
Testing and
Tuning Market
Trading Systems

Algorithms in C++
—
Timothy Masters

Testing and Tuning Market
Trading Systems

Algorithms in C++

Timothy Masters

Testing and Tuning Market Trading Systems: Algorithms in C++

ISBN-13 (pbk): 978-1-4842-4172-1			 ISBN-13 (electronic): 978-1-4842-4173-8
https://doi.org/10.1007/978-1-4842-4173-8

Library of Congress Control Number: 2018961186

Copyright © 2018 by Timothy Masters

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484241721. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Timothy Masters
Ithaca, NY, USA

https://doi.org/10.1007/978-1-4842-4173-8

iii

Chapter 1: �Introduction��� 1

The Target Audience, and Overview of Contents�� 1

What’s in This Book�� 1

What’s Not in This Book�� 3

About Trading Systems�� 4

Market Prices and Returns��� 5

Two Types of Automated Trading Systems�� 6

The Agony of Believing the Computer�� 7

Future Leak Is More Dangerous Than You May Think��� 7

The Percent Wins Fallacy��� 8

Chapter 2: �Pre-optimization Issues��� 11

Assessing and Improving Stationarity�� 11

The STATN Program�� 13

Improving Location Stationarity by Oscillating��� 17

Extreme Stationarity Induction��� 19

Measuring Indicator Information with Entropy�� 20

Computing the Relative Entropy of an Indicator��� 22

Entropy Impacts Predictive Model Quality�� 24

Improving the Entropy of an Indicator�� 25

Monotonic Tail-Only Cleaning��� 29

About the Author��� vii

About the Technical Reviewer�� ix

Table of Contents

iv

Chapter 3: �Optimization Issues��� 35

Regularizing a Linear Model�� 35

Overview of the Regularized Model�� 36

Beta Adjustment with Guaranteed Convergence�� 40

Differential Case Weighting�� 41

Rapid Computation with Covariance Updates�� 42

Outline of the Beta Optimization Process��� 46

Code for Beta Optimization��� 48

Descending a Lambda Path�� 55

Optimizing Lambda with Cross Validation�� 59

The CD_MA Program�� 63

Making a Linear Model Nonlinear�� 67

Differential Evolution: A Universal Nonlinear Optimizer��� 69

The DIFF_EV.CPP Routine for Differential Evolution�� 75

Chapter 4: �Post-optimization Issues��� 91

Cheap Bias Estimates�� 91

The StocBias Class��� 92

Cheap Parameter Relationships��� 96

Parameter Sensitivity Curves��� 108

Putting It All Together Trading OEX��� 112

Chapter 5: �Estimating Future Performance I: Unbiased Trade Simulation������������� 121

In-Sample and Out-of-Sample Performance��� 121

The TrnBias Program to Demonstrate Training Bias��� 123

Selection Bias��� 124

Walkforward Analysis��� 129

Future Leak by Unobvious IS/OOS Overlap��� 131

Cross-Validation Analysis��� 143

Special Precautions for Algorithmic Trading��� 151

Comparing Cross Validation with Walkforward: XVW��� 156

Computationally Symmetric Cross Validation��� 158

What Does This Test Actually Measure?��� 163

Table of Contents

v

Nested Walkforward Analysis��� 172

The Nested Walkforward Algorithm�� 174

A Practical Application of Nested Walkforward�� 179

An Example Using S&P 100 Components��� 187

Cross Validation Nested Inside Walkforward�� 188

Chapter 6: �Estimating Future Performance II: Trade Analysis������������������������������� 193

Handling Dynamic Trading Systems��� 193

Unknown Lookahead to Single Bars, Revisited�� 194

Profit per Bar? Per Trade? Per Time?��� 195

Analyzing Completed Trade Returns Is Problematic��� 196

The PER_WHAT Program�� 198

A Lower Bound for Mean Future Returns��� 209

Brief Digression: Hypothesis Tests��� 210

So, How Do We Use This Probability?��� 212

Parametric P-Values��� 216

Parametric Confidence Intervals�� 218

Lower Confidence Bounds and Hypothesis Tests��� 222

Bootstrap Confidence Intervals�� 222

The Pivot and Percentile Methods�� 223

The BCa Bootstrap Algorithm�� 225

The BOOT_CONF.CPP Subroutines�� 227

The BOUND_MEAN Program and Results with SPX�� 232

Beware of Bootstrapping Ratios��� 238

Bounding Future Returns��� 241

Deriving a Lower Bound from Empirical Quantiles��� 242

Confidence in the Computed Lower Bound�� 244

What About an Upper Bound on Future Returns?��� 247

The CONFTEST Program: Overview�� 248

The CONFTEST Program: Code��� 251

The BND_RET Program��� 257

Table of Contents

vi

Bounding Drawdown�� 262

Intuition Gone Wrong�� 263

Bootstrapping Drawdown Bounds�� 265

The DRAWDOWN Program�� 267

Experiments with the DRAWDOWN Program�� 277

The CHOOSER_DD Program�� 279

Chapter 7: �Permutation Tests�� 283

Overview of Permutation Testing��� 283

Testing a Fully Specified Trading System��� 285

Testing the Training Process��� 286

Walkforward Testing a Trading System Factory�� 287

Permutation Testing of Predictive Models�� 289

The Permutation Testing Algorithm�� 291

Extending the Algorithm for Selection Bias�� 292

Partitioning Total Return of a Trading System�� 294

Essential Permutation Algorithms and Code�� 298

Permuting Simple Market Prices�� 299

Permuting Multiple Markets with an Offset�� 301

Example: P-Value and Partitioning��� 310

Example: Training with Next Bar Returns��� 312

Example: Permuting Multiple Markets��� 316

�Index�� 319

Table of Contents

vii

About the Author

Timothy Masters received a PhD in mathematical statistics with a specialization in

numerical computing. Since then he has continuously worked as an independent

consultant for government and industry. His early research involved automated

feature detection in high-altitude photographs while he developed applications for

the prediction of floods and droughts, the detection of hidden missile silos, and the

identification of threatening military vehicles. Later he worked with medical researchers

in the development of computer algorithms for distinguishing between benign and

malignant cells in needle biopsies. For the last 20 years he has focused primarily on

methods for evaluating automated financial market trading systems. He has authored

the following books on practical applications of predictive modeling: Deep Belief Nets

in C++ and CUDA C: Volumes 1–3 (Apress, 2018); Assessing and Improving Prediction

and Classification (Apress, 2018), Data Mining Algorithms in C++ (Apress, 2018); Neural,

Novel, and Hybrid Algorithms for Time Series Prediction (Wiley, 1995); Advanced Algorithms

for Neural Networks (Wiley, 1995); Signal and Image Processing with Neural Networks

(Wiley, 1994); and Practical Neural Network Recipes in C++ (Academic Press, 1993).

ix

About the Technical Reviewer

Jason Whitehorn is an experienced entrepreneur and

software developer and has helped many oil and gas

companies automate and enhance their oilfield solutions

through field data capture, SCADA, and machine learning.

Jason obtained his BS in computer science from Arkansas

State University, but he traces his passion for development

back many years before then, having first taught himself to

program BASIC on his family’s computer while still in

middle school.

When he’s not mentoring and helping his team at work, writing, or pursuing

one of his many side projects, Jason enjoys spending time with his wife and four

children and living in the Tulsa, Oklahoma, region. You can learn more about Jason at

https://jason.whitehorn.us.

https://jason.whitehorn.us/

1
© Timothy Masters 2018
T. Masters, Testing and Tuning Market Trading Systems, https://doi.org/10.1007/978-1-4842-4173-8_1

CHAPTER 1

Introduction
Before we delve into the meat (or tofu, if you prefer) of this book, we should be clear on

what you will and will not find here, as well as what degree of preparation is expected

of readers.

�The Target Audience, and Overview of Contents
This book is intended for readers who have a modest statistics background (Statistics

101 is plenty), have some programming skill in any language (C++ with a strong bent

toward traditional C is used in the examples here), and are interested in trading financial

markets with a degree of mathematical rigor far beyond that of most traders. Here you

will find a useful collection of algorithms, including sample code, that will help you

tweak your ideas into trading systems that have above-average likelihood of profitability.

But there are many things that you will not find in this book. We begin with an overview

of the material included in this book.

�What’s in This Book
The following topics are covered in this book:

•	 If your system involves optimization of parameters, and most do,

you will learn how to determine whether your optimized system has

captured authentic market patterns or whether it has simply learned

random noise patterns that will never again appear.

•	 You will learn how to modify linear regression in a way that makes

it even less susceptible to overfitting than it already is and that, as a

bonus, separates predictors into those that are valuable and those

that are worthless. You will also learn how to modify linear regression

to enable its use in moderately nonlinear situations.

2

•	 You will discover an extremely general and powerful nonlinear

optimization algorithm that is applicable to both predictive-model-

based trading systems and traditional algorithmic systems.

•	 All trading systems assume a degree of consistency in the market

being traded; if the pattern on which your system is based has

occurred regularly over recent history, we must assume that this

same pattern will continue into at least the near future. Some trading

systems are robust against moderate changes in market patterns,

while other systems are rendered worthless by even tiny changes in

market patterns. You will learn how to assess the degree to which

your system is robust against such changes.

•	 If you have designed your own proprietary indicators, you will learn

how to confirm that they are reasonably stationary (a critical property

for any effective indicator) or massage them into stationarity if they

are not. You will also learn how to compute them so as to maximize

their information content, minimize their noise, and supply them

to your trading system in an effective, efficient manner so as to

maximize their utility.

•	 Most trading system developers are familiar with walkforward

testing. But not so many are aware that ordinary walkforward

algorithms are often insufficient for the correct validation of trading

system candidates and can produce dangerously optimistic results

for subtle reasons. You will learn how to embed one walkforward

algorithm inside a second layer of walkforward analysis or perhaps

embed a layer of cross validation inside a walkforward analysis. This

“validation-within-validation” scenario is often not only the best way

to test a trading system but the only truly correct way.

•	 You will learn how estimate the range of possible future profits that

your system can be expected to produce. If you discover that your

system has almost certain future profitability but there is a high

probability that this profit will be small relative to the risk incurred,

you will know that your system is not yet ready to be traded.

•	 You will learn how to estimate the probability of catastrophic

drawdown, even when your system is operating “correctly.”

Chapter 1 Introduction

3

•	 You will learn about rigorous statistical testing algorithms that are

resistant to the occasional large wins and losses that invalidate many

“traditional” validation algorithms.

•	 Many trading system developers prefer to use the “spaghetti-on-the-

wall” approach to trading system development. Although frequently

scorned, this is actually a legitimate approach, as long as it is done

intelligently. You will learn how to determine whether the “best” of

numerous competing systems is truly worthwhile.

�What’s Not in This Book
The following topics are not covered in this book:

•	 This book is not an “Introduction to Statistics for Market Traders”

type of book. It is assumed that the reader is already familiar with

concepts such as mean and standard deviation, normal distribution,

p-values from hypothesis tests, and so forth. Nothing more advanced

than these concepts is required; the advanced statistical techniques

presented here are built up from basic ideas that anyone who’s

passed Statistics 101 or even a good statistics for psychology course

can handle. But if you have no idea what a standard deviation is, you

will find this book rough going.

•	 This is also not an “Introduction to Trading Financial Markets” book.

It is assumed that you know the meaning of terms such as opening

and closing a trade, long and short positions, and mean return per

trade. If you are totally new to trading financial markets, you need to

study background material before tackling this book.

•	 You will find little or nothing in the way of actual, proven trading

systems here. Those are a dime a dozen and usually worth the price.

But if you have your own idea for a trading system, you will learn how

to implement, test, and tweak it so as to maximize its profit potential.

•	 You will find no top-secret super-duper surefire indicators in this

book. The few indicators presented are either common sense or

widely available in the public domain. But if you have your own ideas

for indicators, you will learn how to maximize their utility.

Chapter 1 Introduction

4

�About Trading Systems
As different testing procedures are presented in this text, they will necessarily be

demonstrated in the context of various trading systems. Please note the following items

of interest:

•	 I am not endorsing any of these systems as money-makers. Rather,

I am keeping the systems as simple as possible so that the focus can

be on their testing, not on their practical utility. This book assumes

that the reader has his or her own ideas for trading systems; the goal

here is to provide advanced statistical methods for tweaking and

rigorously testing existing systems.

•	 All the trading systems used for demonstrations assume that we

are working with day bars, but this is never a requirement. Bars can

be any length, from a fraction of a second to months. In fact, most

demonstrations use only the open or close of each bar, so applying

these algorithms to trading tick data is feasible as well. Days bars are

simply most convenient, and test data is most readily available as

day bars.

•	 Most of the demonstration systems open and close trades on the

close of a bar. Naturally, in real life this is difficult or impossible; a

more fair and conservative approach is to make a trade decision

on the close of a bar and open or close the trade at the open of the

next bar. But that would add needless confusion to the algorithms

shown here. Remember, our goal is to present statistical algorithms

in the most straightforward context, keeping the spotlight on

the statistical test. In most cases, small modifications to the

implementation do not materially change the results of rigorous

statistical tests.

•	 In these tests, trade costs (slippage and commissions) are

deliberately omitted, again to keep the focus on the statistical test

without added confusion. The supplied code and accompanying

description make clear how trade cost can be incorporated into the

computation if desired.

Chapter 1 Introduction

5

�Market Prices and Returns
Most equity markets cover a wide range of prices, perhaps beginning their life trading at

a few dollars a share and trading today at hundreds or thousands of dollars a share after

split adjustment. When we compute the return of a trade, we don’t dare just subtract

prices at the open and close of a trade. A $1 move from $1 to $2 is enormous, while a

move from $150 to $151 is almost trivial. Thus, many people compute percent moves,

dividing the price change by the starting price and multiplying by 100. This solves the

scale problem, and it is intuitive. Unfortunately, it has a problem that makes it a poor

method in many statistical analyses.

The problem with percent moves is that they are not symmetric. If we make

10 percent on a trade and then lose 10 percent on the next trade, we are not back where

we started. If we score a move from 100 to 110 but then lose 10 percent of 110, we are

at 99. This might not seem serious, but if we look at it from a different direction, we

see why it can be a major problem. Suppose we have a long trade in which the market

moves from 100 to 110, and our next trade moves back from 110 to 100. Our net

equity change is zero. Yet we have recorded a gain of 10 percent, followed by a loss of

9.1 percent, for a net gain of almost 1 percent! If we are recording a string of trade

returns for statistical analysis, these errors will add up fast, with the result that a

completely worthless trading system can show an impressive net gain! This will

invalidate almost any performance test.

There is a simple solution that is used by professional developers and that I will use

throughout this book: convert all prices to the log of the price and compute trade returns

as the difference of these logs. This solves all of the problems. For example, a trade that

captures a market move from 10 to 11 is 2.39789–2.30258=0.09531, and a trade that

scores a move from 100 to 110 is 4.70048–4.60517=0.09531. If a trade moves us back from

110 to 100, we lose 0.09531 for a net gain of zero. Perfect.

A nice side benefit of this method is that smallish log price changes, times 100, are

nearly equal to the percent change. For example, moving from 100 to 101, a 1 percent

change, compares to 100*(4.61512–4.605)=0.995. Even the 10 percent move mentioned

earlier maps to 9.531 percent. For this reason, we will treat returns computed from logs

as approximate percent returns.

Chapter 1 Introduction

6

�Two Types of Automated Trading Systems
Originally, all forms of automated market trading were what might be called algorithmic

or rule-based. The system developer comes up with a set of rigorously defined rules

that guided the opening and closing of positions. The rules might state that if some

combination of conditions becomes true, one would open a long position and hold that

position until some other combination of conditions becomes true. One classic chestnut

of algorithmic trading is a moving-average crossover system. One computes short-term

and long-term moving averages, takes a long position if the short-term MA is above

the long-term MA, and takes a short position otherwise. Training this primitive trading

system is performed by finding the short-term and long-term lookbacks that provide

optimal performance on a historical dataset. Algorithmic systems, many involving

dozens of conditions, are still in widespread use today.

In more recent times, many developers (including myself) have formed the opinion

that model-based systems are more powerful, despite their common disadvantage that

they frequently involve blind trust in black boxes whose inner workings are largely

unfathomable. In model-based automated trading we compute one or more (usually

many more) indicators that are variables that look backward in time and measure market

characteristics. These might include trend, volatility, short-term cyclic behavior, and so

forth. We also compute a target variable that looks into the future and describes near-

term market behavior. Targets might be things such as the size and direction of market

movement over the next bar or few bars. A target might also be a binary flag that tells us

whether the market first touches a predefined profit goal before touching a protective

stop. We then train a predictive model to estimate the value of the target variable,

given the values of the indicator variables. To trade this system, we present the trained

model with current values of the indicators and consider the model’s prediction. If the

prediction is strong enough (indicating confidence), we take a market position in accord

with the predicted move.

The advantage of model-based trading over rule-based algorithmic trading is that we

can take advantage of the many recent developments in the field of artificial intelligence,

letting sophisticated programs running on powerful computers discover trading systems

that are perhaps so complex or obscure that no human could possibly hope to discover

and program in explicit rules. Of course, this comes at a high price: we often have no

idea exactly what “rules” the model has discovered, and we must accept the model’s

decisions on blind faith.

Chapter 1 Introduction

7

Because both styles of trading system development are in widespread use today, this

text will cater to both schools of thought. Unavoidably, there are a few statistical tests

presented here that are applicable to only one or the other. But an attempt is always

made to design testing procedures that can be used by practitioners in either style.

�The Agony of Believing the Computer
For many people, especially seasoned seat-of-the-pants traders, the most difficult part of

moving toward automated trading is accepting the trade decisions of a computer when

they conflict with their gut, not to mention their many years of successful trading. I’ll give

one specific example from my own personal experience. I had developed on contract a

short-term intraday trading system. My extremely thorough, rigorous statistical testing of

the system showed unequivocally that its profits were maximized when it was operated

by taking numerous small profits while running the risk of occasional large losses (a very

loose protective stop). This grated on the trader responsible for calling signaled trades

onto the floor. He constantly bombarded me with his mantra of “Cut your losses and let

your wins run.” That’s a truism for some trading styles but not for this particular system.

He couldn’t help himself; he kept overruling the computer’s trade decisions. The system

would call for a winning trade to be closed, but he would keep it open, hoping for an

even larger gain. Or the market would move against an open position, and he would

close it out for a small loss long before the system’s stop was hit. He kept telling me how

much money would have been lost if he had let it keep sliding instead of cutting the loss

early. The fact that the computer simulation that ran in parallel made a lot of money,

while his modified version made much less, had no impact on his opinion. He’d been

a successful discretionary trader for many years, he knew how to trade, and no #$%^

computer was going to tell him otherwise. Our relationship never succeeded. The moral

of the story: forget automated trading if you don’t have the guts to believe in it.

�Future Leak Is More Dangerous Than You May Think
Future leak is the illegal leakage of future knowledge into a testing procedure. It happens

in the development and testing of a trading system when some aspect of future market

behavior finds its way into a simulation of how a trading system will perform in real life.

Since we will obviously not know the future when we are trading our system, this leakage

results in optimistic performance estimates.

Chapter 1 Introduction

8

More than once I have been amazed at how casually otherwise serious system

developers take this form of cheating. I have had intelligent, educated developers

patiently explain to me that yes, they do understand that some small degree of future

knowledge took part in their performance simulation. But then they go to great pains

to explain how this “unavoidable” leakage is so tiny that it is insignificant and could not

possibly impact their results to any material degree. Little do they know. This is why a

recurring focus of this text is methods for avoiding even the tiniest touch of future leak.

In my early years of system development, I was often amazed at how subtle this leakage

can be.

Just to pound the point home, Figure 1-1 shows the equity curve of a nearly random

Win1/Lose 1 trading system with just a 1 percent winning edge. This curve, which would

be on average flat if it were truly random (worthless), is quite respectable from just this

tiny edge. Future leak is far deadlier than you imagine. Take it seriously.

�The Percent Wins Fallacy
There is a simple mathematical formula, essential to trading system development and

evaluation, that seems to be difficult for many people to accept on a gut level, even if

they understand it intellectually. See Equation 1-1.

	 ExpectedReturn=Win P Win Loss P Loss* *() ()- 	 (1-1)

Figure 1-1.  Equity curve of random system with 1 percent edge

Chapter 1 Introduction

9

This formula says that the expect return on a trade (the return that we would obtain

on average, if this situation were repeated many times) equals the amount we would

win times the probability of winning minus the amount that we would lose times the

probability that we will lose.

It’s easy to accept that if we flip a fair coin, winning a dollar if we get heads and losing

a dollar if we get tails, our expected return is zero; if we were to repeat the coin toss

many times, over the long term our average return per coin toss is zero. It’s also easy to

accept that if the coin is fair and we win two dollars but lose only one dollar, we are in an

enviable position.

Now think about trading a market that is a true random walk; among other

properties, the changes from one bar to the next are all independent of one another and

have zero mean. It is impossible to develop a trading system that has anything other

than zero expectation (ignoring transaction costs, of course). But we can easily shift the

expected size of wins and losses, as well as their frequencies.

For example, suppose we open a long position and set a profit target 1 point above

the entry price and set a stop loss exit 9 points below the entry. Every time we experience

a loss, it will be painfully large, 9 times what we win. But if we execute a large number

of such trades on our hypothetical random market, we will find that we win 9 times

more often than we lose. We win 9/10 of the time. By Equation 1-1, our expected return

per trade is still zero. The takeaway here is that win/loss sizes and probabilities are

inextricably related. If someone brags about how often their trading system wins, ask

them about the size of their wins and losses. And if they brag about how huge their wins

are compared to their losses, ask them how often they win. Neither exists in isolation.

Chapter 1 Introduction

11
© Timothy Masters 2018
T. Masters, Testing and Tuning Market Trading Systems, https://doi.org/10.1007/978-1-4842-4173-8_2

CHAPTER 2

Pre-optimization Issues
�Assessing and Improving Stationarity
In essence, the stationarity of a time series (such as market price changes, indicators,

or individual trade returns) refers to the degree to which its statistical properties

remain constant over time. Statisticians may cringe at such a loose definition, but that

captures the practical meaning of the term. When we use market history to create a

(preferably) profitable trading system, we are implicitly counting on the historical

patterns that produced backtesting profitability to remain in force for at least the near-

term future. If we are not willing to make that assumption, we might as well give up

trading system design.

There are many aspects of this concept that are particularly relevant to automated

trading of financial markets.

•	 Markets, and hence indicators and trade returns derived from market

history, are inherently nonstationary. Their properties change

constantly. The only questions are these: How bad is it? Can we deal

with it? Can we fix things to make it better?

•	 There is no point in performing any rigorous traditional statistical

tests for nonstationarity. Virtually any test we perform will indicate

very statistically significant nonstationarity, so we need not bother;

we know the answer already.

•	 Nonstationarity can take an infinite number of forms. Perhaps the

variance is quite constant over time, while the mean wanders. Or vice

versa. Or skewness may change. Or…

12

•	 Some types of nonstationarity may be harmless to us, while others

may be devastating to our trading system. One trading system may

have a weakness for one type of nonstationarity, while another

trading system may be hobbled by something different. As much as

possible, we must consider the context when we evaluate stationarity.

•	 The best way to evaluate the ruggedness of a finished trading system

is to use the progressive walkforward algorithm given on page 142.

But we are going to ignore that last point here. This chapter is dedicated to issues that

we should consider before progressing too far into the development of a trading system.

Progressive walkforward comes at the end of development, one of several final validation

procedures.

Traditional statistical tests for nonstationarity are ruled out, so what should you

do? You absolutely must carefully study plots of your indicators. You may be amazed

at what you see. Their central tendency may slowly wander up and down, rendering

predictive models useless at one or both extremes. Day-to-day wandering is normal,

but slow wandering, or slow changes in variance, is a serious problem. If an indicator

spends months or even years out in left field before returning to more “normal” behavior,

a model may shut down or make false predictions for these extended periods of time.

We must be on guard against this disastrous situation that can easily arise if we are not

careful.

Sometimes we may not have indicators to plot. The STATN program shown in the

next section is a valuable alternative. But it is important to understand the underlying

problem with nonstationarity. It is extremely difficult to design an automated trading

system that works consistently well year after year with no tweaking or even a complete

redesign. Markets always change. The trap we can easily fall into is to design a system

that appears to perform well in a backtest but whose encouraging performance is solely

because of outstanding performance over a favorable segment of our backtest history.

Thus, we must study the equity curve of our system. If it shows excellent performance for

just a fraction of the time and mediocre performance elsewhere, we should ponder the

situation carefully. And of course this is especially true if the excellent performance was

some time ago and recent performance has deteriorated!

The key point is that when we develop a trading system under some market condition,

we can expect continued good performance only as long as that market condition

continues. Therefore, we hope that market conditions change often enough during our

development and testing period so that all possible market conditions are represented.

Chapter 2 Pre-optimization Issues

13

And even if all conditions are represented, slow wandering may cause periodic extended

adverse performance. Long periods of great performance, followed by long periods of

poor performance, can be discouraging.

�The STATN Program
For those of us who crave hard numbers, something more solid than arbitrary decisions

based on eyeballing a plot, there is a good test. I have provided a sample of this algorithm

in the program STATN.CPP. This version reads a market history file and checks the trend

and volatility of the market across time. You can easily modify it by adding other market

properties such as ADX or any custom indicators that you employ.

The principle of this program is simple yet surprisingly revealing of market

anomalies. It’s based on the idea that trading systems developed under certain market

conditions (such as up or down trend, high or low volatility) will likely lose their

profitability under other market conditions. In most situations we want to see these

conditions as reflected in our indicators vary on a regular and reasonably random basis

so that our developed system will have experienced as much as possible the full variety

of conditions that it will encounter when put to use. Slow wandering is the essence of

dangerous nonstationarity; market properties may remain in one state for an extended

period and then change to a different state for another extended period, similarly

impacting our indicators. This makes developing robust models difficult. Roughly

speaking, stationarity equals consistency in behavior.

The program is invoked with the following command:

STATN Lookback Fractile Version Filename

Let’s break this command down:

•	 Lookback: The number of historical bars, including the current bar,

used to compute the trend and volatility of the market.

•	 Fractile: The fractile (0–1) of trend and volatility that serves as the

above/below threshold for gap analysis.

•	 Version: 0 for raw indicators, 1 for differenced raw indicators, >1 for

specified raw minus extended raw. See page 14 for details.

•	 Filename: A market history file in the format YYYYMMDD Open High

Low Close.

Chapter 2 Pre-optimization Issues

14

An example using real market data will appear on page 17. First, we explore a few

code snippets. See STATN.CPP for the full context.

The program passes through the market history, computing a measure of trend

(the slope of the least-squares line) and volatility (average true range). It finds the

quantile corresponding to the specified fractile; 0.5 would be the median. For each bar,

it decides whether the current values of trend and volatility (or their modified values, as

described soon) are less than the quantile versus greater than or equal to the quantile.

Every time the state changes (from above to below or from below to above) it notes how

many bars have passed and keeps a tally. For example, if the state changes on the next

bar, the count is one. If the state changes one bar after the next bar, the count is two, and

so forth. Eleven bins are defined, for bar counts of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, and

greater than 512. When the program ends, it prints the bin counts, one table for the trend

and one for the volatility.

The Version parameter needs a little more explanation, the justification for which will

be deferred to the next section. For now, understand that if the user specifies it as 0, the

trend and volatility indicators are used exactly as calculated. If it is 1, the current value

of each indicator is adjusted by subtracting its value lookback bars ago, making it a classic

oscillator. If it is greater than 1, the current value is adjusted by subtracting the value

using a lookback of Version * Lookback, making it another sort of oscillator. These latter two

versions require an actual lookback greater than the user-specified lookback, as shown

in this code:

 if (version == 0)

 full_lookback = lookback ;

 else if (version == 1)

 full_lookback = 2 * lookback ;

 else if (version > 1)

 full_lookback = version * lookback ;

 nind = nprices - full_lookback + 1 ; // This many indicators

If nprices is the number of price bars, we lose full_lookback–1 of them, getting nind

values of the indicators, as shown in the last line of the previous code.

The following code block shows computation of the (possibly modified) indicators

for trend. That for volatility is similar. For each pass, k is the index of the current value of

the indicator. We have to begin far enough into the indicator history to encompass the

full lookback.

Chapter 2 Pre-optimization Issues

15

 for (i=0 ; i<nind ; i++) {

 k = full_lookback - 1 + i ;

 if (version == 0)

 trend[i] = find_slope (lookback , close + k) ;

 else if (version == 1)

 trend[i] = find_slope (lookback , close + k) –

 find_slope (lookback , close + k - lookback) ;

 else

 trend[i] = find_slope (lookback , close + k) –

 find_slope (full_lookback , close + k) ;

 trend_sorted[i] = trend[i] ;

 }

Sort the values to find the user-specified quantile and then tally the counts in

each bin.

 qsortd (0 , nind-1 , trend_sorted) ;

 k = (int) (fractile * (nind+1)) - 1 ;

 if (k < 0)

 k = 0 ;

 trend_quantile = trend_sorted[k] ;

 gap_analyze (nind , trend , trend_quantile , ngaps , gap_size , gap_count) ;

Prior to calling gap_analyze(), we must do some preparation by providing it with the

boundaries for the gap sizes. Feel free to change them if you want. The analysis code

appears on the next page.

#define NGAPS 11 /* Number of gaps in analysis */

 ngaps = NGAPS ;

 k = 1 ;

 for (i=0 ; i<ngaps-1 ; i++) {

 gap_size[i] = k ;

 k *= 2 ;

 }

Chapter 2 Pre-optimization Issues

16

This routine just keeps a flag, above_below, which is True (1) if the current value

is at or above the threshold, and False (0) if below. For each pass through the loop, if

the indicator is still on the same side of the threshold, the counter is incremented. If it

switches sides, the appropriate bin is incremented, and the counter is reset. Reaching

the end of the array is tantamount to flipping sides, so the last series is counted.

void gap_analyze (

 int n ,

 double *x ,

 double thresh ,

 int ngaps ,

 int *gap_size ,

 int *gap_count

)

{

 int i, j, above_below, new_above_below, count ;

 for (i=0 ; i<ngaps ; i++)

 gap_count[i] = 0 ;

 count = 1 ;

 above_below = (x[0] >= thresh) ? 1 : 0 ;

 for (i=1 ; i<=n ; i++) {

 if (i == n) // Passing end of array counts as a change

 new_above_below = 1 - above_below ;

 else

 new_above_below = (x[i] >= thresh) ? 1 : 0 ;

 if (new_above_below == above_below)

 ++count ;

 else {

 for (j=0 ; j<ngaps-1 ; j++) {

 if (count <= gap_size[j])

 break ;

 }

Chapter 2 Pre-optimization Issues

17

 ++gap_count[j] ;

 count = 1 ;

 above_below = new_above_below ;

 }

 }

}

�Improving Location Stationarity by Oscillating
A simple yet usually effective way to improve the stationarity of an indicator, at least as

far as its central tendency is concerned, is to compute its value relative to some related

“basis” value. The most common and usually most effective method is to subtract a

lagged value, with the lag often (though not necessarily) being the lookback of the

indicator. For example, we might compute the trend of the most recent 20 prices and

subtract from this the value of this indicator 20 bars ago.

A similar but far from identical method is to compute the indicator at the current

time but for two different lookbacks, one short and one long. Subtract the long-term

indicator from the short-term indicator to get a more stationary modified indicator.

Both of these methods do involve a significant trade-off. It may be that the actual

value of the indicator is what carries the important information. The two modifications

just described discard the actual value in favor of a relative value. In my experience,

this latter value usually carries more predictive information than the actual value, and it

certainly has better stationarity in nearly all situations. But this is not universal, and this

trade-off must be kept in mind.

If this trade-off is a concern, bear in mind that the first method, finding the

difference between the current value and the lagged value of an indicator, is the most

“powerful” in the sense that it usually induces the most stationarity while also discarding

the most information about the true current value. The second method is more of a

compromise. Moreover, by adjusting the long-term lookback, one can exert a great

deal of control over that trade-off. Increasing the long-term lookback results in greater

preservation of information about the current value, at the cost of less improvement in

stationarity.

On the next page we see two tables produced by the STATN program with a lookback

of 100 and a fractile of 0.5 (the median) for the S&P 100 index OEX. The top table is for

Chapter 2 Pre-optimization Issues

18

trend, and the bottom is volatility. The first column is the raw indicator; the second is

Version=1, the lagged difference; and the third is Version=3, giving a long-term lookback of

300 bars.

Trend with Lookback=100, Fractile=0.5

 Gap Version=0 Version=1 Version=3

 1 3 1 0

 2 3 1 0

 4 2 2 2

 8 5 2 1

 16 4 3 4

 32 14 2 12

 64 22 14 25

 128 29 54 33

 256 18 15 21

 512 3 1 1

>512 0 0 0

Volatility with Lookback=100, Fractile=0.5

 Gap Version=0 Version=1 Version=3

 1 13 41 19

 2 6 13 6

 4 2 9 13

 8 2 8 6

 16 4 9 4

 32 2 10 10

 64 3 12 8

 128 5 25 10

 256 9 23 18

 512 2 5 9

>512 6 0 1

In this Trend table, we see that the raw indicator has three long time periods in which

the indicator remains on the same side of its median. These periods are greater than 256

consecutive bars, perhaps as long as 512 bars, over two years! The two modified versions

have only one such period.

Chapter 2 Pre-optimization Issues

19

The situation is even more profound for volatility, with the raw indicator having six

time periods greater than 512 bars with the volatility on the same side of its median.

Modification greatly improves this situation, although with significant deterioration at

the next lower level. Volatility generally has extreme nonstationarity.

�Extreme Stationarity Induction
The two methods just described induce stationarity in only the central tendency of an

indicator. This is important, arguably the most important quality of stationarity. If an

indicator slowly wanders, staying at high values for an extended period of time and then

moving to low values for long periods of time, this indicator will likely have impaired

utility in a trading system. Systems based on such indicators will have a strong tendency

to lose profitability, or even stop trading, for long periods of time. Of course, trade

stoppage can be useful in some situations; if you have several complementary systems,

it’s wonderful if each alternates between trading profitably and not trading at all.

Unfortunately, in real life such systems are very much the exception, not the rule.

But there are an infinite number of ways in which an indicator can be nonstationary.

Central tendency (the mean) is usually the most important, and the second-most

important is usually variance. If an indicator has little variation for a long period of time

and then has large variation over a subsequent long period of time, this indicator will be

impaired.

There is an easy way to induce stationarity in the mean, the variance, or both to an

extreme but controllable degree. Simply look back at a moving window of recent values

of the indicator and compute the mean (if the indicator is well behaved) or the median

(if it has occasional extreme values) over this window. Subtract this from the current

value to induce stationarity in the central tendency. If the window is short, the effect will

be pronounced, enough to overcome nearly any degree of nonstationarity. Similarly, you

can compute the standard deviation (if the indicator is well behaved) or the interquartile

range (if wild values happen) over the moving window. Divide the (possible centered)

current value by this quantity to induce stationarity in the variance.

No examples of this method are provided because it is a straightforward

computation. Just remember that a long window will preserve a lot of information

about the actual value of the indicator while providing little nonstationarity reduction.

Conversely, a short window will destroy nearly all information about the actual value,

making everything relative to recent history, thereby inducing tremendous stationarity.

Chapter 2 Pre-optimization Issues

20

�Measuring Indicator Information with Entropy
Decades ago, Claude Shannon of Bell Labs developed a rigorous and extremely powerful

approach to quantifying the amount of information that can be communicated by a

message. This is relevant to trading system development, because indicators computed

from recent market history can be thought of as messages from the market that convey

information about the current and possible future state of the market. If we can quantify

the average information in an indicator, we can get an idea of the potential value of that

indicator. Even better, we can modify the indicator in ways that increase its information

content. And not coincidentally, it turns out that these information-increasing

modifications are exactly the same sort of modifications that are well known to improve

the performance of predictive models. This is a worthy area of study.

We will take a superficial, intuitive approach to the topic of quantifying average

information in an indicator. For a more detailed yet still accessible exploration of the

topic, see either of my books Data Mining Algorithms in C++ or Assessing and Improving

Prediction and Classification.

Suppose a piece of information needs to be conveyed, and this information is the

answer to a multiple-choice question. Perhaps it is a simple binary choice, such as “the

market is in an upward trending state” versus “the market is in a downward trending

state.” Perhaps it is a bit more detailed, such as a four-possibility situation: “the market is

in a strongly upward/weakly upward/weakly downward/strongly downward” state. Now

add the restriction that the message must be binary, a string of one or more ones and

zeros. Clearly, the answer to the first question can be given as a single binary bit, while

the answer to the second question will require two bits to cover the four possible market

states (00, 01, 10, 11). In general, if there are K possible answers, then we will need

log2(K) bits in the message to convey the correct answer.

A good way to quantify the value of a message is the number of bits of information

that it conveys. A slightly less clear but more useful way of assigning a value to a message

is the number of bits of uncertainty that are removed by receipt of the message. Suppose

you enter a lottery that has a total of 1,024 tickets, one of which is yours. The identity of

the winner can be encoded in log2(1024)=10 bits. Before you receive any message, you

have 10 bits of uncertainty about the identity of the winner. Equivalently, each entry has

a 1/1024 chance of being the winner.

A message is received that answers a simple question: you did or did not win the

lottery. Let’s compute the value of each of these two possible answers. If the answer

is that you won the lottery, an event with probability 1/1024 has been resolved, giving

Chapter 2 Pre-optimization Issues

21

that particular message a value of log2(1024)=–log2(1/1024)=10 bits. If the answer is

that you did not win, an event with probability 1023/1024 has been resolved, giving that

particular message a value of –log2(1023/1024)=0.0014 bits.

Most people (and computers) do not work with logs in base 2. Rather, they use natural

logarithms. When this is done, the unit of information is the nat rather than the bit. So, in

the example under discussion, the value of a You won answer is –log(1/1024)=6.93 nats,

and the value of the disappointing answer is –log(1023/1024)=0.00098 nats.

We just computed the value of each individual answer. But we are also interested

in the expected value of the message. Recall that the expected value of a discrete

random variable is the sum of the products of each individual value times the probability

of that value. So, the expected value of the message is the probability of a You won

answer times its value, plus the probability of a You did not win answer times its value.

This is 1/1024 * –log(1/1024) + 1023/1024 * –log(1023/1024) = 0.0077 nats. This expected

value is called the entropy of the message and is symbolized as H.

We can be more rigorous. Let χ be a set that enumerates every possible answer in a

message stream X. Thus, χ may be {Large up trend, Small up trend, Small down trend,

Large down trend}, for example. When we observe a value of X, we call it x, which by

definition is always a member of χ. This is written as x ∈ χ. Let p(x) be the probability that

x is observed. Then the entropy of X is given by Equation 2-1. In this equation, 0*log(0) is

defined to be zero.

	
H X p x p x

x

() = - () ()()
Î
å

c

log 	 (2-1)

We state without proof that the entropy (average information content) of a message

stream X is maximized when every possible answer (value of x) has equal probability,

and this maximum entropy is log(K), where K is the number of possible values of x.

Thus, we will be most interested in the value of H(X)/log(K) because this number will

range from zero (the message stream conveys no information at all) to one (the message

stream conveys the maximum possible amount of information). This ratio is called the

relative entropy or the proportional entropy.

At last we can relate all this (highly abbreviated and simplified) theory to automated

market trading. What we want to do is screen any indicators used in our trading system

for their relative entropy. If the relative entropy turns out to be small, we should

consider computing the indicator differently, perhaps taking an approach as simple as

applying a nonlinear transformation to increase the relative entropy. In my own work,

Chapter 2 Pre-optimization Issues

22

I like for the relative entropy to be at least 0.5, and preferably more, although this

threshold is highly arbitrary.

There are several caveats to keep in mind. First, understand that entropy is a

measure of information content, but we don’t know whether this information is relevant

to the task at hand. An indicator may do a phenomenal job at predicting whether the

market volatility will explode in the upcoming week. But if our goal is to determine

whether we are to take a long position versus a short position, this information-rich

indicator may be worthless for our project. Nevertheless, entropy can be thought of as an

upper bound on information content, so if the entropy is small, our indicator is likely to

have little value.

Second, it can happen that whatever modification we do to increase the entropy of

our indicator actually impedes its performance. It may be that our original idea does a

great job as an indicator, but when we apply a seemingly innocuous change that greatly

increases its entropy, its utility in our trading system drops. This can happen. But please

understand that these two situations, especially the second, are unusual exceptions

to the rule. In the vast majority of situations, increasing the entropy of an indicator

significantly improves its performance.

�Computing the Relative Entropy of an Indicator
The easiest and likely best way to compute the relative entropy of an indicator from its

historical values is to divide its entire range into bins that partition the range with equal

spacing, compute the proportion of cases that fall into each bin, and use Equation 2-1

to find the entropy. Dividing this quantity by the log of the number of bins gives the

relative entropy. Note that partitioning the range into bins that contain equal numbers

of cases would be pointless, as this would always give a relative entropy of one. Rather,

the bins must be defined by equal numerical fractions of the total range. Here is a simple

subroutine to do this:

double entropy (

 int n , // Number of data values

 double *x , // They are here

 int nbins ,   // Number of bins, at least 2

 int *count // Work area nbins long

)

Chapter 2 Pre-optimization Issues

23

{

 int i, k ;

 double minval, maxval, factor, p, sum ;

 minval = maxval = x[0] ;

 for (i=1 ; i<n ; i++) {

 if (x[i] < minval)

 minval = x[i] ;

 if (x[i] > maxval)

 maxval = x[i] ;

 }

 factor = (nbins - 1.e-10) / (maxval - minval + 1.e-60) ;

 for (i=0 ; i<nbins ; i++)

 count[i] = 0 ;

 for (i=0 ; i<n ; i++) { // Count the number of cases in each bin

 k = (int) (factor * (x[i] - minval)) ;

 ++count[k] ;

 }

 sum = 0.0 ;

 for (i=0 ; i<nbins ; i++) { // Sum Equation 2-1

 if (count[i]) {

 p = (double) count[i] / n ;

 sum += p * log (p) ;

 }

 }

 return -sum / log ((double) nbins) ;

}

In the previous code, we have to do two tiny twiddles with the computation of the

factor that maps data values to bins. The numerator is trivially reduced to make sure

that no mapping is done to a nonexistent “bin” after the last bin. The denominator is

modified to ensure that we do not divide by zero in the pathological situation of all data

values being equal. The final loop just sums Equation 2-1, and we conclude by dividing

the entropy by its maximum possible value to get the relative entropy.

Chapter 2 Pre-optimization Issues

24

�Entropy Impacts Predictive Model Quality
The usefulness of entropy as a measure of an indicator’s information content is not just

theoretical fluff. Coincidentally or not, entropy correlates highly with our ability to train

an effective predictive model. This is because high entropy correlates with roughly equal

distribution of data values across the indicator’s range, and in most situations models

train most effectively when their indicators have such a distribution.

The most common problematic low-entropy situation is when there are one or

more extreme outliers. Many model-training algorithms will see an outlier as saying

something important and focus a lot of attention on that outlier. This reduces the

attention paid to the mass of “normal” cases. Figure 2-1 illustrates a somewhat simplistic

but often realistic example of the situation. This is a linear classifier dealing with two

classes in what should be a problem of toy-like simplicity. The dotted line shows a linear

boundary that achieves perfect classification. But that one case at the bottom left, which

is an outlier for the X2 indicator, drags the boundary line in its direction, to the severe

detriment of classification quality. And although this particular example features a linear

classifier, even a nonlinear classifier, which can have a curved boundary, will often suffer

the same degradation.

Figure 2-1.  Outliers can degrade performance

Chapter 2 Pre-optimization Issues

25

It doesn’t take outliers to produce performance degradation because of low

entropy. Suppose we have a situation in which some exogenous condition, completely

unrelated to the prediction/classification, causes a large fixed offset in an otherwise

excellent predictor for about half of the cases. Perhaps this variable has values around

1.0 for half the cases, and there is excellent performance among these cases. Also

suppose it has values around 100.0 for the other half of the cases, and it also has

excellent power within this group. Not many models would be able to handle this

extremely low-entropy situation. They would see the separation between the cases

clustering around 1.0 and those clustering around 100.0 as the dominant factor and

focus on using this cluster membership to attempt prediction/classification. The result

would not be pretty.

�Improving the Entropy of an Indicator
If you test an indicator and discover that it has dangerously small entropy (less than 0.5 is

suspicious; less than 0.1 is serious and should be investigated and probably addressed),

then your first step should be to reconsider how your idea for an indicator is being

implemented. It may be that a simple revision to your computation algorithm will

resolve the situation without compromising your idea. Here are some other thoughts to

consider:

•	 If your indicator computation ever divides by a value that can

become tiny, you are on thin ice.

•	 Your revision should be monotonically related to your original idea.

In other words, if pre-revision Case A is less than pre-revision Case

B, then this same ordering should remain after revision. Among

other desirable properties, this ensures that if some threshold

separates cases on a pre-revision basis, there exists a threshold that

will perform the same separation post-revision. This is an important

information-preserving quality.

•	 Truncation (remapping extreme values to a single limit value) is a

poor way to solve the outlier problem. Among other things, it violates

the prior principle just listed!

Chapter 2 Pre-optimization Issues

26

•	 If you have just a few rare outliers, monotonic tail-only modification

is a good solution that greatly improves entropy yet has relatively

small effect on indicator values. Pick a moderate percentile,

perhaps something in the range of 1–10 percent for low outliers

and 90–99 percent for high outliers. Cases on the “good” side of this

threshold remain unchanged. Cases on the “outlier” side of this

threshold are subjected to an extreme monotonic compression, such

as logarithmic. This is discussed in detail on page 29.

•	 If only the right tail is heavy or has a positive skew (unusually

large cases only), a square root or cube root transform will handle

moderate skew or outliers, while a log transform should handle

severe situations.

•	 If both tails are heavy, consider a cube root transform.

•	 If both tails are extremely heavy or have severe outliers, the

hyperbolic tangent function (Equation 2-2 and Figure 2-2) or the

logistic function (Equation 2-3 and Figure 2-3) can provide excellent

results, provided that the indicator values are appropriately prescaled

before applying the function. If the logistic function is used, it is good

to subtract 0.5 after transformation to center it at zero, something

appreciated by many training algorithms.

	 tanh x
e e

e e

t t

t t() = -
+

-

- 	 (2-2)

	 logistic x
e x() =

+ -

1

1
	 (2-3)

Chapter 2 Pre-optimization Issues

27

•	 If there is a theoretical reason why your indicator should have a

distribution resembling a common statistical distribution, then

transforming by applying the cumulative distribution function of that

distribution can be effective. For example, many indicators (i.e., an

oscillator that’s the difference between two moving averages) have

a nice bell curve shape that is almost normal except for modestly

heavy tails, which are not severe but bad enough to be troublesome.

Applying a normal cdf (normal_cdf() in STATS.CPP) will do an excellent

job. Other indicators may be the ratio of two variance-like quantities,

in which case an F CDF (F_CDF() in STATS.CPP) is ideal.

Figure 2-2.  TANH function

Figure 2-3.  Logistic function

Chapter 2 Pre-optimization Issues

28

•	 Sometimes your indicator’s distribution may be problematic in a way

that is not straightforward. Consider, for example, the clumping due to

an exogenous condition described on page 25, in which the indicator

has a nice compact distribution, with no outliers at all, but the data is

clustered into several small clumps. Or it may have this problem plus

a heavy tail, or two heavy tails. When this happens, there is a brute-

force approach that is clumsy but remarkably effective and general,

especially if you have a large representative sample of indicator values.

Sort your sample in ascending order and optionally save this for

future use. Then, to transform a value, use a binary search to bound

the value in the sorted array. The transformed value is the number of

sorted elements less than or equal to the pre- transform value. This

produces a transformed indicator that has a relative entropy very close

to perfection. It works best when the sample is large, is thoroughly

representative, and has few or no ties. As a nice final touch, divide this

count by the total number of elements and subtract 0.5. This gives a

value that ranges from –0.5 to 0.5, a range that is especially friendly to

many training procedures.

•	 Many techniques just presented strive to produce an indicator

distribution that is as uniform over its range as possible. But sometimes

this is not ideal, despite it having maximum entropy. This happens when

extreme values of the indicator do have special significance but such

extreme values impede or even prevent correct training of a predictive

model. In such cases all you want to do is tame the tails without

eliminating them. If you have employed a transformation that produces

a distribution that is nearly uniform but you want extreme original values

to map to values that are extreme enough to be outstanding yet not so

extreme as to be problematic, there is a simple fix: transform to a normal

distribution. This distribution has a bell curve shape in which most

cases cluster in the interior, but there are modest extremes in both tails.

To do so, first apply whatever transform maps the indicator to a nearly

uniform distribution. Then transform a second time, using the inverse

normal cumulative distribution function. This can be done by calling the

function inverse_normal_cdf() in STATS.CPP. The resulting indicator will

still have extremes but not enough to degrade model training.

Chapter 2 Pre-optimization Issues

29

�Monotonic Tail-Only Cleaning
Sometimes you are generally happy with your indicator’s distribution, except for the

fact that it occasionally has a wild outlier that needs taming to produce decent entropy.

Or perhaps the target in a predictive-model trading system has occasional extremes

that hobble your training algorithm, but you don’t want to meddle too much with target

values for fear of excessively distorting performance figures. Such situations call for a

transformation that impacts only the most extreme values while leaving the majority of

cases untouched. Here is a great way to handle this.

This transformation takes place in two steps. The first step identifies the data values

that mark the low and high tails, and the second step modifies the tails (only). The

version shown here processes both tails and does so in identical manners. Readers

should have no trouble modifying it to process just one tail or to process the lower and

upper tails differently.

The subroutine is called as shown next. The user provides a work vector because we

have to sort the raw data to locate the tails. The caller specifies the fraction (generally

small, perhaps 0.01 to 0.1) of each tail that will be compressed monotonically, preserving

order relationships while strongly pulling in outliers. The variable cover is the fraction of

cases that remain unchanged. We copy the raw data to a work area and sort it.

void clean_tails (

 int n , // Number of cases

 double *raw ,  // They are here

 double *work ,  // Work area n long

 double tail_frac // Fraction of each tail to be cleaned (0-0.5)

)

{

 int i, istart, istop, best_start, best_stop ;

 double cover, range, best, limit, scale, minval, maxval ;

 cover = 1.0 - 2.0 * tail_frac ; // Internal fraction preserved

 for (i=0 ; i<n ; i++)

 work[i] = raw[i] ;

 qsortd (0 , n-1 , work) ; // Sort data ascending

Chapter 2 Pre-optimization Issues

30

A good way to identify the tails is to examine every possible contiguous set of cases in

the sorted array that has the specified coverage (contains the required number of “interior”

cases). Find the set whose range (maximum value minus minimum value) is smallest.

Then it is reasonable to label those cases that lie outside this minimal-range interior set

to be the tails. This interior set will be identified as running from istart through istop.

 istart = 0 ; // Start search at the beginning

 istop = (int) (cover * (n+1)) - 1 ; // This gives desired coverage

 if (istop >= n) // Happens if careless user has tail=0

 istop = n - 1 ;

We run this interior set through every possible position, from leftmost to rightmost.

For each trial set of endpoints, find the range and keep track of which position has the

narrowest range.

 best = 1.e60 ;  // Will be minimum span

 best_start = best_stop = 0 ; // Not needed; shuts up LINT

 while (istop < n) { // Test every possible position

 range = work[istop] - work[istart] ; // This is what we minimize

 if (range < best) {

 best = range ;

 best_start = istart ;

 best_stop = istop ;

 }

 ++istart ;

 ++istop ;

 }

At this point we have located the narrowest interior set. Get its lower and upper

values and insure against a careless caller.

 minval = work[best_start] ; // Value at start of interior interval

 maxval = work[best_stop] ;   // And end

 if (maxval <= minval) {   // Rare pathological situation

 maxval *= 1.0 + 1.e-10 ;

 minval *= 1.0 - 1.e-10 ;

 }

Chapter 2 Pre-optimization Issues

31

The final step is to modify the tails (and only the tails). We keep the process immune

to changes in scaling of the data by employing maxval–minval as a scaling constant. The

limit variable controls the degree to which the transformed tail values can lie outside

the interior range. Employing the factor of (1.0–cover) is my own heuristic that seems

reasonable to me. Feel free to disagree and change it if you want.

Readers should examine this code and confirm that limit does indeed define the

departure limit of the transformed value, that values at the minimum and maximum (and in

between!) remain unchanged, and that the transformation is monotonic (order preserving).

 limit = (maxval - minval) * (1.0 - cover) ;

 scale = -1.0 / (maxval - minval) ;

 for (i=0 ; i<n ; i++) {

 if (raw[i] < minval) // Left tail

 raw[i] = minval - limit * (1.0 - exp (scale * (minval - raw[i]))) ;

 else if (raw[i] > maxval) // Right tail

 raw[i] = maxval + limit * (1.0 - exp (scale * (raw[i] - maxval))) ;

 }

}

�The ENTROPY Program

The file ENTROPY.CPP contains a complete program that demonstrates the computation

of entropy for a variety of indicators computed from a market price history file. Two

of these indicators are the Trend and Volatility indicators from the STATN program

described on page 13. Also, the Version parameter here is the same as in the STATN

program, although it is not as interesting in the context of entropy as in stationarity.

The program is invoked with the following command:

ENTROPY Lookback Nbins Version Filename

Let’s break this command down:

•	 Lookback: The number of historical bars, including the current bar,

used to compute the indicators from the market price history.

•	 Nbins: The number of bins used to compute entropy. For a market

history of at least several thousand records, around 20 or so bins is

good, although in practice the number is not overly critical. If varying

the number of bins by a small amount produces large changes

Chapter 2 Pre-optimization Issues

32

in computed entropy, there’s something fishy about the data or

whatever custom indicator has been designed by the reader. Plot a

histogram!

•	 Version: 0 for raw indicators, 1 for differenced raw indicators, >1 for

specified raw minus extended raw. See page 14 for details.

•	 Filename: A market history file in the format YYYYMMDD Open High Low

Close.

The following indicators are computed, and their minimum, maximum, median, and

relative entropy are printed.

•	 Trend is the (log) price change per bar as defined by a

least-squares fit.

•	 Volatility is the average true range computed according to the

standard definition.

•	 Expansion is a deliberately poorly designed indicator that

demonstrates how not to define an indicator and how low entropy

can reveal the problem. The range of closing prices (maximum close

minus minimum close) is computed for the most recent prices

covering half of the specified lookback distance. Then the same

quantity is computed, but at a lag of half the lookback. The Expansion

indicator is the recent range divided by the older range, with the

denominator increased slightly to prevent division by zero. This

indicator reveals whether a crude measure of volatility (the price

range) is increasing, decreasing, or remaining about the same.

•	 RawJump measures how the most recent closing price compares to

the most recent exponentially smoothed closing price. This quantity

reveals whether the market has taken a sudden jump up or down or

remained about the same. It has occasional outliers on both tails and

hence has poor entropy.

•	 CleanedJump is RawJump after the monotonic tail smoothing

described on page 29 has been applied to the outer 5 percent of

each tail.

Chapter 2 Pre-optimization Issues

33

When the ENTROPY program is run on the S&P 500 market history using a lookback

of 20 bars and 20 bins for entropy, the relative entropy values in the first column are

computed. When the lookback is dropped to seven bars, we get the results shown in the

second column.

Trend 0.580 0.483

Volatility 0.639 0.559

Expansion 0.461 0.000

RawJump 0.484 0.395

CleanedJump 0.958 0.952

Especially for the shorter lookback, the Trend and Volatility indicators have

marginally acceptable relative entropy. They could use a little tweaking; something

gentle would likely do. The Expansion indicator, deliberately poorly designed by using an

unstable ratio, becomes worthless at a lookback of seven bars. And take special note of

the fact that the relative entropy of the RawJump indicator goes from poor to excellent by

nothing more than cleaning the outer 5 percent tails, touching nothing else.

Chapter 2 Pre-optimization Issues

35
© Timothy Masters 2018
T. Masters, Testing and Tuning Market Trading Systems, https://doi.org/10.1007/978-1-4842-4173-8_3

CHAPTER 3

Optimization Issues
�Regularizing a Linear Model
If I could leave readers of this book with only one thought, it would be this: the strength

of your indicators is vastly more important than the strength of the predictive model that

uses them to signal trades. Some of the best, most stable and profitable trading systems

I’ve seen over the years use a simple linear or nearly linear model with high-quality

indicators as inputs. I’ve also seen far too many people feed marginal indicators to

some modern, highly sophisticated nonlinear model in the vain hope that the model

will miraculously overcome the garbage-in, garbage-out rule. It doesn’t happen. When

I am developing a new trading system, I turn to a linear model first and advance to a

nonlinear model only if I see a clear advantage.

There are many advantages to using a linear model for a predictive-model-based

trading system, as opposed to a complex nonlinear model.

•	 Linear models are less likely, often much less likely to overfit the

training data. As a result, training bias is minimized. This subject is

treated in more detail in the section that begins on page 121.

•	 Linear models are easier to understand than many or most nonlinear

models. Understanding how indicator values relate to trade decisions

can be an extremely valuable property of prediction models.

•	 Linear models are usually faster to train than nonlinear models. In

Chapter 7 we will explore powerful testing algorithms that require

frequent retraining, so fast training is a major advantage.

36

•	 It is easy to convert a linear model to a nonlinear model in a way

that does not seriously damage the properties just listed. This will be

discussed on page 67.

•	 With only a moderate increase in algorithmic complexity, it is easy to

penalize linear models for excessive complexity/power, an important

and often neglected part of correct training called regularization.

�Overview of the Regularized Model
As will be discussed in detail in the section that begins on page 121, a common and

serious problem in the design and training of predictive models arises when the

model mistakenly conflates random noise with authentic, repeatable patterns. This

is called overfitting. Because by definition noise does not repeat, an overfit model will

underperform when it is put to use.

Ordinary linear models are less likely to overfit than most nonlinear models,

especially those that are extremely complex and powerful. But even ordinary linear

models can overfit the training data, usually because too many predictors are employed.

There are at least two common and moderately effective ways to handle the problem of

overfitting because of an excessive number of predictors.

•	 Reduce the number of predictors: The most common method for

doing this is forward stepwise selection. Select the single most

effective predictor. Then select the one predictor that adds the most

predictive power, given the presence of the first predictor. Then select

a third, and so forth. A serious problem with this approach is that

finding that first solo predictor can be difficult to do well. In most

applications, it is the interaction of several predictors that provides

the power; no single predictor does well. In fact, it may be that A and B

together do a fabulous job while either alone is worthless. But if C

happens to do a modest job, C may be picked first, with the result

that neither A nor B ever enter the competition, and this excellent

combination is lost. There are other often superior variations, such as

reverse selection or subset retention. These are discussed in detail in

my book Data Mining Algorithms in C++. However, each method has

its own problems.

Chapter 3 Optimization Issues

37

•	 Shrink the coefficients in the linear regression equation toward zero,

away from their “optimal” least-squares values. This can be extremely

useful because it lets us keep all relevant predictors and their joint

relationship information, while reducing their ability to learn random

noise along with more prominent authentic patterns. But this is not a

trivial undertaking.

The goal of effective model design and training, linear or nonlinear, is to perform

one or (usually) both of these two fixes. There are numerous ways of doing this, and

most of them involve imposing a penalty on the complexity of the model, a process

called regularization. What distinguishes the various approaches are the definition of

complexity and the nature of the associated penalty. The method shown here, when

applied to linear models, is particularly powerful because it can do either or both of the

fixes at the user’s discretion, and it does so in a way that is easy to understand and fast to

train. Moreover, there exists a simple cross-validation scheme that lets us optimize the

complexity-reduction hyperparameter. It’s truly beautiful.

First we must lay out some notation. Without loss of generality, all subsequent

developments will assume that all predictors x have been standardized to have zero mean

and unit variance. This tremendously simplifies the relevant equations as well as the

associated computer code. Trivial algebraic manipulation can recover the coefficients

for the raw variables if they are needed.

N  - The number of cases.

K  - The number of predictor variables.

xij - The value of predictor j for case i.

xi  - �The predictor vector (K long) for case i. This is a column

vector, and it is a convenient notation for representing the set

of xij for all j.

yi  - The target variable for case i.

β - �The K coefficients in the linear model expressed in

Equation 3-1. This is a column vector.

β0 - �The scalar constant in the linear model expressed in

Equation 3-1.

Chapter 3 Optimization Issues

38

α   - �A constant ranging from 0 to 1 that controls the type of

regularization.

λ - �A non-negative constant that controls the degree of

regularization.

The basic linear model says that the expected value of the target variable is equal to a

weighted combination of the predictors, plus a constant. This is shown in vector form in

Equation 3-1.

	 ŷ x= +b b0
T 	 (3-1)

We’ve already assumed that the predictors have been standardized to have zero

mean and unit variance. When this is the case, β0 equals the mean of the target.

(Derivation of this easy result is shown in many standard statistics texts.) We can gain

even more simplicity in development and programming if we assume that the target

variable has also been standardized. We thereby know that β0 = 0, so it can be ignored in

all subsequent work. In this case, we are predicting the standardized value of the target.

To get the predicted value of the raw target, just unstandardize: multiply by the standard

deviation and add the mean. And even with this additional assumption, the coefficients

and β0 for all raw values are easily obtained with basic algebra.

The traditional way to find optimal values for the beta weights is to compute those

values that minimize the mean squared error, the mean squared difference between

each predicted value ŷi, and the true target value yi. But in our regularized version,

we add a penalty term to the error, with the penalty being a function of the set of beta

weights. This is shown in Equation 3-2. In this equation, the multiplier of 2 could be

absorbed into either λ or Pα(), but it is shown this way to clarify some intermediate

derivations that we will not present here, as our focus will be on the equations essential

to programming the model. For full details, see the excellent paper “Regularization

Paths for Generalized Linear Models via Coordinate Descent” by Friedman, Hastie, and

Tibshirani (Journal of Statistical Software, Jan 2010). Note that λ controls the impact of

the penalty term, and if λ = 0, we have the ordinary least squares solution. The subscript

of α is applied to the penalty function P to clarify the fact that it controls the nature of

the penalty. Also note that Equation 3-2 is double the error in that paper, which has no

practical consequences.

	
RegErr

N
y x P

i

N

i= -() + ()
=
å1

2
1

2Tb l ba 	
(3-2)

Chapter 3 Optimization Issues

39

The penalty function Pα is a weighted sum of the two-norm (sum of squares) and

the one-norm (sum of absolute values) of the weight vector, with the relative weighting

determined by the α parameter. This is shown in Equation 3-3.

	
P

j

K

j ja b
a

b a b() =
-()

+
é

ë
ê

ù

û
ú

=
å

1

21

2 	
(3-3)

The value of α, which can range from zero to one, has a profound effect on the nature

of the penalty function. The two extreme values have common names that are well

known to many developers. When α = 0, we have ridge regression, and when α = 1, we

have the lasso. The difference between these two extreme models is best illustrated by

considering what happens when there are sets of highly correlated predictors present.

Ridge regression will tend to assign approximately equal weights to all predictors in a

correlated set, drawing roughly equal contributions from all of them. In fact, if there is a

set of m perfectly correlated (identical after normalization) predictors, ridge regression

will assign a beta weight to each that is equal to 1/m times the weight that would have

been assigned to one of them in the absence of the others.

The lasso (α = 1) responds in the opposite way to sets of highly correlated variables.

Instead of assigning small, similar weights to all of them, it will tend to pick the one that

is most useful to the model, assign a relatively large weight to it, and assign a weight of

zero to the other members of the correlated set, essentially removing them from the

model.

One potential problem with α = 1 is that if there happens to be two or more

predictors that are perfectly correlated, the lasso loses its mind trying to figure out which

one is best, as they are all equally useful. The training algorithm becomes numerically

unstable. For this reason, unless you are positive that there are no such degeneracies in

the data, if you want to use a lasso model, you should set α to a value that is very close

to one but not quite there. This model will be nearly identical to a true lasso but will not

suffer instability from perfect or near perfect correlation.

In most financial trading development in which there are a large number of

predictors thrown at the model in a “spaghetti-on-the-wall” approach, it would usually

be best to set α to a value between zero and one to be in the best of all worlds. For any

fixed λ, the number of zero coefficients (variables excluded from the model) increases

monotonically as α goes from zero to one. All variables are included when α = 0, and

then they tend to drop out (their beta weights go to zero) one by one for larger values of α.

In this way, the developer can set the value of α to favor a desired degree of sparsity.

Chapter 3 Optimization Issues

40

There are three things that readers should remember in comparing the model

described here to ordinary linear regression:

•	 When we penalize the model this way, the solution we get is no

longer a least-squares solution. The computed beta weights will

produce a mean squared error that exceeds that from ordinary

linear regression. In most practical applications, this is a good

thing because it produces better generalization. That’s the whole

point of this approach! However, on the surface this may seem

counterintuitive, as if we are deliberately crippling the model. But

that’s exactly what we are doing to make it less able to erroneously

learn random noise.

•	 We should be especially happy about how this model handles

strongly correlated predictors. Ordinary linear regression often has

a horrific response to this situation, blowing up some coefficients

to enormous positive values and then compensating by blowing up

other coefficients to enormous negative values, pitting one correlated

variable against the other in a delicately balanced relationship.

•	 This regularized model usually finds a subset, often a small subset,

of the candidate predictors, just as is the case with ordinary stepwise

inclusion. But its method for doing so is very different and vastly

superior to stepwise inclusion. The latter takes an ordered all-or-

nothing approach; once a variable is included, it stays forever. But

the regularized linear model operates gradually, slowly converging

on the ideal subset of predictors. Variables may come and go as their

value in the presence of other variables waxes and wanes. This makes

it much more likely that the final subset will be truly optimal.

�Beta Adjustment with Guaranteed Convergence
There is a straightforward formula by which, given training data, along with the

hyperparameters λ and α, we can efficiently compute an adjusted beta weight that

reduces the error criterion shown in Equation 3-2. Under all realistic conditions this

error criterion has a single local minimum that is also the global minimum. Thus, simple

rotation among the weights is guaranteed to converge, usually quite quickly, even for

Chapter 3 Optimization Issues

41

large problems. In this section, we present this adjustment formula, omitting many

details of its derivation that can be found in the previously cited paper. We will soon see

how to use this formula to implement an efficient and stable training algorithm.

First, define the residual of the model as its prediction error, as shown in Equation 3-4.

	 r y yi i i= - ˆ 	 (3-4)

Define for each predictor j a term that I call argumentj, as shown in Equation 3-5.

This is the slow part of the computation, as it requires summing products over all cases.

