of directly accessible heterogeneous components

stream indefinite-size sequence of sequentially accessible homogeneous
components

In sum, all three fundamental storage structures are sequences of components. The
differences between them stem from whether or not they have a fixed size and whether or
not their components are all of the same type. From the former follows whether or not
their components are directly or sequentially accessible, since sequentially accessible
structures can grow indefinitely. Table 2 summarizes the kinds of storage structures and
their distinguishing properties.

Homogeneous? Access

Array yes direct

Record no direct
Stream yes sequential

Table2 Kinds of Storage Structures
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Arrays

An array is a fixed-size sequence of directly accessible components of the same type. Indi-
vidual elements are accessed by an integer index into the array. InC

int month_days[12];
declares an array called month_days that holds 12 integers, as illustrated in Figure 2.1. C

month_days

31
28
31
30
31
30
31
31
30
31
30
31

Wo~NovonnbwrnkOoO

—
—_ 0

Figure2.1 An Array

array slots are always numbered starting with 0. (In some languages, indexing starts from
1; in others, indexing starts from an initial index specified in the array declaration.) Indi-
vidual array elements are accessed by expressions such as

month_days[month]
Pascal’s declaration syntax is more revealing of the array’s nature:
VAR MONTH_DAYS ARRAY[0..11] OF INTEGER;

(In Pascal, any range of integers can be specified for the index range.) The underlying ge-
neric form of declarations for any kind of collection structure in any language is

STRUCTURE OF TYPE
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(The variable name is not part of the type declaration for the structure.) In the present ex-
ample, the structure is ARRAY[0..11]. Note that in this case the structure specifies both
an organizing mechanism (the array) and a specific set of component names (in a form
unique to the array mechanism).

Each variable in a program gets assigned to a particular memory location by the
compiler or run-time environment. The amount of space reserved for the variable’s value
is determined by its type. In the case of an array-valued variable, the number of bytes (ig-
noring alignment considerations) would be

number-of-elements * element-size

The essence of the array mechanism is that the element designated by al[n] is located at
address

address-of(alng]) + ((n-ngy) * element-size)

where the ampersand is the C “address-of” operator and 1, is the value of the first value of
the index range. In C, where the first index is always 0, the computation reduces to

address-of(alng]) + (1 * element-size)

The quantity added to the initial address is called the offset. Anarray access expression is
translated by the compiler into code that computes the offset and adds it to the address of
the array.

2.1 An Array Type

C’s implementation of the array concept is quite weak. In fact, C doesn’t really have ar-
rays, just an array-like notation that gets translated into equivalent pointer
manipulations. An array-typed variable is equivalent to a pointer to the array’s first
element. There’s no real distinction between a type array-of-component such as
int[12] and the type pointer-to-component (int*). Wherever an array is expected as
a function argument, a pointer to the first argument is accepted equivalently,

The C bracket notation in expressions such asmonths[n] is equivalent to access via
pointer arithmetic:

*(months + n)

Thatin turn has a special interpretation: the offset is implicitly considered to be in units of
the size of the array’s components. Thus, if months is an array of 4-byte integers at ad-
dress A, then months[5] is the integer at location A+(5*4). Neither the C compiler nor
the C run-time environment checks that the index is within the bounds of the array — if
the program attempts to access a component beyond the limit of the array, random havoc
ensues.

At the price of only a little extra storage and a few extra instructions per operation,
we can have a robust array type. Let’slook ata possible definition. The array type will be
implemented as a struct that contains a C array of components along with the specified
bounds. While we are at it, let’s loosen C’s requirement of zero-origin indexing. We’ll
record the value of the first and last indices. The number of components can be derived
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from the two index values. (Equivalently we could store the number of components and
just one of the indices, deriving the other index from those two values.)

2.1.1 Representation

The array structure will be represented as follows. (Ellipses appearing in class declara-
tions indicate the omission of other aspects of the declaration.)

template <class elt> struct array

{
private:

// Representation
elt *elts; /! C-array of elts
int first; /! first index value
int last; /! last index value
/.

};

The e1ts member is a C-array of e1ts. The array of elts will be dynamically allocated
during the initialization of an array instance.

2.1.2 Lifetime Operations

The lifetime operations have the following declarations. To make this array type behave
like one built in to the language, operator[] is provided instead of an ordinary function
to obtain the n™ element.

template <class elt> struct array
{
/..
public:

/! Initialize/Finalize
array(int size, int origin = 0);
~array():

/! Access/Modify
elt& operator[](int n);
1

Users will specify the size of the array as a constructor argument. A second argument will
allow the user to specify a first index. The constructor will store the lower bound as well
as a computed upper bound in the struct instance. (The code is more conveniently ex-
pressed in terms of the first and last indices, while users will find it more convenient to
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specify an array size. This is a simple example of how the interface to a structure mightbe
different from its representation.)

Having the user specify the size instead of the last index makes it possible to take ad-
vantage of C++’s optional parameter feature. If we had made the first argument the last
index value, we could have defaulted the origin, but an initialization of just one integer
seems more readily understood as the array size rather than a bounds. Putting the lower
bound first, of course, would mean having to always provide two arguments to the con-
structor, since there wouldn’t be a sensible default value for the size or upper bound. An-
other alternative would be to have two different constructors: a one-argument constructor
that takes a size and requires the offset to be zero and a two-argument constructor that
takes alower and upper bound, in that order. There are significant interface design choic-
es for even the simplest of structures!

The constructor will store the values of first and 1ast and allocate the elts
array. We’ll have the constructor zero all the pointers. That way, if someone gets an ele-
ment out of a location of an array before anything has been stored into it they’ll get a null
pointer rather than whatever bits happen to be there.

/* Initialize/Finalize */

template <class elt> array<elt>::array(int size, int origin)
first(origin), last(origintsize-1), elts(new elt[size]), cur(no_pos)
// cur and no_pos are discussed under ‘Traversal’, below

{
/! initialize all elts to zero:
for (int i = 0; i < size; i++) elts[i] = 0:
}
template <class elt> array<elt>::~array()
{
delete [] elts;
}

We can get by with a single all-purpose Access/Modify operation, as programming
languages do with the array facilities they provide. The operator[] member will return
a reference to the corresponding component of the array. The compiler will handle the
reference appropriately, according to whether it occurs in an Access context (in which case
the value will be fetched) or a Modify context (in which case the corresponding component
will be replaced). For example, we could write a statement like the following.

aln] = aln+l];

This means assign to the n'™ component the value of the n+1"® component, just as with or-
dinary built-in arrays.

To more fully support the array concept, operator[] will check that the index is
within the array’s bounds, using the assert macro. Implementation is straightforward.
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/* Access/Modify */

template <class elt> elt& array<elt>::operator[](int n)

{
assert(n >= first || n <= last):

return elts[n-first];

2.1.3 Traversal Operations

The traversal operations for arrays are very much like the ones shown for strings in Section
1.3.5, page 70. Here are their declarations.

template <class elt> struct array
{
!/
/! Traversal
private:
int cur; /! position of traversal's current element
public:
void reset();
bool finished();
bool next();
elt& current();
int index();

Definitions for the Traversal operations are next. Notethatcurrent verifies that the
current position is valid — that the traversal has been initialized, at least one next has
been performed, and that the traversal hasn’t yet been completed. A simple assert really
isn’t adequate in this situation, because traversal mistakes are easy to make and assert er-
ror messages would refer to entirely internal details.

/* Traversal */

static const int no_pos = -1; // value of cur for uninitialized traversal

template <class elt> void array<elt>::reset()
{

cur = first-1;
}

template <class elt> bool array<elt>::finished()

{
return cur > last;

}
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template <class elt> bool array<elt>::next()

{
cur++;
return !finished();
}
template <class elt> elt& array<elt>::current()
{
if (no_pos == cur)
error("[array::current] traversal not yet initialized");
if ((first-1) == cur)
error("traversal initialized but not yet stepped”);
if (finished())
error("traversal already finished");
return eltsfcur-first];
}
template <class elt> int array<elt>::index()
{
return cur;
}

2.1.4 Content Operations

Arrays have three Attributes: size, first_index, and 1ast_index. Any one of these can
be computed from the other two, so the module only has to provide two, but the idea is to
make things convenient for the programmer using the module. Besides, how would you
decide which of these are primary and which should be the derived one?

Combine does not have a natural interpretation for arrays, so it is not supported in
this implementation. Of course, many structures that are implemented on top of arrays
would implement meaningful Combine operations. Nor would it make much sense to
Compare two arrays for order — order would be a property of a structure implemented on
top of an array, not of the array itself.

Equality tests would be useful, however: two arrays are equal if they are the same size
and the components at corresponding indices are themselves equal. (This definition al-
lows the arrays to have different index ranges as long as they have the same size.)

template <class elt> struct array

{
/.
public:

// Attributes

int size():

int first_index();
int last_index():

// Combine not supported
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!/ Compare

friend order equal(array<elt>&, array<elt>&):

friend order compare(array<elt>&, array<elt>&); // not implemented
};

The definitions of the Attribute operations are simple.

/* Attributes */

template <class elt> int array<elt>::size()

{
return (last - first) + 1;
}
template <class elt> int array<elt>::;first_index()
{
return first;
}
template <class elt> int array<elt>::last_index()
{
return last;
}

The simplicity of definitions such as these for array attributes is one of the hallmarks
of the data abstraction style of programming. It would be easier to write a.first rather
thana.first_index() in code using array. In older programming styles, functions are
used primarily to package together a significant amount of code that is used in more than
one place. In data abstraction programming functions are used also as an abstraction
mechanism that hides the details of an operation’s implementation from its users. It
doesn’t matter that the implementation happens to be trivial — the user shouldn’thave to
know aboutitatall. We want to be able to change the internal representation without af-
fecting code that uses the structure. Here, if we decided to store the size instead of the in-
dex upper bound, code calling the attribute functions would be unaffected, whereas code
directly accessing fields of the struct would have to be edited extensively.

Comparing two structures typically involves traversing them both in parallel and
comparing the pairs of elements encountered at each step. The traversal can end as soon
as nonequal elements are found.

/* Compare */

/* tests equality of elements, not just ==, so two pointers could
point to elements that test equal even though they are different.

equal(elt&, eltd) s presumed defined.
*/
template <class elt> bool equal(array<elt>& al, array<elt>& a?2)
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{
if (&al == &a2) return TRUE: // same arrays!
if (al.size() != a2.size()) return FALSE; // different sizes
al.reset():;
az.reset();
while (al.next(), aZ2.next())
if (lequal(*al.current(), *a2.current()))
return FALSE:
return TRUE:
}

The code for equal uses traversal operations. Given the primitive traversal mecha-
nisms used in is book, it would generally be better to code a structure’s operations without
using it’s traversal operations so as not to disrupt user traversals of the same structure.
Here, it probably doesn’t matter, since equal would not normally be called in the midst of
a traversal and it’s worth showing a few uses of traversal operations. In principle, of
course, one never knows the uses to which one’s structure will be put, so assumptions like
this are dangerous.

Note also that equa1 is one of those functions that invokes operations on the objects
pointed to by its elements. For the purposes of this book’s code, as discussed in Section
1.4.3 (page 83), itis assumed that every struct (both collection and component types) sup-
plies equal and compare. Types for which compare doesn’t make sense will provide a
definition that says that,

2.1.5 Support Operations

No Process operations are supported. The array is simply too low-level a structure to have
a generally useful interpretation of these operations. However, all our modules will have
Copy and Write operations.

template <class elt> struct array

{
VA
/1 Copy
array(array<elt>&): // copy constructor
arrayd operator=(array<elt>&); // copy assignment operator
// Output
friend ostreamd operator<<(ostreamd, array<elt>&);
1

The copy constructor is similar to the regular constructor seen earlier. However,
the initial values of the data members are based on those in an already existing instance
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instead of being provided explicitly. Also, instead of zeroing the e1ts array, the pointers
in the array are copied from the old array. Some of them may be zero, of course.

/* Copy */

template <class elt> array<eltd>::array(array<elt>& a)

first(a.first), last(a.last), elts(new eltfa.size()]), cur{no_pos)
{

memcpy(elts, a.elts, sizeof(elt) * (1 + last - first));
}

template <class elt> array<elt>& array<eltd>::operator=(array<elt>& a)
{
if (this == &a) return a; // assignment to self!

if (size() !'= a.size())
{ /! free old elts and reallocate
delete [] elts;
elts = new eltla.size()];
}

first = a.first;
last = a.last;
cur = no_pos; // abandon any traversal in process

memcpy(elts, a.elts, sizeof(elt) * (1 + last - first)):

return *this;

For the output operator, we’ll be a little fancy and print out the elements one to a
line, along with their index enclosed in square brackets. Note the dereference of the
pointer returned from current.

/* Output */
template <class elt> ostream& operator<<(ostream& strm, array<elt>& a)
{

a.reset();

while(a.next())
strm << "\t[" << a.index() << "J\t" << *a.current() << "\n’':

return strm;

The definition of the output operator is a good example of why low-level traversal
operations are sometimes needed even if iterators that traverse the entire structure in one
operation were available. The oddities of comma-separated sequences requires that ei-
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ther the first or last element be handled specially, since there is one fewer comma than
there are elements in the sequences. Note how compact the traversal code is, even though
it is handling a special case of iteration.

2.2 Multidimensional Arrays

In some programming languages, including C, arrays are fundamentally one-dimensional
structures. Other languages support multidimensional arrays. Even languages that have
only one-dimensional arrays often provide syntax that simulates multidimensionality.
For instance, a calendar could be declared in C as:

entry* calendar[12][31];
and accessed similarly:
calendar[0][0] = new entry("New Year's Day"):

Here, entry is simply an array of 12 arrays, each holding 31 entry*s, as illustrated by Fig-
ure 2.2.

calendar[0] calendar[0][0]
|
|
|
|
|
|
|
|
calendar[0]1[30]
calendar([1] calendar[11C0]
|
|
|
|
|
|
|
|
calendar[1][30]
calendar[?2] calendar[2]1[0]

Figure 2.2 An Array of Arrays
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Languages that have true multidimensional arrays interpret them similarly. The
differences are mostly syntactic: elements of true multidimensional arrays are referenced
by a single index expression: calendar[0,0] as opposed to a sequence of indices such as
calendar[0]1[0] in C. One interesting variation from language to language is the order
the elements of multidimensional arrays are stored. In Figure 2.2 the components of the
two-dimensional array are arranged so that all the components of a[0] are first, followed
by all the components of a[1], and so on. Technically, we describe this by saying that the
elements are stored with the last subscript varying most rapidly. Some languages that
support multidimensional arrays arrange components the other way, storing arrays with
the first subscript varying most rapidly.

Consider the abstract array type of the previous section. Declaring an array of ar-
rays using C++ parameterized type notation is straightforward.

array< array<entry*> > calendar;

(When nesting parameterized type names like this, be sure to separate >> pairs with a
space; otherwise, the compiler will treat the pair of angle brackets as a right-shift
operator!) However, as defined above the array module does not provide a default con-
structor, so this declaration would not be accepted by the compiler! (How large should
the outer array be? The inner arrays?)

We could add a constructor argument for the outer array:

array< array<entry*> > calendar(12);

but there’s still no way to provide constructor arguments for the inner arrays. Analterna-
tive would be for the outer array to contain pointers to arrays:

array< array<entry*>*> calendar(12):
for (int i =0; 1 < 12; i++)
calendar[i] = new array<entry*>(31);
The use of operator[] and reference returns from functions would allow accessing
an element of an array of arrays just like ordinary C array-of-array indexing:

calendar[month][day]

That expression would first invoke operator[J(month) on calendar, then opera-
tor[](day) on the array returned. An array of pointers to arrays, however, would re-
quire slightly more awkward syntax:

(*calendar[month])[day]

Another drawback of using the array module for multidimensional arrays is that al-
though the smaller arrays all have the same shape, each contains its own first, 1ast, and
elts fields. This wastes space and may result in unnecessary bounds checking.

Let’s consider what it would take to have a separate multidimensional array type.
we'll call it a multarray. We'll use as an example a decade-long hourly appointment
calendar. For simplicity, let’s assume that every day of every month needs to be repre-
sented, but only the hours from 8 aAm to 5 pMm need entries. This calendar could be repre-
sented as a four-dimensional array, with index ranges 1991:1999,1:12,1:31,and 8:17.
(We won’t worry about the pointers allocated for days that months don’t have, such as
April 31.) Figure 2.3 illustrates the layout of the components of the multarray represent-
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ing the calendar. (The indices are shown there in basic C form, not in the application-lev-
el indices reflecting years, months, days, and hours.)

a[0] a[o0lro]l alfolrolro] _:_Eg%E%%_g%_E% __________
al01[01[1] ‘2‘%8%%%%%% __________
a[01[01[2] ‘2‘%8%%%%%—2%% __________

a[0][1] alo01C11[0] ‘:‘ES%EH%%‘E(H __________
R 0 e I

S ) S

all1l al11[0] al11{01[0] ':‘EHE%%%%‘E% __________
RO Lo e

R 1 St

a[1][1] al11[11Co] _:_EHEHE_%% __________
I S i A s

al11011[2] _:_EHFHE_S%(H __________

a[2] a[2][0] al21C01[0] _:_E%E%%E_g%% __________
I I
al2]100102] a[2][o]C2]C0]

Figure 2.3 Layout of Components in a Four-Dimensional Array

2.2.1 Representation

The representation of multarray will be as follows. Changes from array are
underlined — the basic idea is similar, but a more complex representation is needed to

support multiple dimensions.

template <class elt> struct multarray

{
private:
int ndimensions;
elt *elts:

// C-array of elt*
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int * first; // array of first index values
int * last; // array of last index values
long * sizes; /!l [see text]

!/

What have we changed from array? Instead of a single first and 1ast, we need a
first and 1ast for each dimension of the array. To allow full generality, the dimension-
ality of the array will be specified in initialization. (We could also use a parameterized
type to create a different type for each number of dimensions we need. Cf. Exercise 1.)
The array of elements is basically unaffected — all the elements of the multidimensional
array will be stored in one long sequence. Only the access operator will interpret this se-
quence as a nesting of arrays of progressively lower dimensionality. (This parallels the
way that built-in arrays interpret sequences of bytes as arrays of indexable components.)

2.2.2 Lifetime Operations

Initialize/Finalize

The arguments to Initialize change in the transition from array tomultarray. Also, Ini-
tialize and Finalize now have two other dynamically allocated arrays to manage. To allow
an arbitrary number of dimensions, the constructor takes a sequence of integers alternate-
ly indicating lower and upper bounds. To avoid the intricacies of variable argument lists,
which are handled by macros defined in stdarg.h, we’ll take the crude approach of spec-
ifying five pairs of arguments, with all but the first pair defaulting to zero. That will allow
users to specify an array with as many as five dimensions and arbitrary integers for the
lower and upper bound of each dimension. (We’ll require that the lower bound is not
greater than the upper for each dimension.)

template <class elt> struct multarray

{

/7.
public:
// Initialize/Finalize
multarray(int 11, int ul, int 12, int u2, int 13, int u3,
int 14, int u4, int 15, int u%);

~multarray();

I

We would declare our calendar as
multarray<entry*> calendar(1991,1999,1,12,1,31,8,17);

This isn’t pretty, but it’s good enough for present purposes.
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Access/Modify

The Access operation must be similarly flexible. There is some awkwardness in formulat-
ing this, however. Ideally, we’d like to define operator([] like the constructor — with a
sequence of up to five index values (or more generally, using variable argument lists).
However, there’s no way to change the number of arguments an operator function ex-
pects, and operator[] takes only one argument. Moreover, operator functions may not
have optional arguments, which we need here to allow for different number of
dimensions. Therefore, we’ll have to use an ordinary function, which we'll call sub. The
function will return a reference, so we can use it for both Access and Modify.

template <class elt> struct multarray

{
/7
private:
void validate_index(int, int);
public:
// Access/Modify
elt& sub(int i1, int i2 =0, int i3 =0, int i4 = 0, int i5 = 0);
};

The calendar entry for noon on July 4, 1996, would be accessed with the following
expression:

calendar.sub(1996, 7, 4, 12)

Assignment to that entry would use exactly the same expression. Since sub returns a ref-
erence, it can be used on the left side of an assignment operation:

calendar.sub(1996, 7, 4, 12) = new entry(“Holiday”);

Offset Computation

The central feature of multidimensional arrays is the generalization of the offset
calculation. The formula can be derived by inspecting Figure 2.3 on page 104, as follows.
Indices into an n-dimensional array are sequences of  integers. It will be simpler to num-
ber each index value according to the dimension to which it corresponds. In other words,
the first index will be i,,, and the last i;,. We can write an index sequence just as it would
appear in a language that supported multidimensional arrays:

(i, To-1, 1,72, . . ., ip)

Let card) be the number of components in arrays corresponding to index value i in
an index sequence for the array (‘card’ for ‘cardinality’). For k#1, the components of the
arrays corresponding to iy are themselves arrays of dimension k-1. (The components of
arrays corresponding to i, are arrays of dimension I-1, i.e., 0, i.e., scalars — individual
values.)

The number of components in the arrays corresponding to index i is simply

card) = upper) — lower; + 1
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since there’s one component for each value in the index range for the corresponding
dimension. Let size; denote the total number of elements in the arrays corresponding to
index i;. The one-dimensional arrays corresponding to index i; have card; components,
each an individual component, so

size; = cardy

The two-dimensional arrays corresponding to index i, have card, components, each an
array of card; components, so the total number of components in each two-dimensional
array is

size, = card, * card,;
Generalizing, the number of components in the entire n-dimensional array is
size,, = card, * card,_{* . . . * card, * card,

or more succinctly

n
size = H card,
k=1

The components of arrays corresponding to index i, have size;,_; components.
(Components of index i; therefore have size; components; since we know that these are
scalars, we see that we can treat sizey as 1.) The first component of any array is at offset 0
from its start, regardless of its dimensionality. The second component is at offset equal to
the size of the components. The third component s at offset equal to twice the size of the
components, and so on. For a moment, assume that the lower bounds of all dimensions
is 0. The offset within the full #-dimensional array of the inth array (which has dimension
n-1} is i, *size,_;. Then, within that array of dimension n-1, the offset of the 7,,_ Ith array
(which has dimension n-2) is i,,_;*size,_,. Thus, offset of the i,,_ Ith array (with dimension
n-2) relative to the start of the entire n-dimensional array is

1, ¥size, | +1i,_,*size, ,

Continuing to the last dimension, we arrive at a formula for the offset of the i,
component (which is an e1t — a single pointer) relative to the entire n-dimensional ar-
ray:

i,%size, | +i, |*size, 5 +. .. +iy*size; +1*]
Finally, revising the formula to use the actual lower bounds of each dimension instead of
0 and expressing it more succinctly gives us

n
offset = Y ((i,—lower ) xsize
k=1

k-1

Table 3 shows the values of the various quantities involved in the four-dimensional
calendar.
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unit dimension lower cardy total
cardinality
hour 1 8 10 10
day 2 1 31 310
month 3 1 12 3720
year 4 1991 10 37200

Table3 Structure of a Four-Dimensional Appointment Calendar

Intricate calculations like these must be performed for every Access/Modify
operation. Note, however, that the various size;s never change after an array is created
with a particular shape (number of dimensions and cardinality of each). It certainly
seems reasonable, then, to store the size;s in the multarray to facilitate both the expression
of the offset value in code and its actual calculation. The declaration of multarray in-

cluded a s i ze member, an array of integers, for this purpose.

To simplify the initialization and offset calculation code, the arrays representing the
lower bound, upper bound, and size of each dimension will have n+1 elements for an -
dimensional array. That way, first{i] will represent the lower bound of the i-dimen-
sional arrays. This wastes first[0]and first[1], butallows assigning 1tosize[0]to
represent the size of scalars — the components the multarray holds. If we didn’t do that,
we’d have to handle the 1-dimensional arrays specially in the size and offset computations.

/* Initializel/Finalize */

static int check_dimensions(int 11, int ul, int 12, int u2, int 13, int u3,

{

int n

assert(11 <= ul);

if (12 =— 0 && u2
assert(12 <= u2);

n++;

if (13 ==
assert(13
n++;

if (14 ==
assert(14

n++;

if (15 —

0 && u3
<= u3);

0 && u4
<= u4):

0 && ub

assert(15 <= ub);

n++:

return n:

0)

int 14,

return

return

return

return

int 15, int ub)
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}

template <class elt>
multarray<elt>::multarray(int 11, int ul, int 12, int u2, int 13, int u3,
int 14, int u4, int 15, int ub)
ndimensions(check_dimensions(11, ul, 12, u2, 13, u3, 14, u4, 15, us%)),
sizes(new long[ndimensions+i]),
first(new int[ndimensions+1]), last(new int[ndimensions+1])

/* Note: data members are initialized in the order Tn which they appear in
the class declaration, not the order in which they appear in the member
initialization list. Since ndimensions is first in the declaration, once
it has been set the others can use its value.

*/
{
// store bounds
first{ndimensions] = 11;
last[ndimensions] = ul;
if (ndimensions > 1)
{
first[ndimensions-1] = 12;
last[ndimensions-1] = u?2;
}
if (ndimensions > 2)
{
first[ndimensions-2] = 13;
last[ndimensions-2] = u3;
}
if (ndimensions > 3)
{
firstindimensions-3] = 14;
last[ndimensions-3] = u4;
}
if (ndimensions > 4)
{
first[ndimensions-4] = 15;
last[ndimensions-4] = ub;
}
/! compute size of multarray:
sizes[0] = 1; /! size of O-dimensional multarray
for (int i = 1; i <= ndimensions; i++)
sizes[i] = (last[i] - first[i]l + 1) * sizes[i-17;
// allocate and zero storage for elts:
elts = new elt[sizes[ndimensions]];
for (i = 0; i < sizes[ndimensions]; i++) elts[i] = 0;
}

template <class elt> multarray<elt>::~multarray()
{

delete [] elts;

delete [] first:

delete [] last;
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/* Access/Modify */

template <class elt> void multarray<elt>::validate_index(int indx, int i)

{
assert(indx >= first[i] && indx <= last[i]):
}

/! Very crude code, Could be cleaned up by using varargs.
template <class elt>
elt& multarray<elt>::sub(int i1, int i2, int i3, int i4, int i%)
{

int& n = ndimensions; // for convenience

validate_index(il, n);
int offset = (il - firstin]) * sizes(n-11]:

if (n > 1)
{
validate_index(i2z, n-1);
offset += (i2 - firstin-11) * sizes[n-21;

}
if (n > 2)
{
validate_index(i3, n-2);
offset += (i3 - first[n-2]) * sizes(n-31;
}
if (n > 3)
{
validate_index(i4, n-3);
offset += (i4 - first[n-3]) * sizes[n-4];
}
if (n > 4)
{
validate_index(i5, n-4);
offset += (i5 - first[n-4]) * sizes[n-5];
}

return elts[offset];

2.2.3 Traversal Operations

The traversal operations for multarrays aren’t much different from the ones for arrays.
They still step through the components one at a time. The way the offset calculations are
phrased leads to storing the elements with the last subscript varying most rapidly, which
for most purposes is the natural ordering. For instance, in the calendar example, a
straightforward traversal of e1ts would generate the array’s elements in the following or-

der.
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1991 January 1 Bam
1991 January 1 9am

1991 January 1 5pm
1991 January 2 B8am
1991 January 2 9am
1991 January 2 5pm

1991 January 31 5pm
1991 February 1 8am

1991 December 31 5pm
1992 January 1 8am

template <class elt> struct multarray
{
/.
/! Traversal
private:
int cur;
public:
void reset();
bool finished();
bool next();
elt& current();
void index(int*); // pointer to array of ndimensions ints
// to be filled with current index

/* Traversal */

template <class elt> void multarray<elt>::reset()

{
cur = -1;

}

template <class elt> bool multarray<elt>::finished()

{
return cur >= sizes[ndimensions];

}
template <class elt> bool multarray<elt>;:next()
{
++cur;
return !finished();
}

template <class elt> elt& multarray<elt>::current()

{
if (no_pos == cur)
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error(”[array::current] traversal not yet initialized"):
if ((first-1) == cur)

error("traversal initialized but not yet stepped”);
if (finished())

error("traversal already finished");

return eltsfcur];
}

template <class elt> void multarray<elt>::index(int* indx)
{
for {(int i = 0; i < ndimensions; i++)
indx[i] = first[ndimensions-i] +
((cur % sizes[ndimensions-i]) / sizes[ndimensions-i-1]1);

A minimal example of traversal is counting the number of entries in the whole
calendar. (Since we are assuming that our structs all hold only pointers, we can use the
null pointer to indicate ‘nothing here’. In the calendar example, a null pointer would in-
dicate that there’s no entry stored for the corresponding time.)

int number_of_appointments{multarray& cal)

{
cal.reset();
int count = 0
while (cal.next()) if (cal.current()) count++;
return count;
}

2.2.4 Content Operations

A multarray module would provide all the operations an array module would. The array
Content operations were the Attributes size, 1ower_bound, and upper_bound and the
Compare operation equal. The definitions of these functions change only slightly for
multarray: size returns the total number of components, and the two bounds functions
take an additional argument to select a dimension. Multarrays have some additional op-
erations, too: dimensions (an Attribute) and isomorphic (‘same shape’), which is anoth-
er form of Compare. Equal is defined to be same shape with corresponding components
equal.

template <class elt> struct multarray
{
/7.
public:
// Attributes
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int size();

int first_index(int dimension);
int last_index(int dimension);
int dimensions();

// Combine not supported

// Compare

113

friend bool isomorphic(multarray<elt>&, multarray<elt>&);

friend order compare(multarray<elt>&,

multarray<elt>&):

friend bool equal(multarray<elt>&, multarray<elt>&);

/* Attributes */

template <class elt> int multarray<elt>::size()

{
return sizes[ndimensions];
}
template <class elt> int multarray<elt>::first_index(int dim)
{
return first{dim];
}
template <class elt> int multarray<elt>::Tast_index(int dim)
{
return last[dim];
}
template <class elt> int multarray<elt>::dimensions()
{
return ndimensions;
}

/* Compare */

template <class elt>

bool isomorphic(multarray<elt>& al, multarray<elt>& a2)

{
if (&al == &a2) return TRUE; // samel
if (al.ndimensions != aZ2.ndimensions) return FALSE;
for (int i = 1; i <= al.ndimensions; i++)
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if (al.first{i] != a2.first[i] ||
al.last[i] != a2.last[i]) return FALSE;

return TRUE;

template <class elt> order compare{multarray<elt>&, multarray<elt>&)
{

warning(”"compare not implemented”);

return NO_ORDER;
}

template <class elt> bool equal(multarray<elt>& al, multarray<elt>& a2)

{
if (&l == &a?2) return TRUE; // same arrays!

assert(isomorphic(al, a2));

al.reset();
az2.reset():
while (al.next(), a2.next())
if (lequal(*al.current(), *a2.current()))
return FALSE:

return TRUE;

2.2.5 Support Operations

The Copy operations are more involved here than they are for regular arrays, but they have
the same general shape. A reasonable Output operation would be to print all nonzero el-
ements, one to a line, showing their indices. It would also be reasonable for the Output
operator to just print a description of the array. (Cf. Exercise 5.) No Combine or Process
operations other than Output are defined.

template <class elt> struct multarray
{
Vo A
// Copy
private:
void copy_elements(multarray<elt>&);
void copy_dimensions(multarray<elt>&);
public:
multarray(multarray<elt>&);
multarray<elt>& operator=(multarray<elt>&);
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// Output
friend ostream& operator<<(ostream&, multarray<elt>’);
// show all non-empty entries

/* Copy */

/! private support function

template <class elt>

void multarray<elt>::copy_dimensions(multarray<elt>& old)

{
ndimensions = old.ndimensions;
memcpy (first, old.first, (ndimensions+l)*sizeof(first[0]1));
memcpy(last, old.last, (ndimensions+l)*sizeof(last[0]));
memcpy(sizes, old.sizes, (ndimensions+l)*sizeof(sizes[0]1));

// private support function,
template <class elt>
void multarray<elt>::copy_elements(multarray<elt>& old)
{
elts = new elt[sizes[old.ndimensions]];
memcpy (elts, old.elts, old.size()*sizeof(elts[01)):;

// Copy constructor

template <class elt> multarray<elt>::multarray(mulitarray<elt>& old)
sizes(new long{old.ndimensions+1]),
first(new int[old.ndimensions+1]), last(new int[old.ndimensions+1])

copy_dimensions(old);
copy_elements(old);

// Copy assignment operator
template <class elt>
multarray<elt>& multarray<elt::operator=(multarray<elt>& old)
{
if (this == &ol1d) return *this; /! assignment to self!

// free old elts and reallocate
delete [] first;
delete [] last;
delete [] sizes;
delete [] elts;
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copy_dimensions(old);
copy_elements(old);

return *this:

/* Output */

template <class elt> ostream& operator<{<(ostream& strm, multarray<elt>& a)

{
int indx[10];
a.reset();
while (a.next())
if (a.current())
{
a.index(indx):
strm << "\[" << indx[0];
for (int i = 1; i < a.ndimensions; i++)
strm << ', <K<K indx[1];
strm << "] = " << *a,current() << "\n';
}
strm << "\n\n";
return strm;
}

2.3 EXERCISES

1. Define a vector-of-double type parameterized on the number of dimensions.

(a) Attributes should include 1ength, the distance from the origin.

(b) Include some useful Combine operations, such as Add and Multiply.

(¢) Define compare.

2. Section 2.2 mentions using a four-dimensional array for a decade-long appointment calendar,
in which the component type is entry*.

(a) Discuss some disadvantages of this approach, at various conceptual levels — for instance,
efficiency of implementation (e.g., how many bytes are wasted by leaving 31 positions for
every month), supported functionality (what might you want to store in a calendar for
which there is no appropriate place in this implementation), and suitability of design for re-
use in different contexts.

(b) 1s there a moral about modularization here?

(¢) How might you redesign this four-level calendar?

(d) What are some advantages and disadvantages of your design compared to the way the ex-
ample was done?

3. Write an appropriate output operator for multarrays. It should show the shape of the array as
well as its contents.
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4. In Section 2.2.3 the example was given of a function to count the number of nonempty entries
in 2 a multarray. Isn’t this an attribute operation? Why wasn’t it described as such? Could it
be? If so, what is it an attribute of?

5. Replace the Output operator of the multarray module with one that simply describes the array
(number of dimensions and their ranges, etc.) without printing any of the elements.
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Records

Records, like arrays, are computational containers with slots for components. However,
record slots are named rather than numbered. Slots of records are usually called fields. In
Crecords are called structs and fields members.

Unlike arrays, records may (and normally do) contain mixed kinds of
components. Each field is separately typed. Thus, a record is a fixed-size sequence of di-
rectly accessible components of possibly mixed type. One of the earliest descriptions of
records provides a clear picture:

Like the array, a record is intended to occupy a given number of locations in the store of a
computer. It differs from the array in that the types of the fields are not required to be iden-
tical, so that in general each field of a record may occupy a different amount of storage. This,
of course, makes it unattractive to select an element by means of a computed ordinal number;
instead, each field position is given a unique invented name (identifier), which is written in
the program whenever that field is referred to.

A record may be used to represent inside the computer some discrete physical or conceptual
object to be examined or manipulated by the program, for example, a person, a town, a geo-
metric figure, a node of a a graph, etc. The fields of the record then represent properties of
that object, for example, the name of a person, the distance of a town from some starting
point, the length of a line, the time of joining a queue, etc. Normally, the name of the field
suggests the property represented by the field."

The seemingly slight difference between the homogeneity of arrays and the hetero-
geneity of records has substantial implications. Because all of an array’s components are
the same size, the location of a particular component can be computed at run time from
its index. This allows code to include computed array references (i.e., indices that are
variables or expressions). In contrast, record fields are accessed by fixed names specified
in program code, which the compiler converts to constant, not computed, offsets. Figure
3.1 illustrates the storage layout of a record and the offsets of its fields. Note that the value
ofthe birthdate field is itself a record.

'N. Wirth & C. A. R. Hoare, “A Contribution to the Development of ALGoL,” Communications of the
ACM, 9:6 (June 1966), p. 416.
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Figure3.1 A Record
3.1 Implementation

The amount of space allocated to a record is simply the sum of the space required by each
field. The compiler keeps track of thelocation of each field in terms of an offset — a num-
ber of bytes — from the start of the record. An access expression of the form variable. -
field is transformed by the compiler into an address computed as

address-of(variable) + offset-of(field)

The offset is a constant value inserted into the generated machine instructions at compile
time. There is no way in traditional algorithmic languages to designate a field with a vari-
able or expression that changes value during execution.

There isn’t really much to say about the implementation of traditional records, since
they are entirely passive at run time. Because indices are not computed at run time, bugs
like invalid array indices do not occur with records. The compiler handles all the details,
and the record structures fade into the background. All the data structures shown in this
book are implemented as records — this book is in some respects a study in the use of
records — but the discussions are about the data structures, not the records. Records are
profoundly important, yet entirely uninteresting!

There are no fundamental operations on records as such. Records are always inter-
preted as representing some other type. Any operations defined for a particular struct are
for the type the struct represents, not the struct itself. With arrays, knowing only the size
of the array you can Access and Modify an element or use Traversal operations to do some-
thing to every element. Nothing like that is possible with records. Access and Modify ad-
dress the fields of a struct, but in terms of their meaning for the type they represent. There
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is no way to generically compute what the address of the next field is, and different fields
may have different types, so there is no reasonable way to traverse the fields of a record.
A function may indeed do something to each field, but that would have to be hard-wired
as a series of statements each addressing one of the fields directly.

3.2 Variations

C allows two variations on the fundamental idea of records. These are used only in spe-
cialized situations. They are included not because they are important in actual program-
ming, but because they can help to further illuminate the nature of records.

3.2.1 BitFields

Occasionally a struct may need to have many fields that hold only an amount of informa-
tion smaller than a char, C’s smallest data type. Common examples include a Boolean (1
bit), an octal digit (3 bits), or a hexadecimal digit (4 bits). Other situations include values
of “flags,” such as the mode of an open file or protection code of a file on disk. Such sub-
char fields could easily be represented as chars, but if there are many such fields in a
record and many instances of the record, a great deal of space may end up being wasted.

C solves this problem by allowing a field to designate the number of bits it should
occupy. Fields that include the number of bits they require are called bit fields in C. What
actually happens depends on the compiler. For instance, a compiler may “pack” eight
consecutive 1-bit fields (Booleans, e.g.) into a single byte, but may also need a whole byte
for a single 1-bit field sandwiched between two ints.

The syntax for designating the number of bits a field needs is to follow the name of
the field with a colon and that number. For instance, a simplified version of information
about a Unix file might be represented as

struct file_protection

{
char* name;
unsigned int is_directory : 1;
unsigned int owner_protection : 3;
unsigned int group_protection : 3;
unsigned int other_protection : 3;
unsigned long size;

}:

The four bit fields together take up 10 bits and so can be packed into one short instead of
taking up four separate shorts.

3.2.2 Unions

Called record variants in other languages, unions are a way to use one record type to store
several differentkinds of values. The traditional example here is a record representing an
identifier in the parser of a compiler. A token in a program is what you think of as a single
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thing: a number (of various types), identifier, string, or operator. Suppose the compiler
represents identifiers and strings as char*s, integers as ints, real numbers as doub]les,
and operators as values of an enum operator. To store tokens in an array you might de-
fine a record that had a field for each kind of token, as follows.

enum opsymbol { plus, minus, assign, equal, // ... and many others };

struct token

{
char* str;
char* id;
int i;
double r;
opsymbol op;
};

Then, for each token, all fields except one would be ignored. For example, if the
next token read were an integer, your program would store the integer in the integer
field of atoken. The contents of the other fields would be irrelevant. The program would
still need a way to know which field to access for a particular instance of token. There-
fore, another enum and field must be added to “tag” each token with the type it repre-
sents.

enum opsymbol { plus, minus, assign, equal, // ... and many others };
enum type {string, identifier, integer, real, operator};

struct token
{
type typ:

char* string;
char* id;

int integer;
double real;
operator op;

Now your program could have an array of tokens, yet store different kinds of tokens
init. Each would be identified by the value of its t yp field, and one of its other fields would
have a meaningful value. The rest would be ignored. Code manipulating tokens would
test the typ field to know how to interpret them.

There’s nothing wrong with this solution. However, it wastes space: each instance
of token takes up enough space to store one of each kind, but it only represents one of
them. A union is a struct in which only one of the fields is used at any time. The space a
union takes up is the space required to store the largest field. The program must still de-
termine which field to use for a given union instance, so almost always unions are fields of
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structs that also include a type field. The above example would be reformulated as fol-
lows.

enum opsymbol { plus, minus, assign, equal, // ... and many others };
enum type {string, identifier, integer, real, operator};

union token_value

{
char* string;
char* id;
int integer;
double real;
operator op;
1
struct token
{
type typ:
token_value val;
}s:

Now a token occupies only enough space to store a type and the largest of token_
value’s fields. In C++ (but not C), if the union is used in only one struct, there’s no need
to even give it a name. Instead, the struct can contain an anonymous union — simply a
union without a name nested inside a struct.

enum opsymbol { plus, minus, assign, equal, // ... and many others };
enum type {string, identifier, integer, real, operator};

struct token

{
type typ;
union token_value
( .
char* string;
char* id;
int integer;
double real;
operator op;
} val;
};

The fields of an anonymous union are fields of the structitself. With the named ver-
sion, to get the integer stored in an instance of token called curtoken a programmer
would write curtoken.val.integer. With the anonymous union, a programmer just
writes curtoken.integer. Of course, only the module in which token was defined
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would have expressions like that. Other code would use functions such as getInteger,
setInteger,getIdentifier,andso on, which that module would provide.

3.3 EXERCISES

1. Write a program that explores the way your C++ compiler lays out record fields.

(a)

(b)

(c)

(d)

(e)
€y

()
(h)

(i)
)
(k)

The iostream facility includes the ability to print a void* pointer as a hexadecimal
address. By taking the address of a struct instance’s field and casting it to a (void*), you can
print the location of that field of that instance.

Address of struct instances and their fields can also be cast to 1ongs and subtracted to de-
termine field offsets.

Define a set of several structs, including at least one that includes another. An example
would be Name, Address, and Person, where Person includes a Name and an Address
along with other information.

Define an output operation for each struct that prints out an instance’s details. For exam-
ple,ostreamd operator<<(ostream&, Name&) would print the first name, middle ini-
tial, and last name stored in an instance of Name, separate by spaces.

Declare sorne instances of your structs and print their values using your output operations.
For each struct, define a function describe that takes an instance of that struct and prints
out the type of struct it is, how many bytes it takes up, and the offset, hexadecimal address,
and values of each of its fields.

Use your describe function to explore the way your compiler lays out storage structures.
If working on a PC, experiment with a storage model that uses 16-bit pointers and one that
uses 32-bit pointers. If working on a Unix platform, notice whether there seem to be any
alignment constraints (i.e., rules about what bytes records can start on — typically, multi-
ples of 2 or 4).

(Optional.) Experiment further to determine how your compiler handles bit fields.
(Optional.) Experiment further to see how your compiler allocates fields of a union.
Summarize what you’ve learned about the way your compiler lays out records.

2. Write a program that uses a union to determine all the symbols in a file.

(a)

(b)
()
(d)

(e)
®

Use a very simple notion of symbol, as follows. A number begins with a digit or dash and
ends at the first nondigit character. A word begins with a letter or an underscore and ends
at the first character that is not a letter or an underscore. Punctuation is an individual non-
white space character that cannot be part of a word or number.

In a union store numbers as ints, words as char*s, and a punctuation as an individual
char,

Define an enum symbol_type and a struct symbo1 that stores a symbol1_type and an in-
stance of the union.

Store symbols in a single array, keeping track of the current number of symbols. Each time
a symbol is extracted from the file, see if the symbol is already in the array and if not, add
it. (You can just code this informally, but you might find it convenient to use the Array
module of the previous chapter.) You’ll need an Equal operation to compare two symbols.
(Optional.) Sort the array using any sorting method you know, or qsort from the C
library. You’ll need a Compare operation to compare two symbols.

Have the program print out all the symbols found.
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Streams

Streams are related to conventional files. For instance, the FILE structure of C imple-
ments a stream of characters, and C programs using the stdio. h facilities start with three
instances of streams already initialized: stdin, stdout, and stderr. Pascal’s FILE is a
structuring mechanism like ARRAY, requiring the specification of a component type:

VAR PERSONNEL FILE OF EMPLOYEE

Pascal’s declaration for files reflects the generic STRUCTURE OF TYPE form, which, as
pointed out on page 93, is inherent in any structure declaration. A C or Pascal FILE in-
stance is a stream, but streams are not necessarily tied to files.

Arrays are sequences in space (memory), whereas streams are sequences in time.
Only one element of a stream is available at a time: the current one. The basic form of Ac-
cess is sequential: access the current component and get ready to access the next one.
Stream access expressions do not specify an index or a field —since there is only one avail-
able component, it isn’t explicitly named. Sequential access is a direct consequence of the
temporal nature of streams — we can navigate in space, but in time there is only now.

The elements of a stream are produced as needed from a substrate that is either ex-
plicit or implicit. Ordinary files are explicit substrates from which streams can be
generated — they are just arrays stored on disk instead of in Ram. Figure 4.1 illustrates
the generation of a stream of characters from an underlying disk file, an array stored in ex-
ternal memory. The Traversal operations discussed throughout this book generate
streams from collection structures. A traversal converts a spatially organized representa-
tion into a linear temporal one, with a collection structure the explicit substrate of the re-
sulting stream.

Streams with implicit substrates are produced by a process that computes the next
element when requested. An example is a stream derived from a function that generates
a new random number each time itis called. Another example is the stream of characters
typed on a keyboard — a keyboard with its supporting hardware and software is a trans-
ducer that converts a person’s finger movements into a stream of characters!

A random number generator can produce numbers indefinitely. Similarly, there is
no way to know in advance how many characters someone will type in response to a pro-
gram’s request — that is why we need special control characters to indicate the comple-

125
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A file full of characters
sitting on a disk waiting to be
read by any program that has a
way to convert this substrate
into a stream of characters to
be digested by whatever code
uses the stream ....

Figure4.1 A Stream of Characters

tion of typed input. Although a file has a fixed size, that size is in general not the amount
of space occupied by the number of components it contains, since for efficiency file space
is allocated in units of blocks, each containing hundreds or even thousands of characters.
Clearly, streams do not have a fixed size, though they do terminate. A stream, in sum, is
an indefinite-size sequence of sequentially accessible components of the same type.

Streams are inherently directional: the components of a stream are produced by one
process and consumed by another. A stream object either generates components or ab-
sorbs them; it cannot do both. (Files opened for both input and output are either a pair of
streams or act more like a disk-based array with direct indexed access via repositioning
operations.)

Programs perform operations on computational objects (values). How can a
stream be represented in a program if it exists in time rather than space? The answer is
subtle: objects represent the ends of the stream (producer or consumer), not the stream
itself. This is illustrated in Figure 4.2.

A stream of A stream
characters f s te of ¢
flowing out “'\"JO1 tcar'a

one portal 9
and into
anather ...

Figure4.2 A Stream Flows between Portals

The variables you use for input and output operations are such ends, not streams in
themselves. For example,a C FILE is not itself a stream! Rather, it represents the state of
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a stream — the state of a traversal over an underlying file substrate. Such end objects are
portals that anchor the temporal stream in computational space. (An appropriate mental
picture might be a magic doorway in an adventure game or fantasy story: the doorway is
real enough, but walking through it magically brings you to another time or place.)

4,1 The C++ Stream Library

C++ implementations provide an input/output stream facility in a library accessed
through iostream.h. In-depth discussion of its capabilities and implementation is be-
yond the scope of this book, but alook at some of the highlights should help illuminate the
nature of streams as well as show you some useful things you can do with the facility in
C++.

We’ve already seen the basic use of operator<< with cout. The type of cout’s value
is ostream, for ‘output stream’. Really, though, this value is a portal for a stream. The ex-
pression cout<<x produces the characters representing x, thereby generating more of the
output stream.

Instances of ostream can be portals to either unbuffered or buffered streams. The
iostream library includes implementations of buffering mechanisms. It also defines the
global variables cin, cout, and cerr (unbuffered), analogous to the stdio variables st -
din, stdout, and stderr. It also arranges for the creation of the corresponding buffers,
which are instances of streambuf. One ostream constructor, for example, takesa stre-
ambuf* as its argument.

The value of ¢ in is an instance of istream. The characters a user types to a program
go into the streambuf associated with cin. An istream is a stream portal too. An ex-
pression like cin>>x consumes characters as the value of x is obtained.

4.1.1 Input/Output with Files and Arrays

In addition to streams for terminal interaction, the iostream library provides types to
support file and memory-based (string) input and output: i fstream (‘input file stream’)
and ofstream, istrstream (‘input string stream”) and ostrstream. You can easily de-
fine instances of these in your programs. The constructors for the file stream types take
the name of a file, and the string stream constructors take a char array and a length. Input
from or output to one of these streams is performed on the corresponding file or string,
mediated by a buffer instance of an appropriate type.

In addition to constructors and the operators << or >>, stream types provide a range
of other member functions. Just about all the facilities available through the traditional
stdio of C are available, though often in a different form, from iostream. For instance,
cin.eof () tests whether an end of file has been encountered during an input operation.
As an example of file processing using C++ streams, here’s code for a filter to read a file
and output its words one to a line, with ‘word’ defined as a contiguous sequence of non-
white space characters. (This code is inadequate as shown — it needs more tests to cover
other problematic conditions, using features about to be described.)
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ifstream ifil("words.txt");
ofstream ofil("words.Ist”);
char word[(50];

while (lifil.eof())
{
ifil >> word; // >> stops at white space
ofil << word << "\n';

String streams are used similarly. After outputting to an output file stream, the file
substrate remains as a by-product. Likewise, after outputting to a string stream, a string
remains as a by-product. That string may be accessed by invoking the str member func-
tion, after which no further output may be done to the stream. (Deletion of the char* re-
turned by str is the responsibility of the programmer, even destroying the stream itself —
when, for instance, it is the value of a local variable whose scope is exited — doesn’t de-
stroy that C string.)

4.1.2 Some Useful Features

In addition to operators >> and <<, input and output can be performed through a variety
of member functions of the stream types. For single-character input/output, the follow-
ing are available.

put(char ch)outputch
get(char& ch)inputa single character to ch

get() input a single character, returning integer; like getc, returns -1 if
end of file

putback(char ch)with ch the last character read, return it to the stream so it will
be read next

peek() return next character without reading
Then there are some useful functions for handling groups of characters.

ignore(int Timit=1, int delim=tQF)
read and throw away at most 1imit characters, stopping when a de-
11im is encountered

getline(char* buf, int 1imit, char delim="\n")
read at most 1imit-1 charactersinto buf and add a terminating
NUL, stopping when either end of file or a de11im is encountered

The extraction operator (>>) for strings, like all extraction operators, stops at the
first white space character. The only way to read past white space — in particular toread
a line of words —is to use get1ine. Even extracting a char (e.g., cin>>ch) skips white
space, so extraction cannot be used to skip one character if that character could be white
space (as is typical when “gobbling” a character). Use get to read a single character, test-
ing with peek () first if the skip depends on what’s next.
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The use of get becomes especially important when input is performed using a mix-
ture of operator>> and getl1ine, because operator>> stops before reading a newline
character, but get11ine reads newline characters. If the last action performed before call-
ing getline is an operator>> that reaches the end of a line, the get11ine will return an
empty string, since it reads from the current stream position through the next newline! A
get must be inserted between an operator>> that stops at a newline and the get11ne that
follows it to have the get 11 ne read the nextline.

Finally, there is a pair of functions for writing and reading the byte-level representa-
tion of any value:

write(char* addr, int size)  write sizebytesfrom str to the stream
read(char* addr, int size) read s1ze bytes from the stream into str

Since any C value can be thought of as a sequence of bytes, and bytes are just chars, casting
any pointer to a char* and outputting it with wr i te will output the bytes that make up the
value. Here’s a small example.

// output an integer’s bytes:
int n;

ostrm.write((char*)&n, sizeof(int));

This is only a taste of the range of facilities provided through iostream.h. Asyou
find yourself needing more advanced features, you should consult the appropriate manual
pages for the C++ system you are using.

4.2 General Streams

The C++ stream library is a rich facility, but it is limited to characters! Actually,it’s rather
more elaborate than a pure stream mechanism. A stream is a temporal sequence of com-
ponents of the same type. Certainly C++ streams are ultimately sequences of characters;
however, they provide rich facilities that convert between other types and their character
representation. When it looks like we are adding an integer to cout, we are really asking
the system to do two things for us: convert the integer to characters; then add the charac-
ters to the stream.

The fact that the conversion process is not necessarily an intimate part of the stream
mechanism, but rather a secondary appendage, is demonstrated by the fact that we can
add output operators to any structure we devise. These operators convert instances of our
structures to characters, in part by using output operators for more primitive types as
intermediaries. It happens that the implementation of C++ streams includes output op-
erators for basic C++ types, but that is only a convenience. As character streams, all the
stream structures really need are mechanisms for adding characters to an output stream
and removing characters from an input stream.

The larger significance of streams is that they naturally capture fundamental pat-
terns of processing. A wide variety of processes can be expressed in terms of streams. Es-
pecially important are processes that manipulate underlying substrates, which some
pragmatic consideration limits to sequential, rather than direct, access. In traditional
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data processing, the largest class of such processes involves manipulations of large files on
sequentially accessed files. In the old days, these files were typically stored on magnetic
tape, which was inherently a sequentially accessed medium. However, even where the
storage medium does not dictate a stream-based process, other considerations might. In
particular, wherever separate processes cooperate to perform some task, from the view-
point of any one process the external behavior of the others can be characterized in terms
of stream-like input and output.

4.2,1 Simple Array-Based Streams

To explore further the fundamental nature of streams, we consider the implementation of
a parameterized stream type that is unencumbered by extra facilities like character
conversions. Like C++ string streams, this will use an array of elements as its underlying
substrate. We’'ll actually need two types: one for producers and one for consumers.
These both have fundamental operations like other data structures, but relatively few of
them. After all, withaccessrestricted to getting the next element, their basic behavior isn’t
going to be all that rich.

A Producer Stream

A stream is created on an array, which is provided as a constructor argument. Access,
Modify, Traversal, and Attribute operations collapse into one integrated set of functions.
This illuminates the close connection between streams and traversals. Most producer
stream implementations provide a peek operation in addition to get; the latter removes
the element from the stream while the former doesn’t.

template <class elt> struct producer_stream

{
private:

// Representation
elt *elts; // array of elements
long asize;

public:

f/ Initialize/Finalize
producer_stream(elt*, int); // arg is C-array substrate
~producer_stream();

/! Access/Modify/Traversal/Attributes combined
private:

int cur; // traversal index
public:

void reset();

elt &get(); // current+next

elt &peek(); // current

int index();

bool empty(); // empty-finished
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/1 Campare (from current positions)

// Naote: uses up stream elements during comparison

friend order compare(producer_stream<elt>&, producer_stream<elt>&);
friend bool equal{producer_stream<elt>&, producer_stream<elt>&);

In general, the traversal operations in this book’s modules require a reset before
they can be used. Here, reset plays the role c1ear does in other structures, and the con-
structor calls reset, so the stream can be used without calling it explicitly. The only time
reset would be called by application code is to restart the stream from the beginning.
Since using the stream doesn’t affect the underlying array of elements, resetting involves
just moving the current position back to the beginning,

Definitions of these functions are quite simple. Initialize stores the array and its size
and sets the current position to 0. The functions for using the stream are basically travers-
al operations based on the current position. To allow for a stream that is shorter than the
underlying array, a null pointer will be used to mark the end. A stream is empty either
when the array runs out or a null pointer is encountered.

/* Initialize/Finalize */

template <class elt>
producer_stream<elt>::producer_stream(elt* substrate, int siz)
elts(substrate), asize(siz)
{
reset();
}

template <class elt> producer_stream<elt>::~producer_stream()
{
}

/* Access/Traversal/Attributes combined */

template <class elt> void producer_stream<elt>::reset()

{
cur = 0
}
template <class elt> elt &producer_stream<elt>:;:get()
{
return elts[cur++];
}

template <class elt> elt &producer_stream<elt>::peek()

{
return elts[cur];

}
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template <class elt> bool producer_stream<elt>::empty()

{
return cur==asize || eltslcur] == 0;
}
template <class elt> int producer_stream<elt>::index()
{
return cur;
}

The only intricate operations are those for Compare. What we mean by comparing
two streams is that their elements are compared pairwise starting from their current
positions. As the comparisons proceed, elements are removed from the stream. These
are therefore invasive procedures, unlike most Compare operations.

/* Compare */

template <class elt>
order compare(producer_stream<elt>& strml, producer_stream<elt>& strm2)
{

order ord;

while (!strml.empty() && lstrm2.empty())
if (EQUAL != (ord = compare(*strml.get(), *strm2.get())))
return ord;

if (strml.empty())
return BEFQRE:
else
return AFTER;
}

!/l tests equality of elts, not just identity, so two different pointers
// could point to elts that test equal even though they are different.
template <class elt>
bool equal(producer_stream<elt>& strml, producer_stream<elt>& strm2)
{
while (!strml.empty() && !strm2.empty())
if (lequal(*strml.get(), *strm2.get()))
return FALSE;

return TRUE;

A Consumer Stream

Consumer streams take elements and put them into their underlying array. Their basic
operations mimic those of producer streams. As a result of the unidirectional nature of
streams, any functions with a directional flavor are reversed, though: get becomes put,
and empty becomes ful1. Since consumer streams modify their underlying array, they
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support Combine and Copy operations, though with a different flavor than in more typical
structures. Streams are one-way, so the argument to consumer Combine and Copy opera-
tions are producer streams!

template <class elt> struct consumer_stream
{
private:

// Representation
elt *elts; /1 array of elements
long asize;

public:

// Initializel/Finalize
consumer_stream(elt*, int); // arg is C-array substrate
~consumer_stream();

// Access/Madify/Traversal/Attributes combined
private:

int cur; // traversal fndex
public:

void reset();

void put(elt&); // current+next

int index();

bool full(); // full-finished

// Combine (from current positions)

// Args include an explicit destination to combine to.

void concatenate(producer_stream<elt>&, producer_stream<elt>&);
void merge{producer_stream<elt>&, producer_stream<elt>&);

// Copy (from current position)
/! Note: uses up stream elements during comparison
void copy(producer_stream<elt>&);

The basic operations have simple definitions like those for producer streams. The
function terminate marks the end of the stream by storing a null pointer in the array.

/* Initialize/Finalize */

template <class elt>

consumer_stream<elt>::consumer_stream{elt* substrate, int siz)
: cur(0), elts(substrate), asize(siz)

{
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}

template <class elt> consumer_stream<elt>::~consumer_stream()
{
}

/* Access/Traversal/Attributes combined */

template <class elt> void consumer_stream<elt>::reset()
{

cur = 0;
}

template <class elt> void consumer_stream<elt>::put(elt &e)
{
elts[curt+] = e;

}
template <class elt> bool consumer_stream<elt>::full()
{
return cur=asize;
}

template <class elt> void consumer_stream<elt>;:terminate()
{
eltsfcur] = 0;

asize=cur;
}
template <class elt> int consumer_stream<elt>::index()
{
return cur;
}

The Combine and Copy operations have straightforward definitions, except for the
twist that there are two kinds of streams involved. Two streams are concatenated simply
by copying all the (remaining) elements from one to the consumer, then copying all the
(remaining) elements from the other. Merging works similarly, but the elements are tak-
en alternately from the two streams. Copying is performed by taking one element at a
time from the producer stream and adding it to the consumer, checking at each step that
the consumer isn’t full,

/* Combine */

template <class elt>
void consumer_stream<elt>::concatenate(producer_stream<elt>& strml,
producer_stream<elt>& strm2)
{
copy(strml);
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copy(strm2);
}

template <class elt>
void consumer_stream<elt>::merge(producer_stream<elt>& strml,
producer_stream<elt>& strm2)
{
while (lstrml.empty() && !strmZ.empty())
if (full())
error{("[consumer_stream: :concatenate] consumer full™):
else
{
put{strml.get(});
put(strm2.get());
}

// one of the streams is empty., possibly both;
// copy the remaining elements of the other to the consumer.
if (!strml.empty())
copy(strml);
if (lstrm2.empty())
copy(strm2};
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/* Copy */

template <class elt>
void consumer_stream<elt>::copy(producer_stream<elt>& strm)
{
while (!strm.empty())
if (full())
error("[consumer_stream::concatenatel consumer full™);
else
put(strm.get());

4.2.2 Stream-Based Sorting

Sorting is an important part of many traditional business applications that manipulate
large amounts of data stored on magnetic tape and other stream-based processes. Most
sorting methods require the ability to access arbitrary elements from within a collection
structure. Streams don’t support that, so special sorting methods are required. The stan-
dard approach to sorting streams is based on successive passes of merging and splitting.

The basic process works as follows. For convenience, we’ll use the previously de-
scribed array-based streams, even though arrays certainly support direct access and so can
be sorted by many other methods. A very short sequence of integers will be used to illus-
trate the process. First, a producer stream is split into two consumer streams by taking el-
ements from producer stream and adding them alternately to the two consumer streams.
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original: 58367241

split: 5374
B6 21

Next, the direction of the process is reversed. A new consumer stream is created on
the original array, which can be reused, since its elements are safely stored in the split
arrays. Two producer streams are created for the arrays underlying the two consumer

streams that received the elements distributed in the first step.

The new producer streams are merged in a special way, as follows. Their first ele-
ments are compared {(accessed by peek). The lesser of the two is added to the consumer
stream followed by the other. This pairwise comparison and moving from the producer
streams to the consumer stream continues until the producers are exhausted. (In all pro-
cesses like this, if one stream is exhausted before the other, the rest of the other is simply
copied to the consumer.) The way the elements were added to the consumer stream guar-
antees that every two elements in the original array are now in order relative to each other:

merge: 5374
8621
original: 58
merge: 374
6 21
original: 58 36
merge: 7 4
21
original: 58 36 27
merge: 4
1
original: 5 8 36 27 14

The array is splitagain, but this time two elements at a time are moved over to a con-
sumer stream. Because elements are known to be ordered pairwise, the first two elements
of each stream will end up in proper order relative to each other in the consumer stream
whether they are moved together or end up separated by elements from the other produc-
er:

original: 58 36 27 14

split: 58 27
36 14

Then, as before, the two split arrays are merged. However, this time, after the first
elements are compared and one is moved to the consumer, the other is not immediately
moved. Instead, it is compared to the next element in the stream from which an element

was removed. However, once both elements of a pair are removed from one producer
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stream, any remaining elements of the pair in the other producer stream must be moved

over to the consumer stream:

split:

original:

split:

original:

split:

original:

// Nothing left in
// the rest of the

split:

original:
// The first pairs

split:

original:

split:

original:

split:

original:

split:

original:

58 27
36 14
3
58 27
6 14
35
8 27
14
356

the second stream’s pair, so
first stream’'s pair is copied over.

27
14
3568

have now been merged

27
4
3568 1
7
4
3568 12?2
7

3568 124

3568 1247

As you can see, the result of merging the two streams two elements at a time is that
we now have runs of four elements that are correctly ordered relative to one another. The
array is split again, this time by moving four elements at a time from the producer stream
to one of the consumer streams. Then the two split arrays are merged again, this time
comparing runs of four elements to one another. At this point, the size of the run of ele-
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ments guaranteed to be in order has reached the size of the sequence of elements being
sorted, so the process stops.

Here is code implementing stream-based merge sorting. To simplify things, the
maximum number of elements to be sorted is defined as a constant.

const int asize = 8:

template <class elt>
void split{producer_stream<elt>& src, consumer_stream<elt>& destl,
consumer_stream<elt>& dest2, int runsize)
{
src.reset();
destl.reset();
destZ.reset();

while (!src.empty())
{
// move one run of elements from src to destl
int 1 = runsize;
while (--1 >= 0 && !src.empty())
destl.put(src.get());

// repeat for dest2
i = runsize;
while (--i >~ 0 && !src.empty())
dest2.put(src.get());
}

destl.terminate();
dest?.terminate();
}

template <class elt>
void merge(consumer_stream<elt>& dest, producer_stream<elt>& srcl,
producer_stream<elt>& src2, int runsize)
{
int runl, run2;

while(!srcl.empty() && !src2.empty())
{
runl = run2 = 0;
while(lsrcl.empty() && lsrc2.empty() &&
(runl < runsize || run2 < runsize))
{
if (runl < runsize &&
(run2 >= runsize ||
BEFQGRE = compare(*srcl.peek(), *srcz2.peek())))
{
dest.put(srcl.get());
runl++;

else
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dest.put(src2.get());
run2++;

}

if (lsrci.empty()) dest.copy(srci);
if (Isrcz.empty()) dest.copy(srcZ);
}

template <class elt> void merge_sortl(elt al[], int runsize)

{
elt tmpllasize], tmp2[asize];

// prepare streams for split phase
producer_stream<elt> orig(a, asize);
consumer_stream<elt> spltl(tmpl, asize);
consumer_stream<elt> splt2(tmp2, asize);

split(orig, spltl, splt2, runsize);

// reverse direction; prepare streams for merge phase
consumer_stream<elt> mrg(a, asize);
producer_stream<elt> mrgl(tmpl, asize);
producer_stream<elt> mrg2(tmp2, asize);

// merge two split halves back
merge(mrg, mrgl, mrg2, runsize);
show(a);

}

template <class elt> void merge_sort(elt a(])
{
int runsize = 1;
while (runsize < asize)
{
merge_sortl(a, runsize);
runsize *= 2;

4.3 Pipes and Filters

Animportant way of organizing computational activity is as a chain of producer-consum-
er processes. Each process consumes the output ofits predecessor and produces the input
of its successor. A compiler might be organized as shown in Figure 4.3, In that diagram,
the arrows represent the streams, the rectangles processes, and the ellipses files (source
and sink of the process as a whole).

The lexical analyzer consumes characters generated from the text file and groups
them into symbols (words). As each symbol is extracted from the stream of characters, it
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Lexical Syntactic Semantic Code : .
Analyzer > Analyzer > Analyzer P Generator Binary File

Figure4.3 A Compiler Organized as a Producer-Consumer Chain

is generated to be consumed by the syntactic analyzer, The syntactic analyzer groups
symbols into grammatical structures. This continues down the chain, each process accu-
mulating objects generated by the previous one, analyzing the sequence of objects, and
generating a new stream of objects.

A process that consumes one stream and produces another is often called a filter.
The data pathway connecting the two processes is often called a pipe. Typically, the type
of component produced by a filter is the same as consumed. The filter may just select a
subset of components it allows to pass through {e.g., a program that removes nonprinting
characters), or it may generate a different set of components based on the input (e.g., a
program that replaces tabs with an appropriate number of spaces). More generally,
though, a filter may consume one kind of component and generate another, as illustrated
by the processes in the compiler example.

A buffered stream temporarily stores components in memory. Buffers are a com-
mon and important device for isolating the producer from the consumer and smoothing
out uneven rates of stream traversal among interconnected processes. Within the limits
of a buffer’s size, the producer can go on producing stream components regardless of the
rate at which the consumer consumes them. In contrast, an unbuffered stream — a ran-
dom number generator, for example — generates each component immediately upon de-
mand.

An important use of buffers is to improve the efficiency of transferring information
from one computational device to another. Common examples are input/output to a pe-
ripheral device (disk, screen, etc.) and packet-based network transmission. In such situ-
ations, there is fixed overhead for each transmission — time to position the disk read
head, time to handle a network packet {construct, route, receive, decipher, etc.), and so
on. Individual components are accumulated in a buffer. When the buffer is full, its con-
tents are sent in a single transmission. By transmitting components together (characters,
in particular), the fixed overhead is amortized over all the components, reducing the cost
for each one.

In essence, a pipe is a buffer shared by a producer stream and a consumer stream.
The producer stream fills the buffer, and the consumer stream empties it. The buffering
mechanism must control these two processes so that the producer doesn’t try to add to a
full stream and the consumer doesn’t try to take from an empty one. Furthermore, the ac-
tivity of the two processes must be coordinated. When the consumer stops because the
buffer is empty, the producer must be reactivated so it can refill it. Note that the type of
component produced into the buffer is necessarily the same as that consumed from it.

A variety of sophisticated strategies may be used to coordinate processes connected
to a pipe. Here,though, we are concerned with the nature of streams and pipes, not issues
in multiprocess coordination. Therefore, we’lllook at an implementation that is about as
simple as possible. A buffer will hold a fixed number of elements. A producer attached
to it generates elements until the buffer is full or the producer terminates. When the buff-
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er is full, control is passed to the consumer, which consumes elements until the buffer is
empty. Controlis then passed back to the producer, unless the producer has terminated,
in which case the consumer stream terminates too.

4.4 EXERCISES

1.

Why isn’t their some kind of storage structure for which the values in the summary table on
page 91 would both be “no” (i.e., an indefinite-size sequence of sequentially accessible compo-
nents, not necessarily of the same type)?

. Show the split and merge stages for sorting the names of the months according to their lexical

order.

The basic merge sort process is inefficient because runs of elements are stopped at predeter-

mined points. Suppose the first element of the next run is greater than the last element of the

current run. Then there’s no reason to stop the run — it can continue on as long as the next el-

ement is greater than the one that was just removed. This variation is known as natural merg-

ing.

(a) Modify the code shown for merge sorting so that it keeps track of the number of compari-
sons performed and the number of passes needed to sort the array.

(b) Gather some statistics for merge sort’s performance on arrays of various sizes.

(c) Modify the code to implement natural merging.

(d) Gather statistics for the new implementation’s performance on the same arrays you used
for the original and compare the relative performance of the two versions,

. Write a program to shuffle a deck of cards.

(a) Define enumerations for suits and face values. A deck will be just an 52-element array of
pointers to cards, not a separate type. That will allow it to be the substrate for producer and
consumer streams as shown in this chapter.

(b) Write a function cut that splits a deck into two equal halves. This will be essentially the in-
verse of consumer_stream::concatenate, as follows. A source deck and two empty
destination decks are provided as arguments. Cards get removed from the source deck and
added alternately to each of the destination decks, until the source is empty.

(c) Write a shuffle function that cuts a deck into two, then distributes cards from the two
decks (selecting a Deck at random) into another, initially empty, deck. This is basically just
consumer_stream: :concatenate with the elements taken randomly rather than alter-
nately from each of the two source decks.

