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CHAPTER 1

Introduction
Before we delve into the meat (or tofu, if you prefer) of this book, we should be clear on 

what you will and will not find here, as well as what degree of preparation is expected  

of readers.

�The Target Audience, and Overview of Contents
This book is intended for readers who have a modest statistics background (Statistics 

101 is plenty), have some programming skill in any language (C++ with a strong bent 

toward traditional C is used in the examples here), and are interested in trading financial 

markets with a degree of mathematical rigor far beyond that of most traders. Here you 

will find a useful collection of algorithms, including sample code, that will help you 

tweak your ideas into trading systems that have above-average likelihood of profitability. 

But there are many things that you will not find in this book. We begin with an overview 

of the material included in this book.

�What’s in This Book
The following topics are covered in this book:

•	 If your system involves optimization of parameters, and most do, 

you will learn how to determine whether your optimized system has 

captured authentic market patterns or whether it has simply learned 

random noise patterns that will never again appear.

•	 You will learn how to modify linear regression in a way that makes 

it even less susceptible to overfitting than it already is and that, as a 

bonus, separates predictors into those that are valuable and those 

that are worthless. You will also learn how to modify linear regression 

to enable its use in moderately nonlinear situations.
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•	 You will discover an extremely general and powerful nonlinear 

optimization algorithm that is applicable to both predictive-model-

based trading systems and traditional algorithmic systems.

•	 All trading systems assume a degree of consistency in the market 

being traded; if the pattern on which your system is based has 

occurred regularly over recent history, we must assume that this 

same pattern will continue into at least the near future. Some trading 

systems are robust against moderate changes in market patterns, 

while other systems are rendered worthless by even tiny changes in 

market patterns. You will learn how to assess the degree to which 

your system is robust against such changes.

•	 If you have designed your own proprietary indicators, you will learn 

how to confirm that they are reasonably stationary (a critical property 

for any effective indicator) or massage them into stationarity if they 

are not. You will also learn how to compute them so as to maximize 

their information content, minimize their noise, and supply them 

to your trading system in an effective, efficient manner so as to 

maximize their utility.

•	 Most trading system developers are familiar with walkforward 

testing. But not so many are aware that ordinary walkforward 

algorithms are often insufficient for the correct validation of trading 

system candidates and can produce dangerously optimistic results 

for subtle reasons. You will learn how to embed one walkforward 

algorithm inside a second layer of walkforward analysis or perhaps 

embed a layer of cross validation inside a walkforward analysis. This 

“validation-within-validation” scenario is often not only the best way 

to test a trading system but the only truly correct way.

•	 You will learn how estimate the range of possible future profits that 

your system can be expected to produce. If you discover that your 

system has almost certain future profitability but there is a high 

probability that this profit will be small relative to the risk incurred, 

you will know that your system is not yet ready to be traded.

•	 You will learn how to estimate the probability of catastrophic 

drawdown, even when your system is operating “correctly.”

Chapter 1  Introduction
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•	 You will learn about rigorous statistical testing algorithms that are 

resistant to the occasional large wins and losses that invalidate many 

“traditional” validation algorithms.

•	 Many trading system developers prefer to use the “spaghetti-on-the-

wall” approach to trading system development. Although frequently 

scorned, this is actually a legitimate approach, as long as it is done 

intelligently. You will learn how to determine whether the “best” of 

numerous competing systems is truly worthwhile.

�What’s Not in This Book
The following topics are not covered in this book:

•	 This book is not an “Introduction to Statistics for Market Traders” 

type of book. It is assumed that the reader is already familiar with 

concepts such as mean and standard deviation, normal distribution, 

p-values from hypothesis tests, and so forth. Nothing more advanced 

than these concepts is required; the advanced statistical techniques 

presented here are built up from basic ideas that anyone who’s 

passed Statistics 101 or even a good statistics for psychology course 

can handle. But if you have no idea what a standard deviation is, you 

will find this book rough going.

•	 This is also not an “Introduction to Trading Financial Markets” book. 

It is assumed that you know the meaning of terms such as opening 

and closing a trade, long and short positions, and mean return per 

trade. If you are totally new to trading financial markets, you need to 

study background material before tackling this book.

•	 You will find little or nothing in the way of actual, proven trading 

systems here. Those are a dime a dozen and usually worth the price. 

But if you have your own idea for a trading system, you will learn how 

to implement, test, and tweak it so as to maximize its profit potential.

•	 You will find no top-secret super-duper surefire indicators in this 

book. The few indicators presented are either common sense or 

widely available in the public domain. But if you have your own ideas 

for indicators, you will learn how to maximize their utility.
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�About Trading Systems
As different testing procedures are presented in this text, they will necessarily be 

demonstrated in the context of various trading systems. Please note the following items 

of interest:

•	 I am not endorsing any of these systems as money-makers. Rather, 

I am keeping the systems as simple as possible so that the focus can 

be on their testing, not on their practical utility. This book assumes 

that the reader has his or her own ideas for trading systems; the goal 

here is to provide advanced statistical methods for tweaking and 

rigorously testing existing systems.

•	 All the trading systems used for demonstrations assume that we 

are working with day bars, but this is never a requirement. Bars can 

be any length, from a fraction of a second to months. In fact, most 

demonstrations use only the open or close of each bar, so applying 

these algorithms to trading tick data is feasible as well. Days bars are 

simply most convenient, and test data is most readily available as  

day bars.

•	 Most of the demonstration systems open and close trades on the 

close of a bar. Naturally, in real life this is difficult or impossible; a 

more fair and conservative approach is to make a trade decision 

on the close of a bar and open or close the trade at the open of the 

next bar. But that would add needless confusion to the algorithms 

shown here. Remember, our goal is to present statistical algorithms 

in the most straightforward context, keeping the spotlight on 

the statistical test. In most cases, small modifications to the 

implementation do not materially change the results of rigorous 

statistical tests.

•	 In these tests, trade costs (slippage and commissions) are 

deliberately omitted, again to keep the focus on the statistical test 

without added confusion. The supplied code and accompanying 

description make clear how trade cost can be incorporated into the 

computation if desired.

Chapter 1  Introduction
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�Market Prices and Returns
Most equity markets cover a wide range of prices, perhaps beginning their life trading at 

a few dollars a share and trading today at hundreds or thousands of dollars a share after 

split adjustment. When we compute the return of a trade, we don’t dare just subtract 

prices at the open and close of a trade. A $1 move from $1 to $2 is enormous, while a 

move from $150 to $151 is almost trivial. Thus, many people compute percent moves, 

dividing the price change by the starting price and multiplying by 100. This solves the 

scale problem, and it is intuitive. Unfortunately, it has a problem that makes it a poor 

method in many statistical analyses.

The problem with percent moves is that they are not symmetric. If we make  

10 percent on a trade and then lose 10 percent on the next trade, we are not back where 

we started. If we score a move from 100 to 110 but then lose 10 percent of 110, we are 

at 99. This might not seem serious, but if we look at it from a different direction, we 

see why it can be a major problem. Suppose we have a long trade in which the market 

moves from 100 to 110, and our next trade moves back from 110 to 100. Our net  

equity change is zero. Yet we have recorded a gain of 10 percent, followed by a loss of  

9.1 percent, for a net gain of almost 1 percent! If we are recording a string of trade 

returns for statistical analysis, these errors will add up fast, with the result that a 

completely worthless trading system can show an impressive net gain! This will 

invalidate almost any performance test.

There is a simple solution that is used by professional developers and that I will use 

throughout this book: convert all prices to the log of the price and compute trade returns 

as the difference of these logs. This solves all of the problems. For example, a trade that 

captures a market move from 10 to 11 is 2.39789–2.30258=0.09531, and a trade that 

scores a move from 100 to 110 is 4.70048–4.60517=0.09531. If a trade moves us back from 

110 to 100, we lose 0.09531 for a net gain of zero. Perfect.

A nice side benefit of this method is that smallish log price changes, times 100, are 

nearly equal to the percent change. For example, moving from 100 to 101, a 1 percent 

change, compares to 100*(4.61512–4.605)=0.995. Even the 10 percent move mentioned 

earlier maps to 9.531 percent. For this reason, we will treat returns computed from logs 

as approximate percent returns.

Chapter 1  Introduction
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�Two Types of Automated Trading Systems
Originally, all forms of automated market trading were what might be called algorithmic 

or rule-based. The system developer comes up with a set of rigorously defined rules 

that guided the opening and closing of positions. The rules might state that if some 

combination of conditions becomes true, one would open a long position and hold that 

position until some other combination of conditions becomes true. One classic chestnut 

of algorithmic trading is a moving-average crossover system. One computes short-term 

and long-term moving averages, takes a long position if the short-term MA is above 

the long-term MA, and takes a short position otherwise. Training this primitive trading 

system is performed by finding the short-term and long-term lookbacks that provide 

optimal performance on a historical dataset. Algorithmic systems, many involving 

dozens of conditions, are still in widespread use today.

In more recent times, many developers (including myself) have formed the opinion 

that model-based systems are more powerful, despite their common disadvantage that 

they frequently involve blind trust in black boxes whose inner workings are largely 

unfathomable. In model-based automated trading we compute one or more (usually 

many more) indicators that are variables that look backward in time and measure market 

characteristics. These might include trend, volatility, short-term cyclic behavior, and so 

forth. We also compute a target variable that looks into the future and describes near-

term market behavior. Targets might be things such as the size and direction of market 

movement over the next bar or few bars. A target might also be a binary flag that tells us 

whether the market first touches a predefined profit goal before touching a protective 

stop. We then train a predictive model to estimate the value of the target variable, 

given the values of the indicator variables. To trade this system, we present the trained 

model with current values of the indicators and consider the model’s prediction. If the 

prediction is strong enough (indicating confidence), we take a market position in accord 

with the predicted move.

The advantage of model-based trading over rule-based algorithmic trading is that we 

can take advantage of the many recent developments in the field of artificial intelligence, 

letting sophisticated programs running on powerful computers discover trading systems 

that are perhaps so complex or obscure that no human could possibly hope to discover 

and program in explicit rules. Of course, this comes at a high price: we often have no 

idea exactly what “rules” the model has discovered, and we must accept the model’s 

decisions on blind faith.

Chapter 1  Introduction
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Because both styles of trading system development are in widespread use today, this 

text will cater to both schools of thought. Unavoidably, there are a few statistical tests 

presented here that are applicable to only one or the other. But an attempt is always 

made to design testing procedures that can be used by practitioners in either style.

�The Agony of Believing the Computer
For many people, especially seasoned seat-of-the-pants traders, the most difficult part of 

moving toward automated trading is accepting the trade decisions of a computer when 

they conflict with their gut, not to mention their many years of successful trading. I’ll give 

one specific example from my own personal experience. I had developed on contract a 

short-term intraday trading system. My extremely thorough, rigorous statistical testing of 

the system showed unequivocally that its profits were maximized when it was operated 

by taking numerous small profits while running the risk of occasional large losses (a very 

loose protective stop). This grated on the trader responsible for calling signaled trades 

onto the floor. He constantly bombarded me with his mantra of “Cut your losses and let 

your wins run.” That’s a truism for some trading styles but not for this particular system. 

He couldn’t help himself; he kept overruling the computer’s trade decisions. The system 

would call for a winning trade to be closed, but he would keep it open, hoping for an 

even larger gain. Or the market would move against an open position, and he would 

close it out for a small loss long before the system’s stop was hit. He kept telling me how 

much money would have been lost if he had let it keep sliding instead of cutting the loss 

early. The fact that the computer simulation that ran in parallel made a lot of money, 

while his modified version made much less, had no impact on his opinion. He’d been 

a successful discretionary trader for many years, he knew how to trade, and no #$%^ 

computer was going to tell him otherwise. Our relationship never succeeded. The moral 

of the story: forget automated trading if you don’t have the guts to believe in it.

�Future Leak Is More Dangerous Than You May Think
Future leak is the illegal leakage of future knowledge into a testing procedure. It happens 

in the development and testing of a trading system when some aspect of future market 

behavior finds its way into a simulation of how a trading system will perform in real life. 

Since we will obviously not know the future when we are trading our system, this leakage 

results in optimistic performance estimates.
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More than once I have been amazed at how casually otherwise serious system 

developers take this form of cheating. I have had intelligent, educated developers 

patiently explain to me that yes, they do understand that some small degree of future 

knowledge took part in their performance simulation. But then they go to great pains 

to explain how this “unavoidable” leakage is so tiny that it is insignificant and could not 

possibly impact their results to any material degree. Little do they know. This is why a 

recurring focus of this text is methods for avoiding even the tiniest touch of future leak. 

In my early years of system development, I was often amazed at how subtle this leakage 

can be.

Just to pound the point home, Figure 1-1 shows the equity curve of a nearly random 

Win1/Lose 1 trading system with just a 1 percent winning edge. This curve, which would 

be on average flat if it were truly random (worthless), is quite respectable from just this 

tiny edge. Future leak is far deadlier than you imagine. Take it seriously.

�The Percent Wins Fallacy
There is a simple mathematical formula, essential to trading system development and 

evaluation, that seems to be difficult for many people to accept on a gut level, even if 

they understand it intellectually. See Equation 1-1.

	 ExpectedReturn=Win P Win Loss P Loss* *( ) ( )- 	 (1-1)

Figure 1-1.  Equity curve of random system with 1 percent edge
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This formula says that the expect return on a trade (the return that we would obtain 

on average, if this situation were repeated many times) equals the amount we would 

win times the probability of winning minus the amount that we would lose times the 

probability that we will lose.

It’s easy to accept that if we flip a fair coin, winning a dollar if we get heads and losing 

a dollar if we get tails, our expected return is zero; if we were to repeat the coin toss 

many times, over the long term our average return per coin toss is zero. It’s also easy to 

accept that if the coin is fair and we win two dollars but lose only one dollar, we are in an 

enviable position.

Now think about trading a market that is a true random walk; among other 

properties, the changes from one bar to the next are all independent of one another and 

have zero mean. It is impossible to develop a trading system that has anything other 

than zero expectation (ignoring transaction costs, of course). But we can easily shift the 

expected size of wins and losses, as well as their frequencies.

For example, suppose we open a long position and set a profit target 1 point above 

the entry price and set a stop loss exit 9 points below the entry. Every time we experience 

a loss, it will be painfully large, 9 times what we win. But if we execute a large number 

of such trades on our hypothetical random market, we will find that we win 9 times 

more often than we lose. We win 9/10 of the time. By Equation 1-1, our expected return 

per trade is still zero. The takeaway here is that win/loss sizes and probabilities are 

inextricably related. If someone brags about how often their trading system wins, ask 

them about the size of their wins and losses. And if they brag about how huge their wins 

are compared to their losses, ask them how often they win. Neither exists in isolation.

Chapter 1  Introduction
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CHAPTER 2

Pre-optimization Issues
�Assessing and Improving Stationarity
In essence, the stationarity of a time series (such as market price changes, indicators,  

or individual trade returns) refers to the degree to which its statistical properties  

remain constant over time. Statisticians may cringe at such a loose definition, but that 

captures the practical meaning of the term. When we use market history to create a 

(preferably) profitable trading system, we are implicitly counting on the historical 

patterns that produced backtesting profitability to remain in force for at least the near-

term future. If we are not willing to make that assumption, we might as well give up 

trading system design.

There are many aspects of this concept that are particularly relevant to automated 

trading of financial markets.

•	 Markets, and hence indicators and trade returns derived from market 

history, are inherently nonstationary. Their properties change 

constantly. The only questions are these: How bad is it? Can we deal 

with it? Can we fix things to make it better?

•	 There is no point in performing any rigorous traditional statistical 

tests for nonstationarity. Virtually any test we perform will indicate 

very statistically significant nonstationarity, so we need not bother; 

we know the answer already.

•	 Nonstationarity can take an infinite number of forms. Perhaps the 

variance is quite constant over time, while the mean wanders. Or vice 

versa. Or skewness may change. Or…
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•	 Some types of nonstationarity may be harmless to us, while others 

may be devastating to our trading system. One trading system may 

have a weakness for one type of nonstationarity, while another 

trading system may be hobbled by something different. As much as 

possible, we must consider the context when we evaluate stationarity.

•	 The best way to evaluate the ruggedness of a finished trading system 

is to use the progressive walkforward algorithm given on page 142.

But we are going to ignore that last point here. This chapter is dedicated to issues that 

we should consider before progressing too far into the development of a trading system. 

Progressive walkforward comes at the end of development, one of several final validation 

procedures.

Traditional statistical tests for nonstationarity are ruled out, so what should you 

do? You absolutely must carefully study plots of your indicators. You may be amazed 

at what you see. Their central tendency may slowly wander up and down, rendering 

predictive models useless at one or both extremes. Day-to-day wandering is normal, 

but slow wandering, or slow changes in variance, is a serious problem. If an indicator 

spends months or even years out in left field before returning to more “normal” behavior, 

a model may shut down or make false predictions for these extended periods of time. 

We must be on guard against this disastrous situation that can easily arise if we are not 

careful.

Sometimes we may not have indicators to plot. The STATN program shown in the 

next section is a valuable alternative. But it is important to understand the underlying 

problem with nonstationarity. It is extremely difficult to design an automated trading 

system that works consistently well year after year with no tweaking or even a complete 

redesign. Markets always change. The trap we can easily fall into is to design a system 

that appears to perform well in a backtest but whose encouraging performance is solely 

because of outstanding performance over a favorable segment of our backtest history. 

Thus, we must study the equity curve of our system. If it shows excellent performance for 

just a fraction of the time and mediocre performance elsewhere, we should ponder the 

situation carefully. And of course this is especially true if the excellent performance was 

some time ago and recent performance has deteriorated!

The key point is that when we develop a trading system under some market condition, 

we can expect continued good performance only as long as that market condition 

continues. Therefore, we hope that market conditions change often enough during our 

development and testing period so that all possible market conditions are represented.  

Chapter 2  Pre-optimization Issues
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And even if all conditions are represented, slow wandering may cause periodic extended 

adverse performance. Long periods of great performance, followed by long periods of 

poor performance, can be discouraging.

�The STATN Program
For those of us who crave hard numbers, something more solid than arbitrary decisions 

based on eyeballing a plot, there is a good test. I have provided a sample of this algorithm 

in the program STATN.CPP. This version reads a market history file and checks the trend 

and volatility of the market across time. You can easily modify it by adding other market 

properties such as ADX or any custom indicators that you employ.

The principle of this program is simple yet surprisingly revealing of market 

anomalies. It’s based on the idea that trading systems developed under certain market 

conditions (such as up or down trend, high or low volatility) will likely lose their 

profitability under other market conditions. In most situations we want to see these 

conditions as reflected in our indicators vary on a regular and reasonably random basis 

so that our developed system will have experienced as much as possible the full variety 

of conditions that it will encounter when put to use. Slow wandering is the essence of 

dangerous nonstationarity; market properties may remain in one state for an extended 

period and then change to a different state for another extended period, similarly 

impacting our indicators. This makes developing robust models difficult. Roughly 

speaking, stationarity equals consistency in behavior.

The program is invoked with the following command:

STATN Lookback Fractile Version Filename

Let’s break this command down:

•	 Lookback: The number of historical bars, including the current bar, 

used to compute the trend and volatility of the market.

•	 Fractile: The fractile (0–1) of trend and volatility that serves as the 

above/below threshold for gap analysis.

•	 Version: 0 for raw indicators, 1 for differenced raw indicators, >1 for 

specified raw minus extended raw. See page 14 for details.

•	 Filename: A market history file in the format YYYYMMDD Open High  

Low Close.

Chapter 2  Pre-optimization Issues



14

An example using real market data will appear on page 17. First, we explore a few 

code snippets. See STATN.CPP for the full context.

The program passes through the market history, computing a measure of trend  

(the slope of the least-squares line) and volatility (average true range). It finds the 

quantile corresponding to the specified fractile; 0.5 would be the median. For each bar, 

it decides whether the current values of trend and volatility (or their modified values, as 

described soon) are less than the quantile versus greater than or equal to the quantile. 

Every time the state changes (from above to below or from below to above) it notes how 

many bars have passed and keeps a tally. For example, if the state changes on the next 

bar, the count is one. If the state changes one bar after the next bar, the count is two, and 

so forth. Eleven bins are defined, for bar counts of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and 

greater than 512. When the program ends, it prints the bin counts, one table for the trend 

and one for the volatility.

The Version parameter needs a little more explanation, the justification for which will 

be deferred to the next section. For now, understand that if the user specifies it as 0, the 

trend and volatility indicators are used exactly as calculated. If it is 1, the current value 

of each indicator is adjusted by subtracting its value lookback bars ago, making it a classic 

oscillator. If it is greater than 1, the current value is adjusted by subtracting the value 

using a lookback of Version * Lookback, making it another sort of oscillator. These latter two 

versions require an actual lookback greater than the user-specified lookback, as shown 

in this code:

   if  (version == 0)

       full_lookback = lookback ;

   else if  (version == 1)

       full_lookback = 2 * lookback ;

   else if  (version > 1)

       full_lookback = version * lookback ;

   nind = nprices - full_lookback + 1 ;   // This many indicators

If nprices is the number of price bars, we lose full_lookback–1 of them, getting nind 

values of the indicators, as shown in the last line of the previous code.

The following code block shows computation of the (possibly modified) indicators 

for trend. That for volatility is similar. For each pass, k is the index of the current value of 

the indicator. We have to begin far enough into the indicator history to encompass the 

full lookback.
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   for (i=0 ; i<nind ; i++) {

      k = full_lookback - 1 + i ;

      if  (version == 0)

          trend[i] = find_slope ( lookback , close + k ) ;

      else if  (version == 1)

          trend[i] = find_slope ( lookback , close + k ) –

                         find_slope ( lookback , close + k - lookback ) ;

      else

          trend[i] = find_slope ( lookback , close + k ) –

                         find_slope ( full_lookback , close + k ) ;

      trend_sorted[i] = trend[i] ;

      }

Sort the values to find the user-specified quantile and then tally the counts in  

each bin.

   qsortd ( 0 , nind-1 , trend_sorted ) ;

   k = (int) (fractile * (nind+1)) - 1 ;

   if  (k < 0)

      k = 0 ;

   trend_quantile = trend_sorted[k] ;

   gap_analyze ( nind , trend , trend_quantile , ngaps , gap_size , gap_count ) ;

Prior to calling gap_analyze(), we must do some preparation by providing it with the 

boundaries for the gap sizes. Feel free to change them if you want. The analysis code 

appears on the next page.

#define NGAPS 11       /* Number of  gaps in analysis */

   ngaps = NGAPS ;

   k = 1 ;

   for (i=0 ; i<ngaps-1 ; i++) {

      gap_size[i] = k ;

      k *= 2 ;

      }
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This routine just keeps a flag, above_below, which is True (1) if the current value 

is at or above the threshold, and False (0) if below. For each pass through the loop, if 

the indicator is still on the same side of the threshold, the counter is incremented. If it 

switches sides, the appropriate bin is incremented, and the counter is reset. Reaching 

the end of the array is tantamount to flipping sides, so the last series is counted.

void gap_analyze (

   int n ,

   double *x ,

   double thresh ,

   int ngaps ,

   int *gap_size ,

   int *gap_count

   )

{

   int i, j, above_below, new_above_below, count ;

   for (i=0 ; i<ngaps ; i++)

      gap_count[i] = 0 ;

   count = 1 ;

   above_below = (x[0] >= thresh)  ?  1 : 0 ;

   for (i=1 ; i<=n ; i++) {

      if  (i == n) // Passing end of  array counts as a change

         new_above_below = 1 - above_below ;

      else

         new_above_below = (x[i] >= thresh)  ?  1 : 0 ;

      if  (new_above_below == above_below)

         ++count ;

      else {

         for (j=0 ; j<ngaps-1 ; j++) {

            if  (count <= gap_size[j])

               break ;

            }
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         ++gap_count[j] ;

         count = 1 ;

         above_below = new_above_below ;

         }

      }

}

�Improving Location Stationarity by Oscillating
A simple yet usually effective way to improve the stationarity of an indicator, at least as 

far as its central tendency is concerned, is to compute its value relative to some related 

“basis” value. The most common and usually most effective method is to subtract a 

lagged value, with the lag often (though not necessarily) being the lookback of the 

indicator. For example, we might compute the trend of the most recent 20 prices and 

subtract from this the value of this indicator 20 bars ago.

A similar but far from identical method is to compute the indicator at the current 

time but for two different lookbacks, one short and one long. Subtract the long-term 

indicator from the short-term indicator to get a more stationary modified indicator.

Both of these methods do involve a significant trade-off. It may be that the actual 

value of the indicator is what carries the important information. The two modifications 

just described discard the actual value in favor of a relative value. In my experience, 

this latter value usually carries more predictive information than the actual value, and it 

certainly has better stationarity in nearly all situations. But this is not universal, and this 

trade-off must be kept in mind.

If this trade-off is a concern, bear in mind that the first method, finding the 

difference between the current value and the lagged value of an indicator, is the most 

“powerful” in the sense that it usually induces the most stationarity while also discarding 

the most information about the true current value. The second method is more of a 

compromise. Moreover, by adjusting the long-term lookback, one can exert a great 

deal of control over that trade-off. Increasing the long-term lookback results in greater 

preservation of information about the current value, at the cost of less improvement in 

stationarity.

On the next page we see two tables produced by the STATN program with a lookback 

of 100 and a fractile of 0.5 (the median) for the S&P 100 index OEX. The top table is for 
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trend, and the bottom is volatility. The first column is the raw indicator; the second is 

Version=1, the lagged difference; and the third is Version=3, giving a long-term lookback of 

300 bars.

Trend with Lookback=100, Fractile=0.5

 Gap  Version=0  Version=1  Version=3

   1      3          1          0

   2      3          1          0

   4      2          2          2

   8      5          2          1

  16      4          3          4

  32     14          2         12

  64     22         14         25

 128     29         54         33

 256     18         15         21

 512      3          1          1

>512      0          0          0

Volatility with Lookback=100, Fractile=0.5

 Gap  Version=0  Version=1   Version=3

   1     13         41          19

   2      6         13           6

   4      2          9          13

   8      2          8           6

  16      4          9           4

  32      2         10          10

  64      3         12           8

 128      5         25          10

 256      9         23          18

 512      2          5           9

>512      6          0           1

In this Trend table, we see that the raw indicator has three long time periods in which 

the indicator remains on the same side of its median. These periods are greater than 256 

consecutive bars, perhaps as long as 512 bars, over two years! The two modified versions 

have only one such period.
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The situation is even more profound for volatility, with the raw indicator having six 

time periods greater than 512 bars with the volatility on the same side of its median. 

Modification greatly improves this situation, although with significant deterioration at 

the next lower level. Volatility generally has extreme nonstationarity.

�Extreme Stationarity Induction
The two methods just described induce stationarity in only the central tendency of an 

indicator. This is important, arguably the most important quality of stationarity. If an 

indicator slowly wanders, staying at high values for an extended period of time and then 

moving to low values for long periods of time, this indicator will likely have impaired 

utility in a trading system. Systems based on such indicators will have a strong tendency 

to lose profitability, or even stop trading, for long periods of time. Of course, trade 

stoppage can be useful in some situations; if you have several complementary systems, 

it’s wonderful if each alternates between trading profitably and not trading at all. 

Unfortunately, in real life such systems are very much the exception, not the rule.

But there are an infinite number of ways in which an indicator can be nonstationary. 

Central tendency (the mean) is usually the most important, and the second-most 

important is usually variance. If an indicator has little variation for a long period of time 

and then has large variation over a subsequent long period of time, this indicator will be 

impaired.

There is an easy way to induce stationarity in the mean, the variance, or both to an 

extreme but controllable degree. Simply look back at a moving window of recent values 

of the indicator and compute the mean (if the indicator is well behaved) or the median 

(if it has occasional extreme values) over this window. Subtract this from the current 

value to induce stationarity in the central tendency. If the window is short, the effect will 

be pronounced, enough to overcome nearly any degree of nonstationarity. Similarly, you 

can compute the standard deviation (if the indicator is well behaved) or the interquartile 

range (if wild values happen) over the moving window. Divide the (possible centered) 

current value by this quantity to induce stationarity in the variance.

No examples of this method are provided because it is a straightforward 

computation. Just remember that a long window will preserve a lot of information 

about the actual value of the indicator while providing little nonstationarity reduction. 

Conversely, a short window will destroy nearly all information about the actual value, 

making everything relative to recent history, thereby inducing tremendous stationarity.
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�Measuring Indicator Information with Entropy
Decades ago, Claude Shannon of Bell Labs developed a rigorous and extremely powerful 

approach to quantifying the amount of information that can be communicated by a 

message. This is relevant to trading system development, because indicators computed 

from recent market history can be thought of as messages from the market that convey 

information about the current and possible future state of the market. If we can quantify 

the average information in an indicator, we can get an idea of the potential value of that 

indicator. Even better, we can modify the indicator in ways that increase its information 

content. And not coincidentally, it turns out that these information-increasing 

modifications are exactly the same sort of modifications that are well known to improve 

the performance of predictive models. This is a worthy area of study.

We will take a superficial, intuitive approach to the topic of quantifying average 

information in an indicator. For a more detailed yet still accessible exploration of the 

topic, see either of my books Data Mining Algorithms in C++ or Assessing and Improving 

Prediction and Classification.

Suppose a piece of information needs to be conveyed, and this information is the 

answer to a multiple-choice question. Perhaps it is a simple binary choice, such as “the 

market is in an upward trending state” versus “the market is in a downward trending 

state.” Perhaps it is a bit more detailed, such as a four-possibility situation: “the market is 

in a strongly upward/weakly upward/weakly downward/strongly downward” state. Now 

add the restriction that the message must be binary, a string of one or more ones and 

zeros. Clearly, the answer to the first question can be given as a single binary bit, while 

the answer to the second question will require two bits to cover the four possible market 

states (00, 01, 10, 11). In general, if there are K possible answers, then we will need 

log2(K) bits in the message to convey the correct answer.

A good way to quantify the value of a message is the number of bits of information 

that it conveys. A slightly less clear but more useful way of assigning a value to a message 

is the number of bits of uncertainty that are removed by receipt of the message. Suppose 

you enter a lottery that has a total of 1,024 tickets, one of which is yours. The identity of 

the winner can be encoded in log2(1024)=10 bits. Before you receive any message, you 

have 10 bits of uncertainty about the identity of the winner. Equivalently, each entry has 

a 1/1024 chance of being the winner.

A message is received that answers a simple question: you did or did not win the 

lottery. Let’s compute the value of each of these two possible answers. If the answer 

is that you won the lottery, an event with probability 1/1024 has been resolved, giving 
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that particular message a value of log2(1024)=–log2(1/1024)=10 bits. If the answer is 

that you did not win, an event with probability 1023/1024 has been resolved, giving that 

particular message a value of –log2(1023/1024)=0.0014 bits.

Most people (and computers) do not work with logs in base 2. Rather, they use natural 

logarithms. When this is done, the unit of information is the nat rather than the bit. So, in 

the example under discussion, the value of a You won answer is –log(1/1024)=6.93 nats, 

and the value of the disappointing answer is –log(1023/1024)=0.00098 nats.

We just computed the value of each individual answer. But we are also interested  

in the expected value of the message. Recall that the expected value of a discrete  

random variable is the sum of the products of each individual value times the probability 

of that value. So, the expected value of the message is the probability of a You won 

answer times its value, plus the probability of a You did not win answer times its value. 

This is 1/1024 * –log(1/1024) + 1023/1024 * –log(1023/1024) = 0.0077 nats. This expected 

value is called the entropy of the message and is symbolized as H.

We can be more rigorous. Let χ be a set that enumerates every possible answer in a 

message stream X. Thus, χ may be {Large up trend, Small up trend, Small down trend, 

Large down trend}, for example. When we observe a value of X, we call it x, which by 

definition is always a member of χ. This is written as x ∈ χ. Let p(x) be the probability that 

x is observed. Then the entropy of X is given by Equation 2-1. In this equation, 0*log(0) is 

defined to be zero.
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Î
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We state without proof that the entropy (average information content) of a message 

stream X is maximized when every possible answer (value of x) has equal probability, 

and this maximum entropy is log(K), where K is the number of possible values of x. 

Thus, we will be most interested in the value of H(X)/log(K) because this number will 

range from zero (the message stream conveys no information at all) to one (the message 

stream conveys the maximum possible amount of information). This ratio is called the 

relative entropy or the proportional entropy.

At last we can relate all this (highly abbreviated and simplified) theory to automated 

market trading. What we want to do is screen any indicators used in our trading system 

for their relative entropy. If the relative entropy turns out to be small, we should 

consider computing the indicator differently, perhaps taking an approach as simple as 

applying a nonlinear transformation to increase the relative entropy. In my own work,  
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I like for the relative entropy to be at least 0.5, and preferably more, although this 

threshold is highly arbitrary.

There are several caveats to keep in mind. First, understand that entropy is a 

measure of information content, but we don’t know whether this information is relevant 

to the task at hand. An indicator may do a phenomenal job at predicting whether the 

market volatility will explode in the upcoming week. But if our goal is to determine 

whether we are to take a long position versus a short position, this information-rich 

indicator may be worthless for our project. Nevertheless, entropy can be thought of as an 

upper bound on information content, so if the entropy is small, our indicator is likely to 

have little value.

Second, it can happen that whatever modification we do to increase the entropy of 

our indicator actually impedes its performance. It may be that our original idea does a 

great job as an indicator, but when we apply a seemingly innocuous change that greatly 

increases its entropy, its utility in our trading system drops. This can happen. But please 

understand that these two situations, especially the second, are unusual exceptions 

to the rule. In the vast majority of situations, increasing the entropy of an indicator 

significantly improves its performance.

�Computing the Relative Entropy of an Indicator
The easiest and likely best way to compute the relative entropy of an indicator from its 

historical values is to divide its entire range into bins that partition the range with equal 

spacing, compute the proportion of cases that fall into each bin, and use Equation 2-1 

to find the entropy. Dividing this quantity by the log of the number of bins gives the 

relative entropy. Note that partitioning the range into bins that contain equal numbers 

of cases would be pointless, as this would always give a relative entropy of one. Rather, 

the bins must be defined by equal numerical fractions of the total range. Here is a simple 

subroutine to do this:

double entropy (

   int n ,           // Number of  data values

   double *x ,   // They are here

   int nbins ,     // Number of  bins, at least 2

   int *count     // Work area nbins long

   )
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{

   int i, k ;

   double minval, maxval, factor, p, sum ;

   minval = maxval = x[0] ;

   for (i=1 ; i<n ; i++) {

      if  (x[i] < minval)

         minval = x[i] ;

      if  (x[i] > maxval)

         maxval = x[i] ;

      }

   factor = (nbins - 1.e-10) / (maxval - minval + 1.e-60) ;

   for (i=0 ; i<nbins ; i++)

      count[i] = 0 ;

   for (i=0 ; i<n ; i++) {        // Count the number of  cases in each bin

      k = (int) (factor * (x[i] - minval)) ;

      ++count[k] ;

      }

   sum = 0.0 ;

   for (i=0 ; i<nbins ; i++) {  // Sum Equation 2-1

      if  (count[i]) {

         p = (double) count[i] / n ;

         sum += p * log ( p ) ;

         }

      }

   return -sum / log ( (double) nbins ) ;

}

In the previous code, we have to do two tiny twiddles with the computation of the 

factor that maps data values to bins. The numerator is trivially reduced to make sure 

that no mapping is done to a nonexistent “bin” after the last bin. The denominator is 

modified to ensure that we do not divide by zero in the pathological situation of all data 

values being equal. The final loop just sums Equation 2-1, and we conclude by dividing 

the entropy by its maximum possible value to get the relative entropy.
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�Entropy Impacts Predictive Model Quality
The usefulness of entropy as a measure of an indicator’s information content is not just 

theoretical fluff. Coincidentally or not, entropy correlates highly with our ability to train 

an effective predictive model. This is because high entropy correlates with roughly equal 

distribution of data values across the indicator’s range, and in most situations models 

train most effectively when their indicators have such a distribution.

The most common problematic low-entropy situation is when there are one or 

more extreme outliers. Many model-training algorithms will see an outlier as saying 

something important and focus a lot of attention on that outlier. This reduces the 

attention paid to the mass of “normal” cases. Figure 2-1 illustrates a somewhat simplistic 

but often realistic example of the situation. This is a linear classifier dealing with two 

classes in what should be a problem of toy-like simplicity. The dotted line shows a linear 

boundary that achieves perfect classification. But that one case at the bottom left, which 

is an outlier for the X2 indicator, drags the boundary line in its direction, to the severe 

detriment of classification quality. And although this particular example features a linear 

classifier, even a nonlinear classifier, which can have a curved boundary, will often suffer 

the same degradation.

Figure 2-1.  Outliers can degrade performance
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It doesn’t take outliers to produce performance degradation because of low 

entropy. Suppose we have a situation in which some exogenous condition, completely 

unrelated to the prediction/classification, causes a large fixed offset in an otherwise 

excellent predictor for about half of the cases. Perhaps this variable has values around 

1.0 for half the cases, and there is excellent performance among these cases. Also 

suppose it has values around 100.0 for the other half of the cases, and it also has 

excellent power within this group. Not many models would be able to handle this 

extremely low-entropy situation. They would see the separation between the cases 

clustering around 1.0 and those clustering around 100.0 as the dominant factor and 

focus on using this cluster membership to attempt prediction/classification. The result 

would not be pretty.

�Improving the Entropy of an Indicator
If you test an indicator and discover that it has dangerously small entropy (less than 0.5 is 

suspicious; less than 0.1 is serious and should be investigated and probably addressed), 

then your first step should be to reconsider how your idea for an indicator is being 

implemented. It may be that a simple revision to your computation algorithm will 

resolve the situation without compromising your idea. Here are some other thoughts to 

consider:

•	 If your indicator computation ever divides by a value that can 

become tiny, you are on thin ice.

•	 Your revision should be monotonically related to your original idea. 

In other words, if pre-revision Case A is less than pre-revision Case 

B, then this same ordering should remain after revision. Among 

other desirable properties, this ensures that if some threshold 

separates cases on a pre-revision basis, there exists a threshold that 

will perform the same separation post-revision. This is an important 

information-preserving quality.

•	 Truncation (remapping extreme values to a single limit value) is a 

poor way to solve the outlier problem. Among other things, it violates 

the prior principle just listed!
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•	 If you have just a few rare outliers, monotonic tail-only modification 

is a good solution that greatly improves entropy yet has relatively 

small effect on indicator values. Pick a moderate percentile,  

perhaps something in the range of 1–10 percent for low outliers 

and 90–99 percent for high outliers. Cases on the “good” side of this 

threshold remain unchanged. Cases on the “outlier” side of this 

threshold are subjected to an extreme monotonic compression, such 

as logarithmic. This is discussed in detail on page 29.

•	 If only the right tail is heavy or has a positive skew (unusually 

large cases only), a square root or cube root transform will handle 

moderate skew or outliers, while a log transform should handle 

severe situations.

•	 If both tails are heavy, consider a cube root transform.

•	 If both tails are extremely heavy or have severe outliers, the 

hyperbolic tangent function (Equation 2-2 and Figure 2-2) or the 

logistic function (Equation 2-3 and Figure 2-3) can provide excellent 

results, provided that the indicator values are appropriately prescaled 

before applying the function. If the logistic function is used, it is good 

to subtract 0.5 after transformation to center it at zero, something 

appreciated by many training algorithms.
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•	 If there is a theoretical reason why your indicator should have a 

distribution resembling a common statistical distribution, then 

transforming by applying the cumulative distribution function of that 

distribution can be effective. For example, many indicators (i.e., an 

oscillator that’s the difference between two moving averages) have 

a nice bell curve shape that is almost normal except for modestly 

heavy tails, which are not severe but bad enough to be troublesome. 

Applying a normal cdf (normal_cdf() in STATS.CPP) will do an excellent 

job. Other indicators may be the ratio of two variance-like quantities, 

in which case an F CDF (F_CDF() in STATS.CPP) is ideal.

Figure 2-2.  TANH function

Figure 2-3.  Logistic function
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•	 Sometimes your indicator’s distribution may be problematic in a way 

that is not straightforward. Consider, for example, the clumping due to 

an exogenous condition described on page 25, in which the indicator 

has a nice compact distribution, with no outliers at all, but the data is 

clustered into several small clumps. Or it may have this problem plus 

a heavy tail, or two heavy tails. When this happens, there is a brute-

force approach that is clumsy but remarkably effective and general, 

especially if you have a large representative sample of indicator values. 

Sort your sample in ascending order and optionally save this for 

future use. Then, to transform a value, use a binary search to bound 

the value in the sorted array. The transformed value is the number of 

sorted elements less than or equal to the pre- transform value. This 

produces a transformed indicator that has a relative entropy very close 

to perfection. It works best when the sample is large, is thoroughly 

representative, and has few or no ties. As a nice final touch, divide this 

count by the total number of elements and subtract 0.5. This gives a 

value that ranges from –0.5 to 0.5, a range that is especially friendly to 

many training procedures.

•	 Many techniques just presented strive to produce an indicator 

distribution that is as uniform over its range as possible. But sometimes 

this is not ideal, despite it having maximum entropy. This happens when 

extreme values of the indicator do have special significance but such 

extreme values impede or even prevent correct training of a predictive 

model. In such cases all you want to do is tame the tails without 

eliminating them. If you have employed a transformation that produces 

a distribution that is nearly uniform but you want extreme original values 

to map to values that are extreme enough to be outstanding yet not so 

extreme as to be problematic, there is a simple fix: transform to a normal 

distribution. This distribution has a bell curve shape in which most 

cases cluster in the interior, but there are modest extremes in both tails. 

To do so, first apply whatever transform maps the indicator to a nearly 

uniform distribution. Then transform a second time, using the inverse 

normal cumulative distribution function. This can be done by calling the 

function inverse_normal_cdf() in STATS.CPP. The resulting indicator will 

still have extremes but not enough to degrade model training.
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�Monotonic Tail-Only Cleaning
Sometimes you are generally happy with your indicator’s distribution, except for the 

fact that it occasionally has a wild outlier that needs taming to produce decent entropy. 

Or perhaps the target in a predictive-model trading system has occasional extremes 

that hobble your training algorithm, but you don’t want to meddle too much with target 

values for fear of excessively distorting performance figures. Such situations call for a 

transformation that impacts only the most extreme values while leaving the majority of 

cases untouched. Here is a great way to handle this.

This transformation takes place in two steps. The first step identifies the data values 

that mark the low and high tails, and the second step modifies the tails (only). The 

version shown here processes both tails and does so in identical manners. Readers 

should have no trouble modifying it to process just one tail or to process the lower and 

upper tails differently.

The subroutine is called as shown next. The user provides a work vector because we 

have to sort the raw data to locate the tails. The caller specifies the fraction (generally 

small, perhaps 0.01 to 0.1) of each tail that will be compressed monotonically, preserving 

order relationships while strongly pulling in outliers. The variable cover is the fraction of 

cases that remain unchanged. We copy the raw data to a work area and sort it.

void clean_tails (

   int n ,                      // Number of  cases

   double *raw ,           // They are here

   double *work ,         // Work area n long

   double tail_frac       // Fraction of  each tail to be cleaned (0-0.5)

   )

{

   int i, istart, istop, best_start, best_stop ;

   double cover, range, best, limit, scale, minval, maxval ;

   cover = 1.0 - 2.0 * tail_frac ;  // Internal fraction preserved

   for (i=0 ; i<n ; i++)

      work[i] = raw[i] ;

   qsortd ( 0 , n-1 , work ) ; // Sort data ascending
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A good way to identify the tails is to examine every possible contiguous set of cases in 

the sorted array that has the specified coverage (contains the required number of “interior” 

cases). Find the set whose range (maximum value minus minimum value) is smallest. 

Then it is reasonable to label those cases that lie outside this minimal-range interior set 

to be the tails. This interior set will be identified as running from istart through istop.

   istart = 0 ;                                           // Start search at the beginning

   istop = (int) (cover * (n+1)) - 1 ;          // This gives desired coverage

   if  (istop >= n)                                      // Happens if  careless user has tail=0

      istop = n - 1 ;

We run this interior set through every possible position, from leftmost to rightmost. 

For each trial set of endpoints, find the range and keep track of which position has the 

narrowest range.

   best = 1.e60 ;                                      // Will be minimum span

   best_start = best_stop = 0 ;               // Not needed; shuts up LINT

   while (istop < n) {                                // Test every possible position

      range = work[istop] - work[istart] ;   // This is what we minimize

      if  (range < best) {

         best = range ;

         best_start = istart ;

         best_stop = istop ;

         }

      ++istart ;

      ++istop ;

      }

At this point we have located the narrowest interior set. Get its lower and upper 

values and insure against a careless caller.

   minval = work[best_start] ;      // Value at start of  interior interval

   maxval = work[best_stop] ;      // And end

   if  (maxval <= minval) {             // Rare pathological situation

      maxval *= 1.0 + 1.e-10 ;

      minval *= 1.0 - 1.e-10 ;

      }

Chapter 2  Pre-optimization Issues



31

The final step is to modify the tails (and only the tails). We keep the process immune 

to changes in scaling of the data by employing maxval–minval as a scaling constant. The 

limit variable controls the degree to which the transformed tail values can lie outside 

the interior range. Employing the factor of (1.0–cover) is my own heuristic that seems 

reasonable to me. Feel free to disagree and change it if you want.

Readers should examine this code and confirm that limit does indeed define the 

departure limit of the transformed value, that values at the minimum and maximum (and in 

between!) remain unchanged, and that the transformation is monotonic (order preserving).

   limit = (maxval - minval) * (1.0 - cover) ;

   scale = -1.0 / (maxval - minval) ;

   for (i=0 ; i<n ; i++) {

      if  (raw[i] < minval)                  // Left tail

         raw[i] = minval - limit * (1.0 - exp ( scale * (minval - raw[i]) ) ) ;

      else if  (raw[i] > maxval)         // Right tail

         raw[i] = maxval + limit * (1.0 - exp ( scale * (raw[i] - maxval) ) ) ;

      }

}

�The ENTROPY Program

The file ENTROPY.CPP contains a complete program that demonstrates the computation 

of entropy for a variety of indicators computed from a market price history file. Two 

of these indicators are the Trend and Volatility indicators from the STATN program 

described on page 13. Also, the Version parameter here is the same as in the STATN 

program, although it is not as interesting in the context of entropy as in stationarity.

The program is invoked with the following command:

ENTROPY Lookback Nbins Version Filename

Let’s break this command down:

•	 Lookback: The number of historical bars, including the current bar, 

used to compute the indicators from the market price history.

•	 Nbins: The number of bins used to compute entropy. For a market 

history of at least several thousand records, around 20 or so bins is 

good, although in practice the number is not overly critical. If varying 

the number of bins by a small amount produces large changes 
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in computed entropy, there’s something fishy about the data or 

whatever custom indicator has been designed by the reader. Plot a 

histogram!

•	 Version: 0 for raw indicators, 1 for differenced raw indicators, >1 for 

specified raw minus extended raw. See page 14 for details.

•	 Filename: A market history file in the format YYYYMMDD Open High Low 

Close.

The following indicators are computed, and their minimum, maximum, median, and 

relative entropy are printed.

•	 Trend is the (log) price change per bar as defined by a  

least-squares fit.

•	 Volatility is the average true range computed according to the 

standard definition.

•	 Expansion is a deliberately poorly designed indicator that 

demonstrates how not to define an indicator and how low entropy 

can reveal the problem. The range of closing prices (maximum close 

minus minimum close) is computed for the most recent prices 

covering half of the specified lookback distance. Then the same 

quantity is computed, but at a lag of half the lookback. The Expansion 

indicator is the recent range divided by the older range, with the 

denominator increased slightly to prevent division by zero. This 

indicator reveals whether a crude measure of volatility (the price 

range) is increasing, decreasing, or remaining about the same.

•	 RawJump measures how the most recent closing price compares to 

the most recent exponentially smoothed closing price. This quantity 

reveals whether the market has taken a sudden jump up or down or 

remained about the same. It has occasional outliers on both tails and 

hence has poor entropy.

•	 CleanedJump is RawJump after the monotonic tail smoothing 

described on page 29 has been applied to the outer 5 percent of  

each tail.
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When the ENTROPY program is run on the S&P 500 market history using a lookback 

of 20 bars and 20 bins for entropy, the relative entropy values in the first column are 

computed. When the lookback is dropped to seven bars, we get the results shown in the 

second column.

Trend 0.580 0.483

Volatility 0.639 0.559

Expansion 0.461 0.000

RawJump 0.484 0.395

CleanedJump 0.958 0.952

Especially for the shorter lookback, the Trend and Volatility indicators have 

marginally acceptable relative entropy. They could use a little tweaking; something 

gentle would likely do. The Expansion indicator, deliberately poorly designed by using an 

unstable ratio, becomes worthless at a lookback of seven bars. And take special note of 

the fact that the relative entropy of the RawJump indicator goes from poor to excellent by 

nothing more than cleaning the outer 5 percent tails, touching nothing else.
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CHAPTER 3

Optimization Issues
�Regularizing a Linear Model
If I could leave readers of this book with only one thought, it would be this: the strength 

of your indicators is vastly more important than the strength of the predictive model that 

uses them to signal trades. Some of the best, most stable and profitable trading systems 

I’ve seen over the years use a simple linear or nearly linear model with high-quality 

indicators as inputs. I’ve also seen far too many people feed marginal indicators to 

some modern, highly sophisticated nonlinear model in the vain hope that the model 

will miraculously overcome the garbage-in, garbage-out rule. It doesn’t happen. When 

I am developing a new trading system, I turn to a linear model first and advance to a 

nonlinear model only if I see a clear advantage.

There are many advantages to using a linear model for a predictive-model-based 

trading system, as opposed to a complex nonlinear model.

•	 Linear models are less likely, often much less likely to overfit the 

training data. As a result, training bias is minimized. This subject is 

treated in more detail in the section that begins on page 121.

•	 Linear models are easier to understand than many or most nonlinear 

models. Understanding how indicator values relate to trade decisions 

can be an extremely valuable property of prediction models.

•	 Linear models are usually faster to train than nonlinear models. In 

Chapter 7 we will explore powerful testing algorithms that require 

frequent retraining, so fast training is a major advantage.
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•	 It is easy to convert a linear model to a nonlinear model in a way 

that does not seriously damage the properties just listed. This will be 

discussed on page 67.

•	 With only a moderate increase in algorithmic complexity, it is easy to 

penalize linear models for excessive complexity/power, an important 

and often neglected part of correct training called regularization.

�Overview of the Regularized Model
As will be discussed in detail in the section that begins on page 121, a common and 

serious problem in the design and training of predictive models arises when the 

model mistakenly conflates random noise with authentic, repeatable patterns. This 

is called overfitting. Because by definition noise does not repeat, an overfit model will 

underperform when it is put to use.

Ordinary linear models are less likely to overfit than most nonlinear models, 

especially those that are extremely complex and powerful. But even ordinary linear 

models can overfit the training data, usually because too many predictors are employed. 

There are at least two common and moderately effective ways to handle the problem of 

overfitting because of an excessive number of predictors.

•	 Reduce the number of predictors: The most common method for 

doing this is forward stepwise selection. Select the single most 

effective predictor. Then select the one predictor that adds the most 

predictive power, given the presence of the first predictor. Then select 

a third, and so forth. A serious problem with this approach is that 

finding that first solo predictor can be difficult to do well. In most 

applications, it is the interaction of several predictors that provides 

the power; no single predictor does well. In fact, it may be that A and B  

together do a fabulous job while either alone is worthless. But if C 

happens to do a modest job, C may be picked first, with the result 

that neither A nor B ever enter the competition, and this excellent 

combination is lost. There are other often superior variations, such as 

reverse selection or subset retention. These are discussed in detail in 

my book Data Mining Algorithms in C++. However, each method has 

its own problems.
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•	 Shrink the coefficients in the linear regression equation toward zero, 

away from their “optimal” least-squares values. This can be extremely 

useful because it lets us keep all relevant predictors and their joint 

relationship information, while reducing their ability to learn random 

noise along with more prominent authentic patterns. But this is not a 

trivial undertaking.

The goal of effective model design and training, linear or nonlinear, is to perform 

one or (usually) both of these two fixes. There are numerous ways of doing this, and 

most of them involve imposing a penalty on the complexity of the model, a process 

called regularization. What distinguishes the various approaches are the definition of 

complexity and the nature of the associated penalty. The method shown here, when 

applied to linear models, is particularly powerful because it can do either or both of the 

fixes at the user’s discretion, and it does so in a way that is easy to understand and fast to 

train. Moreover, there exists a simple cross-validation scheme that lets us optimize the 

complexity-reduction hyperparameter. It’s truly beautiful.

First we must lay out some notation. Without loss of generality, all subsequent 

developments will assume that all predictors x have been standardized to have zero mean 

and unit variance. This tremendously simplifies the relevant equations as well as the 

associated computer code. Trivial algebraic manipulation can recover the coefficients 

for the raw variables if they are needed.

N  - The number of cases.

K  - The number of predictor variables.

xij - The value of predictor j for case i.

xi  - �The predictor vector (K long) for case i. This is a column 

vector, and it is a convenient notation for representing the set 

of xij for all j.

yi  - The target variable for case i.

β  - �The K coefficients in the linear model expressed in  

Equation 3-1. This is a column vector.

β0 - �The scalar constant in the linear model expressed in  

Equation 3-1.
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α   - �A constant ranging from 0 to 1 that controls the type of 

regularization.

λ  - �A non-negative constant that controls the degree of 

regularization.

The basic linear model says that the expected value of the target variable is equal to a 

weighted combination of the predictors, plus a constant. This is shown in vector form in 

Equation 3-1.

	 ŷ x= +b b0
T 	 (3-1)

We’ve already assumed that the predictors have been standardized to have zero 

mean and unit variance. When this is the case, β0 equals the mean of the target. 

(Derivation of this easy result is shown in many standard statistics texts.) We can gain 

even more simplicity in development and programming if we assume that the target 

variable has also been standardized. We thereby know that β0 = 0, so it can be ignored in 

all subsequent work. In this case, we are predicting the standardized value of the target. 

To get the predicted value of the raw target, just unstandardize: multiply by the standard 

deviation and add the mean. And even with this additional assumption, the coefficients 

and β0 for all raw values are easily obtained with basic algebra.

The traditional way to find optimal values for the beta weights is to compute those 

values that minimize the mean squared error, the mean squared difference between 

each predicted value ŷi, and the true target value yi. But in our regularized version, 

we add a penalty term to the error, with the penalty being a function of the set of beta 

weights. This is shown in Equation 3-2. In this equation, the multiplier of 2 could be 

absorbed into either λ or Pα(), but it is shown this way to clarify some intermediate 

derivations that we will not present here, as our focus will be on the equations essential 

to programming the model. For full details, see the excellent paper “Regularization 

Paths for Generalized Linear Models via Coordinate Descent” by Friedman, Hastie, and 

Tibshirani (Journal of Statistical Software, Jan 2010). Note that λ controls the impact of 

the penalty term, and if λ = 0, we have the ordinary least squares solution. The subscript 

of α is applied to the penalty function P to clarify the fact that it controls the nature of 

the penalty. Also note that Equation 3-2 is double the error in that paper, which has no 

practical consequences.
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The penalty function Pα is a weighted sum of the two-norm (sum of squares) and 

the one-norm (sum of absolute values) of the weight vector, with the relative weighting 

determined by the α parameter. This is shown in Equation 3-3.
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The value of α, which can range from zero to one, has a profound effect on the nature 

of the penalty function. The two extreme values have common names that are well 

known to many developers. When α = 0, we have ridge regression, and when α = 1, we 

have the lasso. The difference between these two extreme models is best illustrated by 

considering what happens when there are sets of highly correlated predictors present. 

Ridge regression will tend to assign approximately equal weights to all predictors in a 

correlated set, drawing roughly equal contributions from all of them. In fact, if there is a 

set of m perfectly correlated (identical after normalization) predictors, ridge regression 

will assign a beta weight to each that is equal to 1/m times the weight that would have 

been assigned to one of them in the absence of the others.

The lasso (α = 1) responds in the opposite way to sets of highly correlated variables. 

Instead of assigning small, similar weights to all of them, it will tend to pick the one that 

is most useful to the model, assign a relatively large weight to it, and assign a weight of 

zero to the other members of the correlated set, essentially removing them from the 

model.

One potential problem with α = 1 is that if there happens to be two or more 

predictors that are perfectly correlated, the lasso loses its mind trying to figure out which 

one is best, as they are all equally useful. The training algorithm becomes numerically 

unstable. For this reason, unless you are positive that there are no such degeneracies in 

the data, if you want to use a lasso model, you should set α to a value that is very close 

to one but not quite there. This model will be nearly identical to a true lasso but will not 

suffer instability from perfect or near perfect correlation.

In most financial trading development in which there are a large number of 

predictors thrown at the model in a “spaghetti-on-the-wall” approach, it would usually 

be best to set α to a value between zero and one to be in the best of all worlds. For any 

fixed λ, the number of zero coefficients (variables excluded from the model) increases 

monotonically as α goes from zero to one. All variables are included when α = 0, and 

then they tend to drop out (their beta weights go to zero) one by one for larger values of α. 

In this way, the developer can set the value of α to favor a desired degree of sparsity.
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There are three things that readers should remember in comparing the model 

described here to ordinary linear regression:

•	 When we penalize the model this way, the solution we get is no 

longer a least-squares solution. The computed beta weights will 

produce a mean squared error that exceeds that from ordinary 

linear regression. In most practical applications, this is a good 

thing because it produces better generalization. That’s the whole 

point of this approach! However, on the surface this may seem 

counterintuitive, as if we are deliberately crippling the model. But 

that’s exactly what we are doing to make it less able to erroneously 

learn random noise.

•	 We should be especially happy about how this model handles 

strongly correlated predictors. Ordinary linear regression often has 

a horrific response to this situation, blowing up some coefficients 

to enormous positive values and then compensating by blowing up 

other coefficients to enormous negative values, pitting one correlated 

variable against the other in a delicately balanced relationship.

•	 This regularized model usually finds a subset, often a small subset, 

of the candidate predictors, just as is the case with ordinary stepwise 

inclusion. But its method for doing so is very different and vastly 

superior to stepwise inclusion. The latter takes an ordered all-or-

nothing approach; once a variable is included, it stays forever. But 

the regularized linear model operates gradually, slowly converging 

on the ideal subset of predictors. Variables may come and go as their 

value in the presence of other variables waxes and wanes. This makes 

it much more likely that the final subset will be truly optimal.

�Beta Adjustment with Guaranteed Convergence
There is a straightforward formula by which, given training data, along with the 

hyperparameters λ and α, we can efficiently compute an adjusted beta weight that 

reduces the error criterion shown in Equation 3-2. Under all realistic conditions this 

error criterion has a single local minimum that is also the global minimum. Thus, simple 

rotation among the weights is guaranteed to converge, usually quite quickly, even for 
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large problems. In this section, we present this adjustment formula, omitting many 

details of its derivation that can be found in the previously cited paper. We will soon see 

how to use this formula to implement an efficient and stable training algorithm.

First, define the residual of the model as its prediction error, as shown in Equation 3-4.

	 r y yi i i= - ˆ 	 (3-4)

Define for each predictor j a term that I call argumentj, as shown in Equation 3-5. 

This is the slow part of the computation, as it requires summing products over all cases. 

Define the soft-thresholding operator S(), as shown in Equation 3-6. Then the new value 

of βj which reduces the error criterion, is given by Equation 3-7.
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�Differential Case Weighting
In some applications (though not often in market-trading applications), it can be 

useful to rate some cases as more important than others and thereby guide the training 

algorithm to focus more on reducing the error of important cases. The beta update 

formula shown in the prior section is easily modified to implement this capability.

Let the N case weights be denoted wi, where these weights sum to one. The argument 

to the soft-thresholding operator is given by Equation 3-8, and the updated beta weight 

is given by Equation 3-9.
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Interested readers would do well to undertake a simple exercise. Suppose all  

weights are equal to 1/N, so there is no differential weighting. Work through the fact that 

Equation 3-8 reduces to Equation 3-5, and Equation 3-9 reduces to Equation 3-7. If you 

don’t see it right away (spoiler alert!), remember that the predictors have been standardized 

to unit variance. Thus, for each j, the sum over all cases of xij squared equals N.

�Rapid Computation with Covariance Updates
If there are a lot more cases (N) than predictors (K), which is the usual situation in 

market trading, there is an alternative formula for computing the beta weight updates 

that is much faster than the “naive” Equations 3-5 and 3-8. The fundamental formula is 

given by Equation 3-10.
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If no differential case weighting is used, Xssj = 1 for all j, Yinnerj is given by  

Equation 3-11, and Xinnerjk is given by Equation 3-12. Derivation of these expressions is 

given in the paper cited earlier.
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If we use differential weighting, we need Equations 3-13, 3-14, and 3-15. These 

derivations are not given in the cited paper, but they are easily obtained by beginning 

with their Equation 10 and following the nonweighted steps, remembering that the 

predictors are standardized.
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Note that Equations 3-13 through 3-15 depend on only the training data and weights, 

so they can be computed just once at the start of training. And Equation 3-10, which 

must be evaluated for each iteration, involves summing only K terms, not N. When 

K<<N, the time savings is huge.

�Preparatory Code

We begin the presentation of code with some fragments that illustrate key parts of how 

we prepare for training the model. Complete source code for the entire CoordinateDescent 

class that encapsulates this model and all of its training algorithms is in the file 

CDMODEL.CPP.

The programmer would first call the constructor, as shown next. We’ll skip its 

code here because it is concerned only with memory allocation and other simple 

housekeeping. Ignore the nl parameter for now; this will be discussed later. The other 

parameters are self-explanatory.

CoordinateDescent::CoordinateDescent (

   int nv ,        // Number of  predictor variables

   int nc ,        // Number of  cases we will be training

   int wtd ,      // Will we be using case weights?  1=Yes, 0=No

   int cu ,        // Use fast covariance updates rather than slow naive method

   int nl           // Number of  lambdas we will be using in training

   )

After we have constructed a CoordinateDescent object, we must call a member function 

to input the training data and compute some things in preparation.

void CoordinateDescent::get_data (

   int istart ,     // Starting index in full database for getting nc cases of  training set

   int n ,           // Number of  cases in full database (we wrap back to the start if  needed)

   double *xx , // Full database (n rows, nvars columns)

   double *yy , // Predicted variable vector, n long

   double *ww  // Case weights (n long) or NULL if  no weighting

   )

In this call, we can specify a starting index in the dataset (for the predictors, target, 

and optional weights). The number of cases specified in the constructor call (nc) will be 

taken from xx, yy, and ww (if used) starting at index istart. If the end of the data is reached 
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before nc cases are obtained, it wraps around to the beginning of the dataset. We’ll see 

later how this wrapping is useful.

The get_data() routine begins by saving the predictors and target in private arrays and 

standardizing them by subtracting the mean and dividing by the standard deviation. 

These straightforward actions are not shown here. If differential weighting is to be used, 

the weights are scaled to sum to one (so the user need not worry about this), and XSSvec 

is computed using Equation 3-13. This weight-related code is as follows:

   if  (w != NULL) {

      sum = 0.0 ;

      for (icase=0 ; icase<ncases ; icase++) {

         k = (icase + istart) % n ;     // Wrap to start if  needed

         w[icase] = ww[k] ;

         sum += w[icase] ;

         }

      for (icase=0 ; icase<ncases ; icase++)

         w[icase] /= sum ;

      for (ivar=0 ; ivar<nvars ; ivar++) {

         xptr = x + ivar ;

         sum = 0.0 ;

         for (icase=0 ; icase<ncases ; icase++)      // Equation 3-13

            sum += w[icase] * xptr[icase*nvars] * xptr[icase*nvars] ;

         XSSvec[ivar] = sum ;

         }

      }

If we are using the fast covariance-update method, which is the sensible course 

whenever there are more cases than predictors, we have to compute Yinner and Xinner 

as described in the prior section. Note that Xinner is a symmetric matrix, but we save the 

entire matrix anyway. This is wasteful of very cheap memory, but the simpler addressing 

saves very expensive time.

In the code that follows, we process one variable at a time. Addressing is simplified 

by using the pointer xptr to get the offset to the current variable in the first case. 