Define the soft-thresholding operator S(), as shown in Equation 3-6. Then the new value

of βj which reduces the error criterion, is given by Equation 3-7.

	
argument

N
x rj

i

N

ij i j= +
=
å1

1

b 	 (3-5)

	 S z g

z g z g z

z g z g z,

if

if

otherwise

() =
- > <
+ < < -

0

0

0

,

, 	 (3-6)

	 b̂
l aj

jS argument
=

()
+ -()

,la

1 1
	 (3-7)

�Differential Case Weighting
In some applications (though not often in market-trading applications), it can be

useful to rate some cases as more important than others and thereby guide the training

algorithm to focus more on reducing the error of important cases. The beta update

formula shown in the prior section is easily modified to implement this capability.

Let the N case weights be denoted wi, where these weights sum to one. The argument

to the soft-thresholding operator is given by Equation 3-8, and the updated beta weight

is given by Equation 3-9.

	
argument w x r xj

i

N

i ij i j ij= +()
=
å

1

b
	 (3-8)

	
b̂

l a
j

j

i

N

i ij

S argument

w x
=

()
+ -()

=
å

,la

1

2 1
	 (3-9)

Chapter 3 Optimization Issues

42

Interested readers would do well to undertake a simple exercise. Suppose all

weights are equal to 1/N, so there is no differential weighting. Work through the fact that

Equation 3-8 reduces to Equation 3-5, and Equation 3-9 reduces to Equation 3-7. If you

don’t see it right away (spoiler alert!), remember that the predictors have been standardized

to unit variance. Thus, for each j, the sum over all cases of xij squared equals N.

�Rapid Computation with Covariance Updates
If there are a lot more cases (N) than predictors (K), which is the usual situation in

market trading, there is an alternative formula for computing the beta weight updates

that is much faster than the “naive” Equations 3-5 and 3-8. The fundamental formula is

given by Equation 3-10.

	
argument Yinner Xinner Xssj j

k

K

jk k j j= - +
=

å
1

b b 	 (3-10)

If no differential case weighting is used, Xssj = 1 for all j, Yinnerj is given by

Equation 3-11, and Xinnerjk is given by Equation 3-12. Derivation of these expressions is

given in the paper cited earlier.

	
Yinner

N
x yj

i

N

ij i=
=

å1

1
	 (3-11)

	
Xinner

N
x xjk

i

N

ij ik=
=

å1

1
	 (3-12)

If we use differential weighting, we need Equations 3-13, 3-14, and 3-15. These

derivations are not given in the cited paper, but they are easily obtained by beginning

with their Equation 10 and following the nonweighted steps, remembering that the

predictors are standardized.

	
Xss w xj

i

N

i ij=
=

å
1

2
	 (3-13)

	
Yinner w x yj

i

N

i ij i=
=

å
1

	 (3-14)

	
Xinner w x xjk

i

N

i ij ik=
=

å
1

	 (3-15)

Chapter 3 Optimization Issues

43

Note that Equations 3-13 through 3-15 depend on only the training data and weights,

so they can be computed just once at the start of training. And Equation 3-10, which

must be evaluated for each iteration, involves summing only K terms, not N. When

K<<N, the time savings is huge.

�Preparatory Code

We begin the presentation of code with some fragments that illustrate key parts of how

we prepare for training the model. Complete source code for the entire CoordinateDescent

class that encapsulates this model and all of its training algorithms is in the file

CDMODEL.CPP.

The programmer would first call the constructor, as shown next. We’ll skip its

code here because it is concerned only with memory allocation and other simple

housekeeping. Ignore the nl parameter for now; this will be discussed later. The other

parameters are self-explanatory.

CoordinateDescent::CoordinateDescent (

 int nv , // Number of predictor variables

 int nc , // Number of cases we will be training

 int wtd , // Will we be using case weights? 1=Yes, 0=No

 int cu , // Use fast covariance updates rather than slow naive method

 int nl // Number of lambdas we will be using in training

)

After we have constructed a CoordinateDescent object, we must call a member function

to input the training data and compute some things in preparation.

void CoordinateDescent::get_data (

 int istart ,  // Starting index in full database for getting nc cases of training set

 int n , // Number of cases in full database (we wrap back to the start if needed)

 double *xx , // Full database (n rows, nvars columns)

 double *yy , // Predicted variable vector, n long

 double *ww  // Case weights (n long) or NULL if no weighting

)

In this call, we can specify a starting index in the dataset (for the predictors, target,

and optional weights). The number of cases specified in the constructor call (nc) will be

taken from xx, yy, and ww (if used) starting at index istart. If the end of the data is reached

Chapter 3 Optimization Issues

44

before nc cases are obtained, it wraps around to the beginning of the dataset. We’ll see

later how this wrapping is useful.

The get_data() routine begins by saving the predictors and target in private arrays and

standardizing them by subtracting the mean and dividing by the standard deviation.

These straightforward actions are not shown here. If differential weighting is to be used,

the weights are scaled to sum to one (so the user need not worry about this), and XSSvec

is computed using Equation 3-13. This weight-related code is as follows:

 if (w != NULL) {

 sum = 0.0 ;

 for (icase=0 ; icase<ncases ; icase++) {

 k = (icase + istart) % n ; // Wrap to start if needed

 w[icase] = ww[k] ;

 sum += w[icase] ;

 }

 for (icase=0 ; icase<ncases ; icase++)

 w[icase] /= sum ;

 for (ivar=0 ; ivar<nvars ; ivar++) {

 xptr = x + ivar ;

 sum = 0.0 ;

 for (icase=0 ; icase<ncases ; icase++) // Equation 3-13

 sum += w[icase] * xptr[icase*nvars] * xptr[icase*nvars] ;

 XSSvec[ivar] = sum ;

 }

 }

If we are using the fast covariance-update method, which is the sensible course

whenever there are more cases than predictors, we have to compute Yinner and Xinner

as described in the prior section. Note that Xinner is a symmetric matrix, but we save the

entire matrix anyway. This is wasteful of very cheap memory, but the simpler addressing

saves very expensive time.

In the code that follows, we process one variable at a time. Addressing is simplified

by using the pointer xptr to get the offset to the current variable in the first case.

Thereafter, we can get this variable by just jumping down one case.

Chapter 3 Optimization Issues

45

 for (ivar=0 ; ivar<nvars ; ivar++) {

 xptr = x + ivar ;

 sum = 0.0 ; // Do Yinner

 if (w != NULL) { // Weighted cases

 for (icase=0 ; icase<ncases ; icase++)

 sum += w[icase] * xptr[icase*nvars] * y[icase] ; // Equation 3-14

 Yinner[ivar] = sum ;

 }

 else {

 for (icase=0 ; icase<ncases ; icase++)

 sum += xptr[icase*nvars] * y[icase] ; // Equation 3-11

 Yinner[ivar] = sum / ncases ;

 }

 // Do Xinner

 if (w != NULL) { // Weighted

 for (jvar=0 ; jvar<nvars ; jvar++) {

 if (jvar == ivar)

 Xinner[ivar*nvars+jvar] = XSSvec[ivar] ; // Already computed, so use it

 else if (jvar < ivar) // Matrix is symmetric, so just copy

 Xinner[ivar*nvars+jvar] = Xinner[jvar*nvars+ivar] ;

 else {

 sum = 0.0 ;

 for (icase=0 ; icase<ncases ; icase++)

 sum += w[icase] * xptr[icase*nvars] * x[icase*nvars+jvar] ; // Eq (3-15)

 Xinner[ivar*nvars+jvar] = sum ;

 }

 }

 } // If w

 else { // Unweighted

 for (jvar=0 ; jvar<nvars ; jvar++) {

 if (jvar == ivar)

 Xinner[ivar*nvars+jvar] = 1.0 ; // Recall that X is standardized

 else if (jvar < ivar) // Matrix is symmetric, so just copy

 Xinner[ivar*nvars+jvar] = Xinner[jvar*nvars+ivar] ;

Chapter 3 Optimization Issues

46

 else {

 sum = 0.0 ;

 for (icase=0 ; icase<ncases ; icase++)

 sum += xptr[icase*nvars] * x[icase*nvars+jvar] ; // Equation 3-12

 Xinner[ivar*nvars+jvar] = sum / ncases ;

 }

 }

 } // // Else not weighted

 } // For ivar

�Outline of the Beta Optimization Process
In the prior few sections, we saw how, for any chosen beta weight, we can compute a

revised value that reduces the error criterion toward the unique global minimum. So

at the most naive level we could just rotate through the weights, adjusting each in turn

until satisfactory convergence is obtained. But we can do it more intelligently, taking

advantage of the fact that once a beta weight has become zero, it has a tendency to

remain zero on subsequent iterations. The outline of the training algorithm is shown

here, and explanations follow. More detailed code appears later.

 do_active_only = 0 ; // Begin with a complete pass

 for (iter=0 ; iter<maxits ; iter++) {   // Main iteration loop; maxits is for safety only

 active_set_changed = 0 ; // Did any betas go to/from 0.0?

 for (ivar=0 ; ivar<nvars ; ivar++) { // Descend on this beta

 if (do_active_only && beta[ivar] == 0.0)

 continue ;

 [Compute correction]

 if (correction != 0.0) {  // Did this beta change?

 if ((beta[ivar]==0.0 && new_beta != 0.0) || (beta[ivar] != 0.0 && new_beta==0.0))

 active_set_changed = 1 ;

 }

 } // For all variables; a complete pass

 converged = [Convergence test] ;

Chapter 3 Optimization Issues

47

 if (do_active_only) { // Are we iterating on the active set only?

 if (converged) // If we converged

 do_active_only = 0 ;    // We now do a complete pass

 }

 else { // We just did a complete pass (all variables)

 if (converged && ! active_set_changed)

 break ;

 do_active_only = 1 ; // We now do an active-only pass

 }

 } // Outer loop iterations

The essential idea of this training algorithm is that we can save a lot of computational

effort by focusing most of our effort on only those beta weights that are nonzero, called

the active set. Roughly stated, we pass through all predictors, adjusting each beta weight.

After this pass, it will often be the case that some of the betas, perhaps many of them, are

zero. So we do additional passes, adjusting only those that are nonzero (the active set),

until convergence is obtained. When we converge, we do a pass through all predictors,

just in case the revised beta weights caused one or more betas to change to or from zero.

If no such change occurs and we pass the convergence test, we are done. Otherwise, we

go back to rotating through only the active set.

We start with do_active_only False so that all predictors are adjusted. The main

iteration loop is limited by maxits for safety, although in practice this limit will never be

hit. We use active_set_changed to flag whether any beta weight changed to or from zero.

The ivar loop makes a single pass through all predictors. If we are to do the active

set only and this beta is zero, skip it. Otherwise, we compute a corrected beta. If beta

changed, we see whether the change was to or from zero, and if so, we note this by

setting the active_set_changed flag.

After we have made a pass through the predictors, we perform a convergence test.

If we have been checking the active set only and if we have converged, we reset

do_active_only so that the next time we check all predictors.

If, on the other hand, our last pass was a complete check of all predictors,

convergence was obtained, and the active set did not change, we are all done. Otherwise,

we set the do_active_only flag so that we go back to focusing on only the active set.

Chapter 3 Optimization Issues

48

This fancy algorithm that focuses on the active set is advantageous only if there are a

significant number of zero beta weights. However, this is often the case in applications in

which this model is used. Moreover, there is little or no penalty in situations in which few

or none of the betas are zero, so we might as well use the fancy version.

�Code for Beta Optimization
The prior section presented an outline of the beta optimization algorithm, with details

omitted so that the essential logic of the procedure would be clear. In this section, we

work through the entire optimization code in detail. It is called as follows:

void CoordinateDescent::core_train (

 double alpha , // User-specified alpha (0-1) (0 problem for descending lambda)

 double lambda ,   // Can be user-specified, but usually from lambda_train()

 int maxits , // Maximum iterations, for safety only

 double eps ,  // Convergence criterion, typically 1.e-5 or so

 int fast_test , // Convergence via max beta change vs explained variance?

 int warm_start  // Start from existing beta, rather than zero?

)

The alpha (α) and lambda (λ) parameters have been seen many times already. We

use maxits simply to limit the number of iterations to prevent unexpected hangs. In

practice, it would be set very large. The eps parameter controls how accurate the result

must be before convergence is signaled. The fast_test parameter controls which of two

convergence tests (described later) is used. Finally, warm_start allows training to begin

from the current values of the beta weights, as opposed to starting from zero (the

default). The routine begins with some initialization.

 S_threshold = alpha * lambda ; // Threshold for the soft-thresholding S() of Eq (3-6)

 do_active_only = 0 ; // Begin with a complete pass

 prior_crit = 1.0e60 ; // For convergence test

 if (warm_start) { // Pick up with current betas?

 if (! covar_updates) { // If not using covar updates, must recompute residuals

 for (icase=0 ; icase<ncases ; icase++) {

 xptr = x + icase * nvars ;

 sum = 0.0 ;

Chapter 3 Optimization Issues

49

 for (ivar=0 ; ivar<nvars ; ivar++)

 sum += beta[ivar] * xptr[ivar] ;

 resid[icase] = y[icase] - sum ;

 }

 }

 }

 else { // Not warm start, so initial betas are all zero

 for (i=0 ; i<nvars ; i++)

 beta[i] = 0.0 ;

 for (i=0 ; i<ncases ; i++) // Initial residuals are just the Y variable

 resid[i] = y[i] ;

 }

The most notable aspect of the previous initialization code is that if we are doing

a warm start and we are not using the fast covariance-update method, then we must

recompute the residuals. Recall that the naive update method of Equations 3-7 and 3-9

requires the residuals. Of course, if we are starting with all beta weights at zero, then all

predictions are also zero, and the residuals are just the targets.

As iterations progress, we will be computing the fraction of explained target variance

for the user’s edification. For this we will need the mean square of the target, weighted

appropriately if the user has chosen to weight cases by importance. The following code

computes this quantity:

 if (w != NULL) { // We need weighted squares to evaluate explained variance

 YmeanSquare = 0.0 ;

 for (i=0 ; i<ncases ; i++)

 YmeanSquare += w[i] * y[i] * y[i] ;

 }

 else

 YmeanSquare = 1.0 ; // The target has been normalized to unit variance

We now begin the main outer loop, which iterates until convergence is obtained.

The iteration limit maxits should be set very large (thousands or more) so that it does not

cause premature exit; it is “hang insurance” only. We reset the flag that will indicate if

the active set changed, and we will use max_change to keep track of the maximum beta

change for a convergence test.

Chapter 3 Optimization Issues

50

 for (iter=0 ; iter<maxits ; iter++) {

 active_set_changed = 0 ; // Did any betas go to/from 0.0?

 max_change = 0.0 ;  // For fast convergence test

The loop that makes a single pass through all predictors begins now. If we are to

process only the active set (nonzero betas) and this beta is zero, skip it. Equation 3-9 for

the weighted case and Equation 3-7 for the unweighted case will need update_factor in the

denominator, so compute it now. Recall that XSSvec[] was computed by Equation 3-13.

 for (ivar=0 ; ivar<nvars ; ivar++) { // Descend on this beta

 if (do_active_only && beta[ivar] == 0.0)

 continue ;

 // Denominator in update

 if (w != NULL) // Weighted?

 Xss = XSSvec[ivar] ;

 else

 Xss = 1 ; // X was standardized

 update_factor = Xss + lambda * (1.0 - alpha) ;

We compute the argument to the soft-thresholding function. There are three

possibilities. Either we are using the fast covariance-update method, we are using the

naive method with differential case weighting, or we are using the naive method with

equal weighting. We don’t have to split the covariance-update method into with-and-

without-weights here because any weighting was taken care of in the computation of Xss,

Xinner, and Yinner already, as shown on page 42.

 if (covar_updates) { // Any sensible user will specify this unless ncases < nvars

 sum = 0.0 ;

 for (kvar=0 ; kvar<nvars ; kvar++)

 sum += Xinner[ivar*nvars+kvar] * beta[kvar] ;

 residual_sum = Yinner[ivar] - sum ;

 argument = residual_sum + Xss * beta[ivar] ; // Equation 3-10

 }

Chapter 3 Optimization Issues

51

 else if (w != NULL) { // Use slow naive formula (okay if ncases < nvars)

 argument = 0.0 ;

 xptr = x + ivar ; // Point to column of this variable

 for (icase=0 ; icase<ncases ; icase++) // Equation 3-8

 argument += w[icase] *

 xptr[icase*nvars] * (resid[icase] + beta[ivar] * xptr[icase*nvars]) ;

 }

 else { // Use slow naive formula (okay if ncases < nvars)

 residual_sum = 0.0 ;

 xptr = x + ivar ; // Point to column of this variable

 for (icase=0 ; icase<ncases ; icase++)

 residual_sum += xptr[icase*nvars] * resid[icase] ; // X_ij * RESID_i

 residual_sum /= ncases ;

 argument = residual_sum + beta[ivar] ; // Equation 3-5

 }

We just computed the argument to the soft-thresholding function, Equation 3-6.

Apply this function and compute the new value for this beta using either Equation 3-7

or Equation 3-9. Not long ago we computed update_factor to be the denominator in these

equations.

 if (argument > 0.0 && S_threshold < argument)

 new_beta = (argument - S_threshold) / update_factor ;

 else if (argument < 0.0 && S_threshold < -argument)

 new_beta = (argument + S_threshold) / update_factor ;

 else

 new_beta = 0.0 ;

The amount of correction is the difference between the new beta and the old value.

Keep track of the maximum change in this pass, as we may be using it for a convergence

test. If we are using the slow naive update method, we will also use this correction to

quickly recompute the residuals, which are needed for the naive method.

Chapter 3 Optimization Issues

52

 correction = new_beta - beta[ivar] ;

 if (fabs(correction) > max_change)

 max_change = fabs(correction) ; // Used for fast convergence test

 if (correction != 0.0) { // Did this beta change?

 if (! covar_updates) { // Must we update the residual vector?

 xptr = x + ivar ; // Point to column of this variable

 for (icase=0 ; icase<ncases ; icase++) // Update residual per this new beta

 resid[icase] -= correction * xptr[icase*nvars] ;

 }

 if ((beta[ivar]==0.0 && new_beta!=0.0) || (beta[ivar]!=0.0 && new_beta==0.0))

 active_set_changed = 1 ;

 beta[ivar] = new_beta ;

 }

 } // For all variables; a complete pass

We have completed a pass through the betas, either all of them or just the active

set, according to do_active_only. We now do the convergence test, either the fast, simple

version or the much slower version. The fast test is based on only the maximum (across

all predictors) change in beta. But the slow test is more complex.

If we were using the fast covariance update method, we did not need residuals for

the beta updates, so we didn’t take the (huge!) time to compute them. But we need the

residuals for the slow convergence test, so we must compute them if we haven’t so far.

Compute the (possibly weighted) mean squared error using the residuals.

 if (fast_test) { // Quick and simple test

 if (max_change < eps)

 converged = 1 ;

 else

 converged = 0 ;

 }

 else { // Slow test (change in explained variance) which requires residual

 if (covar_updates) { // We have until now avoided computing residuals

 for (icase=0 ; icase<ncases ; icase++) {

 xptr = x + icase * nvars ;

 sum = 0.0 ;

Chapter 3 Optimization Issues

53

 for (ivar=0 ; ivar<nvars ; ivar++)

 sum += beta[ivar] * xptr[ivar] ; // Cumulate predicted value

 resid[icase] = y[icase] - sum ; // Residual = true - predicted

 }

 }

 sum = 0.0 ; // Will cumulate squared error for convergence test

 if (w != NULL) { // Are the errors of each case weighted differently?

 for (icase=0 ; icase<ncases ; icase++)

 sum += w[icase] * resid[icase] * resid[icase] ;

 crit = sum ;

 }

 else {

 for (i=0 ; i<ncases ; i++)

 sum += resid[i] * resid[i] ;

 crit = sum / ncases ; // MSE component of optimization criterion

 }

A fundamental quality measure of a model is the fraction of the target variance that

is explained by the model. This is computed by subtracting the mean squared error just

computed from the mean square (variance) of the target to get the quantity of variance

that is explained. Divide this by the target mean square to get the fraction of the target

variance that is explained by the model. This is used strictly for optional user edification;

it plays no role in the optimization algorithm.

Compute the regularization penalty using Equation 3-3 on page 39 and then add this

penalty to the mean squared error to get the criterion that we are minimizing, as shown

in Equation 3-2 on page 38.

This “slow” convergence criterion is based on the change from one iteration to the

next in the optimization criterion. If the change is small (where “small” is defined by the

user’s specified eps), then we are deemed to have converged.

 explained_variance = (YmeanSquare - crit) / YmeanSquare ;

 penalty = 0.0 ;

 for (i=0 ; i<nvars ; i++)

 penalty += 0.5 * (1.0 - alpha) * beta[i] * beta[i] + alpha * fabs (beta[i]) ;

 penalty *= 2.0 * lambda ; // Regularization component of optimization criterion

Chapter 3 Optimization Issues

54

 crit += penalty ; // This is what we are minimizing

 if (prior_crit - crit < eps)

 converged = 1 ;

 else

 converged = 0 ;

 prior_crit = crit ;

 }

We can now finish the outer loop with the control logic described in the prior

section, alternating between active-set-only and full predictor passes.

 if (do_active_only) { // Are we iterating on the active set only?

 if (converged) // If we converged

 do_active_only = 0 ;   // We now do a complete pass

 }

 else { // We just did a complete pass (all variables)

 if (converged && ! active_set_changed)

 break ;

 do_active_only = 1 ;  // We now do an active-only pass

 }

 } // Outer loop iterations

We are essentially done. For the user’s edification we compute and save the fraction of

target variance explained by the model. If we did the fast convergence test and covariance

updates, we must compute the residual to get the explained variance. Those two options

do not require regular residual computation, so we don’t currently have the residual.

 if (fast_test && covar_updates) { // Residuals have not been maintained?

 for (icase=0 ; icase<ncases ; icase++) {

 xptr = x + icase * nvars ;

 sum = 0.0 ;

 for (ivar=0 ; ivar<nvars ; ivar++)

 sum += beta[ivar] * xptr[ivar] ;

 resid[icase] = y[icase] - sum ;

 }

 }

Chapter 3 Optimization Issues

55

 sum = 0.0 ;

 if (w != NULL) { // Error term of each case weighted differentially?

 for (i=0 ; i<ncases ; i++)

 sum += w[i] * resid[i] * resid[i] ;

 crit = sum ;

 }

 else {

 for (i=0 ; i<ncases ; i++)

 sum += resid[i] * resid[i] ;

 crit = sum / ncases ; // MSE component of optimization criterion

 }

 explained = (YmeanSquare - crit) / YmeanSquare ;

�Descending a Lambda Path
As is usually the case with models that have hyperparameters, choosing an effective

value for the regularization strength lambda (λ) may not be straightforward. In the

next section, we will explore a good way to automate the choice of a good value. In this

section, we present a tool that will be called by that automated routine and that can also

be used to aid in manually selecting a good lambda.

Consider that if lambda is huge, the penalty for any nonzero beta will be so large that

all beta weights will be forced to zero. (This may not be the case if alpha is exactly zero,

so from now on we will assume α > 0.) This model obviously has zero explained variance.

Conversely, if λ = 0, then we have ordinary linear regression, which has the minimum

possible mean squared error or maximum possible explained variance. So, we can

start at a large lambda, train the model, slightly decrease lambda and train again, and

so forth, until lambda is tiny, almost zero. We will generally see the number of nonzero

betas steadily increase, along with the explained variance. Even for the same number of

nonzero betas, the explained variance will increase as lambda decreases. If we print a

chart showing the number of nonzero betas and the explained variance as a function of

lambda, we may be able to make an intelligent choice for lambda.

There is an interesting fringe benefit of this approach, even if we know in advance

the lambda we want to use. This approach increases the already quite good stability of

the training algorithm without much cost in terms of speed. In fact, it can happen that

we can train faster this way. What we do is start with a large lambda that gives us just

Chapter 3 Optimization Issues

56

one or very few active predictors. That simple model will train quickly. Then, when we

slightly decrease lambda, instead of starting all over again, we do a warm start, beginning

iterations with the existing betas. So, each time we recommence training with a slightly

smaller lambda, we are starting from betas that are already very close to correct. Thus,

convergence will be obtained rapidly.

It’s easy to find a good starting lambda for the descent, the smallest lambda such that

all betas are zero. The entire process begins with all betas at zero. Look at Equation 3-7,

along with the two prior equations for the argument and the soft-thresholding operator.

For the differentially weighted situation, look at their analogs in the following section.

Recall that when all betas are zero, the residual equals the target, y. It should be apparent

from the definition of the soft-thresholding function that βj will remain at zero if

Equation 3-16 in the unweighted situation or Equation 3-17 in the differentially weighted

situation is true.

	
AbsoluteValue

1

1N
x y

i

N

ij i
=
åé

ë
ê

ù

û
ú < la 	 (3-16)

	
AbsoluteValue

i

N

i ij iw x y
=
åé
ë
ê

ù

û
ú <

1

la 	 (3-17)

Dividing both sides of these equations by alpha gives the threshold lambda for any

predictor, and if we find the maximum such lambda across all predictors, we have our

starting lambda. Here is code for doing this:

double CoordinateDescent::get_lambda_thresh (double alpha)

{

 int ivar, icase ;

 double thresh, sum, *xptr ;

 thresh = 0.0 ;

 for (ivar=0 ; ivar<nvars ; ivar++) {

 xptr = x + ivar ;

 sum = 0.0 ;

 if (w != NULL) {

 for (icase=0 ; icase<ncases ; icase++) // Left side of Equation 3-17

 sum += w[icase] * xptr[icase*nvars] * y[icase] ;

 }

Chapter 3 Optimization Issues

57

 else {

 for (icase=0 ; icase<ncases ; icase++) // Left side of Equation 3-16

 sum += xptr[icase*nvars] * y[icase] ;

 sum /= ncases ;

 }

 sum = fabs(sum) ;

 if (sum > thresh) // We must cover all predictors

 thresh = sum ;

 }

 return thresh / (alpha + 1.e-60) ; // Solve for lambda; protect from division by zero

}

Descending on lambda is straightforward. One thing to note is that we save the

beta weights for every trial lambda, as we may want to access them later. Also, if the

caller sets the print_steps flag, this routine will open a text file and append results for easy

examination by the user.

We use get_lambda_thresh() to find the smallest lambda that ensures all betas remain at

zero and decrease it slightly to get our starting lambda. We arbitrarily set the minimum

lambda to be 0.001 times that quantity. The number of trial lambdas was specified in the

constructor call. Here is the code:

void CoordinateDescent::lambda_train (

 double alpha , // User-specified alpha, (0,1) (Greater than 0)

 int maxits , // Maximum iterations, for safety only

 double eps ,   // Convergence criterion, typically 1.e-5 or so

 int fast_test ,   // Convergence via max beta change vs explained variance?

 double max_lambda ,  // Starting lambda, or negative for automatic computation

 int print_steps  // Print lambda/explained table?

)

{

 int ivar, ilambda, n_active ;

 double lambda, min_lambda, lambda_factor ;

 FILE *fp_results ;

Chapter 3 Optimization Issues

58

 if (print_steps) {

 fopen_s (&fp_results , "CDtest.LOG" , "at") ;

 fprintf (fp_results , "\n\nDescending lambda training...") ;

 fclose (fp_results) ;

 }

 if (n_lambda <= 1) // Nonsensical parameter from caller

 ireturn ;

/*

 Compute the minimum lambda for which all beta weights remain at zero

 This (slightly decreased) will be the lambda from which we start our descent.

*/

 if (max_lambda <= 0.0)

 max_lambda = 0.999 * get_lambda_thresh (alpha) ;

 min_lambda = 0.001 * max_lambda ;

 lambda_factor = exp (log (min_lambda / max_lambda) / (n_lambda-1)) ;

/*

 Repeatedly train with decreasing lambdas

*/

 if (print_steps) {

 fopen_s (&fp_results , "CDtest.LOG" , "at") ;

 fprintf (fp_results , "\nLambda n_active Explained") ;

 }

 lambda = max_lambda ;

 for (ilambda=0 ; ilambda<n_lambda ; ilambda++) {

 lambdas[ilambda] = lambda ; // Save in case we want to use later

 core_train (alpha , lambda , maxits , eps , fast_test , ilambda) ;

 for (ivar=0 ; ivar<nvars ; ivar++) // Save these in case we want them later

 lambda_beta[ilambda*nvars+ivar] = beta[ivar] ;

 if (print_steps) {

 n_active = 0 ; // Count active predictors for user’s edification

Chapter 3 Optimization Issues

59

 for (ivar=0 ; ivar<nvars ; ivar++) {

 if (fabs(beta[ivar]) > 0.0)

 ++n_active ;

 }

 fprintf (fp_results , "\n%8.4lf %4d %12.4lf", lambda, n_active, explained) ;

 }

 lambda *= lambda_factor ;

 }

 if (print_steps)

 fclose (fp_results) ;

}

�Optimizing Lambda with Cross Validation
One of the most popular, if not the most popular, method for optimizing a model’s

hyperparameter(s) is cross validation, so that’s what we will do here. The principle is

simple. For each fold we call lambda_train() to test a descending set of lambdas, saving the

beta coefficients for each trial lambda. We then compute the out-of-sample explained

variance for each trial lambda and cumulate this quantity. When all folds are done, we

examine the pooled OOS performance and choose whichever lambda gave the best OOS

performance. There are a few things to watch out for, though, so we will break down this

code into separate segments, explaining each. Here is the calling parameter list:

double cv_train (

 int n , // Number of cases in full database

 int nvars , // Number of variables (columns in database)

 int nfolds , // Number of folds

 double *xx , // Full database (n rows, nvars columns)

 double *yy , // Predicted variable vector, n long

 double *ww ,   // Optional weights, n long, or NULL if no weighting

 double *lambdas , // Returns lambdas tested by lambda_train()

 double *lambda_OOS ,  // Returns OOS explained for each of above lambdas

 int covar_updates , // Does user want (usually faster) covariance update method?

 int n_lambda , // This many lambdas tested by lambda_train() (at least 2)

Chapter 3 Optimization Issues

60

 double alpha , // User-specified alpha, (0,1) (greater than 0)

 int maxits , // Maximum iterations, for safety only

 double eps , // Convergence criterion, typically 1.e-5 or so

 int fast_test // Convergence via max beta change vs explained variance?

)

Note that this is not a member of the CoordinateDescent class; it is a stand-alone

routine. Most of the parameters are self-explanatory and have been seen many times

before. The last four parameters and covar_updates are just passed to the core training

routine. We do have to supply two vectors n_lambdas long: lambdas will return the

tested lambda values, and lambda_OOS will return the OOS explained variance fraction

corresponding to each tested lambda. We should specify n_lambdas as large as feasible for

thorough testing; 50 is not unreasonable. Numerous lambdas do not appreciably slow

training, because warm starts are used, meaning that each time lambda is decreased,

the beta optimization begins at the prior optimal values. This is very fast. Finally, the

number of folds should also be as large as feasible for best accuracy; five would be a bare

minimum, ten is reasonable, and even more is better if computer time allows.

We begin with some initializations. Naturally we will want to use the same set of

descending lambdas for each fold, so we use the entire dataset to find the threshold. If

the cases are weighted, we copy the normalized weights for use in OOS scoring. The first

training fold will begin at the first case, and we have not yet done any OOS cases. We

will cumulate the fraction of variance explained in lambda_OOS, so initialize this vector

to zero for each trial lambda. We will cumulate the (possibly weighted) target sum of

squares in YsumSquares.

 cd = new CoordinateDescent (nvars , n , (ww != NULL) , covar_updates , n_lambda) ;

 cd->get_data (0 , n , xx , yy , ww) ; // Fetch the training set for this fold

 max_lambda = cd->get_lambda_thresh (alpha) ;

 if (ww != NULL) {

 for (icase=0 ; icase<n ; icase++)

 work[icase] = cd->w[icase] ;

 }

 delete cd ;

 i_IS = 0 ; // Training data starts at this index in complete database

 n_done = 0 ; // Number of cases treated as OOS so far

Chapter 3 Optimization Issues

61

 for (ilambda=0 ; ilambda<n_lambda ; ilambda++)

 lambda_OOS[ilambda] = 0.0 ; // Will cumulate across folds here

 YsumSquares = 0.0 ; // Will cumulate to compute explained fraction

The fold loop begins here. The number of OOS cases is the number remaining to be

done divided by the number of remaining folds. The remaining cases are in-sample, and

the OOS set starts past the IS set.

 for (ifold=0 ; ifold<nfolds ; ifold++) {

 n_OOS = (n - n_done) / (nfolds - ifold) ; // Number of cases in OOS (test set)

 n_IS = n - n_OOS ; // Number IS (training set)

 i_OOS = (i_IS + n_IS) % n ; // OOS starts at this index

We now train with this in-sample set, descending on lambda. This set begins at index

i_IS, and if the end of the dataset is reached, it will cycle back to the beginning.

 cd = new CoordinateDescent (nvars , n_IS , (ww != NULL) , covar_updates ,

 n_lam bda) ;

 cd->get_data (i_IS , n , xx , yy , ww) ; // Fetch the training set for this fold

 cd->lambda_train (alpha , maxits , eps , fast_test , max_lambda , 0) ;

Training is done, so we evaluate performance on the OOS set. Here is the code; a

step-by-step explanation is on the next page:

 for (ilambda=0 ; ilambda<n_lambda ; ilambda++) {

 lambdas[ilambda] = cd->lambdas[ilambda] ; // This will be the same for all folds

 coefs = cd->lambda_beta + ilambda * nvars ;

 sum = 0.0 ;

 for (icase=0 ; icase<n_OOS ; icase++) {

 k = (icase + i_OOS) % n ;

 pred = 0.0 ;

 for (ivar=0 ; ivar<nvars ; ivar++)

 pred += coefs[ivar] * (xx[k*nvars+ivar] - cd->Xmeans[ivar]) / cd->Xscales[ivar] ;

 Ynormalized = (yy[k] - cd->Ymean) / cd->Yscale ;

 diff = Ynormalized - pred ;

Chapter 3 Optimization Issues

62

 if (ww != NULL) {

 if (ilambda == 0)

 YsumSquares += work[k] * Ynormalized * Ynormalized ;

 sum += work[k] * diff * diff ;

 }

 else {

 if (ilambda == 0)

 YsumSquares += Ynormalized * Ynormalized ;

 sum += diff * diff ;

 }

 }

 lambda_OOS[ilambda] += sum ;  // Cumulate for this fold

 } // For ilambda

 delete cd ;

 n_done += n_OOS ; // Cumulate OOS cases just processed

 i_IS = (i_IS + n_OOS) % n ; // Next IS starts at this index

 } // For ifold

The code on the prior page processes the OOS set for a single fold. The training

routine saved beta weights for every trial lambda along the way as the efficient lambda

descent algorithm progressed. So, we loop through the lambdas, getting the betas for

each lambda into coefs. We will loop through all OOS cases, cumulating the sum of

squared errors in sum.

We cycle through the dataset, looping back to the beginning when the end is

reached, so k is the index of the OOS case about to be tested. The OOS case (target

and all predictors) must be normalized in the same way that the training data was

normalized, using the same mean and standard deviation.

The error for this case, diff, is the true value minus the predicted value. We cumulate

the squared error, multiplying it by the user-specified case weight if differential weighting

is employed. We simultaneously cumulate the sum of squared normalized targets. This

has to be done only once, as it would of course be the same for all trial lambdas. When

the case loop is done, we add the error sum to the sum for the lambda being tested. This

vector will cumulate sums across all folds. After the lambda loop is done, we delete the

CoordinateDescent object for this fold and advance to the next fold.

Chapter 3 Optimization Issues

63

All that’s left to do is compute the OOS explained variance fraction for each lambda

and return the best-performing lambda to the caller. The target sum of squares minus

the error sum of squares gives the explained sum of squares. Dividing this by the target

SS gives the fraction of explained variance.

 best = -1.e60 ;

 for (ilambda=0 ; ilambda<n_lambda ; ilambda++) {

 lambda_OOS[ilambda] = (YsumSquares - lambda_OOS[ilambda]) / YsumSquares ;

 if (lambda_OOS[ilambda] > best) {

 best = lambda_OOS[ilambda] ;

 ibest = ilambda ;

 }

 }

 return lambdas[ibest] ;

}

�The CD_MA Program
The file CD_MA.CPP contains a program that reads a market price file, computes a large

number of indicators based on moving-average oscillators, and uses the CoordinateDescent

regularized linear model to find an optimal subset of the indicators for predicting the

(log) price change to the next day. One year of market data at the end of the history file is

held out for use as a test set.

The program is invoked with the following command:

CD_MA Lookback_inc N_long N_short Alpha Filename

Let’s break this command down:

•	 Lookback_inc: The long-term lookback will begin with this number of

bars (including the current bar) looking back. Subsequent long-term

lookbacks will be incremented by this amount. For example, if this is

specified to be 3, the long-term lookbacks will be 3, 6, 9,

•	 N_long: This many long-term lookbacks will be employed. The

maximum long-term lookback will be Lookback_inc * N_long.

Chapter 3 Optimization Issues

64

•	 N_short: This many short-term lookbacks will be employed. They are

the current long-term lookback times i and then divided by N_short+1,

for i from 1 through N_short, truncated down to an integer. Note that

when the current long-term lookback is less than N_short+1, there

will be multiple equal values of the short-term lookback, resulting

in perfectly correlated predictors. The total number of indicators is

N_long * N_short.

•	 Alpha: The desired alpha to control the type of regularization. If

specified less than or equal to zero, lambda will be set to zero,

producing ordinary linear regression (no regularization). It must

never be greater than or equal to one.

•	 Filename: A market history file in format YYYYMMDD Open High Low

Close.

Two tables will be printed. The first shows the computations involved in selecting the

optimal lambda. The left column in this table lists the trial lambdas. The right column

shows the corresponding out-of-sample fraction of explained variance.

The second table lists the beta coefficients. Each row corresponds to a long-term

lookback, with the lookback printed at the start of each row. Each column corresponds

to a short-term lookback. These lookbacks are not printed because they change with

each row. They can be easily computed with the formula on the prior page. Coefficients

that are exactly zero, usually but not always because the training algorithm removed

them from the model, are shown with dashes.

Figure 3-1 shows the table of beta coefficients produced for OEX when lambda=0, no

regularization. This is practically identical to ordinary linear regression. Figure 3-2 shows

the result when alpha=0.1, and Figure 3-3 is for alpha=0.9. A discussion follows.

Chapter 3 Optimization Issues

65

Figure 3-1.  Lambda=0 (no regularization)

Figure 3-2.  Alpha=0.1

Chapter 3 Optimization Issues

66

This run used the S&P 100 index OEX as its market history. The lookback increment

was 2, with 30 long-term lookbacks and 10 short-term lookbacks.

•	 Recall from the discussion on the first page of this section that for

long-term lookbacks less than the number of short-term lookbacks

plus 1, some short-term lookbacks must be duplicated, meaning that

some indicators are exact copies of others.

•	 This duplication makes ordinary linear regression impossible, as

some weights would be undefined. Special techniques such as

singular value decomposition would be needed. The algorithm here

for lambda=0 handles this fine, even effectively eliminating a few

of the duplicates. But the vast majority of indicators take part in the

model.

•	 Because when lambda=0 there is no regularization, it is a fully least-

squares fit. This means that the in-sample fraction of explained

variance should be the maximum possible, and indeed we see that

this is the case, with 1.63 percent of the target variance explained.

Figure 3-3.  Alpha=0.9

Chapter 3 Optimization Issues

67

•	 Because of the vast number of indicators taking part (no regularization),

we would expect to see poor OOS performance. We do, with this scoring

the worst of the three tests.

•	 When we apply regularization with alpha=0.1 (nearly ridge

regression), the in-sample explained variance drops, but the OOS

performance soars to the best.

•	 With alpha=0.1, we see that the duplicated indicators receive equal

beta coefficients, as expected.

•	 With alpha=0.9 (nearly a lasso), the model minimizes the number

of indicators retained in an attempt to make the model as simple

as possible, even at the cost of performance. We see this happen,

and even the chosen indicators change. OOS performance plunges,

meaning that the model was forced to drop some useful indicators.

•	 The regularized models have all negative coefficients, meaning that

this trading system is a mean reversion system, not a trend follower!

�Making a Linear Model Nonlinear
As much as a linear model is often to be preferred to a nonlinear model, sometimes two

or more of our indicators have an unavoidable nonlinear interaction in their relationship

to the target. Be aware that an indicator simply having a nonlinear relationship with

the target, on its own, is not usually a problem. We can just transform the indicator in

such a way that its relationship with the target becomes largely linear. This is always

a good thing to at least attempt. Of course, it can also happen that we merely suspect

a solo nonlinear relationship, but we cannot prove it enough to be able to sensibly

transform the indicator. But the vast majority of the time, what kills a linear model is

when indicators interact with one another in a nonlinear fashion in regard to their joint

relationship with a target. In such cases, we have no choice but to abandon a strictly

linear model.

But all is not lost. The advantages of a linear model, especially of the regularized sort

(simple understanding of how it works, fast training, lower likelihood of overfitting), are

so great that it is worthwhile to transform indicators and their interaction in a moderately

nonlinear fashion and apply these new values to the regularized linear model. We almost

Chapter 3 Optimization Issues

68

never want to apply such extreme measures that the trade decision boundaries wander

all over the place, twisting and turning to catch every errant training case. But there is an

easy way to apply modest nonlinear transformations that allow us to use a regularized

linear model in a gently nonlinear manner.

Naturally, we could supplement the model’s predictors with one or more nonlinear

functions of one or more original predictors. And if we have a theoretical reason for

choosing some particular function(s), we should certainly do so. But that situation is rare.

The most common and effective general procedure is to use low-degree polynomials,

with two special twists that I’ll discuss soon. The general idea is this: we choose a low

degree, typically two and rarely three. Also, choose a subset of the predictors on which we

want to allow nonlinear interactions. This may be the entire set of predictors, although

things blow up fast as we include more predictors. Then supplement the original

predictors with every possible combination of them up through the chosen degree.

For example, suppose we have three predictors for which we want to allow

nonlinearity. Call them A, B, and C. Also suppose we want to allow up to second degree,

the most common choice. Then the predictors we send to the model are A, B, C, A2,

B2, C 2, AB, AC, BC. If we decide to move up to third degree, the additional predictors

are A3, B3, C3, A2B, A2C, B2C, AB2 AC 2, BC 2, ABC. It should be painfully obvious that

increasing the number of predictors in the nonlinear set, or increasing the degree of the

polynomial, produces an explosive growth in the number of new predictors.

There are two things that should be done when polynomial expansion is employed.

Neither of these is mathematically required, but both are important if we are to guard

against hardware floating-point inaccuracies, as well as improve the speed and stability

of most model-training algorithms. First, we must ensure that the transformed indicators

have a natural range of approximately minus one to one. If this is done, all polynomial

transformed values have this same natural range. If our raw indicators do not have this

range, at least approximately, we should find their true natural range, Min to Max, either

from theoretical considerations or from examination of a large representative set. Then

the range-adjusted value of X is 2 * (X – Min) / (Max – Min) – 1.

The other action we should take is needed only if we go to third degree (or, heaven

forbid, higher). The problem is that even with range adjustment, X and X3 can have

enough correlation to slightly impede some training algorithms. It’s rarely serious, and

the technique about to be described may be considered overkill by some, but it’s a cheap

investment with a nice return. Instead of using X3, use 0.5 * (5 X3 – 3 X). This is still a

cubic polynomial with a range of minus one to one, and it will allow the same effective

Chapter 3 Optimization Issues

69

nonlinearity as X3, but it will typically have much less correlation with X and hence will

be handled more effectively by many training algorithms. You have nothing to lose and

potentially much to gain.

Going beyond third degree is nearly always pointless. If you have that much

nonlinearity, just use a nonlinear model. But if for some reason you insist, look up

Legendre polynomials and use them for the higher-degree terms.

�Differential Evolution: A Universal Nonlinear
Optimizer
Whether your trading system is based on a nonlinear predictive model or is a traditional

algorithmic (rule-based) system, you want a fast and stable method for optimizing your

chosen performance criterion. In most scenarios, a major trade-off is involved in the

selection of an optimization algorithm. It is common for a function of multiple variables

to have several (perhaps many!) local optima. The fastest optimizers are hill climbers,

rapidly rising to the top of the nearest hill, whether that particular hill happens to be the

grand best or not. Optimizers that are more likely to find the best hilltop among many

are much slower than simple hill climbers. So, what to do?

Fortunately, there is an algorithm that is a good compromise between the two

extremes. It has a relatively high likelihood of finding the best, or at least nearly the best,

hilltop among many, yet it is also quite fast. This algorithm is a special sort of genetic or

evolutionary optimization called differential evolution. I will not provide any references

here because the Internet is filled with examples and discussions. Instead, I will focus on

a highly tweaked variation of this algorithm that I have used in my own work for many

years and that I have found to be a reliable performer.

Like all evolutionary algorithms, it begins with a population of individuals, each

individual being a completely specified parameter set for the trading system. It then

iterates through the population, combining qualities of different members of the

population in a way that has a good probability of producing individuals that are

superior to the parents.

Unlike most plant and animal reproduction, differential evolution requires four

individuals to produce a child. One of these, called Parent 1, is chosen deterministically.

The other three, Parent2, Differential1, and Differential2, are randomly selected.

The difference between the two differentials determines a direction, and Parent2 is

Chapter 3 Optimization Issues

70

Figure 3-4.  One step of differential evolution

perturbed in this direction. The new child is created by selecting some parameters from

Parent1 and the others from the perturbed Parent2. This is illustrated in Figure 3-4 and

Figure 3-5.

Chapter 3 Optimization Issues

71

Figure 3-4 shows that the first and second differentials are subtracted and their

difference multiplied by a constant, usually smaller than one. This shrunken difference

is added to the secondary parent, and the sum is merged with the primary parent

in a random crossover operation. The performance of this child is compared to the

performance of the primary parent, and the superior individual is retained for the next

generation.

This is shown graphically in Figure 3-5 for two variables. The difference between

the two differentials determines a direction, and the secondary parent is perturbed in

this direction. This operation is called mutation in this illustration, though this is not a

universal term. Then the horizontal variable is taken from the primary parent, and the

vertical variable is taken from the mutated secondary parent.

This scheme has an important property: it scales perturbations to the natural scales

of the parameters. Suppose the performance function has a narrow ridge in some

direction, a common situation. Then the population will gravitate to this same layout.

Individuals (complete parameter sets) will be spread widely in the direction of the ridge

and compressed in the perpendicular direction. As a result, differential differences,

which control the degree of perturbation of the secondary parent, will be large along the

ridge and small across the ridge, exactly what we want.

Figure 3-5.  Differential child generation

Chapter 3 Optimization Issues

72

Unfortunately, differential evolution shares a weakness common to most stochastic

procedures: it quickly converges to the vicinity of the global optimum but then never

quite makes it to the exact optimum. This is because it is inherently unable to take

advantage of local knowledge of the function. Hill-climbing methods do an excellent

job of converging to a local optimum, but they are subject to failure by missing

the global optimum. So, my method is a hybrid, mainly implementing differential

evolution but occasionally performing a hill-climbing step on a single individual. This

greatly accelerates convergence, while having negligible impact on the globality of

the algorithm, because this operation remains in the domain of attraction of a single

individual at any one time.

A rough overview of the algorithm on the next page is shown here.

for (ind=0 ; ind<popsize+overinit ; ind++) { // Generate the basis population

 Generate a random parameter vector

 value = performance of this random vector

 If this individual fails to meet a minimum requirement {

 --ind ; // Skip it entirely

 continue ;

 }

 if (ind >= popsize) { // If we finished population, now doing overinit

 Find the worst individual in population (popsize individuals)

 if (value > worst)

 Replace the worst with this new individual

 } // If doing overinit

 } // For all individuals (population and overinit)

for (generation=1 ; ; generation++) {

 for (ind=0 ; ind<popsize ; ind++) { // Generate all children

 parent1 = individual 'ind'

 Generate three different random indices for parent2 and the two differentials:

 parent2, diff1, diff2

Chapter 3 Optimization Issues

73

 for all variables j { // This is the mutation and crossover step

 with small probability

 trial[j] = parent2[j] + constant * (diff1[j] - diff2[j]) ;

 else

 trial[j] = parent1[j] ;

 }

 value = performance of trial parameter set

 if (value > parent1's performance)

 replace parent1 with trial parameter set

 Optionally pick one variable in one individual (favoring the best so far)

 and find the optimal value of that variable

 } // Create all children in this generation

 } // For all generations

Return the best individual in the final population

The first step is to generate an initial population, which is done by the first loop

in this pseudocode. The user specifies the number of individuals in the population,

popsize. The traditional algorithm does not include overinitialization, the testing of overinit

additional individuals. I have found that setting overinit to approximately popsize produces

a substantially superior initial population with faster convergence and better global

representation at relatively little additional cost.

This population generation loop creates a random individual (complete set of

trading-system parameters) and computes its performance. If this individual fails any

user-specified requirement, such as a minimum number of trades, it is rejected, and we

try again.

When we have generated popsize individuals and are into overinitialization, for each

new candidate we search the existing population for the poorest-performing individual.

If the new candidate is superior to the worst individual in the population, the new

candidate replaces the worst. This steadily improves the quality of the population, and

it also makes it more likely that we will have one or more individuals in the domain of

attraction of the global optimum.

We then come to the evolutionary part of the code. There are two nested loops.

The outer loop processes generations, and within each generation we employ each

Chapter 3 Optimization Issues

74

individual in the current population as the primary parent. The secondary parent

and the two differential individuals are chosen randomly, and of course these four

individuals must be different.

Mutation (perturbing the secondary parent by the shrunken difference between the

differentials) and crossover (randomly replacing some variables in the primary parent

with the corresponding mutated variables) are done in the same loop for efficiency. We

loop through all variables to create a trial individual. For each, we roll the dice and with

generally small probability we set that variable equal to the mutated value. Otherwise,

we copy the variable from the primary parent.

We compute the performance of this trial individual. If it is superior to the primary

parent, it goes into the population for the next generation. Otherwise, the primary parent

goes into the next generation.

Last, we optionally perform a step that does not appear in the traditional algorithm

but that I have found to be useful in speeding convergence while having little or no

impact on the ability of the algorithm to find the global optimum in the presence of

multiple inferior local optima. We pick one individual in the population, with some

favoritism shown to the currently best individual, and we also pick one variable. We use a

hill-climbing algorithm to find the value of this variable that optimizes the performance

of this individual. This gives us the best of both worlds (stochastic optimization versus

hill-climbing) because it lets the algorithm accurately converge to the exact optimum

much faster than a purely stochastic algorithm could, while it does not interfere with

the ability of differential evolution to find the global optimum. This is because when it is

done, it happens to just one individual, which keeps this individual within the domain of

attraction of its local optimum while not touching the other individuals in the population

that may have their own domains of attraction. Thus, the domains of attraction are kept

separated, enabling the globally best to eventually dominate.

After all generations are complete, we choose the best individual in the final

population and return it to the user.

The algorithm just shown is abbreviated for clarity. My implementation is much

more complex because over the years I have refined it in many ways to tweak its

performance, especially in the context of optimizing trading systems. Beginning on the

next page we will work through the entire subroutine, listing and commenting on each

section separately. This code can be found in the file DIFF_EV.CPP. Note that this file

also includes some other code unrelated to differential evolution but that is efficient to

perform at the same time. We will ignore this code here and cover it in detail on page 91.

Chapter 3 Optimization Issues

75

�The DIFF_EV.CPP Routine for Differential Evolution
The differential evolution subroutine is called with the following parameter list:

int diff_ev (

 double (*criter) (double * , int) , // Crit function maximized

 int nvars ,   // Number of variables (trading system parameters)

 int nints ,   // Number of first variables that are integers

 int popsize ,   // Population size

 int overinit ,  // Overinitialization for initial population

 int mintrades , // Minimum number of trades for candidate system

 int max_evals ,   // For safety, max number of failed initial performance evals

 int max_bad_gen , // Max number of contiguous gens with no improvement

 double mutate_dev , // Deviation for differential mutation

 double pcross ,   // Probability of crossover

 double pclimb ,   // Probability of taking a hill-climbing step, can be zero

 double *low_bounds ,   // Lower bounds for parameters

 double *high_bounds , // And upper

 double *params , // Returns nvars best parameters, plus criterion at end

 int print_progress // Print progress to screen?

)

The caller-supplied criter() function computes the trading system’s performance

criterion, which will be maximized. It takes a vector of the trading system’s optimizable

parameters. The integer that is also supplied is, in my implementation, the user-

specified minimum number of trades. Readers should find it easy to add other variables

that might be involved in setting minimum requirements for generated trading systems.

The parameters may be integers or real numbers; they are handled differently

internally, as will be seen. All integer parameters must come first in the parameter array,

and nints specifies the number of integers.

The user can set overinit to zero to use the traditional version of the algorithm.

However, I have found it advantageous to set it equal to something in the vicinity of

popsize. This tends to speed convergence and increase the probability of finding the true

global maximum. But note that the point of diminishing returns is reached rapidly. It

soon happens that the worst individual in the steadily improving population is usually

superior to most overinitialized individuals, making continued overinitialization a waste.

Chapter 3 Optimization Issues

76

The user specifies in mintrd the minimum number of trades required. As will be seen

in the code presentation, the specified quantity may be automatically reduced if the

optimizer has extreme difficulty finding systems that meet this requirement. Thus, the

user should check the number of trades obtained by the optimal system to confirm that

it is satisfactory. Eliminating this automatic reduction is easy if the programmer want,

but I have found it useful.

The max_evals parameter is a safety measure. If the trading system is so inherently

poor that most trial parameters produce rejected systems, it can take an inordinate

amount of time to generate the initial population. To prevent this, set max_evals to a large

but reasonable value. This should not be thought of as a convergence test; in practice,

this limit should never be encountered.

Convergence is defined by the max_bad_gen parameter. If this many consecutive

generations pass with no improvement in the best individual, convergence is obtained,

and the algorithm stops. This should usually be quite large, perhaps 50 or even more, as

it can happen that things go badly because of bad luck for a while before suddenly taking

off again.

A crossover happens when a mutated parameter is substituted for the corresponding

parameter in the primary parent, and the probability of this happening is given by pcross.

This should usually be small, perhaps 0.1 to 0.5 at most.

The probability of a hill-climbing step is given by pclimb. This can be zero to strictly

avoid hill climbing, keeping true to the traditional version of differential evolution. It

could be set to a tiny positive value, such as 0.00001, in which case the current best

individual (and no others) will occasionally be subjected to hill climbing. This greatly

enhances end-stage accurate convergence to the maximum. Finally, it could be set to a

somewhat larger but still smallish value, such as 0.2. This way, in addition to tweaking

the best individual, it will occasionally randomly tweak other individuals. Setting it to

larger values is usually not very beneficial, as hill climbing is an expensive operation,

especially for real parameters, and the payoff from doing it more than occasionally is

usually not sufficient to justify the increased cost. Also, if hill climbing is done too often,

detection of the true global maximum can be somewhat impeded, although this is not

usually a problem.

The caller must specify lower and upper bounds for the parameters, using the low_

bounds and high_bounds vectors, respectively.

The params vector, which must be nvars+1 long, returns the optimal parameters. The

last item in this array is the value of the criterion function for this optimal parameter set.

Chapter 3 Optimization Issues

77

If print_progress is input nonzero, frequent progress reports will be printed to the

console screen.

Only three work arrays are allocated: one to hold the “current” population, one to

hold the population being created, and one short array to keep track of the grand best

individual. We use failures to count how many times a randomly generated individual

for the initial population is rejected, usually because the trading system had too few

trades. It will be used to reduce the minimum trade requirement, as we’ll see soon. And

for safety, n_evals counts the total number of times we evaluate a randomly generated

individual for creating the initial population. This allows an emergency escape to

avoid hanging the computer. The first popsize individuals fill the pop1 array, and

overinitializations go in pop2[0].

 dim = nvars + 1 ; // Each individual is nvars variables plus criterion

 pop1 = (double *) malloc (dim * popsize * sizeof(double)) ;

 pop2 = (double *) malloc (dim * popsize * sizeof(double)) ;

 best = (double *) malloc (dim * sizeof(double)) ;

 failures = 0 ; // Counts consecutive failures

 n_evals = 0 ; // Counts evaluations for catastrophe escape

 for (ind=0 ; ind<popsize+overinit ; ind++) {

 if (ind < popsize) // If we are in pop1

 popptr = pop1 + ind * dim ;   // Point to the slot in pop1

 else // Use first slot in pop2 for work

 popptr = pop2 ;   // Point to first slot in pop2

We now generate a random individual and put it in popptr. The first nints parameters

are integers, and the rest are real. Both types are generated by uniformly selecting values

within the specified range of each. However, integers and reals are handled slightly

differently. The function unifrand() generates a uniform random number in the range 0–1.

 for (i=0 ; i<nvars ; i++) { // For all variables (parameters)

 if (i < nints) { // Is this an integer?

 popptr[i] = low_bounds[i]+(int)(unifrand() * (high_bounds[i]-low_bounds[i] + 1.0));

 if (popptr[i] > high_bounds[i]) // Virtually impossible, but be safe

 popptr[i] = high_bounds[i] ;

 }

Chapter 3 Optimization Issues

78

 else // real

 popptr[i] = low_bounds[i] + (unifrand () * (high_bounds[i] - low_bounds[i])) ;

 } // For all parameters

Evaluate the performance of the trading system for this individual, the parameter set

in popptr. Save this performance in the last slot in popptr, immediately past the parameters.

Recall that each slot is nvars+1 long. Count the number of performance evaluations

while building the initial population so that we can use it as an emergency exit to avoid

being stuck in a seemingly (or actually!) endless loop. Finally, initialize the grand best,

worst, and average performances to the first individual tested. That memcpy() copies the

parameters and performance of this individual to the short array where we keep track of

the all-time best to ultimately return to the user.

 value = criter (popptr , mintrades) ;

 popptr[nvars] = value ; // Also save criterion after variables

 ++n_evals ; // Count evaluations for emergency escape

 if (ind == 0) {

 grand_best = worstf = avgf = value ;

 memcpy (best , pop1 , dim * sizeof(double)) ; // Best so far is first!

 }

The next block of code handles rejected individuals. Note that this code uses a

threshold of zero for rejecting a parameter set, such as for showing a loss or failing to

meet the minimum trade count requirement. If you want to use a different performance

criterion, one for which this threshold is not appropriate, you should either modify this

code or, better still, transform your performance criterion. For example, if you want to

maximize profit factor, for which the appropriate threshold would be one instead of zero,

you could define your performance as the log of the profit factor.

In the reject-handling code shown next, we first check to see if we have such a

terrible trading system that the number of evaluations needed to generate the initial

population has gotten out of control, in which case we take an emergency exit. If not,

we count the number of such failures. If it has reached a large number (500 is hard-

coded here; feel free to change it), we reset the failure counter and reduce the minimum

trade requirement, as in my experience this is the most common cause of failure unless

mintrades has been set very small. In any case, failure of this individual causes it to be

skipped, while success resets the failure counter. Thus, it takes a lot of failure to trigger

Chapter 3 Optimization Issues

79

reduction of the minimum trade count. Things have to be very bad before this drastic

action is taken.

 if (value <= 0.0) { // If this individual is totally worthless

 if (n_evals > max_evals) // Safety escape should ideally never happen

 goto FINISHED ;

 --ind ;   // Skip it entirely

 if (++failures >= 500) {  // This many in a row

 failures = 0 ;

 mintrades = mintrades * 9 / 10 ;

 if (mintrades < 1)

 mintrades = 1 ;

 }

 continue ;

 }

 else

 failures = 0 ;

We maintain the best, worst, and average performances. The latter two are strictly for

progress reports, and if the user will not be updated on progress, the worst and average

computation can be omitted.

 if (value > grand_best) { // Best ever

 memcpy (best , popptr , dim * sizeof(double)) ;

 grand_best = value ;

 }

 if (value < worstf)

 worstf = value ;

 avgf += value ;

If we have completed finding popsize individuals, we are into overinitialization.

Search the existing population for the worst individual. If this new overinitialization

individual is superior to the worst, replace the worst with it, which improves the gene

pool. Recall that the performance is stored just past the parameters, so it is at index

[nvars]. Once again, we maintain the average performance only for user updates; it plays

no role in the optimization algorithm.

Chapter 3 Optimization Issues

80

 if (ind >= popsize) { // If we finished pop1, now doing overinit

 avgf = 0.0 ;

 minptr = NULL ; // Not needed. Shuts up 'use before define'

 for (i=0 ; i<popsize ; i++) { // Search pop1 for the worst

 dtemp = (pop1+i*dim)[nvars] ;

 avgf += dtemp ;

 if ((i == 0) || (dtemp < worstf)) {

 minptr = pop1 + i * dim ;

 worstf = dtemp ;

 }

 } // Searching pop1 for worst

 if (value > worstf) { // If this is better than the worst, replace worst with it

 memcpy (minptr , popptr , dim * sizeof(double)) ;

 avgf += value - worstf ; // Account for the substitution

 }

 } // If doing overinit

 } // For all individuals (population and overinit)

At this point we have completely generated the starting population. Locate the best

performer, because we will occasionally do a little hill climbing on it (unless the user

forbids this, a generally bad move). Then set the points to the old (source) and new

(destination) generations and zero the convergence counter. We will use n_tweaked to

control hill climbing.

 ibest = n_tweaked = 0 ;

 value = pop1[nvars] ;

 for (ind=1 ; ind<popsize ; ind++) {

 popptr = pop1 + ind * dim ; // Point to the slot in pop1

 if (popptr[nvars] > value) {

 value = popptr[nvars] ;

 ibest = ind ;

 }

 }

 old_gen = pop1 ; // This is the old, parent generation

 new_gen = pop2 ; // The children will be produced here

 bad_generations = 0 ; // Counts contiguous generations with no improvement of best

Chapter 3 Optimization Issues

81

We have nested loops, with generations being the outer loop and individuals within

a generation the inner loop. Keep track of the average and worst only for optional user

updates. The variable improved flags if the best individual improved at any point in the

generation. This is used to signal convergence. The primary parent, parent1, comes from

the source population, and the child we will create will go to the destination population.

 for (generation=1 ; ; generation++) {

 worstf = 1.e60 ;

 avgf = 0.0 ;

 improved = 0 ; // Will flag if we improved in this generation

 for (ind=0 ; ind<popsize ; ind++) { // Generate all children for this generation

 parent1 = old_gen + ind * dim ; // Pure (and tested) parent

 dest_ptr = new_gen + ind * dim ;   // Winner goes here for next gen

We randomly select the secondary parent and the two differentials. These must be

different from the primary parent and from one another.

 do { i = (int) (unifrand() * popsize) ; }

 while (i >= popsize || i == ind) ;

 do { j = (int) (unifrand() * popsize) ; }

 while (j >= popsize || j == ind || j == i) ;

 do { k = (int) (unifrand() * popsize) ; }

 while (k >= popsize || k == ind || k == i || k == j) ;

 parent2 = old_gen + i * dim ; // Parent to mutate

 diff1 = old_gen + j * dim ; // First differential vector

 diff2 = old_gen + k * dim ; // Second differential vector

The following code takes care of mutation and crossover to create a new child. We’ll

loop through every parameter, randomly deciding for each whether to mutate and do

crossover. If we get to the last parameter and have not done this yet, we do it to the last to

ensure that there is at least one change. We randomly choose a starting parameter so that

when we get to the end we will not always be at the same place for the final action.

The mutation can easily push parameters outside their legal range. Fix this as needed.

The ensure_legal() routine will be discussed later.

Chapter 3 Optimization Issues

82

 do { j = (int) (unifrand() * nvars) ; }

 while (j >= nvars) ; // Pick a starting parameter

 used_mutated_parameter = 0 ; // We must act at least once; we haven’t yet

 for (i=nvars-1 ; i>=0 ; i--) {

 if ((i == 0 && ! used_mutated_parameter) || (unifrand() < pcross)) {

 dest_ptr[j] = parent2[j] + mutate_dev * (diff1[j] - diff2[j]) ;

 used_mutated_parameter = 1 ;

 } // We mutated this variable

 else // We did not mutate this variable, so copy old value

 dest_ptr[j] = parent1[j] ;

 j = (j + 1) % nvars ; // Rotate through all variables

 }

 ensure_legal (nvars , nints , low_bounds , high_bounds , dest_ptr) ;

Evaluate the performance of this newly created child. If it is superior to the primary

parent, put it into the destination population. Otherwise, copy the primary parent

into the destination population. Keep track of the all-time best individual, which will

eventually be returned to the caller. Flag via improved that we had an improvement this

generation so that we are not ready to quit yet. The variable n_tweaked will be used in

conjunction with hill climbing soon.

 value = criter (dest_ptr , mintrades) ;

 if (value > parent1[nvars]) { // If the child is better than parent1

 dest_ptr[nvars] = value ; // Get the child's value (The vars are already there)

 if (value > grand_best) { // And update best so far

 grand_best = value ;

 memcpy (best , dest_ptr , dim * sizeof(double)) ;

 ibest = ind ;

 n_tweaked = 0 ;

 improved = 1 ; // Flag that the best improved in this generation

 }

 }

Chapter 3 Optimization Issues

83

 else { // Else copy parent1 and its value

 memcpy (dest_ptr , parent1 , dim * sizeof(double)) ;

 value = parent1[nvars] ;

 }

We now embark on the optional (but very useful) hill-climbing step. The following

code is the logic for deciding if and what to hill climb. We’ll discuss it on the next page.

 if (pclimb > 0.0 &&

 ((ind == ibest && n_tweaked < nvars) || (unifrand() < pclimb))) {

 if (ind == ibest) { // Once each generation tweak the best

 ++n_tweaked ; // But quit if done all vars

 k = generation % nvars ; // Cycle through all vars

 }

 else { // Randomly choose an individual

 k = (int) (unifrand() * nvars) ; // Which var to optimize

 if (k >= nvars) // Safety only

 k = nvars - 1 ;

 }

If the user specifies pclimb=0, then hill climbing (called tweaking here) will never be

done. Assuming that we can do it, two conditions are checked, either of which will allow

a single climbing operation on this individual, which may be the newly created child or

may be a copy of the primary parent. If the individual is the best so far and not all of its

variables have been tweaked, we tweak it. Recall that n_tweaked was reset to zero every

time the grand best changed. If this is the best, we count this tweaking and choose the

variable according to the generation. It is common for the best individual to remain the

same for multiple generations in a row, and this choice of parameter causes the tweaking

to rotate among parameters, avoiding duplication.

If that first test fails (either this is not the best individual or all of its parameters have

been tweaked already), then we roll the dice and randomly decide whether to tweak a

randomly chosen parameter in this individual.

