
SymbolicC++: An Introduction to Computer
Algebra using Object-Oriented Programming

Springer-Verlag London Ltd.

Tan Kiat Shi, Willi-Hans Steeb and Yorick Hardy

SymbolicC ++:
An Introdurtion to
Computer Algebra using
Objert-Oriented Programming

2nd extended and revised edition

i Springer

Tan KiatShi
ILOG Co. Ltd., Tokyo, Japan

Willi-Hans Steeb
Y orick Hardy
International School for Scientific Computing, Rand Africaans University,
Johannesburg, South Africa

ISBN 978-1-85233-260-0

Springer-Verlag London Berlin Heidelberg

British Library Cataloguing in Publication Data
Tan, Kiat Shi

Syrnbolic C++ : an introduction to computer algebra using
Object-oriented programming. - 2nd rev.ed.
l. Object-oriented programming 2. C++ (Computer program
language) 3. Algebra - Data processing
1. Title II. Steeb, W.-H. III. Hardy, Yorick
512'.00285'5133

ISBN 978-1-85233-260-0 ISBN 978-1-4471-0405-6 (eBook)
DOI 10.1007/978-1-4471-0405-6

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under
the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in
any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic
reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries
concerning reproduction outside those terms should be sent to the publishers.

© Springer-Verlag London 2000

Originally published by Springer-Verlag London Limited in 2000

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may
bemade.

Typesetting: Camera ready by authors

34/3830-543210 Printed on acid-free paper SPIN 10749339

Preface
In this text we will show how object-oriented programming can be used to implement
a symbolic algebra system and how the system is applied to different areas in math­
ematics and physics.

In the most restrictive sense, computer algebra is used for the manipulation of sci­
entific and engineering formulae. Usually, a mathematical formula described in the
programming languages such as C, Fortran and Pascal can only be evaluated numer­
ically, by assigning the respective values to each variable. However, the same formula
may be treated as a mathematical object in a symbolic algebra system, which allows
formal transformation, such as differentiation, integration and series expansion, on
top of the numerical manipulations. This is therefore an indispensable tool for re­
search and scientific computation.

Object-oriented programming has created a new era for programming in computer
science as it has been suggested as a possible solution to software development. Basi­
cally, object-oriented programming is an important approach to analyzing problems,
designing systems and building solutions. By applying this method effectively, the
software products become less error prone, easier to maintain, more reusable and ex­
tensible.

The purpose of this book is to demonstrate how the features of object-oriented pro­
gramming may be applied to the development of a computer algebra system. Among
the many object-oriented programming languages available nowadays, we have se­
lected C++ as our programming language. It is the most widely used object-oriented
programming language, which has been successfully utilized by many programmers in
various application areas. The design is based partly on acknowledged principles and
partly on solid experience and feedback from actual use. Many experienced individu­
als and organizations in the industry and academia use C++. On top of the reasons
stated above, we have selected C++ over other object-oriented languages because of
its efficiency in execution speed and its utilization of pointers and templates.

Chapter 1 introduces the general notion of Computer Algebra. We discuss the es­
sential properties and requirements of a computer algebra system. Some pitfalls and
limitations are also listed for reference. Finally, we present a computer algebra system
- SymbolicC++ This new system has many advantages over existing computer
algebra systems. A brief summary of features anel function ali ties is given.

v

VI PREFACE

Chapter 2 presents the general mathematics for a computer algebra system. We de­
scribe how fundamental mathematical quantities are built up to form more complex
mathematical structures.

Chapter 3 gives a brief introduction to some computer algebra systems available in
the market place, such as Reduce, Maple, Axiom, Mathematica and MuPAD. The
basic operations are described for each system. Examples are used to demonstrate
the features of these systems.

The basic concepts of object-oriented programming, such as objects, classes, abstract
data types, message passing, inheritance, polymorphism and so on are introduced in
Chapter 4. Examples are given to assist the readers in understanding these important
concepts. The object-oriented language Java is discussed in detail and two classes
are developed. Finally, the chapter briefly describes three other object-oriented pro­
gramming languages - Eiffel, Smalltalk and Oberon.

In Chapter 5, we introduce the language tools in C++ Along with the description,
we construct the String data type, which serves as a carriage for introducing the
facilities available in C++. Some other examples are also given. The Standard Tem­
plate Library is also introduced together with a large number of examples. Finally
we describe recursion. By the end of this chapter, all the features needed in the book
will have been introduced.

Chapter 6 gives a collection of useful classes for computer algebra. We investigate
very long integers, rational numbers, complex numbers, quaternions, exact deriva­
tives, vectors, matrices, arrays, strings, bit vectors, finite sets and polynomials. They
are the building blocks of mathematics as described in Chapter 2. The internal struc­
tures and external interfaces of these classes are described in great detail.

In Chapter 7, we describe how a mathematical expression can be constructed us­
ing object-oriented techniques. We introduce the new computer algebra system
SymbolicC++ and describe its internal representations and public interfaces. Sev­
eral examples are also presented to demonstrate the functionalities of the system.

In Chapter 8, we apply the classes developed in Chapters 6 and 7 to problems in
mathematics and physics. Applications are categorized according to classes. Several
classes may be used simultaneously to solve a particular problem. Many interesting
problems are presented, such as ghost solutions, Pade approximant, Lie series tech­
niques, Picard's method, Mandelbrot set, etc.

In Chapter 9, we discuss how the programming language Lisp can be used to im­
plement a computer algebra system. We implement an algebraic simplification and
differentiation program. Furthermore, we develop a Lisp system using the object­
oriented language C++.

PREFACE VII

The header files of the classes (abstract data type) introduced in Chapters 6 and 7
are listed in Chapter 10, while in Chapter 11, we show how a PVM (Parallel Virtual
Machine) can be used with abstract data types. In Chapter 12, we describe some
error handling techniques. We introduce the concept of exception handling. Exam­
ples are also given for demonstration purposes. Finally, in Chapter 13 we show how
Gnuplot and PostScript can be used to draw figures.

The level of presentation is such that one can study the subject early on in ones
education in science. There is a balance between practical programming and the
underlying language. The book is ideally suited for use in lectures on symbolic com­
putation and object-oriented programming. The beginner will also benefit from the
book.

The reference list gives a collection of textbooks useful in the study of the computer
language C++ [6], [13], [23], [29], [31], [37], [45], [55]. For data structures we refer to
Budd (1994) [9]. For applications in science we refer to Steeb et al (1993) [48], Steeb
(1994) [49] and Steeb (1999) [52].

The C++ programs have been tested with all newer C++ compilers which comply to
the C++ Standard and include an implementation of the Standard Template Library.

Without doubt, this book can be extended. If you have comments or suggestions, we
would be pleased to have them. The email addresses of the authors are:

Willi-Hans Steeb: whs~na.rau.ac.za
steeb_wh~yahoo.com

Tan Kiat Shi: ktan~ilog.co.jp

Yorick Hardy: yorickhardy~yahoo.com

SymbolicC++ was developed by the International School for Scientific Computing.
The Web pages of the International School for Scientific Computing are

http://zeus.rau.ac.za/
http://issc.rau.ac.za/

The second web page also provides the header files for SymbolicC++

Contents

1 Introduction
1.1 What is Computer Algebra?
1.2 Properties of Computer Algebra Systems
1.3 Pitfalls in Computer Algebra Systems.
1.4 Design of a Computer Algebra System

2 Mathematics for Computer Algebra
2.1 Rings and Fields
2.2 Integers
2.3 Rational Numbers.
2.4 Real Numbers ...
2.5 Complex Numbers
2.6 Vectors and Matrices
2.7 Quaternions..
2.8 Polynomials . .
2.9 Differentiation.
2.10 Integration. . .
2.11 Commutativity and Noncommutativity
2.12 Tensor and Kronecker Product.
2.13 Exterior Product

3 Computer Algebra Systems
3.1 Introduction.......
3.2 Reduce

3.2.1 Basic Operations
3.2.2 Example.....

3.3 Maple
3.3.1 Basic Operations
3.3.2 Example .. .

3.4 Axiom
3.4.1 Basic Operations
3.4.2 Example.....

3.5 Mathematica
3.5.1 Basic Operations

IX

1
1
2
3
5

9
9

12
18
21
24
27
32
34
42
43
49
50
53

57
57
59
59
61
65
65
66
68
68
70
71
71

x

3.5.2 Example.....
3.6 MuPAD

3.6.1 Basic Operations
3.6.2 Example.....

4 Object-Oriented Programming
4.1 Objects, Classes and Abstract Data Types

4.1.1 Objects
4.1.2 Abstract Data Types (ADT) .
4.1.3 Classes..

4.2 Message Passing.
4.3 Inheritance ...
4.4 Polymorphism..

4.4.1 Inclusion Polymorphism
4.4.2 Operation Polymorphism.
4.4.3 Parametric Polymorphism

4.5 Object-Oriented Languages
4.5.1 C++
4.5.2 Java
4.5.3 Other Object-Oriented Languages.

4.6 Summary

5 Basic Tools in C++
5.1 Pointers and References
5.2 Classes..........
5.3 Constructors and Destructor .
5.4 Copy Constructor and Assignment Operator
5.5 Type Conversion ...
5.6 Operator Overloading.
5.7 Class Templates ...
5.8 Function Templates.
5.9 Friendship
5.10 Inheritance .. .
5.11 Virtual Functions
5.12 Wrapper Class ..
5.13 Standard Template Library

5.13.1 Introduction
5.13.2 The Namespace Concept
5.13.3 The Vector Class
5.13.4 The List Class ..
5.13.5 The Stack Class.
5.13.6 The Queue Class
5.13.7 The Deque Class
5.13.8 The Bit Set Class.

CONTENTS

72
73
73
74

75
75
75
78
79
80
81
84
84
85
86
87
88
90

110
120

121
122
130
134
135
137
143
153
157
160
162
165
167
168
168
169
170
174
176
178
180
182

CONTENTS XI

5.13.9 The Set Class 184
5.13.10 The Map Class ... 186
5.13.11 The Algorithm Class 189

5.14 Recursion 191
5.15 Summary 200

6 Classes for Computer Algebra 201
6.1 The Very long Integer Class. 202

6.1.1 Abstraction 202
6.1.2 Data Fields 203
6.1.3 Constructors 203
6.1.4 Operators · . 204
6.1.5 Type Conversion Operators 207
6.1.6 Private Member Functions 208
6.1.7 Other Functions. . . 208
6.1.8 Streams · 210

6.2 The Rational Number Class 211
6.2.1 Abstraction · . 211
6.2.2 Template Class 211
6.2.3 Data Fields 212
6.2.4 Constructors 212
6.2.5 Operators · .. 213
6.2.6 Type Conversion Operators 213
6.2.7 Private Member Functions 215
6.2.8 Other Functions. . . 215
6.2.9 Streams · 216

6.3 The Complex Number Class 217
6.3.1 Abstraction · . 217
6.3.2 Template Class 217
6.3.3 Data Fields 218
6.3.4 Constructors 218
6.3.5 Operators · .. 219
6.3.6 Type Conversion Operators 220
6.3.7 Other Functions . 220

6.4 The Quaternion Class 222
6.4.1 Abstraction · . 222
6.4.2 Template Class 222
6.4.3 Data Fields 223
6.4.4 Constructors 223
6.4.5 Operators · .. 223
6.4.6 Other Functions . 223
6.4.7 Streams · . 224

6.5 The Derive Class 225
6.5.1 Abstraction 225

XII

6.5.2 Data Fields
6.5.3 Constructors
6.5.4 Operators ..
6.5.5 Member Functions
6.5.6 Possible Improvements

6.6 The Vector Class
6.6.1 Abstraction
6.6.2 Templates.
6.6.3 Data Fields
6.6.4 Constructors
6.6.5 Operators . .
6.6.6 Member Functions and Norms .
6.6.7 Streams ..

6.7 The Matrix Class .
6.7.1 Abstraction
6.7.2 Data Fields
6.7.3 Constructors
6.7.4 Operators ..
6.7.5 Member Functions and Norms.

6.8 Array Classes ...
6.8.1 Abstraction
6.8.2 Data Fields
6.8.3 Constructors
6.8.4 Operators . .
6.8.5 Member Functions

6.9 The String Class
6.9.1 Abstraction
6.9.2 Data Fields
6.9.3 Constructors
6.9.4 Operators ..
6.9.5 Member Functions
6.9.6 Type Conversion Operator
6.9.7 Possible Improvements

6.10 Bit Vectors
6.10.1 Abstraction
6.10.2 Data Fields
6.10.3 Constructors
6.10.4 Member Functions
6.10.5 Private Member Functions

6.11 The Linked List Class
6.11.1 Abstraction ..
6.11.2 The List Class.
6.11.3 The Link Class
6.11.4 The List Iterator

CONTENTS

225
225
226
226
227
228
228
229
229
229
230
233
234
235
235
236
236
237
239
244
244
245
246
247
249
251
251
251
252
252
253
254
254
255
255
255
256
256
258
259
259
260
261
262

CONTENTS

6.12 The Polynomial Class.
6.12.1 Abstraction
6.12.2 Template Class
6.12.3 Data Fields .
6.12.4 Constructors .
6.12.5 Operators ...
6.12.6 Type Conversion Operators
6.12.7 Private Member Functions
6.12.8 Other Functions.
6.12.9 Streams
6.12.1OExample ..

6.13 The Set Class . . .
6.13.1 Abstraction
6.13.2 Template Class
6.13.3 Data Fields .
6.13.4 Constructors .
6.13.5 Operators ...
6.13.6 Member Functions
6.13.7 Streams .
6.13.8 Example.

6.14 Summary

7 The Symbolic Class
7.1 Object-Oriented Design.

7.1.1 The Expression Tree
7.1.2 Polymorphism of the Expression Tree.

7.2 Data Fields and Types of Symbol
7.3 Constructors.
7.4 Operators ..
7.5 Functions ..
7.6 Simplification

7.6.1 Canonical Forms
7.6.2 Simplification Rules and Member Functions

7.7 Commutativity
7.8 Symbolic and Numeric Interface
7.9 Summary

8 Applications
8.1 Bit Vector Class .

8.1.1 Prime Numbers
8.2 Verylong Class

8.2.1 Big Prime Numbers.
8.2.2 Inverse Map and Denumerable Set
8.2.3 Godel Numbering

XIII

268
268
268
269
269
270
270
270
270
270
271
272
272
272
272
272
273
273
273
273
275

277
278
278
280
284
286
288
305
306
306
307
310
312
314

315
316
316
321
321
324
327

XIV

8.3 Verylong and Rational Classes
8.3.1 Logistic Map
8.3.2 Contracting Mapping Theorem
8.3.3 Ghost Solutions
8.3.4 Iterated Function Systems .. .

8.4 Verylong, Rational and Derive Classes
8.4.1 Logistic Map and Ljapunov Exponent.

8.5 Verylong, Rational and Complex Classes
8.5.1 Mandelbrot Set

8.6 Symbolic Class
8.6.1 Polynomials
8.6.2 Cumulant Expansion
8.6.3 Exterior Product . .

8.7 Symbolic Class and Symbolic Differentiation
8.7.1 First Integrals
8.7.2 Spherical Harmonics
8.7.3 Nambu Mechanics
8.7.4
8.7.5

Taylor Expansion of Differential Equations
Commutator of Two Vector Fields. . .

8.7.6 Lie Derivative and Killing Vector Field
8.8 Matrix Class.

8.8.1 Hilbert-Schmidt Norm
8.8.2 Lax Pair and Hamilton System
8.8.3 Pade Approximant

8.9 Array and Symbolic Classes
8.9.1 Pseudospherical Surfaces and Soliton Equations

8.10 Polynomial and Symbolic Classes
8.10.1 Picard's Method

8.11 Lie Series Techniques
8.12 Spectra of Small Spin Clusters ..
8.13 Nonlinear Maps and Chaotic Behaviour .
8.14 Numerical-Symbolic Application.
8.15 Summary

9 Lisp and Computer Algebra
9.1 Introduction
9.2 Basic Functions of Lisp
9.3 Examples from Symbolic Computation

9.3.1 Polynomials ..
9.3.2 Simplifications
9.3.3 Differentiation

9.4 Lisp System based on C++

CONTENTS

335
335
337
340
342
346
346
349
349
351
351
367
370
372
372
375
378
380
386
388
391
391
393
396
399
399
402
402
407
411
415
418
420

421
421
422
426
426
428
435
437

CONTENTS XV

10 Program Listing 451
10.1 Verylong Class 451
10.2 Rational Class. 468
10.3 Complex Class 474
10.4 Quaternion Class 479
10.5 Derive Class . 483
10.6 Vector Class. 486
10.7 Matrix Class. 497
10.8 Array Class 510
10.9 String Class . 528
1O.10Bit Vector Class. 533
10.11Linked List Class 538
10.12Polynomial Class 546
1O.13Set Class 571
1O.14Symbolic Class 577

11 PVM and Abstract Data Types 649

12 Error Handling Techniques 655
12.1 Error State 656
12.2 Exception Handling .. 656

13 Gnuplot and PostScript 659

Bibliography 663

Index 667

Chapter 1

Introduction

1.1 What is Computer Algebra?

Computer algebra [12], [34], [41] is the name of the technology for manipulating
mathematical formulae symbolically by digital computers. For example an expression
such as

d 2 x-2*x+-(x-a)
dx

should evaluate symbolically to
x - 2 * a.

Symbolic simplifications of algebraic expressions are the basic properties of com­
puter algebra. Symbolic differentiation using the sum rule, product rule and divi­
sion rule has to be part of a computer algebra system. Symbolic integration should
also be included in a computer algebra system. Furthermore expressions such as
sin2(x) + cos2 (x) and cosh2 (x) - sinh2(x) should simplify to 1. Thus another impor­
tant ingredient of a computer algebra system is that it should allow one to define
rules. Examples are the implementations of the exterior product and Lie algebras.
Another important part of a computer algebra system is the symbolic manipulation
of polynomials, for example to find the greatest common divisor of two polynomials
or finding the coefficients of a polynomial.

The name of this discipline has long hesitated between symbolic and algebraic calcu­
lation, symbolic and algebraic manipulations and finally settled down as Computer
Algebra. Algebraic computation programs have already been applied to a large num­
ber of areas in science and engineering. It is most extensively used in the fields where
the algebraic calculations are extremely tedious and time consuming, such as gen­
eral relativity, celestial mechanics and quantum chromodynamics. One of the first
applications was the calculation of the curvature of a given metric tensor field. This
involves mainly symbolic differentiation.

1

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

2 CHAPTER 1. INTRODUCTION

1.2 Properties of Computer Algebra Systems

What should a computer algebra system be able to do? First of all it should be able to
handle the data types such as very long integers, rational numbers, complex numbers,
quaternions, etc. The basic properties of the symbolic part should be simplifications
of expressions, for example

a+ 0 = a, O+a=a

a - a = 0, -a+a = 0

a * 0 = 0,

a * 1 = a,

aO = 1.

In most systems it is assumed that the symbols are commutative, i.e.,

a * b = b * a.

Thus an expression such as

should be evaluated to
a * a - b * b.

If the symbols are not commutative then a special command should be given to
indicate so. Furthermore, a computer algebra system should do simplifications of
trigonometric and hyperbolic functions such as

sin(O) = 0,

cosh(O) = 1,

cos(O) = 1

sinh(O) = O.

The expression exp(O) should simplify to 1 and In 1 should simplify to O. Expressions
such as

should simplify to 1. Besides symbolic differentiation and integration a computer
algebra system should also allow the symbolic manipulation of vectors, matrices and
arrays. Thus the scalar product and vector product must be calculated symbolically.
For square matrices the trace and determinant have to be evaluated symbolically.
Furthermore, the system should also allow numerical manipulations. Thus it should
be able to switch from symbolic to numerical manipulations. The computer algebra
system should also be a programming language. For example, it should allow if­
conditions and for-loops. Moreover, it must allow functions and procedures.

.1.3. PITFALLS IN COMPUTER ALGEBRA SYSTEMS 3

1.3 Pitfalls in Computer Algebra Systems

Although computer algebra systems have been around for many years there are still
bugs and limitations in these systems. Here we list a number of typical pitfalls.

One of the typical pitfalls is the evaluation of

v'a2 + b2 - 2ab.

Some computer algebra systems indicate that a - b is the solution. Obviously, the
result should be

±Ia - bl·
As another example consider the rank of the matrix

The rank of a matrix is the number of linearly independent columns (which is equal
to the number of linearly independent rows). If x = 0, then the rank is equal to O.
On the other hand if x # 0, then the rank of A is 1. Thus computer algebra systems
face an ambiguity in the determination of the rank of the matrix. A similar problem
arises when we consider the inverse of the matrix

B=(! ~).

It only exists when x # O.

Another problem arises when we ask computer algebra systems to integrate

where n is an integer. If n # -1 then the integral is given by

n+l

4 CHAPTER 1. INTRODUCTION

If n = -1, the integral is
In(x).

Another ambiguity arises when we consider

Consider for example
f(x) = XX == exp(xln(x))

for x > O. Applying L'Hospital's rule we find 0° = 1 as a possible definition of 0°.
Many computer algebra systems have problems finding

x

x + sin(x)

at x = 0 using L'Hospital's rule. The result is 1/2.

We must also be aware that when we solve the equation

the computer algebra system has to distinguish between the cases a = 0 and x = O.

A large number of pitfalls can arise when we consider complex numbers and branch
points in complex analysis. Complex numbers and functions should satisfy the Aslak­
sen test [3]. Thus

exp(ln(z))

should simplify to z, but
In(exp(z))

should not simplify for complex numbers. We have to take care of the branch cuts
when we consider multiple-valued complex functions. Most computer algebra systems
assume by default that the argument is real-valued.

For a more in-depth survey of the pitfalls in computer algebra systems Stoute­
meyer [54] may be perused.

1.4. DESIGN OF A COMPUTER ALGEBRA SYSTEM 5

1.4 Design of a Computer Algebra System

Most computer algebra systems are based on Lisp. The computer language Lisp takes
its name from list processing. The main task of Lisp is the manipulation of quanti­
ties called lists, which are enclosed in parentheses. A number of powerful computer
algebra systems are based in Lisp, for example Reduce, Macsyma, Derive, Axiom
and MuPAD. The design of Axiom is based on object-oriented programming using
Lisp. The computer algebra systems Maple and Mathematica are based on C. All
of these systems are powerful software systems which can perform symbolic calcu­
lations. However, these software systems are independent systems and the transfer
of expressions from one of them to another programming environment such as C is
rather tedious, time consuming and error prone. It would therefore be helpful to en­
able a higher level language to manipulate symbolic expressions. On the other hand,
the object-oriented programming languages provide all the necessary tools to perform
this task elegantly.

Here we show that object-oriented programming using C++ can be used to develop
a computer algebra system. Object-oriented programming is an approach to software
design that is based on classes rather than procedures. This approach maximizes
modularity and information hiding. Object-oriented design provides many advan­
tages. For example, it combines both the data and the functions that operate on that
data into a single unit. Such a unit (abstract data type) is called a class.

We use C++ as our object-oriented programming language for the following reasons.
C++ allows the introduction of abstract data types. Thus we can introduce the data
types used in the computer algebra system as abstract data types. The language
C++ supports the central concepts of object-oriented programming: encapsulation,
inheritance, polymorphism (including dynamic binding) and operator overloading. It
has good support for dynamic memory management and supports both procedural
and object-oriented programming. A less abstract form of polymorphism is provided
via template support. We overload the operators

+, *, /

for our abstract data types, such as verylong integers, rational numbers, complex
numbers or symbolic data types. The vector and matrix classes are implemented on
a template basis so that they can be used with the other abstract data types.

Another advantage of this approach is that, since the system of symbolic manipu­
lations itself is written in C++, it is easy to enlarge it and to fit it to the special
problem at hand. The classes (abstract data types) are included in a header file and
can be provided in any C++ program by giving the command #include "ADT .h" at
the beginning of the program.

6 CHAPTER 1. INTRODUCTION

For the realization of this concept we need to apply the following features of C++:

(1) the class concept
(2) overloading of operators
(3) overloading of functions
(4) inheritance of classes
(5) virtual functions
(6) function templates
(7) class templates
(8) Standard Template Library.

The developed system SymbolicC++ includes the following abstract data types
(classes):

Verylong
Rational
Complex
Quaternion
Derive
Vector
Matrix
Array
String
Bitvector
List
Set
Polynomial
Sum

Type/Pair

handles very long integers
template class that handles rational numbers
template class that handles complex numbers
template class that handles quaternions
template class to handle exact differentiation
template class that handles vectors
template class that handles matrices
template class that handles arrays up to four dimensions
handles strings
handles bit vectors
template class that handles linked lists
template class that handles finite sets
template class that handles polynomials
template class that handles symbolic manipulations, such as
rules, simplifications, differentiation, integration,
commutativity and non-commutativity
handles the atom and dotted pair for a Lisp system
All the standard Lisp functions are included.

Suitable type conversions between the abstract data types and between abstract data
types and basic data types are also provided.

1.4. DESIGN OF A COMPUTER ALGEBRA SYSTEM 7

The advantages of SymbolicC++ are as follows:

(1) Object-oriented design and proper handling of basic and abstract data types.
(2) The system is operating system independent, i.e. for all operating systems

powerful C++ compilers are available.
(3) The user is provided with the source code.
(4) New classes (abstract data types) can easily be added.
(5) The ANSI C++ standard is taken into account.
(6) The user only needs to learn C++ to apply the computer algebra system.
(7) Assembler code can easily be added to run on a specific CPU.
(8) Member functions and type conversion operators provide a symbolic-numeric

interface.
(9) The classes (abstract data types) are included in a header file and can be

provided in any C++ program by giving the command
#include IADT.h"
at the beginning of the program.

(10) The classes can be linked with Parallel Virtual Machine (PVM).
(11) Standard Template Library can be used with SymbolicC++.

Chapter 2

Mathematics for Computer
Algebra

2.1 Rings and Fields

The data types in a computer algebra system include integers, rational numbers,
real numbers, complex numbers, quaternions and symbols. On the other hand the
basic data types in computer languages such as C and C++ include integers, charac­
ters, float (double) numbers and pointers. From these basic data types we can form
arrays, for example arrays of integers or arrays of characters (strings). The mathe­
matical structure of these data types (except pointers) are rings and fields [4], [22].

A ring is an ordered triple (R, +, *) consisting of a set R with two binary opera­
tions + (addition) and * (multiplication), satisfying the following conditions:
(a) the pair (R, +) is a commutative group;
(b) multiplication is associative;
(c) it admits an identity (or unit) element, denoted by I;
(d) multiplication is distributive (on both sides) over addition, i.e.

x*(y+z)=x*y+x*z and (x+y)*z=x*z+y*z, forallx,y,zER.

It is common not to include the existence of a multiplicative identity element, amongst
the ring axioms. One then distinguishes between rings and rings with an identity
(unit) element. Similar differences also apply to the definitions of subring and inte­
gral domain given below. If, moreover, multiplication is commutative, then R is said
to be a commutative ring.

A subring of R is a subset S of R satisfying:
(a) S is a subgroup of the additive group R;
(b) xES and yES together imply x * yES;
(c)IES.

9

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

10 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Thus a subring is a ring.

If an element a E R possesses an inverse element with respect to multiplication,
i.e. ifthere exists a (unique) a-I E R such that

a * a-I = a-I * a = I,

then we say that a is an invertible element of R.

The set of invertible elements of a ring R is denoted by R*. If every non-zero el­
ement of R is invertible, then R is said to be a division ring. A commutative division
ring is called a field. S is a subfield of F if S is a subring of F and xES, x f 0
together imply X-I E S.

A ring is ordered when there is a non-empty subset PeR, called the set of positive
elements of R, satisfying:
(a) a E P and b E P together imply a + bE P and a * b E P;
(b) for each a E R exactly one of the following holds:

a E P, a = 0, (-a) E P.

A commutative ring is said to be an integral domain if x E K, y E K and x * y = 0,
together imply x = 0 or y = O. If x * y = 0, x f 0 and y f 0, then x and yare said
to be zero divisors in K.

The characteristic of a ring is defined as the additive order of its (multiplicative)
identity element, i.e. R has finite characteristic m if m is the least positive integer for
which m * I = O. It has characteristic 0 (or 00, for usage differs) if no such multiple
is zero.

Examples of rings are (Z,+,*) and (Q,+,*). Z is a subring of Q, but it can be
shown that Z has no proper subrings. The only invertible elements of Z are 1 and
-1 whereas all non-zero elements of Q are invertible. Since Q is a commutative ring,
it follows that Q is a field. Q is a subfield of R. Z, Q and R can be ordered by <
used in its usual sense. They are all integral domains and have characteristic O.