Thereafter, we can get this variable by just jumping down one case.
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      for (ivar=0 ; ivar<nvars ; ivar++) {

         xptr = x + ivar ;

         sum = 0.0 ;           // Do Yinner

         if  (w != NULL) {    // Weighted cases

            for (icase=0 ; icase<ncases ; icase++)

               sum += w[icase] * xptr[icase*nvars] * y[icase] ;    // Equation 3-14

            Yinner[ivar] = sum ;

            }

         else {

            for (icase=0 ; icase<ncases ; icase++)

               sum += xptr[icase*nvars] * y[icase] ;                     // Equation 3-11

            Yinner[ivar] = sum / ncases ;

            }

         // Do Xinner

         if  (w != NULL) {  // Weighted

            for (jvar=0 ; jvar<nvars ; jvar++) {

               if  (jvar == ivar)

                  Xinner[ivar*nvars+jvar] = XSSvec[ivar] ; // Already computed, so use it

               else if  (jvar < ivar)                                      // Matrix is symmetric, so just copy

                  Xinner[ivar*nvars+jvar] = Xinner[jvar*nvars+ivar] ;

               else {

                  sum = 0.0 ;

                  for (icase=0 ; icase<ncases ; icase++)

                     sum += w[icase] * xptr[icase*nvars] * x[icase*nvars+jvar] ; // Eq (3-15)

                  Xinner[ivar*nvars+jvar] = sum ;

                  }

               }

            } // If  w

         else {  // Unweighted

            for (jvar=0 ; jvar<nvars ; jvar++) {

               if  (jvar == ivar)

                  Xinner[ivar*nvars+jvar] = 1.0 ;       // Recall that X is standardized

               else if  (jvar < ivar)                              // Matrix is symmetric, so just copy

                  Xinner[ivar*nvars+jvar] = Xinner[jvar*nvars+ivar] ;
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               else {

                  sum = 0.0 ;

                  for (icase=0 ; icase<ncases ; icase++)

                     sum += xptr[icase*nvars] * x[icase*nvars+jvar] ;    // Equation 3-12

                  Xinner[ivar*nvars+jvar] = sum / ncases ;

                  }

               }

            } // // Else not weighted

         } // For ivar

�Outline of the Beta Optimization Process
In the prior few sections, we saw how, for any chosen beta weight, we can compute a 

revised value that reduces the error criterion toward the unique global minimum. So 

at the most naive level we could just rotate through the weights, adjusting each in turn 

until satisfactory convergence is obtained. But we can do it more intelligently, taking 

advantage of the fact that once a beta weight has become zero, it has a tendency to 

remain zero on subsequent iterations. The outline of the training algorithm is shown 

here, and explanations follow. More detailed code appears later.

   do_active_only = 0 ;                             // Begin with a complete pass

   for (iter=0 ; iter<maxits ; iter++) {          // Main iteration loop; maxits is for safety only

      active_set_changed = 0 ;                  // Did any betas go to/from 0.0?

      for (ivar=0 ; ivar<nvars ; ivar++) {      // Descend on this beta

         if  (do_active_only  &&  beta[ivar] == 0.0)

            continue ;

         [ Compute correction ]

         if  (correction != 0.0) {                      // Did this beta change?

            if  ((beta[ivar]==0.0 && new_beta != 0.0) || (beta[ivar] != 0.0 && new_beta==0.0))

               active_set_changed = 1 ;

            }

         } // For all variables; a complete pass

      converged = [ Convergence test ] ;
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      if  (do_active_only) {                            // Are we iterating on the active set only?

         if  (converged)                                   // If  we converged

            do_active_only = 0 ;                       // We now do a complete pass

         }

      else {                                                   // We just did a complete pass (all variables)

         if  (converged  &&  ! active_set_changed)

            break ;

         do_active_only = 1 ;                        // We now do an active-only pass

         }

      } // Outer loop iterations

The essential idea of this training algorithm is that we can save a lot of computational 

effort by focusing most of our effort on only those beta weights that are nonzero, called 

the active set. Roughly stated, we pass through all predictors, adjusting each beta weight. 

After this pass, it will often be the case that some of the betas, perhaps many of them, are 

zero. So we do additional passes, adjusting only those that are nonzero (the active set), 

until convergence is obtained. When we converge, we do a pass through all predictors, 

just in case the revised beta weights caused one or more betas to change to or from zero. 

If no such change occurs and we pass the convergence test, we are done. Otherwise, we 

go back to rotating through only the active set.

We start with do_active_only False so that all predictors are adjusted. The main 

iteration loop is limited by maxits for safety, although in practice this limit will never be 

hit. We use active_set_changed to flag whether any beta weight changed to or from zero.

The ivar loop makes a single pass through all predictors. If we are to do the active 

set only and this beta is zero, skip it. Otherwise, we compute a corrected beta. If beta 

changed, we see whether the change was to or from zero, and if so, we note this by 

setting the active_set_changed flag.

After we have made a pass through the predictors, we perform a convergence test.  

If we have been checking the active set only and if we have converged, we reset  

do_active_only so that the next time we check all predictors.

If, on the other hand, our last pass was a complete check of all predictors, 

convergence was obtained, and the active set did not change, we are all done. Otherwise, 

we set the do_active_only flag so that we go back to focusing on only the active set.
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This fancy algorithm that focuses on the active set is advantageous only if there are a 

significant number of zero beta weights. However, this is often the case in applications in 

which this model is used. Moreover, there is little or no penalty in situations in which few 

or none of the betas are zero, so we might as well use the fancy version.

�Code for Beta Optimization
The prior section presented an outline of the beta optimization algorithm, with details 

omitted so that the essential logic of the procedure would be clear. In this section, we 

work through the entire optimization code in detail. It is called as follows:

void CoordinateDescent::core_train (

   double alpha ,            // User-specified alpha (0-1) (0 problem for descending lambda)

   double lambda ,         // Can be user-specified, but usually from lambda_train()

   int maxits ,                  // Maximum iterations, for safety only

   double eps ,               // Convergence criterion, typically 1.e-5 or so

   int fast_test ,              // Convergence via max beta change vs explained variance?

   int warm_start            // Start from existing beta, rather than zero?

   )

The alpha (α) and lambda (λ) parameters have been seen many times already. We 

use maxits simply to limit the number of iterations to prevent unexpected hangs. In 

practice, it would be set very large. The eps parameter controls how accurate the result 

must be before convergence is signaled. The fast_test parameter controls which of two 

convergence tests (described later) is used. Finally, warm_start allows training to begin 

from the current values of the beta weights, as opposed to starting from zero (the 

default). The routine begins with some initialization.

   S_threshold = alpha * lambda ;        // Threshold for the soft-thresholding S() of  Eq (3-6)

   do_active_only = 0 ;                         // Begin with a complete pass

   prior_crit = 1.0e60 ;                          // For convergence test

   if  (warm_start) {               // Pick up with current betas?

      if  (! covar_updates) {    // If  not using covar updates, must recompute residuals

         for (icase=0 ; icase<ncases ; icase++) {

            xptr = x + icase * nvars ;

            sum = 0.0 ;
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            for (ivar=0 ; ivar<nvars ; ivar++)

               sum += beta[ivar] * xptr[ivar] ;

            resid[icase] = y[icase] - sum ;

            }

         }

      }

   else {                                         // Not warm start, so initial betas are all zero

      for (i=0 ; i<nvars ; i++)

         beta[i] = 0.0 ;

      for (i=0 ; i<ncases ; i++)         // Initial residuals are just the Y variable

         resid[i] = y[i] ;

      }

The most notable aspect of the previous initialization code is that if we are doing 

a warm start and we are not using the fast covariance-update method, then we must 

recompute the residuals. Recall that the naive update method of Equations 3-7 and 3-9 

requires the residuals. Of course, if we are starting with all beta weights at zero, then all 

predictions are also zero, and the residuals are just the targets.

As iterations progress, we will be computing the fraction of explained target variance 

for the user’s edification. For this we will need the mean square of the target, weighted 

appropriately if the user has chosen to weight cases by importance. The following code 

computes this quantity:

   if  (w != NULL) {                // We need weighted squares to evaluate explained variance

      YmeanSquare = 0.0 ;

      for (i=0 ; i<ncases ; i++)

          YmeanSquare += w[i] * y[i] * y[i] ;

      }

   else

      YmeanSquare = 1.0 ;   // The target has been normalized to unit variance

We now begin the main outer loop, which iterates until convergence is obtained. 

The iteration limit maxits should be set very large (thousands or more) so that it does not 

cause premature exit; it is “hang insurance” only. We reset the flag that will indicate if 

the active set changed, and we will use max_change to keep track of the maximum beta 

change for a convergence test.
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   for (iter=0 ; iter<maxits ; iter++) {

      active_set_changed = 0 ;       // Did any betas go to/from 0.0?

      max_change = 0.0 ;                // For fast convergence test

The loop that makes a single pass through all predictors begins now. If we are to 

process only the active set (nonzero betas) and this beta is zero, skip it. Equation 3-9 for 

the weighted case and Equation 3-7 for the unweighted case will need update_factor in the 

denominator, so compute it now. Recall that XSSvec[] was computed by Equation 3-13.

      for (ivar=0 ; ivar<nvars ; ivar++) {  // Descend on this beta

         if  (do_active_only  &&  beta[ivar] == 0.0)

            continue ;

         // Denominator in update

         if  (w != NULL)       // Weighted?

            Xss = XSSvec[ivar] ;

         else

            Xss = 1 ;         // X was standardized

         update_factor = Xss + lambda * (1.0 - alpha) ;

We compute the argument to the soft-thresholding function. There are three 

possibilities. Either we are using the fast covariance-update method, we are using the 

naive method with differential case weighting, or we are using the naive method with 

equal weighting. We don’t have to split the covariance-update method into with-and-

without-weights here because any weighting was taken care of in the computation of Xss, 

Xinner, and Yinner already, as shown on page 42.

         if  (covar_updates) {   // Any sensible user will specify this unless ncases < nvars

            sum = 0.0 ;

            for (kvar=0 ; kvar<nvars ; kvar++)

               sum += Xinner[ivar*nvars+kvar] * beta[kvar] ;

            residual_sum = Yinner[ivar] - sum ;

            argument = residual_sum + Xss * beta[ivar] ;   // Equation 3-10

            }
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         else if  (w != NULL) {         // Use slow naive formula (okay if  ncases < nvars)

            argument = 0.0 ;

            xptr = x + ivar ;     // Point to column of  this variable

            for (icase=0 ; icase<ncases ; icase++)   // Equation 3-8

               argument += w[icase] *

                                    xptr[icase*nvars] * (resid[icase] + beta[ivar] * xptr[icase*nvars])  ;

            }

         else {                          // Use slow naive formula (okay if  ncases < nvars)

            residual_sum = 0.0 ;

            xptr = x + ivar ;        // Point to column of  this variable

            for (icase=0 ; icase<ncases ; icase++)

               residual_sum += xptr[icase*nvars] * resid[icase] ;  // X_ij * RESID_i

            residual_sum /= ncases ;

            argument = residual_sum + beta[ivar] ;   // Equation 3-5

            }

We just computed the argument to the soft-thresholding function, Equation 3-6. 

Apply this function and compute the new value for this beta using either Equation 3-7 

or Equation 3-9. Not long ago we computed update_factor to be the denominator in these 

equations.

         if  (argument > 0.0  &&  S_threshold < argument)

            new_beta = (argument - S_threshold) / update_factor ;

         else if  (argument < 0.0  &&  S_threshold < -argument)

            new_beta = (argument + S_threshold) / update_factor ;

         else

            new_beta = 0.0 ;

The amount of correction is the difference between the new beta and the old value. 

Keep track of the maximum change in this pass, as we may be using it for a convergence 

test. If we are using the slow naive update method, we will also use this correction to 

quickly recompute the residuals, which are needed for the naive method.
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         correction = new_beta - beta[ivar] ;

         if  (fabs(correction) > max_change)

            max_change = fabs(correction) ;  // Used for fast convergence test

         if  (correction != 0.0) {                       // Did this beta change?

            if  (! covar_updates) {                    // Must we update the residual vector?

               xptr = x + ivar ;                           // Point to column of  this variable

               for (icase=0 ; icase<ncases ; icase++)     // Update residual per this new beta

                  resid[icase] -= correction * xptr[icase*nvars] ;

               }

            if  ((beta[ivar]==0.0  &&  new_beta!=0.0)  ||  (beta[ivar]!=0.0  &&  new_beta==0.0))

               active_set_changed = 1 ;

            beta[ivar] = new_beta ;

            }

         } // For all variables; a complete pass

We have completed a pass through the betas, either all of them or just the active 

set, according to do_active_only. We now do the convergence test, either the fast, simple 

version or the much slower version. The fast test is based on only the maximum (across 

all predictors) change in beta. But the slow test is more complex.

If we were using the fast covariance update method, we did not need residuals for 

the beta updates, so we didn’t take the (huge!) time to compute them. But we need the 

residuals for the slow convergence test, so we must compute them if we haven’t so far. 

Compute the (possibly weighted) mean squared error using the residuals.

      if  (fast_test) {             // Quick and simple test

         if  (max_change < eps)

            converged = 1 ;

         else

            converged = 0 ;

         }

      else {   // Slow test (change in explained variance) which requires residual

         if  (covar_updates) {  // We have until now avoided computing residuals

            for (icase=0 ; icase<ncases ; icase++) {

               xptr = x + icase * nvars ;

               sum = 0.0 ;
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               for (ivar=0 ; ivar<nvars ; ivar++)

                  sum += beta[ivar] * xptr[ivar] ; // Cumulate predicted value

               resid[icase] = y[icase] - sum ;    // Residual = true - predicted

               }

            }

         sum = 0.0 ;         // Will cumulate squared error for convergence test

         if  (w != NULL) {  // Are the errors of  each case weighted differently?

            for (icase=0 ; icase<ncases ; icase++)

               sum += w[icase] * resid[icase] * resid[icase] ;

            crit = sum ;

            }

         else {

            for (i=0 ; i<ncases ; i++)

               sum += resid[i] * resid[i] ;

            crit = sum / ncases ;              // MSE component of  optimization criterion

            }

A fundamental quality measure of a model is the fraction of the target variance that 

is explained by the model. This is computed by subtracting the mean squared error just 

computed from the mean square (variance) of the target to get the quantity of variance 

that is explained. Divide this by the target mean square to get the fraction of the target 

variance that is explained by the model. This is used strictly for optional user edification; 

it plays no role in the optimization algorithm.

Compute the regularization penalty using Equation 3-3 on page 39 and then add this 

penalty to the mean squared error to get the criterion that we are minimizing, as shown 

in Equation 3-2 on page 38.

This “slow” convergence criterion is based on the change from one iteration to the 

next in the optimization criterion. If the change is small (where “small” is defined by the 

user’s specified eps), then we are deemed to have converged.

         explained_variance = (YmeanSquare - crit) / YmeanSquare ;

         penalty = 0.0 ;

         for (i=0 ; i<nvars ; i++)

            penalty += 0.5 * (1.0 - alpha) * beta[i] * beta[i]  +  alpha * fabs (beta[i]) ;

         penalty *= 2.0 * lambda ;   // Regularization component of  optimization criterion
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         crit += penalty ;                   // This is what we are minimizing

         if  (prior_crit - crit < eps)

            converged = 1 ;

         else

            converged = 0 ;

         prior_crit = crit ;

         }

We can now finish the outer loop with the control logic described in the prior 

section, alternating between active-set-only and full predictor passes.

      if  (do_active_only) {             // Are we iterating on the active set only?

         if  (converged)                    // If  we converged

            do_active_only = 0 ;       // We now do a complete pass

         }

      else {                                    // We just did a complete pass (all variables)

         if  (converged  &&  ! active_set_changed)

            break ;

         do_active_only = 1 ;          // We now do an active-only pass

         }

      } // Outer loop iterations

We are essentially done. For the user’s edification we compute and save the fraction of 

target variance explained by the model. If we did the fast convergence test and covariance 

updates, we must compute the residual to get the explained variance. Those two options 

do not require regular residual computation, so we don’t currently have the residual.

   if  (fast_test  &&  covar_updates) {  // Residuals have not been maintained?

      for (icase=0 ; icase<ncases ; icase++) {

         xptr = x + icase * nvars ;

         sum = 0.0 ;

         for (ivar=0 ; ivar<nvars ; ivar++)

            sum += beta[ivar] * xptr[ivar] ;

         resid[icase] = y[icase] - sum ;

         }

      }
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   sum = 0.0 ;

   if  (w != NULL) {   // Error term of  each case weighted differentially?

      for (i=0 ; i<ncases ; i++)

         sum += w[i] * resid[i] * resid[i] ;

      crit = sum ;

      }

   else {

      for (i=0 ; i<ncases ; i++)

         sum += resid[i] * resid[i] ;

      crit = sum / ncases ;                 // MSE component of  optimization criterion

      }

   explained = (YmeanSquare - crit) / YmeanSquare ;

�Descending a Lambda Path
As is usually the case with models that have hyperparameters, choosing an effective 

value for the regularization strength lambda (λ) may not be straightforward. In the 

next section, we will explore a good way to automate the choice of a good value. In this 

section, we present a tool that will be called by that automated routine and that can also 

be used to aid in manually selecting a good lambda.

Consider that if lambda is huge, the penalty for any nonzero beta will be so large that 

all beta weights will be forced to zero. (This may not be the case if alpha is exactly zero, 

so from now on we will assume α > 0.) This model obviously has zero explained variance. 

Conversely, if λ = 0, then we have ordinary linear regression, which has the minimum 

possible mean squared error or maximum possible explained variance. So, we can 

start at a large lambda, train the model, slightly decrease lambda and train again, and 

so forth, until lambda is tiny, almost zero. We will generally see the number of nonzero 

betas steadily increase, along with the explained variance. Even for the same number of 

nonzero betas, the explained variance will increase as lambda decreases. If we print a 

chart showing the number of nonzero betas and the explained variance as a function of 

lambda, we may be able to make an intelligent choice for lambda.

There is an interesting fringe benefit of this approach, even if we know in advance 

the lambda we want to use. This approach increases the already quite good stability of 

the training algorithm without much cost in terms of speed. In fact, it can happen that 

we can train faster this way. What we do is start with a large lambda that gives us just 
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one or very few active predictors. That simple model will train quickly. Then, when we 

slightly decrease lambda, instead of starting all over again, we do a warm start, beginning 

iterations with the existing betas. So, each time we recommence training with a slightly 

smaller lambda, we are starting from betas that are already very close to correct. Thus, 

convergence will be obtained rapidly.

It’s easy to find a good starting lambda for the descent, the smallest lambda such that 

all betas are zero. The entire process begins with all betas at zero. Look at Equation 3-7, 

along with the two prior equations for the argument and the soft-thresholding operator. 

For the differentially weighted situation, look at their analogs in the following section. 

Recall that when all betas are zero, the residual equals the target, y. It should be apparent 

from the definition of the soft-thresholding function that βj will remain at zero if 

Equation 3-16 in the unweighted situation or Equation 3-17 in the differentially weighted 

situation is true.
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Dividing both sides of these equations by alpha gives the threshold lambda for any 

predictor, and if we find the maximum such lambda across all predictors, we have our 

starting lambda. Here is code for doing this:

double CoordinateDescent::get_lambda_thresh ( double alpha )

{

   int ivar, icase ;

   double thresh, sum, *xptr ;

   thresh = 0.0 ;

   for (ivar=0 ; ivar<nvars ; ivar++) {

      xptr = x + ivar ;

      sum = 0.0 ;

      if  (w != NULL) {

         for (icase=0 ; icase<ncases ; icase++)           // Left side of  Equation 3-17

            sum += w[icase] * xptr[icase*nvars] * y[icase] ;

         }
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      else {

         for (icase=0 ; icase<ncases ; icase++)           // Left side of  Equation 3-16

            sum += xptr[icase*nvars] * y[icase] ;

         sum /= ncases ;

         }

      sum = fabs(sum) ;

      if  (sum > thresh)           // We must cover all predictors

         thresh = sum ;

      }

   return thresh / (alpha + 1.e-60) ;   // Solve for lambda; protect from division by zero

}

Descending on lambda is straightforward. One thing to note is that we save the 

beta weights for every trial lambda, as we may want to access them later. Also, if the 

caller sets the print_steps flag, this routine will open a text file and append results for easy 

examination by the user.

We use get_lambda_thresh() to find the smallest lambda that ensures all betas remain at 

zero and decrease it slightly to get our starting lambda. We arbitrarily set the minimum 

lambda to be 0.001 times that quantity. The number of trial lambdas was specified in the 

constructor call. Here is the code:

void CoordinateDescent::lambda_train (

   double alpha ,                   // User-specified alpha, (0,1) (Greater than 0)

   int maxits ,                         // Maximum iterations, for safety only

   double eps ,                       // Convergence criterion, typically 1.e-5 or so

   int fast_test ,                      // Convergence via max beta change vs explained variance?

   double max_lambda ,        // Starting lambda, or negative for automatic computation

   int print_steps                    // Print lambda/explained table?

   )

{

   int ivar, ilambda, n_active ;

   double lambda, min_lambda, lambda_factor ;

   FILE *fp_results ;
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   if  (print_steps) {

      fopen_s ( &fp_results , "CDtest.LOG" , "at" ) ;

      fprintf  ( fp_results , "\n\nDescending lambda training..." ) ;

      fclose ( fp_results ) ;

      }

   if  (n_lambda <= 1)        // Nonsensical parameter from caller

      ireturn ;

/*

   Compute the minimum lambda for which all beta weights remain at zero

   This (slightly decreased) will be the lambda from which we start our descent.

*/

   if  (max_lambda <= 0.0)

      max_lambda = 0.999 * get_lambda_thresh ( alpha ) ;

   min_lambda = 0.001 * max_lambda ;

   lambda_factor = exp ( log ( min_lambda / max_lambda ) / (n_lambda-1) ) ;

/*

   Repeatedly train with decreasing lambdas

*/

   if  (print_steps) {

      fopen_s ( &fp_results , "CDtest.LOG" , "at" ) ;

      fprintf  ( fp_results , "\nLambda  n_active  Explained" ) ;

      }

   lambda = max_lambda ;

   for (ilambda=0 ; ilambda<n_lambda ; ilambda++) {

      lambdas[ilambda] = lambda ;   // Save in case we want to use later

      core_train ( alpha , lambda , maxits , eps , fast_test , ilambda ) ;

      for (ivar=0 ; ivar<nvars ; ivar++)         // Save these in case we want them later

         lambda_beta[ilambda*nvars+ivar] = beta[ivar] ;

      if  (print_steps) {

         n_active = 0 ;      // Count active predictors for user’s edification
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         for (ivar=0 ; ivar<nvars ; ivar++) {

            if  (fabs(beta[ivar]) > 0.0)

              ++n_active ;

            }

         fprintf  ( fp_results , "\n%8.4lf  %4d %12.4lf", lambda, n_active, explained ) ;

         }

      lambda *= lambda_factor ;

      }

   if  (print_steps) 

      fclose ( fp_results ) ;

}

�Optimizing Lambda with Cross Validation
One of the most popular, if not the most popular, method for optimizing a model’s 

hyperparameter(s) is cross validation, so that’s what we will do here. The principle is 

simple. For each fold we call lambda_train() to test a descending set of lambdas, saving the 

beta coefficients for each trial lambda. We then compute the out-of-sample explained 

variance for each trial lambda and cumulate this quantity. When all folds are done, we 

examine the pooled OOS performance and choose whichever lambda gave the best OOS 

performance. There are a few things to watch out for, though, so we will break down this 

code into separate segments, explaining each. Here is the calling parameter list:

double cv_train (

   int n ,                                  // Number of  cases in full database

   int nvars ,                           // Number of  variables (columns in database)

   int nfolds ,                          // Number of  folds

   double *xx ,                        // Full database (n rows, nvars columns)

   double *yy ,                        // Predicted variable vector, n long

   double *ww ,                       // Optional weights, n long, or NULL if  no weighting

   double *lambdas ,              // Returns lambdas tested by lambda_train()

   double *lambda_OOS ,      // Returns OOS explained for each of  above lambdas

   int covar_updates ,            // Does user want (usually faster) covariance update method?

   int n_lambda ,                    // This many lambdas tested by lambda_train() (at least 2)
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   double alpha ,                    // User-specified alpha, (0,1) (greater than 0)

   int maxits ,                         // Maximum iterations, for safety only

   double eps ,                       // Convergence criterion, typically 1.e-5 or so

   int fast_test                        // Convergence via max beta change vs explained variance?

   )

Note that this is not a member of the CoordinateDescent class; it is a stand-alone 

routine. Most of the parameters are self-explanatory and have been seen many times 

before. The last four parameters and covar_updates are just passed to the core training 

routine. We do have to supply two vectors n_lambdas long: lambdas will return the 

tested lambda values, and lambda_OOS will return the OOS explained variance fraction 

corresponding to each tested lambda. We should specify n_lambdas as large as feasible for 

thorough testing; 50 is not unreasonable. Numerous lambdas do not appreciably slow 

training, because warm starts are used, meaning that each time lambda is decreased, 

the beta optimization begins at the prior optimal values. This is very fast. Finally, the 

number of folds should also be as large as feasible for best accuracy; five would be a bare 

minimum, ten is reasonable, and even more is better if computer time allows.

We begin with some initializations. Naturally we will want to use the same set of 

descending lambdas for each fold, so we use the entire dataset to find the threshold. If 

the cases are weighted, we copy the normalized weights for use in OOS scoring. The first 

training fold will begin at the first case, and we have not yet done any OOS cases. We 

will cumulate the fraction of variance explained in lambda_OOS, so initialize this vector 

to zero for each trial lambda. We will cumulate the (possibly weighted) target sum of 

squares in YsumSquares.

   cd = new CoordinateDescent ( nvars , n , (ww != NULL) , covar_updates , n_lambda ) ;

   cd->get_data ( 0 , n , xx , yy , ww ) ;                       // Fetch the training set for this fold

   max_lambda = cd->get_lambda_thresh ( alpha ) ;

   if  (ww != NULL) {

      for (icase=0 ; icase<n ; icase++)

         work[icase] = cd->w[icase] ;

      }

   delete cd ;

   i_IS = 0 ;          // Training data starts at this index in complete database

   n_done = 0 ;    // Number of  cases treated as OOS so far
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   for (ilambda=0 ; ilambda<n_lambda ; ilambda++)

      lambda_OOS[ilambda] = 0.0 ;  // Will cumulate across folds here

   YsumSquares = 0.0 ;     // Will cumulate to compute explained fraction

The fold loop begins here. The number of OOS cases is the number remaining to be 

done divided by the number of remaining folds. The remaining cases are in-sample, and 

the OOS set starts past the IS set.

   for (ifold=0 ; ifold<nfolds ; ifold++) {

      n_OOS = (n - n_done) / (nfolds - ifold) ;   // Number of  cases in OOS  (test set)

      n_IS = n - n_OOS ;                                   // Number IS (training set)

      i_OOS = (i_IS + n_IS) % n ;                     // OOS starts at this index

We now train with this in-sample set, descending on lambda. This set begins at index 

i_IS, and if the end of the dataset is reached, it will cycle back to the beginning.

      cd = new CoordinateDescent ( nvars , n_IS , (ww != NULL) , covar_updates ,

                                                        n_lam bda ) ;

      cd->get_data ( i_IS , n , xx , yy , ww ) ;                   // Fetch the training set for this fold

      cd->lambda_train ( alpha , maxits , eps , fast_test , max_lambda , 0 ) ;

Training is done, so we evaluate performance on the OOS set. Here is the code; a 

step-by-step explanation is on the next page:

      for (ilambda=0 ; ilambda<n_lambda ; ilambda++) {

         lambdas[ilambda] = cd->lambdas[ilambda] ;  // This will be the same for all folds

         coefs = cd->lambda_beta + ilambda * nvars ;

         sum = 0.0 ;

         for (icase=0 ; icase<n_OOS ; icase++) {

            k = (icase + i_OOS) % n ;

            pred = 0.0 ;

            for (ivar=0 ; ivar<nvars ; ivar++)

               pred += coefs[ivar] * (xx[k*nvars+ivar] - cd->Xmeans[ivar]) / cd->Xscales[ivar] ;

            Ynormalized = (yy[k] - cd->Ymean) / cd->Yscale ;

            diff  = Ynormalized - pred ;
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            if  (ww != NULL) {

               if  (ilambda == 0)

                  YsumSquares += work[k] * Ynormalized * Ynormalized ;

               sum += work[k] * diff  * diff  ;

               }

            else {

               if  (ilambda == 0)

                  YsumSquares += Ynormalized * Ynormalized ;

               sum += diff  * diff  ;

               }

            }

         lambda_OOS[ilambda] += sum ;      // Cumulate for this fold

         }  // For ilambda

      delete cd ;

      n_done += n_OOS ;                           // Cumulate OOS cases just processed

      i_IS = (i_IS + n_OOS) % n ;               // Next IS starts at this index

      }  // For ifold

The code on the prior page processes the OOS set for a single fold. The training 

routine saved beta weights for every trial lambda along the way as the efficient lambda 

descent algorithm progressed. So, we loop through the lambdas, getting the betas for 

each lambda into coefs. We will loop through all OOS cases, cumulating the sum of 

squared errors in sum.

We cycle through the dataset, looping back to the beginning when the end is 

reached, so k is the index of the OOS case about to be tested. The OOS case (target 

and all predictors) must be normalized in the same way that the training data was 

normalized, using the same mean and standard deviation.

The error for this case, diff, is the true value minus the predicted value. We cumulate 

the squared error, multiplying it by the user-specified case weight if differential weighting 

is employed. We simultaneously cumulate the sum of squared normalized targets. This 

has to be done only once, as it would of course be the same for all trial lambdas. When 

the case loop is done, we add the error sum to the sum for the lambda being tested. This 

vector will cumulate sums across all folds. After the lambda loop is done, we delete the 

CoordinateDescent object for this fold and advance to the next fold.
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All that’s left to do is compute the OOS explained variance fraction for each lambda 

and return the best-performing lambda to the caller. The target sum of squares minus 

the error sum of squares gives the explained sum of squares. Dividing this by the target 

SS gives the fraction of explained variance.

   best = -1.e60 ;

   for (ilambda=0 ; ilambda<n_lambda ; ilambda++) {

      lambda_OOS[ilambda] = (YsumSquares - lambda_OOS[ilambda]) / YsumSquares ;

      if  (lambda_OOS[ilambda] > best) {

         best = lambda_OOS[ilambda] ;

         ibest = ilambda ;

         }

      }

   return lambdas[ibest] ;

}

�The CD_MA Program
The file CD_MA.CPP contains a program that reads a market price file, computes a large 

number of indicators based on moving-average oscillators, and uses the CoordinateDescent 

regularized linear model to find an optimal subset of the indicators for predicting the 

(log) price change to the next day. One year of market data at the end of the history file is 

held out for use as a test set.

The program is invoked with the following command:

CD_MA Lookback_inc N_long N_short Alpha Filename

Let’s break this command down:

•	 Lookback_inc: The long-term lookback will begin with this number of 

bars (including the current bar) looking back. Subsequent long-term 

lookbacks will be incremented by this amount. For example, if this is 

specified to be 3, the long-term lookbacks will be 3, 6, 9, ....

•	 N_long: This many long-term lookbacks will be employed. The 

maximum long-term lookback will be Lookback_inc * N_long.
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•	 N_short: This many short-term lookbacks will be employed. They are 

the current long-term lookback times i and then divided by N_short+1, 

for i from 1 through N_short, truncated down to an integer. Note that 

when the current long-term lookback is less than N_short+1, there 

will be multiple equal values of the short-term lookback, resulting 

in perfectly correlated predictors. The total number of indicators is 

N_long * N_short.

•	 Alpha: The desired alpha to control the type of regularization. If 

specified less than or equal to zero, lambda will be set to zero, 

producing ordinary linear regression (no regularization). It must 

never be greater than or equal to one.

•	 Filename: A market history file in format YYYYMMDD Open High Low 

Close.

Two tables will be printed. The first shows the computations involved in selecting the 

optimal lambda. The left column in this table lists the trial lambdas. The right column 

shows the corresponding out-of-sample fraction of explained variance.

The second table lists the beta coefficients. Each row corresponds to a long-term 

lookback, with the lookback printed at the start of each row. Each column corresponds 

to a short-term lookback. These lookbacks are not printed because they change with 

each row. They can be easily computed with the formula on the prior page. Coefficients 

that are exactly zero, usually but not always because the training algorithm removed 

them from the model, are shown with dashes.

Figure 3-1 shows the table of beta coefficients produced for OEX when lambda=0, no 

regularization. This is practically identical to ordinary linear regression. Figure 3-2 shows 

the result when alpha=0.1, and Figure 3-3 is for alpha=0.9. A discussion follows.
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Figure 3-1.  Lambda=0 (no regularization)

Figure 3-2.  Alpha=0.1
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This run used the S&P 100 index OEX as its market history. The lookback increment 

was 2, with 30 long-term lookbacks and 10 short-term lookbacks.

•	 Recall from the discussion on the first page of this section that for 

long-term lookbacks less than the number of short-term lookbacks 

plus 1, some short-term lookbacks must be duplicated, meaning that 

some indicators are exact copies of others.

•	 This duplication makes ordinary linear regression impossible, as 

some weights would be undefined. Special techniques such as 

singular value decomposition would be needed. The algorithm here 

for lambda=0 handles this fine, even effectively eliminating a few 

of the duplicates. But the vast majority of indicators take part in the 

model.

•	 Because when lambda=0 there is no regularization, it is a fully least-

squares fit. This means that the in-sample fraction of explained 

variance should be the maximum possible, and indeed we see that 

this is the case, with 1.63 percent of the target variance explained.

Figure 3-3.  Alpha=0.9
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•	 Because of the vast number of indicators taking part (no regularization), 

we would expect to see poor OOS performance. We do, with this scoring 

the worst of the three tests.

•	 When we apply regularization with alpha=0.1 (nearly ridge 

regression), the in-sample explained variance drops, but the OOS 

performance soars to the best.

•	 With alpha=0.1, we see that the duplicated indicators receive equal 

beta coefficients, as expected.

•	 With alpha=0.9 (nearly a lasso), the model minimizes the number 

of indicators retained in an attempt to make the model as simple 

as possible, even at the cost of performance. We see this happen, 

and even the chosen indicators change. OOS performance plunges, 

meaning that the model was forced to drop some useful indicators.

•	 The regularized models have all negative coefficients, meaning that 

this trading system is a mean reversion system, not a trend follower!

�Making a Linear Model Nonlinear
As much as a linear model is often to be preferred to a nonlinear model, sometimes two 

or more of our indicators have an unavoidable nonlinear interaction in their relationship 

to the target. Be aware that an indicator simply having a nonlinear relationship with 

the target, on its own, is not usually a problem. We can just transform the indicator in 

such a way that its relationship with the target becomes largely linear. This is always 

a good thing to at least attempt. Of course, it can also happen that we merely suspect 

a solo nonlinear relationship, but we cannot prove it enough to be able to sensibly 

transform the indicator. But the vast majority of the time, what kills a linear model is 

when indicators interact with one another in a nonlinear fashion in regard to their joint 

relationship with a target. In such cases, we have no choice but to abandon a strictly 

linear model.

But all is not lost. The advantages of a linear model, especially of the regularized sort 

(simple understanding of how it works, fast training, lower likelihood of overfitting), are 

so great that it is worthwhile to transform indicators and their interaction in a moderately 

nonlinear fashion and apply these new values to the regularized linear model. We almost 
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never want to apply such extreme measures that the trade decision boundaries wander 

all over the place, twisting and turning to catch every errant training case. But there is an 

easy way to apply modest nonlinear transformations that allow us to use a regularized 

linear model in a gently nonlinear manner.

Naturally, we could supplement the model’s predictors with one or more nonlinear 

functions of one or more original predictors. And if we have a theoretical reason for 

choosing some particular function(s), we should certainly do so. But that situation is rare. 

The most common and effective general procedure is to use low-degree polynomials, 

with two special twists that I’ll discuss soon. The general idea is this: we choose a low 

degree, typically two and rarely three. Also, choose a subset of the predictors on which we 

want to allow nonlinear interactions. This may be the entire set of predictors, although 

things blow up fast as we include more predictors. Then supplement the original 

predictors with every possible combination of them up through the chosen degree.

For example, suppose we have three predictors for which we want to allow 

nonlinearity. Call them A, B, and C. Also suppose we want to allow up to second degree, 

the most common choice. Then the predictors we send to the model are A, B, C, A2, 

B2, C 2, AB, AC, BC. If we decide to move up to third degree, the additional predictors 

are A3, B3, C3, A2B, A2C, B2C, AB2 AC 2, BC 2, ABC. It should be painfully obvious that 

increasing the number of predictors in the nonlinear set, or increasing the degree of the 

polynomial, produces an explosive growth in the number of new predictors.

There are two things that should be done when polynomial expansion is employed. 

Neither of these is mathematically required, but both are important if we are to guard 

against hardware floating-point inaccuracies, as well as improve the speed and stability 

of most model-training algorithms. First, we must ensure that the transformed indicators 

have a natural range of approximately minus one to one. If this is done, all polynomial 

transformed values have this same natural range. If our raw indicators do not have this 

range, at least approximately, we should find their true natural range, Min to Max, either 

from theoretical considerations or from examination of a large representative set. Then 

the range-adjusted value of X is 2 * (X – Min) / (Max – Min) – 1.

The other action we should take is needed only if we go to third degree (or, heaven 

forbid, higher). The problem is that even with range adjustment, X and X3 can have 

enough correlation to slightly impede some training algorithms. It’s rarely serious, and 

the technique about to be described may be considered overkill by some, but it’s a cheap 

investment with a nice return. Instead of using X3, use 0.5 * (5 X3 – 3 X). This is still a 

cubic polynomial with a range of minus one to one, and it will allow the same effective 

Chapter 3  Optimization Issues



69

nonlinearity as X3, but it will typically have much less correlation with X and hence will 

be handled more effectively by many training algorithms. You have nothing to lose and 

potentially much to gain.

Going beyond third degree is nearly always pointless. If you have that much 

nonlinearity, just use a nonlinear model. But if for some reason you insist, look up 

Legendre polynomials and use them for the higher-degree terms.

�Differential Evolution: A Universal Nonlinear 
Optimizer
Whether your trading system is based on a nonlinear predictive model or is a traditional 

algorithmic (rule-based) system, you want a fast and stable method for optimizing your 

chosen performance criterion. In most scenarios, a major trade-off is involved in the 

selection of an optimization algorithm. It is common for a function of multiple variables 

to have several (perhaps many!) local optima. The fastest optimizers are hill climbers, 

rapidly rising to the top of the nearest hill, whether that particular hill happens to be the 

grand best or not. Optimizers that are more likely to find the best hilltop among many 

are much slower than simple hill climbers. So, what to do?

Fortunately, there is an algorithm that is a good compromise between the two 

extremes. It has a relatively high likelihood of finding the best, or at least nearly the best, 

hilltop among many, yet it is also quite fast. This algorithm is a special sort of genetic or 

evolutionary optimization called differential evolution. I will not provide any references 

here because the Internet is filled with examples and discussions. Instead, I will focus on 

a highly tweaked variation of this algorithm that I have used in my own work for many 

years and that I have found to be a reliable performer.

Like all evolutionary algorithms, it begins with a population of individuals, each 

individual being a completely specified parameter set for the trading system. It then 

iterates through the population, combining qualities of different members of the 

population in a way that has a good probability of producing individuals that are 

superior to the parents.

Unlike most plant and animal reproduction, differential evolution requires four 

individuals to produce a child. One of these, called Parent 1, is chosen deterministically. 

The other three, Parent2, Differential1, and Differential2, are randomly selected. 

The difference between the two differentials determines a direction, and Parent2 is 
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Figure 3-4.  One step of differential evolution

perturbed in this direction. The new child is created by selecting some parameters from 

Parent1 and the others from the perturbed Parent2. This is illustrated in Figure 3-4 and 

Figure 3-5.
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Figure 3-4 shows that the first and second differentials are subtracted and their 

difference multiplied by a constant, usually smaller than one. This shrunken difference 

is added to the secondary parent, and the sum is merged with the primary parent 

in a random crossover operation. The performance of this child is compared to the 

performance of the primary parent, and the superior individual is retained for the next 

generation.

This is shown graphically in Figure 3-5 for two variables. The difference between 

the two differentials determines a direction, and the secondary parent is perturbed in 

this direction. This operation is called mutation in this illustration, though this is not a 

universal term. Then the horizontal variable is taken from the primary parent, and the 

vertical variable is taken from the mutated secondary parent.

This scheme has an important property: it scales perturbations to the natural scales 

of the parameters. Suppose the performance function has a narrow ridge in some 

direction, a common situation. Then the population will gravitate to this same layout. 

Individuals (complete parameter sets) will be spread widely in the direction of the ridge 

and compressed in the perpendicular direction. As a result, differential differences, 

which control the degree of perturbation of the secondary parent, will be large along the 

ridge and small across the ridge, exactly what we want.

Figure 3-5.  Differential child generation

Chapter 3  Optimization Issues



72

Unfortunately, differential evolution shares a weakness common to most stochastic 

procedures: it quickly converges to the vicinity of the global optimum but then never 

quite makes it to the exact optimum. This is because it is inherently unable to take 

advantage of local knowledge of the function. Hill-climbing methods do an excellent 

job of converging to a local optimum, but they are subject to failure by missing 

the global optimum. So, my method is a hybrid, mainly implementing differential 

evolution but occasionally performing a hill-climbing step on a single individual. This 

greatly accelerates convergence, while having negligible impact on the globality of 

the algorithm, because this operation remains in the domain of attraction of a single 

individual at any one time.

A rough overview of the algorithm on the next page is shown here.

for (ind=0 ; ind<popsize+overinit ; ind++) { // Generate the basis population

   Generate a random parameter vector

   value = performance of  this random vector

   If  this individual fails to meet a minimum requirement {

      --ind ;          // Skip it entirely

      continue ;

      }

   if  (ind >= popsize) {  // If  we finished population, now doing overinit

      Find the worst individual in population (popsize individuals)

      if  (value > worst)

         Replace the worst with this new individual

      } // If  doing overinit

   } // For all individuals (population and overinit)

for (generation=1 ; ; generation++) {

   for (ind=0 ; ind<popsize ; ind++) {  // Generate all children

      parent1 = individual 'ind'

      Generate three different random indices for parent2 and the two differentials:

         parent2, diff1, diff2
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      for all variables j {   // This is the mutation and crossover step

         with small probability

            trial[j] = parent2[j] + constant * (diff1[j] - diff2[j]) ;

         else

            trial[j] = parent1[j] ;

         }

      value = performance of  trial parameter set

      if  (value > parent1's performance)

         replace parent1 with trial parameter set

      Optionally pick one variable in one individual (favoring the best so far)

      and find the optimal value of  that variable

      } // Create all children in this generation

   } // For all generations

Return the best individual in the final population

The first step is to generate an initial population, which is done by the first loop 

in this pseudocode. The user specifies the number of individuals in the population, 

popsize. The traditional algorithm does not include overinitialization, the testing of overinit 

additional individuals. I have found that setting overinit to approximately popsize produces 

a substantially superior initial population with faster convergence and better global 

representation at relatively little additional cost.

This population generation loop creates a random individual (complete set of 

trading-system parameters) and computes its performance. If this individual fails any 

user-specified requirement, such as a minimum number of trades, it is rejected, and we 

try again.

When we have generated popsize individuals and are into overinitialization, for each 

new candidate we search the existing population for the poorest-performing individual. 

If the new candidate is superior to the worst individual in the population, the new 

candidate replaces the worst. This steadily improves the quality of the population, and 

it also makes it more likely that we will have one or more individuals in the domain of 

attraction of the global optimum.

We then come to the evolutionary part of the code. There are two nested loops. 

The outer loop processes generations, and within each generation we employ each 
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individual in the current population as the primary parent. The secondary parent 

and the two differential individuals are chosen randomly, and of course these four 

individuals must be different.

Mutation (perturbing the secondary parent by the shrunken difference between the 

differentials) and crossover (randomly replacing some variables in the primary parent 

with the corresponding mutated variables) are done in the same loop for efficiency. We 

loop through all variables to create a trial individual. For each, we roll the dice and with 

generally small probability we set that variable equal to the mutated value. Otherwise, 

we copy the variable from the primary parent.

We compute the performance of this trial individual. If it is superior to the primary 

parent, it goes into the population for the next generation. Otherwise, the primary parent 

goes into the next generation.

Last, we optionally perform a step that does not appear in the traditional algorithm 

but that I have found to be useful in speeding convergence while having little or no 

impact on the ability of the algorithm to find the global optimum in the presence of 

multiple inferior local optima. We pick one individual in the population, with some 

favoritism shown to the currently best individual, and we also pick one variable. We use a 

hill-climbing algorithm to find the value of this variable that optimizes the performance 

of this individual. This gives us the best of both worlds (stochastic optimization versus 

hill-climbing) because it lets the algorithm accurately converge to the exact optimum 

much faster than a purely stochastic algorithm could, while it does not interfere with 

the ability of differential evolution to find the global optimum. This is because when it is 

done, it happens to just one individual, which keeps this individual within the domain of 

attraction of its local optimum while not touching the other individuals in the population 

that may have their own domains of attraction. Thus, the domains of attraction are kept 

separated, enabling the globally best to eventually dominate.

After all generations are complete, we choose the best individual in the final 

population and return it to the user.

The algorithm just shown is abbreviated for clarity. My implementation is much 

more complex because over the years I have refined it in many ways to tweak its 

performance, especially in the context of optimizing trading systems. Beginning on the 

next page we will work through the entire subroutine, listing and commenting on each 

section separately. This code can be found in the file DIFF_EV.CPP. Note that this file 

also includes some other code unrelated to differential evolution but that is efficient to 

perform at the same time. We will ignore this code here and cover it in detail on page 91.
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�The DIFF_EV.CPP Routine for Differential Evolution
The differential evolution subroutine is called with the following parameter list:

int diff_ev (

   double (*criter) ( double * , int ) , // Crit function maximized

   int nvars ,                                     // Number of  variables (trading system parameters)

   int nints ,                                      // Number of  first variables that are integers

   int popsize ,                                 // Population size

   int overinit ,                                  // Overinitialization for initial population

   int mintrades ,                             // Minimum number of  trades for candidate system

   int max_evals ,                            // For safety, max number of  failed initial performance evals

   int max_bad_gen ,                      // Max number of  contiguous gens with no improvement

   double mutate_dev ,                   // Deviation for differential mutation

   double pcross ,                            // Probability of  crossover

   double pclimb ,                            // Probability of  taking a hill-climbing step, can be zero

   double *low_bounds ,                  // Lower bounds for parameters

   double *high_bounds ,                // And upper

   double *params ,                         // Returns nvars best parameters, plus criterion at end

   int print_progress                        // Print progress to screen?

   )

The caller-supplied criter() function computes the trading system’s performance 

criterion, which will be maximized. It takes a vector of the trading system’s optimizable 

parameters. The integer that is also supplied is, in my implementation, the user-

specified minimum number of trades. Readers should find it easy to add other variables 

that might be involved in setting minimum requirements for generated trading systems.

The parameters may be integers or real numbers; they are handled differently 

internally, as will be seen. All integer parameters must come first in the parameter array, 

and nints specifies the number of integers.

The user can set overinit to zero to use the traditional version of the algorithm. 

However, I have found it advantageous to set it equal to something in the vicinity of 

popsize. This tends to speed convergence and increase the probability of finding the true 

global maximum. But note that the point of diminishing returns is reached rapidly. It 

soon happens that the worst individual in the steadily improving population is usually 

superior to most overinitialized individuals, making continued overinitialization a waste.
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The user specifies in mintrd the minimum number of trades required. As will be seen 

in the code presentation, the specified quantity may be automatically reduced if the 

optimizer has extreme difficulty finding systems that meet this requirement. Thus, the 

user should check the number of trades obtained by the optimal system to confirm that 

it is satisfactory. Eliminating this automatic reduction is easy if the programmer want, 

but I have found it useful.

The max_evals parameter is a safety measure. If the trading system is so inherently 

poor that most trial parameters produce rejected systems, it can take an inordinate 

amount of time to generate the initial population. To prevent this, set max_evals to a large 

but reasonable value. This should not be thought of as a convergence test; in practice, 

this limit should never be encountered.

Convergence is defined by the max_bad_gen parameter. If this many consecutive 

generations pass with no improvement in the best individual, convergence is obtained, 

and the algorithm stops. This should usually be quite large, perhaps 50 or even more, as 

it can happen that things go badly because of bad luck for a while before suddenly taking 

off again.

A crossover happens when a mutated parameter is substituted for the corresponding 

parameter in the primary parent, and the probability of this happening is given by pcross. 

This should usually be small, perhaps 0.1 to 0.5 at most.

The probability of a hill-climbing step is given by pclimb. This can be zero to strictly 

avoid hill climbing, keeping true to the traditional version of differential evolution. It 

could be set to a tiny positive value, such as 0.00001, in which case the current best 

individual (and no others) will occasionally be subjected to hill climbing. This greatly 

enhances end-stage accurate convergence to the maximum. Finally, it could be set to a 

somewhat larger but still smallish value, such as 0.2. This way, in addition to tweaking 

the best individual, it will occasionally randomly tweak other individuals. Setting it to 

larger values is usually not very beneficial, as hill climbing is an expensive operation, 

especially for real parameters, and the payoff from doing it more than occasionally is 

usually not sufficient to justify the increased cost. Also, if hill climbing is done too often, 

detection of the true global maximum can be somewhat impeded, although this is not 

usually a problem.

The caller must specify lower and upper bounds for the parameters, using the low_

bounds and high_bounds vectors, respectively.

The params vector, which must be nvars+1 long, returns the optimal parameters. The 

last item in this array is the value of the criterion function for this optimal parameter set.
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If print_progress is input nonzero, frequent progress reports will be printed to the 

console screen.

Only three work arrays are allocated: one to hold the “current” population, one to 

hold the population being created, and one short array to keep track of the grand best 

individual. We use failures to count how many times a randomly generated individual 

for the initial population is rejected, usually because the trading system had too few 

trades. It will be used to reduce the minimum trade requirement, as we’ll see soon. And 

for safety, n_evals counts the total number of times we evaluate a randomly generated 

individual for creating the initial population. This allows an emergency escape to 

avoid hanging the computer. The first popsize individuals fill the pop1 array, and 

overinitializations go in pop2[0].

   dim = nvars + 1 ;  // Each individual is nvars variables plus criterion

   pop1 = (double *) malloc ( dim * popsize * sizeof(double)) ;

   pop2 = (double *) malloc ( dim * popsize * sizeof(double)) ;

   best = (double *) malloc ( dim * sizeof(double)) ;

   failures = 0 ;       // Counts consecutive failures

   n_evals = 0 ;      // Counts evaluations for catastrophe escape

   for (ind=0 ; ind<popsize+overinit ; ind++) {

      if  (ind < popsize)                         // If  we are in pop1

         popptr = pop1 + ind * dim ;       // Point to the slot in pop1

      else                                             // Use first slot in pop2 for work

         popptr = pop2 ;                         // Point to first slot in pop2

We now generate a random individual and put it in popptr. The first nints parameters 

are integers, and the rest are real. Both types are generated by uniformly selecting values 

within the specified range of each. However, integers and reals are handled slightly 

differently. The function unifrand() generates a uniform random number in the range 0–1.

      for (i=0 ; i<nvars ; i++) {       // For all variables (parameters)

         if  (i < nints) {                     // Is this an integer?

            popptr[i] = low_bounds[i]+(int)(unifrand() * (high_bounds[i]-low_bounds[i] + 1.0));

            if  (popptr[i] > high_bounds[i])  // Virtually impossible, but be safe

               popptr[i] = high_bounds[i] ;

            }
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         else                                   // real

            popptr[i] = low_bounds[i] + (unifrand () * (high_bounds[i] - low_bounds[i])) ;

         } // For all parameters

Evaluate the performance of the trading system for this individual, the parameter set 

in popptr. Save this performance in the last slot in popptr, immediately past the parameters. 

Recall that each slot is nvars+1 long. Count the number of performance evaluations 

while building the initial population so that we can use it as an emergency exit to avoid 

being stuck in a seemingly (or actually!) endless loop. Finally, initialize the grand best, 

worst, and average performances to the first individual tested. That memcpy() copies the 

parameters and performance of this individual to the short array where we keep track of 

the all-time best to ultimately return to the user.

      value = criter ( popptr , mintrades ) ;

      popptr[nvars] = value ;          // Also save criterion after variables

      ++n_evals ;                           // Count evaluations for emergency escape

      if  (ind == 0) {

         grand_best = worstf  = avgf  = value ;

         memcpy ( best , pop1 , dim * sizeof(double) ) ; // Best so far is first!

         }

The next block of code handles rejected individuals. Note that this code uses a 

threshold of zero for rejecting a parameter set, such as for showing a loss or failing to 

meet the minimum trade count requirement. If you want to use a different performance 

criterion, one for which this threshold is not appropriate, you should either modify this 

code or, better still, transform your performance criterion. For example, if you want to 

maximize profit factor, for which the appropriate threshold would be one instead of zero, 

you could define your performance as the log of the profit factor.

In the reject-handling code shown next, we first check to see if we have such a 

terrible trading system that the number of evaluations needed to generate the initial 

population has gotten out of control, in which case we take an emergency exit. If not, 

we count the number of such failures. If it has reached a large number (500 is hard-

coded here; feel free to change it), we reset the failure counter and reduce the minimum 

trade requirement, as in my experience this is the most common cause of failure unless 

mintrades has been set very small. In any case, failure of this individual causes it to be 

skipped, while success resets the failure counter. Thus, it takes a lot of failure to trigger 
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reduction of the minimum trade count. Things have to be very bad before this drastic 

action is taken.

      if  (value <= 0.0) {                 // If  this individual is totally worthless

         if  (n_evals > max_evals)  // Safety escape should ideally never happen

            goto FINISHED ;

         --ind ;                                 // Skip it entirely

         if  (++failures >= 500) {      // This many in a row

            failures = 0 ;

            mintrades = mintrades * 9 / 10 ;

            if  (mintrades < 1)

               mintrades = 1 ;

            }

         continue ;

         }

      else

         failures = 0 ;

We maintain the best, worst, and average performances. The latter two are strictly for 

progress reports, and if the user will not be updated on progress, the worst and average 

computation can be omitted.

      if  (value > grand_best) {   // Best ever

         memcpy ( best , popptr , dim * sizeof(double) ) ;

         grand_best = value ;

         }

      if  (value < worstf)

         worstf  = value ;

      avgf  += value ;

If we have completed finding popsize individuals, we are into overinitialization. 

Search the existing population for the worst individual. If this new overinitialization 

individual is superior to the worst, replace the worst with it, which improves the gene 

pool. Recall that the performance is stored just past the parameters, so it is at index 

[nvars]. Once again, we maintain the average performance only for user updates; it plays 

no role in the optimization algorithm.
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      if  (ind >= popsize) {               // If  we finished pop1, now doing overinit

         avgf  = 0.0 ;

         minptr = NULL ;                  // Not needed.  Shuts up 'use before define'

         for (i=0 ; i<popsize ; i++) {  // Search pop1 for the worst

            dtemp = (pop1+i*dim)[nvars] ;

            avgf  += dtemp ;

            if  ((i == 0)  ||  (dtemp < worstf)) {

               minptr = pop1 + i * dim ;

               worstf  = dtemp ;

               }

            } // Searching pop1 for worst

         if  (value > worstf) {            // If  this is better than the worst, replace worst with it

            memcpy ( minptr , popptr , dim * sizeof(double) ) ;

            avgf  += value - worstf  ;  // Account for the substitution

            }

         } // If  doing overinit

      } // For all individuals (population and overinit)

At this point we have completely generated the starting population. Locate the best 

performer, because we will occasionally do a little hill climbing on it (unless the user 

forbids this, a generally bad move). Then set the points to the old (source) and new 

(destination) generations and zero the convergence counter. We will use n_tweaked to 

control hill climbing.

   ibest = n_tweaked = 0 ;

   value = pop1[nvars] ;

   for (ind=1 ; ind<popsize ; ind++) {

      popptr = pop1 + ind * dim ;       // Point to the slot in pop1

      if  (popptr[nvars] > value) {

         value = popptr[nvars] ;

         ibest = ind ;

         }

      }

   old_gen = pop1 ;              // This is the old, parent generation

   new_gen = pop2 ;            // The children will be produced here

   bad_generations = 0 ;      // Counts contiguous generations with no improvement of  best
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We have nested loops, with generations being the outer loop and individuals within 

a generation the inner loop. Keep track of the average and worst only for optional user 

updates. The variable improved flags if the best individual improved at any point in the 

generation. This is used to signal convergence. The primary parent, parent1, comes from 

the source population, and the child we will create will go to the destination population.

   for (generation=1 ; ; generation++) {

      worstf  = 1.e60 ;

      avgf  = 0.0 ;

      improved = 0 ;                                        // Will flag if  we improved in this generation

      for (ind=0 ; ind<popsize ; ind++) {          // Generate all children for this generation

         parent1 = old_gen + ind * dim ;           // Pure (and tested) parent

         dest_ptr = new_gen + ind * dim ;        // Winner goes here for next gen

We randomly select the secondary parent and the two differentials. These must be 

different from the primary parent and from one another.

         do { i = (int) (unifrand() * popsize) ; }

            while ( i >= popsize || i == ind ) ;

         do { j = (int) (unifrand() * popsize) ; }

            while ( j >= popsize || j == ind || j == i ) ;

         do { k = (int) (unifrand() * popsize) ; }

            while ( k >= popsize || k == ind || k == i || k == j ) ;

         parent2 = old_gen + i * dim ;    // Parent to mutate

         diff1 = old_gen + j * dim ;         // First differential vector

         diff2 = old_gen + k * dim ;        // Second differential vector

The following code takes care of mutation and crossover to create a new child. We’ll 

loop through every parameter, randomly deciding for each whether to mutate and do 

crossover. If we get to the last parameter and have not done this yet, we do it to the last to 

ensure that there is at least one change. We randomly choose a starting parameter so that 

when we get to the end we will not always be at the same place for the final action.  

The mutation can easily push parameters outside their legal range. Fix this as needed. 

The ensure_legal() routine will be discussed later.
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         do { j = (int) (unifrand() * nvars) ; }

            while ( j >= nvars ) ;  // Pick a starting parameter

         used_mutated_parameter = 0 ;         // We must act at least once; we haven’t yet

         for (i=nvars-1 ; i>=0 ; i--) {

            if  ((i == 0 && ! used_mutated_parameter) || (unifrand() < pcross)) {

               dest_ptr[j] = parent2[j] + mutate_dev * (diff1[j] - diff2[j]) ;

               used_mutated_parameter = 1 ;

               }   // We mutated this variable

            else   // We did not mutate this variable, so copy old value

               dest_ptr[j] = parent1[j] ;

            j = (j + 1) % nvars ;   // Rotate through all variables

            }

         ensure_legal ( nvars , nints , low_bounds , high_bounds , dest_ptr ) ;

Evaluate the performance of this newly created child. If it is superior to the primary 

parent, put it into the destination population. Otherwise, copy the primary parent 

into the destination population. Keep track of the all-time best individual, which will 

eventually be returned to the caller. Flag via improved that we had an improvement this 

generation so that we are not ready to quit yet. The variable n_tweaked will be used in 

conjunction with hill climbing soon.

         value = criter ( dest_ptr , mintrades ) ;

         if  (value > parent1[nvars]) {          // If  the child is better than parent1

            dest_ptr[nvars] = value ;            // Get the child's value (The vars are already there)

            if  (value > grand_best) {            // And update best so far

               grand_best = value ;

               memcpy ( best , dest_ptr , dim * sizeof(double) ) ;

               ibest = ind ;

               n_tweaked = 0 ;

               improved = 1 ;                         // Flag that the best improved in this generation

               }

            }
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         else {                                             // Else copy parent1 and its value

            memcpy ( dest_ptr , parent1 , dim * sizeof(double) ) ;

            value = parent1[nvars] ;

            }

We now embark on the optional (but very useful) hill-climbing step. The following 

code is the logic for deciding if and what to hill climb. We’ll discuss it on the next page.

         if  (pclimb > 0.0  &&

                      ((ind == ibest  &&  n_tweaked < nvars)  ||  (unifrand() < pclimb))) {

            if  (ind == ibest) {                             // Once each generation tweak the best

               ++n_tweaked ;                             // But quit if  done all vars

               k = generation % nvars ;              // Cycle through all vars

               }

            else {                                               // Randomly choose an individual

               k = (int) (unifrand() * nvars) ;        // Which var to optimize

               if  (k >= nvars)                               // Safety only

                  k = nvars - 1 ;

               }

If the user specifies pclimb=0, then hill climbing (called tweaking here) will never be 

done. Assuming that we can do it, two conditions are checked, either of which will allow 

a single climbing operation on this individual, which may be the newly created child or 

may be a copy of the primary parent. If the individual is the best so far and not all of its 

variables have been tweaked, we tweak it. Recall that n_tweaked was reset to zero every 

time the grand best changed. If this is the best, we count this tweaking and choose the 

variable according to the generation. It is common for the best individual to remain the 

same for multiple generations in a row, and this choice of parameter causes the tweaking 

to rotate among parameters, avoiding duplication.

If that first test fails (either this is not the best individual or all of its parameters have 

been tweaked already), then we roll the dice and randomly decide whether to tweak a 

randomly chosen parameter in this individual.
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Integer and real parameters are tweaked differently, with the former being much 

simpler and faster. Here is half of the integer code:

            if  (k < nints) {             // Is this an integer?

               ivar = ibase = (int) dest_ptr[k] ;

               ilow = (int) low_bounds[k] ;

               ihigh = (int) high_bounds [k] ;

               success = 0 ;

               while (++ivar <= ihigh) {

                  dest_ptr[k] = ivar ;

                  test_val = criter ( dest_ptr , mintrades ) ;

                  if  (test_val > value) {

                     value = test_val ;

                     ibase = ivar ;

                     success = 1 ;

                     }

                  else {

                     dest_ptr[k] = ibase ;

                     break ;

                     }

                  }

We preserve in ibase the current value of this parameter so we can restore it if 

no improvement is found. We’ll vary ivar in the vicinity of the current value to seek 

improvement. A full global search over its entire legal range would usually be a waste of 

time. The variable success flags if we found any improvement. We move the parameter 

upward until it hits its upper limit or performance fails to improve. (The possibility of flat 

performance followed by improvement is ignored here to keep the search fast.) As long 

as we are improving, we keep updating ibase and the improved value. When performance 

fails to improve, which may happen on the first test, we set the parameter to ibase and 

stop advancing.

If we did not find success by increasing the parameter, we try decreasing it instead. 

This algorithm is essentially identical to the upward-search algorithm, so there is no 

point in discussing it here.
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               if  (! success) {

                  ivar = ibase ;

                  while (--ivar >= ilow) {

                     dest_ptr[k] = ivar ;

                     test_val = criter ( dest_ptr , mintrades ) ;

                     if  (test_val > value) {

                        value = test_val ;

                        ibase = ivar ;

                        success = 1 ;

                        }

                     else {

                        dest_ptr[k] = ibase ;

                        break ;

                        }

                     } // While searching downward

                  } // If  the upward search did not succeed

               } // If  k < nints (this parameter is an integer)

The code for handling real parameters is a bit more complex. We begin, as shown 

on the next page, by copying information needed for performance computation to 

static variables, all of which begin with local_. This technique allows the parameter 

optimization routines to be general purpose, calling a criterion function that references 

only the parameters being optimized.

            else {                                      // This is a real parameter

               local_criter = criter ;

               local_ivar = k ;                    // Pass it to criterion routine

               local_base = dest_ptr[k] ;   // Preserve orig var

               local_x = dest_ptr ;

               local_nvars = nvars ;

               local_nints = nints ;

               local_low_bounds = low_bounds ;

               local_high_bounds = high_bounds ;

               old_value = value ;
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Optimization is done in two steps. First, we call a rough global search routine glob_max() 

(source code in GLOB_MAX.CPP) that tests a handful of discrete points in a range and finds 

the one having maximum function value. If the value is increasing at an endpoint, it advances 

until a peak is found. Then this maximum is refined using Brent’s algorithm in brentmax() 

(source code in BRENTMAX.CPP). This, unfortunately, can be an expensive operation. But 

the return is often substantial, especially when differential evolution has gotten us close to 

the global maximum and all we need is accurate maximization of the best individual.