(d) The shuff1e function is meant to be an approximation of what people do rather than an
efficient algorithm. The suggested implementation of cut is not really a good approxima-
tion of how people cut decks. Why couldn’t we have it just split the deck (approximately)
in half, as people do?

Design, implement (without using iostream facilities), and test input and output stream types

that read from and write to character arrays, as do istrstream and ostrstream from the

iostreamlibrary. The typesshould be parameterized .

(a) In any program you’ve written using the C++ iostream facility, replace that file-based
stream structure with your array-based one.

(b) What aspects of your program design supported or obstructed this change to your pro-
gram?

. Usingwrite and read implement a facility that writes and reads the memory-level representa-

tion of some simple struct to and from a disk file.
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(a) Discuss adding this pair to the set of fundamental operations to be implemented by all
types, like operator<<and operator>>.

(b) What major problems does this simple approach run into?

(¢) Discuss a scheme to solve the problems.






Part Three:

State Structures

The next group of structures we consider are those that support processes by keeping
track of their state. There are three kinds of state structures: stacks, queues, and priority
queues. Each maintains a set of tasks, accepting new ones and supplying the “next” one
on request. The different state structures differ primarily in the meaning they give to
‘next’, as shown in Table 4. The different meanings of next give rise to different process-
ing patterns.

Next Task
Stack newest
Queue oldest
Priority Queue best

Table4 Xinds of State Structures

Simple implementations of state structures use C arrays. More sophisticated imple-
mentations could be built on top of an array type such as was shown in Chapter 2. Still
more sophisticated implementations would use one of the list structures discussed later,
in Chapter 8. This chapter will show only the simplest array-based representations. Vari-
ations using other structures are straightforward — what’s interesting about state struc-
tures is mostly their operations and the way they are used, not their representation.
(Exercises in Chapter 8 explore more sophisticated implementations. )
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The most widely used state structure is the stack, which supports last-in first-out (L1r0)
processing. Under a L1ro “discipline” the next task to be invoked is the one most recently
added. Stacks are used for tasks that must be suspended then later resumed. Since sub-
routine call and return follows a suspend-and-resume regime, the run-time environments
of programming language implementations use stacks to control program execution.

5.1 LIFO Processing

Suppose you were writing a paper on supernatural beings. You are reading page 437 of a
book entitled Goblins, Ghosts, and Gremlins. A paragraph on that page discusses the fact
that ghosts frequently appear as characters in older fiction and refers you to a book called
Ghosts in Fiction. Interested, you put down the first book and begin skimming the
second. While reading a chapter on ghosts in plays, you come across a mention on page
233 that Shakespeare happens to have included supernatural beings in several of his
plays. A footnote on that page refers youto The Supernatural in Shakespeare’s Plays. You
get a copy of that book and read some of its material. On page 389 the author refers to a
scene in Hamlet, so you pick up a copy of that play to read the scene.

Having finished that scene, you return to The Supernatural in Shakespeare’s Plays
and finish the chapter. Now you can put that away and go back to Ghosts in Fiction. Once
you are done with that book, you can return to your work on the book you first picked
up — Goblins, Ghosts, and Gremlins.

While reading one book, you don’t want to be distracted by having to remember
where you were in each of the other books. Besides, interruptions may force you to put
your work aside temporarily. You would therefore need a way to recall your place in each
book when you later returned to your work. Your memory might suffice for one or two
books, over a period of a few hours, but it would be difficult to remember much more than
that.

What might you do to keep track of where you are in each book? One simple
scheme would be to reserve part of your desktop for a pile of books. Every time you put
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aside a book that you want to return to you insert a marker (such as an index card) at the
page you were reading and put the book on top of the pile.

When you finish a book you can put it back on the shelf. What would you do next?
You would simply pick up the top book of the pile, open to the page where the marker was,
and resume reading. (We are omitting the detail of remembering and returning to the
correct line of the page, but you could write that on the index card.) Thatbook will be the
one thathad most recently been interrupted, because each time you add a book to the pile
you place it on top of the books added earlier.

Figure 5.1 illustrates a sequence of states of your reading process, with somewhat ex-
tended from the example above. Each state is recorded as a set of tasks. Each task records
a book and a page number. Stacks are computational structures that manage LIFO pro-
cesses like the one illustrated.

5.2 Implementation

The basic work of a stack is to push (Add) new components and pop (Remove) existing
ones. A stack module could have just about the most minimal public interface possible: a
constructor, a destructor, push, and pop. The implementation shown here will also in-
clude definitions for other operations that are sometimes convenient to have, but push
and pop are the essence of a stack’s behavior.

5.2.1 Representation

Stacks are commonly represented as an array of elements plus a stack pointer — the index
within the array of the top of the stack. Real-world stacks grow upward — in the reading
example above, the stack of books grows higher with every diversion. However, arrays
are always pictured with higher array indices below than lower ones, and it’s most natural
to start the stack pointer at the first index and increment it as new elements are added.
This means that stack structures typically grow downward, rather than upward.

We could define a stack with a fixed limit to the number of components it can hold.
We could also define a template that has the limit as a parameter. The stack shown here
uses a third approach: the limit will be a constructor argument. In this approach the same
stack type can be used for stacks of different sizes. Client code specifies the limit (or ac-
cepts the default) when it creates a stack. The stack structure records the limit as well as
the current position, and (pointers to) components are stored in an array dynamically al-
located by the stack constructor.
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Suspending and Resuming Tasks
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template <class elt> struct stack
{

private:
// Representation
elt *elts; // array of pointers
int top: // index of top itm
int maxelts; // 1imit on number of elts
/.

5.2.2 Lifetime Operations

Add and Remove are implemented as push and pop. Also, for convenience, operator+=
is defined as a synonym for push. It’s sometimes convenient to be able to access the top
element without popping it, so we include topelt. Finally, so that an application can re-
use a stack without having to explicitly pop remaining items, we add a c1ear function.

template <class elt> struct stack

{
public:

// Initialize/Finalize
stack(int size = 100);
~stack();

// Access/Modify

void push(elt);

stack<elt>& operator+=(elt);
elt pop();

elt topelt();
void clear();
/7.

The constructor sets top to -1 and creates an array of elements (pointers). (It is
more common to initialize top to 0, but then ‘top’ would really mean ‘one past the top el-
ement’; the more natural interpretation is adopted here.) Since the user specifies the stack
size limit, that must be recorded in the structure too. The destructor frees the array of
elements. Push adds an item to the stack, incrementing top; pop returns the top item,
decrementing top. The definitions of the other operations follow from these. Figure 5.2
illustrates the behavior of a stack.

Implementation details of the lifetime operations follow directly from the illustra-
tion in Figure 5.2. (The Attributes full and empty used in some of these definition are
discussed a little later.)
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Figure 5.2 Stack Pushing and Popping
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/* Initialize/Finalize */

template <class elt> stack<elt>::stack(int size)
top(-1), elts(new elt[size]), maxelts(size-1)

(
}
template <class elt> stack<elt>::~stack()
{
delete [] elts;
}

/* Access/Modify */

template <class elt> void stack<elt>::push(elt itm)
{
if (full())
error("stack overflow");
else
elts[++top] = itm;
}

// synonynm for push
template <class elt> stack<elt>& stack<elt>::operator+=(elt itm)

{

push(itm);
return *this;
1
template <class elt> elt stack<elt>::pop()
{
if (empty())
error("stack underflow");
return elts[top--1;
1
template <class elt> elt stack<elt>::topelt()
{
if (empty())
error("stack empty");
return elts[top];
}

template <class elt> void stack<elt>::clear()

{
top = -1; // no need to modify elts

}
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5.2.3 Traversal Operations

Strictly speaking, stacks allow access only to their top element. Client code would not
normally traverse a stack directly. We still need traversal functions to support other op-
erations, such as Output, so they are included in the module. If we wanted to absolutely
prohibit client code from using them, we could make them private.

The natural traversal order for a stack is top-down. Thathappens to be the opposite
of the natural traversal order for the underlyingarray. Differences like this are why it is so
important to define operations for each structure even though it would seem to be just as
easy to manipulate the underlying representation directly.

template <class elt> struct stack
{
!/
// Traversal
private:
int cur; /! traversal index
public:
void reset(); // Traversal order is top to bottom
bool finished();
bool next();
elt& current();
int index();

/* Traversal */

template <class elt> void stack<elt>::reset()

{
cur = top+l;
}
template <class elt> bool stack<elt>::finished()
{
return cur < 0;
}
template <class elt> bool stack<elt>::next()
{
--cur;
return !finished();
}

template <class elt> elt& stack<elt>::current()

{
return elts{cur]:
}
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template <class elt> int stack<elt>::index()
{

return (top - cur) + 1;
}

5.2.4 Content Operations

Stacks are not normally compared or combined. The only content operations we’ll have
are Attributes. Stacks grow and shrink as they are used. When a program goes to pop the
next task description from a stack, the stack may be empty, in which case there are no
more tasks to perform. In this implementation, there’s a limit to how big each stack can
get, so an attempt to push a new task description may fail. Both push and pop check for
these conditions, but module users may also want to avoid provoking exceptions. The at-
tributes empty and full are therefore provided as part of the public interface. Occasion-
ally it’s useful to know how many elements a stack contains, so we provide the attribute
size,asusual.

template <class elt> struct stack
{

/..
public:

/] Attributes

bool empty();

bool full();

int size();

// Compare
friend order compare(stack<elt>&, stack<elt>&); // not implemented
friend bool equal(stack<elt>&, stack<elt>&);

// same elts in same order? (elt identity, not equality)

/* Attributes */

template <class elt> bool stack<elt>::empty()

{
return top < 0;

}

template <class elt> bool stack<elt>::full()

{
return top == maxelts;

}
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template <class elt> int stack<elt>::size()

{
return top + 1;

}

/* Compare */

template <class elt> order compare(stack<elt>&, stack<elt>&)
{
notimp("compare(stack<elt>& stkl, stack<elt>& stk2)");
return NO_ORDER;

template <class elt> bool equal(stack<elt>& stkl, stack<elt>& stk2)

{
if (stkl.sfze() != stk2.size()) return FALSE; // preliminary check
stkl.reset();
stk2.reset();

while(stkl.next() && stk2.next())
if (stkl.current() != stk2.current()) return FALSE;
// NOTE: if stkl runs out, stkZ has not yet been incremented

if (lstkl.finished()) return FALSE;
if (stk2.next()) return FALSE: // stkl is finished; step stk?
return TRUE;

5.2.5 Support Operations

Copy operations take their usual form. It might be necessary to test whether a particular
item is on a stack, so we’ll provide contains (in two versions, one for identity and one for
equality). Output is useful for debugging and sometimes to show an application’s user the
state of the stack, so the module will define the output operator.

template <class elt> struct stack
{
A
/! Copy
private:
void copy_elts(stack<elt>&);
public:
stack::stack(stack<elt>&):
stack& operator=(stack<elt>&);

// Process
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bool contains(elt);
bool contains_equal(elt);

/! Output
friend ostream& operator<<(ostream&, stack<elt>&);

/* Copy */

//private:
template <class elt> void stack<elt>::copy_elts(stack<elt>& stk)
{
memcpy (elts, stk.elts, maxelts*sizeof(elt));
}

template <class elt> stack<elt>::stack(stack<elt>& stk)
top(stk.top), elts(new elt{stk.maxelts+1]), maxelts(stk.maxelts)
{
copy_elts(stk);

template <class elt> stack<elt>& stack<elt>::operator=(stack<elt>& stk)
{

if (this == &stk) return *this; // copy to seifi

delete elts;

top = stk.top;
maxelts = stk.maxelts;
elts = new elt{stk.maxelts+1];

copy_elts(stk);
return *this;

/* Process */

template <class elt> bool stack<elt>::contains(elt itm)

{
reset():
while (next()) if (itm == current()) return TRUE; // identity
return FALSE;

}

template <class elt> bool stack<elt>::contains_equal(elt itm)
{
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reset();
while (next()) if (equal(*itm, *current())) return TRUE; // equality

return FALSE;

/* Qutput */

template <class elt> ostreamk operator<<(ostream& strm, stack<elt>& stk)

{
stk.reset();
while (stk.next()) strm << "\t" <K *stk.current() << '\n";
return strm;

}

5.3 An Example

Here’s a simple example showing how the stack module can be used. It reproduces the se-
quence of readings shown in Figure 5.1 on page 149. This program defines a type place
that describes a suspended task— a book title and page number. The type chunk is used
just to manage the simulation,

// stkdemo.C, corresponding to reading sequence of Figure 5.1 on page 149

#include <stringt.H>
#include <fstream.h>

ofstream ofil("stacktst.out"); /! file output
struct place
{
char* book;
int page;
friend bool equal{const place&, const place&);
friend ostream& operator<<(ostream&, const place&);
}s
ostream& operator<<(ostream& strm, const place& itm)
{
return strm << *"' << itm.book << "' KL ", page " <K itm.page;
}
bool equal(const place& itml, const place& itm2)
{
return ((itml.page === itm2.page) && (!strcmp(itml.book, itm2.book)));
}

struct chunk
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int page;
place next;
};

chunk chunks[] =

{
{437, {"Ghosts in Fiction", 1}},

Stacks

{233, {"The Supernatural in Shakespeare's Plays", 320}},

{389, {"Hamlet"™, 1}},
{-1),
{406, {"Richard II", 1}3},
{-11,
{-1},
{277, {"Dictionary Entry®, 522}},
{-11,
{306, {"Encyclopedia Article”, 979}},
-1},
{-13}.
{-1}
};

int chunkptr = 0;

Chap. 5

/* start reading r->bk at r->pg and keep reading until a reference that
will be followed is encountered. Replace r->pg with current page.

Return 0 if book has been finished, otherwise pointer to a new
reference. The array chunks is used to simulate the sequence of

references encountered.
*/
place* read(place* r)
{

static int depth = 0; // keep track of nesting for indentation

chunk &chnk = chunks[chunkptr++];

// make chnk an alias for current chunk for convenience

spaces(2*depth, ofil);

ofil << "Reading '" <L r->book << "' at page " << r->page <K ...

if (chnk.page == -1)
{
spaces(2*depth--, ofil):

ofil << "Finished reading '" << r->book << "' .\n";

return 0;
else

r->page = chnk.page:
spaces(2*depth++, ofil);
ofil << "Putting aside '" << r->book
<< "’ at page " << r->page << ".\n";
return &chnk.next;
}
}

place first = {"Goblins, Ghosts, and Gremlins™, 1};

An";
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main()

{
place *cur = &first;
place *next;
stack<place*> stk(10):

while {(cur)
{
next = read(cur);
if (lnext)
if (!stk.empty())
cur = stk.pop();
else
cur = 0;
else
{
stk.push(cur);
cur = next;
}
}

return G;

This example program produces the following output.

Reading 'Goblins, Ghosts, and Gremlins' at page 1....
Putting aside 'Goblins, Ghosts, and Gremlins' at page 437,
Reading 'Ghosts in Fiction' at page 1....
putting aside 'Ghosts in Fiction®' at page 233.
Reading 'The Supernatural in Shakespeare's Plays' at page 320....
Putting aside 'The Supernatural in Shakespeare's Plays' at page 389.
Reading 'Hamlet' at page 1l....
Finished reading 'Hamlet'.
Reading 'The Supernatural in Shakespeare's Plays' at page 389....
Putting aside 'The Supernatural in Shakespeare's Plays' at page 406.
Reading 'Richard I1' at page 1....
Finished reading 'Richard II"'.
Reading 'The Supernatural in Shakespeare's Plays' at page 406....
Finished reading 'The Supernatural in Shakespeare's Plays'.
Reading 'Ghosts in Fiction' at page 233....
putting aside 'Ghosts in Fiction' at page 277.
Reading 'Dictionary Entry' at page 522....
Finished reading 'Dictionary Entry’'.
Reading 'Ghosts in Fiction' at page 277....
putting aside 'Ghosts in Fiction' at page 306.
Reading 'Encyclopedia Article' at page 979....
Finished reading 'Encyclopedia Article’.
Reading 'Ghosts in Fiction' at page 306....
Finished reading 'Ghosts in Fiction'.
Reading 'Goblins, Ghosts, and Gremlins' at page 437....
Finished reading 'Goblins, Ghosts, and Gremlins’'.
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5.4 The Program Stack

One of the most significant mechanisms of programming languages is subroutine (or
“procedure” or “function”) invocation. Subroutine definitions assign names to pieces of
code. The code associated with a name can be invoked by using the name. When the
code finishes executing, control is returned to the point where it had been invoked. From
the point of view of the invoking code the subroutine is a single action. This is the funda-
mental mechanism of procedural abstraction.

5.4.1 Call-and-Return

We can see from this brief description that ‘invocation’ means ‘call and return’: the sub-
routine is called from somewhere and it returns to that point when it’s done. Subroutines
implicitly return when their last statement has executed. Explicit return statements allow
the subroutine to terminate before its last statement has been executed. The call-and-re-
turn discipline in most languages allows the call to pass arguments to code that has been
expressed in terms of parameters. This allows one procedure to express a computation
generalized for different input values. Similarly, most languages allow subroutines to re-
turn a result that becomes the value of the invoking expression.

Call-and-return is implemented using a stack. The programming environment’s
run-time environment creates and manages a program stack for each program executed.
Call-and-return is based on addresses of the machine-level instructions that the compiler
generated from the program text. When a subroutine is called, the address of the call in-
struction is pushed onto the stack and control is transferred to the first instruction of the
subroutine. When the subroutine returns, the stack is popped and control is transferred
to the popped address. (Because subroutine invocation is so fundamental, it is generally
supported directly by the cpu’s instruction set.)

Consider the following primitive C code.

fHinclude "screen.h"
fHnclude "windows.h"

void RefreshDisplay()

{
ClearScreen():
for (int 1 = 0; i < NUMWINDOWS; i++)
{
W = WINDOWSLi];
DisplayWindow();
}
}

void DisplayWindow()
{
DisplayFrame():
DisplayContent();
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void DisplayFrame()

{
DisplayBorders();
DisplayTitle();
DisplayBackground();

}

L S

Let’s look at how the program stack is used to control execution of this program.
The stack starts off empty:

_

Suppose RefreshDisplay is called from main, executing the instruction at location
50662. That address gets pushed on the stack, and control is transferred to the first in-
struction of RefreshDisplay,say, 77640. The stack now contains one address.

50662

g

The first thing RefreshDisplay does is call ClearScreen, so 77640 gets pushed on the
stack, and control goes to that routine. The stack is now

77640
50662

i

When ClearScreen finishes executing, the stack is popped and control returns to
the popped location — 77640, an instruction in RefreshDisplay. The stack has shrunk
to:

50662

g

RefreshDisplay now continues with its loop. Each time around the loop, DispTayWin-
dow is called, say from instruction 77652, so each time around the loop 77652 gets pushed
onto the stack.

77652
50662

g
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The first thing DisplayWindow does is call DisplayFrame, say from instruction
77404. The stack grows to:

Next, DisplayFrame calls DisplayBorders from instruction 77266, say, growing the
stack to

When DisplayBorders returns, 77266 is popped from the stack and execution
continues there, shrinking the stack to:

DisplayFrame continues, calling DisplayTitle and DisplayBackground. Finally,
DisplayFrame returns: 77404 is popped from the stack and execution resumes after that
instruction inside DisplayWindow. The stack now holds

77652
50662

Eventually, DisplayWindow returns. The stack is popped, and execution continues
at location 77652, in RefreshDisplay. The stack contains only the original address in
main from which RefreshDisplay was invoked:

50662

¢

Finally, RefreshDisplay completes and returns tomain. The stack is empty once again:

[
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5.4.2 Arguments, Return Values, Etc.

The above picture is considerably simplified. The program stack also supports argument
passing as part of calls and return values as part of returns. In fact, storage for all local
values -— arguments, local variables, and compiler-generated temporaries — is stacked.
Different languages, and even different implementations of the same language, may have
different ways of handling the specific details of local variables, temporaries, etc. The de-
scription here is a simplified one sufficient for the discussion of stack use.

Why can’t a subroutine’s local values be put in a fixed location known to that
subroutine? That’s how subroutine calls were implemented in older languages — ror-
TRAN for example. The compiler would allocate space for a subroutine’s local values
along with its machine-level instructions. This approach is too restrictive, though: it
doesn’t allow subroutines to call themselves or to call other routines that (ultimately) call
them. The first invocation would store some values in the local variables. Then, when the
subroutine was invoked a second time, it would modify the same machine locations the
firstinvocation did. When the first invocation regains control, it would find its local vari-
ables mysteriously modified.

The second invocation may invoke the same routine a third time, and so on. Once
we allow subroutines to call themselves, there’s no way to know beforehand how deep it
will go — the sequence is ended according to a test in the subroutine that detects a termi-
nating condition. Therefore, there’s no way in advance to know how many copies of the
subroutine’s local values to allocate.

The only alternative is to use a stack. A separate copy of each subroutine’s local val-
ues is pushed onto the stack each time it is invoked. The return mechanism pops these
along with the return address. In some implementations, the return address and local
variables are stored together as one item, called a stack frame, on the program stack, while
in others there is a separate stack holding local variables.

5.4.3 Recursion

The technical name for a subroutine’s calling itself is recursion. Recursion may be indi-
rect: a subroutine calls others that eventually call it. Recursion is needed when a process
must perform several different actions at the same time. Since a (traditional) processor
can execute only one instruction at a time, only one task can be active at any time. De-
scriptions of the other tasks must be saved on a stack for later execution. Even in many
cases where recursion is not required, a computation can be expressed more succinctly in
arecursive form. Learning to write and think recursively is a valuable programming skill.

Quicksort

As an example, we’ll consider a famous clever sorting method called Quicksort. Suppose
we have an array of n elements, and we want to rearrange the elements so that they are or-
dered according to their definition of compare. The heart of a Quicksort implementation
isa function that rearranges the array elements in a certain way. The function, which we’ll
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call sp11t, takes as its arguments the array and two indices indicating a subrange, which
we’ll call bottomand top. It determines a special index value, called the pivot, and returns
that index as the value of the function.

In determining a pivot, sp1it also rearranges the elements of the array so that (as-
suming the array contains pointers, as usual) the following conditions are true.

bottom < i < pivot = *a[i] <= *a[pivot]
pivot < i < top = *al[i] > *a[pivot]

After such a split, we can sort the two sections separately. The way that split rearranges
the array guarantees that the elements of each part will remain in that part regardless of
any further sorting activity.

Since the pivot is not included in either section, the sections are both guaranteed to
be smaller than the subrange of the array being split. (One section could be empty, if piv -
ot equals bottom or pivot equals top, but the other section is still one smaller than the
subrange since it excludes the pivot.) If we splitthearray, then split each section, and con-
tinue to split sections, eventually all sections are reduced to having only one or two
elements. A section with only one element is necessarily sorted! A section with only two
elements can be sorted by testing whether the two elements are in their proper order and
exchanging them if they are not.

Each split produces one or two sections to process. However, the program can only
work on one of them at a time, so a simple iterative loop won’t work. If we keep splitting
the section and processing, say, the lower subsection, eventually we’ll get to a subsection
with only one or two elements, but what happened to all the upper subsections from the
various splits? They’ve been left out.

Using a Stack for Quicksort

What’s needed is more than simple iteration — we must use a stack. Stacks record tasks
to be performed. A Quicksort split generates two tasks to be performed: sort the lower
subsection and sort the upper subsection. We can use a stack to record these tasks. The
task descriptions are simple, consisting of just the two indices that bound the subsection
to be sorted. Quicksort can be coded as a template parameterized on the type its array ar-
gument contains, as follows.

struct pair
{
int bottom, top;
pair(int, int);
}:

template <class elt> void quicksort(elt arr[], int from, int to)

{
stack<pair*> stk(to—-from); /! definitely more than necessary!
stk += new pair(from, to);

while (lstk.empty())
{
pair* pr = stk.pop();
if (pr—>bottom == pr—>top) // only 1 elt
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else if (pr—->bottom == pr—>top — 1) // only 2 eits
if (AFTER != compare(*arr[pr—>bottom], *arrlpr—>topl))
else
exchange(arr[pr—>bottom]l, arr[pr—>topl);
else /> 2 elts
{
int pivot = spiit(arr, pr—>bottom, pr—>top);
/7 after calling split, all elements before pfvot
// are <= pivot, all elements after pivot are >= pivot.

if (pivot < pr—>top)
stk += new pair(pivot+l, pr—>top);
if (pivot > pr—>bottom)
stk += new pair(pr->bottom, pivot-1);
}
delete pr;

This is pretty magical — there’s not much here that looks like it’s sorting anything! In
fact, the bulk of the sorting work is done by the sp1it function. That function isn’t hard
to write, though, and there are many interesting variations possible. (A simple one
follows.) Nevertheless, this is still pretty mysterious and requires working through some
examples to really see what’s happening.

The Split Function

The splitting process starts by picking an element of the array with which other elements
will be compared. Ultimately, the selected element will end up at the pivot location. It
turns out that different strategies for selecting the value affect the performance of the al-
gorithm in subtle ways, but that actually any element will work. For simplicity, we’ll just
pick the first element. At the end of the entire splitting process, all the elements in the ar-
ray from bottom to pivot-1 will be less than or equal to the selected element and all the
elements from pivot+1 through t op will be greater than the selected element.

One index variable is started at bottom, and another is started at top — we’ll call
them 1ower and upper, respectively. Aslong as the element at 1ower does not belong af-
ter the selected element, 1ower is incremented. Similarly, as long as the element at upper
does not belong before the selected element, upper is decremented. When both indices
have reached an out of place element, the two elements are exchanged. The indices are
moved again until another pair of out-of-place elements is found, and another exchange
occurs. This continues until the two indices cross. Finally, the selected element is ex-
changed with the element at upper, which at this point is the desired pivot value.
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template <class elt> int split(elt* s[1, int bottom, int top)
/f will be called only if lower is at least 2 less than upper

{
elt& val = *s[bottom]: // actually doesn't matter which 1s picked!

int lower = bottom, upper = top: /! start at extremes
while (lower < upper) // until they cross ...
{
while (lower < top && (AFTER != compare(*s[lower], val))) lower++;

// Move lower upwards skipping elts that are in their
// correct half until a elt that is > val is encountered,

while (AFTER == (*s[upper], val)) upper—;
// Move upper downwards skipping elts that are in their
// correct half until a elt that is <= val is encountered.

if (lower < upper) exchange(s[lower], s[upperl);
}

/* When lower >= upper, do a final exchange, switching s[bottom] and
slupper] — all the comparisons were made against s[bottom], but
s[bottom] was never moved. Now we know where it belongs: at upper;
also, the eit at upper 7s <= val or eise upper would have been
decremented further.

*/

exchange(s[bottom], s[upperl);

return upper;

Recursive Quicksort

Quicksort is shown here to demonstrate how stacks are used to support recursive
processing. Quicksort is recursive because after splitting a section, each of as many as two
subsections is separately sorted using the same process. However, the above code is not
expressed recursively. It uses an ordinary iterative loop plus its own stack to manage the
recursive processing. Modern languages support direct recursive expression, however.
A recursive expression of Quicksort would look something like the following. In essence,
the program stack takes the place of the explicit stack of the iterative formulation.

template <class elt> quicksort(elt* arr[], int bottom, int top)

{
if (bottom == top) // only 1 elt

else if (bottom == top-1) /!l 2 elts
if (*arr[bottom] <= *arr[top])
else
exchange(strings[bottom], strings[topl):
else /1 > 2 elts
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{

int pivot = split(arr, bottom, top):

if (pivot<top) quicksort(arr, pivot+l, top);

if (pivot>bottom) quicksort(arr, bottom, pivot-1);
}

This is more concise! There are no stacks, stack elements, whi1e loops, or many of
the other details needed in the iterative formulation. Actually, the special cases of one or
two items distract from the real power of this formulation. In the nextsection ofthe book,
which considers data structures that are themselves recursive, we’ll see some very terse
code that will better show recursion’s real power.

5.4.4 Backtracking

Backtracking is a special form of recursion that attempts to attain a goal starting from an
initial state. Each step applies one ofa set of rules to transform the current state into a new
one. A predicate is supplied that determines whether a state meets the goal criteria. To
find the goal from any state, each applicable rule is tried in turn. Success is achieved when
a state is generated that meets the goal criteria. Failure is encountered when a nongoal
state is achieved to which no further transformations apply, either because none are appli-
cable, or because all the applicable ones have already been tried. When failure is encoun-
tered, the process is “backed up” to an earlier state and continued from there with the
application of the next transformation. The term ‘backtracking’ is derived from the fact
that when failure is encountered the process goes back over its tracks state by state, until
one is reached where further options remained.

Because there may be more than one transformation applicable to a given state, re-
cursion is required to remember the others while one is tried. The next state may have
several transformations, each of those states may have several applicable transformations,
and soon. Therefore, a great many states may have to be explored before the process ever
returns to the original state and the next transformation of it is tried. A stack is used to
maintain the history of states that led to the current one. Whenever there are no more
transformations applicable to a state, it is abandoned: the stack is popped and further
transformations are tried for the previous state. As with Quicksort above, backtracking
may be expressed using an explicit stack or as a recursive function that uses the program
execution stack.

A simple example is a classic problem called the “Knight’s Tour.” A Knight is a
chess piece that moves two squares either horizontally or vertically then one square in the
other dimension. A Knight is placed on a chessboard, and the challenge is to find a se-
quence of moves by which the Knight visits every square on the board exactly once.

The transformation rules for this puzzle would describe the legitimate moves from
any position. There are as many as eight moves possible from a given square: first move
two in any of four directions, then move one either way in the other dimension (e.g., two
to the left and one up or one down). Squares near or on the edge of the board produce
fewer possibilities. Moves that land the Knight on a square already visited are discarded.
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A program to solve this simply needs an appropriate structure to define a board’s
state, a way to generate moves from a given position, and a stack. The program would be-
gin by pushing the initial position on the stack. On each iteration a board description
would be popped off the stack and tested to see if all squares have been visited. If not, a
new board description would be pushed onto the stack for every applicable move from the
position currently being considered. Due to the large number of squares and possible
moves, a great many positions may end up being examined on the way to a solution, but
in principle the process is simple, using an explicit stack.

5.5 EXERCISES

Stacks

1. A classic example of the use of stacks is to verify for some text that every left parenthesis, left
bracket, or left brace is matched by the corresponding right character. For instance, if the most
recent left character is a parenthesis, then the next right character seen should also be a paren-
thesis, not a bracket or brace. Whenever a right character is encountered, the only question to
ask, and therefore the only state information the verification process needs, is “What is the most
recently unmatched left character?” Once a left character is matched, it can be thrown away.
Because parenthesized, bracketed, and braced text can appear within each other, nesting can oc-
cur to any level. Therefore, a stack is needed to record the state of the scan. Write the program
described, using the stack module from the course library.

2. Perhaps the simplest possible use of a stack is to evaluate algebraic expressions expressed in
postfix form (where the two operands precede the operator,asin5 9 / 98.6 32 - *tocom-
pute the Celsius equivalent of “normal body temperature” in Fahrenheit). Assume that each
expression occupies a single line of input and that spaces surround every operator and
operand. Note that postfix notation is unambiguous — there is no need for parentheses.

(a) Write a simple program that reads and prints back out series of algebraic expressions con-
sisting entirely of integers and the binary operators +, -, *, and /.

(b) Modify the program to use a stack to evaluate and print out the value of each of the input
expressions. The process is simple: integers get stacked, and operators work by popping
the top two stack elements, applying the designated operation to them, and pushing the re-
sult back on the stack. Be careful to arrange the two operands in the correct order.

(¢) Extend the program so that it stores expressions instead of evaluating them, and allows ex-
pressions to contain one-letter variables and real numbers in addition to integers. Expres-
sions will be numbered for reference. Accept input such as the following:

F = 98.6 /1 assign 98.6 to the
variable F

(1) 59 / F 32 - * // store expression #1
(2) X X *Yy~*2 // store expression #2
71 // evaluate expression
(1)

X =23 // assign 3.0 to X

Y =4 // assign 4.0 to Y

7?2 // evaluate expression #2
F =68 /! reassign F

71 /! reevaluate #2
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Recursion

3. In the Quicksort program in Section 5.4.2, the stack was created large enough to hold as many
bounds pairs as there are array elements. Intuitively this seems large enough; in fact, it is much
larger than necessary. Determine the maximum depth reached by the stack Quicksort uses for
sorting an array of n elements.

4. Write a program to print out the reverse of each line of text input to it.
(a) Use a stack of characters to read the line and print its reverse. Do not use any variables to
store characters except for the stack and the character just read.
(b) Rewrite using recursion, where each call reads a character. Do not use any variables to
store characters except for the character just read.

(c) Compare the two approaches.

5. Write and test a recursive function to calculate the greatest common divisor of two positive num-
bers based on Euclid’s algorithm: if p%q is 0, then g divides p and, since it divides itself, it is the
largest number that divides both; if p%q is not 0, then their gedis the ged of gand p%gq. (p must
be less than g.)

6. Suppose C++ had no while, for, or any other looping construct — not even a goto. Loop
constructs are of course very useful, and you wouldn’t want to program without them. Allis not
lost! Loops can be expressed recursively.

(a) Write a function dowh i 1e that takes two functions — a predicate and an action — and re-
peats the action as long as the predicate evaluates to false.

(b) Write a function dofor that takes an initial value and three functions: one function to step
the value, one to test for termination, and one that performs the repetition action. The
function should repeatedly perform the action, stepping the value and testing for termina-
tion on each repetition.

Backtracking

7. Backtracking can be used to solve mazes. Let an N x M maze be defined as a two-dimensional
array of squares, each one containing a block, the maze runner, or nothing, along with designat-
ed start and goal squares. The runner begins at the start square; the object of the program is to
get the runner to the goal square. At each move, the maze runner may move to any empty ad-
jacent square (horizontal or vertical, not diagonal).

(a) Write a simple module implementing a maze. Itshould beable to read a maze specification
from a file, output the current state of a maze, report the legal moves available from the cur-
rent state, and perform legal moves.

(b) Write a program that solves the maze using a stack. A state structure is necessary because
there may be as many as three moves possible from a given position. (The fourth possibil-
ity is excluded — there’s no need to consider the move that undoes the move that got the
runner to its current square.) Only one at a time can be pursued; others have to be added
to a state structure for later consideration.

(c) Oneinefficiency in this program is that a given square might be reached by more than one
path. If a square has already been explored once, there is no need to explore it again.
Change your program so it keeps track of what squares have been reached and doesn’t add
them to the stack when they are encountered again.

(d) Change the program to use recursion instead of an explicit stack.

8. Consider string pattern matching, where a '?" in the pattern matches any character in the

string and a ‘*' in the pattern matches any sequence of characters (including none) in the
string.
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10.

(a) Write a recursive function that tells whether its first argument, the pattern string, matches
the second argument, the target string.

(b) Testitin aprogram that reads pattern-target strings, with each pattern and target on a sep-
arate line and pattern-target pairs separated by a blank line.

(c) Why does this have to be recursive?

Write the Knight’s Tour program described in Section 5.4.4, page 167.

(a) Begin by using an explicit stack.

(b) The number of positions considered can be greatly reduced by ordering the current posi-
tion’s possible moves before pushing them onto the stack, so that moves with the fewest
possible successor moves are considered before moves with more. Note that you must
push them in the reverse of the order in which you want the moves considered, since ele-
ments are popped from stacks in the reverse of the order in which they were pushed. One
way to order the moves is according to how many moves there are from each of them to an
unvisited square. Another is to order them according to how close they are to a horizontal
edge and a vertical edge, since edge squares and, to a lesser extent, squares one away from
an edge reduce the number of moves available.

(c) Modify your program so that it uses recursive calls instead of an explicit stack. Compare
the two implementations: which do you think is easier to write (assuming a stack module is
already available)? Which is easier to read?

Another classic backtracking problem is called “Eight Queens.” A Queen in chess can move
any number of squares in a single direction, including diagonally. A piece is considered under
attack by another piece if the second piece can reach the square of the first piece on one move.
The challenge is to place eight queens on a chessboard so that none attacks any of the others.
Obviously, there can only be one Queen on any row or column, so the process can be organized
by placing Queens in successive rows, trying each of the still unoccupied columns. The tricky
part is that the diagonals have to be checked, too: if the newly placed Queen can reach the square
of any of the Queens placed earlier, the position is abandoned. Write a program that solves this
puzzle, trying it out first on a 4x4 board before running it for an 8x8 one.
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Queues

Queues are quite similar to stacks. The essential difference is that queued tasks are pro-
cessed in the order in which they entered the queue rather than most recent first. The pro-
cessing pattern queues generate is firsi-in first-out (,170). This difference is conceptually
simple, but it makes the implementation and applications of queues substantially different
from the implementation and applications of stacks.

6.1 Queue-Based Processing

We'llillustrate r1ro processing with a reading example similar to the one used to illustrate
LIFO processing with stacks. The example is based on a student’s need to keep track of
reading assignments in a number of courses she is taking.

An unusually well-organized student might proceed as follows. Every time a read-
ing assignment is given in a course the student writes information about the assignment
on an index card. She places each entry on a separate index card and stores the cardsin a
file box, adding new cards at the back. When it is time to do some studying, the student
removes the first card from the front of the box and does the reading assignment it repre-
sents.

When an assignment is completed, its index card can be thrown away. If there is
time to do more studying, another card can be taken from the front of the box. In this
way, readings get done in the order in which they were assigned. Figure 6.1 illustrates this
approach. In contrast to the suspend-and-resume approach supported by stacks, a
queue-based process completes each task before beginning the next.
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Reading To Do

0. Start with empty file box

Crime and Punishment
Reading To Do

2. Advise and Consent assigned

Pride and Prejudice

[ Advise and Consent |

Reading To Do

4. Pride and Prejudice assigned

_
Pride and Prejudice

Reading To Do

6. Advise and Consent read
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Crime and Punishment

Reading To Do

1. Crime and Punishment assigned

Advise and Consent

Reading To Do

3. Crime and Punishment read

Warand Peace |
Pride and Prejudice |
Advi dC

Reading To Do

5. War and Peace assigned

Reading To Do

7. Pride and Prejudice read

Figure 6.1 Performing Tasks in the Order Assigned
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6.2 Implementation

Like stacks, queues are based on arrays. Ifimplementation were to follow the file box met-
aphor exactly, when a task description is removed from the queue all the others would
have to be moved up in the array. That overhead can be avoided by treating the array as
a circular structure, as if you had grabbed it by its end, curved it around, and attached its
end to its beginning.

This can be accomplished by maintaining separate pointers to the current front and
back of the queue, as illustrated in Figure 6.2. When an item is added, back is increment-
ed; when an item is removed, front is incremented. When back hits the end of the array,
itis reset to the beginning. Similarly, when front hits the end of the array, itis reset to the
beginning. In this way, front continues to chase back around the circular array. (If it
ever catches up, the queue is full.)

6.2.1 Representation

The data members of queue are just like those of stack. The only change is to replace
stack’s single top pointer with front and back pointers.

template <class elt> struct queue

{
private:

// Representation
elt *elts; /! array of pointers
int front, back; /! indices
int maxindex; // size of array - 1
!/

3

6.2.2 Lifetime Operations

Initialize and Finalize are routine for queues. As with stacks, Add and Remove are the fun-
damental Modify operations. We’ll include a clear to empty the queue and first and
1ast to access those special elements.

template <class elt> struct queue
{
1
public:

/l Initialize/Finalize
queuelint siz = 100);
~queue();

/! Access/Modify
void add(elt);
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queue& operator+=(elt itm); /! synonym for add

elt remove();

void clear();

elt first(); // first elt
elt last(); // last elt

It is convenient to have front==back indicate an empty queue. Since front and
back will move through the array, it actually doesn’t matter what array index they are ini-
tialized to as long as they start out equal. The constructor calls clear to establish the ini-
tial state; clear sets both to 0. The constructor also allocates an array to hold the
elements. As in the stack implementation, the size of the array is recorded in the queue
struct. (Actually, for convenience, we record the maximum index of the array — one less
than its size.)

/* Initialize/Finalize */

template <class elt> queue<elt>::queue(int siz)
elts(new elt[siz]), maxindex(siz-1)

{
assert(siz > 1);
clear();
// a 17ttle tricky, so abstract out as a separate
// function that can be called on its own too.
}
template <class elt> queue<elt>::~queue()
{
delete [1 elts;
}

Add stores the new entry at back then increments back (or resets it to 0 if it is already
atmaxindex). Remove increments front and returns the entry at the old value of front.
Thus, unless the queue is empty, front always points to the first item in the queue, and
back points one past the last item in the queue (the place where the next item will be add-
ed),

/* Access/Modify */

template <class elt> void queue<elt>::add(elt itm)

{

assert (1full());

elts[back++] = itm;

if (back > maxindex) back = 0; // wrap around
1

template <class elt> queue<elt>& queue<eltd>::operator+=(elt itm)
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{
add(itm);
return *this;
}
template <class elt> elt queue<eltd::remove()
{
assert(lempty());
elt itm = elts[front++];
if (front > maxindex) front = 0; // wrap around
return itm;
1
template <class elt> void queue<elt>::clear()
{
front = back = 0;
1
template <class elt> elt queueelt>::first()
{
assert(lempty());
return elts[front];
}
template <class elt> elt queue<elt>::last()
{
assert(lempty());
if (back == 0)
return elts[maxindex-1];
else
return elts[back-1];
}

Chap. 6

6.2.3 Traversal Operations

Queue traversal operations are quite similar to those for stacks.

template <class elt> struct queue
{
/.
// Traversal
private:
int cur; /! traversal index
public:

void reset(); // Traversal is front to back
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bool finished();
bool next():
elt& current();

177

int index(); /! offset 1
};
/* Traversal */
template <class elt> void queue<elt>::reset()
{
cur = front-1;
}
template <class elt> bool queue<celtd::next()
{
if (++cur > maxindex) cur=0;
return !finished{);
}
template <class elt> elt& queue<celt>::current()
{
return eltsfcurl;
}
template <class elt> bool queue<elt>::finished()
{
return cur == back;
}
template <class elt> int queue<elt>::index()
{
if (front <= cur)
return ((cur - front) + 1);
else // traversal wrapped around to front of array
return ((maxindex - front) + cur + 1);
}

6.2.4 Content Operations

Queues have content operations similar to stacks. There are similar Attributes and mini-
mal Compare operations. Combine operations would rarely be needed, but could easily be

implemented (cf. Exercise 1).

template <class elt> struct queue
{
/.
public:
// Attributes
bool empty();



178 Queues Chap. 6

bool full();
int size();

/! Compare
friend order compare(queue<elt>&, queue<elt>&);
friend bool equal(queue<elt>&, queue<elt>&);
// same elts in same order? (elt identity, not equality)

A queue is full when back catches up to front. We have to be careful, though. If
every element of the array contained a queue component, we’d have front==back, which
is the definition of empty! There’s no way to avoid this: we’ve arranged the queue to act
as if it were a circular ring of entries, and the empty and full states must be distinguished.
One of the two states can be defined as front==back, but the other must be distinguished
some other way. In this implementation, ful1 is represented by back being one behind
front, rather than actually catching up to it. This means that there is always at least one
unused slot in the array. In Figure 6.2 on page 174, for instance, the next to last queue
state shown is a full one even though there is one empty box.

Given this interpretation of front and back, computing the number of elements
currently in a queue is straightforward, though slightly tricky to express correctly. Both
size and full must deal with the inconvenient details of front and back wrapping
around when they get to the end of the array.

/* Attributes */

template <class elt> int queue<elt)>::size()

{
if (empty()) return 0;
if (front < back)
return back - front;
else
return (maxindex - front) + back + 1;
}
template <class elt> bool queue<elt>::empty()
{
return front == back;
}
template <class elt> bool queue<elt>::full()
{
return (front == back+l) || ((front == 0) && (back == maxindex));
}

Queues, like other state structures, would hardly ever be compared. We won’t im-
plement compare, but in general it’s always a good idea to have equal defined, if only to
facilitate testing, In any case, because of the considerations discussed in Section 1.3.3
(page 67) and at the end of Section 1.4.1 (page 79), we have to provide some version of
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equal and compare. For convenience, and to illustrate their use, equal uses traversal op-
erators, even though this would interfere with any traversal client code might be in the
midst of when it calls equal.

/* Compare */

template <class elt> order compare(queue<elt>&, queue<celtd&)
{

notimp("compare(queue<elt>&, queuecelt>&)");

return NO_ORDER;
}

// same elts in same order? (elt identity, not equality)
template <class elt> bool equal(queue<elt>& ql, queueelt>& q2)
{
if (&ql == &q2) return TRUE; // same!
if (ql.size() != q2.size()) return FALSE; /! preliminary check

gl.reset();

g2.reset();

while(ql.next() && qZ2.next())

if (ql.current() != qZ.current()) return FALSE;

// NOTE: if gl runs out, g2 has not yet been incremented

if (!ql.finished()) return FALSE;
if (q2.next()) return FALSE; /7 ql is finished; step q2
return TRUE;

6.2.5 Support Operations

As always, we provide an operator<< function for the structure — the same consider-
ations apply for that as for compare and equal. Again, as for stacks, we might want to see
if a particular item was in the queue or not. In fact, the definition of all three support op-
erations are essentially the same as the corresponding definitions for stack.

struct queue
{
...
public:
// Process
bool contains(elt);
bool contains_equal{elt);

// Input/Qutput
friend ostream& operator<<(ostream&, queue<elt>&);
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/* Process */

template <class elt> bool queue<eltd>::contains(elt jtm)

{
reset();
while (next()) if (itm == current()) return TRUE; /! identity
return FALSE;

}

template <class elt> bool queue<elt>::contains_equal(elt itm)

{
reset();
while (next()) if (equal(*itm, *current())) return TRUE; // equality
return FALSE;

}

/* Qutput */

template <class elt> ostream& operator<<(ostream& strm, queue<elt>& q)

{
g.reset();
while (g.next()) strm << "\t' <K *q.current() << '\n*;
return strm;

}

6.3 An Example

// qdemo.C, corresponding to reading sequence of Figure 6.1 on page 172

#include <fstream.h>
ofstream ofil{"qtst.out™);

struct item
{

char* title;

item{char* t) : title(t) { }
};

ostream& operator<<(ostream& strm, const item& itm)

{
strm << "2 KL itm.title << 'Y

return strm;
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bool equal(const item& itml, const item& jtm2)
{

return !strcmp(itml.title, itm2.title);
}

queue<item*> q(4);

void report(char* prefix)

{
ofi1 << prefix << "queue contains " << qg.size()
<< " dtems:\n" << q << "\n"';
1
void report_contains(char* title)
{
item itm(title);
ofil << "The queue does “;
if (!q.contains_equal(&itm))
ofil << "not ";
ofil << "contain " << title << ".\n\n";
}
void read(item* itm)
{
ofil << "Read " << *itm << ".\n";
delete itm;
}
void assign(char* title)
{
ofil << "\"' KK title << "\" assigned.\n";
q += new item(title);
report("");
}
main()
{

report("At first, ");
assign(”Crime and Punishment");
assign("Advise and Consent™);
read(q.remove());

assign("Pride and Prejudice™);
assign("War and Peace");
read(q.remove());
read(q.remove());

// W&P still in queue

report("At end, ");
report_contains("War and Peace");
report_contains("Crime and Punishment™);

return 0;
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The output from this demonstration is as follows.

At first, queue contains 0 items:

"Crime and Punishment” assigned.
queue contains 1 items:
"Crime and Punishment™

"Advise and Consent™ assigned.
queue contains 2 items:
"Crime and Punishment”
"Advise and Consent”

Read "Crime and Punishment”.
"Pride and Prejudice"™ assigned.
queue contains 2 items:
"Advise and Consent™
"Pride and Prejudice”

"War and Peace"™ assigned.
queue contains 3 items:
"Advise and Consent"
"Pride and Prejudice”
"War and Peace"

Read "Advise and Consent™.
Read "Pride and Prejudice".
At end, queue contains 1 items:
"War and Peace"
The queue does contain War and Peace.

The queue does not contain Crime and Punishment.

6.4 EXERCISES

1. Add combine(queue&, queue&) to the queue module shown in the text. The result should
be a new queue, rather than modifying one of the arguments.

2. Write a program that simulates a printer queue. The program should loop accepting com-
mands from standard input, as follows, and simulate printing at a fixed rate of characters per
minute. Queue entries should record only file names and lengths (in characters) — don’t both-
er with different user names, priorities, or other details you might find in a real printer queue.
(a) print filename verify thata file of that name exists and add it to the queue
(b) status list the entries on a queue (name plus number of characters)

(c) time print the total amount of time it will take to print all the queued files

3. Strictly speaking, the only Modify operations required for a queue are add and remove, to add

elements at the back and remove them from the front. However, it might also be useful to be
able to remove a particular element of the queue.

(a) Give some examples of queue applications that might use such an operation.
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(b) What signature should the operation have?
(c) Implement and test it.
(d) Addaremove filename command to the printer queue of Exercise 2.

4. Substitute a queue for the stack in the maze running program of the previous chapter’s Exercise
7, page 169. Describe the difference this makes in the way the maze is searched. Which one
corresponds to the way a person would normally search a maze?

5. Write a program that simulates a highway toll plaza. Assume tolls are collected in one direction
only, there are three lanes of traffic, automatic toll machines take 10 seconds per car, peopled
tollbooths take 20 seconds, and cars arrive at random intervals from each lane. Drivers decide
which tollbooth to get on based on some combination of how far over the booth is from the driv-
er’s current lane, the length of the various lines, and awareness that peopled lanes move twice as
slowly as automatic lanes. (Make up some reasonable formula.) Run simulations for various
numbers of tollbooths and traffic volume and gather statistics regarding the throughput of the
toll plaza, average and maximum wait of cars, etc.
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Priority Queues

The essence of state structures is that they store descriptions of tasks awaiting processing.
Stacks and queues embody two commonly used scheduling disciplines: LIFo and Firo,
respectively. Many kinds of processing are directly supported by either LiFo or FiFo
scheduling. L1Fo is used for nested suspend-and-resume processing, as in subroutine
calls. Frro isused to manage first-come first-serve ordering, such as printer queues. FIFo
can also be used for suspend-and-resume scheduling: the current process is suspended
and putback af the end of the queue. This supports processor sharing, in which each task
is allowed to use a certain amount of resources before being suspended in favor of the next
one waiting.

Sometimes a more sophisticated scheduling discipline is required than riro or
LIFO. Priority queues are a generalization of stacks and queues that support arbitrary
schedule regimes, or what might be called best-next processing.

7.1 Selective Processing

Stacks and queues store their task descriptions in an order reflecting the order in which
they’ll be processed. Priority queues can do that too by inserting each new task in its
proper place relative to the others currently stored. Alternatively, they can store the tasks
in arbitrary order, and Remove can search for the best one each time itisinvoked. Thelat-
ter approach is necessary if the evaluation is dependent on time or changing conditions.
The former is appropriate when evaluations of queued tasks don’t change, in which case
the evaluations can be included in the task description. Either way, a priority queue or-
ders its tasks according to some kind of evaluation.

For example, priority queues play an important part in allocating shared resources
of alarge computer system to its users. Batch (non-time-shared) systems might use a pri-
ority queue to manage job requests. Time-shared systems usually have printer queues to
manage output requests. For either example, a request’s priority might be calculated as a
function of the size of the task to be performed, the privileges of the requester, and the
amount of time the request has been waiting in the queue.

185
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The implementation of a priority queue is similar to that of a stack or a queue. The
main difference is in either Add or Remove, according to whether or not tasks are stored in
order. If stored in order, then Remove is unaffected, but Add must evaluate the new item
and successive old items until the new item’s place in the ordering is determined, then in-
sert the new task at that location. With an array-based representation insertion requires
moving subsequent tasks down in the array.

If the tasks are not stored in order, then Add is unaffected, but Remove must evaluate
all the tasks to select the one with the highest evaluation. With an array-based represen-
tation deletion of items can be managed either by marking the entry free (assuming entries
are pointers, by setting the value to 0) or by moving subsequent entries up. The latter
wastes a little time shuffling items in a Remove, whereas the former wastes a little time in
each Add looking for an empty spot. If this inefficiency becomes significant, a more ap-
propriate implementation would be to use a linked list, discussed in the next chapter.

One variation on the idea of priority queues combines the idea of a queue with that
of a priority queue, useful when there are a small number of possible priority values. An
array of queues can be maintained, each corresponding to a particular priority value.
When a task is added, it is simply added to the end of the queue corresponding to the task’s
priority value. To find (and remove) the next task to be processed, the queue with the
highest priority is examined: if nonempty, its first task is selected. If that queue is empty,
the one with the next highest priority is considered, and so on.

Priority queues are often used in game-playing and puzzle-solving programs. Giv-
en a particular position in a puzzle or game, legal moves from that position are generated,
evaluated, and added to a priority queue. The evaluation can be stored as part of the task
description, since it does not depend on external factors such as time waiting. Since Re-
move will not reevaluate each item, the items can be stored in order of their evaluation,
and Remove can just delete and return the first item, as in a queue.

7.1.1 Representation

Here’s the declaration of a priority queue that stores elements according to their priority,
rather than determining the next element each time one is to be removed. Theimplemen-
tation offers two choices, specified as constructor arguments: should the highest or lowest
priority be the first element removed, and what function should be used to compare
elements? If the optional function argument is provided, it is the name of an evaluation
function that takes an element and returns an integer indicating its priority. Ifno function
is provided, operator< or operator> is used, with the (necessarily pointer-valued) ele-
ments being dereferenced first.

template <class elt> struct pqueue
{
private:
// Representation
elt *elts;
int front, back;
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int maxelts;

bool highfront; // do elements with highest evaluation go at front?
int (*evaluator)(elt); // evaluation function for elts
/.

7.1.2 Operations

The implementation of the priority queue will take the implementation of a regular queue
shown in Chapter 6 as a starting point. Only a small number of functions change: the con-
structor, add, the copy constructor, and the copy assignment operation. Except for add,
and a private function insert, which it calls, the changes simply involve the initialization
and copying of the new data members highest_first and evaluator. The declaration
and definition of the module’s other functions are the same as for regular queues and
won’t be shown here.

template <class elt> struct pqueue

{
/.
// Initialize/Finalize
pqueue(bool highest first = TRUE, // else lowest first
int (*evalfn)(elt) =0,
int siz = 100);
!/ Access/Modify
private:
bool before(elt itm, int pos);
void insert(elt itm, int pos); // insert itm at pos
public:
void add(elt);
+s

/* Lifetime Operations */

template <class elt>
pqueue<elt>::pqueue(bool high, int (*fn)(elt), int siz)
: highfront(high), evaluator(fn), maxelts(siz-1), elts(new elt[siz])

{
assert(siz > 1);
clear();

}

/! private:

// insert e at position pos; back starts off just after last elt
template <class elt> void pgqueue<elt>::insert(elt e, int pos)

{
int 1 = back;
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if (++back > maxelts) // increment back
back = 0; // wrap?
while (i != pos)
{
elts[i] = elts[i ? i-1 : maxelts];
if (--1 < 0) 1 = maxelts; // wrap backwards
}
elts[pos] = e;
}
template <class elt> void pqueue<elt>::add(elt e)
{
if (full())
error("pqueue overflow");
else
{
int val = evaluator ? evaluator(*e) : 0;
int cur = front;
while (cur != back &&
(evaluator ? (highfront 7 val < evaluator(elts[cur])
: val > evaluator(elts[curl))
(highfront 7 operator<(*e, *elts[curl)
: operator>(*e, *eltsfcurl)))
)
if (++cur > maxelts) cur = 0; // wrap
insert(e, cur);
}
}
/* Copy */
//private:

template <class elt> void pqueue<elt>::copy_elts(pqueue<elt>d q)
{

front = q.front;

back= q.back;

memcpy(elts, q.elts, maxelts*sizeof(elt));
}

template <class elt> pqueue<elt>::pqueue(pqueue<elt>s q)
highfront{(q.highfront), evaluator(q.evaluator),
maxelts(q.maxelts), elts(new elt[q.maxelts])

{
copy_elts(q);

}

template <class elt> pqueue<elt>& pqueue<elt>::operator=(pqueue<elt>& q)

{
if (this == &q) return *this; /! copy to self!
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delete [] elts;

highfront = q.highfront;
maxelts = q.maxelts;

elts = new elt[q.maxelts];
evaluator = q.evaluator;
copy_elts(q);

return *this;

7.2 AnExample

As an example of the use of priority queues in game-playing programs, we’ll consider the
classic “Fifteen Puzzle.” This is a 4 x 4 array of tiles, numbered 1 through 15, with one
missing. Initially the tiles are scrambled. The objective is to rearrange the tiles so that
theyare in order: 1 through 4 across the top, 5 through 8 across the next row, etc. The only
allowable maneuver is to slide a tile adjacent to the empty space into the empty space,
thereby exchanging the position of the tile and the empty space.

7.2.1 Representation and Manipulation of Positions

The first thing a program to solve the puzzle needs is a representation of the puzzle. The
most obvious representation would be a 4 x 4 array of integers, each representing the
number of the tile in the corresponding position. It will be convenient to track the loca-
tion of the blank square, rather than searching for it each time a move is made, so we in-
clude that in the representation.

struct position

{
private:
short tites[4]1[4];
short blank_row, blank_col;
i
};

Next, we consider what operations we want to perform on a position. Although it
serves a very specific purpose, this is still a full-fledged data structure and will benefit from
the same kind of organization we apply to the more generally useful ones that are the sub-
ject of this book. We need a constructor, Access/Modify, some Attributes, and the usual
Compare, Copy, and Cutput operations. The Modify operations we need are make_move,
which modifies a board by moving the blank square in the direction specified by its argu-
ment, and make_moves, a scrambling function that makes a number of random moves.
The constructor will set up a board in the solution position, then call make_moves with the
number of moves specified as its argument.
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The main Attribute needed is a test to determine if a position is a solution. To sup-
port evaluating positions, we’ll need Attributes that report other characteristics. Here, a
simple approach to evaluating a position is embodied in the Attribute number_correct,
which returns the number of tiles that are in position they’ll occupy in the solution. Com-
pare will evaluate boards by calling number_correct, but number_correct can also be

used by a priority queue’s evaluation function.

struct position

{

public:
enum direction { NONE, LEFT, RIGHT, UP, DOWN };
/! This is a struct-specific enum.

private:
short tiles[41[4];
short blank_row, blank_col;

public:
// Initialize/Finalize
position(int n = 5);
// a position with n random moves

// Access/Modify

private:
void make move(direction d);
void make_moves(int n);

/! Attributes
bool is_solution():
int number_correct();

// Compare
friend order compare{state&, stated);
friend bool equal(stated, stated);

/! Copy
private:

void copy(positiond p);
public:

position(position&); // copy constructor
position& operator=(positiond); // copy assignment

position* move(direction d);

// exchange the blank with the square in direction d
/! We return a pointer instead of a reference so we

// can use 0 to mean the move was not possible

!/ Output
friend ostreamd operator<<(ostream&, position&);

Priority Queues



Sec.7.2 An Example 191

A new puzzle is obtained by creating a pos it i on, giving the constructor the number
of random moves to make to scramble the solution position. We can code the scrambling
function so that a move never undoes the immediately preceding move (e.g., after a left, a
right would not be considered). Still, random moves may eventually return the puzzle to
a previously encountered order, so although the solution is guaranteed to be no longer
than the requested number of moves, it might be shorter.

Given a position, new positions are generated from it by the move operation — a
kind of Copy. That function returns either 0 if the requested move is impossible (the
blank is at the edge corresponding to the direction of the move). Otherwise, it makes a
copy of the position, makes the requested move in the copy, and returns a pointer to the
new position. Both move and make_moves utilize a private member function make_move
that exchanges the blank with the adjacent square.

Making the Modify operations private and providing no access to individual tiles
mean that individual applications can create (and destroy) positions, but not modify them
once created. Initialization involves making a number of random moves, and move pro-
duces a copy with a desired move made, but existing positions are never changed. Thisis
necessary because the way position will be used means that they must be independent of
their successors — considering a move from a position doesn’t mean the position is no
longer needed. By initializing moves with a scrambling function, we guarantee that only
positions that can be solved are created. (It turns out that transposing any pair of non-
blank adjacent tiles in a position that does have a solution produces a position that does
not.)

7.2.2 Solving the Puzzle with a Queue

The following process is guaranteed to find the shortest solution to any puzzle:

« Createa positionandadd it to the queue.

+ Aslong as the queue is not empty, remove a position and test whether it is a solu-
tion, then:
o if yes, stop;
° if no, spawn and queue a new position for each possible move from the current
one and continue.

Once the solution is found, however, we presumably want to know how the program
got there. We therefore need some way to record move sequences. There are various ap-
proaches, but probably the easiest way to do this is to define a state struct that holds a
pointer to a position, an indication of the move that generated the position, and a point-
er to the state holding the position from which this one was generated. Knowing the last
move makes it possible to avoid generating a position that just undoes the move that cre-
ated the current one.

Utility structures like this can be used informally with respect to modularization and
data abstraction. Data members can be made public for convenience, and they don’t need
a full complement of fundamental operations. In addition to the members each state
will need, the struct also defines a static member count to keep track of the number of
states (and therefore positions) generated while solving a puzzle. (The definitions of the
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position and state member functions aren’t shown here, but they are included in the
code files accompanying the book.)

struct state

{
public:
position* pos;
state* parent;
position::direction move;
static count;
state(position* p, state* par, position::direction d);
char move_name();
static bool moves_are_inverses(position::direction,
position::direction):

friend order compare(state&, stated);
friend bool equal(state&, stated);
friend ostreamd operator<<(ostreamd, stated):

}:

The first thing the program must do is initial state::count. Then a few utility
functions are defined to simplify the code.

int state::count = 0;

void queue_move(state* s, position::direction d, queuedstate*>& q)
{

position* succ = s->pos->move(d);

// 0 1f move is invalid from s’s position

if (succ) q += new state(succ, s, d);

}
void print_solution(state* s, queuedstate*>& q)
{
cout << "Solution found after queueing "
<< state::count << " positions,\nout of which "
<< state::count - q.size() << ™ were considered.\n";
cout << "\nThe path from the solution to the start was: ";
while (s->parent)
{
cout << s->move_name() << ' ';
S = s->parent;
}
cout << "\n";
1

With all that support out of the way, ma i n can be defined.
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// program argument is number of shuffles for
// generating an initial position, default = 3
main (int argc, char** argv)
{
int depth = argc>l 7 atoi(argv[l]) : 3:
queuedstate*> g(int(pow(4, depth+l))); // max needed

position* pos = new position(depth);
cout << "The initial position, obtained from "
<< depth << " random moves is:\n" << *pos << "\n';
g += new state(pos, NULL, position::NONE);
state* s;

while (lq.empty())
{
s = q.remove();

if (s->pos->is_solution())
{
print_solution(s, q);:
exit(0):
}s

// otherwise, add to the queue a new state for each move
// that can be made from the current state’s position
queue_move(s, position::LEFT, q);
queue_move(s, position::RIGHT, q);
queue_move(s, position::UP, q);
queue_move(s, position::DOWN, q);

1

return 0;

7.2.3 Solving the Puzzle with a Priority Queue

Solving the Fifteen Puzzle with a queue obtains the shortest possible solution, but it may
take a very long time. Replacing the queue with a priority queue allows pursuing the more
promising positions first. There’s no guarantee that the solution is the shortest possible,
but the number of positions considered may be dramatically reduced. Itisn’t even neces-
sary to evaluate positions accurately — any reasonable estimate will work. The Attribute
number_correct discussed above suffices. A more accurate estimate could be obtained
by summing how far away each square is from where it belongs, but all that extra compu-
tation wouldn’t necessarily reduce the number of positions considered enough to make it
worthwhile.

Very few changes are required to use a priority queue in place of a queue. Obvious-

ly, the declaration of the queue changes to declare a priority queue. An evaluation func-
tion that calls number_correct must be supplied to the priority queue. That’s about it.
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The priority queue produces its more efficient processing pattern by ordering its
elements. Exercise 2 gives you the chance to experiment with this modification.

7.3 Another Example

Priority queues are often used to support simulations. In this sort of application, priority
queues store event descriptions. Events are often ordered simply by the time at which
they should occur. An ordinary queue wouldn’t be sufficient, in general, because an event
added later might have an earlier time than one added earlier.

The example we’ll use here is a classic one: a highly simplified simulation of the flow
of customers in and out of a bank. The simulation must embody the following
conditions. The result produced by a simulation is the average number of time spent by
customers in the bank.

1. The bank has a fixed number of tellers, each with their own line of customers
waiting to do business with them.

2. The onlyrelevant property customers have is the length of time it will take to con-
duct their business with a teller.

3. A customer entering the bank goes to a free teller if one is available or to the back
of the shortest teller line if all tellers are busy.

4. After one customer is finished with a teller, the next customer on that teller’s line
leaves the line and walks up to the teller window.

5. After customers finish with a teller, they leave the bank.

From these statements we can determine that the total time spent by a customer in
the bank is the time spent on line plus the time spent with a teller plus any related delays.
Delays could include the time it takes the customer to select and join a line, the time it
takes a customer to leave a line and walk up to the teller’s window in front of that line, and
the time it takes to walk from the teller’s window to the bank exit.

7.3.1 Modules

A thoroughly modularized approach to programming this simulation dictates a separate
module for each kind of thing involved in the situation. We therefore will need modules
for bank, teller, and customer. We also, of course, need data structures to manage the
simulation: the bank will include an array of tellers, lines of customers will be repre-
sented as queues, and the simulation itself will be driven by a priority queue of events.
Another module is needed to define an event structure.

A program like this presents many opportunities for making design choices. For
instance, should customer lines (queues) be attached to tellers or to the bank? Which
events do we really need? For example, we might think we need both events to represent
a customer entering the bank and events to represent a customer getting on line, but as
there is a fixed delay between the two, there isn’t any real advantage to having both kinds.
The situation actually reduces to only two kinds of events: a customer entering the bank
and a customer completing his or her business. Everything else follows from those two.
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One approach to the various types needed and the information they’ll include can
be summarized as follows. Various other approaches are also reasonable.

bank array of tellers
number of customers served
total time spent in bank by customers served

teller queue of customers
current customer

customer time entering bank
amount of time business will take
total time spent in bank

event scheduled time
customer involved
action: enter or exit

7.3.2 Declarations

struct teller
{
private:
queue<customer*> line;
customer* current_customer;

public:
teller();

queue<customer*>& get_line();

customer* take_next_customer(int time);
void remove_customer();

int 1ine_length();
bool is_free();

struct customer

{

private:
int enter_time; // time entering bank
int wait_time; /! time spent on line
int exit_time; /! time exiting bank
int time_needed; // time needed with teller
int id; // for output and debugging
teller* teller_used; /! teller used by customer

public:

customer(int t_enter, int t_needed);



196

Priority Queues Chap.?7

int time_in_Tine():
int time_in_bank();

friend bool equal(customer&, customer&);
friend order compare(customerd&, customerd);
friend ostream& operator<<(ostream&, customeré&):

const int numtellers;

struct bank
{
public:

static int number_of_customers;
static int total_customer_time;

private:

teller tellersinumtellers];

public:
bank(};

queue<lcustomer*>& shortest_line();
void add_to_shortest_Tline(customer* ¢);

};

struct event

{ ENTER, LEAVE };

c;

event(customer*, type, int tim);

friend bool equal(eventd, eventd);
friend order compare(event&, event&):
friend ostream& operator<<(ostream&, eventd);

{
public:
enum type
customer®
type typ:
int time;
};

7.3.3 Managing Events

The program would use a single priority queue ordering its elements according to oper-

ator<{(eventé,

eventd). Input to the program might consists of a sequence of lines

specifying customer information: time entering bank and amount of time needed with a
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teller. The program can begin by reading all the input, creating a customer, and adding
an enter event to the priority queue for each line. It would then loop, each time taking an
event off the queue and acting on it. At the end, the total number of customers using the
bank and the average amount of time each spent in the bank would be printed.

The action taken would be different for each event type. For an enter event, the cus-
tomer must be added to the shortest line or sent directly to the teller if a free one is
available. On an exit event, the next customer is removed from the line in front of the tell-
er the leaving customer used. Enter events are created from input, but exit events are cre-
ated as the program executes. When a customer reaches a teller, the time the customer
will leave the bank is known — it’s just the time leaving the line plus the amount of time
to be spent with the teller (plus any fixed delays assumed). So, when a customer goes di-
rectly to a free teller as part of an enter event or leaves a line as part of an exit event for the
customer who previously left that line, a new exit event is added to the priority queue.

7.4 EXERCISES

1. A priority queue would work well with the maze runner program described in Exercise 7 of
Chapter 5 (page 169). A reasonable evaluation function would be the “taxicab metric™:

distance from (x1,y1) to (xp,y2) = |x1-x2| + |y1-¥Y2|

2. Modify the Fifteen Puzzle program shown in Section 7.2.2 (page 191) to use a priority queue, as
discussed in Section 7.2.3 (page 193). Generate some statistics for puzzles of various depths
(number of scrambling moves made) and comment on the relative efficiency of the queue and
priority queue versions of the program.

3. Implement the bank simulation using the declarations shown in Section 7.3.3 (page 196), add-
ing additional members to the structs shown if needed.






Part Four:

Linked Structures

This part of the book discusses linked structures. These structures are characterized by
their flexibility in that they grow and shrink in size and can take on a variety of shapes.
Consequently, they are often called dynamic data structures. The name ‘linked’ is used
because they are composed of nodes, each of which holds pointers (links} to one or more
other nodes in addition to an element. Because these structures have naturally recursive
definitions, they may also be called recursive structures.

Linked structures are widely used in programming. The use of nodes to construct
linked structures is probably the single most important topic in this text that would not or-
dinarily not be encountered in a programming or introductory computer science course.
Each node of a linked structure has one or more successors and one or more
predecessors. There are three fundamental kinds of linked structures, distinguished by
the number of predecessors and successors allowed: lists, trees, and graphs. Table 5 sum-
marizes this.

Predecessors Successors

List 1 1
Tree 1 1 or more
Graph 1 or more 1 or more

Table5 Kinds of Linked Structures

From a given node only the immediate predecessor(s) and successor(s) of that node
can be directly accessed (in addition to the node’s data element). Therefore, most opera-
tions on linked structures require traversing them one node at a time — linked structures
are sequentially accessed, like streams, rather than directly accessed, like arrays and stor-
age structures.
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Lists

Lists are the simplest kind of linked structure. In fact, they are so simple that they can even
be represented in an unlinked form. We’lllook at sequential lists first (the unlinked kind),
then at various kinds of linked lists.