A two-sided ideal, I, of a ring R is a non-empty subset of R satisfying:
(a) I is a subgroup of the additive group R;
(b) for all x E I and all a, bE R we have

(i) a * x E Rand (ii) x * b E R.

I is a left ideal if it satisfies axioms (a) and (b) (i) and a right ideal if it satisfies (a)
and (b)(ii). When R is commutative all ideals are two-sided.

2.1. RINGS AND FIELDS 11

An ideal, I =I=- K, of a commutative ring K is said to be a maximal ideal of K
if, whenever M is an ideal of K satisfying I c M c K, either M = I or M = K.
Given two ideals I and J of a commutative ring K, we define their sum, 1+ J, to
be the set of all elements of K of the form x + Y where x E I and y E J, and their
product, I J, to be all elements of K which can be written in the form

Xl * YI + X2 * Y2 + ... + Xn * Yn

where n E N, Xi E I and Yi E J for all i = 1, ... , n. 1+ J and I J are again ideals.

If K is a commutative ring and I = {x * b I x E K} where b is a fixed element
of K, then I is an ideal, called a principal ideal. b is then said to generate I. An
integral domain all of whose ideals are principal is called a principal ideal domain (or
principal ideal ring). If I is an ideal of a principal ideal domain D and is generated
by the elements XI, ... , Xn i.e. I is the set of all elements of the form

where Ui ED, then I is generated by some single element d. We say that d is a
greatest common divisor (g.c.d.) of Xl,'" ,Xn. Xl, ... ,Xn are said to be mutually or
relatively prime if they have g.c.d. 1.

The intersection of the n ideals generated by Xl,' .. , Xn taken one at a time is also
an ideal and so will be generated by a single element m. m is called a least common
multiple (I.c.m.) of Xl,' .. , Xn. An element p of D is said to be prime or irreducible'
if it is not an invertible element of D and if p = a * b (a, bED) implies that a or b is
invertible.

An integral domain D is a unique factorization domain if

(a) for all a E D \ {O}, a is either invertible or can be written as the product of
a finite number of irreducible elements of D, and
(b) the decomposition in (a) is unique up to the ordering of the irreducible elements
and substitution by associates.

Example. The sets

12 = { ... , -4, -2,0,2,4, ... } and 13 = { ... , -6, -3, 0, 3, 6, ... }

are maximal ideals of Z.

112 = { ... , -24, -12, 0,12,24, ... } and Is = { ... , -16, -8,0,8,16, ... }

are ideals but not maximal ideals.

12 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

2.2 Integers

In this section we introduce integers. For the proof of the following theorems we refer
to the literature [4], [22]. Let N be the set of natural numbers

N := {O, 1, 2, ... }.

The set of integers
z;= { ... , -3, -2, -1,0, 1,2,3, ... }

can be constructed from N in the following way: define an equivalence relation E on
N x Nby

(x, y)E(x' , y') ¢:} X + y' = x' + y.

We want the formula x - y = x' - y' to hold once 'minus' has been defined. The set
Z is then defined as (N x N) / E. Given elements z and z' of Z such that

z = PE(X, y), I (' ') z = PE X ,y

where PE denotes the canonical mapping from N x N onto Z, we define the sum and
product of z and z' by

z + z' = PE(X + x', y + y'), z * Z' = PE(X * x' + Y * y', X * y' + x' * y).

This definition is chosen because we want the formulae

(x - y) + (x' - y') = (x + x') _ (y + y')

and
(x - y) * (x' - y') = (x * x' + Y * y') - (x * y' + x' * y)

to hold. With these two operations Z is a commutative ring. The mapping n H

PE(n,O) is an injection of N into Z which preserves addition and multiplication. We
can, therefore, identify N with a subset of Z. If we define the negative of z, written
-z, as the inverse element of z under addition, then it can be shown that either zEN
or -z E N. If zEN \ {a} we say that z is a positive integer, if -z E N - {a} we
say that z is a negative integer. Note that a - b = a + (-b) if a, bEN. An integer
a =I ° is called a divisor of an integer b (written alb) if there exists an integer c such
that b = a * c. When alb we also say that b is an integral multiple of a. To show that
the restriction a =I ° is necessary, suppose Olb. If b =I 0, we must have b = 0* c for
some c E Z, which is impossible; while if b = 0, we would have ° = ° * c, which is
true for every c E Z. When b, c, x, Y E Z, the integer b * x + c * y is called a linear
combination of band c. We have

Theorem. If alb and a\c then al(b * x + c * y) for all x, y E Z.

An integer P =I 0, ±1 is called a prime if and only if its only divisors are ±1 and
±p. It is clear that -P is a prime if and only if P is a prime. Hereafter, we restrict

2.2. INTEGERS 13

our attention mainly to positive primes. The number of positive primes is infinite.
When a = b * e with Ibl > 1 and lei> 1, we call the integer a composite. Thus every
integer a i= 0, ±1 is either a prime or a composite. When alb and ale, we call a a
common divisor of band e. When, in addition, every common divisor of band e is
also a divisor of a, we call a a greatest common divisor of band e. Suppose e and dare
two different greatest common divisors of a i= 0 and b i= O. Then eld and die; hence
e and d differ only in sign. We limit our attention to the positive greatest common
divisor of two integers a and b and use either d or (a, b) to denote it. Thus, d is truly
the largest (greatest) integer which divides both a and b.

We have assumed (a) that every two non-zero integers have a positive greatest com­
mon divisor and (b) that any integer a > 1 has a unique factorization, except for the
order of the factors, as a product of positive primes. Of course, in (b) it must be
understood that when a is itself a prime, "a product of positive primes" consists of a
single prime.

Division Algorithm. For any two non-zero integers a and b, there exist unique in­
tegers q and r, called respectively quotient and remainder, such that

a = b * q + r, o ~ r < Ibl.

It follows that bla and (a, b) = b if and only if r = O. When r i= 0 it is easy to show
that a common divisor of a and b also divides r and a common divisor of b and r also
divides a. Then (a,b)l(b,r) and (b,r)l(a,b) so that (a,b) = (b,r). Now either rib or
rIb. In the latter case, we use the division algorithm to obtain

0< rl < r.

Again, either rllr and (a, b) = rl or, using the division algorithm,

and (a, b) = (b, r) = (r, rd = (rl' r2)' Since the remainders rl, r2,' .. , assuming the
process to continue, constitute a set of decreasing non-negative integers there must
eventually be one which is zero. Suppose the process terminates with

(k) rk-3
(k+l) rk-2
(k + 2) rk-l

Then

rk-2 * qk-l + rk-l
rk-l * qk + rk
rk * qk+l + 0 .

o < rk-l < rk-2
o < rk < rk-l

14 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Since r = a - b * q = a + (-q) * b = ml * a + nl * b we find

and

rl = b - r * ql

= b - (ml * a + nl * b) * ql

= -ml * ql * a + (1 - nl * ql) * b
= m2*a+n2*b

r2 = r - rl * q2

= (ml * a + nl * b) - (m2 * a + n2 * b) * q2
= (ml - q2 * m2) * a + (nl - q2 * n2) * b

= m3 * a + n3 * b

and continuing, we obtain finally

Thus, we have

Theorem. When d = (a, b), there exist m, n E Z such that d = (a, b) = m * a + n * b.

In (a, b) = m * a + n * b, the integers m and n are not unique; in fact, (a, b) =
(m + k * b) * a + (n - k * a) * b for every kEN. The importance of this theorem
is as follows: if ale, if ble, and if (a, b) = d, then a * ble * d. Since ale and ble, there
exist integers s and t such that e = a * s = b * t. There exist m, n E Z such that
d = m * a + n * b. Then

and a * ble * d.

A second consequence of the Division Algorithm is

Theorem. Any non-empty set K of integers which is closed under the binary op­
erations addition and subtraction is either {O} or consists of all multiples of its least
positive element.

For given a, bE Z, suppose there exist m, n E Z such that a * m + b * n = 1. Now
every common factor of a and b is a factor of the right member 1; hence, (a, b) = 1.
Two integers a and b for which (a, b) = 1 are said to be relatively prime.

Unique Factorization Theorem. Every integer a > 1 has a unique factorization,
except for order,

a=Pl*P2*P3*···*Pn

2.2. INTEGERS 15

into a product of positive primes. Evidently,

-a = -(PI * P2 * P3 * ... * Pn) .

Moreover, since the p;'s are not necessarily distinct, we may write

where each (Xi ~ 1 and the primes PlJP2,P3, ... ,Ps are distinct.

Let m be a positive integer. The relation congruent modulo m (== (mod m)) is
defined on all a, b E Z by a == b (mod m) if and only if ml(a - b). An alternate
definition, often more useful than the original, is a == b (mod m) if and only if a and
b have the same remainder when divided by m. As immediate consequences of these
definitions, we have

Theorem. If a == b (mod m), then for any nEZ, m*n+a == b (mod m) and conversely.

Theorem. If a == b (mod m), then for all x E Z, a + x == b + x (mod m) and
a * x == b * x (mod m).

Theol'em. If a == b (mod m) and c == e (mod m), then a + c
a - c == b - e (mod m), a * c == b * e (mod m).

b + e (mod m),

Theorem. Let (c, m) = d and write m = ml * d. If c * a == c * b (mod m), then
a == b (mod ml) and conversely.

The relation == (mod m) on Z is an equivalence relation and separates the inte­
gers into m equivalence classes, [0], [1], [2], ... , [m - 1], called residue classes modulo
m, where

[r] := {a: a E Z, a == r (mod m) }.

We denote the set of all residue classes modulo m by Zj(m). Two basic properties of
the residue classes modulo m are: If a and b are elements of the same residue class
[s], then a == b(mod m). If [s] and [t] are distinct residue classes with a E [s] and
bE [t], then at b(mod m).

Consider the linear congruence

a * x == b (mod m)

in which a, b, m are fixed integers with m > O. By a solution of the congruence we
mean an integer x = Xl for which ml(a * Xl - b). Now if Xl is a solution so that
ml(a * Xl - b), then for any k E Z, ml(a * (Xl + k * m) - b) and Xl + k * m is another
solution. Thus, if Xl is a solution so is every other element of the residue class [xd
modulo m. If the linear congruence has solutions, they consists of all the elements of

16 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

one or more of the residue classes of Zj(m).

Suppose (a, m) = 1 = s*a+t*m. Then b = b*s*a+b*hm and Xl = b* s is a solu­
tion. Now assume X2 =t Xl (mod m) to be another solution. Since a * Xl == b(mod m)
and a * X2 == b(mod m), it follows from the transitive property of == (mod m) that
a * Xl == a * x2(mod m). Then mla * (Xl - X2) and Xl == X2 (mod m), contrary to
the assumption. Thus, one has just one incongruent solution, say Xl, and the residue
class [Xl] E Zj (m), also called a congTuence class, includes all solutions.

TheoTem. The congruence a * X == b (mod m) has a solution if and only if d = (a, m)
is a divisor of b. When dlb, the congruence has exactly d incongruent solutions (d
congruence classes of solutions).

The number 827 016 can be written as

827016 = 8 * 105 + 2 * 104 + 7 * 103 + 0 * 102 + 1 * 10 + 6.

This representation is an application of the congruence properties of integers. For
suppose a is a positive integer. By the division algorithm,

a = 10 * qo + To, o ~ TO < 10.

If qo = 0, we write a = TO· If qo > 0, then qo = 10 * ql + Tl, 0 ~ Tl < 10. Now if
ql = 0, then a = 10 * Tl + T2 and we write a = TlTO; if ql > 0, then ql = 10 * q2 + T2,

o ~ T2 < 10. Again, if q2 = 0, then a = 102 * T2 + 10 * Tl + TO and we write a = T2Tl TO;
if q2 > 0, we repeat the process. This must end eventually and we have

a = lOS * Ts + lOs- l * Ts-l + ... + 10 * Tl + TO = TsTs-l ... TITo.

This follows from the fact that the qi'S constitute a set of decreasing non-negative
integers. Note that in this representation the symbols Ti used are from the set
{O, 1,2,3, ... ,9} of remainders modulo 10. The representation is unique. The process
is independent of the base and any other positive integer may be used. Thus, if 4 is
taken as base, any positive integer will be represented by a sequence of the symbols
0, 1,2,3. For example, the integer (base 10) 155 is given in base 4 as

155 = 43 * 2 + 42 * 1 + 4 * 2 + 3 = 2123 base 4.

Next, we describe an algorithm which generates the prime number sequence called the
"sieve of Eratosthenes". It was worked out in the third century B.C. This algorithm
discovers all the prime numbers less than a given integer N. It works by removing
all the non-prime numbers, leaving the prime number sequence.

Consider the following sequence of integers > 1:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2.2. INTEGERS 17

As we all know, the first prime number is 2, and all the multiples of 2 are not prime.
Thus we cross out all the even numbers greater than 2:

2 I 3 4, 5 {; 7 .g 9 l{) 11 1-2 13 :l4 15 1-6 17 l8 19 2-0 21 ...

The next number on the sequence which has not been crossed out is 3. Thus we know
it is the next prime number. Similarly, we cross out all the multiples of 3. Note that
we attempt to cross out the numbers 3 x 2 = 6, 3 x 4 = 12, 3 x 6 = 18 which have
already been removed as they are also multiples of 2. In fact, we could save some
operations by just removing 3(3 + 0) = 9,3(3 + 2) = 15, 3(3 + 4) = 21, ...

2 3 I 5 7 -9 11 13 l-5 17 19 9-1 23 25 'J1 29 31 33 35 37

In general, starting with a prime number p, we successively cross out the multiples
p2, p(p + 2), p(p + 4), ... We start the crossing out process from p2 because all the
multiples smaller than that would have been removed in the earlier stages of the pro­
cess. For example, starting with the prime number 5, we cross out 5(5 + 0) = 25,
5(5 + 2) = 35, 5(5 + 4) = 45, ... We do not need to cross out 5 x 2 or 5 x 3 as they
have been removed for p = 2 or p = 3, respectively.

Note that with this process, we may still end up crossing out numbers more than
once. For example, 5(5 + 4) = 45 has already been crossed out as a multiple of 3.
The sequence for p = 5 looks like

2 3 5 I 7 11 13 17 19 23 25 29 31 3-5 37 41 43 47 53 &5 ...

We continue this process until we reach a prime p with p2 > N, where N is the largest
number we wish to consider. At this point, all the non-prime numbers :S N would
have been crossed out. What remains is the prime number sequence :S N. Below
we list the prime numbers less than 100 that were generated using the algorithm
described above:

2 3 5 7 11 13 17 19 23 29 31 37 41
43 47 53 59 61 67 71 73 79 83 89 97

18 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

2.3 Rational Numbers

The set of rational numbers, Q, can be constructed in a similar manner to Z, as
follows. Let E be the equivalence relation on Z x (Z - {O}) defined by

(a, b)E(c, d) {:} a * d = b *c,

and define Q as
Z x (Z \ {O})jE.

Addition and multiplication are defined on Q in terms of the canonical mapping, PE,
by

PE(a, b) + PE(C, d)
PE(a, b) x PE(C, d)

PE(a * d + b * c, b * d)
= PE(a *c, b * d).

It can be shown that with these operations Q is a field and that there is a natural
injection which maps Z into Q and preserves the operations of multiplication and
addition. We can, therefore, consider Z to be a subset of Q.

Corresponding to each ordered pair (a, b) of Z x (Z \ {O}) is the fraction alb with
numerator a and non-zero denominator b (the need to make b non-zero accounts for
the use of Z\ {O}, rather than Z, in the definition). Two fractions are then equivalent
if the corresponding ordered pairs are equivalent in the sense defined above, and a
rational number is an equivalence class of fractions.

We now define two special rational numbers

zero -t PE(O, b), one -t PE(a, a)

and the inverse

(additive): -PE(a, b) = PE(-a, b)

(multiplicative): PE(a, btl = PE(b, a)

In the following we use the notation a/b. Addition and multiplication obey the
distributive and associative law. Moreover, for every alb (a, b 1= 0) there exists a
multiplicative inverse b/a such that (a/b) * (b/a) = 1.

Subtraction and division are defined by

b, d 1= 0

2.3. RATIONAL NUMBERS 19

and

a
- a*d b

--C =
- b*c
d

There is an order relation for rational numbers. An element a/b E Q is called positive
if and only if a * b > O. Similarly, a/b is called negative if and only if a * b < O. Since,
by the Trichotomy Law, either a * b > 0, a * b < 0 or a * b = 0, it follows that each
element of Q is either positive, negative or zero. The order relations < and > on Q
are defined as follows. For each x, y E Q,

x < y if and only if x - y < 0

x > y if and only if x - y > o.

These relations are transitive but neither reflexive nor symmetric. Q also satisfies the
Trichotomy Law. If x, y E Q, one and only one of

(a)x=y, (b)x<y, (c)x>y

holds.

Consider any arbitrary s/m E Q with m =1= O. Let the (positive) greatest com­
mon divisor of sand m be d and write s = d * S10 m = d * mI. Since (s, m) '" (SI' ml),
it follows that s/m = SI/ml. Thus, any rational number =1= 0 can be written uniquely
in the form a/b where a and b are relatively prime integers. Whenever s/m has been
replaced by a/b, we say that s/m has been reduced to lowest terms. Hereafter, any
arbitrary rational number introduced is assumed to have been reduced to lowest terms.

Theorem. If x and yare positive rationals with x < y, then l/x > l/y.

Density Property. If x and y, with x < y, are two rational numbers, there exists
a rational number z such that x < z < y.

Archimedean Property. If x and yare positive rational numbers, there exists a posi­
tive integer p such that p * x > y.

Consider the positive rational number a/b in which b> l. Now

a = qo * b + TO, o ::; ro < b

and

10 * ro = ql * b + T],

20 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Since ro < b and, hence, ql * b + rl = 10 * ro < 10 * b, it follows that ql < 10. If rl = 0,
then

ql
ro = 10 * b,

ql
a = qo * b + - * b,

10

We write alb = qo * ql and call qOql the decimal representation of a/b. If rl -=1= 0, we
have

in which q2 < 10. If r2 = 0, then rl = iJJ * b so that ro = i5 * b + ft} * b and the
decimal representation of alb is qO.qlq2. If r2 = rl, the decimal representation of alb
is the repeating decimal

qO·qlq2q2q2· ..

If r2 -=1= 0, we repeat the process. Now the distinct remainders ro, rl, r2, . .. are elements
of the set {O, 1,2,3, ... , b-1} of residues modulo b so that, in the extreme case, rb must
be identical with some one of ro, rl, r2, ... , rb-l, say rc, and the decimal representation
of alb is the repeating decimal

qO·qlq2q3··· Qb-lqc+lqc+2··· Qb-lQc+lQc+2··· Qb-l···

Thus, every rational number can be expressed as either a terminating or a repeating
decimal.

Example. For 11/6, we find

= 1 * 6 + 5; Qo = 1, ro = 5
= 8 * 6 + 2; Ql = 8, rl = 2

3 * 6 + 2; Q2 = 3, r2 = 2 = rl

and 11/6 = 1.833333 ...

Conversely, it is clear that every terminating decimal is a rational number. For
example, 0.17 = 17/100 and 0.175 = 175/1000 = 7/40.

Theorem. Every repeating decimal is a rational number.

The proof makes use of two preliminary theorems:

(i) Every repeating decimal may be written as the sum of an infinite geometric
progression.

(ii) The sum of an infinite geometric progression whose common ratio r satisfies
Irl < 1 is a finite number.

2.4. REAL NUMBERS 21

2.4 Real Numbers

Beginning with N, we can construct Z and Q by considering quotient sets of suitable
Cartesian products. It is not possible to construct R, the set of all real numbers, in
a similar fashion and other methods must be employed.

We first note that the order relation < defined on Q has the property that, given
a, bE Q such that a < b, there exists cEQ such that a < c and c < b. Let P(Q) be
the power set of Q, i.e. P(Q) denotes the set whose elements are the subsets of Q.
Now consider ordered pairs of elements of P(Q), (A, B) say, satisfying:

(i) Au B = Q, An B = 0,

(ii) A and B are both non-empty,

(iii) a E A and b E B together imply a < b.

Such a pair of sets (A, B) is known as a Dedekind cut. An equivalence relation R is
defined upon the set of cuts by

(A,B)R(C,D)
if and only if there is at most one rational number which is either in both A and
D or in both Band C. This ensures that the cuts ({xix ~ q}, {xix> q}) and
({xix < q}, {xix ~ q}) are equivalent for all q E Q. Each equivalence class under
this relation is defined as a real number. The set of all real numbers, denoted by R
is then the set of all such equivalence classes. If the class contains a cut (A, B) such
that A contains positive rationals, then the class is a positive real number, whereas if
B should contain negative rationals then the class is a negative real number. Thus,
for example, V2 which contains the cut ({xlx2 < 2}, {xlx 2 > 2}) is positive since
1 E A = {xlx 2 < 2}. To define addition of real numbers we must consider cuts
(AI, Bd and (A2' B2) representing the real numbers al and a2. We define al + a2
to be the class containing the cut (A3' B3) where A3 consists of all the sums a =
al + a2 obtained by selecting al from Al and a2 from A2. Given the real number a,

represented by the cut (AI' B l), we define -a, negative a, to be the class containing
the cut (-Bl' -Ad defined by a E Al ¢} -a E -AI and b E Bl ¢} -b E -BI . It
will be observed that a + (-a) = 0, and that subtraction can now be defined by
a - 13 = a + (-13). Of two non-zero numbers a and -a, one is always positive. The
one which is positive is known as the absolute value or modulus of a and is denoted
by lal. Thus lal = a if a is positive and lal = -a if a is negative. 101 is defined to
be o. If al and a2 are two positive real numbers, then the product al * a2 is the class
containing the cut (A4, B4) where A4 consists of the negative rationals, zero, and all
the products a = al * a2 obtained by selecting a positive al from Al and a positive a2

from A2 . The definition is extended to negative numbers by agreeing that if al and
a2 are positive, then

22 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Finally, we define
o * 0: = 0: * 0 = 0 for all 0:.

With these definitions it can be shown that the real numbers R form an ordered field.

By associating the element q E Q with the class containing the cut

({xix:::; q}, {xix> q})

one can define a monomorphism (of fields) Q -t R. We can, therefore, consider Q to
be a subfield of R (i.e. identify Q with a subfield of R). Those elements of R which
do not belong to Q are known as irrational numbers.

An important property of R which can now be established is that given any non­
empty subset VcR for which there exists an upper bound, M, i.e. an element
MER such that v :::; M for all v E V, then there exists a supremum (sup) L such
that if M is any upper bound of V, then L :::; M. In a similar manner, we can de­
fine an infimum (in!) for any non-empty subset V or R which possesses a lower bound.

Not every subset in R possesses an upper (or lower) bound in R, for example, N. In
order to overcome certain consequences of this, one often makes use in analysis of the
extended real number system, R, consisting of R together with the two symbols -00
and +00 having the properties:

(a) If x E R, then
-00 < x < +00,

and
x + 00 = +00, x - 00 = -00, ~=~=O.

+00 -00

(b) If x> 0, then
x * (+00) = +00, x * (-00) = -00.

(c) If x < 0, then
x * (+00) = -00, x * (-00) = +00.

Note that R does not possess all the algebraic properties of R.

In the following, we list the basic properties of the system R of all real numbers.

2.4. REAL NUMBERS

Addition

Closure Law
Commutative Law
Associative Law
Cancellation law
Additive Identity

Additive Inverses

Multiplication

Closure Law
Commutative Law
Associative Law
Cancellation Law

r + s E R, for all r, s E R.
r + s = s + r, for all r, s E R.
r + (s + t) = (r + s) + t, for all r, s, t E R.
If r + t = s + t, then r = s for all r, s, t E R.

23

There exists a unique additive identity element 0 E R.
such that r + 0 = 0 + r = r, for every r E R.
For each r E R, there exists a unique additive
inverse -r E R such that r + (-r) = (-r) + r = O.

r * s E R, for all r, s E R.
r * s = s * r, for all r, s E R.
r * (s * t) = (r * s) * t, for all r, s, t E R.
If m * p = n * p, then m = n for all m, n E Rand
p-;OER.

Multiplicative Identity There exists a unique multiplicative identity element
1 E R such that 1 * r = r * 1 = r for every r E R.
For each r -; 0 E R, there exists a unique
multiplicative inverse r- 1 E R such that

Multiplicative Inverses

Distributive Laws
D 1·

D2.

Density Property

Archimedean Property

Completeness Property

r * r- 1 = r- 1 * r = 1.

For every r, s, t E R,
r*(s+t)=r*s+r*t
(s+t)H=s*r+hr

For each r, s E R, with r < s, there exists
t E Q such that r < t < s.

For each r, s E R+, with r < s, there exists
n E N such that n * r > s.

Every non-empty subset of R having a
lower bound (upper bound) has a greatest
lower bound (least upper bound).

24 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

2.5 Complex Numbers

The field of complex numbers, C, can be defined in several ways. Consider R x R
and take the elements of C to be ordered pairs (x, y) E R x R. The operations of
addition and multiplication of elements of C are defined by

and

(Xl, YI) * (X2' Y2) := (XIX2 - YIY2, XIY2 + X2YI)'

Then we can show that C is a field. We can define a monomorphism (of fields),

r: R -+ C, by r(x) = (x,O).

This enables us to regard R as a subfield of C. It can, moreover, be checked that

(X, y) = (x,O) + (0,1) * (y, 0).

Thus making use of the monomorphism defined above, one can write

(x, y) = x + i * Y

where x, Y E Rand i = (0,1). It is seen that

i 2 = (0,1) * (0,1) = (-1,0) =-1.

Given a complex number

z = x + i * y, where x, Y E R,

we say that x is the real part, ~(z), and Y is the imaginary part, 'J(z), of z. The
number

x - i * Y

is known as the complex conjugate of z and is denoted by z (or z*). An obvious
geometrical representation of the complex numbers are points in the Cartesian plane
R x R. This representation is known as an Argand diagram. The diagram is based
on a pair of perpendicular coordinate axes in the plane. The number z = x + i * Y
is associated with the point with coordinates (x, y). With this representation, the
addition of complex numbers is interpreted as the addition of vectors in the plane.
The length, r, of the segment

(0,0) - (x,y)

is known as the absolute value or modulus of z and is denoted by 14 We therefore
have

Izl = r = VX2 + y2 = Vii.

2.5. COMPLEX NUMBERS 25

The angle which the segment Oz makes with the Ox axis is known as the argument
(amplitude or angle) of z and is denoted by arg z. We therefore have

y
tan(arg z) = tan 0 = -

x

and arg z is defined as a real number modulo 211" (provided z =1= 0, for arg 0 is not
defined). Some authors take

o ~ arg z < 211"

while others opt for
-11" < argz ~ 11".

This restricted value of the argument is often known as the principal argument.

The coordinates rand 0 are known as polar coordinates. The connections between the
polar coordinates of a point and the complex number z = x + i * y which it represents
are

x = rcosO, y = rsinO

r = Izl = J x 2 + y2

0= argz

z = r(cosO + isinO).

The geometry of the triangle provides the inequality

known as the triangle inequality. The two formulae

and
arg(zlz2) == arg(zl) + arg(z2) (mod 211")

allow one to give a geometrical interpretation of the multiplication of complex num­
bers.

Alternative constructions of Care:

(a) Consider the set, M, containing all matrices of M2(R) of the form

26 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Under matrix addition and multiplication M forms a field with zero O2 and identity
element h We have

(a -b) (e -d) = (ae - bd -(ad + be))
bad e ad + be ae - bd .

Moreover, p : R -+ M defined by

p(e) = (~ ~)

is a field isomorphism between R and a subfield of M. Mapping the matrix

onto a + i * b, we obtain a field isomorphism between M and C.

(b) We define C to be the quotient ring of R[t] by the principal ideal (t2 + 1), i.e.

C = R[t]/(e + 1).

If we denote the image of the polynomial t E R[t] under the canonical mapping by
i, then every element of C can be written uniquely as x + iy where x, y E R. The
operations of addition and multiplication on C are the natural operations of quotient
algebra.

To facilitate the study of certain curves (e.g. the equiangular spiral) one frequently
relaxes the conditions r ~ 0 and 0 $ e < 211' on polar coordinates. One then has an
extended system of polar coordinates in which rand e can take all real values. In the
extended system any pair (p, w) will determine a unique point of the plane, yet every
point in the plane will possess an infinite number of polar coordinates, namely

(p, w + 2n1l') , (-p, w + (2n + 1)11')

for all n E Z. In the extended system the equiangular spiral is described by the single
equation r = ea6 , whereas in the restricted system a whole set of equations would be
required to define it.