We commence the rough global search in the near vicinity of the current value of the 

parameter:

               lower = local_base - 0.1 * (high_bounds[k] - low_bounds[k]) ;

               upper = local_base + 0.1 * (high_bounds[k] - low_bounds[k]) ;

               if  (lower < low_bounds[k]) {

                  lower = low_bounds[k] ;

                  upper = low_bounds[k] + 0.2 * (high_bounds[k] - low_bounds[k]) ;

                  }

               if  (upper > high_bounds[k]) {

                  upper = high_bounds[k] ;

                  lower = high_bounds[k] - 0.2 * (high_bounds[k] - low_bounds[k]) ;

                  }

               k = glob_max ( lower , upper , 7 , 0 , c_func ,

                              &x1 , &y1 , &x2 , &y2 , &x3 , &y3 ) ;

At this point we have a trio of points such that the center point has maximum 

function value. Refine this and call ensure_legal()to ensure that the parameters are 

within their legal bounds. This will likely be the case, or at least very close, because the 

criterion function applies a huge penalty when the legal bounds are exceeded, and the 

maximization routine will respond vigorously to this penalty. If the performance has 

been improved, even after forcing legality, which will nearly always be the case, save the 

superior parameter and update the grand best. Finally, update the worst and average 

performance, strictly for user updates (not a part of the algorithm).

               brentmax ( 5 , 1.e-8 , 0.0001 , c_func , &x1 , &x2 , &x3 , y2 ) ;

               dest_ptr[local_ivar] = x2 ;  // Optimized var value

               ensure_legal ( nvars , nints , low_bounds , high_bounds , dest_ptr ) ;

               value = criter ( dest_ptr , mintrades ) ;
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               if  (value > old_value) {

                  dest_ptr[nvars] = value ;

                  }

               else {

                  dest_ptr[local_ivar] = local_base ;       // Restore original value

                  value = old_value ;

                  }

               if  (value > grand_best) {       // Update best so far

                  grand_best = value ;

                  memcpy ( best , dest_ptr , dim * sizeof(double) ) ;

                  ibest = ind ;

                  n_tweaked = 0 ;

                  improved = 1 ;   // Flag that the best improved in this generation

                  }

               } // If  optimizing real parameter

            } // If  doing hill-climbing step

         if  (value < worstf)

            worstf  = value ;

         avgf  += value ;

         } // Create all children in this generation

We are practically done. If this generation saw no improvement in the best 

individual, increment the convergence counter and quit if we reached the user-specified 

count. But if we did get improvement, reset the counter. Then reverse the roles of pop1 

and pop2 for the source and destination generation populations. The little remaining 

code is just cleanup work, omitted here.

      if  (! improved) {

         ++bad_generations ;

         if  (bad_generations > max_bad_gen)

            goto FINISHED ;

         }

      else

         bad_generations = 0 ;
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      if  (old_gen == pop1) {

         old_gen = pop2 ;

         new_gen = pop1 ;

         }

      else {

         old_gen = pop1 ;

         new_gen = pop2 ;

         }

      } // For all generations

The routine for ensuring legality simply checks each parameter against its user-

specified limit, computes a stiff penalty for being outside the limit (used only for real-

parameter tweaking), and enforces the limit. For integers, we treat positive and negative 

values separately to ensure correct truncation. Recall that mutation will generally cause 

integer parameters to obtain non-integer values, so we fix that here as a first step.

static double ensure_legal ( int nvars , int nints , double *low_bounds , double

*high_bounds , double *params )

{

   int i, j, varnum, ilow, ihigh ;

   double rlow, rhigh, penalty, dtemp ;

   penalty = 0.0 ;

   for (i=0 ; i<nvars ; i++) {

      if  (i < nints) {                   // Is this an integer parameter?

         if  (params[i] >= 0)

            params[i] = (int) (params[i] + 0.5) ;

         else if  (params[i] < 0)

            params[i] = -(int) (0.5 - params[i]) ;

         }

      if  (params[i] > high_bounds[i]) {

         penalty += 1.e10 * (params[i] - high_bounds[i]) ;

         params[i] = high_bounds[i] ;

         }
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      if  (params[i] < low_bounds[i]) {

         penalty += 1.e10 * (low_bounds[i] - params[i]) ;

         params[i] = low_bounds[i] ;

         }

      }

   return penalty ;

}

The routine called by glob_max() and brentmax() is a simple function of the single 

parameter being optimized. The appropriate parameter is set to the trial value, and 

ensure_legal() is called to enforce legality and compute a possible penalty for being 

outside the bounds. Then the performance computation routine is called to compute 

the trading system’s performance, and the penalty, if any, is subtracted from the 

performance.

static double c_func ( double param )

{

   double penalty ;

   local_x[local_ivar] = param ;

   penalty = ensure_legal ( local_nvars , local_nints , local_low_bounds ,

                                           local_high_bounds , local_x ) ;

   return local_criter ( local_x , mintrades ) - penalty ;

}

A complete program to demonstrate this algorithm, DEV_MA.CPP, will be presented 

on page 112.
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CHAPTER 4

Post-optimization Issues
�Cheap Bias Estimates
On page 121 we’ll present a detailed examination of training bias, and on page 286 we’ll 

see a powerful way to deal with this serious problem. But for the moment, we’ll provide a 

rough overview of training bias and show how, if one has trained a trading system using 

differential evolution or some similar stochastic algorithm, we can get a rough but useful 

estimate of training bias as an inexpensive by-product of parameter optimization.

As we embark on developing a trading system, we have in our possession a set of 

historical data on which we will optimize our system. This is usually called the in-sample 

or IS data. When the system is tested or put to use on a different set of data, that data is 

called the out-of-sample or OOS data. We virtually always expect that the IS performance 

will be superior to the OOS performance. This can be because of several factors, the most 

important of which is that the inevitable noise present in our IS data will, to some small 

or large degree, be mistaken by our training algorithm for legitimate patterns. When  

(by definition) identical noise does not appear in the OOS data, performance will suffer.

A key aspect of responsible trading system development is estimation of training 

bias, the degree to which IS performance exceeds OOS performance. Later we’ll see 

some sophisticated ways of doing so with decent accuracy. But when we have tested 

a large number of random parameter combinations as a preliminary population for a 

stochastic optimization procedure, we can use those parameter sets and associated bar-

by-bar returns to quickly generate an estimate of training bias that, while far from the 

accuracy obtainable with more sophisticated methods, is often good enough for a rough 

preliminary estimate. This gives us an early idea of whether we are on the right track, and 

it may save us more work in a direction that leads to a dead end.
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�The StocBias Class
The file STOC_BIAS.CPP contains code for a class that lets us intercept preliminary 

population generation and use this data to roughly estimate training bias. To do so, we 

need access to the bar-by-bar returns of every trial trading system during generation of 

the initial population.

It is vital that the trial parameter estimates be generated either randomly or by a 

deterministic grid search. They must not be generated from any sort of intelligent guided 

search. Thus, we will examine all of the legitimate cases used in constructing the initial 

population for differential evolution, but we must not use any of the cases that are 

created by mutation and crossover.

The motivation for the algorithm is this: suppose we were to choose some bar in 

advance that will serve as a single OOS bar. As we process every trial parameter set, we 

will find the parameter set from among all trials that maximizes the total return of all 

other bars—all bars except the one we have chosen in advance to be an OOS bar. We 

might call this the IS set. Our chosen OOS bar will play no role in selecting the best-

performing parameter set because it is ignored during calculation of the IS return. After 

we have examined all parameter sets that went into the creation of the initial population, 

the IS per-bar return of our best parameter set, minus the return of our single OOS bar, 

will be a crude but honest estimate of the training bias.

If we did this for just a single chosen OOS bar, our training bias estimate would 

be too subject to random variation to be useful. But it is easy to do this essentially 

simultaneously for every bar and then combine the individual returns. For any 

parameter set, we just compute the total return of all bars. If we subtract the return of 

any single bar from the total, the difference is the IS return for that parameter set, and 

the bar we remove is the corresponding OOS return. As we process trial parameter sets, 

we keep track of, for each bar separately, the maximum IS return and the OOS return 

corresponding to that superior IS return so we can subtract later.

The primary limitation is that for this to give a really good estimate of training bias, 

we would need to find the truly optimal parameter set for each IS set, and there are 

as many IS sets as there are bars in the historical data. This is obviously impractical. 

Because we are basing our “optimum” on nothing more than randomly selected trial 

parameter sets, we cannot expect great accuracy. In fact, unless the trial population is 

large, perhaps several thousand at least, our bias estimate will be worthless. But by using 

large over-initialization in the differential evolution, we can accomplish this and provide 

a great starting population to boot!
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The class declaration is as follows:

class StocBias {

public:

   StocBias::StocBias ( int ncases ) ;

   StocBias::~StocBias () ;

   int ok ;          // Flags if  memory allocation went well

   void collect ( int collect_data ) ;

   void process () ;

   void compute ( double *IS_mean , double *OOS_mean , double *bias ) ;

   double *expose_returns () ;

private:

   int nreturns ;              // Number of  returns

   int collecting ;             // Are we currently collecting data?

   int got_first_case ;     // Have we processed the first case (set of  returns)?

   double *returns ;        // Returns for currently processed case

   double *IS_best ;       // In-sample best total return

   double *OOS ;           // Corresponding out-of-sample return

} ;

The constructor for our StocBias class allocates memory and initializes a few flags. The 

collecting flag signals whether we are collecting and processing cases. This must be turned on 

(nonzero) when we are building the initial population and turned off during optimization.  

I have omitted code that verifies successful memory allocation and sets the ok flag.

StocBias::StocBias (

   int nc

   )

{

   nreturns = nc ;

   collecting = 0 ;

   got_first_case = 0 ;

   IS_best = (double *) malloc ( nreturns * sizeof(double) ) ;

   OOS = (double *) malloc ( nreturns * sizeof(double) ) ;

   returns = (double *) malloc ( nreturns * sizeof(double) ) ;

}
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The following trivial routine is called (with collect_data=1) when we want to begin 

collecting trial parameter sets and returns, and it is called again (with collect_data=0) 

when we are finished collecting:

void StocBias::collect ( int collect_data )

{

   collecting = collect_data ;

}

We could let returns be public, but C++ purists would like it to remain private and 

expose it to the criterion routine, so that’s what I do here:

double *StocBias::expose_returns ()

{

   return returns ;

}

Every time the parameter evaluation routine is called, that routine is responsible for 

placing the bar-by-bar returns in this returns and then calling process().

void StocBias::process ()

{

   int i ;

   double total , this_x ;

   if  (! collecting)

      return ;

   total = 0.0 ;

   for (i=0 ; i<nreturns ; i++)

      total += returns[i] ;

   // Initialize if  this is the first call

   if  (! got_first_case) {

      got_first_case = 1 ;

      for (i=0 ; i<nreturns ; i++) {

         this_x = returns[i] ;

         IS_best[i] = total - this_x ;

         OOS[i] = this_x ;

         }

      }
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   // Keep track of  best if  this is a subsequent call

   else {

      for (i=0 ; i<nreturns ; i++) {

         this_x = returns[i] ;

         if  (total - this_x > IS_best[i]) {

            IS_best[i] = total - this_x ;

            OOS[i] = this_x ;

            }

         }

      }

}

The process() routine begins by summing the returns of all bars to get a total return 

for this trial parameter set. If this is the first call (got_first_case is false), we initialize by 

setting the “best-so-far” IS returns in IS_best[] to be the IS returns, and we also initialize 

the corresponding OOS returns. Recall that the IS return for any OOS bar is the sum of all 

returns except that for the OOS bar. This is easily obtained by subtracting the OOS bar’s 

return from the total of all returns.

If this is a subsequent call, the procedure is similar, except that instead of initializing 

IS_best[], we update it if this IS return is greater than the running best. If we do this 

update, we must also update the corresponding OOS return.

All that remains is trivial computation of final results. The values we return are 

based on the total return across the market history. Each element of IS_best[] is the 

sum of nreturns–1 bar returns, so we divide the sum by this quantity to make the sum 

commensurate with the sum of OOS returns.

void StocBias::compute (

   double *IS_return ,

   double *OOS_return ,

   double *bias

   )

{

   int i ;

   *IS_return = *OOS_return = 0.0 ;
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   for (i=0 ; i<nreturns ; i++) {

      *IS_return += IS_best[i] ;

      *OOS_return += OOS[i] ;

      }

   *IS_return /= (nreturns - 1) ;     // Each IS_best is the sum of  nreturns-1 returns

   *bias = *IS_return - *OOS_return ;

}

What do we do with the bias after we’ve computed it? In isolation it’s of limited value. 

Plus, we must remember that this is a crude estimate. Still, it’s useful to subtract the bias 

from the total return of the trading system obtained from the optimal parameter set 

produced by the differential evolution or other optimization algorithm. If removal of the 

approximate training bias produces a less-than-excellent estimate of how the parameter 

set will perform out of sample, we should pause and reconsider our trading system.

It can be important to compare the IS_return computed here with the optimal value 

produced by the optimization routine. Naturally it will virtually always be less; the 

optimization algorithm would be pretty poor otherwise! But ideally it will be fairly close. 

If we find that our IS_return is much smaller than the optimal return, we should conclude 

that we have employed too few trial parameter sets, and hence our bias estimate will be 

exceptionally poor.

A complete example of this routine in the context of an actual trading system will 

appear in the discussion of the DEV_MA program on page 112.

�Cheap Parameter Relationships
In the prior section, we saw how the initial population from a stochastic optimization 

routine like differential evolution could be borrowed to provide a quick-and-dirty 

estimate of training bias. In this section, we will see how the final population, after 

optimization is complete, can be used to quickly generate some interesting measures 

of how the parameters relate to one another. As with the cheap training bias, these are 

rough estimates and can sometimes be wildly inaccurate. However, more often than 

not, they will prove interesting and useful, especially if a large population is used and 

optimization continues until stability is obtained. Moreover, as part of this presentation, 

we will point out how the algorithm can be modified to produce much more reliable 

estimates, though at a cost of more computation time.
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Some of the mathematics in this development is beyond the scope of this book and 

will be presented as stated fact, with the reader having to trust in the process. Moreover, 

many claims are simplified for this presentation, though never to the point of being 

rendered incorrect. On the other hand, there is nothing really esoteric here; all of these 

results are standard material, widely available in standard statistical references. With 

these caveats in mind...

The Hessian of a function of several variables is the matrix of second partial 

derivatives of the function with respect to the variables. In other words, the i,j element of 

the Hessian matrix is the partial derivative of the function with respect to the i’th and j’th 

variables. Suppose the function is the negative log likelihood of a probability density; the 

variables are the parameters of the probability density function, and we have computed 

the Hessian at the maximum likelihood estimates of the parameters. Then for a broad 

class of probability density functions, including the venerable normal distribution, the 

estimated standard error of a parameter estimate is the square root of the corresponding 

diagonal of the inverse of the Hessian matrix. In fact, the inverse of the Hessian is the 

covariance matrix of the parameter estimates.

Before any statisticians start screaming, let me emphasize that the performance 

maximum of a trading system is a very different animal from the log likelihood of a 

statistical distribution, so it is a bit of a stretch to treat them similarly. On the other 

hand, the general behavior of an optimized trading system near its maximum (or any 

multivariate function, for that matter) follows the same principles. The inverse of its 

Hessian in the vicinity of the optimum describes the directional rates of change of the 

level curves of parameters. As long as we don’t talk about standard errors of estimates, 

but rather keep everything relative, we can glean a lot of information about the 

relationships among parameters with some relatively simple techniques.

Complete source code for this algorithm is in the file PARAMCOR.CPP, and the  

DEV_MA.CPP program that will be presented on page 112 will illustrate it in the context 

of an actual trading system. We now work through the code one section at a time. The 

routine is called as follows:

int paramcor (

   int ncases ,        // Number of  cases

   int nparams ,     // Number of  parameters

   double *data      // Ncases (rows) by nparams+1 input of  trial pts and f  vals

   )

Chapter 4  Post-optimization Issues



98

The structure of the data matrix is identical to that in the DIFF_EV.CPP program. Each 

individual (complete parameter set along with performance metric) occupies a single 

row, with the parameters first and the performance at the end. This means paramcor() 

can be called with the final population after optimization is complete. It would make no 

sense to call it with the initial population, as we did when estimating training bias. This 

is because we want the entire population to be near the global optimum, and in fact we 

want that optimum to be part of the population.

A fast and easy way to compute the Hessian matrix, which is what we will do here, is 

to fit a least-squares quadratic function in the vicinity of the optimum and then compute 

the Hessian directly. We need the number of parameters in this fit:

   if  (nparams < 2)

      return 1 ;

   ncoefs = nparams                               // First-order terms

          + nparams * (nparams + 1) / 2     // Second-order terms

          + 1 ;                                              // Constant

Before proceeding, it is important to emphasize that there are at least two alternative 

methods for computing the Hessian, both of which are more work but are likely superior 

in terms of accuracy. Readers who find value in the techniques described in this 

section would do well to explore these alternative methods, each of which has its own 

advantages and disadvantages. Here is a brief comparison of them:

•	 The method used here is a cheap by-product of differential evolution. 

We do not need to repeatedly evaluate the performance for various 

parameter sets because we already have a population in hand, most 

of whose members are relatively near the optimum. The use of a 

least-squares fit tends to smooth out noise. The big disadvantage of 

this method is that trial parameter sets that are far from the optimum 

can throw an annoying monkey wrench into calculations. This 

method works best when we have a very large population and we 

optimize until convergence is solid.

•	 We can take a large number of random samples in the vicinity of the 

optimal parameter set, evaluate the performance of each, and do a 

least-squares fit just as in the first method. This has the significant 

advantage that wild parameter sets will not appear and interfere 
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with computations. But it does require numerous performance 

evaluations, which can complicate code and add significant 

computation time if a large number of evaluations are done. More 

important, choosing an appropriate degree of random variation is not 

a trivial undertaking, while differential evolution tends to gravitate to 

appropriate values.

•	 We can use standard numerical methods, perturbing each parameter 

and numerically computing the partial derivatives directly. 

Again, finding an appropriate perturbation can be difficult, and 

misjudgment can have a profound effect on accuracy. But if done 

carefully, this would almost certainly be a good approach.

Here we deal with an annoyingly heuristic decision. To limit the population to only 

those parameter sets that are close to the optimum, we keep only a fraction of the final 

population, those with the smallest Euclidean distance from the optimum. How many 

cases do we keep? My own heuristic is to keep 50 percent more cases than there are 

coefficients to be estimated. If this is too small, we may not get enough variation to allow 

accurate computation of every interaction coefficient. If it is too large, we may suffer 

contamination from wild parameter sets, so far from the optimum that we are prevented 

from getting accurate local behavior. But in my own experience this factor is reasonably 

reliable, especially if the population is large (at least several hundred). If the population 

is many hundreds, it would likely be beneficial to increase this factor to increase the 

likelihood of being able to model all parameter interactions.

   nc_kept = (int) (1.5 * ncoefs) ;  // Keep this many individuals

   if  (nc_kept > ncases) {

      return 1 ;

      }

We need a lot of work areas allocated. We’ll use the SingularValueDecomp object for doing 

the least-square quadratic fit. Its source code can be found in SVDCMP.CPP. Readers 

unfamiliar with this technique will find it easy to locate more information on singular 

value decomposition, a standard and reliable least-squares fitting method. We also open 

a log file to which the information from this algorithm will be written for the user.
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   sptr = new SingularValueDecomp ( nc_kept , ncoefs , 0 ) ;

   coefs = (double *) malloc ( ncoefs * sizeof(double) ) ;

   hessian = (double *) malloc ( nparams * nparams * sizeof(double) ) ;

   evals = (double *) malloc ( nparams * sizeof(double) ) ;

   evect = (double *) malloc ( nparams * nparams * sizeof(double) ) ;

   work1 = (double *) malloc ( nparams * sizeof(double) ) ;

   dwork = (double *) malloc ( ncases * sizeof(double) ) ;

   iwork = (int *) malloc ( ncases * sizeof(int) ) ;

   fopen_s ( &fp , "PARAMCOR.LOG" , "wt" ) ;

We locate the best individual in the population and get a pointer to it.

   for (i=0 ; i<ncases ; i++) {

      pptr = data + i * (nparams+1) ;

      if  (i==0  ||  pptr[nparams] > best_val) {

         ibest = i ;

         best_val = pptr[nparams] ;

         }

      }

   bestptr = data + ibest * (nparams+1) ;   // This is the best individual

We will want to work with a subset of the population made up of only those 

individuals that are closest to the optimal parameter set. This lets us focus on local 

information without being confused by performance variation far from the optimum. To 

do this, compute the Euclidean distance between the optimum and every member of the 

population. Sort these distances, simultaneously moving their indices so we end up with 

the indices of the sorted individuals. One implication of using Euclidean distance is that 

we must define the trading system’s parameters in such a way that they are at least roughly 

commensurate. Otherwise, some parameters may receive excess or insufficient weight in 

computing distances. Later, we will see still another reason why this is important. Source 

code for the subroutine qsortdsi() is in QSORTD.CPP.

   for (i=0 ; i<ncases ; i++) {

      pptr = data + i * (nparams+1) ;

      sum = 0.0 ;
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      for (j=0 ; j<nparams ; j++) {

         diff  = pptr[j] - bestptr[j] ;

         sum += diff  * diff  ;

         }

      dwork[i] = sum ;

      iwork[i] = i ;

      }

   qsortdsi ( 0 , ncases-1 , dwork , iwork ) ; // Closest to most distant

Here is where we use singular value decomposition to compute the coefficients of a 

least-squares fit quadratic surface to the performance curve. This is a quadratic equation 

that provides minimum-squared-error estimates of the performance as a function of 

the coefficients, at least in the neighborhood of the optimum. To aid numerical stability, 

we subtract the coefficients and parameter value of the best individual from each other 

individual, thus centering the computation around the best parameter set. This is not 

mathematically necessary; if it were not done, any differences would just be absorbed 

into the constant offset. However, it does provide a quick-and-easy way to somewhat 

improve numerical stability. Comments at the beginning of the source code file 

SVDCMP.CPP provide some explanation of what’s going on here, and more details can 

be easily found online or in many standard regression textbooks.

   aptr = sptr->a ;                                            // Design matrix goes here

   best = data + ibest * (nparams+1) ;            // Best individual, parameters and value

   for (i=0 ; i<nc_kept ; i++) {                            // Keep only the nearby subset of  population

      pptr = data + iwork[i] * (nparams+1) ;

      for (j=0 ; j<nparams ; j++) {

         d = pptr[j] - best[j] ;                                // This optional centering slightly aids stability

         *aptr++ = d ;                                          // First-order terms

         for (k=j ; k<nparams ; k++) {

            d2 = pptr[k] - best[k] ;

            *aptr++ = d * d2 ;                               // Second-order terms

            }

         }
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      *aptr++ = 1.0 ;                                                // Constant term

      sptr->b[i] = best[nparams] - pptr[nparams] ;  // RHS is function values, also centered

      }

   sptr->svdcmp () ;

   sptr->backsub ( 1.e-10 , coefs ) ;                      // Computes optimal weights

At this point we have the quadratic function coefficients in coefs. The constant 

of 1.e–10 is heuristic and not terribly important. It just controls the extent to which 

the coefficients will be computed in case of near singularity, which would be almost 

impossible to obtain in this application. We omit here the tedious code for printing the 

coefficients in case the user is interested.

Something subtle but vitally important should be noted in the code just shown: we 

flipped the sign of the performance. This converts the problem from one of maximization 

to one of minimization, akin to minimizing the negative log likelihood of a statistical 

distribution. This is not necessary; the results we need would follow just as well without 

the sign reversal. Not only is it nice to conform to traditional usage, but this will also give 

us positive numbers on the diagonal, which when printed are easier to read and more 

user-friendly.

Computing the Hessian matrix from the quadratic fit is trivial, just differentiating 

each term once for each parameter. Of course, this means we compute second 

derivatives for the diagonal terms, in which the same parameter appears twice. Linear 

terms vanish when differentiated twice. The matrix is symmetric, so we just copy one 

term to the other.

   cptr = coefs ;

   for (j=0 ; j<nparams ; j++) {

      ++cptr ;   // Skip the linear term

      for (k=j ; k<nparams ; k++) {

         hessian[j*nparams+k] = *cptr ;

         if  (k == j)                                        // If  this is a diagonal element

            hessian[j*nparams+k] *= 2.0 ;     // Second partial is twice coef

         else                                                // If  off-diagonal

            hessian[k*nparams+j] = *cptr ;    // Copy the symmetric element

         ++cptr ;

         }

      }
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This is a good place for a short digression on what can go wrong and why 

apparent problems may not actually be as serious as they appear. Some problems 

can be informative in their own right. Recall that because we flipped the sign of the 

performance measure, we are now minimizing our function. The implication is that if we 

are at a true local (and ideally global!) minimum, the second derivatives of the function 

with respect to each parameter (the diagonal of the Hessian matrix) would be strictly 

positive. But what if one or more diagonals is zero or, heaven forbid, negative?

The short answer is that subsequent calculations are severely compromised. 

Remember that our fundamental assumption is that we are at a minimum (our 

performance is at a maximum). Everything that we will venture to conclude about 

parameter relationships hinges on the validity of this assumption. Here are some more 

thoughts on this issue:

•	 Any parameter whose diagonal element is not positive must be 

ignored in subsequent calculations. At least in regard to the least-

squares fit to the data, this parameter is not at its optimal value.

•	 “Local” is a subjective description. A parameter may indeed be at 

a local optimum in a narrow vicinity of its location, but this local 

optimum may not be global.

•	 The parameter may indeed be globally optimal, but the least-squares 

fit is extended over such a distance that it no longer represents the 

local behavior of the function. In other words, it’s the least-squares 

fit that’s the problem, as it’s being asked to approximate highly 

nonquadratic behavior.

•	 Perhaps most important, nonpositive diagonals are a red flag that 

the parameterization of the trading system is unstable. Typically, 

this indicates that instead of the performance curve being a nice 

smooth function of each parameter, it bounces up and down wildly. 

A small change in a parameter may move the performance violently, 

or perhaps move it up, then down after a little more move, and then 

back up again, multiple times. This happens when the trading system, 

instead of reliably capitalizing on repeatable patterns, more or less 

randomly catches big wins and then big losses, back and forth as a 

parameter varies throughout its range. This is poor behavior.
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•	 A corollary of the prior statement is that “local” behavior should extend 

as far beyond locality as possible. If the performance curve behaves one 

way near its optimum but then quickly changes to different behavior just 

a little distance away, it’s a dangerous system. We want to see, for each 

parameter, a broad peak of performance near the optimal value, with a 

smooth, steady drop-off as we move further from the optimal value.

The upshot of the prior points is that if we find that one or more diagonals are 

nonpositive, we should not curse the algorithm and automatically consider switching 

to numerical differentiation as an alternative to the least-squares-fit method, which has 

nice noise-cancellation properties. Instead, we should look long and hard at our trading 

system and especially plot sensitivity curves as will be discussed on page 108.

Okay, enough said, so we move on to what to do about negative diagonals. It’s 

simple: just make any diagonal element, along with its row and column, zero. This will 

remove it from all subsequent computation.

   for (j=0 ; j<nparams ; j++) {

      if  (hessian[j*nparams+j] < 1.e-10) {

         for (k=j ; k<nparams ; k++)

            hessian[j*nparams+k] = hessian[k*nparams+j] = 0.0 ;

         }

      }

It’s also the case that we are at a local minimum (remember that we flipped the sign 

of the performance) if and only if the Hessian matrix is positive semidefinite. But it’s 

possible for wild parameter values to cause a quadratic fit whose Hessian does not have 

this property. We encourage this if necessary by limiting off-diagonal elements, although 

weird correlation patterns may still produce negative eigenvalues.

   for (j=0 ; j<nparams-1 ; j++) {

      d = hessian[j*nparams+j] ;           // One diagonal

      for (k=j+1 ; k<nparams ; k++) {

         d2 = hessian[k*nparams+k] ;    // Another diagonal

         limit = 0.99999 * sqrt ( d * d2 ) ;

         if  (hessian[j*nparams+k] > limit) {

            hessian[j*nparams+k] = limit ;

            hessian[k*nparams+j] = limit ;

            }
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         if  (hessian[j*nparams+k] < -limit) {

            hessian[j*nparams+k] = -limit ;

            hessian[k*nparams+j] = -limit ;

            }

         }

      }

The Hessian matrix will not be invertible with usual methods if any diagonal has 

been zeroed, and we will soon need the eigenvalues and vectors of it anyway, so we 

compute them and use them to compute the generalized inverse of the Hessian. We 

put the inverse back in the Hessian matrix to avoid yet another memory allocation. The 

source code for evec_rs() is in EVER_RS.CPP.

   evec_rs ( hessian , nparams , 1 , evect , evals , work1 ) ;

   for (j=0 ; j<nparams ; j++) {

      for (k=j ; k<nparams ; k++) {

         sum = 0.0 ;

         for (i=0 ; i<nparams ; i++) {

            if  (evals[i] > 1.e-8)

               sum += evect[j*nparams+i] * evect[k*nparams+i] / evals[i] ;

            }

         hessian[j*nparams+k] = hessian[k*nparams+j] = sum ;     // Generalized inverse

         }

      }

We are finally ready to print some truly useful information. We begin with the 

relative variation of each parameter. If we were working with the negative log likelihood 

of a distribution, these values would be the estimated standard errors of maximum-

likelihood estimators of the parameters. But because we are far from that scenario, we 

rescale so that the largest-variation parameter has a value of 1.0. These are the relative 

amount each parameter can vary while having minimal impact on the performance 

of the trading system. Larger values mean that the system is relatively impervious to 

variation in the parameter. Compute the scaling and then print them across the line.  

For an example of this output, please take a quick look at page 118.
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   for (i=0 ; i<nparams ; i++) {          // Scale so largest variation is 1.0

      if  (hessian[i*nparams+i] > 0.0)

         d = sqrt ( hessian[i*nparams+i] ) ;

      else

         d = 0.0 ;

      if  (i == 0  ||  d > rscale)

         rscale = d ;

      }

   strcpy_s ( msg , " " ) ;

   for (i=0 ; i<nparams ; i++) {

      sprintf_s ( msg2, "      Param %d", i+1 ) ;

      strcat_s ( msg , msg2 ) ;

      }

   fprintf  ( fp , "\n%s", msg ) ;

   strcpy_s ( msg , "  Variation-->" ) ;

   for (i=0 ; i<nparams ; i++) {

      if  (hessian[i*nparams+i] > 0.0)

         d = sqrt ( hessian[i*nparams+i] ) / rscale ;

      else

         d = 0.0 ;

      sprintf_s ( msg2 , " %12.3lf", d ) ;

      strcat_s ( msg , msg2 ) ;

      }

   fprintf  ( fp , "\n%s", msg ) ;

We can now compute and print the parameter correlations by scaling the 

covariances by the standard deviations.

   for (i=0 ; i<nparams ; i++) {

      sprintf_s ( msg, "  %12d", i+1 ) ;

      if  (hessian[i*nparams+i] > 0.0)

         d = sqrt ( hessian[i*nparams+i] ) ;          // ‘Standard deviation’ of  one parameter

      else

         d = 0.0 ;
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      for (k=0 ; k<nparams ; k++) {

         if  (hessian[k*nparams+k] > 0.0)

            d2 = sqrt ( hessian[k*nparams+k] ) ;   // ‘Standard deviation’ of  the other

         else

            d2 = 0.0 ;

         if  (d * d2 > 0.0) {

            corr = hessian[i*nparams+k] / (d * d2) ;

            if  (corr > 1.0)                                     // Keep them sensible

               corr = 1.0 ;

            if  (corr < -1.0)

               corr = -1.0 ;

            sprintf_s ( msg2 , " %12.3lf", corr ) ;

            }

         else

            strcpy_s ( msg2 , "        -----" ) ;            // If  either diagonal is zero, corr is undefined

         strcat_s ( msg , msg2 ) ;

         }

      fprintf  ( fp , "\n%s", msg ) ;

      }

Again, if you would like to see a sample printout of this, please see page 118.

We come now to what I find to be the most interesting and informative output. The 

eigenvectors of the Hessian matrix define the dominant axes of the level-curve ellipses 

of the trading system’s performance as a function of the parameters. In particular, the 

eigenvector corresponding to the largest eigenvalue is the direction in which parameter 

change causes the most change in performance, the direction of maximum sensitivity. 

The eigenvector corresponding to the smallest eigenvalue is the direction that causes the 

least change in performance, the direction of minimum sensitivity.

We find these two extreme eigenvalues. Unless we have at least two positive 

eigenvalues, there is no point in continuing. Of course, some users might want to 

proceed if there is just one, but if things are so bad that there is only one positive 

eigenvalue, the trading system is so unstable that this whole process is probably 

pointless anyway.
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   for (k=nparams-1 ; k>0 ; k--) { // Find the smallest positive eigenvalue

      if  (evals[k] > 0.0)

         break ;

      }

   if  (! k)

      goto FINISH ;

For easier interpretability, I choose to scale the directions so that the larest element 

in each direction vector is 1.0. Compute the scaling factors and then print the output.

   fprintf  ( fp, "\n             Max         Min\n" ) ;

   lscale = rscale = 0.0 ;  // Scale so largest element is 1.0.  Purely heuristic.

   for (i=0 ; i<nparams ; i++) {

      if  (fabs ( evect[i*nparams] ) > lscale)

         lscale = fabs ( evect[i*nparams] ) ;

      if  (fabs ( evect[i*nparams+k] ) > rscale)

         rscale = fabs ( evect[i*nparams+k] ) ;

      }

   for (i=0 ; i<nparams ; i++) {

      sprintf_s ( msg, "       Param %d %10.3lf  %10.3lf",

         i+1, evect[i*nparams] / lscale, evect[i*nparams+k] / rscale) ;

      fprintf  ( fp , "\n%s", msg ) ;

      }

A sample of this output in the context of a real trading system appears on page 119.

�Parameter Sensitivity Curves
Prior sections presented fast-and-easy methods for estimating training bias and 

for discovering relationships between parameters. These are both rough methods, 

susceptible to significant error, and their information is not vital to responsible trading 

system development. Nonetheless, I like to include these capabilities in my development 

systems because they add virtually no computational overhead and their results are 

almost always interesting. But please understand that the topic of this section is critical 

and must be considered minimal due diligence for any trading system developer.
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Numbers are great for presenting information, but nothing beats a picture. In 

particular, we should examine plots of trading system performance as parameters vary 

around their computed optimal values. We want to see a smooth curve, especially near 

the optimal value. Bouncing at more distant values is of no great concern, but in the 

vicinity of the optimal value we want smooth behavior. If the optimal value is at a narrow 

peak, our trading system will be unstable; when market conditions inevitably evolve as 

time passes, the once-optimal value will tumble over the edge of the cliff and no longer 

be anywhere near optimal. Also, if we have distinct multiple peaks near the optimal 

value, this is a sign that the system is probably obtaining its lofty performance by virtue 

of luckily latching onto a few good trades and/or avoiding a few bad trades. Small shifts 

in a parameter alternately gain and lose these special trades, meaning that luck has 

played an inordinate role in the system backtest.

On the other hand, if we see that the trading system’s performance slowly and 

smoothly tapers down from the optimum value as parameters move away from their 

trained values, we know that the system responds gently to perturbation, likely has good 

immunity to changes in luck, and will probably remain stable for some time into the 

future.

Computing these sensitivity curves is almost trivially simple, but we’ll examine 

the code anyway. If possible, in practice it’s best to display these as smooth curves on 

a computer screen. But to keep things simple, here I use the clumsy but serviceable 

approach of printing histograms to a text file. It’s not the most elegant approach, but it’s 

easy, and it does the job.

Code for the routine we are about to see is in SENSITIV.CPP. The subroutine is called 

as follows:

int sensitivity (

   double (*criter) ( double * , int ) , // Crit function maximized

   int nvars ,                                     // Number of  variables

   int nints ,                                      // Number of  first variables that are integers

   int npoints ,                                  // Number of  points at which to evaluate performance

   int nres ,                                      // Number of  resolved points across plot

   int mintrades ,                              // Minimum number of  trades

   double *best ,                              // Optimal parameters

   double *low_bounds ,                  // Lower bounds for parameters

   double *high_bounds                  // And upper

   )
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The criterion function is the same one we saw for differential evolution, taking the 

vector of trial parameters and the required minimum number of trades. We have nvars 

parameters, the first nint of which are integers. Each parameter will be evaluated at npoints 

values equally spaced across its low_bound to high_bound range. The horizontal histogram 

will have nres discrete values ranging from zero to the maximum performance value. 

Negative performances are plotted as if they are zero. We also need the best vector of 

optimal parameter values.

We allocate memory and open the text file to which results will be written. Then 

we commence the main loop that processes each parameter. The first step in this loop 

is to set all parameters to their optimal values so that only one parameter at a time is 

perturbed from its optimum.

   vals = (double *) malloc ( npoints * sizeof(double) ) ;

   params = (double *) malloc ( nvars * sizeof(double) ) ;

   fopen_s ( &fp , "SENS.LOG" , "wt" ) ;

   for (ivar=0 ; ivar<nvars ; ivar++) {

      for (i=0 ; i<nvars ; i++)

         params[i] = best[i] ;

Integer and real parameters are processed separately, with integers being slightly 

more complicated. Here is that section of code. Integer values should be exactly 

represented in the floating-point parameter vector, but we take out cheap insurance that 

anomalies do not cause problems.

      if  (ivar < nints) {

         fprintf  ( fp , "\n\nSensitivity curve for integer parameter %d (optimum=%d)\n",

                     ivar+1, (int) (best[ivar] + 1.e-10) ) ;

         label_frac = (high_bounds[ivar] - low_bounds[ivar] + 0.99999999) / (npoints - 1) ;

         for (ipoint=0 ; ipoint<npoints ; ipoint++) {

            ival = (int) (low_bounds[ivar] + ipoint * label_frac) ;

            params[ivar] = ival ;

            vals[ipoint] = criter ( params , mintrades ) ;

            if  (ipoint == 0  ||  vals[ipoint] > maxval)

               maxval = vals[ipoint] ;

            }
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         hist_frac = (nres + 0.9999999) / maxval ;

         for (ipoint=0 ; ipoint<npoints ; ipoint++) {

            ival = (int) (low_bounds[ivar] + ipoint * label_frac) ;

            fprintf  ( fp , "\n%6d|", ival ) ;

            k = (int) (vals[ipoint] * hist_frac) ;

            for (i=0 ; i<k ; i++)

               fprintf  ( fp , "*" ) ;

            }

         }

In the previous code, it’s a little tricky ensuring that we test and print integer values 

that are as equally spaced as possible. We compute label_frac as the increment in parameter 

value attributed to each step to the next point. If you don’t understand that computation, 

test the formula at the boundary values. After the maximum performance among the 

tested points is found, the histogram scaling is computed as hist_frac. We then pass through 

the saved performance values, compute the number of characters to print, and do it.

Real parameters are slightly easier because we don’t have to worry about testing 

strictly integer values. Here is that code. No explanation should be needed because it is a 

simplified version of the integer code just shown.

      else {

         fprintf  ( fp , "\n\nSensitivity curve for real parameter %d (optimum=%.4lf)\n", ivar+1,

                      best[ivar] ) ;

         label_frac = (high_bounds[ivar] - low_bounds[ivar]) / (npoints - 1) ;

         for (ipoint=0 ; ipoint<npoints ; ipoint++) {

            rval = low_bounds[ivar] + ipoint * label_frac ;

            params[ivar] = rval ;

            vals[ipoint] = criter ( params , mintrades ) ;

            if  (ipoint == 0  ||  vals[ipoint] > maxval)

               maxval = vals[ipoint] ;

            }

         hist_frac = (nres + 0.9999999) / maxval ;

         for (ipoint=0 ; ipoint<npoints ; ipoint++) {

            rval = low_bounds[ivar] + ipoint * label_frac ;

            fprintf  ( fp , "\n%10.3lf|", rval ) ;
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            k = (int) (vals[ipoint] * hist_frac) ;

            for (i=0 ; i<k ; i++)

               fprintf  ( fp , "*" ) ;

            }

         }

      }

In the next section, we’ll see an example of parameter sensitivity plotting in the 

context of a real application.

�Putting It All Together Trading OEX
We now present a program that combines differential evolution, cheap training bias 

estimation, cheap computation of parameter relationships, and plotting parameter 

sensitivity curves. Source code for this program is in DEV_MA.CPP. The trading 

algorithm is a four-parameter thresholded moving-average crossover system. Readers 

should have no trouble replacing this system with their own trading system.

�The Trading System

Normally I don’t pay much attention to the trading systems used in the examples in 

this book, instead focusing on the technique under discussion. But in this case the 

trading system is so intimately connected to the techniques that it’s important for the 

user to understand it. This is especially true here because the parameter relationships 

computed in PARAMCOR.CPP are most meaningful when the parameters are 

commensurately scaled, so make sure to do so if you implement a system.

The philosophy of the system is to compute a short-term and a long-term moving 

average of log prices. If the short-term MA exceeds the long-term MA by at least a 

specified long threshold, a long position is taken for the next day. If the short-term MA 

is less than the long-term MA by at least a specified short threshold, a short position is 

taken. Otherwise, we remain neutral. Thus, there are four parameters: the two lookbacks 

and the two thresholds. The evaluation routine is called as follows:

double test_system (

   int ncases ,                         // Number of  prices in history

   int max_lookback ,             // Max lookback that will ever be used

   double *x ,                          // Log prices
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   int long_term ,                    // Long-term lookback

   double short_pct ,              // Short-term lookback is this / 100 times long_term, 0-100

   double short_thresh ,         // Short threshold times 10000

   double long_thresh ,           // Long threshold times 10000

   int *ntrades ,                       // Returns number of  trades

   double *returns                   // If  non-NULL returns ncases-max_lookback bar returns

   )

Only one optimizable parameter is an integer, the long-term lookback. The short-

term lookback is specified as the percent of the long-term lookback. The short and long 

thresholds are specified as 10,000 times the actual threshold. This is because in practice 

the optimal thresholds will be very small, and using this multiplier brings the thresholds 

up to a range commensurate with the other two parameters. If we worked with the 

actual thresholds, the PARAMCOR.CPP algorithms would be rendered nearly worthless 

because of the huge disparity in scaling. Everything else would be fine, though.

The last parameter, returns, can be input NULL if desired. But if non-null, the 

individual bar returns are placed there. This information is needed by the cheap bias 

estimating routine in STOC_BIAS.CPP.

The first step is to convert the specified commensurately scaled parameters to the 

values that are meaningful here. Readers, if you substitute your own trading system 

for this one, be sure to pay attention to this commensurate scaling requirement! Also 

initialize the total return cumulator, the trade counter, and the index for returns if used.

   short_term = (int) (0.01 * short_pct * long_term) ;

   if  (short_term < 1)

      short_term = 1 ;

   if  (short_term >= long_term)

      short_term = long_term - 1 ;

   short_thresh /= 10000.0 ;

   long_thresh /= 10000.0 ;

   sum = 0.0 ;                     // Cumulate performance for this trial

   *ntrades = 0 ;

   k = 0 ;                             // Will index returns
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The main loop that traverses the market history is here. Note that regardless of long_

term, we always start trading at the same bar for conformity. This is important. Compute 

the short-term moving average.

   for (i=max_lookback-1 ; i<ncases-1 ; i++) {   // Sum performance across history

      short_mean = 0.0 ;                                     // Cumulates short-term lookback sum

      for (j=i ; j>i-short_term ; j--)

         short_mean += x[j] ;

We then compute the long-term moving average, taking care that we take advantage 

of the summation already done for the short-term MA.

      long_mean = short_mean ;           // Cumulates long-term lookback sum

      while (j>i-long_term)

         long_mean += x[j--] ;

      short_mean /= short_term ;

      long_mean /= long_term ;

Compare the short-term/long-term MA difference to the thresholds and compute 

the next-bar return accordingly. Note that I chose to define the difference in terms of a 

ratio rather than a difference. I prefer this sort of normalization despite its asymmetry, 

but please feel free to disagree, especially since we are working with log prices. In 

practice, the difference is minimal anyway.

      change = short_mean / long_mean - 1.0 ;             // Fractional diff  in MA of  log prices

      if  (change > long_thresh) {                                     // Long position

         ret = x[i+1] - x[i] ;

         ++(*ntrades) ;

         }

      else if  (change < -short_thresh) {                           // Short position

         ret = x[i] - x[i+1] ;

         ++(*ntrades) ;

         }

      else

         ret = 0.0 ;
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      sum += ret ;

      if  (returns != NULL)

         returns[k++] = ret ;

      } // For i, summing performance for this trial

   return sum ;

}

�Linking Criterion Routines

It would be bad programming style to embed the parameterization of a trading system 

into the differential evolution routine or any other general-use routine. It’s bad enough 

that I embed the mintrades parameter, but since this is a trading-system application and 

this is a common parameter, I felt justified in doing so. But the remaining parameters, 

which can change significantly with different trading systems, must be supplied as 

a real vector. So, we need a way to map the generic criterion routine to the ultimate 

performance evaluator, as well as pass nuisance parameters. The standard method I 

have always used is to let the nuisance parameters be statics and use a criterion wrapper. 

In particular, I make static declarations at the top of the program and set them before 

they are needed. The wrapper is also shown here:

static int local_n ;

static int local_max_lookback ;

static double *local_prices ;

double criter ( double *params , int mintrades )

{

   int long_term, ntrades ;

   double short_pct, short_thresh, long_thresh, ret_val ;

   long_term = (int) (params[0] + 1.e-10) ;     // This addition likely not needed

   short_pct = params[1] ;

   short_thresh = params[2] ;

   long_thresh = params[3] ;
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   ret_val = test_system ( local_n , local_max_lookback , local_prices , long_term ,

                                        short_pct , short_thresh , long_thresh , &ntrades ,

                                        (stoc_bias != NULL) ? stoc_bias->expose_returns() : NULL ) ;

   if  (stoc_bias != NULL  &&  ret_val > 0.0)

      stoc_bias->process () ;

   if  (ntrades >= mintrades)

      return ret_val ;

   else

      return -1.e20 ;

}

The code on the prior page nicely demonstrates a clean way of using a generic wrapper 

that insulates a toolbox routine like diff_ev() from differences among trading systems as well 

as nuisance parameters like price history and trade starting bars. We just have to make 

sure that the local_ statics are set to their correct values before the criter() routine is called. 

This wrapper also takes care of checking that the minimum trades requirement is met, and 

it handles the StocBias processing (page 92).

We’ll skip presentation of the banal market-reading code; see DEV_MA.CPP for 

details. After the market is read, we initialize the statics that pass nuisance parameters, 

we set the bounds for the four optimizable parameters, and we set a minimum trade 

count. Create the StocBias object, optimize using differential evolution, and compute 

the bias, which we can subtract from the optimal performance to get the estimated true 

performance. Finally, we do the sensitivity tests.

   local_n = nprices ;

   local_max_lookback = max_lookback ;

   local_prices = prices ;

   low_bounds[0] = 2 ;

   low_bounds[1] = 0.01 ;

   low_bounds[2] = 0.0 ;

   low_bounds[3] = 0.0 ;

   high_bounds[0] = max_lookback ;

   high_bounds[1] = 99.0 ;

   high_bounds[2] = max_thresh ;  // These are 10000 times actual threshold

   high_bounds[3] = max_thresh ;
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   mintrades = 20 ;

   stoc_bias = new StocBias ( nprices - max_lookback ) ;   // This many returns

   diff_ev ( criter , 4 , 1 , 100 , 10000 , mintrades , 10000000 , 300 , 0.2 , 0.2 , 0.3 ,

                  low_bounds , high_bounds , params , 1 , stoc_bias ) ;

   stoc_bias->compute ( &IS_mean , &OOS_mean , &bias ) ;

   delete stoc_bias ;

   stoc_bias = NULL ;  // Needed so criter() does not process returns in sensitivity()

   sensitivity ( criter , 4 , 1 , 30 , 80 , mintrades , params , low_bounds , high_bounds ) ;

�Application to Trading OEX

I ran the DEV_MA program using OEX, the S&P 100 index, from its inception through the 

middle of 2017. Figure 4-1 shows the main output from the program. We see that the total 

log return is 2.671, and the optimal parameters (long lookback, short lookback as percent 

of long lookback, 10,000 times short threshold, 10,000 times long threshold) are also 

shown. The remaining four lines of numbers are from the StocBias operations, with the 

expected return of 2.3489 being the optimized return of 2.6710 minus the bias of 0.3221.

Figure 4-2 shows the output generated by the PARAMCOR.CPP algorithms (page 96). 

Examine the Variation row. At one extreme we see that the short-term lookback and the 

short threshold have the least impact on performance in the vicinity of their optimal 

values, and the long-term lookback has only slightly less impact. The outstanding 

parameter is the long threshold, which has extreme sensitivity. Even tiny changes in its 

value have extreme impact on performance.

Figure 4-1.  Main output of DEV_MA for OEX
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The correlation of –0.679 between the short lookback and the short threshold 

indicates that changes in one can be somewhat offset by opposing changes in the other.  

I have no explanation for this unexpected phenomenon.

These observations are born out by the direction of maximum sensitivity, which is 

almost totally dominated by the long threshold. The fact that the dominant weight is –1 

instead of 1 is irrelevant; this is a direction, and it may point either way.

The direction of minimal impact is a bit more interesting, and it substantiates the 

correlation noted earlier. We see that moving the parameters—such that the short-term 

lookback as a percent of the long-term lookback goes in one direction and the short 

threshold goes almost as much in the opposite direction—is the direction of parameter 

change that, of all possible parameter changes, produces the least impact on the 

performance. Fascinating.

Figure 4-3 through Figure 4-6 show the sensitivity curves for the four parameters. 

Note that especially for the two threshold parameters, the Variation reported earlier, in 

which Parameter 3 has minimum sensitivity and Parameter 4 has maximum sensitivity, 

agrees clearly with the plots.

Figure 4-2.  PARAMCOR output of DEV_MA for OEX
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Figure 4-3.  Sensitivity of long lookback

Figure 4-4.  Sensitivity of short lookback pct
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Figure 4-5.  Sensitivity of short threshold

Figure 4-6.  Sensitivity of long threshold
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CHAPTER 5

Estimating Future 
Performance I: Unbiased 
Trade Simulation
The title of this chapter is optimistic, perhaps shamefully so. Financial markets are 

notoriously fickle. They are nonstationary (their statistical properties change over 

time), vulnerable to unforeseeable outside shocks, polluted by occasional wild swings 

for no apparent reason, and generally uncooperative. The idea that we can actually 

estimate the future performance of a trading system to any great degree is ludicrous. 

But what we often accomplish is to identify trading systems that have a painfully small 

expected future return, so we can be wary. Naturally, what we would really prefer is the 

ability to identify systems that have a high likelihood of large future return. And we may 

occasionally get lucky and enjoy this rare reward. It doesn’t hurt to try. But the reader 

must understand that the real goal of this chapter is to use rigorous statistical methods to 

weed out those superficially promising systems that in reality should be discarded, or at 

least revised before being put to work with real money.

�In-Sample and Out-of-Sample Performance
It is rare that a developer will dream up a trading system in exactly what will be its 

final form. The vast majority of time, the developer will hypothesize a family of trading 

systems. Any particular member of this family will be defined by the value(s) of one or 

more parameters. To take a rather mundane example, a developer may hypothesize 

that if a short-term moving average of recent market prices crosses above a long-term 

moving average, the tide has turned in this market and it is time to take a long position 

and to go short if the opposite happens. But what do short-term and long-term mean? 
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The lookback period of each moving average must be specified before we have an actual 

trading system.

How do we choose effective lookback periods? The obvious method is to try as many 

values as computer time and other resources allow, and choose whichever pair of long-

term and short-term lookbacks gives the best results. I’ll parenthetically add that the 

criterion we use for defining “best results” can be important and will be discussed later. 

For now, just assume that we have a way of measuring trading system performance that 

allows us to choose the best parameters.

If we were working with perfect, noise-free data, the performance results we get 

from optimizing the short-term and long-term lookbacks for a dataset would usually be 

reflective of the results we would see in the future. Unfortunately, financial market data 

is about as noisy as its gets. In practice, market prices are dominated by noise, with just 

tiny bits of authentic patterns hidden deep under the noise.

The implication of this noisy situation is that our “optimal” parameters end up being 

chosen in such a way that our trading system fits patterns of noise in the training set 

as well as or even better than it fits the authentic market patterns. By definition, noise 

does not repeat. As a result, when we put our promising trading system to work, we may 

discover that it is nearly or completely worthless. This is a problem in any application, 

but it is particularly devastating in market trading because of the fact that financial 

markets are dominated by noise.

These two environments in which the trading system operates have standard names. 

The dataset that we use to optimize system parameters (such as short-term and long-term 

lookbacks in a moving-average-crossover system) is called the in-sample (IS) dataset. 

Any dataset that did not participate in the parameter optimization is called out-of-sample 

(OOS). The degree to which IS performance exceeds OOS performance is called training 

bias. This chapter is largely dedicated to quantifying and dealing with this effect.

It’s worth mentioning that training bias can be caused by at least two entirely 

different effects. We have already discussed the most “famous” cause, learning 

unrepeatable noise patterns as if they were authentic market price patterns. This can be 

particularly severe when the model is excessively powerful, a situation called overfitting. 

A more subtle but equally problematic cause is under-representation of patterns in the 

training (in-sample) data. If the market history on which the trading system is trained 

does not contain sufficient representation of every possible price pattern that may be 

encountered in the future, then we cannot expect the system to correctly handle omitted 

patterns when they are eventually encountered. Thus, it is in our interest to develop our 

trading system using as much market history as possible.
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�The TrnBias Program to Demonstrate Training Bias
My web site contains source code for a small console application that demonstrates 

training bias for the primitive moving-average-crossover system just described. It can 

be easily modified by the reader to experiment with various optimization criteria. This 

complete source code is in TRNBIAS.CPP.

I will not explore this program in detail here because it is well commented and 

should be understandable to anyone who wants to modify it for their own purposes. 

However, I will briefly discuss its operation.

The program is invoked from the command line as follows:

TrnBias Which Ncases Trend Nreps

Which specifies the optimization criterion:

0 = mean daily return

1 = profit factor (sum of wins divided by sum of losses)

2 = raw Sharpe ratio (mean return divided by standard deviation 

of returns)

Ncases is the number of trading days.

Trend is the strength of the varying trend.

Nreps is the number of replications, typically at least several thousand.

The program generates a set of Ncases logarithmic daily prices. The prices consist 

of random noise plus an alternating trend that reverses direction every 50 days. The 

strength of this trend is specified as a small positive number, perhaps 0.01 (weak) to 

0.2 (strong) or so. A Trend of 0.0 means that the price series is fully random. Then a 

complete set of trial moving-average lookbacks, ranging up to 200 days, is tested to find 

the combination of a short-term and a long-term lookback that gives the best in-sample 

performance. The user specifies the criterion by which this performance is judged. 

Finally, a new set of prices, using the same strength of trend, is generated. Its distribution 

is identical to the in-sample set, but its random components are different. The moving-

average-crossover rule is applied to this OOS dataset, using the optimized short-term 

and long-term lookbacks, and its mean daily return is computed.

This process is repeated Nreps times, and the in-sample and out-of-sample average 

daily returns are averaged over the replications. The in-sample value minus the out-of-

sample value is the training bias. These three quantities are reported to the user.
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If you experiment with this program, you will discover several effects that are similar 

to what I have seen in actual trading system development.

•	 If you have a large number of cases, the choice of optimization 

criterion has relatively little effect. In fact, all three of these different 

methods have a tendency to provide the same optimal lookbacks for 

large datasets, regardless of the strength of the trend.

•	 If you have a small dataset, the optimization criterion has a huge 

effect on results.

•	 There is a slight though not universal tendency for the largest OOS 

mean daily return to be obtained by optimizing the profit factor. I 

have seen the same effect in my real-life development.

•	 In nearly every test that I ran, the training bias for the mean daily 

return was highest (worst) when optimizing mean daily return. This 

is almost certainly because mean daily return does not account for 

risk (losses) other than indirectly. Profit factor and Sharpe ratio both 

favor consistent, reliable returns, making them superior optimization 

criteria for a trading system. Also, profit-factor nearly always has the 

smallest training bias. It is my favorite optimization criterion.

Readers may want to modify the TrnBias program to incorporate the types of 

price patterns that they hypothesize, their trading system rules, and their preferred 

performance criteria to study the nature of training bias in their situation.

�Selection Bias
Agnes heads up a company’s division for trading system development. She has two 

people working for her, each of whom is charged with independently developing a 

profitable trading system based on historical data up to the current date. Soon, John 

presents her with outstanding backtest results, while Phil’s results, while decent, are not 

nearly as impressive. Naturally, she chooses John’s trading system and puts it to work 

with real money.

A few months later, their trading capital is largely gone. Wiped out. John’s wonderful 

system tanked. Agnes thoroughly chews out John, but she’s fired anyway, and they bring 

in Mary to replace her.
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Mary examines John’s system and sees the problem immediately: he has used an 

enormously powerful prediction model, one that did a great job of modeling the noise 

inherent in the market data. Moreover, because Agnes had given both of these guys 

complete market history up to the current date, they had used it all in developing their 

trading systems. Neither of them expended any effort at evaluating the out-of-sample 

performance of their system. Thus, neither of them had any idea how well their trading 

system had captured authentic market patterns, rather than just modeling noise.

After slapping both of their hands, she tells them a vitally important principle that 

Agnes ignored and in which they were complicit: when selecting from among competing 

systems, always base the selection criterion on out-of-sample results, ignoring  

in-sample results.

Why? The reason is that if the selection is based on IS results, the selection process 

favors overfit models. If model A primarily captures authentic market patterns, while 

model B not only captures these patterns but also does a great job of capturing patterns 

of noise, then model B will outperform model A on IS results and be selected, only to fail 

later when the noise does not repeat for real trading.

This principle is so important that Mary wisely chooses to hold back the most recent 

year of market history. She gives John and Phil market data that ends a year prior to the 

current date and tells them to try again.

Some time later, they both come to her with their systems, proudly showing off their 

spectacular results. (These guys just never learn!) So, she takes John’s trading system and 

tests it on the year of data that she held back from them. It’s fairly decent. This makes 

her happy, because the result she just observed is a truly fair, unbiased estimate of what 

John’s system can do in the future. That test year played no role whatsoever in his system 

development, so it could not influence his choices or training procedures, and hence it 

has no optimistic bias. This is exactly the information she needs to make an intelligent 

decision about the true quality of his trading system.

�Interlude: What Does Unbiased Really Mean?

Let’s step aside for a moment and give a brief, intuitive clarification of the term unbiased 

that just appeared. We posit an imaginary universe of an infinite number of Johns, 

operating in an infinite number of different noisy market histories, with each John 

developing his own trading system based on his own universe’s unique noisy market 

history. By unbiased in this example (and also generally), we mean that, on average, 

these different John-produced trading systems’ OOS results would neither overestimate 
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nor underestimate actual expected future performance. Because of random variation 

across universes, it is nearly certain that the trading system produced by any single John 

will in truth over-estimate or under-estimate expected future performance in its OOS 

results. Being “unbiased” does not mean that we can expect about the same performance 

in the future. That’s much too much to hope for in a random universe. John’s trading 

system’s OOS performance will overestimate or underestimate the actual expected 

future performance of the system. But unbiased does mean that there will be no inherent 

bias one way or the other. The in-sample results have a strong optimistic bias because 

of the training bias already discussed. Out-of-sample results have no such bias. Roughly 

speaking, we could say that John’s OOS results are just as likely to overestimate future 

performance as underestimate it. This is the best we can do.

�Selection Bias, Continued

Okay, enough diversion; let’s get back to the story in progress. We have John’s OOS 

performance. Mary now goes on to test Phil’s lovingly developed trading system on the 

recent year of data that she held out from both guys. It’s OOS performance, which like 

John’s is also unbiased and is slightly superior to John’s. So, she wisely chooses Phil’s 

system to trade.

We come now to the key point of this section: the OOS performance of Phil’s system 

that the company is now trading is optimistically biased! Huh? How can this be? A 

moment ago, Phil’s OOS performance was an unbiased measure of his system’s expected 

future performance. But now that it has been chosen for trading and put to work, that 

same performance figure is suddenly biased? That makes no sense!

Actually, it does make sense. What we are experiencing is called selection bias. It 

came into play the moment Mary examined both OOS performances (John’s and Phil’s) 

and chose the better performer. The act of choosing one over the other introduces 

optimistic bias. The OOS performance of Phil’s system that Mary just measured will now, 

on average, overestimate the expected future performance of his system.

How can such a bizarre transformation from unbiased to biased occur in the blink 

of an eye? It’s because both of these competing systems (John’s and Phil’s) have their 

OOS performance influenced by two separate effects: true skill and dumb luck. These 

two systems will doubtless be based on slightly (or greatly!) different authentic patterns. 

Random noise in one system will be a little more like that system’s authentic pattern 

compared to the other system. Thus, all other things being equal, the choice of the 

better system will tend to favor the luckier system. In the event that both systems have 
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equal (though unmeasurable) true power, then the luckier system will have the superior 

OOS performance and hence be chosen by Mary. Only if their true powers are widely 

different, swamping out luck, will the truly better system be nearly guaranteed to be 

chosen.

By definition, noise does not repeat. Any good luck that favored one system over 

the other will vanish. As long as we were concerned with each system on an individual 

basis, the good luck and bad luck across those imaginary universes would average out, 

and OOS performance would be unbiased. But the moment we compare the unbiased 

performance of two or more competing systems and select the superior system, luck no 

longer averages out; good luck is favored, and we thereby introduce selection bias. And it 

can be enormous in real life. Be warned.

It should now be apparent that if Mary wants an unbiased estimate of the future 

performance of the trading system she picks, she has to go even further in holding out 

data. Instead of keeping back just one year (or whatever time slice she wants), she needs 

to hold out two years of data. She gives John and Phil market history that ends two years 

prior to the current date. When they present their systems to her, she tests their systems 

on the year of data that follows their training years and that ends a year prior to the 

current date. Based on the performance of the competing systems in this “first OOS” 

year, she chooses the best system. Then she tests this selection on the most recent year of 

data, what might be called the “second OOS” year. This provides an unbiased estimate of 

the performance of the selected system. This estimate is not only free from training bias, 

but it is also free from the selection bias that resulted from her choosing the best system 

from among the competitors.

�The SelBias Program

Before you skip this section, please let me encourage everyone to study this material, 

even those who have no interest in using or modifying the SelBias program. The reason 

is that the description of how the selection-bias demonstration program works will serve 

to reinforce the somewhat counterintuitive ideas presented in the prior section. The 

concept of selection bias is so foreign to many developers, yet so important, that it is 

difficult to overly emphasize this topic. That said...

My web site contains source code for a small console application that demonstrates 

selection bias for the primitive moving-average-crossover system just described. It 

can be easily modified by the reader to experiment with various trading systems and 

optimization criteria. This complete source code is in SELBIAS.CPP.
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The program is invoked from the command line as follows:

SelBias Which Ncases Trend Nreps

Which specifies the optimization criterion:

0 = mean daily return

1 = profit factor (sum of wins divided by sum of losses)

2 = �raw Sharpe ratio (mean return divided by standard deviation 

of returns)

Ncases is the number of trading days.

Trend is the strength of the varying trend.

Nreps is the number of replications, typically at least several thousand.

The program generates a set of Ncases logarithmic daily prices. The prices consist 

of random noise plus an alternating trend that reverses direction every 50 days. The 

strength of this trend is specified as a small positive number, perhaps 0.01 (weak) to 0.2 

(strong) or so. A Trend of 0.0 means that the price series is fully random.

The previously discussed TrnBias program employs a two-sided (long and short 

positions) trading system. But the SelBias program of this section splits this into two 

separate, independent trading systems, one taking strictly long positions and the other 

taking strictly short positions.

For each of these two competing systems, a complete set of trial moving- average 

lookbacks, ranging up to 200 days, is tested to find the combination of a short-term and 

a long-term lookback that gives the best in-sample performance of each. These optimal 

lookbacks are found separately for each system (long-only and short-only). The user 

specifies the criterion by which this performance is judged.

A new set of prices, using the same strength of trend, is generated. Its distribution 

is identical to the in-sample set, but its random components are different. This set 

corresponds to the “first-OOS” dataset mentioned in the prior section. In the Mary-

John-Phil example, this would be the year following the data given to John and Phil. The 

moving-average-crossover rule for each of the two competing systems is applied to this 

OOS dataset, using the optimized short-term and long-term lookbacks for each system. 

The mean daily return for each system is computed for this new dataset, giving us an 

unbiased estimate of future performance for each of the two systems.

Chapter 5  Estimating Future Performance I: Unbiased Trade Simulation



129

Then we generate a third independent dataset, what has previously been referred to 

as the “second-OOS” dataset. Whichever of the two competing models performed best 

on the prior dataset is evaluated on this third dataset to provide an unbiased estimate of 

performance after selecting the superior model. The selection bias is the performance of 

the winning model on the second (first-OOS) dataset minus its performance on the third 

(second-OOS) dataset.

This process is repeated Nreps times, and the in-sample and out-of-sample average 

daily returns for the two competing systems, the grand OOS return, and the selection 

bias are averaged over the replications. The in-sample value minus the out-of-sample 

value for each competitor is the training bias. Each competitor has its own training bias, 

but there is only one selection bias. These averaged quantities are reported to the user, 

along with a t-score for the selection bias.

�Walkforward Analysis
Most trading system developers are familiar with using walkforward analysis to estimate 

future performance. Despite this ubiquity, we will present the algorithm here, both to 

clarify any misconceptions and as a vehicle for pointing out several potential flaws in the 

most commonly employed version of the algorithm.

The idea behind walkforward analysis is that, given a historical dataset, we simulate 

how a trading system would have performed if it had been executed in real time (no 

knowledge of the future) during that market history. In other words, at any specified 

historical moment in time, we have at our disposal all available market history up 

to and including that specified time, and we pretend that we have no knowledge of 

market prices later than that time. We devise our trading system (usually by optimizing 

parameters) using the data up through the specified time and then test this trading 

system’s performance over an immediate future time period (which is OOS) in the 

history. This simulates how our system would have performed in real life back at that 

historical time. We temporarily stash this future performance somewhere. We then 

move everything forward in time and repeat the process, exactly as a real trader would 

do when continually updating the trading system to keep up with evolving market 

conditions. When the end of the historical data is reached, we pool all of the individual 

OOS results and compute whatever performance measures we want. The most basic 
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version of this algorithm can be stated as shown here. A more advanced version will 

appear later.

	 1)	 Set OOS_START to the bar of the user’s desired starting date for 

testing.

	 2)	 Create the trading system based on market history over a desired 

lookback period that ends just prior to OOS_START.

	 3)	 Execute the trading system over a desired time period NTEST 

beginning at OOS_START. Save the system’s performance. Note 

that NTEST need not be fixed. For example, we may want to do 

day trades over a calendar year, so NTEST will depend upon the 

number of trading days in the year being tested.

	 4)	 If more market data remains, advance OOS_START by NTEST and 

loop back to step 2.

When the previous algorithm is complete, we examine the performance results 

saved in step 3 for each pass through the loop. Most people call a single such pass a fold, 

and we will occasionally use this terminology.