Lists are ordered structures. That is, the order in which a list’s elements appear is
typically significant to the application that uses it. Add and Remove operations must
therefore preserve that order when modifying a list.

8.1 Sequential Lists

Sequential lists are collections of elements stored in an array, along with some kind of
mechanism for delimiting the list within the array. Although thelength of the array places
an upper limit on the number of elements stored in it, the size of the list can grow and
shrink within that limit as elements are added and removed. Moreover, by using a dy-
namically allocated array and reallocating a larger one when it gets filled up, sequential
lists can be allowed to grow indefinitely large.

8.1.1 Representation

The obvious way to represent a sequential list in C++ is as a struct that contains an array
of list elements and an integer that keeps track of the size of the list. A fixed array size
could be coded into the list implementation, but specifying the size as a constructor argu-
ment would provide greater flexibility. The implementations of several fundamental op-
erations use the array size, so that value must be included in the struct representing the
list. Figure 8.1 illustrates this arrangement.

203
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maxsize 20
size 7
items —) > “one”
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Figure8.1 A Sequential List

template <class elt> struct seq 1list

{
private:

// Representation
elt *elts; // array of elt’'s
int Tength; // current length
int allocation; // length of allocated array
/1.

1;

8.1.2 Lifetime Operations

Initialize/Finalize

Constructors initialize each of a new instance’s data members appropriately: Tength to 0,
allocation to the limit indicated by the constructor argument, and e1t s to a newly allo-
cated array. The traversal state — cur — is set to a special value indicating an uninitial-
ized traversal. The function clear is called to do the work necessary to make the list
empty, in this case just setting Tength to 0 and making the traversal state, defined later,
uninitialized. Clear is also used in the Copy operations, to start a copy off empty. For
these purposes, c1ear could be made private. However, it also provides a convenient way
to empty a list without having to remove each element individually, so it is made publicly
available.
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The destructor deallocates the dynamic array. In the approach to collectionsadopt-
ed for this book, elements of a collection are always independent of it. Consequently, the
destructor deletes only the space allocated to store the pointers, not the data to which the
pointers point.

tempiate <class elt> struct seq tlist
{
/.
private:
// Initialize/Finalize
public:
void clear();
seq_list(int maxlen = 100);
~seq_list();
};

/* Initialize/Finalize */

template <class elt> void seq_list<elt>::clear()
{

length = 0;

cur = no_pos;
}

template <class elt> seq_list<elt>:: seq_list(int maxlen)
allocation(maxlen), elts(new elt[maxlen]), cur(no_pos)
// no_pos is discussed with traversal operations, below

{
clear();
}
template <class elt> seq_list<elt>::~seq_list()
{
delete [] elts;
}

The basic Access operation is nth, which, given n, returns the n® element of the list.
Sequences can be indexed starting either at 0 or at 1. Here, 1 is chosen, since it is more
natural — even though C array indexing starts at 0. The subscript operator is made a syn-
onym of nth. For convenience and naturalness of expression, first and last are also
provided.

A wide range of Modify operations makes sense for lists. We’ll consider each sub-
category separately — Add, Remove, Replace, and Exchange. References are returned by
all Access operations, so these operations can be used on the left side of an assignment
statement. This provides an alternative to calling a Replace function to replace a specific
element of a list. Following is an example.
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seq_list<char*> 1st;

1st += "one";

1st += "two";

1st[1] = "three™;

1st.Tast() = "four";

// 1st now contains "three" and “four”

Access

Chap. 8

template <class elt> struct seq_list
{

VA

/! Access

public:

elt& nth{int n);

elt& operator[](int n);

elt& first();

eltd last();

/* Access */

template <class elt> elt& seq_list<elt>::nth(int n)
{
if ((n <= 0) &&% (n > length))
error{"[seq_list::nth] index out of bounds");
return elts[n-17];

template <class elt> elt& seq_list<elt>::operator[](int n)
{
return nth(n);

template <class elt> eltd seq list<elt>::first()
{
return nth(l);

template <class elt> eltd seq list<elt>::last()
{
return nth(length);
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Add

The basic add function adds a new element at the back of the list. By default, insert adds
a new element at the front; if » is provided, it adds the new element before the n
element. Another way of inserting within the list is provided: insert_before and
insert_after. These take the element to be inserted and the element before or after
which the new one is to beinserted. Operator+=is made a synonym for add.

template <class elt> struct seq_list

{
1
// Modify: Add
void add(elt); // add at back
seq_list<elt>& operator+=(elt);
void insert(elt, int pos = 1);
// add at pos, moving subsequent elts down; pos can be 1 past end
void insert_before(elt new_elt, elt old_elt);
void insert_after(elt new_elt, elt old_elt);
1

Adding a new element at the end of the list is simple. First the function verifies that
the list is not full. Then it stores the new element at the position indicated by size. Final-
ly size is incremented.

/* Modify: basic Add */

template <class elt> void seq_list<elt>::add(elt e)

{
if (length == allocation)
error("[seq_list<elt>::add] Tist is full");
else
elts[length++] = e;
}

template <class elt> seq_list<elt>& seq_list<elt>::operator+=(elt e)
{

add(e);

return #*this;

Since the order of components within a list is often significant we want to be able to
add a new element anywhere in the list, notjust at the end. Insertion in the midst of exist-
ing elements is more work than just adding an element to the end, because subsequent el-
ements have to be moved down to make room for the new one. To insert at the front of
the list, we can just move all the list’s elements down one position and store the new one
in the first array location. The C library function memmove is used to shift the array
elements. (Like memcpy, this is a convenient way to copy a sequence of bytes, but unlike
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memcpy, memmove works even if the source and destination overlap.) For insert_before
and insert_after, the position of the target element must be determined first. That will
be done using position_of,aProcess operation shown later.

/* Modify: Insert */

//  Insert element at position pos (offset-1), shifting subsequent ones.
f// Inserting at I past current end is permitted, to support insert_after.
template <class elt> void seq_list<elt>::insert(elt e, int pos)
{
if (length == allocation)
error("[seq_list<elt>::insert] 1list full");
if (pos > length+1)
error("[seq_Tlist<elt>::insert] position past end of list");
if (pos <= 0)
error("[seq_list<elt>::insert] position before beginning of 1ist™);

+length;
memmove(elts+pos, elts+pos-1, (Tength-pos)*sizeof(elt));
// -1 to convert offset-1 positions to offset-0 indices
elts[pos-1] = e;

1

template <class elt>
void seq_list<elt>::insert_before(elt new_elt, elt old_elt)
{

int pos = position_of(old elt);

if (pos <= 0)
error("[seq_list<elt>::insert_before] elt not in 1ist");
else
insert(new_elt, pos);
1

template <class elt>
void seq_list<elt>::insert_after(elt new_elt, elt old_elt)
{

int pos = position_of(old_elt);

if (pos <= 0)
error("[insert_after] elt not in 1ist");
else
insert{new_elt, pos+l);
}
Remove

Unlike a set, a list may contain duplicate elements, so a user might want to remove all oc-
currences of an element or just remove the first. What element to remove may be indicat-
ed by providing an element or by specifying a position. The module includes several
kinds of Remove operations to accommodate the various usages: remove to remove all oc-
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currences of an element or the element at a particular position and remove1 to remove the
first occurrence of a specific element. It is useful for remove(int) to return the element
removed, but when the element is supplied in the call there’s no need for any return.
Operator-=1is provided as a synonym of remove (elt). Some of these functions make
use of a private function remove_at that does the work of removing the element at a spe-
cific position of the element array.

template <class elt> struct seq list

{
/...
// Modify: Remove
private:
elt remove_at(int pos); /Il offset-0
public:
void remove(elt); // remove all occurrences
void removel(elt); // remove first occurrence
elt remove(int); // remove nth elt& return
seq_list<elt>& operator-=(elt); // synonym for remove
};

/* Modify: Remove */

// private, doesn't test validity of argument
template <class elt> elt seq_list<elt>::remove_at(int pos)

{
elt e = elts[pos]; // save to return

memmove (elts+pos-1, elts+pos, (length-pos)*sizeof(elt));
// -1 to convert offset-1 positions to offset-0 indices
length--;

return e;

}

// remove first occurrence of elt
template <class elt> void seq_list<elt>::removel(elt e)

{
int pos = position_of(e);
if (pos <= 0)
error("[position_of] elt not in Tist");
else
remove_at(pos);
}

// remove all occurrences of elt
template <class elt> void seq_list<elt>::remove(elt e)
{

for (int pos = length; pos > 0; pos--)

// backward so iteration isn't confused

// by the removal and consequent shifting



210 Lists Chap. 8

if (e = elts[pos-11) remove_at(pos);
}

template <class elt> seq_list<elt>& seq_list<elt>::operator-=(elt e)
{

remove(e);
return *this;
}
template <class elt> elt seq_list<elt>::remove(int n)
{
if (n <=0 || n > length)
error("[seq_list::remove] index out of range");
return remove_at(n);
1
Replace

As with Remove, Replace may mean replace all occurrences of an element or just the first.
Aswe saw above, since the Access operations return references, they can be used to replace
the corresponding element of the list. We won’tbotherincludinga function to replace the
n'™ element, since the Access operations are so natural to use.

template <class elt> struct seq_list

{
/...
// Modify: Replace
void replace(elt old_elt, elt new_elt);
void replacel(elt old_elt, elt new_elt);
1

/* Modify: Replace */

// replace first occurrence of old_elt
template <class elt> void seq list<elt>::replacel(elt old _elt, elt new_elt)
{

int pos = position_of(old_elt);

if (pos <= 0)
error("[seq_list<elt>::replacel] elt not in 1ist");
else
elts[pos-1] = new_elt;
1

// replace all occurrences of elt
template <class elt> void seq_list<elt>:;replace(elt old_elt, elt new_elt)
{
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reset();
while (next())
if (old_elt == current())
current() = new_elt; // note Tval function call

Exchange

In principle, all collection structures could support Exchange operations. Exchange oper-
ations are not shown for most of the structures in the book, but they are included here.
They are particularly useful with lists, especially in support of sorting operations, as will
be seen in Section 8.3, page 251.

template <class elt> struct seq_Tlist

{

V7 AN

// Modify: Exchange

void exchange(int, int);

void exchange(elt, elt); // exchange first occurrences
};

/* Modify: Exchange */

/! Exchange eits at pl and p2 (offset-1)
template <class elt> void seq_list<elt>::exchange(int pl, int p2)
{
if (pl <=0 || pl > length || p2 <=0 || p2 >= length)
error("[seq_Tlist::exchange] index out of range”);
::exchange(elts[pl-1], elts[p2-11);
// The :: is needed to call the global function from standard.H.
}

template <class elt> void seq_list<elt>::exchange(elt eltl, elt elt2)

{
int pl = position_of(eltl);
if (pl <= 0) error("[seq_list<elt>::exchange] eltl not in 1ist");

int p2 = position_of(elt2);
if (p2 <= 0) error("[seq_list<elt>::exchange] elt2 not in 1list");

::exchange(elts[pl-1], elts[p2-11);
// The :: is needed to call the giobal function from standard.H.
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8.1.3 Traversal

Traversal of a sequential list is simple — so simple that there seems little need for any
mechanism. Suppose you wanted to count the number of occurrences of an element e in
the list 1st. You could write code such as this:

int count = 0;
for (int i = 0; 1 < 1st.length(); i++)
if (1st[i] == itml) count++;

There’s an error here, however, and this kind of error is one of the strongest reasons
to prohibit low-level loops like this: operator[] uses an offset-1 scheme, not the offset-0
scheme of C arrays, so, the 0 should be 1, and the < should be <=. Traversal operations en-
capsulate the tricky details of loop limits and stepping to free programmers using the
structure from having to know about them and to avoid errors due to mishandling them.
Traversing a structure should always be done using traversal operations, even when low-
er-level mechanisms are available. The above should therefore be coded as

int count = 0;
Ist.reset();
while (Ist.next())
if (1st.current() = itml) count++;

Here are Traversal operations for sequential lists. The declarations are the usual
ones. The definitions are straightforward. A special value (no_pos) is used to distinguish
an uninitialized traversal from one that has been reset but not yet stepped with next.

struct seq_1lst
{
7 AN
// Traversal
private:
static const int no_pos; // shows uninitialized traversal
int cur; // traversal index
public:
void reset();
bool finished();
bool next();
elt& current();
int index();

/* Traversal */

template <class elt> const int seq_list<elt>::no_pos = -99;
// value of cur for uninitialized traversal

template <class elt> void seq_list<elt>::reset()

{
cur = -1;
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1
template <class elt> bool seq list<elt>::finished()
{
return cur >= length;
}
template <class elt> bool seq_list<elt>::next()
{
if (no_pos == cur)
error("[seq _Tlist<elt>::next] traversal not yet initialized™);
if (finished())
error("[seq_1ist<elt>::next] traversal already finished");
+cur;
return !finished();
}
template <class elt> eltd& seq_list<elt>::current()
{
if (no_pos == cur)
error("[seq_list<elt>::current] traversal not yet initialized");
if (-1 == cur)
error("[seq_Tist<elt>::current] traversal initialized"
"but not yet stepped”);
if (finished())
error("[seq Tist<elt>::current] traversal already finished");
return eltsfcur];
1
template <class elt> int seq_list<elt>::index()
{
return cur + 1;
}

8.1.4 Content Operations

Lists have typical Attributes and can be compared and combined in various ways. The
standard way to combine linear structures (such as lists) is to create a new one with all the
elements of the first followed by all the elements of the second. This is typically called ap-
pend or concatenate. An interesting variation of Combine available for linear structures is
merge, which creates a new list consisting of elements taken alternately from each of two
existing ones. Implementation of merge is left as an exercise here (Exercise 6).

template <class elt> struct seq_list
{

VI

// Attributes

int size();

bool empty();
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bool full();

// Compare
friend order compare(seq_list<elt>&, seq_list<elt>&);
friend bool equal(seq_ list<elt>&, seq_list<elt>&);

// Combine
friend seq _1ist append(seq_list&,seq Tist&);
friend seq_list<elt> operator+(seq_list<elt>&,seq_Tlist<elt>&);
// synonym for append
friend seq_list<elt> merge(seq_list&,seq_list&); // alternate elts

/* Attributes */

template <class elt> int seq_list<elt>::size()

{
return length;
}
template <class elt> bool seq_list<elt>::empty()
{
return Tength = 0;
}
template <class elt> bool seq _list<elt>::full()
{
return length = allocation;
}

Two linear structures are generally compared by traversing them in parallel, com-
paring elements pairwise. If the lists have the same number of elements, and all the ele-
ments are equal pairwise, the lists are considered equal. Lists are compared for order
similarly. The two lists are traversed, and their elements are compared pairwise. When
the first unequal pair is encountered, the list with the lesser element is considered “before”
the other. If both lists are the same length, and no unequal pairs are encountered, the lists
are considered equal.

Note that equal could just be defined as testing whether compare returns EQUAL.
There are two reasons not to do that. One is that the element type might define equal but
not compare. If seq_list::equalcalls seq_1ist::compare, then when seq_1ist::-
compare tries to call the element type’s compare, an error will occur; however, if seq_
Tist::equal calls the element type’s equal directly, there won’t be any problem. There-
fore, coding equal separately provides greater flexibility for users of the list module. The
other reason is efficiency: comparing two elements for order may require a lot more work
than just telling whether or not they are equal. Moreover, seq_l1ist::equal can use
some preliminary tests to determine inexpensively that the two lists are not equal, such as
comparing their stored lengths.
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/* Compare */

template <class elt>
order compare(seq_list<elt>& Tstl, seq_Tlist<elt>& 1st2)
{

order ord;

int i = 0;

int minlength = min(Istl.length, Tst2.length);

while ((i < minlength) &&
(EQUAL == (ord = compare(*1stl.elts[i], *Ist2.elts[i]))))
T+

if ((i = minlength) && (1stl.length == 1stZ.length))
return EQUAL;

else if (i == 1Istl.length)
return BEFORE;

else if (i = 1st2.length)
return AFTER;

else return ord;

}

// tests equality of elts, not just identity., so two different pointers
// could point to elts that test egual even though they are different.
template <class elt> bool equal(seq_list<elt>& 1stl, seq_list<elt>& 1st2)
{
if (1stl.length != 1stZ.length)
return FALSE;

for (int 7 = 0; i < 1stl.length; i++)
if (lequal(*1stl.elts[i], *Istz.elts[i]))
return FALSE;

return TRUE;

The implementation of append is straightforward. It begins with a new empty list
then traverses its two argument lists adding each element to the end of the new list. Final-
ly, itreturns a copy of the new list. (Because the list is returned by value, not by reference,
the compiler invokes the copy constructor to make a copy before deallocating the locally
allocated new list.) Of course, making that copy requires traversing the new listand add-
ing each of its elements to the copy.

There is no simple way to avoid this inefficiency, and we will have to live with it for
the implementations in this book. Returninga reference to alocal variable is not allowed:
since the variable is deallocated when the function returns, there’s nothing left for the ref-
erence to refer to! It would work to allocate the new list on the heap instead of the stack,
then return a reference to it. However, that would require programmers to keep track of
and eventually delete lists returned from append. This is an unacceptable burden to im-
pose.
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The only straightforward workable solution is to incur the extra costs of copying a
local list on return from the function. This problem arises for any function that makes a
new list out of one or more existing ones — in general, Combine and certain Process oper-
ations (such as reverse, shown below). It might seem that the problem would arise for
Copy operations too, butin C++ these do not allocate the destination lists. The copy con-
structor is invoked on a newly allocated list, and the copy assignment operator copies to
an already existinglist. Neither allocates a new list.

/* Combine */

template <class elt>

seq_list<elt> append(seq_list<elt>& 1stl, seq_list<elt>& 1st2)

{
seq_list<elt> 1st(lstl.allocation +1st2.allocation);
// might as well make the new 1ist big enough to hold full versions
// of each of the lists whether or not they are currently full.

for (int i = 0; i < 1stl.length; i++)
Ist.elts[i] = 1stl.elts[i];

for (i = 0; i < Ist2.length; i++)
Tst.elts[1stl.length + i] = 1st2.elts[i];

1st.length = I1stl.length + Ist2.1length;

return 1st;
}

template <class elt>
seq_list<elt> operator+(seq_list<elt>& 1stl, seq list<elt>& Tst?)
{
return append(1stl, 1st2):
}

8.1.5 Support Operations

In addition to the standard Copy and Output operations, lists support some interesting
Process operations. Search operations include position_of, contains,and contains_
equal. Sort is declared, but not implemented. List sorting is discussed as a separate topic
later in this chapter (cf. Section 8.3, page 251). Another Process operation applicable to
linear structures is reverse.

template <class elt> struct seq_list
{
VA
/! Copy
private:
void copy(seq_list& 1st);
public:
seq_list(seq_1ist&);
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seq_list& operator=(seq_listd};

// Process

int position_of(elt);
bool contains(elt);

bool contains_equal(elt);
seq_list reverse();

void sort(};

/1 Qutput
friend ostreamd operator<<(ostream&, seq Tist&):
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Copy starts with an empty list. (The copy constructor is called when a new list is al-
located, while the copy assignment operator resets the 1ength of the list being copied to.)
Then the list being copied is traversed, and each of its elements is added to the end of the
destination list. In the copy constructor, the maximum size of the destination list is made
the same as the maximum size of the old one, and a new array of elements is allocated. In
the copy assignment operator, allocation and elts are left alone if allocation is at
least as big as the allocation of the source list. Otherwise, the old array of elements is
deleted and a new, larger one is allocated, with al1ocat ion set accordingly. (This is a de-
sign choice: another approach would be to always delete the old array and allocate a new

one.) Also, the traversal state of the destination list is set to uninitialized.

/* Copy */

//private:
template <class elt> void seq_list<elt>::copy(seq_list<elt>& 1st)
{
1st.reset();
while (1st.next()) add(1st.current());
}

template <class elt> seq_list<elt>:: seq list(seq Tist<elt>& Ist)
allocation(Ist.allocation), elts(new elt[1st.allocation])

{
clear();
copy(l1st);

}

template <class elt>
seq_list<elt>& seq_list<elt>::operator=(seq_Tlist<elt>& Tst)
{
if (this = &1st) return *this; // assignment to self!

if (allocation < 1st.length)
{
delete elts;
allocation = Ist.allocation;
elts = new elt[allocation];
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clear();
copy(1st);

return *this;

The Search operation pos it ion_of was used in the implementation of various Mod-
ify operations in the sequential list module. Itis sometimes useful externally, too. Really,
it’s just another form of contains that returns the position found instead of a Boolean.
(If the target is not found, then 0 is returned.) In fact, contains could be defined to just
call position_of. Similarly, although position_of is defined here directly in terms of
the list’s representation, it could have been defined using traversal operations. Compare
the definitions of position_of and contains — they really say the same thing in two dif-
ferent ways.

Both position_of and contains are based on element identity not equality.
Sometimes searches based on equality are needed, so contains_equal is also provided.
As with compare and equal, the definition of contains_equal makes the assumption
that the element type of the list template is a pointer type. It tests for equality by derefer-
encing the pointer provided as an argument and each successive pointer found in the list,
until equal of the two values is true or the list is exhausted.

Similar considerations apply to reverse as to the Combine operations discussed
above. It allocates a local list, operates on it, then returns it by value, causing a Copy to
occur. Here, the local list starts out as a straight copy. Then pairs of elements are ex-
changed starting at the extremes and working inward. This slightly subtle process effec-
tively reverses the list, including handling both odd- and even-length lists.

/* Process */

// Positions are offset-1 for simplicity of interface.
template <class elt> int seq_list<elt>;:posftion_of(elt e)
{
for (int i = 0; i < length:; ++)
if (e == elts[i]) return i+1;
return 0; // not found
}

// tests identity
template <class elt> bool seq_list<elt>::contains(elt target)
{

reset();

while (next()) if (target == current()) return TRUE;

return FALSE;
}

// tests equality
template <class elt> bool seq_list<elt>::contains_equal(elt target)
{
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reset();
while (next()) if (equal(*target, *current())) return TRUE;

return FALSE;

}

// returns a reversed copy
template <class elt> seq_list<elt> seq_list<elt>::reverse()
{
seq_list<elt>* Tst(*this); // start with a copy

int mid = length/2;
for (int i = 0; i < mid; i++H)
::exchange(1st.elts[i], 1st.elts[length-i-11);

return 1st;

There isn’t really any standard way to print a list. Certainly printing a list will in-
volve printing each of its elements, which means dereferencing each pointer and invoking
the element’s output operator. But how should the elements be separated? By spaces?
commas? newline characters? And whatabout the beginningand end of the list — should
the listbe enclosed in parentheses? braces? brackets? extra blank lines? nothing? Here, the
decision is made to enclose the list in parentheses and separate the elements by a space.

In any case, the definition of operator<< is typical of output operators for linear
structures. The heart of the process is a traversal over the elements that prints each one,
perhaps separated by additional characters. There may be special actions before and after
the traversal. Finally, since the number of separators output will be one less than the
number of list elements, the first element is printed outside the traversal loop, without a
separator.

/* Qutput */

template <class elt> ostream& operator<<(ostream& strm, seq_list<elt>& Tst)

{
1st.reset();
strm << ("3
if (1st.next()) strm << *Ist.current();
// handle first element specially: no delimiter before

while (1st.next(})) strm << ' ' << *1st.current();

strm << ") ';
return strm;
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8.2 Linked Lists

Although sequential lists are easy to implement, their inflexibility limits their utility. Se-
quential lists are inefficient in several ways:

* Each list takes up a fixed amount of space regardless of its size, wasting unoccu-
pied space.

» A list cannot contain more elements than its fixed-size array can hold.
» Insertion and deletion shift many elements in the array.

Some simple memory management techniques can be used to automatically expand
and shrink a sequential list, as explored in Exercise 4, However, there isn’t much that can
be done to improve the performance of sequential lists for insertion and deletion, and
those operations occur frequently. Achieving greater flexibility requires a different kind
of listimplementation: the linked list.

Sequential lists share some of the characteristics of linked lists, but they also share
some of the characteristics of arrays. In particular, they support direct access, which
linked structures do not. This means they support many importantsorting and searching
algorithms that depend on being able to easily obtain an arbitrary element rather than
having to traverse the structure to reach it. Linked lists trade the efficiencies of direct ac-
cess for the efficiencies of trivial insertion and deletion operations.

8.2.1 Links

In a sequential list, the successor and predecessor of each element are implicit in the or-
dering of the elements an array. In a linked data structure the successors (and possibly
predecessors) of each element are explicitly represented. The order in which the elements
are stored is irrelevant — the links determine the ordering of the elements at the concep-
tual level of the list.

A linked structure is composed of nodes. Eachnode contains two kinds of informa-
tion:

+ a pointer to an element

« pointers to the element’s predecessors and successors
p

Whether an element may have more than one successor and whether it may have more
than one predecessor depends on the kind of linked structure being represented. Links to
an element’s successors are always represented explicitly in the element’s node, but
whether the node also contains links to the element’s predecessors is an implementation
option. (Explicit representation of predecessor links, or back pointers, improves the effi-
ciency of certain operations at the cost of the space taken by the extra pointers.)
Elements in a list have one successor and one predecessor. A linked list node con-
tains just two or three pointers: one to an element, one to the next node, and, optionally,
one to the previous node. Figure 8.2 illustrates a linked listand its nodes. (We’ll consider
only singly linked lists from now on; doubly linked lists — those with back pointers — are
explored in Exercise 23.) In such figures, pointers are traditionally represented by
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Figure 8.2 A Linked List

arrows. The absence ot a pointer — a special end-of-list value — is indicated by a diago-
nal line across the pointer field.

The implementation of a linked data structure always involves two types: one repre-
senting instances of the structure and one representing the nodes comprising instances of
the structure. The node type is “private” to the structure type — clients of the structure
see only the structure’s interface. Therefore, the two types may be implemented together
in a single module.

Inserting a new element into the middle of a list involves the following steps, as
shown in Figure 8.3.:

« Allocate a new node with a pointer to the new element.
+ Store a pointer to the new node’s successor in the new node.

+ Change the pointer from the former predecessor of the new node’s successor to
point to the new node.

Insertion at the front of the list is special — here, what changes is not a node’s link, since
there is no previous node, but rather the pointer to the first node that is recorded in the list
structure. (More will be said about this when we look at some implementations.)

The important thing to notice about linked list insertion is that nothing gets moved!
All that changes in the list are a few pointers. Insertion into a linked list is therefore a very
inexpensive operation, compared with insertion into a sequential list, which must shift el-
ements within an array.

Deleting an element is also efficiently accomplished simply by changing links, as il-
lustrated in Figure 8.4. Again, nothing is moved. As with insertion at the front, deletion
of the first node changes a pointer in the list struct rather than a link of a node.

Many operations on lists involve traversal. The implementation of traversal is sim-
ple: start at the first node and follow the links until the end of the list is encountered. In
effect, you do something like this when you read linked list diagrams.

8.2.2 Array-Based Linked Lists

We'll look first at a simple implementation of linked lists, based on arrays of nodes. The
purpose of discussing this approach is to introduce the essential details of nodes and
links, An array-based approach does nothing to correct the problems of fixed-size
structures — it’s just a pedagogical tool. Afterward, we’lllook at the way linked structures
are really implemented and how size limitations are avoided.
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Once the pointer from the first node to the second is re-
moved, nothing points to the second node — it’s still
there, but it is no longer part of the data structure.

Figure 8.4 Linked List Deletion
Representation

The list structure keeps track of several pieces of information, as shown in Figure 8.5:

« an array of nodes to be used to represent the list
- the size of the array
- the index of the node to be used next when a new one is needed

+ the index of the first node of the list

typedef int 1ink; // type for node addresses
template <class elt> struct linked 1list
{
private:
// Representation
static Tink endmark; // special end-of-1ist value
list_node<elt>* nodes; // array of nodes
int allocation; // size of nodes array
link firstnode; /! Tocation of first node
1ink nextfree; // Tocation of next unused node
/7
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maxsize 20

nextfree

first 3 next item*

items 0 > — =~ "four"
1 0 —f———> "three"
2 6 ——> "five"
3 4 —f——>= "one"
4 1 —f}——= "two"
5 -1 —————= "seven”
6 5 —] "six"
7 -1 0
8 -1 0
9 -1 0
10 ! 0
11 -1 0
12 -1 0
13 -1 0
14 -1 0
15 -1 0
16 -1 0
17 -1 i
18 -1 0
19 -1 0

Figure8.5 An Array-Based Linked List

The linked list module also defines a second type — a supporting structure called
Tist_node. Users of the module will never interact with nodes directly. To enforce that,
all node members are made private, and 1inked_11st madeafriend of 11st_node.

A list node simply contains an element and a link to another node. Its job is to hold
on to the element on behalf of the list and know where the next node is to be found.! Asa
typical low-level data structure, the only operations it needs are Initialize and an Access and
Modify for each of its fields. The node structure doesn’t know anything about how it is be-
ing used — it is entirely a slave of the linked list structure that uses it.

'It is common in introductory treatments of linked lists to simply add a link field to whatever data type
is used for the list elements. This leads to conceptual absurdities like a person struct that stores information
about a person such as age, name, address, occupation, Soclial Security number, and ... a pointer to another
person! A disciplined approach to data abstraction dictates that the concerns of linking nodes be isolated from
the application-level information, rather than mixing the two together haphazardly. A person hasa name and
a node has a link; the two kinds of information are entirely unrelated.

Another problem with adding link fields to application types is that it restricts each instance to being on
just one list, since there’s only one link field. Suppose linked lists are used to represent students enrolled in
courses. We would need to be able to store the same student instance in several linked lists. Only a disci-
plined approach that separates nodes and students makes this possible: a new node is created for each list the
student instance belongs to. The fact that several nodes point to the same instance is largely irrelevant.
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/* private structure */
template <class elt> struct 1ist_node

{

friend struct Tinked list<elt>;

private:
elt elem;
1ink next;

1ist node();

~1ist _node();

elt& getE1t();
void setElt(elt);
Tink getNext();

void setNext(1ink);

/* 1ist_node functions */

// a friend of linked _listlelt> so it can access endmark
template <class elt> Tist_node<elt>::Tist_node()

next(linked_list<elt>::endmark)

template <class elt> 1ist_node<elt>:;~1ist_node()

template <class elt> elt& Tist_node<elt>::getE1t()

: elem(0),

{
}
{
}
{

return elem;
}
template <class elt>
{

elem = e;
}
template <class elt>
{

return next;
}

template <class elt>

{
next = n;

}

void 1ist node<elt>::setElt(elt e)

link 1ist node<elt>::getNext()

void 1ist_node<elt>::setNext(link n)
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8.2.3 Lifetime Operations

Here are the lifetime operations for an array-based linked list module. Remember, this is
a primitive, rigid implementation that is being used only for expository purposes. The
real linked list implementation comes later in this chapter. That is why the constructor
still takes a maximum size, as with sequential lists — we’re still (temporarily) dealing with
a fixed-size array, though of nodes not elements.

Initialize/Finalize

The constructor for 1inked_11st creates an array of nodes. Those nodes get initialized
by the 1ist_node constructor. A link from one node to another is simply the index in the
array of the other node. Therefore, an impossible index value of -1 (the value of
Tist::endmark) is used to indicate that there is no next node. For safety, each new node
starts out with endmark as its link value. Each node’s element pointer is initialized to 0,
since it doesn’t yet contain an element.

As in the sequential list implementation, a c1ear function is used to start the list off
empty. Itisalso called by the list’s Copy operations and may be called by application code
to empty a list for reuse.

template <class elt> struct Tinked_list
{

/7.

// Initialize/Finalize

public:

void clear();

linked Tist(int = 100);

~linked_1ist();
3

/* Initialize/finalize */

template <class elt> void linked _Tist<elt>::clear()

{
nextfree = 0;
firstnode = endmark:
cur = endmark;
indx = no_index;

}

template <class elt> linked 1ist<elt>::1inked_Tist(int maxlen)
allocation(maxien), nodes(new 1ist_node<elt>[maxlen])
{

clear();
}
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template <class elt> linked_list<elt>::~1inked_1ist()

{

delete [] nodes:
}
Access

Conceptually, the elements of a linked list are accessed like those of a sequential list — by
position. However, because linked lists do not support direct access, the implementa-
tions of the functions are entirely different. In addition to the public positional Access op-
erations, private functions are needed for locating specific elements within the list
structure by position or by search. These functions return links to be used in the defini-
tions of many of the other functions in the module. Note that public 1inked_11st func-
tions never return links — the locations of nodes within the structure is internal
information that should not be made available to client code.

template <class elt> struct linked_list

{
//
/! Access

private:

link Tink_to(int); // index of nth elt
1ink 1ink to(elt); /! find an elt
Tink T1ink_to_prev(elt); // support for insert_before
1ink T1ink_to_last(); // for convenience

public:
elt& nth(int);
elt& operator[]Cint);
eltk first();
eltd last();

The definitions of the private Access operations illuminate the essence of linked list
organization. The access processisa direct consequence of that organization. To find an
element by position, the list is traversed starting from the first node until the n' " nhode is
reached. Likewise, to find a particular element, the listis traversed until a node containing
it is located. The extreme is demonstrated in 1ink_to_1ast, where the entire list must be
traversed to reach the last element. Because these operations are so basic to the rest of the
implementation, they are coded without using traversal operations, both for efficiency
and so as not to disrupt application traversals in process.

Each node holds the index in the nodes array of the node that follows it in the list.
Traversal simply follows these “links” from one node to the other until the target is
reached. Traversals also ends if endmark is encountered. Itis common practice to use the
variable cur for the current node of alist traversal, and prev and next for the nodes before
and after cur. Most of the internal Access operations return the location of the node that
contains the target element. We’ll see shortly that deletion of a node and insertion before
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a node actually modify the previous node. To support such actions, 1ink_to_prev re-
turns the location of the node before the one containing the target element.

/* Access: internal */

template <class elt> Tink linked_list<elt>::Tink_to(int n)
{
link cur = firstnode;

while (cur!=endmark && --n)
cur = nodes[cur].getNext();

return cur;

}

template <class elt> Tink linked_Tlist<elt>::1ink _to(elt e)

{
link cur = firstnode;

while ((cur != endmark) &&
e != nodes[cur]l.getET1t(})
cur = nodes[cur]l.getNext();

return cur;
}

// Caller must verify that elt 7s not in first node or result will be
// ‘not there' (unless there's a subsequent repetition of the elt)
template <class elt> Tlink Tinked _list<elt>::1ink_to_prev(elt e)
{

if (firstnode == endmark) return endmark;

1ink prev = firstnode;
1ink cur = nodes[firstnode].getNext();

while ((cur != endmark) && e != nodes[cur].getETt())
{
prev = cur;
cur = nodes[cur].getNext();
3

if (cur == endmark)
return endmark; // e not found
else
return prev;
}

template <class elt> 1ink T1inked_list<elt>::1ink_to_last()

{
if (firstnode == endmark) return endmark;

1ink prev = firstnode;
Tink cur = nodes[firstnode].getNext();
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while (cur != endmark)
{

prev = cur;

cur = nodes[cur].getNext();
}

return prev;

Next are the definitions of the public Access functions. The internal Access func-
tions return endmark if the desired element isn’t found — for instance, if 1st.1ink_
to(5) is called on a list with fewer than five elements. The public functions are responsi-
ble for validating arguments provided by the use, checking values returned by the private
functions, and signaling appropriate error conditions. In fact, that’s most of what the
public functions do, since they rely on the private ones to do the real work of locating ele-
ments.

/* Access */

template <class elt> elt& linked list<elt>::nth{int n)

{
Tink 1 = link_to(n);
if (1 == endmark) error("[linked_list::nth} index out of range");
return nodes[1]1.getET1t();

}

template <class elt> elt& linked list<elt>::operator[I(int n)

{
return nth{n);

}

template <class elt> elt& linked list<elt>::first()

{
if (empty()) error("[linked list::first] empty 1ist");
return nodes[firstnode].getEl1t(};

}

template <class elt> elt& 1inked Tist<elt>::Tast()

{
if (empty()) error("[linked_list::last] empty 1ist");
return nodes[link to_last()].getE1t();

}

Modify

Linked lists exhibit a wide range of Modify operations, including several versions each of
Add, Remove, Exchange, and Replace. As with Access, some private member functions
that deal with node addresses are defined to be used by the public functions. In several
cases, there are public and private functions with the same names: the destination argu-
ments of the public ones are elements or positions, while the destination arguments of the



230 Lists Chap. 8

private functions are links. The public functions traverse the list to obtain a link to the
node corresponding to the destination argument, then pass that link to the appropriate
private function.

Allocation and deallocation of nodes and the modification of their links are con-
fined to the private functions. In an echo of our general modularization principles, we in
effect have a submodule of private functions that do all the real work for the rest of the
functions. This reduces the complexity of the whole module and limits the number of
changes that have to be made to make some change to the list’s representation. Nodes are
allocated for use from the nodes list. The data member nextfree, initialized to 0, indi-
cates the location of the next unallocated node. The function newnode sets the element
and link of the newly allocated node and increments nextfree.

template <class elt> struct linked_1list

{

i
// Modify

private:
1ink newncde(elt, 1ink =.endmark); // allocate from the array
void insert_before first(elt);
void insert_after_last(elt);
void insert_after(elt, 1ink);
void remove first();
void remove_after(link);

public:
// Modify: Add
void add(elt); // insert at back
void insert(elt, int pos = 1); // add at pos, moving subsequent

// elts down; pos can be 1 past end

linked .1ist& operator+=(elt); // insert at front

void insert_before(elt new_elt, elt old _elt);
void insert_after(elt new_elt, elt old_elt);

// Modify: Remove

void remove(elt);

void removel(elt);

void remove(int pos); // remove nth elt
linked_list& operator-=(elt);

// Modify: Exchange
void exchange(elt, elt); // exchange first occurrences
void exchange(int, int); // exchange nth & mth elements

// Modify: Replace
void replace(elt old_elt, elt new_elt);
void replacel(elt old_elt, elt new_elt);
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/* Modify: Add Support */

// private:
template <class elt> link linked Tist<elt>::newnode(elt e, Tink next)
{
nodes[nextfree].setElt(e);
nodes[nextfree].setNext(next);
return nextfree++;
}

template <class elt> void linked_list<elt>::insert_before first(elt e)

{
firstnode = newnode(e, firstnode);

}

template <class elt> void Tinked_list<elt>::insert_after_last(elt e)

{
nodes[link_to_last()].setNext(newnode(e));
1

template <class elt> void linked_Tist<elt>::insert_after(elt e, Tink a)

{
nodes[a].setNext(newnode(e, nodes[a].getNext()));

}

/* Modify: Add */

template <class elt> void linked_list<elt>::insert(elt e, int n)

{
if (full()) error("[1inked_list::insert(elt, int)] Tist full");

if (n = 1)
insert_before_first(e);
else
{

1ink prev = firstnode;
__n;
while (--n > 0)
if ((prev = nodes[prev].getNext()) == endmark)

error("[linked_list::insert] not that many elements”);

insert_after(e, prev);

)

template <class elt> void Tinked_list<elt>::add(elt e)

{
if (full()) error(”[1inked_list::add] Tist full");

if (firstnode == endmark)
insert_before first(e);
else
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insert_after_Tlast(e);
}

template <class elt> linked_Tlist<elt>& linked_list<elt>::operator+=(elt e)

{
if (full()) error("[1inked_list::operator+=] Tist full");

insert_before_first(e);
return *this;
}

template <class elt>
void Tinked_list<elt>::insert_after(elt new elt, elt old_elt)

{
if (full()) error("[1inked list::insert_after] 1ist full");

1ink oldlink = 1link_to(old_elt);

if (oldlink == endmark)
errcr("insert_after: elt not found");

insert_after(new_elt, oldlink);
}

template <class elt>
void Tinked_list<elt>::insert_before(elt new_elt,elt old_elt)

{
if (full()) error(”[linked list::insert_before] 1ist full");

if (old_elt == nodes[firstnodel.getET1t())
insert(new_elt); // insert before firstnode

else

{
link prevlink = link_to_prev{(old_elt);

if (prevlink = endmark)
error("insert_before: elt not found”);

insert_after(new_elt, prevlink);

Inserting a new node after an existing one is a simple procedure. The definition of
insert_after contains a one-line implementation of the procedure diagrammed in Fig-
ure 8.3 on page 222. A new node is

+ allocated

- initialized to hold a pointer to the new element and a pointer to the node pointed
to by the old node

+ made the node that the old node points to

Inserting a new node before an existing node is trickier because the link that has to
be changed is in the predecessor of that node, and in a singly linked list there’s no way to
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go from a node directly to its predecessor. We have to think of inserting before a node as
equivalent to inserting the new one after the predecessor of the existing one instead of be-
fore the existing one. The definition of insert_before has to use a variant of 1ink_to,
called 1ink_to_prev, to get the address not of the node containing the old element but of
the node before that one. If the old element happens to be in the first node, it has no
predecessor. In that case, it’s the list’s firstnode that gets changed.

Next we consider Remove operations. The private function remove_after imple-
ments node excision, as illustrated in Figure 8.4 on page 223. The node is modified to
point to the node after the node to which it currently points. The excised node just hangs
around still pointing to the same node, while nothing points to it. It’s still in the array of
nodes, but it is no longer part of the list.

/* Modify: Remove Support */

// private:
template <class elt> void Tinked Tist<elt>::remove first()
{
firstnode = nodes[firstnodel.getNext();
}

/! private:
template <class elt> void linked Tist<elt>::remove after{(link a)
{
nodes[a].setNext(nodes[nodes[a]l.getNext()].getNext());
}

The definition of remove(int) runs into the same problem that insert_before
raninto. The first node has to be treated as a special case. If the element is notin the first
node, then remove just calls remove_after. Generally, Remove of an element from a col-
lection structure has two flavors: remove one (usually the first occurrence found) and re-
move all. The first node must be specially treated in both of these.

/* Modify: Remove */

// remove nth element
template <class elt> void linked _list<elt>::remove(int n)
{

if (firstnode = endmark) error("1ist is empty");

if (n <= 0) error(™invalid position");

if (n == 1)
remove_first();
else
remove_after(link_to(n-1));
}

template <class elt> void linked_list<elt>::removel(elt e)

{
if (firstnode =— endmark) error("list is empty");
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if (e == nodes[firstnode].getEl1t())
remove_first();

else
{
link prevlink = 1ink_to_prev(e);
if (prevlink == endmark) error("removel: elt not found");
remove_after(prevlink);
}

}

template <class elt> void linked_list<elt>::remove(elt e)
{
// If e happens to be at the front (perhaps many times)
// remove it until the first element is not e.
while (firstnode != endmark && (e == nodes[firstnode].getE1t()))
remove first();
if (firstnode == endmark) return;

// We can start on the second node knowing e is not the first element.
1ink prev = firstnode;
link cur = nodes[firstnode].getNext();

// Traverse the rest of the list removing any occurrences of e.

while (cur != endmark)
{
while (cur != endmark && e != nodes[cur].getE1t())
{
prev = cur;
cur = nodes[cur].getNext();
}
if (cur != endmark)
{
cur = nodes[cur].getNext();
remove_after(prev);
}

}

template <class elt> linked_list<elt>& Tinked 1ist<elt>::operator-=(elt e)
{

remove_first(e);

return *this;

Finally, we look at the definitions of the Exchange and Replace operations. These are
much simpler than Add and Remove because they can be accomplished without modifying
any links. Instead, the elements the nodes contain are changed, and the node sequence,
as embodied in the links, is left untouched. The two exchange functions invoke the glo-
bal exchange defined in standard.H and described in Section 1.4.4, page 84.
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/* Modify: Exchange, Replace */

template <class elt> void linked _1ist<{elt>::exchange(elt eltl, elt elt2)
{
::exchange(nodes[1ink to(eltl)].getE1t(),
nodes[1ink_to(elt2)].getE1t());
}

template <class elt> void linked Tist<elt>::exchange(int posl, int pos2)
{
::exchange(nodes[1ink_to(posl)].getE1t(),
nedes[1ink_to(pos2)].getE1t());
}

template <class elt>
void Tinked_1ist<elt>::replacel(elt old_elt, elt new_elt)
{
Tink 1 = Tink_to(old_elt);
if (1 == endmark) error("[linked Tist::replace] no such element”);

nodes[1].setElt(new_elt);
}

template <class elt>
void lTinked _T1ist<elt>::replace(elt old_elt, elt new_elt)

{
link cur = firstnode;
while (cur != endmark)
{
if (01d_elt =— nodes[cur].getE1t())
nodes[cur].setElt(new elt);
cur = nodes[cur].getNext(};
}
}

8.2.4 Traversal

We’ve already seen a lot of traversals in the Access and Modify operations. Those, howev-
er, were coded in terms of internal representation details. The module must also encap-
sulate the mechanics of traversal in a form suitable for client code to use. Applications
also need to traverse lists for many reasons beyond Access and Modify.

template <class elt> struct Tinked_1ist
{
/..
// Traversal
private:
static const int no_index; /! special 'uninitialized' value
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link cur; // traversal position
int 1indx; // traversal index
public:

void reset();
bool finished();
bool next();
eltd current();
int index();

Except for next, most of the Traversal operations are straightforward. Since there’s
no relationship between the location of a node and its position in the list, we have to keep
a count of the number of nodes already seen in order to support the standard traversal
function index, The awkwardness in the definition of next is due to the approach taken
to traversals in this book, which requires a reset to be followed by a next before the first
element can be used. In structures where the elements are stored contiguously, the tra-
versal state can be initialized to -1. In a linked structure, however, there’s no link value
that means ‘before the first’. Link values are either the location of nodes or endmark; there
are no other special values available.

The best we can do, then, is have reset set the traversal state to endmark, and have
next check for endmark every time it’s called. In that case, though, how can the functions
distinguish a traversal that had just ended from one that had just been reset? The defini-
tion here takes advantage of the fact that a separate count of the number of elements en-
countered must be maintained to support index. An otherwise impossible negative value
is used to indicate a traversal that has just been reset. A traversal that has proceeded to the
end will have a nonnegative count of the number of elements, even if, in an empty list, it’s
zero.

/* Traversal */

template <class elt> void Tinked _list<elt>::reset()

{
cur = endmark;
indx = -1;
}
template <class elt> bool Tinked_list<elt>::finished()
{
return cur == endmark;
}

// Tricky because convention is to start traversal off before
// first position and there is no such thing with Tinked lists
// (can't do arithmetic on addresses).
template <class elt> bool linked_Tist<elt>::next()
{
if (indx == no_index)
error("[linked 1ist<elt>::next] traversal not yet initialized");
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if (endmark == cur)

if (indx < 0) // traversal has been reset
{
indx = 0; !/ adjust to natural value
cur = firstnode;
}
else
error("[Tinked_list<elt>::next] traversal already finished");
else
cur = nodes[cur].getNext(); // advance to next node
indx++; // index ends 1 more than size
return !finished();
}
template <class elt> elt& linked_1list<elt>::current()
{
if (endmark == cur)
error("[1inked_list<elt>::current] traversal not yet initialized"):
if (endmark == cur)
error("[1inked 1ist<elt>::current] traversal initialized "
"but not yet stepped”);
if (finished(})
error("[1inked 1ist<elt>::current] traversal already finished");
return nodes[cur].getE1t();
}
template <class elt> int linked Tist<elt>::index()
{
return indx;
}

8.2.5 Content Operations

Linked lists have the same Content operations as sequential lists. The implementations in
the sequential list module took advantage of the presence of a 1ength field, but the linked
list versions will have to rely entirely on traversals. The definition of 1ength, for example,
just traverses the list counting as it goes. (Actually, it doesn’t even have to count — it
could use the value of index at the end of the traversal. Since counting is a typical appli-
cation of traversal operations, it’s worth showing a simple example of it here.)

In this implementation, a linked list becomes “full” when it has exhausted all of its
nodes, a situation indicated by next free reaching allocation. Anemptylistis one with
endmark as the value of firstnode. The Compare and Combine definitions are similar to
the ones in the sequential list module, except that they can’t take any shortcuts involving
the length of the list, since that’s not represented directly.
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template <class elt> struct Tinked list
{
..
public:
/! Attributes
int size();
bool empty();
bool full();

// Compare
friend bool equal(linked_Tist&, Tinked_list&);
friend order compare(linked list&, Tinked 1ist&);

// Combine

friend Tinked 1ist<elt> append(linked_list<elt>&, linked 1ist<elt>&);
friend Tinked _l1ist<elt> operator+(linked_list<elt>&,linked list<elt>&);
friend linked_l1ist<elt> merge(linked 1ist<elt>&, linked_list<elt>&);};

/* Attributes */

template <class elt> int linked 1ist<elt>::size()

{
reset();
int count = 0;
while(next(}) count++;
return count;
}
template <class elt> bool linked_list<elt>::empty()
{
return firstnode == endmark;
}
template <class elt> bool linked_list<elt>::full()
{
return nextfree == allocation;
}

The definition of 1ength provides an interesting demonstration of the utility of
generators. Here’s a generator that is used only to count how many times it can produce
a component. In fact, nothing is done in the loop other than producing the next
component. The componentitselfis never used! (We don’t have to incrementa count in
the function because operator++ already does that in support of the index function.)
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/* Compare */

template <class elt>
order compare(linked Tist<elt>& 1stl, Tinked list<elt>& 1st2)
{
if (&1stl == &1st2) return EQUAL; // same!
1stl.reset();
1stZ2.reset();
order ord;

while (1stl.next() && TstZ2.next() &&
(EQUAL == (ord = compare(*1stl.current(), *1st2.current()))))
/* do nothing! */;

if (Istl.finished() && !1s5tZ.next())
// if 1stl is finished then 1st2 never got stepped the last
/! time through the traversal so step one more time and test
return EQUAL;

else if (1stl.finished())
return BEFORE;

else if (1st2.finished())
return AFTER;

return ord; /! The traversal ended due to unequal elements

}

template <class elt
bool equal(linked 1ist<elt>& 1stl, linked_1ist<elt>& 1st2)
{

I1stl.reset();

1st2.reset();

while (Istl.next() && 1st2.next())
if (EQUAL != compare(*1stl.current(), *1st2.current()))
return FALSE;

if (1stl.finished(})

return 11st2.next();
// if 1stl finished 1st2 won’t have been stepped in the while test
/! so step one more time and test

return FALSE; // here only if Istl not finished and 1stZ is

After checking whether the two arguments are actually the same list, compare
traverses both lists in parallel comparing corresponding components. The traversal con-
tinues until two components are found that are notequal. The result in that case is the re-
sult of the unequal comparison, either BEFORE or AFTER. If one list runs out before the
other, the shorter one is a prefix of the longer one and therefore BEFORE it according to the
usual notion of (lexical) ordering. If both run out at the same time, they are equal.
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/* Combine */

template <class elt>
linked _1ist<elt> append(linked Tist<elt>& Tstl, Tinked l1ist<elt>& 1st2)

{
Tinked_list<elt> 1st(Istl.allocation + 1st2.allocation);
// not clear how many nodes to allocate: might as well add the maximums

I1st.firstnode = 1st.copy _elements(1stl);
I1st.nodes[1st.link _to_last()].setNext(1st.copy_elements(1st2));

return 1st;
}

template <class eltd>
Tinked_1ist<elt> cperator+(1inked_Tist<elt>& 1stl, Tinked list<elt>& 1st2)
{
return append(1stl, 1st2);
}

The definition of append uses a private function called copy_elements that has
been formulated to support append as well as the copy constructor and copy assignment
operator. Its definition appears later, with the Copy operations. It constructs in one list
(the list through which it is invoked) a copy of another list (its argument) and returns a
pointer to the first node. Although a slight inefficiency is introduced, append is easily
coded in terms of copy; the inefficiency is that after a copy is made of the first list, the par-
tial copy must be traversed to find its last node.

8.2.6 Support Operations

Linked lists have a complete set of Support operations. Search appears as contains and
contains_equal, which return Booleans, and position_of which returns the (offset-1)
position of the target element in the list. As in the sequential list module, a Sort operation
is declared but not defined, with discussion left for later in this chapter (Section 8.3, start-
ing on page 251).

template <class elt> struct linked_list
{
AR

/7 Copy
private:

1ink copy_elements{linked list<elt>&);
public:

Tinked_list(linked_Tist<elt>&);

Tinked 1ist& operator=(linked 1ist<elt>&);

// Process
linked 1ist<elt> reverse();
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bool contains(elt);

bool contains_equal(elt);
int position_of(elt);
void sort();

/7 Output
friend ostream& operator<<(ostream&, linked Tist<elt>&);

The private function that implements the heart of Copy constructs a copy of its ar-
gument list’s elements and returns the location of the firstnode, but it does not set
firstnode. This allows it to also be used in append. The straightforward Add operation
inserts elements at the front of a list. If we were to use that to construct the copy, we’d get
areversed list. Code to construct the copy with the same order as the original is somewhat
more ntricate than if we could just insert elements at the front of the copy being built.

/* Copy */

// private:

template <class elt>

Tink Tinked_l1ist<elt>::copy_elements(linked Tist<elt>& 1st)

{
if (1st.empty()) return endmark; /! empty list
if (full()) error("[linked_list::copy _elements] 1ist full™);

1ink start = newnode(lst.current()); // handie firstnode node specially
1ink prev = start;
1ink newcur;

I1st.reset();
1st.next();

while (1st.next())

{
if (full()) error("[linked_list::copy_elements] list full");
newcur = newnode(lst.current());
nodes[prev].setNext(newcur);
prev = newcur;

}

return start;

}

template <class elt> linked list<elt>::linked Tist(linked 1ist<elt>& 1st)

: allocation(1st.allocation), nodes(new 1ist node<elt>[1st.allocation])
{

clear();

firstnode = copy_elements(1Ist);
}

template <class elt>
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Tinked_1ist<elt>& Tinked_list<elt>::operator=(linked Tist<elt>& 1st)
{
if (this == &1Ist) return *this; /! assignment to self!

if (allocation < Ist.size())

{
delete nodes;
allocation = 1st.size();
nodes = new Tist_node<elt>[allocation];
}
clear();

firstnode = copy_elements(1st);
return *this;

The Process operations are expressed quite tersely using traversal operations. Note
how simple reverse is compared to copy. Adding to the front of a linked list, as in re-
verse, is much easier than adding to the end — just the opposite of how it is with sequen-
tial lists.

/* Process */

template <class elt> Tinked list<elt> linked Tlist<elt>::reverse()

{
linked 1ist 1st(allocation);

reset(});
while (next()) 1st.insert(current());

return 1st;
}

template <class elt> bool Tinked 1ist<elt>::contains(elt e)

{
reset();
while (next()) if (e == current())) return TRUE;

return FALSE;
}

template <class elt> bool linked_l1ist<elt>::contains_equal(elt e)

{
reset();

while (next()) if (EQUAL == compare(*e, *current())) return TRUE;

return FALSE;
}

template <class elt> int Tinked list<elt>::position_of(elt e)
{
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reset();
while (next()) if (e == current())) return index();

return FALSE;

The definition of the Qutput operator is identical to the one for the sequential list
module.

/* OQutput */
template <class elt>
ostream& operator<<(ostream& strm, Tinked list<elt>& 1st)
{
1st.reset();
strm << ' (';
if (Ist.next()) strm << *1st.current();
while (Ist.next()) strm << ' ' <L *Ist.current();
strm << '),

return strm;

8.2.7 Free Lists

Deleted nodes still occupy space, and the initial implementation of linked lists we’ve been
examining provides no way to reuse them. The standard technique for reusing nodes is
to maintain a free list — alist of all the nodes available for insertions. The implementation
is changed so that every node in a list’s nodes array belongs to one of two chains: one con-
sisting of nodes pointing to elements of the list and one consisting of nodes available for
reuse. The latter — the free list — will of course not be visible to clients of the list module.

Figure 8.6 illustrates the coexistence of the free list with the actual list. Note that
there are two endmark values present in the array: one for the list and another for the free
list. It doesn’t matter what the nodes on the free list point to, since the node’s e1em will be
set to a new value when the node gets reused.

The value of next free will now be the location of the first node on the free list. Add
operations will remove a node from the free list and add it to the actual list. Remove op-
erations will remove the node from the actual list and add it to the front of the free list.
Initialize will now link all the nodes of the array together and set nextfree to the index of
the first node.

Only two changes are needed in the header file. We add a new private member
function to construct the free list for new lists — setup_freelist — and another —



244 Lists Chap. 8

maxsize 20

nextfree 10

first 6

items
0 "four"
1 "three”
2
3 “five"
4
5
6 "one"
7 "two"
8 "seven”
o] "six"
10
11
12
13
14
15
16
17
18
19

Figure 8.6 Coexistence of List and Its Free List in the Same Node Pool

recycle — to return nodes to the free list. The definition of newnode will be changed to
take nodes off the free list, but we don’t need a new member for that. Therest of the header
file is unaffected. An application that included the original linked list module could now
use this new, improved version without any code being changed.

template <class elt> struct linked_list

{
!/
// Free list operations
private:
link setup_freelist(); // initialize free 1ist
void recycle(link); /! return node at 1ink to free Jist
};

/* Free list operations */

/! private
template <class elt> link linked_list<elt>::setup_freelist{)
{
for (int i = 0; 1 < allocation-1; i++)
nodes[i].setNext{i+1);
nodes[allocation-1].setNext(endmark);
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return Q; /! index of first free node
}

/! private:
template <class elt> void linked_list<elt>::recycle(link a)
{

nodeslal.setNext(freelist);

freelist = a;

In addition to adding definitions for the two new private member functions, the use
of a free list requires modifying the definitions of some of the original functions. The def-
inition of newnode changes entirely. Its job now is to remove the first node of the free list
and return it as the new node. This completes the recycling of the previously deleted
node. The two private functions that support Remove return nodes to the free list by call-
ing recycle.

The function clear, called by the constructors and assignment operator and avail-
able to users for emptying lists, now invokes setup_freelist to link all the nodes in the
nodes array together into a free list instead of just setting nextfree to 0. The definition
of full used to test whether nextfree had reached the end of the nodes array; now, it
tests whether there are any nodes left on the free list. All in all, the changes are not very
substantial considering how much power they add to the module. The list can now grow
and shrink indefinitely, as long as its size never exceeds the number of nodes allocated for
it.

!/ member functions affected by the use of a free list

template <class elt> Tink Tinked_list<elt>::newnode(elt e, Tink next)

{
if (full¢)) error("1ist full™);

1ink _newnod = freelist;

freeli = nodes[freelist etNex :
nodes[newnod].setE1t(e);
nodes[newnod].setNext(next);

return newnod;

}

template <class elt> void Tinked_list<elt>::remove first()
{
link remnode = firstnode;
firstnode = nodes[firstnode].getNext();
recycle(remngde)
)

template <class elt> void linked_list<elt>::remove_after(link a)
{
1ink remnode = nodes[a].getNext();
nodes[a].setNext(nodes[nodes[a]l.getNext()].getNext());
recycle(remnode):
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}
template <class elt> void linked_Tist<elt>::clear()
{
freelist = setup freelist():
firstnode = endmark;
cur = endmark;
indx = no_index;
}
template <class elt> bool Tinked_list<elt>::full()
{
return freelist == endmark;
}

8.2.8 A Common Node Pool

In the new implementation, each list has its own free list. Each list’s length is limited to a
size established when it is created. Because of their flexibility, linked lists are generally
used when there are a lot of insertions and deletions to be made. Thus, linked lists tend to
grow and shrink a lot. It doesn’t make much sense to have such flexible structures stored
in fixed-size arrays. Most of the space in these arrays will be wasted most of the time, and
it may not be possible to estimate the length a list might attain.

Better would be to have just one pool of nodes shared by alllinked lists the program
uses. There really is no reason to have a separate node pool for each linked list. We can
start off with one very large free list and allocate the next node from it regardless of which
list needs it. The array would contain nodes from the various lists, including the free list,
but the link of any node will point only to another node of the same list.

Few changes are required to achieve this crucial modification. Because there is only
one free list shared by all instances of the 1inked_11st struct, nodes,nextfree,and al-
location become static (i.e., global to the class), as do the functions setup_freelist
and recycle.

Constructors and other functions will no longer allocate an array of nodes or initial-
ize the free list, and the destructor doesn’t have to deallocate the nodes. Since there’s just
one node pool and one free list shared by all linked lists, these just get initialized once and
for all when the program begins execution. The basic constructor now takes no argu-
ments, since it no longer needs a size. Any size arguments provided to a constructor in
another function (e.g., append) would now be omitted, though these changes aren’t
shown here.

template <class elt> struct Tinked_list
{
/! members made static:
private:
static list_node<elt>* nodes;
static link nextfree;
static void recycle(link);
static link setup freelist();
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static int allocation;

/! changed constructor declaration:
public:
lTinked_1ist();
1

With this implementation, lists are never full! However, the entire module can still
run out of nodes if the free list becomes empty. The tests in various member functions
that guard against trying to allocate new nodes when the free list is empty are still valid.
Their meaning changes, though: instead of the individual list having run out of nodes, the
entire module has run out of nodes to allocate. The corresponding error messages could
be reworded to reflect this change, but the definition of fu11 is unaffected.

To initialize the free list, setup_freelist has to be executed at program start-up.
Static data members, like ordinary global variables, are initialized by evaluating the initial -
izer found in their definition. Adding the following statement to the implementation file
causes setup_freelist to be called when the program starts:

1ink 1ist::nextfree = Tist::setup_freelist();

C++ allows static data members to be accessed at file scope even if they are private (other-
wise, how would they ever get initialized?). Similarly, initializers of private data members
are allowed access to private member functions. The use of an initializer for freelist is
something of a trick: we are using it to invoke setup_freelist for its side effects, not re-
ally to get an initial value for freelist. We know that the initial value should be 0; how-
ever, there’s no other way to force a global function to be automatically executed when the
program starts up and we don’t want users to have to explicitly invoke any module initial-
ization routines.

Since nodes and allocation are static, they too have to be initialized at file scope
in the implementation file. Note that the list structure is left with only one nonstatic data
member — the address of the first node. The amount of memory each instance will now
occupy, therefore, is just the space for a single pointer! Here, the power of data abstrac-
tion comes at no cost in space: the list objects behave as structure instances at the software
level while taking up only the space an ordinary pointer would occupy at the hardware
level. The implementation file now includes the following definitions of static data
members. (A file’s static variables are initialized in the order their definitions appear, so
by the time setup_freelist iscalled the nodes array has already been allocated.)

template <class elt> int linked_ list<elt>::allocation = 100;
template <class elt> Tist node<elt> * Tinked_list<elt>::nodes =
new list_node<elt>[Tinked 1ist<elt>::allocation];
template <class elt> Tink linked_list<elt>::freelist =
lTinked Tist<elt>::setup freelist();

Initialization of nodes and allocation are removed from the constructors and the
assignment operator, but the rest of the constructor definitions are unchanged. The only
significantly affected functions are the linked list destructor and clear! Before, the de-
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structor deleted the nodes array, and c1ear reinitialized the free list, linking all the nodes
in the nodes array together. Now things are more complicated — the free list serves all
the program’s linked lists, so destroying one list should not cause any nodes to be deallo-
cated, and clearing one list should not reinitialize the free list. Instead, the destructor
should just clear the list, and cTear should return all of the list’s nodes to the free list. It
is not necessary to return the nodes individually: they are already linked together, so they
can be spliced onto the free list by simply changing the list’s last node to point to the cur-
rent free list.

template <class elt> void Tinked_list<elt>::~linked_list{()
{

clear();
}

template <class elt> void Tinked list<elt>::clear()

{
f/ splice T1ist on to front of free list to recycle all its nodes
nodes[1ink to_Tlast()].setNext(nextfree);
nextfree = firstnode;

// now reset list, as before
firstnode = endmark;

cur = endmark;

indx = no_index;

8.2.9 Dynamic Linked Lists

The above discussion of array-based linked lists was designed to introduce the concept of
nodes and links in a very concrete form. In practice, there’s rarely any reason to preallo-
cate a separate array of nodes. The nodes array may be removed from this implementa-
tion of the linked list representation. Instead, nodes can simply be allocated as needed
from the heap, using new.

One approach would be to start with an empty free list, then allocate a new node any
time one is needed but the free list is empty. Another approach is to allocate a chunk of
nodes each time the free list is empty, linking them together after they are allocated. This
reduces the overhead involved in calling new (since new would be called many fewer times)
and the space involved in heap maintenance (since each call to new results in information
being stored on the heap about how much space the newly allocated chunk occupies).
Also, when nodes are allocated in chunks they end up clustered near each other in mem-
ory, which may, depending on the program, reduce paging activity as pointers are fol-
lowed from one node to another.

Whether nodes are allocated one at a time or in groups, dynamic allocation intro-
duces an important shift in the module’s implementation. With dynamically allocated
nodes, there’s no array of nodes from which nodes are accessed — they just live indepen-
dently on the heap. Therefore, instead of referring to nodes by array index, the code will
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point directly to nodes. In the previous implementations the type 1ink was a synonym
for int and was used for indices to an array of 1ist_nodes. Now, 1ink willbe a synonym
for a pointer toanode —ie., 1ist_node*.

To modify the code for this new approach, every occurrence of nodes[al. in the
module gets replaced by a->. (We actually could have used the pointer formulation in the
array-based implementation — you can always use pointers instead of arrays — but there
wouldn’t have been any real reason to do so.) The value for 1inked_1ist::endmark
changes also, from -1 to 0, representing the special null pointer. As with the typedef for
11ink this change is much easier to make when it affects only the value of a constant data
member rather than all the function definitions that refer to it.

The static member allocation gets reinterpreted not as the total size of the node
pool, but the number to allocate whenever the free listis empty and a new node is needed.
Therefore, it can be initialized to a much smaller number. Following is an example of a
definition changed to use pointers instead of array indexing.

template <class elt> link linked_list::1ink_to(elt e)

{
link cur = firstnode;
while ({cur != endmark) && e != cur->getE1t())
cur = cur->getNext():
return cur;
1

By going to the heap for more nodes whenever the free list runs out, this implemen-
tation guarantees that lists will never be full (unless the heap is exhausted). Other than
that, only two functions are substantially affected by the change to dynamically allocated
nodes and the use of pointers instead of array indices, and they are both private: setup_
freelist and newnode. Any application that works with any one of the various linked
list implementation’s will work with any of the others. The public functional interface is
unaffected by the implementation differences, so no modifications would be necessary.

template <class elt> link linked_1list<elt>::newnode(elt e, link next)
{
if (endmark = freelist)
{
freelist = new 1ist node<elt>[allocation];
if (0 = freelist) error(“[linked_list] heap exhausted”):
setup_freelist();
}

1ink newnod = freelist;
freelist = freelist->getNext():
newnod->setElt(e);
newnod->setNext (next);

return newnod;
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template <class elt> link linked_list<elt>::setup_freelist()

{
// Called whenever a new chunk of nodes is allocated from the heap.
// Assumes that freelist points to an array of allocation
// newly allocated nodes.
for (int 1 = 0; i < allocation-1; i++)

freelist[i].setNext(freelist+i+l);

freelist[allocation-1].setNext{endmark):

return freelist;
// still have to return it because this gets
/1 invoked by global initializer for linked list::freelist

We've been exploring various ways to implement free lists. What kind of funda-
mental operations are the functions that manipulate the free list — setup_freelist,
newnode, and recycle? Since it creates nodes that weren’t there before, setup_
freelist is clearly a Create operation. We haven’t seen any Create operations since they
were introduced in Chapter 1 (cf. Section 1.2.1, page 56 and Section 1.3.1, page 61). Nor-
mally, application programs create instances of structs through variable declarations and
calls to new. Internally, the modules we’ve seen up to this point use new only to allocate
dynamic arrays of pointers. The dynamic implementation of linked list is the first time
we’ve seen the need for a module to create instances of structs. Dynamic allocation of
structs inside the module is a special property of linked structures resulting from their use
of private node types.

When do the nodes allocated with setup_freelist get deallocated? They get re-
turned to the free list by recycle and taken from the free list by newnode, but they aren’t
destroyed until the program exits, when the heap itself goes away. What fundamental op-
erations do these implement? From the list’s viewpoint, they Create and Destroy nodes.
However, the nodes don’t really get created and destroyed — they get recycled instead.
Perhaps we should call these Allocate and Deallocate. Those terms could also have been
used instead of Create and Destroy throughout the book, as well as for these. Alternative-
ly, we could use Allocate and Deallocate instead of Create and Destroy and use Reallocate
for functions like newnode (but what would we then call functions like recyc1e?). Anoth-
er choice — the one actually adopted here — is to view all this from the perspective of the
code using the operations. The list struct asks the node struct for a node, but it doesn’t
care whether the one it gets is new or a recycled. We therefore consider recycling opera-
tions to be variants of Create and Destroy.

8.2.10 Variations

There are two important variations on the theme of linked lists that are often useful: lists
that keep track of their end and lists whose nodes point to their predecessors in addition
to their successors. The representational changes are straightforward and are described
next. Code for these is left for exercises (¢f. Exercises 22 and 23).
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Keeping track of the last node is effective where additions are made frequently at the
end of the list. Otherwise, each time an element is added to the end of a list, the list must
be completely traversed. Other operations that access the last node of the list would also
benefit from this modification. To avoid having to traverse the list until the end is reached
each time access to the last node is needed, we can add a Tastnode member to the
Tinked_1ist structure and alter various Modify operations to maintain and take advan-
tage of that pointer. At the small cost of one extra pointer per list, traversal to reach the

last node is greatly speeded up.

Sometimes it is important to be able to traverse the list backward as well as forward.
To support two-way traversal, we need a way to get from a node to its predecessor. In fact,
the absence of a link to the predecessor made for some awkward code in some of the Mod-
ify functions seen earlier. In an ordinary linked list, the predecessor isn’t represented, so
to find it, code must traverse the list, starting at the beginning, looking for the node that
points to the node whose predecessor is needed. That is obviously an inefficient way to
proceed. An improvement would be to add a predecessor pointer to each node and
change the various Modify operations to maintain both links. That would significantly
simplify some of the module’s own definitions, but most importantly it gives users new
functionality: the ability to traverse the list in either direction. Lists whose nodes contain
pointers to their predecessors as well as their successors are called doubly linked lists.

8.3 ListSorting

Sorting is a major part of many list-based applications. Naive algorithms for sorting are
much slower than more sophisticated ones. These two facts combine to make sorting one
of the most studied topics in computer science. Sorting algorithms also provide good ex-
amples for introducing the theoretical study of algorithm efficiency.