Chapter 3 Optimization Issues

84

Integer and real parameters are tweaked differently, with the former being much

simpler and faster. Here is half of the integer code:

 if (k < nints) { // Is this an integer?

 ivar = ibase = (int) dest_ptr[k] ;

 ilow = (int) low_bounds[k] ;

 ihigh = (int) high_bounds [k] ;

 success = 0 ;

 while (++ivar <= ihigh) {

 dest_ptr[k] = ivar ;

 test_val = criter (dest_ptr , mintrades) ;

 if (test_val > value) {

 value = test_val ;

 ibase = ivar ;

 success = 1 ;

 }

 else {

 dest_ptr[k] = ibase ;

 break ;

 }

 }

We preserve in ibase the current value of this parameter so we can restore it if

no improvement is found. We’ll vary ivar in the vicinity of the current value to seek

improvement. A full global search over its entire legal range would usually be a waste of

time. The variable success flags if we found any improvement. We move the parameter

upward until it hits its upper limit or performance fails to improve. (The possibility of flat

performance followed by improvement is ignored here to keep the search fast.) As long

as we are improving, we keep updating ibase and the improved value. When performance

fails to improve, which may happen on the first test, we set the parameter to ibase and

stop advancing.

If we did not find success by increasing the parameter, we try decreasing it instead.

This algorithm is essentially identical to the upward-search algorithm, so there is no

point in discussing it here.

Chapter 3 Optimization Issues

85

 if (! success) {

 ivar = ibase ;

 while (--ivar >= ilow) {

 dest_ptr[k] = ivar ;

 test_val = criter (dest_ptr , mintrades) ;

 if (test_val > value) {

 value = test_val ;

 ibase = ivar ;

 success = 1 ;

 }

 else {

 dest_ptr[k] = ibase ;

 break ;

 }

 } // While searching downward

 } // If the upward search did not succeed

 } // If k < nints (this parameter is an integer)

The code for handling real parameters is a bit more complex. We begin, as shown

on the next page, by copying information needed for performance computation to

static variables, all of which begin with local_. This technique allows the parameter

optimization routines to be general purpose, calling a criterion function that references

only the parameters being optimized.

 else {  // This is a real parameter

 local_criter = criter ;

 local_ivar = k ; // Pass it to criterion routine

 local_base = dest_ptr[k] ; // Preserve orig var

 local_x = dest_ptr ;

 local_nvars = nvars ;

 local_nints = nints ;

 local_low_bounds = low_bounds ;

 local_high_bounds = high_bounds ;

 old_value = value ;

Chapter 3 Optimization Issues

86

Optimization is done in two steps. First, we call a rough global search routine glob_max()

(source code in GLOB_MAX.CPP) that tests a handful of discrete points in a range and finds

the one having maximum function value. If the value is increasing at an endpoint, it advances

until a peak is found. Then this maximum is refined using Brent’s algorithm in brentmax()

(source code in BRENTMAX.CPP). This, unfortunately, can be an expensive operation. But

the return is often substantial, especially when differential evolution has gotten us close to

the global maximum and all we need is accurate maximization of the best individual.

We commence the rough global search in the near vicinity of the current value of the

parameter:

 lower = local_base - 0.1 * (high_bounds[k] - low_bounds[k]) ;

 upper = local_base + 0.1 * (high_bounds[k] - low_bounds[k]) ;

 if (lower < low_bounds[k]) {

 lower = low_bounds[k] ;

 upper = low_bounds[k] + 0.2 * (high_bounds[k] - low_bounds[k]) ;

 }

 if (upper > high_bounds[k]) {

 upper = high_bounds[k] ;

 lower = high_bounds[k] - 0.2 * (high_bounds[k] - low_bounds[k]) ;

 }

 k = glob_max (lower , upper , 7 , 0 , c_func ,

 &x1 , &y1 , &x2 , &y2 , &x3 , &y3) ;

At this point we have a trio of points such that the center point has maximum

function value. Refine this and call ensure_legal()to ensure that the parameters are

within their legal bounds. This will likely be the case, or at least very close, because the

criterion function applies a huge penalty when the legal bounds are exceeded, and the

maximization routine will respond vigorously to this penalty. If the performance has

been improved, even after forcing legality, which will nearly always be the case, save the

superior parameter and update the grand best. Finally, update the worst and average

performance, strictly for user updates (not a part of the algorithm).

 brentmax (5 , 1.e-8 , 0.0001 , c_func , &x1 , &x2 , &x3 , y2) ;

 dest_ptr[local_ivar] = x2 ; // Optimized var value

 ensure_legal (nvars , nints , low_bounds , high_bounds , dest_ptr) ;

 value = criter (dest_ptr , mintrades) ;

Chapter 3 Optimization Issues

87

 if (value > old_value) {

 dest_ptr[nvars] = value ;

 }

 else {

 dest_ptr[local_ivar] = local_base ; // Restore original value

 value = old_value ;

 }

 if (value > grand_best) { // Update best so far

 grand_best = value ;

 memcpy (best , dest_ptr , dim * sizeof(double)) ;

 ibest = ind ;

 n_tweaked = 0 ;

 improved = 1 ; // Flag that the best improved in this generation

 }

 } // If optimizing real parameter

 } // If doing hill-climbing step

 if (value < worstf)

 worstf = value ;

 avgf += value ;

 } // Create all children in this generation

We are practically done. If this generation saw no improvement in the best

individual, increment the convergence counter and quit if we reached the user-specified

count. But if we did get improvement, reset the counter. Then reverse the roles of pop1

and pop2 for the source and destination generation populations. The little remaining

code is just cleanup work, omitted here.

 if (! improved) {

 ++bad_generations ;

 if (bad_generations > max_bad_gen)

 goto FINISHED ;

 }

 else

 bad_generations = 0 ;

Chapter 3 Optimization Issues

88

 if (old_gen == pop1) {

 old_gen = pop2 ;

 new_gen = pop1 ;

 }

 else {

 old_gen = pop1 ;

 new_gen = pop2 ;

 }

 } // For all generations

The routine for ensuring legality simply checks each parameter against its user-

specified limit, computes a stiff penalty for being outside the limit (used only for real-

parameter tweaking), and enforces the limit. For integers, we treat positive and negative

values separately to ensure correct truncation. Recall that mutation will generally cause

integer parameters to obtain non-integer values, so we fix that here as a first step.

static double ensure_legal (int nvars , int nints , double *low_bounds , double

*high_bounds , double *params)

{

 int i, j, varnum, ilow, ihigh ;

 double rlow, rhigh, penalty, dtemp ;

 penalty = 0.0 ;

 for (i=0 ; i<nvars ; i++) {

 if (i < nints) { // Is this an integer parameter?

 if (params[i] >= 0)

 params[i] = (int) (params[i] + 0.5) ;

 else if (params[i] < 0)

 params[i] = -(int) (0.5 - params[i]) ;

 }

 if (params[i] > high_bounds[i]) {

 penalty += 1.e10 * (params[i] - high_bounds[i]) ;

 params[i] = high_bounds[i] ;

 }

Chapter 3 Optimization Issues

89

 if (params[i] < low_bounds[i]) {

 penalty += 1.e10 * (low_bounds[i] - params[i]) ;

 params[i] = low_bounds[i] ;

 }

 }

 return penalty ;

}

The routine called by glob_max() and brentmax() is a simple function of the single

parameter being optimized. The appropriate parameter is set to the trial value, and

ensure_legal() is called to enforce legality and compute a possible penalty for being

outside the bounds. Then the performance computation routine is called to compute

the trading system’s performance, and the penalty, if any, is subtracted from the

performance.

static double c_func (double param)

{

 double penalty ;

 local_x[local_ivar] = param ;

 penalty = ensure_legal (local_nvars , local_nints , local_low_bounds ,

 local_high_bounds , local_x) ;

 return local_criter (local_x , mintrades) - penalty ;

}

A complete program to demonstrate this algorithm, DEV_MA.CPP, will be presented

on page 112.

Chapter 3 Optimization Issues

91
© Timothy Masters 2018
T. Masters, Testing and Tuning Market Trading Systems, https://doi.org/10.1007/978-1-4842-4173-8_4

CHAPTER 4

Post-optimization Issues
�Cheap Bias Estimates
On page 121 we’ll present a detailed examination of training bias, and on page 286 we’ll

see a powerful way to deal with this serious problem. But for the moment, we’ll provide a

rough overview of training bias and show how, if one has trained a trading system using

differential evolution or some similar stochastic algorithm, we can get a rough but useful

estimate of training bias as an inexpensive by-product of parameter optimization.

As we embark on developing a trading system, we have in our possession a set of

historical data on which we will optimize our system. This is usually called the in-sample

or IS data. When the system is tested or put to use on a different set of data, that data is

called the out-of-sample or OOS data. We virtually always expect that the IS performance

will be superior to the OOS performance. This can be because of several factors, the most

important of which is that the inevitable noise present in our IS data will, to some small

or large degree, be mistaken by our training algorithm for legitimate patterns. When

(by definition) identical noise does not appear in the OOS data, performance will suffer.

A key aspect of responsible trading system development is estimation of training

bias, the degree to which IS performance exceeds OOS performance. Later we’ll see

some sophisticated ways of doing so with decent accuracy. But when we have tested

a large number of random parameter combinations as a preliminary population for a

stochastic optimization procedure, we can use those parameter sets and associated bar-

by-bar returns to quickly generate an estimate of training bias that, while far from the

accuracy obtainable with more sophisticated methods, is often good enough for a rough

preliminary estimate. This gives us an early idea of whether we are on the right track, and

it may save us more work in a direction that leads to a dead end.

92

�The StocBias Class
The file STOC_BIAS.CPP contains code for a class that lets us intercept preliminary

population generation and use this data to roughly estimate training bias. To do so, we

need access to the bar-by-bar returns of every trial trading system during generation of

the initial population.

It is vital that the trial parameter estimates be generated either randomly or by a

deterministic grid search. They must not be generated from any sort of intelligent guided

search. Thus, we will examine all of the legitimate cases used in constructing the initial

population for differential evolution, but we must not use any of the cases that are

created by mutation and crossover.

The motivation for the algorithm is this: suppose we were to choose some bar in

advance that will serve as a single OOS bar. As we process every trial parameter set, we

will find the parameter set from among all trials that maximizes the total return of all

other bars—all bars except the one we have chosen in advance to be an OOS bar. We

might call this the IS set. Our chosen OOS bar will play no role in selecting the best-

performing parameter set because it is ignored during calculation of the IS return. After

we have examined all parameter sets that went into the creation of the initial population,

the IS per-bar return of our best parameter set, minus the return of our single OOS bar,

will be a crude but honest estimate of the training bias.

If we did this for just a single chosen OOS bar, our training bias estimate would

be too subject to random variation to be useful. But it is easy to do this essentially

simultaneously for every bar and then combine the individual returns. For any

parameter set, we just compute the total return of all bars. If we subtract the return of

any single bar from the total, the difference is the IS return for that parameter set, and

the bar we remove is the corresponding OOS return. As we process trial parameter sets,

we keep track of, for each bar separately, the maximum IS return and the OOS return

corresponding to that superior IS return so we can subtract later.

The primary limitation is that for this to give a really good estimate of training bias,

we would need to find the truly optimal parameter set for each IS set, and there are

as many IS sets as there are bars in the historical data. This is obviously impractical.

Because we are basing our “optimum” on nothing more than randomly selected trial

parameter sets, we cannot expect great accuracy. In fact, unless the trial population is

large, perhaps several thousand at least, our bias estimate will be worthless. But by using

large over-initialization in the differential evolution, we can accomplish this and provide

a great starting population to boot!

Chapter 4 Post-optimization Issues

93

The class declaration is as follows:

class StocBias {

public:

 StocBias::StocBias (int ncases) ;

 StocBias::~StocBias () ;

 int ok ; // Flags if memory allocation went well

 void collect (int collect_data) ;

 void process () ;

 void compute (double *IS_mean , double *OOS_mean , double *bias) ;

 double *expose_returns () ;

private:

 int nreturns ; // Number of returns

 int collecting ; // Are we currently collecting data?

 int got_first_case ; // Have we processed the first case (set of returns)?

 double *returns ; // Returns for currently processed case

 double *IS_best ; // In-sample best total return

 double *OOS ; // Corresponding out-of-sample return

} ;

The constructor for our StocBias class allocates memory and initializes a few flags. The

collecting flag signals whether we are collecting and processing cases. This must be turned on

(nonzero) when we are building the initial population and turned off during optimization.

I have omitted code that verifies successful memory allocation and sets the ok flag.

StocBias::StocBias (

 int nc

)

{

 nreturns = nc ;

 collecting = 0 ;

 got_first_case = 0 ;

 IS_best = (double *) malloc (nreturns * sizeof(double)) ;

 OOS = (double *) malloc (nreturns * sizeof(double)) ;

 returns = (double *) malloc (nreturns * sizeof(double)) ;

}

Chapter 4 Post-optimization Issues

94

The following trivial routine is called (with collect_data=1) when we want to begin

collecting trial parameter sets and returns, and it is called again (with collect_data=0)

when we are finished collecting:

void StocBias::collect (int collect_data)

{

 collecting = collect_data ;

}

We could let returns be public, but C++ purists would like it to remain private and

expose it to the criterion routine, so that’s what I do here:

double *StocBias::expose_returns ()

{

 return returns ;

}

Every time the parameter evaluation routine is called, that routine is responsible for

placing the bar-by-bar returns in this returns and then calling process().

void StocBias::process ()

{

 int i ;

 double total , this_x ;

 if (! collecting)

 return ;

 total = 0.0 ;

 for (i=0 ; i<nreturns ; i++)

 total += returns[i] ;

 // Initialize if this is the first call

 if (! got_first_case) {

 got_first_case = 1 ;

 for (i=0 ; i<nreturns ; i++) {

 this_x = returns[i] ;

 IS_best[i] = total - this_x ;

 OOS[i] = this_x ;

 }

 }

Chapter 4 Post-optimization Issues

95

 // Keep track of best if this is a subsequent call

 else {

 for (i=0 ; i<nreturns ; i++) {

 this_x = returns[i] ;

 if (total - this_x > IS_best[i]) {

 IS_best[i] = total - this_x ;

 OOS[i] = this_x ;

 }

 }

 }

}

The process() routine begins by summing the returns of all bars to get a total return

for this trial parameter set. If this is the first call (got_first_case is false), we initialize by

setting the “best-so-far” IS returns in IS_best[] to be the IS returns, and we also initialize

the corresponding OOS returns. Recall that the IS return for any OOS bar is the sum of all

returns except that for the OOS bar. This is easily obtained by subtracting the OOS bar’s

return from the total of all returns.

If this is a subsequent call, the procedure is similar, except that instead of initializing

IS_best[], we update it if this IS return is greater than the running best. If we do this

update, we must also update the corresponding OOS return.

All that remains is trivial computation of final results. The values we return are

based on the total return across the market history. Each element of IS_best[] is the

sum of nreturns–1 bar returns, so we divide the sum by this quantity to make the sum

commensurate with the sum of OOS returns.

void StocBias::compute (

 double *IS_return ,

 double *OOS_return ,

 double *bias

)

{

 int i ;

 *IS_return = *OOS_return = 0.0 ;

Chapter 4 Post-optimization Issues

96

 for (i=0 ; i<nreturns ; i++) {

 *IS_return += IS_best[i] ;

 *OOS_return += OOS[i] ;

 }

 *IS_return /= (nreturns - 1) ; // Each IS_best is the sum of nreturns-1 returns

 *bias = *IS_return - *OOS_return ;

}

What do we do with the bias after we’ve computed it? In isolation it’s of limited value.

Plus, we must remember that this is a crude estimate. Still, it’s useful to subtract the bias

from the total return of the trading system obtained from the optimal parameter set

produced by the differential evolution or other optimization algorithm. If removal of the

approximate training bias produces a less-than-excellent estimate of how the parameter

set will perform out of sample, we should pause and reconsider our trading system.

It can be important to compare the IS_return computed here with the optimal value

produced by the optimization routine. Naturally it will virtually always be less; the

optimization algorithm would be pretty poor otherwise! But ideally it will be fairly close.

If we find that our IS_return is much smaller than the optimal return, we should conclude

that we have employed too few trial parameter sets, and hence our bias estimate will be

exceptionally poor.

A complete example of this routine in the context of an actual trading system will

appear in the discussion of the DEV_MA program on page 112.

�Cheap Parameter Relationships
In the prior section, we saw how the initial population from a stochastic optimization

routine like differential evolution could be borrowed to provide a quick-and-dirty

estimate of training bias. In this section, we will see how the final population, after

optimization is complete, can be used to quickly generate some interesting measures

of how the parameters relate to one another. As with the cheap training bias, these are

rough estimates and can sometimes be wildly inaccurate. However, more often than

not, they will prove interesting and useful, especially if a large population is used and

optimization continues until stability is obtained. Moreover, as part of this presentation,

we will point out how the algorithm can be modified to produce much more reliable

estimates, though at a cost of more computation time.

Chapter 4 Post-optimization Issues

97

Some of the mathematics in this development is beyond the scope of this book and

will be presented as stated fact, with the reader having to trust in the process. Moreover,

many claims are simplified for this presentation, though never to the point of being

rendered incorrect. On the other hand, there is nothing really esoteric here; all of these

results are standard material, widely available in standard statistical references. With

these caveats in mind...

The Hessian of a function of several variables is the matrix of second partial

derivatives of the function with respect to the variables. In other words, the i,j element of

the Hessian matrix is the partial derivative of the function with respect to the i’th and j’th

variables. Suppose the function is the negative log likelihood of a probability density; the

variables are the parameters of the probability density function, and we have computed

the Hessian at the maximum likelihood estimates of the parameters. Then for a broad

class of probability density functions, including the venerable normal distribution, the

estimated standard error of a parameter estimate is the square root of the corresponding

diagonal of the inverse of the Hessian matrix. In fact, the inverse of the Hessian is the

covariance matrix of the parameter estimates.

Before any statisticians start screaming, let me emphasize that the performance

maximum of a trading system is a very different animal from the log likelihood of a

statistical distribution, so it is a bit of a stretch to treat them similarly. On the other

hand, the general behavior of an optimized trading system near its maximum (or any

multivariate function, for that matter) follows the same principles. The inverse of its

Hessian in the vicinity of the optimum describes the directional rates of change of the

level curves of parameters. As long as we don’t talk about standard errors of estimates,

but rather keep everything relative, we can glean a lot of information about the

relationships among parameters with some relatively simple techniques.

Complete source code for this algorithm is in the file PARAMCOR.CPP, and the

DEV_MA.CPP program that will be presented on page 112 will illustrate it in the context

of an actual trading system. We now work through the code one section at a time. The

routine is called as follows:

int paramcor (

 int ncases , // Number of cases

 int nparams , // Number of parameters

 double *data // Ncases (rows) by nparams+1 input of trial pts and f vals

)

Chapter 4 Post-optimization Issues

98

The structure of the data matrix is identical to that in the DIFF_EV.CPP program. Each

individual (complete parameter set along with performance metric) occupies a single

row, with the parameters first and the performance at the end. This means paramcor()

can be called with the final population after optimization is complete. It would make no

sense to call it with the initial population, as we did when estimating training bias. This

is because we want the entire population to be near the global optimum, and in fact we

want that optimum to be part of the population.

A fast and easy way to compute the Hessian matrix, which is what we will do here, is

to fit a least-squares quadratic function in the vicinity of the optimum and then compute

the Hessian directly. We need the number of parameters in this fit:

 if (nparams < 2)

 return 1 ;

 ncoefs = nparams // First-order terms

 + nparams * (nparams + 1) / 2 // Second-order terms

 + 1 ; // Constant

Before proceeding, it is important to emphasize that there are at least two alternative

methods for computing the Hessian, both of which are more work but are likely superior

in terms of accuracy. Readers who find value in the techniques described in this

section would do well to explore these alternative methods, each of which has its own

advantages and disadvantages. Here is a brief comparison of them:

•	 The method used here is a cheap by-product of differential evolution.

We do not need to repeatedly evaluate the performance for various

parameter sets because we already have a population in hand, most

of whose members are relatively near the optimum. The use of a

least-squares fit tends to smooth out noise. The big disadvantage of

this method is that trial parameter sets that are far from the optimum

can throw an annoying monkey wrench into calculations. This

method works best when we have a very large population and we

optimize until convergence is solid.

•	 We can take a large number of random samples in the vicinity of the

optimal parameter set, evaluate the performance of each, and do a

least-squares fit just as in the first method. This has the significant

advantage that wild parameter sets will not appear and interfere

Chapter 4 Post-optimization Issues

99

with computations. But it does require numerous performance

evaluations, which can complicate code and add significant

computation time if a large number of evaluations are done. More

important, choosing an appropriate degree of random variation is not

a trivial undertaking, while differential evolution tends to gravitate to

appropriate values.

•	 We can use standard numerical methods, perturbing each parameter

and numerically computing the partial derivatives directly.

Again, finding an appropriate perturbation can be difficult, and

misjudgment can have a profound effect on accuracy. But if done

carefully, this would almost certainly be a good approach.

Here we deal with an annoyingly heuristic decision. To limit the population to only

those parameter sets that are close to the optimum, we keep only a fraction of the final

population, those with the smallest Euclidean distance from the optimum. How many

cases do we keep? My own heuristic is to keep 50 percent more cases than there are

coefficients to be estimated. If this is too small, we may not get enough variation to allow

accurate computation of every interaction coefficient. If it is too large, we may suffer

contamination from wild parameter sets, so far from the optimum that we are prevented

from getting accurate local behavior. But in my own experience this factor is reasonably

reliable, especially if the population is large (at least several hundred). If the population

is many hundreds, it would likely be beneficial to increase this factor to increase the

likelihood of being able to model all parameter interactions.

 nc_kept = (int) (1.5 * ncoefs) ; // Keep this many individuals

 if (nc_kept > ncases) {

 return 1 ;

 }

We need a lot of work areas allocated. We’ll use the SingularValueDecomp object for doing

the least-square quadratic fit. Its source code can be found in SVDCMP.CPP. Readers

unfamiliar with this technique will find it easy to locate more information on singular

value decomposition, a standard and reliable least-squares fitting method. We also open

a log file to which the information from this algorithm will be written for the user.

Chapter 4 Post-optimization Issues

100

 sptr = new SingularValueDecomp (nc_kept , ncoefs , 0) ;

 coefs = (double *) malloc (ncoefs * sizeof(double)) ;

 hessian = (double *) malloc (nparams * nparams * sizeof(double)) ;

 evals = (double *) malloc (nparams * sizeof(double)) ;

 evect = (double *) malloc (nparams * nparams * sizeof(double)) ;

 work1 = (double *) malloc (nparams * sizeof(double)) ;

 dwork = (double *) malloc (ncases * sizeof(double)) ;

 iwork = (int *) malloc (ncases * sizeof(int)) ;

 fopen_s (&fp , "PARAMCOR.LOG" , "wt") ;

We locate the best individual in the population and get a pointer to it.

 for (i=0 ; i<ncases ; i++) {

 pptr = data + i * (nparams+1) ;

 if (i==0 || pptr[nparams] > best_val) {

 ibest = i ;

 best_val = pptr[nparams] ;

 }

 }

 bestptr = data + ibest * (nparams+1) ; // This is the best individual

We will want to work with a subset of the population made up of only those

individuals that are closest to the optimal parameter set. This lets us focus on local

information without being confused by performance variation far from the optimum. To

do this, compute the Euclidean distance between the optimum and every member of the

population. Sort these distances, simultaneously moving their indices so we end up with

the indices of the sorted individuals. One implication of using Euclidean distance is that

we must define the trading system’s parameters in such a way that they are at least roughly

commensurate. Otherwise, some parameters may receive excess or insufficient weight in

computing distances. Later, we will see still another reason why this is important. Source

code for the subroutine qsortdsi() is in QSORTD.CPP.

 for (i=0 ; i<ncases ; i++) {

 pptr = data + i * (nparams+1) ;

 sum = 0.0 ;

Chapter 4 Post-optimization Issues

101

 for (j=0 ; j<nparams ; j++) {

 diff = pptr[j] - bestptr[j] ;

 sum += diff * diff ;

 }

 dwork[i] = sum ;

 iwork[i] = i ;

 }

 qsortdsi (0 , ncases-1 , dwork , iwork) ; // Closest to most distant

Here is where we use singular value decomposition to compute the coefficients of a

least-squares fit quadratic surface to the performance curve. This is a quadratic equation

that provides minimum-squared-error estimates of the performance as a function of

the coefficients, at least in the neighborhood of the optimum. To aid numerical stability,

we subtract the coefficients and parameter value of the best individual from each other

individual, thus centering the computation around the best parameter set. This is not

mathematically necessary; if it were not done, any differences would just be absorbed

into the constant offset. However, it does provide a quick-and-easy way to somewhat

improve numerical stability. Comments at the beginning of the source code file

SVDCMP.CPP provide some explanation of what’s going on here, and more details can

be easily found online or in many standard regression textbooks.

 aptr = sptr->a ; // Design matrix goes here

 best = data + ibest * (nparams+1) ; // Best individual, parameters and value

 for (i=0 ; i<nc_kept ; i++) {     // Keep only the nearby subset of population

 pptr = data + iwork[i] * (nparams+1) ;

 for (j=0 ; j<nparams ; j++) {

 d = pptr[j] - best[j] ;   // This optional centering slightly aids stability

 *aptr++ = d ;   // First-order terms

 for (k=j ; k<nparams ; k++) {

 d2 = pptr[k] - best[k] ;

 *aptr++ = d * d2 ; // Second-order terms

 }

 }

Chapter 4 Post-optimization Issues

102

 *aptr++ = 1.0 ;   // Constant term

 sptr->b[i] = best[nparams] - pptr[nparams] ; // RHS is function values, also centered

 }

 sptr->svdcmp () ;

 sptr->backsub (1.e-10 , coefs) ;   // Computes optimal weights

At this point we have the quadratic function coefficients in coefs. The constant

of 1.e–10 is heuristic and not terribly important. It just controls the extent to which

the coefficients will be computed in case of near singularity, which would be almost

impossible to obtain in this application. We omit here the tedious code for printing the

coefficients in case the user is interested.

Something subtle but vitally important should be noted in the code just shown: we

flipped the sign of the performance. This converts the problem from one of maximization

to one of minimization, akin to minimizing the negative log likelihood of a statistical

distribution. This is not necessary; the results we need would follow just as well without

the sign reversal. Not only is it nice to conform to traditional usage, but this will also give

us positive numbers on the diagonal, which when printed are easier to read and more

user-friendly.

Computing the Hessian matrix from the quadratic fit is trivial, just differentiating

each term once for each parameter. Of course, this means we compute second

derivatives for the diagonal terms, in which the same parameter appears twice. Linear

terms vanish when differentiated twice. The matrix is symmetric, so we just copy one

term to the other.

 cptr = coefs ;

 for (j=0 ; j<nparams ; j++) {

 ++cptr ; // Skip the linear term

 for (k=j ; k<nparams ; k++) {

 hessian[j*nparams+k] = *cptr ;

 if (k == j) // If this is a diagonal element

 hessian[j*nparams+k] *= 2.0 ;   // Second partial is twice coef

 else // If off-diagonal

 hessian[k*nparams+j] = *cptr ;  // Copy the symmetric element

 ++cptr ;

 }

 }

Chapter 4 Post-optimization Issues

103

This is a good place for a short digression on what can go wrong and why

apparent problems may not actually be as serious as they appear. Some problems

can be informative in their own right. Recall that because we flipped the sign of the

performance measure, we are now minimizing our function. The implication is that if we

are at a true local (and ideally global!) minimum, the second derivatives of the function

with respect to each parameter (the diagonal of the Hessian matrix) would be strictly

positive. But what if one or more diagonals is zero or, heaven forbid, negative?

The short answer is that subsequent calculations are severely compromised.

Remember that our fundamental assumption is that we are at a minimum (our

performance is at a maximum). Everything that we will venture to conclude about

parameter relationships hinges on the validity of this assumption. Here are some more

thoughts on this issue:

•	 Any parameter whose diagonal element is not positive must be

ignored in subsequent calculations. At least in regard to the least-

squares fit to the data, this parameter is not at its optimal value.

•	 “Local” is a subjective description. A parameter may indeed be at

a local optimum in a narrow vicinity of its location, but this local

optimum may not be global.

•	 The parameter may indeed be globally optimal, but the least-squares

fit is extended over such a distance that it no longer represents the

local behavior of the function. In other words, it’s the least-squares

fit that’s the problem, as it’s being asked to approximate highly

nonquadratic behavior.

•	 Perhaps most important, nonpositive diagonals are a red flag that

the parameterization of the trading system is unstable. Typically,

this indicates that instead of the performance curve being a nice

smooth function of each parameter, it bounces up and down wildly.

A small change in a parameter may move the performance violently,

or perhaps move it up, then down after a little more move, and then

back up again, multiple times. This happens when the trading system,

instead of reliably capitalizing on repeatable patterns, more or less

randomly catches big wins and then big losses, back and forth as a

parameter varies throughout its range. This is poor behavior.

Chapter 4 Post-optimization Issues

104

•	 A corollary of the prior statement is that “local” behavior should extend

as far beyond locality as possible. If the performance curve behaves one

way near its optimum but then quickly changes to different behavior just

a little distance away, it’s a dangerous system. We want to see, for each

parameter, a broad peak of performance near the optimal value, with a

smooth, steady drop-off as we move further from the optimal value.

The upshot of the prior points is that if we find that one or more diagonals are

nonpositive, we should not curse the algorithm and automatically consider switching

to numerical differentiation as an alternative to the least-squares-fit method, which has

nice noise-cancellation properties. Instead, we should look long and hard at our trading

system and especially plot sensitivity curves as will be discussed on page 108.

Okay, enough said, so we move on to what to do about negative diagonals. It’s

simple: just make any diagonal element, along with its row and column, zero. This will

remove it from all subsequent computation.

 for (j=0 ; j<nparams ; j++) {

 if (hessian[j*nparams+j] < 1.e-10) {

 for (k=j ; k<nparams ; k++)

 hessian[j*nparams+k] = hessian[k*nparams+j] = 0.0 ;

 }

 }

It’s also the case that we are at a local minimum (remember that we flipped the sign

of the performance) if and only if the Hessian matrix is positive semidefinite. But it’s

possible for wild parameter values to cause a quadratic fit whose Hessian does not have

this property. We encourage this if necessary by limiting off-diagonal elements, although

weird correlation patterns may still produce negative eigenvalues.

 for (j=0 ; j<nparams-1 ; j++) {

 d = hessian[j*nparams+j] ; // One diagonal

 for (k=j+1 ; k<nparams ; k++) {

 d2 = hessian[k*nparams+k] ; // Another diagonal

 limit = 0.99999 * sqrt (d * d2) ;

 if (hessian[j*nparams+k] > limit) {

 hessian[j*nparams+k] = limit ;

 hessian[k*nparams+j] = limit ;

 }

Chapter 4 Post-optimization Issues

105

 if (hessian[j*nparams+k] < -limit) {

 hessian[j*nparams+k] = -limit ;

 hessian[k*nparams+j] = -limit ;

 }

 }

 }

The Hessian matrix will not be invertible with usual methods if any diagonal has

been zeroed, and we will soon need the eigenvalues and vectors of it anyway, so we

compute them and use them to compute the generalized inverse of the Hessian. We

put the inverse back in the Hessian matrix to avoid yet another memory allocation. The

source code for evec_rs() is in EVER_RS.CPP.

 evec_rs (hessian , nparams , 1 , evect , evals , work1) ;

 for (j=0 ; j<nparams ; j++) {

 for (k=j ; k<nparams ; k++) {

 sum = 0.0 ;

 for (i=0 ; i<nparams ; i++) {

 if (evals[i] > 1.e-8)

 sum += evect[j*nparams+i] * evect[k*nparams+i] / evals[i] ;

 }

 hessian[j*nparams+k] = hessian[k*nparams+j] = sum ; // Generalized inverse

 }

 }

We are finally ready to print some truly useful information. We begin with the

relative variation of each parameter. If we were working with the negative log likelihood

of a distribution, these values would be the estimated standard errors of maximum-

likelihood estimators of the parameters. But because we are far from that scenario, we

rescale so that the largest-variation parameter has a value of 1.0. These are the relative

amount each parameter can vary while having minimal impact on the performance

of the trading system. Larger values mean that the system is relatively impervious to

variation in the parameter. Compute the scaling and then print them across the line.

For an example of this output, please take a quick look at page 118.

Chapter 4 Post-optimization Issues

106

 for (i=0 ; i<nparams ; i++) { // Scale so largest variation is 1.0

 if (hessian[i*nparams+i] > 0.0)

 d = sqrt (hessian[i*nparams+i]) ;

 else

 d = 0.0 ;

 if (i == 0 || d > rscale)

 rscale = d ;

 }

 strcpy_s (msg , " ") ;

 for (i=0 ; i<nparams ; i++) {

 sprintf_s (msg2, " Param %d", i+1) ;

 strcat_s (msg , msg2) ;

 }

 fprintf (fp , "\n%s", msg) ;

 strcpy_s (msg , " Variation-->") ;

 for (i=0 ; i<nparams ; i++) {

 if (hessian[i*nparams+i] > 0.0)

 d = sqrt (hessian[i*nparams+i]) / rscale ;

 else

 d = 0.0 ;

 sprintf_s (msg2 , " %12.3lf", d) ;

 strcat_s (msg , msg2) ;

 }

 fprintf (fp , "\n%s", msg) ;

We can now compute and print the parameter correlations by scaling the

covariances by the standard deviations.

 for (i=0 ; i<nparams ; i++) {

 sprintf_s (msg, " %12d", i+1) ;

 if (hessian[i*nparams+i] > 0.0)

 d = sqrt (hessian[i*nparams+i]) ; // ‘Standard deviation’ of one parameter

 else

 d = 0.0 ;

Chapter 4 Post-optimization Issues

107

 for (k=0 ; k<nparams ; k++) {

 if (hessian[k*nparams+k] > 0.0)

 d2 = sqrt (hessian[k*nparams+k]) ; // ‘Standard deviation’ of the other

 else

 d2 = 0.0 ;

 if (d * d2 > 0.0) {

 corr = hessian[i*nparams+k] / (d * d2) ;

 if (corr > 1.0) // Keep them sensible

 corr = 1.0 ;

 if (corr < -1.0)

 corr = -1.0 ;

 sprintf_s (msg2 , " %12.3lf", corr) ;

 }

 else

 strcpy_s (msg2 , " -----") ; // If either diagonal is zero, corr is undefined

 strcat_s (msg , msg2) ;

 }

 fprintf (fp , "\n%s", msg) ;

 }

Again, if you would like to see a sample printout of this, please see page 118.

We come now to what I find to be the most interesting and informative output. The

eigenvectors of the Hessian matrix define the dominant axes of the level-curve ellipses

of the trading system’s performance as a function of the parameters. In particular, the

eigenvector corresponding to the largest eigenvalue is the direction in which parameter

change causes the most change in performance, the direction of maximum sensitivity.

The eigenvector corresponding to the smallest eigenvalue is the direction that causes the

least change in performance, the direction of minimum sensitivity.

We find these two extreme eigenvalues. Unless we have at least two positive

eigenvalues, there is no point in continuing. Of course, some users might want to

proceed if there is just one, but if things are so bad that there is only one positive

eigenvalue, the trading system is so unstable that this whole process is probably

pointless anyway.

Chapter 4 Post-optimization Issues

108

 for (k=nparams-1 ; k>0 ; k--) { // Find the smallest positive eigenvalue

 if (evals[k] > 0.0)

 break ;

 }

 if (! k)

 goto FINISH ;

For easier interpretability, I choose to scale the directions so that the larest element

in each direction vector is 1.0. Compute the scaling factors and then print the output.

 fprintf (fp, "\n Max Min\n") ;

 lscale = rscale = 0.0 ; // Scale so largest element is 1.0. Purely heuristic.

 for (i=0 ; i<nparams ; i++) {

 if (fabs (evect[i*nparams]) > lscale)

 lscale = fabs (evect[i*nparams]) ;

 if (fabs (evect[i*nparams+k]) > rscale)

 rscale = fabs (evect[i*nparams+k]) ;

 }

 for (i=0 ; i<nparams ; i++) {

 sprintf_s (msg, " Param %d %10.3lf %10.3lf",

 i+1, evect[i*nparams] / lscale, evect[i*nparams+k] / rscale) ;

 fprintf (fp , "\n%s", msg) ;

 }

A sample of this output in the context of a real trading system appears on page 119.

�Parameter Sensitivity Curves
Prior sections presented fast-and-easy methods for estimating training bias and

for discovering relationships between parameters. These are both rough methods,

susceptible to significant error, and their information is not vital to responsible trading

system development. Nonetheless, I like to include these capabilities in my development

systems because they add virtually no computational overhead and their results are

almost always interesting. But please understand that the topic of this section is critical

and must be considered minimal due diligence for any trading system developer.

Chapter 4 Post-optimization Issues

109

Numbers are great for presenting information, but nothing beats a picture. In

particular, we should examine plots of trading system performance as parameters vary

around their computed optimal values. We want to see a smooth curve, especially near

the optimal value. Bouncing at more distant values is of no great concern, but in the

vicinity of the optimal value we want smooth behavior. If the optimal value is at a narrow

peak, our trading system will be unstable; when market conditions inevitably evolve as

time passes, the once-optimal value will tumble over the edge of the cliff and no longer

be anywhere near optimal. Also, if we have distinct multiple peaks near the optimal

value, this is a sign that the system is probably obtaining its lofty performance by virtue

of luckily latching onto a few good trades and/or avoiding a few bad trades. Small shifts

in a parameter alternately gain and lose these special trades, meaning that luck has

played an inordinate role in the system backtest.

On the other hand, if we see that the trading system’s performance slowly and

smoothly tapers down from the optimum value as parameters move away from their

trained values, we know that the system responds gently to perturbation, likely has good

immunity to changes in luck, and will probably remain stable for some time into the

future.

Computing these sensitivity curves is almost trivially simple, but we’ll examine

the code anyway. If possible, in practice it’s best to display these as smooth curves on

a computer screen. But to keep things simple, here I use the clumsy but serviceable

approach of printing histograms to a text file. It’s not the most elegant approach, but it’s

easy, and it does the job.

Code for the routine we are about to see is in SENSITIV.CPP. The subroutine is called

as follows:

int sensitivity (

 double (*criter) (double * , int) , // Crit function maximized

 int nvars ,   // Number of variables

 int nints ,   // Number of first variables that are integers

 int npoints ,   // Number of points at which to evaluate performance

 int nres , // Number of resolved points across plot

 int mintrades ,   // Minimum number of trades

 double *best , // Optimal parameters

 double *low_bounds ,   // Lower bounds for parameters

 double *high_bounds // And upper

)

Chapter 4 Post-optimization Issues

110

The criterion function is the same one we saw for differential evolution, taking the

vector of trial parameters and the required minimum number of trades. We have nvars

parameters, the first nint of which are integers. Each parameter will be evaluated at npoints

values equally spaced across its low_bound to high_bound range. The horizontal histogram

will have nres discrete values ranging from zero to the maximum performance value.

Negative performances are plotted as if they are zero. We also need the best vector of

optimal parameter values.

We allocate memory and open the text file to which results will be written. Then

we commence the main loop that processes each parameter. The first step in this loop

is to set all parameters to their optimal values so that only one parameter at a time is

perturbed from its optimum.

 vals = (double *) malloc (npoints * sizeof(double)) ;

 params = (double *) malloc (nvars * sizeof(double)) ;

 fopen_s (&fp , "SENS.LOG" , "wt") ;

 for (ivar=0 ; ivar<nvars ; ivar++) {

 for (i=0 ; i<nvars ; i++)

 params[i] = best[i] ;

Integer and real parameters are processed separately, with integers being slightly

more complicated. Here is that section of code. Integer values should be exactly

represented in the floating-point parameter vector, but we take out cheap insurance that

anomalies do not cause problems.

 if (ivar < nints) {

 fprintf (fp , "\n\nSensitivity curve for integer parameter %d (optimum=%d)\n",

 ivar+1, (int) (best[ivar] + 1.e-10)) ;

 label_frac = (high_bounds[ivar] - low_bounds[ivar] + 0.99999999) / (npoints - 1) ;

 for (ipoint=0 ; ipoint<npoints ; ipoint++) {

 ival = (int) (low_bounds[ivar] + ipoint * label_frac) ;

 params[ivar] = ival ;

 vals[ipoint] = criter (params , mintrades) ;

 if (ipoint == 0 || vals[ipoint] > maxval)

 maxval = vals[ipoint] ;

 }

Chapter 4 Post-optimization Issues

111

 hist_frac = (nres + 0.9999999) / maxval ;

 for (ipoint=0 ; ipoint<npoints ; ipoint++) {

 ival = (int) (low_bounds[ivar] + ipoint * label_frac) ;

 fprintf (fp , "\n%6d|", ival) ;

 k = (int) (vals[ipoint] * hist_frac) ;

 for (i=0 ; i<k ; i++)

 fprintf (fp , "*") ;

 }

 }

In the previous code, it’s a little tricky ensuring that we test and print integer values

that are as equally spaced as possible. We compute label_frac as the increment in parameter

value attributed to each step to the next point. If you don’t understand that computation,

test the formula at the boundary values. After the maximum performance among the

tested points is found, the histogram scaling is computed as hist_frac. We then pass through

the saved performance values, compute the number of characters to print, and do it.

Real parameters are slightly easier because we don’t have to worry about testing

strictly integer values. Here is that code. No explanation should be needed because it is a

simplified version of the integer code just shown.

 else {

 fprintf (fp , "\n\nSensitivity curve for real parameter %d (optimum=%.4lf)\n", ivar+1,

 best[ivar]) ;

 label_frac = (high_bounds[ivar] - low_bounds[ivar]) / (npoints - 1) ;

 for (ipoint=0 ; ipoint<npoints ; ipoint++) {

 rval = low_bounds[ivar] + ipoint * label_frac ;

 params[ivar] = rval ;

 vals[ipoint] = criter (params , mintrades) ;

 if (ipoint == 0 || vals[ipoint] > maxval)

 maxval = vals[ipoint] ;

 }

 hist_frac = (nres + 0.9999999) / maxval ;

 for (ipoint=0 ; ipoint<npoints ; ipoint++) {

 rval = low_bounds[ivar] + ipoint * label_frac ;

 fprintf (fp , "\n%10.3lf|", rval) ;

Chapter 4 Post-optimization Issues

112

 k = (int) (vals[ipoint] * hist_frac) ;

 for (i=0 ; i<k ; i++)

 fprintf (fp , "*") ;

 }

 }

 }

In the next section, we’ll see an example of parameter sensitivity plotting in the

context of a real application.

�Putting It All Together Trading OEX
We now present a program that combines differential evolution, cheap training bias

estimation, cheap computation of parameter relationships, and plotting parameter

sensitivity curves. Source code for this program is in DEV_MA.CPP. The trading

algorithm is a four-parameter thresholded moving-average crossover system. Readers

should have no trouble replacing this system with their own trading system.

�The Trading System

Normally I don’t pay much attention to the trading systems used in the examples in

this book, instead focusing on the technique under discussion. But in this case the

trading system is so intimately connected to the techniques that it’s important for the

user to understand it. This is especially true here because the parameter relationships

computed in PARAMCOR.CPP are most meaningful when the parameters are

commensurately scaled, so make sure to do so if you implement a system.

The philosophy of the system is to compute a short-term and a long-term moving

average of log prices. If the short-term MA exceeds the long-term MA by at least a

specified long threshold, a long position is taken for the next day. If the short-term MA

is less than the long-term MA by at least a specified short threshold, a short position is

taken. Otherwise, we remain neutral. Thus, there are four parameters: the two lookbacks

and the two thresholds. The evaluation routine is called as follows:

double test_system (

 int ncases , // Number of prices in history

 int max_lookback , // Max lookback that will ever be used

 double *x , // Log prices

Chapter 4 Post-optimization Issues

113

 int long_term , // Long-term lookback

 double short_pct , // Short-term lookback is this / 100 times long_term, 0-100

 double short_thresh , // Short threshold times 10000

 double long_thresh ,   // Long threshold times 10000

 int *ntrades , // Returns number of trades

 double *returns // If non-NULL returns ncases-max_lookback bar returns

)

Only one optimizable parameter is an integer, the long-term lookback. The short-

term lookback is specified as the percent of the long-term lookback. The short and long

thresholds are specified as 10,000 times the actual threshold. This is because in practice

the optimal thresholds will be very small, and using this multiplier brings the thresholds

up to a range commensurate with the other two parameters. If we worked with the

actual thresholds, the PARAMCOR.CPP algorithms would be rendered nearly worthless

because of the huge disparity in scaling. Everything else would be fine, though.

The last parameter, returns, can be input NULL if desired. But if non-null, the

individual bar returns are placed there. This information is needed by the cheap bias

estimating routine in STOC_BIAS.CPP.

The first step is to convert the specified commensurately scaled parameters to the

values that are meaningful here. Readers, if you substitute your own trading system

for this one, be sure to pay attention to this commensurate scaling requirement! Also

initialize the total return cumulator, the trade counter, and the index for returns if used.

 short_term = (int) (0.01 * short_pct * long_term) ;

 if (short_term < 1)

 short_term = 1 ;

 if (short_term >= long_term)

 short_term = long_term - 1 ;

 short_thresh /= 10000.0 ;

 long_thresh /= 10000.0 ;

 sum = 0.0 ; // Cumulate performance for this trial

 *ntrades = 0 ;

 k = 0 ; // Will index returns

Chapter 4 Post-optimization Issues

114

The main loop that traverses the market history is here. Note that regardless of long_

term, we always start trading at the same bar for conformity. This is important. Compute

the short-term moving average.

 for (i=max_lookback-1 ; i<ncases-1 ; i++) { // Sum performance across history

 short_mean = 0.0 ; // Cumulates short-term lookback sum

 for (j=i ; j>i-short_term ; j--)

 short_mean += x[j] ;

We then compute the long-term moving average, taking care that we take advantage

of the summation already done for the short-term MA.

 long_mean = short_mean ; // Cumulates long-term lookback sum

 while (j>i-long_term)

 long_mean += x[j--] ;

 short_mean /= short_term ;

 long_mean /= long_term ;

Compare the short-term/long-term MA difference to the thresholds and compute

the next-bar return accordingly. Note that I chose to define the difference in terms of a

ratio rather than a difference. I prefer this sort of normalization despite its asymmetry,

but please feel free to disagree, especially since we are working with log prices. In

practice, the difference is minimal anyway.

 change = short_mean / long_mean - 1.0 ; // Fractional diff in MA of log prices

 if (change > long_thresh) { // Long position

 ret = x[i+1] - x[i] ;

 ++(*ntrades) ;

 }

 else if (change < -short_thresh) { // Short position

 ret = x[i] - x[i+1] ;

 ++(*ntrades) ;

 }

 else

 ret = 0.0 ;

Chapter 4 Post-optimization Issues

115

 sum += ret ;

 if (returns != NULL)

 returns[k++] = ret ;

 } // For i, summing performance for this trial

 return sum ;

}

�Linking Criterion Routines

It would be bad programming style to embed the parameterization of a trading system

into the differential evolution routine or any other general-use routine. It’s bad enough

that I embed the mintrades parameter, but since this is a trading-system application and

this is a common parameter, I felt justified in doing so. But the remaining parameters,

which can change significantly with different trading systems, must be supplied as

a real vector. So, we need a way to map the generic criterion routine to the ultimate

performance evaluator, as well as pass nuisance parameters. The standard method I

have always used is to let the nuisance parameters be statics and use a criterion wrapper.

In particular, I make static declarations at the top of the program and set them before

they are needed. The wrapper is also shown here:

static int local_n ;

static int local_max_lookback ;

static double *local_prices ;

double criter (double *params , int mintrades)

{

 int long_term, ntrades ;

 double short_pct, short_thresh, long_thresh, ret_val ;

 long_term = (int) (params[0] + 1.e-10) ; // This addition likely not needed

 short_pct = params[1] ;

 short_thresh = params[2] ;

 long_thresh = params[3] ;

Chapter 4 Post-optimization Issues

116

 ret_val = test_system (local_n , local_max_lookback , local_prices , long_term ,

 short_pct , short_thresh , long_thresh , &ntrades ,

 (stoc_bias != NULL) ? stoc_bias->expose_returns() : NULL) ;

 if (stoc_bias != NULL && ret_val > 0.0)

 stoc_bias->process () ;

 if (ntrades >= mintrades)

 return ret_val ;

 else

 return -1.e20 ;

}

The code on the prior page nicely demonstrates a clean way of using a generic wrapper

that insulates a toolbox routine like diff_ev() from differences among trading systems as well

as nuisance parameters like price history and trade starting bars. We just have to make

sure that the local_ statics are set to their correct values before the criter() routine is called.

This wrapper also takes care of checking that the minimum trades requirement is met, and

it handles the StocBias processing (page 92).

We’ll skip presentation of the banal market-reading code; see DEV_MA.CPP for

details. After the market is read, we initialize the statics that pass nuisance parameters,

we set the bounds for the four optimizable parameters, and we set a minimum trade

count. Create the StocBias object, optimize using differential evolution, and compute

the bias, which we can subtract from the optimal performance to get the estimated true

performance. Finally, we do the sensitivity tests.

 local_n = nprices ;

 local_max_lookback = max_lookback ;

 local_prices = prices ;

 low_bounds[0] = 2 ;

 low_bounds[1] = 0.01 ;

 low_bounds[2] = 0.0 ;

 low_bounds[3] = 0.0 ;

 high_bounds[0] = max_lookback ;

 high_bounds[1] = 99.0 ;

 high_bounds[2] = max_thresh ; // These are 10000 times actual threshold

 high_bounds[3] = max_thresh ;

Chapter 4 Post-optimization Issues

117

 mintrades = 20 ;

 stoc_bias = new StocBias (nprices - max_lookback) ; // This many returns

 diff_ev (criter , 4 , 1 , 100 , 10000 , mintrades , 10000000 , 300 , 0.2 , 0.2 , 0.3 ,

  low_bounds , high_bounds , params , 1 , stoc_bias) ;

 stoc_bias->compute (&IS_mean , &OOS_mean , &bias) ;

 delete stoc_bias ;

 stoc_bias = NULL ; // Needed so criter() does not process returns in sensitivity()

 sensitivity (criter , 4 , 1 , 30 , 80 , mintrades , params , low_bounds , high_bounds) ;

�Application to Trading OEX

I ran the DEV_MA program using OEX, the S&P 100 index, from its inception through the

middle of 2017. Figure 4-1 shows the main output from the program. We see that the total

log return is 2.671, and the optimal parameters (long lookback, short lookback as percent

of long lookback, 10,000 times short threshold, 10,000 times long threshold) are also

shown. The remaining four lines of numbers are from the StocBias operations, with the

expected return of 2.3489 being the optimized return of 2.6710 minus the bias of 0.3221.

Figure 4-2 shows the output generated by the PARAMCOR.CPP algorithms (page 96).

Examine the Variation row. At one extreme we see that the short-term lookback and the

short threshold have the least impact on performance in the vicinity of their optimal

values, and the long-term lookback has only slightly less impact. The outstanding

parameter is the long threshold, which has extreme sensitivity. Even tiny changes in its

value have extreme impact on performance.

Figure 4-1.  Main output of DEV_MA for OEX

Chapter 4 Post-optimization Issues

118

The correlation of –0.679 between the short lookback and the short threshold

indicates that changes in one can be somewhat offset by opposing changes in the other.

I have no explanation for this unexpected phenomenon.

These observations are born out by the direction of maximum sensitivity, which is

almost totally dominated by the long threshold. The fact that the dominant weight is –1

instead of 1 is irrelevant; this is a direction, and it may point either way.

The direction of minimal impact is a bit more interesting, and it substantiates the

correlation noted earlier. We see that moving the parameters—such that the short-term

lookback as a percent of the long-term lookback goes in one direction and the short

threshold goes almost as much in the opposite direction—is the direction of parameter

change that, of all possible parameter changes, produces the least impact on the

performance. Fascinating.

Figure 4-3 through Figure 4-6 show the sensitivity curves for the four parameters.

Note that especially for the two threshold parameters, the Variation reported earlier, in

which Parameter 3 has minimum sensitivity and Parameter 4 has maximum sensitivity,

agrees clearly with the plots.

Figure 4-2.  PARAMCOR output of DEV_MA for OEX

Chapter 4 Post-optimization Issues

119

Figure 4-3.  Sensitivity of long lookback

Figure 4-4.  Sensitivity of short lookback pct

Chapter 4 Post-optimization Issues

120

Figure 4-5.  Sensitivity of short threshold

Figure 4-6.  Sensitivity of long threshold

Chapter 4 Post-optimization Issues

121
© Timothy Masters 2018
T. Masters, Testing and Tuning Market Trading Systems, https://doi.org/10.1007/978-1-4842-4173-8_5

CHAPTER 5

Estimating Future
Performance I: Unbiased
Trade Simulation
The title of this chapter is optimistic, perhaps shamefully so. Financial markets are

notoriously fickle. They are nonstationary (their statistical properties change over

time), vulnerable to unforeseeable outside shocks, polluted by occasional wild swings

for no apparent reason, and generally uncooperative. The idea that we can actually

estimate the future performance of a trading system to any great degree is ludicrous.

But what we often accomplish is to identify trading systems that have a painfully small

expected future return, so we can be wary. Naturally, what we would really prefer is the

ability to identify systems that have a high likelihood of large future return. And we may

occasionally get lucky and enjoy this rare reward. It doesn’t hurt to try. But the reader

must understand that the real goal of this chapter is to use rigorous statistical methods to

weed out those superficially promising systems that in reality should be discarded, or at

least revised before being put to work with real money.

�In-Sample and Out-of-Sample Performance
It is rare that a developer will dream up a trading system in exactly what will be its

final form. The vast majority of time, the developer will hypothesize a family of trading

systems. Any particular member of this family will be defined by the value(s) of one or

more parameters. To take a rather mundane example, a developer may hypothesize

that if a short-term moving average of recent market prices crosses above a long-term

moving average, the tide has turned in this market and it is time to take a long position

and to go short if the opposite happens. But what do short-term and long-term mean?

122

The lookback period of each moving average must be specified before we have an actual

trading system.

How do we choose effective lookback periods? The obvious method is to try as many

values as computer time and other resources allow, and choose whichever pair of long-

term and short-term lookbacks gives the best results. I’ll parenthetically add that the

criterion we use for defining “best results” can be important and will be discussed later.

For now, just assume that we have a way of measuring trading system performance that

allows us to choose the best parameters.

If we were working with perfect, noise-free data, the performance results we get

from optimizing the short-term and long-term lookbacks for a dataset would usually be

reflective of the results we would see in the future. Unfortunately, financial market data

is about as noisy as its gets. In practice, market prices are dominated by noise, with just

tiny bits of authentic patterns hidden deep under the noise.

The implication of this noisy situation is that our “optimal” parameters end up being

chosen in such a way that our trading system fits patterns of noise in the training set

as well as or even better than it fits the authentic market patterns. By definition, noise

does not repeat. As a result, when we put our promising trading system to work, we may

discover that it is nearly or completely worthless. This is a problem in any application,

but it is particularly devastating in market trading because of the fact that financial

markets are dominated by noise.

These two environments in which the trading system operates have standard names.

The dataset that we use to optimize system parameters (such as short-term and long-term

lookbacks in a moving-average-crossover system) is called the in-sample (IS) dataset.

Any dataset that did not participate in the parameter optimization is called out-of-sample

(OOS). The degree to which IS performance exceeds OOS performance is called training

bias. This chapter is largely dedicated to quantifying and dealing with this effect.

It’s worth mentioning that training bias can be caused by at least two entirely

different effects. We have already discussed the most “famous” cause, learning

unrepeatable noise patterns as if they were authentic market price patterns. This can be

particularly severe when the model is excessively powerful, a situation called overfitting.

A more subtle but equally problematic cause is under-representation of patterns in the

training (in-sample) data. If the market history on which the trading system is trained

does not contain sufficient representation of every possible price pattern that may be

encountered in the future, then we cannot expect the system to correctly handle omitted

patterns when they are eventually encountered. Thus, it is in our interest to develop our

trading system using as much market history as possible.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

123

�The TrnBias Program to Demonstrate Training Bias
My web site contains source code for a small console application that demonstrates

training bias for the primitive moving-average-crossover system just described. It can

be easily modified by the reader to experiment with various optimization criteria. This

complete source code is in TRNBIAS.CPP.

I will not explore this program in detail here because it is well commented and

should be understandable to anyone who wants to modify it for their own purposes.

However, I will briefly discuss its operation.

The program is invoked from the command line as follows:

TrnBias Which Ncases Trend Nreps

Which specifies the optimization criterion:

0 = mean daily return

1 = profit factor (sum of wins divided by sum of losses)

2 = raw Sharpe ratio (mean return divided by standard deviation

of returns)

Ncases is the number of trading days.

Trend is the strength of the varying trend.

Nreps is the number of replications, typically at least several thousand.

The program generates a set of Ncases logarithmic daily prices. The prices consist

of random noise plus an alternating trend that reverses direction every 50 days. The

strength of this trend is specified as a small positive number, perhaps 0.01 (weak) to

0.2 (strong) or so. A Trend of 0.0 means that the price series is fully random. Then a

complete set of trial moving-average lookbacks, ranging up to 200 days, is tested to find

the combination of a short-term and a long-term lookback that gives the best in-sample

performance. The user specifies the criterion by which this performance is judged.

Finally, a new set of prices, using the same strength of trend, is generated. Its distribution

is identical to the in-sample set, but its random components are different. The moving-

average-crossover rule is applied to this OOS dataset, using the optimized short-term

and long-term lookbacks, and its mean daily return is computed.

This process is repeated Nreps times, and the in-sample and out-of-sample average

daily returns are averaged over the replications. The in-sample value minus the out-of-

sample value is the training bias. These three quantities are reported to the user.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

124

If you experiment with this program, you will discover several effects that are similar

to what I have seen in actual trading system development.

•	 If you have a large number of cases, the choice of optimization

criterion has relatively little effect. In fact, all three of these different

methods have a tendency to provide the same optimal lookbacks for

large datasets, regardless of the strength of the trend.

•	 If you have a small dataset, the optimization criterion has a huge

effect on results.

•	 There is a slight though not universal tendency for the largest OOS

mean daily return to be obtained by optimizing the profit factor. I

have seen the same effect in my real-life development.

•	 In nearly every test that I ran, the training bias for the mean daily

return was highest (worst) when optimizing mean daily return. This

is almost certainly because mean daily return does not account for

risk (losses) other than indirectly. Profit factor and Sharpe ratio both

favor consistent, reliable returns, making them superior optimization

criteria for a trading system. Also, profit-factor nearly always has the

smallest training bias. It is my favorite optimization criterion.

Readers may want to modify the TrnBias program to incorporate the types of

price patterns that they hypothesize, their trading system rules, and their preferred

performance criteria to study the nature of training bias in their situation.

�Selection Bias
Agnes heads up a company’s division for trading system development. She has two

people working for her, each of whom is charged with independently developing a

profitable trading system based on historical data up to the current date. Soon, John

presents her with outstanding backtest results, while Phil’s results, while decent, are not

nearly as impressive. Naturally, she chooses John’s trading system and puts it to work

with real money.

A few months later, their trading capital is largely gone. Wiped out. John’s wonderful

system tanked. Agnes thoroughly chews out John, but she’s fired anyway, and they bring

in Mary to replace her.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

125

Mary examines John’s system and sees the problem immediately: he has used an

enormously powerful prediction model, one that did a great job of modeling the noise

inherent in the market data. Moreover, because Agnes had given both of these guys

complete market history up to the current date, they had used it all in developing their

trading systems. Neither of them expended any effort at evaluating the out-of-sample

performance of their system. Thus, neither of them had any idea how well their trading

system had captured authentic market patterns, rather than just modeling noise.

After slapping both of their hands, she tells them a vitally important principle that

Agnes ignored and in which they were complicit: when selecting from among competing

systems, always base the selection criterion on out-of-sample results, ignoring

in-sample results.

Why? The reason is that if the selection is based on IS results, the selection process

favors overfit models. If model A primarily captures authentic market patterns, while

model B not only captures these patterns but also does a great job of capturing patterns

of noise, then model B will outperform model A on IS results and be selected, only to fail

later when the noise does not repeat for real trading.

This principle is so important that Mary wisely chooses to hold back the most recent

year of market history. She gives John and Phil market data that ends a year prior to the

current date and tells them to try again.

Some time later, they both come to her with their systems, proudly showing off their

spectacular results. (These guys just never learn!) So, she takes John’s trading system and

tests it on the year of data that she held back from them. It’s fairly decent. This makes

her happy, because the result she just observed is a truly fair, unbiased estimate of what

John’s system can do in the future. That test year played no role whatsoever in his system

development, so it could not influence his choices or training procedures, and hence it

has no optimistic bias. This is exactly the information she needs to make an intelligent

decision about the true quality of his trading system.

�Interlude: What Does Unbiased Really Mean?

Let’s step aside for a moment and give a brief, intuitive clarification of the term unbiased

that just appeared. We posit an imaginary universe of an infinite number of Johns,

operating in an infinite number of different noisy market histories, with each John

developing his own trading system based on his own universe’s unique noisy market

history. By unbiased in this example (and also generally), we mean that, on average,

these different John-produced trading systems’ OOS results would neither overestimate

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

126

nor underestimate actual expected future performance. Because of random variation

across universes, it is nearly certain that the trading system produced by any single John

will in truth over-estimate or under-estimate expected future performance in its OOS

results. Being “unbiased” does not mean that we can expect about the same performance

in the future. That’s much too much to hope for in a random universe. John’s trading

system’s OOS performance will overestimate or underestimate the actual expected

future performance of the system. But unbiased does mean that there will be no inherent

bias one way or the other. The in-sample results have a strong optimistic bias because

of the training bias already discussed. Out-of-sample results have no such bias. Roughly

speaking, we could say that John’s OOS results are just as likely to overestimate future

performance as underestimate it. This is the best we can do.

�Selection Bias, Continued

Okay, enough diversion; let’s get back to the story in progress. We have John’s OOS

performance. Mary now goes on to test Phil’s lovingly developed trading system on the

recent year of data that she held out from both guys. It’s OOS performance, which like

John’s is also unbiased and is slightly superior to John’s. So, she wisely chooses Phil’s

system to trade.

We come now to the key point of this section: the OOS performance of Phil’s system

that the company is now trading is optimistically biased! Huh? How can this be? A

moment ago, Phil’s OOS performance was an unbiased measure of his system’s expected

future performance. But now that it has been chosen for trading and put to work, that

same performance figure is suddenly biased? That makes no sense!

Actually, it does make sense. What we are experiencing is called selection bias. It

came into play the moment Mary examined both OOS performances (John’s and Phil’s)

and chose the better performer. The act of choosing one over the other introduces

optimistic bias. The OOS performance of Phil’s system that Mary just measured will now,

on average, overestimate the expected future performance of his system.

How can such a bizarre transformation from unbiased to biased occur in the blink

of an eye? It’s because both of these competing systems (John’s and Phil’s) have their

OOS performance influenced by two separate effects: true skill and dumb luck. These

two systems will doubtless be based on slightly (or greatly!) different authentic patterns.

Random noise in one system will be a little more like that system’s authentic pattern

compared to the other system. Thus, all other things being equal, the choice of the

better system will tend to favor the luckier system. In the event that both systems have

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

127

equal (though unmeasurable) true power, then the luckier system will have the superior

OOS performance and hence be chosen by Mary. Only if their true powers are widely

different, swamping out luck, will the truly better system be nearly guaranteed to be

chosen.

By definition, noise does not repeat. Any good luck that favored one system over

the other will vanish. As long as we were concerned with each system on an individual

basis, the good luck and bad luck across those imaginary universes would average out,

and OOS performance would be unbiased. But the moment we compare the unbiased

performance of two or more competing systems and select the superior system, luck no

longer averages out; good luck is favored, and we thereby introduce selection bias. And it

can be enormous in real life. Be warned.

It should now be apparent that if Mary wants an unbiased estimate of the future

performance of the trading system she picks, she has to go even further in holding out

data. Instead of keeping back just one year (or whatever time slice she wants), she needs

to hold out two years of data. She gives John and Phil market history that ends two years

prior to the current date. When they present their systems to her, she tests their systems

on the year of data that follows their training years and that ends a year prior to the

current date. Based on the performance of the competing systems in this “first OOS”

year, she chooses the best system. Then she tests this selection on the most recent year of

data, what might be called the “second OOS” year. This provides an unbiased estimate of

the performance of the selected system. This estimate is not only free from training bias,

but it is also free from the selection bias that resulted from her choosing the best system

from among the competitors.

�The SelBias Program

Before you skip this section, please let me encourage everyone to study this material,

even those who have no interest in using or modifying the SelBias program. The reason

is that the description of how the selection-bias demonstration program works will serve

to reinforce the somewhat counterintuitive ideas presented in the prior section. The

concept of selection bias is so foreign to many developers, yet so important, that it is

difficult to overly emphasize this topic. That said...

My web site contains source code for a small console application that demonstrates

selection bias for the primitive moving-average-crossover system just described. It

can be easily modified by the reader to experiment with various trading systems and

optimization criteria. This complete source code is in SELBIAS.CPP.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

128

The program is invoked from the command line as follows:

SelBias Which Ncases Trend Nreps

Which specifies the optimization criterion:

0 = mean daily return

1 = profit factor (sum of wins divided by sum of losses)

2 = �raw Sharpe ratio (mean return divided by standard deviation

of returns)

Ncases is the number of trading days.

Trend is the strength of the varying trend.

Nreps is the number of replications, typically at least several thousand.

The program generates a set of Ncases logarithmic daily prices. The prices consist

of random noise plus an alternating trend that reverses direction every 50 days. The

strength of this trend is specified as a small positive number, perhaps 0.01 (weak) to 0.2

(strong) or so. A Trend of 0.0 means that the price series is fully random.

The previously discussed TrnBias program employs a two-sided (long and short

positions) trading system. But the SelBias program of this section splits this into two

separate, independent trading systems, one taking strictly long positions and the other

taking strictly short positions.

For each of these two competing systems, a complete set of trial moving- average

lookbacks, ranging up to 200 days, is tested to find the combination of a short-term and

a long-term lookback that gives the best in-sample performance of each. These optimal

lookbacks are found separately for each system (long-only and short-only). The user

specifies the criterion by which this performance is judged.

A new set of prices, using the same strength of trend, is generated. Its distribution

is identical to the in-sample set, but its random components are different. This set

corresponds to the “first-OOS” dataset mentioned in the prior section. In the Mary-

John-Phil example, this would be the year following the data given to John and Phil. The

moving-average-crossover rule for each of the two competing systems is applied to this

OOS dataset, using the optimized short-term and long-term lookbacks for each system.

The mean daily return for each system is computed for this new dataset, giving us an

unbiased estimate of future performance for each of the two systems.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

129

Then we generate a third independent dataset, what has previously been referred to

as the “second-OOS” dataset. Whichever of the two competing models performed best

on the prior dataset is evaluated on this third dataset to provide an unbiased estimate of

performance after selecting the superior model. The selection bias is the performance of

the winning model on the second (first-OOS) dataset minus its performance on the third

(second-OOS) dataset.

This process is repeated Nreps times, and the in-sample and out-of-sample average

daily returns for the two competing systems, the grand OOS return, and the selection

bias are averaged over the replications. The in-sample value minus the out-of-sample

value for each competitor is the training bias. Each competitor has its own training bias,

but there is only one selection bias. These averaged quantities are reported to the user,

along with a t-score for the selection bias.