Observe that because of the way this algorithm is constructed, the pooled OOS 

results are contiguous (no missing data), and they appear in the order in which they 

would have occurred if this process had been real life instead of a simulation. This 

means that even order-dependent performance statistics such as drawdown can be 

legitimately computed.

We may want to continue this walkforward testing even after the trading system is 

in use. This way, we can keep track of its ongoing performance to determine whether 

perhaps the system is deteriorating (a common occurrence!). In this case, we have one 

more consideration. Contiguity assumes that step 2, creation of the trading system, can 

occur fast enough for the next trade decision to be made. If we are doing end-of-day 

trading, we can likely retrain the system overnight. On the other hand, if we are doing 

intraday trading of price ticks as they occur in both day and night sessions, we must 

define the folds so that the system is re-created during times that the market is idle, such 

as on weekends. In practice this is rarely, if ever, an issue, because we can nearly always 

find blocks of idle time sufficiently long to retrain the system. But the key point is that 

if we wish to pursue ongoing evaluation, we must perform development walkforward 

analyses using the same granularity that would be imposed on us during real-time use.
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Just to be clear, suppose our system is so slow to train relative to trade speed that 

updating the parameters must be done over weekends during actual use. In this 

situation, if we want to evaluate ongoing performance (always wise!), then during 

development we should do our walkforward analysis also using Monday to Friday blocks 

as folds. This way, real-time results are comparable to historical results.

�Future Leak by Unobvious IS/OOS Overlap
A popular and powerful method for developing a trading system is to build a dataset of 

predictors and a target based on market history. The predictors are typically indicators 

such as RSI, trendline slopes, and so forth. The target is some measure of future 

market price change, such as the change from the current price to the price ten days 

out. Each case in the dataset contains the values of all predictors and the target for a 

single instance in the market, such as a day bar or an intraday bar. The developer then 

supplies this dataset to a modeling algorithm, which may be as simple as ordinary linear 

regression or as complex as a deep belief net. When the prediction model has been 

trained, the trading system is executed each day by computing the model’s prediction 

for the current day’s set of predictors. Based on the prediction made by the model, 

a position in the market may or may not be taken. This lets us harness the power of 

sophisticated modern machine learning techniques to drive our trading system.

A serious potential problem with this approach arises when the lookback period for 

indicators exceeds one bar, virtually always true, and the lookahead period for the target 

also exceeds one bar, which is often true. When indicators look back more than one bar, 

they have serial correlation because adjacent database cases share one or more market 

price observations. For example, suppose we have an indicator that measures the slope 

of a linear trend line across a 50-bar lookback period. When we advance to the next case, 

49 bars are shared between the two adjacent cases. As a result, the trend indicator will 

change very little from one case to the next.

The same effect arises with the target. Suppose our target is the price change from 

now until ten days from now. When we advance from one case to the next, these two 

cases have nine bars of market change in common. The net market change for these two 

cases will be quite similar most of the time.

Now think about what happens at the boundary separating the end of the training set 

for a fold and the start of the test set for that fold. If we have serial correlation in both the 

indicators and the target, then late cases in the training set will be similar to early cases 
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in the test set because neither the indicators nor the target will have changed much. The 

effect is that information about the test set has leaked into the training set, meaning that 

the supposedly fair OOS test is now optimistic since at training time we will have some 

information about the test set going into the optimization process.

The implication of this situation is that we must separate the training-set block 

from the test-set block by omitting some cases at the end of the training-set block, those 

which are contaminated by future leak. How many do we omit? We find the minimum 

of the indicator lookback and the target lookahead and subtract one. Of course, if 

the indicators have different lookbacks, we consider the indicator lookback to be the 

maximum across all indicators.

For example, suppose we have three indicators with lookbacks of 30, 40, and 50 bars, 

respectively. Our target has a lookahead of 80 bars. The maximum of (30, 40, 50) is 50. 

The minimum of 50 and 80 is 50. So, we must omit 49 bars from the end of each  

training-set block.

Where does this formula come from? Deriving it is a simple but educational exercise 

for the reader. Suppose we are about to test an OOS set beginning at Bar 100. Pick a 

small lookback and a small lookahead. Does the potential training case at Bar 99 have 

prices in common with the test case at Bar 100 for both the IS and the OOS blocks? How 

about Bar 98? How many of those ending cases have to be omitted before either the IS 

price set or the OOS price set no longer has prices in common with the first test case? 

Remember that we have a problem only if both an indicator and the target share price 

history between the IS and OOS sets, because this is how test-set information leaks into 

the training set. If one or the other (indicator set or target) is independent for two cases, 

then these cases share no prejudicing information between the IS and OOS sets.

Two things are worth noting here. First, in nearly all practical situations, the indicator 

lookback will exceed the target lookahead, usually by a lot. Thus, the lookahead is the 

limiting quantity. Second, if the target lookahead is just one bar, a common situation, 

we do not have to omit any training data. In the next section we will explore another 

advantage of looking ahead just one bar.

�Error Variance Inflation with Multiple-Bar Lookaheads

In the prior section we saw that if the target lookahead is greater than one bar, we must 

remove from the training set those cases closest to the fold boundary in order to avoid 

disastrous optimistic bias in what are supposed to be unbiased results. In this section we 

explore a different problem with multiple-bar lookaheads, one with a very different solution.
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Random variation in the noise that happens to contaminate our market data will 

result in our walkforward performance figures to also be contaminated with random 

variation; the performance figure we get after pooling all OOS fold data, though 

unbiased if we do it right, will almost certainly overestimate or underestimate the true 

value. We touched on this on page 125 when we discussed the meaning of the term 

unbiased. Naturally, we would like for this error variance to be as small as possible. 

Moreover, responsible developers will try to supplement the performance results with 

other useful information, such as the probability that results this good could have been 

obtained through random good luck if the system were truly worthless (a p-value). We 

might even attempt to compute confidence intervals or perform any of the sophisticated 

tests discussed starting on page 283.

The problem is that nearly all statistical tests of the sort that we would like to perform 

require that the observations on which the tests are based be independent. (There are 

some tests that do not require independence, but they are tricky to perform and often of 

questionable value.) Now think about what happens when we have a lookahead greater 

than one bar. The target values of adjacent bars will be strongly related because of the 

sharing of overlapping price history. Thus, the observations (trade returns) that we have 

available for computing performance statistics are not independent.

This is more serious than just vaguely “violating” assumptions of various statistical 

tests. It turns out that the violation is of the worst possible sort: tests become anti-

conservative. This means that if we compute a p-value, the computed probability will be 

too small, leading us to conclude that our trading system is better than it really is. If we 

compute confidence intervals for the purpose of bounding wins and losses, the obtained 

intervals will be too narrow, with the true intervals potentially much wider than those 

computed.

Even if we do not perform any statistical tests (irresponsible!) and just contemplate 

the unbiased OOS performance, we still pay a price for using multiple-bar lookaheads 

without the remedy we’ll describe soon. The issue that underlies all of our woes is the 

fact that the error variance, which is the degree to which our unbiased performance 

estimate randomly varies around its true value, is larger than it would be if the individual 

trade returns were independent.

When the returns are independent and pooled into a single performance statistic, 

random errors in the returns tend to cancel. Some errors are positive and some are 

negative, and they wash one another out. But when the returns have serial correlation, 

they have less opportunity to cancel. There are clumps of positive errors and clumps of 

negative errors, making smooth cancellation more difficult.
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The result is that even though the OOS performance is unbiased, its troublesome 

error variance is inflated. Its over-estimation or under-estimation of the true 

performance is greater than it would otherwise be. With a large lookahead, this inflation 

can be severe. In severe cases, the error variance may be so large as to render the OOS 

performance estimate nearly worthless, despite being unbiased.

The usual method for solving this problem is to use test folds only one bar long 

and, instead of advancing the folds by one bar, advance them by the lookahead. This 

guarantees that OOS test cases will not share any market information. For example, 

suppose the lookahead is 5 and we are about to start an OOS fold at Bar 100. The training 

block would end with Bar 95, omitting the 4 most recent cases to prevent bias. After 

making our trade decision for Bar 100, we would move the OOS fold ahead to Bar 105.

A side benefit of this approach is that it mimics what most traders would do in 

real life. Most traders would not want to keep building up their position during the 

lookahead period, even if the model suggested doing so. The risk of catastrophic loss 

would be too great.

�The General Walkforward Algorithm

We begin by defining some quantities that must be specified by the user.

LOOKBACK is the number of bars of price history (including the 

current bar) used to compute the indicator.

LOOKAHEAD is the number of future price bars, which does not 

include the current bar, used to compute the target.

NTRAIN is the number of cases used in the training set (before 

omitting any recent cases) for the prediction model on which 

trade decisions are based. The total distance we look back from 

the current bar in the price history is LOOKBACK + NTRAIN – 2. The 

actual number of training cases will be NTRAIN – OMIT.

NTEST is the number of test cases in each OOS test block.

OMIT is the number of most recent training cases omitted from the 

training set to prevent optimistic bias when LOOKAHEAD is greater 

than one.
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EXTRA is the number of cases, in addition to NTEST, advanced for 

the next fold. In other words, each fold will be advanced by  

NTEST + EXTRA cases in the dataset, with each case corresponding 

to a price bar.

As discussed in prior sections, if LOOKAHEAD is greater than one (something we 

should avoid if at all possible), there are several precautions we should take if we are to 

do the walkforward intelligently.

	 1)	 We must set OMIT = min (LOOKAHEAD, LOOKBACK) – 1 to avoid 

deadly optimistic bias. This is crucial.

	 2)	 We must set NTEST = 1 and EXTRA = LOOKAHEAD – 1 if we are 

to avoid dangerous serial correlation in trade results. Serial 

correlation alone does not introduce bias, but it increases the 

error variance that impacts our OOS performance figures, and it 

precludes most traditional statistical tests.

The general walkforward algorithm is as follows:

	 1)	 Set OOS_START to the bar of the user’s desired starting date for 

testing. If the entire dataset is to be used, set OOS_START = NTRAIN.

	 2)	 Create the trading system based on market history over cases 

running from OOS_START – NTRAIN through OOS_START – OMIT – 1.

	 3)	 Execute the trading system over cases running from OOS_START 

through OOS_START + NTEST - 1. Save the system’s performance. 

Note that NTEST need not be fixed. For example, we may want to 

do day trades over a calendar year, so NTEST will depend upon the 

number of trading days in the year being tested.

	 4)	 If more market data (cases in the dataset) remains, advance  

OOS_START by NTEST + EXTRA and loop back to step 2.

�C++ Code for the Algorithm

The file OVERLAP.CPP, which we will explore soon, contains an example of the fully 

general version of the walkforward algorithm. Here is a code fragment that illustrates the 

algorithm. We will break it into sections, explaining each section separately.
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The complete dataset is in data. This matrix contains ncols columns, with the last 

column being the target variable (typically a measure of near-term future market price 

change) and all prior columns being predictors. This matrix has ncases rows, each 

corresponding to a single bar or trading opportunity. We initialize the start of the current 

training set, trn_ptr, to be the start of the dataset. The OOS test set begins at index istart, 

just past the user-specified ntrain cases that make up the training set. We will count OOS 

cases in n_OOS.

      trn_ptr = data ;      // Point to training set, which starts at the beginning of  the data

      istart = ntrain ;       // First OOS case is immediately past training set

      n_OOS = 0 ;          // Counts OOS cases as they are processed

The main fold loop is shown next. Rather than having to compute in advance the 

number of folds, we will just leave it open-ended and stop the walkforward when we run 

out of historical data.

      for (ifold=0 ;; ifold++) {

         test_ptr = trn_ptr + ncols * ntrain ;          // Test set starts right after training set

         if  (test_ptr >= data + ncols * ncases )    // No test cases left?

            break ;                                                  // Then we are finished

At the beginning of the loop just shown, we set the test-set pointer to be ntrain cases 

past the start of the current training set. We could just as well use istart to set this pointer, 

but I believe this formula is clearer. If the start of the test set is past the end of our 

historical data, we are finished.

The call to find_beta() is the training phase, to be discussed soon. We have ntrain–

omit training cases, which begin at trn_ptr. The other two variables are the optimized 

parameters returned by the training algorithm. We then set nt to be the number of test 

cases in the OOS block. This will normally be the user-specified quantity, ntest. But the 

last OOS block may be shorter, so we trim it back as needed.

The test loop makes a prediction for each case. If the prediction is positive, we take 

a long position, recording the target. Otherwise, we take a short position (minus target). 

Finally, we advance the training and test blocks.

         find_beta ( ntrain - omit , trn_ptr , &beta , &constant ) ;

         nt = ntest ;

         if  (nt > ncases - istart)                            // Last fold may be incomplete

            nt = ncases - istart ;
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         for (itest=0 ; itest<nt ; itest++) {              // For every case in the test set

            pred = beta * *test_ptr++ + constant ; // test_ptr points to target after this line

            if  (pred > 0.0)

               oos[n_OOS++] = *test_ptr ;

            else

               oos[n_OOS++] = - *test_ptr ;

            ++test_ptr ;                                          // Advance to indicator for next test case

            }

         istart += nt + extra ;                                // First OOS case for next fold

         trn_ptr += ncols * (nt + extra) ;               // Advance to next fold

         }  // Fold loop

�Date-Dependent Walkforward

It is common to perform a walkforward analysis based on dates. For example, we may 

want to test one year at a time: we train through the end of a calendar year and test the 

following year. Then we advance the training and test windows one year and do the 

same. This has the advantage of minimizing the number of times the model must be 

trained, which can be good when the training time is problematic. It also makes for an 

intuitive presentation of results. The general walkforward algorithm just shown can 

be used, setting NTEST for each fold according to the number of bars in the test year. 

Moreover, it is easy to set OMIT so as to prevent optimistic bias. However, we must use 

a LOOKAHEAD of one if we are to avoid variance inflation that precludes most statistical 

tests.

If we must have LOOKAHEAD greater than one and we also must present annual or 

other date-dependent walkforward results, then we need to break up each test period 

into single-bar tests (NTEST=1), each separated by LOOKAHEAD, and pool results into 

each year. Best results will be obtained if the model is retrained for each subfold, but this 

is not required.

�Exploring Walkforward Blunders

In this section we use a small console program to explore the impact of lookaheads greater 

than one bar when proper measures are not taken to eliminate harmful effects. This 

program is called OVERLAP.EXE, and its complete source code is in OVERLAP.CPP. We 

begin with the calling parameter list and then explain the program’s operation in detail. 
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We will conclude with a series of experiments to demonstrate the various relevant issues. 

To begin, the program is invoked from the command line as follows:

OVERLAP nprices lookback lookahead ntrain ntest omit extra nreps

nprices is the number of market prices (bars) in the market history. 

For the most accurate results, this should be large, at least 10,000.

lookback is the number of bars of history used to compute the 

indicator.

lookahead is the number of future bars used to compute the target.

ntrain is the number of cases used in the training set (before 

omitting any) for the prediction model on which trade decisions 

are based. The actual number of training cases will be ntrain  

minus omit.

ntest is the number of test cases in each OOS test block.

omit is the number of most recent training cases omitted from the 

training set to prevent bias when lookahead is greater than one.

extra is the number of cases, in addition to ntest, advanced for the 

next fold. If lookahead is greater than one, then ntest should be 

one, and extra should be lookahead minus one if we are to avoid 

dangerous serial correlation in trade results.

nreps is the number of replications used to compute the median 

t-score and the tail fraction described later. It should be fairly large 

and odd, at least 1001, for accurate results.

First, the program computes a price history that is a random walk, completely 

unpredictable. The implication is that no trading system would, on average, provide 

an expected return other than zero. The degree to which the actual return exceeds zero 

indicates the degree to which optimistic bias has crept in.

After the price history has been generated, a database consisting of a single indicator 

and the target is created. This indicator is the linear slope of the price history across the 

lookback period. The target is the market price lookahead bars in the future, minus the 

current price. Each case in the database corresponds to a single bar in the price history.

The walkforward now begins, starting with the first case in the database. We use 

the first ntrain minus omit cases in the database as a training set to compute the linear 
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regression equation (slope and intercept) for predicting the target from the single 

indicator. The test case(s) in the OOS block are then processed by applying this 

regression equation to predict the target. If the prediction is positive, we take a long 

position, and if the prediction is negative, we take a short position.

The philosophy behind this primitive model is that during at least some time periods 

the market will be in a trend-following mode, which will result in the regression equation 

picking up the relationship between the most recent price trend and continuation of 

the trend into the future. Of course, because the market prices in this simulation are 

a random walk, this situation will not happen except by random chance, and so the 

expected return of this trading system should be zero.

After all test cases in this OOS block are processed, the fold is advanced by moving 

the training and test windows forward by ntest plus extra cases, and the training/testing is 

repeated for this next fold. This continues until all prices are exhausted.

The entire process just described, beginning with market price history generation, 

is repeated nreps times. For each replication, a t-score is computed for the pooled OOS 

trade results, and the median t-score across all replications is printed. Because the 

market prices are a random walk, we would expect this median to be about zero, but we 

will see that incorrect structuring of the walkforward will result in optimistic bias. Also, 

for each replication, the right tail p-value (probability that results at least this good could 

have been obtained by pure luck) is computed. (Actually, for simplicity the normal CDF 

is used instead of the t CDF, but this is an excellent approximation when a large number 

of market prices are used.) A counter is incremented each time this p-value is less than 

or equal to 0.1. Because the market prices are a random walk, we would expect this event 

to happen in about 0.1 times nreps replications. The observed fraction of times is printed. 

We will see that this fairly significant p-value will occur more frequently than 0.1 if the 

walkforward is not structured correctly.

Here are a few experiments that demonstrate the consequences of improper 

walkforward when using the database/model approach. In all of these experiments, we 

use the following parameters:

nprices = 50,000	 Using a long price history provides accurate results.

lookback = 100	 This has almost no impact on relative results.

lookahead = 10	 Any value greater than 1 demonstrates the issues.

ntrain = 50		  This is fairly unimportant.

nreps = 10001	 A large value reduces the effect of random error on results.
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As a reminder, the program will print two results, the median (across replications) 

t-score for OOS returns and the fraction of these replications for which the p-value 

associated with the t-score is less than or equal to 0.1. Because the market is a true 

random walk (unpredictable), we expect the former to be near 0.0 and the latter to be 

near 0.1. Any increase beyond these expected values results from dangerous optimistic 

bias due to improper walkforward.

Experiment 1: Optimistic Bias from IS/OOS Overlap with Large Test Set
ntest = 50

omit = 0

extra = 0

For this test we make the test set be the same size as the training set and take 

no action to counter the problems induced by the lookahead exceeding 1. A test set 

this large (the same size as the training set) would not usually be done in real life 

because late observations in the test set would be so far from the training set that any 

nonstationarity in the market could reduce predictability. But it may be necessary when 

the model requires massive training time and we simply do not have the computational 

resources to retrain more often.

We find that the median t-score is 5.35, severe bias, and the fraction of replications 

whose t-score is significant at the 0.1 level is 0.920, a ridiculous amount of bias.

Experiment 2: Optimistic Bias from IS/OOS Overlap with 1-Bar Test Set
ntest = 1

omit = 0

extra = 0

This is the ideal test and real-time situation, retraining the model after every single 

use. This would often be practical when trading day bars; we retrain the model every 

night for making a prediction about the next day.

We find that the median t-score is 74.64 (!), extreme bias, and the fraction of 

replications whose t-score is significant at the 0.1 level is 1.0, perfect failure. Why is this 

bias so much more severe than in the prior experiment? The reason is that when we have 

a large test set in each fold, as cases get further into the future from the training set, the 

number of overlapping prices decreases, thus reducing the optimistic bias. But when 

we test only the single case immediately past the training set, we have the maximum 

possible number of overlapping prices.
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Experiment 3: Optimistic Bias from IS/OOS Overlap, fully handled
ntest = 1

omit = 9

extra = 0

In this experiment we explore the subject described starting on page 131, optimistic 

OOS performance when multiple-bar lookahead creates unobvious future leak. Recall 

that the target lookahead is 10 bars, so to fully eliminate future leak we must omit 10-1=9 

of the most recent training cases. We do so in this test.

We find that the median t-score is -0.023, which is zero except for random variation 

in the test. So we have completely eliminated the bias in OOS results. However, the 

fraction of replications whose t-score is significant at the 0.1 level is 0.314. How can 

this happen when the OOS results are unbiased? This is because of variance inflation, 

discussed on page 133. We will explore this subject in Experiment 5.

Experiment 4: Optimistic Bias from IS/OOS Overlap, partly handled
ntest = 1

omit = 8

extra = 0

This test is identical to the prior experiment, except that we almost, but not quite, 

omit enough training cases. We need to omit nine cases, but we omit only eight.

We find that the median t-score is 1.88, which is not huge but still a problem. 

Cheating by failing to omit the required number of cases, even if we come very close, 

still introduces dangerous optimistic bias. Moreover, the fraction of replications whose 

t-score is significant at the 0.1 level is 0.588, worse than in the prior experiment.

Experiment 5: Optimistic Bias and Variance Inflation, fully handled
ntest = 1

omit = 9

extra = 9

In this experiment we handle both of the issues involved in multiple-bar target 

lookahead. Recall that the target lookahead is ten bars, so to fully eliminate future leak 

bias we must omit 10-1=9 of the most recent training cases. Also, we must jump an extra 

nine cases as we advance folds in order to avoid variance inflation from serial correlation 

in OOS trade results. We do both in this test.
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We find that the median t-score is -0.012, which is zero except for random variation 

in the test. So we have completely eliminated the bias in OOS results. Moreover, the 

fraction of replications whose t-score is significant at the 0.1 level is 0.101, as perfect as 

we can expect in a random trial.

�Testing Robustness Against Nonstationarity

The curse of trading system developers (well, one of the curses, anyway) is 

nonstationarity in financial markets. Patterns that allow great predictability for months 

may suddenly vanish. This may be because of changing economic environments, such 

as times of unusually high or low interest rates. It may also be because of the discovery 

of these predictable patterns by large institutions, resulting in predictability being 

arbitraged out of existence. Regardless of the cause, it is important that we test how well 

our trading system holds up against changing markets.

It should be noted that different trading systems really do have different degrees 

of robustness against common types of market changes. This is often by design. Some 

developers deliberately design trading systems that have a fast response to changing 

conditions but that also require frequent modification to keep up with evolving market 

patterns. Others design systems that capitalize on patterns that, while often less 

prominent, are present in markets for years or even decades. Regardless of our choice 

or even if we make no deliberate choice, we need to know how long a trained model will 

retain its predictive power as market patterns evolve.

One effective way to evaluate robustness against nonstationarity is to perform 

multiple walkforward analyses, each having a different testing period. For example, we 

might retrain a day-bar system every night, testing it for only the next day. Then we test 

the same system with an OOS period of two days, retraining it every other day. Continue 

this testing pattern, lengthening the test period until performance severely drops off.

When we plot OOS performance versus the test period, we will typically see peak 

performance at the shortest test period (most frequent retraining). Performance will 

drop off as we lengthen the test period. Often, the drop-off will be slow at first, and 

then plummet, giving the developer a rough idea of how frequently the system must be 

retrained.

An even more sensitive, though slightly more complex approach, is to base 

performance on only the last bar in each test fold. This eliminates the influence 

of earlier, superior results, though at the (minor) expense of more variation in the 

performance curve.
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�Cross-Validation Analysis
A major disadvantage of walkforward analysis is that it fails to efficiently use all of the 

available market history. For every walkforward fold, all information past the end of the 

OOS block is ignored. We can solve this problem by means of cross validation. The idea 

is that instead of using only training data prior to the OOS test block, we also include 

data past the OOS block in the training set. This is often extremely useful in applications 

that do not involve time-series data. However, when cross validation is applied to time-

series data, such as market histories, several subtle issues can bite us. In this section we 

explore these issues.

�Unobvious IS/OOS Overlap

If you’ve forgotten about how a lookahead greater than one bar can induce optimistic 

bias from future leak in walkforward analysis, please review the material starting on  

page 131. I’ll leave it as an exercise for the reader to show that, just as we had to omit  

min ( lookback, lookahead ) – 1 cases from the end of the training set in walkforward 

analysis, when we do cross validation, we also have to omit this many cases from the 

beginning of the part of the training set that is past the OOS test block. To show this, use 

the same technique you employed in showing it for walkforward analysis.

Figure 5-1 shows how this works for a fivefold cross validation. The full left-right 

extent of the rectangle represents the historical extent of the available data. The four 

hash marks above the long rectangle delineate the five folds. In the fold shown, we are 

testing the middle block.

Figure 5-1.  Guard buffers in cross validation
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If our target variable had a lookahead of just one bar, we could use all of the data on 

both sides of the OOS test set as training data. But this figure illustrates the situation of 

having a longer lookahead. Thus, we need to omit training cases on both sides of the 

test set, acting as guard buffers to prevent inadvertent IS/OOS overlap that would cause 

dangerous optimistic bias.

�The Fully General Cross-Validation Algorithm

In some cases, the programmer may find it easiest to avoid all the shuffling involved 

in the algorithm about to be shown. This can be done by incorporating the starting 

and stopping boundaries of the training set, test set, and guard buffers directly into 

the training and testing code. But this can be tricky itself. Moreover, it requires highly 

customized training and testing code; canned or general-purpose algorithms are out 

of the question. The algorithms shown in this and the next section are designed to 

consolidate all training data into a single array of contiguous cases, and the test data into 

another contiguous block. This greatly simplifies the separate training and testing code.

In this section we state the general cross-validation process in simple algorithmic 

form to provide an overview. In the next section we’ll see C++ code that clarifies the 

details. The algorithm is simple if no guard buffer is needed (omit=0). But if we need a 

guard buffer, compressing the training data into a single contiguous block requires either 

complex shuffling in place or keeping a separate copy of the dataset, copying from a 

source array to a destination array as needed. We choose the latter approach, as it is not 

only simpler to program but also faster to execute.

Thus, if omit>0, we have two arrays. The one that we call SRC contains the entire 

historical dataset. The other is called DEST, and it is the array that will be passed to 

the training and testing routines. But if omit=0, we use just the array of historical data, 

shuffling in place for each fold. In both situations, istart is the index of the current first  

test case (origin 0), and istop is one greater than the index of the current last test case.  

The notation m::n refers to the block of contiguous cases from m up to but not including n. 

The algorithm is as follows:
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istart = 0                                          First OOS test block is at start of  dataset.

ncases_save = ncases ;                  We’ll temporarily reduce this, so must restore.

For each fold...

   Compute n_in_fold and istop         Number of  test cases; one past end of  test set.

   if  omit                                             We need guard buffers.

      copy SRC[istart::istop] to end of  DEST     This is the OOS test block.

      if  first fold                                    The training set is strictly after the test set.

         copy SRC[istop+omit::ncases] to beginning of  DEST  This is the training set.

         ncases -= n_in_fold + omit      This many cases in training set.

      else if  last fold                            The training set is strictly before the test set.

         copy SRC[0::istart-omit] to beginning of  DEST   This is the training set.

         ncases -= n_in_fold + omit      This many cases in training set.

      else                                             This is an interior fold.

         copy SRC[0::istart-omit] to beginning of  DEST          First part of  training set.

         copy SRC[istop+omit::ncases] to DEST[istart-omit]   Second part of  training set.

         ncases -= n_in_fold + 2 * omit         This many cases in training set.

   else                                          omit=0 so we just swap in place.

      if  prior to last fold                  �We place OOS block at end; already there if  last fold.

         swap istart::istop with end cases

      ncases -= n_in_fold              This many cases in training set.

   Train                                         �Training set is first ncases cases in new data matrix.

   ncases = ncases_save            �Restore to full dataset (it was reduced for training).

   Test                                          Test set is last istop–istart cases in new dataset.

   if  (not omit AND not last fold)  If  we shuffled in place, unshuffle.

      swap istart::istop with end cases        swap OOS back from end.

   istart = istop                             Advance OOS test set for next fold.
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�C++ Code for the General Algorithm

The previous algorithm is intended to give a rough overview of the relatively complex 

shuffling process used to consolidate training and test data for each fold, facilitating use 

of general-purpose training and testing algorithms. But that overview omitted many 

details that will now be presented using actual C++ code.

We begin with some initializations. Throughout the entire algorithm, istart is the 

index of the current first OOS test case, and istop is one greater than the index of the 

current last test case. The total number of OOS cases completed after each fold will be 

in n_done, and they will be counted up one at a time for indexing purposes in n_OOS_X. 

If we are using guard buffers (omit>0), then we need to save the total number of cases, 

because ncases will be reduced to the actual number of training cases employed for  

each fold.

      istart = 0 ;                           // OOS start = dataset start

      n_done = 0 ;                       // Number of  cases treated as OOS so far

      n_OOS_X = 0 ;                  // Counts OOS cases one at a time, for indexing

      ncases_save = ncases ;     // Save so we can restore after every fold is processed

This is the fold loop. The number of OOS test cases in this fold is the number of cases 

not yet done, divided by the number of folds remaining to be processed.

      for (ifold=0 ; ifold<nfolds ; ifold++) {   // Processes user's specified number of  folds

         n_in_fold = (ncases - n_done) / (nfolds - ifold) ;        // N of  OOS cases in fold

         istop = istart + n_in_fold ;                                          // One past OOS stop

The following if statement takes care of the situation of having to deal with guard 

blocks. First, we copy the current OOS test set to the end of the destination array, where 

it will be tested.

         if  (omit) {

            memcpy ( data+(ncases-n_in_fold)*ncols , data_save+istart*ncols ,

                             n_in_fold*ncols*sizeof(double) ) ;

If this is the first (leftmost) fold, the entire training set for this fold lies to the right of 

the OOS block. Copy it to the beginning of the destination array. The number of training 

cases is the total number of cases, minus those in the OOS set and the guard block cases.
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            if  (ifold == 0) {   // First (leftmost) fold

               memcpy ( data , data_save+(istop+omit)*ncols ,

                                (ncases-istop-omit)*ncols*sizeof(double) ) ;

               ncases -= n_in_fold + omit ;

               }

If this is the last (rightmost) fold, the entire training set is prior to the OOS block. 

Copy those cases.

            else if  (ifold == nfolds-1) {  // Last (rightmost) fold

               memcpy ( data , data_save , (istart-omit)*ncols*sizeof(double) ) ;

               ncases -= n_in_fold + omit ;

               }

Otherwise, this is an interior fold. Here we deal with an issue not explicitly stated in 

the algorithm outline shown previously. It may be that the user specified so many folds 

that each fold has a tiny OOS test set, perhaps even just one case. It can then happen that 

on one side of the test set there are no cases after the guard block is excluded. We must 

handle that.

            else {                      // Interior fold

               ncases = 0 ;

               if  (istart > omit) { // We have at least one training case prior to OOS block

                  memcpy ( data , data_save , (istart-omit)*ncols*sizeof(double) ) ;

                  ncases = istart - omit ;    // We have this many cases from the left side

                  }

               if  (ncases_save > istop+omit) {  // We have at least one case after OOS block

                  memcpy ( data+ncases*ncols , data_save+(istop+omit)*ncols ,

                         (ncases_save-istop-omit)*ncols*sizeof(double) ) ;

                  ncases += ncases_save - istop - omit ;    // Added on this many from right

                  }

               } // Else this is an interior fold

            } // If  omit

The following else block handles the situation of omit=0: no guard blocks. This is 

much easier. We don’t even have a separate source array. Everything is swapped in place. 

For each fold, we swap the OOS test set to the end of the array. After training and testing 
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are complete for a fold, the data is swapped back the way it was. Note that for the last 

(rightmost) fold, the test set is already at the end, so we do not swap.

         else {

            // Swap this OOS set to end of  dataset if  it's not already there

            if  (ifold < nfolds-1) {                           // Not already at end?

               for (i=istart ; i<istop ; i++) {             // For entire OOS block

                  dptr = data + i * ncols ;                // Swap from here

                  optr = data + (ncases-n_in_fold+i-istart) * ncols ;  // To here

                  for (j=0 ; j<ncols ; j++) {

                     dtemp = dptr[j] ;

                     dptr[j] = optr[j] ;

                     optr[j] = dtemp ;

                     }

                  } // For all OOS cases, swapping

               } // If  prior to last fold

            else

               assert ( ncases-n_in_fold-istart == 0 ) ;

            ncases -= n_in_fold ;

            } // Else not omit

/*

   Train and test this XVAL fold

   When we prepared to process this fold, we reduced ncases to remove

   the OOS set and any omitted buffer.   As soon as we finish training,

   we restore it back to its full value.

*/

         find_beta ( ncases , data , &beta , &constant ) ;  // Training phase

         ncases = ncases_save ; // Was reduced for training but now done training

         test_ptr = data+(ncases-n_in_fold)*ncols ;   // OOS test set starts after training set

         for (itest=0 ; itest<n_in_fold ; itest++) {         // For every case in the test set

            pred = beta * *test_ptr++ + constant ;        // test_ptr points to target after this

            if  (pred > 0.0)                                             // If  predicts market going up

               OOS[n_OOS_X++] = *test_ptr ;             // Take a long position
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            else

               OOS[n_OOS_X++] = - *test_ptr ;           // Take a short position

            ++test_ptr ;   // Advance to indicator for next test case

            }

/*

   Swap this OOS set back from end of  dataset if  it was swapped there

*/

         if  (omit == 0  &&  ifold < nfolds-1) {  // No guard buffers and prior to last fold

            for (i=istart ; i<istop ; i++) {            // This is the same code that swapped before

               dptr = data + i * ncols ;

               optr = data + (ncases-n_in_fold+i-istart) * ncols ;

               for (j=0 ; j<ncols ; j++) {

                  dtemp = dptr[j] ;

                  dptr[j] = optr[j] ;

                  optr[j] = dtemp ;

                  }

               }

            }

         istart = istop ;                    // Advance the OOS set to next fold

         n_done += n_in_fold ;      // Count the OOS cases we've done

         } // For ifold

In the previous code, note that we use the same “model” as was used in the 

OVERLAP program discussed in detail on page 138. Subroutine find_beta() is the training 

phase, using the first ncases cases in data to compute a linear function for predicting the 

next data value (the price change for the next case). In the OOS testing phase of each 

fold, we pass through the test set. For each case in the test set, we make a prediction of 

the upcoming market move. If the prediction is positive, we take a long position, and if 

it’s negative, we take a short position. These facts are of little importance to the current 

discussion, because the focus here is on the cross-validation swapping. Just be aware of 

when training and testing happen amid all the swapping.
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�Cross Validation Can Have Pessimistic Bias

There is widespread belief that cross validation produces an unbiased estimate of 

population performance. At first glance, this makes sense: we are always testing a model 

that was trained on data that is separate from the test data (assuming that appropriate 

guard buffers were used if needed). But the subtle issue at play in cross validation is the 

size of each training set. The training set in each fold is smaller than the entire dataset, 

while we would typically train with the entire dataset when the model is put to use. 

When we have a smaller training set, the model parameter estimates are less accurate 

than they would be if we trained with the entire dataset. And of course, having less 

accurate model parameter estimates means that the model will have reduced accuracy, 

which translates to inferior OOS performance on average. Thus, all else being equal, 

we can expect cross validation to slightly underestimate the performance that will be 

obtained when we finally train using the entire dataset and then put the model to work.

�Cross Validation Can Have Optimistic Bias

If the data is nonstationary, which is pretty much the rule in market trading applications, 

this nonstationarity can be a source of optimistic bias in cross validation. The idea is that 

by including future market data in the training set, even if individual cases are properly 

excluded, we provide the training algorithm with valuable information concerning the 

future distribution of the data, information that would not be available in real life.

As a simple example, suppose your historical data has steadily increased volatility 

from beginning to end. With walkforward analysis, as well as in real life, each test set 

(and real-life trading period) would have volatility exceeding that in the training set, 

which might be problematic. But the numerous interior test folds in cross validation 

would be tested on models trained with data from the future as well as the past, thus 

providing a variety of volatility examples that bracket the volatility in the test set. This is a 

subtle form of future leak, even though no actual cases are shared.

�Cross Validation Does Not Reflect Real Life

As should be apparent from the previous two sections, cross validation is highly suspect 

compared to walkforward analysis when it comes to simulating real life. Granted, cross 

validation does allow the use of more training data than walkforward analysis, especially 

in early folds when walkforward analysis is forced to make due with meager historical 

data. In fact, for this reason, walkforward analysis can have even worse pessimistic bias 
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than cross validation. On the other hand, most developers perform walkforward analysis 

using a training set size equal to that which will be used to train the final production 

model. This is because they are hesitant to span too wide of a historical period, which 

may encompass too many market regimes because of nonstationarity. In this common 

situation, the data advantage of cross validation is wiped out. And once that advantage 

is gone, there is no incentive to tolerate the sort of subtle future leak discussed in the 

prior section, in which hints of future nonstationarity issues are provided to the training 

algorithm. Thus, I cannot recommend cross validation analysis in trading system 

development, except in the most unusual special situations.

�Special Precautions for Algorithmic Trading
First, let’s be clear on the meaning of algorithmic trading. Much of the recent discussion 

has been focused on the increasingly popular and powerful model-based trading. In 

model-based trading, we build a dataset of predictors and targets and then train a 

powerful model to predict the target, given the predictors as of a trading opportunity. 

This is in sharp contrast to the older, more traditional algorithmic trading, in which a 

rigorously defined algorithm makes trading decisions on the fly. One venerable chestnut 

of algorithmic trading is a moving-average crossover system: we take a long position 

when a short-term moving average is above a long-term moving average, and we take a 

short position when the reverse is true. To train such a system, we find short-term and 

long-term lookbacks that optimize some measure of performance. We now investigate 

the potentially deadly issue of unobvious future leak in algorithmic trading systems.

Recall from the discussion that began on page 131 that for both walkforward analysis 

and cross validation, we may need a guard buffer removed from the training set where it 

touches the test set. The number of cases removed is one less than the minimum of the 

lookback and the lookforward distance used in computing the model-training database.

With model-based trading, it is nearly always the case that the lookback exceeds the 

lookforward distance, usually to a considerable degree. We may look backward in history 

for hundreds of bars to compute measures of trend, volatility, and more sophisticated 

indicators. But when we take a position in the market, we typically hold it for at most a 

few bars so that the model may quickly respond to changing market conditions.

But with algorithmic systems, the reverse is often true, sometimes to the degree that 

the lookforward distance must be assumed to be infinite! For example, suppose our 

trading system operates with the following rule: if a short-term moving average just now 
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(on this current bar) crosses a threshold 2 percent above a long-term moving average, we 

open a long position. We hold that position until the short-term moving average crosses 

below the long-term moving average. The key point to note in this example system is that 

we don’t know how long the position will be open.

Let’s examine walkforward testing of this system. Suppose we arbitrarily impose 

an upper limit of 150 bars for the long-term moving average lookback. After training, 

we may well find that the actual lookback is less than this, but it can perhaps be this 

extensive, so we must be prepared.

What about the lookahead? Unfortunately, the rule for closing the position may fire 

just a few bars after entry, or we may still be in our position 1,000 bars later. We just don’t 

know in advance.

The implication is that unlike with model-based trading, in which the lookahead 

almost always determines the size of the guard buffer, for open-ended algorithmic 

trading it will often be the lookback that determines the guard buffer size, and this will 

usually be depressingly large.

Pursuing this example will clarify the situation. Suppose we are at the last bar of 

the training block in this fold, say Bar 1000. To find optimal short-term and long-term 

lookbacks, we try a large number of candidate pairs, perhaps even every possible pair 

of short-term and long-term lookbacks. For each candidate pair we start at the earliest 

possible bar in the training block for which we could compute the long-term moving 

average. We evaluate the entry rule, take a position if it passes, and hold the position 

until the exit rule fires. We move along through the training block, trading as decreed 

by the rules. When the trade-opening process reaches Bar 1000, we stop and compute 

a performance figure for this short-term/long-term lookback pair. Then we repeat the 

process for a different pair of lookbacks. Eventually, we have in hand the lookback pair 

that gives the best trading performance in the training block.

Then we go to Bar 1001, the first bar in the OOS test set for this fold. We evaluate the 

entry rule using the previously determined optimal lookbacks and act accordingly. If the 

test set size is more than one bar, we repeat for the next bar, cumulating net performance 

across the test set.

Astute readers have noticed that we glossed over a crucial aspect of this algorithm: 

during training, what do we do with the position when we hit the end of the training 

block for the fold? There are at least five ways we could handle issues near the training/

testing boundary, four of which are good and one of which is disastrous.
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	 1)	 If a position is open at the end of the training block, we leave 
it open and keep advancing, closing it only when the closing 
rule fires. This provides an honest outcome, the profit that would 

have been obtained in real life. But suppose a position opens on 

Bar 1000, the last bar in the training block, and it is an extremely 

profitable trade. The training algorithm will favor lookbacks that 

capture that great trade. Now consider what happens at Bar 1001, 

the first bar in the OOS test set. This trial will share a lot of past 

price history with the prior bar, one bar less than the optimal 

long-term lookback. Thus, it will almost certainly open a trade 

there. Moreover, this trade will share the same future bars that 

produced a huge profit in the training phase, and hence it will be 

very profitable. This past-and-future price sharing between the 

training and test periods is serious future leak, and it will produce 

significant optimistic bias. Don’t do it.

	 2)	 Force the training algorithm to close and mark-to-market the 
position when the end of the training block is reached. This 

eliminates future leak and makes the trading system consistent 

with what could be achieved in real life, because no future 

information ever takes part in training. But it does distort trades 

near the end of the training period by closing them in a different 

manner from how they are closed earlier in the training period, 

when positions are unlikely to be prematurely closed. This may or 

may not adversely impact computation of optimal lookback pairs. 

It certainly deserves contemplation.

	 3)	 Modify the closing rule to close the position if it has been open 
a specified number of bars, and use a guard buffer that size. In 

the example under discussion, we might make the closing rule be 

“We hold the position until the short-term moving average crosses 

below the long-term moving average, or the position has been 

open for 20 bars.” Then we cease opening new positions (have a 

guard buffer) when we pass this many bars prior to the end of the 

training period. This, too, prevents future leak and is consistent 

with what could be achieved in real life. It has the advantage over 

method 2 in that all trades are consistent with the same rule, 
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which avoids distortion in the optimization process. But unless 

the bar limit is very large, this may be an unwelcome infringement 

on the developer’s trading hypothesis.

	 4)	 Act as in method 1, freely advancing open trades past the end 
of the training period. However, stop opening positions (guard 
buffer) when we reach the end of the training period minus one 
less than the maximum lookback. In our current example, the 

last bar at which we might open a position is 1000–(150–1)=851. 

This is safe because when we begin the test set at Bar 1001, we will 

be examining Bars 852 through 1001. Thus, the prices on which 

entry decisions during training were done, and those on which 

testing entry decisions are made, are completely disjoint. Despite 

avoiding future leak and hence providing unbiased results, 

this method has the philosophical annoyance that it does not 

imitate real life; we access prices beyond the end of the training 

period during the training process. However, this is more of a 

philosophical problem than an actual problem.

	 5)	 Use the “single-bar-lookahead” method of the next section.

Which method is best? It depends (of course!). I tend to favor method 3 for several 

reasons. All trades follow the same rules, regardless of whether they are early or late 

in the training period. (Method 2 violates this nice property.) It does not peer into the 

future like method 4, even though method 4’s future-gazing does not introduce harmful 

future leak. But perhaps most of all, in my own work over the years I have found that 

automated trading systems lose accuracy fast as they march away from their opening 

bar. If a trade is not at or at least near its goal soon after opening the position, it rapidly 

devolves into a crap shot, maybe winning, maybe not. So by introducing a time limit on 

how long a position can be open, we reduce the impact of randomness.

There is one situation in which method 4 is likely superior to method 3. Both 

methods require that we cease opening trades some time before the end of the training 

period. In method 3 we lose the trade time limit, while in method 4 we lose the lookback. 

It may be that our trading plan requires a long time for the trade to be open. In my 

experience, this is not a good thing, but other developers may differ. If the required time 

period is longer than the lookback, method 4 will lose fewer trading opportunities than 

method 3. Despite being vaguely uncomfortable with method 4 looking into the future 

during training, we might consider method 4 to be the superior choice in such situations.
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�Converting Unknown-Lookahead Systems to Single-Bar

We just explored four different methods for handling boundary regions near the 

training/test border, three of which are practical and effective. We now introduce a fifth 

method, which can sometimes be more complicated but which avoids the use of any 

guard buffer at all and hence increases the effective size of each training fold. It does 

distort end-of-training-set trades like method 2, but in a frequently more innocuous way. 

Moreover, it generates a long, continuous series of single-bar returns rather than fewer 

multiple-bar returns. This is necessary to perform the CSCV superiority test and several 

other procedures described later.

To implement this conversion, we modify the trading rule to be a series of single-

bar trades, with the first trade opening in response to the opening rule and subsequent 

trades being just a continuation of the prior bar’s position. In other words, suppose our 

desired trading rule is to open a position when no position is currently open (to prevent 

simultaneous open trades) and the OpenPosition condition becomes true, and then close 

the position when the ClosePosition condition becomes true. The modified rule requires 

that we perform the following at the close of each bar:

If no position is open

If OpenPosition is true, open a position to extend through the next bar

Else

Close the position and record this bar’s return on the trade

If ClosePosition is false, re-open the same position that was just closed

This complexity is needed only if you are using commercial software that requires 

explicit opening and closing of positions in order to record trades. Of course, if you are 

writing your own software, it is much simpler: just record an open trade’s marked-to-

market return on each bar!

This is often the best method because it provides the finest granularity in returns. 

This is important to stable profit factor calculations, it enables more accurate drawdown 

calculations (it’s essentially marking-to-market every bar), and it is mandatory for some 

of the most powerful statistical tests (CSCV) described elsewhere in this text. Please 

consider it seriously. A practical example of this, with C++ code, will appear on page 198.
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�Unbounded Lookback Can Subtly Happen

We saw in method 4 earlier that the number of trading opportunities is reduced according 

to the lookback for trading decisions. We would be inclined to use this method when we 

have an open-ended trading system and we do not want to impose a time limit on how 

long trades may remain open. But in this case, we must be careful that we do not have a 

lookback that is, at least in theory, unbounded. If we cannot establish a firm bound on the 

lookback, a bound that is not impractically large, then we cannot use method 4.

How can our lookback ever be unbounded? One obvious way is if some component 

of our decision computation has unbounded lookback. For example, we’ve been talking 

about moving-average crossover systems in which the lookbacks of the moving averages 

are bounded. That’s good. But what if we used exponential smoothing, or a recursive filter, 

for our long-term and short-term smoothing? The value of such filters is computed based 

on data all the way back to the first price in the market history. Granted, the contributions 

of really early prices may be very small. But remember that when it comes to market 

trading, seemingly innocuous sources of bias can have shockingly serious impact.

A much more subtle source of unbounded lookback is when trading decisions are 

based on prior trading decisions. For example, our system may include a safety valve that 

shuts down all trading for a month if four losing trades in a row occur. Now, the lookback 

for the current bar goes back to the prior trade, and the one before that, and so on.

Or consider these entry and exit rules: we open a position if some rigorously defined 

condition that cycles on and off frequently is true and we do not currently have a trade 

open. We close the trade when some other rigorously defined condition is true. In this 

situation, our current trade decision depends on whether we opened a trade at the prior 

opportunity, which in turn depends on the opportunity prior to that, ad infinitum. The 

lookback is unbounded.

Sceptics may scoff at this concept. I do not, as I was badly burned by this very issue 

early in my career, and I no longer underestimate its impact.

�Comparing Cross Validation with Walkforward: XVW
On page 138 we presented the OVERLAP program to explore the bias introduced by 

unobvious IS/OOS overlap. Here we expand this program in the XvW program, which 

operates similarly but whose primary purpose is to demonstrate the great disparity 

possible between walkforward and cross-validation analysis of exactly the same trading 
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system. Please feel free to use this program (the complete source code is in XvW.CPP) as 

a template to explore this phenomenon with your own trading system ideas.

Here is the calling parameter list. Much of the program’s operation is described in 

detail in the section that begins on page 138, so we will omit redundant details here. The 

program is invoked from the command line as follows:

XvW nprices trend lookback lookahead ntrain ntest nfolds omit nreps seed

nprices is the number of market prices (bars) in the market history. 

For the most accurate results, this should be large, at least 10,000.

Trend is the strength of a trend that reverses every 50 bars. A trend 

of 0.0 means that the market price series is a random walk.

lookback is the number of bars of history used to compute the 

indicator.

lookahead is the number of future bars used to compute the target.

ntrain is the number of cases used in the training set (before 

omitting any) for the prediction model on which trade decisions 

are based. The actual number of training cases will be ntrain  

minus omit.

ntest is the number of test cases in each OOS test block.

nfolds is the number of cross-validation folds.

omit is the number of most recent training cases omitted from the 

training set to prevent bias when lookahead is greater than one. 

Ideally it should be one less than the lookahead.

nreps is the number of replications used to compute the several 

t-scores and the tail fraction described later. It should be fairly 

large, at least 1000, for accurate results.

seed is the random seed and may be any positive integer. This 

facilitates repeating the test with different seeds to confirm results.

As was described starting on page 137, the program repeatedly generates market 

histories. One difference between this XvW program and the OVERLAP program is  

that OVERLAP always generates random walks, while XvW can optionally generate  

price histories having a user-specified degree of trend that reverses every 50 bars.  
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This introduces a degree of predictability in market prices, producing positive average 

returns. A dataset consisting of a predictor and target for each bar is created. A simple 

linear regression model is tested with both walkforward and cross-validation testing. 

When complete, a line similar to the following will be printed:

Grand XVAL = 0.02249 (t=253.371)  WALK = 0.00558 (t=81.355)  StdDev = 0.00011 t = 150.768   

rtail = 0.00000

This information is:

•	 Mean OOS return and associated t-score for cross validation

•	 Mean OOS return and associated t-score for walkforward

•	 Standard deviation of the difference between the two methods, the 

t-score for this difference, and its right-tail p-value

If you specify a trend of 0.0, producing a pure random walk, all t-scores will be 

insignificant except for natural random variation. When you increase the trend, t-scores 

will rapidly become significant. The t-score for the difference between walkforward 

and cross validation is highly dependent on the lookback, on the lookahead, and to 

some degree on the number of folds. The main takeaway from this demonstration is 

that in nearly all practical situations, walkforward and cross validation analysis produce 

significantly different results, often wildly different.

�Computationally Symmetric Cross Validation
I’ve already pointed out (with multiple justifications) that I do not favor cross validation 

for performance analysis of market trading systems. However, there is one interesting 

application of a special form of cross validation that I have found to be frequently useful. 

This application is inspired by a fascinating 2015 paper, “The Probability of Backtest 

Overfitting” by David H. Bailey et al. It is widely available for free downloading on the 

Internet.

Computationally symmetric cross validation (CSCV) largely or completely 

eliminates one aspect of ordinary k-fold cross validation that can be problematic in some 

situations: unequal training-set and test-set sizes. Unless we use just two folds (generally 

unrecommended due to instability), for each fold the test set will be much smaller than 

the training set. In the extreme, when we use hold-one-out cross validation, each test 

set consists of a single case. Usually we pool all OOS returns into a single testing pool the 
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same size as the original dataset, so there is no problem. But occasionally we may want to 

compute a separate performance criterion of each fold’s OOS data, perhaps to get an idea of 

the fold-to-fold variation. Some criteria, especially those involving ratios, are compromised 

by small sets. For example, the Sharpe ratio requires that we divide by the standard 

deviation of returns within the sample. If the sample is small, this denominator may be tiny, 

or even zero. If the sample consists of a single case, we cannot do it at all. The profit factor 

(wins divided by losses) also requires large datasets, as do measures involving drawdown.

CSCV works by partitioning the collection of individual trade returns (nearly always 

one-bar-ahead returns) into an even number of subsets that are equal or nearly equal in 

size. Then, these subsets are combined in every possible way, making half of them be a 

training set and the other half a test set. For example, suppose we partition the returns 

into four subsets. We combine subsets 1 and 2 into a training set, and we combine 3 

and 4 into the corresponding test set. Then we combine 1 and 3 into a training set, and 

we combine 2 and 4 into the corresponding test set. We repeat this recombination until 

every possible arrangement has been used.

It should be clear that unless the number of partitions is small and the number of 

returns far from an integer multiple of the number of partitions, all training sets and test 

sets will be nearly equal in size, each about half of the total number of returns.

We digress briefly to emphasize that this partitioning is done on the individual bar 

returns, not on the price data. For example, consider our good old moving-average 

crossover system, and suppose we have specified short-term and long-term lookbacks 

for computing the moving averages. We do not partition the price histories because the 

recombination would produce deadly discontinuities that would wreak havoc on moving 

average computation. Rather, we process the entire market history, beginning to end, 

and keep track of the return captured from each bar. This set of individual bar returns is 

partitioned.

So, how is model optimization for each training set accomplished? Unfortunately, 

CSCV does not allow us to use any “intelligent” training algorithm, one that uses 

performance criteria from prior trial parameter sets to guide the selection of future trial 

parameter sets. So, for example, we cannot use genetic optimization or hill climbing. Each 

trial parameter set or other model variation must be independent of results obtained from 

prior trials. Thus, either we will almost always use a large number of randomly generated 

model parameters, or we will do an exhaustive grid search across the valid parameter 

space. After evaluating some measure of performance for each trial parameter set, we 

choose the parameter set that has optimal performance in the training set.
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�The CSCV Algorithm: Intuition and General Statement

Let’s recap what we have so far. We have created a (usually large) number of candidate 

sets of model parameter sets. For example, if we have a moving-average crossover 

system, a trial parameter set would consist of a long-term lookback and a short-term 

lookback. These numerous parameter sets may have been generated randomly or in a 

grid search.

For each trial parameter set, we evaluate the trading system across the entire 

available market price history. We must specify a fixed granularity for evaluating returns. 

This granularity is typically every bar: for each bar, we compute the contribution to 

the equity of the position (long/short/neutral) provided by that bar. But it need not be 

every bar; it could just as well be hourly for intraday trading, weekly for day bars, or 

whatever. However, finer granularity is better. The important thing is that the granularity 

be defined in such a way that we have a profit figure available at the same time for every 

competing system. This is almost never a problem; we just evaluate the profit changes 

at the same points in time (such as every bar or for the week on every Friday) for every 

competing system.

To keep things simple, from here on I will assume that we are evaluating returns 

on every bar, understanding that coarser granularities are legal though less desirable. 

When we have evaluated every trading system (every parameter set) at every bar, we can 

represent these returns as a matrix. Each row of the matrix will correspond to a single 

trading system (parameter set), with its bar-by-bar returns spanning the row. Our matrix 

will have one row for each parameter set and as many columns as we have bars where 

the trading systems are active. (This is the transpose of the matrix in the [Bailey et al.] 

article, but it is more computationally efficient to do it this way.)

Note that we will virtually always have fewer bars of returns than we have bars 

of price history, due to lookback for making trading decisions, and lookahead for 

evaluating the one-bar return due to the trade decision. For example, suppose we need 

the most recent 10 bars of price history to make a trade decision. We will lose 10 bars of 

price history.

If we now want to find the optimal parameter set for the entire available history (as 

opposed to implementing the CSCV algorithm), we compute our optimization criterion 

separately for each row of this return matrix and see which row (parameter set) produces 

the best criterion. For example, if our performance criterion is total return from the 

trading system, we just find the sum across each row and choose the system whose row 

sum is greatest. If our criterion is the Sharpe ratio, we compute this quantity for the 
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returns of each row and find the row that has the greatest value, and so on. That tells us 

the optimal parameter set.

To implement the CSCV algorithm, we partition the columns of this return matrix 

into an even number of subsets, as described earlier. These subsets will be recombined, 

half of them defining a training set and the remaining half being the OOS test set. 

Every possible combination will be processed. For the moment, consider a single such 

combination.

We now compute two criteria for each row, the performance criterion for the pooled 

training set and that for the pooled test set. For example, suppose our criterion is the 

mean return per bar. For each row (trading system) we sum the columns of that row that 

make up the training set and divide by the number of such columns, giving us the IS 

mean return per bar for that trading system. We similarly sum the columns that make up 

the test set and divide by the number of such columns, giving us the OOS mean return 

per bar. When we have done this for each row, we have two vectors, one for the training 

set and one for the test set, with each vector having as many elements as we have 

competing trading systems (parameter sets).

To find the best IS trading system for a single training/testing partitioning, we simply 

locate the element in its performance vector that has the best performance. Then we 

examine the corresponding element in the OOS vector. This is the OOS performance 

attained by the IS-optimal trading system in this particular partitioning.

Now here is the key part of the CSCV algorithm: we consider the OOS performance 

of all trading systems. If our model and parameter-selection procedure are truly 

effective, we would expect that the IS-optimal model would also have superior OOS 

performance relative to the OOS performance of the IS-suboptimal systems. After all, 

if this model is superior to its competitors in-sample and it truly is capturing authentic 

predictable market patterns, then it should usually do a good job of capitalizing on those 

market patterns out-of-sample. We set a fairly low but reasonable bar for defining what 

we mean by performing relatively well out-of-sample: the OOS performance of the IS-

best system should exceed the median OOS performance of the other systems.

Consider for a moment what we would expect if the model were worthless; it fails  

to capture any authentic market patterns: there would be no reason to expect that the  

best IS performer would also be superior OOS. The relative OOS performance of the best  

IS performer would be random, sometimes outperforming the other systems and 

sometimes underperforming. We would expect about a 50-50 probability that this “best” 

system would lie above the median OOS performance. But if the model were wonderful, 
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doing a great job of predicting market movement, we would expect its OOS performance 

to be great as well, at least most of the time.

How can we estimate the probability that the OOS performance of the best IS 

performer will be above the median OOS performance? Combinatorially symmetric 

cross validation, of course! Recall from early in this discussion that we will form every 

possible combination of the subsets, placing half of them in the training set and the 

other half in the test set. For each such combination, we perform the operation just 

described: find the best IS system and compare its OOS performance to that of the other 

systems. Count how many times the OOS performance of the IS-best exceeds the median 

of the others. These operations are not independent, but each of them is unbiased. Thus, 

if we divide the count of superior OOS performances and divide by the total number of 

combinations tested, we have a reasonably unbiased estimate of the probability that the 

OOS performance of a trained system will outperform the median of its competitors in 

the simulation.

I say reasonably unbiased because there are two source of bias, discussed earlier, to 

consider. First, each training set in CSCV is half the size of the complete dataset, which 

causes a pessimistic bias compared to training with the entire dataset. See Page 150. 

Also, if the market prices (and hence returns) are nonstationary, cross validation of any 

sort can have slight optimistic bias compared to the performance that could be attained 

in real life. Also see Page 150.

Finally, it should be noted that to avoid inadvertent IS/OOS overlap (page 131), we 

would almost always employ a lookahead of one bar, which is what I present in this 

book. The recombination algorithm can be modified to shrink training segments, but 

the modification would be cumbersome and generally not worthwhile in this situation 

anyway.

We are now ready for a brief statement of the algorithm just described intuitively.

Given:

  n_cases: Number of  cases (columns in returns matrix), ideally a multiple of  n_blocks

  n_systems: Number of  competing systems (rows in returns matrix)

  n_blocks: Number of  blocks into which the n_cases cases will be partitioned (even!)

  returns: n_systems by n_cases matrix of  returns.

        Returns [i,j] is the return from a decision made on trading opportunity j for system i.
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Algorithm:

   nless = 0

   for all 'n_combinations' training/testing combinations of  subsets

      Find the row which has maximum criterion in the training set

      Compute the rank (1 through number of  test cases) of  the test-set criterion in this

         row (system) relative to the test criteria for all 'n_systems' rows

      Compute fractile = rank / (n_systems + 1)

      If  fractile <= 0.5

         nless = nless + 1

   Return nless / n_combinations

Note that we can precompute the number of combinations using the standard 

formula for the number of combinations of n_blocks things taken n_blocks/2 at a time 

(Equation 5-1).

	
Ncombinations

Nblocks

Nblocks Nblocks
=
( ) ( )

!

/ ! / !2 2 	 (5-1)

In the intuitive description of the algorithm, we compared the OOS performance 

of the best IS performer to the median of the other OOS performances. In the previous 

algorithm, we compute the relative rank and the corresponding fractile, counting failure 

if the fractile is less than or equal to 0.5. The two operations are equivalent, but the 

approach shown in the previous algorithm is faster than computing the median.

It should be apparent that what we hope for is a small value of the ratio nless / 

n_combinations because this is the approximate probability that our best IS performer will 

underperform its competitors out-of-sample. Expressing it this way makes it vaguely 

similar to an ordinary p-value.

�What Does This Test Actually Measure?
The intuition behind the test just described makes sense, but the vital subtleties may not 

be obvious. We now explore this in more depth.

The key point to understanding the nature of this test is to realize that its results are 

entirely relative to the set of competitors being evaluated. In the most common (though 

not mandatory) situation, these competitors are all the same model but with different 

values of one or more parameters. The domain over which we select trial parameters is 

of paramount importance if the test is to be truly useful. If the domain is overly broad, 
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including numerous unrealistic parameter values, or if is overly restrictive, failing to 

cover the complete range of possible parameter values, the test loses a good deal of its 

applicability.

When we say that the test’s results are relative to the set of competitors, what we 

mean is that this test can be thought of as measuring a sort of dominance. It answers the 

following question: how much does the IS-optimal model dominate its competitors in 

terms of real-world performance, when the real-world performance is measured by OOS 

performance in the test? The key word here is competitors.

Suppose we dilute the field of competitors by including a large number of systems 

that any reasonable developer would know in advance to be worthless. In terms of 

parameterization, this would equate to testing many parameter sets that are wildly 

beyond reasonable norms. These systems will perform poorly, both in and out of sample. 

Thus, even a slightly decent system’s OOS performance will be above the median 

performance of all systems, resulting in a great score on this test, possibly undeserved.

Conversely, suppose we limit our field of competition to only systems known in 

advance to likely be good, with little variety. No one system, not even the IS-best, will 

dominate the others OOS, leading to a poor score.

The bottom line is that we must understand that the score on this test tells us how 

well the best-IS model outperforms the competing poorer-IS models OOS. Thus, we 

should strive to ensure that the competitors thoroughly but not unrealistically represent 

the parameter domain.

�C++ Code for the CSCV Superiority Test

In this section we present C++ code (CSCV_CORE.CPP) to implement the test just 

described. This code will be broken into sections, each having its own explanation. We 

begin with the function and local variable declarations. This subroutine assumes that the 

returns from the competing trading systems have already been computed and stored in a 

matrix as described earlier.

double cscvcore (

   int ncases ,               // Number of  columns in returns matrix (change fastest)

   int n_systems ,         // Number of  rows (competitors)

   int n_blocks ,            // Number of  blocks (even!) into which cases will be partitioned

   double *returns ,       // N_systems by ncases matrix of  returns, case changing fastest

   int *indices ,              // Work vector n_blocks long
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   int *lengths ,              // Work vector n_blocks long

   int *flags ,                  // Work vector n_blocks long

   double *work ,           // Work vector ncases long

   double *is_crits ,       // Work vector n_systems long

   double *oos_crits      // Work vector n_systems long

   )

{

   int i, ic, isys, ibest, n, ncombo, iradix, istart, nless ;

   double best, rel_rank ;

The first step is to partition the ncases columns of returns in n_blocks subsets of 

equal or approximately equal size. In the [Bailey et al.] paper, the assumption was that 

ncases is an integer multiple of n_blocks so that all subsets are the same size. However, I 

believe that this is not strictly necessary, and it is certainly restrictive. Therefore, I use the 

array indices to point to the starting case of each subset and use lengths to be the number 

of cases in each subset. The number of cases in each subset is the number of cases 

remaining divided by the number of subsets remaining.

   n_blocks = n_blocks / 2 * 2 ;    // Make sure it's even

   istart = 0 ;

   for (i=0 ; i<n_blocks ; i++) {      // For all blocks (subsets of  returns)

      indices[i] = istart ;                  // Block starts here

      lengths[i] = (ncases - istart) / (n_blocks-i) ; // It contains this many cases

      istart += lengths[i] ;               // Next block

      }

We initialize to zero the counter of the number of times the OOS performance of the 

IS-best system underperforms the OOS performance of the others. We also initialize a 

flag array that identifies which subsets are currently in the training set and which in the 

test set.

   nless = 0 ;   // Will count the number of  times OOS of  best <= median OOS

   for (i=0 ; i<n_blocks / 2 ; i++)   // Identify the training set blocks

      flags[i] = 1 ;

   for ( ; i<n_blocks ; i++)            // And the test set blocks

      flags[i] = 0 ;
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The main outmost loop passes through all possible combinations of blocks (subsets 

of returns) into a pooled training set and a pooled test set. The first act in this loop is to 

compute the in-sample performance of each system. To do this, gather all n returns of 

the system being evaluated into a single work array, and then call an external subroutine 

criter() to compute the performance criterion.

   for (ncombo=0; ; ncombo++) {   // For all possible combinations

/*

   Compute training-set (IS) criterion for each candidate system

*/

      for (isys=0 ; isys<n_systems ; isys++) {     // Each row of  returns matrix is a system

         n = 0 ;                                                      // Counts cases in training set

         for (ic=0 ; ic<n_blocks ; ic++) {                // For all blocks (subsets)

            if  (flags[ic]) {                                         // If  this block is in the training set

               for (i=indices[ic] ; i<indices[ic]+lengths[ic] ; i++) // For every case in this block

                  work[n++] = returns[isys*ncases+i] ;

               }

            }

         is_crits[isys] = criter ( n , work ) ;            // IS performance for this system

         }

Then we do the same thing for the test set. The code is nearly identical to that shown 

earlier, but we’ll show it anyway.

      for (isys=0 ; isys<n_systems ; isys++) {  // Each row of  returns matrix is a system

         n = 0 ;                                                   // Counts cases in OOS set

         for (ic=0 ; ic<n_blocks ; ic++) {             // For all blocks (subsets)

            if  (! flags[ic]) {                                    // If  this block is in the OOS set

               for (i=indices[ic] ; i<indices[ic]+lengths[ic] ; i++) // For every case in this block

                  work[n++] = returns[isys*ncases+i] ;

               }

            }

         oos_crits[isys] = criter ( n , work ) ;       // OOS performance of  this system

         }
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Search through all systems and find the one that has the maximum in- sample 

performance.

      for (isys=0 ; isys<n_systems ; isys++) {  // Find the best system IS

         if  (isys == 0  ||  is_crits[isys] > best) {

            best = is_crits[isys] ;

            ibest = isys ;

            }

         }

Compute the rank of the OOS performance of the best system within the population 

of OOS performance of all systems. Mathematically, best >= oos_crits[ibest] is true, but 

to guard against floating-point ambiguities we pre-test for this. Then we compute the 

fractile (rel_rank) and increment our failure counter if this performance does not exceed 

the median.

      best = oos_crits[ibest] ;         // This is the OOS value for the best system in-sample

      n = 0 ;                                    // Counts to compute rank

      for (isys=0 ; isys<n_systems ; isys++) {   // Universe in which rank is computed

         if  (isys == ibest  ||  best >= oos_crits[isys]) // Insurance against fpt error

            ++n ;

         }

      rel_rank = (double) n / (n_systems + 1) ;

      if  (rel_rank <= 0.5)   // Is the IS best at or below the OOS median?