2.6. VECTORS AND MATRICES 27

2.6 Vectors and Matrices

Let F be a field. A vector space (also called a linear space), V, over F is defined as
an additive Abelian group V together with a function F x V -+ V, (A, v) f-t A * v,
satisfying

A*(a+b) = A*a+A*b

(A+J.L)*a = A*a+J.L*a
(A*J.L)*a = A * (J.L * a)

1 * a = a

for all .x, J.L E F and a, b E V. F is called the ground field of the vector space, its
elements are called scalars and those of V are called vectors. Letters representing
vectors are printed in bold type. A vector subspace of a vector space V is defined as
any subset V' of V for which

(a) V'is a subgroup of the additive group V;
(b) for all a E V' and for all A E F, A * a E V'.

The set of all n-tuples (Xl, ... , xn) where Xi E R, i = 1, ... , n, forms a vector space,
which we denote by Rn, over the ground field R when we define

and

where A E R.

A vector space V over a field F which satisfies the ring axioms in such a way that
addition in the ring is addition in the vector space and such that

for all Vl> V2 E V and A E F is said to be an algebra over F. If, in addition, it forms
a commutative ring, then we say it is a commutative algebra. A subset of an algebra
V is termed a sub-algebra if it is both a vector subspace and a subring of V.

Given two vectors x = (Xl> X2, X3), Y = (Yl> Y2, Y3) E R3 we define their vector product
(also called cross product) denoted by x x Y to be the vector

x x Y := (X2 * Y3 - X3 * Y2, X3 * YI - Xl * Y3, Xl * Y2 - X2 * YI).

The vector product is not commutative. It is an example of a Lie algebra. We have

x x (y + z) = x x y + x x z

28 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

x x y = -y x x

x x (A * y) = A * (x x y)

x x (y x z) + z x (x x y) + y x (z x x) = O.

The last equation is the Jacobi identity.

Given two vector spaces U and V over a field F, a homomorphism of U to V is
a function t : U -t V satisfying

t(a+b) = t(a)+t(b)

t(A * a) = A * t(a)

for all a, b E U and A E F. Homomorphisms of vector spaces therefore preserve linear
combinations of the type

where AI, ... ,An E F, al,"" Rn E U. For this reason a homomorphism of vector
spaces is called a linear transformation or linear mapping. The set of all linear
combinations of al, ... ,an E U forms a vector subspace of U, called the subspace
generated or spanned by aI, ... ,Rn. A vector space, V, is said to be finitely gener­
ated if there exists a finite set of elements aI, ... ,Rn which generate V.

The vectors aI, ... , Rn are said to be linearly independent if the only choice of AI, ... , An
satisfying the relation

OE V

is
o E F.

The vectors aI, ... ,Rn are linearly dependent if and only if there exist AI, ... ,An not
all zero, for which

Al * al + A2 * a2 + ... + An * Rn = O.

If al,"" Rn generate a vector space, V, and are linearly independent, then we say
that aI, ... , Rn form a basis of V. If al,"" Rn form a basis of V and b is any vector
of V, then there exists a unique n-tuple (AI, ... ,An) such that

The scalars AI, ... ,An are then called the coordinates or components of b with respect
to the basis al,' .. ,Rn. It can be shown that every finitely-generated vector space,

2.6. VECTORS AND MATRICES 29

V, has a basis and that, in particular, any two bases of V contain the same number
of elements, say n. The number n is called the dimension of the vector space V over
F and we write dim V = n. The vector space V is then isomorphic to Fn, the vector
space of all n-tuples (Xl, . .. , xn) with Xi E F, i = 1, ... , n. By definition, dim{O} = O.

If U and V are finite-dimensional vector spaces over the same field F, and if 'ad­
dition' of linear transformations and 'multiplication of linear transformations by a
scalar' are defined by

(tl + t2)(a)

(.A*t)(a)

tl(a) + t2(a)

.A * (t(a)), for all a E U

then it can easily be shown that the set of linear transformations itself forms a finite­
dimensional vector space over F (having dimension (dim U) x (dim V)). This vector
space is denoted by Hom(U, V). Let t E Hom(U, V), UI, ... , Un be a basis for U
and VI, ... , Vm be a basis for V. Then t is completely determined by the formulae
which tell how the components (x~, ... , x;") of the vector t(x), with respect to the
basis VI, ... , Vm of V can be obtained in terms of (Xl, . .. , xn), the components of the
vector x with respect to the basis U I, ... , Un of U. We have

X~ allXI + a12X2 + ... + alnXn

X~ a2lXI + a22X2 + ... + a2nXn

and the coefficients aij determine the homomorphism t uniquely with respect to the
chosen bases. The rectangular array of coefficients

is said to form a matrix, A, having m rows and n columns. More abstractly we can
think of the matrix as a function

A: {1,2, ... ,m} x {1,2, ... ,n} --t F.

The matrix A is often abbreviated to (aij), and to denote that this represents the
linear transformation t we write (t) = (aij). The matrix corresponding to the zero

30 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

mapping, t : x t-+ 0 (all x E U), is called the zero matrix and is denoted by O.

The sum of two m x n matrices, A = (aij) and B = (bij) is defined as the m x n
matrix

A + B = (aij + bij).

The product of a m x n matrix A = (aij) with the scalar oX is defined to be the m x n
matrix oX * A = (oX * aij). With these definitions the set of all m x n matrices with
coefficients in F becomes a vector space of dimension m * n and is isomorphic to
Hom(U, V). We define the product matrix, C = A * B, of two matrices A (aij an
m x n matrix), and B (bjk an n x p matrix), as the m x p matrix (Cik) where

n

Cik = ~ aijbjk .
j=1

This definition is motivated by the need to form the composite linear transformation
sot E Hom(U, W), given t E Hom(U, V) corresponding to- the matrix B, and s E
Hom(V, W) corresponding to the matrix A. The matrix product A * B of the matrices
A and B is not defined unless the number of columns of A is equal to the number
of rows of B (is equal to the dimension of V). The existence of the product A * B
will not therefore imply the existence of the product B * A. With this definition
of multiplication, the set of square matrices of order n, i.e. those matrices having
n rows and n columns with coefficients in a ring K, form a non-commutative ring
(provided n > 1 and K =/: {O}) denoted by Mn(K). A matrix A E Mn(K) is said to
be non-singular or invertible if there exists B E Mn(K) such that

A*B = B*A = In

where In is the identity matrix (also called the unit matrix) of order n having coeffi­
cients dij (called the Kronecker delta), where

{ I if i=j
dij:= 0 otherwise.

The matrix B is then unique and is known as the inverse of Aj it is denoted by A-I.
If there is no matrix B in Mn(K) such that A * B = B * A = I, then A is said to
be singular or non-invertible in Mn(K). A linear mapping U -t V will be an isomor­
phism of vector spaces if and only if it can be represented by an invertible (square)
matrix. The transpose of m x n matrix A = (aij) is defined as the n x m matrix (aij)
obtained from A by interchanging rows and columns. The transpose of A is denoted

2.6. VECTORS AND MATRICES 31

by AT. When A = AT the matrix A is said to be symmetric.

For each n > 0 the set of non-singular n x n matrices over the field F forms a multi­
plicative group, called the general linear group GL(n, F). The elements of GL(n, F)
having determinant 1 form a subgroup denoted by SL(n, F) and known as the special
linear group. An m x 1 matrix having only one column is known as a column matrix or
column vector, a 1 x n matrix is known as a row matrix or row vector. The equations
which determine the homomorphism t with matrix A can therefore be written as

X' = A*x

where x' is a column vector whose m elements are the components of t(x) with respect
to Vb ... , vm and x is a column vector having n elements, the components of x with
respect to Ub··· ,Un.

In particular, a 1 x n matrix will describe a homomorphism from an n-dimensional
vector space U with basis UI, ... ,Un to a one-dimensional vector space V with basis
VI. The set of all 1 x n matrices will form a vector space isomorphic to the vector
space Hom(U, F) of all homomorphisms mapping U onto its ground field F, which can
be regarded as a vector space of dimension 1 over itself. In general, if V is any vector
space over a field F, then the vector space Hom(V, F) is called the dual space of V
and is denoted by V' or V. Elements of Hom(V, F) are known as linear functionals.
It can be shown that every finite-dimensional vector space is isomorphic to its dual.

Example. The trace of a square matrix is the sum of the diagonal elements. Thus the
trace of a square matrix is a linear functional. This means

tr(A + B) = tr(A) + tr(B)
tr(c*A) = c*tr(A).

Given two subspaces S and T of a vector space V, we define

S + T := {x + y I XES, YET}.

Then S + T is a subspace of V. We say that V is the direct sum of S and T, written
S EB T, if and only if V = S + T and S n T = {O}. Sand T are then called direct
summands of V. Any subspace S of a finite-dimensional vector space V is a direct
summand of V. Moreover, if V = S EB T, then

dimT = dim V - dimS.

If S and T are any finite-dimensional subspaces of a vector space V, then

dim S + dim T = dim(S n T) + dim(S + T).

32 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

2.7 Quaternions

By defining multiplication suitably on R x R, it is possible to construct a field C
which is an extension of R. Indeed, since C is a vector space of dimension 2 over
R, C is a commutative algebra with unity element over R. It is natural to attempt
to repeat this process and to try to embed C in an algebra defined upon Rn (n> 2).
It is, in fact, impossible to find such an extention satisfying the field axioms, but, as
the following construction shows, some measure of success can be attained.

Consider an associative algebra of rank 4 with the basis elements

1, I, J, K

where 1 is the identity element, i.e.

1 * I = I, l*K=K.

The compositions are

and

1* J = K, J * K = I, K * 1= J, J * I = -K, K * J = -I, 1* K = -J.

This is the so-called quaternion algebra. Multiplication, as thus defined, is clearly
non-commutative, so the resulting structure cannot be a field. It is a division ring
and is known as the quaternion algebra. The algebra is associative.

Any quaternion q can be represented in the form

q := al * 1 + aI * I + aJ * J + aK * K,

The sum, difference, product and division of two quaternions

q := al * 1 + aI * I + aJ * J + aK * K,

are defined as

q+p .- (al + bl) * 1 + (aI + bI) * 1+ (aJ + bJ) * J + (aK + bK) * K
q-p .- (al - bl) * 1 + (aI - bI) * I + (aJ - bJ) * J + (aK - bK) * K

q*p .- (al * 1 + aI * I + aJ * J + aK * K) * (bi * 1 + bI * I + bJ * J + bK * K)

(al * bi - aI * bI - aJ * bJ - aK * bK) * 1

+ (al * bI + aI * bi + aJ * bK - aK * bJ) * I
+ (al * bJ + aJ * bi + aK * bI - aI * bK) * J

+ (al * bK + aK * bi + aI * bJ - aJ * bI) * K
q/p .- q * p-I where p-I is the inverse of p.

2.7. QUATERNIONS 33

The negate of q is

-q = -a1 * 1 - a[* I - a] * J - aK * K.

The conjugate of q, say q*, is defined as

q* := a1 * 1 - a[* I - a] * J - aK * K.

The inverse of q is

-1 q*
q := jql2' q =f O.

The magnitude of q is
Iql2 = ai + a7 + a~ + a~.

The normalization of q is defined as

A matrix representation of the quaternions is given by

where i := A and C1x , C1y, C1z are the Pauli spin matrices. This also shows that the
quaternion algebra is associative.

The quaternion algebra can also be obtained as the subring of M4(R) consisting
of matrices of the form

-:) .
-y

x

34 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

2.8 Polynomials

In this section we introduce polynomials. For the proof of the theorems we refer to
the literature [4], [22], [30]. Functions of the form

1 + 2 * x + 3 * X 2,
1 3
- - 4 * X 2 + _ * XIO
5 2

are called polynomials in x. The coefficients in these examples are integers and ratio­
nal numbers. In elementary calculus, the range of values of x (domain of definition of
the function) is R. In algebra, the range is C. Consider, for instance, the polynomial
p(x) = x2 + 1. The solution of p(x) = 0 is given by ±i. Any polynomial in x can be
thought of as a mapping of a set S (range of x) onto a set T (range of values of the
polynomial). Consider, for example, the polynomial 1 +..fi * x - 3 * x 2. If S = Z,
then T c R and the same is true if S = Q or S = R; if S = C, then T c C. Two
polynomials in x are equal if they have identical form. For example, a+b*x = c+d*x
if and only if a = c and b = d.

Let R be a ring and let x, called an indeterminate, be any symbol not found in
R. By a polynomial in x over R will be meant any expression of the form

() ° I 2 " k a x = ao * x + al * x + a2 * x + ... = L... ak * x ,
k=O

in which only a finite number of the ak's are different from z, the zero element of R.
Two polynomials in x over R, a(x) defined above, and

f3(x) = bo * XO + bl * Xl + b2 * x2 + ... = L bk * xk,
k=O

are equal a(x) = f3(x), provided ak = bk for all values of k.

In any polynomial, as a(x), each of the components ao * xO, al * xl, a2 * x2, ... is
called a term; in any term such as ai * Xi, ai is called the coefficient of the term. The
terms of a(x) and f3(x) have been written in a prescribed (but natural) order. The i,
the superscript of x, is merely an indicator of the position of the term ai * xi in the
polynomial. Likewise, juxtaposition of ai and Xi in the term ai * Xi is not to be con­
strued as indicating multiplication and the plus signs between terms are to be thought
of as helpful connectives rather than operators. Let z be the zero element of the ring.
If in a polynomial such as a(x), the coefficient an -=1= z while all coefficients of terms
which follow are z, we say that a(x) is of degree n and call an its leading coefficient. In
particular, the polynomial ao * xO + z * Xl + z * x2 + ... is of degree zero with leading co­
efficient ao when ao -=1= z and it has no degree (and no leading coefficient) when ao = z.

2.8. POLYNOMIALS 35

Denote by R[x] the set of all polynomials in x over R and, for arbitrary a(x),,B(x) E
R[x], define addition (+) and multiplication * on R[x] by

a(x) + ,B(x) := (aD + bo) * XO + (al + bd * Xl + (a2 + b2) * x2 + ... = L(ak + bk) * xk
k=O

and

a(x)*,B(x) := ao*bo*xO+(ao*bl+al*bo)*xl+(ao*b2+al*bl+a2*bo)*x2+ .. = L Ck*Xk
k=O

where

k

Ck := L ai * bk- i.
i=O

The sum and product of elements of R[x] are elements of R[x]; there are only a finite
number of terms with non-zero coefficients E R. Addition on R[x] is both associative
and commutative and multiplication is associative and distributive with respect to
addition. Moreover, the zero polynomial

z * XO + z * Xl + z * x2 + ... = L z * xk E R[x]
k=O

is the additive identity or zero element of R[x] while

-a(x) = -aD * XO + (-ad * Xl + (-a2) * x2 + ... = I)-ak) * xk E R[x]
k=O

is the additive inverse of a(x). Thus,

Theorem. The set of all polynomials R in x over R is a ring with respect to ad­
dition and multiplication as defined above.

Let a(x) and ,B(x) have respective degrees m and n. If m "I n, the degree of
a(x) + ,B(x) is the larger of m, n; if m = n, the degree of a(x) + ,B(x) is at most
m. The degree of a(x) * ,B(x) is at most m + n since ambn may be z. However, if R
is free of divisors of zero, the degree of the product is m + n.

Consider now the subset S := {r * XO : r E R} of R[x] consisting of the zero
polynomial and all polynomials of degree zero. The mapping

R -+ S : r -+ r * X O

is an isomorphism. As a consequence, we may hereafter write aD for aD * XO in any
polynomial a(x) E R[x].

36 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Let R be a ring with unity u. Then u = u * XO is the unity of R[x] since uxo * a(x) =
a(x) for every a(x) E R[x]. Also, writing x = MXl = Z*XO+u*xl, we have x E R[x].
Now ak(x,x,X' to k factors) = ak*xk E R[x] so that in a(x) = aO+al *x+a2*x2+ ...
we may consider the superscript i and aixi as truly an exponent, juxtaposition in any
term ai * xi as (polynomial) ring multiplication, and the connective + as (polynomial)
ring addition. Any polynomial a(x) of degree mover R with leading coefficient u,
the unity of R, will be called monic.

Theorem. Let R be a ring with unity u, a(x) = aO+al *x+·· ·+am*xm E R[x] be either
the zero polynomial or a polynomial of degree m, and ;3(x) = bo+bl *x+·· ·+u*xn E
R[x] be a monic polynomial of degree n. Then there exist unique polynomials qR(X),
rR(x), qL(X), rdx) E R[x] with rR(x), rdx) either the zero polynomial or of degree
< n such that

and
(ii) a(x) = ;3(x) * qdx) + rL(x) .

In (i) of the theorem we say that a(x) has been divided on the right by ;3(x) to ob­
tain the right quotient qR(X) and right remainder rR(x). Similarly, in (ii) we say that
a(x) has been divided on the left by ;3(x) to obtain the left quotient qL(X) and left re­
mainder rdx). When rR(x) = z (rdx) = z), we call ;3(x) a right (left) divisor of a(x).

We consider now commutative polynomial rings with unity. Let R be a commu­
tative ring with unity. Then R[x] is a commutative ring with unity and the theorem
may be restated without distinction between right and left quotients (we replace
qR(X) = qdx) by q(x)), remainders (we replace rR(x) = rdx) by r(x)), and divisors.
Thus (i) and (ii) of the theorem may be replaced by

(iii) a(x) = q(x) * ;3(x) + r(x)

and, in particular, we have

Theorem. In a commutative polynomial ring with unity, a polynomial a(x) of de­
gree m has x - b as divisor if and only if the remainder

r = ao + al * b + a2 * b2 + ... + am * bm = z .

When r = z then b is called a zero (root) of the polynomial a(x).

When R is without divisors of zero so is R[x]. For suppose a(x) and ;3(x) are el­
ements of R[x], of respective degrees m and n, and that

a(x) * ;3(x) = ao * bo + (ao * bl + al * bo)x + ... + am * bnxm+n = z.

Then each coefficient in the product and, in particular am * bn is z. But R is without
divisors of zero; hence ambn = z if and only if am = z or bn = z. Since this contradicts

2.8. POLYNOMIALS 37

the assumption that o:(x) and (3(x) have degrees m and n, R[x] is without divisors of
zero.

Theorem. A polynomial ring R[x] is an integral domain if and only if the coeffi­
cient ring R is an integral domain.

An examination of the remainder

shows that it may be obtained mechanically by replacing x by b throughout o:(x)
and, of course, interpreting juxtaposition of elements as indicating multiplication in
R. Thus, by defining f(b) to mean the expression obtained by substituting b for x
throughout f(x), we may replace r by o:(b). This is the familiar substitution process in
elementary algebra where x is considered as a variable rather than an indeterminate.
For a given b E R, the mapping

f(x) -+ f(b) for all f(x) E R[x]

is a homomorphism of R[x] onto R.

The most important polynomial domains arise when the coefficient ring is a field
F. Every non-zero element of a field F is a unit of F. For the integral domain F[x]
the principal results are as follows:

Division Algorithm. If o:(x), (3(x) E F[x] where (3(x) :f:. Z, there exist unique polyno­
mials q(x), r(x) with r(x) either the zero polynomial or of degree less than that of
(3(x), such that

o:(x) = q(x) * (3(x) + r(x).

When r(x) is the zero polynomial, (3(x) is called a divisor of o:(x) and we write
(3(x)lo:(x).

Remainder Theorem. If o:(x), x - b E F[x], the remainder when o:(x) is divided
by x - b is o:(b).

Factor Theorem. If o:(x) E F[x] and b E F, then x - b is a factor of o:(x) if and
only if o:(b) = Z, that is, x - b is a factor of o:(x) if and only if b is a zero of o:(x).
This leads to the following theorem.

Theorem. Let o:(x) E F[x] have degree m > 0 and leading coefficient a. If the
distinct elements bI, b2 , .. . ,bm of F are zeros of o:(x), then

Theorem. Every polynomial o:(x) E F[x] of degree m > 0 has at most m distinct
zeros in F.

38 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Theorem. Let a(x), f3(x) E F[x] be such that a(8) = 13(8) for every 8 E F. Then,
if the number of elements in F exceeds the degrees of both a(x) and f3(x), we have
necessarily a(x) = f3(x).

The only units of a polynomial domain F[x] are the non-zero elements (i.e., the
units) of the coefficient ring F. Thus the only associates of a(x) E F[x] are the
elements v * a(x) of F[x] in which v is any unit of F. Since for any v # z E F and
any a(x) E F[x],

a(x) = v-1 * a(x) * v

while, whenever a(x) = q(x) * f3(x) ,

a(x) = (v-1 * q(x)) * (v * f3(x))

it follows that (a) every unit of F and every associate of a(x) is a divisor of a(x)
and (b) if f3(x)Ja(x) so also does every associate of f3(x). The units of F and the
associates of a(x) are called trivial divisors of a(x). Other divisors of a(x), if any,
are called non-trivial divisors. A polynomial a(x) E F[x] of degree m ~ 1 is called a
prime (irreducible) polynomial over F if its divisors are all trivial.

Next we consider the polynomial domain C[x]. Consider an arbitrary polynomial

of degree m ~ 1. We give a number of elementary theorems related to the zeros of
such polynomials and, in particular, with the subset of all polynomials of C[x] whose
coefficients are rational numbers. Suppose r E C is a zero of f3(x), i.e., f3(r) = 0 and,
since b:;;/ E C, also b:;;/ * f3(r) = O. Thus the zeros of f3(x) are precisely those of its
monic associates

When m = 1,
a(x) = ao + x

has -ao as zero and when m = 2,

has

2.8. POLYNOMIALS 39

Every polynomial xn - a E C[x] has n zeros over C. There exist formulae which yield
the zeros of all polynomials of degrees 3 and 4. It is also known that no formulae can
be devised for arbitrary polynomials of degree m ~ 5.

Any polynomial a(x) of degree m > 1 can have no more than m distinct zeros.
The polynomial

a(x) = ao + al * x + x2

will have two distinct zeros if and only if the discriminant a~ - 4 * ao of O. We then
call each a simple zero of a(x). However, if ai -4*ao = 0, each formula yields -l *al
as a zero. We then call -l * al a zero of multiplicity two of a(x) and exhibit the
zeros as -l * aI, -l * al·

Fundamental Theorem of Algebra. Every polynomial a(x) E C[x] of degree m ~ 1
has at least one zero in C.

Theorem. Every polynomial a(x) E C[x] of degree m ~ 1 has precisely m zeros
over C, with the understanding that any zero of multiplicity n is to be counted as n
of the m zeros.

Theorem. Any a(x) E C[x] of degree m ~ 1 is either of the first degree or may
be written as a product of polynomials E C[x], each of the first degree.

Next we study certain subsets of C[x] by restricting the ring of coefficients. First, let
us suppose that

of degree m ~ 1 has r = a + b * i as zero, i.e.,

a(r) = ao + al * r + a2 * r2 + ... + am * rm = s + t * i = O.

We have
a(f) = ao + al * f + a2 * f2 + ... + am * fm = S + t * i = 0

so that

Theorem. If r E C is a zero of any polynomial a(x) with real coefficients, then f
is also a zero of a(x).

Let r = a + b * i, with b of 0, be a zero of a(x). Thus f = a - b * i is also a
zero and we may write

40 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

where a1 is a polynomial of degree two less than that of a(x) and has real coefficients.
Since a quadratic polynomial with real coefficients will have imaginary zeros if and
only if its discriminant is negative, we have

Theorem. The polynomials of the first degree and the quadratic polynomials with
negative discriminant are the only polynomials E R[x] which are primes over R.

Theorem. A polynomial of odd degree E R[x] necessarily has a real zero.

Suppose
(3(x) = bo + b1 * X + b2 * x2 + ... + bm * xm E Q[x].

Let c be the greatest common divisor of the numerators of the b;'s and d be the least
common multiple of the denominators of the bi's; then

has integral coefficients whose only common divisors are ±1, the units of Z. Moreover,
(3(x) and a(x) have precisely the same zeros. If r E Q is a zero of a(x), i.e. if

a(r) = aD + a1 * r + a2 * r2 + ... + am * rm = 0

it follows that

(a) if r E Z, then rlao;
(b) if r = sit, a common fraction in lowest terms, then

so that slao and tlam. We have proved

Theorem. Let a(x) = aD + a1 * x + a2 * x2 + ... + am * xm be a polynomial of
degree m ~ 1 having integral coefficients. If sit E Q with (s, t) = 1, is a zero of a(x),
then slao and tlam .

Let a(x) and (3(x) be non-zero polynomials in F[x]. A polynomial d(x) E F[x]
having the properties

(a) d(x) is monic;
(b) d(x)la(x) and d(x)I(3(x);
(c) for every c(x) E F[x] such that c(x)la(x) and c(x)I(3(x), we have c(x)ld(x);

is called the greatest common divisor of a(x) and (3(x).

2.8. POLYNOMIALS 41

The greatest common divisor of two polynomials in F[x] can be found in the same
manner as the greatest common divisor of two integers.

Theorem. Let the non-zero polynomials a{x) and (3{x) be in F[x]. The monic poly­
nomial

d{x) = s{x) * a{x) + t{x) * (3(x), s(x), t{x) E F[x]

of least degree is the greatest common divisor of a(x) and (3(x).

Theorem. Let a(x) of degree m ~ 2 and (3(x) of degree n ~ 2 be in F[x]. Then
non-zero polynomials f.t(x) of degree at most n - 1 and v(x) of degree at most m - 1
exist in F[x] such that

f.t(x) * a{x) + v{x) * (3(x) = z, where z is the zero polynomial

if and only if a(x) and (3{x) are not relatively prime.

Theorem. If a{x), (3(x), p(x) E F[x] with a(x) and p(x) relatively prime, then

p(x)la(x) * (3(x)

implies
p(x)I(3(x) .

Unique Factorization Theorem. Any polynomial a{x), of degree m ~ 1 and with
leading coefficient a, in F[x] can be written as

where the Pi(X) are monic prime polynomials over F and the mi's are positive integers.
Moreover, except for the order of the factors, the factorization is unique.

42 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

2.9 Differentiation

Let f : I -+ R be a function, where I is an open interval. We say that f is differen­
tiable at a E I provided there exists a linear mapping L : R -+ R such that

lim f(a + €) - f(a) - L(€) = O.
< 0 €

The linear mapping L which, when it exists, is unique and is called the differential of
f (or derivative of f at a) and is denoted by daf. It is customary in traditional texts
to introduce the differentials df and dx and to obtain relations such as

df
df = dx dx .

Using the modern notation this relation would be written as

daf = J'(a)dzI

where I(= id) denotes the identity function x -+ x. If f and 9 are differentiable we
find that

~(J + g) = df + dg summation rule
dx dx dx

~ (J - g) = df _ dg difference rule
dx dx dx

d df dg
-(J * g) = 9 * - + f * - product rule dx dx dx

where c is a constant.

9 =1= 0 for x E I

d
-c=O
dx

quotient rule

2.10. INTEGRATION 43

2.10 Integration

A computer algebra system should be able to integrate formally elementary functions,
for example

In general it is assumed that the underlying field is R. Symbolic differentiation was
undertaken quite early in the history of computer algebra, whereas symbolic integra­
tion (also called formal integration) was introduced much later. The reason is due to
the big difference between formal integration and formal differentiation. Differentia­
tion is an algorithmic procedure, and a knowledge of the derivatives of functions plus
the sum rule, product rule, quotient rule and chain rule, enable us to differentiate any
given function. The real problem in differentiation is the simplification of the result.
On the other hand, integration seems to be a random collection of devices and special
cases. There are only two general rules, i.e. the sum rule and the rule for integration
by parts. If we integrate a sum of two functions, in general, we would integrate each
summand separately, i.e.

!U1(X) + h(x))dx = ! JI(x)dx + ! h(x)dx.

This is the so-called sum rule. It can happen that the sum JI + h could have an
explicit form for the integral, but 11 and h do not have any integrals in finite form.
For example

However

do not have any integrals in finite form. The sum rule may only be used if it is known
that two of the three integrals exist. For combinations other than addition (and sub­
traction) there are no general rules. For example, because we know how to integrate
expx and x2 it does not follow that we can integrate exp(x2). This function has no
integral simpler than J exp x2dx. So we learn several "methods" such as: integration
by parts, integration by substitution, integration by looking up in tables of integrals,
etc. In addition we do not know which method or which combination of methods will

44 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

work for a given integral. In the following presentation we follow closely Davenport
et al. [12], MacCallum and Wright [34] and Risch [44].