�Walkforward Analysis
Most trading system developers are familiar with using walkforward analysis to estimate

future performance. Despite this ubiquity, we will present the algorithm here, both to

clarify any misconceptions and as a vehicle for pointing out several potential flaws in the

most commonly employed version of the algorithm.

The idea behind walkforward analysis is that, given a historical dataset, we simulate

how a trading system would have performed if it had been executed in real time (no

knowledge of the future) during that market history. In other words, at any specified

historical moment in time, we have at our disposal all available market history up

to and including that specified time, and we pretend that we have no knowledge of

market prices later than that time. We devise our trading system (usually by optimizing

parameters) using the data up through the specified time and then test this trading

system’s performance over an immediate future time period (which is OOS) in the

history. This simulates how our system would have performed in real life back at that

historical time. We temporarily stash this future performance somewhere. We then

move everything forward in time and repeat the process, exactly as a real trader would

do when continually updating the trading system to keep up with evolving market

conditions. When the end of the historical data is reached, we pool all of the individual

OOS results and compute whatever performance measures we want. The most basic

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

130

version of this algorithm can be stated as shown here. A more advanced version will

appear later.

	 1)	 Set OOS_START to the bar of the user’s desired starting date for

testing.

	 2)	 Create the trading system based on market history over a desired

lookback period that ends just prior to OOS_START.

	 3)	 Execute the trading system over a desired time period NTEST

beginning at OOS_START. Save the system’s performance. Note

that NTEST need not be fixed. For example, we may want to do

day trades over a calendar year, so NTEST will depend upon the

number of trading days in the year being tested.

	 4)	 If more market data remains, advance OOS_START by NTEST and

loop back to step 2.

When the previous algorithm is complete, we examine the performance results

saved in step 3 for each pass through the loop. Most people call a single such pass a fold,

and we will occasionally use this terminology.

Observe that because of the way this algorithm is constructed, the pooled OOS

results are contiguous (no missing data), and they appear in the order in which they

would have occurred if this process had been real life instead of a simulation. This

means that even order-dependent performance statistics such as drawdown can be

legitimately computed.

We may want to continue this walkforward testing even after the trading system is

in use. This way, we can keep track of its ongoing performance to determine whether

perhaps the system is deteriorating (a common occurrence!). In this case, we have one

more consideration. Contiguity assumes that step 2, creation of the trading system, can

occur fast enough for the next trade decision to be made. If we are doing end-of-day

trading, we can likely retrain the system overnight. On the other hand, if we are doing

intraday trading of price ticks as they occur in both day and night sessions, we must

define the folds so that the system is re-created during times that the market is idle, such

as on weekends. In practice this is rarely, if ever, an issue, because we can nearly always

find blocks of idle time sufficiently long to retrain the system. But the key point is that

if we wish to pursue ongoing evaluation, we must perform development walkforward

analyses using the same granularity that would be imposed on us during real-time use.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

131

Just to be clear, suppose our system is so slow to train relative to trade speed that

updating the parameters must be done over weekends during actual use. In this

situation, if we want to evaluate ongoing performance (always wise!), then during

development we should do our walkforward analysis also using Monday to Friday blocks

as folds. This way, real-time results are comparable to historical results.

�Future Leak by Unobvious IS/OOS Overlap
A popular and powerful method for developing a trading system is to build a dataset of

predictors and a target based on market history. The predictors are typically indicators

such as RSI, trendline slopes, and so forth. The target is some measure of future

market price change, such as the change from the current price to the price ten days

out. Each case in the dataset contains the values of all predictors and the target for a

single instance in the market, such as a day bar or an intraday bar. The developer then

supplies this dataset to a modeling algorithm, which may be as simple as ordinary linear

regression or as complex as a deep belief net. When the prediction model has been

trained, the trading system is executed each day by computing the model’s prediction

for the current day’s set of predictors. Based on the prediction made by the model,

a position in the market may or may not be taken. This lets us harness the power of

sophisticated modern machine learning techniques to drive our trading system.

A serious potential problem with this approach arises when the lookback period for

indicators exceeds one bar, virtually always true, and the lookahead period for the target

also exceeds one bar, which is often true. When indicators look back more than one bar,

they have serial correlation because adjacent database cases share one or more market

price observations. For example, suppose we have an indicator that measures the slope

of a linear trend line across a 50-bar lookback period. When we advance to the next case,

49 bars are shared between the two adjacent cases. As a result, the trend indicator will

change very little from one case to the next.

The same effect arises with the target. Suppose our target is the price change from

now until ten days from now. When we advance from one case to the next, these two

cases have nine bars of market change in common. The net market change for these two

cases will be quite similar most of the time.

Now think about what happens at the boundary separating the end of the training set

for a fold and the start of the test set for that fold. If we have serial correlation in both the

indicators and the target, then late cases in the training set will be similar to early cases

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

132

in the test set because neither the indicators nor the target will have changed much. The

effect is that information about the test set has leaked into the training set, meaning that

the supposedly fair OOS test is now optimistic since at training time we will have some

information about the test set going into the optimization process.

The implication of this situation is that we must separate the training-set block

from the test-set block by omitting some cases at the end of the training-set block, those

which are contaminated by future leak. How many do we omit? We find the minimum

of the indicator lookback and the target lookahead and subtract one. Of course, if

the indicators have different lookbacks, we consider the indicator lookback to be the

maximum across all indicators.

For example, suppose we have three indicators with lookbacks of 30, 40, and 50 bars,

respectively. Our target has a lookahead of 80 bars. The maximum of (30, 40, 50) is 50.

The minimum of 50 and 80 is 50. So, we must omit 49 bars from the end of each

training-set block.

Where does this formula come from? Deriving it is a simple but educational exercise

for the reader. Suppose we are about to test an OOS set beginning at Bar 100. Pick a

small lookback and a small lookahead. Does the potential training case at Bar 99 have

prices in common with the test case at Bar 100 for both the IS and the OOS blocks? How

about Bar 98? How many of those ending cases have to be omitted before either the IS

price set or the OOS price set no longer has prices in common with the first test case?

Remember that we have a problem only if both an indicator and the target share price

history between the IS and OOS sets, because this is how test-set information leaks into

the training set. If one or the other (indicator set or target) is independent for two cases,

then these cases share no prejudicing information between the IS and OOS sets.

Two things are worth noting here. First, in nearly all practical situations, the indicator

lookback will exceed the target lookahead, usually by a lot. Thus, the lookahead is the

limiting quantity. Second, if the target lookahead is just one bar, a common situation,

we do not have to omit any training data. In the next section we will explore another

advantage of looking ahead just one bar.

�Error Variance Inflation with Multiple-Bar Lookaheads

In the prior section we saw that if the target lookahead is greater than one bar, we must

remove from the training set those cases closest to the fold boundary in order to avoid

disastrous optimistic bias in what are supposed to be unbiased results. In this section we

explore a different problem with multiple-bar lookaheads, one with a very different solution.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

133

Random variation in the noise that happens to contaminate our market data will

result in our walkforward performance figures to also be contaminated with random

variation; the performance figure we get after pooling all OOS fold data, though

unbiased if we do it right, will almost certainly overestimate or underestimate the true

value. We touched on this on page 125 when we discussed the meaning of the term

unbiased. Naturally, we would like for this error variance to be as small as possible.

Moreover, responsible developers will try to supplement the performance results with

other useful information, such as the probability that results this good could have been

obtained through random good luck if the system were truly worthless (a p-value). We

might even attempt to compute confidence intervals or perform any of the sophisticated

tests discussed starting on page 283.

The problem is that nearly all statistical tests of the sort that we would like to perform

require that the observations on which the tests are based be independent. (There are

some tests that do not require independence, but they are tricky to perform and often of

questionable value.) Now think about what happens when we have a lookahead greater

than one bar. The target values of adjacent bars will be strongly related because of the

sharing of overlapping price history. Thus, the observations (trade returns) that we have

available for computing performance statistics are not independent.

This is more serious than just vaguely “violating” assumptions of various statistical

tests. It turns out that the violation is of the worst possible sort: tests become anti-

conservative. This means that if we compute a p-value, the computed probability will be

too small, leading us to conclude that our trading system is better than it really is. If we

compute confidence intervals for the purpose of bounding wins and losses, the obtained

intervals will be too narrow, with the true intervals potentially much wider than those

computed.

Even if we do not perform any statistical tests (irresponsible!) and just contemplate

the unbiased OOS performance, we still pay a price for using multiple-bar lookaheads

without the remedy we’ll describe soon. The issue that underlies all of our woes is the

fact that the error variance, which is the degree to which our unbiased performance

estimate randomly varies around its true value, is larger than it would be if the individual

trade returns were independent.

When the returns are independent and pooled into a single performance statistic,

random errors in the returns tend to cancel. Some errors are positive and some are

negative, and they wash one another out. But when the returns have serial correlation,

they have less opportunity to cancel. There are clumps of positive errors and clumps of

negative errors, making smooth cancellation more difficult.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

134

The result is that even though the OOS performance is unbiased, its troublesome

error variance is inflated. Its over-estimation or under-estimation of the true

performance is greater than it would otherwise be. With a large lookahead, this inflation

can be severe. In severe cases, the error variance may be so large as to render the OOS

performance estimate nearly worthless, despite being unbiased.

The usual method for solving this problem is to use test folds only one bar long

and, instead of advancing the folds by one bar, advance them by the lookahead. This

guarantees that OOS test cases will not share any market information. For example,

suppose the lookahead is 5 and we are about to start an OOS fold at Bar 100. The training

block would end with Bar 95, omitting the 4 most recent cases to prevent bias. After

making our trade decision for Bar 100, we would move the OOS fold ahead to Bar 105.

A side benefit of this approach is that it mimics what most traders would do in

real life. Most traders would not want to keep building up their position during the

lookahead period, even if the model suggested doing so. The risk of catastrophic loss

would be too great.

�The General Walkforward Algorithm

We begin by defining some quantities that must be specified by the user.

LOOKBACK is the number of bars of price history (including the

current bar) used to compute the indicator.

LOOKAHEAD is the number of future price bars, which does not

include the current bar, used to compute the target.

NTRAIN is the number of cases used in the training set (before

omitting any recent cases) for the prediction model on which

trade decisions are based. The total distance we look back from

the current bar in the price history is LOOKBACK + NTRAIN – 2. The

actual number of training cases will be NTRAIN – OMIT.

NTEST is the number of test cases in each OOS test block.

OMIT is the number of most recent training cases omitted from the

training set to prevent optimistic bias when LOOKAHEAD is greater

than one.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

135

EXTRA is the number of cases, in addition to NTEST, advanced for

the next fold. In other words, each fold will be advanced by

NTEST + EXTRA cases in the dataset, with each case corresponding

to a price bar.

As discussed in prior sections, if LOOKAHEAD is greater than one (something we

should avoid if at all possible), there are several precautions we should take if we are to

do the walkforward intelligently.

	 1)	 We must set OMIT = min (LOOKAHEAD, LOOKBACK) – 1 to avoid

deadly optimistic bias. This is crucial.

	 2)	 We must set NTEST = 1 and EXTRA = LOOKAHEAD – 1 if we are

to avoid dangerous serial correlation in trade results. Serial

correlation alone does not introduce bias, but it increases the

error variance that impacts our OOS performance figures, and it

precludes most traditional statistical tests.

The general walkforward algorithm is as follows:

	 1)	 Set OOS_START to the bar of the user’s desired starting date for

testing. If the entire dataset is to be used, set OOS_START = NTRAIN.

	 2)	 Create the trading system based on market history over cases

running from OOS_START – NTRAIN through OOS_START – OMIT – 1.

	 3)	 Execute the trading system over cases running from OOS_START

through OOS_START + NTEST - 1. Save the system’s performance.

Note that NTEST need not be fixed. For example, we may want to

do day trades over a calendar year, so NTEST will depend upon the

number of trading days in the year being tested.

	 4)	 If more market data (cases in the dataset) remains, advance

OOS_START by NTEST + EXTRA and loop back to step 2.

�C++ Code for the Algorithm

The file OVERLAP.CPP, which we will explore soon, contains an example of the fully

general version of the walkforward algorithm. Here is a code fragment that illustrates the

algorithm. We will break it into sections, explaining each section separately.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

136

The complete dataset is in data. This matrix contains ncols columns, with the last

column being the target variable (typically a measure of near-term future market price

change) and all prior columns being predictors. This matrix has ncases rows, each

corresponding to a single bar or trading opportunity. We initialize the start of the current

training set, trn_ptr, to be the start of the dataset. The OOS test set begins at index istart,

just past the user-specified ntrain cases that make up the training set. We will count OOS

cases in n_OOS.

 trn_ptr = data ; // Point to training set, which starts at the beginning of the data

 istart = ntrain ;   // First OOS case is immediately past training set

 n_OOS = 0 ;  // Counts OOS cases as they are processed

The main fold loop is shown next. Rather than having to compute in advance the

number of folds, we will just leave it open-ended and stop the walkforward when we run

out of historical data.

 for (ifold=0 ;; ifold++) {

 test_ptr = trn_ptr + ncols * ntrain ; // Test set starts right after training set

 if (test_ptr >= data + ncols * ncases) // No test cases left?

 break ;  // Then we are finished

At the beginning of the loop just shown, we set the test-set pointer to be ntrain cases

past the start of the current training set. We could just as well use istart to set this pointer,

but I believe this formula is clearer. If the start of the test set is past the end of our

historical data, we are finished.

The call to find_beta() is the training phase, to be discussed soon. We have ntrain–

omit training cases, which begin at trn_ptr. The other two variables are the optimized

parameters returned by the training algorithm. We then set nt to be the number of test

cases in the OOS block. This will normally be the user-specified quantity, ntest. But the

last OOS block may be shorter, so we trim it back as needed.

The test loop makes a prediction for each case. If the prediction is positive, we take

a long position, recording the target. Otherwise, we take a short position (minus target).

Finally, we advance the training and test blocks.

 find_beta (ntrain - omit , trn_ptr , &beta , &constant) ;

 nt = ntest ;

 if (nt > ncases - istart) // Last fold may be incomplete

 nt = ncases - istart ;

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

137

 for (itest=0 ; itest<nt ; itest++) { // For every case in the test set

 pred = beta * *test_ptr++ + constant ; // test_ptr points to target after this line

 if (pred > 0.0)

 oos[n_OOS++] = *test_ptr ;

 else

 oos[n_OOS++] = - *test_ptr ;

 ++test_ptr ; // Advance to indicator for next test case

 }

 istart += nt + extra ; // First OOS case for next fold

 trn_ptr += ncols * (nt + extra) ; // Advance to next fold

 } // Fold loop

�Date-Dependent Walkforward

It is common to perform a walkforward analysis based on dates. For example, we may

want to test one year at a time: we train through the end of a calendar year and test the

following year. Then we advance the training and test windows one year and do the

same. This has the advantage of minimizing the number of times the model must be

trained, which can be good when the training time is problematic. It also makes for an

intuitive presentation of results. The general walkforward algorithm just shown can

be used, setting NTEST for each fold according to the number of bars in the test year.

Moreover, it is easy to set OMIT so as to prevent optimistic bias. However, we must use

a LOOKAHEAD of one if we are to avoid variance inflation that precludes most statistical

tests.

If we must have LOOKAHEAD greater than one and we also must present annual or

other date-dependent walkforward results, then we need to break up each test period

into single-bar tests (NTEST=1), each separated by LOOKAHEAD, and pool results into

each year. Best results will be obtained if the model is retrained for each subfold, but this

is not required.

�Exploring Walkforward Blunders

In this section we use a small console program to explore the impact of lookaheads greater

than one bar when proper measures are not taken to eliminate harmful effects. This

program is called OVERLAP.EXE, and its complete source code is in OVERLAP.CPP. We

begin with the calling parameter list and then explain the program’s operation in detail.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

138

We will conclude with a series of experiments to demonstrate the various relevant issues.

To begin, the program is invoked from the command line as follows:

OVERLAP nprices lookback lookahead ntrain ntest omit extra nreps

nprices is the number of market prices (bars) in the market history.

For the most accurate results, this should be large, at least 10,000.

lookback is the number of bars of history used to compute the

indicator.

lookahead is the number of future bars used to compute the target.

ntrain is the number of cases used in the training set (before

omitting any) for the prediction model on which trade decisions

are based. The actual number of training cases will be ntrain

minus omit.

ntest is the number of test cases in each OOS test block.

omit is the number of most recent training cases omitted from the

training set to prevent bias when lookahead is greater than one.

extra is the number of cases, in addition to ntest, advanced for the

next fold. If lookahead is greater than one, then ntest should be

one, and extra should be lookahead minus one if we are to avoid

dangerous serial correlation in trade results.

nreps is the number of replications used to compute the median

t-score and the tail fraction described later. It should be fairly large

and odd, at least 1001, for accurate results.

First, the program computes a price history that is a random walk, completely

unpredictable. The implication is that no trading system would, on average, provide

an expected return other than zero. The degree to which the actual return exceeds zero

indicates the degree to which optimistic bias has crept in.

After the price history has been generated, a database consisting of a single indicator

and the target is created. This indicator is the linear slope of the price history across the

lookback period. The target is the market price lookahead bars in the future, minus the

current price. Each case in the database corresponds to a single bar in the price history.

The walkforward now begins, starting with the first case in the database. We use

the first ntrain minus omit cases in the database as a training set to compute the linear

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

139

regression equation (slope and intercept) for predicting the target from the single

indicator. The test case(s) in the OOS block are then processed by applying this

regression equation to predict the target. If the prediction is positive, we take a long

position, and if the prediction is negative, we take a short position.

The philosophy behind this primitive model is that during at least some time periods

the market will be in a trend-following mode, which will result in the regression equation

picking up the relationship between the most recent price trend and continuation of

the trend into the future. Of course, because the market prices in this simulation are

a random walk, this situation will not happen except by random chance, and so the

expected return of this trading system should be zero.

After all test cases in this OOS block are processed, the fold is advanced by moving

the training and test windows forward by ntest plus extra cases, and the training/testing is

repeated for this next fold. This continues until all prices are exhausted.

The entire process just described, beginning with market price history generation,

is repeated nreps times. For each replication, a t-score is computed for the pooled OOS

trade results, and the median t-score across all replications is printed. Because the

market prices are a random walk, we would expect this median to be about zero, but we

will see that incorrect structuring of the walkforward will result in optimistic bias. Also,

for each replication, the right tail p-value (probability that results at least this good could

have been obtained by pure luck) is computed. (Actually, for simplicity the normal CDF

is used instead of the t CDF, but this is an excellent approximation when a large number

of market prices are used.) A counter is incremented each time this p-value is less than

or equal to 0.1. Because the market prices are a random walk, we would expect this event

to happen in about 0.1 times nreps replications. The observed fraction of times is printed.

We will see that this fairly significant p-value will occur more frequently than 0.1 if the

walkforward is not structured correctly.

Here are a few experiments that demonstrate the consequences of improper

walkforward when using the database/model approach. In all of these experiments, we

use the following parameters:

nprices = 50,000	 Using a long price history provides accurate results.

lookback = 100	 This has almost no impact on relative results.

lookahead = 10	 Any value greater than 1 demonstrates the issues.

ntrain = 50		 This is fairly unimportant.

nreps = 10001	 A large value reduces the effect of random error on results.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

140

As a reminder, the program will print two results, the median (across replications)

t-score for OOS returns and the fraction of these replications for which the p-value

associated with the t-score is less than or equal to 0.1. Because the market is a true

random walk (unpredictable), we expect the former to be near 0.0 and the latter to be

near 0.1. Any increase beyond these expected values results from dangerous optimistic

bias due to improper walkforward.

Experiment 1: Optimistic Bias from IS/OOS Overlap with Large Test Set
ntest = 50

omit = 0

extra = 0

For this test we make the test set be the same size as the training set and take

no action to counter the problems induced by the lookahead exceeding 1. A test set

this large (the same size as the training set) would not usually be done in real life

because late observations in the test set would be so far from the training set that any

nonstationarity in the market could reduce predictability. But it may be necessary when

the model requires massive training time and we simply do not have the computational

resources to retrain more often.

We find that the median t-score is 5.35, severe bias, and the fraction of replications

whose t-score is significant at the 0.1 level is 0.920, a ridiculous amount of bias.

Experiment 2: Optimistic Bias from IS/OOS Overlap with 1-Bar Test Set
ntest = 1

omit = 0

extra = 0

This is the ideal test and real-time situation, retraining the model after every single

use. This would often be practical when trading day bars; we retrain the model every

night for making a prediction about the next day.

We find that the median t-score is 74.64 (!), extreme bias, and the fraction of

replications whose t-score is significant at the 0.1 level is 1.0, perfect failure. Why is this

bias so much more severe than in the prior experiment? The reason is that when we have

a large test set in each fold, as cases get further into the future from the training set, the

number of overlapping prices decreases, thus reducing the optimistic bias. But when

we test only the single case immediately past the training set, we have the maximum

possible number of overlapping prices.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

141

Experiment 3: Optimistic Bias from IS/OOS Overlap, fully handled
ntest = 1

omit = 9

extra = 0

In this experiment we explore the subject described starting on page 131, optimistic

OOS performance when multiple-bar lookahead creates unobvious future leak. Recall

that the target lookahead is 10 bars, so to fully eliminate future leak we must omit 10-1=9

of the most recent training cases. We do so in this test.

We find that the median t-score is -0.023, which is zero except for random variation

in the test. So we have completely eliminated the bias in OOS results. However, the

fraction of replications whose t-score is significant at the 0.1 level is 0.314. How can

this happen when the OOS results are unbiased? This is because of variance inflation,

discussed on page 133. We will explore this subject in Experiment 5.

Experiment 4: Optimistic Bias from IS/OOS Overlap, partly handled
ntest = 1

omit = 8

extra = 0

This test is identical to the prior experiment, except that we almost, but not quite,

omit enough training cases. We need to omit nine cases, but we omit only eight.

We find that the median t-score is 1.88, which is not huge but still a problem.

Cheating by failing to omit the required number of cases, even if we come very close,

still introduces dangerous optimistic bias. Moreover, the fraction of replications whose

t-score is significant at the 0.1 level is 0.588, worse than in the prior experiment.

Experiment 5: Optimistic Bias and Variance Inflation, fully handled
ntest = 1

omit = 9

extra = 9

In this experiment we handle both of the issues involved in multiple-bar target

lookahead. Recall that the target lookahead is ten bars, so to fully eliminate future leak

bias we must omit 10-1=9 of the most recent training cases. Also, we must jump an extra

nine cases as we advance folds in order to avoid variance inflation from serial correlation

in OOS trade results. We do both in this test.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

142

We find that the median t-score is -0.012, which is zero except for random variation

in the test. So we have completely eliminated the bias in OOS results. Moreover, the

fraction of replications whose t-score is significant at the 0.1 level is 0.101, as perfect as

we can expect in a random trial.

�Testing Robustness Against Nonstationarity

The curse of trading system developers (well, one of the curses, anyway) is

nonstationarity in financial markets. Patterns that allow great predictability for months

may suddenly vanish. This may be because of changing economic environments, such

as times of unusually high or low interest rates. It may also be because of the discovery

of these predictable patterns by large institutions, resulting in predictability being

arbitraged out of existence. Regardless of the cause, it is important that we test how well

our trading system holds up against changing markets.

It should be noted that different trading systems really do have different degrees

of robustness against common types of market changes. This is often by design. Some

developers deliberately design trading systems that have a fast response to changing

conditions but that also require frequent modification to keep up with evolving market

patterns. Others design systems that capitalize on patterns that, while often less

prominent, are present in markets for years or even decades. Regardless of our choice

or even if we make no deliberate choice, we need to know how long a trained model will

retain its predictive power as market patterns evolve.

One effective way to evaluate robustness against nonstationarity is to perform

multiple walkforward analyses, each having a different testing period. For example, we

might retrain a day-bar system every night, testing it for only the next day. Then we test

the same system with an OOS period of two days, retraining it every other day. Continue

this testing pattern, lengthening the test period until performance severely drops off.

When we plot OOS performance versus the test period, we will typically see peak

performance at the shortest test period (most frequent retraining). Performance will

drop off as we lengthen the test period. Often, the drop-off will be slow at first, and

then plummet, giving the developer a rough idea of how frequently the system must be

retrained.

An even more sensitive, though slightly more complex approach, is to base

performance on only the last bar in each test fold. This eliminates the influence

of earlier, superior results, though at the (minor) expense of more variation in the

performance curve.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

143

�Cross-Validation Analysis
A major disadvantage of walkforward analysis is that it fails to efficiently use all of the

available market history. For every walkforward fold, all information past the end of the

OOS block is ignored. We can solve this problem by means of cross validation. The idea

is that instead of using only training data prior to the OOS test block, we also include

data past the OOS block in the training set. This is often extremely useful in applications

that do not involve time-series data. However, when cross validation is applied to time-

series data, such as market histories, several subtle issues can bite us. In this section we

explore these issues.

�Unobvious IS/OOS Overlap

If you’ve forgotten about how a lookahead greater than one bar can induce optimistic

bias from future leak in walkforward analysis, please review the material starting on

page 131. I’ll leave it as an exercise for the reader to show that, just as we had to omit

min (lookback, lookahead) – 1 cases from the end of the training set in walkforward

analysis, when we do cross validation, we also have to omit this many cases from the

beginning of the part of the training set that is past the OOS test block. To show this, use

the same technique you employed in showing it for walkforward analysis.

Figure 5-1 shows how this works for a fivefold cross validation. The full left-right

extent of the rectangle represents the historical extent of the available data. The four

hash marks above the long rectangle delineate the five folds. In the fold shown, we are

testing the middle block.

Figure 5-1.  Guard buffers in cross validation

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

144

If our target variable had a lookahead of just one bar, we could use all of the data on

both sides of the OOS test set as training data. But this figure illustrates the situation of

having a longer lookahead. Thus, we need to omit training cases on both sides of the

test set, acting as guard buffers to prevent inadvertent IS/OOS overlap that would cause

dangerous optimistic bias.

�The Fully General Cross-Validation Algorithm

In some cases, the programmer may find it easiest to avoid all the shuffling involved

in the algorithm about to be shown. This can be done by incorporating the starting

and stopping boundaries of the training set, test set, and guard buffers directly into

the training and testing code. But this can be tricky itself. Moreover, it requires highly

customized training and testing code; canned or general-purpose algorithms are out

of the question. The algorithms shown in this and the next section are designed to

consolidate all training data into a single array of contiguous cases, and the test data into

another contiguous block. This greatly simplifies the separate training and testing code.

In this section we state the general cross-validation process in simple algorithmic

form to provide an overview. In the next section we’ll see C++ code that clarifies the

details. The algorithm is simple if no guard buffer is needed (omit=0). But if we need a

guard buffer, compressing the training data into a single contiguous block requires either

complex shuffling in place or keeping a separate copy of the dataset, copying from a

source array to a destination array as needed. We choose the latter approach, as it is not

only simpler to program but also faster to execute.

Thus, if omit>0, we have two arrays. The one that we call SRC contains the entire

historical dataset. The other is called DEST, and it is the array that will be passed to

the training and testing routines. But if omit=0, we use just the array of historical data,

shuffling in place for each fold. In both situations, istart is the index of the current first

test case (origin 0), and istop is one greater than the index of the current last test case.

The notation m::n refers to the block of contiguous cases from m up to but not including n.

The algorithm is as follows:

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

145

istart = 0 First OOS test block is at start of dataset.

ncases_save = ncases ; We’ll temporarily reduce this, so must restore.

For each fold...

 Compute n_in_fold and istop Number of test cases; one past end of test set.

 if omit We need guard buffers.

 copy SRC[istart::istop] to end of DEST This is the OOS test block.

 if first fold The training set is strictly after the test set.

 copy SRC[istop+omit::ncases] to beginning of DEST This is the training set.

 ncases -= n_in_fold + omit This many cases in training set.

 else if last fold The training set is strictly before the test set.

 copy SRC[0::istart-omit] to beginning of DEST This is the training set.

 ncases -= n_in_fold + omit This many cases in training set.

 else This is an interior fold.

 copy SRC[0::istart-omit] to beginning of DEST First part of training set.

 copy SRC[istop+omit::ncases] to DEST[istart-omit] Second part of training set.

 ncases -= n_in_fold + 2 * omit This many cases in training set.

 else omit=0 so we just swap in place.

 if prior to last fold �We place OOS block at end; already there if last fold.

 swap istart::istop with end cases

 ncases -= n_in_fold This many cases in training set.

 Train   �Training set is first ncases cases in new data matrix.

 ncases = ncases_save �Restore to full dataset (it was reduced for training).

 Test Test set is last istop–istart cases in new dataset.

 if (not omit AND not last fold) If we shuffled in place, unshuffle.

 swap istart::istop with end cases swap OOS back from end.

 istart = istop Advance OOS test set for next fold.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

146

�C++ Code for the General Algorithm

The previous algorithm is intended to give a rough overview of the relatively complex

shuffling process used to consolidate training and test data for each fold, facilitating use

of general-purpose training and testing algorithms. But that overview omitted many

details that will now be presented using actual C++ code.

We begin with some initializations. Throughout the entire algorithm, istart is the

index of the current first OOS test case, and istop is one greater than the index of the

current last test case. The total number of OOS cases completed after each fold will be

in n_done, and they will be counted up one at a time for indexing purposes in n_OOS_X.

If we are using guard buffers (omit>0), then we need to save the total number of cases,

because ncases will be reduced to the actual number of training cases employed for

each fold.

 istart = 0 ; // OOS start = dataset start

 n_done = 0 ; // Number of cases treated as OOS so far

 n_OOS_X = 0 ; // Counts OOS cases one at a time, for indexing

 ncases_save = ncases ;  // Save so we can restore after every fold is processed

This is the fold loop. The number of OOS test cases in this fold is the number of cases

not yet done, divided by the number of folds remaining to be processed.

 for (ifold=0 ; ifold<nfolds ; ifold++) { // Processes user's specified number of folds

 n_in_fold = (ncases - n_done) / (nfolds - ifold) ; // N of OOS cases in fold

 istop = istart + n_in_fold ; // One past OOS stop

The following if statement takes care of the situation of having to deal with guard

blocks. First, we copy the current OOS test set to the end of the destination array, where

it will be tested.

 if (omit) {

 memcpy (data+(ncases-n_in_fold)*ncols , data_save+istart*ncols ,

 n_in_fold*ncols*sizeof(double)) ;

If this is the first (leftmost) fold, the entire training set for this fold lies to the right of

the OOS block. Copy it to the beginning of the destination array. The number of training

cases is the total number of cases, minus those in the OOS set and the guard block cases.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

147

 if (ifold == 0) { // First (leftmost) fold

 memcpy (data , data_save+(istop+omit)*ncols ,

 (ncases-istop-omit)*ncols*sizeof(double)) ;

 ncases -= n_in_fold + omit ;

 }

If this is the last (rightmost) fold, the entire training set is prior to the OOS block.

Copy those cases.

 else if (ifold == nfolds-1) { // Last (rightmost) fold

 memcpy (data , data_save , (istart-omit)*ncols*sizeof(double)) ;

 ncases -= n_in_fold + omit ;

 }

Otherwise, this is an interior fold. Here we deal with an issue not explicitly stated in

the algorithm outline shown previously. It may be that the user specified so many folds

that each fold has a tiny OOS test set, perhaps even just one case. It can then happen that

on one side of the test set there are no cases after the guard block is excluded. We must

handle that.

 else { // Interior fold

 ncases = 0 ;

 if (istart > omit) { // We have at least one training case prior to OOS block

 memcpy (data , data_save , (istart-omit)*ncols*sizeof(double)) ;

 ncases = istart - omit ; // We have this many cases from the left side

 }

 if (ncases_save > istop+omit) { // We have at least one case after OOS block

 memcpy (data+ncases*ncols , data_save+(istop+omit)*ncols ,

 (ncases_save-istop-omit)*ncols*sizeof(double)) ;

 ncases += ncases_save - istop - omit ; // Added on this many from right

 }

 } // Else this is an interior fold

 } // If omit

The following else block handles the situation of omit=0: no guard blocks. This is

much easier. We don’t even have a separate source array. Everything is swapped in place.

For each fold, we swap the OOS test set to the end of the array. After training and testing

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

148

are complete for a fold, the data is swapped back the way it was. Note that for the last

(rightmost) fold, the test set is already at the end, so we do not swap.

 else {

 // Swap this OOS set to end of dataset if it's not already there

 if (ifold < nfolds-1) { // Not already at end?

 for (i=istart ; i<istop ; i++) { // For entire OOS block

 dptr = data + i * ncols ; // Swap from here

 optr = data + (ncases-n_in_fold+i-istart) * ncols ; // To here

 for (j=0 ; j<ncols ; j++) {

 dtemp = dptr[j] ;

 dptr[j] = optr[j] ;

 optr[j] = dtemp ;

 }

 } // For all OOS cases, swapping

 } // If prior to last fold

 else

 assert (ncases-n_in_fold-istart == 0) ;

 ncases -= n_in_fold ;

 } // Else not omit

/*

 Train and test this XVAL fold

 When we prepared to process this fold, we reduced ncases to remove

 the OOS set and any omitted buffer. As soon as we finish training,

 we restore it back to its full value.

*/

 find_beta (ncases , data , &beta , &constant) ; // Training phase

 ncases = ncases_save ; // Was reduced for training but now done training

 test_ptr = data+(ncases-n_in_fold)*ncols ; // OOS test set starts after training set

 for (itest=0 ; itest<n_in_fold ; itest++) { // For every case in the test set

 pred = beta * *test_ptr++ + constant ; // test_ptr points to target after this

 if (pred > 0.0) // If predicts market going up

 OOS[n_OOS_X++] = *test_ptr ; // Take a long position

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

149

 else

 OOS[n_OOS_X++] = - *test_ptr ; // Take a short position

 ++test_ptr ; // Advance to indicator for next test case

 }

/*

 Swap this OOS set back from end of dataset if it was swapped there

*/

 if (omit == 0 && ifold < nfolds-1) { // No guard buffers and prior to last fold

 for (i=istart ; i<istop ; i++) { // This is the same code that swapped before

 dptr = data + i * ncols ;

 optr = data + (ncases-n_in_fold+i-istart) * ncols ;

 for (j=0 ; j<ncols ; j++) {

 dtemp = dptr[j] ;

 dptr[j] = optr[j] ;

 optr[j] = dtemp ;

 }

 }

 }

 istart = istop ;   // Advance the OOS set to next fold

 n_done += n_in_fold ; // Count the OOS cases we've done

 } // For ifold

In the previous code, note that we use the same “model” as was used in the

OVERLAP program discussed in detail on page 138. Subroutine find_beta() is the training

phase, using the first ncases cases in data to compute a linear function for predicting the

next data value (the price change for the next case). In the OOS testing phase of each

fold, we pass through the test set. For each case in the test set, we make a prediction of

the upcoming market move. If the prediction is positive, we take a long position, and if

it’s negative, we take a short position. These facts are of little importance to the current

discussion, because the focus here is on the cross-validation swapping. Just be aware of

when training and testing happen amid all the swapping.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

150

�Cross Validation Can Have Pessimistic Bias

There is widespread belief that cross validation produces an unbiased estimate of

population performance. At first glance, this makes sense: we are always testing a model

that was trained on data that is separate from the test data (assuming that appropriate

guard buffers were used if needed). But the subtle issue at play in cross validation is the

size of each training set. The training set in each fold is smaller than the entire dataset,

while we would typically train with the entire dataset when the model is put to use.

When we have a smaller training set, the model parameter estimates are less accurate

than they would be if we trained with the entire dataset. And of course, having less

accurate model parameter estimates means that the model will have reduced accuracy,

which translates to inferior OOS performance on average. Thus, all else being equal,

we can expect cross validation to slightly underestimate the performance that will be

obtained when we finally train using the entire dataset and then put the model to work.

�Cross Validation Can Have Optimistic Bias

If the data is nonstationary, which is pretty much the rule in market trading applications,

this nonstationarity can be a source of optimistic bias in cross validation. The idea is that

by including future market data in the training set, even if individual cases are properly

excluded, we provide the training algorithm with valuable information concerning the

future distribution of the data, information that would not be available in real life.

As a simple example, suppose your historical data has steadily increased volatility

from beginning to end. With walkforward analysis, as well as in real life, each test set

(and real-life trading period) would have volatility exceeding that in the training set,

which might be problematic. But the numerous interior test folds in cross validation

would be tested on models trained with data from the future as well as the past, thus

providing a variety of volatility examples that bracket the volatility in the test set. This is a

subtle form of future leak, even though no actual cases are shared.

�Cross Validation Does Not Reflect Real Life

As should be apparent from the previous two sections, cross validation is highly suspect

compared to walkforward analysis when it comes to simulating real life. Granted, cross

validation does allow the use of more training data than walkforward analysis, especially

in early folds when walkforward analysis is forced to make due with meager historical

data. In fact, for this reason, walkforward analysis can have even worse pessimistic bias

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

151

than cross validation. On the other hand, most developers perform walkforward analysis

using a training set size equal to that which will be used to train the final production

model. This is because they are hesitant to span too wide of a historical period, which

may encompass too many market regimes because of nonstationarity. In this common

situation, the data advantage of cross validation is wiped out. And once that advantage

is gone, there is no incentive to tolerate the sort of subtle future leak discussed in the

prior section, in which hints of future nonstationarity issues are provided to the training

algorithm. Thus, I cannot recommend cross validation analysis in trading system

development, except in the most unusual special situations.

�Special Precautions for Algorithmic Trading
First, let’s be clear on the meaning of algorithmic trading. Much of the recent discussion

has been focused on the increasingly popular and powerful model-based trading. In

model-based trading, we build a dataset of predictors and targets and then train a

powerful model to predict the target, given the predictors as of a trading opportunity.

This is in sharp contrast to the older, more traditional algorithmic trading, in which a

rigorously defined algorithm makes trading decisions on the fly. One venerable chestnut

of algorithmic trading is a moving-average crossover system: we take a long position

when a short-term moving average is above a long-term moving average, and we take a

short position when the reverse is true. To train such a system, we find short-term and

long-term lookbacks that optimize some measure of performance. We now investigate

the potentially deadly issue of unobvious future leak in algorithmic trading systems.

Recall from the discussion that began on page 131 that for both walkforward analysis

and cross validation, we may need a guard buffer removed from the training set where it

touches the test set. The number of cases removed is one less than the minimum of the

lookback and the lookforward distance used in computing the model-training database.

With model-based trading, it is nearly always the case that the lookback exceeds the

lookforward distance, usually to a considerable degree. We may look backward in history

for hundreds of bars to compute measures of trend, volatility, and more sophisticated

indicators. But when we take a position in the market, we typically hold it for at most a

few bars so that the model may quickly respond to changing market conditions.

But with algorithmic systems, the reverse is often true, sometimes to the degree that

the lookforward distance must be assumed to be infinite! For example, suppose our

trading system operates with the following rule: if a short-term moving average just now

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

152

(on this current bar) crosses a threshold 2 percent above a long-term moving average, we

open a long position. We hold that position until the short-term moving average crosses

below the long-term moving average. The key point to note in this example system is that

we don’t know how long the position will be open.

Let’s examine walkforward testing of this system. Suppose we arbitrarily impose

an upper limit of 150 bars for the long-term moving average lookback. After training,

we may well find that the actual lookback is less than this, but it can perhaps be this

extensive, so we must be prepared.

What about the lookahead? Unfortunately, the rule for closing the position may fire

just a few bars after entry, or we may still be in our position 1,000 bars later. We just don’t

know in advance.

The implication is that unlike with model-based trading, in which the lookahead

almost always determines the size of the guard buffer, for open-ended algorithmic

trading it will often be the lookback that determines the guard buffer size, and this will

usually be depressingly large.

Pursuing this example will clarify the situation. Suppose we are at the last bar of

the training block in this fold, say Bar 1000. To find optimal short-term and long-term

lookbacks, we try a large number of candidate pairs, perhaps even every possible pair

of short-term and long-term lookbacks. For each candidate pair we start at the earliest

possible bar in the training block for which we could compute the long-term moving

average. We evaluate the entry rule, take a position if it passes, and hold the position

until the exit rule fires. We move along through the training block, trading as decreed

by the rules. When the trade-opening process reaches Bar 1000, we stop and compute

a performance figure for this short-term/long-term lookback pair. Then we repeat the

process for a different pair of lookbacks. Eventually, we have in hand the lookback pair

that gives the best trading performance in the training block.

Then we go to Bar 1001, the first bar in the OOS test set for this fold. We evaluate the

entry rule using the previously determined optimal lookbacks and act accordingly. If the

test set size is more than one bar, we repeat for the next bar, cumulating net performance

across the test set.

Astute readers have noticed that we glossed over a crucial aspect of this algorithm:

during training, what do we do with the position when we hit the end of the training

block for the fold? There are at least five ways we could handle issues near the training/

testing boundary, four of which are good and one of which is disastrous.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

153

	 1)	 If a position is open at the end of the training block, we leave
it open and keep advancing, closing it only when the closing
rule fires. This provides an honest outcome, the profit that would

have been obtained in real life. But suppose a position opens on

Bar 1000, the last bar in the training block, and it is an extremely

profitable trade. The training algorithm will favor lookbacks that

capture that great trade. Now consider what happens at Bar 1001,

the first bar in the OOS test set. This trial will share a lot of past

price history with the prior bar, one bar less than the optimal

long-term lookback. Thus, it will almost certainly open a trade

there. Moreover, this trade will share the same future bars that

produced a huge profit in the training phase, and hence it will be

very profitable. This past-and-future price sharing between the

training and test periods is serious future leak, and it will produce

significant optimistic bias. Don’t do it.

	 2)	 Force the training algorithm to close and mark-to-market the
position when the end of the training block is reached. This

eliminates future leak and makes the trading system consistent

with what could be achieved in real life, because no future

information ever takes part in training. But it does distort trades

near the end of the training period by closing them in a different

manner from how they are closed earlier in the training period,

when positions are unlikely to be prematurely closed. This may or

may not adversely impact computation of optimal lookback pairs.

It certainly deserves contemplation.

	 3)	 Modify the closing rule to close the position if it has been open
a specified number of bars, and use a guard buffer that size. In

the example under discussion, we might make the closing rule be

“We hold the position until the short-term moving average crosses

below the long-term moving average, or the position has been

open for 20 bars.” Then we cease opening new positions (have a

guard buffer) when we pass this many bars prior to the end of the

training period. This, too, prevents future leak and is consistent

with what could be achieved in real life. It has the advantage over

method 2 in that all trades are consistent with the same rule,

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

154

which avoids distortion in the optimization process. But unless

the bar limit is very large, this may be an unwelcome infringement

on the developer’s trading hypothesis.

	 4)	 Act as in method 1, freely advancing open trades past the end
of the training period. However, stop opening positions (guard
buffer) when we reach the end of the training period minus one
less than the maximum lookback. In our current example, the

last bar at which we might open a position is 1000–(150–1)=851.

This is safe because when we begin the test set at Bar 1001, we will

be examining Bars 852 through 1001. Thus, the prices on which

entry decisions during training were done, and those on which

testing entry decisions are made, are completely disjoint. Despite

avoiding future leak and hence providing unbiased results,

this method has the philosophical annoyance that it does not

imitate real life; we access prices beyond the end of the training

period during the training process. However, this is more of a

philosophical problem than an actual problem.

	 5)	 Use the “single-bar-lookahead” method of the next section.

Which method is best? It depends (of course!). I tend to favor method 3 for several

reasons. All trades follow the same rules, regardless of whether they are early or late

in the training period. (Method 2 violates this nice property.) It does not peer into the

future like method 4, even though method 4’s future-gazing does not introduce harmful

future leak. But perhaps most of all, in my own work over the years I have found that

automated trading systems lose accuracy fast as they march away from their opening

bar. If a trade is not at or at least near its goal soon after opening the position, it rapidly

devolves into a crap shot, maybe winning, maybe not. So by introducing a time limit on

how long a position can be open, we reduce the impact of randomness.

There is one situation in which method 4 is likely superior to method 3. Both

methods require that we cease opening trades some time before the end of the training

period. In method 3 we lose the trade time limit, while in method 4 we lose the lookback.

It may be that our trading plan requires a long time for the trade to be open. In my

experience, this is not a good thing, but other developers may differ. If the required time

period is longer than the lookback, method 4 will lose fewer trading opportunities than

method 3. Despite being vaguely uncomfortable with method 4 looking into the future

during training, we might consider method 4 to be the superior choice in such situations.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

155

�Converting Unknown-Lookahead Systems to Single-Bar

We just explored four different methods for handling boundary regions near the

training/test border, three of which are practical and effective. We now introduce a fifth

method, which can sometimes be more complicated but which avoids the use of any

guard buffer at all and hence increases the effective size of each training fold. It does

distort end-of-training-set trades like method 2, but in a frequently more innocuous way.

Moreover, it generates a long, continuous series of single-bar returns rather than fewer

multiple-bar returns. This is necessary to perform the CSCV superiority test and several

other procedures described later.

To implement this conversion, we modify the trading rule to be a series of single-

bar trades, with the first trade opening in response to the opening rule and subsequent

trades being just a continuation of the prior bar’s position. In other words, suppose our

desired trading rule is to open a position when no position is currently open (to prevent

simultaneous open trades) and the OpenPosition condition becomes true, and then close

the position when the ClosePosition condition becomes true. The modified rule requires

that we perform the following at the close of each bar:

If no position is open

If OpenPosition is true, open a position to extend through the next bar

Else

Close the position and record this bar’s return on the trade

If ClosePosition is false, re-open the same position that was just closed

This complexity is needed only if you are using commercial software that requires

explicit opening and closing of positions in order to record trades. Of course, if you are

writing your own software, it is much simpler: just record an open trade’s marked-to-

market return on each bar!

This is often the best method because it provides the finest granularity in returns.

This is important to stable profit factor calculations, it enables more accurate drawdown

calculations (it’s essentially marking-to-market every bar), and it is mandatory for some

of the most powerful statistical tests (CSCV) described elsewhere in this text. Please

consider it seriously. A practical example of this, with C++ code, will appear on page 198.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

156

�Unbounded Lookback Can Subtly Happen

We saw in method 4 earlier that the number of trading opportunities is reduced according

to the lookback for trading decisions. We would be inclined to use this method when we

have an open-ended trading system and we do not want to impose a time limit on how

long trades may remain open. But in this case, we must be careful that we do not have a

lookback that is, at least in theory, unbounded. If we cannot establish a firm bound on the

lookback, a bound that is not impractically large, then we cannot use method 4.

How can our lookback ever be unbounded? One obvious way is if some component

of our decision computation has unbounded lookback. For example, we’ve been talking

about moving-average crossover systems in which the lookbacks of the moving averages

are bounded. That’s good. But what if we used exponential smoothing, or a recursive filter,

for our long-term and short-term smoothing? The value of such filters is computed based

on data all the way back to the first price in the market history. Granted, the contributions

of really early prices may be very small. But remember that when it comes to market

trading, seemingly innocuous sources of bias can have shockingly serious impact.

A much more subtle source of unbounded lookback is when trading decisions are

based on prior trading decisions. For example, our system may include a safety valve that

shuts down all trading for a month if four losing trades in a row occur. Now, the lookback

for the current bar goes back to the prior trade, and the one before that, and so on.

Or consider these entry and exit rules: we open a position if some rigorously defined

condition that cycles on and off frequently is true and we do not currently have a trade

open. We close the trade when some other rigorously defined condition is true. In this

situation, our current trade decision depends on whether we opened a trade at the prior

opportunity, which in turn depends on the opportunity prior to that, ad infinitum. The

lookback is unbounded.

Sceptics may scoff at this concept. I do not, as I was badly burned by this very issue

early in my career, and I no longer underestimate its impact.

�Comparing Cross Validation with Walkforward: XVW
On page 138 we presented the OVERLAP program to explore the bias introduced by

unobvious IS/OOS overlap. Here we expand this program in the XvW program, which

operates similarly but whose primary purpose is to demonstrate the great disparity

possible between walkforward and cross-validation analysis of exactly the same trading

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

157

system. Please feel free to use this program (the complete source code is in XvW.CPP) as

a template to explore this phenomenon with your own trading system ideas.

Here is the calling parameter list. Much of the program’s operation is described in

detail in the section that begins on page 138, so we will omit redundant details here. The

program is invoked from the command line as follows:

XvW nprices trend lookback lookahead ntrain ntest nfolds omit nreps seed

nprices is the number of market prices (bars) in the market history.

For the most accurate results, this should be large, at least 10,000.

Trend is the strength of a trend that reverses every 50 bars. A trend

of 0.0 means that the market price series is a random walk.

lookback is the number of bars of history used to compute the

indicator.

lookahead is the number of future bars used to compute the target.

ntrain is the number of cases used in the training set (before

omitting any) for the prediction model on which trade decisions

are based. The actual number of training cases will be ntrain

minus omit.

ntest is the number of test cases in each OOS test block.

nfolds is the number of cross-validation folds.

omit is the number of most recent training cases omitted from the

training set to prevent bias when lookahead is greater than one.

Ideally it should be one less than the lookahead.

nreps is the number of replications used to compute the several

t-scores and the tail fraction described later. It should be fairly

large, at least 1000, for accurate results.

seed is the random seed and may be any positive integer. This

facilitates repeating the test with different seeds to confirm results.

As was described starting on page 137, the program repeatedly generates market

histories. One difference between this XvW program and the OVERLAP program is

that OVERLAP always generates random walks, while XvW can optionally generate

price histories having a user-specified degree of trend that reverses every 50 bars.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

158

This introduces a degree of predictability in market prices, producing positive average

returns. A dataset consisting of a predictor and target for each bar is created. A simple

linear regression model is tested with both walkforward and cross-validation testing.

When complete, a line similar to the following will be printed:

Grand XVAL = 0.02249 (t=253.371) WALK = 0.00558 (t=81.355) StdDev = 0.00011 t = 150.768

rtail = 0.00000

This information is:

•	 Mean OOS return and associated t-score for cross validation

•	 Mean OOS return and associated t-score for walkforward

•	 Standard deviation of the difference between the two methods, the

t-score for this difference, and its right-tail p-value

If you specify a trend of 0.0, producing a pure random walk, all t-scores will be

insignificant except for natural random variation. When you increase the trend, t-scores

will rapidly become significant. The t-score for the difference between walkforward

and cross validation is highly dependent on the lookback, on the lookahead, and to

some degree on the number of folds. The main takeaway from this demonstration is

that in nearly all practical situations, walkforward and cross validation analysis produce

significantly different results, often wildly different.

�Computationally Symmetric Cross Validation
I’ve already pointed out (with multiple justifications) that I do not favor cross validation

for performance analysis of market trading systems. However, there is one interesting

application of a special form of cross validation that I have found to be frequently useful.

This application is inspired by a fascinating 2015 paper, “The Probability of Backtest

Overfitting” by David H. Bailey et al. It is widely available for free downloading on the

Internet.

Computationally symmetric cross validation (CSCV) largely or completely

eliminates one aspect of ordinary k-fold cross validation that can be problematic in some

situations: unequal training-set and test-set sizes. Unless we use just two folds (generally

unrecommended due to instability), for each fold the test set will be much smaller than

the training set. In the extreme, when we use hold-one-out cross validation, each test

set consists of a single case. Usually we pool all OOS returns into a single testing pool the

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

159

same size as the original dataset, so there is no problem. But occasionally we may want to

compute a separate performance criterion of each fold’s OOS data, perhaps to get an idea of

the fold-to-fold variation. Some criteria, especially those involving ratios, are compromised

by small sets. For example, the Sharpe ratio requires that we divide by the standard

deviation of returns within the sample. If the sample is small, this denominator may be tiny,

or even zero. If the sample consists of a single case, we cannot do it at all. The profit factor

(wins divided by losses) also requires large datasets, as do measures involving drawdown.

CSCV works by partitioning the collection of individual trade returns (nearly always

one-bar-ahead returns) into an even number of subsets that are equal or nearly equal in

size. Then, these subsets are combined in every possible way, making half of them be a

training set and the other half a test set. For example, suppose we partition the returns

into four subsets. We combine subsets 1 and 2 into a training set, and we combine 3

and 4 into the corresponding test set. Then we combine 1 and 3 into a training set, and

we combine 2 and 4 into the corresponding test set. We repeat this recombination until

every possible arrangement has been used.

It should be clear that unless the number of partitions is small and the number of

returns far from an integer multiple of the number of partitions, all training sets and test

sets will be nearly equal in size, each about half of the total number of returns.

We digress briefly to emphasize that this partitioning is done on the individual bar

returns, not on the price data. For example, consider our good old moving-average

crossover system, and suppose we have specified short-term and long-term lookbacks

for computing the moving averages. We do not partition the price histories because the

recombination would produce deadly discontinuities that would wreak havoc on moving

average computation. Rather, we process the entire market history, beginning to end,

and keep track of the return captured from each bar. This set of individual bar returns is

partitioned.

So, how is model optimization for each training set accomplished? Unfortunately,

CSCV does not allow us to use any “intelligent” training algorithm, one that uses

performance criteria from prior trial parameter sets to guide the selection of future trial

parameter sets. So, for example, we cannot use genetic optimization or hill climbing. Each

trial parameter set or other model variation must be independent of results obtained from

prior trials. Thus, either we will almost always use a large number of randomly generated

model parameters, or we will do an exhaustive grid search across the valid parameter

space. After evaluating some measure of performance for each trial parameter set, we

choose the parameter set that has optimal performance in the training set.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

160

�The CSCV Algorithm: Intuition and General Statement

Let’s recap what we have so far. We have created a (usually large) number of candidate

sets of model parameter sets. For example, if we have a moving-average crossover

system, a trial parameter set would consist of a long-term lookback and a short-term

lookback. These numerous parameter sets may have been generated randomly or in a

grid search.

For each trial parameter set, we evaluate the trading system across the entire

available market price history. We must specify a fixed granularity for evaluating returns.

This granularity is typically every bar: for each bar, we compute the contribution to

the equity of the position (long/short/neutral) provided by that bar. But it need not be

every bar; it could just as well be hourly for intraday trading, weekly for day bars, or

whatever. However, finer granularity is better. The important thing is that the granularity

be defined in such a way that we have a profit figure available at the same time for every

competing system. This is almost never a problem; we just evaluate the profit changes

at the same points in time (such as every bar or for the week on every Friday) for every

competing system.

To keep things simple, from here on I will assume that we are evaluating returns

on every bar, understanding that coarser granularities are legal though less desirable.

When we have evaluated every trading system (every parameter set) at every bar, we can

represent these returns as a matrix. Each row of the matrix will correspond to a single

trading system (parameter set), with its bar-by-bar returns spanning the row. Our matrix

will have one row for each parameter set and as many columns as we have bars where

the trading systems are active. (This is the transpose of the matrix in the [Bailey et al.]

article, but it is more computationally efficient to do it this way.)

Note that we will virtually always have fewer bars of returns than we have bars

of price history, due to lookback for making trading decisions, and lookahead for

evaluating the one-bar return due to the trade decision. For example, suppose we need

the most recent 10 bars of price history to make a trade decision. We will lose 10 bars of

price history.

If we now want to find the optimal parameter set for the entire available history (as

opposed to implementing the CSCV algorithm), we compute our optimization criterion

separately for each row of this return matrix and see which row (parameter set) produces

the best criterion. For example, if our performance criterion is total return from the

trading system, we just find the sum across each row and choose the system whose row

sum is greatest. If our criterion is the Sharpe ratio, we compute this quantity for the

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

161

returns of each row and find the row that has the greatest value, and so on. That tells us

the optimal parameter set.

To implement the CSCV algorithm, we partition the columns of this return matrix

into an even number of subsets, as described earlier. These subsets will be recombined,

half of them defining a training set and the remaining half being the OOS test set.

Every possible combination will be processed. For the moment, consider a single such

combination.

We now compute two criteria for each row, the performance criterion for the pooled

training set and that for the pooled test set. For example, suppose our criterion is the

mean return per bar. For each row (trading system) we sum the columns of that row that

make up the training set and divide by the number of such columns, giving us the IS

mean return per bar for that trading system. We similarly sum the columns that make up

the test set and divide by the number of such columns, giving us the OOS mean return

per bar. When we have done this for each row, we have two vectors, one for the training

set and one for the test set, with each vector having as many elements as we have

competing trading systems (parameter sets).

To find the best IS trading system for a single training/testing partitioning, we simply

locate the element in its performance vector that has the best performance. Then we

examine the corresponding element in the OOS vector. This is the OOS performance

attained by the IS-optimal trading system in this particular partitioning.

Now here is the key part of the CSCV algorithm: we consider the OOS performance

of all trading systems. If our model and parameter-selection procedure are truly

effective, we would expect that the IS-optimal model would also have superior OOS

performance relative to the OOS performance of the IS-suboptimal systems. After all,

if this model is superior to its competitors in-sample and it truly is capturing authentic

predictable market patterns, then it should usually do a good job of capitalizing on those

market patterns out-of-sample. We set a fairly low but reasonable bar for defining what

we mean by performing relatively well out-of-sample: the OOS performance of the IS-

best system should exceed the median OOS performance of the other systems.

Consider for a moment what we would expect if the model were worthless; it fails

to capture any authentic market patterns: there would be no reason to expect that the

best IS performer would also be superior OOS. The relative OOS performance of the best

IS performer would be random, sometimes outperforming the other systems and

sometimes underperforming. We would expect about a 50-50 probability that this “best”

system would lie above the median OOS performance. But if the model were wonderful,

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

162

doing a great job of predicting market movement, we would expect its OOS performance

to be great as well, at least most of the time.

How can we estimate the probability that the OOS performance of the best IS

performer will be above the median OOS performance? Combinatorially symmetric

cross validation, of course! Recall from early in this discussion that we will form every

possible combination of the subsets, placing half of them in the training set and the

other half in the test set. For each such combination, we perform the operation just

described: find the best IS system and compare its OOS performance to that of the other

systems. Count how many times the OOS performance of the IS-best exceeds the median

of the others. These operations are not independent, but each of them is unbiased. Thus,

if we divide the count of superior OOS performances and divide by the total number of

combinations tested, we have a reasonably unbiased estimate of the probability that the

OOS performance of a trained system will outperform the median of its competitors in

the simulation.

I say reasonably unbiased because there are two source of bias, discussed earlier, to

consider. First, each training set in CSCV is half the size of the complete dataset, which

causes a pessimistic bias compared to training with the entire dataset. See Page 150.

Also, if the market prices (and hence returns) are nonstationary, cross validation of any

sort can have slight optimistic bias compared to the performance that could be attained

in real life. Also see Page 150.

Finally, it should be noted that to avoid inadvertent IS/OOS overlap (page 131), we

would almost always employ a lookahead of one bar, which is what I present in this

book. The recombination algorithm can be modified to shrink training segments, but

the modification would be cumbersome and generally not worthwhile in this situation

anyway.

We are now ready for a brief statement of the algorithm just described intuitively.

Given:

 n_cases: Number of cases (columns in returns matrix), ideally a multiple of n_blocks

 n_systems: Number of competing systems (rows in returns matrix)

 n_blocks: Number of blocks into which the n_cases cases will be partitioned (even!)

 returns: n_systems by n_cases matrix of returns.

 Returns [i,j] is the return from a decision made on trading opportunity j for system i.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

163

Algorithm:

 nless = 0

 for all 'n_combinations' training/testing combinations of subsets

 Find the row which has maximum criterion in the training set

 Compute the rank (1 through number of test cases) of the test-set criterion in this

 row (system) relative to the test criteria for all 'n_systems' rows

 Compute fractile = rank / (n_systems + 1)

 If fractile <= 0.5

 nless = nless + 1

 Return nless / n_combinations

Note that we can precompute the number of combinations using the standard

formula for the number of combinations of n_blocks things taken n_blocks/2 at a time

(Equation 5-1).

	
Ncombinations

Nblocks

Nblocks Nblocks
=
() ()

!

/ ! / !2 2 	 (5-1)

In the intuitive description of the algorithm, we compared the OOS performance

of the best IS performer to the median of the other OOS performances. In the previous

algorithm, we compute the relative rank and the corresponding fractile, counting failure

if the fractile is less than or equal to 0.5. The two operations are equivalent, but the

approach shown in the previous algorithm is faster than computing the median.

It should be apparent that what we hope for is a small value of the ratio nless /

n_combinations because this is the approximate probability that our best IS performer will

underperform its competitors out-of-sample. Expressing it this way makes it vaguely

similar to an ordinary p-value.

�What Does This Test Actually Measure?
The intuition behind the test just described makes sense, but the vital subtleties may not

be obvious. We now explore this in more depth.

The key point to understanding the nature of this test is to realize that its results are

entirely relative to the set of competitors being evaluated. In the most common (though

not mandatory) situation, these competitors are all the same model but with different

values of one or more parameters. The domain over which we select trial parameters is

of paramount importance if the test is to be truly useful. If the domain is overly broad,

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

164

including numerous unrealistic parameter values, or if is overly restrictive, failing to

cover the complete range of possible parameter values, the test loses a good deal of its

applicability.

When we say that the test’s results are relative to the set of competitors, what we

mean is that this test can be thought of as measuring a sort of dominance. It answers the

following question: how much does the IS-optimal model dominate its competitors in

terms of real-world performance, when the real-world performance is measured by OOS

performance in the test? The key word here is competitors.

Suppose we dilute the field of competitors by including a large number of systems

that any reasonable developer would know in advance to be worthless. In terms of

parameterization, this would equate to testing many parameter sets that are wildly

beyond reasonable norms. These systems will perform poorly, both in and out of sample.

Thus, even a slightly decent system’s OOS performance will be above the median

performance of all systems, resulting in a great score on this test, possibly undeserved.

Conversely, suppose we limit our field of competition to only systems known in

advance to likely be good, with little variety. No one system, not even the IS-best, will

dominate the others OOS, leading to a poor score.

The bottom line is that we must understand that the score on this test tells us how

well the best-IS model outperforms the competing poorer-IS models OOS. Thus, we

should strive to ensure that the competitors thoroughly but not unrealistically represent

the parameter domain.

�C++ Code for the CSCV Superiority Test

In this section we present C++ code (CSCV_CORE.CPP) to implement the test just

described. This code will be broken into sections, each having its own explanation. We

begin with the function and local variable declarations. This subroutine assumes that the

returns from the competing trading systems have already been computed and stored in a

matrix as described earlier.

double cscvcore (

 int ncases , // Number of columns in returns matrix (change fastest)

 int n_systems , // Number of rows (competitors)

 int n_blocks , // Number of blocks (even!) into which cases will be partitioned

 double *returns , // N_systems by ncases matrix of returns, case changing fastest

 int *indices , // Work vector n_blocks long

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

165

 int *lengths , // Work vector n_blocks long

 int *flags , // Work vector n_blocks long

 double *work , // Work vector ncases long

 double *is_crits , // Work vector n_systems long

 double *oos_crits // Work vector n_systems long

)

{

 int i, ic, isys, ibest, n, ncombo, iradix, istart, nless ;

 double best, rel_rank ;

The first step is to partition the ncases columns of returns in n_blocks subsets of

equal or approximately equal size. In the [Bailey et al.] paper, the assumption was that

ncases is an integer multiple of n_blocks so that all subsets are the same size. However, I

believe that this is not strictly necessary, and it is certainly restrictive. Therefore, I use the

array indices to point to the starting case of each subset and use lengths to be the number

of cases in each subset. The number of cases in each subset is the number of cases

remaining divided by the number of subsets remaining.

 n_blocks = n_blocks / 2 * 2 ; // Make sure it's even

 istart = 0 ;

 for (i=0 ; i<n_blocks ; i++) { // For all blocks (subsets of returns)

 indices[i] = istart ; // Block starts here

 lengths[i] = (ncases - istart) / (n_blocks-i) ; // It contains this many cases

 istart += lengths[i] ; // Next block

 }

We initialize to zero the counter of the number of times the OOS performance of the

IS-best system underperforms the OOS performance of the others. We also initialize a

flag array that identifies which subsets are currently in the training set and which in the

test set.

 nless = 0 ; // Will count the number of times OOS of best <= median OOS

 for (i=0 ; i<n_blocks / 2 ; i++) // Identify the training set blocks

 flags[i] = 1 ;

 for (; i<n_blocks ; i++) // And the test set blocks

 flags[i] = 0 ;

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

166

The main outmost loop passes through all possible combinations of blocks (subsets

of returns) into a pooled training set and a pooled test set. The first act in this loop is to

compute the in-sample performance of each system. To do this, gather all n returns of

the system being evaluated into a single work array, and then call an external subroutine

criter() to compute the performance criterion.

 for (ncombo=0; ; ncombo++) { // For all possible combinations

/*

 Compute training-set (IS) criterion for each candidate system

*/

 for (isys=0 ; isys<n_systems ; isys++) { // Each row of returns matrix is a system

 n = 0 ; // Counts cases in training set

 for (ic=0 ; ic<n_blocks ; ic++) { // For all blocks (subsets)

 if (flags[ic]) { // If this block is in the training set

 for (i=indices[ic] ; i<indices[ic]+lengths[ic] ; i++) // For every case in this block

 work[n++] = returns[isys*ncases+i] ;

 }

 }

 is_crits[isys] = criter (n , work) ; // IS performance for this system

 }

Then we do the same thing for the test set. The code is nearly identical to that shown

earlier, but we’ll show it anyway.

 for (isys=0 ; isys<n_systems ; isys++) { // Each row of returns matrix is a system

 n = 0 ; // Counts cases in OOS set

 for (ic=0 ; ic<n_blocks ; ic++) { // For all blocks (subsets)

 if (! flags[ic]) { // If this block is in the OOS set

 for (i=indices[ic] ; i<indices[ic]+lengths[ic] ; i++) // For every case in this block

 work[n++] = returns[isys*ncases+i] ;

 }

 }

 oos_crits[isys] = criter (n , work) ; // OOS performance of this system

 }

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

167

Search through all systems and find the one that has the maximum in- sample

performance.

 for (isys=0 ; isys<n_systems ; isys++) { // Find the best system IS

 if (isys == 0 || is_crits[isys] > best) {

 best = is_crits[isys] ;

 ibest = isys ;

 }

 }

Compute the rank of the OOS performance of the best system within the population

of OOS performance of all systems. Mathematically, best >= oos_crits[ibest] is true, but

to guard against floating-point ambiguities we pre-test for this. Then we compute the

fractile (rel_rank) and increment our failure counter if this performance does not exceed

the median.

 best = oos_crits[ibest] ; // This is the OOS value for the best system in-sample

 n = 0 ; // Counts to compute rank

 for (isys=0 ; isys<n_systems ; isys++) { // Universe in which rank is computed

 if (isys == ibest || best >= oos_crits[isys]) // Insurance against fpt error

 ++n ;

 }

 rel_rank = (double) n / (n_systems + 1) ;

 if (rel_rank <= 0.5) // Is the IS best at or below the OOS median?