Sort is a Process operation like Search. Most data structures have meaningful Search
operations, and this text are discusses them along with the other operations that imple-
ment the structures studied. Sort, however, is more closely associated with lists than with
other kinds of structures, in part because of the correspondence between the linear nature
of lists and the linear ordering sorting imposes. Other kinds of structures are either never
rearranged, such as stacks and queues, or are always sorted, as we’ll see in the section on
association structures. Therefore, although Search is considered throughout the text, Sort
appears only here.

8.3.1 Efficiency

A sorting algorithm rearranges the components of a list so that they are ordered according
to some comparison function. This primarily involves comparing and moving
components. The efficiency of a sorting algorithm can therefore be evaluated in terms of
the number of comparisons and movements it performs. (The efficiency of a search algo-
rithm depends on the number of comparisons alone, since it doesn’t rearrange the struc-
ture.)
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Consider a simple sequential search through a list containing N elements, such as
the contains and contains_equal operations in the list implementations shown
above. Each of the list’s components is examined in turn until either a match is found or
the list is exhausted. How many comparisons are performed? In the best case, the target
happens to be the first component in the list, and only one comparison is needed. The
worst case would be when the list did not contain a matching element or the target hap-
pened to appear last. In that case, the algorithm would perform N matches — one for
each element in the list. In general, it would take K comparisons to find a target that hap-
pened to be the K™ element in the list. If no one element was any more likely to match
than any other, the number of matches required on average would be approximately NV/2:

(1+2+...+N) N/2e¢ (1+N) N(I1+N) 1+N
N N 2N 2

The efficiency of any search algorithm can be characterized this way — in terms of
the number of comparisons it performs in the best, worst, and average cases. The exact
execution time of an algorithm is rarely of interest. The important thing is how much
longer a search takes as the number of elements in the collection increases.

This approach to evaluating efficiency gave rise to a notation used to characterize
different kinds of algorithms, known as “Big O notation.” The efficiency of a search algo-
rithm requiring as many as N comparisons to locate a match among ‘N elements is de-
scribed as O(‘N). The ‘O’ stands for ‘order’, and O(NV) is read as “order of N.” An O(‘N)
algorithm is also called linear, since the time it takes to execute increases linearly with the
size of the collection. '

The goal of efficiency analysis is to relate the performance of an algorithm to the size
of the collection it processes. Constant costs involved in setting up and controlling the al-
gorithm are ignored, since as N increases, the fixed overhead is a less significant part of
the total cost. With large enough N the fixed overhead becomes irrelevant. Also, with
large enough N it doesn’t really matter whether the actual costis N (as in the worst case
for sequential search through a list), W+1 (there may be one final comparison to distin-
guish between matching the last element or not finding a match at all), or even (N+1)/2
(as in the average case for sequential search). What matters is the nature of the increase
in processing as N increases, not an exact formula for determining precise execution
time. All of these values would be considered O(‘N).

8.3.2 Simple List Sorting

We’re going to look next at three simple methods for sorting lists. These algorithms are
commonly used for sorting relatively small lists in simple programs. They are easy to un-
derstand and code. Analysis will show, however, that they are too inefficient to use for
large lists.
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Selection Sort

One straightforward way to sorta list is to find the element that is the “least” according to
the specified ordering and swap it with the element that’s at the beginning of the list. Then
swap the element that belongs second with the element that’s at the second position in the
list. Next, the third-least element is swapped with the third element in the list, the fourth-
least element with the fourth, and so on until the last position in the list is reached. This
method is called selection sort, since it steps through the positions in the list selecting for
each one the element that belongs there.

Here’s how a simple sequence of numbers would get sorted. In each pass, the two
numbers just exchanged (or the one that happened to be in the right place already) are un-
derlined.

original: 58367241
after pass 1: 18367245
after pass 2: 12367845
after pass 3: 12367845
after pass 4: 12347885
after pass 5: 12345867
after pass 6: 12345687
after pass 7: 12345678

Any of the list implementations shown above could have included selection_
sort. In fact, the algorithm doesn’t depend at all on the list’s representation, so the code
would be the same in each module. The sorting function would compare pairs of ele-
ments using their type’s compare function. Some types can be ordered in more than one
way — for instance, names by first or last name. To allow for that possibility, sorting
functions should take optional arguments that are functions of two elements returning an
order. The default value for that optional argument would be compare,

The first pass of a selection sort of ‘N elements must make ‘N-1 comparisons to find
the least element. The second pass makes one less comparison, since it skips the least el-
ement that was just moved to the first position. The third pass makes ‘N-3 comparisons,
and soon. The final pass just compares the last two elements in the list. The total number
of comparisons is

(N-1)+('N-2)+('N-3)+ . . . +3+2+1

Rearranging the terms so the first and last are paired, the second and second to last are
paired, etc., gives

((N-D) + 1)+ ((N-2)+2)+ ((‘N-3)+3)+ . . .
=N+ N+ N+N+ ...
=N/2*N
= N%/2

This shows that selection sort performs O('N?) comparisons. O('N?) denotes a quadratic
algorithm.

What about the number of exchanges performed by selection sort? At most one ex-
change is performed on each pass, so at most the number of exchangesis N-1. (If the K
least element happens to be in the & position, no exchange will take place on the K
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pass.) The number of moves is therefore at most 3(‘N-1). This shows that selection sort
is linear with respect to moves.

Insertion Sort

A similar approach turns things around: instead of selecting for each position the element
that belongs there, each element is considered in turn and moved directly to the position
where it belongs among the already sorted elements. As the sorted part of the list grows,
the unsorted part shrinks, The first pass considers the first element already sorted and
starts with the second element. Each pass starts at one element past where the previous
pass started. This approach is called insertion sort.

Here’s the result of the passes made for the sequence shown earlier. For each pass,
the number that got moved into position is underlined. Note that subsequence numbers
are moved down one position. A vertical bar separates the sorted part from the unsorted
part and therefore indicates the number that will be repositioned on the next pass.

original: 6 2 4
after pass
after pass
after pass
after pass
after pass
after pass

after pass
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The first pass compares the second element only to the first. The second pass com-
pares the third element with at most the first two — “at most” because the comparisons
end once an element is found that does not belong before the one being inserted. The K™
pass compares the element at position K+1 to at most K others. Each pass performs at
least one comparison. Since itis equally likely that the element being inserted will end up
in one position as any other, and the K™ pass could make as few as 1 and as many as K
comparisons, the average number of comparisons performed on the K™ pass is /2.
Since there are K-1 passes, the worst case number of comparisons is

1+2+ ... +N-2+N-1
=N/2*N
= N%2/2

Oddly, the worst case for insertion sort occurs when the list starts out in sorted order!
(There are other ways to formulate the algorithm such that the already sorted list is the
best case, but then a reverse-ordered list would be the worst case.) The average case would
add the series of K/2 values instead of K’s, so it’s just half the worst case. Either way, the
number of comparisons is again O( N2,

The number of moves on the first pass is either W or N-1, depending on whether
the second element belongs before or after the first. The second pass will move as many
as ‘N and as few as N-2. Therefore, in the worst case, the number of moves performed on
pass K is always ‘N, corresponding to the situation in which the list starts exactly
backward. Since there are N passes, the worst case is N2, The average is also O(‘Nz),
though the algebra is a little more difficult to work out. Of course, if a linked list is used,
then movements are dramatically reduced because the element to be moved can simply be
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removed from its current place in the list and inserted in its new place — subsequent ele-
ments do not have to be moved.

Bubble Sort

Another simple approach, called bubble sort, works by comparing and possibly exchang-
ing pairs of adjacent elements. A pass is made through the list comparing successive pair
of elements: the first two elements, then the second and third, then the third and fourth,
and so on. Each pair of elements that are out of order relative to each other is exchanged.
On the first pass, the element that belongs last in the ordering will “bubble” up to the end
of the list because it will be swapped with each element and then compared to the next.
On the second pass, the second-largest element will bubble up to the next-to-last position,
and so on. Each pass can therefore make one fewer comparison, ignoring the elements
that have already bubbled up to their proper place. The Kt pass makes K-1 compari-
sons and as many as K-1 exchanges. Note also that exchanges take three moves to per-
form.

Animprovement is to notice whether any exchanges were made at all, and if not, ter-
minate the algorithm without finishing the remaining passes. Once a pass makes no ex-
changes, subsequent passes will have no exchanges to make either. The list will already be
sorted once no exchanges occur.

Here’s an illustration of bubble sorting the example sequence. The pairs compared
at each step of each pass are underlined.
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23415678
231d5678
pass 6: 23145678
21345678
pass 7: 21345678

Ignoring the improvement that stops as soon as the listhappens to be sorted, the Kt
pass makes N-K comparisons. The sum over all the passes is

N-1+N-2+...+2+1
=N/2*N
= N2/2

The original order of the list does not affect the number of comparisons at all — it’s the
same in the best, average, and worst cases! Although the worst case isn’t any worse than
insertion or selection, bubble sort’s best and average cases are as bad as its worst case,
which is decidedly not true for the other two approaches.

Stopping when the list is already sorted reduces the number of comparisons made
in the best case to O(‘N). The best case would be when the list is already sorted, and only
one pass of ‘N-1 comparisons would be needed to determine that the list is already sorted.

The number of actual exchanges, and therefore moves, does depend on the initial
order. In the best case, when the list is already sorted, no exchanges occur. In the worst
case, an exchange will occur on every comparison, which is O(V?). Allin all, this is nota
useful sorting technique.

Implementation for Linked Lists

Here is code implementing these three simple sorting methods for linked lists. The Sort
member functions will take an argument that indicates how the elements will be
compared. The argument must therefore be a pointer to a function that takes two ele-
ments and returns an order (AFTER, EQUAL, or BEFORE). A null pointer will indicate that
the normal compare function for the element type should be used. (Actually, since the
structures shown in this book are constrained to contain pointers to elements, and com-
pare is defined to compare objects rather than pointers, for a null comparison function
the Sort functions will also dereference the pointers stored in the list before calling
compare.) For convenience, we’ll include a typedef for this pointer-to-function argu-
ment,

Two other member functions are added here. The code for the sorting functions
will be somewhat simplified by pulling out the awkward expression that compares the el-
ements to a separate (private) member function elts_in_order. We also add a public
member function that is more convenient to introduce here but is actually an Attribute:
sorted. Like the Sort functions, it takes a pointer to a comparison function as an argu-
ment; it returns a Boolean indicating whether or not the list is sorted according to that
comparison function.
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template <class elt> struct linked_list
{
o AN
typedef order (*compfn)(elt, elt);
private:
static bool elts_in_order(link, 1ink, compfn);
public:
bool sorted(compfn = 0); // Attribute!
void selection_sort{(compfn )
void insertion_sort(compfn = 0);
void bubble_sort{compfn = 0);
void merge_sort{compfn = 0):

The selection sort routine divides the list into sorted and unsorted parts. The vari-
able end points to the end of the sorted part. The function loops repeatedly, removing the
element following end, inserting it in its proper place in the sorted part of the list, and in-
crementing end. In essence, this is a nested traversal. Bubble sort is a similar nested tra-
versal, but it always restarts at the beginning of the list and stops at one position earlier
each time.

template <class elt>
bool Tinked_list<elt>::elts_in_order(link 11, Tink 12,
order (*fn)(elt, elt))

{
return AFTER != ({0 == fn)
? compare(*11->getE1t(), *12->getE1t())
: fn(11->getE1t(), 12->getE1t()));
}

template <class elt> bool linked Tist<elt>::sorted(order (*fn)(elt, elt))
{

reset();
if (lnext()) return TRUE; // empty I1ists are inherently sorted!
1ink prev; // internal traversal can grab pointer

while (prev = cur, next())
if (lelts_in_order(prev, cur, fn))
return FALSE:
return TRUE;
}

template <class elt>
void Tinked_ Tlist<elt>::selection_sort{order (*fn)(elt, elt))
{
// a two-level traversal: for each outer, find the least element inner
// remaining from outer to the list end and switch it with outer.
link outer = firstnode;
while (endmark != outer)
{
link inner = outer;
link least = inner;
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while (endmark != (inner = inner->getNext()))
if (elts_in_order{inner, least, fn))
least = inner:
i.exchange(least->getE1t(), outer->getElt());
// Note that this leaves the nodes in place and just
// exchanges their elements.
outer = outer->getNext();

}

template <class elt>
void Tinked_list<elt>::insertion_sort(order (*fn)(elt, elt))
{
if (endmark == firstnode || endmark == firstnode->getNext())
return; [/l empty and 1-elt lists are inherently sorted

Tink end = firstnode->getNext();
Tink x; /! the node being inserted

// To facilitate coding, we'll start with the third node,

// after exchanging the first two if they are out of order.

if (lelts_in_order{firstnode, end, fn))
::exchange(firstnode->getE1t(), end->getE1t()):

while (endmark != (x = end->getNext()))

{
end->setNext{x->getNext()); // remove X
if (elts_in_order{(x, firstnode, fn))
{
x->setNext(firstnode);
firstnode = x;
}
else
/1 1 is a link to the node just before the one we will
// compare x with: to insert x before the node it belongs
// before, we'll need the predecessor of that node.
{
link 1 = firstnode;
while (1 I= end &&
lelts_in_order(x, 1->getNext(), fn))
1 = 1->getNext();
/! x goes after 1, either because it belongs
/! before 1's successor or because 1 is the end
// of the sorted part of the Tist.
x->setNext(1->getNext());
1->setNext(x);
if (1 == end) end = x; // x is the new end
}
}

}

template <class elt>
void linked_Tist<elt>::bubble_sort(order {(*fn)(elt, elt))
{
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if (endmark == firstnode) return: // empty lists are sorted

/! We don't trail a pointer because we just exchange pairs of elements,
/! Teaving the nodes Tn place. This simplifies the coding.

1ink end = endmark:

while (firstnode 1= end)
{
link 1 = firstnode:
while (end != 1->getNext())

{
if (lelts_in_order(1, 1->getNext(), fn))
si1exchange(1->getET1t(), 1->getNext()->getEl1t());
1 = T->getNext();
}
end = 1;

8.3.3 Better List Sorting

The three of the previous algorithms are fundamentally quite similar. All work by making
a series of passes over the list. With each pass, one more component is placed in its proper
place. A list of N components therefore requires ‘N passes to sort. With selection and
bubble sort, each pass considers one fewer component than the previous one, while in an
insertion sort, each pass considers one more component than the previous one. Either
way the number of comparisons averages out to about N/2. The algorithms are quadratic
because they require N passes of ‘N/2 comparisons — a total of about N2,

A more efficient approach is to rearrange and divide the list into sublists that are
sorted separately then brought back together. Here are two classic algorithms based on
that idea.

Quicksort

The Quicksort algorithm was discussed in Section 5.4.3 on page 163 as an example of
recursion. Recall that it works by splitting an array into two parts around a pivot value, in
the process swapping elements so thatall the elements in the first part are less than or equal
to the pivot and all the elements in the second part greater than the pivot. Then the pro-
cess is repeated recursively on each of the two subarrays — from the beginning through
the pivot and from the element after the pivot through the end. Because sequential lists
are implemented using arrays of elements, Quicksort can be used to sort them. However,
the algorithm as described would not be applicable to linked lists, since it depends on in-
dexed access of the list’s components.

Since the pivot is not included in either sublist, both sublists are guaranteed to be
smaller than the original list, even if one of them is empty. A sublist with just one element
doesn’t need sorting. A sublist with two elements can be sorted directly by conditionally
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exchangingits two elements. Only lists with more than two elements are sorted recursive-

ly.

Here’s the process for the short sequence of integers used to illustrate the other sort-
ing methods. The pivotis underlined, and the location of the upper and 1ower indices are

shown as they move through the list until they cross.

to sort original: [ 5836772
prepare split: [ 583672
L
traverse: [ 583672
L
[513672
L
[ 513672
L
[ 513472
LU
[513427
UL
swap pivot with U: [213457
UlL
return 4 (0-offset), Teaving tasks 1A and 1B
(1A) to sort 0 thru 3: [2134715
prepare split: [2134175
U
traverse: [2134715
UL
swap pivot with U: [ 123415
Ut
return 1, leaving tasks 2A and 2B
(2A) to sort 0 thru 0: [112345
{2B) to sort 2 thru 3: 1203415
{18) to sort 5 thru 7: 1234517
prepare split: 123451[ 17
traverse: 12345107

1]
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swap pivot with U: 12345[678]1]
UL
return 6, Teaving tasks 3A and 3B

(3A) to sort 5 thru 5: 12345617178

(3B) to sort 7 thru 7: 1234567081

The exact analysis of Quicksort can become fairly sophisticated. There are various
ways to choose the pivot, with different consequences for best-, average-, and worst-case
performance. We can take a simple look at Quicksort’s basic characteristics, though,
without getting into such details. The analysis is simplified by assuming that the size of
the file is a power of two, because the split process can be thought of as dividing the file in
half.

In each split, the traversals end up comparing each element with the pivot, as can be
seen by examining the initial split in the above example, so splitting an subarray of K ele-
ments takes K-1 comparisons. Then the list is split into two subparts whose combined
size is just one less than the original list. (The pivotis notin either part.) The splitof each
of those parts will make one fewer comparison than the size of the part. Since the size of
the two parts together is N-1, the total number of comparisons for splitting the two sub-
lists is (IN-1)-(1+1), or ‘N-3. Each of those two sublists will then be split into two, giving
four altogether, but their sum too will be approximately N, and nearly N comparisons will
be made while splitting those four.

We can consider a “pass” to be the splitting of each of the sublists produced from a
previous pass. Initially there are NV elements and one sublist. The first pass produces two
sublists, the second pass four sublists, etc. Each split removes a pivot element from fur-
ther consideration, and some of the sublists may have zero, one, or two elements, but ig-
noring such complications doesn’t disturb this analysis. In fact, since sublists of two
elements still require a comparison to be sorted, they too perform one fewer comparison
than the number of elements they contain. The splitting can continue pass by pass until
no sublist has more than one element.

Suppose that every pivot happens to split its sublist exactly in half. Then with N the
size of the initial list, the size of the pass 1 sublists will be (approximately, since the pivot
is in neither sublist) N/2, the size of the pass 2 sublists /4, etc. Each pass performs ap-
proximately ‘N comparisons in splitting its sublists.

How many passes are needed to get down to lists of only one element? Since the x®
pass produces sublists of size N/2%, the question can be rephrased as “for what value of
K is 2% = N?” The answer is the base 2 logarithm of N, since the definition of a logarithm
of a number is the power to which a base must be raised to equal that number.

Thus, when all the splits happen to produce sublists of essentially equal size, approx-
imately ‘N comparisons will be made on each of log,N passes. Therefore, the algorithm
performs O('N log,N) comparisons — more than N but less than V2. What about the
number of exchanges? There is at most one exchange for every two comparisons, so there
certainly won’t be more moves than comparisons.

What happens if the split is less balanced? Consider an already sorted list:
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prepare split: [12345678]
L U

traverse: [12345678]
L U

[12345678]

L u

and so on, with L staying at 2 and U decreasing until:

[12345678]
L

1
U

In other words, after ‘N-1 comparisons, the pivot ends up being exchanged with itself
(which of course could be skipped by a special test in the code). The resulting subarrays
are an empty lower one and an upper one that’s just the original without the pivot. This
would continue, with each pass making one fewer comparison and generating an empty
lower subarray and an upper subarray with one fewer element. This would take N-2
passes to produce an empty subarray and a subarray with just two elements, which could
then be sorted with one comparison. The total number of comparisons will be

N-1+N-2+ ... +1
=N/2*N
= N2/2

An already sorted file leads to the worst-case result of O( N%) comparisons!

Different methods for choosing the pivot lead to different patterns of best and worst
cases. The analysis for a list whose size is not 2% for some integer K is more complicated,
but produces the same results. More sophisticated analysis dispels the spectre of the
worst case: it turns out that on average, Quicksort performs very close to O('Nlog,N)

comparisons.

Note that the other three sorting methods shown above don’t use any extra space,
but that Quicksort requires either an explicit stack or the use of the program stack via re-
cursive calls. Thisintroduces further overhead. However, the stack can never grow deep-
er than N» since each split removes the pivot from further consideration. Consequently,
this extra space, though a factor, grows only linearly with the size of the list to be sorted.
All in all, Quicksort is generally about as good at sorting sequential lists as any algorithm
could be, though it is not suitable for linked lists.

Merge Sort

Quicksort splits a list in half by rearranging it so that elements are placed into the sublist
where they will ultimately belong. Then it recursively sorts each half. The comparisons
are performed during the split process. Another approach, ased by merge sort, splits the
list in half without rearranging it, recursively sorts each half, then collates the two sorted
halves. Merge sort does its comparisons during the collation steps. (There’s no collation
in Quicksort, because the exchanges make the two sublists independent of each other.)
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Like Quicksort, therefore, merge sort is O(Nlog,N) for average cases. Unlike
Quicksort, merge sort turns out to be O(N log,’N) even in the worst case. For linked lists,
merge sort is just about optimal. Merge sort would not be so useful with array-based lists
because the split and merge process would have to copy elements into arrays allocated for
the purpose, thus taking up significant amounts of extra storage and time allocating and
deallocating it. Merge sort does not need extra storage for linked lists due to the pointer
manipulations their nodes make possible.

The basic idea of merge sort is simple. A list is split in half by the manipulation of
pointers to its nodes, which requires a traversal but no comparisons and thus is fast
enough to ignore in the analysis. Each half is separately sorted; then the two halves are
collated. Since the two halves were each in order before the collation, the collation results
in a sorted list. Note the recursion: to sort the list, each of two halves is sorted; to sort a
half, each of two of its halves are sorted, and so on. This continues until lists with only one
element are reached, much as in Quicksort, which are inherently sorted.

Collation, or merging, is performed as follows: the first elements of the two halves
are compared, and the smaller is added to an initially empty temporary list. The pointer
to the beginning of the half that had the lesser element is stepped to point to the next node
inits list. Thatnode’s element is compared with the element that remained at the front of
the other list. The lesser of the two is added to the end of the temporary list, and so on,
until one of the lists is exhausted. Then the remainder of the other list is added to the end
of the temporary list. The temporary list can then be returned as the result of that sort
step.

A brief illustration of the process follows. Implementation is left to Exercise 34.

original: 58367241
sort: (1A) 5836
(split) (1B) 7241
sort 1A:(2A) 5 8
(split)(28) 36
sort 2A: 58
sort 28: 36
merge 2A, 2B: 3568
sort 1B:(3A) 72
{(split)(3B) 4 1
sort 3A: 2 7
sort 3B: 14
merge 3A, 3B: 1247

merge 1A, 1B: 12345678
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8.3.4 Summary of Sorting Efficiency

We found that the three simple algorithms for sorting a sequential list are O('N?) for their
worst and average cases, either in the number of comparisons or the number of elements
moved. Each is O(N) in the best case. Unfortunately, an algorithm’s best case for com-
parison might not be its best case for movement. Variations on these algorithms improve
their performance somewhat or affect what initial order actually is best or worst. (If the
likely initial order is known, in particular that the list is almost sorted or that it is almost
in reverse order, a variation for which that order is the best case could be selected for a par-
ticular program.) We also saw that Quicksort and merge sortare O(‘N log,N), though in
pathological cases Quicksort can be as inefficient as the other methods.

The full mathematical analysis of an algorithm’s sorting efficiency can get quite
involved. The order of the algorithm — linear, quadratic, or whatever — is far more im-
portant a formula for computing the exact number of comparisons or moves. For small
collections, it hardly matters how efficient an algorithms. For large collections, the high-
est-power term of a formula expressing its efficiency so far outweighs the other terms, as
well as its own coefficient, that it ends up being the only thing that matters. For large col-
lections, an O(‘N) algorithm will always be far faster than an O(N?) one. O(‘N log,N) is
always faster than O(‘N?) and slower than O(‘N).

Table 6 shows some representative values of these orders, to give a more concrete
sense of how they increase.

N N Iogz N N2
10 33 100
100 664 10,000
1,000 9,966 1,000,000
10,000 132,877 100,000,000

Table6 Representative Values for Common Efficiency Orders

A logarithmic graph of these sample numbers, such as the one shown in Figure 8.7, shows
the relationship of the three different orders quite clearly.
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Figure 8.7 Logarithmic Scale Illustration of Some Algorithm Orders

8.4 EXERCISES

1. What term do you think best describes the various kinds of list structures? Discuss the applica-
bility of each of the following terms to the list implementations discussed in this chapter. Point
out where strictly speaking a term doesn’t quite apply even though it may communicate an ap-
propriate conceptual property. Also mention any other kinds of structures you know about
that could be described by each of these terms, making it less useful for categorizing lists.

(a) ‘linked structures’

(b) ‘recursive structures’
(c) ‘dynamic structures’
{d) ‘linear structures’

(e) ‘sequential structures’
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2.

A common operation on linear structures is to extract a subpart of the structure, for instance the

first (or last) n characters of a string or elements j through k of a list. Reasonable names for

these functions are prefix, suffix, and subX, where X is the name of the structure (e.g.,

substring).

(a) What kinds of operations are these in the framework of fundamental operations used in
this book?

(b) Should they be added to this chapter’s list modules, or can you just program them with the
facilities the list modules already provide?

Sequential Lists

3.

4.

7.

Write a program that makes a list of all the words found in a file, using the sequential list
module. The words can be listed in any order. Aim to make the program as simple as possible.

Write a program that uses sequential lists to write a very simple text editor, as follows:

(a) Afileis represented as a list of lines.

(b) Alineis represented as a list of words, defined as a sequence of printing characters, includ-
ing punctuation.

(c) “Currentline” and “current word” positions are maintained; initially, they are both 1 (first
word of first line).

(d) Commands should include, for both lines and words, forward (changes current position),
backward (changes current position), insert before, insert after, delete, replace, move for-
ward, move backward, and move to. The only way to edit characters in this very simple ed-
itor is to replace the word in which they are contained.

(e) A special insert mode should be available that allows the user to type lines of words at the
keyboard and have them inserted at the current position.

(f) Include a print function that prints a range of lines.

Modify the sequential list implementation from the first section of this chapter to dynamically

grow and shrink the array holding the list elements. The old array should be replaced by a new

one allocated from the heap, the old one’s elements copied to the new one, and the old one freed.

(a) What schemes can you think of for determining how much to grow or shrink the array?

(b) This approach removes the most serious limitation of sequential lists, that they store ele-
ments in fixed size arrays; what new drawbacks does this approach introduce?

. Write seq_1ist::merge, declared but not implemented in the code shown for the sequential

list module. This should produce a new list by alternately adding elements from each of its two
arguments until one runs out, then adding the rest of the other’s elements.

Write operator>> for the sequential list module.

. An alternative way to implement sequential lists uses a different strategy for delimiting the list

within the array. No l1ength field is maintained. Instead, the entire array is always considered,

with a null pointer indicating an array element that does not contain a list element. Newly add-

ed elements may be stored anywhere there’s a null pointer, though to preserve order it will still

often be necessary to shift some elements down in the list.

(a) Modify the sequential list implementation from the first section of this chapter to use this
approach.

(b) What are the advantages and disadvantages of this approach over using an explicit Tength
field and shifting elements around for insertions and deletions?
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9.

10.

11.

12.

13.

14

15.

16.

17.

Reimplement either the stack module of Chapter 5 or the queue module of Chapter 6 using a
sequential list.

(a) What are the advantages of using sequential lists as a foundation for stacks and queues?
(b) What are the disadvantages?

Some of the sequential list member functions use sequential list traversal functions as opposed
to more direct, lower-level code.

{a) What advantages does this approach have?

(b) What are its disadvantages?

(c) Recode some of these member functions so that they don’t use traversal functions.

(d) Comment on the rewritten code.

In sequential_list::operator=, if the destination list’s array is at least as large as the
source list’s, it is left alone rather than deleted and a new one allocated. The discussion of that
function suggested that another approach would be to always delete the source list’s elements
array and allocate a new one. Compare the two approaches.

(a) Inwhat ways is the alternative better?

(b) In what ways is the alternative worse?

The allocation of the new list in seq _1ist::append is set to the sum of the allocations
of the lists being appended.

(a) Isthis a reasonable design choice?

(b) What are some other approaches you can imagine?

(c) What are the advantages and disadvantages of the other approaches?

Rewrite seq _1ist::compare, seq_1ist::equal, and seq 1ist::append to use traversal
operators and compare the two versions.

Write a function sub11ist that takes two lists and returns a Boolean indicating whether the first
list is a sublist of the second in the sense that the second list contains the same elements in the
same order as the first list but may also have other elements following those.

(a) What kind of fundamental operation is this?

(b) Can you think of an application where it would be useful to have such a function?

The definition of seq_11ist: : append begins by allocating an empty local list. It then traverses
the two lists, adding each of their elements to the new list. Another approach would be to start
with a copy of the first list, then traverse only the second.

(a) Write, test, and debug a definition of seq_1ist: :append that takes that approach.

(b) Which do you prefer? Why?

The definition of seq_11ist: :reverse is clever — perhaps so clever as to be highly artificial.
(a) Rewrite the function taking a more natural approach.

(b) Compare the two versions. Which do you like better? Why?

Augment the sequential list module to give the user control over how the output operator de-
limits lists (instead of always enclosing them in parentheses) and how it separates list elements.
Use static members so that each list doesn’t get its own output control state.

Linked Lists

18.

19.

Change the program in Exercise 4 so that it uses linked lists instead of sequential lists. How
much did you have to change in the application program?

Add remove_equals(elt), removel_equals(elt),replace_equals(elt),andre-
placel _equals(elt) tothelinked list module. What other functions might have different
versions for equality, as opposed to identity, tests?
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20.

21.

22,

23.

24.

25.

26.

27.
28.

Other variations of operations that search for matches — in particular Remove and Search —

are sometimes useful. In particular, several functions that take an element as their argument

could also take a function of one element that returns a Boolean.

(a) Add afunction contains_if that tests whether the list contains an element for which the
function argument returns TRUE.

(b) Addaremove_if function to the linked list module that removes from the list any element
for which the function argument returns TRUE.

(¢) Canyou think of any other functions from the linked list module for which a similar varia-
tion would be useful?

Consider changing the linked list representation so that length is explicitly stored and main-
tained.

(a) How does this affect the implementation?

(b) Does this seem like a good idea?

Modify the linked list module to keep track of the last node, for efficiency.

(a) How much of your code did you have to change?

(b) Runsome tests to compare the efficiency of adding elements to the end of the list in the two
implementations.

(¢) What price is paid to keep track of the last node?

Modify your linked list module to be doubly linked, extend the traversal operations to handle
generating predecessors (prev) in addition to successors (next), and try out reverse traversal.

Some of the linked list member functions use sequential list traversal functions as opposed to

more direct, lower-level code.

(a) What advantages does this approach have?

(b) What are its disadvantages?

(c) Recode some of these member functions so that they don’t use traversal functions.

{d) Comment on the rewritten code.

(e) What criteria could you suggest for deciding whether to use traversal functions in coding a
module’s own functions?

The way computers store integers limits their magnitude. Applications may require integers of

arbitrary (unlimited) size. One approach to implementing unlimited integers is to use a list to

hold the pieces of an integer. At the extreme, each node could hold just one digit, but it is more

practical to put a full-size regular integer in each node. For example, if 16-bit integers are stored

in each node, a list of two nodes would represent one node’s integer plus 2!° times the other’s.

Implement and demonstrate the use of an unlimited-size integers using a list module,

(a) What kind of list makes sense?

(b) What operations should be provided? Include them in your implementation.

(c) Are these unlimited integers data structures?

(d) Ifso, what are their components?

(e) Write aprogram that allows a user to perform very simple operations on unlimited integers
by typing expressions such as 1455523997360 + 559012424555 at the terminal.

Redo the card shuffle exercise from the chapter on streams (Exercise 4, page 141) using lists to

represent decks.

(a) How much of the program did you have to change?

(b) The linked list module doesn’t support splitting lists.

Implement a set module based on linked lists.

Reimplement either the stack module of Chapter 5 or the queue module of Chapter 6 using a

linked list.

(a) What are the advantages of using linked lists as a foundation for stacks and queues?



Sec. 84 EXERCISES 269

29.

30.

(b) What are the disadvantages?

(c) How does an implementation based on linked lists compare to one based on sequential
lists? (Cf. Exercise9.)

Consider the final version of the linked list module, where there is no node array.

(a) Should freelist, newnode, and free(1ink) bepartof 1ist or partof 17st_node?

(b) In the first versions, there are good reasons for putting these in 1ist. What are they?

(c) How would the code be affected if you moved these from 11 st to node?

(d) Recode the module making this change.

(e) Compare the two versions.

A sparse matrix is a large matrix (we’ll assume two-dimensional here) most of the values of
which are the same (normally zero). It may not make sense to allocate a huge amount of mem-
ory to hold a relatively small number of nondefault values. (Consider, e.g., the identity matrix
of a thousand rows and a thousand columns.) Design, implement, and test a sparse matrix
module based on the following approach. Make sure you allow the user to specify the default
initial value for all elements of the sparse matrix.

(a) Have a sequential list of linked lists, one for each row. The entries in the lists are cells con-
sisting of a column number and value. Access of the element in row r and column c is per-
formed by searching the linked list for a cell whose column numberisc. Adding an element
to the matrix involves creating a cell for it and inserting it into the linked list corresponding
to its row. How much space is taken for a sparse matrix with one nondefault value? What
are the performance characteristics of Access/Modify operations?

(b) How would it help or hurt to store the lists so that the cells were ordered according to col-
umn?

(c) Once your module is working, considering changing it to work with sparse matrices of in-
definite size. (That is, the size is never specified — if a larger row or column than has been
seen before is specified, the matrix in effect grows.) Have lists only for rows with nonde-
fault elements; this leads to using a linked list of rows instead of a sequential list, and now
the cells have to include row numbers. What change had to be made in your test program
or application to accommodate this change to the module? How have the performance
characteristics of Access/Modify operations changed? How much space is required to store
a sparse matrix with one nondefault value?

Sorting Lists

31.

32.

33.

34.
35.

36.

Show the sequence of passes involved in alphabetically sorting the names of the days of the week
according to the insertion, selection, and bubble sort methods shown in Section 8.3.2, starting
on page 252.

What is the best-case ordering for the insertion sort algorithm as described in Section 8.3.2
(page 254)%

The text in Section 8.3 explicitly shows base two for the logarithms in the efficiency analyses.
Actually, the base is normally not specified in such discussions. What property of logarithms
allows the base to be omitted in efficiency characterizations such as O(N logN)?

Implement merge_sort, declared but not implemented in the linked list module.

Add simple Sort operations to the sequential list module, similar to the ones shown for linked
lists:

(a) selection sort

(b) insertion sort

(¢) bubble sort

Code for Quicksort was presented in Section 5.4.3 (page 163), but that was for sorting arrays.



270 Lists Chap. 8

(a) Add quick_sort to the sequential list module. (Use a recursive formulation instead of
explicit stacks.)

{b) Was the code very different from the code for arrays? Why?

{(c) Describe how you would implement Quicksort for linked lists (the final, pointer-based ver-
sion) and comment on what that reveals about the nature of linked versus sequential lists.

37. The book’s string struct contains a static data memberstring: :compares that is initialized to
0 and initialized every time compare(string&, string)iscalled. It’s public, so you can use
and set its value directly. Gather statistics about the number of comparisons performed in sort-
ing several different size lists of strings — say, 10, 50, 100, 500, and 1000 elements — as follows:
(a) Show results for sorted lists, reverse sorted lists, almost sorted lists, and random lists for in-
sertion, selection, and bubble sort.

(b) If merge sort is available (provided by the instructor or implemented for Exercise 34), in-
clude that too.

(c) Similarly, if quick sort is available (provided by the instructor or implemented for Exercise
36), include that too.

(d) Use either the sequential or linked list implementations as convenient; you can even use
different kinds of lists for different sorting methods.

38. Aninteresting question for a sorting method is whether it leaves equal elements in the same rel-
ative order. A sorting method is called stable if for every pair of elements in the original list, the
first of the pair appears before the second in the sorted list.

(a) Which of the algorithms shown in the text are stable and which aren’t?

(b) Construct an example that demonstrates instability for each of the algorithms you decide
are unstable. (Ifyou try to test your example with one of the sorting routines provided on-
line, it will help to use as elements a type that distinguishes instances that test equal, perhaps
by using an “id” field that is printed but not considered by equal.)

39. Bubble sort can be speeded up by reversing direction on each pass. In the formulation in the
text, elements that belong near the end of the list quickly reach their final position, but elements
that belong near the front move only one step closer to the front on each pass. Byfollowingeach
front to back pass with a back to front pass, elements that belong near the front reach their final
positions quickly too.

(a) Implement this version.

(b) Gather statistics for the performance of both versions. (See Exercise 37 for information
about string::compares.) Include sorted lists, reverse-sorted lists, almost-sorted lists,
and random lists.

A Major Project

40. Linked lists are an excellent foundation for the representation of polynomials. Implement a
complete polynomial module then write a program to perform interactive polynomial
arithmetic. Details follow.

(a) For this exercise, define a polynomial as a sequence of terms, each consisting of a coeffi-
cient, one single-letter variable name, and an exponent. Each coefficient consists of a sign
and an integer. Exponents consist of an optional sign and an integer. Terms do not have
to be in any particular order, but assume that there’s only one term with a particular expo-
nent in any polynomial. White space is allowed between any two pieces of a term, includ-
ing between a sign and an integer.

(b) Commands are to be read from cin and echoed along with appropriate responses to cout,
though during development you’ll probably want these to be files. Each command will oc-
cupy a single line. If there is any kind of input error, it should be reported and the entire
line skipped.
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(c)

(d)

(e)

)

Single-letter names will be used to refer to polynomials. Use the array module from Chap-
ter 2 to create an array of (pointers to) polynomials, indexed by character. You may allow
either or both of upper- and lower-case letters, as convenient.

The commands your program should handle include the following. In the description of
these commands, poly refers to a polynomial, name refers to a single letter, int to an integer,
and op to an operation (such as +). The command descriptions include C++-style com-
ments.

let name be poly // read poly and store in table[name]
eval name with int // evaluate tabielname] for int
show name // output tablel[name]
copy namel to name? // copy table[namel] to tablefnameZ]
do namel op name2 // create & print the polynomial that

// is the result of table[namel] op table[nameZ2]
save name // store result of last do in tablelname]
free name // destroy table[name]
end // exit program, printing all polynomials

// still in table, along with their names

Polynomials should be represented as linked lists of terms. Store the terms in order of their
exponents. Algebraic operations should be performed by creating a new (empty) polyno-
mial for the result, generating the terms without worrying about zero coefficients, then
eliminating terms with zero coefficient. (Be warned that the traversal operations of the
linked list module do not support removing elements in the midst of a traversal. You
should use the remove_1if function described in Exercise 20. If that is not available, re-
peatedly traverse the list looking for an element with a zero coefficient, invoke remove on
it, then restart the traversal, searching again until the traversal completes with no zero-co-
efficient term found.

Do notlet yourself get bogged down in processing input. Reading command lines and check-
ing for errors can be a highly demoralizing coding challenge. One problem with a tradi-
tional approach to input is that there may be many nested levels of syntactic structures and
each input operation has to report success or failure to its caller; then each caller has to
check the rzsult to make sure it’s OK to proceed. Code is quickly swamped under all this
testing and returning error conditions.

The way this assignment is constructed, aline is either correct or not. Your program
does have to check for error conditions, but when one is found your program can just abort
input and go on to the next line (freeing a partially constructed polynomial if applicable).
The overall structure of the input process for a command is:

ReadCommandLine
ReadCommand
ReadName
ReadKeyword
ReadPolynomial
ReadTerms
ReadTerm
ReadCoefficient
ReadSign
ReadValue
ReadVariable
ReadExponent
ReadSign
ReadValue
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(g)

(h)
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(The sign and value must be read separately for coefficients and exponents because
white space may occur between them.) Suppose the program encounters an error while
reading a coefficient. Should it go back through ReadTerm, then ReadTerms, then Read-
Polynomial, and finally ReadCommand, each one checking whether the next succeeded or
failed? No! The program should just abandon the whole mess, clean things up, and start
fresh with the next line,

What's needed is a mechanism for aborting from within a series of function calls and
returning to a designated place. True exception handling is ideal for this, but C’s Tong jmp
facility can work if used carefully. The main thing to watch out for is that the space used by
the partially constructed polynomial is appropriately recycled.

The polynomial module should be organized according to its fundamental operations.
You should think first about what operations a polynomial module needs before worrying
about what operations are needed for this particular program. You should atleast include
declarations for all appropriate functions, even if you only implement the ones you actually
use,

Comment on the advantages and disadvantages of the modularization approach advocated
in this book based on your experience with this project.



Trees

Trees are important data structures with a wide variety of applications. Inatree, eachitem
has one or more successors, called its children. Figure 9.1 shows a tree illustrating the or-
ganization of the data structure chapters of this book. Note that trees are drawn upside
down relative to their real-world analogues.

Data Structures

( Storage Structures) ( State Structures) ( Linked Structures ) @ssoaanon Strucrures

Figure9.1 A Tree

Array @@ Stream

An element’s predecessor is its parent. Indirect predecessors are called ancestors
and indirect successors descendants. Binary trees, in which each element may have at
most two successors, are an important special case.

The firstelement of the tree is called its root. Every element has a predecessor except
for the root. Elements with no successors are called leaves or terminals. Elements that do
have successors are called internal nodes.

The depth of an element is its distance from the root. The de% of the root is de-
fined to be 0, the depth of each of its children is 1, and so on. The n'" level of a tree is the
set of all its elements at depth n. The height of a tree is the maximum depth of its nodes.
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A subtree is an element plus all its descendants. A forest is a collection of disjoint
trees. The trees of a forest can be connected to form a single tree by joining them to a new
common root,

Like linked lists, trees are composed of nodes connected by pointers. Whereas a
linked list node has a pointer to one successor, a tree node may have pointers to more than
one. This simple difference introduces some interesting complexity that profoundly af-
fects the public interface of tree structures.

Because lists are linear, they combine the properties of simple sequential structures
like arrays with the flexibility of other linked structures. Asinan array, a list element may
be accessed individually by specifying its position. Unlike arrays, streams, stacks, and
queues, lists support insertion and deletion of elements at arbitrary positions. Because
each node has at most one successor, traversals and traversal-like operations (such as
finding the position of an element) can be coded as simple loops.

Trees are more complex thanlists. Since each node can have more than one succes-
sor, trees are not linear structures. This affects their representation, the coding of their
operations, and even the role their nodes play. There’s no such thingas the n' element of
a tree — access is always by navigation from one node to the next.

The representation and fundamental operations of trees are similar to those for
linked lists, though complicated by the possibility of multiple successors. The tree repre-
sentation will keep track of a current node for navigation operations. These will support
moving around in the tree and accessing and modifying the current node. Correspond-
ing to the back pointer of doubly linked lists is the option of having back pointers from a
tree node to its predecessor (parent). Many operations on trees are necessarily recursive:
they do something to a node’s element and then to each of its subtrees. Recursive opera-
tions need to manipulate subtrees, not just traverse the structure one link at a time, We
therefore sometimes need to interpret nodes not just as internal components of a tree
structure, but as roots of their own subtrees. Although list operations may be expressed
recursively, it isn’t necessary to do so: because lists are linear, they can always be traversed
iteratively. Consequently, the list implementations of the previous chapter did not need
to support a sublist concept.

Code using a tree sometimes needs to construct or process the tree recursively. The
usual navigation and traversal operations are fundamentally sequential in nature and so
don’t adequately support recursive operations. It therefore becomes necessary to make
tree nodes available outside the module, along with appropriate operations for manipu-
lating them. This contrasts with our list implementation, which was able to completely
hide its private node structure. In effect we need two interfaces to trees: a tree-oriented
one for most operations and a node- or subtree-oriented one for recursive operations. Of
course, we could get by with just the node operations, but they are too low level for most
purposes.

9.1 BinaryTrees
A binary tree is either empty or consists of a root and two binary subtrees, designated left

and right. (Note that this is a recursive definition.) Either or both of a tree’s two subtrees
may be empty. Figure 9.2 shows a binary tree.
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Figure9.2 A Binary Tree

A tree’s two subtrees are distinguished. The two binary trees of Figure 9.3 are not
equivalent., even though they seem to contain the same information.

Figure 9.3 Two Similar but Different Binary Trees

The maximum number of items at the n'" level of a binary tree (with the root at level
0) is 2. (Since each item can have a left and a right successor, the maximum number of
items at one level is twice the number at the previous one.) A full binary tree is one in
which each item has either 0 or 2 children, but not 1. A complete binary tree (of depth n)
is a full one in which all leaves appear at the same level (level ). The number of nodes in
a complete binary tree of depth n is 2"*1-1,

9.1.1 Representation

Binary tree nodes are a straightforward extension of linked list nodes. Each node has a
pointer to an element and two pointers to nodes, as illustrated in Figure 9.4. The two
pointers are normally designated 1eft and right. The nodes will be allocated from a free
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The shaded blocks represent the node contents.

Figure 9.4 Binary Tree Nodes

list, as in the linked list implementation of the previous chapter. For convenience we’ll
continue to use 1ink as the name for a pointer to a node — it sure beats typing binary_
tree_node<elt>* throughout the module!

When linked list nodes were introduced (cf. Section 8.2.2, page 221 ff.), definitions
of all their operations were shown along with their declaration. The rest of the discussion
dealt primarily with the lists themselves. Tree nodes must support richer functionality
than list nodes due to the recursive nature of trees. Therefore, we’ll discuss the various as-
pects of tree nodes in parallel with the discussion of trees, rather than preceding it.

#define 1ink binary _tree_node<elt>*

template <class elt> struct binary_tree_node
{
private:
// Representation
elt elem;
1ink left;
link right;
.

A tree is a root node and some subtrees. Internally, nodes will point to other
nodes — ‘subtree’ will be a concept but not a separate type. We will need a tree type,
though. Allit will contain is a root node and the traversal state. Many operations on the
tree will simply invoke similar operations on the root node. The tree and the root node
are really two perspectives on the same structure.
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template <class elt> struct binary_tree

{
private:
/! Representation
binary_tree_node<elt> root;
/..
};

9.1.2 Lifetime Operations

Node Create/Destroy

Nodes will be allocated from their free list by the static function binary_tree_
node: :newnode. The only time nodes need to be created is when the free list is empty.
Then a block of nodes will be allocated and linked together to form the freelist. The static
data member a17o0cat ion will determine the number of nodes to be created when the free
list runs out. We’ll leave this public so user code can set it according to the needs of each
application. Its value can even be changed repeatedly, to meet the varying needs of differ-
ent parts of the program or phases of its execution. To allow applications to construct
trees node by node — necessary to support recursive processes — we also make newnode

public.

template <class elt> struct binary_tree node
{
i SN
// Create/Destroy
private:
static 1ink freelist;
static void make_freelist();
void recycle(); /! return to freelist
public:
static int allocation;
static 1ink newnode(elt); // allocate from freelist
};

For convenience, and since this is only an implementation detail, we’ll link the
nodes on the free list through their Teft member, rather than using a real list type. The
free list is initially empty — there’s no need to allocate nodes until they are required. Be-
sides, this gives the application a chance to change the value of al1ocation before the first
nodes are allocated. The default constructor (shown further below) links the nodes to-
gether, but the last node’s 1eft must be explicitly set to the null pointer to terminate the
list.

The static function newnode removes a node from the free list, initializes its fields,
and returns it to the caller. If the free list is empty, newnode invokes make_freelist to
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restock it. Note that nodes are always given a particular element, not left empty, and null
left and right members.

Nodes are returned to the free list by recycle and don’t get deallocated until the
program exits. When a node is returned to the free list, its descendants must be returned
too, so recycle must be recursive: it recycles its argument’s left child, recycles its argu-
ment’s right child, and finally puts its argument on the free list. This is the sort of code
that normally appears in destructors. However, since the node isn’t actually getting deal-
located, the normal automatic invocation of the destructor doesn’t occur, and we have to
include it explicitly in recycle,

/* Free List Management */

template <class elt>
binary_tree_node<elt>* binary_tree node<elt>::freelist = 0;
template <class elt> int binary tree_node<elt>::allocation 100;

template <class elt> void binary_tree node<elt>::make_freelist()
{
freelist = new binary_tree _node<elt>[allocation]:
freelist[allocation-1].setlLeft(0);
1

template <class elt>
binary_tree_node<elt>* binary_tree_node<elt>::newnode(elt e)
{
if (Yfreelist) make_freelist();
link nd = freelist;
freelist = freelist->getleft();
nd->setLeft(0);
nd->setRight(0);
nd->setElt(e);
return nd;
1

template <class elt> void binary_tree_node<elt>::recycle()
{

if (left !=0) left->recycle(); /! recursive call
if (right != 0) right->recycle(); /! recursive call
left = freelist;

right = 0;

freelist = this;

Node Initialize/Finalize

Because the module manages its own nodes, client code never directly allocates a node, so
the constructors are kept private. To allow the tree code to initialize its root node the tree
constructor is made a friend of binary_tree_node. This is an interesting half-way kind
of access: client code can use nodes through their operations (including the recycling ver-



Sec. 9.1 Binary Trees 279

sions of Create or Destroy), but it can’t directly create new ones. The destructor is likewise
kept private, and, since the tree destructor will cause the node destructor to be invoked,
the tree destructor must be a friend.

template <class elt> struct binary_tree_node

{
/1
/! Initialize/Finalize

private:

binary_tree_node(); /! free 1ist constructor
binary_tree_node(elt); // root constructor
~binary_tree_node();
friend binary_tree<elt>::binary_tree();
friend binary tree<elt>::~binary_tree();

1;

The code for the node constructor and destructors is trivial. The only noteworthy
point is a little trick used to link nodes together when they are first added to the free list.
In the linked list free list code, for clarity, there was an explicit loop that linked each node
to the next. Here, we make use of two facts to streamline the process. One is that the
nodes are all allocated in an array then all initialized. The other is that we can use C point-
er arithmetic to get the next element of the array — the node we want the one being ini-
tialized to point to. Since the one being initialized is pointed to by this, the following
node is pointed to by this+1,

/* Node Initializel/fFinalize */

/! private constructor: calied only when free list is allocated

template <class elt> binary_tree _node<elt>::binary_tree_node()
: elem(0), left(this+1), right(0)

{

}

template <class elt> binary_tree_node<elt>::binary_tree_node(elt e)
. elem(e), left(0), right(0)

{

}

template <class elt> binary_tree_node<elt>::~binary_tree_node()
{
}

Tree Initialize/Finalize

The constructor and destructor for the tree itself are trivial. The constructor takes an ele-
ment, which will be stored in the root. Strictly speaking, this implementation does not
provide a way to make an empty tree — the tree always has at least a root node. However,
if the root has not left or right subtree and its element is the null pointer, we’ll consider the
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tree empty. A program can therefore create an empty tree by providing a null pointer,
which it can later replace. The destructor is more substantial than the constructor: it re-
cursively recycles the root’s two subtrees.

template <class elt> struct binary_tree

{
/7.
// Initialize/Finalize
binary_tree(elt = 0);
~binary tree();

}:

/* Tree Initializel/Finalize */

template <class elt> binary_tree<elt>::binary_tree(elt e)
: root(e), cur(0), count(-1)

{
}
template <class elt> binary_tree<elt>::~binary tree()
{
clear();
}
Node Access/Modify

Tree nodes have the same sort of simple Access and Modify operations that linked list
nodes did. Here, of course, this a pair of operations for everything dealing with a
successor — one for the Teft child and one for the right.

template <class elt> struct binary_tree_node

{
o
/! Access/Modify
eltd& getE1t(); // return node’s contents
void setElt(elt); /! replace node’s contents
link getlLeft(); // return node’s left subtree
1ink getRight(); // return node’s right subtree
void setLeft(1link); // replace left subtree
void setRight(1ink); // replace right subtree
void addLeft(elt); // add a new left child for elt
void addRight(elt); // add a new right child for elt

void add(elt): // add a new child for elt --
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// left if availabie, else right

void removelLeft(); // remove left subtree
void removeRight(); /! remove right subtree
};

There are some subtle decisions to make about what conditions these functions
assume. For instance, if client code calls setLeft or addLeft, what happens if the node
already has a left subtree? The choice was made to recycle the old subtree for setLeft,but
to report an error for addLeft. Of course, setRight and addRight are treated
similarly. The remove functions are coded to work whether or not the corresponding
subtree is empty.

/* Node Access/Modify */

template <class elt> eltd binary_tree node<elt>::getE1t()
{

return elem;
}

template <class elt> void binary_tree_node<elt>::setElt(elt e)
{

elem = &;
}

template <class elt> link binary_tree_node<elt>::getleft()
{

return left;
}

template <class elt> link binary_tree node<elt>;:getRight()
{

return right;
}

template <class elt> void binary_tree_node<eltd>::setlLeft(link tree_node)
{

if (left) left->recycle();

left = tree_node;
}

template <class elt> void binary_tree_node<elt>::setRight(1link tree_node)
{

if (right) right->recycle();

right = tree_node;
}

template <class elt> void binary_tree_node<elt>::addLeft(elt e)

{
if (left 1= 0)
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error("[(binary_tree_node::addLeft] node already has left child"):
left = newnode(e);
}

template <class elt> void binary tree_node<elt>::addRight(elt e)
{
if (right '= 0)
error("[binary tree_node::addRight] node already has right child");
right = newnode(e);
}

template <class elt> void binary_tree_node<elt>::add(elt e)
{
if (0 I= left)
left = newnode(e);

else
{
if (0 1= right)
error("[binary_tree_node::add] node full™);
right = newnode(e);
}

}

template <class elt> void binary_tree_node<elt)>::removeleft()
{

if (left) left->recycle();

left = 0;
1

template <class elt> void binary tree_node<elt>::removeRight()
{

if (right) right->recycle():

right = 0;

Tree Access/Modify

Tree navigation always starts at the root node, and that’s really the only Access function
the tree itself provides. Subsequently, other nodes are accessed and modified using node
Access and Modify operations. Similarly, the only Modify operation the tree needs is
clear, to empty the entire tree. That function starts at the root and recursively deletes
children using node operations.

template <class elt> struct binary_tree

{
I
/! Access/Modify
link getRootNode(): /{ for recursive processing
void clear(); /! remove all the nodes
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/* Tree Access/Modify */

template <class elt> link binary_tree<elt>::getRootNode()

{
return &root:

}

template <class elt> void binary_tree<elt>::clear()

{
if (root.haslLeft()) root.getLeft()->recycle();
if (root.hasRight()) root.getRight()->recycle();
root.setE1t(0);

1

9.1.3 Traversal and Recursion

Trees are the first nonlinear structures we’ve encountered. They are inherently two-
dimensional. We can even see the difference in the diagrams used to illustrate the various
structures. For the other structures we’ve seen so far, the diagrams show organization in
only one direction, left to right or top to bottom. In contrast, tree diagrams use both hor-
izontal and vertical dimensions to show the structure’s organization: vertical for parent-
child relationships and horizontal to distinguish a node’s descendants from each other.
This two-dimensionality is the direct consequence of allowing an element to have more
than one successor.

Consider the tree from Figure 9.2 on page 275, repeated here for convenience as Fig-
ure 9.5. Suppose we just wanted to print the items in the tree. We would start at the root,

Figure9.5 A Binary Tree
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print +, then print the rest of the tree. If we go down the left branch, we would print *, then
we could print the rest of that subtree, and so on. Eventually, we have to come back to the
32 that we ignored when we when followed the left branch from the root.

In traversing a linear structure there’s only one next item, so nothing has to be re-
membered while that item is processed. In a nonlinear structure, items may have more
than one successor. Only one next item can be processed at a time— the rest have to be
recorded to be processed later. The state structures we studied in Part 3 of this book are
exactly what is needed for recording these postponed tasks. But which one?

Traversal Orders

Actually, we can use any of them! The choice of state structure determines the order in
which the items are visited by the traversal. Suppose we use a queue, so that after printing
an item we add its successors to the queue:

add the root + [ +1
remove and print + add * and 32 [ *32]
remove and print * add / and C [32/C1
remove and print 32 nothing to add L/ C]
remove and print / add 9 and 5 L C95]
remove and print nothing to add (95 ]
remove and print 9 nothing to add [ 5]
remove and print 5 nothing to add (1]

Resulting order of printing: + * 32 / C 9 5

This order is called breadth-first because all the elements at one level of the tree are
processed before going on to the elements atlower depths. Using a stack gives us a differ-
ent order, called depth-first. Let’s try the example with a stack (stacking the right succes-
sor before the left so that the left gets processed before the right):

push the root + [ + ]
pop and print + push 32 then * [ *32]
pop and print * push C then / [ /7 C32]
pop and print / push 5 then 9 [ 95¢C32]1]
pop and print 9 nothing to push [ 5¢C321
pop and print 5 nothing to push [ C32]
pop and print C nothing to push [ 32 1]
pop and print 32 nothing to push [ 1]

Resulting order of printing: + * / 9 5 C 32

We could even use a priority queue to select the most promising or most important
item of those remaining in the list of tasks. Game-playing programs based on artificial in-
telligence programming techniques do that, for example. Priority queues wouldn’t make
much sense in this example, however.

We saw in the chapter on stacks that stack-based processes can be expressed
recursively. In effect, these implicitly use the subprogram call and return stack in place of
an explicit stack. (See Section 5.4.1, page 160 and Section 5.4.3, page 163.) A depth-first
traversal of a tree can therefore be expressed in code like the following.



Sec. 9.1 Binary Trees 285

template <class elt> void print{link nd, ostream& strm)

{
strm << *nd->getEl1t() << ' ',
if (nd->hasLeft()) print(nd->getLeft(), strm);
if (nd->hasRight()) print(nd->getRight(), strm};
}

This is a typical recursive function on a binary tree. One step processes the current
node, and the other steps add its children to the stack (whichever, if any, ithas). We can
even move the statement that processes the current node so that it comes between or after
the recursive calls. This yields three variations on the depth-first approach, named ac-
cording to when the node’s element is processed relative to its successors. These are sum-
marized in Table 7.

order sequence
first preorder node, left subtree, right subtree
between inorder left subtree, node, right subtree
after postorder left subtree, right subtree, node

Table7 Depth-First Traversal Orders

Traversals of the tree above in the different depth-first orders produce the following
outputs:

preorder: +*/95¢C 32
inorder: 9/ 5 *C+ 32
postorder: 95/ C*32+

These correspond to prefix, infix, and postfix algebraic expressions. (You may have en-
countered preorder or postorder algebraic expressions before, perhaps in using a scientif-
ic calculator.) Inorder corresponds to the usual way we write algebraic expressions. Note
that preorder and postorder unambiguously indicate the intended computation, whereas
inorder notation is ambiguous. The ambiguity of inorder expressions must be resolved
with parentheses or precedence rules, a fact with which programmers are quite familiar.

Traversal Operations

Preorder traversal fits nicely into the framework we’ve been using for all the data
structures. The state of the traversal can be maintained in a stack-valued data member of
the tree. Reset clears the stack and pushes a pointer to the root node onto it. Next pops
a (pointer to a) node from the stack and pushes its children. The traversal ends when the
stack is empty. One extra capability is needed: since we allow applications to manipulate
nodes in addition to the tree, Traversal must include a function to get the current node in
addition to the usual function to get the current element.

Inorder and postorder traversals can also be coded using a stack, but not in any ob-
vious way. The implementation of postorder traversal is left for Exercise 11, but inorder
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is shown here. An enum is used to identify which order a particular traversal should
follow. The value for a traversal is provided as an argument to reset, which stores the
value in the data member travord for the other Traversal functions to consult.

If we use a queue instead of a stack, we get breadth-first traversal. The implementa-
tion shown here uses a simple double-ended queue (a deque), a structure that allows ad-
dition and removal at each end. That way, the same structure can be used either as a stack
or a queue.

enum traversal_order { preorder, inorder, postorder, breadth_first };

template <class elt> struct binary tree
{
/..
// Traversal
private:
deque<link> tdeq;
link cur;
traversal_order travord;
int count;
void push_children();
void stack _lefts(1ink); // for inorder
public:
void reset(bool depth_first = TRUE);
bool finished();
bool next();
elt& current();
link current_node();
int index();

A lot of power is packaged in these Traversal operations A user can traverse an en-
tire tree one node ata time, in any of the depth-first orders or breadth-first, without both-
ering with the details of navigation. Traversal operations convert a fundamentally
nonlinear structure into a linearly accessed sequence of indeterminate length — a stream!

The bulk of the work is handled by reset and two private auxiliary functions used
to stack nodes according to the prevailing traversal order. The easy cases are inorder and
breadth_first. The root node is stacked by reset, and whenever a node is popped its chil-
dren are added to the deque at the front (for inorder) or back (for breadth_first). Chil-
dren are handled by push_children, called by next.

The implementation of inorder is tricky and unintuitive but easy enough to
understand. Reset begins by stacking the root, its left child, that node’s left child, and so
on, until a node is stacked that has no left child. Traversal then proceeds normally, except
that every time a node is taken from the stack, push_ch1i1dren stacks all the left successors
of its right child, just as reset began by stacking all the left successors of the root node.
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/* Tree Traversal: Stacking */

template <class elt> void binary_tree<elt>::reset(bool depth_first)
{

count = 0;

cur = 0;

travord = ord;

switch (ord)
{
case preorder:
case breadth_first:
tdeq.push(&root);
break;

case inorder:
stack lefts(&root);
break:

case postorder:
notimp("postorder binary tree traversal™);
break;

}

template <class elt> void binary_tree<elt>::push_children()
{
switch (travord)
{
case preorder:
if (cur->hasRight())
tdeq.push(cur->getRight());
/! right is pushed first so left is popped first
if (cur->hasLeft())
tdeq.push(cur->getleft());
break;

case breadth first:
if (cur->haslLeft())
tdeq.pushend(cur->getLeft());
if (cur->hasRight())
tdeq.pushend(cur->getRight());
break;

case inorder:
if (cur->getRight())
stack_lefts(cur->getRight()):
break;

case postorder:
notimp("postorder binary tree traversal");
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/7 Support function for push_children
template <class elt> void binary_tree<elt>::stack_lefts(}ink nd)
{
while (nd)
{
tdeq.push(nd);
nd = nd->getlLeft():

None of the rest of the functions are affected by the different traversal orders. Next
calls push_children, but otherwise these all stand on their own. Traversal is finished
when the deque is empty, regardless of the order.

/* Traversal: Other */

template <class elt> bool binary_tree<elt>::finished()

{
return tdeq.empty();
)]
template <class elt> bool binary_tree<elt>::next()
{
if (count < Q)
error("[binary_tree<elt>::next] traversal not yet initialized");
if (finished()) return FALSE;
cur = tdeq.pop();
push_children();
count++;
return TRUE;
}
template <class elt> eltd& binary_tree<elt>::current()
{
assert(cur !=0);
return cur->getE1t();
1

template <class elt> link binary_tree<elt>::current_node()

{
return cur;

}

template <class elt> int binary_tree<elt>::index()

{
return count;

}
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Processing a Tree Recursively

Using a stack to traverse a tree in preorder is straightforward. “Process a node; then pro-
cess its children” corresponds directly to “pop a node; then push its children.” What
about inorder and postorder, though? These orders don’t correspond to any straightfor-
ward use of a stack. Itis possible to program them with a stack, but the code is awkward.
We saw above that depth-first traversals can be quite concisely expressed by recursive
code and that the only difference in the three orders is the position of the statement that
processes a node relative to the statements that process its children, Therefore, we’ll have
the module’s users program inorder and postorder traversals recursively, rather than
through the sequential traversal mechanism our standard Traversal operations provides.

There’s a more important reason to use recursion when processing a tree than for
programming convenience. Sometimes information is derived from a node’s contents
together with information derived from its children. Consider function calls in pro-
gramming languages: firsta function’s arguments must be evaluated; then the function it-
self must be evaluated using the results of evaluating the arguments. A process like this
must imitate the recursive structure of the tree and can’t use a sequential traversal, Itisn’t
just that the tree mustbe processed in postorder: when a node is processed it needs not just
the node’s contents but the result of processing each of its children. (See Exercise 9 for an
example involving trees that represent algebraic expressions.)

Recursive processing requires access to the nodes, as suggested in the introduction
to this chapter. If we define a subtree as a node and its children, then clearly subtrees are
inherently recursive since they are defined recursively. Moreover, each node is a
subtree — nodes and subtrees are just two ways of looking at the same thing. The print
function on page 285 is a good example of a recursive function that uses node Access func-
tions to process a tree recursively.

Here’s an interesting example of a tree that must be recursively processed.! Define
a binary mobile as a tree of numbers in which each subtree represents a branch. The num-
ber in a terminal node represents a weight hanging from the branch represented by the
node’s parent. Note that a weight node will not have a sibling; that is, if a node’s left sub-
tree is a weight it will have no right subtree. The number in a nonterminal node represents
the length of the branch. The number in the root is irrelevant. (Figure 9.6 shows an
example.) The challenge is to determine if a given binary tree represents a torque-bal-
anced mobile, defined as one in which the length of the left branch times the total weight
hanging from it is equal to the length of the right branch times the total weight hanging
from it.

This problem can be solved quite concisely with three functions, as follows. The ex-

pression balanced(t.getRootNode()) tests whether the binary tree t is balanced. This
is a good demonstration of the conceptual power of recursion and a clever representation.

!Based on Exercise 2.27, Harold Abelson and Gerald Jay Sussman, Structure and Interpretation of Com-
puter Programs, Cambridge: The MIT Press, 1985, pp. 99-100.
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jfdefine node binary_tree_node<int*>

int weight(node* nd)

{
if (Ind->hasLeft())
return *nd->getE1t(); // a weight
if (!'nd->hasRight()) // left 7is a weight
return weight(nd->getlLeft());
return weight(nd->getlLeft()) + weight(nd->getRight());
}
int torque(node* nd)
{
if (!'nd->hasLeft())
return(*nd->getE1t()); // just a weight
return *nd->getE1t() * weight(nd)
}

bool balanced(node* nd)
{
if (Ind->hasRight())
return TRUE;
return balanced{nd->getLeft()) &&
balanced{nd->getRight()) &&
(torque(nd->getLeft()) == torque(nd->getRight()));
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Creating a Tree Recursively

One other kind of tree manipulation requires recursion. Sometimes new nodes are added
to a tree by navigating from the root to the node that should become its parent. Search
trees, discussed in Section 12.1 (page 403), use binary trees in this way. In other processes,
nodes are added in a way that requires recursion because they construct a node along with
its children. We could add a node, then one of its children, then a child of that child, and
so on, but there is no convenient way to use navigation to return to ancestors to add their
other child.

Consider the binary mobile example. How might a mobile be entered so that the
program could construct a tree for it? Suppose we read an integer representing a new
branch’s length. We need to next read its left and right sub-branches. This forms a natu-
ral recursion. What terminates the recursion? Somehow we have to indicate that a num-
ber indicates just a weight so that its node doesn’t get any children. Furthermore, a node
with no children has no sibling, so its parent can tell not to attempt to read a right branch.
The whole thing works very nicely if we follow a weight with a 0 representing its null right
sibling. The input for the tree above would be

66204410220103206110

All we need to create a tree is to declare one, then read its left and right subtrees with
the following recursive function.

node* read()

{
int n;
in > n > ws; // skip white space to prepare for peek
if (0 == n) return 0:
// previcus node was a weight; this is its null right sibiling
node* nd = node::newnode(new int(n));
if (in.peek() != '0")
// if next is 0, this is a weight, so don't read children
{
nd->setlLeft(read());
nd->setRight(read());
}
return nd;
}

9.1.4 Content Operations

Trees have a variety of Attributes, We’ll show an equal Compare operation, but no com-
pare: although orderings can be defined on trees, it’s not common to do so. No Combine
operations are appropriate for trees.
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Attributes

Since we can view a binary tree node as either a node or a subtree, they will have two kinds
of Attribute operations. The node-oriented Attributes tell whether the node has left or
right children or any children atall. The subtree-oriented Attributes tell how many nodes
are in the subtree and how deep the subtree is. We also include an nchildren function to
tellhow many children the node has, anticipating the attributes needed for trees that allow
more than two children per node. Finally, it will sometimes be useful to determine the
length of the free list, so a static function is included for that too.

template <class elt> struct binary _tree_node
{

oL

/1 Attributes

bool full();

bool hasLeft();

bool hasRight();

bool isTerminal();

int nchildren(); /! number of immediate children

int subtreeSize(); /! size of subtree of which this is the root
int maxdepth(); // maximum depth of subtree of which this is the root
static int freelist_length(); /! for monitoring behavior

Some of these functions are recursive (number_of_children and maxdepth), but
most are simple. To find the number of nodes in the free list we actually have to count
them.

/* Node Attributes */

template <class elt> bool binary_tree_node<elt>::full()
{

return hasLeft() && hasRight();
}

template <class elt> bool binary_tree_node<elt>::hasLeft()
{

return 0 = left;
}

template <class elt> bool binary_tree_node<elt>::hasRight()
{

return 0 != right;
}

template <class elt> bool binary_tree node<elt>::isTerminal()
{

return !haslLeft() && !hasRight();
}



Sec. 9.1 Binary Trees 293

/! inciludes the node itself to support the recursion
template <class elt> int binary_tree_node<elt>::subtreeSize()
{
return 1 + (left==0 ? 0 : left->subtreeSize()) +
(right==0 ? 0 : right->subtreeSize());
}

template <class elt> int binary_tree_node<elt>::nchildren()
{

return left!=0 + right!=0;
}

// root is at depth=0
template <class elt> int binary_tree_node<elt>::maxdepth()
{
return max((left==0 ? 0 : 1+left->maxdepth()),
(right==0 ? 0 : 1+right->maxdepth()));
}

template <class elt> int binary_tree_node<elt>::freelist_length()
{

link 1 = freelist;

int n=1(11!=20);

while (0 != (1 = 1->1eft)) n++;

return n;

Tree Attributes are those that apply to the tree as a whole rather than to a specific
node. Some are shown here. Others are explored in Exercise 8.

template <class elt> struct binary _tree

{
I A
!/ Tree Attributes:
int empty();
int size();
int maxdepth();
}:

Definitions of the tree attribute functions just call similar functions on the root
node.