Since differentiation is definitely simpler than integration, it is appropriate to rephrase
the problem of integration as the "inverse problem" of differentiation, that is, given
a function f, instead of looking for its integral g, we ask for a function g such that
dg/dx = f.

Definition. Given two classes of functions A and B, the integration problem for A and
B is to find an algorithm which, for every member f of A, either gives an element g of
B such that f = dg/dx, or proves that there is no element g of B such that f = dg/dx.

For example, if A = Q(x) and B = Q(x), where Q(x) denotes the rational func­
tions, then the answer for 1/x2 must be -l/x, whilst for l/x there is no solution in
this set. On the other hand, if B = Q(x,lnx), then the answer for l/x must be lnx.

We consider now integration of rational functions. We deal with the case of A = C (x),
where C is a field of constants. Every rational function f can be written in the form
p + q/r, where p, q and r are polynomials, q/r are relatively prime, and the degree of
q is less than that of r. A polynomial p always has a finite integral, so the sum rule
holds for f1(X) = p(x) and f2(X) = q(x)/r(x). Therefore the problem of integrating
f reduces to the problem of the integration of p (which is very simple) and of the
proper rational function q/r.

The naive method is as follows. If the polynomial r factorises into linear factors,
such that

n

r(x) = II (x - aiti
i=l

we can decompose q/r into partial fractions

q(x) n bi(x)
r(x) = ~ (x - ai)n i

where the bi are polynomials of degree less than ni. These polynomials can be divided
by x - ai, so as to give the following decomposition:

q(x) = tt bi,j .
r(x) i=lj=l(X-ai)J

2.10. INTEGRATION 45

where the bi,j are constants. This decomposition can be integrated to give

J q(x) n n ni bi,j
-()dx = Lbi,llog(x - ai) - LL (. -1)(_ -)i-I·
r x i=1 i=1 j=2 J x a,

Thus, we have proved that every rational function has an integral which can be ex­
pressed as a rational function plus a sum of logarithms of rational functions with
constant coefficients - that is, the integral belongs to the field C(x,lnx). This al­
gorithm requires us to factorise the polynomial r completely, which is not always
possible without adding several algebraic quantities to C. Manipulating these al­
gebraic extensions is often very difficult. Even if the algebraic extensions are not
required, it is quite expensive to factorise a polynomial r of high degree. It also re­
quires a complicated decomposition into partial fractions.

In the Hermite's method we determine the rational part of the integral of a rational
function without bringing in any algebraic quantity. Similarly, it finds the derivative
of the sum of logarithms, which is also a rational function with coefficients in the
same field. We have seen that a factor of the denominator r which appears to the
power n, appears to the power n - 1 in the denominator of the integral. This suggests
square-free decomposition. Let us suppose, then, that r has a square-free decompo­
sition of the form nf=1 rIo The ri are then relatively prime, and we can construct a
decompostion into partial fractions:

q(x) = q(x~ = t qi(X) .
r(x) Of=1 rHx) i=1 rHx)

Every element on the right-hand side has an integral, and therefore the sum rule
holds, and it suffices to integrate each element in turn. Integration yields

J qi(X) dx = - (qib/(i - 1)) + J qia + d(qibj(i - l))jdx dx
r'(x) r,-1 r' 1 , , ,

where a and b satisfy ari + bdr;Jdx = 1. Consequently, we have been able to reduce
the exponent of rio We can continue in this way until the exponent becomes one, when
the remaining integral is a sum of logarithms. Hermite's method is quite suitable f6r
manual calculations. The disadvantage is that it needs several sub-algorithms and
this involves some fairly complicated programming.

46 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

The Horowitz method is as follows. The aim is still to be able to write J(q(x)jr(x))dx
in the form qt/rl + J(q2/r2)dx, where the integral remaining gives only a sum of
logarithms when it is resolved. We know that rl has the same factors as r, but with
the exponent reduced by one, that r2 has no multiple factors, and that its factors are
all factors of r. We have rl =gcd(r, drjdx), and r2 divides rjgcd(r, drjdx). We may
suppose that q2/r2 is written in reduced from, and therefore r2 = rjgcd(r,drjdx).
Then

q(x) = .!:.- (ql) + q2 = ~ dql _ ql drl + q2 = r2dqt/dx - qlS + q2rl
r(x) dx rl r2 rl dx d dx r2 r

where S = (r2drt/dx)jrl (the division here is without remainder). Thus we arrive at

where q, s, rl and r2 are known, and ql and q2 have to be determined. Since the
degrees of ql and q2 are less than the degrees m and n of rl and r2 respectively we
write

m-l n-l

ql(X) = L aixi, q2(X) = L bixi.
i=O i=O

Thus the equation for q can be rewritten as a system of m + n linear equations in
n + m unknowns. Moreover, this system can be solved, and integration (at least this
sub-problem) reduces to linear algebra.

Next we describe the logarithmic part method. The two methods described above
can reduce the integration of any rational function to the integration of a rational
function (say qjr) whose integral would be only a sum of logarithms. This integral
can be resolved by completely factorising the denominator, but this is not always
necessary for an expression of the results. The real problem is to find the integral
without using any algebraic numbers other than those needed in the expression of the
result. Let us suppose that

2.10. INTEGRATION 47

is a solution to this integral where the right hand side uses the fewest possible algebraic
extensions. The Ci are constants and, in general, the Vi are rational functions. Since
In (a/b) = Ina - lnb, we can suppose, without loss of generality, that the Vi are
polynomials. Furthermore, we can perform a square-free decomposition, which does
·not add any algebraic extensions, and we can apply the identity

n n

In II pl == L i In Pi·
i=1 i=1

From the identity

we can suppose that the Vi are relatively prime, whilst still keeping the minimality
of the number of algebraic extensions. Moreover, we can suppose that all the Ci are
different. Differentiating the integral, we find

q(x) _ t Ci dVi
r(x) - i=1 ;;: dx·

The assumption that the Vi are square-free implies that no element of this summation
can simplify, and the assumption that the Vi are relatively prime implies that no
cancellation can take place in this summation. This implies that the Vi must be
precisely the factors of r, i.e. that r(x) = I1~=1 Vi(X). Let us write Ui = II#ivj. Then
we can differentiate the product of the Vi, which shows that

n dVi
r(x) = L Ui-d .

i=1 x

We find that q(x) = L~=1 Ciuidv;j dx. These two expressions for q and dr / dx permit
the following deduction

since all the other Ui are divisible by Vk.

48 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Next we consider algebraic solutions of the first order differential equation

dy
dx + f(x)y = g(x).

This leads to the Risch algorithm. We have introduced the problem of finding an
algorithm which, given f and 9 belonging to a class A of functions, either finds
a function y belonging to a given class B of functions, or proves that there is no
element of B which satisfies the given equation. For the sake of simplicity, we shall
consider the case when B is always the class of functions elementary over A. To solve
this differential equation we substitute

y(x) ~ z(x)exp (-] f(S)dS) .

This leads to the solution

y(x) ~ exp (-] f(S)dS)] (9(S) (exp] f(t)dt) dS) .

In general, this method is not algorithmically satisfactory for finding y, since the
algorithm of integration described in the last section reformulates this integral as the
differential equation we started with. Risch [44J found one method to solve these
equations for the case when A is a field of rational functions, or an extension of a field
over which this problem can be solved. The problem can be stated as follows: given
two rational functions f and g, find the rational function y such that dy / dx + f (x)y =
g(x), or prove that there is none. f satisfies the condition that exp(r f(s)ds) is not a
rational function and its integral is not a sum of logarithms with rational coefficients.
The problem is solved in two stages: reducing it to a purely polynomial problem,
and solving that problem. The Risch algorithm is recursive. Before applying it one
has (in principle) to check that the different extension variables are not algebraically
related. For rational functions the Risch algorithm is the same as for the Horowitz
method. For more details of the Risch algorithm and extensions of it we refer to the
literature [12], [34], [44J.

2.11. COMMUTATIVITY AND NONCOMMUTATIVITY 49

2.11 Commutativity and N oncommutativity

In computer algebra it is usually assumed that the symbols are commutative. Many
mathematical structures are noncommutative. Here we discuss some of these struc­
tures.

We recall that an associative algebra is a vector space V over a field F which satisfies
the ring axioms in such a way that addition in the ring is addition in the vector space
and such that c * (A * B) = (c * A) * B = A * (c * B) for all A, B E V and c E F.
Moreover the associative law holds, i.e. A * (B * C) = (A * B) * C. An example of an
associative algebra is the set of the n x n matrices over the real or complex numbers
with matrix multiplication as composition. There, in general, we have

A * B f. B * A.

Another important example of a non-commutative structure is that of a Lie algebra.
A Lie algebra is defined as follows. A vector space L over a field F, with an operation
L x L --+ L denoted by

(x, y) --+ [x, Yl
and called the commutator of x and y, is called a Lie algebra over F if the following
axioms are satisfied.

(L1) The bracket operation is bilinear.

(L2) [x, xl = 0 for all x E L.

(L3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, x,y,z E L.

A simple example of a Lie algebra is the vector product in the vector space R3.

Remark. The connection between an associative algebra and a Lie algebra is as
follows. Let A, B be elements of the associative algebra. We define the commutator
as follows:

It can be proved easily that the commutator defined in this way satisfies the axioms
given above. Thus we have constructed a Lie algebra from an associative algebra.

Another example of a non-commutative structure are the quaternions. The quater­
nions have a matrix representation.

50 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

2.12 Tensor and Kronecker Product

Let V, W be vector spaces over a field F. We define the tensor product [30] between
elements of V and W. The value of the product should be in a vector space. If we
denote v ® was the tensor product of elements v E V and wE W, then we have the
following relations. If Vl, V2 E V and w E W, then

If WI, W2 E W and v E V, then

If c E F, then
(c * v) ® w = c * (v ® w) = v ® (c * w).

We now construct such a product, and prove its various properties.

Let U, V, W be vector spaces over F. By a bilinear map

g:VxW--+U

we mean a map which to each pair of elements (v, w) with v E V and w E Wasso­
ciates an element g(v, w) of U, having the following property.

For each v E V, the map w t-+ g(v, w) of W into U is linear, and for each w E W,
the map v t-+ g(v,w) of V into U is linear. For the proofs of the following theorems
we refer to the literature [30].

Theorem. Let V, W be finite dimensional vector spaces over the field F. There
exists a finite dimensional space T over F, and a bilinear map V x W --+ T denoted
by

(v,w)t-+v®w,

satisfying the following properties.

1. If U is a vector space over F, and 9 V x W --+ U is a bilinear map, then
there exists a unique linear map

g.:T--+U

such that, for all pairs (v, w) with v E V and w E W we have

g(v, w) = g.(v ® w).

2. If {Vl, ... , vn } is a basis of V, and {Wl, ... , wm } is a basis of W, then the elements

i = 1, ... ,n and j = 1, ... ,m

2.12. TENSOR AND KRONECKER PRODUCT 51

form a basis of T.

The space T is called the tensor product of V and W, and is denoted by V ® W. Its
dimension is given by

dim(V ® W) = (dim V)(dim W).

The element v ® w associated with the pair (v, w) is also called a tensor product of
v and w.

Frequently we have to take a tensor product of more than two spaces. We have
associativity for this product.

Theorem. Let U, V, W be finite dimensional vector spaces over F. Then there is
a unique isomorphism

U ® (V ® W) -+ (U ® V) ® W

such that

u®(v®w) r-t (u®v)®w

for all u E U, v E V and w E W.

This theorem allows us to omit the parentheses in the tensor product of several
factors. Thus if Vi, ... , v;. are vector spaces over F, we may form their tensor prod­
uct

and the tensor product

of elements Vi E Vi. The theorems described above give the general useful properties
of the tensor product.

Next we introduce the Kronecker product of two matrices. It can be considered as a
realization of the tensor product.

Definition. Let A be an m x n matrix and let B be a p x q matrix. Then the
Kronecker product of A and B is an (mp) x (nq) matrix defined by

(

auB a12B
a21 B a22 B

A®B:= .

amlB am2B

52 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Sometimes the Kronecker product is also called direct product or tensor product.
Obviously we have

(A + B) 0 C = A 0 C + B 0 C

where A and B are matrices of the same size. Analogously

where Band C are of the same size. Furthermore, we have

Example. Let

Then

(
0 -2

-2 2
A0B= 0 0

o 0

(A 0 B) 0 C = A 0 (B 0 C).

-~ -~)
o -1 '

-1 1

(0 -1)
B = -1 1 .

We see that A 0 B -=f:. B 0 A.

Example. Let

Then

Obviously, {el' e2} is the standard basis in R2. We see that

o -2
o 0

-3 2
-1 0

{e10 ell e10 e2, e20 el, e20 e2}

is the standard basis in R 4 .

-3) -1
3 .

1

2.13. EXTERIOR PRODUCT 53

2.13 Exterior Product

Next we introduce the exterior product (also called alternating product or Grassmann
product). Let V be a finite dimensional vector space over R, r be an integer 2 1
and v(r) be the set of all r-tuples of elements of V, i.e. v(r) = V x V x ... x V.
An element of v(r) is therefore an r-tuple (VI, ... , Vr) with each Vi E V. Let U be
another finite dimensional vector space over R. An r-multilinear map of V into U
f : V x V x ... x V -t U is linear in each component. In other words, for each
i = 1, ... , r we have

f(VI, ... ,C*Vi, ... ,Vr) =C*f(VI, ... ,Vr)

for all Vi, V~ E V and c E R.

We say that a multilinear map f is alternating if it satisfies the condition

whenever two adjacent components are equal, i.e. whenever there exists an index
j < r such that Vj = Vj+1. Note that the conditions satisfied by multilinear maps
are similar to the properties of the determinants. The following theorem handles the
general case of alternating products.

Theorem. Let V be a finite dimensional vector space over F, of dimension n. Let r
be an integer 1 ~ r ~ n. There exists a finite dimensional space over F, denoted by
N V, and an r-multilinear alternating map v(r) -t N V, denoted by

satisfying the following properties.

1. If U is a vector space over F, and 9 : v(r) -t U is an r-multilinear alternat­
ing map, then there exists a unique linear map

g. : Ar V -t U

such that for all UI, ... , U r E V we have

g(Ub···' ur) = g.(UI /\ ... /\ ur).

2. If {Vb ... , v n } is a basis of V, then the set of elements

{ V' /\ ... /\ V }
~1 'l.r ,

is a basis of N V.

54 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

Thus if {Vl,'" , vn } is a basis of V, then every element of N V has a unique expres­
sion as a linear combination

n

L Ci[, .. i r Vi[1\ ... 1\ Vir

i[< .. ·<ir

the sum being taken over all r-tuples (i l , , , . , ir) of integers from 1 to n, satisfying

One can also shorten this notation, by writing (i) = (i l , ... , i r). Thus the above sum
would be written

n

'" C(')V' 1\ ... 1\ V L ~ t1 't,."

(i)

The structure introduced above is also called a Grassmann algebra.

The dimension of the vector space N V is given by

Example. We consider the vector space R4 with the standard basis

Then a basis for the two forms is given by

A basis for the three forms is given by

el 1\ e2 1\ e3, el 1\ e2 1\ e4, el 1\ e3 1\ e4, e2 1\ e3 1\ e4·

The basis for the four forms consists of only one element, namely

2.13. EXTERIOR PRODUCT 55

The determinant of a square matrix can be calculated using the exterior product.
Consider the 4 x 4 matrix

then

where el, e2, e3, e4 is the standard basis of R4. Thus 24 is the determinant of the
matrix. In Chapter 8, we give an implementation of this (obviously slow) technique
to find the determinant.

Now, we consider some practical methods to evaluate the determinant of a matrix.
The method employed usually depends on the nature of the matrix - numeric or
symbolic .

• Numeric matrix
Let A be an n x n matrix. The determinant of A is the sum taken over all per­
mutations of the columns of the matrix, of the products of elements appearing
on the principal diagonal of the permutated matrix. The sign with which each
of these terms is added to the sum is positive or negative according to whether
the permutation of the column is even or odd.

An obvious case is a matrix consisting of only a single element, for which we
specify that

det(A) = au, when n = 1.

No one actually computes a determinant of a matrix larger that 4 x 4 by
generating all permutations of the columns and evaluating the products of the
diagonals. A more efficient way rests on the following facts:

- Adding a numerical multiple of one row (or column) of matrix A to another
leaves detA unchanged.

56 CHAPTER 2. MATHEMATICS FOR COMPUTER ALGEBRA

- If B is obtained from A by exchanging two rows (or two columns), then
detB = -detA. If A has two rows or columns proportional to each other
then detA = O.

The idea is to manipulate the matrix A with the help of these two operations
in such a way that it becomes triangular, i.e. all matrix elements below the
principle diagonal are equal to zero. It follows from the definition that the
determinant of a triangular matrix is the product of the elements of the principal
diagonal.

• Symbolic matrix
For a symbolic matrix, the determinant is best evaluated using Leverrier's
method.

The characteristic polynomial of an n x n matrix A is a polynomial of degree n
in terms of oX. It may be written as

Now, we present Leverrier's method to find the coefficients, Ci, of the polynomial.
It is fairly insensitive to the individual peculiarities of the matrix A. The method
has an added advantage that the inverse of A, if it exists, is also obtained in
the process of determining the coefficients, Ci. Obviously we also obtain the
determinant. The coefficients, Ci, of P(OX) are obtained by evaluating the trace
of each of the matrices, Bt, B2 , ... , Bn, generated as follows. Set Bl = A and
compute Cl = tr(Bl)' Then compute

The inverse of a non-singular matrix A can be obtained from the relationship

-1 (1) A = Cn (Bn- 1 - Cn-lI)

and the determinant of the matrix is

if n is odd
if n is even.

Chapter 3

Computer Algebra Systems

3.1 Introduction

In this chapter we survey some computer algebra systems and give some applications.
There are a large number of computer algebra systems available, so we will concen­
trate on a few of them. Reduce and Axiom are based on Lisp. On the other hand
Mathematica, Maple and MuPAD are based on C. Besides symbolic manipulations,
all systems can also do numerical manipulations. The systems are not only an inter­
active environment operating in response to on-line commands, but all of them are
also programming languages.

Reduce is one of the oldest computer algebra systems around. It is based on Portable
Standard Lisp. The system was designed in the late 1960s by Anthony C. Hearn [18],
[47], [49]. It allows one to mix Reduce and Lisp code.

Maple [10] is a product of Waterloo Maple Software. It is a system for mathematical
computation - symbolic, numerical and graphical.

Axiom is a symbolic, numerical and graphical system developed at the IBM Thomas
J. Watson Research Center. It gives the user all foundation and algebra instruments
necessary to develop a computer realization of sophisticated mathematical objects in
exactly the way a mathematician would do it. Axiom is distributed by The Numerical
Algorithms Group Limited [24].

Mathematica [62] is a product of Wolfram Research, Inc. It is a general computer
software system and language which handles symbolic, numerical and graphical com­
putations.

57

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

58 CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

MuPAD is a symbolic-numerical computer algebra system developed by the Depart­
ment of Mathematics of the University of Paderborn [39]. MuPAD lets you define
your own data types.

Besides the computer algebra systems described above there are a number of other
excellent computer algebra systems available:

• Macsyma is a product of Macsyma Inc. It is based on Lisp. It implements the
Aslaksen test for complex functions. A detailed description of Macsyma is given
by Davenport et al. [12].

• Derive is a small but powerful computer algebra system of the Software Ware­
house, Hawaii. It is also based on Lisp. Derive applies the rules of algebra,
trigonometry, calculus, and matrix algebra to solve a wide range of mathemat­
ical problems. It also has graphical capabilities.

• Magma (Computational Algebra Group, School for Mathematics and Statistics,
University of Sydney) is a system for computation in algebraic, geometric and
combinatorical structures such as groups, rings, fields, algebras, modules, graphs
and codes.

• MathCad is a product of MathSoft, Cambridge, Massachusetts. It provides
a platform for engineers, scientists and academicians to perform, share and
document symbolic and numerical calculations.

Further packages exist for special tasks such as number theory, graph theory and
algebra. The web page of the International School for Scientific Computing (see pref­
ace) provides links to web pages where more information on other computer algebra
packages can be found.

3.2. REDUCE 59

3.2 Reduce

3.2.1 Basic Operations
We give a summary of the most commonly used commands in Reduce. Reduce
does not distinguish between capital and small letters. Thus the commands sin (x),
Sin (x) or SIN (X) are the same.

The commands we use most in this book are differentiation and integration. To
differentiate x3 + 2x with respect to x we write

The output is 3*x A 2 + 2. To integrate x 2 + 1 we write

int(x**2 + 1,x);

The output is x*(x A 2 + 3)/3. Both ** and A denote the power operator.

The command solveO solves a number of algebraic equations, systems of algebraic
equations and transcendental equations. For example, the command

solve(x**2 + (a+l)*x + a=O,x);

gives the solution x = -1 and x = -a.

Another important command is the substitution command sub O. For example, the
command

yields 2*y + 4.

Amongst others, Reduce includes the following mathematical functions: sqrt (x)
(square root, v'x), exp(x) (exponential function, exp(x)), log(x) (natural loga­
rithm, In(x)), and the trigonometric functions sin(x), cos(x), tan (x) with argu­
ments in radians.

Reduce reserves i (or I) to represent A and pi (or PI, pI, Pi) for the number 1r.

Thus the input

Hi;

gives -1 and

sin(pi);

results in O. Other predefined constants are T, nil, E, Infinity where T stands for
true and nil stands for false.

60 CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

For differentiation Reduce offers two options for implementation. In the first option
we declare the function to be differentiated as operator. The following example
shows how to use this option. The 2 in df 0 indicates that we differentiate twice.

operator f;
f(x) := x*x + sin(x);
result := df(f(x),x,2);

The output is

result := -sin(x) + 2

On the other hand we can also declare that f depends on x and then differentiate f
with respect to x.

depend f, X;
f := x*x + sin(x);
result := df(f,x,2);

In Reduce the default data type for numbers is rational numbers. The command

2 + 0.1 + 1/3;

gives the output

73/30

The switch on rounded allows the calculation with real numbers. The commands

on rounded;
2 + 0.1 + 1/3;

gives the output

2.43333333333

Reduce only knows the most elementary identities such as

cos(-x)
sin(pi)
log (e)
eA (i*pi/2)

= cos (x)
= 0
= 1

= i

The user can add further rules for the reduction of expressions by using the LET
command, such as the trigonometry identity

for all X let sin(x)A2 + cos(x)A2 = 1;

then

sin(y)A2 + cos(y)A2 - 5;

gives the output

-4

For other commands we refer to the user's manual for Reduce [18].

3.2. REDUCE 61

3.2.2 Example

As an example we show how soliton equations can be derived from pseudospherical
surfaces. We show how the sine-Gordon equation can be derived. Extensions to
other soliton equations are straightforward. Soliton equations can be described by
pseudospherical surfaces, i.e. surfaces of constant negative Gaussian curvature. An
example is the sine-Gordon equation

fPu a a = sin(u).
Xl X2

Here we show how Reduce can be used to find the sine-Gordon equation from the line
element of the surface. The metric tensor field is given by

i.e. the line element is

Here u is a smooth function of Xl and X2. First we have to calculate the Riemann
curvature scalar R from g. Then the sine-Gordon equation follows when we impose
the condition

R= -2.

The calculation of the curvature scalar is well described in many textbooks (see for
example [51]). For the sake of completeness we give the equations. We have

gl1 = g22 = 1,

The quantity 9 can be written in matrix form

Then the inverse of 9 is given by

9 = (911 912).
g2l g22

62

where

CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

12 21 COS U
9 = 9 = --·-2-·

sm u

Next we have to calculate the Christoffel symbols. They are defined as

r a 1 ab()
mn := 2g gbm,n + gbn,m - gmn,b

where the sum convention is used and

Next we have to calculate the Riemann curvature tensor which is given by

Rr .- rr rr + rr rn rr rn msq·- mq,s - mS,q ns mq - nq ms·

The Ricci tensor follows as

o .- Ra - Ra .I."mq.- maq - - mqa

i.e. the Ricci tensor is constructed by contraction. From Rnq we obtain R;' via

Finally the curvature scalar R is given by

With the metric tensor field given above we find that

If
R= -2

then we obtain the sine-Gordon equation.

3.2. REDUCE 63

We apply the concept of operators. Operators are the most general objects available
in Reduce. They are usually parametrized, and can be parametrized in a completely
general way. Only the operator identifier is declared in an operator declaration. The
number of parameters is not declared. Operators represent mathematical operators
or functions. We declare u as an operator and it depends on x. x itself is also declared
as an operator and depends on 1 and 2. Since terms of the form cos2 (x) and sin2 (x)
result from our calculation we have to include the identity

in order to simplify expressions.

'I. tensor.red

matrix g(2,2);
matrix gl(2,2); 'I. inverse of g;
array gamma(2,2,2); array R(2,2,2,2); array Ricci(2,2);

operator u, x;

g(l,l) .= 1; g(2,2) := 1;
g(1,2) := cos(u(x(1),x(2»); g(2,1) := cos(u(x(1),x(2»);

gl := g~(-l); 'I. calculating the inverse
for a := 1:2 do

for m := 1:2 do
for n := 1:2 do
gamma(a,m,n) := (1/2)*

for a := 1:2 do
for m := 1:2 do

for n := 1:2 do

(for b := 1:2 sum gl(a,b)*(df(g(b,m),x(n»
+ df(g(b,n),x(m» - df(g(m,n),x(b»»;

write "gamma(" ,a, ", II ,m, ", II ,n, ") II gamma(a,m,n);

for b := 1:2 do
for m := 1:2 do

for s := 1:2 do
for q := 1:2 do
R(b,m,s,q) := df(gamma(b,m,q),x(s»-df(gamma(b,m,s),x(q»

+ (for n .= 1:2 sum gamma(b,n,s)*gamma(n,m,q»
- (for n := 1:2 sum gamma(b,n,q)*gamma(n,m,s»;

cos(u(x(1),x(2»)**2 .= 1 - sin(u(x(1),x(2»)**2;

for m := 1:2 do

64 CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

for q := 1:2 do
Ricci(m,q) := for s := 1:2 sum R(s,m,s,q)j

for m := 1:2 do
for q := 1:2 do
write "Ricci(",m,",",q,") = ", Ricci(m,q)j

array Ricci1(2,2)j
for m := 1:2 do

for q := 1:2 do
Ricci1(m,q) := (for b := 1:2 sum gl(m,b)*Ricci(q,b»j

CS := for m := 1:2 sum Ricci1(m,m)j

The calculation of the curvature scalar from a metric tensor field (for example Goedel
metric, Schwarzschild metric) is one of the oldest applications of computer algebra.
Here we show that it can be extended to find soliton equations. By modifying the
metric tensor field we can obtain other soliton equations. For example

g(1,2) := cos(u(x(1),x(2»)j g(2,1) := cos(u(x(1),x(2»)j

could be replaced by

g(1,2) := cosh(u(x(l),x(2»)j g(2,1) := cosh(u(x(l),x(2»)j

Additionally, we have to include the identity rule

sinh(u(x(l),x(2»)**2 := cosh(u(x(l),x(2»)**2 - 1j

in order to simplify expressions.

A large number of application programs in Reduce can be found in [11], [19], [49J, [50J,
[51J. In [49J applications in quantum mechanics are described. In [50J applications for
differential equations are given. In [52J applications for nonlinear dynamical systems
are provided.

3.3. MAPLE 65

3.3 Maple

3.3.1 Basic Operations
Maple distinguishes between small and capital letters. The command Sin(O.l) gives
Sin(.l), whereas sin(O.1) gives the desired result 0.09983341665.

In Maple the differentiation command is diff O. The input

yields as output 3x-2 + 2. The integration command is int O. The input

yields x-3/3 + x.

Maple has two different commands for solving equations. The command

solve(x-2 + (l+a)*x + a=O,x);

solves the equation x-2 + (1 +a) x + a = 0 and gives the result x = -1 and x = -a.
The command

fsolve(x-2 - x - l=O,x)

solves x-2 - x - 1.0 = 0 and gives the output -0.6180339887 and 1.618033989.

The substitution command is given by subs O. For example, the command

gives 2y + 4.