 ++nless ;

We come now to the only truly complex part of this algorithm: advancing to the next

combination of blocks that define the training and test sets. Many readers will want to

take its operation on faith. I’ll provide a brief explanation after the code. Readers who

want to plug through its operation would be advised to get out pencil and paper and

work out the succession of combinations. After all combinations have been tested,

we divide the failure count by the total combination count to get the approximate

probability of underperformance. Here is the code:

 n = 0 ;

 for (iradix=0 ; iradix<n_blocks-1 ; iradix++) {

 if (flags[iradix] == 1) {

 ++n ; // This many flags up to and including this one at iradix

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

168

 if (flags[iradix+1] == 0) {

 flags[iradix] = 0 ;

 flags[iradix+1] = 1 ;

 for (i=0 ; i<iradix ; i++) { // Must reset everything below this change point

 if (--n > 0)

 flags[i] = 1 ;

 else

 flags[i] = 0 ;

 } // Filling in below

 break ;

 } // If next flag is 0

 } // If this flag is 1

 } // For iradix

 if (iradix == n_blocks-1) {

 ++ncombo ; // Must count this last one

 break ;

 }

 } // Main loop processes all combinations

 return (double) nless / ncombo ;

}

This code passes through the blocks, looking for the first occurrence of a (1,0) pair

and counting 1s as it goes. The first time it finds a (1,0) pair, it propagates the 1 to the right,

replacing this (1,0) pair with a (0,1) pair. Then, just as when the algorithm began, it moves

the requisite number of 1s to the beginning of the array prior to this pair and fills in the

rest of this prior section with 0s. So, these operations do not change the count of 1s and 0s.

This swapping sets us up for an entirely new, unique family of combinations, because it

is impossible for the new (0,1) pair to ever change back to (1,0) and then to (0,1) without

at least one flag beyond it changing. The algorithm is inherently recursive, with the

rightmost 1 slowly advancing and all flags below it changing in the same way recursively.

If you are the sort who prefers heuristic validation, know that you can explicitly

compute the number of combinations from the number of blocks by means of

Equation 5-1. Program the advancing algorithm and test it for a variety of number of

blocks, confirming that you get the correct number of combinations. You know that there

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

169

could be no duplicates because if any combination reappeared, the algorithm would go

into an endless loop. Thus, if you get the correct number of combinations, you know that

they are unique and hence cover every possible combination.

�An Example with SPX

We now look at a moving-average crossover example with SPX, the S&P 500 index. I

chose this “market” because it has a long history and it is exceptionally broad, thus

avoiding any individual equity issues. As a point of interest, I reran this test on a

variety of individual equities and indices and found two general effects. First, moving-

average crossover systems tend to work very well until the last few decades, when their

performance drops off precipitously (at least in the tests I ran; I am not claiming that

this is universal). Second, individual equities have tremendous variation, with some

issues responding beautifully to this system, and others not so much. So, my goal in

this example is to demonstrate the CSCV dominance algorithm, not to promote or

discourage use of any particular trading system.

We begin with a subroutine (in CSCV_MKT.CPP) that shows how we can compute

the returns matrix needed by CSCV_CORE.CPP. This routine is called with the array of

price histories and the maximum lookback desired by the user. It computes the returns

matrix. Note that we need to supply it with the log of the actual prices so that moves

when a market is at 1000 are commensurate with moves when the market is at 10. We

will index the items in returns with iret, which advances across rows (bars) fastest.

void get_returns (

 int nprices , // Number of log prices in 'prices'

 double *prices , // Log prices

 int max_lookback ,  // Maximum lookback to use

 double *returns // Computed matrix of returns

)

{

 int i, j, ishort, ilong, iret ;

 double ret, long_mean, long_sum, short_mean, short_sum ;

 iret = 0 ; // Will index computed returns

We have three nested loops. The outermost loop varies the long-term lookback from

a minimum of two bars to the user-specified maximum. The next loop varies the short-

term lookback from a minimum of one to one less than the long-term lookback, ensuring

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

170

that the short-term lookback is always less than the long-term lookback. The innermost

loop marches across the price history, making trade decisions and computing the return

attributable to each. We must not begin this price march at ilong-1, even though valid

return data begins there. This is because the returns matrix must be a true matrix, with

each row having the same number of properly aligned columns. Thus, we need to start at

the same bar for every system.

 for (ilong=2 ; ilong<=max_lookback ; ilong++) { // Long-term lookback

 for (ishort=1 ; ishort<ilong ; ishort++) {  // Short-term lookback

 for (i=max_lookback-1 ; i<nprices-1 ; i++) { // Compute returns across history

We could explicitly compute the moving averages at each bar, but this would be

excruciatingly slow. A much faster method, though trivially less accurate because of

floating-point error buildup, is to compute the two moving sums once, on the first bar,

and update them from then on. For each bar, divide the moving sums to get the moving

averages.

 if (i == max_lookback-1) { // Find the moving averages for the first valid case.

 short_sum = 0.0 ; // Cumulates short-term lookback sum

 for (j=i ; j>i-ishort ; j--)

 short_sum += prices[j] ;

 long_sum = short_sum ; // Cumulates long-term lookback sum

 while (j>i-ilong)

 long_sum += prices[j--] ;

 }

 else { // Update the moving averages

 short_sum += prices[i] - prices[i-ishort] ;

 long_sum += prices[i] - prices[i-ilong] ;

 }

 short_mean = short_sum / ishort ; // Convert sums to averages

 long_mean = long_sum / ilong ;

The trading rule is that we take a long position if the short-term moving average is

above the long-term moving average, and conversely. If the two moving averages are

equal, we remain neutral. I left in my assert() to clarify to the reader exactly how many

items are now in the returns matrix.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

171

 // We now have the short-term and long-term moving averages ending at bar i

 if (short_mean > long_mean) // Long position

 ret = prices[i+1] - prices[i] ;

 else if (short_mean < long_mean) // Short position

 ret = prices[i] - prices[i+1] ;

 else // Be neutral

 ret = 0.0 ;

 returns[iret++] = ret ; // Save this return

 } // For i (decision bar)

 } // For ishort, all short-term lookbacks

 } // For ilong, all long-term lookbacks

 assert (iret == (max_lookback * (max_lookback-1) / 2 * (nprices - max_lookback))) ;

}

When I ran this program on SPX, I tried several different numbers of blocks and

maximum lookbacks. The following results were obtained, providing significant

evidence that a moving-average crossover system provides useful predictive information

in this market.

Blocks Max lookback Probability

 10 50 0.008

 10 100 0.016

 10 150 0.036

 12 50 0.004

 12 100 0.009

 12 150 0.027

This tells us nothing about the risk/reward ratio, so the system may not be worth

trading. But it does show that an optimally trained model greatly outperforms its

suboptimal competitors out-of-sample. This is valuable information, as it tells us that the

model has real potential; if the model were flawed, training would add little or no value

(OOS performance), and the probabilities would be closer to 0.5.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

172

�Nested Walkforward Analysis
Sometimes our development procedure requires us to nest one layer of walkforward

analysis inside another such layer. The classic example of this situation is portfolio

construction. We have a collection of candidates for inclusion in a portfolio, each of

which requires some degree of performance optimization (maybe separately, maybe as a

group with common parameters). We also have some criterion for portfolio performance

that we use to select a subset of these candidates for inclusion in a trading portfolio.

Whatever the case, two stages of optimization are occurring (portfolio components and

the portfolio as a whole), so to estimate real-world performance of the portfolio, we must

perform a nested walkforward analysis. Here are a few examples (far from complete!)

where this would be necessary:

•	 We have a variety of trading systems whose performance is

dependent on slowly varying market regimes. For example, we

may have a trend-following system, a mean-reversion system, and

a channel-breakout system. We keep track of which of these three

systems has been performing best in recent times, and when we

make our trade decisions, we use the currently superior system.

•	 We have a trading system that is applicable to nearly any equity,

but we know from experience that different families of equities

(transportation, financial, consumer staples, and so on) have

superior performance with this system at different times. We keep

track of which equities have been responding best to our trading

system recently, and these are the equities that we trade.

•	 One of your colleagues insists that mean return is the best measure

of how well a market or trading system is performing. Another

argues for Sharpe ratio, while another likes profit factor. You, in your

wisdom, suspect that the ideal measure may change over time. So,

rather than running three separate tests and comparing start-to-

end performance, you keep track of which performance measure is

currently most accurate and use this measure to select the system or

market for your current trading.

Why do we need to use nested walkforward in such situations? Why can’t we just

optimize the entire process, pooling parameterization of individual components and

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

173

group performance into one big pot of optimizable parameters? The answer is that

the second stage of these operations, whether it be selection of individual systems or

portfolio components or a second round of pooled optimization, must be based on OOS

results from the first stage.

Let’s consider a simple example in which we avoid the complexity of evolving

market conditions. This topic of selection bias was introduced on page 124, and now

might be a good time to review that section. The members of your department have

given you, the department head, a variety of models that they developed and propose

the company trade. You must select the best of these models. Would you examine the

in-sample performance of the competitors and choose whichever is best? Certainly

not, and with good reason: if this system is overly powerful (typically because it has too

many optimizable parameters), it would overfit the market history, modeling noise in

addition to any authentic patterns. When this system is put to work in real-world trading,

the noise patterns will vanish (that’s the definition of noise), and you will be left with

rubbish. The intelligent approach is to compare the OOS performance of the competing

systems and base your choice on this quantity.

The situation does not change when you are dealing with a constantly evolving

situation. You still need to base your regular, repeated decisions of what to trade or what

markets to include in your portfolio on the OOS performance of the competitors. This is

because in-sample performance tells us little about how a trading system will perform in

the real world.

This, then, is the reason we need nested walkforward. We need an inner level (I

like to call this Level-1) of walkforward to provide the OOS results on which the Level-2

optimization will be based. And of course, the Level-2 trade decisions will themselves

need to be OOS validated with walkforward analysis. Thus, we nest two levels of

walkforward analysis.

To prepare for and clarify the algorithms that will soon appear, we present a small

example of how this procedure works. We will assume for this example that the lookback

for the Level-1 training (typically optimizing individual trading systems) is 10 bars, and

the lookback for the Level-2 optimization (typically selection from competing trading

systems) is 3 bars. Then we proceed as follows:

Use Price Bars 1-10 to train the individual competitors.

Test each competitor with Bar 11, giving our first Level-1 OOS case

Use Price Bars 2-11 to train the individual competitors.

Test each competitor with Bar 12, giving our second Level-1 OOS case

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

174

Use Price Bars 3-12 to train the individual competitors.

Test each competitor with Bar 13, giving our third Level-1 OOS case

We now have enough Level-1 OOS cases to commence Level-2 testing

Use Level-1 OOS Bars 11-13 to train the Level-2 procedure

Test the Level-2 procedure on Bar 14, giving our first totally OOS case

Use Price Bars 4-13 to train the individual competitors.

Test each competitor with Bar 14, giving a new Level-1 OOS case

Use Level-1 OOS Bars 12-14 to train the Level-2 procedure

Test the Level-2 procedure on Bar 15, giving our second totally OOS case

Repeat the prior four steps, advancing the price and Level-1 OOS windows, until the historical data is

exhausted

�The Nested Walkforward Algorithm
Experienced programmers should be able to program nested walkforward given only

the prior explanation and example. But for the sake of clarity, I’ll state the algorithm

in a fairly general way. This is in the framework of the most common use of nested

walkforward: you have two or more trading systems that, on each bar, look at recent

market history and make a decision on the position to take (long/short/neutral) on the

next bar. You also have a scoring system that examines the recent OOS performance

of each of these systems and chooses an apparently superior subset of these trading

systems (perhaps just one) to use for the next trade. Your goal is to collect OOS trades

from this best subset. This lets you evaluate the performance of your entire trading

system, both the foundation systems and the method for scoring and selecting the best.

The following variables are especially important:

n_cases: Number of market price history bars in the prices array.

prices: Market history (log of prices). We call the units here bars,

but this information could also include other measures such as

volume and open interest.

n_competitors: Number of competing trading systems.

IS_n: User-specified lookback of trading systems; number of recent

market history bars used to make trade decisions.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

175

OOS1_n: User-specified lookback of system selector; number of

recent OOS returns produced by the multiple trading systems and

used by the system selector to choose the best system(s).

OOS1: OOS returns of the trading systems, an n_competitors by

n_cases matrix. Note that the first IS_n columns in this matrix are

not used because they are undefined. Column j of this matrix

contains the returns produced by Bar j as a result of a decision

made on Bar j–1.

OOS2: OOS returns of the selected best system(s); our ultimate

goal.

IS_start: Starting bar of the training set. It advances with the

window.

OOS1_start: Index in OOS1 of the starting bar of the current system

OOS set used by the system selector. It advances with the window

as soon as the system selector has OOS1_n cases to look back at.

OOS1_end: One past last bar of current system OOS set used by

the system selector. It advances with the window. This also serves

as the current OOS1 case index. When the algorithm starts, this

equals OOS1_start, and it increments each time the window

advances.

OOS2_start: Starting index of complete OOS set 2; it remains fixed

at IS_n + OOS1_n.

OOS2_end: One past its last case in OOS2. This also serves as the

current OOS2 case index.

The algorithm shown next in sections is heavily edited to be widely applicable. In

the next section, we will present a complete C++ program that uses nested walkforward

in a slightly different but comparable application. Here, we begin by initializing the

starting index in the systems’ price history to be the first case in the history. The system

OOS returns begin immediately after the systems’ lookback period. The selector’s OOS

returns, our ultimate goal, begin immediately after the system OOS period. Then we

begin the main loop that moves a window across the price history series.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

176

IS_start = 0 ; // Start training with first case

OOS1_start = OOS1_end = IS_n ; // First OOS1 case is right after first price set

OOS2_start = OOS2_end = IS_n + OOS1_n ;// First OOS2 case is after OOS1 complete

for (;;) { // Main outermost loop advances windows

The first step for each window position is to evaluate all competitors (trading

systems) at this bar and store the results in OOS1, which is a two-dimensional array

having the system down the rows and the bar across the columns, with that index

changing fastest. The routine criterion_1() handles all systems, so we must tell it which

system we want to evaluate. To evaluate a system, it looks at IS_n bars beginning with Bar

IS_start and ending with Bar IS_start+IS_n-1. Note that it does not look at Bar OOS1_end,

which will always be the next bar after this in-sample period.

In the vast majority of applications, criterion_1() will use those IS_n bars of market

history to find model parameters that maximize the performance of the trading system

within those IS_n bars. It will then make a decision as to the position to take for the next

bar, which is at Bar OOS1_end=IS_start+IS_n. As its last step in the majority of applications,

criterion_1() will return the profit/loss generated by that trade on this Bar OOS1_end. If the

optimized model said to take a long position, this return would be prices[OOS1_end] –

prices[OOS1_end–1]. (Recall that prices would almost always be the log of actual prices.)

If the model said to take a short position, criterion_1() would return the negative of that

difference, and of course if the position is to be neutral, the return would be zero. Rather

than including this typical behavior explicitly in the algorithm shown here, I left it

general to allow for more complex trading systems that might double up on some trades,

and so on.

 for (icompetitor=0 ; icompetitor<n_competitors ; icompetitor++)

 OOS1[icompetitor*n_cases+OOS1_end] =

 c riterion_1 (icompetitor , IS_n , IS_start , prices) ;

We have finished traversing the price history with the moving window when in the

prior step we computed the OOS1 value at the last history bar. At that point there is

nothing more to do because there is not another bar to use for computing OOS2, the

performance of the selected best system.

 if (OOS1_end >= n_cases-1) // Have we hit the end of the data?

 break ;   // Stop due to lack of another for OOS2

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

177

We now take care of part of the task of advancing the moving window. There is a

warm-up period at the beginning of the algorithm while we build up enough OOS1 cases

to allow the selector function to make a decision. Regardless of whether we have enough

OOS1 cases, we increment the starting price index for training the component trading

systems, and we also increment the OOS1 index where the next OOS return will be

placed. But if the number of OOS1 bars computed so far, OOS1_end – OOS1_start, has not

yet reached the required number for the selector, OOS1_n, we have nothing more to do

yet, and we just keep advancing the window.

 ++IS_start ; // Advance training window start

 ++OOS1_end ; // Advance current OOS1 case

 if (OOS1_end - OOS1_start < OOS1_n) // Are we still filling OOS1?

 continue ; // Can't proceed until we have enough cases to compute an OOS2 return

When we get here, we have enough cases in OOS1 to invoke the system selector

and compute an OOS2 case. First we find the best trading system, using the most recent

OOS1_n values in OOS1 for each system. Remember that OOS1_end now points one past

what we have in OOS1 (we incremented it a couple lines ago). Thus, the price at Bar

OOS1_end is out-of-sample.

The selector function here is criterion_2(). Its first parameter is the number of OOS1

values to examine, and its second parameter is the starting address of that vector of

values. If necessary, look back to see how these values are arranged as a matrix in OOS1.

In this algorithm, we find the single best trading system and evaluate its return.

Readers who want to find a portfolio of systems instead should have little trouble

modifying this presentation. Just call criterion_2() for each system, save the values in an

array, and sort the array. Keep however many of the best you want.

 best_crit = -1.e60 ;

 for (icompetitor=0 ; icompetitor<n_competitors ; icompetitor++) { // Find the best

 crit= criterion_2(OOS1_end-OOS1_start, OOS1+icompetitor*n_cases+OOS1_start);

 if (crit > best_crit) {

 best_crit = crit ;

 ibest = icompetitor ;

 }

 }

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

178

We now know the best competitor, so find its OOS return. The function trade_decision()

here uses the optimized trading system ibest to decide on a position to take. Back when

I discussed criterion_1(), I pointed out that I made it general to allow different sized

positions. I did not make this version general simply because I want to be perfectly

clear on how returns are computed for a trade decision. If your system possibly opens

multiple positions in response to differing confidences, you will have to modify this code

appropriately. This routine examines the most recent IS_n prices prior to Bar OOS2_end

to make its decision. Note that Bar OOS2_end is not included in the decision process, so it

is out-of-sample.

 position = trade_decision (ibest , IS_n , OOS2_end - IS_n , prices) ;

 if (position > 0) // Long

 OOS2[OOS2_end] = prices[OOS2_end] - prices[OOS2_end-1] ;

 else if (position < 0) // Short

 OOS2[OOS2_end] = prices[OOS2_end-1] - prices[OOS2_end] ;

 else // Neutral

 OOS2[OOS2_end] = 0.0 ;

We can complete the process of advancing the moving window. Before OOS1

contained enough values (OOS1_n are needed for the selector criterion_2()) we did not

advance OOS1_start. But we advance it now that the OOS1 window is full. And of course

we advance OOS2_end.

 ++OOS1_start ; // Finish advancing the windows

 ++OOS2_end ;

 } // Main loop

We have traversed the entire market history. At this time, OOS1_end and OOS2_end

both equal n_cases because they always point one past the last entry, and we processed

every possible bar.

Now that the entire market history is processed, we can compute some things that

likely would be of interest. First, we compute and save the mean OOS performance of

each system. The information for each bar is in OOS1. We could include every entry in

OOS1, and some developers might be interested in this figure. However, for our purposes

here, we want to have a level playing field, so we include only those bars that are also

available in OOS2, which starts later than OOS1. In this demonstration, our computed

performance measure is just the mean return per bar, but we could just as well compute

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

179

profit factor, Sharpe ratio, or anything else. After all, the cumulative sum of each row of

OOS1 is just a bar-to-bar equity curve that we can evaluate any way we want.

for (i=0 ; i<n_competitors ; i++) {

 sum = 0.0 ;

 for (j=OOS2_start ; j<OOS2_end ; j++)

 sum += OOS1[i*n_cases+j] ;

 crit_perf[i] = sum / (OOS2_end - OOS2_start) ;

 }

The last step is to compute our ultimate goal, the OOS performance of the selected

best system. Those returns are in OOS2. As with OOS1, we compute mean return here,

but feel free to compute other measures.

sum = 0.0 ;

for (i=OOS2_start ; i<OOS2_end ; i++)

 sum += OOS2[i] ;

final_perf = sum / (OOS2_end - OOS2_start) ;

�A Practical Application of Nested Walkforward
In the prior section we saw an outline of the most common use of nested walkforward,

presented as a series of C++ code fragments. Now we present a somewhat different use

for this technique, this time in the form of a complete program that the user can modify

if desired, compile, and use in practical applications. This program can be downloaded

as CHOOSER.CPP and is complete, ready to compile and run.

The motivation behind this application is that the markets in a universe of equities

take turns being the best performers. During some time periods, banks may be stellar

performers, while at other times technology may reign supreme. The general idea is that

every day (or other time period if we want) we examine every equity in a universe and

select the one that has the best recent performance. We buy and hold this one currently

superior equity during the next day and then re-evaluate the situation.

This nested walkforward demonstration moves a lookback window bar-to-bar.

Scaling of printed results assumes that these are day bars, but of course they could be

minute-bars in a higher-speed situation, weekly bars in a more relaxed environment, or

whatever the developer wants.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

180

At each bar it examines recent long performance for multiple markets. It collects

the performance of each individual market that would have been obtained by simply

buying and holding that market during the historical window period. It then purchases

and holds for the next bar whichever market had the best recent performance. But how

do we measure the performance of each competing market to choose the best market?

Do we use mean return per bar? Sharpe ratio? Profit factor? That’s the selection aspect

of this application. At each bar we try several different performance measures and see

which measure provides the best OOS return over a separate historical window. When

we buy the best market for the next bar, we base that decision on whichever performance

measure has the best recent OOS track record. Thus, we need an OOS performance

figure for this second-level choice, in which we use a “best measure” to choose a “best

market.” Nested walkforward is required.

To use the command-line CHOOSER program, the user provides a list of market

history files, each of whose filename specifies the name of the market. For example, IBM.

TXT contains the market history prices for IBM. Each line of a market history file has the

date (YYYYMMDD), open, high, low, and close. Any additional numbers on the line (such

as volume) are ignored. For example, a line in a market history file might look like this:

20170622 1075.48 1077.02 1073.44 1073.88

In addition to providing the name of the text file that lists the market files, the user

also specifies IS_n, the lookback in market price history for finding the currently best

performing market; OOS1_n, the lookback in market-level OOS results for selecting

the currently best performing criterion; and the number of Monte Carlo replications

(discussed later). For example, the user might invoke the CHOOSER program from the

command line as follows:

CHOOSER Markets.txt 1000 100 100

The Markets.txt file might look like this:

\Markets\IBM.TXT

\Markets\OEX.TXT

\Markets\T.TXT

etc.

The previous command line also says that 1,000 bars of recent market history will be

examined to find the best market, and 100 bars of the OOS performance of that market

selection process will be used to select the best performance criterion. It also says that

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

181

100 Monte Carlo replications will be performed to test the statistical significance of

results. This subject will be introduced on page 283.

Here we will present the nested walkforward part of the CHOOSER.CPP code in

more detail than we used in the prior general algorithm. But note that the complete

program includes a Monte Carlo permutation test that we will not discuss until page 316,

so those parts of the code will be omitted for now to avoid confusion.

Just to be clear, here are the three different performance criteria that will be used

to decide which of the many markets is currently the most promising. They take

two parameters: the number of (log) prices to examine and a pointer to the array of

prices. The price array must actually be the log of the real prices to make them scale

independent as well as enjoy other properties discussed in the Introduction.

The total return of a market segment is just its last price minus its first. To compute

the raw (unnormalized) Sharpe ratio, we first compute the mean return per bar and then

the variance of the bar-to-bar changes. The raw Sharpe ratio is the mean divided by the

standard deviation. The profit factor is the sum of all up moves divided by the sum of all

down moves. Finally, criterion() calls whichever of these routines is specified.

double total_return (int n , double *pric es)

{

 return prices[n-1] - prices[0] ;

}

double sharpe_ratio (int n , double *prices)

{

 int i ;

 double diff, mean, var ;

 mean = (prices[n-1] - prices[0]) / (n - 1.0) ;

 var = 1.e-60 ; // Ensure no division by 0 later

 for (i=1 ; i<n ; i++) {

 diff = (prices[i] - prices[i-1]) - mean ;

 var += diff * diff ;

 }

 return mean / sqrt (var / (n-1)) ;

}

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

182

double profit_factor (int n , double *prices)

{

 int i ;

 double ret, win_sum, lose_sum ;

 win_sum = lose_sum = 1.e-60 ;

 for (i=1 ; i<n ; i++) {

 ret = prices[i] - prices[i-1] ;

 if (ret > 0.0)

 win_sum += ret ;

 else

 lose_sum -= ret ;

 }

 return win_sum / lose_sum ;

}

double criterion (int which , int n , double *prices)

{

 if (which == 0)

 return total_return (n , prices) ;

 if (which == 1)

 return sharpe_ratio (n , prices) ;

 if (which == 2)

 return profit_factor (n , prices) ;

 return -1.e60 ; // Never get here if called correctly

}

The code for reading the market histories is straightforward but tedious, so it is

omitted from this discussion. Also, bars for all markets must be aligned in time, so if

any market is missing data for a bar, that bar must be removed from all other markets to

preserve time alignment. This would be a rare event among major markets. This code,

too, is tedious and hence omitted from this discussion; see CHOOSER.CPP for this code,

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

183

highly commented. Here we focus on the nested walkforward code, which uses the

following variables:

n_cases: Number of market price history bars.

market_close[][]: Market history (log of prices). The first index is the

market, and the second is the bar.

n_markets: Number of markets (rows in market_close).

IS_n: User-specified number of recent market history bars for each

selection criterion to examine.

OOS1_n: User-specified lookback of market selector; number of

recent OOS returns from markets and used to choose the best

market-selection method.

n_criteria: Number of competing market selection criteria.

OOS1: OOS returns of the “best” markets as determined by each

competing criterion, an n_criteria by n_cases matrix. Column j of

this matrix contains the returns produced by Bar j as a result of a

“best market” decision made on Bar j–1.

OOS2: OOS returns of the markets selected with the best criterion.

IS_start: Starting bar of the current market performance window.

OOS1_start: Index in OOS1 of the starting bar of the current

window. It advances with the window as soon as the system

selector has OOS1_n cases to look back at.

OOS1_end: One past last bar of current OOS1 window. It advances

with the window. This also serves as the current OOS1 case index.

OOS2_start: Starting index of complete OOS set 2; it remains fixed

at IS_n + OOS1_n.

OOS2_end: One past the last case in OOS2. This also serves as the

current OOS2 case index.

Users will find it interesting to compare performance obtained by the market

selection procedure of this section to performance obtained by buying and holding

individual markets or a basket of all competing markets. So, we print this information.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

184

To facilitate a fair comparison, we should consider exactly the same bars that will take

part in OOS2 calculations. The first bar in OOS2 will be at IS_n + OOS1_n, and its return is

relative to the price at the prior bar. The last bar in OOS2 will be at n_cases–1 because bar

indices are zero origin. We multiply the mean-per-bar return by 25200. This is reasonable

when the prices are day bars, as there are typically about 252 trading days in a year. The

prices are actually log prices, which are close to fractional returns relative to the prior

price. Thus, the printed values are close to annualized percent returns. Here is this code:

fprintf (fpReport, "\n\n25200 * mean return of each market in OOS2 period...") ;

sum = 0.0 ;

for (i=0 ; i<n_markets ; i++) {

 ret = 25200 * (market_close[i][n_cases-1] - market_close[i][IS_n+OOS1_n-1]) /

 (n_cases - IS_n - OOS1_n) ;

 sum += ret ;

 fprintf (fpReport, "\n%15s %9.4lf", &market_names[i*MAX_NAME_LENGTH], ret) ;

 }

fprintf (fpReport, "\nMean = %9.4lf", sum / n_markets) ;

Do some initializations. Users may be interested in knowing how many times each

market selection criterion was selected as the best based on its OOS performance, so we

zero an array of counters. We also initialize the various indices that let us traverse the

market history.

for (i=0 ; i<n_criteria ; i++)

 crit_count[i] = 0 ; // Counts how many times each criterion is chosen

IS_start = 0 ; // Start market window with first case

OOS1_start = OOS1_end = IS_n ; // First OOS1 case is right after first price set

OOS2_start = OOS2_end = IS_n + OOS1_n ; // First OOS2 case after complete OOS1

The main loop that marches across the market history is next. The first step for

each pass through the loop (window placement) is to evaluate the recent historical

performance of each market, as measured by each competing criterion. For each

criterion, find the market that had the best recent performance, motivated by the hope

that the outstanding performance of this market will continue, at least until the next bar.

We measure this next-bar performance as the change from the current bar to the next

bar, which is Bar OOS1_end. We save this OOS performance in OOS1.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

185

for (;;) { // Main loop marches across market history

 for (icrit=0 ; icrit<n_criteria ; icrit++) { // For each competing performance criterion

 best_crit = -1.e60 ;

 for (imarket=0 ; imarket<n_markets ; imarket++) {

 crit = criterion (icrit , IS_n , market_close[imarket]+IS_start) ;

 if (crit > best_crit) {

 best_crit = crit ;

 ibest = imarket ; // Keep track of which market is best according to this criterion

 }

 }

 OOS1[icrit*n_cases+OOS1_end] =

 market_close[ibest][OOS1_end] - market_close[ibest][OOS1_end-1] ;

 }

At the end of the icrit loop shown previously, we have in OOS1 the next-bar (OOS)

performance of whichever market each criterion found to be most promising. We now

break out of the history-traversing loop if we have reached the end of the market data.

Otherwise, advance those window pointers that always advance. Then check to see

whether we have enough bars (OOS1_n) in OOS1 to be able to select the best criterion.

 if (OOS1_end >= n_cases-1) // Have we hit the end of the data?

 break ; // Stop due to lack of another for OOS2

 ++IS_start ; // Advance training window

 ++OOS1_end ;  // Advance current OOS1 case

 if (OOS1_end - OOS1_start < OOS1_n) // Are we still filling OOS1?

 continue ; // Cannot proceed until enough cases to compute an OOS2 return

When we reach this point, we have enough bars in OOS1 to compare the competing

criteria to see which one did the best job of selecting a market whose outstanding

performance would continue on into the next bar. Our measure of criterion competence

here is just the total OOS return of each competing criterion over the lookback window.

Purely for the user’s edification, count how many times each criterion is selected as the

most reliable.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

186

 for (icrit=0 ; icrit<n_criteria ; icrit++) { // Find the best criterion using OOS1

 crit = 0.0 ; // Measures competence of icrit

 for (i=OOS1_start ; i<OOS1_end ; i++) // Lookback window for competence

 crit += OOS1[icrit*n_cases+i] ;   // Total return is a decent measure

 if (crit > best_crit) {

 best_crit = crit ;

 ibestcrit = icrit ; // Keep track of most reliable criterion

 }

 }

 ++crit_count[ibestcrit] ; // This is purely for user's edification

At the end of the loop just shown, we know that ibestcrit is the criterion that, at least

recently, proved to be the most reliable way of selecting the best market to buy. So we

use this criterion to evaluate the recent performance of every market and select the best

market to buy. We examine the IS_n prices prior to Bar OOS2_end, which will be this

second-level OOS bar.

 best_crit = -1.e60 ;

 for (imarket=0 ; imarket<n_markets ; imarket++) { // Use best crit to select market

 crit = criterion (ibestcrit , IS_n , market_close[imarket]+OOS2_end-IS_n) ;

 if (crit > best_crit) {

 best_crit = crit ;

 ibest = imarket ; // Keep track of best market as selected by best criterion

 }

 }

We now know which market has been selected as the best recent performer, and

we have made this selection based on the criterion that has recently performed most

reliably. So hopefully, this was a great choice; it’s the best market, chosen by the most

reliable criterion. We test this by computing the price change moving from the last bar

in OOS1 that was checked to the next bar, OOS2_end. Save this return in OOS2. Finally,

advance the window indices that we did not advance earlier.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

187

 OOS2[OOS2_end] =

 market_close[ibest][OOS2_end] - market_close[ibest][OOS2_end-1] ;

 ++OOS1_start ; // Finish advancing window across market history

 ++OOS2_end ;

 } // Main loop that traverses market history

The hard work is done. We have in OOS2 the bar-ahead OOS returns from our

double-selection process, using the currently best criterion to choose the currently most

promising market. Now it’s time to compute and print summary results. You can refer to

CHOOSER.CPP to see how I print these results if you want; their computation is shown

here. Recall that just as we did for the raw markets at the beginning of this presentation,

performances take into account only those bars that are available for OOS2. This makes

all performance figures comparable. Also, as we did for raw market returns, we multiply

by 25,200 to make these figures approximately annualized percent returns for day bars.

for (i=0 ; i<n_criteria ; i++) { // Provide separate results for each criterion

 sum = 0.0 ;

 for (j=OOS2_start ; j<OOS2_end ; j++)

 sum += OOS1[i*n_cases+j] ;

 crit_perf[i] = 25200 * sum / (OOS2_end - OOS2_start) ;

 }

sum = 0.0 ;

for (i=OOS2_start ; i<OOS2_end ; i++)

 sum += OOS2[i] ;

final_perf = 25200 * sum / (OOS2_end - OOS2_start) ;

�An Example Using S&P 100 Components
I ran the CHOOSER program just described on a large subset of the S&P 100

components, those whose history extends back to at least late 1986. This provides

somewhat over 20 years (7725 days) of data in 65 markets. The market lookback (the

number of prices examined by each performance criterion) was 1000 bars (days), and

the OOS1 lookback (the number of best-market OOS bars used to compare performance

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

188

criteria) was 100. A Monte Carlo permutation test with 1000 replications was performed.

See page 316 for a discussion of these p-values. The results obtained were as follows:

Mean = 8.7473

25200 * mean return of each criterion, p-value, and percent of times

chosen...

 Total return 17.8898 p=0.076 Chosen 67.8 pct

 Sharpe ratio 12.9834 p=0.138 Chosen 21.1 pct

Profit factor 12.2799 p=0.180 Chosen 11.1 pct

25200 * mean return of final system = 19.1151 p=0.027

This tells us the following things in regard to this test:

•	 If we had simply purchased and held an equal basket of all these

equities over the OOS2 period, we would have obtained an

approximate annual return of 8.7473 percent.

•	 If we had used only total return to select the currently best

performing market, we would have obtained an approximate annual

return of 17.8898.

•	 Using only Sharpe ratio or only profit factor would have provided

somewhat lower returns of 12.9834 and 12.2799 percent, respectively.

•	 When we put all three criteria into competition, they are chosen as

most reliable 67.8, 21.1, and 11.1 percent of the time, respectively.

•	 If we also keep track of which criterion is currently most reliable, our

approximate OOS annual return increases to 19.1151 percent.

�Cross Validation Nested Inside Walkforward
It is often the case that we want to nest cross validation inside a walkforward analysis. To

understand when this would be appropriate, recall the fundamental trade-off between

cross validation and walkforward analysis in testing automated trading systems: cross

validation makes far more efficient use of available data than walkforward testing, but it

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

189

does not reflect real life. It can suffer from pessimistic or optimistic bias, and its results

are often quite different from results obtained from the generally more “legitimate”

walkforward analysis.

This trade-off inclines us toward cross validation instead of walkforward testing

when its weaknesses are not critically important issues. In the example of nested

walkforward presented in the prior two sections, bias and “real-life applicability” were

vital considerations not only in the final result but also in the OOS1 inner result because

that inner result is what enables us to choose from among competing performance

evaluation functions. But there are situations in which lack of real-life conformity,

including small bias issues, are less serious.

The two classic such situations are optimization of model complexity and selection

of predictor variables. Obviously, both of these apply to model-driven trading systems,

rather than rule-based algorithmic systems. However, there are some (rare) situations

in which it may be useful to embed cross validation inside walkforward testing of

algorithmic systems.

Admittedly, the decision to embed cross validation versus walkforward inside an

outer walkforward analysis is often unclear and arguable. Still, as an example, consider

optimizing the number of hidden neurons in a multiple-layer feedforward network that

predicts market movement. If we have too few neurons, the model will be too weak to

find predictive patterns. If we have too many, the model will overfit the data, learning

random noise in addition to authentic patterns. We need the sweet spot.

This sweet spot is fundamentally dependent on the nature and degree of the

noise in the data, so we want to employ as much data as possible in making this

complexity decision, thus favoring cross validation. Moreover, we don’t much care if the

optimization process does not reflect real-life progress across time; we’re just finding

the ideal structure of the model as determined by the nature of the data. Also, it’s not

unreasonable to expect that any pessimistic bias due to using less than the full dataset

(page 150) will be reflected roughly equally in all complexity trials, and any optimistic

bias due to nonstationarity leakage (page 150) will also be fairly balanced. Our only goal

in this test is to assess optimistic bias due to overfitting, which will be prominent when

comparing models of varying complexity. So in this situation we would be inclined to

favor cross validation.

To be clear on the process of embedding cross validation inside walkforward

analysis, consider the following tiny example. We want to decide whether we should use

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

190

three or five hidden neurons in our neural network. We divide the historical dataset into

ten sections (1–10) and choose to use threefold cross validation. So, we do the following:

	 1)	 Configure the model to have three hidden neurons.

	 2)	 Train the model with sections 2 and 3, and predict the cases in

section 1.

	 3)	 Train the model with sections 1 and 3, and predict the cases in

section 2.

	 4)	 Train the model with sections 1 and 2, and predict the cases in

section 3.

	 5)	 Pool the predictions for sections 1–3, and compute the OOS

performance for this three-neuron model.

	 6)	 Configure the model to have five hidden neurons.

	 7)	 Repeat steps 2–5 to get the five-neuron performance.

	 8)	 Choose whichever model (three or five hidden neurons) had the

better OOS performance. Train that model with sections 1–3.

	 9)	 Use this model to predict section 4, our first ultimate OOS set.

	 10)	 If we have not yet reached section 10 (the last section), repeat

steps 1–9, except that every section number is incremented to the

next, moving the entire window of operations one section forward

in time.

	 11)	 When we reach the end, we have walkforward OOS data for

sections 4–10. Pool it to get a grand performance figure. If it is not

satisfactory, go back to the drawing board.

	 12)	 If we are satisfied with the grand performance, use cross

validation on the entire dataset (any reasonable number of folds)

twice, computing OOS performance of the three- and five-neuron

models.

	 13)	 Choose whichever model was the better performer and train it

with the most recent three sections (for consistency with how we

tested) or the entire dataset (for maximum data usage) for use in

trading.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

191

That last step deserves a bit of discussion. How much of the data should we use when

training the final model for production use? During walkforward testing in this example

we trained each model with three blocks of data for OOS testing. To be consistent, our

production model should also be trained with the most recent three blocks. This is good

if we fear significant nonstationarity in the market. But by using all available data, we

create a more stable model. Either choice is defensible.

In earlier sections we presented a general algorithm and a specific example of how

to nest walkforward inside walkforward. That process involved some fairly complex

manipulation of starting and stopping indices of lowest-level market data, mid-level

OOS results, and outer-level OOS results. In most applications, this is the easiest and

clearest way to approach the problem, despite the moderate complexity.

But when embedding cross validation, things become more complex. For this

reason, as well as because in most applications the cross validation is part of the model-

training process, we nearly always take a different and much simpler approach. Steps 1–8

of the example shown on the prior page are typically performed in a single subroutine

call rather than being mixed up in the entire process as was done for embedded

walkforward.

In other words, we have a single subroutine (likely calling other routines) that

handles the training of individual folds, supervises the cross-validation competition

between model architectures, and trains the final model. This single subroutine is then

called in a simple walkforward implementation; it is called with a chunk of the earliest

market history, and then the trained model is used to make trades for one or more bars

of market data, that test set being however long the user wants the testing window to

be. Those OOS results are preserved, and the entire training/testing window is moved

forward so that the first bar in the next test window immediately follows the last bar

in the current test window. This window is shifted forward until the end of the data is

reached. The upshot is that as far as the walkforward analysis goes, it’s just primitive

single-layer walkforward of a predictive model, with the walkforward algorithm being

blissfully unaware that there is cross validation going on inside the training routine.

Chapter 5 Estimating Future Performance I: Unbiased Trade Simulation

193
© Timothy Masters 2018
T. Masters, Testing and Tuning Market Trading Systems, https://doi.org/10.1007/978-1-4842-4173-8_6

CHAPTER 6

Estimating Future
Performance II: Trade
Analysis
�Handling Dynamic Trading Systems
In the prior chapter, we focused mainly on how to collect unbiased, true-to-life trades

from systems that made a position decision on each bar and produced a measurable

return on each bar. Many trading systems, especially those that are algorithmic rather

than model-based, make a decision to open a position and hold this position until

a closing rule fires at some indeterminate future time. During that holding period,

adjustments to the system may even be made, such as moving a trailing stop. This

complicates things.

The focus of the current chapter is how to analyze the unbiased trades that we

collected using the techniques of the prior chapter and use this analysis to estimate

various aspects of future performance of our trading system. But before delving into this

topic, we need to learn how to deal with trades produced by dynamic trading systems

and explore several very different ways of analyzing these trades. For this reason, our

first example will show an effective way to do this, and we will compare different ways to

score trades.

194

�Unknown Lookahead to Single Bars, Revisited
On page 155 we saw an excellent technique for converting algorithmic trading systems

having indeterminate lookahead into systems that look ahead one bar; please review

that section now. This is wonderful, because when we do walkforward analysis of such

systems, we do not need to deal with data-wasting guard buffers, regardless of how long

the lookback is. Also, this technique provides the finest possible granularity, enabling the

use of some of our most powerful statistical analysis algorithms.

There is yet another huge attraction to this technique, not mentioned in that section

because I wanted to wait until I could present a detailed example. Now is the time. Of

course, if our trading system is intrinsically a one-bar-ahead system, such as those that

make a bar-by-bar decision about the position to take as we complete the next bar, we

already have what we need, so we don’t need to worry about conversion. But if we are in

the common situation of having a rule that opens a position, another rule that closes a

position an undefined time later, and perhaps even rules that change the exit rule as the

trade progresses, we should be strongly inclined to use the conversion algorithm given

on page 155.

The attraction of this algorithm that we mention now is that the transition from the

training period to the testing period is simple, despite the complexity of the dynamic

trading system. Moreover, if the training process is fast enough to be performed between

bars (such as overnight in day-trading systems), we can seamlessly blend from the last

fold of walkforward into final training and immediate use of the trading system.

As a small example to demonstrate how this works, consider the last fold of a

walkforward test. Suppose we have 120 bars of data numbered 1 through 120 and we

want to use the first 100 bars as a training period, the remaining 20 bars as a test period,

retrain immediately upon completion of the test, and have an order ready to be placed to

have a position open through the next bar, 121.

In this example, our last trade decision during training would be made on Bar 99,

because we will need the price on Bar 100 to compute the final bar’s contribution to

our performance measure in the training period, the measure that is being optimized

by parameter adjustment. When the optimal parameters are found and we prepare to

advance to the test period, we also need to know the last position in the training period,

that which was in effect for the move from Bar 99 to Bar 100 in the optimal model. The

easiest approach is just to save it along with the optimal parameter updates during

training. Then, when we advance to Bar 101 for the beginning of the test period, we use

the optimized model to make a trade decision on Bar 100 and use the price on Bar 101 to

Chapter 6 Estimating Future Performance II: Trade Analysis

195

compute the first return in the test period. If the reason for preserving the last position in

the training period is not clear, refer to the algorithm on page 155 to see why we need the

prior position. We need this for the Bar 100 decision.

It gets even better. Suppose we have data through Bar 120 and have finished the

walkforward with good results. We retrain the system, making decisions through Bar

119, preserve the last position, and use the optimized model to make a decision on this

Bar 120. This is the first position we take in real-life trading, ready for Bar 121 tomorrow.

Smooth!

�Profit per Bar? Per Trade? Per Time?
When we complete a walkforward test and have in hand a pooled collection of bar-by-

bar OOS returns, we have several choices of what we can do to this data in preparation

for statistical analysis.

•	 Remove all bars on which a position was not open. Their returns are

zero anyway, so they dilute the dataset. Keep only the individual bar

returns for all bars on which a position was open. This is probably

the most common approach, as it provides data in fine granularity,

but only data from times we were actually in the market. Most of the

techniques in this book will use this approach.

•	 Keep all bars, even those that have a return of zero because no

position was open. This provides the maximum possible detail,

because it includes the data in the prior technique, along with

information about how often we were in the market. Some analyses

that we will see later care about differentiating between systems that

are almost always in the market versus those that trade infrequently.

We should consider the common trade-off between systems that

trade rarely but have a high success rate versus those that trade

often, have a lower success rate, but make up for that by sheer mass

of trades.

•	 Pool small sets of contiguous bars into numerous “summary” returns.

For example, we might sum the returns of the first ten bars (including

those with no position open) into a single return, the next ten bars

into a second return, and so forth, across the entire dataset.

Chapter 6 Estimating Future Performance II: Trade Analysis

196

Or the pooling might be date-based, perhaps summing into weekly

or monthly returns. This has the disadvantage of discarding much

potentially useful information, the details of what’s happening

inside those packets. It also reduces the quantity of data available

for analysis, always a negative. But it has several big advantages.

Wild bars (those with an abnormally large price movement) have

their effects diluted, always a good thing in statistical analysis. Also,

randomness is reduced. We can’t tell much about the performance of

a system by examining a half-dozen individual bar returns. But if we

have a half-dozen returns, each of which is the sum of ten bar returns,

we can tell a bit more. We will see this approach used later when we

examine ways to see whether a trading system is still performing as

expected or whether its performance is significantly deteriorating.

•	 Treat each completed trade (often called a round turn) as a single

return. We note the price when the trade opens and the price when

the trade closes. The return is the closing price minus the opening

price.

This last approach is by far the most common in the industry because it is intuitive.

And it doesn’t hurt that this approach tends to exaggerate returns, both wins and losses;

if a developer has a winning system, exaggeration is welcome, while if the developer has

a losing system (with exaggerated losses), we’ll never see it. But this completed-trade

approach is terrible for statistical analysis, both because of the exaggeration and because

of the loss of information. We’ll explore these issues now.

�Analyzing Completed Trade Returns Is Problematic
When we pool all individual bar returns into a single quantity spanning the complete

trade, the reduction in quantity of data points can be huge. If the average trade lasts for

50 bars, our number of data points for analysis is reduced by a factor of 50. For statistical

analysis, the difference between having 10 data points and 500 data points is enormous.

Equally serious is the loss of information about what happens in the market as the

trade progresses. Perhaps we take a long position and the market slowly and steadily

rises in a direct march to a profitable exit. Or maybe after our long entry the market

Chapter 6 Estimating Future Performance II: Trade Analysis

197

gyrates wildly, shooting up, then plunging far below our entry, and then recovering at

the close of the trade to show a profit. These two scenarios have extremely different

implications in terms of trade analysis, but when we pool the bar returns into a single net

figure, we lose this information, so we don’t know which scenario took place.

The loss of fine-granularity information is especially problematic when computing

the profit factor, one of my favorite performance measures. Recall that the profit factor

is defined as the sum of wins divided by the sum of losses. Consider some numbers

fabricated to demonstrate the problem. Suppose our system has two trades, each

spanning multiple bars. The two trades are identical in that their total bar wins are 101

points and their total bar losses are 100 points. Thus, each trade has a net win of 1 point.

There are no losing trades, so the profit factor based on trades is (1+1)/0; it is infinite.

But if we compute the profit factor from individual bars, the profit factor is (101+101) /

(100+100) = 1.01, essentially worthless.

This problem is equally severe with the Sharpe ratio, because the essence of the

problem is loss of information about internal volatility. We can have two competing

systems that have identical Sharpe ratios based on completed trade returns, but if one

has high internal volatility and the other’s is low, their bar-based Sharpe ratios will be

very different (and more accurate!).

What we usually see (and the earlier profit-factor demonstration was a perfect

example) is that for any trading system, computing performance measures based on

completed trade returns will provide values that are more extreme than we would obtain

if the measures were based on individual bar returns within the trade. This is partly

because the number of returns going into the computation is smaller with trade returns,

leading to greater instability, and partly because natural market variation within a trade

is washed out. This can and will lead to erroneous conclusions.

In summary, I cannot emphasize strongly enough that you should pay minimal

attention to performance metrics that are based on the net returns of trades. Whenever

possible, you should break trades into as fine a granularity as reasonably possible and

compute your metric based on these quantities. Of course, if you are making a proud

presentation, you will probably want to put your trade-based results in big bold print

on the handouts; everybody does, so you need to be on equal footing. But for your own

internal research, ignore those numbers. Look at the fine-granularity returns that make

up the complete trades. That’s what counts.

Chapter 6 Estimating Future Performance II: Trade Analysis

198

�The PER_WHAT Program
At the beginning of this section (page 195) we explored several methods for presenting

returns (typically OOS returns) for statistical analysis. We also emphasized the

importance of procuring bar-by-bar returns within an extended trade, using the

algorithm shown on page 155 if necessary. This section presents a demonstration

program that puts it all together: use the page 155 algorithm to convert an

indeterminate-lookahead system to a one-bar-ahead system, and then restructure the

bar returns according to the options laid out on page 195. The file PER_WHAT.CPP

contains complete, ready-to-compile source code for this program.

The trading system in this example is a simple long-only moving-average breakout

system. When the market price crosses above a threshold that is an optimizable distance

above a moving average with optimizable lookback, a long position is opened. This

position is kept open until the market price crosses below the moving average, even if

the price is below the entry threshold. This indeterminate-lookahead system is walked

forward, and the OOS results are cumulated using any of the methods shown on page 195.

Finally, one of several user-specified performance criteria is computed. Readers should

be able to modify the training, testing, and walkforward routines to suit their own needs

or use segments of this program as templates for their own code.

We now work through the most important segments of the source code, beginning

with the invocation parameters specified by the user.

PER_WHAT which_crit all_bars ret_type max_lookback n_train n_test filename

Let’s break this command down:

•	 which_crit: Specifies which criterion will be used for computing

optimal parameters and then evaluating OOS performance. 0=mean

return; 1=profit factor; 2=Sharpe ratio.

•	 all_bars: Applies to training only, and for only the mean return and

Sharpe ratio criteria. If nonzero, all bars, even those with no position

open, go into computing the optimization criterion.

•	 ret_type: Applies to testing only. This selects which method we use for

translating bar returns to analyzable returns, as described on page 195.

0=all bars; 1=bars with position open; 2=completed trades. If we

want to use the third method shown on page 195, pooling returns

Chapter 6 Estimating Future Performance II: Trade Analysis

199

into fixed blocks, we would use option 0 here and pool manually.

Note that completed trades are never used during training, as this is a

terrible approach because of massive information loss.

•	 max_lookback: Maximum moving-average lookback tried during

training (parameter optimization).

•	 n_train: Number of bars in the training set for each walkforward fold.

It should be much greater than max_lookback to get good parameter

estimates.

•	 n_test: Number of bars in the test set for each walkforward fold.

Smaller values (even just 1) make the test more robust against

nonstationarity in the market, but take much longer to execute.

•	 filename: Name of the market file to read. It has no header. Each line

in the file is for a single bar, and it has the date as YYYYMMDD and at

least one price. Any numbers after the first number following the date

are ignored. For example, a line in a market history file might look

like the following, and only the first price (1075.48) would be read.

Readers who would prefer to use the close for open/high/low/close

files can easily modify this code.

20170622 1075.48 1077.02 1073.44 1073.88

We will not bother explaining the code that reads the market information and

allocates memory; comments in the code make that self-explanatory. The only thing to

note is the constant MKTBUF defined at the beginning of the source file. We don’t know

in advance how many records will be in the market history file, so prices are reallocated

in chunks of this size. Its value is not critical.

We’ll jump directly to the walkforward code. We have read and stored nprices market

history prices and converted them all to logs. We initialize the index of the first price in

the first training set to be the beginning of the array of prices. We also initialize to zero

the count of the number of OOS returns cumulated during the walkforward.

 train_start = 0 ; // Starting index of training set

 nret = 0 ; // Number of computed returns

Chapter 6 Estimating Future Performance II: Trade Analysis

200

Here is the walkforward loop. An explanation follows.

 for (;;) {

 crit = opt_params (which_crit , all_bars , n_train , prices + train_start ,

 max_lookback , &lookback , &thresh , &last_pos) ;

 n = n_test ; // Test this many cases

 if (n > nprices - train_start - n_train) // Don't go past the end of history

 n = nprices - train_start - n_train ;

 comp_return (ret_type , nprices , prices , train_start + n_train , n , lookback ,

 thresh , last_pos , &n_returns , returns + nret) ;

 nret += n_returns ;

 train_start += n ;

 if (train_start + n_train >= nprices)

 break ;

 }

We’ll look at the opt_params() parameter optimization code soon. Many of the key

parameters in this call were defined at the beginning of this section. Note that we pass

it prices+train_start as a pointer to the beginning of the training set for the current fold. It

returns the optimal MA lookback and the optimal entry threshold. It also returns the

position (long versus neutral) as of the end of the training set, because we’ll want this

to start the OOS test. Of course, we could alternatively always start the test fold with this

position being zero, forcing the OOS test to always start from scratch. But in real life we

would virtually always know this position or be able to quickly compute it, so it is more

realistic to begin the test period with this useful past information in hand.

We let n be the number of OOS test cases for this fold. Normally it will be the user-

specified value, n_test. But if we are doing the last fold, there may be fewer prices left in

the market history, so we must limit the number of test cases accordingly.

The index in the history array of the first test case is train_start+n_train, the first price

after the current training period. We pass this test routine the previously computed

optimal lookback and threshold, as well as the market position as of the end of the

training period. We also give it the next available slot in the OOS return array, returns+nret.

It returns to us the number of OOS returns just computed for this fold.

Chapter 6 Estimating Future Performance II: Trade Analysis

201

The number of returns so far, nret, is updated per this fold. We also advance the index

of the start of the training set so that the first bar in the next test fold will be immediately

after the last bar in the current test fold. If we have reached the point that there will

be no test cases in a subsequent fold, we are done. When the loop exits, we have nret

contiguous OOS returns in returns.

The calling parameter list for the training (optimization) routine is as shown here. All

of these parameters have been discussed already, some in the list at the beginning of this

section and some in conjunction with the walkforward code just shown.

double opt_params (

 int which_crit , // 0=mean return per bar; 1=profit factor; 2=Sharpe ratio

 int all_bars ,  // Include return of all bars, even those with no position

 int nprices , // Number of log prices in 'prices'

 double *prices , // Log prices

 int max_lookback , // Maximum lookback to use

 int *lookback ,   // Returns optimal MA lookback

 double *thresh , // Returns optimal breakout threshold factor

 int *last_pos // Returns position at end of training set

)

The outermost loops in this routine try every combination of lookback and entry

threshold, testing the performance of each. The user specifies which performance

criterion will be optimized. To keep things simple, and with negligible loss of speed,

we will continually update some things used by all three criteria even if they will not be

used. Initialize these quantities. We also assume that no position is open as of when we

begin the training period, certainly a reasonable assumption.

 best_perf = -1.e60 ; // Best performance across all trials

 for (ilook=2 ; ilook<=max_lookback ; ilook++) { // Trial MA lookback

 for (ithresh=1 ; ithresh<=10 ; ithresh++) { // Trial threshold is 0.01 * ithresh

 total_return = 0.0 ; // Cumulate total return for this trial

 win_sum = lose_sum = 1.e-60 ; // Cumulates for profit factor

 sum_squares = 1.e-60 ;   // Cumulates for Sharpe ratio

 n_trades = 0 ;  // Will count trades

 position = 0 ; // Current position

Chapter 6 Estimating Future Performance II: Trade Analysis

202

We have a pair of parameters (MA lookback and entry threshold) to try by

cumulating performance for all valid cases. The index of the first legal bar in prices is

max_lookback–1, because we need max_lookback cases (including the decision bar) in the

moving average. Start at the same bar for all lookbacks to make them comparable. We

must stop one bar before the end of the price array because we need the next price to

compute the return from the decision. In the following loop, the decision is made at Bar

i, and the return from this decision is the price change from Bar i to Bar i+1.

 for (i=max_lookback-1 ; i<nprices-1 ; i++) { // Compute performance across history

Rather than taking the very slow approach of recomputing the moving average at

each bar, we compute it once on the first bar and then update it for subsequent bars.

 if (i == max_lookback-1) { // Find the moving average for the first valid case.

 MA_sum = 0.0 ; // Cumulates MA sum

 for (j=i ; j>i-ilook ; j--)

 MA_sum += prices[j] ;

 }

 else // Update the moving average

 MA_sum += prices[i] - prices[i-ilook] ;

The moving average is the sum that we continually update divided by

the lookback. We also compute the trial entry threshold from ithresh.

 MA_mean = MA_sum / ilook ; // Divide price sum by lookback to get MA

 trial_thresh = 1.0 + 0.01 * ithresh ;

Now that we have the moving average and the trial threshold, we make a trade

decision. The algorithm as implemented here looks slightly different from its

presentation on page 155, but it really is exactly the same algorithm. The difference is

that the version shown on page 155 is most general, applicable if we are restricted to

a commercial platform in which we must explicitly open and close trades. But if we

are writing our own code, we can simplify it. If the entry rule fires, flag that we have a

position open. If the exit rule fires, flag that we are out of the market. If neither rule fires,

just maintain the current position. Then compute the return to the next bar, according

to the current position. Since the example system shown here is long only, it’s just the

positive difference. If the reader implements a short or dual system, modify this code

accordingly.

Chapter 6 Estimating Future Performance II: Trade Analysis

203

 if (prices[i] > trial_thresh * MA_mean) // Do we satisfy the entry test?

 position = 1 ;

 else if (prices[i] < MA_mean) // Do we satisfy the exit test?

 position = 0 ;

 if (position)

 ret = prices[i+1] - prices[i] ; // Return to next bar after decision

 else

 ret = 0.0 ;

For simplicity, we compute all three criteria, even though we use only one of them.

Change this if you want, but the time savings is marginal.

 if (all_bars || position) {

 ++n_trades ;

 total_return += ret ;

 sum_squares += ret * ret ;

 if (ret > 0.0)

 win_sum += ret ;

 else

 lose_sum -= ret ;

 }

Notice in the previous if() block that if the user specified all_bars=0, a bar’s return will

enter into the performance calculation only if a position was open on that bar. But if the

user specified all_bars nonzero, then bars with no open position, and hence a zero return,

will also take part. This has no impact on profit factor, but it does affect the other two

criteria by making them sensitive to how often the trading system is in the market.

Now we keep track of the best performing parameter set. We update the best

performance so far, as well as the MA lookback and entry threshold that gave this best

performance. We also save the position of the trial system as of the last decision bar,

because we will want this when we start the OOS test for the fold.

 if (which_crit == 0) { // Mean return criterion

 total_return /= n_trades + 1.e-30 ; // Don’t divide by zero

 if (total_return > best_perf) {

 best_perf = total_return ;

 ibestlook = ilook ;

Chapter 6 Estimating Future Performance II: Trade Analysis

204

 ibestthresh = ithresh ;

 last_position_of_best = position ;

 }

 }

 else if (which_crit == 1 && win_sum / lose_sum > best_perf) { // Profit factor crit

 best_perf = win_sum / lose_sum ;

 ibestlook = ilook ;

 ibestthresh = ithresh ;

 last_position_of_best = position ;

 }

The following Sharpe ratio criterion needs a special mention. We compute the

variance of the returns by subtracting from the mean-square the square of the mean

return. This method is generally discouraged because subtraction of two similarly sized

numbers can lead to floating-point inaccuracies. However, in this application the mean

square will nearly always be much larger than the squared mean, so this issue will not be

a problem in practice, and it is fast to compute and easy to understand.

 else if (which_crit == 2) { // Sharpe ratio criterion

 total_return /= n_trades + 1.e-30 ;   // Now mean return

 sum_squares /= n_trades + 1.e-30 ;

 sum_squares -= total_return * total_return ; // Variance (may be zero!)

 if (sum_squares < 1.e-20) // Must not divide by zero or take sqrt of negative

 sum_squares = 1.e-20 ;

 sr = total_return / sqrt (sum_squares) ;

 if (sr > best_perf) {  // Sharpe ratio

 best_perf = sr ;

 ibestlook = ilook ;

 ibestthresh = ithresh ;

 last_position_of_best = position ;

 }

 }

 } // For ithresh, all short-term lookbacks

 } // For ilook, all long-term lookbacks

Chapter 6 Estimating Future Performance II: Trade Analysis

205

After all lookbacks and entry thresholds have been tried, we are done. Return the

optimal parameters and market position of the best system as of the last decision bar

(the second-last training-set bar).

 *lookback = ibestlook ;

 *thresh = 0.01 * ibestthresh ;

 *last_pos = last_position_of_best ;

 return best_perf ;

}

The routine that takes these optimal parameters and applies them to the test fold

is similar to what we just saw, but we’ll examine it anyway to focus on the important

differences.

Before studying the code, we must understand the algorithm for trading in the test

period. The first OOS trade decision is made on the last bar of the training set. (Recall

that when we trained using the code just shown, we did not make a trade decision on

that last bar, because we did not have the next bar available to compute a return. That

next bar is in the test set!) The return for this first OOS trade is the price change from the

last bar of the training set to the first bar in the test set.

Also recall that the trade decision made on the last bar can depend on the market

position as of the prior bar. This happens when neither the entry rule nor the exit rule

fires, so we just continue the position. This dependency is why, in the training algorithm,

we returned last_pos as the market position as of the last bar. We’ll want to pass this to the

OOS test routine to be available for that first trade.

With this understood, here is the calling convention for the test routine. All of these

items have already been discussed in conjunction with the training routine, except

ret_type, which was discussed on page 198. To review, ret_type selects which method we

use for translating bar returns to analyzable returns, as described on page 195. The caller

specifies 0, 1, or 2: 0=all bars; 1=bars with position open; 2=completed trades. If we want

to use the third method shown on page 195, pooling returns into fixed blocks, we would

use Option 0 here and pool manually.

The second parameter in this call list, nprices, is not used by the algorithm and can be

removed by the reader if desired. However, an assert() statement appears at one place in

the code where it looks ahead to compute a return, and this safety check makes sure that

we are not looking past the end of the market price array. Readers who modify this code

Chapter 6 Estimating Future Performance II: Trade Analysis

206

for their own trading system may want to leave it in place as cheap insurance against a

careless mistake.

void comp_return (

 int ret_type , // Return type: 0, 1, or 2

 int nprices ,   // N of log prices in 'prices' used only for safety, not algorithm

 double *prices , // Log prices

 int istart , // Starting index in OOS test set

 int ntest , // Number of OOS test cases

 int lookback , // Optimal MA lookback

 double thresh , // Optimal breakout threshold factor

 int last_pos ,   // Position in bar prior to test set (last training set position)

 int *n_returns , // Number of returns in 'returns' array

 double *returns   // Bar returns returned here

)

We begin by initializing some key variables. The counter nret is the number of

returns that are computed for the caller. If the return type specifies that we keep all

bars (ret_type=0), this will equal ntest. Otherwise, it can be less, often much less. The

optimization routine gave us the optimal system’s market position at the last bar, which

we get as last_pos. We need prior_position only for the completed trades option (ret_type=2).

When the position goes from zero to nonzero, we just opened a new position, and

when it goes from nonzero to zero, we closed the position. If your trading system has

undefined lookahead and can go directly from long to short or short to long, you will

need to slightly modify this code according to how you want to record completed trades.

Typically this closes the old trade and opens a new trade on the same bar. But other

accounting practices are possible, including situations in which additional trades open

or a set of open trades partially closes. Note that for the “completed trades” option we

must keep the opening price in the test block to avoid future leak, so prior_position=0.

 nret = 0 ; // Counts returns that we output

 position = last_pos ; // Current position

 prior_position = 0 ; // For completed trades, always start out of market

 trial_thresh = 1.0 + thresh ; // Make it multiplicative for simplicity

In the main loop we make our trade decision on bar i. The first decision is made on

the last bar of the training set (istart–1), and we make ntest decisions. As was the case in

Chapter 6 Estimating Future Performance II: Trade Analysis

207

the training routine, instead of recomputing the moving average from scratch at each

bar, we compute it once on the first bar of the test and update it thereafter.

 for (i=istart-1 ; i<istart-1+ntest ; i++) { // Compute returns across test set

 if (i == istart-1) { // Find the moving average for the first valid case.

 MA_sum = 0.0 ;   // Cumulates MA sum

 for (j=i ; j>i-lookback ; j--)

 MA_sum += prices[j] ;

 }

 else // Update the moving average

 MA_sum += prices[i] - prices[i-lookback] ;

 MA_mean = MA_sum / lookback ; // Divide price sum by lookback to get MA

As we did in the optimization algorithm, we execute the algorithm of page 155

slightly differently than shown there, though with identical results. If the open rule fires,

we make sure a position is open (it may already be open). If the exit rule fires, we close

the position. If neither rule fires, we maintain the prior position. The assert() here is

cheap insurance against algorithm or caller errors, and of course it may be omitted

(and the nprices parameter removed) if the programmer is confident in correctness.

We then compute the return for this bar according to the position.

 assert (i+1 < nprices) ; // Optional cheap insurance

 if (prices[i] > trial_thresh * MA_mean) // Do we satisfy the entry test?

 position = 1 ;

 else if (prices[i] < MA_mean)   // Do we satisfy the exit test?

 position = 0 ;

 if (position)

 ret = prices[i+1] - prices[i] ;

 else

 ret = 0.0 ;

Chapter 6 Estimating Future Performance II: Trade Analysis

208

At this time we know our position and return for this bar. Save (or not) the

appropriate outputted return.

 if (ret_type == 0) // All bars, even those with no position

 returns[nret++] = ret ;

 else if (ret_type == 1) { // Only bars with a position

 if (position)

 returns[nret++] = ret ;

 }

 else if (ret_type == 2) { // Completed trades

 if (position && ! prior_position) // We just opened a trade

 open_price = prices[i] ;

 else if (prior_position && ! position)   // We just closed a trade

 returns[nret++] = prices[i] - open_price ;

 else if (position && i==istart-2+ntest) // Force close at end of data

 returns[nret++] = prices[i+1] - open_price ;

 }

The “completed trades” code deserves additional attention. If our position has

changed from zero to nonzero, we just opened a trade, so we record the opening price,

which is the decision bar. If our position changed from nonzero to zero, we just closed

a trade, so we record its profit. This demonstration system is long only, with just one

position open at any time, so this trade’s return is the price on which the decision to

close is made, minus the price at which the trade opened. If your system can also be

short, you’ll need to add an extra check and flip the sign of the return for short positions.

If your system can go directly from long to short or short to long or have multiple

positions open, more extensive modifications to this short block of code are needed.

The last else if() code handles the situation of having a position still open when the

end of the OOS test block is reached. (In the main program we made sure ntest would not

overrun the full price history array, so we need not check that now.)

We are now essentially done. Set prior_position to the current position and continue

the loop. When the loop exits, after having processed all ntest bars in the OOS test set, we

pass back the count of returns.