/* Tree Attributes */

template <class elt> int binary_tree<elt>::empty()

{
return (0 == root,getE1t()) && !root.haslLeft() && !root.hasRight();

}
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template <class elt> int binary_tree<elt>::size()

{
if (empty())
return 0;
else
return root.subtreeSize();
}
template <class elt> int binary_tree<elt>::maxdepth()
{
return root.maxdepth();
}
Compare

We’ll define simple equal operations for both trees and nodes, but since trees are rarely
compared for order we won’t show a compare. Essentially, two trees are compared like
any collection structure: by traversing them in parallel, comparing each pair of elements
encountered. In this case, the traversal has to preserve the tree structure, so it must be
recursive, (Exercise 6 asks you to provide an example for which a sequential traversal
generates the same elements from two trees that nevertheless are not equal because they
have different shape.)

template <class elt> struct binary_tree_node

{

I A

// Compare

friend bool equal(binary_tree<elt>&, binary_tree<elt>&);
};

/* Node Compare */

template <class elt> bool equal(binary_tree_node<elt>& nodel,
binary_tree_node<elt>& node2)
{
/! first check that the two nodes have the same kinds of children
if ((nodel.left && !node2.left) || (lnodel.left && node2.left) ||
(nodel.right && !node2.right) || (!nodel.right && node2.right))
return FALSE;

/! now check that their elements are equal and that their
/! subtrees are recursively equal
return equal(*nodel.elem, *node2.elem) &&
(Inodel.left || equal(*nodel.left, *nodez.left)) &&
(Inodel.right || equal(*nodel.right, *node2.right));
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Tree’s compare just calls compare on the root node.

template <class elt> struct binary_tree

{

...

// Compare

friend bool equal{binary_tree<elt>&, binary_tree<elt>&);
}:

/* Tree Compare */

template <class elt> bool equal(binary_tree<elt>& treel,
binary_tree<elt>& tree2)
{
return equal(treel.root, treez.root);
}

9.1.5 Support Operations

Copy

The usual copy constructor and assignment copy for nodes are programmed to generate
errors because we don’t want programs copying individual nodes, just whole trees. We
can’tjust leave the functions undefined, because the compiler would generate default def-
initions if they were needed, and those would do the wrong thing. The only node Copy op-
eration needed is duplicate, to support tree copying. That function returns (a pointer
to) a node with the same element as and copies of the children of node for which it is called.

template <class elt> struct binary_tree node

{
oL
/! Copy
binary_tree _node<elt>* duplicate(); /! produce copy of self
// individual node copying and assignment are disabled
binary_tree_node(binary_tree_node<elt>&);
binary_tree_node<elt>& operator=(binary_tree_node<elt>&);

}

/* Node Copy */

/! return copy of self
template <class elt> 1link binary tree_node<elt>::duplicate()
{

1ink nd = newnode(elem);
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nd->left = (left ? left->duplicate() : 0);
nd->right =( right ? right->duplicate() : 0);

return nd;
}

template <class elt>
binary_tree_node<elt>::binary_tree_node(binary_tree_node<elt>&)
{

notimp("binary_tree_node copy constructor");
}

template <class elt> binary_tree_node<elt>&
binary_tree_node<elt>::operator=(binary_tree node<elt>&)
{
notimp("binary_tree_node copy assignment");
return *this;

The tree Copy operations are as expected. As usual, we define a private copy func-
tion to capture the common actions needed by the copy constructor and the copy assign-
ment operator.

template <class elt> struct binary_tree
{
7
/! Copy
private:
void copy(binary_tree<elt>&):
public:
binary_tree(binary_tree<elt>&);
binary_tree<elt>& operator=(binary tree<elt>&):
};

The Copy definitions use the node duplicate function. The assignment operator
recycles the nodes of the old subtrees, but the constructor has no old nodes to worry
about.

/* Tree Copy */

/! private:
template <class elt> void binary_tree<elt>::copy(binary_tree<elt>& tree)
{
root.setElt(tree.root.getE1t());
if (root.haslLeft())
root.setleft(tree.root.getleft()->duplicate());
if (root.hasRight())
root.setRight(tree.root.getRight()->duplicate());
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template <class elt> binary_tree<elt>::binary_tree(binary_tree<elt>& tree)
cur(0), count(-1), root(0) /! real work done in copy fn
{
copy(tree);
}

template <class elt>
binary_tree<elt>& binary_tree<elt>:;operator=(binary tree<elt>& tree)
{

if (this == &tree) return *this; // assign to self!

root.getlLeft()->recycle();
root.getRight()->recycle():

cur = 0;
count = -1;
copy(tree);

return *this;

Process

We need to be able to Search a tree for an element as with the other structures we’ve
considered. For flexibility we’ll provide subtree-oriented functions in the node module as
well as whole-tree functions in the tree module. As always, two versions are included, one
that tests identity of elements and one that tests equality.

template <class elt> struct binary_tree_node

{

...

// Process

bool contains(elt);

bool contains_equal{elt);
};

/* Node Process */

template <class elt> bool binary_tree_node<elt>::contains(elt e)
{
return (elem == e) ||
(left && left->contains(e)) ||
(right && right->contains(e));
}

template <class elt> bool binary tree_node<elt>::contains_equal(elt e)
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{
return equal(*elem, *e) ||
(left && left->contains_equal(e)) |[]
(right && right->contains_equal(e));
}

template <class elt> struct binary tree

{

/...

// Process

bool contains(elt);

bool contains_equal(elt);
}s

/* Tree Process */

template <class elt> bool binary_tree<elt>::contains(elt e)

{
return root.contains(e);

}

template <class elt> bool binary_tree<elt>::contains_equal(elt e)

{
return root.contains_equal(e);

}

Output

Output can mean one of two things: output the elements of the tree sequentially, or print
a textual representation of the tree. We provide the latter, called show, in both modules,
but a sequential output operator only in the tree module. For the most part, output will
be used only by programmers debugging their code.

template <class elt> struct binary_tree_node

{

T

/! Output

void show(ostream&, char* prefix, int tabsize, int level);
}:

The formatted output will use indentation to show the shape of the tree. Eachnode
will go on its own line, indented an amount proportional to its depth in the tree. Its chil-
dren follow it, indented an extra level. For flexibility, we include arguments to specify a
prefix to be printed on each line (possibly just extra indentation) and the number of spaces
to indent for each level. If a node has one child, three dashes will be printed in place of its
other child.
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Although at first show might seem like a difficult function to write, a recursive ap-
proach makes it quite straightforward. This function includes an extra wrinkle on the
usual recursive coding: the prefixand tabsize arguments have to be passed along to the
next level of recursive call, but for Tevel, Tevel+1 is passed. As the recursive calls are
stacked on and popped from the subroutine stack each retains its own value of 1evel.

/* Node Output */

static void show_none(ostream& strm, char* prefix, int tabsize, int level)
{

if (prefix) strm <L prefix;

spaces(level*tabsize);

strm << "---" << '"\n";
1

template <class elt>
void binary_tree_node<elt>::show(ostream& strm, char* prefix,
int tabsize, int level)

{
if (prefix) strm << prefix;
spaces(level*tabsize, strm);
strm << *elem << '\n'; /! print the element
if (left)
left->show(strm, prefix, tabsize, Tevel+l): /! recursion
else
if (right)
show_none(strm, prefix, tabsize, level+l);
// if neither, don't do anything!
if (right)
right->show(strm, prefix, tabsize, level+l);
else
if (left)
show_none(strm, prefix, tabsize., level+l); /1 recursion
/! if neither, don’t do anything!
}

The tree output operator just traverses the tree in depth-first preorder, printing each
element followed by a space. (Exercise 10 asks you to write a recursive output function
that indicates the structure of the tree without using indentation.) The tree show initiates
a recursion by passing zero as the 1evel argument of node’s show.
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ffdefine 1ink nary tree node<elt>*
template <class elt> struct nary tree_node
{
private:

static T1ink freelist;

static int allocation;

elt elem;

seq 1ist<link> children: 1 left and righ

link parent:

/1!
};

The branching factor is a feature of the tree and determines the size of the seq_11ist
used to hold pointers to a node children. In thisimplementation, different trees may have
different branching factors, but within one tree every node will have the same branching
factor. That list will be initialized by nary_tree_node constructors, so they have to be
made friends of nary_tree.

template <class elt> struct nary tree
{
private:

nary tree_node<elt> root;

static const int branching;

friend nary_tree_node<elt>::nary_tree_node();
friend nary_tree_node<elt>::nary_tree_node(elt);
//

9.2.2 Lifetime Operations

The free list functions don’t change much from their binary tree implementation. In this
implementation, the nodes get linked through their first child rather than through their
1eft member as in the binary tree implementation. Because children is a data structure,
whereas binary_tree_node’s 1eft and right were just pointers, nary_tree_node func-
tions rely on seq_11ist functions rather than manipulating successor pointers directly.
One minor difference is caused not by the change from binary to n-ary but rather by the

THrtom o o mavant mnintor newnnde takes a second argument indicating the node that
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As in Figure 9.4 on page 276, the shaded blocks represent the node contents. That
diagram can be interpreted as either a conceptual picture of a binary tree or as an
illustration of the representational structure of binary tree nodes. Here, the dia-
gram is only conceptual — the actual implementation has a layered internal
structure.

Figure9.7 AnN-ary Tree of Degree 4

We’ve already seen a kind of structure that meets these requirements: an n-ary tree
node can store its successorsin alist. In particular, we can use a sequential list — since the
number of successors is limited, we don’t need the flexibility of linked lists. While we’re
considering this implementation, we’ll also add a back pointer for the node’s parent.

The main change in the representation is that there will be a chil1dren data member
in nary_tree_node replacing the 1eft and right of binary_tree_node. We’ll also
need a constant to specify the branching factor. We’ll declare that as a static member of
nary_tree, but leave it to the client program to actually define according to its own
needs. Normally static data members are initialized in an implementation file with values
appropriate to their role in the implementation as understood by the code in that file.
Here, however, branching is really a parameter of the module that client code should set.
(Cf. Exercise 14 for a discussion of this design decision.)

In the code below, changes from the binary tree implementation are underlined.
Functions that are entirely unchanged (beyond the change to the types nary_tree and
nary_tree_node) are not shown. The sparseness and simplicity of the changes demon-
strates the great value of coding in terms of fundamental operations rather than directly
accessing a structure’s underlying representation. Although data abstraction is primarily
aimed at supporting users of a structure, module writers and maintainers can benefit from
it too, by writing more elaborate fundamental operations in terms of simpler ones rather
than accessing data members directly.
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j#define 1ink nary tree_node<elt>*

template <class elt> struct nary tree_node

{
private:

static link freelist;
static int allocation;

elt elem;
seq 1ist<1link> children; // replaces left and right

link parent:
/..

The branching factor is a feature of the tree and determines the size of the seq_11st
used to hold pointers to a node children. In thisimplementation, different trees may have
different branching factors, but within one tree every node will have the same branching
factor. That list will be initialized by nary_tree_node constructors, so they have to be
made friends of nary_tree.

template <class elt> struct nary tree

{
private:

nary tree_node<elt> root;
static const int branching;
friend nary_tree_node<elt>::nary_tree_node():;
friend nary_tree node<elt>::nary_tree_node(elt);
/.

};

9.2.2 Lifetime Operations

The free list functions don’t change much from their binary tree implementation. In this
implementation, the nodes get linked through their first child rather than through their
1eft member as in the binary tree implementation. Because children is a data structure,
whereasbinary_tree node’s1eftand right were just pointers, nary_tree_node func-
tions rely on seq_1ist functions rather than manipulating successor pointers directly.
One minor difference is caused not by the change from binary to n-ary but rather by the
addition of a parent pointer: newnode takes a second argument indicating the node that
will be the parent of the newly created one.
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/* Free List Management */

template <class elt> void nary_tree node<elt>::make_freelist()
{
freelist = new nary_tree_node<elt>[allocation];
freelist[allocation-1].children[11 = O;

template <class elt>
link nary_tree_node<elt>::newnode(elt e, link par)
{
if (Ifreelist) make_freelist();
link nd = freelist;
freelist = freelist->nthChild(1}; // 1ink nodes by their first child
nd->children.clear();
nd->parent = r:
nd->setElt(e);
return nd;

}

// postorder recursion
template <class elt> void nary_tree_node<elt>::recycle()
{
children.reset(;
while(children.next())
children.current(J->recycle():
children.clear():
children += freelist;
freelist = this;

Initialize/Finalize

The nary_tree_node constructors change similarly. Here is where the maximum size of
the successor list is established, based on the current value of nary_tree::branching.
The destructors for nary_tree_node and nary_tree and the nary_tree constructors
are unaffected by the change to a list of children.

/* Node Initialize/Finalize */

// private constructor: calied only when freelist is allocated
template <class elt> nary_tree_node<elt>::nary_tree_node()
: elem(0), parent(0), children{nary tree<elt>;:branching)

{
children.add(this+1):

}
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template <class elt> nary_tree_node<elt>::nary_tree_node(elt e)

: elem(e), parent(Q), children(nary tree<elt>::branching)
{
}

Access/Modify

The only tree Access or Modify operation that needs to be changed in going from a binary
tree to an n-ary one is clear. In the original version, recycle was explicitly invoked on
the 1eft and right children. Here, there are an unknown number of children stored in
a sequential list, so c1ear must traverse the list invoking recycle on each of the nodes
found there. Then, recycle recursively does the same thing on each node’s list of chil-
dren.

/* Tree Access/Modify */

template <class elt> void nary_tree<elt>::clear()

{
root->getChildren().reset();
while(root->getChildren{).next())
root->getChildren().current()->recycle();
root,setE1t(Q); // why not
}

The node-level Access and Modify operations require extensive changes. Since we
added a parent to each node, we need a new function to access it. The various pairs of
binary tree or node functions with ‘left’ or ‘right’ in their name are replaced by single
functions. Adding a child to a node puts it at the end of the successor list, so add doesn’t
specify where. In other functions, a specific child is designated by its position within the
successor list. Changes in Access and Modify functions are not underlined, since these are
essentially complete replacements for the binary versions.

template <class elt> struct nary_tree_node
{

...

// Access/Modify

link getParent();

seq_list<link>& getChildren(); /! for iteration, not modification
link nthChild(int);

link add(elt);
void add(1ink);
void remove(int);
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/* Node Access/Modify */

template <class elt> link nary_tree_node<elt>::getParent()
{

return parent;
}

template <class elt> seq_list<1ink>& nary_tree_node<elt>::getChildren()
{

return children;
}

template <class elt> 1ink nary_tree_node<elt>::nthChild(int n)
{

return children[n];
}

template <class elt> link nary_tree_node<elt>::add(elt e)
{

if (children.full())

error("[nary_tree_node::add] children full");

link child = newnode(e, this);

children,add(child);

return child;
}

template <class elt> void nary_tree_node<elt>::add{1ink 1)
{
if (children.full())
error("[nary_tree_node::add] children full");
children,add(1);
1->parent = this;
}

template <class elt> void nary_tree_node<elt>::remove(int n)
{
if (children.size() < n)
error{"[nary_tree_node::remove] no such child");
children[n]->recycle();
children.remove(n);

9.2.3 Traversal and Recursion

Recursion is significantly affected by the change to a list of successors. Binary tree nodes
can have member functions that traverse the tree recursively in the following general
form. Good examples include dup1icate (page 295) and contains (page 297).
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template <class elt> binary_tree_node<elt>::something(binary_tree* tree)
{

do_something(itm);

left->something();

right->something();

We could have a ternary tree module with functions of the following form.

template <class elt> binary_tree_node<elt>::something(binary_tree* tree)
{

do_something(itm);

left->something();

middle->something();

right->something();

but there’s no way to generalize this beyond three children using explicit function calls.
Instead, n-ary tree traversal is accomplished by traversing the list of children.

template <class elt> nary_tree_node<elt>::something(nary_tree* tree)
{

do _something{itm);

children.reset();

while{(children.next()) something(children,current());

This is still recursive, since something calls itself on each child.

Another difference between binary tree and n-ary tree recursion is that inorder no
longer makes sense. With only two successors the node’s contents can be processed be-
tween the two successors, but there’s no one “between” place when there are more than
two successors. Preorder, postorder, and breadth-first traversals are still meaningful,
however.

The implementation of Traversal operations, which support both preorder depth-
first and breadth-first traversals, is unchanged, except for the definition of push_
children. That function incorporates all the knowledge of how to push a node’s children
onto the deque that maintains the state of the traversal. The other Traversal functions deal
only with the current node and the deque and know nothing about how a node’s children
are obtained. This demonstrates the value of a subfunction like push_children, written
solely to abstract out a separate detail of a more complicated operation. Next, responsible
only for the high-level logic of moving to the next node in the traversal, is unaffected by
the change from binary to n-ary nodes.

The implementation of push_children for binary_tree was simple, but nary_
tree::push_children performs its own traversal over the list of the current node’s
children! Actually, to ensure that the children get popped in the order in which they ap-
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pear in the node’s successor list, the traversal is performed on a reversed copy of the list.
Since the number of children will in practice be quite small, reverse will be fast enough
that this slight inefficiency won’t be noticed.

/* Traversal */

template <class elt> void nary_tree<elt>::push_children()
{
if (depthfirst)
{
seq_list<link> tmp(cur->children.reverse());
// push in reverse order so popped in normal order
tmp.reset();
while(tmp.next())
tdeq.push(tmp.current());

else // breadthfirst
cur->children.reset();

while (cur->children.next())
tdeq.pushend{cur->children.current());

9.2.4 Content Operations

Attributes

Changes to Attribute functions defined for binary trees and nodes are along the lines we’ve
already seen, having to do with the way children are handled. Also, the addition of the
parent back pointer supports an additional operation: depth of a node. Note how many
of these functions delegate their responsibility to or traverse the children list.

/* Node Attributes */

template <class el1t> bool nary_tree_node<elt>::hasNth(int n)
{
return children.size() >= n;

}
template <class elt> bool nary_tree_node<elt>::full()
{
return children.full(Q;
}

template <class elt> bool nary_tree_node<elt>::isTerminal()
{

return children.empty();
1
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/! includes the node itself to support the recursion
template <class elt> int nary_tree_node<elt>::subtreeSize()
{

children.resetQ);:

int total = 1:

while(children.next())

1 += children rr -> reeSi
return total;

}

template <class elt> int nary_tree_node<elt>::nchildren()
{

return children.sizeQ);
}

/! root is at depth=0
template <class elt> int nary_tree_node<elt>::maxdepth()
{
in =0z
children,reset():
while (children.next())
' = max +children.current()->max h
return deepest:

}

template <class elt> int nary tree node<elt>::depth()
{
int n =0;
for (link 1 = this: 1->parent; 1 = 1->parent) nt++:
return n:

1

template <class elt> int nary_tree _node<elt>::freelist_length()

{
if (0 == freelist) return 0

link 1 = freelist;

intn =1;

while (0 != (1 = 1->children[1])) n++;
return n;

Chap. 9

/* Tree Attributes */

template <class elt> bool nary_tree<elt>::hasNth(int n)
{

assert(curnode != 0);

return (curnode->hasNth(n));
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template <class elt> int nary_tree<elt>::nchildren{)

{

assert(curnode = 0);

return (curnode->nchildren());
}
Compare

As the conceptual level of the operation increases, the effects of changes to a structure’s
representation should decrease. The remaining functions in the binary tree node module
are essentially the same, except that they replace the explicit use of 1eft and right with
traversals of the children list. If the change was just from one kind of collection structure
to another, there would be no changes at all in these functions. The changes are because
binary_tree_node was implemented with separate 1eft and right members instead of
some kind of collection of children.

The changes are too extensive at the code level to bother underlining them, but con-
ceptually the changes are minimal. Since equal of two trees is implemented by just test-
ing whether their root nodes are equal, that function doesn’t change. None of our tree or
node modules implements an order comparison (compare), so there’s nothing to change
there either.

/* Compare */

template <class elt> bool equal{nary_tree_node<elt>& nodel,
nary_tree_node<elt>& node2)
{
if (lequal(*nodel.getE1t(), *nodeZ.getEl1t())
return FALSE;

if (nodel.nchildren() != nodeZ.nchildren())
return FALSE;

nodel->getChildren().reset();
nodeZ2->getChildren().reset();

while (nodel->getChildren().next() && node2->getChildren().next(})
// both traversals will end at the same time
if (lequal{*nodel->getChildren().current(},
*node2->getChildren().current()))
return FALSE;

return TRUE;
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9.2.5 Support Operations

Like the Content operations, the definition of some of the node Support operations
traverse successor lists rather than explicitly referring to left and right children. Other-
wise, they are essentially the same as for binary tree nodes. The tree Support operations
are entirely unaffected.

Copy

Again taking advantage of a private subfunction that implements a complicated piece of
the main operation, the public Copy operations of nary_tree are unchanged from the bi-
nary tree versions. That function — copy — as well as nary_tree_node::duplicate
replace the explicit copies of the left and right subtrees with a traversal that adds a copy of
each child to a new node (or to an old node that was just cleared by nary _tree::opera-
tor=).

/* Node Copy */

// return copy of self
template <class elt> T1ink nary_tree_node<elt>;:duplicate()
{

Tink nd = newnode(elem);

children.reset();
while (children.next())
nd->add(children.current()->duplicate());

return nd;

/* Tree Copy */

// private:
template <class elt> void nary_tree<elt>::copy(nary_tree<elt>& tree)
{
root.setElt(tree.root.getE1t());
tree.root->getChildren().reset();
while (tree.root->getChildren().next())
root.add(tree.root->getChildren().current()->duplicate(});
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Process

/* Node Process */

template <class elt> bool nary_tree_node<elt>::contains(elt e)
{
if (elem == ¢)
return TRUE;

children.reset();
while (children.next())
if (children.current()->contains(e))
return TRUE;

return FALSE;
1

template <class elt> bool nary_tree_node<elt>::contains_equal(elt e)
{
if (equal(*elem, *e))
return TRUE;

children.reset();
while (children.next())
if (children.current()->contains_equal(e))
return TRUE;

return FALSE;

Output

/* Node Output */

template <class elt>
void nary_tree_node<elt>::show(ostream& strm, char* prefix,
int tabsize, int level)
{
if (prefix) strm << prefix;
spaces(level*tabsize, strm);
strm << *elem << '\n’";

children.reset();
while (children.next())
children.current()->show(strm, prefix, tabsize, level+l);
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9.3 General Trees

N-ary trees are an interesting generalization of binary trees, but as shown in the previous
section, they turn out not to be all that useful. The problem is not the idea of having more
than two children — it’s the use of a fixed-size list to contain them. Often itisn’t possible
to determine a reasonable upper bound on the number of successors a node might have.
Worse, n-ary trees are wasteful of space: every node has space for n successors regardless
of how many the node actually has. As the degree is increased to accommodate larger
numbers of possible successors the problem gets worse. In fact, you can prove that for any
n-ary tree of any degree and shape, more than half the successor pointers in the tree are
null! (The proof is left for Exercise 20.)

The final form of tree structure we’ll consider is a further generalization of n-ary tree
that will use successor lists that are not limited to a predetermined size. We’ll call a tree
with no fixed limit on the number of successors a node can have a general tree or just tree.
General trees provide an attractive alternative to n-ary trees. They use space more effi-
ciently, provide greater flexibility, and have straightforward implementations. Conse-
quently, n-ary trees would be useful only in the simplest applications — typically only for
degree 3, in which case, we might as well just implement “ternary trees,” adding an explicit
reference to a middle every place Teft and right are used. N-ary trees were used here
only for pedagogical purposes, much as the array-based linked lists were used in the pre-
vious chapter.

General trees are just like n-ary trees but with a linked list used for a node’s children
instead of a sequential list. Figure 9.8 illustrates the resulting structure. The tree struc-
ture can be better appreciated by looking at a conceptual view rather than an implemen-
tation-level view: Figure 9.9 shows the same tree with lines going directly from a node to
its children with no intervening linked list. A node’s linked list of children uses only as
many successor pointers as there happen to be children, so no space is taken up by null
successor pointers in fixed-size arrays. Moreover, there’s no need to specify a maximum
degree in advance: each node’s list of children just grows as necessary. Of course, linked
lists have their own overhead, but surprisingly, the overhead will always be less than the
space wasted for null successors! (The proof is left for Exercise 21.)

The module doesn’t change much at all when sequential lists are replaced by linked
lists. All the code is already generalized to use alist of successors. Selecting a different im-
plementation of the successor list shouldn’t affect the tree code that uses it. Of course, the
seq_list in nary_tree_node’s representation and in the couple of places it appears in
function definitions changes to a 1inked_11ist. There’s no branching, and children
no longer needs a constructor argument. Otherwise, the only difference is that tree_
node: :add doesn’t have to check whether the list is full!

These changes are so simple that they can be implemented by using language tricks
rather than a separate copy of the module. A typedef changes seq_list to 1inked_
1ist. Preprocessor directives determine which list module file to include and to control
whether places branching is used are ignored. The provided code files are set up this
way, and the n-ary tree module is changed to a general tree module simply by adding a
#define GTREE. The typedef and preprocessor directives are controlled by other pre-
processor directives that test whether or not GTREE is defined.
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This view shows the representational relationships among the nodes
of a general tree. The heavily outlined nodes tree nodes; the lightly
outlined nodes are linked list nodes. Each tree node contains a

linked list, which, as defined in Section 8.2.9 on page 248, consists
solely of a pointer to its first node.

Figure 9.8 A General Tree — Representation View

9.4 EXERCISES

Binary Trees

1. InTable 5 on page 201 why is there no entry for a structure that has n predecessors and only one
successor?
2. Answer the following questions:
(a) What is the smallest number of levels a binary tree with 47 nodes can have?
(b) What is the largest number of levels a binary tree with 47 nodes can have?
(c) What is the smallest number of levels a ternary tree with 47 nodes can have?
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This conceptual view shows nodes as directly connected to their parents
without the intervening linked lists that the implementation requires.

Figure 9.9 A General Tree — Conceptual View

3. For the binary tree in Figure 9.5 on page 283 show the sequence of node visits that would result
from each of the four possible traversal orders described in the text.

4. Alot of interesting results can be obtained from the analysis of trees. Here are a few more.
(a) Prove that the maximum number of nodes at the n™ level of a binary tree is 2".

(b) Using that result, prove that the number of nodes in a complete binary tree of depth  is
2n+1_1.
5. What s the relationship between the number ofleaves and the number ofinternal nodes in a full
binary tree? Prove it.

6. Give an example of two binary trees that produce the same elements when traversed using the
binary tree Traversal operations but are not equal because they have different shape.
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10.

11.

. Write a function that counts the number of terminal nodes of a binary tree.
. ‘Full’ and ‘complete’ were defined for binary trees on page 275.

(a) Write nonmember functions that implement them.

(b) Rewrite them as member functions, adding them to a copy of the binary tree module,
(c) Compare the two versions.

(d) Should these have been included in the binary tree module?

{e) Whatkind of (fundamental) operation are these?

. Algebraic expressions are quite naturally represented as binary trees. In fact, we can write bina-

ry expressions in prefix, infix, or postfix notation, much as we can traverse trees depth-first in

preorder, inorder, or postfix order. The easiest form of input for a program to process is pre-

order: since operators appear before their operands in prefix notation, it is straightforward to
construct a node for an operator then nodes for each of its two operands.

(a) Write a program that reads a prefix expression consisting only of integers and the operators
+ - * / and constructs the corresponding binary tree. The tree must be constructed re-
cursively, so you'll use operations from the binary tree node module to operate on the tree
being constructed. Use the binary tree module’s Traversal operations to print the expres-
sion to verify that the program has constructed the proper tree.

{b) Modify the program so that it prints the expression out in postfix notation. A program to
convert an expression in prefix form to one in postfix form only needs to create a tree rep-
resenting the expression read then output the tree’s contents in a different order.

{c) Extend the program so that it evaluates the tree for given input values and prints each input
value along with the result of the corresponding evaluation.

Write a recursive function that prints a binary tree by printing each node in the form
(element left-subtree right-subtree)

Fora null subtree, print dashes. As an example of what output should look like, the tree on page
283 should printoutas (+ (* (/ 9 5) (C -- ~-)) (32 -- --}). The dashes are needed
to distinguish nodes with just a left child from nodes with just a right child; however, you might
want to try not printing the dashes for terminal nodes.

Code is shown in Section 9.1.3 for preorder, inorder, and breadth-first traversal (page 285 ff.).

{(a) Characterize the size of the stack needed for inorder traversal of a given tree.

(b) Explain which nodes are stacked in an inorder reset and which during the traversal.

(c) Implement postorder Traversal for the binary tree module.

(d) Characterize the size of the stack needed for postorder traversal of a given tree, given the
way your implementation works.

(e) Explain which nodes are stacked in a postorder reset and which during the traversal, giv-
en the way your implementation works,

N-ary Trees

12. Determine and prove the answer to the following:

13.

(a) What is the maximum number of nodes at the n'? level of an n-ary tree with degree n?

(b) How many nodes are in a complete binary tree of depth n?

Predecessor links for lists and trees take up extra space. For lists, the number of links doubles,

since each node must now have a pointer to its predecessor as well as its successors.

(a) What happens to the total number of links in a binary tree when predecessor links are add-
ed?

(b) How does the increase in the number of predecessor links in a complete n-ary tree change
as n grows larger?
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14.

15.

16.

17.

18.

19.

In the n-ary tree implementation, branching was made a private constant of nary_tree, and
users are required to define it. Discuss each of the following proposals, presenting arguments
for and against, and considering the ramifications of, their adoption. Ramifications may in-
clude changes to representation, addition of member functions, moving members from nary_
treetonary_tree_node or vice versa, differences in how users interact with the module, and
so on. Don’t forget effects on free list management. You might want to try actually making
these changes in copies of the code files.

(a) There should be a default value so that users don’t have to define it.

(b) Code in nary_tree_node shouldn’t have to know about nary_tree at all, so there
shouldn’t be a reference to an nary_tree static member in the nary_tree_node con-
structor member initialization lists. Branching affects the nodes more than the tree anyway
(in fact, it is never used atall in the nary_tree code), so we should move branching from
nary_treetonary_tree_node.

(c) Programs should be able to set the value individually for each tree.

(d) It should be possible to change a tree’s branching at any point — perhaps nodes near the
top of the tree have relatively few children but nodes near the bottom of the tree have rela-
tively many, or the other way around.

The functions nary_tree_node: :duplicateand nary_tree::copy are quite similar,

(a) What led to this apparent redundancy?

(b) Is there an efficient way to avoid it?

(c) Can you suggest a way to avoid the redundancy that perhaps results in a lot of additional
work but is conceptually very simple?

Add a member function int* pathto(elt) that returns a O-terminated array of integers in-

dicating the path from the root to the node containing that element: if the elementis in the third

subtree of the root, the path would begin with a 3, etc.

Define bool regular(nary_tree<elt>&) to test whether all nonterminal nodes of its argu-
ment have the maximum number of children allowed.

Exercise 10 asked for a recursive output function for a binary tree that used prentheses to show
the tree’s shape.

(a) Try writing a similar function for n-ary trees.

(b) No dashes are needed for n-ary trees. Why?

Write a function that produces a copy of an n-ary tree with every node’s children reversed.

General Trees

20.

21.

22.

Prove that for a tree of any degree > 1 and any shape, more than half the successor pointers in
the tree are null. Hints:

(a) How many successor pointers are there in a tree with k nodes?

(b) How many nonnull successor pointers are there in a tree with k nodes?

Prove that no matter what the size or shape of a tree, using a linked list for a node’s successors
never takes more space than using an array of successor pointers. (Hint: pay special attention
to terminal nodes.)

The gtree directory has a file depicting the descendants of Noah, as stated in Genesis X, and a
file that reads them into a tree of strings. Add to a copy of that program the following opera-
tions and test code that demonstrates that they work. For the purpose of this exercise, assume
that terminal nodes represent childless people.

(a) 1ist<string*> children(string* p) // children of p
(b) 1ist<string*> grandchildren(string* p) // grandchildren of p
(c) 1ist<string*> descendants(string* p) // descendants of p
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(d) 1ist<string*> ancestors(string* p) // ancestors of p
(e) list<string*> parents() // names of all people with children
() Tist<string*> non_parents() // names of people with no children

(g) list<string*> prolific()// names of people with more than 3 children
(h) bool isDescendantOf(string* pl, string* p2)
// is pl a descendant of p2?
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Graphs

Graphs are linked structures in which nodes may have any number of successors and pre-
decessors (including none). The links of a graph are called arcs. (In more mathematical
contexts arcs are called edges and nodes vertices.) Each arc represents some kind of con-
nection between the elements of the nodes it connects.

In an undirected graph, the arcs don’t have a direction. In a directed graph the arcs
do have a direction: an arc is said to go from one node to another, and an arc from A to B
is distinct from an arc from B to A. (The term directed graph is sometimes abbreviated
digraph.) In an undirected graph, there’s no distinction between ‘successor’ and
‘predecessor’. In a directed graph, the successors of an element contained in node A are
the elements contained in nodes to which there is an arc from node A; the predecessors are
the elements contained in nodes from which there is an arc to node A.

A directed acyclic graph (DAG) is a directed graph with no cycles — that is, a graph
that contains no node with a path from itself toitself. In practice, many situations that can
be represented as a graph but not as a tree can be represented as a paG. Although pags
are conceptually and practically important, whether a graph has cycles or not has little
bearing on its representation or the implementation of its operations.

Abstractly, an arc can be specified as a pair of nodes. If the graph is directed, the
pair is ordered. Indiagrams arcs are represented by lines, often curved. If the graph is di-
rected, the arc includes an arrowhead to indicate its direction. Figure 10.1 shows an un-
directed graph and Figure 10.2 a directed graph.

If there is an arc between two nodes, those nodes are said to be adjacent, and the arc
is said to be incident on the nodes. In a directed graph with an arc from node A to B, A is
said to be adjacent to B and B to be adjacent from A. A is the tail of the arc, and B is the
head.

The degree of a node is the number of arcs incidenton it. In a directed graph, the in-
degree of a node is the number of arcs having that node as their head, and the out-degree
of a node is the number of arcs having that node as their tail. The degree of a graph is the
maximum of the degrees of its nodes.

A complete graph is one with an arc between every pair of nodes. A complete direct-
ed graph is one with arcs in both directions between every pair of nodes.

319
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Kitchen

Master Master Child’s
Bathroom Bedroom Bedroom

Figure 10.1 A Graph

Figure 10.2 A Directed Graph

A path from node A to node B is a sequence of arcs that leads from A to B. The
length of a path is the number of arcs it contains. A cycle is a path from a node back to
itself. A graph iscalled connected if there is a path between any pair of nodes. Figure 10.3
shows an unconnected graph.

In most applications of linked lists and trees information is associated only with the
nodes, not with the links. With graphs, however, information is often associated with arcs
as well as with nodes (weights or distances, for example). Figure 10.4 shows an example
of cities connected by lines showing the distance between them. Such graphs are called la-
beled or, if the extra information is quantitative, weighted graphs. The label can be any
kind of value, even a complex struct. For example, Exercise 10 considers state-transition
graphs, in which labels describe events and actions and the nodes represent states.

The representation of graphs is fairly complex. We'lllook at two approaches in this
chapter. The components of a linked list or tree are specified by its links and nodes.
Graphs, however, must list their elements explicitly, rather than just linking them
together. A node can be part of a graph without having any links at all, and there can be
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Figure 10.3 An Unconnected Graph
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Figure 10.4 A Graph with Labeled Arcs

many paths from one node to another. Therefore, constituency must be separated from
structure (shape, ordering, etc.), whereas in lists and trees — in most structures,
actually — the two are expressed with the same linking mechanism.
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10.1 Adjacency Matrices

One way to represent a graph structure is with an adjacency matrix. This is simply a
square table with rows and columns headed by the nodes of the graph. An entry in the ta-
ble indicates whether or not there is an arc between the node corresponding to the row and
that corresponding to the column. The nodes themselves are stored in a separate list, If
the arcs are labeled, the matrix entries would specify the arc labels; if unlabeled, a Boolean
value would just indicate whether or not the arc was in the graph. (This representation
takes the same space whether or not the graph is directed.)

The graph in Figure 10.4 would be represented as shown in Figure 10.5. The indices
into the adjacency matrix are the positions of the corresponding city in the city list.

1/12]3}14)]5]6|[7)8]|9
1| Albany, NY 1 0290|165 [150}100 |160 |215 |140 |160
2 | Augusta ME 2 |290| o0160]140j250|175]250|355]205
3 | Boston, MA 3 |165|160| 0] 70| 95|180(310(205| 45
4 | Concord, NH 4 |150 {140| 70| ol140|110]|240(250]110
5 | Hartford, CT 5 1100|250 95|140| of195l320f105) 70
6 | Montpelier, VT 6 |160 |175]180f110(195| o©]135(295]210
7 | Montréal, PQ 7 |215 250 (310 {240 |320|135| 0355|335
8 | New York, NY 8 |140 355|205 [250 j105 |295 [355| O |175
9 | Providence, RI 9 |160|205] 45110 70210 |335]175] ©

Cities Approximate Mileages

Figure 10.5 Representing a Weighted Graph

10.1.1 Representation

The elements corresponding to the graph nodes will be stored in a sequential list whose
maximum size is specified by the graph constructor and stored in the graph as maxelts.
Arc labels are stored in a matrix of integers having dimensions maxelts by maxelts. We
could use the multarray from Chapter 2, but we won’t bother, since the only thing we
need to do to this array is put and get values. Instead, we'll just allocate a C array and treat
it as two-dimensional.

To simplify the rest of the code in the module and to reduce errors, all Access and
Modify of the array elements will be performed through the private function arc(row,
col). The n row and column of the adjacency matrix correspond to the n node, which
contains the #? element of the list of elements. A nonzero value at arc(i,j) represents
the label of an arc from the i node to the j node.
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Note that there is no separate representation of the nodes themselves. The list
stores the graph elements, and the adjacency matrix represents the arcs. The nodes are
not data structures here, just conceptual entities whose data are stored in the other struc-
tures.

template <{class elt> struct graph
{
private:
// Representation
int maxelts;
seq_list<elt> elts; // node 1ist, max size = maxelts
int *arcs; // adjacency matrix, maxsize x maxsize

int& arc(int, int); // adjacency matrix Tookup
/.

/* Internal Access to arc label */

/! Return reference to label of arc from i to J
[/ Positions are 1-offset
template <class elt> int& graph<elt>::arc(int row, int col)
{
return arcsl[((row-1)*maxelts) + col-11;
}

10.1.2 Lifetime Operations

Initialize/Finalize

The list of elements is part of the graph, so it is allocated automatically when the graph is
created. The size of the array representing the adjacency matrix will depend on the max-
imum number of nodes that can be in the graph, which will be specified as a constructor
argument. Therefore, the array must be allocated dynamically by the constructor rather
than given a fixed size in the struct declaration. The constructor argument is also passed
along to the sequential list via the constructor’s member initialization list as well as stored
in the graph.

template <class elt> struct graph
{
/..
/! Initialize/Finalize
graph(int maxsiz = 20);
~graph();
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/* Initialize/Finalize */

template <class elt> graph<elt>::graph(int maxsize) :
maxelts(maxsize), elts{maxsize), arcs{new int[maxsize*maxsize]),
cur(0), arcrow(0), arccol(0), count(-1), arccount(-1)

{
for (int i = 0; i < maxelts*maxelts; i++)
arcs[i] = 0;
}
template <class elt> graph<elt>::~graph()
{
delete arcs;:
}
Access/Modify

There are two sets of Access and Modify operations, one for nodes and one for arcs. We
want to be able to get the n'M node, add a node for a new element to the graph (it doesn’t
matter where in the element list it goes), and remove an existing node. The node to be re-
moved will be specified either by the element it contains or the position of its element in
the sequential list. Another important kind of operation on graphs is getting the succes-
sors or predecessors of a particular element. This is almost an Attribute operation, but is
central enough to the purpose of graphs to warrant treating it as a basic Access operation.

template <class elt> struct graph
{
...

// Node Access/Modify
private:

void remove_at(int); /! does the actual removal
public:

elt nth(int n});

elt operator[](int n); // synonym for nth

void add(elt);
void remove(elt);
void remove(int);

seq_list<elt> successors(elt e);
seq_list<elt> predecessors(elt e);
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/* Node Access/Modify */

template <class elt> elt graph<elt>::nth(int n)

{
return elts[n];
}
template <class elt> elt graph<elt>::operator[](int n)
{
return nth(n);
}
template <class elt> void graph<elt>::add(elt e)
{
elts.add(e);
}
template <class elt> void graph<elt>::remove at(int pos)
{
/! remove node and therefore all adjacent arcs
elts.remove(e);
int siz = elts.size();
int col, row;
// shift rows of adjacency matrix
for (row = pos; row < siz; rowt+)
for (col = 1; col <= siz; col++)
arc(row, col) = arc(row+l, col);
// shift columns of adjacency matrix
for (col = pos; col < siz; col+t)
for (row = 1; row < siz; rowtt)
arc(row, col) = arc(row, col+l);
}
template <class elt> void graph<elt>::remove(int n)
{
if (0 <=n || n> elts.size())
error("[graph::remove(int)] no such element”);
remove(n);
}

template <class elt> void graph<elt>::remove(elt e)
{
int pos = elts.position of(e);
if (0==pos)
error("[graph;:remove(elt)] no such element"”);

remove(pos);
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/* Node Access: successors and predecessors */
template <class elt> seq_list<elt> graph<eltd>::successors(elt e)
{
int row = elts.position_of(e);
if (row <= 0) error("[graph::successors] elt not in graph");
int siz = elts.size(};
seq_list<elt> 1st(siz); // temp, will be copied on return
for (int col = 1; col <= siz; col++)
if (arc(row,col)) 1st += elts[col];
return 1st;
}
template <class elt> seq_list<elt> graph<elt>::predecessors(elt e)
{
int col = elts.position_of(e);
if (col <= 0) error("[graph::predecessors] elt not in graph");
int siz = elts,size();
seq_list<elt> 1st(siz): // temp, will be copied on return

for (int row = 1: row <= siz; rowt+)
if (arc(row,col)) 1st += elts[row];

return 1st:

We also need to be able to Access and Modify arcs. The basic arc Access operation is
to obtain the label of the arc going from one element’s node to another’s. A zero label will
indicate that the graph does not contain such an arc. Medify involves adding or removing
arcs between a pair of nodes. We’'ll call these join and unjoin. The same interface serves
for both labeled and unlabeled graphs. For an unlabeled graph, the label argument will be
omitted from calls to join, leaving the values 1 and 0 to indicate the presence or absence

of an arc,

template <class elt> struct graph
{
VIV
/! Arc Access/Modify
int Tabel(elt, elt);
void join(elt, elt, int val = 1);
void unjoin(elt, elt);
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/* Arc Access/Modify */

template <class elt> int graph<elt>::label(elt el, elt e2)

{
int posl = elts.position_of(el);
if (0 == posl) abortO("[graph::1abel] first elt not in graph"”);

int pos2 = elts.position_of(e2);
if (0 == pos2) abortO("[graph::label] second elt not in graph”);

return arc({posl, pos2);
}

template <class elt> void graph<elt>::join(elt el, elt e2, int val)
{

int posl = elts.position_of(el);
if (posl<=0) abortv("[graph::join] first elt not in graph™):

int pos2 = elts,position_of(e2);
if (pos2<=0) abortv("[graph::join] second elt not in graph");

if (val == 0)
error(”[graph::join] arc label cannot be 0");:
else
arc(posl, pos2) = val;:
}

template <class elt> void graph<elt>::unjoin(elt el, elt e2)
{
int posl = elts.position_of(el);
if (posl<=0) abortv("[graph::unjoin] first elt not in graph");
int pos2 = elts.position_of(e2);
if (pos2<=0) abortv("[graph::unjoin] second elt not in graph");

if (0 == arc(posl, pos2))

warning("[graph::unjoin] nodes are not joined"):
else

arc(posl, pos2) = 0;

10.1.3 Traversal

Two sets of Traversal operations are needed too — one for nodes and one for arcs. Node
Traversal operations just invoke the same operation on the list of nodes. Arc Traversal is a
more significant programming challenge. Also, traversing arcs calls for a more elaborate
interface, since for each arc there are three pieces of information to be had: the node from
which the arc goes, the node to which the arc goes, and, in labeled graphs, the label of the
arc.
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template <class elt> struct graph
{
/7.
// Node Traversal
private:
int cur;
int count;
public:
void reset();
bool finished():
bool next();
elt &current():
int index();

// Arc Traversal
private:
int arcrow, arccol;
int arccount;
public:
void reset_arc():
bool finished arc():
bool next_arc():
elt &current_arc_from();
elt &current_arc_to():
int current_arc_label();
int index_arc();

/* Node Traversal */

template <class elt> void graph<elt>::reset()
{

elts.reset();
}

template <class elt> bool graph<elt>::finished()
{
return elts.finished():

}
template <class elt> bool graph<elt>::next()
{
if (0 > count)
error("[graph::next] traversal not yet initialized");
if (finished())
error("[graph::next] traversal already finished");
return elts.next();
}

template <class elt> elt& graph<elt>::current()
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{
return elts.current();
}
template <class elt> int graph<elt>::index()
{
return elts.index();
}

The arc traversal operations must traverse the adjacency matrix, looking for nonze-
ro entries in the rows and columns up to the size of the e1ts list. The state of the arc tra-
versal is captured by the number of the row and column of the most recently encountered
nonzero label in the matrix. The definition of next_arc is complicated by the fact that af-
ter the last column of a row is reached, the column number gets reset and the row
incremented. At least the details of accessing the label from the matrix are hidden by the
private Access function arc.

/* Arc Traversal */

template <class elt> void graph<elt>::reset_arc()

{
arccount = 0;
arcrow = 0;
arccol = elts.size(); // to prepare for stepping
}
template <class elt> bool graph<elt>::finished_arc()
{
return arccol >= elts.size() && arcrow >= elts.size();
}

template <class elt> bool graph<elt>::next_arc()
{
if (0 > arccount)
error("[graph::next_arc] traversal not yet initialized");
if (finished_arc())
error("[graph::next_arc] traversal already finished");
do
if (arccol >= elts.size())
if (arcrow >= elts.size())
return FALSE:

else
{
arcrowtt;
arccol = 1;
}
else
arccol++;

while (larc(arcrow, arccol));

return TRUE;
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template <class elt> elt& graph<elt>::current_arc_from()

{
return eltsfarcrow];
}
template <class elt> elt& graph<elt>::current_arc_to()
{
return elts(arccol];
}
template <class elt> int graph<elt>::current_arc_label()
{
return arc(arcrow, acorccol);
}
template <class elt> int graph<elt>::index_arc()
{
return arccount;
}

10.1.4 Content Operations

Compare is hardly ever relevant to graphs. Combine has an obvious meaningand is worth
providing. Many Attribute operations are possible. Some have to do with the elements in
the graph, some with the connections in the graph, and some are more like Combine op-
erations in that they produce new graphs.

Attributes

Graphs and their nodes have a variety of attributes, many implemented by interesting
algorithms. (This is a favorite area of algorithm-oriented textbooks.) We’ll show just a
few here. Degree-related Attributes of nodes are straightforward to compute, but algo-
rithms for computing some of the arc Attributes are quite elaborate.

template <class elt> struct graph
{

//

// Node Degree Attributes

int in_degree(elt);

int out_degree(elt);

int degree(elt e);
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/* Node Degree Attributes */

template <class elt> int graph<elt>::in_degree(elt e)

{
int col = elts.position_of(e):
if (col <= 0) abortO("[graph::in_degree] elt not in graph”);
int siz = elts.size():
int count = 0;
for (int row = 1; row <= elts.size(); rowt+)
if (arc(row,col)) count++;
return count;
}
template <class elt> int graph<elt>::out_degree(elt e)
{
int row = elts.position_of(e);
if (row <= 0) abortO("[graph::in_degreel] elt not in graph™)
int count = Q;
for (int col = 1; col <= elts.size(): col++)
if (arc(row, col)) count++;
return count;
1
template <class elt> int graph<elt>::degree(elt e)
{
return in_degree(e) + out_degree(e);
}

The size function will return the number of nodes in the graph. Although the
graph includes other information, it does constitute a collection of elements, and some of
its operations treat it that way. Size is one example; node Traversal operations are
another. More complex Attribute operations produce new graphs based on the original.
These can be used as the basis for determining other important Attributes, such as testing
whether or not the graph is connected and whether there is a path from one node to
another, (Cf. Exercise 2.)

template <class elt> struct graph
{
/...
/! Graph Attributes
int size();
graph<elt> closure(); // transitive closure
graph<elt> shortest_paths(); // variation on closure
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The transitive closure of a graph is a graph in which there’s an arc between every pair
of nodes between which there is a path (of perhaps many arcs) in the original. In other
words, if there’s no direct connection from one node to another, but there is an indirect
path, a direct connection is added. A more formal statement is that the transitive closure
is a copy of the original graph with an arc from node; to nodey added wherever the original
did not contain such an arc but did contain arcs from node; to node; and from node; to
nodey, for some node;.

The algorithm shown is a form of one known as Warshall’s algorithm. It has been
modified to work for labeled graphs by assigning newly added arcs the sum of the labels of
the two arcs that led to its being added. (If the original graph is not labeled, all of its arcs
will have label 1, and each arc in the closure will show how many arcs in the original it took
to construct that path.)

The algorithm is subtle and difficult to grasp. It consists of nested loops over all
possible values of 1, j, and k. Once an arc is added, that arc can be used to construct fur-
ther combinations. Thealgorithm orders the process in a way that guarantees that all pos-
sible combinations will be found. Note that the outer loop is over the intermediate node,
not the starting or ending node. Thus, all two-arc paths that go through the first node are
found, and corresponding arcs are added to the graph, before two-arc paths that go
through the second node are considered; then all two-arc paths going through the second
are considered before all two-arc paths going through the third.

/* Graph Attributes (Aigorithms) */

template <class elt> graph<elt> graph<elt>::closure()

{
graph<elt> g(*this); // start with a copy of the graph
int siz = elts.size(); // save size for convenience
/* for every node j,
for every node i for which arc(i,j) exists,
for every node k for which arc(j,k) exists
add arc(i,k) unless it already exists
*/
for (int j =1; j <= siz; j++)
for (int 1 = 1; i <= siz; i++)
if (g.arc(i,j))
for (int k = 1; k <= siz; k++)
if (g.arc(j.k) && lg.arc(i,k))
g.arc(i,k) = g.arc(i,j) + g.arc(j.k);
return g;
}

A simple modification of Warshall’s algorithm due to Floyd produces a graph show-
ing the shortest path from each node to each other node reachable from the first. In War-
shall’s algorithm, an arc from node; to nodey is added (when it isn’t one in the original
graph) the first time a j is reached such that the graph contains an arc from node; to node;
and one from node;to nodey.. There’s no guarantee that this new arc represents the short-
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est path. A larger j may later be encountered such that the path through it from node; to
nodey is shorter than the arc added. Floyd’s modification checks for this possibility, and
if the new path encountered is shorter than the current path, the current label for the node
is replaced.

graph& graph:;shortest_paths()

{
graph<elt> g(*this); /! start with a copy of the graph
int siz = elts.size(); // save size for convenience
int val; // to save repeating additions
for (int j =1; J <= siz; j++)
for (int i =1; i <= siz; 1+
if (g.arc(i,]))
for (int k = 1; k <= siz; kt++)
if (g.arc(j.k) &&
(lg.arc(i,k) ||
g.arc(i,k) > (val = g.arc(i,]J) + g.arc(J,k)))
)
g.arc(i,k) = val;
return g;
}
Combine

The simplest interpretation of Combine is that it makes a new graph whose node list is the
combination of the original two. (Elements contained in both graphs appear only oncein
the new graph.) The new graph contains an arc between every pair of elements for which
there was an arc in either graph. (If a pair of elements with an arc from one to the other is
in both graphs, the implementation shown here will put the label of the second graph into
the new graph — an adjacency matrix representation can store only one arc between a pair
of elements.)

The implementation shown here is the obvious one. It starts by copying the first
graph. Then it adds to the copy every element in the second graph that is not in the first.
Finally, it traverses the arcs of the second graph adding a corresponding arc to the copy.
The arc traversal is somewhat inefficient in that it repeatedly locates elements in the copy.
Since several arcs may emanate from one node, the function could be improved by cach-
ing the node in the copy that corresponds to the node the arc is from in the second graph.

/* Combine */

template <class elt> graph<elt> operator+(graph<elt>& gl, graph<elt>& g2)
{

graph<elt> g(gl.maxelts + g2.maxelts): // make big enough for both

g =gl; /! start with copy of gl

int siz2 = g2.elts.size();
for (int 1 = 1; i <= siz2; i++)
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if (!gl.elts.contains(g2.elts[i]))

g.elts.add(g2.elts[i]); // add any elements of g2 not in gl

for (int row = 1; row <= siz2; rowt+)
for (int col = 1; col <= s5iz2; col++)
if (0 1= gz.arc(row, col))
g.arc(g.elts.position_of(g2.elts[rowl),

g.elts.position_of(g2.elts[col])) = g2.arc(row, col);

return g;

10.1.5 Support Operations

Copy

Using an adjacency matrix representation, copying a graph is simple: copy its list of ele-

ments and copy its adjacency matrix.

template <class elt> struct graph
{
/A
/! Copy
private:
void copy(graph<elt>&);
public;
graph(graph<elt>&);
graph<elt>& operator=(graph<elt>&);
}:

/* Copy */

template <class elt> void graph<elt>::copy(graph<elt>& g)

{
for (int 1 = 0; i < maxelts*maxelts; i++)

arcs[i] = g.arcs[i];
}

template <class elt> graph<elt>::graph(graph<elt>& g)

elts(g.elts), maxelts(g.maxelts), arcs(new int[g.maxelts * g.maxelts]))

{
copy(g);
}

template <class elt> graph<elt>& graph<elt>::operator=(graph<elt>& g)
{
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if (this == &g) return *this; // assignment to self

if (maxelts < g.size())

{

delete [] arcs;

maxelts = g.maxelts;

arcs = new int[maxelts * maxelts];
}

elts = g.elts:
copy(9);

return *this;

Process

As usual, we can ask whether or not a graph contains some element. Like size, this is an-
other operation that treats the graph as primarily a collection, ignoring the arcs. Other
Search operations involve finding paths between nodes. This is another rich area of algo-
rithm study, but no implementations are shown here. As with trees, graphs can be
searched in either a depth-first or breadth-first order. The same concepts apply, but in a
graph, there isn’t necessarily any node from which all the others are reachable, so search-
ing a graph may involve searching many separate parts of the graph. Exercise 9 gives you
the chance to write the code to search a graph for a path from one node to another. Note
that searching for a path is different from just determining whether or not there is one —
in this case we need to know the sequence of nodes that constitute the path, not just the
path’s label.

emplate <class elt> struct graph
{

/..

// Process

bool contains(elt e);

bool contains_equal(elt e);

/* Process */

template <class elt> bool graph<elt>:;contains(elt e)
{
return elts.contains(e);

[
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template <class elt> bool graph<elt>::contains_equal(elt e)
{

return elts.contains_equal(e);
}

Output

Given how complex graphs are, there is no simple, standard way to print out a textual
representation. Here are some useful text-only Output operations. Modern graphical
computing environments make it possible to display graph structures in various ways that
show the arcs going from one node to another, but such display-oriented programming is
not only beyond the scope of this book but requires information about the particular soft-
ware being used. Different applications may have different requirements for graph out-
put, whether textual or graphical. In the end, Output operations may be more the
responsibility of the application than the graph module.

template <class elt> struct graph

{

/...

/! Output

void show_nodes(ostream& strm);

void show_arcs(ostream& strm);

friend ostream& operator<{<{(ostream& strm, graph<elt>& g);
};

/* Qutput */

template <class elt> ostream& operator<<(ostream& strm, graph<elt>& g)
{

g.show_nodes(strm);

g.show_arcs(strm);

return strm;
}

template <class elt> void graph<elt>::show_nodes(ostream& strm)
{
reset();
while (next())
strm << index() << "\t' << *current() << '\n°‘;
strm << "\n\n";
}

template <class elt> void graph<elt>::show_arcs(ostream& strm)
{
// headers for adjacency matrix:
for (int j = 1; j <= elts.size(); j++)
strm << '\t << j;
strm << "\n\n";
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// for each row, header and arcs
for (int i = 1; 1 <= elts.size(); i++)

{
strm << 1;
for (j =1; j <= elts.size(); j++)
strm << "\t7 << arc(i, J):
strm << "\n";
}

strm << "\n\n";

10.2 Linked Representation

Because it uses a sequential list to store its nodes, the adjacency matrix implementation for
graphs suffers from the same drawbacks as sequential lists: awkward removal, awkward
insertion within the list (in fact this isn’t supported at all in the version shown above), the
need to estimate the maximum size to which it might grow, wasting space when smaller
than the maximum size, etc. All this is compounded by similar problems with the rigid
adjacency matrix.

As with lists and trees, flexibility is achieved by using a fully linked representation.
There’s a natural fit between the node and arc imagery used in talking about (and draw-
ing) graphs and the node and link imagery used in talking about (and drawing) linked
lists. Arcs can be represented as links (pointers), and nodes, in addition to their element,
contain lists of links to their successors and predecessors. An interesting feature of this
implementation that contrasts with the adjacency matrix implementation is that it is pos-
sible to have more than one arc from one node to another, which some applications re-
quire (e.g., finite state machine representation — cf. Exercise 10). Also, in a weighted
graph (a graph with numerical labels), an arc can exist with weight 0, whereas the adjacen-
cy matrix representation used a matrix entry of 0 to indicate the absence of an arc.

10.2.1 Representation

Each node of the linked graph will be represented by an instance of graph_node, contain-
ing an elt plus lists of successors and predecessors. Since there are an indeterminate
number of each, linked lists will be used. Graph nodes are similar to the nodes of a dou-
bly-linked list except that the successors and predecessors are lists rather than single
nodes. There is no separate adjacency matrix: all connectivity information is stored in the
nodes themselves.

To support labels, the connections will be instances of an arc struct rather than just
a pointer to another node. That struct will include alabel and a pointer to the predecessor
or successor node. (If the graph is unlabeled, it wouldn’t need a separate arc structure —
arcs would just be pointers to nodes — but for flexibility, this implementation will sup-
port both labeled and unlabeled graphs: we’ll just put a 1 in every arc of an unlabeled
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graph.) Thus, the lists in a graph_node are linked_lists of arcs. Figure 10.6 shows how
this fairly complex structure would be arranged for the graph of Figure 10.4 on page 321.

In a tree, there’s a single marked starting place — the root — from which all the
nodes can be reached, but that is not generally true of graphs. Graphs can include discon-
tinuous pieces, and even if a directed graph is connected, there still may not be a node
from which all the others can be reached. The graph structure will therefore contain a
linked list of all the nodes rather than just a single root. In fact, that’s all it contains — a
graph is just a bunch of nodes.

// to make the code more readable:
{#fdefine glink graph_node<elt>*
f#fdefine arclink arc<elt>*

template <class elt> struct arc

{
private:
// Representation
glink to_node;
int label;
/.
}s

template <class elt> struct graph_node

{
private:
elt elem;
linked_1list<arclink> successors;
linked_1ist<arclink> predecessors;
/.
};

template <class elt> struct graph

{
private:
Tinked_1ist<glink> nodes;
/.
}i

10.2.2 Lifetime Operations

Create/Destroy

Nodes and arcs are managed by the graph structure, not created directly by application
code. We'll provide the same sorts of Create and Destroy operations that we used to sup-
port recycling in the linked list implementation of Section 8.2.9, page 248. We won’t
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Key: city City Name
preds
succs
linked list node graph node city struct arc
(predecessors not shown)
nodes —
Montréal Albany New York Boston
1 -
310] 215 215] 1403 |165 140] 205 3101 |165] |205

The arcs from the ci ty structs for Albany and Boston have been omitted to reduce
the diagram’s clutter. Links from graph nodes to their predecessors have also been

omitted.

Figure 10.6 Linked Graph Representation
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bother to implement arc and node free lists, however. We’ll just organize things to sup-

port adding that feature later without changing anything other than these Create and De-
stroy functions.

template <class elt> struct arc

{
/...
// Create/Destroy
static arclink newarc(glink, int 1b1 = 1);
void free();
};

/* Arc Create/Destroy */

template <class elt> arclink arc<elt>::newarc(glink nd, int 1b1)
{

return new arc<elt>{(nd, 1bl1);

}
template <class elt> arclink arc<elt>::free()
{
delete this;
}

template <class elt> struct graph_node

{
/...
// Create/Destroy
static glink newnode(elt);
void free();
13

/* Node Create/Destroy */

template <class elt> glink graph_node<elt>::newnode(elt e)
{

return new graph_node<elt>(e);
}

template <class elt> void graph_node<elt>::free()
{
successors.reset();
while (successors.next())
successors.current()->free(); // free arcs

predecessors.reset();
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while (predecessors.next())
predecessors.current()->free(); !/l free arcs

delete this; // 1ist nodes get freed by the 1list’'s destructor

Initialize/Finalize

The constructors and destructors for all three structs are trivial. Although graph contains
one linked list and graph_node two, their constructors and destructors don’t have to do
anything about them. When a constructor or destructor is invoked, constructors and de-
structors of any struct-valued members are also invoked. Arguments can be passed to
member constructors through the member initialization list, but the linked list construc-
tor doesn’t have any arguments.

template <class elt> struct arc

{
/!
// Initialize/Finalize
arc(glink nd, int 1b1 = 1):
~arc();

};

/* Arc Initialize/Finalize */

template <class elt> arc<elt>::arc(glink nd, int 1b1)
to_node(nd), Tabel(1b1)

{

}

template <class elt> arc<elt>::~arc()
{
}

template <class elt> struct graph_node
{
/.
// Initialize/Finalize
graph_node(elt):
~graph_node();
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/* Node Initialize/Finalize */

template <class elt> graph_node<elt>::graph node(elt e) : elem(e)

{
}

template <class el1t> graph_node<elt>::graph_node(graph_node<elt>& nd)

elem(nd.elem)
{
}

template <class elt> struct graph
{
/..
// Initialize/Finalize
private:
void free_nodes();
public:
graph();
~graph();
I

/* Graph Initialize/Finalize */

template <class elt> void graph<elt>
{
}

template <class elt> void graph<elt>
{

clear():
}

::graph()

::~graph()

: arccount(-1)

Access/Modify

template <class elt> struct arc
{

/..

// Access/Modify

glink getNodeTo();

int getLabel();

void setlLabel(int);
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/* Arc Access/Modify */

template <class elt> glink arc<elt>::getNodeTo()

{
return to_node;
}
template <class elt> int arc<elt>::getlLabel()
{
return Tabel;
}
template <class elt> void arc<elt>::setlabel(int 1b1)
{
label = 1b1;
}

template <class elt> struct graph_node
{
o
/! Access/Modify
elt& getElt();
void setETt(elt);
linked 1ist<arclink>& getSuccessors()

linked_Tlist<arclink>& getPredecessors();

arclink arc_to(glink);
arclink arc_from(glink);
arclink arc_to(glink, int);
arclink arc_from(glink, int);

/* Graph Node Access/Modify */

template <class elt> elt& graph_node<elt>

{
return elem;

}

template <class elt> void graph_node<elt>
{

elem = e;
}

template <class elt>

::getE1t ()

1:setElt(elt e)

Tinked_l1ist<arclink>& graph_node<elt>::getSuccessors()

{
return successors;

}
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template <class elt>
lTinked 1ist<arclink>& graph _node<elt>::getPredecessors()
{
return predecessors;
}

template <{class elt> arclink graph_node<elt>::arc_to(glink nd)
{
successors.reset():
while (successors.next())
if (nd == successors.current()->getNodeTo())
return successors.current();

return NULL;
}

template <class elt> arclink graph_node<elt>:;arc_from(glink nd)
{

return nd->arc_to(this);
}

template <class elt> arclink graph_node<elt>::arc_to(glink nd, int 1b1)
{
successors.reset();
while (successors.next())
if (nd == successors.current()->getNodeTo() &%
1b1 == successors,current()->getLabel())
return successors.current();

return NULL;
}

template <class elt> arclink graph node<elt>::arc_from(glink nd, int 1b1)
{

return nd->arc_to(this, 1bl1);
}

template <class elt> struct graph

{
/...
// Access/Modify
private:
glink node_for(elt);
void remove_at(glink);
public:

elt nth(int n);
elt operator[](int n);

void add(elt);
void remove(elt);
void remove(glink);
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seq_list<elt> successors(elt);
seq_Tlist<elt> predecessors(elt);

// Arc Access/Modify
int label(elt, elt);

void join(elt, elt);

void join(elt, elt, int val);
void unjoin(elt, elt);

void join(glink, glink);

void join(glink, glink, int val);
void unjoin(glink, glink);

Lists of successors and predecessors are returned as newly created linked lists. Ap-
plications may traverse, search, and access specific elements of these in support of naviga-
tion and other such activities. They should not modify the graph through these lists,
however.

/* Graph: Access to Nodes */

template <class elt> elt graph<elt>::nth(int n)

{
return nodes[n]->getE1t();
}
template <class elt> elt graph<elt>::operator[]{int n)
{
return nth(n);
}
template <class elt> glink graph<elt>::node_for(elt e)
{
nodes.reset();
while (nodes.next())
if (e == nodes.current()->getE1t()) return nodes.current();
return NULL;
}

template <class elt> Tinked_list<elt> graph<elt>::successors{elt ¢)
{

glink nd = node for(e);

if (Ind) error("[successors] elt not in graph™);

Tinked Tist<elt> 1st; // temp, will be copied on return
nd->successors.reset();

while (nd->successors.next())
1st.add(nd->getSuccessors.current()->getNodeTo()->getE1t());
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return Ist;
}

template <class elt> Tinked 1ist<elt> graph<elt>::predecessors(elt e)

{
glink nd = node_for(e);
if (Ind) error("[predecessors] elt not in graph™);

Tinked Tlist<elt> Tst; /! temporary — will be copied on return
nd->getPredecessors().reset();

while (nd->getPredecessors().next())
1st.add(nd->getPredecessors().current()->getNodeTo()->getE1t());

return Tst;

/* Graph: Modify of Nodes */

template <class elt> void graph<elt>:;:add(elt e)

{
nodes.add(graph_node<elt>::newnode(e));
1
template <class elt> void graph<elt>::remove(elt e)
{
glink nd = node_for(e):
if (Ind) warning("elt not in graph"):
remove(nd):
1
template <class elt> void graph<elt>::remove(glink nd)
{
nodes.remove(nd);
nd->free();
}
template <class elt> void graph<elt>::clear()
{
nodes.reset();
while (nodes.next()) nodes.current()->free():
1

We'll need a variety of arc manipulation functions. Both join and unjoin need
versions that take elements and, to support navigation-based applications, versions that
take pointers to nodes. In addition, two flavors of unjoin are needed — one that takes a
label and removes the arc with that label, another that just removes whatever arc it finds
between the two elements or nodes. The element-based versions are coded to find the
corresponding node and call the node-based versions.
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/* Graph: Access/Modify of Arcs */

template <class elt> int graph<elt>::label(elt el, elt e2)
{

glink ndl = node_for(el);

if (Indl) abortO("first elt not in graph"):

glink nd2 = node_for(e2);
if (Ind2) abort(("second elt not in graph");

arclink a = ndl->getNodeTo((nd2));
return a ? a->label : 0;
}

template <class elt> void join_nodes(glink ndl, glink nd2 ,int val)

{ .
ndl->getSuccessors().add(arc<elt>::newarc(nd2, val));
nd2->getPredecessors().add(arc<elt>::newarc(ndl, val));

}

template <class elt> void graph<elt>::join(elt el, elt e2, int val)
{

glink ndl = node_for(el);

if (!ndl) abortv("first elt not in graph”);

glink nd2 = node_for(e2);
if (ind2) abortv("second elt not in graph™);

join(ndl, nd2, val);
}

template <class elt> void graph<elt>::unjoin(elt el, elt e2)
{

glink ndl = node_for(el);

if (Indl) abortv("first elt not in graph”);

glink nd2 = node_for(e2):
if (!nd2) abortv("second elt not in graph");

unjoin(ndl, nd2);
}

template <class elt> void graph<elt>::unjoin(elt el, elt e2, int 1bl)
{

glink ndl = node_for(el);

if (Indl) abortv("first elt not in graph");

glink nd2 = node_for(e2):
if (ind2) abortv("second elt not in graph");

unjoin(ndl, nd2, 1b1);
}

template <class elt> void graph<elt>::join(glink ndl, glink nd2, int val)
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{
if (ndl->arc_to(nd2, val))
error("{graph::join] Cannot have two arcs with the "
"same label from one node to another"):
else
join_nodes(ndl, nd2, val);:
}

template <class elt> void graph<elt>::unjoin(glink ndl, glink nd2)
{
arclink to = ndl->arc_to(nd2};
arclink from = nd2->arc_from(ndl);
if (!to)
warning("nodes are not joined"):
else
{
ndl->getSuccessors().remove(to);
nd2->getPredecessors().remove(from):

}

template <class elt> void graph<elt>::unjoin(glink ndl, glink nd2, int 1bl1)
{
arclink to = ndl->arc_to(nd2, 1b1);
arclink from = nd2->arc_from(ndl, 1b1);
if (1to)
warning("nodes are not joined by an arc with that label™);
else
{
ndl->getSuccessors().remove(to):
nd2->getPredecessors().remove(from);

10.2.3 Traversal

Since graphs contain both nodes and arcs, we’ll need two sets of Traversal operations. Tra-
versing the nodes of a graph is accomplished by traversing the graph’s list of nodes, so
node Traversal operations simply turn around and call the same functions on nodes. Tra-
versing the arcs of a graph, however, is considerably more complicated. First ofall, given
a current arc, there are three different values an application might need: the element the
arc is from, the element the arc is to, and the label. Separate versions of current have to
be provided for each.

Then, some nodes may have more than one arc, and some may have none. The im-
plementation of next_arc must move to the next node when the current one’s list of suc-
cessors is exhausted. It must also skip any nodes that have no arcs. There’s no need to
worry about node predecessors, however — every arc can be reached from both the node
its from and the node its to, and we only want to encounter each arc once. The code for
the arc Traversal operations also uses Traversal operations on nodes. Itis assumed that ap-
plications will not intermix node and arc traversal. A more sophisticated implementation
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would maintain its own state for the nodes list traversal to allow arc Traversal operations
to be performed in the midst of a node Traversal.