Amongst others, Maple includes the following mathematical functions: sqrt (x)
(square root, v'x), exp(x) (exponential function, eX), log(x) (natural logarithm,
In(x)), and the trigonometric functions sin(x), cos(x), tan (x) with arguments in
radians.

Predefined constants are

Catalan, E, Pi, false, gamma, infinity, true.

For other commands we refer to the user manual for Maple [10].

66 CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

3.3.2 Example

As an example we consider a quantum mechanical problem. Given a trial function for
a one-dimensional potential, we find an approximation for the ground state energy.
The eigenvalue equation in one-space dimension is given by

li2 rFu
- 2m dx2 + V(x)u(x) = Eu(x).

We use the variational principle to estimate the ground state energy of a particle in
the potential

V(x) := {cx for x> 0
00 for x < 0

where c > O. Owing to this potential the spectrum is discrete and bounded from
below. We use

u(x) = { xexp(-ax) for x> 0
o for x<O

as a trial junction, where a > O. We have to keep in mind that the trial function is
not yet normalized. From the eigenvalue equation we find that the expectation value
for the energy is given by

00 -ax (1i2 d2) -ax (IH' I) J xe - 2m dX2 + cx xe dx 3 li2 2
(E):= u u = 0 00 = ~ + _a

(ulu) J x2 exp(-2ax)dx 2a 2m
o

where (I) denotes the scalar product in the Hilbert space L2(0, 00). The expecta­
tion value for the energy depends on the parameter a. The expectation value has a
minimum for

_ (3mc)1/3
a- 2 2li

3.3. MAPLE 67

In the program we evaluate (E) and then determine the minimum of (E) with respect
to a. Thus the ground-state energy is greater than or equal to

energy.map

potential
V := c*x;
trial ansatz
u := x*exp(-a*x);
eigenvalue equation

~ (2h2c2) 1/3

4 3m

Hu := -hb-2/(2*m)*diff(u,x,x) + V*u;

integrating for finding expectation value
not normalized yet
resl := int(u*Hu,x);

collect the exponential functions
res2 := collect(resl,exp);

substitution of the boundary
res3 := 0 - subs(x=O,res2);

finding the norm of u to normalize
res4 := int(u*u,x);
res5 := -subs(x=O,res4);

normalized expectation value
expe := res3/res5;

finding the minimum with respect to a
minim := diff(expe,a);
res6 := solve(minim=O,a);
a := res6[1];

approximate ground state energy
appgse = subs(a=O,expe);

Remark. Only the real solution of res6, namely res6 [1] is valid in our case.

68 CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

3.4 Axiom

3.4.1 Basic Operations

Axiom emphasizes strict typechecking. Unlike other computer algebra systems, types
in Axiom are dynamic objects. They are created at run-time in response to user com­
mands. Types in Axiom range from algebraic type (e.g. polynomials, matrices and
power series) to data structures (e.g. lists, dictionaries and input files). Types may
be combined in meaningful ways. We may build polynomials of matrices, matrices
of polynomials of power series, hash tables with symbolic keys and rational function
entries and so on.

Categories in Axiom define the algebraic properties which ensure mathematical cor­
rectness. Through categories, programs may discover that polynomials of continued
fractions have commutative multiplication whereas polynomials of matrices do not.
Likewise, a greatest common divisor algorithm can compute the "gcd" of two elements
for any Euclidean domain, but foil the attempts to compute meaningless "gcds" of
two hash tables. Categories also enable algorithms to be compiled into machine code
that can be ruled with arbitrary types.

Type declarations in Axiom can generally be omitted for common types in the inter­
active language. Basic types are called domains of computation, or simply, domains.
Domains are defined in the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its members.
For example, Integer denotes "the class of integers", whereas Float denotes "the
class of floating point numbers" and so on. The " ... " part following Name lists the
parameter(s) for the constructor. Some basic types like Integer take no parameters.
Others, like Matrix, Polynomial and List, take a single parameter that again must
be a domain. For example,

Matrix (Integer) denotes "matrices over the integers"
Polynomial (Float) denotes "polynomial with floating point coefficients"

There is no restriction on the number of types of parameters of a domain constructor.

The Exports part in Axiom specifies the operations for creating and manipulating
objects of the domain. For example, the Integer type exports constants 0 and 1, and
operations +, - and *. The Implementation part defines functions that implement
the exported operations of the domain. These functions are frequently described in
terms of another lower-level domain used to represent the objects of the domain.

3.4. AXIOM 69

Every Axiom object belongs to a unique domain. The domain of an object is also
called its type. Thus the integer 7 has type Integer and the string "willi II has type
String. The type of an object, however, is not unique. The type of the integer 7
is not only an Integer but also a NonNegativeInteger, a PositiveInteger and
possibly any other "sub domain" of the domain Integer.

A sub domain is a domain with a "membership predicate". PositiveInteger is a
subdomain of Integer with the predicate "is the integer > 0 ?". Sub domains with
names are defined by the abstract data type programs similar to those for domains.
The Exports part of a subdomain, however, must list a subset of the exports of the
domain. The Implementation part optionally gives special definitions for subdomain
objects. The following gives some examples in Axiom.

Axiom uses D to differentiate an expression

f := exp exp x
D(f,x)

An optional third argument n in D instructs Axiom for the n-th derivative of f, e.g.
D(f ,x,3).

Axiom has extensive library facilities for integration. For example

integrate«x**2+2*x+l)/«x+l)**6+1),x)

yields

arctan(x3 + 3x2 + 3x + 1)
3

Axiom uses the rule command to describe the transformation rules one needs. For
example

sinCosExpandRules := rule
sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)
cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)
sin(2*x) == 2*sin(x)*cos(x)
cos(2*x) == cos(x)**2 - sin(x)**2

Thus the command

sinCosExpandRules(sin(a+2*b+c»

applies the rules implemented above.

For more commands, we refer to the literature [24J.

70 CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

3.4.2 Example

In solving systems of polynomial equations, Grobner basis theory plays a central role
[12], [24], [34]. If the polynomials

{Pi : i = 1, ... , n}

vanish totally, so does the combination

where the coefficients Ci are in general also polynomials. All possible such combina­
tions generate a space called an ideal. The ideal generated by a family of polynomials
consists of the set of all linear combinations of those polynomials with polynomial
coefficients. A system of generators (or a basis) G for an ideal I is a Grabner basis
(with respect to an ordering <) if every complete reduction of an f E I (with respect
to G) gives zero. The ordering could be lexicographic (meaning lexicographic variable
ordering followed by variable degree ordering), inverse lexicographic (meaning inverse
lexicographic then variable degree), total degree (meaning total degree then lexico­
graphic) and inverse total degree (meaning total degree then inverse lexicographic).
Most computer algebra systems can find the Grabner basis for a given system of
polynomials. Here we consider Axiom.

DMP stands for DistributedMultivariatePolynomial. Consider the commands:

(dl, d2, d3) : DMP([z,y,x],FRAC INT)
dl := -4*z + 4*y**2*x + 16*x**2 + 1
d2 := 2*z*y**2 + 4*x + 1
d3 := 2*z*x**2 - 2*y**2 - x
groebner [dl,d2,d3]

This gives the output

1568 6 1264 5 6 4 182 3 2047 2 103 2857
z - 2745 x - 305 x + 305 x + 549 x - 610 x + 2745 x - 10980

3.5. MATHEMATICA 71

3.5 Mathematica

3.5.1 Basic Operations

Mathematica distinguishes between capital letters and small letters. The command
sin[O.1] for the evaluation of the sine of 0.1 gives the error message, possible spell­
ing error, whereas Sin [0.1] gives the right answer 0.0998334.

In Mathematica the differentiation command

gives the output 2 + 3 x-2. The command

Integrate[x-2 + 1,x]

gives x + x-3/3.

The command Solve [] can solve a number of algebraic equations, systems of .
algebraic equations and transcendental equations. For example the command

Solve[x-2 + (a+1)*x + a==O,x]

gives the solution x = -1 and x = -a.

The replacement operator /. applies rules to expressions. Consider the expression

Then

x*y + x*x /. x -> 2

yields as output 4 + 2*y.

Amongst others, Mathematica includes the following mathematical functions: Sqrt [x]
(square root, ..jX), Exp [x] (exponential function, eX), Log [x] (natural logarithm,
In(x)), and the trigonometric functions Sin [x], Cos [x], Tan [x] with arguments in
radians.

Predefined constants are

I, Infinity, Pi, Degree, GoldenRatio, E, EulerGamma, Catalan

For other commands we refer to the user's manual for Mathematica [62].

72 CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

3.5.2 Example

As an example we consider the spin-l matrices

and

~ 000).
J2h

We calculate the commutator of the two matrices

[s+, s-l := s+s_ - s_s+

and then determine the eigenvalues of the commutator. The Mathematica program
is as follows:

(* spin.m *)

sp = {{ 0, Sqrt [2] *hb, O}, {O, 0, Sqrt[2]*hb}, {o, 0, O}}
sm = {{o, 0, O}, {Sqrt [2] *hb, 0, O}, {o, Sqrt[2]*hb, O}}
comm = sp . sm - sm . sp
Eigenvalues [comm]

The output is

2 2
{o, -2 hb , 2 hb }

3.6. MUPAD 73

3.6 MuPAD

3.6.1 Basic Operations

MuPAD is a computer algebra system which has been developed mainly at the Univer­
sity of Paderborn. It is a symbolic, numeric and graphical system. MuPAD provides
native parallel instructions to the user. MuPAD syntax is close to that of MAPLE
and has object-orientated capabilities close to that of AXIOM. MuPAD distinguishes
between small and capital letters. The command Sin(O .1) gives Sin(O .1), whereas
sin(O .1) gives the desired result 0.09983341664. In MuPAD the differentiation
command is diff O. The input

yields as output

2
3 x + 2

The integration command is int O. The input

yields

3
x

x +
3

The command

solve(x~2 + (l+a)*x + a=O,x);

solves the equation x~2 + (l+a)*x + a=O and gives the result {-a, -1}. The sub­
stitution command is given by subs O. For example, the command

subs(x*y + x~2,x=2);

gives 2 Y + 4. Amongst others, MuPAD includes the following mathematical func­
tions: sqrt(x) (square root, y'X), exp(x) (exponential function, eX), In(x) (natural
logarithm), and the trigonometric functions sin (x), cos (x) , tan (x) with arguments
in radians.

Predefined constants are

I, PI, E, EULER, TRUE, FALSE, gamma, infinity

74 CHAPTER 3. COMPUTER ALGEBRA SYSTEMS

3.6.2 Example

As an example we consider Picard's method to approximate a solution to the differen­
tial equation dy/dx = f(x, y) with initial condition y(xo) = Yo, where f is an analytic
function of x and y. Integrating both sides yields

x

y(x) = Yo + J f(s, y(s))ds.
xo

Now starting with Yo this formula can be used to approach the exact solution itera­
tively if the procedure converges. The next approximation is given by

x

Yn+1(x) = Yo + J f(s,Yn(s))ds.
Xo

The example approximates the solution of dy/dx = x + y using five steps of Picard's
method. To input a file the command read(filename) is used. So in this case the
command read("picard"); will give the output

3 4 5 6
2 x x x x

x + x + -- + -- + -- + --- + 1
3 12 60 720

xO:=O:
yO:=1:

/*initial x*/
/*initial y*/

y:=yO:
y1:=subs(y,x=s):
f:=func(x+y,x,y): /*declare function f(x,y)=x+y */

for i from 1 to 5 do
y:=(yO+subs(int(f(s,y1),s),s=x)-subs(int(f(s,y1),s),s=xO)):
y1:=subs(y,x=s):

end_for:

print(y);

Chapter 4

Object-Oriented Programming

In this chapter, we discuss the basic concepts of object-oriented programming. We
begin by introducing objects, classes and abstract data types. Other concepts include
message passing, inheritance, polymorphism, etc. Many examples have been used to
illustrate these concepts. In Section 4.5 we describe the object-oriented languages
C++ and Java. Finally, we give a brief introduction to the object-oriented languages
Eiffel, Smalltalk and Oberon.

By the end of the chapter, the reader will be aware of the main concepts in object­
oriented systems. In the later chapters, we will see how these concepts benefit the
development of computer algebra systems.

4.1 Objects, Classes and Abstract Data Types

4.1.1 Objects

Anything in the world is an object. Flowers, cars, matrices are examples of objects.
Cars have size, colour and other characteristics. They have operations like starting
the engine, switch on the headlights, pressing the brake and so on. Similarly, matri­
ces have numbers of rows, columns and so on. They have operations like addition,
multiplication, Kronecker product, etc.

In this section, we investigate the use of object-oriented techniques (OOT) to model
the world. As indicated in the name OOT, objects play an important role. An object
in a computer has a unique identity (ID) that is independent of the values of its
attributes. The ID is used to distinguish an object from others. It cannot be altered
at any time during the lifetime of the object. Figure 4.1 shows the fundamental con­
stituents of an object.

The internal structure of an object consists of two parts: attributes (data) and meth­
ods (operations).

75

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

76 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

Public Interface Methods

Internal Methods

I Attributes I

ID

Figure 4.1: Schematic diagram of an object

Attributes describe the properties of an object at a specific moment in time. They
tell something about the object but not how the object acts. They can be considered
as the local data associated with the object. For example a cat has weight, species,
sex and age. A polynomial has degree, number of terms, and coefficients of each term.

The attributes we specify in an object depend on the needs of the problem. Some­
times, we might not want to remember that a cat has four legs, or we might just
simply assume it. Sometimes, the nature of a matrix might be important; is it a
sparse or a dense matrix? In fact, deciding what to include as the set of attributes is
a matter of design.

Methods describe the behaviour possessed by an object and what the object can do
or will do when something happens. For example, employees have name, age, sex,
salary and employee ID. However, the attributes alone could not fully describe the
employees. Operations applied on employees are needed. They might include pro­
motion, salary increment, car allowance etc. They represent the actions that can be
performed by the object or on the object. The results of such actions might change
the state of the object.

In fact, there are two kinds of methods. Firstly there are public interface methods,
which provide a way to communicate with the object. Secondly these are internal
methods. They specify the object behaviour but they are not accessible from outside
the object. In other words, they only need to be known to the designer of that object.
Users of the object only need to know about the public interface methods.

A method of an object is activated by a message sent by another object to the object
containing the method. Alternatively, it could be invoked by another method in the
same object by a local message. A contract is established between the caller and the
called object. This mechanism is known as message passing between objects and will
be discussed in greater detail in the next section.

4.1. OBJECTS, CLASSES AND ABSTRACT DATA TYPES

rows, columns

value_entry

check_determinant

find_inverse

addition

multiplication

inverse

Figure 4.2: Schematic diagram of the class Matrix

77

As an example, consider an object representing a Matrix shown in Figure 4.2. It has a
unique identity (ID) which distinguishes it from all other objects. This object contains'
information such as number of rows/columns, value of each entry and so on. It also
contains some public interface methods used to manipulate the information such as
inverse, determinant and so on. It is known that finding the inverse of a matrix
requires us to ensure that the determinant of the matrix is non-zero. Therefore, the
method inverse might contain the following internal methods:

check_determinant check if the determinant of the matrix is zero
find_inverse find the inverse of the matrix.

Note that check_determinant and find_inverse are hidden from outside. Only
methods within the class have access to them. This concept of data hiding is im­
portant. It enhances the modularity and reduces the knock-on effects during the
development of the class. Knock-on effects are caused when changes to one module
require changes in other modules as well [63].

In object-oriented systems, the knock-on effects are caused by changes to an object's
interface, not by changes to the internal details. In order to reduce the knock-on
effects to minimum, an object's interface should be kept as simple as possible and it
should hide as much detail as possible from the user.

78 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

4.1.2 Abstract Data Types (ADT)

An attribute can be a primitive type such as an integer or a character or it can be
another object. An object composed of other objects is known as an aggregation.
This is achieved through abstract data types (ADTs), where objects are constructed
from existing data structures. An ADT is a collection of data and a set of operations
on that data. It hides the internal information but provides a public set of methods
for the users to manipulate the object. In such a way, the others "know" exactly
what operations the ADT can perform. However, they do not know how the data is
stored or how the operations are performed. This is a very powerful technique which
supports modularity and reduces the overall complexity in software systems.

No object can directly read or change the state of any other object. Accessing or
altering the attributes of an object is accomplished through its public interface meth­
ods. However, such access is only possible if the object itself permits it. This property
is known as encapsulation. It is the way in which object-oriented systems perform
information hiding. Information hiding includes hiding both data and operations im­
plementation. Encapsulation groups together data and functions that work on that
data. Thus, the set of data and functions together can be treated as a whole. These
properties lead to weak coupling between objects.

Hot Water

/

mixing mixing

coffee tea

powder leaves

Coffee Tea

Figure 4.3: Schematic diagram of a drinks dispenser

As an example, consider a drinks dispenser in Figure 4.3. It accepts hot water as
input and dispenses either tea or coffee according to which one of the two buttons is
pressed. The machine is analogous to an abstract data type. The hot water, tea and
coffee powder are analogous to the data collection and the operations are dispensing
tea or coffee. The machine is treated as a black box. We are not concerned with the
detail on how the operations are performed. What we expect is that the machine will
dispense the right drink.

4.1. OBJECTS, CLASSES AND ABSTRACT DATA TYPES 79

The interior mechanisms are surrounded by the metal casing. The openings are only
for the input (hot water) to the machine and its output (tea or coffee). Thus, the
internal mechanisms not only are hidden from the users but are also inaccessible.
Furthermore, the mechanism of one operation is hidden from and inaccessible to the
other operation. Thus, we can improve the operation of mixing coffee powder without
affecting the operation of mixing tea leaves. We could also add another operation,
such as dispensing hot chocolate milk, without affecting the original two operations.
Thus, both abstraction and information hiding work here.

4.1.3 Classes

Many similar objects can be specified by the same general description. For example,
an even number and a prime number. They can be described by a more general ab­
straction - an Integer. They share many common properties and behaviours. They
can be arranged in a fixed ordering and they can be added, multiplied and so on. For
the precise definition of integer, please refer to Chapter 2. The collection of instance
objects that satisfy the properties could be classified as an Integer.

An object is tested against the general concepts to see if it can be considered as an
Integer. These considerations lead to the notion of a class. The description of ob­
jects that have similar characteristics is called a class. Every object is an instance of
a class. A class consists of data structure and operations applicable to the class. It
is useful for classifying objects and it provides a basis for creation of a new instance
object of the class.

In an object-oriented world, there are three different kinds of attributes in a class [25]:

1. The class attributes describe the characteristics of the class as a whole. These
may be the totals or averages related to the class. For example, consider the
Card class which is the superclass of all card games available in a departmental
store, such as poker card, UNO, Magic, etc. The class attributes may be the
total number of stock available, number of different types of card, or the average
price of a deck of cards.

2. The shared instance attributes describe the common attributes possessed by
all instances of a class. For example, consider a subclass of the Card called
Poker _Card. A shared instance attribute may contain the number of cards in
each deck. It may be the size of each card such as 6 cm x 9 cm. Sometimes, the
shared instance attributes are referred to as class variables. They are different
from the class attributes as defined above which describe the characteristics of
the set of instance object as a whole.

3. The default instance attributes describe the attributes for each object. Even
though the names of these attributes are specified in the class, their values are

80 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

only assigned in the individual objects. The Poker _Card class could have the
following default instance attributes:

type of suit
rank
colour

e.g. diamonds, hearts, etc.
e.g. Jack, King, Ace, etc.
e.g. black or red.

4.2 Message Passing

Objects with attributes and methods communicate with each other by message pass­
ing. A message contains a name which is associated to a method within the object.
It may also contain some arguments. Basically, message passing involves two parties:
the sender and the receiver. When a message is received by an object, the associated
method will be activated. Upon the completion of the execution of the method, it
returns the result to the sender object.

Suppose an employee of a company, John, is organizing a birthday party for all the
employees who are born in January. To find out the date of birth (DaB) of all
the employees in the company, he has to request the information from the employees'
record. This process involves an object called' John', sending a message Request_DOB
to each object of the class Employee. The DaB of each employee is then returned as
the outcome. Figure 4.4 depicts the situation.

Object 'John' Object 'an_employee'

Attributes

Request..DOB IWqu .. UlOB J .
DOB --

Methods

DOB returned I

Figure 4.4: Message passing between objects

In this example, the message originated from the method in the object called' John'.
The destination of the message is another object called an_employee. The message
name is Request_DOB and the action is to obtain the DOB of an_employee.

In fact, objects from different classes can respond to the same message in different
ways. This is one form of polymorphism which will be discussed later in this chapter.

4.3. INHERITANCE 81

4.3 Inheritance

Inheritance is a powerful concept in object-oriented systems. It is most commonly
used as a mechanism to create specialized versions of a more general class. This is
known as generalized-specialization. It applies to families of classes that have similar
but not identical attributes and methods. In such a situation, it is useful to inherit
properties. This is achieved by multiple levels of abstraction where each level rep­
resents different versions or refinements of a class. Lower levels are built upon the
earlier ones. In other words, a superclass represents a generalization of the subclasses.
Similarly, a subclass of a given class represents a specialization of the class above. In­
heritance also provides a mechanism for managing classes and sharing common codes.

As an example, consider the invertible matrices, lower triangular matrices, and sym­
metric matrices. They have certain common properties, such as number of rows,
columns and so on. These general properties can be inherited from a more generic
class called Matrix. Figure 4.5 shows the inheritance hierarchy. The subclasses
inherited characteristics from the superclass Matrix. The subclasses represent the
specialized versions of the superclass.

Matrix

Invertible Lower Triangular Symmetric

Figure 4.5: Inheritance hierarchy of Matrix

The superclass Matrix could also inherit from some superclasses like Mathematical
Structure, which in turn could inherit from a class called Structure. Hence an
inheritance hierarchy can be constructed.

Different object-oriented languages support different types of inheritance. Smalltalk
only has single inheritance. This means a subclass can only inherit directly from one
superclass. Other languages such as C++ support multiple inheritance. It allows
a class to inherit from more than one immediate superclass. For example, if an in­
vertible symmetric matrix is both an invertible matrix and a symmetric matrix, then
multiple inheritance occurs, as shown in Figure 4.6. It is required that the rules for
defining multiple inheritance are able to handle any conflict which may arise. For ex­
ample, the naming conflicts which arise when the same name is used in two different
superclasses, and is inherited into the same subclass. This illustrates that although
multiple inheritance is a powerful mechanism, it increases the level of complexity.

82 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

I Invertible I I Symmetric I

Invertible Symmetric Matrix

Figure 4.6: An example of multiple inheritance

The situation becomes more complicated when the Invertible and Symmetric classes
inherit from the same super-superclass Matrix, as shown in Figure 4.7. The subclass
Invertible Symmetric Matrix could potentially inherit properties from the super­
superclass twice. This situation is known as repeated inheritance.

Matrix

Invertible Symmetric Matrix

Figure 4.7: An example of repeated inheritance

There is another form of inheritance called selective inheritance. In this case, the
subclass inherits only some of the properties from the superclass. This makes some
information inaccessible to some subclasses. For example, the database of a company
might consist of several parts, which is accessible to either manager, accountant or
marketing person. A marketing person has access to the company's client records
which are inaccessible to an accountant. On the other hand, an accountant has ac­
cess to the company's sales records which are not accessible to a marketing person.
The manager has access to all information in the database, including the employee
records which are not accessible to both the accountant and the marketing person.
This situation is depicted in Figure 4.8.

4.3. INHERITANCE 83

Company Database

Client Records

Sales Records

Employee Records

Marketing Person Accountant Manager

has access to has access to has access to

Client Records

Client Records Sales Records Sales Records

Employee Records

Figure 4.8: An example of selective inheritance

Subclasses inherit methods and attributes from superclasses. However, a subclass
can redefine any of the methods or attributes inherited from the superclass as well as
defining additional methods and attributes of its own. This is an extremely powerful
feature when combined with polymorphism. This concept will be discussed in a later
part of this chapter.

Sometimes, it is useful to introduce classes at a certain level which may not exist in
reality but are useful conceptual constructs. These are known as abstract classes. An
abstract class usually occupies a suitable position in the class hierarchy. It specifies
the behaviours of its descendents, but not the actual implementation. The purpose of
this abstract class is to define what must be done, but not how the tasks are carried
out. It is up to its descendents to provide the implementation of the behaviours.
These abstract classes do not have any instances created by themselves. In contrast,
instances are created by the subclasses of these abstract classes which correspond to
some real-world objects.

Class libraries with many classes are usually linked through an inheritance relation­
ship. Inheritance reduces redundancy and code duplication. This is one of the major
benefits derived from the concept. Classes are arranged in hierarchies with more
generic classes towards the top of the hierarchy, and more specialized classes towards
the bottom of the hierarchy.

84 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

4.4 Polymorphism

The word polymorphism, which originates from Greek, means 'having many forms'.
It simply means the referenced object (the receiver) can have more than one type.
The sender of a message does not need to know the class of the receiver. It only
requests an event via message passing, and the receiver knows what to do. In this
way, objects of different types (the receivers) will respond in different ways to the
same message. This results in more compact code, and hence is easier to understand.
There are three kinds of polymorphism

1. Inclusion polymorphism

2. Operation polymorphism

3. Parametric polymorphism

4.4.1 Inclusion Polymorphism

Traditional programming languages require the programmers to specify exactly which
method to use during compilation time. This is known as a static binding. Inclu­
sion polymorphism allows decisions to be made only at run-time, known as dynamic
binding (or late binding). Using dynamic binding, the system ensures that the right
method for the right class will be invoked during run-time. Although dynamic bind­
ing is flexible, it reduces performance. This is because the look-and-match algorithm
is now carried out during run-time. Fortunately, this overhead is minimal in most
languages. Static binding, on the other hand, is more secure and efficient.

This form of polymorphism applies on strongly type programming languages, such as
Eiffel, Simula and C++, and it is related to inheritance. It is a means that provides
common interfaces to different classes in the same inheritance tree, using the same
name for the method. However, each subclass may implement the method differently.

Consider the inheritance tree in Figure 4.9. Circle and Triangle are subclasses
of the abstract superclass Shape. Suppose the method Calculate_Area returns the
area of a geometric shape. The method Calculate_Area is defined in the class Shape.
However, no method can be used to calculate the area of a shape without explicitly
specifying which kind of shape it is. The subclasses inherit this abstract method
and override its definition by using appropriate algorithms to calculate the area of a
circle or a triangle. In other words, when the same message is sent to each class, the
response of each may be different. This behaviour provides a mechanism to handle
heterogeneous objects easily. If we have many different shapes, such as parallelogram,
rhombus, rectangle and so on, we could issue the same message Calculate_Area and
expect each of them to return the right area. We do not need to know ahead of time
which kind of shapes they are.

4.4. POLYMORPHISM

Shape

Calculate-.Area

Circle /\ Triugle
,---------''-,

Calculate-.Area

= 1l' X (radius)2

Calculate-.Area

= ~ x base x height

Figure 4.9: An example of inclusion polymorphism

85

This form of polymorphism allows us to avoid some type checking with strongly typed
languages. It also makes development simpler and more dynamic.

4.4.2 Operation Polymorphism

This form of polymorphism refers to the same method with several definitions. The
actual method is decided via the type of the parameters in the message. As an
example, consider the following C++ class definition called Document:

class Document
{

};

void print(char* s);
void print(char c);
void print(int n);

In the class, the same method print is defined three times. Each version differs by
the type of the input data. Therefore, when a message is sent to an object of type
Document, the appropriate print method will be invoked depending on the data type
of the message parameters. This is known as function overloading.

In fact, this type of polymorphism has been used for the arithmetic operators in most
languages. The operators +, -, * and / can be used to add, subtract, multiply and
divide integers or floating-point numbers. The compiler automatically generates the
appropriate code based on the type of the operands (integer or floating point).

86 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

4.4.3 Parametric Polymorphism

This form of polymorphism uses types as parameters in the class declarations. For
example, use of a stack to store integer numbers. For strongly typed languages such
as Eiffel, Java and C++, a stack of strings requires rewritten code for the strings
as the data type. Generally, it requires replicate code for each different data type,
making the programming task too tedious and error prone. This problem can be
overcome by the concept of parametric polymorphism.

Parametric polymorphism is usually used to implement data structures and algo­
rithms that are largely independent of the types of the object they operate on. For
example, a parametric Stack might describe the implementation of Stack that con­
tain objects with arbitrary types. By doing so, the Stack could be used to store
strings, integers, pointers and so on. The compiler will automatically generate the
code of these Stack classes. Another good candidate for parametric polymorphism
is the Vector structure. In principle, the data content in a vector is largely inde­
pendent of the operations available for the structure. A sorting algorithm is another
ideal candidate for parametric polymorphism. We usually only care about whether
the data items are sorted properly, but not the data types of the data items, provided
that they can be arranged in a proper ordering. In short, code sharing is the most
important advantage of parametric polymorphism.