Chapter 6 Estimating Future Performance II: Trade Analysis

209

 prior_position = position ;

 } // For i, computing returns across test set

 *n_returns = nret ;

}

Although this PER_WHAT program facilitates some interesting experimentation,

many readers will want to hold off on building and using this program, instead focusing

on the BOUND_MEAN program that will appear on page 232. That program implements

the same trading system as the PER_WHAT program, and it takes things further by

using several methods to compute probable lower bounds for this trading system in any

market supplied by the user.

�A Lower Bound for Mean Future Returns
In prior sections we have explored trading systems that make bar-by-bar decisions and

hence provide bar-by-bar returns. We also presented an example of how to take a trading

system that uses entry and exit rules, and hence may have unknown lookahead, and

compute its returns on a bar-by-bar or complete-trade basis. One performance measure

that we would find useful is a lower bound for the long-term mean of these returns in

the future. (We may rarely be interested in an upper bound as well.) If we achieve great

walkforward test results, but then we find that a reasonable lower bound on the true

mean value of the returns that we can expect in the future is small, we would do well to

go back to the drawing board. In short, excellent backtest performance is wonderful but

not enough. We want high confidence that this outstanding performance will continue.

This is the topic of this section.

First, at the risk of being overly pedantic, I’ll briefly review the more important types

of returns we may be dealing with, and I’ll throw in some commentary.

•	 Everybody would like to have bounds for the returns of completed

trades. Unfortunately, in most practical situations, this is the most

difficult figure to obtain with great reliability. The primary reason for

this difficulty is the paucity of data. In statistical analysis, quantity

equals reliability. We have only as many data points as we have

trades, and unless the system trades frequently, we will often have

too few returns to compute a useful bound. Still, this is such a useful

and meaningful figure that we must not write it off.

Chapter 6 Estimating Future Performance II: Trade Analysis

210

•	 My favorite return to bound is the mean return per bar for bars on

which a position is open. This will provide many more data points

than returns of completed trades. It is also a sensible performance

metric, as it tells us our expected return in exchange for taking the

risk (and possible margin expense) of having a position open.

•	 Another frequently useful mean return to bound is the return for

subsets (such as weekly sums) of all bars. This is important if we are

monitoring ongoing performance to detect deterioration.

�Brief Digression: Hypothesis Tests
Having a lower bound on the mean return we can expect in the future is our ultimate goal,

and we’ll get to that soon. But there is a useful alternative that can also serve as a stepping-

stone to confidence bounds, so we begin with the subject of hypothesis tests. By the way,

for simplicity here we will focus on one-sided tests, those concerned with hopefully

asserting that our achieved mean return is far enough above zero to provide confidence

that we have a useful trading system. Later, we will generalize this to one-sided tests for

“negative” measures such as drawdown and eventually look at bounding parameters in an

interval, a task not often done in financial analysis but still useful in some situations.

A classical hypothesis test uses indirect reasoning to make a statement about the

quality of our trading system as implied by the observed mean return. We need to define

two hypotheses.

•	 The null hypothesis is usually the boring “default” assumption, the

situation that we hope is not in effect. When evaluating the observed

OOS return of a trading system, our null hypothesis is typically that

the system is worthless: its true expected return is zero or less.

•	 The alternative hypothesis is usually the situation that we hope is in

effect. In the current context, the alternative hypothesis is typically

that our trading system is good, as evidenced by a significantly large

positive observed sample mean return.

The indirect reasoning works like this:

	 1)	 Assume that the null hypothesis is true and compute the

theoretical distribution of the mean return (or whatever our test

statistic is) under this hypothesis. This is the hard part.

Chapter 6 Estimating Future Performance II: Trade Analysis

211

	 2)	 Using this distribution, compute the probability that we could

have randomly observed a sample mean as large as (or larger

than) that which we did obtain.

	 3)	 If this probability is tiny, conclude that the null hypothesis is false.

This works because we must always define the null and alternative hypotheses to be

mutually exclusive and exhaustive. This means that it is impossible for both hypotheses

to be true and that these two hypotheses cover all possibilities. The true situation is

always either one or the other, never both and never neither.

The fundamental logic is this: suppose we see that if the null hypothesis were true,

our observed return is highly unlikely to be this good. In this case, we conclude that the

alternative hypothesis is probably true.

It is vital to understand that getting a result well in line with the null hypothesis does

not let us assert that the null hypothesis is true, or even probably true. No matter what

outcome we observe, we can never assert that the null hypothesis is true. We can only

assert that the null hypothesis is probably false and thereby assert that the alternative is

probably true.

Here are two examples that may illustrate the situation. Suppose someone fills two

identical large jars with jelly beans, both to the same height. You look at them closely

and try to make a statement. Can you say that they contain the same number of jelly

beans? They certainly look very, very close. But it could easily be that one contains 1,000

and the other 1,001. You would never see the difference. You can’t even say that they are

probably the same, because you don’t know if the filler had an agenda to fool people. On

the other hand, suppose one jar is clearly filled much higher than the other. Then you

can confidently say that they contain unequal numbers of jelly beans.

This second example is somewhat closer to the task at hand. Suppose we are testing

the quality of our trading system. It has two trades, one a gain of 10 percent and one a

loss of 8 percent. If the system were truly worthless, the probability of such an outcome

(or better) from just two trades would be very high, and therefore we cannot use our

indirect logic to reject the null hypothesis and thereby assert the alternative. So, does

this mean that we can confidently assert that the null hypothesis is true, and the system

is worthless? Or even probably worthless? Certainly not, because two trades are far

too few trades on which to make such a decision. It may well be that if we had used a

much longer market history, we would have obtained 100 returns of 10 percent and 100

losses of 8 percent. Under this circumstance, we would likely find that there is a very

low probability that a truly worthless system would perform this well. We could thereby

Chapter 6 Estimating Future Performance II: Trade Analysis

212

reject the null hypothesis that the system is worthless and decide that it probably has

merit. Of course, we may still decide that it does not make enough money to justify the

risk, but that’s another issue.

The bottom line is that failure to reject the null hypothesis may have come simply

because we did not do enough testing rather than because the null hypothesis is true.

If we had extended our test period we might have concluded that the null hypothesis

is false. Or perhaps we have selected an inappropriate testing procedure that failed to

reject the null hypothesis. Thus, we must never assert the truth of the null hypothesis.

�So, How Do We Use This Probability?
Let’s briefly review the hypothesis test steps presented at the beginning of the prior

section. First, we assume the null hypothesis (the boring situation) is true and compute

the statistical distribution of our test statistic (the mean return in the current context).

Second, we consider the observed value of our test statistic in the context of this null

hypothesis distribution. Third, if our observed value (or better) would be highly unlikely

under this assumption, we conclude that the alternative hypothesis (the interesting

situation) is probably true. There are three specific things we can do to execute this

process, one of which is fully legitimate, one of which is basically legitimate but in a gray

area, and one of which is horribly wrong.

•	 The officially correct way to perform this test is to decide in advance

what probability of incorrectly rejecting the null hypothesis we

are willing to live with. Recall that the assumption is that the null

hypothesis is true and we are computing the probability that our

observed value (or better) could have been observed under this

assumption. So if this observed probability is small and we thereby

reject a true null hypothesis, we are mistaken in doing so. It is

common to set a probability threshold of 0.05 in advance, deciding

that if the probability of our observed value is 0.05 or less, we will

reject the null hypothesis. The implication is that when we perform

the test and the null hypothesis is true, we will have a 5 percent

chance of incorrectly rejecting this hypothesis. In the current context,

this means that if our trading system is truly worthless, we will have a

5 percent chance of incorrectly concluding that it legitimately makes

money. We may be more conservative and demand only a 1 percent

Chapter 6 Estimating Future Performance II: Trade Analysis

213

chance of falsely rejecting the null hypothesis when it is true, and

this will give us a more stringent test, a test that is more difficult to

pass. Or we may loosen our requirement, being willing to live with a

10 percent chance of falsely concluding that a truly worthless system

makes money. In this case we would set our probability threshold at

0.1, concluding legitimacy if the probability of our observed mean

return is 0.1 or less.

Equivalently, we could compute in advance the value under the

null hypothesis distribution that corresponds to a probability of

0.1. Then we conclude legitimacy if our observed mean equals or

exceeds this threshold. Please ponder this equivalency if you don’t

see it immediately. (Remember that larger observed means would

have smaller probabilities.) It makes no difference which way you

do the test; they are identical.

•	 Another approach to hypothesis testing is used by many people,

including myself, because it provides a bit more information at the

expense of opening the door to some abuse if one is not careful in

how results are interpreted. In this approach, one does not specify

an error probability threshold, like 0.05 or whatever, in advance.

Instead, one just goes ahead and computes the probability under

the null hypothesis of achieving a result as good as or better than

what we obtained. In this context, this probability is called a p-value.

This gives us not just the reject/do-not-reject decision that the first

approach gave us. It gives us a quantitative figure. If we get a p-value

of 0.049, we conclude that this test would have rejected the null

hypothesis at the 0.05 error level, but just barely, and so we would

rightly be cautious. On the other hand, if we get a p-value of 0.001,

we rightly conclude that if the null hypothesis were true, it would be

extremely unlikely for our trading system to do as well as it did. This

is still not enough to trade the system; it may be that its risk/reward

ratio is poor. But all other things being equal, we may legitimately

conclude that a p-value of 0.001 is more encouraging than .049.

Chapter 6 Estimating Future Performance II: Trade Analysis

214

I mentioned that there are risks of using this approach. Here is

a big and common one, and it’s subtle. We may not use p-values

as reliable measures of the relative values of systems. If we get a

p-value of 0.001, we may legitimately get a warm, fuzzy feeling and

have somewhat more confidence in our system than we would

have with a p-value of 0.049. But that’s it. Warm and fuzzy; nothing

more. We may not conclude that we have a slam dunk decision

on which is better. It may be that if we took the 0.049 system and

tested it on a longer stretch of historical data, we would get a

p-value of 0.001 as well. That’s a big weakness of hypothesis tests:

they are dependent on how much data is tested. So, be careful

about interpreting p-values in a numerical sense. You can (and

should) do it, but only with a very large grain of salt.

•	 The third occasionally used approach to hypothesis testing is

incorrect! We will discuss it here, constantly reminding the reader

that every bit of the “logic” presented in this bullet point is wrong.

Let’s say you obtain a p-value of 0.01, a very encouraging result (a

legitimate conclusion). The totally incorrect logic used by many is

that since a worthless system would have only a 1 percent chance of

getting results this good by luck (true), if we conclude that the system

is skilled, we have only a 1 percent chance of being wrong (false!).

Some adventuresome developers may word the conclusion more

aggressively: because there is only a 1 percent chance that we would

be wrong in concluding that the system is skilled (false!), there is a 99

percent chance that the system is skilled (no way!).

This last point is hard for many people to swallow, so we’ll expound on it. The key

is that a p-value from a hypothesis test is conditional. It says that if the null hypothesis

is true, the p-value is the probability of getting a result at least as good as that observed.

There’s nothing in that statement about whether the null hypothesis is true.

Here is a crude example. We have been told that after years of research, we know that

99 percent of all dogs have four legs. Because of unfortunate accidents, 1 percent of dogs

have fewer than four legs. Every now and then, someone calls you and says that they

have an animal with a certain number of legs, and they ask your opinion about whether

it’s a dog. Today they call and say that their animal has two legs. You know that dogs

have fewer than four legs only 1 percent of the time. With this in mind, you legitimately

Chapter 6 Estimating Future Performance II: Trade Analysis

215

conclude that it probably is not a dog, and you are comfortable with this conclusion

because of the scarcity of two-legged dogs. Among all the times the animal truly is a dog,

you will be fooled into calling it a non-dog only 1 percent of the time.

But you can say nothing about the probability that this animal is or is not a dog. What

if unknown to you, the person who periodically calls you is from a dog shelter, and he’s

just messing with you. Every animal he calls you about, regardless of how many legs it

has, is a dog. Then, every time he tells you the animal has less than four legs, and you

therefore conclude that it is not a dog, you will be wrong. Always. The false logic of the

third bullet point on the prior page says that you have a 99 percent chance of being right,

while in fact you have a 0 percent chance of being right! That’s pretty bad. On the other

hand, if the calls come from a strictly cat shelter, every time you reject the null hypothesis

you will be correct. Always. So, depending on where the calls are coming from, you are

correct either never or always.

In summary, in the context of using a hypothesis test for the quality of our trading

system based on mean return (or some other quantity discussed later), these points

must be kept in mind:

•	 If our performance is so good that a worthless system would have

scored at least this well with only small probability (p-value), we may

have confidence that our trading system has true skill, not just good

luck. If we set a p-value threshold in advance (the first bullet point

in this section) and decide that the system is skilled if and only if our

achieved p-value is this small or smaller, then among the universe of

worthless systems on which our p-value is based, we will be fooled

into falsely claiming skill with the prespecified p-value probability.

This, of course, inspires us to set a low p-value threshold. We want a

low probability of being fooled into declaring a worthless system to

be skilled.

•	 If we do not obtain a small p-value, we may not conclude that the

system is worthless. Perhaps we just didn’t test correctly or test

enough market history.

•	 Regardless of the size of our p-value, whether it is delightfully tiny or

annoyingly large, we can say nothing about the probability that our

system is worthless or skilled. Nothing.

Chapter 6 Estimating Future Performance II: Trade Analysis

216

�Parametric P-Values
In the prior section, we wantonly threw around uses for a p-value, the probability that

we would have gotten performance at least as good as we obtained if the null hypothesis

were true. In the current context, this is the probability that our OOS mean return could

have been at least as large as we obtained, merely as a result of a truly worthless trading

system being lucky. But how do we compute this p-value? There are several common

approaches, and this section discusses the easiest.

Arguably the most important distribution in all of statistics is the normal distribution.

It achieves this lofty position because (very roughly stated) when you add together

independent, identically distributed random variables, their sum (and mean) tends

toward having a normal distribution. Even if the variables are not exactly independent or

identically distributed, the distribution of their sum (and mean) has a strong tendency

to approach the familiar bell curve shape of the normal distribution. With some caution,

we may often assume that our trading system’s returns follow a distribution that is close

enough to normality that we can perform statistical tests based on this assumption. In

particular, we will use the Student’s t-test, a standard test that assumes normality of its

data but that is fairly robust against moderate non-normality.

Before proceeding, we must be clear about the most significant issues involved

in using the normality-based t-test on trading system returns. This test is surprisingly

robust against moderate levels of common forms of non-normality, such as skewness

(lack of symmetry in the shape of the distribution) and heavy tails (extreme values that

are not severely extreme). It is very robust against unusually light tails (few or no extreme

values). But the big killer for the t-test is truly wild extremes, or even a single wild

extreme. If the vast majority of our wins and losses cluster in the range of, say, –5 to 5,

and we have one return of 50, the t-test will be worthless. Thus, before using a t-test to

compute a p-value for returns, one must plot a histogram of the returns to be tested.

Extremes that fall within reasonable limits of a bell curve are fine (no need to be picky),

but if one or more returns are crazy far from the bulk of returns, use one of the tests

described later.

This is not the venue for digging into details of the t-test; references are widely

available, and some readers may want to dig a bit deeper than the superficial

treatment here. Now, we deal just with the mathematical formulas and a code snippet

demonstrating how to compute a p-value for a collection of returns, in the context

of deciding whether the returns are good enough to justify declaring that the trading

Chapter 6 Estimating Future Performance II: Trade Analysis

217

system has skill rather than just luck. Most often, these returns would be the individual

bar returns for those bars on which a position is open, although any of the other types of

returns discussed in the prior chapter could be tested.

Let x1, x2, ...xn be the returns whose p-value we are computing. Their mean is trivially

given by Equation 6-1. We estimate the population standard deviation as the square root

of the unbiased variance estimator, as given by Equation 6-2. The t-score for this set of

returns is given by Equation 6-3. If we designate the cumulative distribution function of

the t statistic having df degrees of freedom (typically n–1) as CDF(df,t), then Equation 6-4

is the associated p-value. This is the probability that a t-score will equal or exceed the

specified value, which in our context is the probability that the mean return of a worthless

trading system could equal or exceed our obtained mean return by luck alone.

	
Mean =

n
x

i

n

i

1

0=
å 	 (6-1)

	
StdDev =

n
x Mean

i

n

i

1
1 0

2

-
-()

=
å

	 (6-2)

	
t =

nMean

StdDev 	 (6-3)

	 p value CDF n t- = - -()1 1, 	 (6-4)

Astute readers who are familiar with t-scores will have noticed that Equation 6-3 is

the t-score under the null hypothesis that the true mean is zero. But on page 211 it was

pointed out that the null and alternative hypotheses must be mutually exclusive and

exhaustive. To satisfy the exhaustive part, the null hypothesis of worthlessness must

be that the trading system has a true mean that is zero or negative. So, why can we get

away with assuming the true mean is zero and ignoring the possibility of a negative

true mean? The answer will become more clear when we present Equation 6-5, but for

now understand that if the true mean were negative, the actual t-score would be even

larger than that given by Equation 6-3, and the p-value would be even smaller. Thus, a

true mean of zero is the most conservative case; if we reject under that null hypothesis,

we would reject even more strongly under a negative-mean null hypothesis. So, it is

legitimate to let the null hypothesis be that the true mean is zero. We can ignore the

possibility of a negative true mean.

Chapter 6 Estimating Future Performance II: Trade Analysis

218

Here is a code snippet demonstrating these computations. This code is extracted

from the program BOUND_MEAN.CPP, with some small modifications for clarity. The

source code for the t_CDF() function can be found in the file STATS.CPP. The complete

program, along with an example of its application, will be presented on page 233.

 mean = 0.0 ;  // Equation 6-1

 for (i=0 ; i<n ; i++)

 mean += returns[i] ;

 mean /= n ;

 stddev = 0.0 ; // Equation 6-2

 for (i=0 ; i<n ; i++) {

 diff = returns[i] - mean ;

 stddev += diff * diff ;

 }

 stddev = sqrt (stddev / (n - 1)) ;

 t = sqrt((double) n) * mean / stddev ; // Equation 6-3

 pval = 1.0 - t_CDF (n-1 , t) ; // Equation 6-4

�Parametric Confidence Intervals
Having a p-value by which we can test the null hypothesis that our trading system is

worthless is nice, but even nicer would be having the range in which the true mean is

likely to lie. In any hypothesis test in any field of endeavor, if we test enough cases, we

will pick up even the faintest legitimate effect. This is particularly problematic in the

analysis of automated trading systems, in which we may backtest over decades. It will

often be the case that we have a trading system that does have a small amount of skill,

and if we perform a hypothesis test using thousands of bars of trade returns, we will

likely get a small p-value and hence correctly conclude that our system probably has

legitimate skill. But what if the actual skill possessed by our system provides an expected

annualized return of one-half of 1 percent? It’s honest-to-goodness skill, and given a

large enough sample set, a hypothesis test will detect it. But nobody would want to trade

that system, skill or not. Its return, though real, is too small to be profitable. The subject

of this section is a simple method for the computation of upper (rarely needed) and

Chapter 6 Estimating Future Performance II: Trade Analysis

219

lower bounds for the true mean return of our system. On page 222 we will present a very

different method for performing this computation, the bootstrap.

Look back for a moment at Equation 6-3. That showed how to compute a t-score

from an observed mean return, under the null hypothesis that the true mean return of

the system was zero. We now need the more general form of this equation, which does

not assume that the true mean is zero. This is shown in Equation 6-5. In this equation,

ObsMean is the observed mean, and it corresponds to Mean in Equation 6-3, the mean

return from your OOS testing. TrueMean is the unknown true mean. Note that when it is

zero, Equation 6-5 is identical to Equation 6-3.

	 t =
n ObsMean TrueMean

StdDev

-() 	 (6-5)

By definition, the cumulative distribution function CDF(df,t) appearing in

Equation 6-4 is the probability that a randomly drawn t-score will be less than or equal

to the specified t. Define the inverse of this function as InvCDF(df,p). This function, by

definition, gives us the t-score threshold that has the property that a randomly drawn

t-score will be less than or equal to this threshold with the specified probability p. For

notational convenience, we designate InvCDF(df,p) as tp where, as usual, df=n–1. This

definition is stated in Equation 6-6, in which t is a randomly observed t-score.

	 P t t pp£{ } = 	 (6-6)

We collect our OOS returns and compute their mean ObsMean. We do not know the

true mean of the population of future returns, but we would like to make a probability

statement about it. To do so, take the t-score defined by Equation 6-5 and substitute it for

t in Equation 6-6. This gives us Equation 6-7, and some simple algebraic rearrangement

converts that to Equation 6-8.

	
P

n ObsMean TrueMean

StdDev
t pp

-()
£

ì
í
ï

îï

ü
ý
ï

þï
= 	 (6-7)

	
P ObsMean

StdDev t

n
TrueMean pp- £

ì
í
î

ü
ý
þ
=

i
	 (6-8)

Chapter 6 Estimating Future Performance II: Trade Analysis

220

We define in Equation 6-9 a figure called LowerBound. It is the quantity on the left

side of the previous inequality. Note that it is easily computed; all we need is the mean

of our OOS returns, their standard deviation as defined by Equation 6-2, the number n of

returns, and the t-score threshold for our desired probability, as defined by Equation 6-6.

We now discuss why we call this LowerBound and what it means.

	 LowerBound = ObsMean
StdDev t

n
p-

i
	 (6-9)

We don’t know the true mean of the population from which future returns will be

drawn. We do have the mean of the returns in our OOS test set, and it’s reasonable to

assume that the true population mean will be somewhere in this vicinity. But our OOS

test data was just a random sample from the population. It may have been unlucky and

thereby underestimate the true mean. Or it may have been lucky and given an optimistic

view of the future. We would like to quantify this variability.

Suppose that the true mean, which we do not and cannot know, happens to be

equal to the LowerBound defined in Equation 6-9 and which we just computed from our

sample. Keep in mind that this true mean is an actual, fixed number, such as 5.21766

or whatever. We don’t know what it is, but that doesn’t make it any less real. Now look

back at Equation 6-8. The number on the right side of the inequality is an unknown but

fixed (assuming stationarity!) value. The quantity on the left side of the inequality is

a random variable, subject to sampling error from our choice of OOS test period. The

act of choosing our OOS test period for the experiment just run is a random sample,

so Equation 6-8 applies: there is probability p that the computable quantity on the left

side of the inequality is less than or equal to the true mean, which we are momentarily

assuming is the value in Equation 6-9. We have likely set p to be large, say 0.95 for this

example, so this inequality is likely to be true. In other words, if the true mean, which

we do not know, happens to be equal to the value given by Equation 6-9, which we call

LowerBound, there is probability 0.95 that the inequality in Equation 6-8 is satisfied. In

fact, since LowerBound is the quantity on the left side of the inequality, we have perfect

equality; the condition is satisfied but just barely.

Now consider the possibility that the true mean is actually larger than LowerBound.

Clearly, the inequality in Equation 6-8 is easily satisfied, with true inequality. But what if

the true mean as de is less than LowerBound? Now the inequality fails, which has small

probability (1–0.95=0.05 in this example). In other words, LowerBound is the threshold
for the true mean satisfying the inequality in Equation 6-8, a situation which has
high probability if we set p high.

Chapter 6 Estimating Future Performance II: Trade Analysis

221

Some hard numbers may make this clearer. Suppose we sample 100 returns. We

observe a mean return of 8, and the returns have a standard deviation of 5. We set p=0.95

so that we can be 95 percent sure of our lower bound for the true mean of returns. The

associated t-score is approximately 1.66. Plugging these numbers into Equation 6-9 gives

a LowerBound of 8 – 5 * 1.66 / sqrt(100) = 7.17.

This result can be interpreted in two ways. The common interpretation, which is

reasonable though not strictly correct, is to say that there is a 95 percent chance that the

true mean of returns, the value around which future returns will be centered, is at least 7.17.

The problem with this interpretation is that it makes it sound as if the true mean is a

random variable, and based on our OOS results, we have just computed a probability that

the true mean has at least some minimum value. In fact, the true mean is a fixed number,

not random. The OOS sample that we collected is the random quantity. Thus, the strictly

correct interpretation is to say that 7.17 is the minimum value that the true mean could

have for there to be at least a 95 percent probability of having observed an OOS sample of

our obtained quality or better. Please don’t stress over this concept too much. You are not

committing a grave sin by using the first and most common interpretation.

Here is a code snippet demonstrating these computations, extracted from BOUND_

MEAN.CPP, with small modifications for clarity. Source code for inverse_t_CDF() is in

STATS.CPP. The complete program, along with an example of its application, will be

presented on page 233.

 mean = 0.0 ; // Equation 6-1

 for (i=0 ; i<n ; i++)

 mean += returns[i] ;

 mean /= n ;

 stddev = 0.0 ; // Equation 6-2

 for (i=0 ; i<n ; i++) {

 diff = returns[i] - mean ;

 stddev += diff * diff ;

 }

 stddev = sqrt (stddev / (n - 1)) ;

 lower_bound = mean - stddev / sqrt((double) n) * inverse_t_CDF (n-1 , 0.95) ;

Chapter 6 Estimating Future Performance II: Trade Analysis

222

One would almost never be interested in an upper bound for the true mean. However,

for the sake of completeness, we note that the upper bound is given by Equation 6-9

except that the minus sign is changed to a plus sign. Interested readers will find it

informative and possibly entertaining to derive this fact. The reasoning is essentially

identical to that for the lower bound but with the direction of the inequality reversed.

Note that if you want an interior confidence interval as de, a pair of bounds such that

you can say with specified probability that the true mean lies inside this interval, you must

split the “failure” probabilities. For example, suppose you want a 90 percent probability that

the true mean lies between lower and upper bounds. You must split that 10 percent failure

into 5 percent failure on each side, using p=0.95 for both the lower and upper bounds. This

gives a 5 percent chance that the true mean lies below the lower bound, and 5 percent that

it is above the upper bound, leaving a 90 percent chance that it lies between them.

�Lower Confidence Bounds and Hypothesis Tests
We conclude this discussion with a useful observation that is easily provable in the

Student’s-t scenario just discussed and that in fact is true more generally as well. Take

a look back at Equation 6-3 on page 217. In that section we computed the t-score for

testing the null hypothesis that the true mean was zero versus the alternative that the

true mean is greater than zero. Now look at Equation 6-9 for computing the lower

bound for the true mean. Easy algebraic manipulation of these two equations reveals

the interesting (and perhaps not very surprising) fact that the null hypothesis would be
rejected if and only if LowerBound is positive. So we don’t actually need to do separate

tests. All we have to do is use Equation 6-9 to compute the lower bound corresponding

to some p, such as the 0.95 assurance that we used in the example. We can reject the

null hypothesis of zero mean at the 1–p level (1-0.95=0.05) if and only if Equation 6-9

gives us a positive number. (Note that since we usually have a continuous distribution,

the probability of the lower bound being exactly zero is zero, but to be conservative, we

typically demand that it be positive in order to reject the null hypothesis.)

�Bootstrap Confidence Intervals
The prior section’s method for bounding the true mean of returns is easy to understand

and program, fast to compute, and generally quite robust against any problems

except the presence of one or more extreme outliers. But sometimes we do have some

Chapter 6 Estimating Future Performance II: Trade Analysis

223

questionable outliers, or maybe we want to be extra cautious. In this case, at least for

mean returns we have a considerably more complex but usually safer approach called

the bootstrap.

There are primarily three different bootstrap methods for finding lower (and also

upper, if we want) bounds for the true mean. For a fairly rigorous and quite accessible

discussion of all three methods, please see my book Assessing and Improving Prediction

and Classification. For an extremely rigorous presentation, see the excellent book An

Introduction to the Bootstrap by Efron and Tibshirani. Here, we will briefly mention two

of these methods but present in detail only the method that is almost always the best

of the three in this application. Also, because the theoretical background for this best

algorithm is brutal, readers who want to pursue the theory are referred to the Efron and

Tibshirani source. Here we focus on the relevant equations and source code only.

�The Pivot and Percentile Methods
The most easily understood idea behind bootstrapping is often called the pivot method.

Consider first the situation we are in. Our trading system feeds us (and will continue to

feed us, as long as the market characteristics remain stationary) a series of returns. When

we use the Student’s-t method of the prior section, we assume that the distribution of

these routines is not terribly non-normal. In the more general case, we know nothing

whatsoever about this distribution. We would like to have a good guess as to its true

mean, and we would also like an estimate of the sample-to-sample variation of the mean

return in OOS samples. If we know the size and nature of this variation, we can establish

probabilistic bounds on the likely true mean.

Unfortunately, we have only one sample from the population of returns, namely,

that obtained from the OOS test set. That’s not much to work with for estimating the

sample-to-sample variation or any possible over- or underestimation of the true mean

by the sample mean. But there is something very clever that we can do (thank you,

Bradley Efron). We can pretend that our sample of returns is actually an entire population

of returns and that this pretend-population is at least somewhat similar to the parent

population in some important ways. Of course, we cannot assume perfect similarity.

The returns in our sample may on average be larger or smaller than those in the parent

population. They may have larger or smaller variation. So, the bootstrap is far from

perfect because of this unavoidable random variation. But we can usually gather some

useful information by pretending that our sample is a representative parent population

and then sampling from it.

Chapter 6 Estimating Future Performance II: Trade Analysis

224

The fundamental idea behind the pivot method of bootstrapping is that whatever

effects we see in the samples from our OOS sample pretending to be a population would

have been reflected in our original sample from the true population. For example,

suppose we collect a sample of OOS returns and compute some test statistic from

this sample. Currently our test statistic is the mean, but later we will explore other

performance measures, so we use the general term test statistic instead of being specific.

Now we draw a random sample of the same size, with replacement, from our OOS

sample. Some returns in our original sample will not appear in this bootstrap sample,

while others will appear multiple times. It’s a random draw. We compute the test statistic

for this bootstrap sample. Then we do it again, and again, hundreds or thousands of

times. We thus have hundreds or thousands of values of the test statistic, each computed

from a bootstrap sample.

We know the value of the test statistic in our original sample, which is now playing

the role of a population. Suppose we find that, on average, the test statistic in our

bootstrap samples underestimates the value of the test statistic in the original sample by

a few percent. The bootstrap assumption is that the test statistic in our original sample

will similarly underestimate the unknown true value in the population. Thus, to better

estimate the true population value of the test statistic, we increase the computed value of

the test statistic by a few percent, whatever amount would have been needed to increase

the average in the bootstrap samples to bring that average up to the value for the original

sample.

We do a similar thing in regard to variation. We assume that whatever variation we

see in the test statistic among the numerous bootstrap samples, we have been subject

to that same degree of variation when we collected our OOS test returns. This gives us a

good idea of how far our sample’s mean return may be from the true population mean

return, and we can thereby compute probabilistic lower and upper bounds on the true

mean.

The second major method for computing bootstrap confidence intervals is called

the percentile method. The concept is easier to understand on a superficial level, but

it’s much more complex once one digs below the surface (which we shall not do here).

The algorithm is simple: collect numerous bootstrap samples (ideally thousands)

and compute the parameter of interest, which would be the mean in our context.

Then the distribution of those computed values under bootstrap sampling from

the original sample is assumed to be the distribution of the original sample’s value

under the unknown parent distribution. So, for example, the 5th percentile of this

distribution becomes the 95 percent confident lower bound for the true mean, and the

Chapter 6 Estimating Future Performance II: Trade Analysis

225

95th percentile of this distribution becomes the 95 percent confident upper bound for

the true mean. It’s ridiculously easy, and amazingly enough, it works in a great many

situations.

Ambitious readers with some modest degree of mathematical ability might want

to work out the result that the confidence intervals produced by the pivot and the

percentile methods are the reverse of each other: if one method produces a lower bound

that is much further from the computed sample test statistic than is the upper bound,

then the other method will produce bounds such that the upper bound is much further

from the sample test statistic than is the lower bound. Given such a bizarre situation, it is

a miracle that these two methods work at all, but they usually do quite well. On the other

hand, the third method, described in the next section and used in this text, tends to be

the most reliable of all.

�The BCa Bootstrap Algorithm
The algorithm presented in this section is much more broadly applicable than the pivot

and percentile methods of the prior section. The exact mathematical conditions under

which it is valid are broad, though not universal. My book Assessing and Improving

Prediction and Classification does quite a good job (if I do say so myself!) of laying out

the exact conditions under which it is valid and does so in a manner that should be

accessible to those with a moderate degree of mathematical training. However, that

discussion is beyond the scope of this text, which is geared more toward practicalities

and a target audience with limited mathematical background. Please see my Assessing

and Improving Prediction and Classification book if you are interested, or see the

Efron and Tibshirani book An Introduction to the Bootstrap if you want a fierce and

thorough discussion. For now, note that the BCa bootstrap (short for “bias corrected

and accelerated”) easily handles the mean return as well as most other performance

measures other than ratio measures, as will be discussed on page 238.

To compute confidence bounds using the BCa bootstrap, we need to perform four

steps.

	 1)	 Compute the bias correction, which compensates for the degree

to which the necessary implicit transformation is biased.

	 2)	 Compute the acceleration, which compensates for the degree

to which the variance of the implicitly transformed parameter

depends on its value.

Chapter 6 Estimating Future Performance II: Trade Analysis

226

	 3)	 Compute lower and upper bounds using the previously described

percentile method and then modify the fractile points according

to these corrections.

	 4)	 Get the fractiles from the sorted bootstrap parameter estimates.

We now describe these steps, one at a time. Throughout this discussion, Φ(z)

represents the normal cumulative distribution function (CDF), and Φ–1(p) is its inverse.

Step 1: The bias correction just involves simple counting. We see how many of the

bootstrapped parameter estimates are less than the estimate for the original sample. The

bias correction is the inverse normal CDF of the fraction of the replications less than the

grand value. This is expressed in Equation 6-10. In this equation, q̂b is the parameter

estimate (mean return or whatever other performance measure we are investigating) for

the bth bootstrap sample, there being a total of B bootstrap samples taken. The

parameter estimate for the original sample is q̂, and the #[] operation just means to

count how many times the inequality holds among the B bootstraps.

	
ˆ

ˆ ˆ#
z

B0 =
<é

ë
ù
û

æ

è

ç
çç

ö

ø

÷
÷÷

-

*

F 1
q qb

	 (6-10)

Step 2: To compute the acceleration, we need to perform a jackknife on the

parameter estimator. Our set of OOS returns consists of n cases. We temporarily remove

case i from the collection and compute the parameter using the remaining n–1 cases. Let
q̂()i designate this parameter value. Let q̂()× be the mean of these n jackknifed values, as

shown in Equation 6-11. Then the acceleration is given by Equation 6-12.

	
ˆ ˆ

()q q()×
=

= å1
1n i

i

n

	 (6-11)

	
ˆ

ˆ ˆ

ˆ ˆ
/a

i
i

n

i
i

n
=

q -q

q q

() ()

() ()

×
=

×
=

()
-()é

ë
ê

ù

û
ú

å

å

3

2
3 2

1

1

6
	 (6-12)

Step 3: We modify the percentile method’s fractile points according to the bias and

acceleration. For example, suppose we want a 90 percent confidence interval. The fractile

points would be α=0.05 and α=0.95, assuming that we want to split the probability of

Chapter 6 Estimating Future Performance II: Trade Analysis

227

failure equally above and below. (This splitting was discussed on page 222.) A modified

fractile point, αʹ, is computed from an original α by means of Equation 6-13. This

equation is applied to the upper and lower endpoints separately. Note that if the bias

correction and acceleration are both zero, αʹ=α.

	
a

a
a

´
1

0
0

1

0
1

= +
+

- +()
æ

è
ç
ç

ö

ø
÷
÷

-

-
F

F
F

ˆ
ˆ ()
ˆ ˆ ()

z
z

a z
	 (6-13)

Step 4: The final step is just the ordinary percentile bootstrap algorithm, but using

the modified fractile points provided by Equation 6-13 instead of the user’s specified

points. Sort the B values of q̂b into ascending order and select the lower and upper

bounds from this array. The unbiased choice for the lower bound, in which αʹ<0.5, is to

select element k (indexed 1 through B), where k = αʹ(B+1), truncated down to an integer

if there is a fractional remainder. For the upper bound, αʹ>0.5, let k = (1–αʹ) (B+1),

truncated down to an integer if there is a fractional remainder. Element B+1–k is the

upper confidence bound.

As was noted in the section on confidence based on Student’s-t, when a bootstrap

algorithm is used to compute confidence intervals for the mean return, we only rarely

would be interested in an upper bound. Our greatest interest is in how small the true

mean return might be. Of course, if we also learned that the true return might be quite

large, we would probably be happy. And as should be obvious, we’ve already done

99.9 percent of the work in computing the lower bound; also finding the upper bound

is an insignificant amount of extra work. Thus, all routines presented compute both

bounds. Use them as you want.

�The BOOT_CONF.CPP Subroutines
The file BOOT_CONF.CPP on my web site contains subroutines for computing a small

assortment of confidence intervals using the percentile and BCa methods. In this section

we work through this code.

To lay a foundation, we present the simple yet surprisingly effective percentile

algorithm that lies at the core of the superior BCa algorithm. Recall from the earlier short

discussion that this algorithm just evaluates the parameter (such as mean return) being

studied using a large number of bootstrap samples, and it assumes that the resulting

distribution of parameter estimates directly provides confidence intervals for the true

Chapter 6 Estimating Future Performance II: Trade Analysis

228

value of the parameter in the population. This algorithm is invoked with the following

calling convention (and variable declarations):

void boot_conf_pctile (// Percentile bootstrap algorithm

 int n , // Number of cases in sample

 double *x , // Variable in sample

 double (*user_t) (int , double *) , // Compute parameter

 int nboot , // Number of bootstrap replications

 double *low2p5 , // Output of lower 2.5% bound

 double *high2p5 , // Output of upper 2.5% bound

 double *low5 , // Output of lower 5% bound

 double *high5 , // Output of upper 5% bound

 double *low10 , // Output of lower 10% bound

 double *high10 , // Output of upper 10% bound

 double *xwork ,   // Work area n long

 double *work2 // Work area nboot long

)

{

 int i, rep, k ;

We would most likely call this routine with the n returns from our OOS test in x. The

user_t() function would compute the mean of the vector given to it, assuming that our

performance measure of interest is the mean return. We should set nboot to be very large;

10,000 is not unreasonable.

The first step is to draw a large number of bootstrap samples and compute the

parameter of interest for each sample. We save them for sorting later. The outer loop

in the following code draws each of the nboot (B in the preceding discussion) samples.

For each replication, we draw n randomly selected cases from the original sample.

It’s important that each bootstrap sample contain the same number of cases as the

original sample, because many parameters are sensitive to the number of cases in the

sample.

 for (rep=0 ; rep<nboot ; rep++) { // Do all bootstrap reps (b from 1 to B)

 for (i=0 ; i<n ; i++) { // Generate the bootstrap sample

 k = (int) (unifrand() * n) ; // Randomly select a case from the sample

Chapter 6 Estimating Future Performance II: Trade Analysis

229

 if (k >= n) // Should never happen, but be prepared

 k = n - 1 ;

 xwork[i] = x[k] ; // Put bootstrap sample in xwork

 }

 work2[rep] = user_t (n , xwork) ; // Save parameter from this bootstrap sample

 }

The parameter estimates are sorted. The qsortd() routine takes as its parameters the

indexes of the first and last cases in the array to be sorted. The lower and upper bounds

are pulled from this sorted array using the unbiased fractile estimators, as described

in step 4 on page 227. Only one pair of bounds is shown here, because the others are

identical except for the multiplier. Feel free to set whatever fractile multiplier you want,

or make it a calling parameter.

 qsortd (0 , nboot-1 , work2) ; // Sort ascending

 k = (int) (0.025 * (nboot + 1)) - 1 ; // Unbiased quantile estimator

 if (k < 0)

 k = 0 ;

 *low2p5 = work2[k] ;

 *high2p5 = work2[nboot-1-k] ;

By the way, if you want to use the generally inferior pivot method, those bounds

are easily obtained from the percentile bounds. Let Param be the parameter value for

the original sample. Then PivotLower = 2 * Param – PctileUpper and PivotUpper = 2 *

Param – PctileLower. Curious readers might want to reread the description of the pivot

method on page 224 and then work through the logic of how these formulas reflect the

sample-to-bootsample relationship in the population-to-sample estimate.

We now move on to the BCa bootstrap, which is almost always superior to both

the pivot and percentile methods. It is similar to the percentile method just shown, in

that the parameter is estimated from numerous bootstrap samples, these estimates are

sorted, and bounds are extracted from the sorted array. The difference is that the chosen

elements are selected from slightly adjusted locations. The calling parameter list is

identical to that for the percentile method, but for clarity here it is:

Chapter 6 Estimating Future Performance II: Trade Analysis

230

void boot_conf_BCa (// BCa bootstrap algorithm

 int n , // Number of cases in sample

 double *x , // Variable in sample

 double (*user_t) (int , double *) , // Compute parameter

 int nboot , // Number of bootstrap replications

 double *low2p5 , // Output of lower 2.5% bound

 double *high2p5 , // Output of upper 2.5% bound

 double *low5 , // Output of lower 5% bound

 double *high5 , // Output of upper 5% bound

 double *low10 , // Output of lower 10% bound

 double *high10 , // Output of upper 10% bound

 double *xwork , // Work area n long

 double *work2 // Work area nboot long

)

{

 int i, rep, k, z0_count ;

 double param, theta_hat, theta_dot, z0, zlo, zhi, alo, ahi ;

 double xtemp, xlast, diff, numer, denom, accel ;

It begins by evaluating the parameter for the original sample. Then it computes and

saves the parameter values for nboot bootstrap samples. While doing this, it counts z0 for

Equation 6-10.

 theta_hat = user_t (n , x) ; // Parameter for full set

 z0_count = 0 ; // Will count for computing z0 later

 for (rep=0 ; rep<nboot ; rep++) { // Do all bootstrap reps (b from 1 to B)

 for (i=0 ; i<n ; i++) { // Generate the bootstrap sample

 k = (int) (unifrand() * n) ;   // Select a case from the sample

 if (k >= n) // Should never happen, but be prepared

 k = n - 1 ;

 xwork[i] = x[k] ;   // Put bootstrap sample in xwork

 }

 param = user_t (n , xwork) ;   // Param for this bootstrap rep

 work2[rep] = param ; // Save it for CDF later

Chapter 6 Estimating Future Performance II: Trade Analysis

231

 if (param < theta_hat)   // Count how many < full set param

 ++z0_count ; // For computing z0 (Equation 6-10)

 }

 z0 = inverse_normal_cdf ((double) z0_count / (double) nboot) ; // In STATS.CPP

Now we do the jackknife described in step 2, in other words, Equation 6-11. The

original sample is reprocessed n times, each time omitting one case. Then we evaluate

Equation 6-12.

 xlast = x[n-1] ;

 theta_dot = 0.0 ;

 for (i=0 ; i<n ; i++) { // Jackknife Equation 6-11

 xtemp = x[i] ; // Preserve case being temporarily removed

 x[i] = xlast ; // Swap in last case

 param = user_t (n-1 , x) ; // Param for this jackknife

 theta_dot += param ; // Cumulate mean across jackknife

 xwork[i] = param ; // Save for computing accel later

 x[i] = xtemp ; // Restore original case

 }

 theta_dot /= n ; // This block of code evaluates Equation 6-12

 numer = denom = 0.0 ;

 for (i=0 ; i<n ; i++) {

 diff = theta_dot - xwork[i] ;

 xtemp = diff * diff ;

 denom += xtemp ;

 numer += xtemp * diff ;

 }

 denom = sqrt (denom) ;

 denom = denom * denom * denom ;

 accel = numer / (6.0 * denom + 1.e-60) ;

The hard work is done. We sort the bootstrap sample parameters, exactly as we did

for the percentile method.

 qsortd (0 , nboot-1 , work2) ; // Sort ascending

Chapter 6 Estimating Future Performance II: Trade Analysis

232

We modify the user’s fractile points as described in Equation 6-13 of step 3 on page 226.

 zlo = inverse_normal_cdf (0.025) ;

 zhi = inverse_normal_cdf (0.975) ;

 alo = normal_cdf (z0 + (z0 + zlo) / (1.0 - accel * (z0 + zlo))) ;

 ahi = normal_cdf (z0 + (z0 + zhi) / (1.0 - accel * (z0 + zhi))) ;

The last step is identical to what we did for the percentile method, except that

instead of using the given fractile points, we use the modified points, and we must do the

lower and upper bounds separately. We cannot use the same k for both.

 k = (int) (alo * (nboot + 1)) - 1 ; // Unbiased quantile estimator

 if (k < 0)

 k = 0 ;

 *low2p5 = work2[k] ;

 k = (int) ((1.0-ahi) * (nboot + 1)) - 1 ;

 if (k < 0)

 k = 0 ;

 *high2p5 = work2[nboot-1-k] ;

We showed only the 0.025 (lower) and 0.975 (upper) bounds here. Several other

bounds are done in the source code in BOOT_CONF.CPP. Feel free to use whatever

fractiles you want.

�The BOUND_MEAN Program and Results with SPX
The file BOUND_MEAN.CPP contains a complete program that extends the PER_WHAT

program presented on page 198. The trading system is exactly the same, so please review

that section as needed. One simplification is done: the optimization criterion in the

BOUND_MEAN implementation is always the mean return when a position is open. Other

training options available in PER_WHAT are omitted, although readers should have no

trouble putting them back if desired. One other small change is that PER_WHAT computes

performance based on only one return type, selected by the user, while BOUND_MEAN

computes the three main return types simultaneously for easy comparison.

But the largest change is that BOUND_MEAN computes a t-score (Equation 6-3 on

page 217) and associated p-value (Equation 6-4 on page 217) for a hypothesis test of the null

hypothesis that the true mean return is zero (or negative) versus the alternative that the true

Chapter 6 Estimating Future Performance II: Trade Analysis

233

mean is positive. It also computes a 90 percent confidence lower bound for the true mean

using Equation 6-9 on page 220. Finally, it computes 90 percent confidence lower bounds

using three different bootstrap algorithms: the percentile method, the pivot method

(page 224) and the BCa method (page 225). All of these results are printed in a compact table.

The program is invoked as follows:

BOUND_MEAN max_lookback n_train n_test n_boot filename

Let’s break this command down:

•	 max_lookback: Maximum moving-average lookback tried during

training (parameter optimization).

•	 n_train: Number of bars in the training set for each walkforward fold.

It should be much greater than max_lookback to get good parameter

estimates.

•	 n_test: Number of bars in the test set for each walkforward fold.

Smaller values (even just 1) make the test more robust against

nonstationarity in the market but take much longer to execute.

•	 n_boot: Number of bootstrap replications. This should be as large as

runtime allows. A value of 10,000 is not unreasonable and should be

considered a minimum for serious testing.

•	 filename: Name of the market file to read. It has no header. Each line

in the file is for a single bar, and it has the date as YYYYMMDD and at

least one price. Any numbers after the first number following the date

are ignored. For example, a line in a market history file might look

like the following, and only the first price (1075.48) would be read.

Readers who would prefer to use the close for open/high/low/close

files can easily modify this code.

20170622 1075.48 1077.02 1073.44 1073.88

Before jumping into key parts of the source code, let’s take a look at the output of this

program when applied to the many decades of SPX. This is shown in Figure 6-1.

Chapter 6 Estimating Future Performance II: Trade Analysis

234

Figure 6-1.  BOUND_MEAN for moving-average breakout in SPX

We have 23,557 days of prices (!). The maximum moving-average lookback in

training the system is 100 days; we use 1,000 training cases and do the OOS testing 100

days at a time. For the bar-based returns, we multiply by 25,200 to make the returns

roughly annualized percents.

Our three primary types of return are tested. The open-trade or open-posn returns

are the bar returns on which a position is open. The complete returns are the net returns

for each completed trade (round turn). The grouped returns are the bar returns, whether

a position is open or not, crunched into blocks of ten days. Those returns are much

smaller than the open-position returns because of all the zeros (the return of a bar is zero

if no position is open) included in the average. By sheer coincidence, the p-value for the

t-test-based test happens to be essentially 0.1, so we should not be surprised to see that

the 90 percent confidence lower bound for the true mean is essentially zero (–0.0022).

If this is not clear, please refer to page 222 for the discussion about the equivalence

between hypothesis tests and the lower bound of a confidence interval. Also note

that the bootstrap tests give lower bounds near zero, although the pivot method, as is

common, is the oddball. For all its intuitive appeal, the pivot method is usually the least

reliable of the three common bootstrap algorithms.

There is an important lesson to be learned from this demonstration. The

approximate annualized mean return for bars on which a position is open is 9.91

percent, a fairly impressive number when taken in isolation. But the t-test probability

Chapter 6 Estimating Future Performance II: Trade Analysis

235

that a worthless system could have achieved results at least this good by sheer luck is

0.1000, which is distressingly nonsmall. Moreover, if we look at the 90 percent confidence

bound on the lower limit of the true mean, that around which future returns would be

centered, this lower bound is actually negative! Granted, it’s barely negative, virtually

zero, but still, this is not a system I would want to trade. The various bootstrap bounds

for all three families of returns are equally uninspiring. Back to the drawing board.

We now take a look at a few code snippets from the BOUND_MEAN program. The

trading system (opt_params() and comp_return()) was thoroughly discussed on page 198,

which dealt with the PER_WHAT program. Please refer to that section as needed. We

focus now on the walkforward code. A discussion follows the code listing.

 train_start = 0 ; // Starting index of training set

 nret_open = nret_complete = nret_grouped = 0 ;

 for (;;) {

 // Train

 crit = opt_params (n_train , prices + train_start ,

 max_lookback , &lookback , &thresh , &last_pos) ;

 n = n_test ; // Test this many cases

 if (n > nprices - train_start - n_train) // Don't go past the end of history

 n = nprices - train_start - n_train ;

 // Test with each of the three return types

 comp_return (0 , nprices , prices , train_start + n_train , n , lookback ,

 thresh , last_pos , &n_returns , returns_grouped + nret_grouped) ;

 nret_grouped += n_returns ;

 comp_return (1 , nprices , prices , train_start + n_train , n , lookback ,

 thresh , last_pos , &n_returns , returns_open + nret_open) ;

 nret_open += n_returns ;

 comp_return (2 , nprices , prices , train_start + n_train , n , lookback ,

 thresh , last_pos , &n_returns , returns_complete + nret_complete) ;

 nret_complete += n_returns ;

Chapter 6 Estimating Future Performance II: Trade Analysis

236

 // Advance fold window; quit if done

 train_start += n ;

 if (train_start + n_train >= nprices)

 break ;

 }

We initialize the start of the first training set to be the beginning of the market

history. The three counters that count the number of each type of return (open position,

complete, grouped) are zeroed.

The first step in the walkforward loop is to call opt_params() to find the optimal

lookback and threshold. This routine also returns the position as of the end of the

training set. The purpose of this is discussed in the section on PER_WHAT. We then

assume that the number of test cases will be the number specified by the caller, but we

make sure we do not overrun the market history.

We call comp_return(), specifying that all bars be included in the return, regardless of

whether a position is open. This will be clumped for the group returns later. The other

two calls to comp_return() are for open-position bars and complete returns, respectively.

After all three OOS tests are done, we advance to the next fold and break out of the

walkforward loop if no OOS test cases remain.

At this point, the grouped returns are still ungrouped, just individual bar returns. We

group them now, using an arbitrary grouping of ten bars, which the reader can easily

change or even make a user parameter.

 crunch = 10 ; // Change this to whatever you wish

 n_returns = (nret_grouped + crunch - 1) / crunch ; // This many returns after crunching

 for (i=0 ; i<n_returns ; i++) { // Each crunched return

 n = crunch ; // Normally this many in group

 if (i*crunch+n > nret_grouped) // May run short in last group

 n = nret_grouped - i*crunch ; // This many in last group

 sum = 0.0 ;

 for (j=i*crunch ; j<i*crunch+n ; j++) // Sum all in this gorup

 sum += returns_grouped[j] ;

 returns_grouped[i] = sum / n ;   // Compute mean per group

 }

 nret_grouped = n_returns ;

Chapter 6 Estimating Future Performance II: Trade Analysis

237

We can now compute the t-score and associated p-value. The code for the

open-position returns (all variables end in _open) is as follows:

 mean_open = 0.0 ;

 for (i=0 ; i<nret_open ; i++)

 mean_open += returns_open[i] ;

 mean_open /= (nret_open + 1.e-60) ;

 stddev_open = 0.0 ;

 for (i=0 ; i<nret_open ; i++) {

 diff = returns_open[i] - mean_open ;

 stddev_open += diff * diff ;

 }

 if (nret_open > 1) {

 stddev_open = sqrt (stddev_open / (nret_open - 1)) ;

 t_open = sqrt((double) nret_open) * mean_open / (stddev_open + 1.e-20) ;

 p_open = 1.0 - t_CDF (nret_open-1 , t_open) ;

 t_lower_open = mean_open - stddev_open / sqrt((double) nret_open) *

 inverse_t_CDF (nret_open-1 , 0.9) ;

 }

 else {

 stddev_open = t_open = 0.0 ;

 p_open = 1.0 ;

 t_lower_open = 0.0 ;

 }

In the previous code, we cumulate the mean and standard deviation using the usual

formulas. If we have fewer than two returns, the standard deviation is undefined, so we

use reasonable defaults. Otherwise, we compute the t-score with Equation 6-3 and its

associated p-value using Equation 6-4. Notice how we prevent division by zero when

computing the t-score. Then the lower bound for the true mean at 90 percent confidence

is computed using Equation 6-9.

The percentile and pivot bootstraps are computed by calling the boot_conf_pctile()

subroutine described on page 228. The code for the open-position returns is shown here.

The trivial routine find_mean() just adds the returns and divides by the number of them.

The computed lower bound is returned in b1_lower_open. All other bounds are ignored by

supplying dummy variables for the computed values.

Chapter 6 Estimating Future Performance II: Trade Analysis

238

On page 229 we saw that it is easy to obtain the pivot-method confidence bounds

from the percentile bounds. We use that simple formula to compute b2_lower_open,

the lower bound using the pivot method. My Assessing and Improving Prediction and

Classification book goes into detail on the relationship between these two methods.

However, because I do not generally recommend the pivot method, I won’t bother going

into detail here.

 boot_conf_pctile (nret_open , returns_open , find_mean , n_boot ,

 &sum , &sum , &sum , &sum , &b1_lower_open , &high ,

 xwork , work2) ;

 b2_lower_open = 2.0 * mean_open - high ;

Finally, we call boot_conf_BCa() to compute the lower bound on the true mean using

the generally good BCa method.

 boot_conf_BCa (nret_open , returns_open , find_mean , n_boot ,

 &sum , &sum , &sum , &sum , &b3_lower_open , &high ,

 xwork , work2) ;

�Beware of Bootstrapping Ratios
The bootstrap almost always works quite well for the mean and other well-behaved

performance measures. But for ratio-based measures that can violently blow up when

the denominator becomes small, the bootstrap often fails. The two classic examples of

such measures are the Sharpe ratio and the profit factor. In this section, we’ll present

the BOOT_RATIO program (complete source code is in BOOT_RATIO.CPP), which

generates random trades and explores the behavior of bootstrap confidence intervals for

the Sharpe ratio and profit factor of these trades.

Before experimenting, we discuss the test philosophy of the program. The essence

of a confidence interval, whether it be a closed interval (lower and upper bounds) or

an open interval (just one bound), is that it be violated with specified probability. For

example, suppose we want to compute a lower bound on a performance statistic and we

want to be confident that the true value of the performance statistic is at or above our

lower bound 95 percent of the time. Equivalently, when we compute this lower bound

from a random sample, we want our computed bound to exceed the true value 5 percent

of the time. If it exceeds the true value more often, we are in a dangerous situation,

Chapter 6 Estimating Future Performance II: Trade Analysis

239

because our confidence bound is not as good as we thought it was. If it exceeds the true

value less than 5 percent of the time, the situation is not quite so bad, because this just

means that we are correct even more often than we think we are. But this situation is still

bad in a way because it means that our computed bound is needlessly loose, perhaps so

loose that we lose faith in our trading system. It may be that our computed lower bound

is so low that we discard the potential trading system, when in fact if the lower bound

had been computed correctly, we might have been happy with the trading system.

The BOOT_RATIO program is invoked as follows:

BOOT_RATIO nsamples nboot ntries prob

Let’s break this command down:

•	 nsamples: Number of price changes in market history

•	 nboot: Number of bootstrap replications

•	 ntries: Number of trials for generating summary

•	 prob: Probability that a trade will be a win

It generates random market price changes, each nsamples long. Each change is

considered to be a win with probability prob; otherwise, it is a loss. Given this set of

returns, nboot bootstrap samples are used to compute lower and upper bounds for the

profit factor using the percentile, pivot, and BCa methods. These bounds are computed

with violation probabilities of 0.025, 0.05, and 0.1.

The true profit factor of the randomly generated set of wins and losses is prob /

(1 – prob). So after we compute these six bounds (three probabilities each for lower

and upper), we compare each to the true profit factor and note whether the bound is

violated.

This process is repeated ntries times, and for each of these six bounds and each

of these three bootstrap methods we count violations so we can compare the actual

number of violations to the correct number.

While the ntries trials are performed, we keep track of the Sharpe ratio of the

population of random returns, a total of nsamples times ntries of them. After all profit

factor trials are complete, we repeat the entire process for the Sharpe ratio. There is no

simple way to compute the theoretical Sharpe ratio, so we use this population value. To

ensure accuracy, we start both the profit factor trials and the Sharpe ratio trials with the

same random seed, ensuring that exactly the same set of wins and losses are generated.

After these trials are complete, results are printed.

Chapter 6 Estimating Future Performance II: Trade Analysis

240

Figure 6-2 shows the BOOT_RATIO results for sets of 1000 returns, and Figure 6-3

shows results for sets of 50 returns. The system being tested is worthless (prob=0.5).

A very large number of bootstrap replications and trials were employed to ensure

stability. Observe that in both figures, the mean and true Sharpe ratios are essentially

zero, and the mean and true profit factors are essentially one, as expected. For the

situation of just 50 returns, the mean profit factor is a bit above one because the

denominator can sometimes be very small, resulting in a few extreme profit factors

that inflate the mean. The charts are divided into three columns, corresponding to

prob=0.025, 0.05, and 0.1. The left number inside each parenthesized pair is the failure

rate in percent (100*prob) for the lower bound, and the right number is that for the upper

bound. So, we hope that both of these numbers equal the percent for that column.

Figure 6-2.  BOOT_RATIO results with 1,000 returns

Figure 6-3.  BOOT_RATIO results with 50 returns

Chapter 6 Estimating Future Performance II: Trade Analysis

241

Note the following:

•	 Problems are most apparent in the leftmost column, which is for a

2.5 percent failure rate (97.5 percent confidence in each bound).

We want all of these parenthesized numbers to be 2.5.

•	 The pivot method is the worst by far. For the profit factor at 2.5

percent expected failure rate and 50 trades, the lower bound never

fails to be below the true profit factor. This means that the lower

bound is so extremely low that it is worthless. Meanwhile, the upper

bound fails to be above the true profit factor almost four times as

often as expected, a disastrous situation.

•	 Profit factor is more poorly behaved than Sharpe ratio.

But all is not lost with profit factor. The problem, especially with a small number of

returns, is the extremely heavy right tail, with a tiny denominator giving rise to huge profit

factors. All we have to do is work with the log of the profit factor, which tames the tail.

Figure 6-4 shows the result when instead of bootstrapping the profit factor we bootstrap

its log. There’s quite a difference, especially for the lower bound which is our main

interest. The BCa upper bound at 2.5 percent does deteriorate a little, which is troubling,

but it would be rare to care about the upper bound. And for 5 percent and 10 percent

failure rates, both bounds improve a lot. The lesson is that if we are bootstrapping a

distribution with a heavy tail, we should transform in such a way as to tame the tail.

Figure 6-4.  BOOT_RATIO log profit factor results with 50 returns

�Bounding Future Returns
In prior sections we discussed finding bounds (usually just a lower bound) for the

true mean of the population from which future returns will appear. That’s a fairly

straightforward task, doable with relatively simple and easily understood calculations.

We now tackle a much more complex task, yet one that can be quite useful in practice.

Chapter 6 Estimating Future Performance II: Trade Analysis

242

Rather than being concerned with the true mean around which future returns will

cluster, we want to bound actual returns.

There is little or no point in trying to bound individual bar returns; those will have so

much variation relative to their mean that bounds would be worthless. But we might well

be interested in bounding returns because of complete trades. And in real life we would

absolutely love to be able to bound grouped mean returns. The primary purpose of this

would be to help us confirm ongoing performance. For example, suppose we perform

an extended walkforward run to produce many years of OOS returns. We might group

these returns by the month and compute monthly average returns. Using the technique

of this section, we could find a probable lower bound on our expected future monthly

returns. As we trade the system, we keep track of its actual monthly performance. If this

performance falls below our previously computed lower bound, we would justifiably

become suspicious that our trading system is suffering degradation.

Readers who have minimal mathematical background may be somewhat

intimidated by the contents of this section. However, there is no need to skip it in terror.

Please be assured that code fragments illustrating the key parts of the operation will be

supplied along the way, and a complete program that puts it all together with an actual

trading system and market data will close out the presentation.

The technique is divided into three sections. We will begin with a method for finding

an approximate but reasonable lower bound for future returns. Then we will explore how

to quantify inevitable random errors in our computation of this lower bound. Finally,

for those rare instances in which we also want an upper bound on future returns, we

generalize the algorithm to that situation.

�Deriving a Lower Bound from Empirical Quantiles
Before commencing, we must be absolutely clear on the difference between material in

this section and that in prior sections. Until this point, we were bounding the mean of the

population from which returns were (and presumably will continue to be) drawn. This

is useful because we want to be reasonably sure that the true mean of our population of

returns is large enough to be worth trading. After all, future returns will tend to center

around this mean.

But now we will attempt to bound the actual returns themselves. Most often these

will be group returns, such as the monthly return of our system. We may want to know a

probability-based lower bound on the monthly returns we can expect over the upcoming

months. Occasionally we may also be interested in bounding net return of completed

Chapter 6 Estimating Future Performance II: Trade Analysis

243

trades. This task is much more difficult than just bounding the mean of the population

from which these returns are drawn.

We begin with a collection of OOS returns. For this task, we need a great many such

returns to obtain reliable bounds, typically a bare minimum of a hundred returns, and

preferably many hundreds or even thousands. Thus, if we are working with, say, monthly

returns, we need an extended OOS test covering upwards of ten years. If necessary, we

can shorten the return period, perhaps using weekly returns. But shorter return periods

result in greater variance in the returns, which in turn results in computed lower bounds

so low that they are of little value. Thus, we are caught in a difficult compromise: having

more returns from shorter intervals gives us bounds that are more accurate but less

useful. Just do your best.

Our fundamental assumption is that our collection of OOS returns is a fair

representation of the population of returns from which future returns will be drawn.

As we will see in the next section, this is not strictly true, and the implication is that our

computed lower bound is subject to troubling random error, which we will quantify later.

But for now, assume that it is true.

First, some intuition. Suppose we have 100 OOS returns (monthly, completed trades,

or whatever) in our collection. Also suppose that 10 percent of these returns have a value

of -8 or less. Then our initial technique is based on the assumption that future returns

will also have a 10 percent chance of being -8 or less. The more returns we have in our

collection, the more we can be confident in the validity of this critical assumption, an

idea that we’ll quantify in the next section.

We need a definition. The quantile of order p of the distribution of the random

variable X is defined as the value x such that P{X < x} ≤ p and P{X < x} ≥ p. We saw

something similar in Equation 6-6 when we found the t-score corresponding to

a specified probability. In that case we were finding the quantile of a continuous

distribution, the Student’s-t distribution. But here we have a discrete distribution, a

collection of numbers. Thus, to be fully rigorous, we need to cover both sides of the value,

and even then x may not be unique; it may be the interval between two discrete values.

It is easiest to think of quantiles in terms of continuous distributions, so with no

deleterious practical implications we will do so from now on. For example, if we know

that there is a 10 percent (0.1) probability that a return will be less than or equal to -8,

we say that the 0.1 quantile of this distribution is -8. Our algorithm for computing a

lower bound for returns computes the quantiles of the OOS returns, assumes that this

collection is representative of the true population, and uses these empirical quantiles to

compute whatever bounds are desired.

Chapter 6 Estimating Future Performance II: Trade Analysis

244

We can be more rigorous. A lower bound for future returns is computed from the

n OOS returns as follows: suppose we want a lower bound in which we can have 1–p

confidence (the probability of failure is some small p such as 0.05). Sort the returns in

ascending order. Compute m=np, and if m is not an integer, truncate the fractional part.

This formula provides a conservative (lower than the exact) bound. If we happen to want

an unbiased but slightly less conservative lower bound, let m=(n+1)p. Then the mth

smallest return in the sorted sample is our approximate lower bound.

�Confidence in the Computed Lower Bound
This is a good time for readers to review the section “Interlude: What Does Unbiased

Really Mean?” on page 125. That section makes the point that unbiased doesn’t

necessarily mean, um, unbiased. In fact, it is virtually certain that our OOS collection

of returns is biased in some way. Random sampling error may have resulted in our

OOS collection underestimating the future returns, meaning that our collection is

pessimistically biased. Equally likely, it may overestimate future returns, making it

unduly optimistic. Whatever the case, it almost certainly is not a good representation

of future returns. If our collection of returns truly is out-of-sample, we say that it is

unbiased only because it does not have a preordained prejudice toward being optimistic

or pessimistic. It could go either way. This balance in the type of bias it may exhibit is

what allows us to call it unbiased. But be assured, it’s biased one way or the other, and we

have no way of knowing which it is.

The implication is that our computed lower bound is a little bit (or perhaps a lot!)

off. If our OOS collection is pessimistically biased because of bad luck in sampling,

our computed lower bound will be too low. Or if our collection is optimistic, with wins

over-represented, our computed lower bound will be too high. Naturally, this can have

serious consequences when we put our lower bound to work keeping track of ongoing

performance. What we need to do is to quantify the possible error in our lower bound.

This is the topic of this section.

We saw in the prior section that we specify some small failure rate p and compute the

lower bound for future returns as the m=npth smallest return in our OOS collection. In

doing so, we smugly assume that there is only smallish probability p that future returns

will be less than or equal to our computed lower bound.

But remember that our OOS set is, by random chance, optimistic or pessimistic.

There are two things we must worry about. The most serious consideration is how

large that true failure rate for our computed lower bound might truly be. For example,

Chapter 6 Estimating Future Performance II: Trade Analysis

245

suppose we let p be 0.1, implying that we want a lower bound such that only 10 percent

of the time in the future will the return be less than or equal to this lower bound. The

question of the moment is, “How high (greater than our specified p) might be the actual

probability of obtaining a return less than or equal to this lower bound?” In other words,

it may be that future returns will (to our dismay) be less than or equal to this lower

bound with a probability that is higher than the 0.1 we desire and expect. We would like

to make a probability statements about this situation.

The most straightforward probability statement is the following: What is the

probability that the m smallest OOS return, which we have chosen for our lower bound

on future returns, is really the q quantile or worse of the return distribution, where

we specify some q that is disturbingly larger than the p we desire? We hope that this

probability is small, because this event is a serious problem in that it implies that our

computed lower bound for future returns is too high and hence more likely to be violated

than we believe.