Since it’s easier to read and write functions coded in terms of Traversal functions in-
stead of more primitive data and function members, many of the other functions in this
graph implementation use these. That means they might interfere with traversals the ap-
plication is performing over the same graph. To avoid that problem a more sophisticated
implementation would code these other operations without using Traversal functions.

template <class elt> struct graph_node
{
!/
// Node Traversal
private:
int count;
public:
void reset();
bool finished();
bool next():
elt &current();
int index();

// Arc Traversal
private:
int arccount;
public:
void reset_arc();
bool finished_arc();
bool next_arc();
elt &current_arc_from();
elt &current_arc_to();
int current_arc_label();
int index_arc():

/* Node Traversal */

template <class elt> void graph<elt>::reset()

{
nodes.reset();
count = 0;
}
template <class elt> bool graph<elt>::finished()
{
return nodes.finished();
}

template <class elt> bool graph<elt>::next()

{
return nodes.next();
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}
template <class elt> elt& graph<elt>::current()
{
return nodes.current()->gett1t();
}
template <class elt> int graph<elt>::index()
{
return nodes.index();
}
/* Arc Traversal */
template <class elt> void graph<elt>::reset_arc()
{
nodes.reset():
arccount = 0;
}
template <class elt> bool graph<elt>::finished_arc()
{
return nodes.finished();
}
template <class elt> bool graph<elt>::next_arc()
{
if (arccount < 0)
error("[graph::next_arc] traversal not yet initialized");
if ((0 == arccount ) || !nodes.current()->getSuccessors.next())
{
do
nodes.next();
while (!nodes.finished() &&
nodes.current()->getSuccessors.empty());
if (nodes.finished())
return FALSE;
nodes.current()->getSuccessors.reset();
nodes.current()->getSuccessors.next();
}
arccount++;
return TRUE;
}

template <class elt> eltd& graph<elt>::current_arc_from()
{

return nodes.current()->getE1t();
}

template <class elt> elt& graph<elt>::current_arc_to()
{

return nodes.current()->getSuccessors.current()->getNodeTo()->getk1t();
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}

template <class elt> int graph<elt>::current_arc_Tlabel()

{
return nodes.current()->getSuccessors.current()->getlLabel();

}
template <class elt> int graph<elt>::index_arc()
{
return arccount;
}

351

10.2.4 Content Operations

Attributes

template <class elt> struct graph
{

/...

/! Node Degree Attributes

int in_degree(elt);

int out_degree(elt);

int degree(elt);

// Graph Attributes

int size();

graph<elt> closure(); // transitive closure
graph<elt> shortest_paths(); // variation on closure

/* Graph: Node Attributes */

template <class elt> int graph<elt>::in_degree(elt e)

{
glink nd = node_for(e);
if (Ind) abort0("elt not in graph™);

return nd->getPredecessors().size();
}

template <class elt> int graph<elt>::out_degree(elt e)

{
glink nd = node_for(e):
if (Ind) abort0("elt not in graph”);

return nd->getSuccessors,size();
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template <class elt> int graph<elt>::degree(elt e)
{

return in_degree(e) + out_degree(e);
}

The implementation of c1osure and shortest_paths should look pretty much the
same for the linked representation as it did for the adjacency matrix representation.
However, looking for an arc from one node to another ends up being quite a bit more
complex here than a simple matrix lookup. We have to call arc_to on the source node
and provide the destination node as an argument. That function then searches all the arcs
of the source node looking for one that goes to the destination. The code is easy enough
to express, but it’s interesting how much more computation is involved in finding a spe-
cific arc using a linked representation compared to the adjacency matrix version.

A further issue involves how to get from one source node to another at each level of
the triple iteration. Using for loops as before means accessing elements of the linked list
of nodes by position. This is inefficient, since operator[ ] muststart at the beginning and
go from one node to the other until the 7™ node has been reached. Thisinefficiency could
be avoided by using list traversal operations instead of for loops. (Since the way traversal
operations are coded in this book does not support nested traversals, and the function
performs a triple traversal over the same list of nodes, the traversals would have to be over
copies of the nodes list.) To keep this definition of c1osure as similar as possible to the
adjacency matrix version, the less efficient for loops are used.

/* Graph Attributes */

template <class elt> int graph<elt>::size()
{
return nodes.size();

}

template <class elt> graph<elt> graph<elt>::closure()
{

graph<elt> g(*this);

int siz = nodes.size();

glink ndi;

glink ndj;

glink ndk;

arclink arc_ij:;

arclink arc_jk;

for (int j = 1; j <= siz; j++)
{
ndj = g.nodes[j];
for (int i =1; i <= s5iz; i++)
{
ndi = g.nodes[i];
if (0 1= (arc_ij = ndi->arc_to(ndj)))
for (int k = 1; k <= siz; k++)
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{
ndk = g.nodes[k];
if (0 != (arc_jk = ndj->arc_to(ndk)) &&
0 == ndi->arc_to(ndk))
join_nodes(ndi, ndk,
arc_ij->getlLabel() + arc_jk->getLabel());
}
}
}
return g;
}
Compare

Two graphs will be considered equal if they contain the same elements and arcs. The or-
der of the elements and the order of the arcs are not relevant. Two arcs will be considered
equal if they go from (nodes for) equal elements to (nodes for) equal elements. There’s no
meaningful definition of compare for graphs, so that’s left unimplemented. Depending
on the compiler, definitions may also need to be provided for equal and compare of two
arcs and two graphs, since the linked list module expects to find those, but they won’t be
used and aren’t shown here.

template <class elt> struct graph

{
...
/! Compare
friend order compare(graph<elt>&, graph<elt>&);
friend bool equal(graph<elt>&, graph<elt>&);
};

Coding equal is a little tricky because the graphs will contain entirely different
nodes even though the nodes may contain the same elements and arcs. First, the number
of elements the graphs contain are compared: if not equal, the graphs certainly are not.
Then the nodes list of the first graph is traversed. For each node, the corresponding node
of the second graphislocated. (If there is none, the graphs are notequal. Ifthereisa cor-
responding node for each of the first graph’s nodes, the graphs are equal — we don’thave
to worry that the second graph may also contain some extra nodes because we’ve already
compared their sizes.) Then the list of successor arcs for the first graph’s current node is
traversed. For each arcin the first graph, the node in the second graph is located that cor-
responds to the arc’s destination node. (If there is no such node, the graphs are not
equal.) Finally, we check whether there’s an arc with the same label going between the two
nodes of the second graph. (If not, the graphs aren’t equal.)
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/* Compare */

template <class elt> bool equal(graph<elt>& gl, graph<elt>& g2)
{
if (gl.size() != g2.size()) return FALSE;

gl.nodes.reset();
while (gl.nodes.next())

{
glink ndl = gl.nodes.current();
glink nd2 = g2.node_for(gl.current());
if (Ind2) return FALSE;
if (ndl->getSuccessors().size() != nd2->getSuccessors().size())
return FALSE;
ndl->getSuccessors().reset();
while (ndl->getSuccessors().next())
{
arclink al = ndl->getSuccessors().getCurrent();
glink to2 = g2.node_for(al->getNodeTo()->getETt());
if (0 = to2 ||
0 = nd2->arc_to(to2, al->getlabel()))
return FALSE;
}
}
return TRUE;
}
Combine

The implementation of operator+ here is similar to the one for adjacency matrices, ex-
cept that it uses traversal operations to avoid the complexity they hide. The repeated
search for the node in the copy that corresponds to the node the arc is from is potentially
a worse source of inefficiency here than for the previous implementation. Not only may
many arcs emerge from the same node, but many arcs may go from that node to the same
other node, something not possible in an adjacency matrix implementation. More effi-
cient implementations of operator+ would use some kind of caching scheme or code the
arc traversal directly rather than using traversal operations.

template <class elt> struct graph
{

Vi S

// Combine

friend graph<elt> operator+(graph<elt>&, graph<elt>&);
};
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/* Combine */

template <class elt> graph<elt> operator+(graph<elt>& gl, graph<elt>& g¢2)

{

graph<elt> g(gl); // start with a copy of gl
glink nd;

// add a node to g for each element of 92 that isn't in gl
g2.reset();
while (g2.next())
if (lgl.contains(g2.current()))
g.add(g2.current());

g2.reset_arc();
while (g2.next_arc())
if (lgl.contains_arc(g2.current_arc_from(),
g2.current_arc_to(),
g2.current_arc_label())
)
g.join(g.node_for(g2.current_arc_from()),
g.node_for(g2.current_arc_to()),
g2.current_arc_label());

return g;

10.2.5 Support Operations

Copy

The definition of Copy traverses the node list of the original graph adding a new node to
the copy for each element found in the original. The arc list of the original is also tra-
versed, with a new arc added to the copy corresponding to each arc of the original. Since
the arc traversal operations return elements, not nodes, for the head and tail of the arc, we
can’t just call current_arc_from and current_arc_to. Instead, we have to use code
similarly to theirs but without their getE1t ().

template <class elt> struct graph

{

};

/..
/7 Copy

private:

void copy(graph8&):;

public:

graph(graph<elt>&);
graph<elt>& operator=(graph<elt>&);
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/* Copy */

template <class elt> void graph<elt>::copy(graph<elt>& orig)
{

// called only on empty graphs

arcount = -1;

// add a node for each node of the original

orig.reset();

while (orig.next())
nodes.add(graph_node<elt>::newnode(orig.current()));

// add an arc for each arc of the original

orig.reset_arc();

while (orig.next_arc())

join_nodes(orig.nodes.current(),
nodes.current()->getSuccessors.current()
->getNodeTo()->getE1t (),
orig.current_arc_label());
1

template <class elt> graph<elt>::graph{(graph<elt>& orig)
{
copy(orig);

}
template <class elt> graph<elt>& graph<elt>::operator=(graph<elt>& orig)
{
if (this == &orig) return *this; // assignment to self
clear();
copy(orig);
return *this;
}
Process

To Search for an element in a graph, the nodes list is traversed looking for a node that con-
tains the element. As usual, two versions are provided: one that uses identity and one that

uses equality.

template <class elt> struct graph
{

..

/! Process

bool contains(elt);

bool contains_equal(elt);
}:
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/* Process */

template <{class elt> bool graph<elt>::contains(elt e)

{
nodes.reset();
while (nodes.next())
if (e == nodes.current()->getElt())
return TRUE;
return FALSE;
}

template <class elt> bool graph<elt>::contains_equal(elt e)
{
nodes.reset():
while (nodes.next())
if (equal(*e, *nodes.current()->getE1t()))
return TRUE;
return FALSE;

Output

Output of a graph can mean either or both of two things: show the elements or show the
arcs. We’ll provide functions for each separately and have the output operator do both.
To show the arcs, we’ll just print them one to aline. We can’t show them in a tabular for-
mat, as we did in the adjacency matrix implementation, because there may be many arcs
between the same two nodes. Also, linked graphs tend to be sparse: if there are many
nodes and relatively arcs, a tabular format wouldn’t be of much use. For debugging pur-
poses, simple Output operations would also be provided for arc and graph_node, but
they aren’t shown here.

template <class elt> struct graph

{

VAN

/7 Qutput

void show_nodes(ostream& strm);

void show_arcs(ostream& strm);

friend ostream& operator<<({ostream& strm, graph<elt>& g);
3

/* Qutput */

template <class elt> ostream& operator<<(ostream& strm, graph<elt>& g)
{

g.stow_nodes(strm);

strm << ‘\n’;

g.show_arcs(strm);

strm << "\n”’;
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return strm;

}
template <class elt> void graph<elt>::show_nodes(ostream& strm)
{
reset();
while (next())
strm << index() << "\t' << *current() << '\n":
}
template <class elt> void graph<elt>::show_arcs(ostream& strm)
{
reset_arc();
while (next_arc())
strm << index_arc() << ": "
<< *current_arc_from() << "--" < current_arc_label() < "-->"
<< *current_arc_to() << '\n"';
}

10.3 EXERCISES

1. Now that you have been introduced to trees and graphs, in several different forms, what do you
think of the term ‘linked structures’ to describe all the kinds of structures and implementations
discussed in the three chapters of this part of the book? Discuss the applicability of each of the
following terms to the tree and graph implementations discussed, in particular pointing out
where strictly speaking they don’t quite apply even though they may communicate an appropri-
ate conceptual property. What do you think would be the best general term to categorize all
forms of lists, trees, and graphs without also suggesting other less related kinds of structures?
(a) linked structures
(b) recursive structures
(c) dynamic structures
(d) linear structures
(e) sequential structures

2. Add the following Attribute operations to the adjacency matrix implementation of graph.
(Hint: these are meant to require very little programming given the facilities already provided
by the graph module as shown in the chapter.)

(a) bool contains(elt)
(b) bool contains_path(elt, elt)
(c) bool connected()

3. The adjacency matrix graph implementation limits each graph to a maximum number of nodes.
(a) Why?
(b) Why is it necessary to store the maximum number of elements the graph may contain?
(c) Modify the implementation to allow the graph to grow beyond the initially specified maxi-

mum number of nodes.

(d) What function definitions are affected by this modification?
(e) Are the declarations of any public member functions of graph affected?

4. Implement shortest_paths for the linked implementation of the graph module. (Keep in
mind that there may be more than one arc from one node to another.)
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5. Suppose you have an application in which you often need to determine the length of the shortest
path from one node to another. Floyd’s algorithm, used in the implementation of shortest_
paths, produces a graph with that information already computed. However, that algorithm
could take up a lot of time each time it is called for a large graph.

(a) Modify a graph implementation so that it “caches” the result of shortest_paths, inval-
idating it every time a node or arc is added or removed and recomputing it the next time
the shortest path between two nodes is needed.

(b) Is it really necessary to go through the whole algorithm again each time an arc is added or
removed? If you can find one, describe an algorithm that would directly modify the exist-
ing shortest path graph instead of entirely recomputing it. If you don’t think that’s possi-
ble, explain why,

6. Use a debugger and/or add output statements to explore how Warshall’s algorithm (page 332)
works. Try to write a clear explanation of it for someone who has never seen it before.

7. Write a program that navigates a city graph like the one shown in Figure 10.4 on page 321 and

Figure 10.5 on page 322.

(a) You can use the program demo.C in the graph code directory as a starting point, perhaps
substituting your own data.

(b) Start the navigation at one of the cities.

(c) Then repeatedly present the user with a choice of cities to go to from the current city, show-
ing the miles to each one and navigating to the one the user selects.

(d) One of the user’s choices should always be “exit.” When the user exits, print the final loca-
tion and the total number of miles traveled.

8. Not all graphs have integer-valued labels. Labels may be other sorts of numbers (doubTe, e.g.),
strings, pointers, or struct instances. The graph implementations shown in this chapter sup-
portonly integer-valued labels. Really, the type of the label should be a second template param-
eter.

(a) Change one of the implementations to support whatever kind of label the user specifies.
(Although this is conceptually sophisticated, the actual amount of editing required is fairly
small.) You’'ll find that there’s no reason to limit the label type to a pointer, as opposed to
the elements of the structures we are studying.

(b) Demonstrate the use of this module in a simple program.

A Project

9. (Optionally uses the results of Exercise 8.) Adventure was a computer program that introduced
a whole new kind of game to the world in the late 1970s. The player navigates a complex cave,
picking up tools and treasures while avoiding various obstacles and warding off various evil
beings. From any room, there might be passages to another room in any of the directions East,
West, North, South, up, and down. A passage from one room to another doesn’t guarantee a
passage in the opposite direction, and even if there is a passage in the opposite direction, it
doesn’t necessarily open in the opposite direction — a passage that leaves East from one room
may hook around and enter at the North side of another room. Associated with each roomisa
text description that describes the special features of the room. A cave of rooms is easily repre-
sented as a directed graph. Use the linked graph module to write a program that constructs a
moderate-size Adventure cave and allows a user to navigate around it.

(a) Define a Room struct.

(b) A passage from one room to anotheris represented as an arc between graph nodes contain-
ing the rooms. The label of the arc indicates the direction in which the player leaves the
room to traverse the path represented by the arc. Unfortunately, the graph implementa-
tion provided assumes that arcs are weighted with integers. You can use the existing mod-
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ule by coding directions as integers. A more sophisticated approach would be to improve
the module by parameterizing it by the type of value by which its arcs are labeled, as de-
scribed in Exercise 8, so that you could then use an enumeration direction and a
graph<Room*, direction>.

After the program adds nodes and arcs to the graph, it should print the graph using one of
the Qutput operations provided.

Write a loop that allows a user to interactively explore the cave by entering one-letter direc-
tions.

Write a function that finds a path from a designated entrance node to a designated exit
node. This will be a recursive operation much like searching a tree. If there’s a path from
node A to some node B and a path from B to the exit, then of course there’s a path, through
B, from A to the exit. Usethe successors operation to obtain all the nodes you can reach
in the next step of the search. You’'ll have to keep track of the nodes you’ve already consid-
ered during the search to avoid infinite cycles — not an issue with trees, because nodes have
only one predecessor.

Have the program print the path it finds as a sequence of directions from the entrance.

Have the program print out the descriptions of the rooms visited in following the path from
the entrance to the exit.

Why is a linked representation better than an adjacency matrix for this program?

Why can’t you just use node and arc Traversal operations to find a path from the entrance
to the exit?

Why couldn’t you just use closure or shortest_paths to find a path from the entrance
to the exit?

Another Project

10. (Optionally uses the results of Exercise 8.) A state-transition graph uses nodes to represent
states a process may be in and arc labels to represent the events and actions that cause a transi-
tion from one state to another. In drawing the graph, the event may be shown as a label above
the arc with the action a label below, or they may be shown as a single label in the form event/
action. State-transition graphs are often used for parsing: the event is simply a character and
the transition is the action to perform if that character is encountered while in the state repre-
sented by the node from which the arc comes.

(a)

(b)

(c)

Draw a state-transition graph that represents some of the rules for parsing C++ symbols:
numbers, identifiers, operators, etc. The nodes would contain strings naming the corre-
sponding state. Show just the states and events, not the actions. For instance, when start-
ing a new symbol, a digit would move the process to a state in which it is reading an
integer. While reading the number, a digit returns to the same state, a space causes the
completion of the symbol, and the first period encountered switches the process from read-
ing an integer to reading a real.

Represent your graph in a program, using a graph with string-valued labels. (The crude
way would be to store pointers as integers and convert integers obtained from the graph to
pointers. The proper way would be to use the modifications described in Exercise 8 and a
graph<string*, char>))

Without actions, your graph represents legal sequences of characters, but doesn’t say how
they are used to construct identifiers. Add actions to your graph in the form of pointers to
functionsto call on the newly read character. Forinstance, while reading an integer, the re-
sponse to a digit would be a function that multiplied the current value of the integer by ten
and added the digit’s numerical value.
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(d) Represent this extended graph in your program as a graph<string*, transition>,
wherea transitionisastruct containinga character and a pointer to a function that takes
a character argument.

(e) Extend the program so that it actually uses the graph to parse input and generate symbols.






Part Five:

Association Structures

An element of alinear structure (storage, state, or list) can be accessed by position (n'h el-
ement of an array or list, top of a stack, front of a queue, etc.). Linked structures (list, tree,
or graph) support access by navigation. In either case the location of an element is deter-
mined entirely by the way elements are stored in the structure rather than by any proper-
ties of the elements themselves.

Association structures are different. Their elements are accessed according to some
property of the elements themselves rather than by where they got stored. A library is a
good real-world example: we look for a book on the basis of its title, author, subject mat-
ter, or number in some cataloguing system, but not on the basis of the shelf it happens to
be stored on or where it is on that shelf.

The property by which an association structure accesses its elements is called a key.
The key is a value obtained from elements. It may be something stored in the element or
computed from the values stored in the element. For this reason, association structures
are often called content-addressable. In essence, association structures are mechanisms
for mapping a key to an element. Mathematically, they implement functions from a key
domain to an element range. Access by key is often called lookup, and in C++ this is con-
veniently expressed with operator[], just as with positional access in linear structures
like arrays and lists.

Association structures are built on top of other kinds of structures, reinterpreting
the contents of the underlying structure for their own purposes. AsTable 8 shows, the ba-
sic association structures are tables and search trees. Tables are implemented on top of
lists or arrays, and search trees are implemented on top of trees or tree nodes. For the
most part, we aren’t going to see any new structuring techniques in this section — the em-
phasis shifts to algorithms for accessing what’s stored in a kind of structure we’ve already
examined. We will, however, see some variations on the concept of trees that don’t quite
fit into the forms described in Chapter 9 some very interesting ways of using trees to en-
force various constraints on the organization of the structure’s elements.

Based On
Table lists or arrays
Search Tree trees or tree nodes

Table8 Kinds of Association Structures
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The implementations shown in this part of the book take advantage of some simpli-
fying assumptions. One is that the key is unique for each element. That is, no association
structure will ever contain two elements with equal keys. Another is thatkeys will be com-
pared for equality, not identity. Also, like element types, key types are assumed to provide
equal, compare,and operator<<. Finally, the element type must define a function get_
key that takes an element and returns its key.

Keys can be any type for which equal, compare, and operator<< are defined. In
contrast with their element type, the implementations here do not assume that keys are
pointers, and in fact they generally won’tbe. Since tables involve two types — an element
type and a key type — they have two type parameters in their template lists.
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Tables

Tables, also known as dictionaries, are the most straightforward association structures.
You are probably already familiar with simple kinds, as they are popular examples in in-
troductory programming texts. They play major roles in a wide variety of system pro-
grams: compilers and linkers use symbol tables, operating systems use tables to manage
resources, various kinds of database systems use tables to index their contents, and so on.
Tables appear in many other kinds of applications, too.

This chapter begins with a review of simple tables. Sorted tables are considered next;
although they share many characteristics with simple tables at the implementation level,
the fact that they are sorted has significant implications. The last kind described are hash
tables, important structures that support exceptionally efficient search.

The heart of a table mechanism is the associative lookup it supports. Arrays and
lists can be accessed by position with expressions such as a[n]. Tables can be viewed as a
generalization that allows access by any type instead of just integers — for instance,
phonebook[name] where name is a string. The correspondence is particularly strong
when the index of an element in an array or list is conceptually related to the element rath-
er than just being the location at which the element happens to be stored. An example
would be an array of month names in which the n™ name corresponds to the n' month or
an array storing counts of characters appearing in a file where a character’s count is at the
location in the array corresponding to the character’s Ascii value. In fact, such uses of ar-
rays and lists can really be viewed as degenerate forms of tables that organize their ele-
ments so that their integer-keys equal their position within the table.

Tables differ from arrays and lists in that the position of their elements is hidden
from client code. Elements can be obtained by associative access or by traversal, but not
by position. In a hash table, there might not even be an element at a specific position —
elements are scattered around an array according to a scheme very different from the usu-
al linear organization.
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11.1 Simple Tables

A simple table is basically just a list plus an associative lookup operation. Elements are
stored in a list (sequential or linked), but their order within the list is not significant. To
find an element with a specified key, entries in the table are examined sequentially from
the beginning until either one with that key is found or all the entries have been examined
without success.

The cost of locating an element is a primary characteristic distinguishing different
kinds of tables. A reasonable measure of that cost is the number of comparisons per-
formed during the search, since other overhead (traversing the list, for instance) tends to
increase more or less linearly with the number of comparisons. For a table with ‘N ele-
ments, it could take anywhere from 1 to N comparisons to locate the one having a speci-
fied key. Because the target might be anywhere in the table, a successful search would take
on the average N/2 comparisons. An unsuccessful search would of course take N
comparisons. Consequently, the cost of searching a simple table increases linearly with
the number of elements.

Other association structures support more efficient search at the cost of greater al-
gorithmic and structural complexity. Simple tables are easy to implement, but their inef-
ficiency normally outweighs the advantages of simplicity. Simple tables are rarely used
for tables larger than tens of elements.

11.1.1 Representation

A simple table stores its elements in a sequential list. That’s the only information it
needs. An implementation of a simple table provides many of the same functions as the
list on which it is based. In many cases, these functions would just turn around and call
the same function on the list. However, there are many list functions that do not appear
in a simple table module. The table has a more restricted interface than the list on which
it is based. In particular, anything to do with the position of an element in a list is sup-
pressed: Access is only by key. The list itself is not available to code using the table.

template <class elt, class key> struct table

{
private:
// Representation
list<elt> elts;
oo
};

11.1.2 Lifetime Operations

Lifetime operations for the table are essentially an interface to the lifetime operations of
the underlying sequential list. The main difference between the two structures is capture
here: access by key rather than by position.
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Initialize/Finalize

The constructor initializes the list by forwarding it the allocation argument via the mem-
ber initialization list. The constructor does nothing — the list’s constructor will automat-
ically be called when the table’s is.

template <class elt, class key> struct table

{
...
// Initialize/Finalize
table(int alloc = 100);
~table();

};

/* Initializel/Finalize */

template <class elt, class key> table<elt, key>::table(int alloc)
: elts(alloc)

{
}

template <class elt, class key> table<elt, key>::~table()

{
}

Access/Modify

The Access and Modify operations contain most of the differences between a simple table
and the sequential list on which they are based. For convenience, overloadings of remove
and operator-=are provided that take an element, but otherwise all of these functions are
key oriented.

When a function searches for an element in the list with a specified key, it may or
may not find one. Itisn’t clear a priori what to do when adding an element to a table that
already has one for its key or removing the element with a key thatisn’t found. For greater
flexibility, the definitions of functions dealing with key lookup will have an extra argu-
ment that allows the user to specify what is to be done. An enum action is added to
standard.H to support this, with enumerators IGNORE, WARN, ERROR, and REPLACE. We'll
see how those are used as we examine the various functions involved. These functions all
include default values for their action arguments.

In most of the modules shown in this book, Access functions, as well as the current
Traversal operation, return references to elements. This allows these operations to appear
on the left side of an assignment, enabling code to easily replace the element returned. In
fact, although Replace was described in the introductory materials as variant of Access (cf.
Section 1.2.1, page 56), few of the implementations in this book show Replace operations.
Thatis because in C++ putting a reference-returning function on the left side of an assign-
ment is a sufficient implementation for Replace. Similar considerations apply to Ex-
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change, another variant of Access. In this case, the template function exchange, provided
in standard.H, serves as a universal implementation.

Association structures cannot allow the convenience of reference returns because
they must be able to control where the new element goes within their structure. For sim-
ple tables this doesn’t matter, but for most association structures it does. Consequently,
these functions just return ordinary elements that cannot be replaced.

template <class elt, class key> struct table
{
...
// Access/Modify
private:
int lookup_pos(key&);
public:
elt lookup(key&);
elt operator[](key& Kk);

void add(elt, action dup_action = IGNORE);
table<elt, key>& operator+=(elt);

elt remove(key&, action not_found_action = IGNORE);
table<elt, key>& operator-=(key&);
void remove(elt, action not_found_action = IGNORE);

table<elt, key>& oper};

Access and Modify operations are based on a private function 1ookup_pos, that
searches the list for an element with the specified key. If an element with the key is found,
its position in the list is returned. If no element has the key, 0 is returned. Since sequen-
tial lists directly support positional access, this is a reasonable choice, Note the use of the
get_key function the table module assumes is defined. Also, since 10okup_pos uses the
list’s Traversal operations, it will interfere with any application-level traversal that might
be in process, a problem we’ve seen in many other function definitions throughout the
book.

/* Access */

/! offset-1, like seq list
template <class elt, class key> int table<elt, key>::1ookup_pos{key& k)
{
reset();
while (next())
if (equal(k, get key(*current())))
return index();

return 0;
}

template <class elt, class key> elt& table<elt, key>::lookup(keyd& k)

{
int pos = lookup_pos(k});
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if (pos <= 0)
return 0;
else
return elts[pos]:

}

template <class elt, class key> elt& table<elt, key>::operator[}(key& k)

{
return lookup(k);

}

Adding an element to a simple table ultimately just means adding it to the table’s
list. However, it must also take into account the possibility that the new element has a key
equal to the key of an element already in the table. Curiously, that means searching the
table as in an Access before going ahead and adding the element. This can make adding
an element quite slow. To support applications coded in such a way as to foreclose this
possibility, the act ion value IGNORE means to skip the search.

If action is not IGNORE, the search is performed. If no old element with they new
one’s key is found, the new one is added to the list. If a conflict occurs, an action value
of REPLACE means to remove the old one and add the new one. So does WARN, but in that
case a warning is also printed. ERROR means to print an error message and exit the pro-

gram.

/* Modify: Add */

template <class elt, class key>
void table<elt, key>::add(elt e, action dup_action)

{
int oldpos;
if (IGNORE == dup_action) || (0 == (oldpos = lookup_pos(get_key(*e)))))
elts.add(e);
else
if (ERROR == dup_action)
error("[table::add] the table already contains an elt "
"with the same key™);
else /! WARN or REPLACE
{
if (WARN == dup_action)
warning("[table::add] the table already contains an "
"elt with the same key");
elts.remove(oldpos);
elts.add(e);
}
}

template <class elt, class key>
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table<elt, key>& table<elt, key>::operator+=(elt e)
{

add(e);

return *this;

Remove operations are simpler. A key or, for convenience, an element is provided
and the list is searched. If the target if located, it is removed from the list. What happens
when the target is not found depends on the act ion argument provided. For the version
that takes an element, rather than a key, lookup is still based on the key, but then the ele-
ment has to be compared with the one found to see if they are in fact equal, since the table
may contain a different one with the same key. The function is coded this way instead of
just calling the list module’s position_of function so that it won’t need to be modified
for different kinds of table implementations. Besides, equality tests are used here, and
they can get quite expensive — it might be alot cheaper to get the keys out of two elements
and compare them than to compare the elements themselves.

/* Modify: Remove */

template <class elt, class key>
elt table<elt, key>::remove(key& k, action not_found_action)
{

int pos = lookup_pos(k);

if (0 != pos)
return elts.remove(pos);

else if (ERROR == not_found_action)
error("[table::remove] the table does not contain an

"elt with the specified key");

else if (WARN == not_found_action)

warning("[table::remove] the table does not contain an "
"elt with the specified key");

return 0;
}

template <class elt, class key>
table<elt, key>& table<elt, key>::operator-=(key& k)
{
remove(k);
return *this;
}

template <class elt, class key>
void table<elt, key>::remove(elt e, action not_found_action)
{

int pos = lookup_pos(get_key(*e));

if ((0 != pos) && equal(*e, *elts[pos]))
elts.remove(pos);
else if (ERROR = not_found action)
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error("[table::remove] element not in table");
else if (WARN =— not_found_action)
warning("[table::remove] element not in table");
}

template <class elt, class key>
table<elt, key>& table<elt, key>::operator-=(elt e)
{

remove(get key(*e));

return *this;

11.1.3 Traversal

Traversal operations are simply forwarded to the table’s list.

template <class elt, class key> struct table
{
¥ AR
// Traversal
public:
void reset();
bool finished();
bool next():
elt& current();
int index();

/* Traversal */

template <class elt, class key> void table<elt, key>::reset()

{
elts.reset();

}

template <class elt, class key> bool table<elt, key>::finished()

{
return elts.finished();

}

template <class elt, class key> bool table<elt, key>::next()

{
return elts.next();

)

template <class elt, class key> elt& table<elt, key>::current()

{
return elts.current();

}
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template <class elt, class key> int table<elt, key>::index()
{

return elts.index():

11.1.4 Content Operations

Tables have a typical set of Content operations. Combine, however, is omitted here and
deferred to Exercise 2.

Attributes

The Attributes of a table are those of the underlying list.

template <class elt, class key> struct table

{
..
// Attributes
bool empty();
bool full();
int size();
1N

/* Attributes */

template <class elt, class key> bool table<elt, key>::empty()
{
return elts.empty();

template <class elt, class Key> bool table<elt, key>::full()

{
return elts.full():

template <class elt, class key> int table<elt, key>::size()

{
return elts.size();
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Compare

We’ll provide an equal butno compare. The order in which elements are stored in a sim-
ple table is irrelevant, so there’s no notion of ordering appropriate to them. It does make
sense, however, to ask if one table is a subset of another, meaning that all of the first table’s
elements are also found in the second. Testing whether one structure isa “sub” of another
is a fairly common operation with unordered structures.

template <class elt, class key> struct table

{
/.
/! Compare
friend bool equal(table<elt, key>&, table<elt, key>d);
friend bool subtable(table<elt, key>&, table<elt, Kkey>&);
1

The implementation of subtable is direct, though not necessarily efficient. It
traverses the elements of the first looking to see if each is contained in the second. Wher-
ever a “sub” test like subtable is implemented, an easy, though not necessarily efficient,
way to code equal is to check if the two structures are “subs” of each other. As a simple
improvement in efficiency, both functions compare the sizes of the two tables, which se-
quential lists can provide directly, before doing any real work.

/* Compare */

template <class elt, class key>
bool subtable(table<elt, key>& tbll, table<elt, key>& tbl12)

{
if (tb1l.size() > tb12.size()) return FALSE;

th1l.reset();
while (tb11.next())
if (!tb12.contains_equal(tbll.current())
return FALSE;

return TRUE;
}

template <class elt, class key>
bool equal(table<elt, key>& tbll, table<elt, key>& tb12)

{
if (tbll.size() != tb12.size()) return FALSE;

return subtable(tbl1l, tb12) && subtable(tbl12, tb1l);
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11.1.5 Support Operations

Copy

Tables are copied by copying their underlying lists. They have no other information as-
sociated with them, so there’s nothing to do beyond that.

template <class elt, class key> struct table

{

// . .

// Copy

table(table<elt, key>& tbl);

table<elt, key>& operator=(table<elt, key>& tbl);
¥
/* Copy */

template <class elt, class key>

table<elt, key>::table(table<elt, key>& tbl) : elts(tbl.elts)
{

}

template <class elt, class key>
table<elt, key>& table<elt, key>::operator=(table<elt, key>& tbl)

{
if (this == &tbl) return *this; // assignment to self!

elts = tbl.elts;
return *this;

Process

Most of the time tables are accessed by key to obtain the corresponding element. Occa-
sionally, however, it may be useful to ask if a table contains a specific element. That’s not
the same thing as accessing the table with that element’s key — the table might contain a
different element stored with that key. Therefore, the usual contains and contains_
equal functions are provided. As with many other linear structures, it might make sense
to provide a Sort operation for simple tables, but other types of tables either won’t support
that or automatically maintain elements in sorted order. Since it won’t be in the other ta-
ble implementations, it isn’t included here.
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template <class elt, class key> struct table
{

//

/! Process

bool contains(elt);

bool contains_equal(elt);

The definition of contains_equal first does a search of the table using the target el-
ement’s key. Then, if a corresponding element is found, it is compared to the target
element. The considerations for doing things this way, rather than traversing the list test-
ing each element for equality with the target, are those described for the version of remove
that takes an element (cf. page 372). The definition of contains, however, just asks the
list whether it contains the element because identity comparisons will be faster than
comparing keys or elements for equality.

/* Process */

template <class elt, class key> bool table<elt, key>::contains(elt e)

{
return elts.contains(e);

}
template <class elt, class key> bool table<elt, key>::contains_equal(elt e)
{

int pos = lookup_pos(get_key(*e));

return (0 != pos) && equal(*e, *elts[pos]);

Output

Output of a table should be organized around the conceptual pairing of keys and
elements. We’'ll print each element on a separate line preceded by its key. Even though
the key might be printed by the element type’s Output operation, it’s still worth highlight-
ing the correspondence between key and element, and in some situations the key will not
be printed as part of printing the element.

template <class elt, class key> struct table
{

P

/! Output

friend ostream& operator<<(ostream&, table<elt, key>&);
-
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/* Qutput */

template <class elt, class key>
ostreamd operator<<(ostream& strm, table<elt, key>& tbl)

{
tbl.reset():
while (tbl.next())
strm << "\t' << get_key(*tbl.current()) << ":\t"
<< *tbl.current() << '\n"';
return strm;
}

11.2 Sorted Tables

One way to improve the efficiency of table search is to store elements in order according
to their keys. Certain common search algorithms use element order to rapidly home in
on the target element rather than searching blindly through the entire table. A sorted ta-
ble is like a simple table, except that it adds elements to its list in such a way as to preserve
ordering and takes advantage of that in its more efficient implementation of lookup.

11.2.1 Using an Ordered List

To keep the elements in order, Add operations have to determine where to insert a new
element. It can do this at the same time it is checking whether thelist contains an element
with a key equal to the element being added. A straightforward implementation would
perform a linear search with code something like the following.

template <class elt, class key> void sorted_table<elt, key>::add(elt e)

{
for (int i = 1; i <= elts.size(); i++)
if (AFTER != compare(get_key(*e), get key(*eltsfil)))
break;
if (equal(get_key(*e), get Key(*elts[il)))
// ... handle complexities of different actions to take
/1 when an element with equal key is already in the table .
else // e belongs before elts[i]
elts,insert(e, i); // 1 is allowed to be sizet+l
}

Adding an element at its proper position is more expensive due to the shifting of
subsequent elements down in the list. A minor tradeoff is that add can stop as soon as it
encounters an element whose key is after the key of the element being added instead of ex-
amining the entire list. A more significant tradeoff is that Access operations can similarly
be made more efficient by taking advantage of ordering. Since applications using tables
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generally Access them much more frequently than they Modify them, the net improvement
can be substantial.

Even though the elements are stored in order, a successful linear search takes the
same number of comparisons — N/2 on average — as with a simple table, since the target
element may still be anywhere in the list. However, an unsuccessful linear search would
be faster, since, as in add, it can stop as soon as an element is encountered whose key is af-
ter the target. This is an interesting tidbit, but it doesn’t fundamentally change the linear
nature of the search. Costs still go up linearly with the number of elements in the table.
What's needed is a search method that takes better advantage of the ordered elements.

11.2.2 Binary Search

That faster search method is binary search, a simple but powerful technique similar to
what you do when you look up a word in a dictionary or a name in a phone book. A loca-
tion in the middle of the table is selected and the target key compared to the key of the el-
ement at that location. If the keys are equal, the desired element has been found. If the
target key is before the element’s key, then search proceeds with the part of the table before
the selected location. If the target key is after the element’s key, search proceeds with the
part of the table after the selected location.

The algorithm continues to cut the table into successively smaller portions, until ei-
ther the target is located or the search has been narrowed to a single location in the table.
In the latter case, the target is not in the table. If the search is for an add, the new element
belongs either just before or just after the final location. Figure 11.1 illustrates this process
for a table in which keys are names of fruits.

Each pass of the loop reduces the search’s attention span by half. For a table of size
‘N, the first pass reduces the attention span to N/2 elements, the second to ‘N/4, and so
on. After the k™ pass, N/2X elements remain to be considered. It may happen that by
chance the target is located in an early pass, but in any case the worse that can happen is
for the search to continue until a range only one element large is reached. The number of
passes this will take is the number of times N must be divided by 2 to reach 1. This is (by
definition) the base two logarithm of N (i.e., log, N). The search time is therefore loga-
rithmic, a greatimprovement over linear search. Since this algorithm depends on numer-
ical calculations, it can be used only with structures that support positional index, such as
sequential lists.

11.2.3 Implementation

A sorted table module is just like a simple table module in most respects. Nothing what-
soever changes in the header file. The only fundamental change is to 10okup_pos, which
implements binary search. (The preliminary version of add shown above was for exposi-
tory purposes only: the improved search technique should really be implemented in
Tookup_pos rather than in add, so that Access functions can take advantage of it, too.)
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Ojapple apple Olapple Olapple
1]apricot apricot 1lapricot 1]apricot
2|banana banana 2|banana 2|banana
3|cherry cherry 3|cherry 3lcherry
4|grape grape 4lgrape 41grape
51kiwi kiwi 5| kiwi 51kiwi
6 |kumquat kumquat 6|kumquat 6[kumquat
7 |1emon Temon 7]1emon 711emon
8|1ime lime 811ime Bllime
9fmango 9tmango 9Imango 91 mango
10{orange 10]orange 10Jorange 10|orange
111peach 11|papaya 11]papaya 11|papaya

{12 |papaya 12{peach 12|peach 12 |peach

J13|pear 13 |pear 13fpear 13|pear

4 14 plum 14fpium 14|ptum 14 ptum

Searching for "kumquat " shading shows the region being considered; the highlighted
index is the location of the next cut.

Figure 11.1 Binary Search

template <class elt, class key>
int sorted table<elt, key>::l1cokup_pos(key& k)

{
if (elts.empty()) return O;
int middle, lower = 1, upper = elts.size();
order ord;
while (Tower < upper)
{
middle = (lower + upper) / 2;
ord = compare(k, get_key(*elts[middle]));
if (ord == EQUAL) return middle;
if (ord == BEFORE)
upper = middle - 1;
else
lower = middle + 1;
}
return lower:
}

This new version of 10okup_pos returns the position of an element whose key may
be after, equal to, or before the target key. Consequently, some incidental changes have to
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to be made to 1ookup and add to take that into account. Note that many other functions
call Tookup_pos, including remove and contains_equal, and they all benefit from the
improved performance binary search provides.

template <class elt, class key> elt sorted_table<elt, key>::lookup(key& k)

{
int pos = lookup_pos(k);

if (0 == pos)
return 0O;

if (equal(k, get_key(*elts[pos])))
return elts{pos];

return 0;
}

template <class elt, class key>
void sorted_table<elt, key>::add(elt e, action dup_action)
{
if (elts.empty())
{
elts.add(e);
return;
}

int pos = lookup pos(get_key(*e)):

switch(compare(get_key(*e), get_key(*elts[pos])))

{
case BEFORE:
{
elts.insert(e, pos);
break;
}
case AFTER:
{
elts.insert(e, pos+l);
break;
}

case NO_ORDER:
error("[sorsorted_table::add] compare returned NO_ORDER");
case EQUAL:
switch (dup_action)
{
case ERROR:
error("[sorted_sorted_table::add] the sorted_table already "
"contains an elt with the same key");
/* error exits, so no break */
case WARN:
warning("[sorted_sorted_table::add] the sorted_table already "
"contains an elt with the same key™);
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/* no break */
case REPLACE:
case IGNORE:

elts[pos] = e;

Finally, subtable can be made much more efficient than it was in the simple table
module. Before, it had to search the entire second list for each element of the first list. It
would be a great improvement to search the second list using the improved 1ookup_pos,
via 1ookup, but we can do even better than that. Because the elements of each of the two
tables are in order, we just have to traverse the two tables in parallel. When the key of the
current element of the second table is less than the key of the current element of the first
table, we can just do another next () on the second table. When the current element of
the second table has a key that is after the key of the current element of the first table, we
can stop and return FALSE, since we would know that the second table did not contain an
element whose key is equal to the key of the first table’s current element.

template <class elt, class key>
bool subtable(sorted_table<elt, key>& tbll, sorted_table<elt, key>& tbl12)

{
if (tbl1l.size() > tbl2.size()) return FALSE;

tbll.reset();
tb12.reset();
while (tbll.next())
{
order ord;

while (tb12.next() &&
(AFTER =—
(ord = compare(*tbll.current(), *tbl1Z2.current()))))
/* do nothing */;

if (tb12.finished() || (EQUAL != ord))
return FALSE;
}

return TRUE;

11.3 Hash Tables

Suppose that every possible value of a table’s element type had its own unique integer key
and that those integers were all smaller than the size of the table. Under these highly re-
stricted conditions, searching can be entirely eliminated by just storing each element at the
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location in the list corresponding to its key. These situations are not uncommon: exam-
ples include the number of days in a month indexed by the number of the month or a
monthly calendar with a list of appointments for each day.

This situation is so straightforward that programmers typically just use arrays to
represent this information rather than a more elaborate table structure: the array is the ta-
ble, the indices are the keys, and the entries are the information associated with the keys!
The keys are implicit in the structure of the array and aren’t even necessarily part of the
elements being stored.

It would be nice if the range of keys for a set of possible elements were often so well
behaved, since direct lookup is so much more efficient than searching (no matter how
good a search algorithm we use). Normally, of course, the keys aren’t integer values, or
they aren’t unique, or they span such a wide range relative to how many items need to be
stored that the array would be unacceptably large. Surprisingly, a clever technique called
hashing approximates the efficiency of direct indexing with no restrictions on the keys
other than that they be integers.

11.3.1 The Concept of Hashing

Suppose an application needed to store a few hundred strings in a table — names of peo-
ple in an organization, for example. If we had a magic way of transforming a string to a
unique integer between, say, 0 and 1000, we could use a direct-access table to store the
strings and avoid expensive searching. Except for uniqueness, such a transformation
would not be hard to implement: we just have to perform some integral computation on
the characters of the string, perhaps not even using all of them. For instance, we could
sum (or multiply) the Asci value of the characters (or the first five, or the first, third, and
last, or whatever) to obtain an integer.

The resulting integer n could not be used for an index directly, because there’s no
guarantee that it is less than the size of the array. That isn’t hard to fix, though: n%size
produces an integer between 0 and size-1 (inclusive). Thus, by first computing some in-
teger value from an element, then taking the result modulo the table size, we can generate
anindex into thearray. A function that generates indiceslike thisis called a hash function,
and its result can be used to directly access table elements.

The only problem with this scheme is that in general it isn’t possible to find an inte-
ger-valued function that is quick to compute and produces a unique value for every pos-
sible key value. (If the hash function is too elaborate, it might end up taking more time
than a binary search.) Moreover, unless the size of the table is bigger than the number of
possible elements, which is generally out of the question, the remainder operation com-
presses a wide range of integers into a smaller one, precluding uniqueness. Hash tables
are direct-access tables based on hash functions computed on keys along with mecha-
nisms for resolving collisions — i.e., for distinguishing different keys that hash to the same
index. They used to be called scatter storage because they distribute items around the ta-
ble in what appears to be a haphazard manner, rather than sequentially as in simple or
sorted tables.
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11.3.2 Hash Functions

Before looking at collision resolution mechanisms, let’s look at some of the characteristics
of good hash functions. What makes hashing work is that the number of element values
stored in the table is much smaller than the total number of possible element values. If we
knew in advance which elements would be stored, we could perhaps find a function that
does compute a unique hash index for each one. (Infact, algorithms for computing such
perfect hash functions exist and are used for things like the keywords of a programming
language in a compiler for that language.) In general, though, we don’t have any idea
what values will be stored and cannot even entertain the idea of devising a perfect hash
function. This situation is characterized by the mathematical principle known as the Pi-
geonhole Principle which states that with NV boxes and more than I objects to distribute
among those boxes, at least one box must have more than one object in it.

Although collisions generally cannot be avoided, hash functions can be designed to
minimize them. A good hash function spreads typical sets of elements relatively evenly
over the index range of the table. Poor hash functions produce uneven distributions, in
which the hash indices of most elements bunch up at relatively few index values. A good
hash function must also be efficient to calculate, since it will be invoked frequently.

The first step in a hash function is to compute an integer value from a key. (Of
course, if the key is already an integer, no further computation is necessary.) In C and
C++, many kinds of keys can simply be cast to an integer! This strategy, not available in
high-level languages, uses the machine-level representation of the key as if it were an inte-
gral value.

Keys are often strings. Typical hash functions on strings add some or all of the char-
acters; they may also factor in the length of the string. It is surprisingly easy to design bad
string hashing functions. For instance, adding all the characters produces the same value
for anagrams (strings with the same characters in a different order). This problem is
worse when only a few characters are used — say, the first two and the last — since in
many applications many strings are closely related (similar names, addresses, titles, etc.).
Addition of characters also fails to distinguish combinations of characters that sum the
same, for example, "st" and "ru". For this reason, the bits representing the characters
or the accumulated total are sometimes shifted before being added together, in an attempt
to further scramble the result. Here’s a simple-minded function to compute an index
from a string.

long hash(string& s)

{
int 1 = s.length();
switch (1)
{
case 0 return 0;
case 1 return s[0];
case 2: return s[0] * s[1];
case 3:
case 4:
case 5: return s[0] * s[1] + s[1-17;
default: return s[0] * s[1] + s[1-41:
}
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Sometimes hashing is done on the memory address of a computational object in-
stead of on its contents: the address of an object is an easily derived integer! This ap-
proach is useful for lookups based on object identity rather than equality of some key
value.

The second step in computing a hash index is taking the remainder after dividing
the integer produced in the first step by the size of the table. It turns out that due to some
number theoretic considerations prime divisors produce much more even distributions
than nonprime ones. Therefore, the size of an array used for a hash table should be a
prime or at least a number with no small (less than about 20) prime divisors. Even num-
bers produce particularly bad distributions.

11.3.3 Resolving Collisions

As long as there are more possible key values than there are places in the table, collisions,
where two different values produce the same hash index, can occur. The emptier the ta-
ble, the less likely they are to happen, but we still need a mechanism for resolving
collisions. Thereare many collision resolution techniques, but they are all based on a sim-
ple idea: the computed hash index is essentially a starting point for a search process. Giv-
en a target key and the corresponding hash index, an object located at that place in the
table may be a different object whose key happens to hash to the same value as the target
even though the two keys are not equal. The first step after computing a hash index is to
probe the table by comparing the target key to the key of the object at the computed loca-
tion: if they match, the target has been found; if not, search continues. Different resolu-
tion methods implement different search processes.

To illustrate, suppose we have elements to store whose keys are fruit names repre-
sented as strings. Figure 11.2 shows what a hash table might look like after several items
have been added to the table using the hash function

hash(key) = (key[0] + key[31) % 17

(This function only works with strings having at least 4 characters, and has the size of the
table built into it; both are artificial limitations for the sake of constructing a simple
example.) The next item to be added has key "kiwi®, which happens to hash to 8, the
same as "banana", which is already occupying location 8 of the table. This is a collision:
the item whose key is "kiwi" cannot be stored there because the one whose key is "ba-
nana" already is.

Buckets

A simple collision resolution technique is to have the table contain buckets — small arrays
of entries rather than individual entries. Each bucket contains objects whose keys all hash
to the index of thatlocation in the table, as shown in Figure 11.3. A hash value selects one
of these buckets, which is then searched sequentially until the target object is located or an
empty slotis encountered. Ifthe selected bucket is empty, or none of its objects have keys
that match the target key, the object is simply added to the end of the bucket.

In essence the bucket approach breaks the table down into lots of little ones. This
simple scheme concedes the likelihood of a short search for most probes while making
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hash(key) = (key[0] + Key[31) % 17

Keys and hash values,

in order of addition 0
1 —f—=>{ apple TT T 1]
apple 1 2
apricot 15 « 3
banana 8 v 4
cherry 9 v 5
grape 13 ¢ 6
kiwi 8 X 7
kumgquat 16 8 banana
Temon 15 9 cherry
1ime 5 10
mango 8 11
orange 0 12
papaya 5 13 —1 > _grape || 1 |
peach 7 14
pear 5 15 —}———={ apricot [ | [ ]
plum 0 16

Figure 11.2 A Hash Table Collision

long searches very unlikely. The buckets must be fairly small, or tar too much space will
be wasted. One complication to this otherwise straightforward scheme is that buckets can
overflow. One way to handle overflow is to have some other buckets off to the side some-
where, and include in each bucket a pointer to the next bucket to consider when that one
is full.

As this amounts to a linked list of buckets, it may be better to acknowledge this from
the beginning. The hash array can contain linked lists whose elements are pointers to
hash buckets. (Remember, the implementation of linked lists ultimately developed in
Chapter 8 includes just one data member — the pointer to the first node — so there is little
overhead to a list.) Separate from the table would be an array of hash buckets, or they
could even be allocated dynamically. That way, no bucket is used for hash indices that ha-
ven’t yet been encountered.

Chaining

Another application of linked lists gives us another approach to collision resolution. In-
stead of buckets, the hash table simply contains linked lists of (pointers to) elements — in
effect, hash buckets of size 1 (cf. Figure 11.4). The lists are referred to as chains, and the
technique is called chaining. This is a pretty common technique where a straightforward
implementation is desired and maximum efficiency isn’t required. Each linked list con-
tains all the elements whose keys hash to the same index. As with buckets, using chains
minimizes search by dividing the set to be searched into lots of smaller pieces. There’s
nothing inherently wrong with linear search with small sequences; it’s just that it gets slow-
er and slower as the sequences to be searched getlonger. In this approach to resolving col-
lisions, each sequence of elements whose keys hash to the same value will stay relatively
short, so linear search is adequate.
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Using buckets or chains complicates the hash table structure. A structurally simpler ap-
proach is to store all the (pointers to) elements directly in the hash table. Collisions are
resolved by looking somewhere else in the hash table. That “somewhere else” is alocation
generated by a deterministic mechanism so that subsequent hashes of the same key will
reach that location. This approach is called open addressing or rehashing. In short, its
strategy is as follows:

1. Compute the initial hash index for the key, and look in that location in the table.

2. Ifthatlocation is empty, the target object is not in the table, and the search ends;
if there is something stored there, compare its key to the target key.
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hash(key) = (key[0] + Key[31) % 17

Keys and hash values,
in order of addition

0 orange
1 1 plum
apple 1 o 2 i apple
apricot 15 v 2 Tine
banana 8 ¢« 1=
cherry 9 v 5 —] papaye
grape 13 v/ 6 pear
kiwi 8 v 7 —ﬂ peach
kumquat 16 «+ 8 — > =L L= banona
Temon 15 ¢ 9 ——=>{1 1] % mango
lime 5 ¢« 10 ——
mango 8 « 11 =
orange 0 v 1?2 crerny
papaya 5 « 13 grape
peach 7 « 14 apricot
pear 5 v 15 — 1eman
plum 0 ¢« 16 "9{:;2 = _kumguat

Figure 11.4 Chaining

3. Itthekeysare equal, that objectis the target, and the search ends; if not equal, that
objectisa different one whose key happens to hash to the same value {(collision!).

4. Compute a new index into the table and go to step 3.

A variety of methods for determining the next location (step 4) are commonly
used. The simplest form of open addressing is called linear probing: locations following
the initial hash are examined in sequence. Eventually, one of three things happen:

1. An empty spot in the table will be found — the target element is not in the table.
2. The target element will be encountered.

3. The entire table gets searched (wrapping around from the end to the beginning),
until the original hash location is reached again — the target element is not in the
table, and the table is completely full.

The process is illustrated in Figure 11.5. In effect, the initial hash generates a loca-
tion at which ordinary linear search begins. The initial hash is therefore just a hint giving
alikely point to start the search, short-cutting a full sequential search but not guaranteeing
how much searching will actually be necessary. People often find the concept of hash ta-
bles disconcerting when it is first introduced, since the idea of table lookup seems to re-
quire a specific known location for each element. However, what table lookup really
requires is just that the process be deterministic — always producing the same result for
any key. Hash tables are justa way of producing a deterministic result using a clever com-
bination of indexing and search.
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hash(key) = (key[0] + Key[31) % 17

Keys and hash values,

in order of addition 0
1 ———={_apple | | 1
apple 1 ¢ J
apricot 15 « 3
banana 8 4
cherry 9 v 5
grape 13 ¢ 6
Kiwi 8 7
kumguat 16 8 @ banana
lTemon 15 9 @ —t— cherry
Time 5 10 @ Kiwi
mango 8 11
orange 0 12
papaya 5 13 ———={ grape || [ |
peach 7 14
pear 5 15 —}——={apricot T |
plum 0 16

The item with key = "kiwi™ ends up at location 10, though it hashes initially to 8: starting
with the collision at 8, locations are examined sequentially (indicated by the numbers @,
@, @) until an empty one is found.

Figure 11.5 Linear Probing

Quadratic Probing

Linear probing is simple to implement, but it isn’t all that effective, The problem is that
as that table fills up, sequences of elements whose keys hash the same run into each other.
In Figure 11.5, when the item with key = "kiwi" is added, there is a collision with the item
having key = "banana"; sequential search immediately encounters another item (with key
= "cherry") that happens to have a different initial hash value, so yet another probe is
necessary.

To further illustrate this problem, suppose three elements hash to 7, occupying lo-
cations 7, 8, and 9, and that five other elements hash to 11, occupyinglocations 11 through
15. Now, if an element is added that hashes to 7, 8, or 9, it will be added in location 10.
That’s fine, but the next time that an element hashes to anything from 7 through 15, the
rest of those locations have to be examined even though their keys may well hash to differ-
ent values. Another element hashing to 7 will have to be compared to each of the other el-
ements until an empty spot is found at location 16, though relatively few of those locations
hold elements whose keys hash to 7. What has happened is that separate runs of same-
hash elements have become entangled, causing much longer searches. This effect is called
clustering, and it is in practice a very significant problem as hash tables fill up.

Other rehashing techniques are designed to reduce the clustering that occurs with
linear probing. Instead of placing objects whose keys hash to the same index in close
proximity, the index can be recomputed to spread the conflicting objects over more of the
table. Quadratic probing increases the distance from one conflicting object to the next
with each probe: for an object with hash value i, location i is checked first, then i+1, then
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i+4, then i+9, etc. A formula for the #? index in a linear probe sequence (with n starting
at 0, 7 the hash index, and m the table size) is

(i+n)modm

A formula for the 7'M index in a quadratic probe sequence is
q P q

(i+n?*) mod m

The formulas are the same except for raising  to a different power. That power deter-
mines the “degree” of the probing, so to speak, thus the names ‘linear’ and ‘quadratic’.

Multiplication is generally a slower hardware operation than addition. Note that a
sequence of squares can be generated using only addition. Squaresin a sequence manifest
a simple pattern, which can be easily seen by lining up the squares in one row and the dif-
ference between successive squares in a row below them:

0 1 4 9 16 25 36 43 64
1 3 5 7 9 11 13 15

Each square is larger than the preceding square by two more than the preceding square is
larger than the square before it. To generate the sequence, we can keep track of both the
current square s (starting at 1) and the difference d that was added to the previous square
to get the next one (also initially 1). Each step then involves computing a new difference
by adding 2 to the previous one and a new square by adding the new difference to the pre-
vious square.

Quadratic probing wraps around after going past the end of the table, just like linear
probing. For a given probe and given table size, the sequence of locations encountered in
quadratic probing may eventual encounter some location a second time without hitting all
the other locations in the table. It turns out, though, that if the size of the table, is a prime,
at least half the locations in the table are encountered before returning to the initial loca-
tion, which is good enough.

Since the distance between objects that hash the same increases as there are more of
them, the clusters that appear in linear probing do not form with quadratic probing. Note
that any function could be used to generate a new index, as longas it produces a reproduc-
ible sequence given an initial hash index. Thisis necessary because to find an object in the
table the search must follow the same sequence of indices that led to an object’s being
placed at its (previously empty) location. A different sequence might encounter an empty
location before the object, leading to the false determination that the object is not in the
table.
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11.3.4 Otherlssues

Table Expansion

An element’s location in a hash table is irrelevant to code using the table. No notion oflin-
ear ordering is supported. This has theadvantage that the table can be reorganized during
execution without client code even noticing. Client code provides a key, and the table
mechanism finds the location that contains an element having that key or the location
where the element should be added if not already there.

This property of hash tables makes it possible to dynamically expand tables as they
get full. A larger array is allocated; then every element of the original array is hashed into
the new array. Finally, the original array is deallocated. Note that the order of elements
in the new array will have little, if any, relation to the order of elements in the old array,
because the hash values are computed modulo a different size.

In practice it is desirable to rehash before the table is completely full. Regardless of
the rehashing technique used to resolve them, the frequency of collisions increases dra-
matically as the table approaches saturation. Rehashing is worthwhile as soon as this ef-
fect becomes prominent. Different rehashing schemes have different performance
characteristics, but typically performance starts to degrade significantly as the table reach-
es about 75-80% full. The definition of add can check how full the table is and trigger a
rehash when a certain threshold has been reached. An alternative to coding a fixed full-
ness threshold is to have 1ookup_pos keep track of the average number of probes neces-
sary to find a target and trigger expansion when that average exceeds a particular
threshold.

Deletion

Hash tables are used primarily in applications where lookups are far more frequent than
insertion. Furthermore, hash tables are normally used where objects are never deleted
from a table once they are added to it. Deletion can be supported, but some collision res-
olution methods do so more easily than others.

With bucket or chaining methods, an object can be removed from the table simply
by removing it from its list. Open addressing presents a more challenging problem: an
object cannot simply be removed from the table, because it might be part of a cluster.
When there is collision into a cluster, search must continue until either the target object is
located or the cluster is passed. A search for an object might end prematurely if an earlier
member of the cluster was deleted by just leaving a hole. Deleted entries must therefore
be marked as such so they can be skipped during rehashing sequences. If an object is not
found in the table, it can be stored in the first marked location encountered during the
probe sequence after the sequence was followed to its end.

11.3.5 AnImplementation

Here’s the code for a hash table module, using quadratic probing and supporting expan-
sion but not deletion. The implementation uses an array directly rather than a sequential
list. Thelist contained ina simple or sorted table provides useful services, as evidenced by
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the large number of table functions that simply call the same function on the underlying
list. In particular, the details of insertion, deletion, and size tracking are hidden from the
table module, simplifying many of its function definitions. However, the way hash tables
manage their elements is so different from how lists work that there is really nothing to be
gained by using a list instead of a straight array.

The implementation assumes that the application supplies a function get_
hash(key&) that returns a Tong. That hash function only computes an integer from the
element’s key. The division by the table size is performed by the module, since it knows
the size of the table.

We want to keep the size of the table prime, regardless of the size specified by the
user. Also, the size of a newly expanded table should also be prime. We therefore include
a function next_prime to compute the first prime equal to or greater than a given
number. Ingeneral, tests for primeness form an interesting and challenging body of prac-
tical number theory, but real hash tables will be small enough for straightforward methods
for finding primes. The algorithm shown here is based on a clever formulation by Knuth.

The public functions declared are essentially the same ones declared by the other ta-
ble modules. Remove operations are omitted, and a few new attributes are included hav-
ing to do with the fullness of the table. The representation and the definitions of the basic
functions are entirely different, but many of the high-level functions — especially those
using the Traversal operations — are just like their counterparts in the simple and sorted
table modules.

template <class elt, class key> struct hash_table

{
// Representation
private:
int allocation;
int eltnum; // to track fullness and give user info
elt *elts; // resizable array

// Initialize/Finalize
void init();
void expand();

public:
hash_table(int = 103);
~hash_table();

/! Access/Modify
private:
int Tookup_pos{(keyd);
public:
elt Tookup(key&);
elt operator[](key& Kk);
void add{(elt, action dup_action = IGNORE);
hash_table<elt, key>& operator+=(elt);
/! no remove!

// Traversal
private:
int curpos;
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int count;
public:

void reset();

bool finished();

bool next();

elt current();

int index();

/! Attributes

bool empty();

bool full();

int size();

int allocated_size();
double fullness();

// Compare

friend order compare(hash_table<elt, key>&, hash_table<elt, key>&):
// not implemented

friend bool equal(hash_table<elt, key>&, hash_table<elt, key>&);

friend bool subtable(hash_table<elt, key>&, hash_table<elt, key>&);

// Combine
// Left as an exercise

/!l Copy
private:
void copy(hash_table<elt, key>& tbl):
public:
hash_table(hash_table<elt, key>& tbl);
hash_table<elt, key>& operator=(hash_table<elt, key>& tbl);

// Process
bool contains(elt);
bool contains_equal(elt):

// Qutput
static int keywidth;

// min number of spaces to be used printing key: user can set
friend ostream& operator<<(ostream&, hash_table<elt, key>&);

/* Miscellaneous Auxiiiary Functions */

// based (loosely) on Algorithm A, Knuth, vol. 2, Ist. ed., p. 340
bool is_prime(int n)
{

assert(n > 0);

if (n%3 == 0) return 0;
if (n%5 == 0) return 0;
int 1im = int(sqrt(n));

for (int d =5; d <= 1im; d += 6)
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if ((n % (d+2)) == 0 || (n % (d+6)) == 0)
return FALSE;

return TRUE;

}

int next _prime(int n)

{
if (n%2 == 0) nt++;
while (!is_prime(n)) n += 2;
return n;

}

/* Initialize/Finalize */

template <class elt, class key> void hash _table<elt, key>::init()
{

elts = new elt[allocation];

for {(int i = 0; i < allocation; i++) elts[i] = 0;
}

template <class elt, class key> hash_table<elt, key>::hash_table(int siz)
eltnum(0), allocation(next_prime(siz)), curpos(-2)

{
init();

1

template <class elt, class key> hash table<elt, key>::~hash table()
{

delete []1 elts;
}

/* Access/Modify */

// private;
template <class elt, class key>
int hash_table<elt, key>::lookup_pos(key& k)

{
extern long hash(key&): // application must provide
int i = hash(k) % allocation;
int origi =i, diff = 1; // to generate sequence of squares

do // Took for empty slot or an element with equal key
{
if (telts[i] }| equal(k, get_key(*elts[il)))
return i;

i += diff;
diff += 2;
if (i >= allocation) i -= allocation; // wrap around
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}
while (i t= origi);

{/ We've cycled back to the original index without finding a

// match for the key: time to expand the table!

expand();

return lookup_pos(k); // looks recursive, but only happens once
}

template <class elt, class key> elt hash _table<elt, key>::lookup(key& k)
{

return elts[lookup_pos(k)1;
}

template <class elt, class key>
elt hash_table<elt, key>::operator[](key& k)
{
return lookup(k);
}

//private;
template <class elt, class key> void hash_table<elt, key>::expand()
{

int oldsize = allocation;

elt *oldelts = elts;

allocation = next_prime(2 * allocation); // double the table size
init();

for (int i = 0; i < oldsize; i++)
if (oldelts[il)
elts[1ookup_pos(get key(*oldelts[i]))] = oldelts[il;

delete [] oldelts;
};

template <class elt, class key>
void hash_table<elt, key>::add(elt e, action dup_action)
{

int pos = lookup_pos{(get_key(*e));

if (0 == elts[pos])
{
elts[pos] = e;
eltnumt++;
if (full()) expand();
1
else
switch (dup_action)
{
case ERROR:
error(”[hash_table::add] the hash_table already contains "
"an elt with the same key");
/* error exits, sSo no break */
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case WARN:
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warning("[hash_table::add] the hash_table already contains "

/* no break */
case IGNORE:
case REPLACE:

elts[pos] = e;

}

template <class elt, class

hash_table<elt, key>& hash_

{
add(e):
return *this;

"an elt with the same key");

key>

table<elt, key>::operator+=(elt e)

/* Traversal */

template <class elt, class
{

curpos = -1;

count 0;

}

template <class elt, class
{

key> void hash_table<elt, key>::reset()

key> bool hash_table<elt, key>::finished()

return curpos >= allocation;

}

template <class elt, class
{
if (-2 == curpos)
error("[hash_table

key> bool hash_table<elt, key>::next()

1:next] traversal not yet reset");

while ((0 == elts[++curpos]) && !finished());

return !finished():

}

template <class elt, class

{
if (-2 == curpos)
error("[hash_table

if (-1 == curpos)
error("[hash_table

if (finished())
error(”[hash_table

return elts[curpos];

key> elt hash_table<elt, key>::current()

::current] traversal not yet reset”);

::current] traversal reset but not yet stepped”);

::current] traversal already finished”);
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}

template <class elt, class key> int hash_table<elt, key>::index()
{
return count;

}

/* Attributes */

template <class elt, class key> bool hash_table<elt, key>::empty()
{
for (int i = 0; i < allocation; i++)
if (0 != elts[i]) return FALSE;
return TRUE;
}

template <class elt, class key> double hash table<elt, key>::fullness()

{
return double(eltnum)/allocation;

}

template <class elt, class key> bool hash_table<elt, key>::full()
{

return 5*eltnum > 4*allocation;

/! semi-arbitrary choice of 80% cutoff

}

template <class elt, class key> int hash_table<elt, key>::size()
{

return eltnum;
}

template <class elt, class key> int hash_table<elt, key>::allocated_size()

{
return allocation;

}

/* Compare */

template <class elt, class key>
bool subtable(hash_table<elt, key>& tb11l, hash_table<elt, key>& tb12)

{
if (tb1l.size() > tb12.size()) return FALSE;

tbll.reset();
while (tbll.next())
if (1tb12.contains_equal(tbll.current()))
return FALSE;

return TRUE;
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}

template <class elt, class key>
bool equal(hash_table<elt, key>& tbl11l, hash_table<elt, key>& th12)
{

if (tb1l.size() != tb12.size()) return FALSE;

return subtable(tbll, tbl12);
}

template <class elt, class key>
order compare(hash_table<elt, key>&, hash_table<elt, key>&)
{
notimp("compare(hash_table<elt, key>& tb11l, "
"hash_table<elt, key>& thb12)");
return NO_ORDER;

Chap. 11

/* Combine */
/* Left for Exercise 2 */

/* Copy */

template <class elt, class key>
void hash_table<elt, key>::copy(hash_table<elt, key>& tbl)
{
eltnum = tbl.eltnum;
for (int i = 0; i < allocation; i++) elts[i] = tbl.elts[i]:;
}

template <class elt, class key>
hash_table<elt, key>::hash_table(hash_table<elt, key>& tbl)

allocation(tbl.allocation), elts(new elt[tbl.allocation]), curpos(-2)

{
copy(tb1);
}

template <class elt, class key>

hash_table<elt, key>&

hash_table<elt, key>::operator=(hash_table<elt, key>& tbl)
{

if (this == &tbl) return *this; // assignment to self!
if (allocation != tbl.allocation)
{

delete [] elts;

allocation = tbl.allocation;

elts = new elt[allocation];

// not init(), because don't need to zero since

// about to copy to every location in the new array
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copy(th1);

return *this;

/* Process */

template <class elt, class key> bool hash_table<elt, key>::contains(elt e)
{

return e == elts[lookup_pos(get_key(*e))];
}

template <class elt, class key>
bool hash_table<elt, key>::contains_equal(elt e)
{
return equal(*e, *elts[lookup_pos(get_key(*e))1);
}

/* Qutput */
template <class elt, class key> int hash_table<elt, key>::keywidth = 24;

template <class elt, class key>
ostream& operator<<(ostream& strm, hash_table<elt, key>& tbl)

{
tbl.reset();
while (tbl.next())
{
long curpos = strm.tellp();
strm << '\t' << get_Kkey(*tbl.current());
long wdth = strm.tellp() - curpos;
spaces(max(1l, tbl.keywidth - wdth), strm);
strm << *tbl.current() << '\n’;
}
return strm;
}

11.4 EXERCISES

1. Complete the diagrams in Figure 11.2 (page 386), Figure 11.3 (page 387), and Figure 11.5 (page

389).

(a) Show where the rest of the keys end up.

(b) How many collisions occurred in each case? (Each element compared that isn’t equal is a
collision; for instance, if three different elements are in a bucket in 11.3, when a fourth dif-
ferent element is added to the same bucket, there will have been three collisions when that
element was added.)
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(c) Showacomplete diagram like the one in Figure 11.5 based on quadratic probing instead of
the linear probing used there. How many collisions occurred in adding all the keys?

2. Aiming for simplicity and clarity, rather than any special efficiency, write the obvious Combine
operation(s) for the following.
(a) simple tables
(b) sorted tables
(c) hash tables

3. Using public functions provided by the table modules, write a function keys that takes a table
and returns a sequential list of its elements keys for the following.
(a) simple tables
(b) sorted tables
(¢) hash tables

4, Consider replacing the sequential list of the simple table module with a linked list.
(a) Isthere anything in the simple table module that depends on the list being sequential as op-
posed to linked?
(b) Ifthe answer to (a) is no, explain why. Ifyes, what changes would have to be made if using
a linked list?
(c) What would be the advantages of using a linked list?
(d) What would be the disadvantages of using a linked list?