The Standard Template Library (STL) implements these concepts. The Standard
Template Library includes the classes: deque, list, queue, set and vector. We
describe the Standard Template Library in detail in Chapter 5.

So far, we have introduced the essence of object-oriented programming, such as object,
class, abstract data type, message passing, inheritance and polymorphism. In the
next section, we discuss the most popular object-oriented programming languages
available today. We describe how the concepts of object-oriented programming are
implemented in these languages.

4.5. OBJECT-ORIENTED LANGUAGES 87

4.5 Object-Oriented Languages

There are many object-oriented languages available in the market. Here we discuss
some of them and compare them with C++. The commonly used object-oriented
languages are: C++, Java, Smalltalk, EifIel, Oberon and Delphi.

In the early 1960s in Europe, a group led by Ole-Johan Dahl and Kristan Nygaard in
the Norwegian Computer Centre constructed a simulation language known as Sim­
ula 67 [7J. It was designed for system description and simulation. The system here
was a collection of independent objects with a common objective, which examined the
life cycle of the elements of the system. Simula was based on Algol 60 with one very
important addition - the class concept. Using this concept, it is possible to declare a
class, create objects of that class, name these objects and form a hierarchical structure
of class declaration. Although this concept was only introduced to describe the life
cycles of the elements in the discrete simulation, it was later recognized as a general
programming tool ideal for describing and designing programs in an abstract way.
The basic idea was that the data (or data structure) and the operations performed
on it can be considered as one, and this forms the basis for the implementation of
abstract data types. The class concept has been adapted and used in many modern
languages, such as Concurrent Pascal, Modula-2, CLU and Ada. It has also been
proved useful in concurrent programming. Classes in Simula are based on procedure
declarations and the block structure of Algol 60, but free the latter concept from its
inherently nested structure by allowing several block instances to co-exist. Simula 67
had a considerable influence on programming languages as diverse as Small talk, C++
and Ada.

Smalltalk was developed in the 1970s at Xerox's Palo Alto Research Center. Smalltalk-
80 was the first commercially available version, released by Xerox.

Delphi can be considered as a successor of Turbo Pascal whereas Oberon can be
considered as a successor of Modula-2.

EifIel is a programming language designed to encourage the correct construction of
software components using the object-oriented approach. An early specification of the
EifIellanguage can be found in the book Object-Oriented Software Construction [36],
in which Bertrand Meyer outlined how good software engineering techniques could
be incorporated into the language based on the object-oriented paradigm.

The object-oriented language Java, developed by Sun Microsystems, was designed
from the ground up to allow for secure execution of code across a network. It shares
many similarities with C++, but all constructions considered unsafe by the developers
(such as pointers and references for basic data types) are eliminated.

88 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

4.5.1 C++

Since C++ was first invented, it has undergone three major revisions, with each re­
vision adding to and altering the language. The first revision was in 1985 and the
second occurred in 1990. The third revision occurred during the C++ standardiza­
tion process. Several years ago, work began on a standard for C++. Towards that
end, a joint ANSI and ISO (International Standards Organization) standardization
committee was formed. The first draft of the proposed standard was created on 25
January, 1994. In that draft, the ANSI/ISO C++ committee kept the features first
defined by Stroustrup and added some new ones. This initial draft reflected the state
of C++ at the time. After the completion of the first draft of the C++ standard, an
event occurred that caused the standard to expand greatly: the creation of the Stan­
dard Template Library (STL). The STL is a set of generic routines such as sorting
and searching that we can use to manipulate data. Subsequent to the first draft, the
committee voted to include the STL in the specification for C++. The addition of
the STL expanded the scope of C++ beyond its original definition. The standard­
ization of C++ took longer than anyone had expected when it began. In the process,
many new features were added to the language and many small changes were made.
The version of C++ defined by the C++ committee is larger and more complex than
Stroustrup's original design. However, the standard is now complete. The final draft
was passed out of committee on 14 November, 1997. The material in this book uses
Standard C++ to implement SymbolicC++ Standard C++ is the version that is
currently accepted by all major compilers.

Since object-oriented programming was fundamental to the development of C++, it is
important to define precisely what object-oriented programming is. Object-oriented
programming has taken the best ideas of structured programming and has combined
them with several powerful concepts that allow us to organize our programs more
effectively. In general, when programming in an object-oriented fashion, we decom­
pose a problem into its constituent parts. Each component becomes a self-contained
object that contains its own instructions and data related to the object. Through
this process, complexity is reduced. All object-oriented programming languages have
three things in common: encapsulation, polymorphism and inheritance.

All programs are composed of two fundamental elements: program statements (code)
and data. Code is that part of a program that performs actions, and data is the
information affected by those actions. Encapsulation is a programming mechanism
that binds together code and the data it manipulates, and that keeps both safe from
outside interference and misuse.

In an object-oriented language code and data may be bound together in such a way
that a self-contained black box is created. Within the box are all necessary data and
code. When code and data are linked together in this fashion, an object is created. In
other words, and object is the device that supports encapsulaton. Within an object,

4.5. OBJECT-ORIENTED LANGUAGES 89

the code, data, or both may be private to that object or public. Private code or data is
known to, and accessible only by, another part of the object. This means that private
code or data may not be accessed by a piece of the program that exists outside the
object. When code or data is public, other parts of our program may access it even
though it is defined within an object. Typically the public parts of an object are used
to provide a controlled interface to the private elements of the object.

Polymorphism is the quality that allows one interface to be used for a general class of
actions. The specific action is determined by the exact nature of the situation. For
example, consider a stack (which is a first-in, last-out list). We might have a program
that requires three different types of stacks. One stack is used for integer values,
one for floating-point values, and one for characters. In this case, the algorithm that
implements each stack is the same, even though the data being stored differs. In
a non-object-oriented language, we would be required to create three different sets
of stack routines, calling each set by a different name, with each set having its own
interface. However, because of polymorphism, in C++ we can create one general
set of stack routines (one interface) that works for all three specific situations. This
way, once we know how to use one stack, we can use them all. The concept of poly­
morphism is often expressed by the phrase "one interface, multiple methods." This
means that it is possible to design a generic interface to a group of related activities.
Polymorphism helps reduce complexity by allowing the same interface to be used to
specify a general class of action. It is the compiler's job to select the specification
(i.e., method) as it applies to each situation. The first object-oriented program­
ming languages were interpreters, so polymorphism was, of course, supported at run
time. However, C++ is a compiled language. Therefore, in C++, both run-time and
compile-time polymorphism are supported.

Inheritance is the process by which one object can acquire the properties of another
object. The reason this is important is that it supports the concept of hierarchical
classification. Most knowledge is made manageable by hierarchical (i.e., top-down)
classifications. For example, a Student is a Person. Without the use of hierarchies,
each object would have to explicitly define all of its characteristics. However, using
inheritance, an object needs to define only those qualities that make it unique within
its class. It can inherit its general attributes from its parent. Thus, it is the inheri­
tance mechanism that makes it possible for one object to be a specific instance of a
more general case.

Many of the features of C++ exist to provide support for encapsultion, polymorphism,
and inheritance. However we can use C++ to write any type of program, using any
type of approach. The fact that C++ supports object-oriented programming does
not mean that we can only write object-oriented programs. As with its predecessor,
C, one of C++'s strongest advantages is its flexibility.

90 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

4.5.2 Java

Java is an object-oriented programming language developed by Sun Microsystems. It
shares many similarities with C, C++, and Objective C (for instance the for-loops
have the same syntax in all four languages); but it is not based on any of those lan­
guages, nor have efforts been made to make it compatible with them. Java is the
language of the Internet. It was strongly influenced by C++. Java and C++ both
use the same basic syntax, and Java's object-oriented features are similar to C++'s.
In fact, at first glance it is possible to mistake a Java program for a C++ program.
Because of their surface similarities, it is a common misconception that Java is sim­
ply an alternative to C++. Although related, Java and C++ were designed to solve
different sets of problems. C++ is optimized for the creation of high-performance pro­
grams. Towards this end, C++ compiles to highly efficient, executable code. Java is
optimized for the creation of portable programs. To obtain portability, Java compiles
to pseudo-code (called Java bytecode), which is usually interpreted. This makes Java
code very portable, but not very efficient. Thus, Java is excellent for Internet appli­
cations, which must work on a wide variety of computers. But for high-performance
programs, C++ will remain the language of choice.

Because of the similarities between Java and C++, most C++ programmers can
readily learn Java. The skills and knowledge we gain in C++ will translate easily.
However some important differences do exist, so be careful not to jump to false con­
clusions.

Originally, Java was created because C++ is inadequate for certain tasks. Since the
designers were not burdened with compatibility with existing languages, they were
able to learn from the experience and mistakes of previous object-oriented languages.
A few new features which C++ does not have, like garbage collection and multi­
threading, have been added. A few C++ features that had been proved to be better
in theory than in practice, like multiple inheritance, operator overloading and tem­
plates, have been thrown away. There is still argument over whether the designers
have made the right choice.

More importantly, Java was designed from the ground up to allow for secure execu­
tion of code across the network, even when the source of that code was untrusted and
possibly malicious. This requires the elimination of more features in C and C++.
Most notably there are no pointers in Java. The programs cannot (at least in theory)
access arbitrary addresses in memory.

Furthermore Java was designed not only to be cross-platform like C, but also in
compiled binary form. Since this is impossible across different processor architectures,
Java is compiled to an intermediate byte-code which is interpreted on the fly by the
Java interpreter. Thus to port a Java program to a new platform, all that is needed
is to port the interpreter.

4.5. OBJECT-ORIENTED LANGUAGES 91

Moreover, Java was designed to write bug-free code. Shipping C code has, on average,
one bug per 55 lines of code. About half of these bugs are related to memory allocation
and deallocation. On the other hand, Java has a number of features that make these
bugs less common:

• strong typing;

• no unsafe constructs;

• the language is small so it is easy to become fluent;

• the language is easy to read and write;

• there are no undefined or architecture-dependent constructs;

• Java is object-oriented so reuse is easy;

• Java has concurrency;

• Java has a large number of built-in classes.

The syntax of Java is deliberately similar to C and C++. It is also case-sensitive.
Here we list the programming syntax of Java.

• Data Types

The primitive data types of Java are very similar to those in C. Boolean, String
and true arrays have been added. However the implementation of the data
types has been substantially cleaned up in several ways:

1. C and C++ leave a number of issues to be machine and compiler dependent
(for instance the size of an int), Java specifies everything.

2. Java prevents casting between arbitrary variables. Only cast between nu­
meric variables and cast between subclasses and superclasses of the same
object are allowed.

3. All numeric variables in Java are signed.

Below, we listed the built-in data types available in Java:

- boolean
I-bit. May take on the values true and false only.
true and false are defined constants of the language. They are not the
same as True and False, TRUE and FALSE, zero and nonzero, 1 and 0 or
any other numeric value. The data type boolean may not be cast into any
other type of variable nor may any other variable be cast into a boolean.

- byte
1 byte, signed (two's complement). Covers values from -128 to 127.

92 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

- short
2 bytes, signed (two's complement). Covers from -32,768 to 32,767.

- int
4 bytes, signed (two's complement).
From -2,147,483,648 to 2, 147,483,647. Like all numeric types, ints may
be cast into other numeric types (byte, short, long, float, double).
When lossy casts are done (e.g. int to byte) the conversion is done on
modulo the length of the smaller type.

- long
8 bytes, signed (two's complement).
From -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

- float
4 bytes, IEEE 754. Covers a range from
1.40129846432481707 e - 45 to 3.40282346638528860e + 38 (positive or neg­
ative).

Like all numeric types, floats may be cast into other numeric types (byte,
short, int, long, double). When lossy casts to integer types are done
(e.g. float to short) the fractional part is truncated and the conversion
is done on modulo the length of the smaller type.

- double
8 bytes, IEEE 754.
Covers from 4.94065645841246544e-324d to 1.79769313486231570e+308d
(positive or negative).

- char
2 unsigned bytes, Unicode.
chars are not the same as bytes, ints, shorts or Strings. chars may not
be cast into any other type nor may those types be cast to chars.

- String
String is an object. It contains zero or more characters enclosed in double
quotes.

- array
Arrays are objects. Multi-dimensional arrays are created via arrays of
arrays.

sizeof is not necessary in Java because all sizes are precisely defined. For ex­
ample, an int always contains 4 bytes.

Java contains if, else, for, while, do while and switch statements, which
are identical to C. However all condition tests must return boolean values. Since
assignment and arithmetic statements do not return a boolean value, some of
the more obfuscated condition tests in C are prohibited.

4.5. OBJECT-ORIENTED LANGUAGES 93

• Command Line Arguments

Command line arguments are similar to C except that argv has become a string
array called args and args [OJ has become the first command line argument,
not the name of the program. The other arguments are all shifted one to the
left accordingly.

• Comments

Java supports both forms of comment adopted in C and C++

1* This is a C and Java comment *1
II This is a C++ and Java comment

However comments that begin with I ** are treated specially by the compiler.
These comments should only be used before a declaration. They indicate that
the comment should be included in automatically generated documentation for
that declaration.

• Classes

Java does not support multiple inheritance. Superclasses of a class are indicated
with the keyword extends.

• Methods

Methods must be defined within the block that defines the class, which is dif­
ferent from C++.

• Concurrency

Java is internally multi-threaded. The model includes threads, synchronization,
and monitors.

Many language constructs have been removed from C++, because the developers of
Java believe that they make C++ unsafe and hard to read. Features removed include
#define, typedef, operator overloading, enums, union and struct. Another im­
portant feature that has been removed is the pointer arithmetic. Other features that
have been removed include global variables, standalone functions, friend functions
and virtual functions.

A number of features have been added to Java such as true arrays with bounds
checking, garbage collection, concurrency, interfaces (from Objective C) and pack­
ages. There is no need to explicitly free memory in Java.

We mentioned that there is no pointer in Java. Does that mean that there are no
linked lists in Java? How do we make a linked list without pointers? Java uses the
Vector class in java. util. It can do anything a linked list can. After all, code
reuse is one of the main features of OOP. Object variables in Java are all references,

94 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

where they may be pointers in many other languages. The main difference is that we
cannot do pointer arithmetic on references. Therefore whenever we need a pointer to
an object in C++, we have to use the object itself in Java. On the other hand the
primitive data types

byte, short, int, long, float, double, char, boolean

are not references. If we want to get a reference to one of these, we need to wrap it
in a class first. Java provides ready-made type-wrapper classes for

Byte, Short, Integer, Long, Float, Double, Character, Boolean

Java also has a built-in String class, Vector class and Bitset class. Furthermore,
Java has the built-in classes BigInteger and BigDecimal to deal with large inte­
gers and large decimal numbers. The following program shows an application of the
BigInteger class.

II Verylong.java

import java.math.*;

public class Verylong
{

}

public static void main(String[] argv)
{

BigInteger bi = new BigInteger(112345");
BigInteger b2 = new BigInteger(156789");
BigInteger b3 = new BigInteger(I-567i2");

BigInteger b4 = bi.add(b2);
System.out.println(lIb4 = II + b4);
BigInteger b5 = bi.multiply(b3);
System.out.println(lIb5 = II + b5);
BigInteger b6 = b3.abs();
System.out.println(lIb6 = II + b6);
BigInteger b7 = bi.and(b2);
System.out.println(lIb7 = II + b7);
double x = bi.doubleValue();
System.out.println(lIx = II + x);
}

4.5. OBJECT-ORIENTED LANGUAGES 95

Java defines one special class, the Object class, which is the ancestor of every other
class. It can also be considered as a container class. It declares twelve members:
a constructor and eleven methods. Four of them, clone 0, hashCode 0, equals 0 ,
toString 0 are intended to be overriden. Thereby they provide clean and consis­
tent facilities for duplicating objects and determining when they are the same. The
following program shows a small application of the Object class.

II MyObject.java

import java.math.*; II for Biglnteger, BigDecimal

public class MyObject
{

}

public static void main(String args [])
{

Object[] a = new Object[5];
a[O] = new String("Good Morning");
a[l] = new Integer(4567);
a[2] = new Character('X');
a[3] = new Double(3.14);
a[4] = new Biglnteger("234567890");

for(int i=O; i<a.length; i++)
{

System.out.println(a[i]);
}

a[3] = new BigDecimal("11.5678903452111112345");

System.out.println(a[3]);

boolean b = a[4] .equals(a[3]);
System.out.println("b = " + b); II => false

Object [] x = new Object[l];
x[O] = new Float(2.89);
boolean r = x.equals(a);
System.out.println("r = " + r); II => false
}

96 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

Java passes everything by value. When we are passing primitive data types into a
method we get a distinct copy of the primitive data type. When we are passing a
handle into a method we get a copy of the handle. Thus everything is passed by
value. It seems to allow us to think of the handle as "the object", since it implicitly
dereferences it whenever we make a method call. The following program illustrates
this.

II Pass.java

import java.math .• ;

public class Pass
{

}

static void inverse(int x)
{

x = -x;
System.out.println(lIx = II + x); II => -7
}

static void twice(Biglnteger b)
{

Biglnteger b2 = new Biglnteger(1I211);
b = b2.multiply(b);
System.out.println(b); II => 666666
}

public static void main(String[] argv)
{

int j = 7;
inverse(j);
System.out.println(lIj = II + j); II => 7

Biglnteger bi = new Biglnteger(1I333333 11);
twice(bi);
System.out.println(bi); II => 333333
}

4.5. OBJECT-ORIENTED LANGUAGES 97

Arrays are passed by reference. The following program illustrates this for basic data
types and abstract data types.

II Pass1.java

import java.math.*;

public class Passi
{

}

static void inverse(int xC])
{

x [0] = -x [0] ;
}

static void twice(Biglnteger be])
{

Biglnteger bi = new Biglnteger(12");
b[O] = bi.multiply(b[O]);
}

public static void main(String[] argv)
{

II allocating memory for a one-dimensional array
II with one element
int [] j = new int[i];
HO] = 7;

inverse(j);
System.out.println("HO] = II + HD]); II => -7

Biglnteger [] b = new Biglnteger[i] ;
b[D] = new Biglnteger(1333333");
twice(b);
System.out.println("b[D] = II + b[D]); II => 666666
}

98 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

In the following program we show how rational numbers can be implemented using
Java. The class Rational. java implements rational numbers and their arithmetic
functions: addition (add), subtraction (subtract), multiplication (multiply), di­
vision (divide). This class extends java.lang.Number, implementing that class's
abstract methods. The methods equals, toString, clone from the Object class are
overriden.

/ / Rational.java

import java.lang.*;

class Rational extends Number
{

private long num;
private long den;

public Rational(long num,long den)
{

this.num = num; this.den = den;
}

private void normalize()
{

}

long num = this.num;
long den = this.den;
if(den < 0)
{

num = (-l)*num; den = (-l)*den;
}

private void reduce()
{

}

this.normalize();
long g = gcd(this.num,this.den);
this.num /= g;
this.den /= g;

private long gcd(long a,long b)
{

long g;
if(b == 0)
{

4.5. OBJECT-ORIENTED LANGUAGES

}

return a;
}

else
{

g = gcd(b,(a%b));
if(g < 0) return -g;
else return g;
}

public long num() { return this.num; }

public long den() { return this.den; }

public void add(long num,long den)
{

}

this.num = (this.num*den) + (num*this.den);
this.den = this.den*den;
this.normalize();

public void add (Rational r)
{

}

this.num = (this.num*r.den()) + (r.num()*this.den);
this.den = this.den * r.den();
this.normalize();

public void subtract(long num,long den)
{

}

this.num = (this.num*den) - (num*this.den);
this.den = this.den * den;
this.normalize();

public void subtract(Rational r)
{

}

this.num = (this.num*r.den()) - (r.num()*this.den);
this.den = this.den*r.den();
this.normalize();

public void multiply(long num,long den)
{

99

100 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

}

this.num = (this.num*num)j
this.den = (this.den*den)j
this.normalize()j

public void multiply(Rational r)
{

}

this.num = (this.num*r.num(»j
this.den = (this.den*r.den(»j
this.normalize()j

public void divide(long num,long den)
{

}

this.num = (this.num*den)j
this.den = (this.den*num)j
this.normalize()j

public void divide(Rational r)
{

}

this.num = (this.num*r.den(»j
this.den = (this.den*r.num(»j
this.normalize()j

public static boolean equals(Rational a,Rational b)
{

}

if«a.num()*b.den(» == (b.num()*a.den(»)
{ return truej }
else
{ return falsej }

public boolean equals(Object a)
{

}

if(l(a instanceof Rational»
{ return falsej }
return equals(this,(Rational) a)j

public Object clone() { return new Rational(num,den)j }

public String toString()

4.5. OBJECT-ORIENTED LANGUAGES

{

}

StringBuffer buf = new StringBuffer(32);
long num, den, rem;
this. reduce 0 ;
num = this.num;
den = this.den;
if (num == 0) return "0";
if(num == den) return "1";
if (num < 0)
{

buf.append("-");
num = -num;
}

rem = num%den;
if (num > den)
{

buf.append(String.valueOf(num/den));
if(rem == 0)
{

return buf.toString();
} else
{

buf.append(" II);
}
}

buf.append(String.valueOf(rem));
buf.append("/");
buf.append(String.valueOf(den));
return buf.toString();

public float floatValue()
{

return (float) «float)this.num/(float)this.den);
}

public double doubleValue()
{

return (double) «double)this.num/(double)this.den);
}

public int intValue()
{

return (int) «int)this.num/(int)this.den);

101

102 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

}

public long longValue()
{

return (long) «long)this.num/(long)this.den);
}

public void print()
{

System.out.print(this.toString(»;
}

public void println()
{

System.out.println(this.toString(»;
}

II maine) method used for testing, other methods.
public static void main(String args[])
{

Rational r1 = new Rational(-4,6);
Rational r2 = new Rational(13,6);
r1.add(r2) ;
System.out.println(r1.toString(»;

Rational r3 = new Rational(123,236);
Rational r4 = new Rational(-2345,123);
r3.multiply(r4);
System.out.println(r3.toString(»;

Rational r5 = new Rational(3,6);
Rational r6 = new Rational(1,2);
boolean b1 = equals(r5,r6);
System.out.println(lIb1 = II +b1);
boolean b2 = equals(r4,r5);
System. out. println("b2 = II +b2);

Rational r7 = new Rational(3,17);
Rational r8 = (Rational) r7.clone();
System. out. println (IIr 8 = II + r8. toString 0) ;

} II end main
} II end class Rational

4.5. OBJECT-ORIENTED LANGUAGES 103

The following programs shows how a Matrix class could be implemented. Two con­
structors are implemented and the methods equals and toString from the Object
class are overriden.

II Matrix.java

class Matrix
{

private int rows, columns;
public double entries[] [];

Matrix(int m,int n)
{

rows = m;
columns = n;
entries = new double[m] [n];
int i, j;
for(i=O; i< rows; i++)
for(j=O; j< columns; j++)
entries[i][j] = 0.0;
}

Matrix(int m,int n,double[] [] A)
{

int i, j;
rows = m;
columns = n;
entries A;
}

public void add (Matrix M)
{

if((this.rows != M.rows) I I (this.columns != M.columns))
{

System.out.println(lImatrices cannot be added");
System.exit(O);
}

int i, j;
for(i=O; i<columns; i++)
for(j=O; j<rows; j++)
this.entries[i] [j] = this.entries[i] [j] + M.entries[i] [j];
}

104 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

public Matrix multiply(Matrix M)
{

int i, j, t;
if(columns != M.rows)
{

System.out.println(ltmatrices cannot be multiplied lt);
System.exit(O);
}

Matrix product = new Matrix(rows,M.columns);
for(i=O; i<rows; i++)
{

for(j=O; j<M.columns; j++)
{

double tmp = 0.0;
for(t =0; t<columns; t++)
tmp = tmp + entries[i] [t]*M.entries[t] [j];
product.entries[i] [j] = tmp;
}

}

return product;
}

public void randomize()
{

int i, j;
for(i=O; i<rows; i++)
for(j=O; j<columns; j++)
entries[i] [j] = Math.random();
}

public boolean equals(Matrix A,Matrix B)
{

int i, j;
for(i=O; i<rows; i++)
{

for(j=O; j<columns; j++)
{

if (A. entries [i] [j] ! = B. entries [i] [j])
return false;
}
}

return true;
}

4.5. OBJECT-ORIENTED LANGUAGES

public boolean equals(Object ob)
{

if(!(ob instanceof Matrix))
{

return false;
}

return equals(this,(Matrix) ob);
}

public Object clone()
{

return new Matrix(rows,columns,entries);
}

public String toString()
{

int i, j;
String result = new String();
for(i=O; i<rows; i++)
{

for(j=O; j<columns; j++)
{

result result + String.valueOf(entries[i] [j])+"
}

result = result + "\n";
}

result = result + "\n";
return result;
}

public void onStdout()
{

System.out.println(toString());
}

public static void main(String args[])
{

Matrix M = new Matrix(2,2);
M. entries [0] [0] = 3.4; M.entries[O] [1] = 1.2;
M.entries[l] [0] = 4.5; M. entries [1] [1] = 5.8;

Matrix N = new Matrix(2,2);
N.entries[O] [0] 6.4; N.entries[O] [1] = -1.2;
N.entries[l] [0] = 8.5; N.entries[l] [1] = 6.8;

" . ,

105

106 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

}

M.add(N);
System.out.println("M = \n" + M.toStringO);

System.out.println("\n");

Matrix X = new Matrix(2,2);
X = M.multiply(N);
System.out.println("X = \n" + X.toStringO);

Matrix Y = new Matrix(2,2);
Matrix Z = new Matrix(2,2);
boolean b1 = Y.equals(Z);
System.out.println(IIb1 = II +b1);
Z. randomize 0 ;
System.out.println("Z = \n" +Z);
boolean b2 = Y.equals(Z);
System.out.println("b2 = II +b2);

System.out.println("\n");

double d[][] = new double [2] [2];
d[O] [0] = 2.1; d[O] [1] = -3.4;
d[l] [0] = 0.9; d[l] [1] = 5.6;
Matrix B = new Matrix(2,2,d);
B.add(B);
System.out.println(IIB = \n" + B.toStringO);

System.out.println("\n");

Matrix U = (Matrix) X.clone();
System.out.println("U = \n" + U.toStringO);
}

4.5. OBJECT-ORIENTED LANGUAGES 107

To illustrate the differences between C++ and Java, we present programs on the
binary tree. The program constructs a binary search tree of 100,000 nodes. The
content of the tree is traversed using inorder traversal. Note that the elements are
arranged in ascending order with inorder traversal. In general, C++ is considerably
faster than Java.

The C++ binary tree:

II tree.cpp

#include <iostream.h>
#include <stdlib.h>

class Tree
{

private:
int data;
Tree *left, *right;

public:
Tree(int);
void insert(int);
void inorder 0 ;

};

Tree: :Tree(int n) : data(n), left(NULL), right(NULL) { }

void Tree: : insert (int n)
{

}

if(n < data)
{

if (left ! = NULL)
left->insert(n);
else
left = new Tree(n);
}

else
H(n > data)
{

if(right != NULL)
right->insert(n);
else
right = new Tree(n);
}

108 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

void Tree: :inorder()
{

}

if(this != NULL)
{

left->inorder();
II print data here
right->inorder();
}

void mainO
{

Tree *root = NULL;
int i, m, n = 100000;

for(i = 0; i < n; i++)
{

m = randO;
if(root == NULL)
root = new Tree(m);
else
root -> insert(m);
}

root -> inorder();
}

The Java binary tree:

I I tree. java

import java.util.Random;

class Tree
{

private int data;
private Tree left = null;
private Tree right = null;
public Tree(int n)
{ data=n; }

public void insert(int n)
{

4.5. OBJECT-ORIENTED LANGUAGES

}

}

if (n<data)
{

if(left != null)
left.insert(n);
else
left = new Tree(n);
}

else
if (n>data)
{

}

if(right != null)
right.insert(n);
else
right = new Tree(n);

public void inorder()
{

}

if(left != null)
left.inorder();
II print data here
if(right != null)
right.inorder();

public static void main(String args[])
{

}

Random r = new Random(start);
Tree t = null;
int n = 100000;
int i;
for(i=O; i<n; i++)
{

int m = Math.abs(r.nextlnt()%1000);
if(t == null)
t = new Tree(m);
else
t.insert(m);
}

t.inorder();

109

110 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

4.5.3 Other Object-Oriented Languages
Besides C++ and Java there are a number of other object-oriented languages. In this
section we discuss briefly Eiffel, Smalltalk and Oberon.