For example, we may specify p=0.1, implying that we are willing to live with a

10 percent chance that future returns will violate our lower bound. But we may also

specify q=0.15, a failure rate that we consider unacceptable; 10 percent of future returns

violating our lower bound is okay, but 15 percent failure simply won’t do. We want to

compute the probability that the true failure rate of our 0.1-based lower bound is really

0.15 or worse. We hope that this probability is small.

This probability question is answered by the incomplete beta distribution. In a set

of n cases, the probability that the mth smallest exceeds the q quantile is given by

1 – Iq(m, n–m+1). The subroutine orderstat_tail() in STATS.CPP computes this probability,

and we will find this routine extremely useful as discussion of this topic continues.

Sometimes we would prefer to do things in the opposite order. Instead of first

specifying some pessimistic q>p and then asking for the probability that random

sampling error gave us a lower bound with true failure rate q, we first specify a

satisfactorily low probability of such deception and then compute the q that corresponds

to this probability. For example, we might specify that we want very low probability

(only 0.001, say) of having collected an OOS return set that provided a lower bound

whose actual probability of violation is seriously greater than what we expect. Suppose

we have 200 OOS returns, and we set p=0.1, meaning m=20. Thus, the 20th smallest

OOS return is our lower bound on future returns. We need to find the pessimistic q>p

such that 1–Iq(20, 181)=0.001. The subroutine quantile_conf() in STATS.CPP (more on

that later) tells us that q=0.18. In other words, there is only the tiny probability of 0.001

that our lower bound, which we hope to be violated 10 percent of the time, will actually

Chapter 6 Estimating Future Performance II: Trade Analysis

246

be violated 18 percent or more of the time. Looked at another way, we have the near

certainty of 0.999 that our supposed p=0.1 lower bound will in fact fail no more than 18

percent of the time. That’s not very good, but on the other hand, demanding such high

certainty is asking a lot.

If our goal in computing a lower bound on future returns is only to have an idea

of how bad things can be for future returns from our chosen trading system, the

“pessimistic q” approach just described is all we need. Suppose that the opposite of

what we have explored is true. If, in fact, our computed lower bound is too low rather

than too high (the true failure rate is less than our chosen p rather than greater), the only

implication is that future losses (assuming ongoing stability of our trading system) will

not be as severe as we think they might be. That’s good, unless our lower bound is so bad

that we reject our trading system. But we should be hesitant about rejecting a system

based on its projected worst returns, because these will almost always be negative and

discouraging. We should more greatly value bounds on the expected mean return, as

discussed earlier. Thus, the pessimistic q method is sufficient if we are simply gathering

information about worst-case scenarios in the future.

However, an important use for a computed lower bound on future returns is to track

ongoing performance of a trading system that has been put into use. When we design the

final system, we should set a reasonable probability of failure p (perhaps 0.05 to 0.1 or

so) and use the technique of this section to compute a lower bound for future returns. If,

at some point in the future, we get a return below this lower bound, we should become

suspicious that the system is deteriorating. If it happens again, we should seriously

consider abandoning or at least revising the system.

When we use our lower bound this way, we need more than just a pessimistic q>p,

an indication of how seriously our computed lower bound exceeds the true quantile

for our desired failure rate. We should be even more fearful of the opposite error: the

true failure rate for our computed lower bound is less than our desired failure rate p.

This happens when our computed lower bound is too low. In this unfortunate situation,

we may observe one or more returns that are somewhat above our lower bound, and

hence not worrisome, when in fact these losses are exceeding the true lower bound

corresponding to our desired failure rate. So we will make the worst sort of error,

neglecting to flag legitimate deterioration of our trading system.

The process for computing an “optimistic” q<p is almost identical to what we did

earlier in this section. We could use orderstat_tail() to compute the probability that the mth

smallest OOS return (which is our lower bound) exceeds some specified optimistic q<p,

Chapter 6 Estimating Future Performance II: Trade Analysis

247

although now we have to subtract this probability from one to get the probability of this

unfortunate occurrence. This is because orderstat_tail() computes the probability that the

computed bound is above the specified quantile q>p, the problem addressed earlier, at

the beginning of this section. But now we are worried about the opposite problem. We

want the probability that the computed bound is below the specified optimistic quantile

q<p. This probability must be small if we are to avoid the mistake of failing to detect truly

legitimate deterioration of our trading system.

As was the case for the pessimistic q test, we have an alternative to specifying an

optimistic q and then computing its probability. Instead, we could use quantile_conf() with

a large probability (such as 0.95 to 0.999 or so) to compute an optimistic q. We’ll explore

all of these possibilities later, in a high-detail quasitheoretical section, followed by a

practical section.

To summarize this section, we have n OOS returns, and we want to compute a lower

bound for future returns. We choose a smallish probability of failure, p, as the probability

that future returns will be less than or equal to our computed bound. Let m=np for a

conservative bound, or m=(n+1)p for an unbiased bound. To quantify the effects of

random error, we have some pessimistic q>p, resulting from our bound being too large,

and an associated probability. We may also consider some optimistic q<p, resulting from

our bound being too small, and an associated probability. We must find the relationship

between these quantities.

�What About an Upper Bound on Future Returns?
At first thought, one might believe that it would be unusual to want to compute an

upper bound on future returns. After all, what do we care if our returns are better than

expected? Our main concern would seem to be how bad our future returns might be, so

we know what to expect. We may even want (actually, we should want!) to keep track of

ongoing performance of an existing system and raise a red flag if we start getting returns

below our expected lower limit.

But careful thought reveals that if we are watching a running system, it’s not

just excessively poor trades that flag possible deterioration. We should also become

suspicious if we are not seeing as many good trades as we expect. Remember that

bounds have associated failure rates (which we specify), and in the case of an upper

bound, what we call a failure (exceeding the upper bound) in reality would be

considered a success!

Chapter 6 Estimating Future Performance II: Trade Analysis

248

Thus, we would be inclined to use a much larger “failure” rate for upper bounds

and expect to see that degree of “failure” if the system is still performing on target. For

example, we might set an upper bound failure rate of p=0.4, thereby expecting that 40

percent of future trades will have returns at least as large as the computed upper bound.

If the rate drops significantly below 40 percent, we should become suspicious.

It should not be surprising that upper bounds and associated optimistic and

pessimistic q values can be computed with exactly the same mathematics as for lower

bounds. For a lower bound we use the mth smallest OOS return, and for an upper bound

we use the mth largest. Probabilities are similarly reversed. Rather than pedantically stating

these simple transformations now, we’ll explore them with source code in the next section.

�The CONFTEST Program: Overview
This section describes a “tutorial” program that has no practical use but that

demonstrates in detail the ideas behind computation of bounds for future returns. In the

next section we’ll present a practical program that executes a real trading system with

real market data and computes the quantities discussed in the last few sections. The

purpose of the current section is to solidify the ideas we’re dealing with and make the

reader comfortable with what the computed quantities really mean.

The program is invoked as follows:

CONFTEST nsamples fail_rate low_q high_q p_of_q

Let’s break this command down:

•	 nsamples: Number of OOS cases in each trial (at least 20). In real

life it would make no sense to have fewer than 100 OOS cases and

preferably at least several hundred. Otherwise, the computed bounds

have too much random variation to be practical.

•	 fail_rate: Desired rate of failure for computed bounds. This is p in

prior discussions. For lower bounds this would typically be smallish,

perhaps 0.01 to 0.1. For upper bounds this would usually be larger,

perhaps 0.2 to 0.5. The CONFTEST program uses fail_rate for both.

•	 low_q: Worrisome failure rate below desired (< fail_rate). This is the

optimistic q, resulting from the computed lower bound being too low

due to random sampling error in the OOS set. The program computes

the probability that the true quantile is this bad or worse.

Chapter 6 Estimating Future Performance II: Trade Analysis

249

•	 high_q: Worrisome failure rate above desired (> fail_rate). This is the

pessimistic q, resulting from the computed lower bound being too

high because of random sampling error in the OOS set. The program

computes the probability that the true quantile is this bad or worse.

•	 p_of_q: Small probability of failure; to get limits. This is the reverse

formulation, in which the user specifies a small (typically 0.01 to 0.1)

probability of error, and the program computes the associated low_q

and high_q.

The program computes the quantities discussed earlier and then it generates a large

number of random “OOS return” sets having known quantiles and confirms that the

computed quantities are correct. Before exploring the code, let’s take some example

numbers and work through what the program does.

Suppose the user specifies nsamples=200 and fail_rate=0.1. The program computes

m=(n+1)p to get an unbiased quantile estimate. In this case, we see that the 20th smallest

OOS return will be used as our lower bound on future returns, and the 20th largest OOS

return will be the upper bound. There is no reason why the same failure rate has to be

used for both bounds, and some readers may want to add the option of different rates.

It was done this way for convenience.

Our expectation for this pair of parameters is that there is (hopefully!) a 10 percent

chance that a future return will be less than or equal to our computed lower bound.

Similarly, we expect that 10 percent of future returns will equal or exceed our computed

upper bound.

Alas, life is not that simple. Our OOS set on which our bounds are based is itself a

random sample, subject to error. If we were able to wave a magic wand and guarantee

that our OOS sample is a perfect representation of the population of returns, our goal

would be met perfectly. In other words, if the sample were perfect, our computed lower

bound would be the exact fail_rate=0.1 quantile of the distribution of returns; smaller

returns would occur with probability 0.1. And our computed upper bound would be the

exact 0.9 quantile of the distribution of returns. But the sample is not perfect, so we need

to quantify the effect of random sampling error.

One possible error is that our computed lower bound is too low. The result of this

error is that the unknown true “normal operation” failure rate would be lower than the

0.1 we want, meaning that we could fail to detect deterioration in its early stages, when

subpar returns do not drop down all the way to our excessively low lower bound. To

quantify this, we could specify some hypothetical quantile q<p that would concern us

Chapter 6 Estimating Future Performance II: Trade Analysis

250

and then find the probability that our computed lower bound is actually at the q quantile

or worse (lower still).

For example, suppose we specify low_q=q=0.07, which is considerably less than the

failure rate of 0.1 that we desire but probably not so small that our chance of missing

early deterioration would be severely impacted. The program finds the probability that

our computed lower bound is less than or equal to the q=0.07 quantile of the distribution

of returns. If our computed lower bound happens to be exactly the 0.07 quantile, this

means our bound would be violated just 7 percent of the time rather than the 10 percent

of the time we want. By the time future returns violate our lower bound 10 percent

of the time, performance would have deteriorated moderately, since under normal

operation we would expect violation just 7 percent of the time. Thus, we would miss an

early warning, though probably not by much. The program finds the probability that

our computed lower bound is less than or equal to the q=.07 quantile of the distribution

of returns, and this turns out to be 0.0692. Equivalently, we can assert 1–0.0692=0.9308

(about 93 percent confidence) that our computed lower bound is greater than the 0.07

quantile of returns. That’s decent odds.

The other possible error is that our computed lower bound is too large. The result of

this error is that the unknown true “normal operation” failure rate would be greater than

the 0.1 we want, meaning that we would get returns at or below our lower bound more

often than 10 percent of the time. This might us to conclude that our trading system is

deteriorating when in fact it’s just fine. We could specify some hypothetical quantile q>p

that would concern us and then find the probability that our computed lower bound is

actually greater than the q quantile.

For example, suppose we specify high_q=q=0.12, which is somewhat more than

the failure rate of 0.1 that we desire but probably not so large that our chance of falsely

concluding deterioration would be wildly excessive. If our computed lower bound happened

to be exactly the 0.12 quantile, this means our bound would be violated 12 percent of the

time rather than the 10 percent of the time we want, not terribly serious. The program

finds the probability that our computed lower bound is greater than the q=.12 quantile

of the distribution of returns, and this turns out to be 0.1638. Equivalently, we can assert

1–0.1638=0.8362 (about 84 percent confidence) that our computed lower bound is less than

or equal to the 0.12 quantile of returns. That’s not great, but it’s pretty good.

We can also approach these probability statements from the opposite direction,

specifying the probability of having a bad true quantile and then computing the

optimistic and pessimistic q values corresponding to this probability. For example,

Chapter 6 Estimating Future Performance II: Trade Analysis

251

we could specify p_of_q=0.05. The program would then compute an optimistic q of

0.0673 and a pessimistic q of 0.1363. Recall that we specified p=0.1, meaning that we

want a failure rate of 10 percent. These figures show that there is a 5 percent chance that

the true failure rate is 6.73 percent or less, and another 5 percent chance that the true

failure rate is greater than 13.63 percent.

The same ideas apply to the upper bound, except with directions reversed. In this

case, failure is a future return equaling or exceeding the upper bound. The optimistic

situation is the upper bound being too large, and the pessimistic situation is the upper

bound being too small, exactly the opposite as for the lower bound. All calculations are

performed the same way, as will be seen when the code is presented.

After these probabilities are all computed from the user-supplied parameters,

their veracity is tested. This is done by generating a large number of test sets, each

containing nsamples simulated OOS returns from a distribution whose quantiles are

known in advance from theory. For each test set, the lower and upper bounds are

found using m=(n+1)p. Then these computed lower and upper bounds are compared

to the optimistic and pessimistic q values, both those supplied by the user as low_q and

high_q, and those based on the user-supplied p_of_q. A count is kept of how many times

the computed bound is outside the optimistic or pessimistic limits. For each possible

situation, the count divided by the number of tries gives the observed probability of

occurrence. This continually updated observed probability is printed to the screen

along with the theoretically correct value as computed by the program, and the user can

confirm that operation is correct.

�The CONFTEST Program: Code
We now explore essential code snippets from the complete program CONFTEST.CPP.

The user parameters are read as follows:

 nsamps = atoi (argv[1]) ;

 lower_fail_rate = atof (argv[2]) ; // Our desired lower bound's failure rate

 lower_bound_low_q = atof (argv[3]) ;   // Test 1 optimistic q

 lower_bound_high_q = atof (argv[4]) ;  // Test 1 pessimistic q

 p_of_q = atof (argv[5]) ; // Test 2: Want this chance of bad q

Chapter 6 Estimating Future Performance II: Trade Analysis

252

The next few lines are the essential computations discussed in prior sections. We

use m=(n+1)p to get an unbiased quantile estimate and then subtract one because C++

indexing has origin zero. This gives the index of the lower bound in the sorted array

of OOS returns. If a careless user specifies a tiny fail rate, make sure we do not have a

negative subscript. The subroutine orderstat_tail() in STATS.CPP computes the probability

that the mth smallest item in a sample exceeds a specified quantile of the distribution.

Thus, lower_bound_high_theory is the probability associated with the pessimistic q, and

lower_bound_low_theory is the probability associated with the optimistic q. The former is

the probability that our computed lower bound is disturbingly larger than the quantile

associated with lower_bound_high_q, which is greater than lower_fail_rate, leading to

excessive failure rate. The latter is the probability that our computed lower bound is

disturbingly smaller than the quantile associated with lower_bound_low_q, which is lower

than lower_fail_rate, leading to misleadingly low failure rate.

 lower_bound_index = (int) (lower_fail_rate * (nsamps + 1)) - 1 ;

 if (lower_bound_index < 0)

 lower_bound_index = 0 ;

 lower_bound_high_theory =

 orderstat_tail (nsamps , lower_bound_high_q , lower_bound_index +1) ;

 lower_bound_low_theory =

 1.0 - orderstat_tail (nsamps , lower_bound_low_q , lower_bound_index +1) ;

 p_of_q_high_q = quantile_conf (nsamps , lower_bound_index+1 , p_of_q) ;

 p_of_q_low_q = quantile_conf (nsamps , lower_bound_index+1 , 1.0 - p_of_q) ;

When we compute lower_bound_low_theory, we must subtract the probability from

1.0, because orderstat_tail() computes the probability that the lower bound exceeds the

specified quantile, while we want the probability that the lower bound is less than or

equal to the specified quantile.

In the previous code, p_of_q_high_q reverses what we did when computing lower_

bound_high_theory. Instead of specifying a pessimistic q and then computing its associated

probability, we specify the probability (p_of_q) and compute the associated pessimistic

q. This is done with the subroutine quantile_conf() in STATS.CPP. We compute p_of_q_low_q

similarly, remembering that because we are looking at probabilities below the lower

bound instead of shown previously, we must subtract the desired probability from 1.0.

Chapter 6 Estimating Future Performance II: Trade Analysis

253

Once we have these quantities, we compute similar values for the upper bound.

The lower bound is the mth smallest return, and the upper bound is the mth largest. For

convenience, this program sets the upper bound failure rate to be equal to that for the

lower bound, and it reflects the pessimistic and optimistic q accordingly. There is no need

to have this symmetry, and readers should feel free to make the upper bound parameters

different from the lower bound parameters if desired. But do note that relationships reverse

for the upper bound: the pessimistic q is less than the user’s failure rate, while it was greater

than the failure rate for the lower bound. The same relationship holds for the optimistic q.

 upper_bound_index = nsamps-1-lower_bound_index ;

 upper_fail_rate = lower_fail_rate ; // Could be different, but c hoose symmetric here

 upper_bound_low_q = 1.0 - lower_bound_high_q ; // Note reverse symmetry

 upper_bound_high_q = 1.0 - lower_bound_low_q ; // Which is for convenience

 upper_bound_low_theory = lower_bound_high_theory ; // but not required

 upper_bound_high_theory = lower_bound_low_theory ;

We are now ready to run the testing part of the program to verify that the calculations

just done are correct. We begin by zeroing the various failure counters.

 lower_bound_fail_above_count = lower_bound_fail_below_count = 0 ;

 lower_bound_low_q_count = lower_bound_high_q_count = 0 ;

 lower_p_of_q_low_count = lower_p_of_q_high_count = 0 ;

 upper_bound_fail_above_count = upper_bound_fail_below_count = 0 ;

 upper_bound_low_q_count = upper_bound_high_q_count = 0 ;

 upper_p_of_q_low_count = upper_p_of_q_high_count = 0 ;

An endless loop generates sample OOS returns. The easiest distribution to use is just

a uniform distribution, because this distribution has the special property that its quantile

function is the identity: the quantile of any probability is that probability. This avoids

the need to spend a lot of computer time finding quantiles. The scaling factor f avoids a

division every time we report ongoing results to the user. We sort the data so that we can

easily find the mth smallest and largest values of the sample.

 for (itry=1 ; ; itry++) {

 f = 1.0 / itry ;

 for (i=0 ; i<nsamps ; i++)

 x[i] = unifrand () ;

 qsortd (0 , nsamps-1 , x) ;

Chapter 6 Estimating Future Performance II: Trade Analysis

254

We begin with the lower bound tests, and they will be explained one at a time.

In every test, remember that the quantity on the right of the inequality is not only a

probability, but because the distribution is uniform, it is also the quantile associated

with that probability. Thus, even though on first glance it looks like we are comparing

the lower bound to probabilities, which makes no sense, we are actually comparing the

lower bound to quantiles.

These first two tests are not terribly interesting.

 lower_bound = x[lower_bound_index] ; // Our lower bound

 if (lower_bound > lower_fail_rate)

 ++lower_bound_fail_above_count ;

 if (lower_bound < lower_fail_rate)

 ++lower_bound_fail_below_count ;

The two tests just shown compare the computed lower bound to the theoretically

correct quantile for the user’s desired failure rate, which is the correct lower bound.

Because our computed lower bound is an unbiased estimate of the correct (unknown

in practice but known in this test) lower bound, we would expect the computed lower

bound to hover close to the theoretically correct lower bound, overshooting and

undershooting roughly equally. Thus, we would expect each of these two inequalities to

be true very nearly half the time. These are not particularly useful tests, but they do serve

as an easy sanity check.

The next two tests let us verify that the probabilities associated with the optimistic

and pessimistic q (lower_bound_low_theory and lower_bound_high_theory) are correct.

 if (lower_bound <= lower_bound_low_q) // Is our lower bound disturbingly low?

 ++lower_bound_low_q_count ;

 if (lower_bound >= lower_bound_high_q) // Is our lower bound disturbingly high?

 ++lower_bound_high_q_count ;

Those tests were done with the user-supplied lower_bound_low_q and lower_bound_

high_q. Once again, remember that these quantities are probabilities, but because

our simulated OOS returns follow a uniform distribution, they are also the quantiles

associated with these probabilities. If all is correct, these two tests should be true with

probability lower_bound_low_theory and lower_bound_high_theory, respectively.

Chapter 6 Estimating Future Performance II: Trade Analysis

255

Now we perform exactly the same tests, except that instead of comparing the lower

bound to the user-supplied optimistic and pessimistic q quantiles, we compare the lower

bound to the values computed to have user-specified probability p_of_q. We expect each

of these two tests to be true with probability p_of_q.

 if (lower_bound <= p_of_q_low_q) // Ditto, but lim its gotten via p of q

 ++lower_p_of_q_low_count ;

 if (lower_bound >= p_of_q_high_q) // Rather than us er-specified

 ++lower_p_of_q_high_count ;

The next block of tests repeats the previous ones, but this time with regard to the

computed upper bound. As with the lower-bound tests, in every case the quantity on the

right side of the inequality is both a probability and its associated quantile, because our

test distribution is uniform. Probability directions reverse at the upper bound, because a

bound being outside a threshold at the low end means that it is less than the threshold,

while a bound being outside a threshold at the high end means that it is above the

threshold. Thus, we must subtract all probabilities from 1.0 to get the probability in the

opposite direction. This was done earlier for upper_bound_low_q and upper_bound_high_q. It

was not done for the other thresholds, so it must be done here.

 upper_bound = x[upper_bound_index] ; // For upper bound test

 if (upper_bound > 1.0-upper_fail_rate) // This should fail with about 0.5 prob

 ++upper_bound_fail_above_count ; // Because upper_bound is unbiased

 if (upper_bound < 1.0-upper_fail_rate) // Ditto for this

 ++upper_bound_fail_below_count ;

 if (upper_bound <= upper_bound_low_q) // Is our upper bound disturbingly low?

 ++upper_bound_low_q_count ;

 if (upper_bound >= upper_bound_high_q) // Is our upper bound disturbingly high?

 ++upper_bound_high_q_count ;

 if (upper_bound <= 1.0-p_of_q_high_q)

 ++upper_p_of_q_low_count ;

 if (upper_bound >= 1.0-p_of_q_low_q)

 ++upper_p_of_q_high_count ;

Chapter 6 Estimating Future Performance II: Trade Analysis

256

We periodically print results so far. Those print statements are long and omitted

here; see the file CONFTEST.CPP if you want. Sample output from the program is shown

on the next page.

Using the parameters in the example given on page 249, we first see these

parameters echoed and the essential quantities as computed. This is shown in

Figure 6-5. The user specified 200 samples, a failure rate of 0.1, optimistic q of 0.07, and

pessimistic q of 0.12. The probability associated with the former was computed to be

0.0692, and that for the latter 0.1638. The user also specified a “probability of q” of 0.05,

which gave an optimistic q of 0.0673 and a pessimistic q of 0.1363.

Figure 6-5.  CONFTEST parameters and essential computations

Figure 6-6.  CONFTEST results

After running several million trials, we get the results shown in Figure 6-6. We expect

the “fail above” and “fail below” rates to be about 0.5, and these came out pretty close

to that. Why the slight bias? This bias would rapidly vanish for very large samples, but

with just 200 cases, even though we use the “unbiased” formula the act of truncation in

computing m introduces slight bias. There are interpolation methods that largely correct

for this bias by looking at the next further extreme case and moving in that direction

per the truncation. But these methods are not worth bothering with in this application,

especially since the slight bias is in the conservative direction.

Note how closely the obtained probabilities match the computed theoretical

probabilities. We see, for example, 0.0691 obtained versus 0.0692 expected. And for those

tests in which p_of_q=0.05, we obtain rates of 0.499 to 0.501.

This CONFTEST program was supplied and explored mainly to reinforce the

concepts involved in bounding future returns. However, the reader can use it to explore

the impact of pessimistic and optimistic q values for various sample sizes and failure

rates.

Chapter 6 Estimating Future Performance II: Trade Analysis

257

�The BND_RET Program
The file BND_RET.CPP contains source code for a program that demonstrates a practical

application of the return-bounding methods described in prior sections. It reads a

market file in the same format as the BOUND_MEAN program (page 232) and executes

the primitive moving-average-crossover system used in the TRN_BIAS program

(page 123). Please see those references if needed. Here we focus strictly on computation

of bounds for future returns.

We begin with snippets of code and explanations. The mathematics is exactly the

same as in the CONFTEST program already shown, but I chose to label some variables

differently for the sake of approaching issues from a different direction. Variables with

labels containing high_q and low_q have reverse relationships at the low and high

bounds. For the sake of readers who may be confused by this, I renamed variables using

the phrases opt_q and pes_q for the optimistic and pessimistic values, respectively. All

computation and math are exactly the same; only the names have changed. Hopefully,

by looking at the algorithms from both perspectives, the reader will better understand

the process.

Normally, the user can specify the key test parameters shown next. But for the sake of

the demonstration at the end of this section, here are the values that will be used in the

demonstration, temporarily hard-coded into the program:

 max_lookback = 100 ; // Max lookback for long-term moving average

 n_train = 1000 ; // Number of training cases for optimizing trading system

 n_test = 63 ; // Group bar returns to produce quarterly returns

 lower_fail_rate = 0.1 ; // Desired failure rate for lower bound (a typical value)

 upper_fail_rate = 0.4 ;   // Desired failure rate for upper bound (a ty pical value)

 p_of_q = 0.05 ;   // Desired probability of bad bound limits

The first three parameters are described in the TrnBias program writeup. The last

three parameters are related to bounding future returns. The number 63 arises because

there are typically 63 trading days in a quarter, meaning that this study will involve

bounding quarterly returns.

The walkforward code is straightforward. Here it is, and a brief description follows:

 train_start = 0 ;  // Starting index of training set

 n_returns = 0 ; // Will count returns (after grouping)

 total = 0.0 ; // Sums returns for user's edification

Chapter 6 Estimating Future Performance II: Trade Analysis

258

 for (;;) {

 IS = opt_params (n_train , max_lookback , prices + train_start ,

 &short_lookback , &long_lookback) ;

 IS *= 25200 ; // Approximately annualize

 n = n_test ; // Test this many cases

 if (n > nprices - train_start - n_train) // Don't go past the end of history

 n = nprices - train_start - n_train ;

 OOS = test_system (n , prices + train_start + n_train - long_lookback ,

 short_lookback , long_lookback) ;

 OOS *= 25200 ; // Approximately annualize

 returns[n_returns++] = OOS ;

 total += OOS ;

 // Advance fold window; quit if done

 train_start += n ;

 if (train_start + n_train >= nprices)

 break ;

 }

 printf ("\n\nAll returns are approximately annualized by multiplying by 25200") ;

 printf ("\nmean OOS = %.3lf with %d returns", total / n_returns, n_returns) ;

At all times, train_start is the index of the first case in the training set for the current

fold. Returns are computed in groups of 63 bars each, and n_returns counts how many

such grouped returns are created during the walkforward. The total return is also

cumulated, purely to report to the user.

The first step in the walkforward loop is to call opt_params() to find the optimal short-

term and long-term moving-average lookbacks. Its in-sample performance (mean return

per bar) is multiplied by 25200 to roughly annualize day-bar returns.

Normally, the OOS test period will be whatever is specified by the user, which is 63 in

this demonstration. However, the last fold probably will not happen to have exactly this

many test cases, so we shrink it to however many cases remain.

The address given to test_system() looks cryptic and requires a bit of thought to

understand. The first OOS test case return is at train_start + n_train, which is the price

Chapter 6 Estimating Future Performance II: Trade Analysis

259

immediately following the training set. The trade decision for the movement to this first

OOS price must be based on the most recent prices prior to this OOS price. We will be

looking at long_lookback historical prices to make the decision, so we must subtract this

quantity from the OOS position to get the pointer to the first case of those on which the

decision is based. If this is not clear, draw a little timeline of prices, marking the locations

of the training and test sets, and the long-term moving-average lookback. This will make

it clear. The test_system() subroutine returns the mean return per bar across the n test

cases. This quantity is annualized, saved in the returns array, and cumulated.

We compute the lower and upper bounds from the sorted array of OOS returns.

These are the mth smallest and mth largest, respectively.

 qsortd (0 , n_returns-1 , returns) ;

 lower_bound_m = (int) (lower_fail_rate * (n_returns + 1)) ;

 if (lower_bound_m < 1)

 lower_bound_m = 1 ;

 lower_bound = returns[lower_bound_m-1] ;

 upper_bound_m = (int) (upper_fail_rate * (n_returns + 1)) ;

 if (upper_bound_m < 1)

 upper_bound_m = 1 ;

 upper_bound = returns[n_returns-upper_bound_m] ;

We could let the user supply optimistic and pessimistic q values, but this program

arbitrarily decides to place them 10 percent below and above the user-specified failure

rates. Feel free to change these offsets to whatever you want.

 lower_bound_opt_q = 0.9 * lower_fail_rate ; // Arbitrary choice; could be user input

 lower_bound_pes_q = 1.1 * lower_fail_rate ;

 upper_bound_opt_q = 0.9 * upper_fail_rate ;

 upper_bound_pes_q = 1.1 * upper_fail_rate ;

Now we compute the quantities that let us assess the accuracy of our computed

bounds using these precomputed q values.

Chapter 6 Estimating Future Performance II: Trade Analysis

260

 lower_bound_opt_prob = 1.0 - orderstat_tail (n_returns , lower_bound_opt_q ,

 lower_bound_m) ;

 lower_bound_pes_prob = orderstat_tail (n_returns , lower_bound_pes_q ,

 lower_bound_m) ;

 upper_bound_opt_prob = 1.0 - orders tat_tail (n_returns , upper_bound_opt_q ,

 upper_bound_m) ;

 upper_bound_pes_prob = orderstat_tail (n_returns , upper_bound_pes_q ,

 upper_bound_m) ;

Finally, we use the “inverse” procedure: we use the user-specified probability p_of_q

to find the optimistic and pessimistic q values.

 lower_bound_p_of_q_opt_q = quantile_c onf (n_returns , lower_bound_m ,

 1.0 - p_of_q) ;

 lower_bound_p_of_q_pes_q = quantile_conf (n_returns , lower_bound_m , p_of_q) ;

 upper_bound_p_of_q_opt_q = quantile_c onf (n_returns , upper_bound_m ,

 1.0 - p_of_q) ;

 upper_bound_p_of_q_pes_q = quantile_conf (n_returns , upper_bound_m , p_of_q) ;

Figure 6-7 shows sample output from the program when applied to decades of the

OEX index, using the parameters shown on page 257. I’ve tried to be quite verbose so as

to make the meaning of all numbers as clear as possible. At the same time, I’ve avoided

the needless differentiation between “less than or equal to” versus “less than” and so

forth. I took care to be specific in the mathematical presentation, just for correctness.

But in practice we can treat the returns as essentially continuous, so the distinction is

pointless and just adds complexity.

Chapter 6 Estimating Future Performance II: Trade Analysis

261

Note that the annualized return is 1.021 percent; this is a mighty poor trading

system! We would expect 10 percent of future quarterly returns to be a worse loss than

38.942 percent annualized, so if we get a couple such bad quarters, we should be highly

suspicious. We would expect 40 percent of future quarterly returns to be at least 9.043

percent annualized, so if we fail to be up there regularly, we should be suspicious. The

remaining values in the output are self-explanatory and indicate moderate but not

excellent adherence to our specified 10 percent and 40 percent bounds. This is because

we have only 124 returns, dangerously few.

Figure 6-7.  BND_RET output for moving-average crossover on OEX

Chapter 6 Estimating Future Performance II: Trade Analysis

262

�Bounding Drawdown
Let’s review the types of performance bounding we’ve seen so far, all of which are based

on analyzing out-of-sample returns:

•	 If our OOS returns do not contain any extreme values and have a

reasonable bell-curve distribution shape, we can bound the mean of

future returns by using the Student’s-t distribution.

•	 If we do not want to make the assumptions required for the

Student’s-t distribution, we can use a bootstrap, especially the BCa

method, to bound the mean of future returns. This is probably the

single most important bounding technique in our toolbox.

•	 We can use a bootstrap to bound the log of the profit factor of the

distribution of future returns.

•	 With considerable caution, we can use a bootstrap to bound the

Sharpe ratio of the distribution of future returns.

•	 With no restrictive assumptions on the nature of the distribution

of returns, we can approximately bound individual future returns

by sorting historical returns and looking at mth smallest or largest

values. This is especially useful if the returns we bound are grouped

returns, such as monthly or quarterly results, because we can

then use these bounds to track ongoing performance and detect

deterioration. However, unlike prior bounds in this list, these are not

reliable single numbers. They are subject to random variation that we

must quantify in a way that reveals how much we can trust them.

Of course, one performance measure that is of great interest to market traders is the

drawdown that they might encounter in the future. We could, in theory at least, use a

bootstrap to bound the mean drawdown over a specified time period, that value around

which randomly observed future drawdowns will be centered. This is easy to do: just

take numerous bootstrap samples from the set of OOS returns and compute the mean

drawdown of each sample using some random sampling procedure. The percentile

method (or its more advanced version, the BCa method) provides confidence bounds

for the average drawdown expected in the future. For example, suppose we find that in

10 percent of the bootstrap samples the mean drawdown is 34 percent or more. Then we

Chapter 6 Estimating Future Performance II: Trade Analysis

263

can assert that there is a 90 percent chance that the average future drawdown is less than

34 percent.

But this figure is really of very little value. Unless the computed value at a reasonable

probability is extremely large or extremely small, we don’t much care what the average

drawdown is. What we really want is a probability-based bound on what actual

drawdown we will experience. For example, if we were able to compute that there is a

35 percent chance that we will experience a drawdown in excess of 70 percent next year,

we would find this information most useful!

The bad news is that we can’t do this, at least not with the degree of certainty we

would like. We run into the same situation that plagued us in the prior section, where

we computed probability-based bounds on individual future returns. We found that the

bounds themselves were subject to random error, and so we had to qualify our assertions

with additional probability statements. That’s what we have to do with bounds on future

drawdowns. And it’s not fast or easy. Or particularly accurate, for that matter. But this

would be such a useful figure to have in hand that we will pursue the subject, being sure

to keep our fingers firmly crossed as we compute.

�Intuition Gone Wrong
Before jumping into the relatively complex subject of correctly bounding future

drawdowns, we need to be clear on the difference between bounding the mean

drawdown and bounding actual drawdowns. The former is the average drawdown

that we can expect in the future. The latter is an individual drawdown that we actually

experience. The latter will tend to center around the former, but individual drawdowns

can easily be much worse than the average (or much less worse, of course). For obvious

reasons, we care mainly about how bad our next drawdown might be, as opposed to how

bad drawdowns will be on average.

This issue presents an opportunity to show an example of how easily intuition can

lead us astray. Consider the following flawed reasoning:

	 1)	 Our returns are out-of-sample and hence unbiased.

	 2)	 Therefore, our returns are a fair representation of the returns that

we can expect in the future.

	 3)	 Drawdown is dependent on order; a long string of contiguous

losses will produce a huge drawdown, while alternating wins and

losses will produce only tiny drawdowns.

Chapter 6 Estimating Future Performance II: Trade Analysis

264

	 4)	 Future returns will be similar to those in our current OOS

sample. Only two differences will occur. First, there will be some

randomness in the appearance of wins and losses, with the

possibility that we may be blessed with a few more wins than in

our OOS sample, or cursed with a few more losses. Second, the

order in which wins and losses appear will be different. These are

the two factors that will impact future drawdown.

	 5)	 We can use a computer to simulate these two random effects.

We take a random sample with replacement from our returns

and evaluate its drawdown. Then do it again and again, several

thousand times. The distribution of drawdowns we obtain is

representative of the distribution of possible future drawdowns.

For example, suppose we find that 5 percent of these bootstrap

trials had a drawdown of 60 percent or more. Then we assert that

in the future we have a 5 percent chance of suffering a drawdown

of 60 percent or more.

The fatal flaw in this otherwise solid reasoning lies in step 2. Please review the

section “Interlude: What Does Unbiased Really Mean?” on page 125. The problem is that

the term unbiased in the statistical sense does not mean unbiased in the practical sense

that most people understand. In fact, our OOS sample almost certainly is biased. It is

unduly pessimistic. Or optimistic. We don’t know, but whichever is the case, it is not a

fair representation of future returns. We call it unbiased only because undue optimism

and pessimism are balanced, with neither favored.

The computer simulation in step 5 does not take into account the fact that our OOS

returns are themselves a random sample and hence optimistic or pessimistic, perhaps

greatly so. This is a huge source of variation not taken into account by this algorithm. As

a result, extreme drawdowns are far more likely than the computer simulation implies.

When we discuss the DRAWDOWN program on page 267, we’ll see that for catastrophic

drawdowns, this algorithm can underestimate their probability by more than a factor

of 10. Even for modest drawdowns, the probability can be low by a factor of 2. This is an

error of the worst sort, because it is anti-conservative. Overestimating the probability

of a severe drawdown would be troubling, but underestimating this probability can be

disastrous.

Chapter 6 Estimating Future Performance II: Trade Analysis

265

�Bootstrapping Drawdown Bounds
First the bad news: computing probabilistic bounds for future drawdowns is very slow,

typically involving on the order of a hundred million iterations of a slow computation.

A single such computation for an established trading system can usually be done in a

few seconds to a minute at most, a manageable time. But if you want to use drawdown

bounds inside a training algorithm for optimizing parameters of a trading system, you

could easily be looking at hours or even days of computer time. This can be a deal-killer.

Our one out is that the tremendously faster algorithm shown on page 264 in step 5 can be

used in a training algorithm provided that two essential and often reasonable conditions

are met. This will be discussed in more detail in conjunction with the DRAWDOWN

program presented on page 267.

And now yet another bit of bad news: the results of these computations may not be

all that accurate. Like raw profit factors and Sharpe ratios, drawdown-based statistics

aren’t terribly bootstrap-friendly. Still, we can usually get results that are a lot better

than nothing. The algorithm about to be shown deserves a place in every market trader’s

toolbox.

Let’s briefly review the three factors that determine the relationship between

computations done with an observed set of OOS returns and future drawdowns.

Understand that we have an unknown distribution of returns from which our historical

OOS data and future trades are drawn. These are the three factors that concern us:

	 1)	 The set of OOS returns on which our computations are based is a

random sample from the population of possible returns.

	 2)	 The drawdown in a future time period depends on the size and

relative quantity of wins and losses drawn from that population.

	 3)	 This future drawdown depends on the order in which wins and

losses are appear.

The algorithm shown on page 264 in step 5 takes into account Factors 2 and 3 but

ignores Factor 1. We must take care of that.

Conceptually, the solution is simple: we just embed the page 264 step 5 algorithm

inside an outer bootstrap that addresses Factor 1. The outer algorithm would use the

percentile bootstrap (or perhaps the BCa method, which is probably not worth the extra

effort) to compute confidence bounds for the drawdown bounds. Here is the complete

Chapter 6 Estimating Future Performance II: Trade Analysis

266

double-bootstrap algorithm, stated here for computation of the drawdown bound at

a user-specified large (perhaps 0.9–0.99) drawdown confidence DD_conf, and a user-

specified largish (perhaps 0.6–.9) confidence in the drawdown bound, Bound_conf.

For ‘outer’ replications

 Draw an ‘outer’ bootstrap sample from the OOS returns

 For ‘inner’ replications

 Draw an ‘inner’ bootstrap sample from the outer bootstrap sample

 DD_inner [inner] = drawdown of this inner sample

 Sort DD_inner ascending

 m = DD_conf * inner

 DD_outer [outer] = DD_inner [m]

Sort DD_outer ascending

m = Bound_conf * outer

Bound = DD_outer [m]

We should be clear on the meaning of the two user-specified confidence levels,

DD_conf and Bound_conf. The former is the probability that our future drawdown will not

exceed the computed value. For example, we might want to compute the drawdown

that we can be DD_conf confident will never be exceeded. We might, for instance, specify

DD_conf=0.9 and receive from the algorithm a drawdown of, say, 65 percent. Then we can

be 90 percent certain that individual future drawdowns will not exceed 65 percent.

Unfortunately, it’s not that simple. The computed bound, such as the 65 percent just

cited, is itself a random quantity because our OOS sample is itself a random sample.

So we need to compute a probability-based bound on the drawdown bound. In this

example, we might specify Bound_conf=0.7, in which case the algorithm will compute a

larger bound that has a 70 percent chance of equaling or exceeding the actual

DD_conf=0.9 bound. In this example, we might find that the final bound is 69 percent,

rather than the less conservative 65 percent. In other words, for this example, there is

a 70 percent chance that the actual (but unknown) drawdown bound in which we can

have 90 percent confidence does not exceed 69 percent.

That might take a while to sink in. It’s a bound on a bound. There is some true but

unknown drawdown bound for which there is probability DD_conf of being the upper

limit for future drawdowns. Stated more rigorously, and perhaps more clearly, there is

user-specified probability DD_conf that future drawdowns will not exceed this unknown

upper bound. If we could be absolutely certain that our OOS sample exactly replicates

Chapter 6 Estimating Future Performance II: Trade Analysis

267

the distribution of possible future returns, we could use the page 264 step 5 algorithm to

compute this bound and be justifiably happy.

Unfortunately, our OOS set does not replicate the distribution of possible returns.

Making things worse is the fact that random sampling errors have an asymmetric effect

on bound computation; the effect on drawdown bounds is not balanced for optimistic

and pessimistic OOS samples, so we cannot just say that everything will balance out

in the end. Optimistic OOS samples work against us far more strongly than pessimistic

samples work for us.

For this reason, we have to compute a drawdown upper bound that is larger than

that computed by the page 264 step 5 algorithm. We specify a probability that this larger

bound is at least as large as the true but unknown upper bound that corresponds to the

specified DD_conf. We usually don’t have to go overboard on this confidence, unless we

are looking at catastrophic values. But suppose we do want to go out into the region of

ruin, perhaps setting DD_conf=0.999. The associated drawdown is an important number,

because if we see that the drawdown at this very high confidence level is, say, 12 percent

we will be ecstatic, while if we see that it is 98 percent, we should rightly tremble. After

all, 99.9 percent is a high probability, near certainty, but definitely not certain. Failure

can still happen. Since this is such a crucial figure, we should be extra-confident in its

computed value. Thus, we would be inclined to set Bound_conf=0.9 or maybe even more

when DD_conf is huge. Conversely, if we are just looking for routine drawdowns, perhaps

setting DD_conf=0.9, then most people would be comfortable setting Bound_conf=0.7 or

so. This gives us a 70 percent chance that our computed bound equals or exceeds the

unknown true bound, which will be exceeded just 10 percent of the time.

�The DRAWDOWN Program
The file DRAWDOWN.CPP contains source code for a program that lets the user

experiment with computation of drawdown bounds for various hypothetical trading

systems. It demonstrates how to implement the drawdown bounding algorithm shown

on page 266 in a way that lets it compute several bounds simultaneously. It also shows

how badly the page 264 step 5 algorithm underestimates the probability of catastrophic

drawdowns under many common conditions, as well as demonstrating the conditions

under which this algorithm, which is orders of magnitude faster than the “correct”

algorithm, is reasonably accurate.

Chapter 6 Estimating Future Performance II: Trade Analysis

268

The program is invoked as follows:

DRAWDOWN Nchanges Ntrades WinProb BoundConf BootstrapReps QuantileReps TestReps

Let’s break down this command:

•	 Nchanges: Number of price changes

•	 Ntrades: Number of trades, less than or equal to Nchanges

•	 WinProb: Probability of winning, typically near 0.5

•	 BoundConf: Confidence (typically .5–.999) in correct DD bound

•	 BootstrapReps: Number of bootstrap reps

•	 QuantileReps: Number of bootstrap reps for finding drawdown

quantiles

•	 TestReps: Number of trial reps for this study

The DRAWDOWN program generates Nchanges price changes, which represent the

(log) OOS returns on which bound computation will be based. This may encompass a

time period longer than the time period over which you want to consider drawdowns.

For example, you might have 10 years of OOS data but want to consider drawdowns over

a single year, or perhaps even just a quarter. So, you specify an equal or lesser quantity,

Ntrades, which spans the desired time period.

The price changes follow a normal distribution, and they will be positive with

probability WinProb, which we would normally set to 0.5 or some value slightly above 0.5

if we want to stay in the realm of realistic systems.

The user cannot set DD_conf, but four useful value are hard-coded into the program

and computed simultaneously. These are 0.999 for catastrophic drawdowns, 0.99 for

serious drawdowns, 0.95 for fairly bad drawdowns, and 0.9 for drawdowns that could be

expected occasionally. Multiple DD_conf values can be computed in essentially the same

amount of time as a single value, so it is most efficient to compute them together in a

single run.

The user specifies Bound_conf, and this value is used for the two largest (0.9 and

0.95) values of DD_conf. However, 1.0 – (1.0 – Bound_conf) / 2.0 is used for the two smallest

values. This increase above the user-specified value is in deference to the fact that for

smaller values of DD_conf we typically would want increased confidence in the computed

bounds. This is where the most serious drawdowns occur, so we’d better be sure of

ourselves.

Chapter 6 Estimating Future Performance II: Trade Analysis

269

BootstrapReps is the number of replications used in the page 264 step 5 algorithm, and

it is also the number of outer replications used in the “correct” algorithm on page 266.

QuantileReps is the number of inner replications used in the “correct” algorithm on

page 266.

These two algorithms are used to compute upper bounds for future drawdowns. In

case any readers are interested, a lower bound for the mean return is also computed but

then incorrectly used as if it were a bound for future returns. This provides additional

demonstration of the difference between bounding future means and future values.

I won’t discuss this test further, but some readers may be interested in studying that

aspect of the source code.

After we have eight drawdown bounds computed (four values of DD_conf for the

incorrect and correct methods), a large number of trade returns are generated from

the same distribution as was used for generating the OOS data on which the bound

computation depended. The program counts how often each of the eight bounds are

violated. If the bound computation is correct, the violation rates should equal one minus

the corresponding values of DD_conf. If the violation rate exceeds the corresponding

DD_conf, we have the extremely serious error of the algorithm underestimating the

probability of a drawdown exceeding the bound. If the violation rate is less than DD_conf,

we have the much less serious error of the algorithm overestimating the bound. This is

still a problem, because we are being too conservative and perhaps rejecting a trading

system unfairly. But unfairly rejecting a trading system is a lot better than putting a

system to work trading real money and then discovering too late that its true probability

of serious drawdown is much worse than we thought.

This whole process of generating hypothetical OOS returns, computing drawdown

bounds, and seeing how these bounds actually perform is repeated TestReps times and

the results averaged. These average performances, along with the ratio of the attained

failure probability to the correct failure probability, are printed to the screen and to a file

called DRAWDOWN.LOG.

Before examining key code fragments that illustrate this algorithm, let’s devote one

paragraph to more mathematically inclined readers who have bootstrap experience

and who may be questioning the rationale behind the algorithm on page 266. A central

idea is that although the inner loop has been called a bootstrap, it really is not. It just

looks like one and calling it a bootstrap is not a huge crime if one is not being too strict.

However, there is really only one bootstrap at work here, the outer loop. This bootstrap

is using the percentile method to estimate confidence intervals for a particular statistic.

Chapter 6 Estimating Future Performance II: Trade Analysis

270

This statistic is the user’s desired quantile, that corresponding to DD_conf. For every outer-

loop bootstrap sample, this statistic is estimated by repeated sampling in the inner loop.

This, of course, makes computation of this statistic independent of the order in which

the outer-loop sample is generated; it is dependent only on the empirical distribution.

So, the bottom line is that the inner loop is simply computing an estimate of the sample

statistic derived from the empirical distribution of the outer-loop bootstrap sample. If

you do not understand this paragraph, don’t worry; you don’t need to do so.

First, we examine the code that generates our bootstrap sample data for both the

incorrect and correct drawdown bounding algorithms. All calling parameters are self-

explanatory except make_changes. This would be set to True the first time it is called in a

replication loop, which causes a set of prices changes, representing the log of our OOS

returns, to be generated and saved. For remaining replications, make_changes is false,

which retains the originally generated sample. Regardless, a random sample is collected

from the saved changes.

void get_trades (

 int n_changes , // Number of price changes (available history)

 int n_trades , // Number of these changes defining drawdown period

 double win_prob ,   // Probability 0-1 of a winning trade

 int make_changes ,   // Draw a new random sample from which bootstraps are drawn?

 double *changes , // Work area for storing n_changes changes

 double *trades // n_trades are returned here

)

{

 int i, k, itrade ;

 if (make_changes) { // Generate the sample?

 for (i=0 ; i<n_changes ; i++) {

 changes[i] = normal () ;

 if (unifrand() < win_prob)

 changes[i] = fabs (changes[i]) ;

 else

 changes[i] = -fabs (changes[i]) ;

 }

 }

Chapter 6 Estimating Future Performance II: Trade Analysis

271

 // Get the trades from a standard bootstrap

 for (itrade=0 ; itrade<n_trades ; itrade++) {

 k = (int) (unifrand() * n_changes) ;

 if (k >= n_changes)

 k = n_changes - 1 ;

 trades[itrade] = changes[k] ;

 }

}

Just to be clear on how drawdown is computed, here is the code for that routine.

Some methods report drawdown as a percent of maximum equity. However, this

requires specification of an initial equity that has a significant effect on reported values.

A frequently better way is to compute drawdown as an absolute number, which removes

the ambiguity of initial equity and also makes the impact of drawdown uniform across

the time interval. This is ideal for trading scenarios in which negative equity is possible,

such as leveraged futures trading. Also, if the trades are the log of equity changes, this

method gives results that are monotonically related to percent drawdown, with the

translation easy to implement, as is shown on page 280.

double drawdown (

 int n , // Number of trades

 double *trades // They are here

)

{

 int icase ;

 double cumulative, max_price, loss, dd ;

 cumulative = max_price = trades[0] ;

 dd = 0.0 ;

 for (icase=1 ; icase<n ; icase++) {

 cumulative += trades[icase] ;

 if (cumulative > max_price)

 max_price = cumulative ;

Chapter 6 Estimating Future Performance II: Trade Analysis

272

 else {

 loss = max_price - cumulative ;

 if (loss > dd)

 dd = loss ;

 }

 } // For all cases

 return dd ;

}

This routine cumulates equity as a running sum of returns and keeps track of the

maximum equity. As each return is processed, the current equity is compared to the

maximum, and the largest difference to date is the drawdown.

The correct bounding algorithm requires that, for each bootstrap sample, we do

a large number of samples to estimate the desired DD_conf quantile. But the sampling

and sorting in this process is extremely time-consuming, so this routine computes four

different quantiles simultaneously at essentially no additional expense.

void drawdown_quantiles (

 int n_changes ,    // Number of price changes (available history)

 int n_trades ,     // Number of trades

 double *b_changes ,     // n_changes changes bootstrap sample supplied here

 int nboot ,     // Number of bootstraps used to compute quantiles

 double *bootsample ,     // Work area n_trades long

 double *work ,     // Work area nboot long

 double *q001 ,     // Computed quantiles

 double *q01 ,

 double *q05 ,

 double *q10

)

{

 int i, k, iboot ;

 for (iboot=0 ; iboot<nboot ; iboot++) {

 for (i=0 ; i<n_trades ; i++) {

 k = (int) (unifrand() * n_changes) ;

Chapter 6 Estimating Future Performance II: Trade Analysis

273

 if (k >= n_changes)

 k = n_changes - 1 ;

 bootsample[i] = b_changes[k] ;

 }

 work[iboot] = drawdown (n_trades , bootsample) ;

 }

 qsortd (0 , nboot-1 , work) ;

 k = (int) (0.999 * (nboot+1)) - 1 ;

 if (k < 0)

 k = 0 ;

 *q001 = work[k] ;

 k = (int) (0.99 * (nboot+1)) - 1 ;

 if (k < 0)

 k = 0 ;

 *q01 = work[k] ;

 k = (int) (0.95 * (nboot+1)) - 1 ;

 if (k < 0)

 k = 0 ;

 *q05 = work[k] ;

 k = (int) (0.90 * (nboot+1)) - 1 ;

 if (k < 0)

 k = 0 ;

 *q10 = work[k] ;

}

This code does bootstrap sampling (although as discussed earlier, it’s not really a

bootstrap) a great many times. These samples are taken from the outer-loop bootstrap

sample, making all n_changes of them available. In practice, because the statistics

computed by this routine are estimates subject to random error, it is important that nboot

here be very large. I typically use 10,000, and larger values would not be unreasonable.

For each of these samples it computes and saves the drawdown for the specified

n_trades size interval. After all sampling is complete, it sorts the saved drawdowns and

uses the unbiased quantile formula to estimate the four desired quantiles.

Chapter 6 Estimating Future Performance II: Trade Analysis

274

Note that the if(k<0) checks are not needed in this because they will always be false.

But this check is a good habit to get into, because in general it can happen that k will

equal –1.

For both tests, we have a trivial routine to find a quantile. It assumes that the data is

sorted ascending.

static double find_quantile (int n , double *data , double frac)

{

 int k ;

 k = (int) (frac * (n+1)) - 1 ;

 if (k < 0)

 k = 0 ;

 return data[k] ;

}

The page 264 step 5 algorithm, which I call the “incorrect” method here (though its

results can be acceptable under some circumstances) is as follows:

for (iboot=0 ; iboot<bootstrap_reps ; iboot++) {

 make_changes = (iboot == 0) ? 1 : 0 ; // Generate sample on first pass only

 get_trades (n_changes , n_trades , win_prob , make_changes , changes , trades) ;

 incorrect_drawdowns[iboot] = drawdown (n_trades , trades) ;

 } // End of incorrect method bootstrap loop

qsortd (0 , bootstrap_reps-1 , incorrect_drawdowns) ;

incorrect_dd_001 = find_quantile (bootstrap_reps , incorrect_drawdowns , 0.999) ;

incorrect_dd_01 = find_quantile (bootstrap_reps , incorrect_drawdowns , 0.99) ;

incorrect_dd_05 = find_quantile (bootstrap_reps , incorrect_drawdowns , 0.95) ;

incorrect_dd_10 = find_quantile (bootstrap_reps , incorrect_drawdowns , 0.9) ;

The outer loop draws many bootstrap samples. The first time, get_trades() is called

with make_changes true so that a set of simulated OOS returns is generated prior to

bootstrap sampling. For subsequent passes through this loop, sampling is done from the

original collection. For each sample, the drawdown is computed and saved.

After all replications are complete, the drawdowns are sorted into ascending order.

The find_quantile() routine is called for each desired quantile.

Chapter 6 Estimating Future Performance II: Trade Analysis

275

The correct routine is a little more complex. We have to distinguish between the

bootstrap sample size (n_changes) and the size of the sample (n_trades) for the test

statistic (a specified quantile). The actual bootstrap (the outer loop) is sampling from the

complete set of available OOS returns, because this is our presumed population. But our

test statistic is a quantile of the distribution of drawdowns experienced during a specified

time period, which may be shorter than the length encompassed by the entire OOS set.

for (iboot=0 ; iboot<bootstrap_reps ; iboot++) {

 make_changes = (iboot == 0) ? 1 : 0 ; // Generate sample on first pass only

 get_trades (n_changes , n_changes , win_prob , make_changes , changes , trades) ;

 drawdown_quantiles (

 n_changes , n_trades , trades , quantile_reps , bootsample , work ,

 &correct_q001[iboot] , &correct_q01[iboot] ,

 &correct_q05[iboot],&correct_q10[iboot]) ;

 } // End of incorrect method bootstrap loop

qsortd (0 , bootstrap_reps-1 , correct_q001) ;

qsortd (0 , bootstrap_reps-1 , correct_q01) ;

qsortd (0 , bootstrap_reps-1 , correct_q05) ;

qsortd (0 , bootstrap_reps-1 , correct_q10) ;

correct_q001_bound = find_quantile (

 bootstrap_reps , correct_q001 , 1.0 - (1.0 - bound_conf) / 2.0) ;

correct_q01_bound = find_quantile (

 bootstrap_reps , correct_q01 , 1.0 - (1.0 - bound_conf) / 2.0) ;

correct_q05_bound = find_quantile (boots trap_reps , correct_q05 , bound_conf) ;

correct_q10_bound = find_quantile (boots trap_reps , correct_q10 , bound_conf) ;

After we have a collection of bootstrapped quantiles at each of the four specified

levels, we use the simple percentile algorithm to find confidence bounds for the

quantiles. For the two larger fractiles (0.1 and 0.05) we choose the user-specified

confidence level, typically something moderately larger than 0.5. But for the two more

extreme fractiles (0.01 and 0.001) we push the confidence level further, under the

arbitrary but reasonable assumption that when we are dealing with more extreme

(serious!) drawdowns, we had better be more sure of our computed bound. Note that

we could use the frequently superior BCa bootstrap here, but the added complexity is

probably not worthwhile. Feel free to try it.

Chapter 6 Estimating Future Performance II: Trade Analysis

276

The last step in this test program is to generate “future” returns and compare their

drawdowns to the previously computed bounds. A good method for bound computation

will provide bounds whose actual failure rate is close to their desired failure rate. Here

are some snippets from that code:

for (ipop=0 ; ipop<POP_MULT ; ipop++) {

 for (i=0 ; i<n_trades ; i++) {

 trades[i] = normal () ;

 if (unifrand() < win_prob)

 trades[i] = fabs (trades[i]) ;

 else

 trades[i] = -fabs (trades[i]) ;

 }

 crit = drawdown (n_trades , trades) ;

 if (crit > incorrect_drawdown_001)

 ++count_incorrect_drawdown_001 ;

 if (crit > correct_q001_bound)

 ++count_correct_001 ;

 ...Test other bounds similarly...

 } // For ipop

We generate a large number of trial return sets, each containing n_trades trade

returns. Naturally, this trade set is generated in the same way as the trade sets used for

computing the bounds.

For each trade set, we compute the drawdown and compare it to the computed

bounds, counting how many times the bound is violated (the actual drawdown exceeds

the computed bound). After we have completed a large number of compute-bound-test-

bound trials, we divide the failure counts by the number of trials and print each bound’s

failure rate along with the correct rate, knowing that these rates will be equal if the

bound computation is correct.

Chapter 6 Estimating Future Performance II: Trade Analysis

277

�Experiments with the DRAWDOWN Program
I ran a series of experiments with the DRAWDOWN program; readers can feel free to run

their own experiments. For all of these tests, the probability of a win was set to 0.6, which

would be fairly typical of a real-life trading system with balanced wins and losses. There

were 5,000 bootstrap replications; 10,000 samples were used for computing the quantile

bounds; and the process was repeated for 2,000 trials. These numbers are large enough

to provide reliable results.

Three different configurations were used. First, I used 63 returns for both the OOS

and the drawdown periods. This corresponds to using a quarter of daily data to bound

drawdown in the next quarter. Then I expanded this to 252 returns each, corresponding

to using one year of OOS returns to bound drawdown in the next year. Finally, I used

2,520 returns with a drawdown period of 252 returns. This corresponds to using 10 years

of OOS data to bound drawdown in the next year.

Prob OOS DD Incorrect 0.5 0.6 0.8

0.001 63 63 13.65 4.49 3.42 1.64

0.01 63 63 4.29 1.74 1.37 0.71

0.05 63 63 2.16 2.15 1.65 0.85

0.10 63 63 1.66 1.66 1.31 0.72

0.001 252 252 5.84 1.81 1.35 0.59

0.01 252 252 2.55 1.02 0.80 0.41

0.05 252 252 1.62 1.62 1.26 0.64

0.10 252 252 1.36 1.37 1.10 0.61

0.001 2520 252 1.54 0.79 0.68 0.45

0.01 2520 252 1.16 0.76 0.68 0.51

0.05 2520 252 1.06 1.06 0.95 0.72

0.10 2520 252 1.04 1.03 0.94 0.75

In the previous table, each entry is the factor by which the actual rate of violating

the drawdown bound exceeds the presumed rate. Ideally they should be equal; values

greater than 1.0 are much worse than values under 1.0 because a ratio above 1.0 means

that the drawdown violates the supposed bound more frequently than it should (and

that you think it will!).

Chapter 6 Estimating Future Performance II: Trade Analysis

278

The first column is the failure-to-bound rate whose corresponding bound we want to

compute. The second column is the number of OOS returns made available to compute

the bounds. The third column is the number of returns that define the upcoming

drawdown period. The fourth column is the excess failure ratio for the “incorrect”

page 264 step 5 algorithm. The remaining three columns are the excess failure ratio for

the “correct” algorithm using confidence levels of 0.5, 0.6, and 0.8. (But note how these

confidences are extended for the two smallest probabilities, as explained on page 269.)

The following results should be noted:

•	 The quality of the incorrect method depends tremendously on

the size of the OOS sample. This makes sense, because larger OOS

samples more accurately represent the underlying population of

returns. Small OOS samples are more subject to the random variation

that makes the incorrect method incorrect.

•	 The quality of the incorrect method depends tremendously on

the specified failure rate. For modest failure rates, such as 0.10

(a 10 percent chance that the upcoming drawdown will exceed the

computed bound), the incorrect method performs reasonably well,

though even then in every test it still underestimates the true failure

rate, a dangerous property.

•	 When the OOS sample is small (63) and we are looking at rare

catastrophic events (p=0.001), the incorrect method underestimates

the probability of catastrophic drawdown by a factor of 13.65, a huge

problem. But this is a difficult situation, as evidenced by the fact that

even the correct method at a confidence level of 0.8 underestimates

this probability by a factor of 1.64.

•	 If we use the correct method with a confidence level of 0.8 (extended

for small probabilities as explained on page 269), then other than

this extreme combination of small sample and tiny probability,

the computed bounds are always conservative (they overestimate

the violation rate). Yet they do not do so to an extreme degree. The

worst case is a ratio of 0.41, not a serious penalty considering the

confidence that we get in return. This trade-off is a no-brainer for me.

Chapter 6 Estimating Future Performance II: Trade Analysis

279

�The CHOOSER_DD Program
On page 179 we saw the CHOOSER program, which selects equities to purchase and

hold for one day, based on the evolving performance of multiple selection criteria. This

program was used to demonstrate nested walkforward. Now we take this same trading

system and show how to compute confidence bounds for future drawdown. This is

implemented in the program whose source code is in CHOOSER_DD.CPP. Readers

interested in the trading system should refer to the section beginning on page 179. Here

we will focus on the drawdown aspects of this program.

Recall that the out-of-sample returns for this trading system are in the array OOS2

at indices OOS2_start up to but not including OOS2_end. Thus, we have n OOS cases,

as shown in the first line of the following code. We do a large number of bootstrap

replications, at least several thousand if we want good accuracy. For each bootstrap

sample we call drawdown_quantiles() to compute the four predefined quantiles in which we

are interested.

It is vital to notice that each bootstrap sample is the size of the complete OOS set,

because this is the presumed population from which we are sampling. On the other

hand, we specify n_trades to be the number of trades in the drawdown period, and it

may be less than n. This is 252, a year of daily returns, in the program, but it can be easily

changed by the reader. This quantity defines the statistic we are bounding.

n = OOS2_end - OOS2_start ;

for (iboot=0 ; iboot<bootstrap_reps ; iboot++) {

 for (i=0 ; i<n ; i++) { // Collect a bootstrap sample from the entire OOS set

 k = (int) (unifrand() * n) ;

 if (k >= n)

 k = n - 1 ;

 bootsample[i] = OOS2[k+OOS2_start] ;

 }

 drawdown_quantiles (n , n_trades , bootsample , quantile_reps , quantile_sample ,

 work , &q001[iboot] , &q01[iboot] ,&q05[iboot] ,&q10[iboot]) ;

 } // End of bootstrap loop

Chapter 6 Estimating Future Performance II: Trade Analysis

280

The drawdown_quantiles() routine is identical to that we have already seen on page 272,

and the drawdown computed by drawdown() shown on page 271 is also identical, with one

crucial exception. We change the last line like this:

 return 100.0 * (1.0 - exp (-dd)) ; // Convert log change to percent

Recall that all OOS returns are the log of the price change ratio (the difference of

log prices). Also recall the basic mathematical principle that the log of a product is the

sum of the logs of the items being multiplied. Thus, the computed drawdown is the log

of the ratio of the peak equity to the trough equity. The simple formula in the previous

line of code computes the percent equity loss, which is the most common way to express

drawdown. For example, suppose we start at an equity of 1, reach a peak equity of 3, and

have a subsequent trough of 2. We will have dd=log(3)–log(2). That final line of code will

return 100*(1–exp(log(2)–log(3)) = 100*(1–2/3) = 33.3 percent, which is what most users would

expect.

After all bootstrap_reps samples have been processed, we sort each of the four statistic

collections ascending so that we can easily find any specified quantile using the

find_quantile() routine shown on page 274. Code for the 0.001 bound is shown here; the

code for the other three bounds is similar:

 qsortd (0 , bootstrap_reps-1 , q001) ;

 fprintf (fpReport, "\n 0.5 0.6 0.7 0.8 0.9 0.95") ;

 fprintf (fpReport, "\n0.001 %8.3lf %8.3lf %8.3lf %8.3lf %8.3lf %8.3lf",

 find_quantile (bootstrap_reps , q001 , 0.5),

 find_quantile (bootstrap_reps , q001 , 0.6),

 find_quantile (bootstrap_reps , q001 , 0.7),

 find_quantile (bootstrap_reps , q001 , 0.8),

 find_quantile (bootstrap_reps , q001 , 0.9),

 find_quantile (bootstrap_reps , q001 , 0.95)) ;

It’s important to understand the meaning of the computed bounds. These refer to

the bounds for a particular time interval specified in advance, and also to equity changes

only within that interval. Prior equity is ignored, even though drawdown may be a

continuation of an existing drawdown in progress. Also, this is not the probability that we

will ever see such an extreme drawdown. It applies to a single specified time period only.

Typically, we would let this be the upcoming year.

Chapter 6 Estimating Future Performance II: Trade Analysis

281

As a demonstration, I ran the CHOOSER_DD program on the same data that was

employed on page 179. The output is shown in Figure 6-8. Each row corresponds to the

probability that the drawdown within a specified single future time period (such as the

next year, and ignoring equity prior to that time period) will exceed the tabled value.

The columns correspond to confidence that the shown bound is at least equal to the

unknown correct bound. Note that we pay surprisingly low penalty for greatly increased

confidence in our bound.

Figure 6-8.  Output of the CHOOSER_DD program

Chapter 6 Estimating Future Performance II: Trade Analysis

283
© Timothy Masters 2018
T. Masters, Testing and Tuning Market Trading Systems, https://doi.org/10.1007/978-1-4842-4173-8_7

CHAPTER 7

Permutation Tests
�Overview of Permutation Testing
We begin with a general overview of the concept behind permutation testing. Of necessity,

many theoretical details are omitted; see my book Data Mining Algorithms in C++ for more

in-depth treatment. Suppose we are training or testing some system and its performance

depends on the order in which data is presented to it. Here are some examples:

	 1)	 We have a completely defined trading system, and we want

to measure its performance out-of-sample. The order of price

changes in its market price history is of great consequence.