         ++nless ;

We come now to the only truly complex part of this algorithm: advancing to the next 

combination of blocks that define the training and test sets. Many readers will want to 

take its operation on faith. I’ll provide a brief explanation after the code. Readers who 

want to plug through its operation would be advised to get out pencil and paper and 

work out the succession of combinations. After all combinations have been tested, 

we divide the failure count by the total combination count to get the approximate 

probability of underperformance. Here is the code:

      n = 0 ;

      for (iradix=0 ; iradix<n_blocks-1 ; iradix++) {

         if  (flags[iradix] == 1) {

            ++n ;                     // This many flags up to and including this one at iradix
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            if  (flags[iradix+1] == 0) {

               flags[iradix] = 0 ;

               flags[iradix+1] = 1 ;

               for (i=0 ; i<iradix ; i++) {  // Must reset everything below this change point

                  if  (--n > 0)

                     flags[i] = 1 ;

                  else

                     flags[i] = 0 ;

                  } // Filling in below

               break ;

               } // If  next flag is 0

            } // If  this flag is 1

         } // For iradix

      if  (iradix == n_blocks-1) {

         ++ncombo ;   // Must count this last one

         break ;

         }

      } // Main loop processes all combinations

   return (double) nless / ncombo ;

}

This code passes through the blocks, looking for the first occurrence of a (1,0) pair 

and counting 1s as it goes. The first time it finds a (1,0) pair, it propagates the 1 to the right, 

replacing this (1,0) pair with a (0,1) pair. Then, just as when the algorithm began, it moves 

the requisite number of 1s to the beginning of the array prior to this pair and fills in the 

rest of this prior section with 0s. So, these operations do not change the count of 1s and 0s. 

This swapping sets us up for an entirely new, unique family of combinations, because it 

is impossible for the new (0,1) pair to ever change back to (1,0) and then to (0,1) without 

at least one flag beyond it changing. The algorithm is inherently recursive, with the 

rightmost 1 slowly advancing and all flags below it changing in the same way recursively.

If you are the sort who prefers heuristic validation, know that you can explicitly 

compute the number of combinations from the number of blocks by means of  

Equation 5-1. Program the advancing algorithm and test it for a variety of number of 

blocks, confirming that you get the correct number of combinations. You know that there 
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could be no duplicates because if any combination reappeared, the algorithm would go 

into an endless loop. Thus, if you get the correct number of combinations, you know that 

they are unique and hence cover every possible combination.

�An Example with SPX

We now look at a moving-average crossover example with SPX, the S&P 500 index. I 

chose this “market” because it has a long history and it is exceptionally broad, thus 

avoiding any individual equity issues. As a point of interest, I reran this test on a 

variety of individual equities and indices and found two general effects. First, moving-

average crossover systems tend to work very well until the last few decades, when their 

performance drops off precipitously (at least in the tests I ran; I am not claiming that 

this is universal). Second, individual equities have tremendous variation, with some 

issues responding beautifully to this system, and others not so much. So, my goal in 

this example is to demonstrate the CSCV dominance algorithm, not to promote or 

discourage use of any particular trading system.

We begin with a subroutine (in CSCV_MKT.CPP) that shows how we can compute 

the returns matrix needed by CSCV_CORE.CPP. This routine is called with the array of 

price histories and the maximum lookback desired by the user. It computes the returns 

matrix. Note that we need to supply it with the log of the actual prices so that moves 

when a market is at 1000 are commensurate with moves when the market is at 10. We 

will index the items in returns with iret, which advances across rows (bars) fastest.

void get_returns (

   int nprices ,                 // Number of  log prices in 'prices'

   double *prices ,           // Log prices

   int max_lookback ,      // Maximum lookback to use

   double *returns           // Computed matrix of  returns

   )

{

   int i, j, ishort, ilong, iret ;

   double ret, long_mean, long_sum, short_mean, short_sum ;

   iret = 0 ;   // Will index computed returns

We have three nested loops. The outermost loop varies the long-term lookback from 

a minimum of two bars to the user-specified maximum. The next loop varies the short-

term lookback from a minimum of one to one less than the long-term lookback, ensuring 
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that the short-term lookback is always less than the long-term lookback. The innermost 

loop marches across the price history, making trade decisions and computing the return 

attributable to each. We must not begin this price march at ilong-1, even though valid 

return data begins there. This is because the returns matrix must be a true matrix, with 

each row having the same number of properly aligned columns. Thus, we need to start at 

the same bar for every system.

   for (ilong=2 ; ilong<=max_lookback ; ilong++) {   // Long-term lookback

      for (ishort=1 ; ishort<ilong ; ishort++) {              // Short-term lookback

         for (i=max_lookback-1 ; i<nprices-1 ; i++) {   // Compute returns across history

We could explicitly compute the moving averages at each bar, but this would be 

excruciatingly slow. A much faster method, though trivially less accurate because of 

floating-point error buildup, is to compute the two moving sums once, on the first bar, 

and update them from then on. For each bar, divide the moving sums to get the moving 

averages.

            if  (i == max_lookback-1) {      // Find the moving averages for the first valid case.

               short_sum = 0.0 ;               // Cumulates short-term lookback sum

               for (j=i ; j>i-ishort ; j--)

                  short_sum += prices[j] ;

               long_sum = short_sum ;    // Cumulates long-term lookback sum

               while (j>i-ilong)

                  long_sum += prices[j--] ;

               }

            else {                                   // Update the moving averages

               short_sum += prices[i] - prices[i-ishort] ;

               long_sum += prices[i] - prices[i-ilong] ;

               }

            short_mean = short_sum / ishort ;  // Convert sums to averages

            long_mean = long_sum / ilong ;

The trading rule is that we take a long position if the short-term moving average is 

above the long-term moving average, and conversely. If the two moving averages are 

equal, we remain neutral. I left in my assert() to clarify to the reader exactly how many 

items are now in the returns matrix.
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            // We now have the short-term and long-term moving averages ending at bar i

            if  (short_mean > long_mean)             // Long position

               ret = prices[i+1] - prices[i] ;

            else if  (short_mean < long_mean)     // Short position

               ret = prices[i] - prices[i+1] ;

            else                                                     // Be neutral

               ret = 0.0 ;

            returns[iret++] = ret ;                           // Save this return

            } // For i (decision bar)

         } // For ishort, all short-term lookbacks

      } // For ilong, all long-term lookbacks

   assert ( iret == (max_lookback * (max_lookback-1) / 2 * (nprices - max_lookback)) ) ;

}

When I ran this program on SPX, I tried several different numbers of blocks and 

maximum lookbacks. The following results were obtained, providing significant 

evidence that a moving-average crossover system provides useful predictive information 

in this market.

Blocks    Max lookback    Probability

  10           50             0.008

  10          100             0.016

  10          150             0.036

  12           50             0.004

  12          100             0.009

  12          150             0.027

This tells us nothing about the risk/reward ratio, so the system may not be worth 

trading. But it does show that an optimally trained model greatly outperforms its 

suboptimal competitors out-of-sample. This is valuable information, as it tells us that the 

model has real potential; if the model were flawed, training would add little or no value 

(OOS performance), and the probabilities would be closer to 0.5.
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�Nested Walkforward Analysis
Sometimes our development procedure requires us to nest one layer of walkforward 

analysis inside another such layer. The classic example of this situation is portfolio 

construction. We have a collection of candidates for inclusion in a portfolio, each of 

which requires some degree of performance optimization (maybe separately, maybe as a 

group with common parameters). We also have some criterion for portfolio performance 

that we use to select a subset of these candidates for inclusion in a trading portfolio. 

Whatever the case, two stages of optimization are occurring (portfolio components and 

the portfolio as a whole), so to estimate real-world performance of the portfolio, we must 

perform a nested walkforward analysis. Here are a few examples (far from complete!) 

where this would be necessary:

•	 We have a variety of trading systems whose performance is 

dependent on slowly varying market regimes. For example, we 

may have a trend-following system, a mean-reversion system, and 

a channel-breakout system. We keep track of which of these three 

systems has been performing best in recent times, and when we 

make our trade decisions, we use the currently superior system.

•	 We have a trading system that is applicable to nearly any equity, 

but we know from experience that different families of equities 

(transportation, financial, consumer staples, and so on) have 

superior performance with this system at different times. We keep 

track of which equities have been responding best to our trading 

system recently, and these are the equities that we trade.

•	 One of your colleagues insists that mean return is the best measure 

of how well a market or trading system is performing. Another 

argues for Sharpe ratio, while another likes profit factor. You, in your 

wisdom, suspect that the ideal measure may change over time. So, 

rather than running three separate tests and comparing start-to-

end performance, you keep track of which performance measure is 

currently most accurate and use this measure to select the system or 

market for your current trading.

Why do we need to use nested walkforward in such situations? Why can’t we just 

optimize the entire process, pooling parameterization of individual components and 
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group performance into one big pot of optimizable parameters? The answer is that 

the second stage of these operations, whether it be selection of individual systems or 

portfolio components or a second round of pooled optimization, must be based on OOS 

results from the first stage.

Let’s consider a simple example in which we avoid the complexity of evolving 

market conditions. This topic of selection bias was introduced on page 124, and now 

might be a good time to review that section. The members of your department have 

given you, the department head, a variety of models that they developed and propose 

the company trade. You must select the best of these models. Would you examine the 

in-sample performance of the competitors and choose whichever is best? Certainly 

not, and with good reason: if this system is overly powerful (typically because it has too 

many optimizable parameters), it would overfit the market history, modeling noise in 

addition to any authentic patterns. When this system is put to work in real-world trading, 

the noise patterns will vanish (that’s the definition of noise), and you will be left with 

rubbish. The intelligent approach is to compare the OOS performance of the competing 

systems and base your choice on this quantity.

The situation does not change when you are dealing with a constantly evolving 

situation. You still need to base your regular, repeated decisions of what to trade or what 

markets to include in your portfolio on the OOS performance of the competitors. This is 

because in-sample performance tells us little about how a trading system will perform in 

the real world.

This, then, is the reason we need nested walkforward. We need an inner level (I 

like to call this Level-1) of walkforward to provide the OOS results on which the Level-2 

optimization will be based. And of course, the Level-2 trade decisions will themselves 

need to be OOS validated with walkforward analysis. Thus, we nest two levels of 

walkforward analysis.

To prepare for and clarify the algorithms that will soon appear, we present a small 

example of how this procedure works. We will assume for this example that the lookback 

for the Level-1 training (typically optimizing individual trading systems) is 10 bars, and 

the lookback for the Level-2 optimization (typically selection from competing trading 

systems) is 3 bars. Then we proceed as follows:

Use Price Bars 1-10 to train the individual competitors.

Test each competitor with Bar 11, giving our first Level-1 OOS case

Use Price Bars 2-11 to train the individual competitors.

Test each competitor with Bar 12, giving our second Level-1 OOS case
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Use Price Bars 3-12 to train the individual competitors.

Test each competitor with Bar 13, giving our third Level-1 OOS case

We now have enough Level-1 OOS cases to commence Level-2 testing

Use Level-1 OOS Bars 11-13 to train the Level-2 procedure

Test the Level-2 procedure on Bar 14, giving our first totally OOS case

Use Price Bars 4-13 to train the individual competitors.

Test each competitor with Bar 14, giving a new Level-1 OOS case

Use Level-1 OOS Bars 12-14 to train the Level-2 procedure

Test the Level-2 procedure on Bar 15, giving our second totally OOS case

Repeat the prior four steps, advancing the price and Level-1 OOS windows, until the historical data is 

exhausted

�The Nested Walkforward Algorithm
Experienced programmers should be able to program nested walkforward given only 

the prior explanation and example. But for the sake of clarity, I’ll state the algorithm 

in a fairly general way. This is in the framework of the most common use of nested 

walkforward: you have two or more trading systems that, on each bar, look at recent 

market history and make a decision on the position to take (long/short/neutral) on the 

next bar. You also have a scoring system that examines the recent OOS performance 

of each of these systems and chooses an apparently superior subset of these trading 

systems (perhaps just one) to use for the next trade. Your goal is to collect OOS trades 

from this best subset. This lets you evaluate the performance of your entire trading 

system, both the foundation systems and the method for scoring and selecting the best. 

The following variables are especially important:

n_cases: Number of market price history bars in the prices array.

prices: Market history (log of prices). We call the units here bars, 

but this information could also include other measures such as 

volume and open interest.

n_competitors: Number of competing trading systems.

IS_n: User-specified lookback of trading systems; number of recent 

market history bars used to make trade decisions.
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OOS1_n: User-specified lookback of system selector; number of 

recent OOS returns produced by the multiple trading systems and 

used by the system selector to choose the best system(s).

OOS1: OOS returns of the trading systems, an n_competitors by  

n_cases matrix. Note that the first IS_n columns in this matrix are 

not used because they are undefined. Column j of this matrix 

contains the returns produced by Bar j as a result of a decision 

made on Bar j–1.

OOS2: OOS returns of the selected best system(s); our ultimate 

goal.

IS_start: Starting bar of the training set. It advances with the 

window.

OOS1_start: Index in OOS1 of the starting bar of the current system 

OOS set used by the system selector. It advances with the window 

as soon as the system selector has OOS1_n cases to look back at.

OOS1_end: One past last bar of current system OOS set used by 

the system selector. It advances with the window. This also serves 

as the current OOS1 case index. When the algorithm starts, this 

equals OOS1_start, and it increments each time the window 

advances.

OOS2_start: Starting index of complete OOS set 2; it remains fixed 

at IS_n + OOS1_n.

OOS2_end: One past its last case in OOS2. This also serves as the 

current OOS2 case index.

The algorithm shown next in sections is heavily edited to be widely applicable. In 

the next section, we will present a complete C++ program that uses nested walkforward 

in a slightly different but comparable application. Here, we begin by initializing the 

starting index in the systems’ price history to be the first case in the history. The system 

OOS returns begin immediately after the systems’ lookback period. The selector’s OOS 

returns, our ultimate goal, begin immediately after the system OOS period. Then we 

begin the main loop that moves a window across the price history series.
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IS_start = 0 ;                                     // Start training with first case

OOS1_start = OOS1_end = IS_n ;  // First OOS1 case is right after first price set

OOS2_start = OOS2_end = IS_n + OOS1_n ;// First OOS2 case is after OOS1 complete

for (;;) {   // Main outermost loop advances windows

The first step for each window position is to evaluate all competitors (trading 

systems) at this bar and store the results in OOS1, which is a two-dimensional array 

having the system down the rows and the bar across the columns, with that index 

changing fastest. The routine criterion_1() handles all systems, so we must tell it which 

system we want to evaluate. To evaluate a system, it looks at IS_n bars beginning with Bar 

IS_start and ending with Bar IS_start+IS_n-1. Note that it does not look at Bar OOS1_end, 

which will always be the next bar after this in-sample period.

In the vast majority of applications, criterion_1() will use those IS_n bars of market 

history to find model parameters that maximize the performance of the trading system 

within those IS_n bars. It will then make a decision as to the position to take for the next 

bar, which is at Bar OOS1_end=IS_start+IS_n. As its last step in the majority of applications, 

criterion_1() will return the profit/loss generated by that trade on this Bar OOS1_end. If the 

optimized model said to take a long position, this return would be prices[OOS1_end] – 

prices[OOS1_end–1]. (Recall that prices would almost always be the log of actual prices.) 

If the model said to take a short position, criterion_1() would return the negative of that 

difference, and of course if the position is to be neutral, the return would be zero. Rather 

than including this typical behavior explicitly in the algorithm shown here, I left it 

general to allow for more complex trading systems that might double up on some trades, 

and so on.

   for (icompetitor=0 ; icompetitor<n_competitors ; icompetitor++)

      OOS1[icompetitor*n_cases+OOS1_end] =

                                                         c riterion_1 ( icompetitor , IS_n , IS_start , prices ) ;

We have finished traversing the price history with the moving window when in the 

prior step we computed the OOS1 value at the last history bar. At that point there is 

nothing more to do because there is not another bar to use for computing OOS2, the 

performance of the selected best system.

   if  (OOS1_end >= n_cases-1)  // Have we hit the end of  the data?

      break ;                                   // Stop due to lack of  another for OOS2
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We now take care of part of the task of advancing the moving window. There is a 

warm-up period at the beginning of the algorithm while we build up enough OOS1 cases 

to allow the selector function to make a decision. Regardless of whether we have enough 

OOS1 cases, we increment the starting price index for training the component trading 

systems, and we also increment the OOS1 index where the next OOS return will be 

placed. But if the number of OOS1 bars computed so far, OOS1_end – OOS1_start, has not 

yet reached the required number for the selector, OOS1_n, we have nothing more to do 

yet, and we just keep advancing the window.

   ++IS_start ;       // Advance training window start

   ++OOS1_end ; // Advance current OOS1 case

   if  (OOS1_end - OOS1_start < OOS1_n)  // Are we still filling OOS1?

      continue ;  // Can't proceed until we have enough cases to compute an OOS2 return

When we get here, we have enough cases in OOS1 to invoke the system selector 

and compute an OOS2 case. First we find the best trading system, using the most recent 

OOS1_n values in OOS1 for each system. Remember that OOS1_end now points one past 

what we have in OOS1 (we incremented it a couple lines ago). Thus, the price at Bar 

OOS1_end is out-of-sample.

The selector function here is criterion_2(). Its first parameter is the number of OOS1 

values to examine, and its second parameter is the starting address of that vector of 

values. If necessary, look back to see how these values are arranged as a matrix in OOS1.

In this algorithm, we find the single best trading system and evaluate its return. 

Readers who want to find a portfolio of systems instead should have little trouble 

modifying this presentation. Just call criterion_2() for each system, save the values in an 

array, and sort the array. Keep however many of the best you want.

   best_crit = -1.e60 ;

   for (icompetitor=0 ; icompetitor<n_competitors ; icompetitor++) {  // Find the best

      crit= criterion_2(OOS1_end-OOS1_start, OOS1+icompetitor*n_cases+OOS1_start);

      if  (crit > best_crit) {

         best_crit = crit ;

         ibest = icompetitor ;

         }

      }
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We now know the best competitor, so find its OOS return. The function trade_decision() 

here uses the optimized trading system ibest to decide on a position to take. Back when 

I discussed criterion_1(), I pointed out that I made it general to allow different sized 

positions. I did not make this version general simply because I want to be perfectly 

clear on how returns are computed for a trade decision. If your system possibly opens 

multiple positions in response to differing confidences, you will have to modify this code 

appropriately. This routine examines the most recent IS_n prices prior to Bar OOS2_end 

to make its decision. Note that Bar OOS2_end is not included in the decision process, so it 

is out-of-sample.

   position = trade_decision ( ibest , IS_n , OOS2_end - IS_n , prices ) ;

   if  (position > 0)           // Long

      OOS2[OOS2_end] = prices[OOS2_end] - prices[OOS2_end-1] ;

   else if  (position < 0)   // Short

      OOS2[OOS2_end] = prices[OOS2_end-1] - prices[OOS2_end] ;

   else                            // Neutral

      OOS2[OOS2_end] = 0.0 ;

We can complete the process of advancing the moving window. Before OOS1 

contained enough values (OOS1_n are needed for the selector criterion_2()) we did not 

advance OOS1_start. But we advance it now that the OOS1 window is full. And of course 

we advance OOS2_end.

   ++OOS1_start ;   // Finish advancing the windows

   ++OOS2_end ;

   } // Main loop

We have traversed the entire market history. At this time, OOS1_end and OOS2_end 

both equal n_cases because they always point one past the last entry, and we processed 

every possible bar.

Now that the entire market history is processed, we can compute some things that 

likely would be of interest. First, we compute and save the mean OOS performance of 

each system. The information for each bar is in OOS1. We could include every entry in 

OOS1, and some developers might be interested in this figure. However, for our purposes 

here, we want to have a level playing field, so we include only those bars that are also 

available in OOS2, which starts later than OOS1. In this demonstration, our computed 

performance measure is just the mean return per bar, but we could just as well compute 
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profit factor, Sharpe ratio, or anything else. After all, the cumulative sum of each row of 

OOS1 is just a bar-to-bar equity curve that we can evaluate any way we want.

for (i=0 ; i<n_competitors ; i++) {

   sum = 0.0 ;

   for (j=OOS2_start ; j<OOS2_end ; j++)

      sum += OOS1[i*n_cases+j] ;

   crit_perf[i] = sum / (OOS2_end - OOS2_start) ;

   }

The last step is to compute our ultimate goal, the OOS performance of the selected 

best system. Those returns are in OOS2. As with OOS1, we compute mean return here, 

but feel free to compute other measures.

sum = 0.0 ;

for (i=OOS2_start ; i<OOS2_end ; i++)

   sum += OOS2[i] ;

final_perf  = sum / (OOS2_end - OOS2_start) ;

�A Practical Application of Nested Walkforward
In the prior section we saw an outline of the most common use of nested walkforward, 

presented as a series of C++ code fragments. Now we present a somewhat different use 

for this technique, this time in the form of a complete program that the user can modify 

if desired, compile, and use in practical applications. This program can be downloaded 

as CHOOSER.CPP and is complete, ready to compile and run.

The motivation behind this application is that the markets in a universe of equities 

take turns being the best performers. During some time periods, banks may be stellar 

performers, while at other times technology may reign supreme. The general idea is that 

every day (or other time period if we want) we examine every equity in a universe and 

select the one that has the best recent performance. We buy and hold this one currently 

superior equity during the next day and then re-evaluate the situation.

This nested walkforward demonstration moves a lookback window bar-to-bar. 

Scaling of printed results assumes that these are day bars, but of course they could be 

minute-bars in a higher-speed situation, weekly bars in a more relaxed environment, or 

whatever the developer wants.
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At each bar it examines recent long performance for multiple markets. It collects 

the performance of each individual market that would have been obtained by simply 

buying and holding that market during the historical window period. It then purchases 

and holds for the next bar whichever market had the best recent performance. But how 

do we measure the performance of each competing market to choose the best market? 

Do we use mean return per bar? Sharpe ratio? Profit factor? That’s the selection aspect 

of this application. At each bar we try several different performance measures and see 

which measure provides the best OOS return over a separate historical window. When 

we buy the best market for the next bar, we base that decision on whichever performance 

measure has the best recent OOS track record. Thus, we need an OOS performance 

figure for this second-level choice, in which we use a “best measure” to choose a “best 

market.” Nested walkforward is required.

To use the command-line CHOOSER program, the user provides a list of market 

history files, each of whose filename specifies the name of the market. For example, IBM.

TXT contains the market history prices for IBM. Each line of a market history file has the 

date (YYYYMMDD), open, high, low, and close. Any additional numbers on the line (such 

as volume) are ignored. For example, a line in a market history file might look like this:

20170622 1075.48 1077.02 1073.44 1073.88

In addition to providing the name of the text file that lists the market files, the user 

also specifies IS_n, the lookback in market price history for finding the currently best 

performing market; OOS1_n, the lookback in market-level OOS results for selecting 

the currently best performing criterion; and the number of Monte Carlo replications 

(discussed later). For example, the user might invoke the CHOOSER program from the 

command line as follows:

CHOOSER Markets.txt 1000 100 100

The Markets.txt file might look like this:

\Markets\IBM.TXT

\Markets\OEX.TXT

\Markets\T.TXT

etc.

The previous command line also says that 1,000 bars of recent market history will be 

examined to find the best market, and 100 bars of the OOS performance of that market 

selection process will be used to select the best performance criterion. It also says that 
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100 Monte Carlo replications will be performed to test the statistical significance of 

results. This subject will be introduced on page 283.

Here we will present the nested walkforward part of the CHOOSER.CPP code in 

more detail than we used in the prior general algorithm. But note that the complete 

program includes a Monte Carlo permutation test that we will not discuss until page 316, 

so those parts of the code will be omitted for now to avoid confusion.

Just to be clear, here are the three different performance criteria that will be used 

to decide which of the many markets is currently the most promising. They take 

two parameters: the number of (log) prices to examine and a pointer to the array of 

prices. The price array must actually be the log of the real prices to make them scale 

independent as well as enjoy other properties discussed in the Introduction.

The total return of a market segment is just its last price minus its first. To compute 

the raw (unnormalized) Sharpe ratio, we first compute the mean return per bar and then 

the variance of the bar-to-bar changes. The raw Sharpe ratio is the mean divided by the 

standard deviation. The profit factor is the sum of all up moves divided by the sum of all 

down moves. Finally, criterion() calls whichever of these routines is specified.

double total_return ( int n , double *pric es )

{

   return prices[n-1] - prices[0] ;

}

double sharpe_ratio ( int n , double *prices )

{

   int i ;

   double diff, mean, var ;

   mean = (prices[n-1] - prices[0]) / (n - 1.0) ;

   var = 1.e-60 ;  // Ensure no division by 0 later

   for (i=1 ; i<n ; i++) {

      diff  = (prices[i] - prices[i-1]) - mean ;

      var += diff  * diff  ;

      }

   return mean / sqrt ( var / (n-1) ) ;

}
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double profit_factor ( int n , double *prices )

{

   int i ;

   double ret, win_sum, lose_sum ;

   win_sum = lose_sum = 1.e-60 ;

   for (i=1 ; i<n ; i++) {

      ret = prices[i] - prices[i-1] ;

      if  (ret > 0.0)

         win_sum += ret ;

      else

         lose_sum -= ret ;

      }

   return win_sum / lose_sum ;

}

double criterion ( int which , int n , double *prices )

{

   if  (which == 0)

      return total_return ( n , prices ) ;

   if  (which == 1)

      return sharpe_ratio ( n , prices ) ;

   if  (which == 2)

      return profit_factor ( n , prices ) ;

   return -1.e60 ;   // Never get here if  called correctly

}

The code for reading the market histories is straightforward but tedious, so it is 

omitted from this discussion. Also, bars for all markets must be aligned in time, so if 

any market is missing data for a bar, that bar must be removed from all other markets to 

preserve time alignment. This would be a rare event among major markets. This code, 

too, is tedious and hence omitted from this discussion; see CHOOSER.CPP for this code, 
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highly commented. Here we focus on the nested walkforward code, which uses the 

following variables:

n_cases: Number of market price history bars.

market_close[][]: Market history (log of prices). The first index is the 

market, and the second is the bar.

n_markets: Number of markets (rows in market_close).

IS_n: User-specified number of recent market history bars for each 

selection criterion to examine.

OOS1_n: User-specified lookback of market selector; number of 

recent OOS returns from markets and used to choose the best 

market-selection method.

n_criteria: Number of competing market selection criteria.

OOS1: OOS returns of the “best” markets as determined by each 

competing criterion, an n_criteria by n_cases matrix. Column j of 

this matrix contains the returns produced by Bar j as a result of a 

“best market” decision made on Bar j–1.

OOS2: OOS returns of the markets selected with the best criterion.

IS_start: Starting bar of the current market performance window.

OOS1_start: Index in OOS1 of the starting bar of the current 

window. It advances with the window as soon as the system 

selector has OOS1_n cases to look back at.

OOS1_end: One past last bar of current OOS1 window. It advances 

with the window. This also serves as the current OOS1 case index.

OOS2_start: Starting index of complete OOS set 2; it remains fixed 

at IS_n + OOS1_n.

OOS2_end: One past the last case in OOS2. This also serves as the 

current OOS2 case index.

Users will find it interesting to compare performance obtained by the market 

selection procedure of this section to performance obtained by buying and holding 

individual markets or a basket of all competing markets. So, we print this information. 
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To facilitate a fair comparison, we should consider exactly the same bars that will take 

part in OOS2 calculations. The first bar in OOS2 will be at IS_n + OOS1_n, and its return is 

relative to the price at the prior bar. The last bar in OOS2 will be at n_cases–1 because bar 

indices are zero origin. We multiply the mean-per-bar return by 25200. This is reasonable 

when the prices are day bars, as there are typically about 252 trading days in a year. The 

prices are actually log prices, which are close to fractional returns relative to the prior 

price. Thus, the printed values are close to annualized percent returns. Here is this code:

fprintf  ( fpReport, "\n\n25200 * mean return of  each market in OOS2 period..." ) ;

sum = 0.0 ;

for (i=0 ; i<n_markets ; i++) {

   ret = 25200 * (market_close[i][n_cases-1] - market_close[i][IS_n+OOS1_n-1]) /

                         (n_cases - IS_n - OOS1_n) ;

   sum += ret ;

   fprintf  ( fpReport, "\n%15s %9.4lf", &market_names[i*MAX_NAME_LENGTH], ret ) ;

   }

fprintf  ( fpReport, "\nMean = %9.4lf", sum / n_markets ) ;

Do some initializations. Users may be interested in knowing how many times each 

market selection criterion was selected as the best based on its OOS performance, so we 

zero an array of counters. We also initialize the various indices that let us traverse the 

market history.

for (i=0 ; i<n_criteria ; i++)

   crit_count[i] = 0 ;     // Counts how many times each criterion is chosen

IS_start = 0 ;                 // Start market window with first case

OOS1_start = OOS1_end = IS_n ; // First OOS1 case is right after first price set

OOS2_start = OOS2_end = IS_n + OOS1_n ; // First OOS2 case after complete OOS1

The main loop that marches across the market history is next. The first step for 

each pass through the loop (window placement) is to evaluate the recent historical 

performance of each market, as measured by each competing criterion. For each 

criterion, find the market that had the best recent performance, motivated by the hope 

that the outstanding performance of this market will continue, at least until the next bar. 

We measure this next-bar performance as the change from the current bar to the next 

bar, which is Bar OOS1_end. We save this OOS performance in OOS1.
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for (;;) {            // Main loop marches across market history

   for (icrit=0 ; icrit<n_criteria ; icrit++) {   // For each competing performance criterion

      best_crit = -1.e60 ;

      for (imarket=0 ; imarket<n_markets ; imarket++) {

         crit = criterion ( icrit , IS_n , market_close[imarket]+IS_start ) ;

         if  (crit > best_crit) {

            best_crit = crit ;

            ibest = imarket ;   // Keep track of  which market is best according to this criterion

            }

         }

      OOS1[icrit*n_cases+OOS1_end] =

                           market_close[ibest][OOS1_end] - market_close[ibest][OOS1_end-1] ;

      }

At the end of the icrit loop shown previously, we have in OOS1 the next-bar (OOS) 

performance of whichever market each criterion found to be most promising. We now 

break out of the history-traversing loop if we have reached the end of the market data. 

Otherwise, advance those window pointers that always advance. Then check to see 

whether we have enough bars (OOS1_n) in OOS1 to be able to select the best criterion.

   if  (OOS1_end >= n_cases-1)  // Have we hit the end of  the data?

      break ;            // Stop due to lack of  another for OOS2

   ++IS_start ;       // Advance training window

   ++OOS1_end ;  // Advance current OOS1 case

   if  (OOS1_end - OOS1_start < OOS1_n)  // Are we still filling OOS1?

      continue ;       // Cannot proceed until enough cases to compute an OOS2 return

When we reach this point, we have enough bars in OOS1 to compare the competing 

criteria to see which one did the best job of selecting a market whose outstanding 

performance would continue on into the next bar. Our measure of criterion competence 

here is just the total OOS return of each competing criterion over the lookback window. 

Purely for the user’s edification, count how many times each criterion is selected as the 

most reliable.
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   for (icrit=0 ; icrit<n_criteria ; icrit++) {              // Find the best criterion using OOS1

      crit = 0.0 ;                                                     // Measures competence of  icrit

      for (i=OOS1_start ; i<OOS1_end ; i++)       // Lookback window for competence

         crit += OOS1[icrit*n_cases+i] ;                  // Total return is a decent measure

      if  (crit > best_crit) {

         best_crit = crit ;

         ibestcrit = icrit ;                                          // Keep track of  most reliable criterion

         }

      }

   ++crit_count[ibestcrit] ;   // This is purely for user's edification

At the end of the loop just shown, we know that ibestcrit is the criterion that, at least 

recently, proved to be the most reliable way of selecting the best market to buy. So we 

use this criterion to evaluate the recent performance of every market and select the best 

market to buy. We examine the IS_n prices prior to Bar OOS2_end, which will be this 

second-level OOS bar.

   best_crit = -1.e60 ;

   for (imarket=0 ; imarket<n_markets ; imarket++) { // Use best crit to select market

      crit = criterion ( ibestcrit , IS_n , market_close[imarket]+OOS2_end-IS_n ) ;

      if  (crit > best_crit) {

         best_crit = crit ;

         ibest = imarket ;  // Keep track of  best market as selected by best criterion

         }

      }

We now know which market has been selected as the best recent performer, and 

we have made this selection based on the criterion that has recently performed most 

reliably. So hopefully, this was a great choice; it’s the best market, chosen by the most 

reliable criterion. We test this by computing the price change moving from the last bar 

in OOS1 that was checked to the next bar, OOS2_end. Save this return in OOS2. Finally, 

advance the window indices that we did not advance earlier.

Chapter 5  Estimating Future Performance I: Unbiased Trade Simulation



187

   OOS2[OOS2_end] =

                          market_close[ibest][OOS2_end] - market_close[ibest][OOS2_end-1] ;

   ++OOS1_start ;   // Finish advancing window across market history

   ++OOS2_end ;

   } // Main loop that traverses market history

The hard work is done. We have in OOS2 the bar-ahead OOS returns from our 

double-selection process, using the currently best criterion to choose the currently most 

promising market. Now it’s time to compute and print summary results. You can refer to 

CHOOSER.CPP to see how I print these results if you want; their computation is shown 

here. Recall that just as we did for the raw markets at the beginning of this presentation, 

performances take into account only those bars that are available for OOS2. This makes 

all performance figures comparable. Also, as we did for raw market returns, we multiply 

by 25,200 to make these figures approximately annualized percent returns for day bars.

for (i=0 ; i<n_criteria ; i++) {       // Provide separate results for each criterion

   sum = 0.0 ;

   for (j=OOS2_start ; j<OOS2_end ; j++)

      sum += OOS1[i*n_cases+j] ;

   crit_perf[i] = 25200 * sum / (OOS2_end - OOS2_start) ;

   }

sum = 0.0 ;

for (i=OOS2_start ; i<OOS2_end ; i++)

   sum += OOS2[i] ;

final_perf  = 25200 * sum / (OOS2_end - OOS2_start) ;

�An Example Using S&P 100 Components
I ran the CHOOSER program just described on a large subset of the S&P 100 

components, those whose history extends back to at least late 1986. This provides 

somewhat over 20 years (7725 days) of data in 65 markets. The market lookback (the 

number of prices examined by each performance criterion) was 1000 bars (days), and 

the OOS1 lookback (the number of best-market OOS bars used to compare performance 
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criteria) was 100. A Monte Carlo permutation test with 1000 replications was performed. 

See page 316 for a discussion of these p-values. The results obtained were as follows:

Mean =   8.7473

25200 * mean return of each criterion, p-value, and percent of times 

chosen...

 Total return    17.8898    p=0.076    Chosen 67.8 pct

 Sharpe ratio    12.9834    p=0.138    Chosen 21.1 pct

Profit factor    12.2799    p=0.180    Chosen 11.1 pct

25200 * mean return of final system = 19.1151 p=0.027

This tells us the following things in regard to this test:

•	 If we had simply purchased and held an equal basket of all these 

equities over the OOS2 period, we would have obtained an 

approximate annual return of 8.7473 percent.

•	 If we had used only total return to select the currently best 

performing market, we would have obtained an approximate annual 

return of 17.8898.

•	 Using only Sharpe ratio or only profit factor would have provided 

somewhat lower returns of 12.9834 and 12.2799 percent, respectively.

•	 When we put all three criteria into competition, they are chosen as 

most reliable 67.8, 21.1, and 11.1 percent of the time, respectively.

•	 If we also keep track of which criterion is currently most reliable, our 

approximate OOS annual return increases to 19.1151 percent.

�Cross Validation Nested Inside Walkforward
It is often the case that we want to nest cross validation inside a walkforward analysis. To 

understand when this would be appropriate, recall the fundamental trade-off between 

cross validation and walkforward analysis in testing automated trading systems: cross 

validation makes far more efficient use of available data than walkforward testing, but it 
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does not reflect real life. It can suffer from pessimistic or optimistic bias, and its results 

are often quite different from results obtained from the generally more “legitimate” 

walkforward analysis.

This trade-off inclines us toward cross validation instead of walkforward testing 

when its weaknesses are not critically important issues. In the example of nested 

walkforward presented in the prior two sections, bias and “real-life applicability” were 

vital considerations not only in the final result but also in the OOS1 inner result because 

that inner result is what enables us to choose from among competing performance 

evaluation functions. But there are situations in which lack of real-life conformity, 

including small bias issues, are less serious.

The two classic such situations are optimization of model complexity and selection 

of predictor variables. Obviously, both of these apply to model-driven trading systems, 

rather than rule-based algorithmic systems. However, there are some (rare) situations 

in which it may be useful to embed cross validation inside walkforward testing of 

algorithmic systems.

Admittedly, the decision to embed cross validation versus walkforward inside an 

outer walkforward analysis is often unclear and arguable. Still, as an example, consider 

optimizing the number of hidden neurons in a multiple-layer feedforward network that 

predicts market movement. If we have too few neurons, the model will be too weak to 

find predictive patterns. If we have too many, the model will overfit the data, learning 

random noise in addition to authentic patterns. We need the sweet spot.

This sweet spot is fundamentally dependent on the nature and degree of the 

noise in the data, so we want to employ as much data as possible in making this 

complexity decision, thus favoring cross validation. Moreover, we don’t much care if the 

optimization process does not reflect real-life progress across time; we’re just finding 

the ideal structure of the model as determined by the nature of the data. Also, it’s not 

unreasonable to expect that any pessimistic bias due to using less than the full dataset 

(page 150) will be reflected roughly equally in all complexity trials, and any optimistic 

bias due to nonstationarity leakage (page 150) will also be fairly balanced. Our only goal 

in this test is to assess optimistic bias due to overfitting, which will be prominent when 

comparing models of varying complexity. So in this situation we would be inclined to 

favor cross validation.

To be clear on the process of embedding cross validation inside walkforward 

analysis, consider the following tiny example. We want to decide whether we should use 
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three or five hidden neurons in our neural network. We divide the historical dataset into 

ten sections (1–10) and choose to use threefold cross validation. So, we do the following:

	 1)	 Configure the model to have three hidden neurons.

	 2)	 Train the model with sections 2 and 3, and predict the cases in 

section 1.

	 3)	 Train the model with sections 1 and 3, and predict the cases in 

section 2.

	 4)	 Train the model with sections 1 and 2, and predict the cases in 

section 3.

	 5)	 Pool the predictions for sections 1–3, and compute the OOS 

performance for this three-neuron model.

	 6)	 Configure the model to have five hidden neurons.

	 7)	 Repeat steps 2–5 to get the five-neuron performance.

	 8)	 Choose whichever model (three or five hidden neurons) had the 

better OOS performance. Train that model with sections 1–3.

	 9)	 Use this model to predict section 4, our first ultimate OOS set.

	 10)	 If we have not yet reached section 10 (the last section), repeat 

steps 1–9, except that every section number is incremented to the 

next, moving the entire window of operations one section forward 

in time.

	 11)	 When we reach the end, we have walkforward OOS data for 

sections 4–10. Pool it to get a grand performance figure. If it is not 

satisfactory, go back to the drawing board.

	 12)	 If we are satisfied with the grand performance, use cross 

validation on the entire dataset (any reasonable number of folds) 

twice, computing OOS performance of the three- and five-neuron 

models.

	 13)	 Choose whichever model was the better performer and train it 

with the most recent three sections (for consistency with how we 

tested) or the entire dataset (for maximum data usage) for use in 

trading.
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That last step deserves a bit of discussion. How much of the data should we use when 

training the final model for production use? During walkforward testing in this example 

we trained each model with three blocks of data for OOS testing. To be consistent, our 

production model should also be trained with the most recent three blocks. This is good 

if we fear significant nonstationarity in the market. But by using all available data, we 

create a more stable model. Either choice is defensible.

In earlier sections we presented a general algorithm and a specific example of how 

to nest walkforward inside walkforward. That process involved some fairly complex 

manipulation of starting and stopping indices of lowest-level market data, mid-level 

OOS results, and outer-level OOS results. In most applications, this is the easiest and 

clearest way to approach the problem, despite the moderate complexity.

But when embedding cross validation, things become more complex. For this 

reason, as well as because in most applications the cross validation is part of the model-

training process, we nearly always take a different and much simpler approach. Steps 1–8 

of the example shown on the prior page are typically performed in a single subroutine 

call rather than being mixed up in the entire process as was done for embedded 

walkforward.

In other words, we have a single subroutine (likely calling other routines) that 

handles the training of individual folds, supervises the cross-validation competition 

between model architectures, and trains the final model. This single subroutine is then 

called in a simple walkforward implementation; it is called with a chunk of the earliest 

market history, and then the trained model is used to make trades for one or more bars 

of market data, that test set being however long the user wants the testing window to 

be. Those OOS results are preserved, and the entire training/testing window is moved 

forward so that the first bar in the next test window immediately follows the last bar 

in the current test window. This window is shifted forward until the end of the data is 

reached. The upshot is that as far as the walkforward analysis goes, it’s just primitive 

single-layer walkforward of a predictive model, with the walkforward algorithm being 

blissfully unaware that there is cross validation going on inside the training routine.
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CHAPTER 6

Estimating Future 
Performance II: Trade 
Analysis
�Handling Dynamic Trading Systems
In the prior chapter, we focused mainly on how to collect unbiased, true-to-life trades 

from systems that made a position decision on each bar and produced a measurable 

return on each bar. Many trading systems, especially those that are algorithmic rather 

than model-based, make a decision to open a position and hold this position until 

a closing rule fires at some indeterminate future time. During that holding period, 

adjustments to the system may even be made, such as moving a trailing stop. This 

complicates things.

The focus of the current chapter is how to analyze the unbiased trades that we 

collected using the techniques of the prior chapter and use this analysis to estimate 

various aspects of future performance of our trading system. But before delving into this 

topic, we need to learn how to deal with trades produced by dynamic trading systems 

and explore several very different ways of analyzing these trades. For this reason, our 

first example will show an effective way to do this, and we will compare different ways to 

score trades.



194

�Unknown Lookahead to Single Bars, Revisited
On page 155 we saw an excellent technique for converting algorithmic trading systems 

having indeterminate lookahead into systems that look ahead one bar; please review 

that section now. This is wonderful, because when we do walkforward analysis of such 

systems, we do not need to deal with data-wasting guard buffers, regardless of how long 

the lookback is. Also, this technique provides the finest possible granularity, enabling the 

use of some of our most powerful statistical analysis algorithms.

There is yet another huge attraction to this technique, not mentioned in that section 

because I wanted to wait until I could present a detailed example. Now is the time. Of 

course, if our trading system is intrinsically a one-bar-ahead system, such as those that 

make a bar-by-bar decision about the position to take as we complete the next bar, we 

already have what we need, so we don’t need to worry about conversion. But if we are in 

the common situation of having a rule that opens a position, another rule that closes a 

position an undefined time later, and perhaps even rules that change the exit rule as the 

trade progresses, we should be strongly inclined to use the conversion algorithm given 

on page 155.

The attraction of this algorithm that we mention now is that the transition from the 

training period to the testing period is simple, despite the complexity of the dynamic 

trading system. Moreover, if the training process is fast enough to be performed between 

bars (such as overnight in day-trading systems), we can seamlessly blend from the last 

fold of walkforward into final training and immediate use of the trading system.

As a small example to demonstrate how this works, consider the last fold of a 

walkforward test. Suppose we have 120 bars of data numbered 1 through 120 and we 

want to use the first 100 bars as a training period, the remaining 20 bars as a test period, 

retrain immediately upon completion of the test, and have an order ready to be placed to 

have a position open through the next bar, 121.

In this example, our last trade decision during training would be made on Bar 99, 

because we will need the price on Bar 100 to compute the final bar’s contribution to 

our performance measure in the training period, the measure that is being optimized 

by parameter adjustment. When the optimal parameters are found and we prepare to 

advance to the test period, we also need to know the last position in the training period, 

that which was in effect for the move from Bar 99 to Bar 100 in the optimal model. The 

easiest approach is just to save it along with the optimal parameter updates during 

training. Then, when we advance to Bar 101 for the beginning of the test period, we use 

the optimized model to make a trade decision on Bar 100 and use the price on Bar 101 to 
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compute the first return in the test period. If the reason for preserving the last position in 

the training period is not clear, refer to the algorithm on page 155 to see why we need the 

prior position. We need this for the Bar 100 decision.

It gets even better. Suppose we have data through Bar 120 and have finished the 

walkforward with good results. We retrain the system, making decisions through Bar 

119, preserve the last position, and use the optimized model to make a decision on this 

Bar 120. This is the first position we take in real-life trading, ready for Bar 121 tomorrow. 

Smooth!

�Profit per Bar? Per Trade? Per Time?
When we complete a walkforward test and have in hand a pooled collection of bar-by-

bar OOS returns, we have several choices of what we can do to this data in preparation 

for statistical analysis.

•	 Remove all bars on which a position was not open. Their returns are 

zero anyway, so they dilute the dataset. Keep only the individual bar 

returns for all bars on which a position was open. This is probably 

the most common approach, as it provides data in fine granularity, 

but only data from times we were actually in the market. Most of the 

techniques in this book will use this approach.

•	 Keep all bars, even those that have a return of zero because no 

position was open. This provides the maximum possible detail, 

because it includes the data in the prior technique, along with 

information about how often we were in the market. Some analyses 

that we will see later care about differentiating between systems that 

are almost always in the market versus those that trade infrequently. 

We should consider the common trade-off between systems that 

trade rarely but have a high success rate versus those that trade 

often, have a lower success rate, but make up for that by sheer mass 

of trades.

•	 Pool small sets of contiguous bars into numerous “summary” returns. 

For example, we might sum the returns of the first ten bars (including 

those with no position open) into a single return, the next ten bars 

into a second return, and so forth, across the entire dataset.  
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Or the pooling might be date-based, perhaps summing into weekly 

or monthly returns. This has the disadvantage of discarding much 

potentially useful information, the details of what’s happening 

inside those packets. It also reduces the quantity of data available 

for analysis, always a negative. But it has several big advantages. 

Wild bars (those with an abnormally large price movement) have 

their effects diluted, always a good thing in statistical analysis. Also, 

randomness is reduced. We can’t tell much about the performance of 

a system by examining a half-dozen individual bar returns. But if we 

have a half-dozen returns, each of which is the sum of ten bar returns, 

we can tell a bit more. We will see this approach used later when we 

examine ways to see whether a trading system is still performing as 

expected or whether its performance is significantly deteriorating.

•	 Treat each completed trade (often called a round turn) as a single 

return. We note the price when the trade opens and the price when 

the trade closes. The return is the closing price minus the opening 

price.

This last approach is by far the most common in the industry because it is intuitive. 

And it doesn’t hurt that this approach tends to exaggerate returns, both wins and losses; 

if a developer has a winning system, exaggeration is welcome, while if the developer has 

a losing system (with exaggerated losses), we’ll never see it. But this completed-trade 

approach is terrible for statistical analysis, both because of the exaggeration and because 

of the loss of information. We’ll explore these issues now.

�Analyzing Completed Trade Returns Is Problematic
When we pool all individual bar returns into a single quantity spanning the complete 

trade, the reduction in quantity of data points can be huge. If the average trade lasts for 

50 bars, our number of data points for analysis is reduced by a factor of 50. For statistical 

analysis, the difference between having 10 data points and 500 data points is enormous.

Equally serious is the loss of information about what happens in the market as the 

trade progresses. Perhaps we take a long position and the market slowly and steadily 

rises in a direct march to a profitable exit. Or maybe after our long entry the market 
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gyrates wildly, shooting up, then plunging far below our entry, and then recovering at 

the close of the trade to show a profit. These two scenarios have extremely different 

implications in terms of trade analysis, but when we pool the bar returns into a single net 

figure, we lose this information, so we don’t know which scenario took place.

The loss of fine-granularity information is especially problematic when computing 

the profit factor, one of my favorite performance measures. Recall that the profit factor 

is defined as the sum of wins divided by the sum of losses. Consider some numbers 

fabricated to demonstrate the problem. Suppose our system has two trades, each 

spanning multiple bars. The two trades are identical in that their total bar wins are 101 

points and their total bar losses are 100 points. Thus, each trade has a net win of 1 point. 

There are no losing trades, so the profit factor based on trades is (1+1)/0; it is infinite. 

But if we compute the profit factor from individual bars, the profit factor is (101+101) / 

(100+100) = 1.01, essentially worthless.

This problem is equally severe with the Sharpe ratio, because the essence of the 

problem is loss of information about internal volatility. We can have two competing 

systems that have identical Sharpe ratios based on completed trade returns, but if one 

has high internal volatility and the other’s is low, their bar-based Sharpe ratios will be 

very different (and more accurate!).

What we usually see (and the earlier profit-factor demonstration was a perfect 

example) is that for any trading system, computing performance measures based on 

completed trade returns will provide values that are more extreme than we would obtain 

if the measures were based on individual bar returns within the trade. This is partly 

because the number of returns going into the computation is smaller with trade returns, 

leading to greater instability, and partly because natural market variation within a trade 

is washed out. This can and will lead to erroneous conclusions.

In summary, I cannot emphasize strongly enough that you should pay minimal 

attention to performance metrics that are based on the net returns of trades. Whenever 

possible, you should break trades into as fine a granularity as reasonably possible and 

compute your metric based on these quantities. Of course, if you are making a proud 

presentation, you will probably want to put your trade-based results in big bold print 

on the handouts; everybody does, so you need to be on equal footing. But for your own 

internal research, ignore those numbers. Look at the fine-granularity returns that make 

up the complete trades. That’s what counts.
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�The PER_WHAT Program
At the beginning of this section (page 195) we explored several methods for presenting 

returns (typically OOS returns) for statistical analysis. We also emphasized the 

importance of procuring bar-by-bar returns within an extended trade, using the 

algorithm shown on page 155 if necessary. This section presents a demonstration 

program that puts it all together: use the page 155 algorithm to convert an 

indeterminate-lookahead system to a one-bar-ahead system, and then restructure the 

bar returns according to the options laid out on page 195. The file PER_WHAT.CPP 

contains complete, ready-to-compile source code for this program.

The trading system in this example is a simple long-only moving-average breakout 

system. When the market price crosses above a threshold that is an optimizable distance 

above a moving average with optimizable lookback, a long position is opened. This 

position is kept open until the market price crosses below the moving average, even if 

the price is below the entry threshold. This indeterminate-lookahead system is walked 

forward, and the OOS results are cumulated using any of the methods shown on page 195.  

Finally, one of several user-specified performance criteria is computed. Readers should 

be able to modify the training, testing, and walkforward routines to suit their own needs 

or use segments of this program as templates for their own code.

We now work through the most important segments of the source code, beginning 

with the invocation parameters specified by the user.

PER_WHAT which_crit all_bars ret_type max_lookback n_train n_test filename

Let’s break this command down:

•	 which_crit: Specifies which criterion will be used for computing 

optimal parameters and then evaluating OOS performance. 0=mean 

return; 1=profit factor; 2=Sharpe ratio.

•	 all_bars: Applies to training only, and for only the mean return and 

Sharpe ratio criteria. If nonzero, all bars, even those with no position 

open, go into computing the optimization criterion.

•	 ret_type: Applies to testing only. This selects which method we use for 

translating bar returns to analyzable returns, as described on page 195.  

0=all bars; 1=bars with position open; 2=completed trades. If we 

want to use the third method shown on page 195, pooling returns 
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into fixed blocks, we would use option 0 here and pool manually. 

Note that completed trades are never used during training, as this is a 

terrible approach because of massive information loss.

•	 max_lookback: Maximum moving-average lookback tried during 

training (parameter optimization).

•	 n_train: Number of bars in the training set for each walkforward fold. 

It should be much greater than max_lookback to get good parameter 

estimates.

•	 n_test: Number of bars in the test set for each walkforward fold. 

Smaller values (even just 1) make the test more robust against 

nonstationarity in the market, but take much longer to execute.

•	 filename: Name of the market file to read. It has no header. Each line 

in the file is for a single bar, and it has the date as YYYYMMDD and at 

least one price. Any numbers after the first number following the date 

are ignored. For example, a line in a market history file might look 

like the following, and only the first price (1075.48) would be read. 

Readers who would prefer to use the close for open/high/low/close 

files can easily modify this code.

20170622 1075.48 1077.02 1073.44 1073.88

We will not bother explaining the code that reads the market information and 

allocates memory; comments in the code make that self-explanatory. The only thing to 

note is the constant MKTBUF defined at the beginning of the source file. We don’t know 

in advance how many records will be in the market history file, so prices are reallocated 

in chunks of this size. Its value is not critical.

We’ll jump directly to the walkforward code. We have read and stored nprices market 

history prices and converted them all to logs. We initialize the index of the first price in 

the first training set to be the beginning of the array of prices. We also initialize to zero 

the count of the number of OOS returns cumulated during the walkforward.

   train_start = 0 ; // Starting index of  training set

   nret = 0 ;           // Number of  computed returns
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Here is the walkforward loop. An explanation follows.

   for (;;) {

      crit = opt_params ( which_crit ,  all_bars , n_train , prices + train_start ,

                                     max_lookback , &lookback , &thresh , &last_pos ) ;

      n = n_test ;     // Test this many cases

      if  (n > nprices - train_start - n_train) // Don't go past the end of  history

         n = nprices - train_start - n_train ;

      comp_return ( ret_type , nprices , prices , train_start + n_train , n , lookback ,

                              thresh , last_pos , &n_returns , returns + nret ) ;

      nret += n_returns ;

      train_start += n ;

      if  (train_start + n_train >= nprices)

         break ;

      }

We’ll look at the opt_params() parameter optimization code soon. Many of the key 

parameters in this call were defined at the beginning of this section. Note that we pass 

it prices+train_start as a pointer to the beginning of the training set for the current fold. It 

returns the optimal MA lookback and the optimal entry threshold. It also returns the 

position (long versus neutral) as of the end of the training set, because we’ll want this 

to start the OOS test. Of course, we could alternatively always start the test fold with this 

position being zero, forcing the OOS test to always start from scratch. But in real life we 

would virtually always know this position or be able to quickly compute it, so it is more 

realistic to begin the test period with this useful past information in hand.

We let n be the number of OOS test cases for this fold. Normally it will be the user-

specified value, n_test. But if we are doing the last fold, there may be fewer prices left in 

the market history, so we must limit the number of test cases accordingly.

The index in the history array of the first test case is train_start+n_train, the first price 

after the current training period. We pass this test routine the previously computed 

optimal lookback and threshold, as well as the market position as of the end of the 

training period. We also give it the next available slot in the OOS return array, returns+nret. 

It returns to us the number of OOS returns just computed for this fold.
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The number of returns so far, nret, is updated per this fold. We also advance the index 

of the start of the training set so that the first bar in the next test fold will be immediately 

after the last bar in the current test fold. If we have reached the point that there will 

be no test cases in a subsequent fold, we are done. When the loop exits, we have nret 

contiguous OOS returns in returns.

The calling parameter list for the training (optimization) routine is as shown here. All 

of these parameters have been discussed already, some in the list at the beginning of this 

section and some in conjunction with the walkforward code just shown.

double opt_params (

   int which_crit ,              // 0=mean return per bar; 1=profit factor; 2=Sharpe ratio

   int all_bars ,                  // Include return of  all bars, even those with no position

   int nprices ,                  // Number of  log prices in 'prices'

   double *prices ,            // Log prices

   int max_lookback ,       // Maximum lookback to use

   int *lookback ,               // Returns optimal MA lookback

   double *thresh ,            // Returns optimal breakout threshold factor

   int *last_pos                 // Returns position at end of  training set

   )

The outermost loops in this routine try every combination of lookback and entry 

threshold, testing the performance of each. The user specifies which performance 

criterion will be optimized. To keep things simple, and with negligible loss of speed, 

we will continually update some things used by all three criteria even if they will not be 

used. Initialize these quantities. We also assume that no position is open as of when we 

begin the training period, certainly a reasonable assumption.

   best_perf  = -1.e60 ;                                               // Best performance across all trials

   for (ilook=2 ; ilook<=max_lookback ; ilook++) {     // Trial MA lookback

      for (ithresh=1 ; ithresh<=10 ; ithresh++) {           // Trial threshold is 0.01 * ithresh

         total_return = 0.0 ;                           // Cumulate total return for this trial

         win_sum = lose_sum = 1.e-60 ;      // Cumulates for profit factor

         sum_squares = 1.e-60 ;                   // Cumulates for Sharpe ratio

         n_trades = 0 ;                                   // Will count trades

         position = 0 ;                                    // Current position
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We have a pair of parameters (MA lookback and entry threshold) to try by 

cumulating performance for all valid cases. The index of the first legal bar in prices is 

max_lookback–1, because we need max_lookback cases (including the decision bar) in the 

moving average. Start at the same bar for all lookbacks to make them comparable. We 

must stop one bar before the end of the price array because we need the next price to 

compute the return from the decision. In the following loop, the decision is made at Bar 

i, and the return from this decision is the price change from Bar i to Bar i+1.

         for (i=max_lookback-1 ; i<nprices-1 ; i++) { // Compute performance across history

Rather than taking the very slow approach of recomputing the moving average at 

each bar, we compute it once on the first bar and then update it for subsequent bars.

            if  (i == max_lookback-1) {      // Find the moving average for the first valid case.

               MA_sum = 0.0 ;                   // Cumulates MA sum

               for (j=i ; j>i-ilook ; j--)

                  MA_sum += prices[j] ;

               }

            else                                 // Update the moving average

               MA_sum += prices[i] - prices[i-ilook] ;

The moving average is the sum that we continually update divided by  

the lookback. We also compute the trial entry threshold from ithresh.

            MA_mean = MA_sum / ilook ;                 // Divide price sum by lookback to get MA

            trial_thresh = 1.0 + 0.01 * ithresh ;

Now that we have the moving average and the trial threshold, we make a trade 

decision. The algorithm as implemented here looks slightly different from its 

presentation on page 155, but it really is exactly the same algorithm. The difference is 

that the version shown on page 155 is most general, applicable if we are restricted to 

a commercial platform in which we must explicitly open and close trades. But if we 

are writing our own code, we can simplify it. If the entry rule fires, flag that we have a 

position open. If the exit rule fires, flag that we are out of the market. If neither rule fires, 

just maintain the current position. Then compute the return to the next bar, according 

to the current position. Since the example system shown here is long only, it’s just the 

positive difference. If the reader implements a short or dual system, modify this code 

accordingly.
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            if  (prices[i] > trial_thresh * MA_mean)         // Do we satisfy the entry test?

               position = 1 ;

            else if  (prices[i] < MA_mean)                       // Do we satisfy the exit test?

               position = 0 ;

            if  (position)

               ret = prices[i+1] - prices[i] ;                        // Return to next bar after decision

            else

               ret = 0.0 ;

For simplicity, we compute all three criteria, even though we use only one of them. 

Change this if you want, but the time savings is marginal.

            if  (all_bars  ||  position) {

               ++n_trades ;

               total_return += ret ;

               sum_squares += ret * ret ;

               if  (ret > 0.0)

                  win_sum += ret ;

               else

                  lose_sum -= ret ;

               }

Notice in the previous if() block that if the user specified all_bars=0, a bar’s return will 

enter into the performance calculation only if a position was open on that bar. But if the 

user specified all_bars nonzero, then bars with no open position, and hence a zero return, 

will also take part. This has no impact on profit factor, but it does affect the other two 

criteria by making them sensitive to how often the trading system is in the market.

Now we keep track of the best performing parameter set. We update the best 

performance so far, as well as the MA lookback and entry threshold that gave this best 

performance. We also save the position of the trial system as of the last decision bar, 

because we will want this when we start the OOS test for the fold.

         if  (which_crit == 0) {                                  // Mean return criterion

            total_return /= n_trades + 1.e-30 ;         // Don’t divide by zero

            if  (total_return > best_perf) {

               best_perf  = total_return ;

               ibestlook = ilook ;
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               ibestthresh = ithresh ;

               last_position_of_best = position ;

               }

            }

         else if  (which_crit == 1  &&  win_sum / lose_sum > best_perf) { // Profit factor crit

            best_perf  = win_sum / lose_sum ;

            ibestlook = ilook ;

            ibestthresh = ithresh ;

            last_position_of_best = position ;

            }

The following Sharpe ratio criterion needs a special mention. We compute the 

variance of the returns by subtracting from the mean-square the square of the mean 

return. This method is generally discouraged because subtraction of two similarly sized 

numbers can lead to floating-point inaccuracies. However, in this application the mean 

square will nearly always be much larger than the squared mean, so this issue will not be 

a problem in practice, and it is fast to compute and easy to understand.

         else if  (which_crit == 2) {                                       // Sharpe ratio criterion

            total_return /= n_trades + 1.e-30 ;                      // Now mean return

            sum_squares /= n_trades + 1.e-30 ;

            sum_squares -= total_return * total_return ;      // Variance (may be zero!)

            if  (sum_squares < 1.e-20)  // Must not divide by zero or take sqrt of  negative

                sum_squares = 1.e-20 ;

            sr = total_return / sqrt ( sum_squares ) ;

            if  (sr > best_perf) {                                              // Sharpe ratio

               best_perf  = sr ;

               ibestlook = ilook ;

               ibestthresh = ithresh ;

               last_position_of_best = position ;

               }

            }

         } // For ithresh, all short-term lookbacks

      } // For ilook, all long-term lookbacks
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After all lookbacks and entry thresholds have been tried, we are done. Return the 

optimal parameters and market position of the best system as of the last decision bar 

(the second-last training-set bar).

   *lookback = ibestlook ;

   *thresh = 0.01 * ibestthresh ;

   *last_pos = last_position_of_best ;

   return best_perf  ;

}

The routine that takes these optimal parameters and applies them to the test fold 

is similar to what we just saw, but we’ll examine it anyway to focus on the important 

differences.

Before studying the code, we must understand the algorithm for trading in the test 

period. The first OOS trade decision is made on the last bar of the training set. (Recall 

that when we trained using the code just shown, we did not make a trade decision on 

that last bar, because we did not have the next bar available to compute a return. That 

next bar is in the test set!) The return for this first OOS trade is the price change from the 

last bar of the training set to the first bar in the test set.

Also recall that the trade decision made on the last bar can depend on the market 

position as of the prior bar. This happens when neither the entry rule nor the exit rule 

fires, so we just continue the position. This dependency is why, in the training algorithm, 

we returned last_pos as the market position as of the last bar. We’ll want to pass this to the 

OOS test routine to be available for that first trade.

With this understood, here is the calling convention for the test routine. All of these 

items have already been discussed in conjunction with the training routine, except 

ret_type, which was discussed on page 198. To review, ret_type selects which method we 

use for translating bar returns to analyzable returns, as described on page 195. The caller 

specifies 0, 1, or 2: 0=all bars; 1=bars with position open; 2=completed trades. If we want 

to use the third method shown on page 195, pooling returns into fixed blocks, we would 

use Option 0 here and pool manually.