EifJel [57] is a pure object-oriented programming language with Pascal-like control
structures. It satisfies the following requirements for implementing abstract data
types (ADTs) for a programming language:

• The language must be able to define new user-defined data types, that is, provide
facilities for building ADTs.

• It must be able to create one or more instances of a user-defined data type,
which corresponds to instances of an ADT.

• There must be facilities to support procedural abstractions, i.e. it must provide
procedures and functions with appropriate parameter passing mechanisms for
implementing the operations of ADTs.

• The language must allow the implementation of generic ADTs.

• It must fully support encapsulation.

• It must support software component reuse (some of the previous requirements
also contribute to this requirement).

Abstract data types can be implemented easily in Eiffel as classes (equivalent to
types). Programming in Eiffel involves constructing new classes from existing classes
using either the client-supplier relationship or inheritance, or both. The idea of a
contract between software components leads to a programming form that is more
likely to produce correct code. Eiffel can be described as a language that:

• is based on the manipulation of objects;

• is strongly typed;

• supports the construction of correct programs;

• enables easy reuse of code;

• is based on the theory of abstract data types;

• enables new types to be built from existing types;

• supports a programming method known as programming by contract.

An object in Eiffel is an instance of a class, and a class is the description of a data type.
A typical class contains the description of the operations which apply to instances
of the type, together with descriptions of the data stored. Therefore, we have to
examine:

4.5. OBJECT-ORIENTED LANGUAGES 111

1. How to create individual objects which are instances of a data type.

2. How to write the descriptions of classes which implement the data types.

3. How to construct and execute an Eiffel program.

We begin by showing how to declare objects (using declarations) and how to apply
the data type operations to them (using instructions). In Eiffel, data type operations
are implemented as features of a class. Therefore, we examine, in outline, how
new classes are constructed. In the final section, we explain how to build an Eiffel
system (a program that can be executed) which will enable us to tackle practical
'programming problems.

A typical Eiffel program manipulates on objects. To facilitate the construction of the
instructions which define the manipulation to be carried out, identifiers are used to
name objects. For example, to declare an identifier as PERSON we write:

p: PERSON

where p refers to an object and PERSON is the name of a previously defined data type.
We say that p is of type PERSON. To declare an identifier for a queue of PERSON we
write:

q: QUEUE[PERSON]

where QUEUE is a generic data type - that is, the data type QUEUE has been imple­
mented in such a way that the type of the items to be held in a particular queue can
be specified at the time when the queue object is declared. Thus, in the construct
QUEUE [PERSON] , the square brackets [PERSON] is known as a generic parameter, which
specifies that the queue contains items of type PERSON. Hence, QUEUE [PERSON] is said
to be the specialization of a previously defined generic data type QUEUE.

Eiffel has a number of basic data types: INTEGER, REAL, BOOLEAN, CHARACTER and
DOUBLE, which can be used to declare identifiers. For example, in the following i and
r refer to objects of type INTEGER and REAL, respectively:

i: INTEGER
r: REAL

In the examples, single letter identifiers have been used to denote objects but it is
usually better to have more meaningful names so that the resulting code is easier to
read. In Eiffel, an identifier may consist of one or more letters and/or digits provided
that the first character is a letter. We may also include the underscore character
(_) in an identifier. There is no limit on the number of characters in an identifier,
nor is the case of the letters significant. Here are some examples of legitimate Eiffel
identifiers:

112 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

address, make, phone_number, size, C3Po, the_Date,
customer1, customer2, put_char, addToQueue, PERSON

Eiffel distinguishes the language used for defining data types from the data types
themselves. It is quite common for vendors to provide a comprehensive library of
commonly used classes, such as lists, trees and so on, giving the users a set of reusable
components from which they start building new applications. Despite the separation
of the language from the class library, Eiffel does assume the existence of the basic
data types: INTEGER, REAL, BOOLEAN, CHARACTER and DOUBLE. Each of them has
a set of standard operations and is used exactly the same way as the types we have
introduced so far. However, there are some differences which we now explore.

In Eiffel, the mechanism for declaring objects, in which the creation and initialization
activities are separated, is somewhat cumbersome and inefficient for the basic data
types. Therefore, a short-cut is provided. For example, the declaration:

i: INTEGER

specifies a memory location at which an integer i is stored. Moreover, i is initialized
to a default value zero. Thus, i is not a reference to an integer, but is directly
associated with the storage location of the integer. This is equivalent to a normal
(non-pointer) variable in other languages. Such a data type is said to be an expanded
type. Eiffel provides the capability to associate an identifier directly with the storage
for all data types, thereby avoiding the reference mechanism. However, it is usual
for objects to be viewed as dynamic, in the sense that each of them have a limited
lifetime because they are created, manipulated and destroyed during the execution
of the program. The reference mechanism supports this view. Thus, Eiffel has both
the reference types (the normal situation) and expanded types (used mainly for the
basic types). The following table gives the default initial values for the basic types:

Class
INTEGER
REAL
CHARACTER
DOUBLE
BOOLEAN

Default value
o
0.0
'%U' (the null character)
0.0 (double precision)
false

4.5. OBJECT-ORIENTED LANGUAGES

Next, let us consider the construct of a class:

class < class_name>
creation

113

-- the name(s) of the procedure(s) used in the creation of new instances
feature

-- declarations of the features of the class
end -- CLASS_NAME

A class declaration may contain different sections, each specified by keywords such as
creation or feature. Although not essential, it is recommended that the name of
the class be included as a comment following the keyword end.

In the case of reference types, the initialization process means that we can build
several creation procedures for one data type to provide initializations appropriate
to different situations. Note that the existence of a creation procedure implies that
the default initialization does not create a valid object. Therefore, Eiffel insists that
we invoke one of them or generate an error otherwise. For expanded types, however,
since the creation procedure is automatically invoked by the Eiffel system when the
object is created, only one creation procedure is allowed to avoid ambiguity.

Smalltalk can be described as a combination of a programming language, an oper­
ating system, a programming environment and a design and programming method­
ology [17], [35]. It can be considered as a tool for knowledge representation, thus
making it a serious competitor to Lisp and Prolog. The application areas in which it
excels are application prototyping, interactive graphics systems and simulation. Al­
though there are still some problems with the speed of execution (mainly stemming
from the interpretive nature of the system), spectacular results have been achieved in
cost savings with certain types of software, especially in applications containing high
graphics or interactive components. The principal reason for this is that the Smalltalk
environment takes the maximum advantages of reuse of software components.

All the entities used in Smalltalk-80 are objects. An object may represent a number,
a character, a drawing, a list, a program or an editor, etc. An object has two main
characteristics:

• It allows data to be stored and accessed .

• It can reply to messages.

For example, the object 0. ° will respond to the message sin by returning the value
0, which is written as

0.0 sin

114 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

The only means to manipulate an object is via message passing. Messages therefore
constitute the interface between objects and the external world. The way in which
an object responds to a message is private and need not be known externally. Writ­
ing an application in Smalltalk consists of determining the objects that describe the
problem and defining the operations for each object. When the basic objects of an
application and the operations on these objects are defined, the programmer can use
them without knowing the detail of their construction; he can also reuse them in
contexts different from where they were constructed.

In the Smalltalk environment, several types of scope variable are defined:

1. Instance variables: They are variables that belong to an object and there are
two types of instance variables - named instance variables and indexed instance
variables. Named instance variables are instance variables identified by a name.
For example, the class Point has two named instance variables, x and y. When
the name of an instance variable appears in an expression, it refers to the value of
the corresponding instance. When a new instance is created, it contains instance
variables specified by its class; the default value of these instance variables is an
object called nil. Indexed instance variables are instance variables that are not
accessed by name but by a numeric index. In contrast to objects that possess
only named instance variables, those possessing indexed instance variables may
have a varying number of instance variables.

2. Class variables: They are variables that are shared by all the instances of a
class. For example, in the case of a computer-aided drawing application, the
outline of a circle is made up of several line segments and the number of these
segments is the same for all circles; one can therefore define it as a class variable.

3. Global variables: They are variables that are shared by all objects. They are
stored in a dictionary. For example, all the classes are referred to by global
variables whose name is the access key to the dictionary.

4. Pool variables: They are variables that are accessible by instances of several
classes. In order to define a set of variables shared by several classes, it is
necessary to define a dictionary that is common to these classes, where this
dictionary itself is a global variable.

Now, let us consider the classes and subclasses in Smalltalk. Each object in Smalltalk
belongs to one and only one class. It can, however, be useful to share some elements
of the description between several classes or to describe one class by means of another.
This is implemented in Smalltalk, where each class is described in terms of another
class called its superclass. The instances of the new class are identical to those of
its superclass, except for additions made explicit in the new class. The new class is
called a subclass of its superclass.

4.5. OBJECT-ORIENTED LANGUAGES 115

A subclass itself can also have one or more subclasses. The set of classes thus takes on
a tree structure whose root is the class called Object. Object is the only class that
does not possess a superclass. The instances of each subclass inherit all the instance
variables, class variables as well as the methods from the superclass.

To give a complete definition of a class, we need to specify:

• Name: The name of the class is obligatory and must be different from the name
of any other existing class.

• Superclass: The super class is also obligatory and must correspond to an existing
class.

• New class variables: Variables are optional, but if they exist their name must
be different from any name already defined in the set of its superclasses. New
methods may also be added, and methods already defined in the set of its
superclasses may be redefined.

• Its new pool variables.

• Its new instance variables.

• The list of its new methods.

Every entity in Smalltalk is an object. Consequently, a class itself is an object. We
have also seen how each object belongs to one and only one class. A class itself is
therefore an instance of another class which we call the metaclass. In earlier versions
of Smalltalk, all the classes were instances of one single metaclass. However, the
current version of Smalltalk makes each class the sole instance of a metaclass for the
reason of flexibility (especially when creating new instances of a class).

The metaclasses are classes and therefore contain methods that allow their instances
(that is, the classes) to respond to the messages they receive. As a result, these meth­
ods are called the class methods, while the other methods are called instance methods.
When a class is created, a new metaclass is automatically created. In contrast to other
classes, metaclasses have no name; neither do they have metaclass instances. They
are all instances of the same class called Metaclass.

One can access the metaclass of a class by sending the message class. For example,
consider a class of points named Point, we can access its metaclass by the expression:

Point class

The metaclasses are classes, therefore they have a superclass called Class. To sum­
marize, we can regard metaclasses in two ways:

1. They are instances of the class Metaclass.

116 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

2. They are subclasses of the class Class.

Metaclass and Class are two subclasses of the class ClassDescription.

A variable name is a simple identifier consisting of an initial letter followed by a se­
quence of letters or digits. All characters are significant. The normal convention in
Smalltalk is to concatenate words into one identifier, with each of the words in the
variable name beginning with a capital letter, except perhaps the first word. Sim­
ple variables begin with lower case letters (e.g. hydeParkCorner or redPen); class
names, global and class variables conventionally begin with an upper case letter (e.g.
LargePositivelnteger, DisplayScreen and BigBen). This distinction is not rigid,
but it is advisable to adhere to it, otherwise the code written may not be comprehen­
sible to others.

Smalltalk supports five kinds of literals. They are characters, numbers, strings, sym­
bols and arrays of literals. Smalltalk literals always refer to the same object and can
be thought as literal constants.

• Character Literals: Character literals are instances of the class Character.
They are represented by an ASCII character preceded by a dollar symbol, e.g.

$4 $t ${ $$ $1

• Numeric Literals: Numeric literals represent numbers. They are a sequence of
digits preceded by an optional minus sign. The sequence of digits may contain a
decimal point with at least one digit on either side. The following are examples
of numeric literals:

123 -12 3.14 -3.14 0.0 o

Numeric literals in scientific notation are also acceptable, e.g.

1.0el -3e3 -3.l3e-3

Numeric literals can also be expressed in a non-decimal base by preceding the
number with' <base>r'. For bases greater than 10, the extra digits are repre­
sented by capital letters, starting with 'A'.

• String Literals: String literals are objects that refers to sequences of characters.
They are all instances of class String and they are represented by a sequence
of characters delimited by apostrophes, e.g.

'There' 'isn"t' 'any' 'more!'

4.5. OBJECT-ORIENTED LANGUAGES 117

Note that a double single quote (") is used here to represent the character literal
$' within the string' isn"t'. The individual characters in a string are in fact
represented by their corresponding character literals .

• Symbol Literals: Symbol literals are strings of characters used to name objects
in the Smalltalk system. They are all instances of the class Symbol. They
represent identifiers and message selectors, and are denoted by a unique sequence
of characters preceded by a # symbol. The symbol must begin with a letter and
may contain digits. Some examples of symbols are given below.

#a #alpha2 #intersectsWith #max

• Array Literals: Array literals are a numerically indexed data structure with
all the elements represented by literals. The literal array elements must be
separated by spaces and all enclosed in parentheses with a single leading #
character. Several kinds of literal arrays are given below:

#(1 2 3)
#($a $B)

#('to' 'be' 'or' 'not' 'to' 'be'
#(jack frost)
#(jddf 8r45 'crazy' $b (1 2))

an array of numeric literals
an array of character literals
an array of string literals
an array of symbols
an array of literals

Notice that in the last two examples, the symbols #jack, #frost, #jddf and the
array # (1 2) do not require a preceding # character if they are within another
array literal.

Objects can be assigned to variables. This is accomplished by the use of the assign­
ment prefix. The assignment prefix consists of a variable name followed by a left
arrow. It can also be concatenated. Smalltalk variables are much like pointers in C,
in the way they always point to an object and they can point to any kind of object (or
memory location in C) at any time throughout their life. A variable can be assigned
to a pseudo-variable. A pseudo-variable is a particular defined object in Smalltalk
that can only be accessed through a variable name. Since pseudo-variables represent
predefined objects, their use is reserved. The pseudo-variables we may encounter
includes nil, which represents an uninitialized object of unspecified type, true for
logical truth and false for logical falsehood. Variable names must be declared be­
fore they are used. However, it is legal for a variable to share the same name as a
message. The syntax of the message expression will determine when the name refers
to a variable or a message.

Oberon [43], [61] is the latest descendant in the family of languages whose root is
Algol 60 (1960). Other members include Pascal (1970) and Modula-2 (1979). Pas­
cal has some deficiencies. They are not significant in introductory courses, but they

118 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

become relevant in the realm of larger systems. While Pascal encourages structured
design, modular design becomes more and more important in software engineering.
This notion has at least two aspects. The first one is known as information hid­
ing. Any large system is composed of modules that are designed in relative isolation.
This implies that an interface exists and it specifies all the properties accessible to
the other modules and hides all others. The second aspect is of a technical nature,
the separate compilation of modules, where the compiler checks the correct use of
interfaces. When a module is compiled, a description of its interface is written to a
symbol file. During the compilation of a client module, the compiler gets the symbol
files of the imported modules and thus obtains all the necessary information for type
checking.

The principal innovation of the language Modula-2 with respect to Pascal was indeed
the module concept, incorporating information hiding and separate compilation. In
contrast to independent compilation known from assemblers and other language com­
pilers, separate compilation enables a compiler to perform the same type-consistency
checks across module boundaries as within a module. The explicit definition of inter­
faces and the retention of full type safety turned out to be a tremendous benefit.

Modules exporting one or several data types, together with a set of procedures op­
erating on variables of these types, represent the notion of abstract data type. In
these cases, only the names of the types appear in the module interface, whereas the
structure of the record's fields is accessible via exported procedures only, which can
therefore rely on the validity of certain invariants governing the abstract types.

Furthermore, Modula-2 removed one of the most aggravating handicaps found in
strong typing: it introduced dynamic arrays as parameters of procedures. Also note­
worthy was the introduction of procedure types for variables, and facilities for con­
current processes and low-level programming. The latter allow a programmer to refer
directly to specific machine facilities, such as interface registers for controlling in­
put/output operations. Once again, these features contributed to the widening of the
language's applications, particularly in the areas of system design and process control.
Last but not least, certain syntactic properties of Pascal were remedied, notably the
open-ended if, while and for statements. These were precisely the structures that
were adopted from Algol 60 and left unchanged in order to maintain tradition and to
avoid alienating the Algol community.

Several years of experience in practising modular design with Modula-2 and other
system programming languages revealed that the ultimate goal was extensible design.
Structured programming and modular programming were merely intermediate steps
towards the goal. The introduction of abstractions represented by modules and the
use of procedures calling procedures declared at lower levels of the abstraction hier­
archy embodies the extensibility in the procedural domain. Equally important for a
successful design, however, is the extensibility in the domain of data definition. In

4.5. OBJECT-ORIENTED LANGUAGES 119

this respect, Modula-2 is inadequate, because types cannot be extended and remain
compatible at the same time.

In this respect, object-oriented languages provided a viable solution, and became the
wave of the 1980s. They offer a facility to define subtypes Tl, called subclasses, of a
given type (class) TO with the property that all operations applicable to instances of
TO are also applicable to instances of Tl. We recognize at this point that the ultimate
innovation was data type extensibility, which unfortunately remained obscure behind
the term object-oriented. This term was also accompanied by a whole new nomen­
clature for the many familiar concepts with the aim of perpetrating a new view or
metaphor of programming at large. Thus types became classes, variables instances,
procedures methods and procedure activations messages, etc.

The primary merit of the language Oberon, developed in 1986, lies in the provision of
data type extensibility on the basis of the established, well-understood notions of data
type and procedure. The consequence is that no break with traditional programming
technique is necessary and no familiarization with a whole new class of concepts and
notions is required. The only new facility is the extension of a record type. Oberon
thereby unifies the traditional concepts of procedural programming with the tech­
niques required to obtain data extensibility.

This single new facility might well have been added to Modula-2. Why was yet an­
other new language created? The reason was the desire to have a language available
that upholds the principle of processors. Oberon is easily an order of magnitude
smaller than systems of comparable (or even lesser) functionality.

The Oberon system is a hierarchy of modules, most of which export one or a few
abstract data types. Each user is encouraged to extend the system - extensions are
created by simply adding new modules. There is no boundary between the system
and the application program. Except for modules Kernel and Display, the entire
Oberon system is expressed in the programming language Oberon [42].

120 CHAPTER 4. OBJECT-ORIENTED PROGRAMMING

4.6 Summary

This chapter introduced the fundamental concepts of object-oriented programming,
which include the followings:

• Object: It represents both attributes and methods through the process of en­
capsulation.

• Abstract data type: It is a collection of data and a set of operations on that
data.

• Class: It is a collection of objects that satisfy some common properties.

• Message passing: It provides a means for objects to communicate with one
another.

• Inheritance: It provides a mechanism for managing classes and sharing common
codes.

• Polymorphism: It gives extra meanings to methods, making them more flexible
and extensible.

The concepts presented here are general features of object-oriented programming.
They are not restricted to any programming language. Last but not least, five
object-oriented programming languages were described, namely C++, Java, Eiffel,
Smalltalk, and Oberon. -

Each object-oriented language has its own merits. The question arises which lan­
guages to use to write a computer algebra system ? We have chosen C++ as our
programming language for the development of our computer algebra system. The
reasons for our choice include

1. C++ is faster than the other languages.

2. We need the flexibility of pointers.

3. We need the template feature provided by C++.

4. A large amount of C/C++ code already exists for problems in physics and
mathematics. This code can be linked with the computer algebra system.

5. We need to link our system to Parallel Virtual Machine (PVM) [16].

6. We can use the Standard Template Library with SymbolicC++.

The following chapter describes the basic tools in C++, which is one of the most pop­
ular object-oriented languages. Subsequent chapters apply the concepts we learned
here to mathematics and physics, using the programming language C++.

Chapter 5

Basic Tools in C++

c++ not only corrects most of the deficiencies found in C, it also introduces many
completely new features that were designed for the language to provide data abstrac­
tion and object-oriented programming. Here are some of the prominent new features:

• Classes, the basic language construct that consists of data structure and oper­
ations applicable to the class.

• Member variables, which describe the attributes of the class.

• Member functions, which define the permissible operations of the class.

• Operator overloading, which gives additional meaning to operators so that they
can be used with user-defined data types.

• Function overloading, which is similar to operator overloading. It allows the
same function to have several definitions whereby reducing the need for unusual
function names, making code easier to read.

• Programmer-controlled automatic type conversion, which allows us to blend
user-defined types with the fundamental data types provided by C++.

• Derived classes, also known as subclasses, inherit member variables and member
functions from their base classes (also known as superclasses). They can be
differentiated from their base classes by adding new member variables, member
functions or overriding existing functions.

• Virtual functions, which allow a derived class to redefine member functions
inherited from a base class. Through dynamic binding, the run-time system
will choose an appropriate function for the particular class.

In the next few sections, we demonstrate how to apply these new features to create
data types for particular applications, and combine these abstract data types into
object-oriented programs.

121

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

122 CHAPTER 5. BASIC TOOLS IN C++

5.1 Pointers and References

A pointer is a reference to data or code in a program. It is literally the address in
memory of the item pointed at. Pointers enables us to write more flexible programs,
especially for object-oriented programs. We use pointers when the following situations
occur:

• If the program handles large amounts of data (more than 64K).

This problem arises only for personal computers using DOS as the operating
system. For a large, complex program the 64K area C++ sets aside for data
might not be large enough to hold all the data. Pointers let us get around this.

When we declare global variables in C++, the compiler allocates space for them
in an area called the data segment. The data segment has a maximum size of
64K where all the global variables must be accommodated. For small programs,
this limit does not matter, but there are times when we might need more. For
example, suppose a program requires an array of 400 strings, each of them
holding up to 100 characters. The array would take up roughly 40K bytes,
which is less than the maximum 64K. An array of this size is not a problem,
assuming the other variables fit in the remaining 24K.

But what if we need two such arrays at the same time? That would require
about 80K, which cannot be fitted in the 64K data segment. To handle larger
amounts of data, we need to use a heap. The program can allocate the 80K
on the heap, keeping a pointer as a reference to the location of the data. This
pointer takes up only 4 bytes in the data segment.

• If the program uses data of unknown size at compile time.

A heap is all the memory the operating system makes available that is not
being used by the program code, its data segment and its stack. Using C++
we can reserve space on the heap, access it through a pointer, and then release
the space again. Some C++ data items (for example arrays of characters) need
to have their sizes specified at compile-time, even though they might not need
all the allocated space when the program runs. A simple example would be a
program that reads a string from the user, such as the user's name. To store
that name in a regular string variable, we would have to reserve enough space
to handle the largest possible string, even if the name is only a few letters. If
the allocation of variables on the heap is carried out during run-time, we can
allocate just the right size to hold the actual string data.

This is a trivial example, but in applications with hundreds of such data items
(such as multiple windows or lists read from files), allocating only as much space
as needed can mean a difference between running successfully or running out of
memory.

5.1. POINTERS AND REFERENCES 123

• If the program uses temporary data buffers.

Pointers and the heap are extremely handy for situations when we need memory
allocated temporarily, but do not want to commit that memory for the entire
duration of the program. For example, a file editor usually needs a data buffer
for every file being edited. Rather than declaring at compilation time that we
will have a certain number of buffers of a certain size allocated for files, we can
allocate just as much as we need at a given time, making memory available for
other purposes.

Another common usage of temporary memory is sorting. Usually when we sort
a large array of data, we make a copy of the array, sort the copy, and then
copy the sorted data back into the original array. This protects the integrity of
the data. However, it also requires to have two copies of the data while we are
sorting. If we allocate the sorting array on the heap, we can sort it and copy
it back into the original, then dispose of the sorting array, freeing that memory
for other uses.

• If the program handles multiple data types.

One less common use of pointers is to point at variable data structures. For
instance, a block of memory is set aside to hold a "history list" of different­
length string items typed into a data-entry field. To read the history list, a
routine would scan through the block looking for individual strings. We could
use a simple pointer to indicate where the blocks begins. This simply tells us
where something is, without specifying what it is.

• If the program uses linked lists.

Another common use of pointers is to tie together linked lists. In many simple
database-type applications, we can hold data records in arrays or typed files.
However sometimes we need something more flexible than a fixed-size array. By
allocating dynamic records so that each record has a pointer that points to the
next record, we can construct a list that contains as many elements as we need.

A pointer is a memory address in a computer. It could be the address of a variable,
a data record or a function. Normally, we do not care where the variable resides in
memory. All we need is to refer to it by name. The compiler knows where to look
for it. That is exactly what happens when we declare a variable. For example, if the
program includes the following code,

int number;

The compiler will set aside an area in memory which is referred to as number. We
can find out the memory address of number by using the'" operator. This memory
address can be assigned to a pointer variable, which holds the address of the data or
code in memory.

124 CHAPTER 5. BASIC TOOLS IN C++

int number = 10;
int *p; II p is a pointer variable
p = &number; II the memory address of number is assigned to p

So far we have seen how values are assigned to pointers, but that is not much use if we
cannot get the values back. We could treat a typed pointer as if it were a variable of
the type by dereferencing it. To dereference a pointer, we use the *(prefix) operator.
Suppose p contains the memory address of number, *p gets the value of number.
Consider the following:

II pointer.cxx

#include <iostream.h>

void mainO
{

double *p1, *p2; II declares two pointers to double
double a = 2.5, b = 5.1;
p1 = &a; II p1 holds the address of a
p2 = p1;
cout « "*p1 = " «
*p2 = b;
cout « "*p1 = " «

}

Result

*p1 = 2.5 and *p2 = 2.5
*p1 = 5.1 and *p2 = 5.1

*p1 « " and *p2 = " « *p2 «

*p1 « " and *p2 = " « *p2 «

endl;

endl;

In the first cout statement, both p1 and p2 pointed at a. Therefore, *p1 and *p2
have values of 2.5. In the second cout statement, the content of p2 is assigned as
b using the dereferencing operator. As a result, both p1 and p2 point at a value of 5.1.

Now we describe how pointers can be used dynamically:

• Allocating dynamic variables: C++ uses the keywords new and delete for al­
locating and deallocating dynamic variables respectively. The new operator
allocates dynamics variables on the heap. For example,

new inti

allocates one object of type int whereas

new int[100];

5.1. POINTERS AND REFERENCES 125

allocates an array of 100 objects of type into The new operator returns a pointer
to the type specified. It can be assigned to a pointer variable, such as

int *p = new int[500];

The dynamically allocated int array here is uninitialized. To initialize class
objects allocated with new, we use their constructor. It has the following form:

Thing *p = new Thing(argument list);

The new operator allocates an object of the class Thing, which is initialized by
its constructor that matches the argument list.

• Deallocating dynamic variables: Variables allocated with new must be deallo­
cated when we are finished with them to make the heap space available for other
dynamic variables. To achieve this purpose, we use the delete operator. For
example,

delete p;

It returns the memory, previously allocated by the new operator, back to free
store. To release an array of objects, we use

delete [] p;

The brackets [] are used here to free an array of objects.

As an example, suppose we are reading in some strings from a file and storing them
in the memory. We are not sure how long any of the strings will be, therefore we
need to declare memory spaces that are long enough to accommodate the longest
possible string. Assuming that not all the strings take up the maximum length, then
many spaces would be wasted. To get around this, we read each string into a buffer,
then allocate just the right space to store the actual information of the string, as
demonstrated in the following program:

II buffer.cxx

#include <iostream.h>
#include <fstream.h>
#include <string.h>

II for if stream (input file stream)
II for strlen (length of a string)

const int dataSize = 1000;
const int maxLength = 256;

126

void mainO
{

CHAPTER 5. BASIC TOOLS IN C++

if stream fin("LongString.dat");
char buffer[maxLength];

}

char *Long[dataSize];
int i;
for(i=O; i<dataSize; i++)
{

}

fin» buffer;
Long[i] = new char[strlen(buffer)+l];
strcpy(Long[i],buffer);

In the program, we read in strings from the data file "LongString.dat". Suppose
this file consists of 1000 lines with each line not exceeding 256 characters. Our pur­
pose is to store all the text into an array of strings called Long. In each step, we read
in a string and store it in the buffer. We then measure the correct size of the string
and allocate the right memory space for it. This process carefully avoids wasting the
memory resource in a computer. Instead of allocating 256K for all the strings (256
characters per string times 1000), we use only the right amount of memory for the
text plus a buffer which is 256 bytes large.