5. Modify the simple list module to automatically expand its list when full.
(a) How many functions had to be changed?
(b) Isthe table’s behavior significantly affected? If so, how? If not, why not?
(c) Does this look like a worthwhile improvement?
(d) Keeping in mind other uses of sequential lists, which seems more appropriate: that the table
should expand itslist or that the sequential list module should be extended to automatically
expand when full?

6. The definition of table: :add (page 371) checks to see if the table already contains an element
with the same key. Ifits action argument is REPLACE, the old element is removed and the new
one added. Since simple tables are based on sequential lists, and removing an element from a
sequential list requires shifting all subsequent elements up to fill in the gap, this facet of tab-
Te::add might be a source of significant inefficiency. A simple and more efficient alternative
would be to store the new element in the old one’s position, simply overwriting one pointer with
another without disrupting the rest of the list.

(a) Is this always more efficient? Consider where the new element is placed in the two ap-
proaches and see if you can imagine a situation in which the proposed change might actu-
ally make things worse.

(b) Could a similar improvement be made to the definitions of add in the other kinds of tables
shown in this chapter? If so, why; if not, why not?

7. Modify the implementation of one of the table modules to allow the user to specify what func-
tion is to be used to get the key (instead of assuming a global get_key function), There are
three ways to do this. Choose one to implement, but discuss the advantages and disadvantages
of each, along with the advantages in general in allowing users to specify the function. The three
possibilities are as follows.

(a) Addapointer-to-function argument to every function that uses get_key, either directly or
indirectly.

(b) Give the constructor a pointer-to-function argument, store that in the table struct, and have
functions use that instead of get_key.

(c) Make the function a third parameter to the template.
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8.

10.

11.

12,

An alternative form for a simple table is an association list. Typically based on linked lists, these
store pairs of keys and elements. Lookup involves sequential search through the pairs for the
specified key. Unlike the other tables discussed here, an association list would store arbitrary
pairs of keys and elements: the element does not necessarily provide a function to get its key.
More than one entry may contain the same key, in which case Access operations obtain the first
one encountered in the list.

(a) Implement and test an association list module,

(b) Give examples of situations in which it would be useful to have a table in which keys were

not part of the elements stored.

. Compare simple tables and sets. (Hint: consider the abstract behavior of their fundamental op-

erations.)

(a) In what respects are they alike?

(b) In what respects are they different?

(c) Would a simple table be a reasonable foundation on which to build a set module?

The sorted list implementation shown in the chapter uses a sequential list, but insertion into a

sequential list is inefficient (except at its end). An obvious possibility is to use a linked list in-

stead.

(a) Copy the sorted list module and modify your copy to use alinked list instead of a sequential
list.

(b) What functions did you have to change?

(c) Were you able to implement binary search on a linked list? If not, why not? If you were
able to, what compromises, if any, did you have to make to do so?

(d) Compare the efficiency of this implementation to the one based on a sequential list. Can
you think of situations in which the original would be faster?

(e) Other than efficiency, what other reasons are there to choose one approach over the other?

Write a program that reads words from a file, representing them as instances of string, and
counts how many times each appears. Have it report the number of words read, the number of
different words found, and the number of comparisons performed. It should traverse the table
and lookup the key of each element, and then report the number of comparisons performed in
doing that. The string module in the include and 1ib directories provides a public static
data member string::compares, which compare(string&,string&) increments; also,
equal(string&,string&) calls compare. Your program can reset string::compares to
zero whenever it wants.

(a) Write versions of the program that use a simple table, a sorted table, and a hash table.

(b) Compare the performance of the three methods on text files of several different sizes.

(c) Comment on the differences between the numbers obtained while indexing the file and the

numbers obtained while looking up each word.

In many applications of table lookup, the same relatively few keys get looked up repeatedly

within a short time. A simpletable implementation could take advantage of this by always mov-

ing the most recently located object to the front of the list, a technique sometimes called self-or-

ganizing search.

(a) Make this change to the simple table module.

(b) Repeatthe experiment of Exercise 11 to get figures for the modified simple list and compare
with the old figures.

(c) What are the increased costs of this method?

(d) When would the benefits outweight the costs?

(e) Obviously, no such improvement is available for sorted tables, because they rely on the or-
dering of their list to implement binary search. It would seem that the improvement would
be inapplicable to hash tables too; however, a similar modification can be made to hash ta-
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bles by considering each chain of elements that have the same hash index as a list and reor-
dering elements within that chain. Modify the hash table module to implement this
change.

() Repeatthe experiment of Exercise 11 to get figures for the modified hash table and compare
with the old figures.

(g) Ifyou don’tsee any significant difference between the new and old figures for hash tables,
explain why not and under what conditions such a modification might pay off. If you do
see a significant difference, can you characterize the tradeoff between the increased speed
and the costs incurred to attain it?

13. Modify the hash table implementation to support deletion.
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Search Trees

The list- and array-based tables examined in the last chapter are widely used structures.
Simple tables and hash tables do not depend on or take advantage of the relative ordering
of the keys of their elements, whereas sorted tables do. For key types that provide equal
but not compare, simple tables or hash tables must be used. Sorted tables may be used
with key types that do provide compare, but they are inefficient because of all the shifting
of elements caused by insertions and deletions. Of course, a hash table can be used with
elements whose keys happen to provide compare, but its Traversal operations process its
elements in random order.

In sum, tables are useful when relatively small numbers of elements are involved or
there is no need for ordered traversals. Applications that need ordered traversals over
large numbers of associatively accessed elements must use a different kind of structure.
Search trees, based on various kinds of tree structures, provide the needed power. This
chapter looks at some of the many ways trees can be used to support searching.

12.1 Binary Search Trees

Binary trees may be used to implement search trees according to a very simple scheme:

- Each node contains a (pointer to) an element being stored.

* A node’s left subtree contains only elements whose key is before the key of the
node’s element.

+ A node’s right subtree contains only elements whose key is after the key of the
node’s element.

Figure 12.1 shows a small search tree, with nodes represented only by their keys.

To find the element with a target key, the tree is searched by following a path starting
atthe root node. At each step the search key is compared to the key of the current node’s
element. If the keys are equal, the target has been located. If the target key is before the
key of the current node’s element, the node’s left subtree is examined next; otherwise, the
right subtree is examined. This continues until either the target is found or there’s no sub-

403
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Sunday

C Friday ) (Saturday) (Thursday) ( Wednesday )

Figure 12.1 A Search Tree

tree in the appropriate direction of the current node. In the latter case, there is no element
in the tree that matches the key. At that point, an Access operation would return 0, while
an Add operation would add a node for the new element in the appropriate direction from
the current node.

Here’s an implementation. As with tables, the search tree modules shown in this
chapter assume that get_key(elt, elt) is provided by the application.

12.1.1 Representation

A search tree can store its elements in a binary tree and use the binary tree to perform most
ofits operations. The binary tree is parameterized only in terms of the element type — it’s
only the search tree module that knows about keys.

template <class elt, class key> struct search_tree

{
private:
// Representation
binary_tree<elt> elts;
..
1

Many of the modules shown in this and the previous chapter on tables are imple-
mented on top of other structures we’ve already studied — in particular, lists and trees.
Most of the operations on the higher-level structure are implemented by just calling the
same operation on the lower-level structure. Only a few operations — typically Access
and Modify — have to do something special in support of associative access.

This is a powerful use of data abstraction. We put aside the details of the lower-level
structure’s implementation in order to concentrate on the new way we are using it. A tra-
ditional implementation would code a search tree as a special kind of binary tree. A typ-
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ical strategy would be to make a copy of the binary tree module and edit it where search
tree behavior is different from a plain binary tree. The disadvantages of that approach in-
clude having to deal with two levels of complexity in the same module (the underlying bi-
nary tree and the specialized search procedures), having to duplicate any extensions or
bug fixes later made to the original binary tree module in the copy, and leaving internal
details in the public interface (access to tree nodes, navigation operations, etc.). A data
abstraction approach avoids these problems at the cost of having to write a number of sim-
ple functions that call their lower-level equivalents.

12.1.2 Lifetime Operations

A search tree provides operations for lookup (Access), Add, and Remove. Action argu-
ments control what happens when there are key conflicts in an Add or absent keys or ele-
ments in a Remove in just the same ways as the table modules of the previous chapter.

Initialize/Finalize

These are entirely trivial. Thereisnothingto code. If weletthe compiler generate the do-
nothing constructor and destructor instead of defining them, the results would be exactly
the same.

template <class elt. class key> struct search _tree

{
Y A
public:
// Initializel/Finalize
search_tree():
~search_tree();
1

/* Initialize/Finalize */

template <class elt, class key> search_tree<elt, key>::search_tree()
{
}

template <class elt, class key> search_tree<elt, key>::~search_tree()

{
}

Access

The real work of 10okup is done by Tookup_pos, which takes a key and locates the node
in the tree having an element whose key is equal to the target key. Lookup will also be used
by Remove operations to find the node in the tree to delete.
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template <class elt, class key> struct search_tree

{

};:

//
// Access

private:

link Tookup_pos(key&);

public:

elt Tookup(key&);
elt operator[1(key&);

/* Access */

template <class elt, class key>
elt search_tree<elt, key>::lookup_pos(key& k)

{

}

{

}

{
}

link cur = elts.getRootNode():
if (0 == cur->getE1t()) return Q;

while (cur)
switch (compare(k, get_key(*cur->getE1t())))
{
case EQUAL:
return cur;
case BEFQRE:
cur = cur->getleft();
break;
case AFTER:
cur = cur->getRight();
break;

case NO_ORDER: error("[search_tree::lookup] ”
"elts cannot be compared");

}

return 0;

1ink pos = lookup_pos(k);
if (0 = pos)

return 0;
else

return pos->getElt();

template <class elt, class key>
elt search_tree<elt, key>::operator[1(key& k)

return lookup(k);

template <class elt, class key> elt search_tree<elt, key>::lookup(key& k)
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Add

The only Add operations are add and its synonym operator+=. Add uses the key of the
element it is given to locate the place in the tree where that element should be added.
Complexity arises when there already is an element in the tree whose key is equal to the
element being added, so code to handle that is split off to a private subfunction add_
equal. Otherwise, adding is straightforward. It mimics the behavior of lookup, except
that at the end, when there’s no node in the direction it is trying to go, it adds a node for
the new element at that point.

template <class elt, class key> struct search_tree
{
I
/! Add
private:
link add_equal(link, elt, action));
public:
elt add(elt, action);
elt operator+=(elt):
};

/* Modify: Add */

// private:
template <class elt, class key>
void search_tree<elt, key>::add_equal(link cur, elt e, action dup_action)
{
switch (dup_action)
{
case WARN:
warning("[search_tree::add] the tree already "
"contains an elt with the same key™):
/* no break */
case IGNORE:
case REPLACE:
cur->getElt() = e;
return;

case ERROR:
error("[search_tree::add] the tree already "
"contains an elt with the same key");

}

template <class elt, class key>
void search_tree<elt, key>::add(elt e, action dup_action)

{
1ink cur = elts.getRootNode():

if (0 = cur->getE1t())
{
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cur->setElt(e);
return;

}
key k = get_key(*e);

while (TRUE)
switch (compare(k, get_key(*cur->getE1t())))
{
case EQUAL:
add_equal(cur, e, dup_action);
return;

case BEFORE:
if (cur->haslLeft())
cur = cur->getlLeft();

else
{
cur->addLeft(e);
return;
}
break;
case AFTER:

if (cur->hasRight())
cur = cur->getRight{):

else
{
cur->addRight(e);
return;
}
break:

case NO_ORDER:
error("[search tree::add] can't compare keys"):
break;

}

template <class elt, class key>
search_tree<elt, key>& search_tree<elt, key>::operator+=(elt e)
{

add(e);

return *this:

Suppose we add the names of the months to a search tree, in calendar order. The
structure of the tree after adding the names of each of the first seven months is shown in
Figure 12.2. The structure of the tree after adding all of the months is shown a little later,
in Figure 12.3 on page 412.
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Figure 12.2 Adding Months to a Search Tree in Calendar Order
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Remove

Remove is an intricate operation in a search tree. As with other ordered structures, re-
moving an element should not disturb the conceptual ordering of the elements. With a
linear structure, elements have only one successor, so deleting an element leaves its suc-
cessor in its place. Things are more complicated with a nonlinear structure like a search
tree, because the deleted element has more than one successor. The implementation here
has three levels: the public functions, a private function do_remove that implements the
actual removal (as 10okup_pos implements search), and other private functions called by

do_remove.

template <class elt, class key> struct search_tree

{

/!
// Remave

private:
elt do_remove(1ink);
void do_remove_terminal(1ink);
void do_remove_left_only(1link);
void do_remove_right_only(1link);
void do_remove_both(1link);

public:
void clear();
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elt remove(key&, action not_found_action = IGNORE);
search_tree<elt, key>& operator-=(key&);

void remove(elt e, action not_found_action = IGNORE);
search_tree<elt, key>& operator-=(elt);

Two versions of remove and its synonym operator-=are provided: one that takes
a key and one that takes an element. The two remove functions call do_remove to per-
form the actual work. For convenience, clear is also provided. There’s nothing compli-
cated about c1ear — it just clears the underlying tree. In all cases, recycling of nodes
removed from the tree is handled by the binary tree and binary tree node modules.

template <class elt, class key> void search_tree<elt, key>::clear()
{

elts.clear():
}

template <class elt, class key>
elt search_tree<elt, key>::remove(key& k, action not_found_action)
{

1ink pos = Tookup_pos(k);

if (pos)
return do_remove(pos);
else
switch (not_found_action)
{
REPLACE: error("[search_tree::remove] REPLACE inapplicable");
ERROR: error("[search_tree::remove] no element with *

"specified key");
WARNING: warning("[search_tree::remove] no element with "
“"specified key");
default:
return 0;

}

template <class elt, class key>
search_tree<elt, key>& search_tree<elt, key>::operator-=(key& k)

{
remove(k):

return *this;
}

template <class elt, class key>
bool search_tree<elt, key>::remove(elt e, action not_found_action)
{

link pos = lookup_pos(get_key(*e));

if (pos)
if (equal (*e, *pos->getElt()))
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do_remove(pos):
else
error(”[search_tree::remove] the tree contains a element "
"with a key equal to the target's, but it is not "
"equal to the targetl”):

else
switch (not_found_action)
{
REPLACE: error("[search_tree::remove] REPLACE inapplicable");
ERROR:error("[search_tree::remove]l no such element”);
WARNING: warning(”[search_tree::remove] no such element”);
default:
return FALSE:;
}

return TRUE;
}

template <class elt, class key>
search_tree<elt, key>& search_tree<elt, key>::operator-=(elt e)

{
remove(get_key(*e));

return *this;

There are four cases to consider for Remove, depending on what children the node
being removed has. The main job of do_remove is simply to determine which case applies
and call the applicable subfunction. It first saves the element to be removed so it can re-
turn it, because after the selected subfunction is finished that element won’t be in the tree

anymore. For convenience, it ends by returning the element removed.

/* Remove: dispatcher */

template <class elt, class key>
elt search_tree<elt, key>::do_remove(link pos)
{

elt e = pos->getElt();

if (!pos->hasleft())
if (tpos->hasRight())
do_remove_terminal{pos): /{ terminal node
else
do_remove_terminal(pos); f/ right child only
else
if (lpos->hasRight())
do_remove_right(pos): /! right child only
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else
do_remove_both(pos); /! both children

return e;

We can see what should happen in each case by looking at examples. Figure 12.3
shows the tree that results from completing the addition of (elements whose keys are)
month names to the tree started above (cf. Figure 12.2 on page 409). The simplest case is

January

February March

N

PN

August July September
December ///jﬁﬁpber
November

Figure 12.3 Search Tree of Months Added in Calendar Order

the deletion of a terminal node, for instance July: the node can just be removed from the
tree without any further consequences, as shown in Figure 12.4.

Also straightforward is a node with just one subtree. There are two cases — one a
node with just a left subtree and one a node with just a right subtree. The necessary mod-
ifications are in essence the same in either case: the node being removed can simply be re-
placed by its only subtree. Figure 12.5 shows the month tree after the removal of
February, with just a left subtree, and May, with just a right subtree.

The difficult case is when the node being removed has both a left and a right
subtree. The presence of two subtrees dictates the node that can replace the one being
deleted. Whatever key ends up replacing the one being deleted must, by the rules by
which search trees are constructed and maintained, belong after all the keys in theleft sub-
tree and before all the keys in the right subtree. Which key is that? A moment’s thought
should show that it must be the inorder successor to the key of the element being removed,
since that key comes after all the left subtree keys (which come before the one being re-
moved) and before all the right subtree keys (which come after the one being removed),
other than the successor itself. Since the successor by definition comes after the key being
removed, it must be somewhere in the right subtree.
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Figure 12.4 The Month Tree with July Removed
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Figure 12.5 The Month Tree with February and May Removed

But where? It’s not the root of the right subtree — the right child — because that
comes after the node being removed. It must be somewhere in that node’s left subtree,
since its elements come before that node. Is it the left child of that right child? Not if that
also has aleft child, since that would come before it. In the end, the way to find the inorder
successor of a node is to navigate first to its right child, then, as long as the node navigated
to so far has a left subtree, go to its left child — in short, go right, then take lefts as far as
you can. The node where the navigation stops is the inorder successor of the original
node.

The inorder successor takes the place of the node being removed. But what about
itssubtrees? Itcan’t have aleft subtree, or the navigation process that found it would have
continued on pastit. Ifitdoesn’t have a right subtree — i.e., it’s a terminal node — than
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there’s nothing further to worry about: in effect, it’s like removing a terminal node. If it
does have a right subtree, it is replaced by its right subtree: in effect, it’s like removing a
node with just a right subtree. Figure 12.6 shows the remaining month name tree with
March removed.

January
April November
\ /\
Augqust June September
\ /
December October

Figure12.6 The Month Tree with March Removed

Implementations of the four cases follows. They use parent-oriented node func-
tions not shown in the discussion of binary tree but provided by the on-disk module. All
of this code will correctly delete the element that happens to lie at the root of the tree. (The
only special case is when the root is the only node of the tree, in which case by the conven-
tion specified earlier, we show an empty tree by setting the root’s element to 0.) The way
this uniformity is accomplished is by using a trick often used for deleting anode in alinked
list: move the information contained in the node’s successor and then delete the successor
instead. This avoids having to find the predecessor of the node in a singly linked list. The
tactic is used here not to avoid having to find the predecessor, as that can be obtained sim-
ply by calling getParent, but because the resulting code ends up being more compact and
easier to understand when the node containing the element being removed is left in place
and the node with the element taking its place removed from the tree instead.

/* Remove */

template <class elt, class key>
void search_tree<elt, key>::do_remove_terminal(link pos)

{
if (elts.getRootNode() == pos)
elts.getRootNode()->setE1t(0);
else
pos->getParent()->replace(pos, 0);
}

template <class elt, class key>
void search_tree<elt, key>::do_remove_right_only(link pos)

{
1ink 1 = pos->getlLeft();

/! Now, save the left node's information so it can be recycled
1ink 11 = r->getlLeft();
1ink 1r = r->getRight();
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elt le = 1->getE1t();

// prepare left node for recycling
1->setleft(0);
1->setRight(0);

/! recycle left node and give pos its former information
pos->replace(l1, 11}; // recycies 1
pos->setRight(lr);
pos->setElt(l1e);

}

template <class elt, class key>
void search_tree<elt, key>::do_remove_left _only(link pos)
{

1ink r = pos->getRight();

// Now, save the right node's information so it can be recycled
1ink rr = r->getRight();

link r1 = r->getleft();

elt re = r->getE1t();

// prepare right node for recycling
r->setRight(0);
r->setleft(0);

/! recycle right node and give pos Tts former information
pos->replace(r, rr); // recycles r
pos->setlLeft(rl);
pos->setElt(re);

}

template <class elt, class key>
elt search_tree<elt, key>::do_remove_both(link pos)
{
/! Tocate pos's Tnorder successor:
/! the Teftmost node of its right subtree
for (link succ = pos->getRight();
succ->hasLeft():
succ = succ->getlLeft());

pos->setElt(succ->getE1t());
// elevate successor elt to take the place of pos's elt

1ink r = succ~->getRight();
// succ guaranteed to have no left to worry about

succ->setRight(0); // prepare for recycling
succ->getParent()->replace(succ, r);

// replace succ by it's right child and recycle succ. replace Kknows
// whether succ was the right or Teft child of its parent.
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Note that each of the above four functions ends with a call to replace. That func-
tion figures out which of the parent’s child the node being replaced is, and replaces it with
another node (or 0), setting that node’s parent accordingly. Italso recycles the node being
replaced. Each of the functions ensures that before this happens the node being replaced
has no successors — those successors already having gotten reattached to a different
node — so that the recycling does not recursively delete any other nodes.

12.1.3 Traversal

The rest of the functions provided by the search tree module are trivial, or nearly so —
nothing like the monster that Remove turned out to be! The Traversal operations just use
the Traversal operations of the underlying binary tree. Recall that the binary tree module
provides several different flavors of traversal: breadth-first, preorder, inorder, and, al-
though left unimplemented, postorder. For a search tree, we always want an inorder tra-
versal, as that is the one that presents the elements in order of their keys.

template <class elt, class key> struct search_tree
{

/..

// Traversal

void reset();

bool finished();

bool next():

elt& current();

int index();

/* Traversal */

template <class elt, class key> void search_tree<elt, key>::reset()

{
elts.reset(inorder);

}

template <class elt, class key> bool search_tree<elt, key>::finished()

{
return elts.finished();

}

template <class elt, class key> bool search_tree<elt, key>::next()

{
return elts.next();

}

template <class elt, class key> elt search_tree<elt, key>::current()
{

return elts.current();
}
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template <class elt, class key> int search_tree<elt, key>;:index()

{
return elts.index();

}

12.1.4 Content Operations

Attributes are those of the underlying binary tree. No Combine or Compare operations are
shown here, although they could be coded directly using Traversal operations over the
trees involved.

template <class elt, class key> struct search_tree
{

o

// Attributes

bool empty();

bool full();

int size();

int maxdepth();

/* Attributes */

template <class elt, class key> bool search_tree<elt, key>::empty()

{
return elts.empty();
}

template <class elt, class key> bool search_tree<elt, key>::full()
{

return FALSE;
}

template <class elt, class key> int search_tree<elt, key>::size()

{
return elts.size();

}

template <class elt, class key> int search_tree<elt, key>::maxdepth()

{
return elts.maxdepth();

}
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12.1.5 Support Operations

As with tables, there are no separate Process operations: Search and Sort have been ab-
sorbed into the Access and Modify operations, and others (like Reverse) don’t apply here.

Copy

template <class elt, class key> struct search_tree

{

Y

/1 Copy

search_tree(search_tree<celt, key>&);

search_tree<elt, key>& operator=(search_tree<elt, key>&);
}s
/* Copy */

template <class elt, class key>

search_tree<elt, key>::search_tree(search_tree<elt, key>& t) : elts(t.elts)
{

}

template <class elt, class key> search_tree<elt, key>&
search_tree<elt, key>::operator=(search_tree<elt, key>& t)
{

if (this == &t) return *this; // assignment to self!

elts = t.elts;

return *this;

Output

As usual, Output involves traversing the tree, printing out its elements. As with the table
implementations of Chapter 12, each element will be printed on a separate line, preceded
by its key.

template <class elt, class key> struct search_tree
{
I B
/] Qutput
static int keywidth;
// min number of spaces to be used pr1nt1ng key; user can set
friend ostream& operator<<(ostreamk, search_tree<elt, key>&):;
void show(ostream&, char* prefix = 0, int tabsize = 4);
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/* Qutput */

template <class elt, class key> int search_tree<elt, key>::keywidth = 24;
// This is just an initialization — user can reset

template <class elt, class key>
ostream& operator<<(ostreamk strm, search_tree<elt, key>& t)

{
t.reset();
while (t.next())
{
long curpos = strm.tellp();
strm << '\t' << get _key(*t.current()):
long wdth = strm.tellp() - curpos;
spaces(max(1l, t.keywidth - wdth), strm):
strm << *t.current() << '\n’;
}
return strm;
}

template <class elt, class key>
void search_tree<elt, key>::show(ostream& strm, char* prefix, int tabsize)
{
elts.show(strm, prefix, tabsize);
}

12.2 Balanced Search Trees

Search trees are normally quite efficient. Lookup in a search tree is much like the binary
search of a sorted table: at each decision point, half the remaining tree is eliminated.
Thus, search time should be on the order of the base two logarithm of the number of ele-
ments in the tree. Ideally, search trees combine the flexibility of linked structures with the
power of binary search, which normally requires an inflexible linear structure.

12.2.1 Unbalanced Searching

However, in a search tree, the decision to go left or right is a structural one, not an arith-
metical one, made with no knowledge of what the rest of the tree looks like in the chosen
direction. The sizes of the two subtrees depend on their previous pattern of growth,
which depends in turn on the order in which elements have been added to the tree. Un-
even growth makes worst-case searches take longer, since the tree ends up deeper than is
theoretically necessary to store the given number of elements.

Consider the search tree of Figure 12.3 on page 412, repeated here for convenience
as Figure 12.7. That tree was constructed by adding elements with month name keys in
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January
February March
/\
April June May
/ \
August July September
/
December October
November

Figure 12.7 Search Tree of Months Added in Calendar Order

calendar order. Twelve elements can be stored in a binary tree whose maximum depth is
three, so finding one should require no more than four comparisons. (The root is at
depth 0.) Yet, in the tree of Figure 12.7, it would take 6 comparisons to locate November.

Figure 12.8 shows what happens if we add the elements in alphabetical order of their
month names. Now it can take as many as 12 comparisons to find an entry! In the worst
case, a search tree degenerates into a linked list, and a search can end up examining every
node in the tree. Strangely enough, the worst case for a search tree arises when elements
are added in the order defined by their keys, or the reverse of that order. The price of
structural sophistication is often less natural behavior!

12.2.2 Maintaining Balance

The basic idea of the search tree can be improved by organizing things so the tree stays
more balanced. ‘Balanced’ can mean several things:

Leaf balanced: All terminal nodes appear at either depth D or depth D-1, for some
positive integer D.

Almost balanced or height balanced: For each node of the tree, the heights of its two
subtrees differ by no more than one.

Strictly balanced: For every node in the tree, the number of nodes in its left and
right subtrees differ by no more than one.

To maintain a balanced tree according to any of these definitions it is necessary to
consider the way insertions and deletions affect balance. If an insertion or deletion
throws the tree out of balance, nodes have to be moved around to restore balance. Leaf
balance turns out to be too weak a notion to produce worthwhile improvements in overall
efficiency. Strict balance is too strong a criterion, since it requires examining the entire
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April
August
December
\\\
February
January
July
AN
June
March
May
November
N\
October
September

Figure 12.8 Search Tree of Months Added in Lexical Order

tree — far too much work for the search efticiency gained. Height balance turns out to be
areasonable compromise between the extra work required to maintain balance and the re-
sulting increase in search efficiency.

The reason height balance proves feasible is that it can be maintained through only
local changes in the neighborhood of the node that was just added or removed. Height
balance allows terminal nodes to appear at varying depths in the tree, while nevertheless
maintaining a reasonable overall balance. To implement height-balanced search trees (of-
ten called A VL trees after Russian mathematicians who invented them.), we define the bal-
ance factor of a node to be the height of its right subtree minus the height of its left
subtree. The criterion for a height-balanced tree is that every node has a balance factor of
-1,0, or +1.

Suppose that at some point, every node of an existing tree has a balance factor of 0.
The addition of a new node will change its parent’s balance factor to either -1 or +1, ac-
cording to whether it’s added on the left or right, respectively. In fact, since its parenthad
a balance factor of 0, the parent must have either no children or two: if it had only one, it
would not have had a balance factor of 0, and if it had two, it could not have accepted
another. This changes the balance factor of all the parent’s ancestors too, by the same
amount.
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Figure 12.9 shows the tree obtained by starting with an empty tree and adding the
first five month names in calendar order. The resulting tree is balanced in any sense of the
word. By the definition of height balance, the nodes for January, April, and May have

January

February March

e N

April May
Figure 12.9 A Balanced Tree of Month Names

balance factors of 0, the balance factor of the node for February is -1, and the balance fac-
tor of the node for March is +1. Adding a new child to a node that has a balance factor of
*1 and just one child restores that parent node’s balance factor to 0. (That parent’s other
child must have been a terminal node, otherwise there would have been more than one
node in the parent’s only subtree, and the absolute value of the parent’s balance factor
would be greater than 1.) The parent’s ancestors aren’t affected, because the height of the
subtree of which the parentis the root is not changed by the addition of a second terminal
child. Figure 12.10 shows an example: adding June has restored the balance factor for

January

February March

7 N

April June May
Figure 12.10 March’s Balance Restored to 0 by Addition of June

March to 0 but left the balance factor for January unchanged.

More difficult cases to handle are those in which a node isadded in a way that further
unbalances a node with balance factor £1. For instance, adding August to April in the
tree of Figure 12.10 would make February’s balance factor 2. The resulting tree is shown
in Figure 12.11. Because February’s balance factor is greater than 1, that tree is no longer
balanced, and nodes will have to be rearranged to restore the tree’s balance.

In this example, the unbalance is close to where the new node was added, so the sit-
uation is relatively easy to see. Sometimes, however, the unbalance occurs further up
within the tree, a situation that’s harder to visualize. We’ll later look at an example (Fig-
ure 12.17 on page 426) where adding a node to a terminal node leaves the (formerly) ter-
minal node, its parent, and its grandparent with balance factors of 1, but changes the
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balance factor of its terminal node’s great-grandparent, which happens to be the root,
from 1 to 2. Though internal unbalances are more difficult to visualize, the actions per-
formed to restore balance in such situations turn out to be essentially the same as for un-
balance near the bottom of the tree.

January
February March
April June May
August July

Figure 12.11 The Month Tree Unbalanced at February

Whenever some node’s balance factor becomes +2 as a result of an addition, nodes
must be shifted around to restore balance. Fortunately, there are only four generic cases
to consider, and they form symmetric pairs, so really there are only two different kinds of
rebalancing maneuvers to understand. Rebalancing is accomplished by rearranging three
nodes relative to each other: the new node, its parent, and its grandparent. The four cases
and their remedies — often referred to as LL, LR, RL, and RR — are illustrated schemati-
cally in Figure 12.12.

The rebalancing actions are usually described as a rotation, corresponding to the
way the nodes change position relative to each other in diagrams like those in Figure
12.12. The label for each kind of rebalancing indicates the directions taken (left or right)
to arrive at the new node’s location. LR, for instance, means that starting at the node that
just became unbalanced, the new node was added to the left subtree as its right child. LL
and RR are symmetric to each other, as are LR and RL.

Rebalancing is accomplished simply by changing a few pointers, so it is not
expensive, For instance, LL rotation is performed as follows, Calling (a pointer to) the
newly unbalanced node gpar (for ‘grandparent’), (a pointer to) the new node nd, and (a
pointer to) the new node’s parent par, we have the following steps.

gpar->setleft (NULL);
par->setRight(gpar);

LR rotation is more intricate. Using the same terminology for the nodes involved, its
steps are as follows.

gpar->setlLeft(NULL);
par->setRight(NULL);
nd->setlLeft(par);
nd->setRight(gpar);
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LL: — add A —» —rebalance —»
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RL: F — add E —» F —rebalance—» D

Figure 12.12 The Four Kinds of Rebalancing Adjustments

Let’s continue adding month names to the tree and see what happens. The first step
is to rebalance the tree of Figure 12.11 on page 423 by performing an LR rotation. (In the
symbols of Figure 12.12, ‘D’ is February, ‘B’ is Apri1, and ‘C’ is August.) Figure 12.13
shows the result.

January
August March
April February June May
July

Figure 12.13 The Month Tree Rebalanced by an LR Rotation at February
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Next, September may be added without unbalancing the tree. However, October
unbalances May, as shown in Figure.12.14 Performing a RL rotation produces the tree in

January
August March
April February June May
July September
October

Figure 12.14 The Month Tree Unbalanced at May

Figure 12.15, in which balance has been restored to all nodes.

January
August March
April February June October
July May September

Figure 12.15 The Month Tree Rebalanced by an RL Rotation at May

12.2.3 Rebalancing Further Upin the Tree

Although the basic idea of rebalancing is straightforward, the details make it seem quite
complicated. Unfortunately, rebalancing is even more intricate than the discussion to
this point indicates. Rotations have been described as if they involved isolated nodes, but
nodes further up the tree are affected too. Note that in all four kinds of rotation, gpar
moves down one level in the tree, becoming a terminal node. This affects gpar’s parent,
which will have to replace gpar with the node that took its place.

This involves a further pointer change beyond those described for the rotations.
The situation is slightly complicated by needing to know whether gpar was on the left or
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right side of its parent. If welet 1eft be a Boolean indicating whether or not gpar was the
left child of its parent, then we need to add the following step to LL rotation:

if (left)
gpar->parent->setlLeft(par);

else
gpar->parent->setRight(par);

and similarly to LR rotation, with corresponding changes made to RR and RL rotations:

if (left)
gpar->parent->setleft(nd);

else
gpar->parent->setRight(nd);

This is still not enough. Further complications arise when the unbalance develops
further up the tree than at the grandparent of the new node. Also, sometimes par already
had a child before the new one was added. Consider the tree at the top of Figure 12.16,

R
Stage O: -1
Balanced /\
L T
+1 +1
J N U
0 0 0
M P
0 0
R
-2
Stage 1: /\
Unbalanced L T
Internally +2 +1
J N U
0 +1 0
M P
0 +1
R Q
-1 0
Stage 2: /\
Rebalanced N T
+1 +1
L p U
0 +1 0
J M Q
0 0 0

Figure 12.16 A More Complicated Unbalancing
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which shows single-letter keys and balance factors for nodes. When node Q is added to
this tree, the following balance factors change in sequence:

0 - +1
0 - +1
+1 - +2
-1 5 -2

=79

The result is shown in the diagram’s middle tree. The tree has become unbalanced
at L, and an RR rebalancing is needed. This will make N the left child of R, and L the left
child of ‘N. However, ‘N already had aleft child M — what happens to that node? As the
diagram shows, M must become the right successor of L when L is moved. The bottom
tree of the diagram is the final result. Note that once balance is restored at the lowest un-
balanced node it is automatically restored at all higher-level unbalanced nodes.

Returning to the tree of month names, adding November produces the tree shown in
Figure 12.17. Adding November to May does not unbalance May, nor does it unbalance

January
August March
April February June October
July May September
November

Figure 12.17 A Higher-Level Unbalance

October, or even March, but it does unbalance January! That node’s left subtree has a
depth of 2, but now its right subtree has a depth of 4, so its balance factor is now +2. An
RR rotation is necessary to restore balance. Figure 12.18 shows the result of performing

March
January October
August June May September
April February July  November

Figure 12.18 The Tree Partially Rebalanced by an RR Rotation
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the RR rotation. There’s a problem! An RR rotation makes the top node the middle
node’s left child and elevates the top node. But in this case, the top node — March — al-
ready had aleft child! June and its child July have been orphaned!

Where can the orphaned subtree be attached? Notice that when the parent-child re-
lationship between January and March was reversed, January lost its right subtree. It
turns out that January right is just the place to attach the orphaned subtree. Figure 12.19
shows the result. The tree is once again balanced, and December can be added without

March
January October
August June May September
April February July November

Figure 12.19 The Rebalance Completed by Attaching June to January

further incident. Figure 12.20 shows the final tree, with all 12 month names. It’s not

March
January October
August June May September
April February July November
December

Figure 12.20 The Final Month Tree

strictly balanced, but it’s a considerable improvement over the unbalanced search tree.

12.2.4 Implementation

The code for a balanced tree is just like the code for an ordinary search tree, with two
differences. First, the representation must be changed slightly to accommodate balance
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factors. In a search tree, the underlying binary tree holds elements. Here, the underlying
binary tree holds pointers to an auxiliary structure, called balanced_element, that holds
an element and a balance factor. Therefore, all the calls to getE1t have to also call another
function to extract the element out of the balanced_element that getF1t returns. That
function is also named getE1t, consistent with the conventions used for all the code in the
book. The other difference is that Modify operations must be changed to maintain bal-
ance.

The Auxiliary Structure

The declaration of balanced_element and the definitions of its functions are quite sim-
ple, as the structure doesn’t do anything except hold an element and manage a balance
factor. All the decisions and manipulations involving balance factors are handled by the
balanced_tree functions.

template <class elt> struct balanced_element
{
private:

elt elem;
int balance;

public:

balanced_element(elt);
~balanced _element():

elt& getE1t();
void setElt(elt);

int getBalance():
int operator++();
int operator--();

friend order compare(balanced_element<elt>&, balanced_element<elt>&);
friend bool equal(balanced_element<elt>&, balanced_element<elt>&};
friend ocaastream& operator<<{(ostream&, balanced element<elt>&):

/* Balanced Tree Element -- packages an element with a balance factor */

template <class elt> balanced_element<elt>::balanced element(elt e)
elem(e), balance(0)

{

}

template <class elt> balanced _element<elt>::~balanced_element()

{
}
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template <class elt> elt& balanced_element<elt>::getE1t()
{

return elem;
}

template <class elt> void balanced_element<elt>::setET1t(elt e)
{

elem = e;
}

template <class elt> balanced element<elt>::getBalance()
{

return balance:
}

template <class elt> int balanced_element<elt>::operator++()
{
assert(-2 <= balance && balance <= 1);
// may be called on a node being rebalanced with bal = -2
return ++balance;
}

template <class elt> int balanced_element<eltd>::operator--()
{
assert(-1 <= balance && balance <= 2):
// may be called on a node being rebalanced with bal = +2
return --balance;
}

template <class elt>
bool equal(balanced_element<elt>& bel, balanced_element<elt>& be2)
{
return equal(*bel.getE1t(), *be2.getE1t());
}

template <class elt>
order compare(balanced_element<elt>& bel, balanced_element<elt>& be?)
{
return compare(*bel.getE1t(), *bhe2.getE1t());
}

template <class elt>
ostream& operator<<(ostream& strm, balanced_element<elt>& be)
{
if (be.balance > 0)
strm << " (+";
else if (be.balance < 0)
strm << "(";
else strm << "( ”;

return strm << be.balance << ") " << get_key(*be.getE1t(}));
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Add

Only the operations implementing Add will be shown here. Remove, combining the com-
plexities of search tree Remove with the complexities of balanced tree Add, is left to Exer-
cise 6 lest it swamp this part of the chapter. There’s little to be gained looking at
definitions of the other functions, since they are so similar to the code of the ordinary
search tree module. One thing worth noting, though, is that Traversal produces the ele-
ments in the same order as if the tree were not balanced: the rules of search trees determine
the resulting traversal order, though the internal structure of the tree will vary depending
on the order of the elements and whether balance is being maintained.

The usual add function is supported by three sets of private functions. One set im-
plements the various rotations. Another set propagates balance changes. A third set
manages the actual addition of the element according to whether it belongs at, to the left,
or to the right of the node located by a call to Tookup_pos.

f#idefine blink binary_tree node<balanced_element<elt>*>* // for convenience

template <class elt, class key> struct balanced_tree
{
private:
binary_tree<balanced _element<elt>*> elts;
/..
// Add
void addEqual(elt, blink, action dup_action);
void addlLeft(elt, blink);
void addRight(elt, blink);
void decrementBalance(blink)};
void incrementBalance(blink):s
void LLrotate(blink);
void LRrotate(blink);
void RRrotate(blink);
void RLrotate(blink);

public:
void add(elt, action dup_action = IGNORE);
balanced_tree<elt, key>& operator+=(elt);
};

The implementation of add is essentially the same as it was in the ordinary search
tree module. It searches the tree to determine where the new element belongs; then it
hands off the job of actually adding the element to addLeft,addEqual, or addRight.

/* Modify */

template <class elt, class key>
void balanced tree<elt, key>::add(elt e, action dup_action)
{

blink cur = elts.getRootNode();

if (0 == cur->getE1t())
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cur->setElt(new balanced_element<elt>(e)):
return;
}
key& k = get_key(*e);

while (TRUE)
switch (compare(k, get key(*cur->getE1t()->getE1t())))
{
case EQUAL:
addEqual(e, cur, dup_action)
return;

case BEFORE:
if (cur->hasLeft())

{
cur = cur->getLeft():
break:

}

else

{
addLeft(e, cur):
return;

1

case AFTER:
if (cur->hasRight())

{
cur = cur->getRight();
break:

}

else

{
addRight(e, cur);
return;

}

case NO_ORDER:
error{("[balanced_tree::add] can't compare keys");
break:

}

template <class elt, class key>
balanced_tree<elt, key>& balanced_tree<elt, key>::operator+=(elt e)

{
add(e);

return *this;

The definition of addEqual is unchanged from the regular search tree module, ex-
cept for having to call setETt to set the element of the balanced _element returned by the
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node’s getE1t. The definitions of addLeft and addRight call the corresponding func-
tions for the binary node to which the new node will be added. In the regular search tree
module, that’s all that was required, so no separate functions were defined. Here, these
functions also have to call decrementBalance or incrementBalance respectively.

/* Add: addleft, addEqual, and addRight private functions */

template <class elt, class key>
void balanced_tree<elt, key>::addEqual(elt e, blink cur, action dup_action)
{
switch (dup_action)
{
case WARN:
warning("[balanced_tree::add] the search tree "
"already contains an elt with the same key"):
/* no break */
case IGNORE:
case REPLACE:
cur->getEl1t()->setElt(e);
return;

case ERROR:
error("[balanced_tree:;:add] the search tree "
"already contains an elt with the same key"):

}

template <class elt, class key>
void balanced_tree<elt, key>::addleft(elt e, blink cur)
{
cur->addLeft(new balanced_element<elt>(e));
decrementBalance(cur):
}

template <class elt, class key>
void balanced_tree<elt, key>:;:addRight{elt e, blink cur)
{
cur->addRight(new balanced_element<elt>(e)):;
incrementBalance(cur):

The definitions of decrementBalance and incrementBalance change the balance
factors, invoke a rebalancing function when necessary, and propagate changes up the
tree. We'll show decrementBalance only — the definition of incrementBalance is
identical with lefts and rights and pluses and minuses switched.

template <class elt, class key>
void balanced_tree<elt, key>::decrementBalance(blink cur)
{
switch(--{*cur->getE1t())) // decrement balance factor

{
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case 0: /! do nothing
break:
case -1: // tell parent
if (cur->getParent()) /! stop at root

if (cur == cur->getParent()->getlLeft())
decrementBalance(cur->getParent());
else
incrementBalance(cur->getParent()):
break;

case -2;

// rotate. Happens only on propagation up --

// never on the first increment due to a new leaf

if (cur->getlLeft()->getET1t()->getBalance() < 0)
LLrotate(cur);

else
LRrotate(cur);

break;

default:
internal_error("[balanced_tree::decrementBalance] "
"il1legal balance factor™):

Chap. 12

Finally, rotations are performed by LlLrotate, LRrotate, RRrotate, and
RLrotate. Only the first two are shown here. As with decrementBalance and incre-
mentBalance the other two are symmetrical with the ones shown. There’s not much one
can say about this intricate code other than that it directly implements the rotations shown
in Figure 12.12 on page 424 by moving pointers around. No new nodes are created, and
no old ones are destroyed: these are just rearrangements of existing nodes.

template <class elt, class key>
void balanced_tree<elt, key>::LLrotate(blink cur)

{

blink par = cur->getParent();
blink child = cur->getLeft():

+H(*cur->getE1t()); /1 -> -1
+(*cur->getE1t()); /1 ->0
+(*child->getE1t()); I/ ->0
/! replace cur with child in par
if (par)

{

cur->setlLeft(child->getRight(});

child->setRight(cur);

if (cur == par->getLeft())
par->setleft(child);

else

// in an immediate (not propagated) unbalance child->right will be 0
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par->setRight(child);

else // cur is the root:;

{ // handle specially since root is not pointer
balanced_element<elt>* tempelt = cur->getEl1t();
cur->setE1t(child->getE1t());
child->setETt(tempelt);

cur->setlLeft{(child->getlLeft()):;
child->setlLeft(child->getRight()):

child->setRight(cur->getRight());
cur->setRight(child);

}

template <class elt, class key>
void balanced_tree<elt, key>::LRrotate(blink cur)
{

blink par = cur->getParent();

blink child = cur->getLeft();

blink gchild = child->getRight();

// in an immediate (not propagated) unbalance gchild->left and

/Il ->right will be 0: in an internal unbalance, one will not be 0.
+H(*cur->getE1t()); // -> -1

+(*cur->getE1t()); // -> 0

--(*child->getE1t()); // -> 0

child->setRight(gchild->getLeft(}));

// replace cur with grandchild in par
if (par)
{
cur->setleft(gchild->getRight());
gchild->setleft(child);
gchild->setRight(cur);
if (cur == par->getLeft())
par->setlLeft(gchild);
else
par->setRight(gchild);

else // cur is the root;

{ // handle specially since root is not pointer
balanced_element<elt>* tempelt = cur->getElt();
cur->setEl1t(gchild->getEl1t());
gchild->setElt(tempelt);

gchild->setlLeft(gchild->getRight());
assert(child == cur->getLeft());

gchild->setRight(cur->getRight());
cur->setRight(gchild);
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12.3 B-Trees

B-trees are a clever representation with important applications and a rich literature.
There are many variations; we’ll look at only the basic form. B-trees are particularly use-
ful for storing large numbers of disk-based records, as in databases, but they are useful for
in-memory storage as well.

Each node of a B-tree holds several elements as well as several pointers to other
nodes. In file-based applications, nodes are sized so that they each occupy a single unit of
disk memory (block, page, etc.) to make optimal use of each disk access, since getting in-
formation from disk is far slower than getting it from the computer’s memory. The way
B-trees grow keeps the tree relatively balanced and maintains locality — that is, records
near each other as ordered by their keys end up near each other in the tree, ideally in the
same node.

B-tree growth exhibits some unusual patterns. Leaf nodes are all at the same level of
the tree, so the trees have an orderly shape. B-trees grow deeper at the root instead of at
the leaves. Finally, the growth process ensures that every node is at least half full.

The maneuvers involved in manipulating B-trees are quite similar to those for bal-
anced trees, but complicated by their being more than one element in each node.  Al-
though the code ends up being too complicated to be worth showing and explaining in the
text, a full implementation is contained in the B-tree directory of the code files accompa-
nying thisbook. We’ll discuss here only representation and the operations that are signif-
icantly different from those of balanced trees: Access, Add, and Remove.

12.3.1 Representation

The implementation shown here assumes in-memory storage. Some details change when
B-trees are represented on disk. In particular, disk block numbers replace pointers to
nodes. For a disk-based B-tree, the size of its nodes is usually determined by how many
child pointers and elements can fit into a disk block or page. Also, disk-based B-tree
nodes would typically store actual elements, rather than pointers to elements. We won’t
consider disk-based B-trees any further, but they do play central roles in a variety of file-
based systems, including databases.

Structurally, B-trees can be viewed as n-ary trees in which each node has a list of el-
ements instead of just one. We therefore can use the tree node from the n-ary tree
module. Each node will each hold a (pointer to) a sequential list of elements. The order
of a B-tree is the number of successors each node can have, so that will be the tree node’s
branching factor (number of children). Each node’s list will contain up to order-1
elements. That number will be provided as an argument to the sequential list
constructor. The n-ary tree representation stored a root node directly, but here we must
store a pointer for reasons that will soon become apparent.
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template <class elt, class key> struct btree

{
private:
// Representation
tree_node<seq_list<elt>*>* root;
Y
b

B-trees are an extension of the basic idea underlying search trees. Within a node’s
list of elements, the elements are stored in order of their key field, as in a sorted table. All
the elements of the first subtree are before the list’s first element, according to the ordering
defined by their key type. All the elements of the second subtree come between the first
and second elements of the list, and so on. All the elements of the last subtree belong after
the last element of the list. The list of elements stored at each node and the node’s list of
successors are structurally unrelated to each other, but conceptually they are parallel to
each other — the B-tree functions manage things so that their elements correspond in the
way just described.

Figure 12.21 illustrates a partially full B-tree node of order 8, showing just integer
keys of its elements. All the nodes in the subtree labeled 1 will have keys less than 20, all

|210[420]535 L84o[950] 6 L7 (

1 2 3 4 5 6 7 8

Figure 12.21 A Partially Full B-Tree Node

the nodes in subtree 2 will have keys between 20 and 40, and so on. Note that the number
of subtrees is one greater than the number of elements. Corresponding to each element is
a subtree of elements that come before it. In addition, there is also a subtree of elements
that come after the last element.

12.3.2 Lookup

Search begins at the root node, as with all search trees. The current node’s list is
searched. If an object with the target key is discovered in the table, the search is over.
When no match is found, the search stops at an element before or after which a new ele-
ment with the specified target key would go if it were added to the list.

Because the pointers in the node’s list of children correspond to the elements in the
element list, the identified location in the element list also identifies one of two positions
in the child list, depending on whether the key comes before or after the key of the element
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at the identified location. The appropriate child is made the current node and the search
continues recursively. Search ends successfully when an element with the target key is
found and fails when a terminal node is reached that does not contain such an element.
Note that a successful search may terminate at any node in the tree, but failure can only be
determined when a terminal node has been reached. Whether or not the search is suc-
cessful, no backtracking occurs — a direct path is followed from the root to the node con-
taining the target element, if there is one, or a terminal node if there isn’t.

12,3.3 Add

Suppose it has been determined that the key of an element to be added to the tree follows
the key of element k of the current node and precedes the key of element k+1, but the cur-
rent node is a terminal. The new element can simply be inserted into the element list at
location k+1. Subsequent elements in the list get shifted down to accommodate the new
element. Since this node has no children, its list of children is empty and can be ignored.
Figure 12.22 illustrates this situation.

1 72 3 4 5 6 1
|22]24]26]30[36[38] |
1 2 3 4 5 6 7 8
A S Y

insert component with key =32

1 2 3 4 5 6 7
[22]24]26]30]32]3¢6]38]
1 72 3 4 5 6 7 8
CLT T T T T 17

Figure12.22 Insertion into a Terminal B-Tree

Of course, if the terminal node’s element list is full, the new element can’t be added
to it. In this case a new node is allocated, and some reorganization occurs. To visualize
this reorganization, assume the list had room for an extra element (i.e., had size = order
instead of size = order-1). The following would occur to reorganize the tree:

+ Elements 1 through (order/2)-1 stay in the old node.

« Elements (order/2)+1 through order are removed from the old node and stored
in the new node.

+ The middle element, at (order)/2), gets moved up to (inserted into) the node’s
parent.

This is demonstrated in Figure 12.23. (Siblings of the old and new nodes are not shown
there — just pointers to them.)
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1 2 3 4 5 6 7
[20]40{55]80]90] |44J
8
r,iﬁLfL\lq i

AN

1 2 3 4 5 6 7 5 7
l22[eales] | | | | I32134|36|38L I I |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
CIT T T 1T 1T 17 711 CIT T T 17T 1T T 71 1
old node old node

A component with key = 34 is inserted, causing the terminal
node to be split; half its components are moved to a new
node. Siblings of the two nodes are omitted — only the
pointers to them are shown.

Figure 12.23 Insertion into a Full Terminal B-Tree Node

B-tree insertion always begins ata terminal node. If thatnodeistull, its elements are
split between it and a newly created sibling, except for the middle element, which is insert-
ed into the terminal node’s parent. If the parent is full, another split occurs, with one of
its elements moving up the parent’s parent. This process works its way up until a middle
element is raised to a node that has room for it. The only way a node ever gets a new child
is when one of its existing children is split. A surprising consequence of this is that termi-
nal nodes always remain terminal, no matter how the tree continues to grow.

Insertion into a nonterminal (as a result of a child splitting) must also adjust the list
of children, as shown in Figure 12.23. When the element moving up from an old child is
inserted into the node’s list of elements, a pointer to the newly created child must be in-
serted after the corresponding position of that list, causing subsequent elements list to
move over. If the element list is full, the nonterminal must be split. The only difference
between splitting a terminal and a nonterminal is that when an element of the nonterminal
is moved to the newly created node, the corresponding child pointer must go with it. (In
a full nonterminal node both the element list and the child list are full.)

Thus, items and children nodes are normally paired. The only time they separate is
when an item is raised to a parent node in conjunction with a split. The child correspond-
ing to the raised item becomes the first child of the newly created node. (The first child of
anode has no item partner.) The new node becomes the partner of the raised item.

Eventually, the splitting process will back all the way up to the root. If the root node
is full, it too must be split. However, there would be no parent to accept one of the root’s
items. A new root node must be created . The old root will no longer be the root, and the
tree will be one level deeper — the tree grows in height at its root, not at its leaves! Unlike
ordinary trees, B-trees actually replace their root nodes, demoting the old root. This is
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why their representation requires a pointer to a root node, as mentioned in Section 12.3.1
above.

The splitting procedure ensures that the root node is the only one that can ever be
less than half full. More precisely, the minimum number of items in a nonroot node is
(order-1)/2 if order is odd, and (order/2)-1 if order is even, as in the current example.
When a new root node is created, it gets only one item, the one being raised from the old
root. This relatively even distribution of objects among nodes is the central feature of B-
trees and the source of their efficiency. The tree is always fairly balanced and fairly full,
and therefore it stays relatively shallow. Yet, the procedure for ensuring this balance is
quite minimal computationally, though somewhat complex conceptually.

Let’s look at an example. We’ll use month names again, adding them in calendar
order to a B-tree of order 4. (To save space, we’ll use just three-letter month names this
time.) The root node starts out empty. Acting like a sorted table, the root can accept the
first three month names without any splitting. Figure 12.24 shows the sequence of states
resulting from adding the first three month names to an empty B-tree.

Figure 12.24 Insertion of Month Names into an Empty B-Tree

Adding Apr causes the first split. A new node is created, and the elements of the old
node are redistributed. Half the elements stay in the original node, one gets elevated, and
the rest go into the new node. Then, since it was the root node that got split, a new root is
created to hold the elevated element. After that rearrangement, there’s room in the orig-
inal node for the next month — May — without any further rearrangement. Figure 12.25
shows the changes to the tree that result from adding Apr then May.

The element with key Jun would go in the right terminal node, but there’s no room
for it there. As aresult, that node gets split, and the middle element (including the newly
added one) gets elevated. In this case it happens that the new element is the one that gets
elevated. Since there’s room in the parent node, the elevated element is inserted there,
along with a pointer to thenewnode. The pointer to the node that got split remains where
it was, and the pointer to the new node gets inserted after it. In this case it happens that
the node getting split was at the end of its parent’s list of children, so the pointer to the new
node gets added to the end of that list. With those changes, there is room for JuT, Aug, and
Sep to be added without causing any further splitting. Figure 12.26 illustrates all this ac-

tivity.
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1. Noroom for Apr.

Apr|Feb]Jan|Mar|

2. Node splits; Feb moves up.

Feb

lapr] | | [Jan|Mar] ]

3. New root node created for Feb; children linked.

[Feb| | |

lapr] | | [oanfMar] ]

4. May added.

[Febf | ]

[Apr] | ] loan]Mar|May]

Figure 12.25 Insertion of Apr Causes the First Split

Adding Oct causes the next split, as shown in Figure 12.27. After that split Nov and
Dec can be added, completing the tree. To increase the size of the tree and illustrate fur-
ther details of B-tree Add, we’ll add some more elements, this time with (three-letter)
names of days as keys.

An element with key Sun causes an immediate split, since it would go in the right-
most terminal node, which is already full. That split, as Figure 12.28 shows, elevates the
element with key Oct to the root. However, since the root is full, a second split is neces-
sary, resulting in a new root node. Mon and Tue then fit in the tree, but Wed causes another
split. At that point, there’s room for the rest of the day names without any further splits.
Figure 12.29 shows the final tree.

12.3.4 Remove

The logic of Remove operations resembles that of Add, but in reverse. Instead of splitting
when they overflow, nodes are combined when one has too few elements.As stated earlier,
the minimum number of elements in nonroot nodes is (order-1)/2 if order is odd,
(order/2)-1if order is even. Ignoring the required minimum, for a moment, removing an
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1. No room for Jun.

Fepb| | |

[Apr] | ] [uan|Mar[May]

Jun

2. Node splits; Jun moves up.

|Feb|Jun| |

lapr] | | [an[ T ] [Mar[May] |

3. Jul, Aug, and Sep are added.

|Feb|Jun| |

[AprfAugl ] [Janfoul] | |Mar[May[sep]

Figure 12.26 Insertion of Jun Causes Another Split

element that turns out to be in a leat node is trivial: it is simply removed trom that node’s
list, and there are no children to worry about. Removing an element from an internal
node is similar to removing an element from a height-balanced tree.

Note that the immediate predecessor and successor of an element in a nonterminal
node mustbelocated in terminal nodes. (If the immediate predecessor was in another in-
ternal node, then that node would have a subtree containing elements that come after that
predecessor, but then the predecessor would not be the immediate predecessor, since
there would be other elements that come after it but before the element being removed.
Likewise, if the immediate successor was in an internal node, then that node would have a
subtree containing elements that come before that successor.)

Because the immediate predecessor and successor are in terminal nodes, either one
of them can be moved from its terminal node to take the place of the element being re-
moved, as in height-balance removal. Figure 12.30 shows the result of removing Sat and
Sun from the finished tree of Figure 12.29. Thu, the immediate successor of Sun, is re-
moved from its node to replace the element whose key was Sun.

Thus, even when the element being removed is in a nonterminal node, some ele-
ment ends up being removed from a terminal node. If an element is removed from a ter-
minal node that has only the minimum number of elements allowable, it is necessary to
move an element from another terminal node to maintain the required minimum. Sup-
pose the terminal node is the nh child ofits parent, for n > 1. The removed element’s im-
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1. Noroom for Oct.

|Feb|Jun| |

AprfAug] | (Janjoul] ] [Mar|May|Sep]

Oct

2. Node splits; May moves up.

|Feb|Jun|May|

laprfAugl | [Janfowd] | [Mar] [ | [oct|[sep] |

3. Nov and Dec are added.

|Feb|Jun|May|

[Apr]Aug|[Dec] [oanfoull | [Mar] [ | [Novjoct[Sep]

Figure 12.27 Insertion of Oct Causes the Next Split

mediate predecessor is at position n-1 in the parent node’s successor list. The
predecessor’s immediate predecessor must be the last element of the terminal node’s sib-
ling immediately to its left.

If that sibling has more than the required minimum number of nodes, the predeces-
sor can be moved from the parent down to the terminal node, and the predecessor’s pre-
decessor can be moved up from the left sibling to take the predecessor’s place. Similarly,
if the terminal node is n'M child of its parent, for n > order, and the sibling immediately to
its right has more than the required minimum number of nodes, the n™ element of the ter-
minal’s parent can be moved down to the terminal, with the first element of the terminal’s
right sibling taking its place.

Figure 12.31 illustrates this with the removal of Sep: Thu is moved down from the
parent, and Tue moved up from the right sibling to take its place. It would also work to
move Oct from the parent and move Nov from the left sibling to take its place, as shown by
the removal of Thu in the last step in that figure.

If none of the terminal node’s siblings has more than the required number of ele-
ments, one of the siblings can be combined with the terminal node. (The elements of the
right-most of the two nodes get moved to the other node, and the right-most node of the
pair gets deleted or recycled.) In that case, the element in the parent between the two ter-
minal nodes gets moved down into the combined node and the child pointer that follows
it gets removed from the children list.
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1. No room for Sun.

|Feb|Jun|May|

[Apr|Auglpec] [oanJoul] ] [Mar] T ] [Nov[oct]Sep]sun

2. Node splits; 0ct moves up, but there’s no room in the parent.

|Feb|Jun|May| Oct

[Apr]Auglbec] Joanfoul] | [Mar] I ] [Nov] | ] [sep|/sun] ]

3. Root splits; Jun moves up.

[Apr|Aug[Dec| [Jan[dul] | [Mar] [ ] [Novi | | [Sep|[Sun] |

3. Monand Tue are added.

[Apr[Aug]Dec]  [danfoul] | [Mar] | | [Mon[Nov| | [Sep|Sun|Tue|

Figure 12.28 Insertion of Sun Causes Two Splits

There is always going to be enough room tor the elements ot both terminals plus the
element from the parent, because the terminal from which the element was removed has
less than the required minimum, and its sibling has exactly the required minimum. In
fact, there will always be room for another element in the combined nodes even after the
parent element has been moved down. (Twice the minimum is either order-1, if the order
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1. No room for Wed.

[Apr|Aug]Dec| [Jan|dul} | [Mar] | ] IMonjNov| | [Sep|Sun|Tue|wed

2. Node splits; Sun moves up.

[Apr|Aug|Dec] [Janfoul] | [Mar] | |{MoniNov] |[Sep] | [[Tuefued] ]

3. Thu, Fri,andSat are added.

|AprjAugfDec] [Fri)Janfdul| (Mar] [ ||[Mon[Nov] ||[Sat{Sep] | {ThulTue|Wed]

Figure 12.29 Insertion of Wed Causes the Final Split

is odd, or order-2 it the order is even. Therefore, there’s always room for the parent, and
since the node from which the element was removed has one less than the minimum,
there’s room for one or two more elements, depending on whether the order is odd or
even.)

Figure 12.32 shows how this works when Mon is removed. When the order of the
tree is 3 or 4, as in this case, the minimum number of elements a node may have is one, so
the only nodes that get merged are empty ones without a sibling that has more than one
element. In this example, the empty node is merged with the sibling to its right, butitalso
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0. Starting with the finished tree.

Apr|Aug|Dec| [Fri]Jdan[oul] [Mar] [ | [Mon[Nov[ ] [sat[sep] ] [Thu[Tue]Wed]

1. Satisremoved.

[AprfAug]Dec] [Fri{dan]dul] [Mar] [ | [Mon|[Nov[ ~ ] [sep] T ] [Thu[Tue]wed]

2. Sunis removed; Thu takes its place.

[Apr|Aug|Dec| [Frifdanjdul] [Mar] [ | [Mon|Nov] |[Sep| | | [Tue[Wed] ]

Figure 12.30 Simple Removal of Sat and Sun

could have been merged with its lett sibling. (Obviously, the implementation of the algo-
rithm would have to be coded to choose one or the other.)

Finally, if moving the parent down into the merged node leaves the parent node with
too few nodes, the process repeats at the next level up. This continues until either a rear-
rangement leaves all nodes involved with a sufficient number of elements or the last ele-
ment has been moved down from the root. The latter case can occur only when the root
has exactly one element and both its children have the minimum number of elements.
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1. Removing Sep leaves a terminal node with too few elfements.

{AprfAug|Dec] [Frifoan]dul] [Mar] T | [Mon[nov[ T[T T ][Tuelwed ]

2. Thuis moved down from the parent node andTue moved up to take its place,

| [[Mon[Novf [(Thu[ [ [[wed] [ |

3. Removing Thu again leaves the terminal node with too few elements; this time, predecessors
are rotated’: 0ct is moved down from the parent node andNov moved up to take its place.

Fri|Jdan|Jul

[Mar] | [Mon] Jloct] | J[wed] | |

Figure12.31 Fixing a Terminal Node with Too Few Elements

(An element may get moved trom the root in other situations, but then another element
would take its place. The only time an element is removed from a parent without another
element being elevated to take its place is when two children are merged.) In thatcase, the
root is left with no elements and one child. The child becomes the new root, and the root
node is deleted or recycled.
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1. Removing Mon leaves a terminal node with too few elements.

[Apr[Aug| Dec| {Frijdanfdul] [Mar] | T[T T Jloct] T J[wed T 1]

2. The terminal node is combined with a sibling, andNav, the parent between them, moved down.

{Apr{Aug|Dec| [Fri[dan]dul| [Mar] | | |Nov[oct] |[wed] [ ]

Figure 12.32 A Removal May Require Merging Two Nodes

12.4 EXERCISES

1. Show a best-case search tree for elements having as keys the names of the days of the week.
(a) How many such trees are there?
(b) Why?
(c) Can you describe a procedure for ordering insertions into an initially empty search tree to
achieve maximum balance?

2. Manually simulate the process of adding elements with the following keys to an initially empty
B-tree:

4 12 10 14 60 62 64 6 8 20 22 24 70 74 72 52 54 50 B0 82 84
92 94 90 30 32 34 42 44 40 36 3B 46 48 75

3. The implementation of search tree Remove sometimes needs to find the node with the inorder
successor of the node being deleted (cf. do_remove_both, page 415).
(a) Do you think that bit of functionality should be pulled out as a separate, publicly available
function?
(b) Can you give an example or two of how it might be useful in a particular application you
can imagine?
(c) Ifitwere a separate function, what kind of fundamental operation would it be?
4. Do Chapter 11’s Exercise 11 on page 401 for search trees, balanced trees, and B-trees. Compare
the numbers you obtained to each other and to those for the tables.
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5.

6.

7.

In the discussion of the functions implementing search tree Remove the claim was made that the

code was simplified by removing the node of the element taking the removed element’s place

instead of removing the removed element’s node. {That discussion is found on page 414.) The
latter is certainly a more natural approach.

(a) Recode the four functions so that they remove the node of the element being removed.
This approach requires detaching and reattaching various subtrees that might be
affected —the subtrees of the node being removed and the subtrees of the one taking its
place — as well as the parent of the one being removed (if it has one — that node might be
the root!). It might help to consult one or more other data structure textbooks to see the
code they present for removing an element from a search tree. Your code may use any
functions of the search tree module — private or public — but only the public functions
provided by the binary tree and binary tree node module.

(b) Test your code by using the tst.C program in the search tree directory where the book’s
code is found. It makes a tree out of the names of fruits used to illustrate tables in Chapter
11, then deletes them in an order that purports to test the various possible removal
situations. This program goes beyond just the four cases based on the number of subtrees
by considering various further combinations for the case where both subtrees are present
based on whether or not the element being deleted is at the root, whether or not the element
taking its place has a right subtree, and even whether or not the inorder successor of the el-
ement being deleted is its right child rather than something down the left side of its right
child’s left subtree.

(c) Ifyou do consult other textbooks, you might find it interesting to try to compare the code
they show to the code shown here in terms of factors that affect readability.

Implement the Remove operations for the balanced tree, following the lead of the Remove oper-
ations of the ordinary search tree and the Add operations of the balanced tree.

The B-tree implementation discussed here and included with the on-disk code uses a sequential

list to hold each node’s elements. However, it uses it to maintain the elements in order. Since

that’s what a sorted table does, isn’t this duplicating some of the work that went into implement-

ing the sorted table module? Shouldn’t the nodes contain sorted tables of elements, not lists?

(a) Change the implementation to use sorted tables.

(b) What advantages or disadvantages of one approach over the other did you discover?

(c) Isasorted table appropriate for this implementation, or should it be left using a sequential
list? Explain.
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Summaries

A.1 Fundamental Operations

Lifetime Traversal Content Support
Create/Destroy Foreach Attributes Copy
Initialize/Finalize Collect Compare Process
Access/Modify Generate Combine Input/Output

Table 9 Summary of Fundamental Operation Categories

Common Variations

Modify
Iterate
Attributes
Compare
Combine
Copy
Process
Output

Add (+=), Remove (-=), Exchange, Replace, c1ear
Foreach, Collect, Merge, Sum; Traversal operations
empty, full,size

equal (==, =), compare (==, =< <= >, >=)

+ %

copy constructor, copy assignment, Reverse, SubCollection

Sort, Search

unformatted, formatted, graphical, external storage
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A.2 Fundamental Structures

Storage Homogeneous? Access

Array yes direct

Record no direct
Stream yes sequential

Table 10 Kinds of Storage Structures

State Next Task
Stack newest
Queue oldest
Priority Queue best

Table 11 Kinds of State Structures

Linked Predecessors Successors
List 1 1

Tree 1 1 or more

Graph 1 or more 1 or more

Table 12 Kinds of Linked Structures

Association Based On
Table lists or arrays
Search Tree trees or tree nodes

Table 13 Kinds of Association Structures

App. A
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One-Dimensional Array

Array <
Multidimensional Array
Storage Record
Structure
Stream
Stack
State Queue
Structure
Priority Queue
Sequential List
List <
Linked List
Binary Tree
Data Linked
Tree Nary Tree
Structure Structure Y
General Tree
Adjacency Matrix Graph
Graph <
Linked Graph
Simple Table
Table < Sorted Table
Hash Table
Association
Structure

Binary Search Tree

Search
Tree

/\

N

Balanced Search Tree

B-Tree

Figure A.1 A Taxonomy of the Data Structures Discussed in This Book
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Review of C Data Types

This Appendix provides a quick review of some C basics that are particularly important
for understanding C++. The emphasis is on scoping and types, especially pointers. This
book assumes general knowledge of C, so procedural aspects such as expression, state-
ments, and functions won’t be reviewed here. However, even people with substantial ex-
perience writing C programs are often unclear about important aspects of C’s type
system. Many details thatare relatively unimportant in ordinary C programming become
quite important in C++, so programmers moving to C++ are often confronted with new
ideas or information that turn out to have been in C all along, though generally ignored.

With very few exceptions, everything about C data types is also true in C++. The
few exceptions are noted.

B.1 Basics

B.1.1 Primitive Types

All types in C are ultimately built from primitive types. The basic data types in C are as

follows.
char a single byte, usually used to hold a character
int an integer
float a “single-precision” floating-point number
double a “double-precision” floating-point number

A qualifier is a reserved word that modifies types. To specify integers of different
size, one of the qualifiers Tong or short are used. An example wouldbe Tong int. Itis
not necessary to include the int — a Tong is the sameasa Tong int. Although the type
char is usually used to hold characters, it may be used as a shorter short.

Except for char, which is always 1 byte, the language does not specify any particular
size for these fundamental types. The intention is that ints are the size that is natural for
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the host hardware, typically either 16 or 32 bits, and that if possible, short and 1ong are
different sizes. The only constraintimposed by the language is that

sizeof(char) < sizeof(short) < sizeof(int) < sizeof(long)

Anintegral type may be modified by signed or unsigned to indicate whether or not
itincludes negative numbers.

B.1.2 Constants

Constants include numbers, characters, and strings (sequences of characters). Aninteger
constant beginning with a 0 is an octal number, and an integer beginning with 0x is
hexadecimal. A constant with a decimal point is a double, unless followed by an F (up-
per- or lowercase), in which case it is a float. Numeric constants may be followed by an L
to indicate long. Following are some examples of constants.