The second parameter in this call list, nprices, is not used by the algorithm and can be 

removed by the reader if desired. However, an assert() statement appears at one place in 

the code where it looks ahead to compute a return, and this safety check makes sure that 

we are not looking past the end of the market price array. Readers who modify this code 
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for their own trading system may want to leave it in place as cheap insurance against a 

careless mistake.

void comp_return (

   int ret_type ,                // Return type: 0, 1, or 2

   int nprices ,                  // N of  log prices in 'prices' used only for safety, not algorithm

   double *prices ,           // Log prices

   int istart ,                     // Starting index in OOS test set

   int ntest ,                     // Number of  OOS test cases

   int lookback ,               // Optimal MA lookback

   double thresh ,            // Optimal breakout threshold factor

   int last_pos ,                // Position in bar prior to test set (last training set position)

   int *n_returns ,            // Number of  returns in 'returns' array

   double *returns            // Bar returns returned here

   )

We begin by initializing some key variables. The counter nret is the number of 

returns that are computed for the caller. If the return type specifies that we keep all 

bars (ret_type=0), this will equal ntest. Otherwise, it can be less, often much less. The 

optimization routine gave us the optimal system’s market position at the last bar, which 

we get as last_pos. We need prior_position only for the completed trades option (ret_type=2). 

When the position goes from zero to nonzero, we just opened a new position, and 

when it goes from nonzero to zero, we closed the position. If your trading system has 

undefined lookahead and can go directly from long to short or short to long, you will 

need to slightly modify this code according to how you want to record completed trades. 

Typically this closes the old trade and opens a new trade on the same bar. But other 

accounting practices are possible, including situations in which additional trades open 

or a set of open trades partially closes. Note that for the “completed trades” option we 

must keep the opening price in the test block to avoid future leak, so prior_position=0.

   nret = 0 ;                                    // Counts returns that we output

   position = last_pos ;                  // Current position

   prior_position = 0 ;                    // For completed trades, always start out of  market

   trial_thresh = 1.0 + thresh ;       // Make it multiplicative for simplicity

In the main loop we make our trade decision on bar i. The first decision is made on 

the last bar of the training set (istart–1), and we make ntest decisions. As was the case in 
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the training routine, instead of recomputing the moving average from scratch at each 

bar, we compute it once on the first bar of the test and update it thereafter.

   for (i=istart-1 ; i<istart-1+ntest ; i++) { // Compute returns across test set

      if  (i == istart-1) {              // Find the moving average for the first valid case.

         MA_sum = 0.0 ;            // Cumulates MA sum

         for (j=i ; j>i-lookback ; j--)

            MA_sum += prices[j] ;

         }

      else                                 // Update the moving average

         MA_sum += prices[i] - prices[i-lookback] ;

      MA_mean = MA_sum / lookback ;         // Divide price sum by lookback to get MA

As we did in the optimization algorithm, we execute the algorithm of page 155 

slightly differently than shown there, though with identical results. If the open rule fires, 

we make sure a position is open (it may already be open). If the exit rule fires, we close 

the position. If neither rule fires, we maintain the prior position. The assert() here is 

cheap insurance against algorithm or caller errors, and of course it may be omitted  

(and the nprices parameter removed) if the programmer is confident in correctness.  

We then compute the return for this bar according to the position.

      assert ( i+1 < nprices ) ;                                // Optional cheap insurance

      if  (prices[i] > trial_thresh * MA_mean)          // Do we satisfy the entry test?

         position = 1 ;

      else if  (prices[i] < MA_mean)                        // Do we satisfy the exit test?

         position = 0 ;

      if  (position)

         ret = prices[i+1] - prices[i] ;

      else

         ret = 0.0 ;
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At this time we know our position and return for this bar. Save (or not) the 

appropriate outputted return.

      if  (ret_type == 0)                     // All bars, even those with no position

         returns[nret++] = ret ;

      else if  (ret_type == 1) {           // Only bars with a position

         if  (position)

            returns[nret++] = ret ;

         }

      else if  (ret_type == 2) {                                // Completed trades

         if  (position  &&  ! prior_position)               // We just opened a trade

            open_price = prices[i] ;

         else if  (prior_position  &&  ! position)        // We just closed a trade

            returns[nret++] = prices[i] - open_price ;

         else if  (position  &&  i==istart-2+ntest)     // Force close at end of  data

            returns[nret++] = prices[i+1] - open_price ;

         }

The “completed trades” code deserves additional attention. If our position has 

changed from zero to nonzero, we just opened a trade, so we record the opening price, 

which is the decision bar. If our position changed from nonzero to zero, we just closed 

a trade, so we record its profit. This demonstration system is long only, with just one 

position open at any time, so this trade’s return is the price on which the decision to 

close is made, minus the price at which the trade opened. If your system can also be 

short, you’ll need to add an extra check and flip the sign of the return for short positions. 

If your system can go directly from long to short or short to long or have multiple 

positions open, more extensive modifications to this short block of code are needed.

The last else if() code handles the situation of having a position still open when the 

end of the OOS test block is reached. (In the main program we made sure ntest would not 

overrun the full price history array, so we need not check that now.)

We are now essentially done. Set prior_position to the current position and continue 

the loop. When the loop exits, after having processed all ntest bars in the OOS test set, we 

pass back the count of returns.
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      prior_position = position ;

      } // For i, computing returns across test set

   *n_returns = nret ;

}

Although this PER_WHAT program facilitates some interesting experimentation, 

many readers will want to hold off on building and using this program, instead focusing 

on the BOUND_MEAN program that will appear on page 232. That program implements 

the same trading system as the PER_WHAT program, and it takes things further by 

using several methods to compute probable lower bounds for this trading system in any 

market supplied by the user.

�A Lower Bound for Mean Future Returns
In prior sections we have explored trading systems that make bar-by-bar decisions and 

hence provide bar-by-bar returns. We also presented an example of how to take a trading 

system that uses entry and exit rules, and hence may have unknown lookahead, and 

compute its returns on a bar-by-bar or complete-trade basis. One performance measure 

that we would find useful is a lower bound for the long-term mean of these returns in 

the future. (We may rarely be interested in an upper bound as well.) If we achieve great 

walkforward test results, but then we find that a reasonable lower bound on the true 

mean value of the returns that we can expect in the future is small, we would do well to 

go back to the drawing board. In short, excellent backtest performance is wonderful but 

not enough. We want high confidence that this outstanding performance will continue. 

This is the topic of this section.

First, at the risk of being overly pedantic, I’ll briefly review the more important types 

of returns we may be dealing with, and I’ll throw in some commentary.

•	 Everybody would like to have bounds for the returns of completed 

trades. Unfortunately, in most practical situations, this is the most 

difficult figure to obtain with great reliability. The primary reason for 

this difficulty is the paucity of data. In statistical analysis, quantity 

equals reliability. We have only as many data points as we have 

trades, and unless the system trades frequently, we will often have 

too few returns to compute a useful bound. Still, this is such a useful 

and meaningful figure that we must not write it off.
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•	 My favorite return to bound is the mean return per bar for bars on 

which a position is open. This will provide many more data points 

than returns of completed trades. It is also a sensible performance 

metric, as it tells us our expected return in exchange for taking the 

risk (and possible margin expense) of having a position open.

•	 Another frequently useful mean return to bound is the return for 

subsets (such as weekly sums) of all bars. This is important if we are 

monitoring ongoing performance to detect deterioration.

�Brief Digression: Hypothesis Tests
Having a lower bound on the mean return we can expect in the future is our ultimate goal, 

and we’ll get to that soon. But there is a useful alternative that can also serve as a stepping-

stone to confidence bounds, so we begin with the subject of hypothesis tests. By the way, 

for simplicity here we will focus on one-sided tests, those concerned with hopefully 

asserting that our achieved mean return is far enough above zero to provide confidence 

that we have a useful trading system. Later, we will generalize this to one-sided tests for 

“negative” measures such as drawdown and eventually look at bounding parameters in an 

interval, a task not often done in financial analysis but still useful in some situations.

A classical hypothesis test uses indirect reasoning to make a statement about the 

quality of our trading system as implied by the observed mean return. We need to define 

two hypotheses.

•	 The null hypothesis is usually the boring “default” assumption, the 

situation that we hope is not in effect. When evaluating the observed 

OOS return of a trading system, our null hypothesis is typically that 

the system is worthless: its true expected return is zero or less.

•	 The alternative hypothesis is usually the situation that we hope is in 

effect. In the current context, the alternative hypothesis is typically 

that our trading system is good, as evidenced by a significantly large 

positive observed sample mean return.

The indirect reasoning works like this:

	 1)	 Assume that the null hypothesis is true and compute the 

theoretical distribution of the mean return (or whatever our test 

statistic is) under this hypothesis. This is the hard part.
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	 2)	 Using this distribution, compute the probability that we could 

have randomly observed a sample mean as large as (or larger 

than) that which we did obtain.

	 3)	 If this probability is tiny, conclude that the null hypothesis is false.

This works because we must always define the null and alternative hypotheses to be 

mutually exclusive and exhaustive. This means that it is impossible for both hypotheses 

to be true and that these two hypotheses cover all possibilities. The true situation is 

always either one or the other, never both and never neither.

The fundamental logic is this: suppose we see that if the null hypothesis were true, 

our observed return is highly unlikely to be this good. In this case, we conclude that the 

alternative hypothesis is probably true.

It is vital to understand that getting a result well in line with the null hypothesis does 

not let us assert that the null hypothesis is true, or even probably true. No matter what 

outcome we observe, we can never assert that the null hypothesis is true. We can only 

assert that the null hypothesis is probably false and thereby assert that the alternative is 

probably true.

Here are two examples that may illustrate the situation. Suppose someone fills two 

identical large jars with jelly beans, both to the same height. You look at them closely 

and try to make a statement. Can you say that they contain the same number of jelly 

beans? They certainly look very, very close. But it could easily be that one contains 1,000 

and the other 1,001. You would never see the difference. You can’t even say that they are 

probably the same, because you don’t know if the filler had an agenda to fool people. On 

the other hand, suppose one jar is clearly filled much higher than the other. Then you 

can confidently say that they contain unequal numbers of jelly beans.

This second example is somewhat closer to the task at hand. Suppose we are testing 

the quality of our trading system. It has two trades, one a gain of 10 percent and one a 

loss of 8 percent. If the system were truly worthless, the probability of such an outcome 

(or better) from just two trades would be very high, and therefore we cannot use our 

indirect logic to reject the null hypothesis and thereby assert the alternative. So, does 

this mean that we can confidently assert that the null hypothesis is true, and the system 

is worthless? Or even probably worthless? Certainly not, because two trades are far 

too few trades on which to make such a decision. It may well be that if we had used a 

much longer market history, we would have obtained 100 returns of 10 percent and 100 

losses of 8 percent. Under this circumstance, we would likely find that there is a very 

low probability that a truly worthless system would perform this well. We could thereby 
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reject the null hypothesis that the system is worthless and decide that it probably has 

merit. Of course, we may still decide that it does not make enough money to justify the 

risk, but that’s another issue.

The bottom line is that failure to reject the null hypothesis may have come simply 

because we did not do enough testing rather than because the null hypothesis is true. 

If we had extended our test period we might have concluded that the null hypothesis 

is false. Or perhaps we have selected an inappropriate testing procedure that failed to 

reject the null hypothesis. Thus, we must never assert the truth of the null hypothesis.

�So, How Do We Use This Probability?
Let’s briefly review the hypothesis test steps presented at the beginning of the prior 

section. First, we assume the null hypothesis (the boring situation) is true and compute 

the statistical distribution of our test statistic (the mean return in the current context). 

Second, we consider the observed value of our test statistic in the context of this null 

hypothesis distribution. Third, if our observed value (or better) would be highly unlikely 

under this assumption, we conclude that the alternative hypothesis (the interesting 

situation) is probably true. There are three specific things we can do to execute this 

process, one of which is fully legitimate, one of which is basically legitimate but in a gray 

area, and one of which is horribly wrong.

•	 The officially correct way to perform this test is to decide in advance 

what probability of incorrectly rejecting the null hypothesis we 

are willing to live with. Recall that the assumption is that the null 

hypothesis is true and we are computing the probability that our 

observed value (or better) could have been observed under this 

assumption. So if this observed probability is small and we thereby 

reject a true null hypothesis, we are mistaken in doing so. It is 

common to set a probability threshold of 0.05 in advance, deciding 

that if the probability of our observed value is 0.05 or less, we will 

reject the null hypothesis. The implication is that when we perform 

the test and the null hypothesis is true, we will have a 5 percent 

chance of incorrectly rejecting this hypothesis. In the current context, 

this means that if our trading system is truly worthless, we will have a 

5 percent chance of incorrectly concluding that it legitimately makes 

money. We may be more conservative and demand only a 1 percent 
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chance of falsely rejecting the null hypothesis when it is true, and 

this will give us a more stringent test, a test that is more difficult to 

pass. Or we may loosen our requirement, being willing to live with a 

10 percent chance of falsely concluding that a truly worthless system 

makes money. In this case we would set our probability threshold at 

0.1, concluding legitimacy if the probability of our observed mean 

return is 0.1 or less.

Equivalently, we could compute in advance the value under the 

null hypothesis distribution that corresponds to a probability of 

0.1. Then we conclude legitimacy if our observed mean equals or 

exceeds this threshold. Please ponder this equivalency if you don’t 

see it immediately. (Remember that larger observed means would 

have smaller probabilities.) It makes no difference which way you 

do the test; they are identical.

•	 Another approach to hypothesis testing is used by many people, 

including myself, because it provides a bit more information at the 

expense of opening the door to some abuse if one is not careful in 

how results are interpreted. In this approach, one does not specify 

an error probability threshold, like 0.05 or whatever, in advance. 

Instead, one just goes ahead and computes the probability under 

the null hypothesis of achieving a result as good as or better than 

what we obtained. In this context, this probability is called a p-value. 

This gives us not just the reject/do-not-reject decision that the first 

approach gave us. It gives us a quantitative figure. If we get a p-value 

of 0.049, we conclude that this test would have rejected the null 

hypothesis at the 0.05 error level, but just barely, and so we would 

rightly be cautious. On the other hand, if we get a p-value of 0.001, 

we rightly conclude that if the null hypothesis were true, it would be 

extremely unlikely for our trading system to do as well as it did. This 

is still not enough to trade the system; it may be that its risk/reward 

ratio is poor. But all other things being equal, we may legitimately 

conclude that a p-value of 0.001 is more encouraging than .049.
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I mentioned that there are risks of using this approach. Here is 

a big and common one, and it’s subtle. We may not use p-values 

as reliable measures of the relative values of systems. If we get a 

p-value of 0.001, we may legitimately get a warm, fuzzy feeling and 

have somewhat more confidence in our system than we would 

have with a p-value of 0.049. But that’s it. Warm and fuzzy; nothing 

more. We may not conclude that we have a slam dunk decision 

on which is better. It may be that if we took the 0.049 system and 

tested it on a longer stretch of historical data, we would get a 

p-value of 0.001 as well. That’s a big weakness of hypothesis tests: 

they are dependent on how much data is tested. So, be careful 

about interpreting p-values in a numerical sense. You can (and 

should) do it, but only with a very large grain of salt.

•	 The third occasionally used approach to hypothesis testing is 

incorrect! We will discuss it here, constantly reminding the reader 

that every bit of the “logic” presented in this bullet point is wrong. 

Let’s say you obtain a p-value of 0.01, a very encouraging result (a 

legitimate conclusion). The totally incorrect logic used by many is 

that since a worthless system would have only a 1 percent chance of 

getting results this good by luck (true), if we conclude that the system 

is skilled, we have only a 1 percent chance of being wrong (false!). 

Some adventuresome developers may word the conclusion more 

aggressively: because there is only a 1 percent chance that we would 

be wrong in concluding that the system is skilled (false!), there is a 99 

percent chance that the system is skilled (no way!).

This last point is hard for many people to swallow, so we’ll expound on it. The key 

is that a p-value from a hypothesis test is conditional. It says that if the null hypothesis 

is true, the p-value is the probability of getting a result at least as good as that observed. 

There’s nothing in that statement about whether the null hypothesis is true.

Here is a crude example. We have been told that after years of research, we know that 

99 percent of all dogs have four legs. Because of unfortunate accidents, 1 percent of dogs 

have fewer than four legs. Every now and then, someone calls you and says that they 

have an animal with a certain number of legs, and they ask your opinion about whether 

it’s a dog. Today they call and say that their animal has two legs. You know that dogs 

have fewer than four legs only 1 percent of the time. With this in mind, you legitimately 
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conclude that it probably is not a dog, and you are comfortable with this conclusion 

because of the scarcity of two-legged dogs. Among all the times the animal truly is a dog, 

you will be fooled into calling it a non-dog only 1 percent of the time.

But you can say nothing about the probability that this animal is or is not a dog. What 

if unknown to you, the person who periodically calls you is from a dog shelter, and he’s 

just messing with you. Every animal he calls you about, regardless of how many legs it 

has, is a dog. Then, every time he tells you the animal has less than four legs, and you 

therefore conclude that it is not a dog, you will be wrong. Always. The false logic of the 

third bullet point on the prior page says that you have a 99 percent chance of being right, 

while in fact you have a 0 percent chance of being right! That’s pretty bad. On the other 

hand, if the calls come from a strictly cat shelter, every time you reject the null hypothesis 

you will be correct. Always. So, depending on where the calls are coming from, you are 

correct either never or always.

In summary, in the context of using a hypothesis test for the quality of our trading 

system based on mean return (or some other quantity discussed later), these points 

must be kept in mind:

•	 If our performance is so good that a worthless system would have 

scored at least this well with only small probability (p-value), we may 

have confidence that our trading system has true skill, not just good 

luck. If we set a p-value threshold in advance (the first bullet point 

in this section) and decide that the system is skilled if and only if our 

achieved p-value is this small or smaller, then among the universe of 

worthless systems on which our p-value is based, we will be fooled 

into falsely claiming skill with the prespecified p-value probability. 

This, of course, inspires us to set a low p-value threshold. We want a 

low probability of being fooled into declaring a worthless system to 

be skilled.

•	 If we do not obtain a small p-value, we may not conclude that the 

system is worthless. Perhaps we just didn’t test correctly or test 

enough market history.

•	 Regardless of the size of our p-value, whether it is delightfully tiny or 

annoyingly large, we can say nothing about the probability that our 

system is worthless or skilled. Nothing.
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�Parametric P-Values
In the prior section, we wantonly threw around uses for a p-value, the probability that 

we would have gotten performance at least as good as we obtained if the null hypothesis 

were true. In the current context, this is the probability that our OOS mean return could 

have been at least as large as we obtained, merely as a result of a truly worthless trading 

system being lucky. But how do we compute this p-value? There are several common 

approaches, and this section discusses the easiest.

Arguably the most important distribution in all of statistics is the normal distribution. 

It achieves this lofty position because (very roughly stated) when you add together 

independent, identically distributed random variables, their sum (and mean) tends 

toward having a normal distribution. Even if the variables are not exactly independent or 

identically distributed, the distribution of their sum (and mean) has a strong tendency 

to approach the familiar bell curve shape of the normal distribution. With some caution, 

we may often assume that our trading system’s returns follow a distribution that is close 

enough to normality that we can perform statistical tests based on this assumption. In 

particular, we will use the Student’s t-test, a standard test that assumes normality of its 

data but that is fairly robust against moderate non-normality.

Before proceeding, we must be clear about the most significant issues involved 

in using the normality-based t-test on trading system returns. This test is surprisingly 

robust against moderate levels of common forms of non-normality, such as skewness 

(lack of symmetry in the shape of the distribution) and heavy tails (extreme values that 

are not severely extreme). It is very robust against unusually light tails (few or no extreme 

values). But the big killer for the t-test is truly wild extremes, or even a single wild 

extreme. If the vast majority of our wins and losses cluster in the range of, say, –5 to 5,  

and we have one return of 50, the t-test will be worthless. Thus, before using a t-test to 

compute a p-value for returns, one must plot a histogram of the returns to be tested. 

Extremes that fall within reasonable limits of a bell curve are fine (no need to be picky), 

but if one or more returns are crazy far from the bulk of returns, use one of the tests 

described later.

This is not the venue for digging into details of the t-test; references are widely 

available, and some readers may want to dig a bit deeper than the superficial 

treatment here. Now, we deal just with the mathematical formulas and a code snippet 

demonstrating how to compute a p-value for a collection of returns, in the context 

of deciding whether the returns are good enough to justify declaring that the trading 
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system has skill rather than just luck. Most often, these returns would be the individual 

bar returns for those bars on which a position is open, although any of the other types of 

returns discussed in the prior chapter could be tested.

Let x1, x2, ...xn be the returns whose p-value we are computing. Their mean is trivially 

given by Equation 6-1. We estimate the population standard deviation as the square root 

of the unbiased variance estimator, as given by Equation 6-2. The t-score for this set of 

returns is given by Equation 6-3. If we designate the cumulative distribution function of 

the t statistic having df degrees of freedom (typically n–1) as CDF(df,t), then Equation 6-4  

is the associated p-value. This is the probability that a t-score will equal or exceed the 

specified value, which in our context is the probability that the mean return of a worthless 

trading system could equal or exceed our obtained mean return by luck alone.
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Astute readers who are familiar with t-scores will have noticed that Equation 6-3 is 

the t-score under the null hypothesis that the true mean is zero. But on page 211 it was 

pointed out that the null and alternative hypotheses must be mutually exclusive and 

exhaustive. To satisfy the exhaustive part, the null hypothesis of worthlessness must 

be that the trading system has a true mean that is zero or negative. So, why can we get 

away with assuming the true mean is zero and ignoring the possibility of a negative 

true mean? The answer will become more clear when we present Equation 6-5, but for 

now understand that if the true mean were negative, the actual t-score would be even 

larger than that given by Equation 6-3, and the p-value would be even smaller. Thus, a 

true mean of zero is the most conservative case; if we reject under that null hypothesis, 

we would reject even more strongly under a negative-mean null hypothesis. So, it is 

legitimate to let the null hypothesis be that the true mean is zero. We can ignore the 

possibility of a negative true mean.
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Here is a code snippet demonstrating these computations. This code is extracted  

from the program BOUND_MEAN.CPP, with some small modifications for clarity. The 

source code for the t_CDF() function can be found in the file STATS.CPP. The complete 

program, along with an example of its application, will be presented on page 233.

   mean = 0.0 ;                                            // Equation 6-1

   for (i=0 ; i<n ; i++)

      mean += returns[i] ;

   mean /= n ;

   stddev = 0.0 ;                                          // Equation 6-2

   for (i=0 ; i<n ; i++) {

      diff  = returns[i] - mean ;

      stddev += diff  * diff  ;

      }

   stddev = sqrt ( stddev / (n - 1) ) ;

   t = sqrt((double) n) * mean / stddev ;      // Equation 6-3

   pval = 1.0 - t_CDF ( n-1 , t ) ;                  // Equation 6-4

�Parametric Confidence Intervals
Having a p-value by which we can test the null hypothesis that our trading system is 

worthless is nice, but even nicer would be having the range in which the true mean is 

likely to lie. In any hypothesis test in any field of endeavor, if we test enough cases, we 

will pick up even the faintest legitimate effect. This is particularly problematic in the 

analysis of automated trading systems, in which we may backtest over decades. It will 

often be the case that we have a trading system that does have a small amount of skill, 

and if we perform a hypothesis test using thousands of bars of trade returns, we will 

likely get a small p-value and hence correctly conclude that our system probably has 

legitimate skill. But what if the actual skill possessed by our system provides an expected 

annualized return of one-half of 1 percent? It’s honest-to-goodness skill, and given a 

large enough sample set, a hypothesis test will detect it. But nobody would want to trade 

that system, skill or not. Its return, though real, is too small to be profitable. The subject 

of this section is a simple method for the computation of upper (rarely needed) and 
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lower bounds for the true mean return of our system. On page 222 we will present a very 

different method for performing this computation, the bootstrap.

Look back for a moment at Equation 6-3. That showed how to compute a t-score 

from an observed mean return, under the null hypothesis that the true mean return of 

the system was zero. We now need the more general form of this equation, which does 

not assume that the true mean is zero. This is shown in Equation 6-5. In this equation, 

ObsMean is the observed mean, and it corresponds to Mean in Equation 6-3, the mean 

return from your OOS testing. TrueMean is the unknown true mean. Note that when it is 

zero, Equation 6-5 is identical to Equation 6-3.

	 t =
n ObsMean TrueMean

StdDev

-( ) 	 (6-5)

By definition, the cumulative distribution function CDF(df,t) appearing in  

Equation 6-4 is the probability that a randomly drawn t-score will be less than or equal 

to the specified t. Define the inverse of this function as InvCDF(df,p). This function, by 

definition, gives us the t-score threshold that has the property that a randomly drawn 

t-score will be less than or equal to this threshold with the specified probability p. For 

notational convenience, we designate InvCDF(df,p) as tp where, as usual, df=n–1. This 

definition is stated in Equation 6-6, in which t is a randomly observed t-score.

	 P t t pp£{ } = 	 (6-6)

We collect our OOS returns and compute their mean ObsMean. We do not know the 

true mean of the population of future returns, but we would like to make a probability 

statement about it. To do so, take the t-score defined by Equation 6-5 and substitute it for 

t in Equation 6-6. This gives us Equation 6-7, and some simple algebraic rearrangement 

converts that to Equation 6-8.
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We define in Equation 6-9 a figure called LowerBound. It is the quantity on the left 

side of the previous inequality. Note that it is easily computed; all we need is the mean 

of our OOS returns, their standard deviation as defined by Equation 6-2, the number n of 

returns, and the t-score threshold for our desired probability, as defined by Equation 6-6. 

We now discuss why we call this LowerBound and what it means.

	 LowerBound = ObsMean
StdDev t

n
p-

i
	 (6-9)

We don’t know the true mean of the population from which future returns will be 

drawn. We do have the mean of the returns in our OOS test set, and it’s reasonable to 

assume that the true population mean will be somewhere in this vicinity. But our OOS 

test data was just a random sample from the population. It may have been unlucky and 

thereby underestimate the true mean. Or it may have been lucky and given an optimistic 

view of the future. We would like to quantify this variability.

Suppose that the true mean, which we do not and cannot know, happens to be 

equal to the LowerBound defined in Equation 6-9 and which we just computed from our 

sample. Keep in mind that this true mean is an actual, fixed number, such as 5.21766 

or whatever. We don’t know what it is, but that doesn’t make it any less real. Now look 

back at Equation 6-8. The number on the right side of the inequality is an unknown but 

fixed (assuming stationarity!) value. The quantity on the left side of the inequality is 

a random variable, subject to sampling error from our choice of OOS test period. The 

act of choosing our OOS test period for the experiment just run is a random sample, 

so Equation 6-8 applies: there is probability p that the computable quantity on the left 

side of the inequality is less than or equal to the true mean, which we are momentarily 

assuming is the value in Equation 6-9. We have likely set p to be large, say 0.95 for this 

example, so this inequality is likely to be true. In other words, if the true mean, which 

we do not know, happens to be equal to the value given by Equation 6-9, which we call 

LowerBound, there is probability 0.95 that the inequality in Equation 6-8 is satisfied. In 

fact, since LowerBound is the quantity on the left side of the inequality, we have perfect 

equality; the condition is satisfied but just barely.

Now consider the possibility that the true mean is actually larger than LowerBound. 

Clearly, the inequality in Equation 6-8 is easily satisfied, with true inequality. But what if 

the true mean as de is less than LowerBound? Now the inequality fails, which has small 

probability (1–0.95=0.05 in this example). In other words, LowerBound is the threshold 
for the true mean satisfying the inequality in Equation 6-8, a situation which has 
high probability if we set p high.
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Some hard numbers may make this clearer. Suppose we sample 100 returns. We 

observe a mean return of 8, and the returns have a standard deviation of 5. We set p=0.95 

so that we can be 95 percent sure of our lower bound for the true mean of returns. The 

associated t-score is approximately 1.66. Plugging these numbers into Equation 6-9 gives 

a LowerBound of 8 – 5 * 1.66 / sqrt(100) = 7.17.

This result can be interpreted in two ways. The common interpretation, which is 

reasonable though not strictly correct, is to say that there is a 95 percent chance that the 

true mean of returns, the value around which future returns will be centered, is at least 7.17.  

The problem with this interpretation is that it makes it sound as if the true mean is a 

random variable, and based on our OOS results, we have just computed a probability that 

the true mean has at least some minimum value. In fact, the true mean is a fixed number, 

not random. The OOS sample that we collected is the random quantity. Thus, the strictly 

correct interpretation is to say that 7.17 is the minimum value that the true mean could 

have for there to be at least a 95 percent probability of having observed an OOS sample of 

our obtained quality or better. Please don’t stress over this concept too much. You are not 

committing a grave sin by using the first and most common interpretation.

Here is a code snippet demonstrating these computations, extracted from BOUND_

MEAN.CPP, with small modifications for clarity. Source code for inverse_t_CDF() is in 

STATS.CPP. The complete program, along with an example of its application, will be 

presented on page 233.

   mean = 0.0 ;                                            // Equation 6-1

   for (i=0 ; i<n ; i++)

      mean += returns[i] ;

   mean /= n ;

   stddev = 0.0 ;                                          // Equation 6-2

   for (i=0 ; i<n ; i++) {

      diff  = returns[i] - mean ;

      stddev += diff  * diff  ;

      }

   stddev = sqrt ( stddev / (n - 1) ) ;

   lower_bound = mean - stddev / sqrt((double) n) * inverse_t_CDF ( n-1 , 0.95 ) ;
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One would almost never be interested in an upper bound for the true mean. However, 

for the sake of completeness, we note that the upper bound is given by Equation 6-9  

except that the minus sign is changed to a plus sign. Interested readers will find it 

informative and possibly entertaining to derive this fact. The reasoning is essentially 

identical to that for the lower bound but with the direction of the inequality reversed.

Note that if you want an interior confidence interval as de, a pair of bounds such that 

you can say with specified probability that the true mean lies inside this interval, you must 

split the “failure” probabilities. For example, suppose you want a 90 percent probability that 

the true mean lies between lower and upper bounds. You must split that 10 percent failure 

into 5 percent failure on each side, using p=0.95 for both the lower and upper bounds. This 

gives a 5 percent chance that the true mean lies below the lower bound, and 5 percent that 

it is above the upper bound, leaving a 90 percent chance that it lies between them.

�Lower Confidence Bounds and Hypothesis Tests
We conclude this discussion with a useful observation that is easily provable in the 

Student’s-t scenario just discussed and that in fact is true more generally as well. Take 

a look back at Equation 6-3 on page 217. In that section we computed the t-score for 

testing the null hypothesis that the true mean was zero versus the alternative that the 

true mean is greater than zero. Now look at Equation 6-9 for computing the lower 

bound for the true mean. Easy algebraic manipulation of these two equations reveals 

the interesting (and perhaps not very surprising) fact that the null hypothesis would be 
rejected if and only if LowerBound is positive. So we don’t actually need to do separate 

tests. All we have to do is use Equation 6-9 to compute the lower bound corresponding 

to some p, such as the 0.95 assurance that we used in the example. We can reject the 

null hypothesis of zero mean at the 1–p level (1-0.95=0.05) if and only if Equation 6-9 

gives us a positive number. (Note that since we usually have a continuous distribution, 

the probability of the lower bound being exactly zero is zero, but to be conservative, we 

typically demand that it be positive in order to reject the null hypothesis.)

�Bootstrap Confidence Intervals
The prior section’s method for bounding the true mean of returns is easy to understand 

and program, fast to compute, and generally quite robust against any problems 

except the presence of one or more extreme outliers. But sometimes we do have some 
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questionable outliers, or maybe we want to be extra cautious. In this case, at least for 

mean returns we have a considerably more complex but usually safer approach called 

the bootstrap.

There are primarily three different bootstrap methods for finding lower (and also 

upper, if we want) bounds for the true mean. For a fairly rigorous and quite accessible 

discussion of all three methods, please see my book Assessing and Improving Prediction 

and Classification. For an extremely rigorous presentation, see the excellent book An 

Introduction to the Bootstrap by Efron and Tibshirani. Here, we will briefly mention two 

of these methods but present in detail only the method that is almost always the best 

of the three in this application. Also, because the theoretical background for this best 

algorithm is brutal, readers who want to pursue the theory are referred to the Efron and 

Tibshirani source. Here we focus on the relevant equations and source code only.

�The Pivot and Percentile Methods
The most easily understood idea behind bootstrapping is often called the pivot method. 

Consider first the situation we are in. Our trading system feeds us (and will continue to 

feed us, as long as the market characteristics remain stationary) a series of returns. When 

we use the Student’s-t method of the prior section, we assume that the distribution of 

these routines is not terribly non-normal. In the more general case, we know nothing 

whatsoever about this distribution. We would like to have a good guess as to its true 

mean, and we would also like an estimate of the sample-to-sample variation of the mean 

return in OOS samples. If we know the size and nature of this variation, we can establish 

probabilistic bounds on the likely true mean.

Unfortunately, we have only one sample from the population of returns, namely, 

that obtained from the OOS test set. That’s not much to work with for estimating the 

sample-to-sample variation or any possible over- or underestimation of the true mean 

by the sample mean. But there is something very clever that we can do (thank you, 

Bradley Efron). We can pretend that our sample of returns is actually an entire population 

of returns and that this pretend-population is at least somewhat similar to the parent 

population in some important ways. Of course, we cannot assume perfect similarity. 

The returns in our sample may on average be larger or smaller than those in the parent 

population. They may have larger or smaller variation. So, the bootstrap is far from 

perfect because of this unavoidable random variation. But we can usually gather some 

useful information by pretending that our sample is a representative parent population 

and then sampling from it.
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The fundamental idea behind the pivot method of bootstrapping is that whatever 

effects we see in the samples from our OOS sample pretending to be a population would 

have been reflected in our original sample from the true population. For example, 

suppose we collect a sample of OOS returns and compute some test statistic from 

this sample. Currently our test statistic is the mean, but later we will explore other 

performance measures, so we use the general term test statistic instead of being specific. 

Now we draw a random sample of the same size, with replacement, from our OOS 

sample. Some returns in our original sample will not appear in this bootstrap sample, 

while others will appear multiple times. It’s a random draw. We compute the test statistic 

for this bootstrap sample. Then we do it again, and again, hundreds or thousands of 

times. We thus have hundreds or thousands of values of the test statistic, each computed 

from a bootstrap sample.

We know the value of the test statistic in our original sample, which is now playing 

the role of a population. Suppose we find that, on average, the test statistic in our 

bootstrap samples underestimates the value of the test statistic in the original sample by 

a few percent. The bootstrap assumption is that the test statistic in our original sample 

will similarly underestimate the unknown true value in the population. Thus, to better 

estimate the true population value of the test statistic, we increase the computed value of 

the test statistic by a few percent, whatever amount would have been needed to increase 

the average in the bootstrap samples to bring that average up to the value for the original 

sample.

We do a similar thing in regard to variation. We assume that whatever variation we 

see in the test statistic among the numerous bootstrap samples, we have been subject 

to that same degree of variation when we collected our OOS test returns. This gives us a 

good idea of how far our sample’s mean return may be from the true population mean 

return, and we can thereby compute probabilistic lower and upper bounds on the true 

mean.

The second major method for computing bootstrap confidence intervals is called 

the percentile method. The concept is easier to understand on a superficial level, but 

it’s much more complex once one digs below the surface (which we shall not do here). 

The algorithm is simple: collect numerous bootstrap samples (ideally thousands) 

and compute the parameter of interest, which would be the mean in our context. 

Then the distribution of those computed values under bootstrap sampling from 

the original sample is assumed to be the distribution of the original sample’s value 

under the unknown parent distribution. So, for example, the 5th percentile of this 

distribution becomes the 95 percent confident lower bound for the true mean, and the 
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95th percentile of this distribution becomes the 95 percent confident upper bound for 

the true mean. It’s ridiculously easy, and amazingly enough, it works in a great many 

situations.

Ambitious readers with some modest degree of mathematical ability might want 

to work out the result that the confidence intervals produced by the pivot and the 

percentile methods are the reverse of each other: if one method produces a lower bound 

that is much further from the computed sample test statistic than is the upper bound, 

then the other method will produce bounds such that the upper bound is much further 

from the sample test statistic than is the lower bound. Given such a bizarre situation, it is 

a miracle that these two methods work at all, but they usually do quite well. On the other 

hand, the third method, described in the next section and used in this text, tends to be 

the most reliable of all.

�The BCa Bootstrap Algorithm
The algorithm presented in this section is much more broadly applicable than the pivot 

and percentile methods of the prior section. The exact mathematical conditions under 

which it is valid are broad, though not universal. My book Assessing and Improving 

Prediction and Classification does quite a good job (if I do say so myself!) of laying out 

the exact conditions under which it is valid and does so in a manner that should be 

accessible to those with a moderate degree of mathematical training. However, that 

discussion is beyond the scope of this text, which is geared more toward practicalities 

and a target audience with limited mathematical background. Please see my Assessing 

and Improving Prediction and Classification book if you are interested, or see the 

Efron and Tibshirani book An Introduction to the Bootstrap if you want a fierce and 

thorough discussion. For now, note that the BCa bootstrap (short for “bias corrected 

and accelerated”) easily handles the mean return as well as most other performance 

measures other than ratio measures, as will be discussed on page 238.

To compute confidence bounds using the BCa bootstrap, we need to perform four 

steps.

	 1)	 Compute the bias correction, which compensates for the degree 

to which the necessary implicit transformation is biased.

	 2)	 Compute the acceleration, which compensates for the degree 

to which the variance of the implicitly transformed parameter 

depends on its value.
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	 3)	 Compute lower and upper bounds using the previously described 

percentile method and then modify the fractile points according 

to these corrections.

	 4)	 Get the fractiles from the sorted bootstrap parameter estimates.

We now describe these steps, one at a time. Throughout this discussion, Φ(z) 

represents the normal cumulative distribution function (CDF), and Φ–1(p) is its inverse.

Step 1: The bias correction just involves simple counting. We see how many of the 

bootstrapped parameter estimates are less than the estimate for the original sample. The 

bias correction is the inverse normal CDF of the fraction of the replications less than the 

grand value. This is expressed in Equation 6-10. In this equation, q̂b is the parameter 

estimate (mean return or whatever other performance measure we are investigating) for 

the bth bootstrap sample, there being a total of B bootstrap samples taken. The 

parameter estimate for the original sample is q̂, and the #[] operation just means to 

count how many times the inequality holds among the B bootstraps.
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Step 2: To compute the acceleration, we need to perform a jackknife on the 

parameter estimator. Our set of OOS returns consists of n cases. We temporarily remove 

case i from the collection and compute the parameter using the remaining n–1 cases. Let 
q̂( )i  designate this parameter value. Let q̂( )×  be the mean of these n jackknifed values, as 

shown in Equation 6-11. Then the acceleration is given by Equation 6-12.
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Step 3: We modify the percentile method’s fractile points according to the bias and 

acceleration. For example, suppose we want a 90 percent confidence interval. The fractile 

points would be α=0.05 and α=0.95, assuming that we want to split the probability of 

Chapter 6  Estimating Future Performance II: Trade Analysis



227

failure equally above and below. (This splitting was discussed on page 222.) A modified 

fractile point, αʹ, is computed from an original α by means of Equation 6-13. This 

equation is applied to the upper and lower endpoints separately. Note that if the bias 

correction and acceleration are both zero, αʹ=α.
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Step 4: The final step is just the ordinary percentile bootstrap algorithm, but using 

the modified fractile points provided by Equation 6-13 instead of the user’s specified 

points. Sort the B values of q̂b into ascending order and select the lower and upper 

bounds from this array. The unbiased choice for the lower bound, in which αʹ<0.5, is to 

select element k (indexed 1 through B), where k = αʹ(B+1), truncated down to an integer 

if there is a fractional remainder. For the upper bound, αʹ>0.5, let k = (1–αʹ) (B+1), 

truncated down to an integer if there is a fractional remainder. Element B+1–k is the 

upper confidence bound.

As was noted in the section on confidence based on Student’s-t, when a bootstrap 

algorithm is used to compute confidence intervals for the mean return, we only rarely 

would be interested in an upper bound. Our greatest interest is in how small the true 

mean return might be. Of course, if we also learned that the true return might be quite 

large, we would probably be happy. And as should be obvious, we’ve already done  

99.9 percent of the work in computing the lower bound; also finding the upper bound 

is an insignificant amount of extra work. Thus, all routines presented compute both 

bounds. Use them as you want.

�The BOOT_CONF.CPP Subroutines
The file BOOT_CONF.CPP on my web site contains subroutines for computing a small 

assortment of confidence intervals using the percentile and BCa methods. In this section 

we work through this code.

To lay a foundation, we present the simple yet surprisingly effective percentile 

algorithm that lies at the core of the superior BCa algorithm. Recall from the earlier short 

discussion that this algorithm just evaluates the parameter (such as mean return) being 

studied using a large number of bootstrap samples, and it assumes that the resulting 

distribution of parameter estimates directly provides confidence intervals for the true 
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value of the parameter in the population. This algorithm is invoked with the following 

calling convention (and variable declarations):

void boot_conf_pctile ( // Percentile bootstrap algorithm

   int n ,                         // Number of  cases in sample

   double *x ,                 // Variable in sample

   double (*user_t) (int , double *) , // Compute parameter

   int nboot ,                  // Number of  bootstrap replications

   double *low2p5 ,       // Output of  lower 2.5% bound

   double *high2p5 ,      // Output of  upper 2.5% bound

   double *low5 ,            // Output of  lower 5% bound

   double *high5 ,          // Output of  upper 5% bound

   double *low10 ,         // Output of  lower 10% bound

   double *high10 ,        // Output of  upper 10% bound

   double *xwork ,          // Work area n long

   double *work2           // Work area nboot long

   )

{

   int i, rep, k ;

We would most likely call this routine with the n returns from our OOS test in x. The 

user_t() function would compute the mean of the vector given to it, assuming that our 

performance measure of interest is the mean return. We should set nboot to be very large; 

10,000 is not unreasonable.

The first step is to draw a large number of bootstrap samples and compute the 

parameter of interest for each sample. We save them for sorting later. The outer loop 

in the following code draws each of the nboot (B in the preceding discussion) samples. 

For each replication, we draw n randomly selected cases from the original sample. 

It’s important that each bootstrap sample contain the same number of cases as the 

original sample, because many parameters are sensitive to the number of cases in the 

sample.

   for (rep=0 ; rep<nboot ; rep++) {       // Do all bootstrap reps (b from 1 to B)

      for (i=0 ; i<n ; i++) {                        // Generate the bootstrap sample

         k = (int) (unifrand() * n) ;             // Randomly select a case from the sample

Chapter 6  Estimating Future Performance II: Trade Analysis



229

         if  (k >= n)                                       // Should never happen, but be prepared

            k = n - 1 ;

         xwork[i] = x[k] ;                               // Put bootstrap sample in xwork

         }

      work2[rep] = user_t ( n , xwork ) ;  // Save parameter from this bootstrap sample

      }

The parameter estimates are sorted. The qsortd() routine takes as its parameters the 

indexes of the first and last cases in the array to be sorted. The lower and upper bounds 

are pulled from this sorted array using the unbiased fractile estimators, as described 

in step 4 on page 227. Only one pair of bounds is shown here, because the others are 

identical except for the multiplier. Feel free to set whatever fractile multiplier you want, 

or make it a calling parameter.

   qsortd ( 0 , nboot-1 , work2 ) ;      // Sort ascending

   k = (int) (0.025 * (nboot + 1)) - 1 ; // Unbiased quantile estimator

   if  (k < 0)

      k = 0 ;

   *low2p5 = work2[k] ;

   *high2p5 = work2[nboot-1-k] ;

By the way, if you want to use the generally inferior pivot method, those bounds 

are easily obtained from the percentile bounds. Let Param be the parameter value for 

the original sample. Then PivotLower = 2 * Param – PctileUpper and PivotUpper = 2 * 

Param – PctileLower. Curious readers might want to reread the description of the pivot 

method on page 224 and then work through the logic of how these formulas reflect the 

sample-to-bootsample relationship in the population-to-sample estimate.

We now move on to the BCa bootstrap, which is almost always superior to both 

the pivot and percentile methods. It is similar to the percentile method just shown, in 

that the parameter is estimated from numerous bootstrap samples, these estimates are 

sorted, and bounds are extracted from the sorted array. The difference is that the chosen 

elements are selected from slightly adjusted locations. The calling parameter list is 

identical to that for the percentile method, but for clarity here it is:
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void boot_conf_BCa (   // BCa bootstrap algorithm

   int n ,                          // Number of  cases in sample

   double *x ,                  // Variable in sample

   double (*user_t) (int , double *) , // Compute parameter

   int nboot ,                   // Number of  bootstrap replications

   double *low2p5 ,        // Output of  lower 2.5% bound

   double *high2p5 ,       // Output of  upper 2.5% bound

   double *low5 ,            // Output of  lower 5% bound

   double *high5 ,           // Output of  upper 5% bound

   double *low10 ,          // Output of  lower 10% bound

   double *high10 ,         // Output of  upper 10% bound

   double *xwork ,          // Work area n long

   double *work2            // Work area nboot long

   )

{

   int i, rep, k, z0_count ;

   double param, theta_hat, theta_dot, z0, zlo, zhi, alo, ahi ;

   double xtemp, xlast, diff, numer, denom, accel ;

It begins by evaluating the parameter for the original sample. Then it computes and 

saves the parameter values for nboot bootstrap samples. While doing this, it counts z0 for 

Equation 6-10.

   theta_hat = user_t ( n , x ) ;              // Parameter for full set

   z0_count = 0 ;                                   // Will count for computing z0 later

   for (rep=0 ; rep<nboot ; rep++) {       // Do all bootstrap reps (b from 1 to B)

      for (i=0 ; i<n ; i++) {                        // Generate the bootstrap sample

         k = (int) (unifrand() * n) ;              // Select a case from the sample

         if  (k >= n)                                    // Should never happen, but be prepared

            k = n - 1 ;

         xwork[i] = x[k] ;                            // Put bootstrap sample in xwork

         }

      param = user_t ( n , xwork ) ;         // Param for this bootstrap rep

      work2[rep] = param ;                      // Save it for CDF later
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      if  (param < theta_hat)                    // Count how many < full set param

         ++z0_count ;                               // For computing z0 (Equation 6-10)

      }

   z0 = inverse_normal_cdf  ( (double) z0_count / (double) nboot ) ; // In STATS.CPP

Now we do the jackknife described in step 2, in other words, Equation 6-11. The 

original sample is reprocessed n times, each time omitting one case. Then we evaluate 

Equation 6-12.

   xlast = x[n-1] ;

   theta_dot = 0.0 ;

   for (i=0 ; i<n ; i++) {                   // Jackknife Equation 6-11

      xtemp = x[i] ;                          // Preserve case being temporarily removed

      x[i] = xlast ;                            // Swap in last case

      param = user_t ( n-1 , x ) ;     // Param for this jackknife

      theta_dot += param ;             // Cumulate mean across jackknife

      xwork[i] = param ;                  // Save for computing accel later

      x[i] = xtemp ;                          // Restore original case

      }

   theta_dot /= n ;                         // This block of  code evaluates Equation 6-12

   numer = denom = 0.0 ;

   for (i=0 ; i<n ; i++) {

      diff  = theta_dot - xwork[i] ;

      xtemp = diff  * diff  ;

      denom += xtemp ;

      numer += xtemp * diff  ;

      }

   denom = sqrt ( denom ) ;

   denom = denom * denom * denom ;

   accel = numer / (6.0 * denom + 1.e-60) ;

The hard work is done. We sort the bootstrap sample parameters, exactly as we did 

for the percentile method.

   qsortd ( 0 , nboot-1 , work2 ) ;      // Sort ascending
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We modify the user’s fractile points as described in Equation 6-13 of step 3 on page 226.

   zlo = inverse_normal_cdf  ( 0.025 ) ;

   zhi = inverse_normal_cdf  ( 0.975 ) ;

   alo = normal_cdf  ( z0 + (z0 + zlo) / (1.0 - accel * (z0 + zlo)) ) ;

   ahi = normal_cdf  ( z0 + (z0 + zhi) / (1.0 - accel * (z0 + zhi)) ) ;

The last step is identical to what we did for the percentile method, except that 

instead of using the given fractile points, we use the modified points, and we must do the 

lower and upper bounds separately. We cannot use the same k for both.

   k = (int) (alo * (nboot + 1)) - 1 ; // Unbiased quantile estimator

   if  (k < 0)

      k = 0 ;

   *low2p5 = work2[k] ;

   k = (int) ((1.0-ahi) * (nboot + 1)) - 1 ;

   if  (k < 0)

      k = 0 ;

   *high2p5 = work2[nboot-1-k] ;

We showed only the 0.025 (lower) and 0.975 (upper) bounds here. Several other 

bounds are done in the source code in BOOT_CONF.CPP. Feel free to use whatever 

fractiles you want.

�The BOUND_MEAN Program and Results with SPX
The file BOUND_MEAN.CPP contains a complete program that extends the PER_WHAT 

program presented on page 198. The trading system is exactly the same, so please review 

that section as needed. One simplification is done: the optimization criterion in the 

BOUND_MEAN implementation is always the mean return when a position is open. Other 

training options available in PER_WHAT are omitted, although readers should have no 

trouble putting them back if desired. One other small change is that PER_WHAT computes 

performance based on only one return type, selected by the user, while BOUND_MEAN 

computes the three main return types simultaneously for easy comparison.

But the largest change is that BOUND_MEAN computes a t-score (Equation 6-3 on  

page 217) and associated p-value (Equation 6-4 on page 217) for a hypothesis test of the null 

hypothesis that the true mean return is zero (or negative) versus the alternative that the true 
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mean is positive. It also computes a 90 percent confidence lower bound for the true mean 

using Equation 6-9 on page 220. Finally, it computes 90 percent confidence lower bounds 

using three different bootstrap algorithms: the percentile method, the pivot method  

(page 224) and the BCa method (page 225). All of these results are printed in a compact table.

The program is invoked as follows:

BOUND_MEAN max_lookback n_train n_test n_boot filename

Let’s break this command down:

•	 max_lookback: Maximum moving-average lookback tried during 

training (parameter optimization).

•	 n_train: Number of bars in the training set for each walkforward fold. 

It should be much greater than max_lookback to get good parameter 

estimates.

•	 n_test: Number of bars in the test set for each walkforward fold. 

Smaller values (even just 1) make the test more robust against 

nonstationarity in the market but take much longer to execute.

•	 n_boot: Number of bootstrap replications. This should be as large as 

runtime allows. A value of 10,000 is not unreasonable and should be 

considered a minimum for serious testing.

•	 filename: Name of the market file to read. It has no header. Each line 

in the file is for a single bar, and it has the date as YYYYMMDD and at 

least one price. Any numbers after the first number following the date 

are ignored. For example, a line in a market history file might look 

like the following, and only the first price (1075.48) would be read. 

Readers who would prefer to use the close for open/high/low/close 

files can easily modify this code.

20170622 1075.48 1077.02 1073.44 1073.88

Before jumping into key parts of the source code, let’s take a look at the output of this 

program when applied to the many decades of SPX. This is shown in Figure 6-1.
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Figure 6-1.  BOUND_MEAN for moving-average breakout in SPX

We have 23,557 days of prices (!). The maximum moving-average lookback in 

training the system is 100 days; we use 1,000 training cases and do the OOS testing 100 

days at a time. For the bar-based returns, we multiply by 25,200 to make the returns 

roughly annualized percents.

Our three primary types of return are tested. The open-trade or open-posn returns 

are the bar returns on which a position is open. The complete returns are the net returns 

for each completed trade (round turn). The grouped returns are the bar returns, whether 

a position is open or not, crunched into blocks of ten days. Those returns are much 

smaller than the open-position returns because of all the zeros (the return of a bar is zero 

if no position is open) included in the average. By sheer coincidence, the p-value for the 

t-test-based test happens to be essentially 0.1, so we should not be surprised to see that 

the 90 percent confidence lower bound for the true mean is essentially zero (–0.0022). 

If this is not clear, please refer to page 222 for the discussion about the equivalence 

between hypothesis tests and the lower bound of a confidence interval. Also note 

that the bootstrap tests give lower bounds near zero, although the pivot method, as is 

common, is the oddball. For all its intuitive appeal, the pivot method is usually the least 

reliable of the three common bootstrap algorithms.

There is an important lesson to be learned from this demonstration. The 

approximate annualized mean return for bars on which a position is open is 9.91 

percent, a fairly impressive number when taken in isolation. But the t-test probability 
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that a worthless system could have achieved results at least this good by sheer luck is 

0.1000, which is distressingly nonsmall. Moreover, if we look at the 90 percent confidence 

bound on the lower limit of the true mean, that around which future returns would be 

centered, this lower bound is actually negative! Granted, it’s barely negative, virtually 

zero, but still, this is not a system I would want to trade. The various bootstrap bounds 

for all three families of returns are equally uninspiring. Back to the drawing board.

We now take a look at a few code snippets from the BOUND_MEAN program. The 

trading system (opt_params() and comp_return()) was thoroughly discussed on page 198, 

which dealt with the PER_WHAT program. Please refer to that section as needed. We 

focus now on the walkforward code. A discussion follows the code listing.

   train_start = 0 ;       // Starting index of  training set

   nret_open = nret_complete = nret_grouped = 0 ;

   for (;;) {

      // Train

      crit = opt_params ( n_train , prices + train_start ,

                          max_lookback , &lookback , &thresh , &last_pos ) ;

      n = n_test ;  // Test this many cases

      if  (n > nprices - train_start - n_train) // Don't go past the end of  history

         n = nprices - train_start - n_train ;

      // Test with each of  the three return types

      comp_return ( 0 , nprices , prices , train_start + n_train , n , lookback ,

                    thresh , last_pos , &n_returns , returns_grouped + nret_grouped ) ;

      nret_grouped += n_returns ;

      comp_return ( 1 , nprices , prices , train_start + n_train , n , lookback ,

                    thresh , last_pos , &n_returns , returns_open + nret_open ) ;

      nret_open += n_returns ;

      comp_return ( 2 , nprices , prices , train_start + n_train , n , lookback ,

              thresh , last_pos , &n_returns , returns_complete + nret_complete ) ;

      nret_complete += n_returns ;
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      // Advance fold window; quit if  done

      train_start += n ;

      if  (train_start + n_train >= nprices)

         break ;

      }

We initialize the start of the first training set to be the beginning of the market 

history. The three counters that count the number of each type of return (open position, 

complete, grouped) are zeroed.

The first step in the walkforward loop is to call opt_params() to find the optimal 

lookback and threshold. This routine also returns the position as of the end of the 

training set. The purpose of this is discussed in the section on PER_WHAT. We then 

assume that the number of test cases will be the number specified by the caller, but we 

make sure we do not overrun the market history.

We call comp_return(), specifying that all bars be included in the return, regardless of 

whether a position is open. This will be clumped for the group returns later. The other 

two calls to comp_return() are for open-position bars and complete returns, respectively.

After all three OOS tests are done, we advance to the next fold and break out of the 

walkforward loop if no OOS test cases remain.

At this point, the grouped returns are still ungrouped, just individual bar returns. We 

group them now, using an arbitrary grouping of ten bars, which the reader can easily 

change or even make a user parameter.

   crunch = 10 ;   // Change this to whatever you wish

   n_returns = (nret_grouped + crunch - 1) / crunch ;   // This many returns after crunching

   for (i=0 ; i<n_returns ; i++) {                    // Each crunched return

      n = crunch ;                                          // Normally this many in group

      if  (i*crunch+n > nret_grouped)            // May run short in last group

         n = nret_grouped - i*crunch ;            // This many in last group

      sum = 0.0 ;

      for (j=i*crunch ; j<i*crunch+n ; j++)      // Sum all in this gorup

        sum += returns_grouped[j] ;

      returns_grouped[i] = sum / n ;              // Compute mean per group

      }

   nret_grouped = n_returns ;
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We can now compute the t-score and associated p-value. The code for the  

open-position returns (all variables end in _open) is as follows:

   mean_open = 0.0 ;

   for (i=0 ; i<nret_open ; i++)

      mean_open += returns_open[i] ;

   mean_open /= (nret_open + 1.e-60) ;

   stddev_open = 0.0 ;

   for (i=0 ; i<nret_open ; i++) {

      diff  = returns_open[i] - mean_open ;

      stddev_open += diff  * diff  ;

      }

   if  (nret_open > 1) {

      stddev_open = sqrt ( stddev_open / (nret_open - 1) ) ;

      t_open = sqrt((double) nret_open) * mean_open / (stddev_open + 1.e-20) ;

      p_open = 1.0 - t_CDF ( nret_open-1 , t_open ) ;

      t_lower_open = mean_open - stddev_open / sqrt((double) nret_open) *

                                inverse_t_CDF ( nret_open-1 , 0.9 ) ;

      }

   else {

      stddev_open = t_open = 0.0 ;

      p_open = 1.0 ;

      t_lower_open = 0.0 ;

      }

In the previous code, we cumulate the mean and standard deviation using the usual 

formulas. If we have fewer than two returns, the standard deviation is undefined, so we 

use reasonable defaults. Otherwise, we compute the t-score with Equation 6-3 and its 

associated p-value using Equation 6-4. Notice how we prevent division by zero when 

computing the t-score. Then the lower bound for the true mean at 90 percent confidence 

is computed using Equation 6-9.

The percentile and pivot bootstraps are computed by calling the boot_conf_pctile() 

subroutine described on page 228. The code for the open-position returns is shown here. 

The trivial routine find_mean() just adds the returns and divides by the number of them. 

The computed lower bound is returned in b1_lower_open. All other bounds are ignored by 

supplying dummy variables for the computed values.
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On page 229 we saw that it is easy to obtain the pivot-method confidence bounds 

from the percentile bounds. We use that simple formula to compute b2_lower_open, 

the lower bound using the pivot method. My Assessing and Improving Prediction and 

Classification book goes into detail on the relationship between these two methods. 

However, because I do not generally recommend the pivot method, I won’t bother going 

into detail here.

   boot_conf_pctile ( nret_open , returns_open , find_mean , n_boot ,

                     &sum , &sum , &sum , &sum , &b1_lower_open , &high ,

                     xwork , work2 ) ;

   b2_lower_open = 2.0 * mean_open - high ;

Finally, we call boot_conf_BCa() to compute the lower bound on the true mean using 

the generally good BCa method.

   boot_conf_BCa ( nret_open , returns_open , find_mean , n_boot ,

                  &sum , &sum , &sum , &sum , &b3_lower_open , &high ,

                  xwork , work2 ) ;

�Beware of Bootstrapping Ratios
The bootstrap almost always works quite well for the mean and other well-behaved 

performance measures. But for ratio-based measures that can violently blow up when 

the denominator becomes small, the bootstrap often fails. The two classic examples of 

such measures are the Sharpe ratio and the profit factor. In this section, we’ll present 

the BOOT_RATIO program (complete source code is in BOOT_RATIO.CPP), which 

generates random trades and explores the behavior of bootstrap confidence intervals for 

the Sharpe ratio and profit factor of these trades.

Before experimenting, we discuss the test philosophy of the program. The essence 

of a confidence interval, whether it be a closed interval (lower and upper bounds) or 

an open interval (just one bound), is that it be violated with specified probability. For 

example, suppose we want to compute a lower bound on a performance statistic and we 

want to be confident that the true value of the performance statistic is at or above our 

lower bound 95 percent of the time. Equivalently, when we compute this lower bound 

from a random sample, we want our computed bound to exceed the true value 5 percent 

of the time. If it exceeds the true value more often, we are in a dangerous situation, 
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because our confidence bound is not as good as we thought it was. If it exceeds the true 

value less than 5 percent of the time, the situation is not quite so bad, because this just 

means that we are correct even more often than we think we are. But this situation is still 

bad in a way because it means that our computed bound is needlessly loose, perhaps so 

loose that we lose faith in our trading system. It may be that our computed lower bound 

is so low that we discard the potential trading system, when in fact if the lower bound 

had been computed correctly, we might have been happy with the trading system.

The BOOT_RATIO program is invoked as follows:

BOOT_RATIO nsamples nboot ntries prob

Let’s break this command down:

•	 nsamples: Number of price changes in market history

•	 nboot: Number of bootstrap replications

•	 ntries: Number of trials for generating summary

•	 prob: Probability that a trade will be a win

It generates random market price changes, each nsamples long. Each change is 

considered to be a win with probability prob; otherwise, it is a loss. Given this set of 

returns, nboot bootstrap samples are used to compute lower and upper bounds for the 

profit factor using the percentile, pivot, and BCa methods. These bounds are computed 

with violation probabilities of 0.025, 0.05, and 0.1.

The true profit factor of the randomly generated set of wins and losses is prob / 

(1 – prob). So after we compute these six bounds (three probabilities each for lower 

and upper), we compare each to the true profit factor and note whether the bound is 

violated.

This process is repeated ntries times, and for each of these six bounds and each 

of these three bootstrap methods we count violations so we can compare the actual 

number of violations to the correct number.

While the ntries trials are performed, we keep track of the Sharpe ratio of the 

population of random returns, a total of nsamples times ntries of them. After all profit 

factor trials are complete, we repeat the entire process for the Sharpe ratio. There is no 

simple way to compute the theoretical Sharpe ratio, so we use this population value. To 

ensure accuracy, we start both the profit factor trials and the Sharpe ratio trials with the 

same random seed, ensuring that exactly the same set of wins and losses are generated. 

After these trials are complete, results are printed.
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Figure 6-2 shows the BOOT_RATIO results for sets of 1000 returns, and Figure 6-3 

shows results for sets of 50 returns. The system being tested is worthless (prob=0.5).  

A very large number of bootstrap replications and trials were employed to ensure 

stability. Observe that in both figures, the mean and true Sharpe ratios are essentially 

zero, and the mean and true profit factors are essentially one, as expected. For the 

situation of just 50 returns, the mean profit factor is a bit above one because the 

denominator can sometimes be very small, resulting in a few extreme profit factors 

that inflate the mean. The charts are divided into three columns, corresponding to 

prob=0.025, 0.05, and 0.1. The left number inside each parenthesized pair is the failure 

rate in percent (100*prob) for the lower bound, and the right number is that for the upper 

bound. So, we hope that both of these numbers equal the percent for that column.

Figure 6-2.  BOOT_RATIO results with 1,000 returns

Figure 6-3.  BOOT_RATIO results with 50 returns
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Note the following:

•	 Problems are most apparent in the leftmost column, which is for a  

2.5 percent failure rate (97.5 percent confidence in each bound).  

We want all of these parenthesized numbers to be 2.5.

•	 The pivot method is the worst by far. For the profit factor at 2.5 

percent expected failure rate and 50 trades, the lower bound never 

fails to be below the true profit factor. This means that the lower 

bound is so extremely low that it is worthless. Meanwhile, the upper 

bound fails to be above the true profit factor almost four times as 

often as expected, a disastrous situation.

•	 Profit factor is more poorly behaved than Sharpe ratio.

But all is not lost with profit factor. The problem, especially with a small number of 

returns, is the extremely heavy right tail, with a tiny denominator giving rise to huge profit 

factors. All we have to do is work with the log of the profit factor, which tames the tail. 

Figure 6-4 shows the result when instead of bootstrapping the profit factor we bootstrap 

its log. There’s quite a difference, especially for the lower bound which is our main 

interest. The BCa upper bound at 2.5 percent does deteriorate a little, which is troubling, 

but it would be rare to care about the upper bound. And for 5 percent and 10 percent 

failure rates, both bounds improve a lot. The lesson is that if we are bootstrapping a 

distribution with a heavy tail, we should transform in such a way as to tame the tail.

Figure 6-4.  BOOT_RATIO log profit factor results with 50 returns

�Bounding Future Returns
In prior sections we discussed finding bounds (usually just a lower bound) for the 

true mean of the population from which future returns will appear. That’s a fairly 

straightforward task, doable with relatively simple and easily understood calculations. 

We now tackle a much more complex task, yet one that can be quite useful in practice. 

Chapter 6  Estimating Future Performance II: Trade Analysis



242

Rather than being concerned with the true mean around which future returns will 

cluster, we want to bound actual returns.

There is little or no point in trying to bound individual bar returns; those will have so 

much variation relative to their mean that bounds would be worthless. But we might well 

be interested in bounding returns because of complete trades. And in real life we would 

absolutely love to be able to bound grouped mean returns. The primary purpose of this 

would be to help us confirm ongoing performance. For example, suppose we perform 

an extended walkforward run to produce many years of OOS returns. We might group 

these returns by the month and compute monthly average returns. Using the technique 

of this section, we could find a probable lower bound on our expected future monthly 

returns. As we trade the system, we keep track of its actual monthly performance. If this 

performance falls below our previously computed lower bound, we would justifiably 

become suspicious that our trading system is suffering degradation.

Readers who have minimal mathematical background may be somewhat 

intimidated by the contents of this section. However, there is no need to skip it in terror. 

Please be assured that code fragments illustrating the key parts of the operation will be 

supplied along the way, and a complete program that puts it all together with an actual 

trading system and market data will close out the presentation.

The technique is divided into three sections. We will begin with a method for finding 

an approximate but reasonable lower bound for future returns. Then we will explore how 

to quantify inevitable random errors in our computation of this lower bound. Finally, 

for those rare instances in which we also want an upper bound on future returns, we 

generalize the algorithm to that situation.

�Deriving a Lower Bound from Empirical Quantiles
Before commencing, we must be absolutely clear on the difference between material in 

this section and that in prior sections. Until this point, we were bounding the mean of the 

population from which returns were (and presumably will continue to be) drawn. This 

is useful because we want to be reasonably sure that the true mean of our population of 

returns is large enough to be worth trading. After all, future returns will tend to center 

around this mean.