	 2)	 We have a proposed a market trading system, and we must

optimize one or more of its parameters to maximize a measure

of its performance. The order of price changes in its market price

history is of great consequence.

	 3)	 We have a model that, on a regular basis, examines indicators and

uses the values of these variables to predict near-term changes in

market volatility. We want to train (optimize) this model, or test

it on OOS data. We will then measure the in-sample (if training)

or out-of- sample (if testing) error of this model. The order of the

predicted variable, future volatility, with respect to the order of the

indicators is (of course!) of great consequence.

Although the precise details of how permutation testing would be employed in each

of these examples is somewhat different, the underlying idea is the same. We perform

whatever task we want (training or testing a trading system or predictive model) using

the original data in its correct order. Then we randomly permute the data and repeat

our training or testing activity, and we record the result. Then we permute again, and

again, many (hundreds or even thousands) times. We compare the performance figure

284

obtained from the original data with the distribution of performance figures from the

permutation results and thereby may reach a conclusion.

How do we do this comparison? We are testing some measure of performance,

whether it be the net return of a trading system, the mean error of a predictive model,

or any other performance measure appropriate to our operation. Our operation may or

may not be useful: our trading system may or may not be able to legitimately capitalize

on market patterns to make money. Our predictive model and the indicators on which it

bases its decisions may or may not have true predictive power. But there’s one thing we

can usually be quite sure of: if we permute the data on which our operation is based, any

legitimate ability will vanish because predictive patterns are destroyed. If we randomly

permute the price changes in a market history, the market will become unpredictable,

and hence any trading system will be hobbled. If we randomly change the pairing

between indicators and a target variable for a predictive model, the model will not have

any authentic relationships to learn or make use of.

This leads to our method for using permutation testing. Suppose for the moment

that we repeat the training or testing with nine different permutations. Including the

original, unpermuted data, we have ten performance measures. If we sort these, the

original performance can occupy any of the ten possible ordered positions, from best to

worst, or any position in between. If our operation is truly worthless (the trading system

has no ability to detect profitable market patterns or the model has no predictive power),

then the original order will have no advantage. Thus, the original performance has an

equal probability of occupying any of the positions. Conversely, if our operation has

legitimate power, we would expect that its original performance would come in at or

near the best. So, the position of our original performance in the sorted performances

provides useful information about the ability of our operation.

We can be more rigorous. Continue to suppose that we have performed nine

permutations. Also suppose we find, to our great joy, that the original unpermuted

data has the best performance of the ten values. This, of course, is great news and very

encouraging. It is evidence that our operation is finding useful patterns in the data when

the data is not permuted. But how meaningful is this finding? What we can say is that

if our operation is truly worthless there would be a 0.1 probability that we would have

obtained this result by sheer luck. In other words, we have obtained a p-value of 0.1. If

this conclusion and terminology are not perfectly clear, please review the material on

hypothesis tests that begins on page 210.

What if our original performance is the second best of the ten performers? Under the

null hypothesis that our operation is worthless, there is a 0.1 probability of it landing in

Chapter 7 Permutation Tests

285

that second slot, and also a 0.1 probability that it would have done better, landing in the

top slot. Thus, there is probability (p-value) of 0.2 that a worthless operation would have

obtained the performance we observed, or better.

In general, suppose we perform m random permutations, and also suppose that

the performance of k of these permutations equals or exceeds the performance of the

original data. Then, under the null hypothesis that our operation is worthless, there is

probability (k+1)/(m+1) that we would have obtained this result or better by luck.

If we want to be scrupulously rigorous in our experimental design, we would choose

a p-value in advance of doing the permutation test. In particular, we would choose a

small probability (typically 0.01 to 0.1) that we find to be an acceptable likelihood of

falsely concluding that our operation has legitimate ability when it does not. We would

choose a large m (over 1,000 is not unusual or excessive) such that m+1 times our p-value

is an integer, and solve for k. Then perform the permutation test and conclude that our

operation is worthy if and only if k or fewer of the permuted values equal or exceed the

original value. If our operation is truly worthless, there is our chosen probability that we

will falsely conclude that it is worthy.

�Testing a Fully Specified Trading System
Suppose we have developed a trading system and we want to test its performance on a

set of market history that we held out from the development process. This will give us an

unbiased performance figure. We have already explored some important uses for returns

obtained in this out-of-sample time period. If none of the returns is extreme and the shape

of their distribution is roughly bell-curve-shaped, we can cross our fingers and use the

parametric tests described on page 216. If we want to be more conservative, we can use the

bootstrap test described on page 222. But as we’ll see soon, a permutation test provides a

potentially valuable piece of information not provided by either of the tests just mentioned.

Moreover, permutation tests have none of the distribution assumptions that limit

utility of parametric tests, and they are even more robust against distribution problems

than bootstrap tests. Thus, permutation tests are a vital component of a well-equipped

toolbox.

When we permute market price changes to perform this test, we must permute

only the changes in the OOS time period. It is tempting to start the permutation earlier,

with the price changes that drive the trade decisions. For example, suppose we look

back 100 bars to make a trade decision. The data for our test will start 100 bars before

Chapter 7 Permutation Tests

286

the beginning of the OOS test period so that we can begin making trade decisions

immediately, on the first bar of the OOS period. But these 100 early bars must not be

included in the permutation. Why? Because their returns will not be included in the

original, unpermuted performance figure. What if these early bars are unusual in some

way, such as having a strong trend? When these unusual bars get permuted into the OOS

segment, they would impact results relative to the original result which does not include

their influence. So, they must not be allowed to invade the OOS test area.

�Testing the Training Process
Perhaps the single most important use of permutation testing is evaluation of the

process by which your trading system is optimized. There are primarily two very

different ways in which a trading system can fail. The most obvious failure mode is that

the system is not able to detect and capitalize on predictive patterns in market prices; it’s

weak or unintelligent. It should be apparent that permutation testing will easily detect

this situation, because the performance of your system on unpermuted data, as well as

on permuted data, will be poor. Your system’s performance will not stand out above the

permuted competition.

However, this is not the situation we are most interested in, because we would

almost certainly never get this far. The weakness of a trading system will be apparent

long before we reach the point of expending precious computer resources; we’ll see the

dismal performance quickly.

The problem in which permutation testing is valuable is the opposite of weakness:

your system is too powerful at detecting predictive patterns. The term commonly

employed for this situation is overfitting. When your system has too many optimizable

parameters, it will tend to see random noise as predictive patterns and learn these

patterns along with any legitimate patterns that might be present. But because noise

does not repeat (by definition), these learned patterns will be useless, even destructive,

when the system is put to use trading real money. I have often seen people develop

systems that look back optimizable distances for several moving averages, optimizable

distances for volatility, and optimizable thresholds for changes in the quantities. Such

systems produce astonishing performance in the training period and yet produce

completely random trades out-of-sample.

This is where permutation testing comes to the rescue. An overfitted trading system will

perform well not only on the original data but on permuted data as well. This is because an

overfitted system is so powerful that it can learn “predictive” patterns even on permuted

Chapter 7 Permutation Tests

287

data. As a result, all in-sample performances, permuted and unpermuted, will be excellent,

and the original performance will not stand out from its permuted competitors. So, all you

need to do is repeat the training process on many sets (at least 100) of permuted data and

compute the p-value as described earlier, (k+1)/(m+1). This may require a lot of computer

time, but it is almost always worthwhile. In my own personal experience working with

trading system developers over the years, I have found this technique to be one of the most

valuable tools in my toolbox. Unless you get a small (0.05 or less) p-value, you should be

suspicious of your system specification and optimization process.

�Walkforward Testing a Trading System Factory
In many or most development situations, we have an idea for a trading system, but

our idea is not fully specified; there are one or more aspects of it, such as optimizable

parameters, that are left unspecified. As a simplistic example, we may have a moving-

average crossover system that has two optimizable parameters, the long-term and

short-term lookbacks. The system definition, along with a rigorously defined method for

optimizing its parameters, and verified by OOS testing of the system, make up what we

might call a model factory. In other words, prior to optimization we do not have an actual

trading model; it’s just an idea along with a way of converting the idea into something

concrete. The actual trading system we end up with will depend on the market data on

which it is trained. Our goal now is to assess the quality of our model factory, as opposed

to assessing the quality of a completely defined trading system. If we are able to conclude

that our model factory is probably effective at producing good trading systems, then

when we use up-to-date data to create a trading system from the model factory, we can

be confident that our system will have respectable performance. This, of course, is the

whole idea behind walkforward testing that we have explored from numerous different

angles in prior chapters. But the distinction between testing complete systems versus

testing our training process versus testing our model factory is especially pertinent to

permutation testing. This is the reason for emphasizing this distinction here.

When we mate permutation testing with walkforward testing, we have to be

careful about what is permuted, just as we did when testing a fully specified system. In

particular, consider the fact that when we walk the original unpermuted system forward,

the training data in the first fold will never appear in any OOS area. Since this section of

historical data may contain unusual prices changes such as large trends, we must make

sure it never appears in the OOS area of permuted runs. Thus, the first training fold must

be omitted from permutation.

Chapter 7 Permutation Tests

288

Do we also permute the first training fold that is omitted from the OOS permutation?

I’ve never seen any convincing argument for or against this, and my gut instinct is that

it makes little difference. However, my own practice is to also permute the first training

fold, in isolation, of course. This would likely provide more variety in trade decisions.

For example, it may be that the original data leads to a large preponderance of, say, long

positions in the first OOS fold. If the market overall has a strong upward bias, this would

inflate permuted performance. But if permuting the first training fold often reduces the

number of long positions, this would give more variety of trade outcomes, which is our

ultimate goal in a permutation test. On the other hand, I do not consider this to be an

overwhelming argument, so if you chose to avoid permuting the first training fold, I don’t

think you will be committing a grave sin.

Another decision concerns if and how to permute walkforward folds. There are two

choices. You can do a single permutation of all market changes after the first training fold

and then just do the walkforward on this permuted data. Alternatively, you can do a separate,

isolated permutation with each fold. You could even break this second alternative into

several subalternatives, pooling the IS and OOS data in each fold into a single permutation

group or separating the IS and OOS sets of each fold into separately permuted groups.

What is the difference between these alternatives? Honestly, not enough research

has been done to provide rigorous guidance in this choice. It seems that the dominant

factor involves stationarity in market behavior. If you want to assume that the

characteristics (especially trend and volatility) of the market are constantly changing

and you want your testing method to adapt to these ever-changing conditions, then you

would likely want to permute each fold separately to preserve local behavior. Personally,

I prefer to focus on market patterns that are universal, as opposed to trying to track

perceived changes and be vulnerable to whipsaws. For this reason, my own habit is to

permute all market changes after the first fold’s training set as a single large group. But

I claim no special knowledge or expertise in this matter. All I can say is that this is what

makes the most sense to me, and it is what I do in my own work. Feel free to disagree.

Regardless of how you choose to permute, you will have an OOS performance figure

for the original, unpermuted data, as well as a similar figure for each permutation. As in

the other tests, all you have to do is count how many of those permuted performances

equal or exceed that of the original data. Use the p-value = (k+1)/(m+1) formula, which

gives the probability that your original OOS performance could have been as good as or

better than what you obtained by sheer luck from a truly worthless model factory.

Unless this p-value is small (0.05, or even 0.01 or less) you should doubt the quality of

your factory and hence mistrust any trading system produced by it.

Chapter 7 Permutation Tests

289

�Permutation Testing of Predictive Models
Everything so far has concerned trading systems. But financial market traders may

use predictive models to do things such as predict upcoming changes in volatility. It is

often the case that variables other than market price histories are involved, things such

as economic indicators or concurrent forecasts of other quantities. These are typically

called predictors because they are the quantities used by the model to make predictions.

We also have a “truth” variable, usually called the target variable. This is the quantity that

we are trying to predict, and to train the predictive model we need to know the true value

of the target that corresponds to each set of predictors. In the volatility example, the

target would be the near-term future change in volatility.

In discussing trading systems, we identified three situations: 1) testing a fully

specified system on out-of-sample data; 2) testing our training process, with a special

eye on detecting overfitting; and 3) testing our model factory. Permutation testing of

predictive models falls into the same three categories in what should be an obvious

manner, so we will not distinguish between them in this discussion. Rather, we will focus

on special aspects of permutation.

Understand that in the context of pairing targets with predictor sets, for the vast

majority of models the order in which training data appears is irrelevant. It is only

the pairing of predictor sets with targets that impacts training. We want them to be

concurrent: we pair the correct value of the target at a given time with the current values

of the predictors. We permute by disrupting this pairing, randomly reordering the targets

so that they become paired with different predictor sets. When we do this, there are two

vital issues, both of which will be described in more detail soon.

	 1)	 Indicator sets must not permute with respect to one another, only

with respect to the target. This preserves intraset correlation,

which is critical to correct testing.

	 2)	 There must not be any serial correlation in both one or more

predictors and the target. Serial correlation in one or the other is

fine, even common, but it must not be present in both.

For the first issue, consider this toy example. Suppose we have two predictors: recent

trend of the S&P 100 index and recent trend of the S&P 500 index. These two quantities

are used to predict the volatility of S&P 100 next week relative to its volatility in the week

just ended. At the close of trading every Friday we compute these two recent trends

as well as the volatility during the week that just ended. When we train our predictive

Chapter 7 Permutation Tests

290

model on historical data, we also know the volatility during the upcoming week, so we

subtract the prior week’s volatility from the upcoming week’s volatility to get the change,

which is our target variable. When we put the trained model to use, we will predict the

upcoming change in volatility.

The correct way to permute this data is to randomly reorder the targets so that targets

get attached to pairs of predictors that are from different weeks, thus destroying any

relationship that could be predictive. What if we also permuted the predictors? If we did

that, we would often get nonsensical predictor pairs. We might end up with a predictor

pair in which S&P 100 has a strong uptrend while S&P 500 has a strong downtrend. In

real life, this sort of pairing would be extremely unlikely, if not impossible. One key

idea behind permutation testing is that we must create permutations that could have

occurred in real life with equal probability under the null hypothesis that the model is

worthless. If we generate nonsensical or highly unlikely permutations, the method fails.

For the second issue, consider that one or more of the predictors may have serial

correlation (the value of a variable at a given time is related to its value at nearby times).

In fact, this is extremely common, almost universal. For example, suppose a predictor

is the trend over the prior 20 bars. When we advance by one bar, we still have 19 of the

prior 20 bars going into the calculation, so the trend is unlikely to change much.

If we are not careful, the target variable may have serial correlation as well. For

example, in the volatility example I defined the target as the change in volatility, not

the actual volatility. If we use volatility as the target, we will find significant serial

correlation, because volatility usually changes slowly; the volatility next week will be

close to the volatility this week. But changes in volatility are much less likely to have

serial correlation. Of course, it may still exist, but certainly it will be greatly reduced, if

not totally eliminated.

Even change in volatility will have serious serial correlation if we have overlapping

time periods. For example, suppose that on each day of the week, five days a week, we

compute the change in volatility over the upcoming five days and compare it to the

prior five days. Each time we advance the window, most days will be in common, so

successive values of volatility change will be highly correlated.

The key point is that serial correlation in just one or more predictor variables, or in

just the target, is harmless. This is because we can then view permutation as permuting

whichever is not serially correlated and avoid destroying the serial correlation in the

other. But if both are serially correlated, permutation will destroy this property, and we

will be in the situation of processing pairings that could not occur in real life, a major sin.

Chapter 7 Permutation Tests

291

Recall once more that a key tenet of permutation testing is that our permutations must

have equal probability in real life if our model is worthless.

It’s worth noting that this serial correlation restriction is not unique to permutation

tests. This restriction is shared by virtually all standard statistical tests. The fact that some

observations are dependent on other observations effectively reduces the degrees of

freedom in the data, making tests behave as if there are fewer observations than there

really are. This leads to an increased probability of rejecting the null hypothesis, the

worst sort of error.

�The Permutation Testing Algorithm
Most readers should be fairly clear by now on how a permutation test, often called a

Monte Carlo permutation test (MCPT), is performed. However, we will now ensure the

clarity of the informal presentation by stating the algorithm explicitly. In the following

pseudocode, nreps is the total number of evaluations, including the original, unpermuted

trial. Each trial results in a performance figure being found, with larger values implying

better performance. If we are testing a fully specified trading system or predictive model,

this is the performance obtained on an out-of-sample set. If we are testing our training

process, this is the final (optimal) in-sample performance. If we are testing a model

factory, this is the performance obtained by pooling all OOS folds. To be compatible with

C++, zero origin is used for all array addressing.

for irep from 0 through nreps-1

 if (irep > 0)

 shuffle

 compute performance

 if (irep == 0)

 original_performance = performance

 count = 1

 else

 if (performance >= original_performance)

 count = count + 1

p-value = count / nreps

Chapter 7 Permutation Tests

292

We compute the performance on the unshuffled data first and save this performance

in original_performance. We also initialize our counter of the number of times a computed

performance equals or exceeds the original performance. From then on we shuffle and

evaluate the performance on shuffled data, incrementing the counter as indicated. The

p-value is computed using the formula already seen several times, (k+1)/(m+1), where

k is the number of times a permuted value equals or exceeds the original value, and m

is the number of permutations. We’ll explore several programs demonstrating this

algorithm at the end of this chapter.

�Extending the Algorithm for Selection Bias
On page 124 we began an extended discussion of selection bias. If necessary, please

review all of that material. Here we show how Monte Carlo permutation testing) can be

extended to handle selection bias. To put this topic in context, here is a common scenario.

We have several competing trading systems, say two or maybe hundreds. Perhaps they

have been submitted by different developers for our consideration, or perhaps they are all

the same basic model but with different trial parameter sets. In any event, we choose the

best from among the competitors. There are two questions that this algorithm will answer.

	 1)	 The less important but still interesting question concerns the

competitors taken individually. For each competitor (ignoring

other competitors), what is the probability that we would have

obtained performance as least as good as what we observed if

that competitor were actually worthless? This is exactly the same

question answered by the basic algorithm shown in the prior

section, answered separately for each competitor.

	 2)	 The really important question concerns the best (highest

performing) competitor. Suppose all of the competitors are

worthless. If we test a large number of them, it is likely that at least

one will be lucky and do well by sheer random chance. Thus, we

cannot just determine which one is the best performer and then

use what might be called its solo p-value, the probability that if it

were worthless it would have done as well as it did by sheer luck.

Chapter 7 Permutation Tests

293

This is the p-value computed by the algorithm in the prior section.

Such a test would be strongly prejudiced by the fact that we picked

the best system. Of course, it’s going to do well on a solo test! So,

we have to answer a different question: if all the competitors are

worthless, what is the probability that the best of them would have

performed at least as well as what we observed? We might call

this the unbiased p-value because it takes into account the bias

induced by selecting the best competitor.

The algorithm for answering these two questions is shown here.

for irep from 0 through nreps-1

 if (irep > 0)

 shuffle

 for each competitor

 compute performance of this competitor

 if (irep == 0)

 original_performance[competitor] = performance

 solo_count[competitor] = 1 ;

 unbiased_count[competitor] = 1 ;

 else

 if (performance >= original_performance[competitor])

 solo_count[competitor] = solo_count[competitor] + 1

 if (irep > 0)

 best_performance = MAX (performance of all competitors)

 for each competitor

 if (best_performance >= original_performance[competitor)

 unbiased_count[competitor] = unbiased_count[competitor] + 1

for all competitors

 solo_pval[competitor] = solo_count[competitor] / nreps

 unbiased_pval[competitor] = unbiased_count[competitor] / nreps

Chapter 7 Permutation Tests

294

Readers should examine this algorithm and confirm that for each individual

competitor, the solo_pval computed here is exactly the same as would be computed by

the algorithm in the prior section for any individual competitor.

Note that this algorithm computes an unbiased_pval for every competitor. For each

permutation, it finds the best performer and compares this to the score for each

competitor, incrementing the corresponding counter accordingly. For whichever

competitor had the best original performance, this is a perfect apples-to-apples

comparison, best-to-best, and hence this is a correct p-value for the best performer.

For all other competitors, this p-value is conservative; it is an upper bound for the

true p-value. Thus, any competitor that has a small unbiased_pval is worthy of serious

consideration.

�Partitioning Total Return of a Trading System
Suppose you have just trained a market trading system, optimizing its parameters in

such a way as to maximize a measure of performance. On page 286 we saw how a Monte

Carlo permutation test could be used to gather information about whether the model is

too weak (unable to find predictive patterns) or too strong (overfitting by mistaking noise

for authentic patterns). We also saw ways to employ permutation testing to evaluate a

completely specified model using OOS data and also a way to evaluate the quality of a

trading-system factory. Now we look at one more interesting way to use permutation

testing to gather information about the quality of a trading system. This method is not

quite as rigorous as the prior tests, and its results should usually be taken with a liberal

grain of salt. But its development reveals much about how seemingly good performance

is obtained from a trading system, and the technique also provides one more indication

of possible future performance.

Suppose we have just trained a trading system by adjusting its parameters so as to

maximize a performance measure. We can roughly divide its total in-sample return into

three components.

	 1)	 Our model (hopefully!) has learned legitimate Skill at detecting

predictive patterns in the market history and thereby making

intelligent trade decisions. This component of performance will

likely continue into the future.

Chapter 7 Permutation Tests

295

	 2)	 Our model has also mistaken some noise patterns as legitimate

and thereby learned responses to patterns that, by definition, will

not repeat. This component of performance, called TrainingBias,

will not continue into the future.

	 3)	 If the market has an overall long-term trend (like most equity

markets, which trend upward over the long term), most training

algorithms will favor a position that takes advantage of the trend.

In particular, it will favor long positions for up-trending markets

and short positions for down-trending. This Trend component of

performance will continue into the future for only as long as the

trend continues.

This last component deserves more discussion, especially since it is the subject of

controversy among some trading system developers. Imagine that you have trained a

trading system (optimized its parameters) on two equity markets, individually. Market

A has a strong uptrend over its training-set history, while market B ends its history at

about the same price level as where it began. You find that the optimal parameters of

your Market A trading system provide a great preponderance of long trades, while the

optimal parameters for the system trained on Market B give about an equal number of

long and short trades. It doesn’t take Sherlock Holmes to deduce that the reason for the

abundance of long trades in the system developed on Market A might have something to

do with the fact that Market A enjoyed steady gains, while the long/short balance in the

other system is due to the fact that Market B had no appreciable trend.

The big philosophical question is this: should we let the underlying long-term trend

of a market exert that much influence on the long/short trade balance of a system we

are designing? In my own experience, I have found that most trading system developers

do so without even thinking about the issue. And I tend to agree with this philosophy;

if a market has an obvious long-term trend, we might as well go with the flow instead of

fighting a current by rowing upstream.

On the other hand, it is definitely worthwhile pondering the alternative. After

all, who’s to say that a long-term trend will continue, and what happens to a strongly

unbalanced system if the trend reverses? This is one argument against letting a strongly

trending market strongly influence our trade balance.

Chapter 7 Permutation Tests

296

There’s an even deeper way of looking at the issue. Suppose, for example, that we

have a strongly uptrending market and that we have developed a long-only day-bar

system that is in this market half of all trading days. Consider the fact that if we just flip

a coin every day and take a long position when it comes up heads, we would also, on

average, make a lot of money just from the trend. So one could easily argue that a trading

system’s “intelligence” should be measured by the degree to which it beats a hypothetical

random trading system that has the same number of long and short positions.

It all boils down to a simple but fraught question. If your system makes a lot of

money from a trend but can’t beat a coin toss, is it really any good? One school of

thought says that if it ties a profitable coin-toss system, it has no intelligence. Another

school of thought says that the very fact that it was able to capitalize on a long-term trend

is a sign of intelligence. Then the sage in the corner points out that the second argument

falls apart if the trend reverses, while the first argument is more likely to hold up. Yet

another voice pipes up from the shadows, pointing out that long-term trends generally

persist over the, well, long term. And the argument goes on.

Regardless of your opinion, it’s worthwhile to explore this issue further. As usual

throughout this book, we regard returns as the log of changes. Let MarketChange be

the total change over the extent of the market history in our training set. Under our

definition of change, this is the log of the ratio of the final price to the first price. Let n

be the number of individual price change returns (one less than the number of prices).

Then we can define TrendPerReturn = MarketChange / n.

Some developers subtract this quantity from the return of every bar during

optimization to remove the effect of trend on computed performance. (Of course,

when computing indicators or anything else involved in making trade decisions, one

would use the original prices. This correction is used only for computing performance

measures such as return, profit factor, or Sharpe ratio.) This option can be applied to any

of the trading systems used as examples in this book, and indeed virtually every trading

system anyone could imagine. However, other than this brief mention, we will not

pursue this idea further. At this time, we have a different use for trend.

What would be the expected total return of a random trading system having the same

number of long and short positions as our trained system? For every individual price-

change return during which we hold a long position, on average the trend will boost our

return by TrendPerReturn. Conversely, for every one in which we hold a short position,

our return will be decreased by TrendPerReturn. So, the net effect will be the difference

in these position quantities.

Chapter 7 Permutation Tests

297

In keeping with the nomenclature presented in the beginning of this section, we

define the Trend component of the system’s total return as shown in Equation 7-1.

	 Trend NumLong NumShort TrendPerReturn= -()* 	 (7-1)

Because we can compute TrendPerReturn from the market price history and because

we know the position counts from the trained system, the Trend component of the

system’s total return can be explicitly computed.

Recall that the underlying premise for the material in this section is that the total

return of our trained trading system is the sum of three components: legitimate skill,

long/short imbalance that capitalizes on trend, and training bias (learning random noise

as if it were real patterns). This is expressed in Equation 7-2.

	 TotalReturn Skill Trend TrainingBias= + + 	 (7-2)

Suppose we were to randomly permute the market changes and retrain the system.

The TrendPerReturn will remain the same because we’re just mixing up the order of

price changes, and we still have the same number of individual returns. But the number

of long and short positions will likely change, so we have to use Equation 7-1 to compute

the Trend component of the total return for this permuted run. Because the permutation

is random, we have destroyed predictable patterns, so the Skill component is zero. Any

total return over and above the Trend component is TrainingBias. In other words, we can

compute the TrainingBias for this permuted run using Equation 7-3.

	 TrainingBias PermutedTotalReturn Trend= - 	 (7-3)

Too much randomness is involved for a single such test to provide a useful estimate

of the TrainingBias inherent in your proposed trading system and its training algorithm.

But if we perform hundreds, or even thousands, of permutations and average the

value computed by Equation 7-3, we can arrive at a generally respectable estimate for

TrainingBias.

This lets us compute two extremely useful performance figures. First, we can

compute an unbiased estimate of future return by subtracting the training bias from

the total return of our system. This figure includes the Trend component of total return,

appropriate if we hold to the philosophy that taking advantage of long-term trend is

good. This is expressed in Equation 7-4.

	 UnbiasedReturn TotalReturn TrainingBias= - 	 (7-4)

Chapter 7 Permutation Tests

298

If we are also interested in the more restrictive definition of trading system

intelligence, the degree to which our system can outperform a random system having

the same number of long and short trades, we can estimate its Skill using Equation 7-5.

	 Skill UnbiasedReturn Trend= - 	 (7-5)

We will explore a program that demonstrates this technique on page 310.

�Essential Permutation Algorithms and Code
Before presenting complete programs that demonstrate the techniques discussed in this

chapter, we’ll focus on several of the key permutation algorithms that will be essential

tools for this family of tests.

�Simple Permutation

We begin with the basic permutation algorithm. This is the standard method for

correctly permuting a vector, doing it in such a way that every possible permutation

is equally likely. It requires a source of uniformly distributed random number in the

range 0.0 <= unifrand() < 1.0. It is important to make sure that the random generator can

never return exactly 1.0; if you cannot be sure of this, you must take appropriate action

to ensure that an out-of-bound subscript is not generated. In the following code, the

random j must be strictly less than i.

 i = n ; // Number remaining to be shuffled

 while (i > 1) { // While at least 2 left to shuffle

 j = (int) (unifrand () * i) ;

 --i ;

 itemp = indices[i] ; // Swap elements i and j

 indices[i] = indices[j] ;

 indices[j] = itemp ;

 }

In this code, we initialize i to be the number of elements in the vector, and at each

pass through the while() test, it will be the number remaining to be shuffled. We randomly

select an index j that is equally likely to point to any of the elements yet to be shuffled.

Decrement i so that it points to the last element in the aray that remains to be shuffled

Chapter 7 Permutation Tests

299

and swap elements j and i. Note that it is possible that j==i so that no swap takes place. We

work backwards from the end of the array to the front, stopping only when we no longer

have anything to swap.

�Permuting Simple Market Prices
We jump to a slightly higher level of difficulty when we permute market prices. Obviously

we can’t just swap prices around. Imagine what would happen if we permuted decades

of equity prices whose market history begins at 20 and ends at 800. So we have to

deconstruct the price history into changes, permute the changes, and then reconstruct

the permuted price history. Moreover, we can’t permute simple differences in price,

because differences at large price times are greater than differences at small price

times. So, we compute the changes as ratios. Equivalently, we take the log of prices and

permute the changes in logs.

Another complication is that we must exactly preserve the trend in the price history

so that position imbalances are handled correctly. This is easy to do; we just keep the

starting price the same. Since the reconstructed price series applies the same changes,

just in a different order, we end up at the same price in the end. Only the ups and downs

in the interior are changed.

The first step is to deconstruct the price history into changes. The following simple

code assumes that the supplied prices are actually the log of the original prices. We must

supply the work area changes, which is nc long. Note that the last element of changes is

unused.

void prepare_permute (

 int nc , // Number of cases

 double *data , // Input of nc log prices

 double *changes // Work area; returns computed changes

)

{

 int icase ;

 for (icase=1 ; icase<nc ; icase++)

 changes[icase-1] = data[icase] - data[icase-1] ;

}

Chapter 7 Permutation Tests

300

That preparation code needs to be done only once. From then on, any time we want

to permute the (log) price history, we call the following routine:

void do_permute (

 int nc , // Number of cases

 double *data , // Returns nc shuffled prices

 double *changes // Work area; computed changes from prepare_permute

)

{

 int i, j, icase ;

 double dtemp ;

 // Shuffle the changes. We do not include the first case in the shuffling,

 // as it is the starting price, so there are only nc-1 changes.

 i = nc-1 ;  // Number remaining to be shuffled

 while (i > 1) {   // While at least 2 left to shuffle

 j = (int) (unifrand() * i) ;

 if (j >= i) // Must not happen, be safe

 j = i - 1 ;

 --i ;

 dtemp = changes[i] ;

 changes[i] = changes[j] ;

 changes[j] = dtemp ;

 } // Shuffle the changes

 // Now rebuild the prices, using the shuffled changes

 for (icase=1 ; icase<nc ; icase++)

 data[icase] = data[icase-1] + changes[icase-1] ;

}

Recall that prepare_permute() left the last element in changes unused, so we have nc–1

changes to shuffle. We assume that the caller has not changed the first element in data,

and we rebuild from there.

Chapter 7 Permutation Tests

301

�Permuting Multiple Markets with an Offset
As was pointed out earlier, if our trading system references multiple markets, we must

permute them all the same way so that inter-market correlation is kept intact. Otherwise,

we might end up with market changes that would be nonsensical in the real world,

with some markets going up strongly while other markets with which they are highly

correlated going down strongly. This lack of real-world conformity would be devastating,

because a key tenet of Monte Carlo permutation testing is that all permutations must be

equally likely if the null hypothesis is true.

To be able to do this, we must make sure that every market has a price on every date;

any dates for which one or more markets have no price must be removed. In practice,

if we stick with broadly traded markets, we generally lose few or no dates because they

all trade on normal trading days. If markets are closed for a holiday, nothing trades, and

if they are open for normal business, everything trades. Still, we must make sure that

there is no missing data for any date, which would make simultaneous permutation

impossible. A fast algorithm for doing this is as follows:

Initialize each market's current index to 0

Initialize the grand (compressed) index to 0

Loop

 Find the latest (largest) date at each market's current index across all markets

 Advance all markets' current index until the date reaches or passes this date

 If all markets have the same current date:

 Keep this date by copying market records to the grand index spot

 Advance each market's current index as well as the grand index

In the code that follows, we have the following:

•	 market_n[]: For each market, the number of prices present

•	 market_price[][]: For each market (first index) the prices (second index)

•	 market_date[][]: For each market (first index) the date of each price

(second index)

•	 market_index[]: For each market, the index of the record currently being

examined

•	 grand_index: The index of the current record in the compressed data

Chapter 7 Permutation Tests

302

for (i=0 ; i<n_markets ; i++) // Source markets all start at the first price

 market_index[i] = 0 ;

grand_index = 0 ; // Compressed data starts at first record

for (;;) {

 // Find max date at current index of each market

 max_date = 0 ;

 for (i=0 ; i<n_markets ; i++) {

 date = market_date[i][market_index[i]] ;

 if (date > max_date)

 max_date = date ;

 }

 // Advance all markets until they reach or pass max date

 // Keep track of whether they all equal max_date

 all_same_date = 1 ; // Flags if all markets are at the same date

 for (i=0 ; i<n_markets ; i++) {

 while (market_index[i] < market_n[i]) { // Must not over-run a market!

 date = market_date[i][market_index[i]] ;

 if (date >= max_date)

 break ;

 ++market_index[i] ;

 }

 if (date != max_date) // Did some market jump over max?

 all_same_date = 0 ;

 if (market_index[i] >= market_n[i])  // If even one market runs out

 break ; // We are done

 }

 if (i < n_markets)   // If even one market runs out

 break ; // We are done

 // If we have a complete set for this date, grab it

Chapter 7 Permutation Tests

303

 if (all_same_date) {

 for (i=0 ; i<n_markets ; i++) {

 market_date[i][grand_index] = max_date ; // Redundant, but clear

 market_price[i][grand_index] = market_price[i][market_index[i]] ;

 ++market_index[i] ;

 }

 ++grand_index ;

 }

 }

n_cases = grand_index ;

We are now ready to consider the permutation of multiple markets. It will often be

the case that we want to permute different sections of the market history separately. If we

are permuting a single market, this is easily done by just offsetting the price in the calling

parameter for the permutation routine. But when we have an entire array of markets, we

can’t do this, so we have to explicitly specify an offset distance.

Here is how the permutation will be done. We have nc cases from price index 0

through nc–1. Case offset is the first case that will change, and offset must be positive

because the case at offset–1 is the “basis” case and remains unchanged. The last case

examined is at nc–1, but it, too, will remain unchanged. Thus, the shuffled array starts

and ends at the original prices. Only the interior prices change.

If a dataset is permuted in separate sections, the sections must not overlap. The

“basis” case at offset–1 is included in the region that cannot overlap. For example, we

could permute with offset=1 and nc=5. Cases 1 through 3 would then change, with the

end cases (0 and 4) remaining unchanged. A subsequent permute must then begin at

offset=5 or more. Case 4 is not changed by either permute operation.

Here is the preparation routine that must be called first and only once if multiple

permutations are done:

void prepare_permute (

 int nc , // Number of cases total (not just starting at offset)

 int nmkt , // Number of markets

 int offset , // Index of first case to be permuted (>0)

 double **data , // Input of nmkt by nc price matrix

 double **changes  // Work area; returns computed changes

)

Chapter 7 Permutation Tests

304

{

 int icase, imarket ;

 for (imarket=0 ; imarket<nmkt ; imarket++) {

 for (icase=offset ; icase<nc ; icase++)

 changes[imarket][icase] = data[imarket][icase] - data[imarket][icase-1] ;

 }

}

The permutation is just a simple generalization of the single-market method shown

in the prior section.

void do_permute (

 int nc , // Number of cases total (not just starting at offset)

 int nmkt , // Number of markets

 int offset , // Index of first case to be permuted (>0)\

 double **data , // Returns nmkt by nc shuffled price matrix

 double **changes  // Work area; computed changes from prepare_permute

)

{

 int i, j, icase, imarket ;

 double dtemp ;

 // Shuffle the changes, permuting each market the same to preserve correlations

 i = nc-offset ; // Number remaining to be shuffled

 while (i > 1) { // While at least 2 left to shuffle

 j = (int) (unifrand() * i) ;

 if (j >= i) // Should not happen, but be safe

 j = i - 1 ;

 --i ;

 for (imarket=0 ; imarket<nmkt ; imarket++) {

 dtemp = changes[imarket][i+offset] ;

 changes[imarket][i+offset] = changes[imarket][j+offset] ;

 changes[imarket][j+offset] = dtemp ;

 }

 } // Shuffle the changes

 // Now rebuild the prices, using the shuffled changes

Chapter 7 Permutation Tests

305

 for (imarket=0 ; imarket<nmkt ; imarket++) {

 for (icase=offset ; icase<nc ; icase++)

 data[imarket][icase] = data[imarket][icase-1] + changes[imarket][icase] ;

 }

}

�Permuting Price Bars

Permuting price bars is considerably more involved than permuting a simple array of

prices. There are four major issues to consider, and perhaps a few other more minor

issues that may be relevant in some circumstances. These are important:

•	 We must never let the open or close be outside the range defined by

the high and low of the bar. Even if our trading system ignores the

high and low, violating this basic tent is bad karma.

•	 If our trading system examines the high and low of bars, we must not

damage the statistical distribution of these quantities, either in regard

to their relationship to the open and close or in regard to their spread.

These quantities must have the same statistical properties after

permutation as before.

•	 We must not damage the statistical distribution of the price change

as we move from the open of the bar to the close. The distribution of

open-to-close changes must be the same after permutation as before

permutation.

•	 We must not damage the statistical distribution of the inter-bar gaps,

the price change between the close of one bar and the open of the

next bar. This is much more important than you might realize and

easy to get wrong if you are not careful.

Satisfying the first three conditions is easy. We just define the high, low, and close

in terms of the open. If we are (as usual) dealing with the log of prices, for each bar we

compute and save the high minus the open, the low minus the open, and the close

minus the open. Then, when we have a new opening price, we add these differentials

to it to get the new high, low, and close, respectively. As long as we keep these trios of

differences together (do not swap a high difference in one bar with a low difference in

another bar), it should be obvious that the first condition is satisfied. And as long as our

Chapter 7 Permutation Tests

306

permutation algorithm does not alter the statistical distribution of the open, it should

be clear that the second and third conditions are satisfied. The fourth condition is the

monkey wrench.

The intuitive way to permute bars is severely incorrect. Suppose we just permute the

opens in the same way that we have been permuting single price arrays: compute the

open-to-open changes, permute these changes, rebuild the array of opens, and use the

“three differences” method just discussed to complete each bar. As already pointed out,

the first three conditions are satisfied by this algorithm.

But here’s the problem. Remember that most of the time, a bar opens very close

to where the prior bar closed, often at exactly the same price. However, under this

incorrect permutation algorithm, it will often happen that we will have an unfortunate

combination of two common events: we have a large increase in the permuted open-

to-open change, and the first bar has a large open-to-close drop in price. The result is a

gigantic, completely unrealistic gap in the close-to-open change.

For example, we might have a bar that opens at 100 and closes at 98, not unrealistic.

The next bar should open very near 98. But at the same time, the next permuted open

might be 102, also not unrealistic. The result is a move from 98 to 102 just going from

the close of one bar to the open of the next bar. The chance of this happening in real

life is nearly zero. And of course, the opposite could happen as well: we have a bar with

large upward movement open-to-close, while the permuted open-to-open move to

the next bar is a large drop. The problems induced by this are not just theoretical; they

will utterly destroy permutation testing of many trading systems. Real markets do not

behave this way.

The solution to this problem is easy, though a bit messy. We split the (relatively large)

intra-bar changes and the (mostly tiny) inter-bar changes into two separate series and

permute each separately. When we rebuild the permuted series, we get each new bar in

two steps. First, we use the permuted inter-bar change to move from the close of one bar

to the open of the next. Then we use the permuted intra-bar change to move from the

open to the close, picking up the high and low along the way.

In the code that appears soon, understand that the permutation routines will be

called with the first bar on which a trade decision is possible. If there is a lookback, we

assume that this has been taken into account.

The code that prepares for permutation is straightforward. As usual, we assume that

all prices are actually log prices. If they are the real prices, we must use ratios rather than

differences; otherwise, the algorithm is the same.

Chapter 7 Permutation Tests

307

The first bar is the “base” bar, and it does not change at all. Subsequent bars will be

generated from its close. As we will see when we examine the code, the close of the last

bar will also remain unchanged. For each bar, rel_open is the gap between the prior close

and the current open. The high, low, and close of the current bar are all relative to the

open of the bar.

void prepare_permute (

 int nc , // Number of bars

 double *open ,  // Input of nc log prices

 double *high ,

 double *low ,

 double *close ,

 double *rel_open , // Work area; returns computed changes

 double *rel_high ,

 double *rel_low ,

 double *rel_close

)

{

 int icase ;

 for (icase=1 ; icase<nc ; icase++) {

 rel_open[icase-1] = open[icase] - close[icase-1] ;

 rel_high[icase-1] = high[icase] - open[icase] ;

 rel_low[icase-1] = low[icase] - open[icase] ;

 rel_close[icase-1] = close[icase] - open[icase] ;

 }

}

The permutation routine has a parameter, preserve_OO, that needs special

explanation. The vast majority of example trading systems in this book are based on a

single price series, with trades being executed as market-on-close to the close of the next

bar (possibly continuing on to the close of a subsequent bar). This can sometimes give

slightly optimistic results, not to mention that it is tinged with a hint of being unrealistic

and unobtainable in real life. A more conservative approach is to open a trade on the

open of the bar following the trade decision. If we are partitioning the total return of the

trading system as described beginning on page 294 and we want to be squeaky clean

about how we define the total trend across the test period, we must define the trend by

Chapter 7 Permutation Tests

308

the change from the first open after the earliest possible decision to the last open, and

we need this change to be the same for all permutations. (This is probably excessively

cautious, but it’s easy to do, so we might as well.) For this difference to remain the same

for all permutations, we must not allow the first close-to-open change or the last open-

to-close change to take part in the permutation. Setting preserve_OO to any nonzero

number does this. With this in mind, here is the permutation code. First we shuffle the

close- to-open changes.

void do_permute (

 int nc , // Number of cases

 int preserve_OO , // Preserve next open-to-open (vs first open to last close)

 double *open ,  // Returns nc shuffled log prices

 double *high ,

 double *low ,

 double *close ,

 double *rel_open , // Work area; input of computed changes

 double *rel_high ,

 double *rel_low ,

 double *rel_close

)

{

 int i, j, icase ;

 double dtemp ;

 if (preserve_OO)

 preserve_OO = 1 ;

 i = nc-1-preserve_OO ;  // Number remaining to be shuffled

 while (i > 1) { // While at least 2 left to shuffle

 j = (int) (unifrand() * i) ;

 if (j >= i)  // Should not happen, but be safe

 j = i - 1 ;

 --i ;

 dtemp = rel_open[i+preserve_OO] ;

 rel_open[i+preserve_OO] = rel_open[j+preserve_OO] ;

 rel_open[j+preserve_OO] = dtemp ;

 } // Shuffle the close-to-open changes

Chapter 7 Permutation Tests

309

In the previous code, we note the effect of preserve_OO. If it is input zero, we shuffle

all nc–1 close-to-open inter-bar changes. But if it is one, we have one less change to

shuffle, and we offset all shuffling by one. This preserves the first inter-bar close-to-open

change, meaning that the open of the second bar, which is the opening price of the first

possible “next bar” trade, remains unchanged for all permutations.

Next we shuffle the intra-bar changes. We must shuffle the high, low, and close identically

to preserve the high and low bounding the open and close. The effect of preserve_OO is

slightly different here. Instead of preserving the first close-to-open change, it preserves the

last open-to-close change. Because the last close is always preserved, allowing the last bar’s

open-to-close difference to change would change the open of the last bar.

 i = nc-1-preserve_OO ; // Number remaining to be shuffled

 while (i > 1) { // While at least 2 left to shuffle

 j = (int) (unifrand() * i) ;

 if (j >= i) // Should never happen, but be safe

 j = i - 1 ;

 --i ;

 dtemp = rel_high[i] ;

 rel_high[i] = rel_high[j] ;

 rel_high[j] = dtemp ;

 dtemp = rel_low[i] ;

 rel_low[i] = rel_low[j] ;

 rel_low[j] = dtemp ;

 dtemp = rel_close[i] ;

 rel_close[i] = rel_close[j] ;

 rel_close[j] = dtemp ;

 } // Shuffle the open-to-close changes

Rebuilding the price history using the shuffled changes is trivial.

 for (icase=1 ; icase<nc ; icase++) {

 open[icase] = close[icase-1] + rel_open[icase-1] ;

 high[icase] = open[icase] + rel_high[icase-1] ;

 low[icase] = open[icase] + rel_low[icase-1] ;

 close[icase] = open[icase] + rel_close[icase-1] ;

 }

}

Chapter 7 Permutation Tests

310

�Example: P-Value and Partitioning
The file MCPT_TRN.CPP contains an example of computing a training p-value (pages 286

and 291) and total return partitioning (page 294) for a primitive moving-average crossover

system trained on OEX. The program is executed with the following command:

MCPT_TRN MaxLookback Nreps FileName

Let’s break this command down:

•	 MaxLookback: Maximum moving-average lookback

•	 Nreps: Number of MCPT replications (hundreds or thousands)

•	 FileName: Name of market file (YYYYMMDD Price)

The following Figures 7-1 and 7-2 is the output of this program when executed

with the S&P 100 and S&P 500 indexes. It’s fascinating what extremely different results

are obtained. Please refer to the previously cited pages for detailed explanations of the

computed quantities. An overview of the program’s code begins on the next page.

Figure 7-1.  Output of the MCPT_TRN program for OEX

Figure 7-2.  Output of the MCPT_TRN program with SPX

Chapter 7 Permutation Tests

311

The moving-average crossover system is the same as we have seen in prior examples.

It computes short-term and long-term moving averages (where the lookbacks are

optimizable) and takes a long position when the short term MA is above the long-term

MA, and it takes a short position when the reverse is true. We focus here on computation

of the performance figures.

First, we compute the total trend and divide it by the number of individual returns to

get the trend per individual return. Remember that the first price on which a valid trade

decision can be made is the “basis” price, with permutation beginning on the change

from it to the next bar. By starting at this point, we ensure that all possible individual

trade returns are subject to permutation, and we also guarantee that no change prior

to a possible trade can be permuted into the mix, which could change the total trend.

Then we call the preparation routine listed on page 299 to compute and save the price

changes.

trend_per_return=(prices[nprices-1]-prices[max_lookback-1]) / (nprices-max_lookback) ;

prepare_permute (nprices-max_lookback+1 , prices+max_lookback-1 , changes) ;

In the MCP loop, we permute on all but the first pass. We will need the number of

long and short returns from the optimized system to compute the trend component. For

the first, unpermuted trial save all “original” results.

for (irep=0 ; irep<nreps ; irep++) {

 if (irep) // Shuffle

 do_permute (nprices-max_lookback+1 , prices+max_lookback-1 , changes) ;

 opt_return = opt_params (nprices , max_lookback , prices ,

 &short_lookback , &long_lookback , &nshort , &nlong) ;

 trend_component = (nlong - nshort) * trend_per_return ; // Equation 7-1 on page 297

 if (irep == 0) { // This is the original, unpermuted trial

 original = opt_return ;

 original_trend_component = trend_component ;

 original_nshort = nshort ;

 original_nlong = nlong ;

 count = 1 ; // Algorithm on Page 291

 mean_training_bias = 0.0 ;

 }

Chapter 7 Permutation Tests

312

 else { // This is a permuted trial

 training_bias = opt_return - trend_component ; // Equation 7-3 on page 297

 mean_training_bias += training_bias ; // Average across permutations

 if (opt_return >= original)   // Algorithm on Page 291

 ++count ;

 }

 } // For all replications

mean_training_bias /= (nreps - 1) ;   // First trial was unpermuted

unbiased_return = original - mean_training_bias ; // Equation 7-4 on page 297

skill = unbiased_return - original_trend_component ;   // Equation 7-5 on page 297

�Example: Training with Next Bar Returns
The file MCPT_BARS.CPP contains a demonstration program that does the same p-value

computation and total return partitioning as the prior example. However, instead of

using a single price series, the price data is day bars (although it could be bars of any

length). Moreover, it uses a more conservative method for computing returns. The

return of each trade decision is the (log) price change from the open of the next bar to

the open of the following bar. Finally, it is a different trading system, a simple mean-

reversion strategy rather than moving-average crossover. The program is invoked with

the following command:

MCPT_BARS MaxLookback Nreps FileName

Let’s break this command down:

•	 MaxLookback: Maximum moving-average lookback

•	 Nreps: Number of MCPT replications (hundreds or thousands)

•	 FileName: Name of market file (YYYYMMDD Open High Low Close)

Figure 7-3 shows the output of this program for the S&P 100 index, and Figure 7-4

shows it for S&P 500.

Chapter 7 Permutation Tests

313

As with the prior example, we see a profound difference in performance in these two

markets. It’s not at all surprising that, in any market, a primitive trend-following system

such as MA XOVER would perform very differently from a mean reversion system. But what

is surprising is how incredibly differently they perform in these two markets that would

seem to be similar in composition. In fact, the p-value for SPX is almost 1.0, a stunning

value. Clearly, this market is anti-mean-reversion! This would certainly square with this

market’s trend-following p-value of 0.001, the minimum possible with 1000 replications,

an equally stunning value. But wow. I mean, wow. The only other consideration is that the

SPX market used in this example starts its history several decades earlier(1962) than the

OEX market (1982), so earlier data may play a role. Plotting an equity curve of each system

in each market would be most revealing. If you beat me to it, send me an email.

Because this trading system uses a slightly different method for computing returns,

it’s worth examining both the system itself and the associated MCPT code. We begin

with the trading system. It computes a simplistic long-term trend as the current close

minus the close a user-specified fixed number of bars earlier. This is typically a large

number, a thousand or several thousand bars. It also looks at the current price drop,

the (log) price of the prior bar minus that of the current bar. If the long-term trend is

Figure 7-3.  Output of the MCPT_BARS program for OEX

Figure 7-4.  Output of the MCPT_BARS program for SPX

Chapter 7 Permutation Tests

314

above an optimizable threshold and the price drop is also above its own optimizable

threshold, a long position is taken for the next bar. The philosophy behind this system is

that a sudden sharp drop in the price of an uptrending market is a temporary aberration

that will be corrected on the next bar. Here is the calling convention for this subroutine:

double opt_params (  // Returns total log profit starting at lookback

 int ncases , // Number of log prices

 int lookback ,  // Lookback for long-term rise

 double *open ,  // Log of open prices

 double *close , // Log of close prices

 double *opt_rise , // Returns optimal long-term rise threshold

 double *opt_drop , // Returns optimal short-term drop threshold

 int *nlong // Number of long returns

)

We will use best_perf to keep track of the best total return. The outermost pair of loops

try a large variety of thresholds for the long-term uptrend and the immediate price drop.

 best_perf = -1.e60 ; // Will be best performance across all trials

 for (irise=1 ; irise<=50 ; irise++) { // Trial long-term rise

 rise_thresh = irise * 0.005 ;

 for (idrop=1 ; idrop<=50 ; idrop++) { // Trial short-term drop

 drop_thresh = idrop * .0005 ;

Given this pair of trial thresholds, we pass through the valid market history and

cumulate the total return. We also count the number of long positions taken, because

we will need this to compute the trend component. We begin this cumulation at the

lookback distance, as we will need this much history to compute the long-term trend. We

must stop two bars before the end of the dataset because the conservatively computed

return for a trade is the (log) price change from the open of the bar after the decision is

made, to the open of the following bar.

 total_return = 0.0 ; // Cumulate total return for this trial

 nl = 0 ; // Will count long positions

 for (i=lookback ; i<ncases-2 ; i++) { // Compute performance across history

 rise = close[i] - close[i-lookback] ; // Long-term trend

 drop = close[i-1] - close[i] ; // Immediate price drop

Chapter 7 Permutation Tests

315

 if (rise >= rise_thresh && drop >= drop_thresh) {

 ret = open[i+2] - open[i+1] ; // Conservative return

 ++nl ;

 }

 else

 ret = 0.0 ;

 total_return += ret ;

 } // For i, summing performance for this trial

All that remains is the trivial bookkeeping task of keeping track of the optimal

parameters and their associated results.

 if (total_return > best_perf) { // Did this trial param set break a record?

 best_perf = total_return ;

 *opt_rise = rise_thresh ;

 *opt_drop = drop_thresh ;

 *nlong = nl ;

 }

 } // For idrop

 } // For irise

 return best_perf ;

}

The general actions of the permutation tests are identical to those in the prior section.

However, because we are computing returns using the open of the next two bars, offsets

are a little different. The definition of lookback in this system is also slightly different from

the max_lookback of the prior system, so that also introduces some differences. Consider the

trend per return and the preparation routine. The first trade decision can be made at the

bar with index lookback, so we call prepare_permute() with this offset to all four price arrays.

This bar will remain fixed; permutation starts at the next bar, which is also where trade

returns start. A total of nprices–lookback bars are available to the permutation routine. The

first possible trade can open at bar lookback+1 and close at the open of the last bar, nprices–1.

 trend_per_return = (open[nprices-1] - open[lookback+1]) / (nprices - lookback - 2) ;

 prepare_permute (nprices-lookback , open+lookback , high+lookback ,

 low+lookback , close+lookback , rel_open , rel_high , rel_low , rel_c lose) ;

Chapter 7 Permutation Tests

316

All remaining computations are identical to what we saw in the prior section, so

there is no point in repeating them here. And of course, the complete source code is

available in MCPT_BARS.CPP.

�Example: Permuting Multiple Markets
On page 179 we examined the program whose code is available in CHOOSER.CPP.

In that section we focused on how to use nested walkforward to get out-of-sample

returns in a selection-bias situation. Permutation was ignored then. Now we return to

that program, focusing this time on the permutation test that evaluates the probability

that OOS results at least as good as those obtained could have been obtained by

random good luck. Note that this is not the selection-bias-permutation algorithm

shown on page 292. No example of that algorithm is given in this book, as it is a

straightforward extension of the simpler algorithm and well documented in the flow

chart. Numerous source code examples of this algorithm can be found in my book Data

Mining Algorithms in C++. The real purpose of this section is to provide an example

of permuting multiple markets simultaneously to evaluate a multiple-market trading

system, as well as demonstrating how permutation should be split into segments in a

walkforward situation that contains selection.

The multiple-market permutation routines were discussed in detail starting on

page 301, and it wouldn’t hurt to review that section. For convenience, here is the calling

list for prepare_permute(); that for do_permute() is identical:

void prepare_permute (

 int nc ,  // Number of cases total (not just starting at offset)

 int nmkt , // Number of markets

 int offset ,   // Index of first case to be permuted (>0)

 double **data , // Input of nmkt by nc price matrix

 double **changes // Work area; returns computed changes

)

We already saw an example of splitting market history into permutation groups using

a simple walkforward situation. Our motivation was the fact that the initial training fold

does not appear in any OOS fold in the original, unpermuted run. Thus, we must ensure

that this is also the case for the permuted trials, in case that initial period contains data

Chapter 7 Permutation Tests

317

that is unusual in trend, volatility, or some other important property. We must not allow

any unusual data to leak into a permuted OOS fold.

The situation is more complex when we are doing nested walkforward, as in the

CHOOSER program. Now we have two OOS folds to deal with. These are the two

quantities we will have to consider:

IS_n: Although no actual training occurs at the outer level of

walkforward nesting in CHOOSER, this is the number of cases

that play the role of “training set” in the program. Of particular

importance in the context of permutation is the fact that in the

original, unpermuted trial, none of these cases will ever appear

in either level of OOS fold results. Thus, these cases must never

be allowed to permute into future OOS folds and potentially

contaminate them with unusual changes.

OOS1_n: This is the number of cases in the inner level of

walkforward OOS folds. The outer OOS folds, those in which we

are ultimately interested because they are fully OOS, begin after

IS_n+OOS1_n cases. The cases in the first inner walkforward OOS

fold, those from IS_n up to (but not including) IS_n+OOS1_n, must

not permute into the outer folds, because they are not there in the

unpermuted trial.

With these thoughts in mind, we split the market history into three separate

segments and permute each separately. It is an open question as to the wisdom (or lack

thereof) of permuting the first “training” fold in general. I choose to do so here, primarily

for pedagogical purposes, though I am not aware of any pros or cons. My own opinion,

unsupported by any facts, is that on average it makes no difference one way or the other.

The first line of the following code prepares to permute this first “training” fold,

perhaps unnecessarily. The second line handles the first inner OOS fold, and the last line

handles the outer OOS fold area, which is our area of ultimate interest. For permutation,

the do_permute() routine is called with the same parameters. All other operation is

identical to what we have seen before.

prepare_permute(IS_n, n_markets, 1 , market_close , permute_work) ;

prepare_permute(IS_n+OOS1_n, n_markets , IS_n, market_close , permute_work) ;

prepare_permute(n_cases, n_markets , IS_n+OOS1_n, market_close , permute_work);

Chapter 7 Permutation Tests

318

We now reproduce the output of this program that was presented earlier, before

permutation tests had been discussed. The meanings of the computed p-values should

now be clear.

Mean = 8.7473

25200 * mean return of each criterion, p-value, and percent of times

chosen...

 Total return 17.8898 p=0.076 Chosen 67.8 pct

 Sharpe ratio 12.9834 p=0.138 Chosen 21.1 pct

 Profit factor 12.2799 p=0.180 Chosen 11.1 pct

25200 * mean return of final system = 19.1151 p=0.027

Observe that the p-values for the three individual performance criteria are

only moderately significant, with Total return being the best at 0.076. But for the

final algorithm that uses nested walkforward to test not only market selection but

performance criterion selection as well, the p-value of 0.027 is quite impressive.

Chapter 7 Permutation Tests

319
© Timothy Masters 2018
T. Masters, Testing and Tuning Market Trading Systems, https://doi.org/10.1007/978-1-4842-4173-8

Index

A
Algorithmic trading, 6, 151
Alternative hypothesis, 210

B
BCa bootstrap, 225
Bias-selection, 124
Bias-training, 122, 123
Bias estimates, 91
BND_RET program, 257
BOOT_CONF program, 227
BOOT_RATIO program, 238
Bootstrap, 223, 225
Bootstrapping ratios, 238
BOUND_MEAN program, 232
Bounding drawdown, 262
Bounding future returns, 241

C
CD_MA program, 63
CDMODEL subroutine, 43
Cheap bias estimates, 91
Cheap parameter relationships, 96
CHOOSER program, 179
CHOOSER_DD program, 279
Completed trade returns, 196
Computationally symmetric cross

validation, 158

Confidence interval, 218, 222
CONFTEST program, 248
Covariance updates, 42
Cross validation, 143, 156
Cross validation-algorithm, 144
Cross validation-bias, 150
Cross validation inside walkforward, 188
CSCV, 158
CSCV example with SPX, 169
CSCV_CORE program, 164
CSCV_MKT program, 169

D
Date-dependent walkforward, 137
DEV_MA program, 112
DIFF_EV program, 75
Differential case weighting, 41
Differential evolution, 69
Drawdown-bounding, 262, 265
DRAWDOWN program, 267
Dynamic trading systems, 193

E
Empirical quantiles, 242
Entropy, 20
ENTROPY program, 31
Error variance, 133
EXTRA, 135, 138

https://doi.org/10.1007/978-1-4842-4173-8

320

F, G
Fold, 130
Forward stepwise selection, 36
Future leak, 8, 131, 151

H
Hessian, 97
Hypothesis test, 210, 222

I, J, K
Improving entropy, 25
In-sample (IS), 91, 121
Incomplete beta

distribution, 245
Indicator, 6
IS, see In-sample (IS)

L
Lambda path, 55
Lasso, 39
Linear model, 35
LOOKAHEAD, 134, 137
LOOKBACK, 134
Lookback-unbounded, 156
Lower bound, 219, 222
Lower bound for mean

returns, 209

M
MCPT_BARS program, 313
MCPT_TRN program, 310
Model-based trading, 6, 151
Monte-Carlo permutation test, 283

N
Nested walkforward, 172
Nonstationarity, 142
Normal distribution, 216
NREPS, 123
NTEST, 134
ntest, 138
NTRAIN, 134, 138
Null hypothesis, 210

O
OMIT, 134, 138
OOS, see Out-of-sample (OSS)
OOS_START, 130, 135
Out-of-sample (OSS), 91, 121
Overfitting, 35, 36, 122, 286
Overlap program, 135, 137

P
p-value, 139, 163
p-values-parametric, see Parametric

p-values
PARAMCOR program, 97
Parameter relationships, 96
Parameter sensitivity curve, 108
Parametric p-values, 216
partitioning total return, 294
PER_WHAT program, 198
Percent wins fallacy, 8
Percentile bootstrap, 225
Permutation algorithm, 298
Permutation testing, 290
Permuting multiple markets, 301, 316
Permuting price bars, 305
Permuting prices, 299
Pessimistic q method, 245

Index

321

Pivot bootstrap, 223
Predictor, 131
Profit factor, 123, 124
Profit per what?, 195
Proportional entropy, 21

Q
Quantile, 242

R
Regularizing, 35
Relative entropy, 21
Ridge regression, 39
Round turns, 196
Rule-based trading, 6

S
SelBias program, 127
Selection bias, 124
Sensitivity curve, 108
Sharpe ratio, 123, 159
Simple permutation, 298
Stationarity, 11
STATN program, 13
Stepwise selection, 36
STOC_BIAS program, 92
Student’s t test, 216

T
t test, 216
Tail-only cleaning, 29
Target, 6, 131
Training bias, 35, 91, 122, 123
TrnBias program, 123

U
Unbiased, 125
Unbounded lookback, 156
Unknown lookahead

conversion, 155
Upper bound for future

returns, 247

V
Variance-error, 132

W
Walkforwad blunders, 137
Walkforward (date-dependent), 137
Walkforward-nested, 172
Walkforward analysis, 129, 156

X, Y, Z
XvW program, 156

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	The Target Audience, and Overview of Contents
	What’s in This Book
	What’s Not in This Book

	About Trading Systems
	Market Prices and Returns
	Two Types of Automated Trading Systems
	The Agony of Believing the Computer
	Future Leak Is More Dangerous Than You May Think
	The Percent Wins Fallacy

	Chapter 2: Pre-optimization Issues
	Assessing and Improving Stationarity
	The STATN Program
	Improving Location Stationarity by Oscillating
	Extreme Stationarity Induction

	Measuring Indicator Information with Entropy
	Computing the Relative Entropy of an Indicator
	Entropy Impacts Predictive Model Quality
	Improving the Entropy of an Indicator
	Monotonic Tail-Only Cleaning
	The ENTROPY Program

	Chapter 3: Optimization Issues
	Regularizing a Linear Model
	Overview of the Regularized Model
	Beta Adjustment with Guaranteed Convergence
	Differential Case Weighting
	Rapid Computation with Covariance Updates
	Preparatory Code

	Outline of the Beta Optimization Process
	Code for Beta Optimization
	Descending a Lambda Path
	Optimizing Lambda with Cross Validation
	The CD_MA Program

	Making a Linear Model Nonlinear
	Differential Evolution: A Universal Nonlinear Optimizer
	The DIFF_EV.CPP Routine for Differential Evolution

	Chapter 4: Post-optimization Issues
	Cheap Bias Estimates
	The StocBias Class

	Cheap Parameter Relationships
	Parameter Sensitivity Curves
	Putting It All Together Trading OEX
	The Trading System
	Linking Criterion Routines
	Application to Trading OEX

	Chapter 5: Estimating Future Performance I: Unbiased Trade Simulation
	In-Sample and Out-of-Sample Performance
	The TrnBias Program to Demonstrate Training Bias
	Selection Bias
	Interlude: What Does Unbiased Really Mean?
	Selection Bias, Continued
	The SelBias Program

	Walkforward Analysis
	Future Leak by Unobvious IS/OOS Overlap
	Error Variance Inflation with Multiple-Bar Lookaheads
	The General Walkforward Algorithm
	C++ Code for the Algorithm
	Date-Dependent Walkforward
	Exploring Walkforward Blunders
	Testing Robustness Against Nonstationarity

	Cross-Validation Analysis
	Unobvious IS/OOS Overlap
	The Fully General Cross-Validation Algorithm
	C++ Code for the General Algorithm
	Cross Validation Can Have Pessimistic Bias
	Cross Validation Can Have Optimistic Bias
	Cross Validation Does Not Reflect Real Life

	Special Precautions for Algorithmic Trading
	Converting Unknown-Lookahead Systems to Single-Bar
	Unbounded Lookback Can Subtly Happen

	Comparing Cross Validation with Walkforward: XVW
	Computationally Symmetric Cross Validation
	The CSCV Algorithm: Intuition and General Statement

	What Does This Test Actually Measure?
	C++ Code for the CSCV Superiority Test
	An Example with SPX

	Nested Walkforward Analysis
	The Nested Walkforward Algorithm
	A Practical Application of Nested Walkforward

	An Example Using S&P 100 Components
	Cross Validation Nested Inside Walkforward

	Chapter 6: Estimating Future Performance II: Trade Analysis
	Handling Dynamic Trading Systems
	Unknown Lookahead to Single Bars, Revisited

	Profit per Bar? Per Trade? Per Time?
	Analyzing Completed Trade Returns Is Problematic
	The PER_WHAT Program

	A Lower Bound for Mean Future Returns
	Brief Digression: Hypothesis Tests
	So, How Do We Use This Probability?
	Parametric P-Values
	Parametric Confidence Intervals
	Lower Confidence Bounds and Hypothesis Tests

	Bootstrap Confidence Intervals
	The Pivot and Percentile Methods
	The BCa Bootstrap Algorithm
	The BOOT_CONF.CPP Subroutines
	The BOUND_MEAN Program and Results with SPX
	Beware of Bootstrapping Ratios

	Bounding Future Returns
	Deriving a Lower Bound from Empirical Quantiles
	Confidence in the Computed Lower Bound
	What About an Upper Bound on Future Returns?
	The CONFTEST Program: Overview
	The CONFTEST Program: Code
	The BND_RET Program

	Bounding Drawdown
	Intuition Gone Wrong
	Bootstrapping Drawdown Bounds
	The DRAWDOWN Program
	Experiments with the DRAWDOWN Program
	The CHOOSER_DD Program

	Chapter 7: Permutation Tests
	Overview of Permutation Testing
	Testing a Fully Specified Trading System
	Testing the Training Process
	Walkforward Testing a Trading System Factory
	Permutation Testing of Predictive Models

	The Permutation Testing Algorithm
	Extending the Algorithm for Selection Bias

	Partitioning Total Return of a Trading System
	Essential Permutation Algorithms and Code
	Simple Permutation

	Permuting Simple Market Prices
	Permuting Multiple Markets with an Offset
	Permuting Price Bars

	Example: P-Value and Partitioning
	Example: Training with Next Bar Returns

	Example: Permuting Multiple Markets

	Index