12 /* decimal */

012 /* octal */

0x12 /* hexadecimal */

12u /* unsigned decimal */
12L /* signed long decimal */
‘a’ /* character */

"string” /* string */

Nonprinting characters are indicated with special escape sequences. The most
common are

\n' /* new line */
"\t’ /* tab */
"\O' /* nuil */

Other nonprinting characters may be specified by their octal or hexadecimal byte value,
for example:

'\007" /* ASCII BEL */
"\xFF' /* ASCII DEL */

Finally, there are enumeration constants. These are lists of constant values specified
in a program using the reserved word enum, as in the following example.

enum Boolean { true, false };

In C, enumeration constants are really just other names for equivalent constant integers.
In fact, an enum declaration may specify the integer equivalents, as follows.

enum order { before = -1, equal = 0, after =1 }

The default integer value for the first constant of an enumeration is zero. Each constant
that does not specify an integer equivalent gets one that is one more than the previous con-
stant’s.

In C++, each enumeration is actually a separate type, and a name may not appear in
multiple enumeration lists. Although in C++, an enumeration is not equivalent to an in-
teger, the compiler may automatically cast an enumeration to its integer value. However,
casts, whether implicit or explicit, from an integer to an enumeration are not allowed:
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there is no guarantee that the enumeration contains a value corresponding to the integer,
and more than one constant in the same enumeration may have the same integer value.

enum direction {left=1, right, up, down, dn=down, none=(Q};

B.1.3 Variables

Variable declarations specify a type and a name, as in the following.
int n;

A variable declaration may include an initializer, in which case it is also a definition.
int n = 0;

In C the initializer of a static variable (cf. Section 0.3.1, page 19 for a discussion of static
variables) must be a constant expression (i.e., one whose value can be computed at com-
pile-time). In C++ any valid expression is allowed, including function calls. In both lan-
guages, initializers of automatic variables may be any valid expression.

A variable may be declared more than once, as long as all the declarations agree.
Different versions of C have had different rules for how many definitions of a variable a
program is permitted to contain; in C++, only one definition is permitted.

Several variables may be specified in one declaration, as in the following.

char chl, chZ, ch3;
Each variable appearing in a declaration may have its own initializer.
char chl="A", ch2, ch3="\0";

In that declaration, ch? is left uninitialized. Static variables that are declared but not de-
fined (i.e., none of the declarations includes an initializer) are initialized to zero. Auto-
matic variables without initializers start out with whatever bits they happen to contain.

B.2 Derived Types

Various mechanisms exist for building more complex types out of the primitives de-
scribed above. Such nonprimitive types are called derived types in C. Derived types may
be derived from combinations of primitives and other derived types. The three major de-
rived data types are arrays, structs, and pointers.

B.2.1 Arrays

An array in C is a sequence of values of the same type. Arrays are declared using square
brackets to show the number of elements they contain. Arrays are always one-dimen-
sional; however, an array may be a sequence of other arrays, approximating the multidi-
mensional arrays of other languages. Some examples follow.
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int month_days[12]; /* 12 ints */
char buffer[256]; /* 256 chars */
int calendar[5][20]; /* 5 arrays of 20 ints */

There is no string type in C, but arrays of characters are conventionally interpreted
as strings. The representation assumed by the library functions provided through
string.h ends the string with a null character. There may, of course, be characters fol-
lowing the null byte — the size of the array the string occupies and the (conceptual) length
of the string are two different things.

Arrays may be initialized with a list of values enclosed in curly braces. In such ini-
tializations, the size of the array may be omitted, in which case enough space is allocated
to hold elements in the initializer. Character arrays may be initialized by string constants,
which include a final null character. Following are two examples.

int month_days[12] = {31,28,31,30,31,30,31,31,30,31,30,31};
char title[] = "untitled”; /* an array of 9 chars */

Array elements are referenced with square-bracket notation: array[index]. The
first element is always at index 0. Arrays of arrays are indexed with the same notation.
Since an element of an array of arrays is itself an array it may be followed by another index
expression. Some examples are

month_days[n]
buffer[0]
calendar[month-1]1[day-1]

B.2.2 Structures

Structs, called records in most languages, are another mechanism for building compound
types. A struct consists of named members (fields in other languages). Each field has its
own type. Here’s a simple struct.

struct date
{

short day, month, year;
)

Inside the struct are simply variable declarations, just as they would appear inside a
function. However, these are strictly declarations — initializations are not allowed here.

In C, the name of the struct is not itself a type: it must be prefaced by the reserved
work struct wherever it is used. In C++, once a struct is declared it can be used any-
where one of the built-in type names can be. The struct name may not be prefaced by
struct, except in declarations of the struct itself. In C a variable is declared with a struct
type as follows.

struct date TODAY;

In C++, the same declaration would read
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date TODAY;

A value of struct type is called an instance of the struct; here, for example, TODAY’s value is
an instance of the struct date.

Like arrays, structs may be initialized with a list of values enclosed in curly braces.
The values are assigned to the fields of the struct in the order that the fields appear in the
struct’s declaration. Each one’s type must correspond, or be coercible to, the type of the
corresponding field. An example of defining a date in this way would be

date BICENTENNIAL = {4, 7, 1976};

To access members of an instance of a struct, a period is used: TODAY .month would
be the value of the month field of TODAY. Structs can be passed as arguments to functions
and returned as values. (Of course, if C++ references aren’t used, then structs are passed
and returned by value, which means that they get copied to and from instances local to the
function.) A function to test if a day of a month might be written in C as follows, using the
array of the number of days in each month shown earlier and ignoring leap years.

int is_last_day_of month(struct date dt)

{
return (dt.day == DAYS[dt.monthl:

}

B.2.3 Pointer Types

Pointers are another kind of derived type, though, unlike arrays and structs, they have no
internal structure. At bottom, a pointer is just the address in the computer’s memory
where some data islocated. For a variety of reasons, it is often more convenient, flexible,
or efficient to program in terms of pointers instead of the actual data. For example, pass-
ing a pointer to a struct as a function argument avoids the copying that passing the struct
itself would entail. Whenever a pointer is used, there are always two different values in-
volved, as illustrated in Figure A.1: the value of the pointer itself (an address) and the value
of what the pointer points to.

dtptr | 404332 } -
BICENTENNIAL 7
1976

Figure A.1 A Pointer is the Address of Another Data

A pointer type is declared using an asterisk to modify the type from which the point-
er typeisderived. Similarly, asterisks are used to dereference the pointer — i.e., to convert
the pointer from something that just refers to a computational object to the object itself.
Pointer values are obtained by the address-of operator (&); for example, &dt produces a
pointer to the value of dt. If the pointer points to a struct, then a hyphen followed by a
greater-than sign (->) — an arrow — is used as a shorthand equivalent to dereferencing
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the pointer with an asterisk and accessing a field with a period. Thus, if ptr is a pointer to
a date instance, ptr->day is equivalent to (*ptr).day. Without the parentheses, this
would be read as “dereference the value of the day field of ptr, which would not be legiti-
mate given that ptr is a pointer not a date, and would not be what was intended in any
case.

Pointers are legitimate types in their own right and may be included in structs and
arrays. Here are some representative declarations. (Unfortunately, C declaration syntax
gets quite devious as various derived types are mixed.)

struct date dt; /* a date */
struct date *dtptr; /* ptr to date */
struct date *dtptrs[5]; /* array of b ptrs to date */
struct date (*dtsptr)[5]; /* ptr to array of 5 dates #*/
struct date *(*dtptrs_ptr)[5]; /* ptr to array of 5 ptrs

to date */
struct date (*dtfn)(); /* ptr to a function that

returns a date */
struct entry

{ /* a struct containing a */
date* dt; /* pointer to a date and */
char* what; /* a string (ptr to char) */

};

White space may appear before and/or after the asterisk. It may even be omitted
altogether. Thus, the following are all equivalent.

struct date *dtptrl;
struct date* dtptr2;
struct date * dtptr3;
struct date*dtptr4;

However the declaration is written, the asterisk is parsed as modifying the variable name.
Some people prefer the first usage because the declaration reads the way the compiler in-
terprets it. Some prefer the second usage because conceptually the asterisk is part of the
type, even if thatisn’t how the parser treatsit. Because the asterisk is parsed with the vari-
able name, the second usage is as misleading when there are more than one variables in the
declaration as it is clear when there is only one. The following, for instance, declares a
pointer to date and a date — not another pointer.

struct date* dl, d2;

As aresult, some people prefer to put white space on both sides of the asterisk, to avoid the
shortcomings of either of the first two usages. Hardly anyone ever omits white space en-
tirely.

A special value called the null pointer may be assigned to any pointer value, regard-
less of type. Technically, there is no way to refer to the null pointer itself. In C++,a 0 is
automatically converted to the null pointer where it is assigned to a pointer-valued
variable. It is common practice in the C community to f#fdefine NULL to some kind of
zero expression, often in a system header file. Certain arcane consequencesin C++ make
this unadvisable, and, because C-++ code can simply use a 0 to mean the null pointer, it is
unnecessary.
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B.2.4 Aliases

The reserved word typedef is used to define an alias, or synonym, for a type. Following
the typedef is an ordinary variable declaration, except that instead of declaring a variable
the declaration declares a type alias. The variable name in the declaration is the alias for
the type in the rest of the declaration. Following are some examples.

typedef char* string;
typedef int boolean;
typedef struct entry calendar[12][31];

After a typedef, the name can be used as if it were the type for which it is an alias.

string strl; /* strl is a char* */
bool equal(string, string);
/* equal takes two char*’s and returns an int */

Note, however, that despite what its name sounds like, typedef does not define a new
type. It’sjustasif the type were substituted for its alias in the program text. Thereislittle
difference between using a typedef and a ffdefine to define a type alias, except for the
syntax. In the following, the compiler will not object to the assignmentof an int toabool
orachartoabyte.

typedef int boolean; /* intent is boolean = 0 or 1 */
boolean flag = 100; /* permitted! */

typedef char byte;
byte b;
b= "'a"; /* no conversion: a byte is a char */
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Iterators in C++

Traversal operations perform some action for each element of a collection. Traversals, of-
ten expressed as iterations, are one of the major sources of errors and complexity in
programs. The power of traversal functions is that they encode in one place the mechan-
ics of performing the traversal. Client code need only supply the action to be performed
for each element of the collection. It doesn’t have to know anything about the represen-
tation of the collection or any of the details involved in getting from one element to anoth-
er, and the code doesn’t have to be edited if the collection’s implementation changes.

C.1 Kinds of Traversals

Traversals differ with respect to what they do with the result of the action performed on
each element. Most traversals just perform an action that has no result, or whose result is
simply ignored. Some traversals collect the results into a new structure. For instance, a
list of full path names may be traversed to obtain a set of directories the path names
include. In the style used in this book, this would be coded as follows.

struct pathname;
struct directory;
template <class elt> struct seq_list;
!/
seq_list<pathname*> filenames;
i
set<directory*> dirs;
filenames.reset();
while (filenames.next())
dirs += filenames.current();

Another traversal pattern that appears regularly is one that combines all the values
encountered not into a new collection, but into a single value. Summing the elements of
a list, or some value derived from the elements of the list, would be an example of that.
Continuing the above example, we might have
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int sum;

filenames.reset();

while (filenames.next())
sum += filenames.current()-pgetSize();

C.2 Iterators

These patterns are common enough that it would be nice to have a single function to per-
form the action on each element of the collection rather than having to piece together the
traversal with calls to reset, next,and current. The argument to such a function would
specify the action to be performed, and the function would perform that action for every
elementin the collection before returning. (Such a function is often called an iterator, but
C++ uses that term for the one-at-a-time traversal mechanisms such as those shown
throughout this book. People who call these functions iterators call the traversal opera-
tions, especially next, generators.)

A function that just performed the action for each element is often called either do
or foreach. One that collects the results is often called colTect. Thereisn’t a commonly
used name for the kind that produces an element-type value instead of a collection. We
might call it combine, but we’ve used that for a kind of fundamental operation throughout
the book. Thelanguage APL had operations like this and called them reduction operators,
in that they reduced the dimension of their argument by one: a three-dimensional
array — an array of two-dimensional arrays — would produce a two-dimensional array,
and soon. Alistisaone-dimensional sequence, and an element is a zero-dimensional se-
quence, so reduce might be a reasonable name for this kind of iterator function.

C.2.1 Function Arguments

In traditional algorithmic languages the only way to supply an action is to pass a function
or procedure to be invoked on each element.! Sometimes called parametric procedures,
function arguments are a very powerful mechanism in the abstraction toolbox. Unfortu-
nately, programmers are rarely taught much, if anything, about them, so function argu-
ments end up seeming mysterious.

The basic idea is really quite simple. C’s type system allows the declaration of a
pointer-to-function. The syntax for a pointer-to-function variable or argument is similar
to a function declaration, except that the function name is preceded by an asterisk and en-
closed in parentheses. For instance, the type of a C string comparison function would be

int (*compfn)(char*, char*)

(The parentheses are necessary because otherwise the asterisk would be interpreted as
modifying the return-type!)

IThis tends to lead to the gratuitous definition of functions just for the sake of being able to pass them.
Other languages, in particular Lisp and Smalltalk, have constructs that allow bits of code to be packaged and
passed as arguments without having to define a named function,
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In the body of a function with a pointer-to-function argument, the name of the ar-
gument is used just as if it were the name of the function to which it points.> A routine to
sortan array of strings according to whatever comparison function is passed might be de-
fined as follows.

void sort(char* strings[l, int length,
int (*cmpfn)(char*, char*))
{

if cmpfn(strings[i], strings[jl)

}

Pointers to functions are part of ordinary C and can be used the same way in C++.
Sometimes what you want to do is pass a member function as an argument, not an ordi-
nary global function. For this C++ has a pointer-to-member-function type, in which the
asterisk is preceded by a struct name and the scope resolution operator. In the call, the
member function is accessed through an object with the operator .* or the operator ->*,
depending on whether it is being accessed through an object or a pointer to an object.

The above pointer-to-function examples could be rewritten for our string module.
If the comparison were to be performed by a member function, the type could be

int (string::*)(string*)
and the sort function could look like the following.

void sort(string* strings[], int length,
int (string::*cmpfn)(char*))
{

1:f (étrings[i]—)*cmpfn)(strings[j])

C.2.2 Defining Iterator Functions

We can use function arguments to define true iterators — functions that take a collection
and an action and perform the action on each element of the collection. In the simplest
case, an iterator’s function argument will have one argument that is they type of the col-
lection’s elements. Its return value will depend on the kind of traversal pattern captured:
avoid, a collection, or an element. We could define the following instead of or in addi-
tion to the Traversal functions of our modules. (The name collection is used here to
stand for any of the structures we studied. Note also that argument names may always be
omitted in function declarations; in this case, omitting the argument name of the function
argument leaves a strange-looking parenthesized asterisk.)

ZStrictly speaking, using the pointer-to-function requires dereferencing the pointer and enclosing it in
parentheses, just as in the pointer’s declaration, for example (*fn)(*current()). However, because the us-
age is unambiguous, C also allows omitting the asterisk and parentheses around the function variable:
fa(*current()). Some people prefer the first style because it makes clear that fn is a variable; others prefer
the second because it’s less intricate.
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template <class elt> struct collection

{
/! Traversal
void foreach(void (*)(elt));
collection<elt> collect(elt (*)(elt));
elt reduce(elt (*)(elt));

};

Implementations in terms of our Traversal operations are straightforward. They
look just like the kind of code shown above and throughout the book. The only difference
is that instead of calling a specific function on the current element, it calls whatever func-
tion that was passed in as an argument.

template <class elt> void collection<elt>::foreach(void (*fn)(elt))
{

reset();

while (next()) (*fn)(*current());
}

template <class elt>
collection<elt> collection<elt>::collect(elt (*fn)(elt))

{
collection<elt> coll;
reset();
while (next()) coll += (*fn)(*current());
return coll;
}
template <class elt> elt collection<elt>::reduce(elt (*fn)(elt))
{
elt result;
reset();
while (next()) result += (*fn)(*current());
return result;
}

C.3 Problems with Implementing Iterators in C++

There is nothing wrong with the above. Itis valid, and it does what we want. However, it
isn’t good enough. There are many details that were carefully avoided. For instance, re-
duce has to start with a zerolike value for result, but we don’t have a general way of get-
ting one. Another problem is that some collects collect a different type of element or
produce a different type of collection than the elements and collections over which they
traverse. The above example showing the extraction of a set of directories from a list of
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path names did both: it produced a set<directory*> from a seq_list<pathname*>.
Similarly, a reduce may produce a different kind of value than the collection’s element
type, as in summing the int sizes of a list of pathname* above.

A major deficiency is that there is no provision in these functions for extra
arguments. For instance, suppose we want to print every element of a collection. It’s sim-
ple enough to write a function print(elt e) thatjustdoes cout << *e and passprint
to a foreach. That’s fine, but what if we want to provide the particular stream to output
to as an argument? Not only do we need a foreach that takes an extra argument, but its
functional argument also needs a second argument. Since different kinds of functions
would require different kinds of arguments, we might make the argument type a void*
and leave it to the function argument to explicitly convert it to what it expects. Templates
provide a new solution to that old problem, though. For instance, we could define a ge-
neric foreach that took any kind of second argument by making its type a second tem-
plate parameter.

template <class elt, class argtype>
void collection<elt>::foreach(void (*fn)(elt, argtype&), argtype& arg)
{

reset();

while (next()) (*fn)(*current(), arg);

Soon we’d realize we’d sometimes need versions of foreach, collect, and reduce
that took two extra arguments. (For every point, move the point by dx and dy.) Occa-
sionally, we might need iterators that took three or four extra arguments. We’d end up
with a large number of very similar functions.

Another major deficiency in the above iteratorsis they don’t support premature ter-
mination or filtering. The most common kind of premature termination is a search: “For
each element, do nothing, but stop when an element matching this one is found!” Filter-
ing occurs when the action should only be applied to some of the elements: “For each
filename*, delete the corresponding file if it is older than ninety days.” These are com-
mon variations on straight iteration, so we’d like to be able to pass in termination and filter
tests. Either or both could be specified with pointer-to-function arguments with signa-
ture bool (*)(elt). This leads to further proliferation of different versions of the basic
three iteration functions. One can end up with a collection module that has more itera-
tors than all its other functions combined!

Yet another important problem is even worse than a proliferation of iterator func-
tions: C lacks a mechanism allowing a function to refer to another function’s local
variable. In Pascal, for instance, a function can contain not just local variables but also lo-
cal functions. This has many uses. Among others, it would solve some of the zero-value
and extra-argument problems described above. We would be able to write code like the
following.

int sum sizes(seq_list<pathname*> 1st)

{
int total = 0;
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void addl(pathname*) { total += pathname->getSize(); }
1st.foreach(addl);
}

template <class elt>
void print_all(ostream& strm, seq list<elt> 1st)
{
void printl(elt e) { strm << e; }
1st.foreach(printl);
}

This is quite elegant, when you get used to this way of thinking and programming. Inside
add1, when it refers to total, there are only two possibilities in C: total is either local to
the function or global (ignoring the difference between file-scope (static)and program-
scope (extern) variables). Nested functions give us intermediate possibilities: if a vari-
able is notlocal, maybe it’s local to the function that contains this function, or the function
that contains that one, etc. This allows passing one function (add1) to another (foreach)
that invokes it, while allowing the function passed to refer to variables defined in the con-
text where it was defined. (This style of programming is not common in the Pascal com-
munity, although Pascal’s nested functions make it possible. It is really Lisp and its
important dialect Scheme in which nested scopes are commonly used for this purpose.)

Some of the proliferation of iterator variations could be controlled by the careful use
of optional arguments, but not all. In the end, the whole approach proves unwieldy, how-
ever interesting. The structure of the language simply does not support this kind of tra-
versal packaging in an effective way. Under these conditions, it makes little sense to
provide any iterator operations except perhaps the basic foreach. Instead, collection
modules provide lower-level traversal functions such as those shown throughout the
book, and users are left to build whatever kinds of iterations they want out of those build-
ing blocks. Itisn’tideal, butit’s workable.
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Object-Oriented Programming

Since it encompasses C, C++ supports traditional programming. As this book shows, it
also supports data abstraction. In fact, it goes beyond even that, and supports a kind of
programming called object oriented. Although object-oriented programming has a long
history, it has only recently achieved popularity in the mainstream academic and com-
mercial communities.

Though it would have facilitated some of the maneuvers made in implementing the
modules shown in this book, object-oriented programming is not necessary for the study
of data structures. The book’s discussion and examples were carefully restricted to data
abstraction programming. Getting accustomed to all the C++ mechanisms used is
enough of a challenge without the addition of the features supporting object-oriented
programming. Similarly, it’s enough to ask the reader to learn the more modern style of
data abstraction programming without also demanding a further shift to object-oriented
programming. Nevertheless, object-oriented programming is a natural extension of data
abstraction programming, and it’s worth taking a peek at what it has to offer.

The roots of object-oriented programming lie in the Simula language, introduced in
the late 1960s. The language most responsible for the development and popularization of
the approach is Smalltalk, a “pure” object-oriented language that evolved in the 1970s and
started being distributed commercially in the early 1980s. The Lisp community also in-
vestigated object-oriented programming extensively during the 1970s and19802. The
first language to add object-oriented features to C was Objective-C, which was inspired by
Smalltalk. C++ is another hybridization of object-oriented programming with the Clan-
guage, inspired by Simula. For a variety of technical, sociological, and economic reasons,
C++ rapidly became dominant in the professional software development community as it
came to be distributed and supported commercially in the late 1980s and early 1990s.

We'll look briefly here at the concept of object-oriented programming, some of the
benefits it provides, and the basic C++ mechanisms that support it. Everything about
data abstraction as studied in this book is part of object-oriented programming. It really
takes only a few new features to go from the base of facilities for data abstraction program-
ming that C++ provides to full support for object-oriented programming.

471



472 Object-Oriented Programming App.D

The treatment here is quite brief. Its purpose is to point out the direction in which
the programming mechanisms and style shown in this book lead, and therefore the next
step in one’s study of C++.> It also focuses exclusively on object-oriented programming.
It does not begin to cover the rich topics of object-oriented analysis, design, databases,
and user interfaces.

D.1 The Object Metaphor

The people who developed Smalltalk introduced a metaphorical way of talking about
computation that became the standard way of discussing object-oriented programming.
The basic concepts are simple.

1. Computation consists of objects that interact with each other.

2. An object interacts with another by sending it a message then waiting for its re-
sponse.

3. A class describes a kind of object, in terms of its state and behavior.

4, Every object is an instance of a class.

5. Each object has its own independent state, represented by values stored in its in-
stance variables.

6. The response an object makes to a message it receives is determined by its class.

7. Actions taken in response to a message are specified in methods.

8. A class may inherit state and behavior from another class; the class inherited
from is called a superclass, and the inheriting class is called a subclass.

Data abstraction has much in common with object-oriented programming, though
its concepts and mechanisms were largely developed in a different part of the computer
science community. Inretrospect, it is clear that data abstraction forms the foundation of
object-oriented programming, even though things didn’t actually evolve that way. We
can say similar things about the structs and functions shown throughout the book.

1. Computation consists of functions that interact with each other.

2. A function interacts with another by calling it and waiting for its return.

3. A struct describes a kind of data structure as a sequence of variables and func-
tions.

4. Every data structure is an instance of a struct.

5. Each data structure has its own independent state, represented by values stored
in its fields (or members).

6. The code actually executed for a given function call depends on the types of its
arguments, including, in the case of member functions, the type of the expression
through which it is invoked.

7. Actions taken to execute a function are specified in function definitions.

*A good book to read for further information is Programming in C++, by Dewhurst and Stark, A more
thorough introduction is C++ Primer, by Lippman. Both books are included in Appendix F.
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These two lists are quite parallel. What are the differences? The primary conceptu-
al difference is one of emphasis: computation as functions calling each other versus ob-
jects that send messages to each other. Traditional programming is organized around
functions (or procedures), whereas object-oriented programming is organized around
objects. This ends up having far more substantial effects than can easily be described
here. The primary technical difference is that there is nothing corresponding to inherit-
ance in traditional or data abstraction programming. In the above lists, the one for data
abstraction programming does not contain a parallel to the eighth item of the one for ob-
ject-oriented programming.

A third difference, though absolutely central, is less apparent from the above
descriptions. In traditional programming, the actual function that will get invoked for a
particular function call is determined during compilation, but in object-oriented pro-
gramming the actual method that gets invoked is determined when a message is actually
sent during program execution. Inboth cases, the decision is based on the types involved,
but in data abstraction programming the decision is a static one (i.e., made at compile
time) whereas in object-oriented programming the decision is a dynamic one (i.e., made
at run time). (In traditional programming, there is really nothing to decide — without
function overloading, each name refers to just one actual function.) The term binding is
often used in computer science to refer to the connection between a name and what it re-
fers to, and this third distinguishing feature of object-oriented programming is called dy-
namic binding.

D.2 Benefits of Object-Oriented Programming

In short, object-oriented programming goes beyond data abstraction by adding inherit-
ance and dynamic binding. It also causes subtle yet profound shifts in the way programs
are designed and developed. We won’t address these mysterious shifts here, but we will
briefly describe some of the advantages that inheritance and dynamic binding provide.

D.2.1 Benefits of Inheritance in Programming

The main advantage of inheritance in programming is that it allows programming by
differences. (It has further, and perhaps more significant, consequences for analysis and
design, but that goes far beyond the scope of the present discussion.) When one data
structure is a lot like another, it is far more effective to describe it in terms of its differences
from the other, rather than copying and editing the entire implementation of the other
data structure to implement the differences. Moreover, changes made to the other struc-
ture’s implementation — bug fixes, new features, more efficient functions, etc. — don’t
magically appear in modified copies of the module. In fact, when people copy and modify
a module such as a linked list implementation, there is usually no way to even find out
where all the copies are. Even if the copies could somehow be tracked down or an an-
nouncement of changes sent to all their owners, the same modifications would have to be
made to each copy, a major source of tedium and error.
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A class that inherits from another class typically adds further state and behavior. It
may also replace inherited functions with its own versions. Dynamic binding involves
looking in an object’s class for the method for a message received. The superclass is ex-
amined only if no method is found in the subclass. Therefore, if a class includes a method
that was already present in its superclass, the effect is to replace that method. Instances of
the superclass will continue to use the superclass method to respond to the corresponding
message, but instances of the subclass will use the method it provides.

Collection structures like the ones studied in this book are fertile ground for inter-
esting uses of inheritance. In many cases, several implementations of a structure differed
only in relatively few representation details and function implementations. These could
be better expressed using inheritance so the individual structs would only contain the dif-
ferences rather than all the repeated code. Examples include the following.

+ sequential lists versus linked lists
* n-ary trees versus general trees
+ simple tables versus ordered tables versus hash tables

In fact, several of the modules from the disk of code provided with the book incor-
porate several different implementations, with a preprocessor macro used to determine
which code should actually be compiled for a given version. Inheritance is a much more
powerful mechanism than preprocessor directives for this sort of thing. Moreover, it al-
lows incorporating another module without modifying its text, a very important consid-
eration for program maintenance and library distribution.

D.2.2 Benefits of Dynamic Binding in Programming

The ability to defer binding to run-time makes an enormous difference. It allows collec-
tions to contain a mixture of objects, rather than just objects of one type. As a collection
is traversed during execution, one or more messages are sent to each object encountered.
The method invoked for each object is the one defined (or inherited) by its class. The only
way to accomplish this in traditional or data abstraction programming is with unions and
switch statements that select appropriate actions according to the value of a type field as-
sociated with the union.

A minor problem with switch statements is that they are wordy and error-prone.
Selecting behavior based on type is very repetitive in form, and like all repetitive things is
best left to the computer rather than the programmer to manage. More importantly, the
behavior of a type is not captured in any one place. Instead, it is distributed across all the
switch statements that deal with it throughout the program. This dilutes the data-cen-
tered power of data abstraction, which ideally captures all the behavior of a type in a sep-
arate module that implements it. It means that when the behavior of the type is changed,
those changes have to be made in all the relevant switch statements. In many cases, those
changes will be redundant as the same tests and actions are performed in several different
places in the program or data structure module.

A surprising advantage to using dynamic binding instead of switch statements is
that new types can be added to the system without changing any existing code. 1f the sys-
tem automatically determines the appropriate function to call at run time based on the
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type of the particular object encountered, then the programmer doesn’t have to write
type-based tests. That means that the names of types, or equivalent values of type fields,
never appear in the program, which is why new ones can be added without changing
anything. (This is a slight exaggeration: somewhere the program has to create instances
of the new type, and there the type must be mentioned by name.) The only constraint on
the new type is that it provide implementations for any function that might be called on it.

D.3 Object-Oriented Features of C++

we'll look at the mechanisms that C++ uses to implement inheritance and dynamic
binding. Enormous subtlety and complexity confront the serious user of these facilities.
Only the basics are shown here.

The C++ community’s object-oriented terminology differs somewhat from the tra-
ditional vocabulary presented above. Instead of inheritance, the term derivation is used.
Instead of superclass and subclass, the terms are base class and derived class. The term
function is retained instead of switching to the term method. Functions that are dynami-
cally bound are called virtual functions.

D.3.1 Classes and Instances

In C++ classes are just like structs. The reserved word c1ass is used instead of struct.
Actually, the two are essentially interchangeable. Classes are defined and instantiated just
like structs. The only difference is that members of classes are private by default, whereas
members of structs are public by default. (Once private: or public: is specified, the
difference evaporates for the rest of the struct or class.) The keyword class was intro-
duced to encourage the shift in perspective of an object-oriented point of view. The key-
word struct was retained to allow existing C code to be used with C++.

D.3.2 Inheritancein C++

Inheritance is specified by following a class’s name in its definition by a colon and the
name of its superclass. For instance, the priority queue of Chapter 7 was implemented as
a copy of the queue module shown in Chapter 6, with the constructors, assignment oper-
ator, and add replaced. Instead of copying the queue implementation, it would be prefer-
able to use inheritance. Its declaration would be as follows. Its implementation file
would contain only the functions specified in the declaration. Everything else is handled

by the compiler.

template <class elt> struct pqueue_; queue
{
/l Additional data members
private:
bool highfront;
int (*evaluator)(elt);
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pqueue(bool highest_first = TRUE, int (*evfn)(elt) = 0, int siz = 100);
/! Different copy operations are needed to support extra data members.
void copy_elts(pqueue<elt>& q);

pqueue(pqueuelelt>& q);

pqueue<elt>& operator=(pqueue<elt>& q);

/! A different add replaces the inherited one so it is declared here.
public:
void add(elt);

/! Additional, private Modify operations supporting add.
private:

bool before(elt itm, int pos);

void insert(elt itm, int pos);

// Nothing further appears here!
}

An important further detail must be explained. When a struct is instantiated, its
constructor is called automatically. When a pqueue is instantiated, one of its constructors
is invoked, of course. That constructor initializes pqueue data members. Whatabout the
data members inherited from queue? The queue module already contains code for han-
dling those, so we don’t want to have to repeat that here. Besides, the two modules might
be maintained by two different programmers. Certainly we don’t want the pqueue pro-
grammer to have to track changes in the internal implementation of queues. All in all, the
way things should be organized is that each class is responsible for the initialization of the
data members it declares.

To support that, C++ automatically causes base class constructors to be invoked.
When a pqueue is instantiated, both the queue and the pqueue constructors are
executed. That much happens automatically. What doesn’t happen automatically is the
passing of arguments to the base class constructor. If the derived class constructor
doesn’t pass arguments to the base class constructor that will be automatically invoked,
the base class’s default constructor will be the one executed. To pass arguments, the de-
rived class constructor must include the base class and the arguments in the member ini-
tialization list, as if the base class were actually a member of the derived class (the way a
seq_list isa member of the table module of Section 11.1).

The old definition of the pqueue constructor (page 187) was as follows.

/* Lifetime Operations */

template <class elt>
pqueue<elt>: :pqueue(boel high, int (*fn)(elt), int siz)

: highfront(high), evaluator(fn), maxelts(siz-1), elts(new eltl[siz])
{

assert(siz > 1);

clear();
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However, maxelts and elts were declared in queue and should be initialized there. The
inheritance-based implementation of pqueue would omit those members from the mem-
ber initialization list, replacing them with a mention of queue and the arguments to pass
to its constructor. The effect of this is to pass along the siz argument to the queue
module. In principle, any expression can be passed along to the base class constructor,
but in practice it is almost always arguments to the derived class constructor that are sim-
ply forwarded to the base class for handling. Here’s the new definition, with the change
underlined.

/* Lifetime Operations */

template <class elt>

pqueue<elt>::pqueue(bool high, int (*fn)(elt), int siz)
: highfront(high), evaluator(fn}), queue(siz)

{
assert(siz > 1);
clear();

Classes may have more than one base class. This is known as multiple inheritance.
Multiple bases just appear after the usual base class colon, separated by commas. Not all
object-oriented languages support multiple inheritance. Originally C++ did not, but now
it does. A class that inherits from more than one base inherits all the members of each
base.

D.3.3 DynamicBinding in C++

Pure object-oriented languages provide only dynamic binding for message execution.
Traditional languages, of course, provide only static binding for function calls. C++, be-
ing a hybrid language, provides both. That means there has to be some way to distinguish
which calls will be bound to specific functions statically (resolved at compile-time) and
which will be bound dynamically (deferred until run-time).

The scheme used in C++ is that all calls of a particular member function are either
static or dynamic. There is noway to indicate ona call-by-call basis which should be static
and which dynamic. (It turns out, though, that only calls through pointers or references
may be dynamically bound; calls through object values are always statically bound even if
the function is normally dynamically bound.) Ordinary global functions and static mem-
ber functions are always bound statically.

The default, of course, is static binding — what we’ve been using all along. To indi-
cate that a function should be bound dynamically, the reserved work virtual precedes its
declaration. Because both queue and pqueue provide an add function, that function
should be declared virtual, as follows.
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template <class elt> struct queue

{
/. ..
virtual void add(elt);
//

1

When a class declares a function virtual, the function is virtual in all the sub-
classes of that class. It is therefore not necessary to specify virtual for that function
where it is redeclared in subclasses. However, it is good practice to specify virtual any-
way, so that someone reading a class definition can tell immediately which functions are
bound statically and which dynamically.

Declaring a function virtual is all that is necessary to cause it to be dynamically
bound. The rest is taken care of automatically by the compiler. For each class that has at
least one virtual function, a table of virtual functions is constructed. Each instance of such
a class gets an extra hidden data member that is a pointer to the class’s virtual function
table. Instead of compiling in a call to a specific function, the compiler compiles in a call
through a specific offset in the virtual function table. Atrun-time, the virtual function ta-
ble of the current object is accessed and the function at the designated offset is called. In
that way, different functions may be called for objects of different classes.



E

|

C++ Justifications

There are many ways in which the C++ style adopted for this book does not conform to
standard professional practice. The differences are intentional, designed to reduce com-
plexity and increase readability for people new to C++ and the study of data structures.
To some extent, this is simply because this is a computer science book, not a book on pro-
fessional software development. More importantly, the subject of this book is data struc-
tures, not C++. All discussions and uses of C++ are entirely subservient to the purposes
they serve in supporting the main presentation. This Appendix is included for readers
who want to know more about the choices made regarding the use (or more likely the no-
nuse) of various C++ features.

One general rule dominated all decisions about what C++ features to use and how
to use them: although usage here may deviate from the professional norm, in no case
should itintroduce misconceptions, dangerous practices, or bad habits that will have to be
fixed in later study or work. The deviations here are harmless simplifications the limita-
tions of which students will easily transcend when it later becomes appropriate to do so.
For instance, even though a major reason for defining certain binary functions as friends
is to make sure both arguments get equal treatment under conversions to base classes, and
that issue wouldn’t arise here because inheritance is never used, it was still judged better
to show such functions as binary friends rather than unary members in order to instill the
correct habits and aesthetics for when students encounter inheritance later on. On the
other hand, although struct is used instead of c1ass in data structure definitions, this is
just a style choice with no significant consequences and a usage that can easily be reversed
later.

Classes, Inheritance, and Dynamic Binding

By far the most significant decision was to restrict the features used to those supporting
data abstraction only, not object-oriented programming (cf. Appendix D). Avoiding in-
heritance and dynamic binding avoids a slew of subtle, complex, and difficult issues. (The
features themselves are simple and powerful, but many difficulties arise when they com-
bine with each other and the data abstraction features of C++. It is enough to ask the
reader of this book to learn many new features that C++ adds to C and a new way of think-
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ing about programming (data abstraction) in order to learn about data structures, the real
subject of the book. It would simply be too much to pile on top of that the further shift to
object-oriented features and programming.

Even without object-oriented programming, though, inheritance has important ap-
plications in the design and implementation of data structures. It would be nice to define
structures that are essentially variations on similar other ones by defining only the differ-
ences they introduce. For instance, priority queues could be derived from queues. It was
tempting to do this, but only a few of the book’s structures would benefit from this treat-
ment, and for the purposes of this book it seemed sufficient for the text to show only the
changed functions and the on-line code to use preprocessor directives. Also, there is still
a fair amount of turmoil in the field about the appropriate use of inheritance, and it isn’t
clear that teaching students at this level to use “implementation inheritance” is really in
their best interests.

struct versusclass

Given that no object-oriented features were used, and that struct and class are essen-
tially equivalent in C++ (the only difference being the default accessibility of members
and bases), it seemed appropriate to use struct instead of c1ass. The book presumes ac-
quaintance with C, so students should already be somewhat familiar with structs. Noth-
ing would be gained by introducing a new term. This is one of the most visible of the
book’s choices, and no doubt experienced C++ programmers will find the pervasive use
of struct here odd, but really the issue is entirely trivial.

Unfortunately, the language does not allow using struct instead of c1ass in spec-
ifying template parameters. It would have been better for this book if the reserved word
used for that were type, which is what class means in that context. Even allowing
struct in addition to c1ass would have made it possible to avoid introducing the latter
entirely. The way things are, the only choice was to use c1ass and note that the word re-
ally means *type’.

Ordering of Members

What should come first in the definition of a data structure — private or public members,
data or function members, etc. — depends on who’s going to read the definition. Since
this book is about the design and implementation of data structures, as well as their use,
the definitions start with representation, proceed to the core operations, and end with the
less central functions. A different order would be appropriate in a class library of gener-
ally useful data structures. There, one would want to order things to present the public in-
terface first and implementation details last. In fact, it would be better to put the
implementation details in a separate header file that the main one #includes, so that all
users see is the public interface. For this book, we definitely do not want to hide the
implementation — that’s what the book’s about!

Friend Functions

Many functions were routinely declared as friends in their struct. It turns out that their
are two quite different reasons to declare a friend function inside a struct. The obvious
one is to give the function access to private members of the struct. More subtly, it allows
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defining an ordinary, nonmember function inside the struct. Stylistically, to support the
encapsulation metaphor, it is better to declare all functions that are part of the module’s
interface inside the struct itself, rather than following it. To accomplish that, such func-
tions may be made friends, regardless of whether or not they actually require access to pri-
vate members. Note that such functions are still clearly part of the module’s interface and
are in no way secondary to member functions.

Most of these friend functions could, of course, be made members (with their first
argument omitted). (A major exception is the output operator: if a member, it would
have to be a member of ostream, not of the user’s class, since its first argument is an 0s-
tream; however, that is not possible, ostream is already defined.) There are two reasons
to make them global instead of members. First, you'll find that they are for the most part
Compare and Combine operations, which are inherently binary. Stylewise, a binary func-
tion with one argument just looks odd: a natural response to seeing the declaration boo1l
equal(1ist<elt>&) is “Equal to what?” Even Smalltalk, a very pure object-oriented lan-
guage still provides binary operators like those of traditional languages because they are
inescapably natural and preferred by programmers.

A more subtle reason to make binary operations global arises with the use of
inheritance. Implicit conversions from derived to base classes may be performed on a
function argument, but not on the expression through which it is called. It would be
strange, and possibly dangerous, to have one argument of an operation that is conceptu-
ally binary treated differently from the other. Therefore, it is common practice to make
such functions binary nonmember friends.

Inline Functions

In the early days of C++, inline functions drew a lot of attention. The traditional objec-
tion to data abstraction programming is: “All those function calls!” Inline functions an-
swer that objection, since they allow simple functions to be replaced by their definitions
instead of a slower function call. Instructional materials — books, articles, course over-
heads, etc. — are full of class definitions with inline member functions. In retrospect, that
appears to be the effect of the pressure of space limitations inherent in such materials rath-
er than a real commitment to programming that way. As the field has matured, people be-
gan to realize that inlining was exclusively an efficiency issue and should always be left for
late stages of code development, when performance tuning becomes important. Before
that, they complicate things by causing too much recompilation when changed (because
they are in header files), evading the debugger, and obscuring other declarations in the
class with their bulk. There is no reason at all to use them in an introductory context.

const

With the exception of a few constant values here and there, the use of const has been en-
tirely avoided. Thisis perhaps the single biggest change that would have to be made to the
code in this book to bring it up to professional standards. It is very important to make a
function’s reference arguments const, unless the function is meant to modify them.
(This is so important that compilers routinely warn or even generate errors in the presence
of nonconst reference arguments. Under the relentless pressure of such compilers, in
fact, it proved infeasible to maintain this stance of innocence, and consts have been added
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to most reference arguments in the on-line code, though not in the book. However, the
code just casts away the consts, so that nothing is really changed, except that the compiler
is silenced.)

Although important in software distributed to others for real-world use, const dec-
larations are obtrusive in too many ways to use them in this book. One problem is just
that they make code wordier, and it’s important in a book like this not to make things look
too complicated. Often it is necessary to provide two definitions of many member
functions — one const the other not, but otherwise identical. This is too tedious for a
book like this.

Above all, there are many surprising consequences of const. The author’s experi-
ence with his own programming, the programming his students have done, and the pro-
gramming his consulting clients do has shown const to be the source of more difficulties
than any other single C++ feature. For instance, it is a rule of the language that all mem-
bers of a const object are const, but AT&T’s cfront compiler got this wrong as recently
as version 2.1! If one declares

struct point { int x, y; };
struct line { point start, end; }
const line 1 = { {0, 0}, {10, 10} };

then the following is illegal, but was accepted by cfront 2.1.
l.start.x = 5;

Most C++ programmers don’t know this, and some don’t even agree that const should
be interpreted this way.

Traversal operations are a major difficulty here. To output a list, we might print a
parenthesis, traverse the list printing each element followed by a comma, then print a final
parenthesis (ignoring the problem of there being one fewer commas then elements). That
process would be expressed in the list module’s output operator, which would take a ref-
erence to an output stream and a reference to a list as arguments. The list argument
should be const because it won’t be modified. If it were const, then the calls to reset,
next, and current used in traversing the list would have to invoke const member func-
tions or the compiler wouldn’t let them be called on a const list.

One difficulty is that although reset and next are const in one sense — they don’t
change the content or order of the list — they are not const in another, in that they mod-
ify a data member, and if we make them const, the compiler won’t let them modify the
traversal state of the list! Another difficulty is less obvious: since current returns a refer-
ence to an element, that reference is required to be const, because modifying it would be
modifying the list, which is const. (This is closely related to the rule that all members of
a const object are const.) That’s all right for the output operator, but it means that tra-
versals cannot obtain elements that are then modified. For instance, you couldn’t replace
one element with another, or change the value corresponding to a key in a table.

These problems can be eliminated by the simple expedient of casting the const list
reference to a nonconst one at the start of the output operator, or perhaps doing that in
the traversal operations. In that case, one might ask, what good is a feature that in reality
provides no advantage and requires user intervention to circumvent? To handle such sit-
uations with more delicacy than just casting away the const is just too difficult for first-
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time users of C++ to have to confront. Endless compilation and link errors result, many
with no apparent cause or solution.

Once you introduce const in a couple of places that look reasonable, you will find
that it spreads like a virus until nearly everything in your system has to be const to get
anything to compile. You are welcome to experiment with the on-line code, adding
consts to reference parameters (without casting the consts away, as the on-line code
does) and making member functions const. You will learn a lot about the language. You
will also learn a lot about your tolerance for frustration. Just don’t say you weren’t
warned!

Restricting Collection Elements to Pointer Types

The collection implementations of this book will work only for pointer-typed elements.
Conceptually, we want to ignore the pointers and think ofa 1ist<string*> as containing
strings, not pointers to strings. Three of each module’s functions dereference the pre-
sumed pointer: equal, compare, and operator<, in order to call the corresponding
function on the objects to which the element pointers point. There are deep semantic is-
sues and implementation requirements involved in any other approach. Storing objects
instead of pointers may require copying an object when it is “added” to a collection, and
raises difficult issues of ownership that complicate Finalize and Destroy operations. It is
difficult to construct a collection structure that works well for both pointers and primi-
tives such as ints; many widely distributed collection libraries, in fact, provide special int
and char* versions of each collection in addition to a generic collection-of-pointers ver-
sion.

What the data structure methodology in this book really required was a scheme that
could be applied simply and consistently to every structure studied. Restricting elements
to pointer types made that possible. It also made the implementations significantly
simpler. It makes the collections more flexible too, by resolving subterranean ownership
and identity issues. If you want to store an object, having to store a pointer to it is only an
ampersand away. The converse is not true: if you want to use pointers — so that an object
may be in several different lists or tables, for example — there is no way to accomplish that
with collections that accept and provide objects. Again, you are welcome to experiment
with modifying the on-line code to create collection templates that take objects instead of
pointers. The experience will undoubtedly be educational.

Reference Returns

Many Access and related functions, in particular current, defined in the modules return
references. There are important problems with this approach. Probably the most hid-
eous one is that references are tied to the addresses of the data to which they refer, but a
structure’s implementation may relocate an object within its internal memory: elements
may be shifted around or copied over to a newly allocated larger array, leaving the refer-
ence pointing to a wrong element or even deleted memory. Some functions of course
should or must return references — in particular, assignment operators. However, most
of the reference returns in this book’s code are references to allow the function — espe-
cially operator{] — to appear on the left-hand side of an assignment statement. They
may also be used as temporary aliases for convenience during the execution of a limited
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piece of code, but once the structure is modified they will no longer be valid. It is not in-
tended that they be stored beyond such very limited contexts, and unpleasant surprises
will occur if they are.

Separate Iterator Classes

Any real C++ collection module would implement traversal not through member func-
tions of the collection structure but with a separate iterator struct. This approach has two
important advantages. One is that no space is taken up by the representation of traversal
state in a collection that is not currently being traversed, and constructors and assignment
operators don’t have to deal with the tricky details of initializing traversal state. The more
important advantage is that if each traversal is embodied in a separate object, it is possible
to have multiple traversals of the same structure going on at the same time. Certain pat-
terns of computation require that. For example, in a selection sort that traverses a list ex-
changing the current element with the one that belongs in itself, finding the least
remaining element is itself a traversal process over the same list.

The problem for this book is that these separate iterator classes introduce a fair
amount of complexity. It is highly desirable that the student acquire an appreciation for
the flexibility and elegance of traversal programming. The student is unlikely to encoun-
ter a situation in which it is truly important to save the little bit of space traversal state oc-
cupies or where multiple simultaneous traversals over the same collection are really
necessary. The seemingly gratuitous complexity separate iterator classes entail would
discourage many students and obscure the value of traversal operations.

Overloading operator new

The free list allocation and recycling of nodes found in linked structure modules should
really be handled by overloaded new and delete operators. However, using those would
not make the code any more readable, concise, efficient, or accurate. Client code rarely
call these functions anyway, so the interfaces to the modules are not significantly affected
by this choice.

Nested Types

In principle, C++ allows other types to be defined inside structs. The meaning of these
nested types is the same as if they had been defined outside the struct. The difference is
simply the scope of their names. In principle, enumerations like the traversal orders in
the binary tree module and secondary structs like the various node structs encountered
should be defined inside the structs that use them. Thatwould appropriately restrict their
names and avoid “polluting the global name space,” as this concern is usually phrased.
Unfortunately, the implementation of nested types in many current compilers is quite in-
adequate, and it became necessary to back off from the attempt to use this feature.
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Pages indicated here generally refer to conceptual discussions, not the
code and discussion of its details that typically follow. After this index is
an index of all function definitions shown in the book, arranged by struct.

jtdefine, 11, 463
##include, 25

angle brackets vs. double quotes, 30
1,44

A

Access, 57
action, 369
Add, 57
Adjacency matrix (See Graphs, adjacency
matrix representation of)
Adjacent nodes in a graph, 319
Adventure game, 359
AFTER, 67
Almost balanced, 420
Anonymous union, 123
ANs1G, 10
Arcs of a graph, 319
Arguments:
names optional, 10
passing by value vs. by reference, 17
Arrays, 8,91, 93-94
in C, 94, 459-460
indexing in, 94
multidimensional, 102-104

assert macro, 13

Assignment, 22

Association structures, 9, 365-366
Associative lookup, 367

Attribute operations, 59

AVL trees (See Balanced Search Trees)

Back pointer, 220, 274
Balanced search trees:
maintaining balance in, 420-428
rebalancing operations in, 423-428
BEFORE, 67
Binary search, 379
efficiency of, 379
Binary trees, 274-275
Bit fields, 121
Bits, 5
bool, 84
Breadth-first traversal of trees, 284
B-trees, 436
adding to, 438-441
disk-based, 436
lookup in, 437-438
removing from, 441-447
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Bubble sort, 255-256
efficiency of, 256
Buckets in hash tables, 385
Buffers in streams, 140

Bytes, 5

C

C++:
choice of, xiii—xiv
dominance of, 471
object-oriented features of, 475-478
Call and return, 160-163
Cardinality, 73
catch, 81-82
cerr, 127
Chaining in hash tables, 386
Children in trees, 273
cin, 127
Classes:
avoidance of, 480
in object-oriented programming, 472
Clear, 57
Collections, 57
requiring element operations, 84
restricted to holding pointers, 483
Combine operations, 59
Compare operations, 59
C++ support for, 67
Compile time, 21
Complete:
binary tree, 275
graph, 319
Complexity, xi
const, 11
avoidance of, 481-483
Constants, 458
Constructors, 62
arguments, 62
Consumer streams, 126, 130, 139
Content operations, 56, 58-59
Content-addressable structures, 365
Conversion operations, 60
constructors as, 65
Copy, 36
assignment, 68
C++ support for, 67-68
initialization, 68
cout, 127
Create, 57

Index

C++ support for, 61
CS2 curriculum, xii
Cycle in a graph, 320

D

DAG (See Directed acyclic graph)
Data abstraction, 25
Data members, 41

static, 52

static, initialization of, 53
Data structures, 6

fundamental, 8

summary of fundamental, 454

taxonomy of, 455
Data types, 5
Declarations, 22

as statements, 14

old-style, 11
Decomposition, xi

of programs, 25
Default argument (See Optional argu-

ments)

Default constructor, 62
Default value of argument, 14
Definitions, 22
Degree:

of a graph node, 319

of ancde, 300

of a tree, 300
delete, 16

not overloading, 484
Depth of an element in a tree, 273
Depth-first traversal of trees, 284
Derived C types, 459-463
Destroy, 57

C++ support for, 61
Destructors, 62
Dictionaries, 367
Digraph, 319
Directed acyclic graph, 319
Directed graph, 319
Diskette provided with book, xvi
Doubly linked lists, 220, 251
Dynamic allocation, 15
Dynamic binding:

avoidance of, 479-480

benefits of, 474

in object-oriented programming, 473
Dynamic data structures, 201
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Dynamic memory allocation, 21

E

Edges of a graph, 319

Efficiency:
of algorithms, 251-252, 264-265
of search in simple tables, 368

Encapsulation, 41-44

enum, 14

Enumerations, 458

eof, 127

EQUAL, 67

ERROR, 369

Evaluation functions for priority queues,

186

Exception handling, 80-83

Exchange, 57

exchange, 370

Executable files, 25

Execution time, 21

Extent, 19

extern, 20

F

FALSE, 84
Fifteen Puzzle, 189-194
Filter, 140
Finalize, 57
C++ support for, 61-63
First-in first-out, 171-172
Floyd's algorithm, 332
for statement, 14
foreach, 57
Forest, 274
free, 16
Free lists, 243-248
Friend, 48-50
functions, 49
instead of member, 481
struct, 49
friend, 49
Full binary tree, 275
Function:
arguments of, 466-467
prototypes, 10
templates, 78-79
Fundamental operations, 55-61
summary of, 60, 453

G

General trees, 312-313
Generator, 57
get, 128
get_hash, 392
get_key, 366, 370, 404
getline, 128
Global, instead of member, 49
Graphs, 8, 319-321

adjacency matrix representation of,

322

linked representation, 337

Guard symbols in header files, 27

H

Hash functions, 384-385
Hash tables, 382-391, 403
deletion in, 391
expansion of, 391
resolving collisions in, 385-390
Header files, 25
nesting, 27
Heap, 21
Height balanced, 420
Height of a tree, 273

ifstream, 127
IGNORE, 369
ignore, 128
Implementation files, 25
Incident nodes in a graph, 319
Indexed files, 9
Information hiding, 25, 46-48
Inheritance:
avoidance of, 479-480
in object-oriented programming, 472,
473
in the implementation of collections,
474
Initialization vs. assignment, 22
Initialize, 57
C++ support for, 61-63
Inline functions, avoidance of, 481
Inorder traversal trees, 285
Input/Qutput operations, 60
C++ support for, 72
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Insertion sort, 254-255
efficiency of, 254
Instance variables in object-oriented pro-
gramming, 472
Instances:
in object-oriented programming, 472
of a struct, 461
Integral C types, 457-458
Internal nodes, 273
Invocation of subroutines, 160
iostream library, 72, 127-129
introduction to, 37
istream, 127
istrstream, 127
Iterator, 57
classes, avoidance of, 484
functions, 58, 467-468
problems with functions in C,
468-470

L

Labeled graphs, 320
Last-in first-out, 147-148
Leaf balanced, 420
Leaf nodes, 273
Length: _
of a graph path, 320
vs. ‘size’, 59
Level of a tree, 273
Lifetime operations, 56-57
Linear probing, 388
Linear search. efficiency of, 368
1ink, 276
Link time, 21
Linked lists, 220-223
dynamic, 248-249
Linked structures, 8, 201
Lisp, 471
Lists, 8, 203
Lookup, 365

M

malioc, 15
Mapping, 365
Member functions, 41
calling, 42
static, 52
Member initialization lists, 66

Index

Members:
accessibility, 44, 46
ordering of, 480
public vs. private, 46-48
Merge sort, 262-263
efficiency of, 263
Methods in object-oriented programming,
472
Modify, 57
Modularization, 25-26
functional, xi
sequential, xi
structural, xi, 25
Multidimensional arrays (See Arrays, mul-
tidimensional)

Name spaces, 20
N-ary trees, 300
Nested types, avoidance of, 484
new, 15

not overloading, 484
NO_ORDER, 67
Nodes, 8, 201, 220, 275-276
Nonlinear structures, 283
Null pointer, 462

0

Object files, 25
Objective-C, 471
Object-oriented programming, 471-473
avoidance of, xvii
compairson with traditional pro-
gramming, 473
Objects, 23
in object-oriented programming, 472
Offset, 119-120
in array indexing, 94
in multidimensional arrays, 106-108
of record fields, 119
ofstream, 127
Open addressing, 387-390
operator<<, 127
operator>>, 127
Optional arguments, 14
Order:
of a B-tree, 436
of an n-ary tree, 300
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order, 67
Ordered structures, 203
ostream, 127
ostrstream, 127
Overloading, 34-41
function, 35
in traditional languages, 35
limits on operator, 41
operator, 3641

P

Parameterized types (See also Templates)
C++ support for, 76

Parametric procedures (See Functions, ar-

guments of)

Path in a graph, 320

peek, 128

Pipe, 140

Pointers in C, 461-462

pop, 150

Postorder traversal of trees, 285

Preorder traversal of trees, 285

Prime numbers, computing, 392

Primitive C types, 457-459

Priority queues, 8, 185-186

private, 47

Procedural abstraction, 25

Procedural interface, 47

Process, 36

Producer streams, 126, 130, 139

Program stack, 21, 160-163

Programming by differences, 473

public, 47

Public interface, 48

push, 150

put, 128

putback, 128

Q

Quadratic probing, 389

Qualifier, 457

Queues, 8, 171-173

Quicksort, 259-262
efficiency of, 261-262

read, 129

491

Records, 8,91, 119-121
in C (See Structures in C)
Recursion, 163, 166
needed for tree operations, 274,
305-306
Recursive structures, 8, 201
References, 16
dangers of returning, 483-484
not returning from association struc-
ture functions, 370
returned from functions, 17
Regular trees, 300
Rehashing (See Open addressing)
Remove, 57
REPLACE, 369
Replace, 57
Representation, 7
Rotation (See Balanced search trees, rebal-
ancing operations)
Run time, 21

S

Scope, 19
global, 44
structure, 44
Scope operator, 44
Search, 251
as a Process operation, 60
Search trees, 9, 365, 403
balanced (See Balanced search trees)
binary, 403-404
B-trees, 436
efficiency of, 419
Searching:
alinear list, 218
a linked list, 242
a search tree, 403-404
a simple table, 369-371
a sorted table, 378-379
Selection sort, 253-254
efficiency of, 253-254
Sequential lists, 203-204
Sets, 9
Shortest path between nodes in a graph,
332
Signature, 35
Simple tables (See Tables, simple)
Simula, 471
Single-line comments, 13
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Size as term for number of elements, 59
sizeof, 15
Smalltalk, 471
Sort, 251
as a Process operation, 60
Sorted tables (See Tables, sorted)
Sorting:
efficiency of, 251-256, 261-263
lists, 251-264
stream-based, 135-138
Space as term for amount of storage, 59
Stack pointer, 148
Stacks, 8, 147-148
standard.H, 84-86
State structures, 8, 145
State-transition graphs, 320, 360
static, 20
Static members, 52-53
Static variables, 459
initialization of, 15
stderr, 127
stdin, 127
stdout, 127
Storage structures, 8, 91
streambuf, 127
Streams, 8,91, 125-127,129-130
Strictly balanced, 420
String module:
version 1, 26-30
version 2, 31-34
version 3, 38-41
version 4, 44-46
version 5, 47-48
version 6, 50-52
version 7, 53-54
version 8, 63-64
version 9, 66-67
version 10, 68-70
Strings, 9
struct, 14
Struct templates, 76-78
struct vs.class (See Class, avoidance of)
Structures in C, 460-461
Subclass, 472
Subtree, 274
Superclass, 472
Support operations, 56, 39-60
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T

Tables, 9, 365, 367, 403
hash (See Hash tables)
simple, 368, 403
sorted, 378, 403
Templates, 73-80
instantiating, 79-80
Terminal nodes, 273
this, 42
throw, 81-83
Transitive closure of a graph, 332
Traversal:
of trees, 283289
recursive, 284-285
Traversal operations, 56, 57-58
C++ support for, 70
Trees, 8,273-274
creating recursively, 291
processing recursively, 289
TRUE, 84
try,81-82
Type checking, 13
typedef, 14, 463

U

Undirected graph, 319
Unions, 121-123

\')

Variables:

inC, 459

initialization of, 459
Vertices of a graph, 319
Void, 11
void*, explicit casting to, 15

w

WARN, 369

Warshall’s algorithm, 332
Weighted graphs, 320
write, 129
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Code Index

This index lists function definitions by module, following the order in
which the modules appear in the book. For convenience, nonmember
functions are listed without their argument lists, which are uselessly
repetitious. Their arguments should be obvious from their context. Most
of them take references to two template structures of the type with which
they are associated; these include equal and compare. The operator<<
functions of course take an ostreamé& and a template structure.

From standard.H

aborto, 85
abortl, 85
abortv, 85
error, 85
errorz,8s
exchange, 85
max, 84

min, 84
notimp, 85
strdup, 85
timestamp, 85
warning, 85
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Code Index

Storage Structures

array
~array(),96
array(arrayd), 10l
array(int, int),9
current(}, 98
equal, 99
finished(),97
first_index(),99
index(),98
last_index(),99
next(),98
operator<y, 101
operator=(arrayd), 10l
operator[1(int),97
reset(),97
size(),99

multarray

~multarray(}, 109

compare, 114

copy_dimensions(multar-
rayd), 115

copy_elements(multarrayd),
115

current(), 111

dimensions(},113

equal, 114

finished(), 111

first_index(int), 113

index(int*), 112

isomorphic, 113

last_index{(int), 113

multarray(.), 109

multarray(multarray&), 115

next(}, 111

opeérator<<, 116

operator=(multarray&),115

reset(), 111

size(), 113

sub{..), 110

validate_index(int, int), 110

consumer_stream

~consumer_stream(), 134
concatenate{producer_
stream&, producer_
stream&), 134
consumerconsumer_stream_
stream(elt*, int), 133
copy(producer_stream&), 135
full(), 134
index(), 134
merge{producer_stream4,
producer_stream&), 135
put(eltd), 134
reset(), 134
terminate(), 134

producer_stream

~producer_stream(}, 131

compare, 132

empty (), 132

equal, 132

get(), 131

index(), 132

peek (), 131

preducer_stream(elt*, int),
131

reset(}, 131
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State Structures

stack queue
~stack(), 152 ~queue(), 175
clear(), 152 add(elt), 175
compare, 155 clear(), 176
contains(elt), 156 compare, 179
contains_equal(elt), 156 contains{elt}, 180
copy_elts(stack&), 156 contains_equal(elt), 180
current(),153 current(),177
empty(), 154 empty(),178
equal, 155 equal, 179
finished(), 153 finished(), 177
full(), 154 first(),176
index(), 154 full(),178
next(),153 index(), 177
operator+=(elt), 152 last(),176
operator<, 157 next ()}, 177
operator=(stack&), 156 operator+=(elt),175
pop(), 152 operator<<, 180
push(elt), 152 queue(int), 175
reset(), 153 remove( )}, 176
size(}, 155 reset(),177
stack(int), 152 size(), 178

stack(stack&), 156

topelt(), 152
pqueue

add(elt)}, 188
copy_elts{pqueued), 188
insert(elt, int),187
operator=(pqueued), 188
pqueue{bool, int (*)(elt),
int), 187
pqueue(pqueued), 188
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Linked Structures

seq_Ilist Tinked_1list
~seq_list(),205 ~1inked_1list(),227, 248
add(elt), 207 add(elt), 231
append, 216 append, 240
clear{), 205 bubble_sort(order (*)(elt,
compare, 215 elt)), 258

contains(elt}, 218
contains_equal(elt},218
copy(seq_list&),217
current(),213
empty(), 214

equal, 215
exchange(elt, elt),211
exchange(int, int),211
finished(), 213
first(), 206

full(), 214

index(),213

insert(elt, int), 208
insert_after(elt, elt),208
insert_before(elt, elt), 208
last(),206

next(},213

nth{int), 206
operator+,216
operator+=(elt), 207
operator<L, 219
operator-=(elt),210
operator=(seq_list&},217
operator[](int), 206
position_of(elt),218
remove{elt), 209
remove(int),210
remove_at(int),209
removel(elt ),209
replace(elt, elt), 210
replacel(elt, elt}, 210
reset(),212
reverse(),219
seq_list(int), 205
seq_list(seq_list&),217
size(),214

clear(), 226, 246, 248

compare, 239

contains(elt), 242

contains_equal(elt},242

copy_elements{linked_
1ist&), 241

current(), 237

elts_in_order(link, 1ink,
order (*)(elt, elt)),257

empty (), 238

equal, 239

exchange(elt, elt), 235

exchange(int, int),235

finished{), 236

first(), 229

full(), 238,246

index(), 237

insert(elt, int),231

insert_after(elt, elt), 232

insert_after(elt, 1ink},231

insert_after_last(elt}, 23l

insert_before(elt, elt),232

insert_before_first(elt},
231

insertion_sort(order
{*)}(elt, elt)),258

lTast(},229

link_to(elt}, 228,249

1ink_to(int), 228

link_to_last(),228

link_to_prev(elt), 228

linked_Tlist(int),226

linked_1ist(1linked_T1ist&),
241

newnode(elt, 1ink),231, 245,249

next(),236

nth{int), 229

operator+, 240
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operator+=(elt), 232 binary_tree
operator<x, 243 ~binary_tree(), 280
operator-=(elt),234 binary_tree(binary_tree&),
operator=(linked_11ist&),242 297
operator[](int),229 binary_tree(elt),280
position_of(elt), 242 clear(),283
recycle(1ink),245 contains(elt),298
remove(elt),234 contains_equal(elt), 298
remove(int}, 233 copy(binary treed),296
remove_after(1ink), 233,245 current(), 288
remove_first(), 233,245 current_node( ), 288
removel(elt),233 empty (), 203
replace{elt, elt),235 equal, 295
replacel(elt, elt),235 finished(),288
reset(),236 getRootNode(), 283
reverse(),242 index(), 288
selection_sort{order maxdepth(), 294
(*)(elt, elt))}, 257 next(),288
setup_freelist(), 244,250 operator<x,300
size(),238 operator=(binary_tree&), 297
sorted(order (*)(elt, elt)), push_children(),287
257 reset(bool),287
show(ostream&, char*, int),
. 300
1ist_node size(},294
~1ist_node(),225 stack_lefts(1ink),288

getE1t(), 225
getNext(),225
1ist_node(), 225
setE1t(elt}, 225
setNext(1ink), 225
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binary_tree_node

~binary_tree_node(),279
add(elt),282
addlLeft{(elt), 281
addRight(elt), 282
binary tree_node(),279
binary_tree_node(binary_
tree_noded), 296
binary_tree_node(elt),279
contains(elt), 297
contains_equal(elt),297
duplicate(),295
equal, 294
freelist_length(),293
full(),292
getET1t ()}, 281
getlLeft(),281
getRight(),281
haslLeft(),292
hasRight(),292
isTerminal(), 292
make_freelist(),278
maxdepth(), 293
nchildren(), 293
newnode(elt), 278
operator=(binary_tree_
noded), 296
recycle(),278
removeleft(},282
removeRight(}, 282
setETt(elt), 281
setLeft(1ink}, 281
setRight(1ink}, 281
show({ostream&, char*, int,
int), 299
subtreeSize(},293

Code Index

nary_tree

clear()},304
copy(nary_tree&),310
hasNth(int}), 308
nchildren(), 309
push_children(), 307

nary_tree_node

add(elt}, 305
add{(1ink}, 305
contains(elt),311
contains_equal(elt),3ll
depth(), 308
duplicate(), 310
equal, 309
freelist length(), 308
full(), 307
getChildren(), 305
getParent(), 305
hasNth(int), 307
isTerminal(}, 307
make_freelist(),303
maxdepth(), 308
nary_tree_node(),303
nary_tree_node(elt), 304
nchildren(), 308
newnode(elt, 1ink), 303
nthChild(int), 305
recycle(),303
remove(int), 305
show(ostream&, char*, int,
int), 311
subtreeSize(),308
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graph
~graph(), 324,342
add{elt), 325,346
arc(int, int),323
clear(), 346
closure(), 332,352
contains(elt), 335,357
contains_equal(elt}, 336,357
copy{graphd&), 334,356
current(), 328,350
current_arc_from(), 330,350
current_arc_label(}, 330,351
current_arc_to()}, 330,350
degree(elt), 331,352
equal, 354
finished(), 328,349
finished_arc(), 329,350
graph(),342
graph(graph&), 334,356
graph(int),324
in_degree(elt), 331,351
index(), 329,350
index_arc(), 330,351
join(elt, elt, int), 327,347
join(glink, glink, int),347
join_nodes, 347
label(elt, elt}, 327,347
next(), 328,349
next_arc(), 329,350
node_for(elt), 345
nth(int), 325,345
operatort, 333,355
operator<L, 336,357
operator=(graph&), 334,356
operator[](int},325,345
out_degree(elt), 331,351
predecessors{elt), 326,346
remove(elt), 325,346
remove(glink}, 346
remove(int), 325
remove_at(int), 325
reset (), 328,349
reset_arc(},329,350
shortest_paths(),333

arc

499

show_arcs(ostream&), 336, 358
show_nodes(ostreamd}, 336,358
size(),352
successors(elt), 345
uccessors(elt), 326
unjoin{elt, elt),327,347
unjoin{elt, elt, int),347
unjoin{glink, glink),348
unjoin(glink, glink, int),
348

~arc(),341

arc(glink, int),341
free(},340
getLabel(),343
getNodeTo(), 343
newarc(glink, int),340
setlabel(int), 343

graph_node

arc_from{glink), 344
arc_from(glink, int),344
arc_to(glink), 344
arc_to(glink, int},344
free(),340

getE1t(), 343
getPredecessors(),344
getSuccessors(),343
graph_node(elt), 342
graph_node(dgraph_noded), 342
newnode(elt), 340
setET1t(elt), 343
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Association Structures

table

~table(), 369

add(elt, action),371
contains{elt),377
contains_equal(elt), 377
current(),373
empty(},374

equal, 375
finished(),373
full(),374

index(), 374
lookup(key&), 370
lookup_pos(key&),370
next(),373
operator+=(elt), 372
operator<<, 378
operator-=(elt),373
operator-=(key&),372
operator=(tabled), 376
operator[](key&),371
remove(elt, action),372
remove(key&, action),372
reset()},373

size(),374

subtable, 375
table(int}), 369
table(tabled)}, 376

sorted_table
add(elt),378
add(elt, action), 38l
lookup(key&), 381
Tookup_pos{(key&), 380
subtable, 382

hash_table

~hash_table(), 394
add(elt, action),395
allocated_size(),397
compare, 398
contains(elt), 399
contains_equal(elt),399
copy{hash_table&), 398
current(), 396

empty (), 397

equal, 398

expand(}, 395
finished(),396
full(),397
fullness(),397
hash_table(hash_table&), 398
hash_table(int),394
index(), 397

init(),394

lookup(key&), 395
lookup_pos{key&), 394
next(),39%6
operator+=(elt},396
operator<y, 399
operator=(hash_table&), 398
operator[](keyd),395
reset(),3%

size(),397

subtable, 397
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search_tree

~search_tree(), 405

add(elt, action),407

add_equal(link, elt, ac-
tion), 407

clear(), 410

current(),416

do_remove(1ink), 411

do_remove_both(1ink), 415

do_remove_left_only{(link),
415

do_remove_right_only{1ink),
414

do_remove_terminal(1ink),
414

empty (), 417

finished(), 416

full(),417

index(), 417

lookup(keyd), 406

lTookup_pos{key&), 406

maxdepth(), 417

next(),416

operator+=(elt), 408

operator<«, 419

operator-=(elt}, 411

operator-=(key&}, 410

operator=(search_treed), 418
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