But now we will attempt to bound the actual returns themselves. Most often these 

will be group returns, such as the monthly return of our system. We may want to know a 

probability-based lower bound on the monthly returns we can expect over the upcoming 

months. Occasionally we may also be interested in bounding net return of completed 
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trades. This task is much more difficult than just bounding the mean of the population 

from which these returns are drawn.

We begin with a collection of OOS returns. For this task, we need a great many such 

returns to obtain reliable bounds, typically a bare minimum of a hundred returns, and 

preferably many hundreds or even thousands. Thus, if we are working with, say, monthly 

returns, we need an extended OOS test covering upwards of ten years. If necessary, we 

can shorten the return period, perhaps using weekly returns. But shorter return periods 

result in greater variance in the returns, which in turn results in computed lower bounds 

so low that they are of little value. Thus, we are caught in a difficult compromise: having 

more returns from shorter intervals gives us bounds that are more accurate but less 

useful. Just do your best.

Our fundamental assumption is that our collection of OOS returns is a fair 

representation of the population of returns from which future returns will be drawn. 

As we will see in the next section, this is not strictly true, and the implication is that our 

computed lower bound is subject to troubling random error, which we will quantify later. 

But for now, assume that it is true.

First, some intuition. Suppose we have 100 OOS returns (monthly, completed trades, 

or whatever) in our collection. Also suppose that 10 percent of these returns have a value 

of -8 or less. Then our initial technique is based on the assumption that future returns 

will also have a 10 percent chance of being -8 or less. The more returns we have in our 

collection, the more we can be confident in the validity of this critical assumption, an 

idea that we’ll quantify in the next section.

We need a definition. The quantile of order p of the distribution of the random 

variable X is defined as the value x such that P{X < x} ≤ p and P{X < x} ≥ p. We saw 

something similar in Equation 6-6 when we found the t-score corresponding to 

a specified probability. In that case we were finding the quantile of a continuous 

distribution, the Student’s-t distribution. But here we have a discrete distribution, a 

collection of numbers. Thus, to be fully rigorous, we need to cover both sides of the value, 

and even then x may not be unique; it may be the interval between two discrete values.

It is easiest to think of quantiles in terms of continuous distributions, so with no 

deleterious practical implications we will do so from now on. For example, if we know 

that there is a 10 percent (0.1) probability that a return will be less than or equal to -8, 

we say that the 0.1 quantile of this distribution is -8. Our algorithm for computing a 

lower bound for returns computes the quantiles of the OOS returns, assumes that this 

collection is representative of the true population, and uses these empirical quantiles to 

compute whatever bounds are desired.
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We can be more rigorous. A lower bound for future returns is computed from the 

n OOS returns as follows: suppose we want a lower bound in which we can have 1–p 

confidence (the probability of failure is some small p such as 0.05). Sort the returns in 

ascending order. Compute m=np, and if m is not an integer, truncate the fractional part. 

This formula provides a conservative (lower than the exact) bound. If we happen to want 

an unbiased but slightly less conservative lower bound, let m=(n+1)p. Then the mth 

smallest return in the sorted sample is our approximate lower bound.

�Confidence in the Computed Lower Bound
This is a good time for readers to review the section “Interlude: What Does Unbiased 

Really Mean?” on page 125. That section makes the point that unbiased doesn’t 

necessarily mean, um, unbiased. In fact, it is virtually certain that our OOS collection 

of returns is biased in some way. Random sampling error may have resulted in our 

OOS collection underestimating the future returns, meaning that our collection is 

pessimistically biased. Equally likely, it may overestimate future returns, making it 

unduly optimistic. Whatever the case, it almost certainly is not a good representation 

of future returns. If our collection of returns truly is out-of-sample, we say that it is 

unbiased only because it does not have a preordained prejudice toward being optimistic 

or pessimistic. It could go either way. This balance in the type of bias it may exhibit is 

what allows us to call it unbiased. But be assured, it’s biased one way or the other, and we 

have no way of knowing which it is.

The implication is that our computed lower bound is a little bit (or perhaps a lot!) 

off. If our OOS collection is pessimistically biased because of bad luck in sampling, 

our computed lower bound will be too low. Or if our collection is optimistic, with wins 

over-represented, our computed lower bound will be too high. Naturally, this can have 

serious consequences when we put our lower bound to work keeping track of ongoing 

performance. What we need to do is to quantify the possible error in our lower bound. 

This is the topic of this section.

We saw in the prior section that we specify some small failure rate p and compute the 

lower bound for future returns as the m=npth smallest return in our OOS collection. In 

doing so, we smugly assume that there is only smallish probability p that future returns 

will be less than or equal to our computed lower bound.

But remember that our OOS set is, by random chance, optimistic or pessimistic. 

There are two things we must worry about. The most serious consideration is how 

large that true failure rate for our computed lower bound might truly be. For example, 
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suppose we let p be 0.1, implying that we want a lower bound such that only 10 percent 

of the time in the future will the return be less than or equal to this lower bound. The 

question of the moment is, “How high (greater than our specified p) might be the actual 

probability of obtaining a return less than or equal to this lower bound?” In other words, 

it may be that future returns will (to our dismay) be less than or equal to this lower 

bound with a probability that is higher than the 0.1 we desire and expect. We would like 

to make a probability statements about this situation.

The most straightforward probability statement is the following: What is the 

probability that the m smallest OOS return, which we have chosen for our lower bound 

on future returns, is really the q quantile or worse of the return distribution, where 

we specify some q that is disturbingly larger than the p we desire? We hope that this 

probability is small, because this event is a serious problem in that it implies that our 

computed lower bound for future returns is too high and hence more likely to be violated 

than we believe.

For example, we may specify p=0.1, implying that we are willing to live with a 

10 percent chance that future returns will violate our lower bound. But we may also 

specify q=0.15, a failure rate that we consider unacceptable; 10 percent of future returns 

violating our lower bound is okay, but 15 percent failure simply won’t do. We want to 

compute the probability that the true failure rate of our 0.1-based lower bound is really 

0.15 or worse. We hope that this probability is small.

This probability question is answered by the incomplete beta distribution. In a set  

of n cases, the probability that the mth smallest exceeds the q quantile is given by  

1 – Iq(m, n–m+1). The subroutine orderstat_tail() in STATS.CPP computes this probability, 

and we will find this routine extremely useful as discussion of this topic continues.

Sometimes we would prefer to do things in the opposite order. Instead of first 

specifying some pessimistic q>p and then asking for the probability that random 

sampling error gave us a lower bound with true failure rate q, we first specify a 

satisfactorily low probability of such deception and then compute the q that corresponds 

to this probability. For example, we might specify that we want very low probability  

(only 0.001, say) of having collected an OOS return set that provided a lower bound 

whose actual probability of violation is seriously greater than what we expect. Suppose 

we have 200 OOS returns, and we set p=0.1, meaning m=20. Thus, the 20th smallest 

OOS return is our lower bound on future returns. We need to find the pessimistic q>p 

such that 1–Iq(20, 181)=0.001. The subroutine quantile_conf() in STATS.CPP (more on 

that later) tells us that q=0.18. In other words, there is only the tiny probability of 0.001 

that our lower bound, which we hope to be violated 10 percent of the time, will actually 
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be violated 18 percent or more of the time. Looked at another way, we have the near 

certainty of 0.999 that our supposed p=0.1 lower bound will in fact fail no more than 18 

percent of the time. That’s not very good, but on the other hand, demanding such high 

certainty is asking a lot.

If our goal in computing a lower bound on future returns is only to have an idea 

of how bad things can be for future returns from our chosen trading system, the 

“pessimistic q” approach just described is all we need. Suppose that the opposite of 

what we have explored is true. If, in fact, our computed lower bound is too low rather 

than too high (the true failure rate is less than our chosen p rather than greater), the only 

implication is that future losses (assuming ongoing stability of our trading system) will 

not be as severe as we think they might be. That’s good, unless our lower bound is so bad 

that we reject our trading system. But we should be hesitant about rejecting a system 

based on its projected worst returns, because these will almost always be negative and 

discouraging. We should more greatly value bounds on the expected mean return, as 

discussed earlier. Thus, the pessimistic q method is sufficient if we are simply gathering 

information about worst-case scenarios in the future.

However, an important use for a computed lower bound on future returns is to track 

ongoing performance of a trading system that has been put into use. When we design the 

final system, we should set a reasonable probability of failure p (perhaps 0.05 to 0.1 or 

so) and use the technique of this section to compute a lower bound for future returns. If, 

at some point in the future, we get a return below this lower bound, we should become 

suspicious that the system is deteriorating. If it happens again, we should seriously 

consider abandoning or at least revising the system.

When we use our lower bound this way, we need more than just a pessimistic q>p, 

an indication of how seriously our computed lower bound exceeds the true quantile 

for our desired failure rate. We should be even more fearful of the opposite error: the 

true failure rate for our computed lower bound is less than our desired failure rate p. 

This happens when our computed lower bound is too low. In this unfortunate situation, 

we may observe one or more returns that are somewhat above our lower bound, and 

hence not worrisome, when in fact these losses are exceeding the true lower bound 

corresponding to our desired failure rate. So we will make the worst sort of error, 

neglecting to flag legitimate deterioration of our trading system.

The process for computing an “optimistic” q<p is almost identical to what we did 

earlier in this section. We could use orderstat_tail() to compute the probability that the mth 

smallest OOS return (which is our lower bound) exceeds some specified optimistic q<p, 
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although now we have to subtract this probability from one to get the probability of this 

unfortunate occurrence. This is because orderstat_tail() computes the probability that the 

computed bound is above the specified quantile q>p, the problem addressed earlier, at 

the beginning of this section. But now we are worried about the opposite problem. We 

want the probability that the computed bound is below the specified optimistic quantile 

q<p. This probability must be small if we are to avoid the mistake of failing to detect truly 

legitimate deterioration of our trading system.

As was the case for the pessimistic q test, we have an alternative to specifying an 

optimistic q and then computing its probability. Instead, we could use quantile_conf() with 

a large probability (such as 0.95 to 0.999 or so) to compute an optimistic q. We’ll explore 

all of these possibilities later, in a high-detail quasitheoretical section, followed by a 

practical section.

To summarize this section, we have n OOS returns, and we want to compute a lower 

bound for future returns. We choose a smallish probability of failure, p, as the probability 

that future returns will be less than or equal to our computed bound. Let m=np for a 

conservative bound, or m=(n+1)p for an unbiased bound. To quantify the effects of 

random error, we have some pessimistic q>p, resulting from our bound being too large, 

and an associated probability. We may also consider some optimistic q<p, resulting from 

our bound being too small, and an associated probability. We must find the relationship 

between these quantities.

�What About an Upper Bound on Future Returns?
At first thought, one might believe that it would be unusual to want to compute an 

upper bound on future returns. After all, what do we care if our returns are better than 

expected? Our main concern would seem to be how bad our future returns might be, so 

we know what to expect. We may even want (actually, we should want!) to keep track of 

ongoing performance of an existing system and raise a red flag if we start getting returns 

below our expected lower limit.

But careful thought reveals that if we are watching a running system, it’s not 

just excessively poor trades that flag possible deterioration. We should also become 

suspicious if we are not seeing as many good trades as we expect. Remember that 

bounds have associated failure rates (which we specify), and in the case of an upper 

bound, what we call a failure (exceeding the upper bound) in reality would be 

considered a success!
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Thus, we would be inclined to use a much larger “failure” rate for upper bounds 

and expect to see that degree of “failure” if the system is still performing on target. For 

example, we might set an upper bound failure rate of p=0.4, thereby expecting that 40 

percent of future trades will have returns at least as large as the computed upper bound. 

If the rate drops significantly below 40 percent, we should become suspicious.

It should not be surprising that upper bounds and associated optimistic and 

pessimistic q values can be computed with exactly the same mathematics as for lower 

bounds. For a lower bound we use the mth smallest OOS return, and for an upper bound 

we use the mth largest. Probabilities are similarly reversed. Rather than pedantically stating 

these simple transformations now, we’ll explore them with source code in the next section.

�The CONFTEST Program: Overview
This section describes a “tutorial” program that has no practical use but that 

demonstrates in detail the ideas behind computation of bounds for future returns. In the 

next section we’ll present a practical program that executes a real trading system with 

real market data and computes the quantities discussed in the last few sections. The 

purpose of the current section is to solidify the ideas we’re dealing with and make the 

reader comfortable with what the computed quantities really mean.

The program is invoked as follows:

CONFTEST nsamples fail_rate low_q high_q p_of_q

Let’s break this command down:

•	 nsamples: Number of OOS cases in each trial (at least 20). In real 

life it would make no sense to have fewer than 100 OOS cases and 

preferably at least several hundred. Otherwise, the computed bounds 

have too much random variation to be practical.

•	 fail_rate: Desired rate of failure for computed bounds. This is p in 

prior discussions. For lower bounds this would typically be smallish, 

perhaps 0.01 to 0.1. For upper bounds this would usually be larger, 

perhaps 0.2 to 0.5. The CONFTEST program uses fail_rate for both.

•	 low_q: Worrisome failure rate below desired (< fail_rate). This is the 

optimistic q, resulting from the computed lower bound being too low 

due to random sampling error in the OOS set. The program computes 

the probability that the true quantile is this bad or worse.
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•	 high_q: Worrisome failure rate above desired (> fail_rate). This is the 

pessimistic q, resulting from the computed lower bound being too 

high because of random sampling error in the OOS set. The program 

computes the probability that the true quantile is this bad or worse.

•	 p_of_q: Small probability of failure; to get limits. This is the reverse 

formulation, in which the user specifies a small (typically 0.01 to 0.1) 

probability of error, and the program computes the associated low_q 

and high_q.

The program computes the quantities discussed earlier and then it generates a large 

number of random “OOS return” sets having known quantiles and confirms that the 

computed quantities are correct. Before exploring the code, let’s take some example 

numbers and work through what the program does.

Suppose the user specifies nsamples=200 and fail_rate=0.1. The program computes 

m=(n+1)p to get an unbiased quantile estimate. In this case, we see that the 20th smallest 

OOS return will be used as our lower bound on future returns, and the 20th largest OOS 

return will be the upper bound. There is no reason why the same failure rate has to be 

used for both bounds, and some readers may want to add the option of different rates.  

It was done this way for convenience.

Our expectation for this pair of parameters is that there is (hopefully!) a 10 percent 

chance that a future return will be less than or equal to our computed lower bound. 

Similarly, we expect that 10 percent of future returns will equal or exceed our computed 

upper bound.

Alas, life is not that simple. Our OOS set on which our bounds are based is itself a 

random sample, subject to error. If we were able to wave a magic wand and guarantee 

that our OOS sample is a perfect representation of the population of returns, our goal 

would be met perfectly. In other words, if the sample were perfect, our computed lower 

bound would be the exact fail_rate=0.1 quantile of the distribution of returns; smaller 

returns would occur with probability 0.1. And our computed upper bound would be the 

exact 0.9 quantile of the distribution of returns. But the sample is not perfect, so we need 

to quantify the effect of random sampling error.

One possible error is that our computed lower bound is too low. The result of this 

error is that the unknown true “normal operation” failure rate would be lower than the 

0.1 we want, meaning that we could fail to detect deterioration in its early stages, when 

subpar returns do not drop down all the way to our excessively low lower bound. To 

quantify this, we could specify some hypothetical quantile q<p that would concern us 
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and then find the probability that our computed lower bound is actually at the q quantile 

or worse (lower still).

For example, suppose we specify low_q=q=0.07, which is considerably less than the 

failure rate of 0.1 that we desire but probably not so small that our chance of missing 

early deterioration would be severely impacted. The program finds the probability that 

our computed lower bound is less than or equal to the q=0.07 quantile of the distribution 

of returns. If our computed lower bound happens to be exactly the 0.07 quantile, this 

means our bound would be violated just 7 percent of the time rather than the 10 percent 

of the time we want. By the time future returns violate our lower bound 10 percent 

of the time, performance would have deteriorated moderately, since under normal 

operation we would expect violation just 7 percent of the time. Thus, we would miss an 

early warning, though probably not by much. The program finds the probability that 

our computed lower bound is less than or equal to the q=.07 quantile of the distribution 

of returns, and this turns out to be 0.0692. Equivalently, we can assert 1–0.0692=0.9308 

(about 93 percent confidence) that our computed lower bound is greater than the 0.07 

quantile of returns. That’s decent odds.

The other possible error is that our computed lower bound is too large. The result of 

this error is that the unknown true “normal operation” failure rate would be greater than 

the 0.1 we want, meaning that we would get returns at or below our lower bound more 

often than 10 percent of the time. This might us to conclude that our trading system is 

deteriorating when in fact it’s just fine. We could specify some hypothetical quantile q>p 

that would concern us and then find the probability that our computed lower bound is 

actually greater than the q quantile.

For example, suppose we specify high_q=q=0.12, which is somewhat more than 

the failure rate of 0.1 that we desire but probably not so large that our chance of falsely 

concluding deterioration would be wildly excessive. If our computed lower bound happened 

to be exactly the 0.12 quantile, this means our bound would be violated 12 percent of the 

time rather than the 10 percent of the time we want, not terribly serious. The program 

finds the probability that our computed lower bound is greater than the q=.12 quantile 

of the distribution of returns, and this turns out to be 0.1638. Equivalently, we can assert 

1–0.1638=0.8362 (about 84 percent confidence) that our computed lower bound is less than 

or equal to the 0.12 quantile of returns. That’s not great, but it’s pretty good.

We can also approach these probability statements from the opposite direction, 

specifying the probability of having a bad true quantile and then computing the 

optimistic and pessimistic q values corresponding to this probability. For example,  
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we could specify p_of_q=0.05. The program would then compute an optimistic q of 

0.0673 and a pessimistic q of 0.1363. Recall that we specified p=0.1, meaning that we 

want a failure rate of 10 percent. These figures show that there is a 5 percent chance that 

the true failure rate is 6.73 percent or less, and another 5 percent chance that the true 

failure rate is greater than 13.63 percent.

The same ideas apply to the upper bound, except with directions reversed. In this 

case, failure is a future return equaling or exceeding the upper bound. The optimistic 

situation is the upper bound being too large, and the pessimistic situation is the upper 

bound being too small, exactly the opposite as for the lower bound. All calculations are 

performed the same way, as will be seen when the code is presented.

After these probabilities are all computed from the user-supplied parameters, 

their veracity is tested. This is done by generating a large number of test sets, each 

containing nsamples simulated OOS returns from a distribution whose quantiles are 

known in advance from theory. For each test set, the lower and upper bounds are 

found using m=(n+1)p. Then these computed lower and upper bounds are compared 

to the optimistic and pessimistic q values, both those supplied by the user as low_q and 

high_q, and those based on the user-supplied p_of_q. A count is kept of how many times 

the computed bound is outside the optimistic or pessimistic limits. For each possible 

situation, the count divided by the number of tries gives the observed probability of 

occurrence. This continually updated observed probability is printed to the screen 

along with the theoretically correct value as computed by the program, and the user can 

confirm that operation is correct.

�The CONFTEST Program: Code
We now explore essential code snippets from the complete program CONFTEST.CPP. 

The user parameters are read as follows:

   nsamps = atoi ( argv[1] ) ;

   lower_fail_rate = atof  ( argv[2] ) ;                 // Our desired lower bound's failure rate

   lower_bound_low_q = atof  ( argv[3] ) ;         // Test 1 optimistic q

   lower_bound_high_q = atof  ( argv[4] ) ;       // Test 1 pessimistic q

   p_of_q = atof  ( argv[5] ) ;                             // Test 2: Want this chance of  bad q
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The next few lines are the essential computations discussed in prior sections. We 

use m=(n+1)p to get an unbiased quantile estimate and then subtract one because C++ 

indexing has origin zero. This gives the index of the lower bound in the sorted array 

of OOS returns. If a careless user specifies a tiny fail rate, make sure we do not have a 

negative subscript. The subroutine orderstat_tail() in STATS.CPP computes the probability 

that the mth smallest item in a sample exceeds a specified quantile of the distribution. 

Thus, lower_bound_high_theory is the probability associated with the pessimistic q, and 

lower_bound_low_theory is the probability associated with the optimistic q. The former is 

the probability that our computed lower bound is disturbingly larger than the quantile 

associated with lower_bound_high_q, which is greater than lower_fail_rate, leading to 

excessive failure rate. The latter is the probability that our computed lower bound is 

disturbingly smaller than the quantile associated with lower_bound_low_q, which is lower 

than lower_fail_rate, leading to misleadingly low failure rate.

   lower_bound_index = (int) (lower_fail_rate * (nsamps + 1) ) - 1 ;

   if  (lower_bound_index < 0)

      lower_bound_index = 0 ;

   lower_bound_high_theory =

                  orderstat_tail ( nsamps , lower_bound_high_q , lower_bound_index +1 ) ;

   lower_bound_low_theory =

                  1.0 - orderstat_tail ( nsamps , lower_bound_low_q , lower_bound_index +1 ) ;

   p_of_q_high_q = quantile_conf  ( nsamps , lower_bound_index+1 , p_of_q ) ;

   p_of_q_low_q = quantile_conf  ( nsamps , lower_bound_index+1 , 1.0 - p_of_q ) ;

When we compute lower_bound_low_theory, we must subtract the probability from 

1.0, because orderstat_tail() computes the probability that the lower bound exceeds the 

specified quantile, while we want the probability that the lower bound is less than or 

equal to the specified quantile.

In the previous code, p_of_q_high_q reverses what we did when computing lower_

bound_high_theory. Instead of specifying a pessimistic q and then computing its associated 

probability, we specify the probability (p_of_q) and compute the associated pessimistic 

q. This is done with the subroutine quantile_conf() in STATS.CPP. We compute p_of_q_low_q 

similarly, remembering that because we are looking at probabilities below the lower 

bound instead of shown previously, we must subtract the desired probability from 1.0.
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Once we have these quantities, we compute similar values for the upper bound. 

The lower bound is the mth smallest return, and the upper bound is the mth largest. For 

convenience, this program sets the upper bound failure rate to be equal to that for the 

lower bound, and it reflects the pessimistic and optimistic q accordingly. There is no need 

to have this symmetry, and readers should feel free to make the upper bound parameters 

different from the lower bound parameters if desired. But do note that relationships reverse 

for the upper bound: the pessimistic q is less than the user’s failure rate, while it was greater 

than the failure rate for the lower bound. The same relationship holds for the optimistic q.

   upper_bound_index = nsamps-1-lower_bound_index ;

   upper_fail_rate = lower_fail_rate ;  // Could be different, but c hoose symmetric here

   upper_bound_low_q = 1.0 - lower_bound_high_q ;   // Note reverse symmetry

   upper_bound_high_q = 1.0 - lower_bound_low_q ;   // Which is for convenience

   upper_bound_low_theory = lower_bound_high_theory ;  // but not required

   upper_bound_high_theory = lower_bound_low_theory ;

We are now ready to run the testing part of the program to verify that the calculations 

just done are correct. We begin by zeroing the various failure counters.

   lower_bound_fail_above_count = lower_bound_fail_below_count = 0 ;

   lower_bound_low_q_count = lower_bound_high_q_count = 0 ;

   lower_p_of_q_low_count = lower_p_of_q_high_count = 0 ;

   upper_bound_fail_above_count = upper_bound_fail_below_count = 0 ;

   upper_bound_low_q_count = upper_bound_high_q_count = 0 ;

   upper_p_of_q_low_count = upper_p_of_q_high_count = 0 ;

An endless loop generates sample OOS returns. The easiest distribution to use is just 

a uniform distribution, because this distribution has the special property that its quantile 

function is the identity: the quantile of any probability is that probability. This avoids 

the need to spend a lot of computer time finding quantiles. The scaling factor f avoids a 

division every time we report ongoing results to the user. We sort the data so that we can 

easily find the mth smallest and largest values of the sample.

   for (itry=1 ; ; itry++) {

      f  = 1.0 / itry ;

      for (i=0 ; i<nsamps ; i++)

         x[i] = unifrand () ;

      qsortd ( 0 , nsamps-1 , x ) ;
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We begin with the lower bound tests, and they will be explained one at a time. 

In every test, remember that the quantity on the right of the inequality is not only a 

probability, but because the distribution is uniform, it is also the quantile associated 

with that probability. Thus, even though on first glance it looks like we are comparing 

the lower bound to probabilities, which makes no sense, we are actually comparing the 

lower bound to quantiles.

These first two tests are not terribly interesting.

      lower_bound = x[lower_bound_index] ;  // Our lower bound

      if  (lower_bound > lower_fail_rate)

         ++lower_bound_fail_above_count ;

      if  (lower_bound < lower_fail_rate)

         ++lower_bound_fail_below_count ;

The two tests just shown compare the computed lower bound to the theoretically 

correct quantile for the user’s desired failure rate, which is the correct lower bound. 

Because our computed lower bound is an unbiased estimate of the correct (unknown 

in practice but known in this test) lower bound, we would expect the computed lower 

bound to hover close to the theoretically correct lower bound, overshooting and 

undershooting roughly equally. Thus, we would expect each of these two inequalities to 

be true very nearly half the time. These are not particularly useful tests, but they do serve 

as an easy sanity check.

The next two tests let us verify that the probabilities associated with the optimistic 

and pessimistic q (lower_bound_low_theory and lower_bound_high_theory) are correct.

      if  (lower_bound <= lower_bound_low_q)  // Is our lower bound disturbingly low?

         ++lower_bound_low_q_count ;

      if  (lower_bound >= lower_bound_high_q) // Is our lower bound disturbingly high?

         ++lower_bound_high_q_count ;

Those tests were done with the user-supplied lower_bound_low_q and lower_bound_

high_q. Once again, remember that these quantities are probabilities, but because 

our simulated OOS returns follow a uniform distribution, they are also the quantiles 

associated with these probabilities. If all is correct, these two tests should be true with 

probability lower_bound_low_theory and lower_bound_high_theory, respectively.
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Now we perform exactly the same tests, except that instead of comparing the lower 

bound to the user-supplied optimistic and pessimistic q quantiles, we compare the lower 

bound to the values computed to have user-specified probability p_of_q. We expect each 

of these two tests to be true with probability p_of_q.

      if  (lower_bound <= p_of_q_low_q)  // Ditto, but lim its gotten via p of  q

         ++lower_p_of_q_low_count ;

      if  (lower_bound >= p_of_q_high_q) // Rather than us er-specified

         ++lower_p_of_q_high_count ;

The next block of tests repeats the previous ones, but this time with regard to the 

computed upper bound. As with the lower-bound tests, in every case the quantity on the 

right side of the inequality is both a probability and its associated quantile, because our 

test distribution is uniform. Probability directions reverse at the upper bound, because a 

bound being outside a threshold at the low end means that it is less than the threshold, 

while a bound being outside a threshold at the high end means that it is above the 

threshold. Thus, we must subtract all probabilities from 1.0 to get the probability in the 

opposite direction. This was done earlier for upper_bound_low_q and upper_bound_high_q. It 

was not done for the other thresholds, so it must be done here.

      upper_bound = x[upper_bound_index] ;     // For upper bound test

      if  (upper_bound > 1.0-upper_fail_rate)       // This should fail with about 0.5 prob

         ++upper_bound_fail_above_count ;        // Because upper_bound is unbiased

      if  (upper_bound < 1.0-upper_fail_rate)       // Ditto for this

         ++upper_bound_fail_below_count ;

      if  (upper_bound <= upper_bound_low_q)  // Is our upper bound disturbingly low?

         ++upper_bound_low_q_count ;

      if  (upper_bound >= upper_bound_high_q) // Is our upper bound disturbingly high?

         ++upper_bound_high_q_count ;

      if  (upper_bound <= 1.0-p_of_q_high_q)

         ++upper_p_of_q_low_count ;

      if  (upper_bound >= 1.0-p_of_q_low_q)

         ++upper_p_of_q_high_count ;
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We periodically print results so far. Those print statements are long and omitted 

here; see the file CONFTEST.CPP if you want. Sample output from the program is shown 

on the next page.

Using the parameters in the example given on page 249, we first see these 

parameters echoed and the essential quantities as computed. This is shown in 

Figure 6-5. The user specified 200 samples, a failure rate of 0.1, optimistic q of 0.07, and 

pessimistic q of 0.12. The probability associated with the former was computed to be 

0.0692, and that for the latter 0.1638. The user also specified a “probability of q” of 0.05, 

which gave an optimistic q of 0.0673 and a pessimistic q of 0.1363.

Figure 6-5.  CONFTEST parameters and essential computations

Figure 6-6.  CONFTEST results

After running several million trials, we get the results shown in Figure 6-6. We expect 

the “fail above” and “fail below” rates to be about 0.5, and these came out pretty close 

to that. Why the slight bias? This bias would rapidly vanish for very large samples, but 

with just 200 cases, even though we use the “unbiased” formula the act of truncation in 

computing m introduces slight bias. There are interpolation methods that largely correct 

for this bias by looking at the next further extreme case and moving in that direction 

per the truncation. But these methods are not worth bothering with in this application, 

especially since the slight bias is in the conservative direction.

Note how closely the obtained probabilities match the computed theoretical 

probabilities. We see, for example, 0.0691 obtained versus 0.0692 expected. And for those 

tests in which p_of_q=0.05, we obtain rates of 0.499 to 0.501.

This CONFTEST program was supplied and explored mainly to reinforce the 

concepts involved in bounding future returns. However, the reader can use it to explore 

the impact of pessimistic and optimistic q values for various sample sizes and failure 

rates.
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�The BND_RET Program
The file BND_RET.CPP contains source code for a program that demonstrates a practical 

application of the return-bounding methods described in prior sections. It reads a 

market file in the same format as the BOUND_MEAN program (page 232) and executes 

the primitive moving-average-crossover system used in the TRN_BIAS program  

(page 123). Please see those references if needed. Here we focus strictly on computation 

of bounds for future returns.

We begin with snippets of code and explanations. The mathematics is exactly the 

same as in the CONFTEST program already shown, but I chose to label some variables 

differently for the sake of approaching issues from a different direction. Variables with 

labels containing high_q and low_q have reverse relationships at the low and high 

bounds. For the sake of readers who may be confused by this, I renamed variables using 

the phrases opt_q and pes_q for the optimistic and pessimistic values, respectively. All 

computation and math are exactly the same; only the names have changed. Hopefully, 

by looking at the algorithms from both perspectives, the reader will better understand 

the process.

Normally, the user can specify the key test parameters shown next. But for the sake of 

the demonstration at the end of this section, here are the values that will be used in the 

demonstration, temporarily hard-coded into the program:

   max_lookback = 100 ;        // Max lookback for long-term moving average

   n_train = 1000 ;                  // Number of  training cases for optimizing trading system

   n_test = 63 ;                       // Group bar returns to produce quarterly returns

   lower_fail_rate = 0.1 ;        // Desired failure rate for lower bound (a typical value)

   upper_fail_rate = 0.4 ;        // Desired failure rate for upper bound (a ty pical value)

   p_of_q = 0.05 ;                   // Desired probability of  bad bound limits

The first three parameters are described in the TrnBias program writeup. The last 

three parameters are related to bounding future returns. The number 63 arises because 

there are typically 63 trading days in a quarter, meaning that this study will involve 

bounding quarterly returns.

The walkforward code is straightforward. Here it is, and a brief description follows:

   train_start = 0 ;  // Starting index of  training set

   n_returns = 0 ;  // Will count returns (after grouping)

   total = 0.0 ;        // Sums returns for user's edification
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   for (;;) {

      IS = opt_params ( n_train , max_lookback , prices + train_start ,

                                    &short_lookback , &long_lookback ) ;

      IS *= 25200 ;  // Approximately annualize

      n = n_test ;     // Test this many cases

      if  (n > nprices - train_start - n_train) // Don't go past the end of  history

         n = nprices - train_start - n_train ;

      OOS = test_system ( n , prices + train_start + n_train - long_lookback ,

                                         short_lookback , long_lookback ) ;

      OOS *= 25200 ;  // Approximately annualize

      returns[n_returns++] = OOS ;

      total += OOS ;

      // Advance fold window; quit if  done

      train_start += n ;

      if  (train_start + n_train >= nprices)

         break ;

      }

   printf  ( "\n\nAll returns are approximately annualized by multiplying by 25200" ) ;

   printf  ( "\nmean OOS = %.3lf  with %d returns", total / n_returns, n_returns ) ;

At all times, train_start is the index of the first case in the training set for the current 

fold. Returns are computed in groups of 63 bars each, and n_returns counts how many 

such grouped returns are created during the walkforward. The total return is also 

cumulated, purely to report to the user.

The first step in the walkforward loop is to call opt_params() to find the optimal short-

term and long-term moving-average lookbacks. Its in-sample performance (mean return 

per bar) is multiplied by 25200 to roughly annualize day-bar returns.

Normally, the OOS test period will be whatever is specified by the user, which is 63 in 

this demonstration. However, the last fold probably will not happen to have exactly this 

many test cases, so we shrink it to however many cases remain.

The address given to test_system() looks cryptic and requires a bit of thought to 

understand. The first OOS test case return is at train_start + n_train, which is the price 
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immediately following the training set. The trade decision for the movement to this first 

OOS price must be based on the most recent prices prior to this OOS price. We will be 

looking at long_lookback historical prices to make the decision, so we must subtract this 

quantity from the OOS position to get the pointer to the first case of those on which the 

decision is based. If this is not clear, draw a little timeline of prices, marking the locations 

of the training and test sets, and the long-term moving-average lookback. This will make 

it clear. The test_system() subroutine returns the mean return per bar across the n test 

cases. This quantity is annualized, saved in the returns array, and cumulated.

We compute the lower and upper bounds from the sorted array of OOS returns. 

These are the mth smallest and mth largest, respectively.

   qsortd ( 0 , n_returns-1 , returns ) ;

   lower_bound_m = (int) (lower_fail_rate * (n_returns + 1) ) ;

   if  (lower_bound_m < 1)

      lower_bound_m = 1 ;

   lower_bound = returns[lower_bound_m-1] ;

   upper_bound_m = (int) (upper_fail_rate * (n_returns + 1) ) ;

   if  (upper_bound_m < 1)

      upper_bound_m = 1 ;

   upper_bound = returns[n_returns-upper_bound_m] ;

We could let the user supply optimistic and pessimistic q values, but this program 

arbitrarily decides to place them 10 percent below and above the user-specified failure 

rates. Feel free to change these offsets to whatever you want.

   lower_bound_opt_q = 0.9 * lower_fail_rate ;  // Arbitrary choice; could be user input

   lower_bound_pes_q = 1.1 * lower_fail_rate ;

   upper_bound_opt_q = 0.9 * upper_fail_rate ;

   upper_bound_pes_q = 1.1 * upper_fail_rate ;

Now we compute the quantities that let us assess the accuracy of our computed 

bounds using these precomputed q values.
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   lower_bound_opt_prob = 1.0 - orderstat_tail ( n_returns , lower_bound_opt_q ,

                                                                              lower_bound_m ) ;

   lower_bound_pes_prob = orderstat_tail ( n_returns , lower_bound_pes_q ,

                                                                      lower_bound_m ) ;

   upper_bound_opt_prob = 1.0 - orders tat_tail ( n_returns , upper_bound_opt_q ,

                                                                               upper_bound_m ) ;

   upper_bound_pes_prob = orderstat_tail ( n_returns , upper_bound_pes_q ,

                                                                      upper_bound_m ) ;

Finally, we use the “inverse” procedure: we use the user-specified probability p_of_q 

to find the optimistic and pessimistic q values.

   lower_bound_p_of_q_opt_q = quantile_c onf  ( n_returns , lower_bound_m ,

                                                                              1.0 - p_of_q ) ;

   lower_bound_p_of_q_pes_q = quantile_conf  ( n_returns , lower_bound_m , p_of_q ) ;

   upper_bound_p_of_q_opt_q = quantile_c onf  ( n_returns , upper_bound_m ,

                                                                               1.0 - p_of_q ) ;

   upper_bound_p_of_q_pes_q = quantile_conf  ( n_returns , upper_bound_m , p_of_q ) ;

Figure 6-7 shows sample output from the program when applied to decades of the 

OEX index, using the parameters shown on page 257. I’ve tried to be quite verbose so as 

to make the meaning of all numbers as clear as possible. At the same time, I’ve avoided 

the needless differentiation between “less than or equal to” versus “less than” and so 

forth. I took care to be specific in the mathematical presentation, just for correctness. 

But in practice we can treat the returns as essentially continuous, so the distinction is 

pointless and just adds complexity.
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Note that the annualized return is 1.021 percent; this is a mighty poor trading 

system! We would expect 10 percent of future quarterly returns to be a worse loss than 

38.942 percent annualized, so if we get a couple such bad quarters, we should be highly 

suspicious. We would expect 40 percent of future quarterly returns to be at least 9.043 

percent annualized, so if we fail to be up there regularly, we should be suspicious. The 

remaining values in the output are self-explanatory and indicate moderate but not 

excellent adherence to our specified 10 percent and 40 percent bounds. This is because 

we have only 124 returns, dangerously few.

Figure 6-7.  BND_RET output for moving-average crossover on OEX
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�Bounding Drawdown
Let’s review the types of performance bounding we’ve seen so far, all of which are based 

on analyzing out-of-sample returns:

•	 If our OOS returns do not contain any extreme values and have a 

reasonable bell-curve distribution shape, we can bound the mean of 

future returns by using the Student’s-t distribution.

•	 If we do not want to make the assumptions required for the 

Student’s-t distribution, we can use a bootstrap, especially the BCa 

method, to bound the mean of future returns. This is probably the 

single most important bounding technique in our toolbox.

•	 We can use a bootstrap to bound the log of the profit factor of the 

distribution of future returns.

•	 With considerable caution, we can use a bootstrap to bound the 

Sharpe ratio of the distribution of future returns.

•	 With no restrictive assumptions on the nature of the distribution 

of returns, we can approximately bound individual future returns 

by sorting historical returns and looking at mth smallest or largest 

values. This is especially useful if the returns we bound are grouped 

returns, such as monthly or quarterly results, because we can 

then use these bounds to track ongoing performance and detect 

deterioration. However, unlike prior bounds in this list, these are not 

reliable single numbers. They are subject to random variation that we 

must quantify in a way that reveals how much we can trust them.

Of course, one performance measure that is of great interest to market traders is the 

drawdown that they might encounter in the future. We could, in theory at least, use a 

bootstrap to bound the mean drawdown over a specified time period, that value around 

which randomly observed future drawdowns will be centered. This is easy to do: just 

take numerous bootstrap samples from the set of OOS returns and compute the mean 

drawdown of each sample using some random sampling procedure. The percentile 

method (or its more advanced version, the BCa method) provides confidence bounds 

for the average drawdown expected in the future. For example, suppose we find that in 

10 percent of the bootstrap samples the mean drawdown is 34 percent or more. Then we 
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can assert that there is a 90 percent chance that the average future drawdown is less than 

34 percent.

But this figure is really of very little value. Unless the computed value at a reasonable 

probability is extremely large or extremely small, we don’t much care what the average 

drawdown is. What we really want is a probability-based bound on what actual 

drawdown we will experience. For example, if we were able to compute that there is a  

35 percent chance that we will experience a drawdown in excess of 70 percent next year, 

we would find this information most useful!

The bad news is that we can’t do this, at least not with the degree of certainty we 

would like. We run into the same situation that plagued us in the prior section, where 

we computed probability-based bounds on individual future returns. We found that the 

bounds themselves were subject to random error, and so we had to qualify our assertions 

with additional probability statements. That’s what we have to do with bounds on future 

drawdowns. And it’s not fast or easy. Or particularly accurate, for that matter. But this 

would be such a useful figure to have in hand that we will pursue the subject, being sure 

to keep our fingers firmly crossed as we compute.

�Intuition Gone Wrong
Before jumping into the relatively complex subject of correctly bounding future 

drawdowns, we need to be clear on the difference between bounding the mean 

drawdown and bounding actual drawdowns. The former is the average drawdown 

that we can expect in the future. The latter is an individual drawdown that we actually 

experience. The latter will tend to center around the former, but individual drawdowns 

can easily be much worse than the average (or much less worse, of course). For obvious 

reasons, we care mainly about how bad our next drawdown might be, as opposed to how 

bad drawdowns will be on average.

This issue presents an opportunity to show an example of how easily intuition can 

lead us astray. Consider the following flawed reasoning:

	 1)	 Our returns are out-of-sample and hence unbiased.

	 2)	 Therefore, our returns are a fair representation of the returns that 

we can expect in the future.

	 3)	 Drawdown is dependent on order; a long string of contiguous 

losses will produce a huge drawdown, while alternating wins and 

losses will produce only tiny drawdowns.
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	 4)	 Future returns will be similar to those in our current OOS 

sample. Only two differences will occur. First, there will be some 

randomness in the appearance of wins and losses, with the 

possibility that we may be blessed with a few more wins than in 

our OOS sample, or cursed with a few more losses. Second, the 

order in which wins and losses appear will be different. These are 

the two factors that will impact future drawdown.

	 5)	 We can use a computer to simulate these two random effects. 

We take a random sample with replacement from our returns 

and evaluate its drawdown. Then do it again and again, several 

thousand times. The distribution of drawdowns we obtain is 

representative of the distribution of possible future drawdowns. 

For example, suppose we find that 5 percent of these bootstrap 

trials had a drawdown of 60 percent or more. Then we assert that 

in the future we have a 5 percent chance of suffering a drawdown 

of 60 percent or more.

The fatal flaw in this otherwise solid reasoning lies in step 2. Please review the 

section “Interlude: What Does Unbiased Really Mean?” on page 125. The problem is that 

the term unbiased in the statistical sense does not mean unbiased in the practical sense 

that most people understand. In fact, our OOS sample almost certainly is biased. It is 

unduly pessimistic. Or optimistic. We don’t know, but whichever is the case, it is not a 

fair representation of future returns. We call it unbiased only because undue optimism 

and pessimism are balanced, with neither favored.

The computer simulation in step 5 does not take into account the fact that our OOS 

returns are themselves a random sample and hence optimistic or pessimistic, perhaps 

greatly so. This is a huge source of variation not taken into account by this algorithm. As 

a result, extreme drawdowns are far more likely than the computer simulation implies. 

When we discuss the DRAWDOWN program on page 267, we’ll see that for catastrophic 

drawdowns, this algorithm can underestimate their probability by more than a factor 

of 10. Even for modest drawdowns, the probability can be low by a factor of 2. This is an 

error of the worst sort, because it is anti-conservative. Overestimating the probability 

of a severe drawdown would be troubling, but underestimating this probability can be 

disastrous.
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�Bootstrapping Drawdown Bounds
First the bad news: computing probabilistic bounds for future drawdowns is very slow, 

typically involving on the order of a hundred million iterations of a slow computation. 

A single such computation for an established trading system can usually be done in a 

few seconds to a minute at most, a manageable time. But if you want to use drawdown 

bounds inside a training algorithm for optimizing parameters of a trading system, you 

could easily be looking at hours or even days of computer time. This can be a deal-killer. 

Our one out is that the tremendously faster algorithm shown on page 264 in step 5 can be 

used in a training algorithm provided that two essential and often reasonable conditions 

are met. This will be discussed in more detail in conjunction with the DRAWDOWN 

program presented on page 267.

And now yet another bit of bad news: the results of these computations may not be 

all that accurate. Like raw profit factors and Sharpe ratios, drawdown-based statistics 

aren’t terribly bootstrap-friendly. Still, we can usually get results that are a lot better 

than nothing. The algorithm about to be shown deserves a place in every market trader’s 

toolbox.

Let’s briefly review the three factors that determine the relationship between 

computations done with an observed set of OOS returns and future drawdowns. 

Understand that we have an unknown distribution of returns from which our historical 

OOS data and future trades are drawn. These are the three factors that concern us:

	 1)	 The set of OOS returns on which our computations are based is a 

random sample from the population of possible returns.

	 2)	 The drawdown in a future time period depends on the size and 

relative quantity of wins and losses drawn from that population.

	 3)	 This future drawdown depends on the order in which wins and 

losses are appear.

The algorithm shown on page 264 in step 5 takes into account Factors 2 and 3 but 

ignores Factor 1. We must take care of that.

Conceptually, the solution is simple: we just embed the page 264 step 5 algorithm 

inside an outer bootstrap that addresses Factor 1. The outer algorithm would use the 

percentile bootstrap (or perhaps the BCa method, which is probably not worth the extra 

effort) to compute confidence bounds for the drawdown bounds. Here is the complete 
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double-bootstrap algorithm, stated here for computation of the drawdown bound at 

a user-specified large (perhaps 0.9–0.99) drawdown confidence DD_conf, and a user-

specified largish (perhaps 0.6–.9) confidence in the drawdown bound, Bound_conf.

For ‘outer’ replications

         Draw an ‘outer’ bootstrap sample from the OOS returns

         For ‘inner’ replications

              Draw an ‘inner’ bootstrap sample from the outer bootstrap sample

              DD_inner [ inner ] = drawdown of  this inner sample

         Sort DD_inner ascending

         m = DD_conf  * inner

         DD_outer [ outer ] = DD_inner [ m ]

Sort DD_outer ascending

m = Bound_conf  * outer

Bound = DD_outer [ m ]

We should be clear on the meaning of the two user-specified confidence levels, 

DD_conf and Bound_conf. The former is the probability that our future drawdown will not 

exceed the computed value. For example, we might want to compute the drawdown 

that we can be DD_conf confident will never be exceeded. We might, for instance, specify 

DD_conf=0.9 and receive from the algorithm a drawdown of, say, 65 percent. Then we can 

be 90 percent certain that individual future drawdowns will not exceed 65 percent.

Unfortunately, it’s not that simple. The computed bound, such as the 65 percent just 

cited, is itself a random quantity because our OOS sample is itself a random sample. 

So we need to compute a probability-based bound on the drawdown bound. In this 

example, we might specify Bound_conf=0.7, in which case the algorithm will compute a 

larger bound that has a 70 percent chance of equaling or exceeding the actual  

DD_conf=0.9 bound. In this example, we might find that the final bound is 69 percent, 

rather than the less conservative 65 percent. In other words, for this example, there is 

a 70 percent chance that the actual (but unknown) drawdown bound in which we can 

have 90 percent confidence does not exceed 69 percent.

That might take a while to sink in. It’s a bound on a bound. There is some true but 

unknown drawdown bound for which there is probability DD_conf of being the upper 

limit for future drawdowns. Stated more rigorously, and perhaps more clearly, there is 

user-specified probability DD_conf that future drawdowns will not exceed this unknown 

upper bound. If we could be absolutely certain that our OOS sample exactly replicates 
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the distribution of possible future returns, we could use the page 264 step 5 algorithm to 

compute this bound and be justifiably happy.

Unfortunately, our OOS set does not replicate the distribution of possible returns. 

Making things worse is the fact that random sampling errors have an asymmetric effect 

on bound computation; the effect on drawdown bounds is not balanced for optimistic 

and pessimistic OOS samples, so we cannot just say that everything will balance out 

in the end. Optimistic OOS samples work against us far more strongly than pessimistic 

samples work for us.

For this reason, we have to compute a drawdown upper bound that is larger than 

that computed by the page 264 step 5 algorithm. We specify a probability that this larger 

bound is at least as large as the true but unknown upper bound that corresponds to the 

specified DD_conf. We usually don’t have to go overboard on this confidence, unless we 

are looking at catastrophic values. But suppose we do want to go out into the region of 

ruin, perhaps setting DD_conf=0.999. The associated drawdown is an important number, 

because if we see that the drawdown at this very high confidence level is, say, 12 percent 

we will be ecstatic, while if we see that it is 98 percent, we should rightly tremble. After 

all, 99.9 percent is a high probability, near certainty, but definitely not certain. Failure 

can still happen. Since this is such a crucial figure, we should be extra-confident in its 

computed value. Thus, we would be inclined to set Bound_conf=0.9 or maybe even more 

when DD_conf is huge. Conversely, if we are just looking for routine drawdowns, perhaps 

setting DD_conf=0.9, then most people would be comfortable setting Bound_conf=0.7 or 

so. This gives us a 70 percent chance that our computed bound equals or exceeds the 

unknown true bound, which will be exceeded just 10 percent of the time.

�The DRAWDOWN Program
The file DRAWDOWN.CPP contains source code for a program that lets the user 

experiment with computation of drawdown bounds for various hypothetical trading 

systems. It demonstrates how to implement the drawdown bounding algorithm shown 

on page 266 in a way that lets it compute several bounds simultaneously. It also shows 

how badly the page 264 step 5 algorithm underestimates the probability of catastrophic 

drawdowns under many common conditions, as well as demonstrating the conditions 

under which this algorithm, which is orders of magnitude faster than the “correct” 

algorithm, is reasonably accurate.
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The program is invoked as follows:

DRAWDOWN Nchanges Ntrades WinProb BoundConf  BootstrapReps QuantileReps TestReps

Let’s break down this command:

•	 Nchanges: Number of price changes

•	 Ntrades: Number of trades, less than or equal to Nchanges

•	 WinProb: Probability of winning, typically near 0.5

•	 BoundConf: Confidence (typically .5–.999) in correct DD bound

•	 BootstrapReps: Number of bootstrap reps

•	 QuantileReps: Number of bootstrap reps for finding drawdown 

quantiles

•	 TestReps: Number of trial reps for this study

The DRAWDOWN program generates Nchanges price changes, which represent the 

(log) OOS returns on which bound computation will be based. This may encompass a 

time period longer than the time period over which you want to consider drawdowns. 

For example, you might have 10 years of OOS data but want to consider drawdowns over 

a single year, or perhaps even just a quarter. So, you specify an equal or lesser quantity, 

Ntrades, which spans the desired time period.

The price changes follow a normal distribution, and they will be positive with 

probability WinProb, which we would normally set to 0.5 or some value slightly above 0.5 

if we want to stay in the realm of realistic systems.

The user cannot set DD_conf, but four useful value are hard-coded into the program 

and computed simultaneously. These are 0.999 for catastrophic drawdowns, 0.99 for 

serious drawdowns, 0.95 for fairly bad drawdowns, and 0.9 for drawdowns that could be 

expected occasionally. Multiple DD_conf values can be computed in essentially the same 

amount of time as a single value, so it is most efficient to compute them together in a 

single run.

The user specifies Bound_conf, and this value is used for the two largest (0.9 and 

0.95) values of DD_conf. However, 1.0 – (1.0 – Bound_conf) / 2.0 is used for the two smallest 

values. This increase above the user-specified value is in deference to the fact that for 

smaller values of DD_conf we typically would want increased confidence in the computed 

bounds. This is where the most serious drawdowns occur, so we’d better be sure of 

ourselves.
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BootstrapReps is the number of replications used in the page 264 step 5 algorithm, and 

it is also the number of outer replications used in the “correct” algorithm on page 266.

QuantileReps is the number of inner replications used in the “correct” algorithm on 

page 266.

These two algorithms are used to compute upper bounds for future drawdowns. In 

case any readers are interested, a lower bound for the mean return is also computed but 

then incorrectly used as if it were a bound for future returns. This provides additional 

demonstration of the difference between bounding future means and future values. 

I won’t discuss this test further, but some readers may be interested in studying that 

aspect of the source code.

After we have eight drawdown bounds computed (four values of DD_conf for the 

incorrect and correct methods), a large number of trade returns are generated from 

the same distribution as was used for generating the OOS data on which the bound 

computation depended. The program counts how often each of the eight bounds are 

violated. If the bound computation is correct, the violation rates should equal one minus 

the corresponding values of DD_conf. If the violation rate exceeds the corresponding 

DD_conf, we have the extremely serious error of the algorithm underestimating the 

probability of a drawdown exceeding the bound. If the violation rate is less than DD_conf, 

we have the much less serious error of the algorithm overestimating the bound. This is 

still a problem, because we are being too conservative and perhaps rejecting a trading 

system unfairly. But unfairly rejecting a trading system is a lot better than putting a 

system to work trading real money and then discovering too late that its true probability 

of serious drawdown is much worse than we thought.

This whole process of generating hypothetical OOS returns, computing drawdown 

bounds, and seeing how these bounds actually perform is repeated TestReps times and 

the results averaged. These average performances, along with the ratio of the attained 

failure probability to the correct failure probability, are printed to the screen and to a file 

called DRAWDOWN.LOG.

Before examining key code fragments that illustrate this algorithm, let’s devote one 

paragraph to more mathematically inclined readers who have bootstrap experience 

and who may be questioning the rationale behind the algorithm on page 266. A central 

idea is that although the inner loop has been called a bootstrap, it really is not. It just 

looks like one and calling it a bootstrap is not a huge crime if one is not being too strict. 

However, there is really only one bootstrap at work here, the outer loop. This bootstrap 

is using the percentile method to estimate confidence intervals for a particular statistic. 
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This statistic is the user’s desired quantile, that corresponding to DD_conf. For every outer-

loop bootstrap sample, this statistic is estimated by repeated sampling in the inner loop. 

This, of course, makes computation of this statistic independent of the order in which 

the outer-loop sample is generated; it is dependent only on the empirical distribution. 

So, the bottom line is that the inner loop is simply computing an estimate of the sample 

statistic derived from the empirical distribution of the outer-loop bootstrap sample. If 

you do not understand this paragraph, don’t worry; you don’t need to do so.

First, we examine the code that generates our bootstrap sample data for both the 

incorrect and correct drawdown bounding algorithms. All calling parameters are self-

explanatory except make_changes. This would be set to True the first time it is called in a 

replication loop, which causes a set of prices changes, representing the log of our OOS 

returns, to be generated and saved. For remaining replications, make_changes is false, 

which retains the originally generated sample. Regardless, a random sample is collected 

from the saved changes.

void get_trades (

   int n_changes ,          // Number of  price changes (available history)

   int n_trades ,              // Number of  these changes defining drawdown period

   double win_prob ,       // Probability 0-1 of  a winning trade

   int make_changes ,    // Draw a new random sample from which bootstraps are drawn?

   double *changes ,      // Work area for storing n_changes changes

   double *trades            // n_trades are returned here

   )

{

   int i, k, itrade ;

   if  (make_changes) {   // Generate the sample?

      for (i=0 ; i<n_changes ; i++) {

         changes[i] = normal () ;

         if  (unifrand() < win_prob)

            changes[i] = fabs ( changes[i] ) ;

         else

            changes[i] = -fabs ( changes[i] ) ;

         }

      }
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   // Get the trades from a standard bootstrap

   for (itrade=0 ; itrade<n_trades ; itrade++) {

      k = (int) (unifrand() * n_changes) ;

      if  (k >= n_changes)

         k = n_changes - 1 ;

      trades[itrade] = changes[k] ;

      }

}

Just to be clear on how drawdown is computed, here is the code for that routine. 

Some methods report drawdown as a percent of maximum equity. However, this 

requires specification of an initial equity that has a significant effect on reported values. 

A frequently better way is to compute drawdown as an absolute number, which removes 

the ambiguity of initial equity and also makes the impact of drawdown uniform across 

the time interval. This is ideal for trading scenarios in which negative equity is possible, 

such as leveraged futures trading. Also, if the trades are the log of equity changes, this 

method gives results that are monotonically related to percent drawdown, with the 

translation easy to implement, as is shown on page 280.

double drawdown (

   int n ,            // Number of  trades

   double *trades     // They are here

   )

{

   int icase ;

   double cumulative, max_price, loss, dd ;

   cumulative = max_price = trades[0] ;

   dd = 0.0 ;

   for (icase=1 ; icase<n ; icase++) {

      cumulative += trades[icase] ;

      if  (cumulative > max_price)

         max_price = cumulative ;
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      else {

         loss = max_price - cumulative ;

         if  (loss > dd)

             dd = loss ;

         }

      } // For all cases

   return dd ;

}

This routine cumulates equity as a running sum of returns and keeps track of the 

maximum equity. As each return is processed, the current equity is compared to the 

maximum, and the largest difference to date is the drawdown.

The correct bounding algorithm requires that, for each bootstrap sample, we do 

a large number of samples to estimate the desired DD_conf quantile. But the sampling 

and sorting in this process is extremely time-consuming, so this routine computes four 

different quantiles simultaneously at essentially no additional expense.

void drawdown_quantiles (

   int n_changes ,                // Number of  price changes (available history)

   int n_trades ,                    // Number of  trades

   double *b_changes ,        // n_changes changes bootstrap sample supplied here

   int nboot ,                         // Number of  bootstraps used to compute quantiles

   double *bootsample ,       // Work area n_trades long

   double *work ,                  // Work area nboot long

   double *q001 ,                  // Computed quantiles

   double *q01 ,

   double *q05 ,

   double *q10

   )

{

   int i, k, iboot ;

   for (iboot=0 ; iboot<nboot ; iboot++) {

      for (i=0 ; i<n_trades ; i++) {

         k = (int) (unifrand() * n_changes) ;
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         if  (k >= n_changes)

            k = n_changes - 1 ;

         bootsample[i] = b_changes[k] ;

         }

      work[iboot] = drawdown ( n_trades , bootsample ) ;

     }

   qsortd ( 0 , nboot-1 , work ) ;

   k = (int) (0.999 * (nboot+1) ) - 1 ;

   if  (k < 0)

      k = 0 ;

   *q001 = work[k] ;

   k = (int) (0.99 * (nboot+1) ) - 1 ;

   if  (k < 0)

      k = 0 ;

   *q01 = work[k] ;

   k = (int) (0.95 * (nboot+1) ) - 1 ;

   if  (k < 0)

      k = 0 ;

   *q05 = work[k] ;

   k = (int) (0.90 * (nboot+1) ) - 1 ;

   if  (k < 0)

      k = 0 ;

   *q10 = work[k] ;

}

This code does bootstrap sampling (although as discussed earlier, it’s not really a 

bootstrap) a great many times. These samples are taken from the outer-loop bootstrap 

sample, making all n_changes of them available. In practice, because the statistics 

computed by this routine are estimates subject to random error, it is important that nboot 

here be very large. I typically use 10,000, and larger values would not be unreasonable.

For each of these samples it computes and saves the drawdown for the specified  

n_trades size interval. After all sampling is complete, it sorts the saved drawdowns and 

uses the unbiased quantile formula to estimate the four desired quantiles.
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Note that the if(k<0) checks are not needed in this because they will always be false. 

But this check is a good habit to get into, because in general it can happen that k will 

equal –1.

For both tests, we have a trivial routine to find a quantile. It assumes that the data is 

sorted ascending.

static double find_quantile ( int n , double *data , double frac )

{

   int k ;

   k = (int) (frac * (n+1) ) - 1 ;

   if  (k < 0)

      k = 0 ;

   return data[k] ;

}

The page 264 step 5 algorithm, which I call the “incorrect” method here (though its 

results can be acceptable under some circumstances) is as follows:

for (iboot=0 ; iboot<bootstrap_reps ; iboot++) {

   make_changes = (iboot == 0)  ?  1 : 0 ; // Generate sample on first pass only

   get_trades ( n_changes , n_trades , win_prob , make_changes , changes , trades ) ;

   incorrect_drawdowns[iboot] = drawdown ( n_trades , trades ) ;

   } // End of  incorrect method bootstrap loop

qsortd ( 0 , bootstrap_reps-1 , incorrect_drawdowns ) ;

incorrect_dd_001 = find_quantile ( bootstrap_reps , incorrect_drawdowns , 0.999 ) ;

incorrect_dd_01 =  find_quantile ( bootstrap_reps , incorrect_drawdowns , 0.99 ) ;

incorrect_dd_05 =  find_quantile ( bootstrap_reps , incorrect_drawdowns , 0.95 ) ;

incorrect_dd_10 =  find_quantile ( bootstrap_reps , incorrect_drawdowns , 0.9 ) ;

The outer loop draws many bootstrap samples. The first time, get_trades() is called 

with make_changes true so that a set of simulated OOS returns is generated prior to 

bootstrap sampling. For subsequent passes through this loop, sampling is done from the 

original collection. For each sample, the drawdown is computed and saved.

After all replications are complete, the drawdowns are sorted into ascending order. 

The find_quantile() routine is called for each desired quantile.
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The correct routine is a little more complex. We have to distinguish between the 

bootstrap sample size (n_changes) and the size of the sample (n_trades) for the test 

statistic (a specified quantile). The actual bootstrap (the outer loop) is sampling from the 

complete set of available OOS returns, because this is our presumed population. But our 

test statistic is a quantile of the distribution of drawdowns experienced during a specified 

time period, which may be shorter than the length encompassed by the entire OOS set.

for (iboot=0 ; iboot<bootstrap_reps ; iboot++) {

   make_changes = (iboot == 0)  ?  1 : 0 ; // Generate sample on first pass only

   get_trades ( n_changes , n_changes , win_prob , make_changes , changes , trades ) ;

   drawdown_quantiles (

               n_changes , n_trades , trades , quantile_reps , bootsample , work ,

               &correct_q001[iboot] , &correct_q01[iboot] ,

               &correct_q05[iboot],&correct_q10[iboot] ) ;

   } // End of  incorrect method bootstrap loop

qsortd ( 0 , bootstrap_reps-1 , correct_q001 ) ;

qsortd ( 0 , bootstrap_reps-1 , correct_q01 ) ;

qsortd ( 0 , bootstrap_reps-1 , correct_q05 ) ;

qsortd ( 0 , bootstrap_reps-1 , correct_q10 ) ;

correct_q001_bound = find_quantile (

                                      bootstrap_reps , correct_q001 , 1.0 - (1.0 - bound_conf) / 2.0 ) ;

correct_q01_bound = find_quantile (

                                    bootstrap_reps , correct_q01 , 1.0 - (1.0 - bound_conf) / 2.0 ) ;

correct_q05_bound = find_quantile ( boots trap_reps , correct_q05 , bound_conf  ) ;

correct_q10_bound = find_quantile ( boots trap_reps , correct_q10 , bound_conf  ) ;

After we have a collection of bootstrapped quantiles at each of the four specified 

levels, we use the simple percentile algorithm to find confidence bounds for the 

quantiles. For the two larger fractiles (0.1 and 0.05) we choose the user-specified 

confidence level, typically something moderately larger than 0.5. But for the two more 

extreme fractiles (0.01 and 0.001) we push the confidence level further, under the 

arbitrary but reasonable assumption that when we are dealing with more extreme 

(serious!) drawdowns, we had better be more sure of our computed bound. Note that 

we could use the frequently superior BCa bootstrap here, but the added complexity is 

probably not worthwhile. Feel free to try it.
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The last step in this test program is to generate “future” returns and compare their 

drawdowns to the previously computed bounds. A good method for bound computation 

will provide bounds whose actual failure rate is close to their desired failure rate. Here 

are some snippets from that code:

for (ipop=0 ; ipop<POP_MULT ; ipop++) {

   for (i=0 ; i<n_trades ; i++) {

      trades[i] = normal () ;

      if  (unifrand() < win_prob)

         trades[i] = fabs ( trades[i] ) ;

      else

         trades[i] = -fabs ( trades[i] ) ;

      }

   crit = drawdown ( n_trades , trades ) ;

   if  (crit > incorrect_drawdown_001)

      ++count_incorrect_drawdown_001 ;

   if  (crit > correct_q001_bound)

      ++count_correct_001 ;

   ...Test other bounds similarly...

   } // For ipop

We generate a large number of trial return sets, each containing n_trades trade 

returns. Naturally, this trade set is generated in the same way as the trade sets used for 

computing the bounds.

For each trade set, we compute the drawdown and compare it to the computed 

bounds, counting how many times the bound is violated (the actual drawdown exceeds 

the computed bound). After we have completed a large number of compute-bound-test-

bound trials, we divide the failure counts by the number of trials and print each bound’s 

failure rate along with the correct rate, knowing that these rates will be equal if the 

bound computation is correct.
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�Experiments with the DRAWDOWN Program
I ran a series of experiments with the DRAWDOWN program; readers can feel free to run 

their own experiments. For all of these tests, the probability of a win was set to 0.6, which 

would be fairly typical of a real-life trading system with balanced wins and losses. There 

were 5,000 bootstrap replications; 10,000 samples were used for computing the quantile 

bounds; and the process was repeated for 2,000 trials. These numbers are large enough 

to provide reliable results.

Three different configurations were used. First, I used 63 returns for both the OOS 

and the drawdown periods. This corresponds to using a quarter of daily data to bound 

drawdown in the next quarter. Then I expanded this to 252 returns each, corresponding 

to using one year of OOS returns to bound drawdown in the next year. Finally, I used 

2,520 returns with a drawdown period of 252 returns. This corresponds to using 10 years 

of OOS data to bound drawdown in the next year.

Prob     OOS     DD     Incorrect     0.5     0.6     0.8

0.001     63     63       13.65       4.49    3.42    1.64

0.01      63     63        4.29       1.74    1.37    0.71

0.05      63     63        2.16       2.15    1.65    0.85

0.10      63     63        1.66       1.66    1.31    0.72

0.001    252    252        5.84       1.81    1.35    0.59

0.01     252    252        2.55       1.02    0.80    0.41

0.05     252    252        1.62       1.62    1.26    0.64

0.10     252    252        1.36       1.37    1.10    0.61

0.001   2520    252        1.54       0.79    0.68    0.45

0.01    2520    252        1.16       0.76    0.68    0.51

0.05    2520    252        1.06       1.06    0.95    0.72

0.10    2520    252        1.04       1.03    0.94    0.75

In the previous table, each entry is the factor by which the actual rate of violating 

the drawdown bound exceeds the presumed rate. Ideally they should be equal; values 

greater than 1.0 are much worse than values under 1.0 because a ratio above 1.0 means 

that the drawdown violates the supposed bound more frequently than it should (and 

that you think it will!).
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The first column is the failure-to-bound rate whose corresponding bound we want to 

compute. The second column is the number of OOS returns made available to compute 

the bounds. The third column is the number of returns that define the upcoming 

drawdown period. The fourth column is the excess failure ratio for the “incorrect”  

page 264 step 5 algorithm. The remaining three columns are the excess failure ratio for 

the “correct” algorithm using confidence levels of 0.5, 0.6, and 0.8. (But note how these 

confidences are extended for the two smallest probabilities, as explained on page 269.) 

The following results should be noted:

•	 The quality of the incorrect method depends tremendously on 

the size of the OOS sample. This makes sense, because larger OOS 

samples more accurately represent the underlying population of 

returns. Small OOS samples are more subject to the random variation 

that makes the incorrect method incorrect.

•	 The quality of the incorrect method depends tremendously on  

the specified failure rate. For modest failure rates, such as 0.10  

(a 10 percent chance that the upcoming drawdown will exceed the 

computed bound), the incorrect method performs reasonably well, 

though even then in every test it still underestimates the true failure 

rate, a dangerous property.

•	 When the OOS sample is small (63) and we are looking at rare 

catastrophic events (p=0.001), the incorrect method underestimates 

the probability of catastrophic drawdown by a factor of 13.65, a huge 

problem. But this is a difficult situation, as evidenced by the fact that 

even the correct method at a confidence level of 0.8 underestimates 

this probability by a factor of 1.64.

•	 If we use the correct method with a confidence level of 0.8 (extended 

for small probabilities as explained on page 269), then other than 

this extreme combination of small sample and tiny probability, 

the computed bounds are always conservative (they overestimate 

the violation rate). Yet they do not do so to an extreme degree. The 

worst case is a ratio of 0.41, not a serious penalty considering the 

confidence that we get in return. This trade-off is a no-brainer for me.
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�The CHOOSER_DD Program
On page 179 we saw the CHOOSER program, which selects equities to purchase and 

hold for one day, based on the evolving performance of multiple selection criteria. This 

program was used to demonstrate nested walkforward. Now we take this same trading 

system and show how to compute confidence bounds for future drawdown. This is 

implemented in the program whose source code is in CHOOSER_DD.CPP. Readers 

interested in the trading system should refer to the section beginning on page 179. Here 

we will focus on the drawdown aspects of this program.

Recall that the out-of-sample returns for this trading system are in the array OOS2 

at indices OOS2_start up to but not including OOS2_end. Thus, we have n OOS cases, 

as shown in the first line of the following code. We do a large number of bootstrap 

replications, at least several thousand if we want good accuracy. For each bootstrap 

sample we call drawdown_quantiles() to compute the four predefined quantiles in which we 

are interested.

It is vital to notice that each bootstrap sample is the size of the complete OOS set, 

because this is the presumed population from which we are sampling. On the other 

hand, we specify n_trades to be the number of trades in the drawdown period, and it 

may be less than n. This is 252, a year of daily returns, in the program, but it can be easily 

changed by the reader. This quantity defines the statistic we are bounding.

n = OOS2_end - OOS2_start ;

for (iboot=0 ; iboot<bootstrap_reps ; iboot++) {

   for (i=0 ; i<n ; i++) {             // Collect a bootstrap sample from the entire OOS set

      k = (int) (unifrand() * n) ;

      if  (k >= n)

         k = n - 1 ;

      bootsample[i] = OOS2[k+OOS2_start] ;

      }

   drawdown_quantiles ( n , n_trades , bootsample , quantile_reps , quantile_sample ,

                                        work ,  &q001[iboot] , &q01[iboot] ,&q05[iboot] ,&q10[iboot] ) ;

   } // End of  bootstrap loop
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The drawdown_quantiles() routine is identical to that we have already seen on page 272, 

and the drawdown computed by drawdown() shown on page 271 is also identical, with one 

crucial exception. We change the last line like this:

   return 100.0 * (1.0 - exp ( -dd )) ; // Convert log change to percent

Recall that all OOS returns are the log of the price change ratio (the difference of 

log prices). Also recall the basic mathematical principle that the log of a product is the 

sum of the logs of the items being multiplied. Thus, the computed drawdown is the log 

of the ratio of the peak equity to the trough equity. The simple formula in the previous 

line of code computes the percent equity loss, which is the most common way to express 

drawdown. For example, suppose we start at an equity of 1, reach a peak equity of 3, and 

have a subsequent trough of 2. We will have dd=log(3)–log(2). That final line of code will 

return 100*(1–exp(log(2)–log(3)) = 100*(1–2/3) = 33.3 percent, which is what most users would 

expect.

After all bootstrap_reps samples have been processed, we sort each of the four statistic 

collections ascending so that we can easily find any specified quantile using the  

find_quantile() routine shown on page 274. Code for the 0.001 bound is shown here; the 

code for the other three bounds is similar:

   qsortd ( 0 , bootstrap_reps-1 , q001 ) ;

   fprintf  ( fpReport, "\n           0.5        0.6        0.7        0.8        0.9        0.95" ) ;

   fprintf  ( fpReport, "\n0.001  %8.3lf    %8.3lf    %8.3lf    %8.3lf    %8.3lf    %8.3lf",

             find_quantile ( bootstrap_reps , q001 , 0.5 ),

             find_quantile ( bootstrap_reps , q001 , 0.6 ),

             find_quantile ( bootstrap_reps , q001 , 0.7 ),

             find_quantile ( bootstrap_reps , q001 , 0.8 ),

             find_quantile ( bootstrap_reps , q001 , 0.9 ),

             find_quantile ( bootstrap_reps , q001 , 0.95 ) ) ;

It’s important to understand the meaning of the computed bounds. These refer to 

the bounds for a particular time interval specified in advance, and also to equity changes 

only within that interval. Prior equity is ignored, even though drawdown may be a 

continuation of an existing drawdown in progress. Also, this is not the probability that we 

will ever see such an extreme drawdown. It applies to a single specified time period only. 

Typically, we would let this be the upcoming year.
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As a demonstration, I ran the CHOOSER_DD program on the same data that was 

employed on page 179. The output is shown in Figure 6-8. Each row corresponds to the 

probability that the drawdown within a specified single future time period (such as the 

next year, and ignoring equity prior to that time period) will exceed the tabled value. 

The columns correspond to confidence that the shown bound is at least equal to the 

unknown correct bound. Note that we pay surprisingly low penalty for greatly increased 

confidence in our bound.

Figure 6-8.  Output of the CHOOSER_DD program
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CHAPTER 7

Permutation Tests
�Overview of Permutation Testing
We begin with a general overview of the concept behind permutation testing. Of necessity, 

many theoretical details are omitted; see my book Data Mining Algorithms in C++ for more 

in-depth treatment. Suppose we are training or testing some system and its performance 

depends on the order in which data is presented to it. Here are some examples:

	 1)	 We have a completely defined trading system, and we want 

to measure its performance out-of-sample. The order of price 

changes in its market price history is of great consequence.

	 2)	 We have a proposed a market trading system, and we must 

optimize one or more of its parameters to maximize a measure 

of its performance. The order of price changes in its market price 

history is of great consequence.

	 3)	 We have a model that, on a regular basis, examines indicators and 

uses the values of these variables to predict near-term changes in 

market volatility. We want to train (optimize) this model, or test 

it on OOS data. We will then measure the in-sample (if training) 

or out-of- sample (if testing) error of this model. The order of the 

predicted variable, future volatility, with respect to the order of the 

indicators is (of course!) of great consequence.

Although the precise details of how permutation testing would be employed in each 

of these examples is somewhat different, the underlying idea is the same. We perform 

whatever task we want (training or testing a trading system or predictive model) using 

the original data in its correct order. Then we randomly permute the data and repeat 

our training or testing activity, and we record the result. Then we permute again, and 

again, many (hundreds or even thousands) times. We compare the performance figure 
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obtained from the original data with the distribution of performance figures from the 

permutation results and thereby may reach a conclusion.

How do we do this comparison? We are testing some measure of performance, 

whether it be the net return of a trading system, the mean error of a predictive model, 

or any other performance measure appropriate to our operation. Our operation may or 

may not be useful: our trading system may or may not be able to legitimately capitalize 

on market patterns to make money. Our predictive model and the indicators on which it 

bases its decisions may or may not have true predictive power. But there’s one thing we 

can usually be quite sure of: if we permute the data on which our operation is based, any 

legitimate ability will vanish because predictive patterns are destroyed. If we randomly 

permute the price changes in a market history, the market will become unpredictable, 

and hence any trading system will be hobbled. If we randomly change the pairing 

between indicators and a target variable for a predictive model, the model will not have 

any authentic relationships to learn or make use of.

This leads to our method for using permutation testing. Suppose for the moment 

that we repeat the training or testing with nine different permutations. Including the 

original, unpermuted data, we have ten performance measures. If we sort these, the 

original performance can occupy any of the ten possible ordered positions, from best to 

worst, or any position in between. If our operation is truly worthless (the trading system 

has no ability to detect profitable market patterns or the model has no predictive power), 

then the original order will have no advantage. Thus, the original performance has an 

equal probability of occupying any of the positions. Conversely, if our operation has 

legitimate power, we would expect that its original performance would come in at or 

near the best. So, the position of our original performance in the sorted performances 

provides useful information about the ability of our operation.

We can be more rigorous. Continue to suppose that we have performed nine 

permutations. Also suppose we find, to our great joy, that the original unpermuted 

data has the best performance of the ten values. This, of course, is great news and very 

encouraging. It is evidence that our operation is finding useful patterns in the data when 

the data is not permuted. But how meaningful is this finding? What we can say is that 

if our operation is truly worthless there would be a 0.1 probability that we would have 

obtained this result by sheer luck. In other words, we have obtained a p-value of 0.1. If 

this conclusion and terminology are not perfectly clear, please review the material on 

hypothesis tests that begins on page 210.

What if our original performance is the second best of the ten performers? Under the 

null hypothesis that our operation is worthless, there is a 0.1 probability of it landing in 
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that second slot, and also a 0.1 probability that it would have done better, landing in the 

top slot. Thus, there is probability (p-value) of 0.2 that a worthless operation would have 

obtained the performance we observed, or better.

In general, suppose we perform m random permutations, and also suppose that 

the performance of k of these permutations equals or exceeds the performance of the 

original data. Then, under the null hypothesis that our operation is worthless, there is 

probability (k+1)/(m+1) that we would have obtained this result or better by luck.

If we want to be scrupulously rigorous in our experimental design, we would choose 

a p-value in advance of doing the permutation test. In particular, we would choose a 

small probability (typically 0.01 to 0.1) that we find to be an acceptable likelihood of 

falsely concluding that our operation has legitimate ability when it does not. We would 

choose a large m (over 1,000 is not unusual or excessive) such that m+1 times our p-value 

is an integer, and solve for k. Then perform the permutation test and conclude that our 

operation is worthy if and only if k or fewer of the permuted values equal or exceed the 

original value. If our operation is truly worthless, there is our chosen probability that we 

will falsely conclude that it is worthy.

�Testing a Fully Specified Trading System
Suppose we have developed a trading system and we want to test its performance on a 

set of market history that we held out from the development process. This will give us an 

unbiased performance figure. We have already explored some important uses for returns 

obtained in this out-of-sample time period. If none of the returns is extreme and the shape 

of their distribution is roughly bell-curve-shaped, we can cross our fingers and use the 

parametric tests described on page 216. If we want to be more conservative, we can use the 

bootstrap test described on page 222. But as we’ll see soon, a permutation test provides a 

potentially valuable piece of information not provided by either of the tests just mentioned.

Moreover, permutation tests have none of the distribution assumptions that limit 

utility of parametric tests, and they are even more robust against distribution problems 

than bootstrap tests. Thus, permutation tests are a vital component of a well-equipped 

toolbox.

When we permute market price changes to perform this test, we must permute 

only the changes in the OOS time period. It is tempting to start the permutation earlier, 

with the price changes that drive the trade decisions. For example, suppose we look 

back 100 bars to make a trade decision. The data for our test will start 100 bars before 
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the beginning of the OOS test period so that we can begin making trade decisions 

immediately, on the first bar of the OOS period. But these 100 early bars must not be 

included in the permutation. Why? Because their returns will not be included in the 

original, unpermuted performance figure. What if these early bars are unusual in some 

way, such as having a strong trend? When these unusual bars get permuted into the OOS 

segment, they would impact results relative to the original result which does not include 

their influence. So, they must not be allowed to invade the OOS test area.

�Testing the Training Process
Perhaps the single most important use of permutation testing is evaluation of the 

process by which your trading system is optimized. There are primarily two very 

different ways in which a trading system can fail. The most obvious failure mode is that 

the system is not able to detect and capitalize on predictive patterns in market prices; it’s 

weak or unintelligent. It should be apparent that permutation testing will easily detect 

this situation, because the performance of your system on unpermuted data, as well as 

on permuted data, will be poor. Your system’s performance will not stand out above the 

permuted competition.

However, this is not the situation we are most interested in, because we would 

almost certainly never get this far. The weakness of a trading system will be apparent 

long before we reach the point of expending precious computer resources; we’ll see the 

dismal performance quickly.

The problem in which permutation testing is valuable is the opposite of weakness: 

your system is too powerful at detecting predictive patterns. The term commonly 

employed for this situation is overfitting. When your system has too many optimizable 

parameters, it will tend to see random noise as predictive patterns and learn these 

patterns along with any legitimate patterns that might be present. But because noise 

does not repeat (by definition), these learned patterns will be useless, even destructive, 

when the system is put to use trading real money. I have often seen people develop 

systems that look back optimizable distances for several moving averages, optimizable 

distances for volatility, and optimizable thresholds for changes in the quantities. Such 

systems produce astonishing performance in the training period and yet produce 

completely random trades out-of-sample.

This is where permutation testing comes to the rescue. An overfitted trading system will 

perform well not only on the original data but on permuted data as well. This is because an 

overfitted system is so powerful that it can learn “predictive” patterns even on permuted 
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data. As a result, all in-sample performances, permuted and unpermuted, will be excellent, 

and the original performance will not stand out from its permuted competitors. So, all you 

need to do is repeat the training process on many sets (at least 100) of permuted data and 

compute the p-value as described earlier, (k+1)/(m+1). This may require a lot of computer 

time, but it is almost always worthwhile. In my own personal experience working with 

trading system developers over the years, I have found this technique to be one of the most 

valuable tools in my toolbox. Unless you get a small (0.05 or less) p-value, you should be 

suspicious of your system specification and optimization process.

�Walkforward Testing a Trading System Factory
In many or most development situations, we have an idea for a trading system, but 

our idea is not fully specified; there are one or more aspects of it, such as optimizable 

parameters, that are left unspecified. As a simplistic example, we may have a moving-

average crossover system that has two optimizable parameters, the long-term and 

short-term lookbacks. The system definition, along with a rigorously defined method for 

optimizing its parameters, and verified by OOS testing of the system, make up what we 

might call a model factory. In other words, prior to optimization we do not have an actual 

trading model; it’s just an idea along with a way of converting the idea into something 

concrete. The actual trading system we end up with will depend on the market data on 

which it is trained. Our goal now is to assess the quality of our model factory, as opposed 

to assessing the quality of a completely defined trading system. If we are able to conclude 

that our model factory is probably effective at producing good trading systems, then 

when we use up-to-date data to create a trading system from the model factory, we can 

be confident that our system will have respectable performance. This, of course, is the 

whole idea behind walkforward testing that we have explored from numerous different 

angles in prior chapters. But the distinction between testing complete systems versus 

testing our training process versus testing our model factory is especially pertinent to 

permutation testing. This is the reason for emphasizing this distinction here.

When we mate permutation testing with walkforward testing, we have to be 

careful about what is permuted, just as we did when testing a fully specified system. In 

particular, consider the fact that when we walk the original unpermuted system forward, 

the training data in the first fold will never appear in any OOS area. Since this section of 

historical data may contain unusual prices changes such as large trends, we must make 

sure it never appears in the OOS area of permuted runs. Thus, the first training fold must 

be omitted from permutation.
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Do we also permute the first training fold that is omitted from the OOS permutation? 

I’ve never seen any convincing argument for or against this, and my gut instinct is that 

it makes little difference. However, my own practice is to also permute the first training 

fold, in isolation, of course. This would likely provide more variety in trade decisions. 

For example, it may be that the original data leads to a large preponderance of, say, long 

positions in the first OOS fold. If the market overall has a strong upward bias, this would 

inflate permuted performance. But if permuting the first training fold often reduces the 

number of long positions, this would give more variety of trade outcomes, which is our 

ultimate goal in a permutation test. On the other hand, I do not consider this to be an 

overwhelming argument, so if you chose to avoid permuting the first training fold, I don’t 

think you will be committing a grave sin.

Another decision concerns if and how to permute walkforward folds. There are two 

choices. You can do a single permutation of all market changes after the first training fold 

and then just do the walkforward on this permuted data. Alternatively, you can do a separate, 

isolated permutation with each fold. You could even break this second alternative into 

several subalternatives, pooling the IS and OOS data in each fold into a single permutation 

group or separating the IS and OOS sets of each fold into separately permuted groups.

What is the difference between these alternatives? Honestly, not enough research 

has been done to provide rigorous guidance in this choice. It seems that the dominant 

factor involves stationarity in market behavior. If you want to assume that the 

characteristics (especially trend and volatility) of the market are constantly changing 

and you want your testing method to adapt to these ever-changing conditions, then you 

would likely want to permute each fold separately to preserve local behavior. Personally, 

I prefer to focus on market patterns that are universal, as opposed to trying to track 

perceived changes and be vulnerable to whipsaws. For this reason, my own habit is to 

permute all market changes after the first fold’s training set as a single large group. But 

I claim no special knowledge or expertise in this matter. All I can say is that this is what 

makes the most sense to me, and it is what I do in my own work. Feel free to disagree.

Regardless of how you choose to permute, you will have an OOS performance figure 

for the original, unpermuted data, as well as a similar figure for each permutation. As in 

the other tests, all you have to do is count how many of those permuted performances 

equal or exceed that of the original data. Use the p-value = (k+1)/(m+1) formula, which 

gives the probability that your original OOS performance could have been as good as or 

better than what you obtained by sheer luck from a truly worthless model factory.  

Unless this p-value is small (0.05, or even 0.01 or less) you should doubt the quality of 

your factory and hence mistrust any trading system produced by it.
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�Permutation Testing of Predictive Models
Everything so far has concerned trading systems. But financial market traders may 

use predictive models to do things such as predict upcoming changes in volatility. It is 

often the case that variables other than market price histories are involved, things such 

as economic indicators or concurrent forecasts of other quantities. These are typically 

called predictors because they are the quantities used by the model to make predictions. 

We also have a “truth” variable, usually called the target variable. This is the quantity that 

we are trying to predict, and to train the predictive model we need to know the true value 

of the target that corresponds to each set of predictors. In the volatility example, the 

target would be the near-term future change in volatility.

In discussing trading systems, we identified three situations: 1) testing a fully 

specified system on out-of-sample data; 2) testing our training process, with a special 

eye on detecting overfitting; and 3) testing our model factory. Permutation testing of 

predictive models falls into the same three categories in what should be an obvious 

manner, so we will not distinguish between them in this discussion. Rather, we will focus 

on special aspects of permutation.

Understand that in the context of pairing targets with predictor sets, for the vast 

majority of models the order in which training data appears is irrelevant. It is only 

the pairing of predictor sets with targets that impacts training. We want them to be 

concurrent: we pair the correct value of the target at a given time with the current values 

of the predictors. We permute by disrupting this pairing, randomly reordering the targets 

so that they become paired with different predictor sets. When we do this, there are two 

vital issues, both of which will be described in more detail soon.

	 1)	 Indicator sets must not permute with respect to one another, only 

with respect to the target. This preserves intraset correlation, 

which is critical to correct testing.

	 2)	 There must not be any serial correlation in both one or more 

predictors and the target. Serial correlation in one or the other is 

fine, even common, but it must not be present in both.

For the first issue, consider this toy example. Suppose we have two predictors: recent 

trend of the S&P 100 index and recent trend of the S&P 500 index. These two quantities 

are used to predict the volatility of S&P 100 next week relative to its volatility in the week 

just ended. At the close of trading every Friday we compute these two recent trends 

as well as the volatility during the week that just ended. When we train our predictive 
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model on historical data, we also know the volatility during the upcoming week, so we 

subtract the prior week’s volatility from the upcoming week’s volatility to get the change, 

which is our target variable. When we put the trained model to use, we will predict the 

upcoming change in volatility.

The correct way to permute this data is to randomly reorder the targets so that targets 

get attached to pairs of predictors that are from different weeks, thus destroying any 

relationship that could be predictive. What if we also permuted the predictors? If we did 

that, we would often get nonsensical predictor pairs. We might end up with a predictor 

pair in which S&P 100 has a strong uptrend while S&P 500 has a strong downtrend. In 

real life, this sort of pairing would be extremely unlikely, if not impossible. One key 

idea behind permutation testing is that we must create permutations that could have 

occurred in real life with equal probability under the null hypothesis that the model is 

worthless. If we generate nonsensical or highly unlikely permutations, the method fails.

For the second issue, consider that one or more of the predictors may have serial 

correlation (the value of a variable at a given time is related to its value at nearby times). 

In fact, this is extremely common, almost universal. For example, suppose a predictor 

is the trend over the prior 20 bars. When we advance by one bar, we still have 19 of the 

prior 20 bars going into the calculation, so the trend is unlikely to change much.

If we are not careful, the target variable may have serial correlation as well. For 

example, in the volatility example I defined the target as the change in volatility, not 

the actual volatility. If we use volatility as the target, we will find significant serial 

correlation, because volatility usually changes slowly; the volatility next week will be 

close to the volatility this week. But changes in volatility are much less likely to have 

serial correlation. Of course, it may still exist, but certainly it will be greatly reduced, if 

not totally eliminated.

Even change in volatility will have serious serial correlation if we have overlapping 

time periods. For example, suppose that on each day of the week, five days a week, we 

compute the change in volatility over the upcoming five days and compare it to the 

prior five days. Each time we advance the window, most days will be in common, so 

successive values of volatility change will be highly correlated.

The key point is that serial correlation in just one or more predictor variables, or in 

just the target, is harmless. This is because we can then view permutation as permuting 

whichever is not serially correlated and avoid destroying the serial correlation in the 

other. But if both are serially correlated, permutation will destroy this property, and we 

will be in the situation of processing pairings that could not occur in real life, a major sin. 
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Recall once more that a key tenet of permutation testing is that our permutations must 

have equal probability in real life if our model is worthless.

It’s worth noting that this serial correlation restriction is not unique to permutation 

tests. This restriction is shared by virtually all standard statistical tests. The fact that some 

observations are dependent on other observations effectively reduces the degrees of 

freedom in the data, making tests behave as if there are fewer observations than there 

really are. This leads to an increased probability of rejecting the null hypothesis, the 

worst sort of error.

�The Permutation Testing Algorithm
Most readers should be fairly clear by now on how a permutation test, often called a 

Monte Carlo permutation test (MCPT), is performed. However, we will now ensure the 

clarity of the informal presentation by stating the algorithm explicitly. In the following 

pseudocode, nreps is the total number of evaluations, including the original, unpermuted 

trial. Each trial results in a performance figure being found, with larger values implying 

better performance. If we are testing a fully specified trading system or predictive model, 

this is the performance obtained on an out-of-sample set. If we are testing our training 

process, this is the final (optimal) in-sample performance. If we are testing a model 

factory, this is the performance obtained by pooling all OOS folds. To be compatible with 

C++, zero origin is used for all array addressing.

for irep from 0 through nreps-1

      if  (irep > 0)

            shuffle

      compute performance

      if  (irep == 0)

            original_performance = performance

            count = 1

      else

           if  (performance >= original_performance)

                 count = count + 1

p-value = count / nreps
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We compute the performance on the unshuffled data first and save this performance 

in original_performance. We also initialize our counter of the number of times a computed 

performance equals or exceeds the original performance. From then on we shuffle and 

evaluate the performance on shuffled data, incrementing the counter as indicated. The 

p-value is computed using the formula already seen several times, (k+1)/(m+1), where  

k is the number of times a permuted value equals or exceeds the original value, and m  

is the number of permutations. We’ll explore several programs demonstrating this 

algorithm at the end of this chapter.

�Extending the Algorithm for Selection Bias
On page 124 we began an extended discussion of selection bias. If necessary, please 

review all of that material. Here we show how Monte Carlo permutation testing) can be 

extended to handle selection bias. To put this topic in context, here is a common scenario. 

We have several competing trading systems, say two or maybe hundreds. Perhaps they 

have been submitted by different developers for our consideration, or perhaps they are all 

the same basic model but with different trial parameter sets. In any event, we choose the 

best from among the competitors. There are two questions that this algorithm will answer.

	 1)	 The less important but still interesting question concerns the 

competitors taken individually. For each competitor (ignoring 

other competitors), what is the probability that we would have 

obtained performance as least as good as what we observed if 

that competitor were actually worthless? This is exactly the same 

question answered by the basic algorithm shown in the prior 

section, answered separately for each competitor.

	 2)	 The really important question concerns the best (highest 

performing) competitor. Suppose all of the competitors are 

worthless. If we test a large number of them, it is likely that at least 

one will be lucky and do well by sheer random chance. Thus, we 

cannot just determine which one is the best performer and then 

use what might be called its solo p-value, the probability that if it 

were worthless it would have done as well as it did by sheer luck. 
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This is the p-value computed by the algorithm in the prior section. 

Such a test would be strongly prejudiced by the fact that we picked 

the best system. Of course, it’s going to do well on a solo test! So, 

we have to answer a different question: if all the competitors are 

worthless, what is the probability that the best of them would have 

performed at least as well as what we observed? We might call 

this the unbiased p-value because it takes into account the bias 

induced by selecting the best competitor.

The algorithm for answering these two questions is shown here.

for irep from 0 through nreps-1

      if  (irep > 0)

            shuffle

      for each competitor

            compute performance of  this competitor

            if  (irep == 0)

                  original_performance[competitor] = performance

                  solo_count[competitor] = 1 ;

                  unbiased_count[competitor] = 1 ;

            else

                  if  (performance >= original_performance[competitor])

                        solo_count[competitor] = solo_count[competitor] + 1

      if  (irep > 0)

            best_performance = MAX ( performance of  all competitors )

            for each competitor

                  if  (best_performance >= original_performance[competitor)

                        unbiased_count[competitor] = unbiased_count[competitor] + 1

for all competitors

      solo_pval[competitor] = solo_count[competitor] / nreps

      unbiased_pval[competitor] = unbiased_count[competitor] / nreps
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Readers should examine this algorithm and confirm that for each individual 

competitor, the solo_pval computed here is exactly the same as would be computed by 

the algorithm in the prior section for any individual competitor.

Note that this algorithm computes an unbiased_pval for every competitor. For each 

permutation, it finds the best performer and compares this to the score for each 

competitor, incrementing the corresponding counter accordingly. For whichever 

competitor had the best original performance, this is a perfect apples-to-apples 

comparison, best-to-best, and hence this is a correct p-value for the best performer. 

For all other competitors, this p-value is conservative; it is an upper bound for the 

true p-value. Thus, any competitor that has a small unbiased_pval is worthy of serious 

consideration.

�Partitioning Total Return of a Trading System
Suppose you have just trained a market trading system, optimizing its parameters in 

such a way as to maximize a measure of performance. On page 286 we saw how a Monte 

Carlo permutation test could be used to gather information about whether the model is 

too weak (unable to find predictive patterns) or too strong (overfitting by mistaking noise 

for authentic patterns). We also saw ways to employ permutation testing to evaluate a 

completely specified model using OOS data and also a way to evaluate the quality of a 

trading-system factory. Now we look at one more interesting way to use permutation 

testing to gather information about the quality of a trading system. This method is not 

quite as rigorous as the prior tests, and its results should usually be taken with a liberal 

grain of salt. But its development reveals much about how seemingly good performance 

is obtained from a trading system, and the technique also provides one more indication 

of possible future performance.

Suppose we have just trained a trading system by adjusting its parameters so as to 

maximize a performance measure. We can roughly divide its total in-sample return into 

three components.

	 1)	 Our model (hopefully!) has learned legitimate Skill at detecting 

predictive patterns in the market history and thereby making 

intelligent trade decisions. This component of performance will 

likely continue into the future.
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	 2)	 Our model has also mistaken some noise patterns as legitimate 

and thereby learned responses to patterns that, by definition, will 

not repeat. This component of performance, called TrainingBias, 

will not continue into the future.

	 3)	 If the market has an overall long-term trend (like most equity 

markets, which trend upward over the long term), most training 

algorithms will favor a position that takes advantage of the trend. 

In particular, it will favor long positions for up-trending markets 

and short positions for down-trending. This Trend component of 

performance will continue into the future for only as long as the 

trend continues.

This last component deserves more discussion, especially since it is the subject of 

controversy among some trading system developers. Imagine that you have trained a 

trading system (optimized its parameters) on two equity markets, individually. Market 

A has a strong uptrend over its training-set history, while market B ends its history at 

about the same price level as where it began. You find that the optimal parameters of 

your Market A trading system provide a great preponderance of long trades, while the 

optimal parameters for the system trained on Market B give about an equal number of 

long and short trades. It doesn’t take Sherlock Holmes to deduce that the reason for the 

abundance of long trades in the system developed on Market A might have something to 

do with the fact that Market A enjoyed steady gains, while the long/short balance in the 

other system is due to the fact that Market B had no appreciable trend.

The big philosophical question is this: should we let the underlying long-term trend 

of a market exert that much influence on the long/short trade balance of a system we 

are designing? In my own experience, I have found that most trading system developers 

do so without even thinking about the issue. And I tend to agree with this philosophy; 

if a market has an obvious long-term trend, we might as well go with the flow instead of 

fighting a current by rowing upstream.

On the other hand, it is definitely worthwhile pondering the alternative. After 

all, who’s to say that a long-term trend will continue, and what happens to a strongly 

unbalanced system if the trend reverses? This is one argument against letting a strongly 

trending market strongly influence our trade balance.
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There’s an even deeper way of looking at the issue. Suppose, for example, that we 

have a strongly uptrending market and that we have developed a long-only day-bar 

system that is in this market half of all trading days. Consider the fact that if we just flip 

a coin every day and take a long position when it comes up heads, we would also, on 

average, make a lot of money just from the trend. So one could easily argue that a trading 

system’s “intelligence” should be measured by the degree to which it beats a hypothetical 

random trading system that has the same number of long and short positions.

It all boils down to a simple but fraught question. If your system makes a lot of 

money from a trend but can’t beat a coin toss, is it really any good? One school of 

thought says that if it ties a profitable coin-toss system, it has no intelligence. Another 

school of thought says that the very fact that it was able to capitalize on a long-term trend 

is a sign of intelligence. Then the sage in the corner points out that the second argument 

falls apart if the trend reverses, while the first argument is more likely to hold up. Yet 

another voice pipes up from the shadows, pointing out that long-term trends generally 

persist over the, well, long term. And the argument goes on.

Regardless of your opinion, it’s worthwhile to explore this issue further. As usual 

throughout this book, we regard returns as the log of changes. Let MarketChange be 

the total change over the extent of the market history in our training set. Under our 

definition of change, this is the log of the ratio of the final price to the first price. Let n 

be the number of individual price change returns (one less than the number of prices). 

Then we can define TrendPerReturn = MarketChange / n.

Some developers subtract this quantity from the return of every bar during 

optimization to remove the effect of trend on computed performance. (Of course, 

when computing indicators or anything else involved in making trade decisions, one 

would use the original prices. This correction is used only for computing performance 

measures such as return, profit factor, or Sharpe ratio.) This option can be applied to any 

of the trading systems used as examples in this book, and indeed virtually every trading 

system anyone could imagine. However, other than this brief mention, we will not 

pursue this idea further. At this time, we have a different use for trend.

What would be the expected total return of a random trading system having the same 

number of long and short positions as our trained system? For every individual price-

change return during which we hold a long position, on average the trend will boost our 

return by TrendPerReturn. Conversely, for every one in which we hold a short position, 

our return will be decreased by TrendPerReturn. So, the net effect will be the difference 

in these position quantities.
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In keeping with the nomenclature presented in the beginning of this section, we 

define the Trend component of the system’s total return as shown in Equation 7-1.

	 Trend NumLong NumShort TrendPerReturn= -( )* 	 (7-1)

Because we can compute TrendPerReturn from the market price history and because 

we know the position counts from the trained system, the Trend component of the 

system’s total return can be explicitly computed.

Recall that the underlying premise for the material in this section is that the total 

return of our trained trading system is the sum of three components: legitimate skill, 

long/short imbalance that capitalizes on trend, and training bias (learning random noise 

as if it were real patterns). This is expressed in Equation 7-2.

	 TotalReturn Skill Trend TrainingBias= + + 	 (7-2)

Suppose we were to randomly permute the market changes and retrain the system. 

The TrendPerReturn will remain the same because we’re just mixing up the order of 

price changes, and we still have the same number of individual returns. But the number 

of long and short positions will likely change, so we have to use Equation 7-1 to compute 

the Trend component of the total return for this permuted run. Because the permutation 

is random, we have destroyed predictable patterns, so the Skill component is zero. Any 

total return over and above the Trend component is TrainingBias. In other words, we can 

compute the TrainingBias for this permuted run using Equation 7-3.

	 TrainingBias PermutedTotalReturn Trend= - 	 (7-3)

Too much randomness is involved for a single such test to provide a useful estimate 

of the TrainingBias inherent in your proposed trading system and its training algorithm. 

But if we perform hundreds, or even thousands, of permutations and average the 

value computed by Equation 7-3, we can arrive at a generally respectable estimate for 

TrainingBias.

This lets us compute two extremely useful performance figures. First, we can 

compute an unbiased estimate of future return by subtracting the training bias from 

the total return of our system. This figure includes the Trend component of total return, 

appropriate if we hold to the philosophy that taking advantage of long-term trend is 

good. This is expressed in Equation 7-4.

	 UnbiasedReturn TotalReturn TrainingBias= - 	 (7-4)
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If we are also interested in the more restrictive definition of trading system 

intelligence, the degree to which our system can outperform a random system having 

the same number of long and short trades, we can estimate its Skill using Equation 7-5.

	 Skill UnbiasedReturn Trend= - 	 (7-5)

We will explore a program that demonstrates this technique on page 310.

�Essential Permutation Algorithms and Code
Before presenting complete programs that demonstrate the techniques discussed in this 

chapter, we’ll focus on several of the key permutation algorithms that will be essential 

tools for this family of tests.

�Simple Permutation

We begin with the basic permutation algorithm. This is the standard method for 

correctly permuting a vector, doing it in such a way that every possible permutation 

is equally likely. It requires a source of uniformly distributed random number in the 

range 0.0 <= unifrand() < 1.0. It is important to make sure that the random generator can 

never return exactly 1.0; if you cannot be sure of this, you must take appropriate action 

to ensure that an out-of-bound subscript is not generated. In the following code, the 

random j must be strictly less than i.

   i = n ;                 // Number remaining to be shuffled

   while (i > 1) {     // While at least 2 left to shuffle

      j = (int) (unifrand () * i) ;

      --i ;

      itemp = indices[i] ;           // Swap elements i and j

      indices[i] = indices[j] ;

      indices[j] = itemp ;

      }

In this code, we initialize i to be the number of elements in the vector, and at each 

pass through the while() test, it will be the number remaining to be shuffled. We randomly 

select an index j that is equally likely to point to any of the elements yet to be shuffled. 

Decrement i so that it points to the last element in the aray that remains to be shuffled 
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and swap elements j and i. Note that it is possible that j==i so that no swap takes place. We 

work backwards from the end of the array to the front, stopping only when we no longer 

have anything to swap.

�Permuting Simple Market Prices
We jump to a slightly higher level of difficulty when we permute market prices. Obviously 

we can’t just swap prices around. Imagine what would happen if we permuted decades 

of equity prices whose market history begins at 20 and ends at 800. So we have to 

deconstruct the price history into changes, permute the changes, and then reconstruct 

the permuted price history. Moreover, we can’t permute simple differences in price, 

because differences at large price times are greater than differences at small price 

times. So, we compute the changes as ratios. Equivalently, we take the log of prices and 

permute the changes in logs.

Another complication is that we must exactly preserve the trend in the price history 

so that position imbalances are handled correctly. This is easy to do; we just keep the 

starting price the same. Since the reconstructed price series applies the same changes, 

just in a different order, we end up at the same price in the end. Only the ups and downs 

in the interior are changed.

The first step is to deconstruct the price history into changes. The following simple 

code assumes that the supplied prices are actually the log of the original prices. We must 

supply the work area changes, which is nc long. Note that the last element of changes is 

unused.

void prepare_permute (

   int nc ,                        // Number of  cases

   double *data ,            // Input of  nc log prices

   double *changes        // Work area; returns computed changes

   )

{

   int icase ;

   for (icase=1 ; icase<nc ; icase++)

      changes[icase-1] = data[icase] - data[icase-1] ;

}
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That preparation code needs to be done only once. From then on, any time we want 

to permute the (log) price history, we call the following routine:

void do_permute (

   int nc ,                            // Number of  cases

   double *data ,                // Returns nc shuffled prices

   double *changes           // Work area; computed changes from prepare_permute

   )

{

   int i, j, icase ;

   double dtemp ;

   // Shuffle the changes. We do not include the first case in the shuffling,

   // as it is the starting price, so there are only nc-1 changes.

   i = nc-1 ;                           // Number remaining to be shuffled

   while (i > 1) {                    // While at least 2 left to shuffle

      j = (int) (unifrand() * i) ;

      if  (j >= i)                        // Must not happen, be safe

         j = i - 1 ;

      --i ;

      dtemp = changes[i] ;

      changes[i] = changes[j] ;

      changes[j] = dtemp ;

      } // Shuffle the changes

   // Now rebuild the prices, using the shuffled changes

   for (icase=1 ; icase<nc ; icase++)

      data[icase] = data[icase-1] + changes[icase-1] ;

}

Recall that prepare_permute() left the last element in changes unused, so we have nc–1 

changes to shuffle. We assume that the caller has not changed the first element in data, 

and we rebuild from there.
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�Permuting Multiple Markets with an Offset
As was pointed out earlier, if our trading system references multiple markets, we must 

permute them all the same way so that inter-market correlation is kept intact. Otherwise, 

we might end up with market changes that would be nonsensical in the real world, 

with some markets going up strongly while other markets with which they are highly 

correlated going down strongly. This lack of real-world conformity would be devastating, 

because a key tenet of Monte Carlo permutation testing is that all permutations must be 

equally likely if the null hypothesis is true.

To be able to do this, we must make sure that every market has a price on every date; 

any dates for which one or more markets have no price must be removed. In practice, 

if we stick with broadly traded markets, we generally lose few or no dates because they 

all trade on normal trading days. If markets are closed for a holiday, nothing trades, and 

if they are open for normal business, everything trades. Still, we must make sure that 

there is no missing data for any date, which would make simultaneous permutation 

impossible. A fast algorithm for doing this is as follows:

Initialize each market's current index to 0

Initialize the grand (compressed) index to 0

Loop

      Find the latest (largest) date at each market's current index across all markets

      Advance all markets' current index until the date reaches or passes this date

      If  all markets have the same current date:

            Keep this date by copying market records to the grand index spot

            Advance each market's current index as well as the grand index

In the code that follows, we have the following:

•	 market_n[]: For each market, the number of prices present

•	 market_price[][]: For each market (first index) the prices (second index)

•	 market_date[][]: For each market (first index) the date of each price 

(second index)

•	 market_index[]: For each market, the index of the record currently being 

examined

•	 grand_index: The index of the current record in the compressed data
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for (i=0 ; i<n_markets ; i++)         // Source markets all start at the first price

   market_index[i] = 0 ;

grand_index = 0 ;                        // Compressed data starts at first record

for (;;) {

   // Find max date at current index of  each market

   max_date = 0 ;

   for (i=0 ; i<n_markets ; i++) {

      date = market_date[i][market_index[i]] ;

      if  (date > max_date)

         max_date = date ;

      }

   // Advance all markets until they reach or pass max date

   // Keep track of  whether they all equal max_date

   all_same_date = 1 ;                                    // Flags if  all markets are at the same date

   for (i=0 ; i<n_markets ; i++) {

      while (market_index[i] < market_n[i]) {    // Must not over-run a market!

         date = market_date[i][market_index[i]] ;

         if  (date >= max_date)

            break ;

         ++market_index[i] ;

         }

      if  (date != max_date)                               // Did some market jump over max?

         all_same_date = 0 ;

      if  (market_index[i] >= market_n[i])           // If  even one market runs out

         break ;                                                   // We are done

      }

   if  (i < n_markets)                                         // If  even one market runs out

         break ;                                                   // We are done

   // If  we have a complete set for this date, grab it
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   if  (all_same_date) {

      for (i=0 ; i<n_markets ; i++) {

         market_date[i][grand_index] = max_date ;  // Redundant, but clear

         market_price[i][grand_index] = market_price[i][market_index[i]] ;

         ++market_index[i] ;

         }

      ++grand_index ;

      }

   }

n_cases = grand_index ;

We are now ready to consider the permutation of multiple markets. It will often be 

the case that we want to permute different sections of the market history separately. If we 

are permuting a single market, this is easily done by just offsetting the price in the calling 

parameter for the permutation routine. But when we have an entire array of markets, we 

can’t do this, so we have to explicitly specify an offset distance.

Here is how the permutation will be done. We have nc cases from price index 0 

through nc–1. Case offset is the first case that will change, and offset must be positive 

because the case at offset–1 is the “basis” case and remains unchanged. The last case 

examined is at nc–1, but it, too, will remain unchanged. Thus, the shuffled array starts 

and ends at the original prices. Only the interior prices change.

If a dataset is permuted in separate sections, the sections must not overlap. The 

“basis” case at offset–1 is included in the region that cannot overlap. For example, we 

could permute with offset=1 and nc=5. Cases 1 through 3 would then change, with the 

end cases (0 and 4) remaining unchanged. A subsequent permute must then begin at 

offset=5 or more. Case 4 is not changed by either permute operation.

Here is the preparation routine that must be called first and only once if multiple 

permutations are done:

void prepare_permute (

   int nc ,                       // Number of  cases total (not just starting at offset)

   int nmkt ,                   // Number of  markets

   int offset ,                  // Index of  first case to be permuted (>0)

   double **data ,          // Input of  nmkt by nc price matrix

   double **changes      // Work area; returns computed changes

   )
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{

   int icase, imarket ;

   for (imarket=0 ; imarket<nmkt ; imarket++) {

      for (icase=offset ; icase<nc ; icase++)

         changes[imarket][icase] = data[imarket][icase] - data[imarket][icase-1] ;

      }

}

The permutation is just a simple generalization of the single-market method shown 

in the prior section.

void do_permute (

   int nc ,                        // Number of  cases total (not just starting at offset)

   int nmkt ,                    // Number of  markets

   int offset ,                   // Index of  first case to be permuted (>0)\

   double **data ,           // Returns nmkt by nc shuffled price matrix

   double **changes       // Work area; computed changes from prepare_permute

   )

{

   int i, j, icase, imarket ;

   double dtemp ;

   // Shuffle the changes, permuting each market the same to preserve correlations

   i = nc-offset ;              // Number remaining to be shuffled

   while (i > 1) {              // While at least 2 left to shuffle

      j = (int) (unifrand() * i) ;

      if  (j >= i)                  // Should not happen, but be safe

         j = i - 1 ;

      --i ;

      for (imarket=0 ; imarket<nmkt ; imarket++) {

         dtemp = changes[imarket][i+offset] ;

         changes[imarket][i+offset] = changes[imarket][j+offset] ;

         changes[imarket][j+offset] = dtemp ;

         }

      } // Shuffle the changes

   // Now rebuild the prices, using the shuffled changes
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   for (imarket=0 ; imarket<nmkt ; imarket++) {

      for (icase=offset ; icase<nc ; icase++)

         data[imarket][icase] = data[imarket][icase-1] + changes[imarket][icase] ;

      }

}

�Permuting Price Bars

Permuting price bars is considerably more involved than permuting a simple array of 

prices. There are four major issues to consider, and perhaps a few other more minor 

issues that may be relevant in some circumstances. These are important:

•	 We must never let the open or close be outside the range defined by 

the high and low of the bar. Even if our trading system ignores the 

high and low, violating this basic tent is bad karma.

•	 If our trading system examines the high and low of bars, we must not 

damage the statistical distribution of these quantities, either in regard 

to their relationship to the open and close or in regard to their spread. 

These quantities must have the same statistical properties after 

permutation as before.

•	 We must not damage the statistical distribution of the price change 

as we move from the open of the bar to the close. The distribution of 

open-to-close changes must be the same after permutation as before 

permutation.

•	 We must not damage the statistical distribution of the inter-bar gaps, 

the price change between the close of one bar and the open of the 

next bar. This is much more important than you might realize and 

easy to get wrong if you are not careful.

Satisfying the first three conditions is easy. We just define the high, low, and close 

in terms of the open. If we are (as usual) dealing with the log of prices, for each bar we 

compute and save the high minus the open, the low minus the open, and the close 

minus the open. Then, when we have a new opening price, we add these differentials 

to it to get the new high, low, and close, respectively. As long as we keep these trios of 

differences together (do not swap a high difference in one bar with a low difference in 

another bar), it should be obvious that the first condition is satisfied. And as long as our 

Chapter 7  Permutation Tests



306

permutation algorithm does not alter the statistical distribution of the open, it should 

be clear that the second and third conditions are satisfied. The fourth condition is the 

monkey wrench.

The intuitive way to permute bars is severely incorrect. Suppose we just permute the 

opens in the same way that we have been permuting single price arrays: compute the 

open-to-open changes, permute these changes, rebuild the array of opens, and use the 

“three differences” method just discussed to complete each bar. As already pointed out, 

the first three conditions are satisfied by this algorithm.

But here’s the problem. Remember that most of the time, a bar opens very close 

to where the prior bar closed, often at exactly the same price. However, under this 

incorrect permutation algorithm, it will often happen that we will have an unfortunate 

combination of two common events: we have a large increase in the permuted open-

to-open change, and the first bar has a large open-to-close drop in price. The result is a 

gigantic, completely unrealistic gap in the close-to-open change.

For example, we might have a bar that opens at 100 and closes at 98, not unrealistic. 

The next bar should open very near 98. But at the same time, the next permuted open 

might be 102, also not unrealistic. The result is a move from 98 to 102 just going from 

the close of one bar to the open of the next bar. The chance of this happening in real 

life is nearly zero. And of course, the opposite could happen as well: we have a bar with 

large upward movement open-to-close, while the permuted open-to-open move to 

the next bar is a large drop. The problems induced by this are not just theoretical; they 

will utterly destroy permutation testing of many trading systems. Real markets do not 

behave this way.

The solution to this problem is easy, though a bit messy. We split the (relatively large) 

intra-bar changes and the (mostly tiny) inter-bar changes into two separate series and 

permute each separately. When we rebuild the permuted series, we get each new bar in 

two steps. First, we use the permuted inter-bar change to move from the close of one bar 

to the open of the next. Then we use the permuted intra-bar change to move from the 

open to the close, picking up the high and low along the way.

In the code that appears soon, understand that the permutation routines will be 

called with the first bar on which a trade decision is possible. If there is a lookback, we 

assume that this has been taken into account.

The code that prepares for permutation is straightforward. As usual, we assume that 

all prices are actually log prices. If they are the real prices, we must use ratios rather than 

differences; otherwise, the algorithm is the same.
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The first bar is the “base” bar, and it does not change at all. Subsequent bars will be 

generated from its close. As we will see when we examine the code, the close of the last 

bar will also remain unchanged. For each bar, rel_open is the gap between the prior close 

and the current open. The high, low, and close of the current bar are all relative to the 

open of the bar.

void prepare_permute (

   int nc ,                       // Number of  bars

   double *open ,           // Input of  nc log prices

   double *high ,

   double *low ,

   double *close ,

   double *rel_open ,    // Work area; returns computed changes

   double *rel_high ,

   double *rel_low ,

   double *rel_close

   )

{

   int icase ;

   for (icase=1 ; icase<nc ; icase++) {

      rel_open[icase-1] = open[icase] - close[icase-1] ;

      rel_high[icase-1] = high[icase] - open[icase] ;

      rel_low[icase-1] = low[icase] - open[icase] ;

      rel_close[icase-1] = close[icase] - open[icase] ;

      }

}

The permutation routine has a parameter, preserve_OO, that needs special 

explanation. The vast majority of example trading systems in this book are based on a 

single price series, with trades being executed as market-on-close to the close of the next 

bar (possibly continuing on to the close of a subsequent bar). This can sometimes give 

slightly optimistic results, not to mention that it is tinged with a hint of being unrealistic 

and unobtainable in real life. A more conservative approach is to open a trade on the 

open of the bar following the trade decision. If we are partitioning the total return of the 

trading system as described beginning on page 294 and we want to be squeaky clean 

about how we define the total trend across the test period, we must define the trend by 
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the change from the first open after the earliest possible decision to the last open, and 

we need this change to be the same for all permutations. (This is probably excessively 

cautious, but it’s easy to do, so we might as well.) For this difference to remain the same 

for all permutations, we must not allow the first close-to-open change or the last open-

to-close change to take part in the permutation. Setting preserve_OO to any nonzero 

number does this. With this in mind, here is the permutation code. First we shuffle the 

close- to-open changes.

void do_permute (

   int nc ,                             // Number of  cases

   int preserve_OO ,           // Preserve next open-to-open (vs first open to last close)

   double *open ,                 // Returns nc shuffled log prices

   double *high ,

   double *low ,

   double *close ,

   double *rel_open ,          // Work area; input of  computed changes

   double *rel_high ,

   double *rel_low ,

   double *rel_close

   )

{

   int i, j, icase ;

   double dtemp ;

   if  (preserve_OO)

      preserve_OO = 1 ;

   i = nc-1-preserve_OO ;   // Number remaining to be shuffled

   while (i > 1) {                   // While at least 2 left to shuffle

      j = (int) (unifrand() * i) ;

      if  (j >= i)                        // Should not happen, but be safe

         j = i - 1 ;

      --i ;

      dtemp = rel_open[i+preserve_OO] ;

      rel_open[i+preserve_OO] = rel_open[j+preserve_OO] ;

      rel_open[j+preserve_OO] = dtemp ;

      } // Shuffle the close-to-open changes
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In the previous code, we note the effect of preserve_OO. If it is input zero, we shuffle 

all nc–1 close-to-open inter-bar changes. But if it is one, we have one less change to 

shuffle, and we offset all shuffling by one. This preserves the first inter-bar close-to-open 

change, meaning that the open of the second bar, which is the opening price of the first 

possible “next bar” trade, remains unchanged for all permutations.

Next we shuffle the intra-bar changes. We must shuffle the high, low, and close identically 

to preserve the high and low bounding the open and close. The effect of preserve_OO is  

slightly different here. Instead of preserving the first close-to-open change, it preserves the 

last open-to-close change. Because the last close is always preserved, allowing the last bar’s 

open-to-close difference to change would change the open of the last bar.

   i = nc-1-preserve_OO ; // Number remaining to be shuffled

   while (i > 1) {        // While at least 2 left to shuffle

      j = (int) (unifrand() * i) ;

      if  (j >= i)         // Should never happen, but be safe

         j = i - 1 ;

      --i ;

      dtemp = rel_high[i] ;

      rel_high[i] = rel_high[j] ;

      rel_high[j] = dtemp ;

      dtemp = rel_low[i] ;

      rel_low[i] = rel_low[j] ;

      rel_low[j] = dtemp ;

      dtemp = rel_close[i] ;

      rel_close[i] = rel_close[j] ;

      rel_close[j] = dtemp ;

      } // Shuffle the open-to-close changes

Rebuilding the price history using the shuffled changes is trivial.

   for (icase=1 ; icase<nc ; icase++) {

      open[icase] = close[icase-1] + rel_open[icase-1] ;

      high[icase] = open[icase] + rel_high[icase-1] ;

      low[icase] = open[icase] + rel_low[icase-1] ;

      close[icase] = open[icase] + rel_close[icase-1] ;

      }

}
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�Example: P-Value and Partitioning
The file MCPT_TRN.CPP contains an example of computing a training p-value (pages 286 

and 291) and total return partitioning (page 294) for a primitive moving-average crossover 

system trained on OEX. The program is executed with the following command:

MCPT_TRN MaxLookback Nreps FileName

Let’s break this command down:

•	 MaxLookback: Maximum moving-average lookback

•	 Nreps: Number of MCPT replications (hundreds or thousands)

•	 FileName: Name of market file (YYYYMMDD Price)

The following Figures 7-1 and 7-2 is the output of this program when executed 

with the S&P 100 and S&P 500 indexes. It’s fascinating what extremely different results 

are obtained. Please refer to the previously cited pages for detailed explanations of the 

computed quantities. An overview of the program’s code begins on the next page.

Figure 7-1.  Output of the MCPT_TRN program for OEX

Figure 7-2.  Output of the MCPT_TRN program with SPX
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The moving-average crossover system is the same as we have seen in prior examples. 

It computes short-term and long-term moving averages (where the lookbacks are 

optimizable) and takes a long position when the short term MA is above the long-term 

MA, and it takes a short position when the reverse is true. We focus here on computation 

of the performance figures.

First, we compute the total trend and divide it by the number of individual returns to 

get the trend per individual return. Remember that the first price on which a valid trade 

decision can be made is the “basis” price, with permutation beginning on the change 

from it to the next bar. By starting at this point, we ensure that all possible individual 

trade returns are subject to permutation, and we also guarantee that no change prior 

to a possible trade can be permuted into the mix, which could change the total trend. 

Then we call the preparation routine listed on page 299 to compute and save the price 

changes.

trend_per_return=(prices[nprices-1]-prices[max_lookback-1]) / (nprices-max_lookback) ;

prepare_permute ( nprices-max_lookback+1 , prices+max_lookback-1 , changes ) ;

In the MCP loop, we permute on all but the first pass. We will need the number of 

long and short returns from the optimized system to compute the trend component. For 

the first, unpermuted trial save all “original” results.

for (irep=0 ; irep<nreps ; irep++) {

   if  (irep)   // Shuffle

      do_permute ( nprices-max_lookback+1 , prices+max_lookback-1 , changes ) ;

   opt_return = opt_params ( nprices , max_lookback , prices ,

                                             &short_lookback , &long_lookback , &nshort , &nlong ) ;

   trend_component = (nlong - nshort) * trend_per_return ;  // Equation 7-1 on page 297

   if  (irep == 0) {            // This is the original, unpermuted trial

      original = opt_return ;

      original_trend_component = trend_component ;

      original_nshort = nshort ;

      original_nlong = nlong ;

      count = 1 ;   // Algorithm on Page 291

      mean_training_bias = 0.0 ;

      }
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   else {           // This is a permuted trial

      training_bias = opt_return - trend_component ;        // Equation 7-3 on page 297

      mean_training_bias += training_bias ;                      // Average across permutations

      if  (opt_return >= original)                                           // Algorithm on Page 291

         ++count ;

      }

   }     // For all replications

mean_training_bias /= (nreps - 1) ;                                  // First trial was unpermuted

unbiased_return = original - mean_training_bias ;          // Equation 7-4 on page 297

skill = unbiased_return - original_trend_component ;      // Equation 7-5 on page 297

�Example: Training with Next Bar Returns
The file MCPT_BARS.CPP contains a demonstration program that does the same p-value 

computation and total return partitioning as the prior example. However, instead of 

using a single price series, the price data is day bars (although it could be bars of any 

length). Moreover, it uses a more conservative method for computing returns. The 

return of each trade decision is the (log) price change from the open of the next bar to 

the open of the following bar. Finally, it is a different trading system, a simple mean-

reversion strategy rather than moving-average crossover. The program is invoked with 

the following command:

MCPT_BARS MaxLookback Nreps FileName

Let’s break this command down:

•	 MaxLookback: Maximum moving-average lookback

•	 Nreps: Number of MCPT replications (hundreds or thousands)

•	 FileName: Name of market file (YYYYMMDD Open High Low Close)

Figure 7-3 shows the output of this program for the S&P 100 index, and Figure 7-4 

shows it for S&P 500.
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As with the prior example, we see a profound difference in performance in these two 

markets. It’s not at all surprising that, in any market, a primitive trend-following system 

such as MA XOVER would perform very differently from a mean reversion system. But what 

is surprising is how incredibly differently they perform in these two markets that would 

seem to be similar in composition. In fact, the p-value for SPX is almost 1.0, a stunning 

value. Clearly, this market is anti-mean-reversion! This would certainly square with this 

market’s trend-following p-value of 0.001, the minimum possible with 1000 replications, 

an equally stunning value. But wow. I mean, wow. The only other consideration is that the 

SPX market used in this example starts its history several decades earlier(1962) than the 

OEX market (1982), so earlier data may play a role. Plotting an equity curve of each system 

in each market would be most revealing. If you beat me to it, send me an email.

Because this trading system uses a slightly different method for computing returns, 

it’s worth examining both the system itself and the associated MCPT code. We begin 

with the trading system. It computes a simplistic long-term trend as the current close  

minus the close a user-specified fixed number of bars earlier. This is typically a large  

number, a thousand or several thousand bars. It also looks at the current price drop,  

the (log) price of the prior bar minus that of the current bar. If the long-term trend is 

Figure 7-3.  Output of the MCPT_BARS program for OEX

Figure 7-4.  Output of the MCPT_BARS program for SPX
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above an optimizable threshold and the price drop is also above its own optimizable 

threshold, a long position is taken for the next bar. The philosophy behind this system is 

that a sudden sharp drop in the price of an uptrending market is a temporary aberration 

that will be corrected on the next bar. Here is the calling convention for this subroutine:

double opt_params (        // Returns total log profit starting at lookback

   int ncases ,                   // Number of  log prices

   int lookback ,                 // Lookback for long-term rise

   double *open ,               // Log of  open prices

   double *close ,              // Log of  close prices

   double *opt_rise ,         // Returns optimal long-term rise threshold

   double *opt_drop ,        // Returns optimal short-term drop threshold

   int *nlong                      // Number of  long returns

   )

We will use best_perf to keep track of the best total return. The outermost pair of loops 

try a large variety of thresholds for the long-term uptrend and the immediate price drop.

   best_perf  = -1.e60 ;                              // Will be best performance across all trials

   for (irise=1 ; irise<=50 ; irise++) {          // Trial long-term rise

      rise_thresh = irise * 0.005 ;

      for (idrop=1 ; idrop<=50 ; idrop++) {   // Trial short-term drop

         drop_thresh = idrop * .0005 ;

Given this pair of trial thresholds, we pass through the valid market history and 

cumulate the total return. We also count the number of long positions taken, because 

we will need this to compute the trend component. We begin this cumulation at the 

lookback distance, as we will need this much history to compute the long-term trend. We 

must stop two bars before the end of the dataset because the conservatively computed 

return for a trade is the (log) price change from the open of the bar after the decision is 

made, to the open of the following bar.

         total_return = 0.0 ;    // Cumulate total return for this trial

         nl = 0 ;                       // Will count long positions

         for (i=lookback ; i<ncases-2 ; i++) {      // Compute performance across history

            rise = close[i] - close[i-lookback] ;     // Long-term trend

            drop = close[i-1] - close[i] ;                // Immediate price drop
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            if  (rise >= rise_thresh  &&  drop >= drop_thresh) {

               ret = open[i+2] - open[i+1] ;            // Conservative return

               ++nl ;

               }

            else

               ret = 0.0 ;

            total_return += ret ;

            } // For i, summing performance for this trial

All that remains is the trivial bookkeeping task of keeping track of the optimal 

parameters and their associated results.

         if  (total_return > best_perf) {  // Did this trial param set break a record?

            best_perf  = total_return ;

            *opt_rise = rise_thresh ;

            *opt_drop = drop_thresh ;

            *nlong = nl ;

            }

         } // For idrop

      } // For irise

   return best_perf  ;

}

The general actions of the permutation tests are identical to those in the prior section. 

However, because we are computing returns using the open of the next two bars, offsets 

are a little different. The definition of lookback in this system is also slightly different from 

the max_lookback of the prior system, so that also introduces some differences. Consider the 

trend per return and the preparation routine. The first trade decision can be made at the 

bar with index lookback, so we call prepare_permute() with this offset to all four price arrays. 

This bar will remain fixed; permutation starts at the next bar, which is also where trade 

returns start. A total of nprices–lookback bars are available to the permutation routine. The 

first possible trade can open at bar lookback+1 and close at the open of the last bar, nprices–1.

   trend_per_return = (open[nprices-1] - open[lookback+1]) / (nprices - lookback - 2) ;

   prepare_permute ( nprices-lookback , open+lookback , high+lookback ,

                    low+lookback , close+lookback , rel_open , rel_high , rel_low , rel_c lose ) ;
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All remaining computations are identical to what we saw in the prior section, so 

there is no point in repeating them here. And of course, the complete source code is 

available in MCPT_BARS.CPP.

�Example: Permuting Multiple Markets
On page 179 we examined the program whose code is available in CHOOSER.CPP. 

In that section we focused on how to use nested walkforward to get out-of-sample 

returns in a selection-bias situation. Permutation was ignored then. Now we return to 

that program, focusing this time on the permutation test that evaluates the probability 

that OOS results at least as good as those obtained could have been obtained by 

random good luck. Note that this is not the selection-bias-permutation algorithm 

shown on page 292. No example of that algorithm is given in this book, as it is a 

straightforward extension of the simpler algorithm and well documented in the flow 

chart. Numerous source code examples of this algorithm can be found in my book Data 

Mining Algorithms in C++. The real purpose of this section is to provide an example 

of permuting multiple markets simultaneously to evaluate a multiple-market trading 

system, as well as demonstrating how permutation should be split into segments in a 

walkforward situation that contains selection.

The multiple-market permutation routines were discussed in detail starting on  

page 301, and it wouldn’t hurt to review that section. For convenience, here is the calling 

list for prepare_permute(); that for do_permute() is identical:

void prepare_permute (

   int nc ,                        // Number of  cases total (not just starting at offset)

   int nmkt ,                    // Number of  markets

   int offset ,                   // Index of  first case to be permuted (>0)

   double **data ,          // Input of  nmkt by nc price matrix

   double **changes      // Work area; returns computed changes

   )

We already saw an example of splitting market history into permutation groups using 

a simple walkforward situation. Our motivation was the fact that the initial training fold 

does not appear in any OOS fold in the original, unpermuted run. Thus, we must ensure 

that this is also the case for the permuted trials, in case that initial period contains data 
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that is unusual in trend, volatility, or some other important property. We must not allow 

any unusual data to leak into a permuted OOS fold.

The situation is more complex when we are doing nested walkforward, as in the 

CHOOSER program. Now we have two OOS folds to deal with. These are the two 

quantities we will have to consider:

IS_n: Although no actual training occurs at the outer level of 

walkforward nesting in CHOOSER, this is the number of cases 

that play the role of “training set” in the program. Of particular 

importance in the context of permutation is the fact that in the 

original, unpermuted trial, none of these cases will ever appear 

in either level of OOS fold results. Thus, these cases must never 

be allowed to permute into future OOS folds and potentially 

contaminate them with unusual changes.

OOS1_n: This is the number of cases in the inner level of 

walkforward OOS folds. The outer OOS folds, those in which we 

are ultimately interested because they are fully OOS, begin after 

IS_n+OOS1_n cases. The cases in the first inner walkforward OOS 

fold, those from IS_n up to (but not including) IS_n+OOS1_n, must 

not permute into the outer folds, because they are not there in the 

unpermuted trial.

With these thoughts in mind, we split the market history into three separate 

segments and permute each separately. It is an open question as to the wisdom (or lack 

thereof) of permuting the first “training” fold in general. I choose to do so here, primarily 

for pedagogical purposes, though I am not aware of any pros or cons. My own opinion, 

unsupported by any facts, is that on average it makes no difference one way or the other.

The first line of the following code prepares to permute this first “training” fold, 

perhaps unnecessarily. The second line handles the first inner OOS fold, and the last line 

handles the outer OOS fold area, which is our area of ultimate interest. For permutation, 

the do_permute() routine is called with the same parameters. All other operation is 

identical to what we have seen before.

prepare_permute( IS_n, n_markets, 1 , market_close , permute_work ) ;

prepare_permute( IS_n+OOS1_n, n_markets , IS_n, market_close , permute_work ) ;

prepare_permute( n_cases, n_markets , IS_n+OOS1_n, market_close , permute_work);

Chapter 7  Permutation Tests



318

We now reproduce the output of this program that was presented earlier, before 

permutation tests had been discussed. The meanings of the computed p-values should 

now be clear.

Mean =   8.7473

25200 * mean return of each criterion, p-value, and percent of times 

chosen...

   Total return   17.8898   p=0.076   Chosen 67.8 pct

   Sharpe ratio   12.9834   p=0.138   Chosen 21.1 pct

  Profit factor   12.2799   p=0.180   Chosen 11.1 pct

25200 * mean return of final system = 19.1151 p=0.027

Observe that the p-values for the three individual performance criteria are 

only moderately significant, with Total return being the best at 0.076. But for the 

final algorithm that uses nested walkforward to test not only market selection but 

performance criterion selection as well, the p-value of 0.027 is quite impressive.
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