There is a special pointer in C++ called the this pointer. It is a constant pointer
to an object of the class containing the member function, i.e. it denotes an implicitly
declared self-referential pointer of the object. Let us illustrate the idea with a simple
program:

II this.cpp
II (1) The member function increment uses the implicitly declared
II pointer this to return the newly incremented value of
II both cl and c2.
II (2) The member function where_am_I displays the address
II of the given object.
II (3) The this keyword provides a built-in self-referential pointer.

#include <iostream.h>

II declaration of class Cpair
class Cpair
{

private:
char cl, c2;

5.1. POINTERS AND REFERENCES

};

public:
Cpair(char);
Cpair increment();
void print 0 ;
void where_aM_Ie);

II Definition of class Cpair
Cpair: :Cpair(char c) : c2(c), cl(l+c) { }

Cpair& Cpair: :increment() { cl++; c2++; return *this; }

void Cpair: : print 0 { cout « cl « " and " « c2 « endl; }

void Cpair: :where_am_I() { cout « this « endl; }

void mainO
{

Cpair x (, A ') ;
x.printO; II output 8 and A
x.where_am_IO; II output Ox7fffaeeO

Cpair z ('X') ;
z. where_am_I 0 ; II output Ox7fffaedc
z . increment 0 ;
z.printO; II output Z and Y
z . where_am_I 0 ; II output Ox7fffaedc

Cpair n (, 1 ') ;
n.increment().print(); II output 3 and 2
n.where_am_I(); II output Ox7fffaed8

}

127

Pointers are powerful in C++. However a couple of common problems need to be
avoided:

• Dereferencing uninitialized pointers: One common source of errors with point­
ers is to dereference a pointer that has not been initialized. Like all other C++
variables, a pointer's value remains undefined until we assign it. In principle,
it could point at anywhere in the memory. If we dereference such a pointer, we
will get some random bits. This becomes disastrous if we assign some values to
the item pointed to, because we may overwrite some important data segment,
such as the program code or even the operating system. This sounds a little
ominous, but with a little discipline it is easy to manage.

128 CHAPTER 5. BASIC TOOLS IN C++

To avoid dereferencing uninitialized pointers, which is potentially dangerous,
C++ provides the keyword NULL that can be used for pointers that point at
nothing. A NULL pointer is valid, but unattached. One of the common uses of a
NULL pointer is to terminate a linked list. Suppose L1, L2 , 13 are elements of a
linked list. To indicate that the linked list has ended, we usually make the last
element point at the NULL pointer, as shown below:

• Losing heap memory ("heap leaks"): Another common problem when using dy­
namic variables is known as the heap leak. A heap leak is a situation where space
is allocated on the heap and then lost - for some reason the pointer no longer
points at the allocated memory area, so that it cannot be referred or deallocated.

A common cause of heap leaks is by reassigning dynamic variables without
disposing of the previous ones. For instance,

#include <iostream.h>

void mainO
{

}

int* ptr;
ptr = new int[500];
ptr = NULL;

The pointer variable ptr is first allocated to an int array of 500 elements. It is
then reassigned to NULL straight away. This action has made the memory area
(the int array) initially pointed to by ptr lost, and it is not recoverable. In
such a situation, memory has leaked. Serious memory leakage during run-time
may cause a program to halt abnormally due to memory exhaustion.

C++ introduces a concept called reference. Basically, it defines an alias or alternative
name for any instance of data. The syntax is to append an ampersand (&) to the
name of the data type. For example,

int ii
int *pi
int &ri

=
=

5· I

ⅈ
ii;

II An automatic variable II
II A pointer to int which points at ii
II A reference to the variable ii

5.1. POINTERS AND REFERENCES 129

Now, we can use ri anywhere just as we would use ii or *pi. Suppose we write

ri *= 10; II Multiply ri by 10

The values of ii, *pi and ri become 50. As an example, consider the following
program:

II ref.cxx

#include <iostream.h>

void mainO
{

int i = 23;
int *ip;
ip = &i;

cout «"i ="« i « endl;
cout « "ip = " « ip « endl;
cout « "&i = " « &i « endl;

int &j = i;
int *jp;

II alias j with i

II i = 23
II ip = Ox7fffaed4
II &i = Ox7fffaed4

j = 45;
jp = &j;

II the value of i has been changed too!

cout « "jp = " « jp « endl; II jp = Ox7fffaed4
cout « "&j = " « &j. « endl; II &j = Ox7fffaed4

cout « "i = " « i « endl; II i = 45
cout « "j = " « j « endl; II j = 45

}

Notice that the values of the addresses for Bti, ip, jp and &j are all identical. This
indicates that references in C++ work by referring to the same memory location in
the computer. This also explains why the value of i is also altered when we perform
the statement j = 45.

By far the most important use for references is in the passing of arguments to functions
(see Section 5.8 for an example on reference as an argument).

130 CHAPTER 5. BASIC TOOLS IN C++

5.2 Classes

Class is a primary C++ construct used to create abstract data types (ADTs). It
describes the behaviours of an object, such as attributes, operations, argument types
of the operations and so on. The general syntax for declaring a class is:

class class-name
{

};

private:
<private data members>
<private member junctions>

protected:
<protected data members>
<protected member junctions>

public:
<public data members>
<public member junctions>

Classes in C++ offer three levels of visibility for the data members and member
functions - public, protected and private. They are called the access specifier.
Each access has its own merits, as described below:

• private: Only member functions of the class have access to the private mem­
bers. Class instances are denied from accessing them.

• protected: Only member functions of the class and its descendant classes have
access to the protected members. Class instances are denied from accessing
them.

• public: Members are visible to the member functions of the class, class in­
stances, member functions of descendant classes and their instances.

In the following, we list some simple guide-lines for the proper use of classes:

• The access specifier may appear in any order.

• The same access specifier may appear more than once.

• If an access specifier is omitted, the compiler treats the members as protected.

• Avoid placing data members in the public region, unless such a declaration
significantly simplifies the program design.

• Data members are usually placed in the protected region so that the member
functions of descendant classes can access them.

• Use member functions to alter or query the values of data members.

5.2. CLASSES 131

After a class has been declared, the class name can be used to declare new class
instances. The syntax resembles declaring variables. In the rest of the discussion,
we will construct a simplified version of the String class step by step. Along with
the construction, we explain the concepts and the C++ language constructs. An
improved version of the String class will be presented in Chapter 6.

In traditional C, a string is represented by a pointer to char. This means a string can
be considered as an array of type char. In this representation, the end-of-string is
denoted by '\0'. This convention has a major drawback. The '\0' requires one byte
to store and it is part of the string. This means "abc" requires 4 bytes of memory to
hold. The inconsistency between the length of the string and the memory required for
the string has caused much confusion to many users. It is also a pitfall. Therefore, to
avoid possible error and improve efficiency of the operations, it is best to implement
the string as an abstract data type.

The listing shows a typical class description and implementation. As we see here,
the class String has two data fields. The first field datalength maintains the size
of the largest possible String. The second field data is a pointer to the type char.
When it is allocated to some appropriate memory space, it will be used to store the
characters of the String. Most of the time, data fields are declared as private for
the reason of data hiding. However, it is perfectly alright to put them in the publicly
accessible region.

II estring.h

#include <iostream.h>
#include <string.h>
#include <assert.h>

class String
{

private:
II Data fields
int datalength;
char *data;

public:
II Constructors and Destructor
StringO;
String(char);
String(const char*);
String(const String&);
-StringO;
II Assignment operator
const String& operator = (const String&);

132

II Member function
int length() const;
II Conversion operator
operator const char *() const;

CHAPTER 5. BASIC TOOLS IN C++

II Friends: concatenation and output str~am

};

friend String operator + (const String&,const String&);
friend ostream& operator « (ostream&,const String&);

II Class implementation

II Constructors and Destructor
String: :String() : datalength(1), data(new char[1])
{

}

assert(data != NULL);
data[O] = '\0';

String: : String (char c) : datalength(2) , data(new char[2])
{

}

assert(data != NULL);
data[O] = c;
data[1] = '\0';

String: :String(const char *s)

{

}

: datalength(strlen(s) + 1), data(new char[datalength])

assert(data != NULL);
strcpy(data,s);

String: : String (const String &s)

{

}

: datalength(strlen(s.data) + 1), data(new char[datalength])

assert(data != NULL);
strcpy(data,s.data);

String::-String()
{

delete [] data;
}

5.2. CLASSES 133

II assignment operator
const String & String: : operator = (const String& s)
{

}

if(&s != this)
{

}

delete [] data;
datalength = strlen(s.data) + 1;
data = new char[datalength];
assert(data != NULL);
strcpy(data,s.data);

return *this;

int String: :length() const
{

return strlen(data);
}

II conversion operator
String: : operator const char *() const
{

return data;
}

II concatenation operator
String operator + (const String& sl,const String& s2)
{

}

String S(sl.length() + s2.length());
strcpy(S.data, sl.data);
strcat(S.data, s2.data);
return S;

II friendship operators
ostream& operator « (ostream& out,const String& s)
{

}

out « s. data;
return out;

134 CHAPTER 5. BASIC TOOLS IN C++

5.3 Constructors and Destructor

The two most import'ant class member functions are the constructor and destructor.
There could be many constructors in a class but it can have only one destructor. A
constructor is responsible for the creation of class instances or objects. It can be used
to handle initialization and allocation of dynamic memory for an object. Note that
the constructors always have the same name as the class. A destructor, on the other
hand, is used to clean-up after an object is destroyed. The clean up process usually
releases the unused memory back to the system. It has the same name as the class
except for a tilde n prefix.

For our String class here, there are three overloaded constructors. Each of them is
responsible for a different type of construction:

1. StringO;

e.g. String x; String y=O; String Z="";

set x, y and z to an empty String. Note that 0 and 1111 may be used as NULL
string.

2. String(char);

e.g. String x (, A'). y ('#') ;

set x to the character A and y to the character # respectively.

3. String(const char*);

e.g. String x("abc");

set x to the String "abc" .

Note that in each constructor, the data is allocated to a certain memory space. This
is always required as memory spaces have to be reserved from the system to store
the string. However, dynamically allocated memory is not freed automatically by
the system, it must be freed by the users. Freeing unused memory is important for
it to be "recycled" for subsequent allocations. In C++, a destructor is used to free
memory when variables are out of scope. This is done implicitly by the system. A
destructor for our string class is defined as follows:

String: :-String()
{

delete [] data;
}

The square brackets [J are used here to delete the entire array.

5.4. COPY CONSTRUCTOR AND ASSIGNMENT OPERATOR 135

5.4 Copy Constructor and Assignment Operator

As the name suggested, the copy constructor is used to duplicate the content of an
instance during a declaration statement. On top of that, it will also be invoked to
generate temporary values when class arguments are passed as value parameters. If
the data fields do not include any pointers that have to be initialized dynamically, the
copy constructor generated by the compiler which performs memberwise copy, works
correctly. However, a proper copy constructor is needed when the data fields involve
pointer variables.

Let us take our String class for example. Suppose a string Sl = "Computer" is
copied using a memberwise copy constructor to another string S2. The pointer ad­
dress of Sl is copied over instead of its content "Computer". Both Sl and S2 point
at the same memory location. If S2 is no longer needed, the String destructor will
be invoked and the memory storage pointed to by S2 will be released. This leaves Sl
with a dangling pointer - a pointer that does not point to any valid block of mem­
ory. When the remaining string Sl is destroyed, the delete operator will attempt to
free the same memory block that has already been freed. This is disastrous if that.
memory block has already been allocated to other objects. Therefore, it is always
good practice to provide a copy constructor for every user-defined class.

In our String class, the copy constructor takes a String as argument, generates
another memory buffer and duplicates the content of the argument, as shown below:

String: : String (const String &s)

{

}

: datalength(strlen(s.data)+l), data(new char[datalength])

assert(data != NULL);
strcpy(data,s.data);

where strlenO, strcpyO are routines from <string.h> and assert 0 is from the
library <assert .h>.

• char *strcpy(char *sl,const char *s2);
Copies the string s2 into the string sl, including the terminating null character.
The value sl is returned. '

• size_t strlen(const char *s);
Returns the length of the string s, where the length is defined as the number
of characters in the string, not counting the terminating null character.

• void assert(int expr);
If expr is zero (false), then diagnostics are printed and the program is aborted.
The diagnostics include the expression, the file name, and the line number in
the file.

136 CHAPTER 5. BASIC TOOLS IN C++

An assignment operator is needed whenever the data fields require dynamic memory
allocation, or whenever the copy constructor of the class needs to be rewritten. For
our String class, its definition is as follows:

const String &String: : operator = (const String& s)
{

}

if(ks != this)
{

}

delete [] data;
datalength = strlen(s.data) + 1;
data = new char[datalength];
assert(data != NULL);
strcpy(data,s.data);

return *this;

From the above listing, we notice that this function is similar to the copy constructor
but there are two major differences:

• The assignment operator needs to handle the special case when an object is
assigned to itself. This explains why the function started with an if state­
ment. The conditional statement ensures that the operator works properly
when a string is assigned to itself, e.g. x = x; because it is not only redun­
dant to assign something to itself, more importantly the pointers data and
s . data refer to the same address. It is impossible for delete [] data; and
strcpy (data, s . data) ; to work correctly .

• Notice that the operator returns a reference String&. This allows statements
like

String x, y, Z;
x = y = z = "Space Shuttle";

to work properly. The return reference type has made the left-hand side assign­
ment possible.

5.5. TYPE CONVERSION 137

5.5 Type Conversion

c++ has many type conversion rules which the compiler obeys when converting the
value of an object from one fundamental type to another. These rules make mixed
type operations possible. They are convenient but potentially dangerous if they are
not used properly. Consider the following example,

II convert.cxx

void f (long) ;
void f(int);

void g(long) ;
void g(unsigned int);

void mainO
{

}

f('A');
g('P');

II The compiler chooses feint)
II Ambiguous!!!

Note that the ASCII table is used to convert the characters ' A' and ' P' into in­
tegers. However, the code generates a compilation error for the ambiguity between
g(unsigned int) and g(long). Furthermore, implicit conversion may induce subtle
run-time bugs which are hard to detect. Therefore, it is useful to know how the
conversion rules work in C++. The general rules for implicit type conversion involve
two steps.

1. First, a char, short, enum is promoted to int whenever an int is expected. It
is converted to unsigned int if it is not representable as into

2. If the expression still consists of mixed data types, then lower types are pro­
moted to higher types, according to the following hierarchy:

int -t unsigned int -t long -t unsigned long
-t float -t double -t long double

The resultant value of the mixed expression has the higher type.
Suppose double a = 2; and long b = 3; then a+b does the following:

• b is promoted to double .

• Perform double addition a+b, and the type of the result is also double.

Explicit conversion uses cast. In traditional C, cast has the following form:

(type) expression

138 CHAPTER 5. BASIC TOOLS IN C++

whereas in C++, there is another alternative (functional notation)

type (expression)

For example, the following two equivalent expressions convert the int n to a double

int n = 10;
double x, y;
x = (double) n;
y = double{n);

However, the functional notation is preferred.

A construction with one argument serves as a type conversion operator from the
argument's type to the constructor's class type. As an example, consider our string
constructor:

String: :String{const char *s)

{

}

: datalength{strlen{s)+l), data{nev char[datalength])

assert{data != NULL);
strcpy{data,s);

The constructor converts variables of char* to String when necessary. This kind
of conversion only works for the conversion from an already defined type to a user­
defined type. It is not possible to add a constructor to a built-in type (e.g. int,
double). Sometimes, it is desirable to convert a user-defined type to a built-in data
type. For example, we want the String class to work with the traditional C string
manipulation functions:

II strlen.cxx

#include <iostream.h>
#include <string.h>
#include IMString.h"

void MainO
{

String s{IMicroscope");

int i = strlen(s), j = s.length();

if(i == j)
cout « liThe string II « s « II consists of II « i

5.5. TYPE CONVERSION 139

« II characters II « endl;
}

Result
======
The string Microscope consists of 10 characters

In the code, the compiler automatically converts a String into a char * in the
argument of str len O. C++ provides a special conversion function to achieve this.
The general form of such a conversion function is

operator typeO { ... }

For our String class, the conversion function is

operator const char *() const { return data; }

The first const states that the memory pointed to by the return value should not
be modified by code outside the class, and the second const says that this member
function does not alter the contents of the String object operated on.

Type conversions also apply on pointers. Any pointer type can be converted to a
generic pointer of type void*. However, a generic pointer needs to be cast to an
explicit type when it is assigned to a non-generic pointer variable.

II generic.cxx

#include <iostream.h>

void mainO
{

}

int *n = NULL;
void *generic_ptr;
generic_ptr = n;
n = (int*)generic_ptr;
n = generic_ptr;

II OK
II OK
I I Error !!!

The code generates a compilation error message:

a value of type IIvoid *11 cannot be assigned to an entity of type lIint *
n = generic_ptr;

The null pointer can be converted to any pointer type

char *ptr1 = 0;
int *ptr2 = ptr1;
int *y = 0;

II Not OK: need (int *)ptr1;
II OK

A pointer to a class can be converted to a pointer to a publicly derived base class.
This also applies to references.

140 CHAPTER 5. BASIC TOOLS IN C++

Let us consider a simple example on an abstract data type - the Verylong class.
The class we discuss here considers only positive long integer numbers which may
exceed the limit of the built-in unsigned long type. This is a simplified version of
the class which will be discussed in Chapter 6.

In this section, we focus on the type conversion in the class. For an abstract data
type, there are two types of conversion. The first is the conversion from the built-in
data types to the abstract data type. This is accomplished by the constructors of the
class. The second is the conversion from the abstract data type to a built-in type.
This type of conversion uses the conversion operator provided by C++.

II cast.cxx

#include <iostream.h>
#include <string.h>
#include <math.h>

class Very long
{

private:
char *data;

public:
Verylong(const char* = NULL);
Verylong(unsigned long);
Verylong(const Verylong&);
Verylong& operator = (const Verylong&);
-VerylongO;
operator int() const;
friend ostream & operator « (ostream&,const Verylong&);

};

Verylong: :Verylong(const char *value)
{

}

if (value)
{

}

data = new char [strlen(value)+l] ;
strcpy(data,value);

else
{

}

data = new char [1] ;
*data = '\0';

5.5. TYPE CONVERSION

Verylong: :Verylong{unsigned long n)
{

}

int digits;
digits = (int)log10{n) +
data = new char [digits +
data[digits--] = '\0';

l' ,
1] ;

while(n >= 1) II extract the number digit by digit
{

}

data[digits--] = n%10 + '0';
n 1= 10;

Verylong: :Verylong{const Verylong& x)
{

}

data = new char[strlen(x.data) + 1];
strcpy{data, x.data);

Verylong& Verylong: : operator = (const Verylong& rhs)
{

}

if{this == &rhs) return *this;
else
{

}

delete [] data;
data = new char [strlen{rhs.data} + 1];
strcpy(data, rhs.data);
return *this;

Verylong::-Verylong() { delete [] data; }

Verylong: : operator int() const
{

int a, number = 0;
a = strlen(data);
if(a > 5)
{

}

cerr « "Conversion not possible" « endl;
return 0;

141

142 CHAPTER 5. BASIC TOOLS IN C++

else
{

for(int j=a; j>=1; j--)
number += (data[a-j] - 48)*pow(10,j-1);

}

return number;
}

ostream& operator « (ostream& os,const Verylong& x)
{ return os « x.data; }

void mainO
{

}

II string => Verylong
Verylong s1("1234");
cout « "s1 = " « s1 « endl; cout « endl;

II Verylong => int
int n = s1;
cout « "n = " « n « endl; cout « endl;

II Verylong number exceeded range of int
Verylong s2("7777777777");
cout « "s2 = " « s2 « endl; cout « endl;

II Verylong => int
int m = s2;
cout « "m = " « m « endl; cout « endl;

II unsigned long => Verylong
Verylong n1(234567890);
cout « "n1 = " « n1 « endl;

Result
======
s1 = 1234
n = 1234
s2 = 7777777777
Conversion not possible
m = 0
n1 = 234567890

5.6. OPERATOR OVERLOADING 143

5.6 Operator Overloading

In C++, a built-in operator may be given more than one meaning, depending on
its arguments. Consider the binary addition operator a + b. The data type of a

.and b could be int, float, double or even a user-defined type such as Matrix.
The operation for matrix addition is certainly very different from the floating point
addition. We say that the operator + possesses more than one meaning. In fact, there
are many more C++ operators that can be overloaded, as listed in the following:

Type
Unary

Operator Notation
++(prefix/postfix) --(prefix/postfix) &(address of)
* (dereference) + - - ! (type)
* / I. + -
« »
))= < <=
& ~ I
&& II
= *= /= 1.= +=
[J -) -)*

!=

«= »= &= ~= 1=

Arithmetic
Shift
Relational
Bitwise
Logical
Assignment
Data Access
Others o , neW" delete

Almost all C++ operators can be overloaded except

Member access operator
Dereferencing pointer to member
Scope resolution operator
Conditional operator

a.b
a.*b
a: :b
a?b:c

Only predefined operators can be overloaded in C++. We cannot introduce any new
operator notations, such as the exponentiation ** used in Fortran. Although the
operators can be given extra meaning, the order of precedence cannot be changed.
Suppose we wish to overload the XOR operator ~ as the exponentiation operator. We
have to be very careful about the order of precedence. The expression a+b*c~d will
be evaluated as (a+(b*c)) ~d, not as a+ (b* (c~d)). Extra parentheses are needed for
the expression to be correct.

In fact, there are two kinds of overloading in C++: member overloading and global
overloading. Let us consider again the addition operator a + b where a and bare
objects of class C. The general form for member overloading is as follows:

C C: : operator + (C) { ... }

In the program, the expression a + b means a. operator+ (b). We could also overload
the operator using global overloading:

friend C operator + (C,C) { ... }

144 CHAPTER 5. BASIC TOOLS IN C++

where a and b are the first and second parameters of the function, respectively. Note
that a global overloaded operator needs a friend declaration in the class. The friend­
ship between functions and classes will be discusses in Section 5.9.

Let us consider an example of operator overloading. Suppose we wish to overload the
addition operator + to perform the concatenation of two String objects.

II concat.cxx

#include <iostream.h>
#include "MString.h"

void mainO
{

}

String Sl = "father", S2 = "mother", S3;
S3 = "My" + Sl;
S3 = S3 + " and my";
S3 = S3 + S2;
cout « "The concatenated string is " « S3 « endl;

Result
======
The concatenated string is My father and my mother

If we use the member overloading for the operator, "My " + Sl will be interpreted as
"My ". operator+ (Sl). This is an error, because liMy "is not an instance of the class.
No member operator function can be applied to liMy ". This happens because the
C++ compiler does not automatically convert the left-hand operand of any member
functions. It is therefore impossible for the code to work without global overloading.

The global overloading of +, on the other hand will convert the expression liMy " + Sl
to operator+(String("My II) ,S1). The compiler automatically converts the left­
hand side of the + operator to a String. To understand how the concatenation
works, let us look at the code:

String operator + (const String &sl, const String &s2)
{

}

String S(sl.length() + s2.length());
strcpy(S.data, sl.data);
strcat(S.data, s2.data);
return S;

5.6. OPERATOR OVERLOADING 145

The code generates a temporary buffer S with an appropriate size, copies Sl to Sand
appends S2 behind S using strcat () .

As another example, consider a family of linear operators { b, bt } on an inner product
space V. The commutation relations for these operators (so-called Bose operators)
are given by

(5.1)

where I is the identity operator and

where 0 is the zero operator and [, J denotes the commutator. The operator b is called
an annihilation operator and the operator bt is called a creation operator. The vector
space V must be infinite-dimensional for (5.1) to hold. Let 10) be the vacuum state,
i.e.

blO) = 0, (010) = 1. (5.2)

A state is given by
where n = 0, 1,2, ...

As an example, consider the operator iI = btbbtb and the state I</» = btIO), then

iII</» = btbbtbbt 10)
[by (5.1)J = btbbt(I + btb)IO)
[by (5.2)J = btbbtlO)

[by (5.1)J = bt(I + btb)IO)
[by (5.2)J bt 10)

In the following program, we overload the addition operator as the creation operator
and the subtraction operator as the annihilation operator. These operators apply on
the vacuum state 10) and the outcome is another state. Several operators have been
used for demonstrations:

II bose.cxx

#include <iostream.h>

class State
{

private:
int m; II number of creators acting on vacuum
int factor; II number of identical state

public:

146

};

II Constructor
State 0 ;
II methods
void display() const;
void bose_state(int);
void reset 0 ;

CHAPTER 5. BASIC TOOLS IN C++

II create a state

II display the state
II operation on a state
II reset the state

II Bose operator
class Bose
{

public:

};

II Constructor
BoseO;
II Operators
State operator + (State&); II creation operator
State operator - (State&); II annihilation operator

State: :State() : m(O), factor(l) { }

void State: : bose_state (int bstate)
{ if(bstate == -1) factor *= m--; else m++; }

void State::display() const
{

}

if (! factor) cout « "0";
else
{

}

cout « factor « "*";
if(m)
{

}

cout « "(";
for{int i=O; i<m; i++) cout « "b+";
cout « ")";

cout«"IO>";

void State: :reset() { m = 0; factor = 1; }

Bose: :Bose() { }

5.6. OPERATOR OVERLOADING

State Bose: : operator + (State &s2)
{

}

State sl(s2);
sl.bose_state(l);
return sl;

State Bose: : operator - (State &s2)
{

}

State sl(s2);
sl.bose_state(-l);
return sl;

void mainO
{

}

State g;
Bose b;
g = b+ g;
cout « "g = "; g.displayO; cout « endl;
g.resetO;
g = b- g;
cout « "g = "; g.displayO; cout « endl;
g.resetO;
g = b- (b+ g);
cout « "g = "; g. display 0; cout « endl;
g.resetO;
g = b- (b+ (b+ (b+ g)));
cout « "g = "; g.displayO; cout « endl;
g.resetO;

g = b+ (b- (b+ (b- (b+ g))));
cout « "g = "; g.displayO; cout « endl;

Result

g = 1* (b+) 10>
g = 0
g = 1*10>
g = 3* (b+b+) 10>
g = l*(b+) 10>

147

148 CHAPTER 5. BASIC TOOLS IN C++

Next, let us consider the Fermi operator. Consider a family of linear operators Cj, c}
for j = 1, ... , n defined on a finite dimensional vector space V satisfying the anti­
commutation relations

(5.3)

(5.4)

where 0 is the zero operator and I is the unit operator with j, k = 1,2, ... , n. Oper­
ators satisfying (5.3) and (5.4) are called the annihilation and creation operators for
fermions.

We define a state 10} (the so-called vacuum state) with the properties

CjIO} = 0 for j = 1,2, ... ,n
and (010) = 1

(5.5)

(5.6)

The state 10) is normalized. Other states can now be constructed from 10) and the
creation operators c}.

Applying the rules given above, we find

clc4ctcll0)
[(by 5.4)] = -clctc4clI0}
[(by 5.4)] -CIct(l - clc4)IO}
[(by 5.5)] = -cIciIO}
[(by 5.4)] = -(I - ctcdlO)
[(by 5.5)] = -IO}

In the following program, we implement the Fermi operators and several examples
are given:

II fermi.cxx

#include <iostream.h>
#include <assert.h>
#include IMString.h"

II It maintains the information of the operators still in active
class Power
{

public:
String c; II the operator name, e.g. cl, c4+
int n; II the degree of the operator, e.g. (c4+)~2

5.6. OPERATOR OVERLOADING

};

class State
{

private:
int factor; II the multiplication of the state
int m; II number of distinctive operators
Power *p; II a pointer to Power

public:

};

II Constructor
State 0 ;

void operator = (State&);
void Fermi_creator(String,int);
void display() const;
void reset 0 ;

II Fermi operator
class Fermi
{

private:

II assignment operator
II operation on the state
II display the state
II reset the state

String f; II store the name of the operator, e.g. ci, c4

public:

};

II Constructor
Fermi(String);
State operator + (State&);
State operator - (State&);

II creation operator
II annihilation operator

State: :State() : m(O), factor(i) , p(NULL) {}

void State: : operator = (State& s2)
{

}

m = s2.m;
p = new Power[m]; assert(p);
for(int i=O; i<m; i++) p[i] = s2.p[i];
factor = s2.factor;

void State: : Fermi_creator (String ch,int s)
{

149

150

}

CHAPTER 5. BASIC TOOLS IN C++

if (factor)
{

}

II [c1,c2J_+ = [c1+,c2+J_+ = [c1,c2+J_+ = 0
for(int i=O; i<m && (ch != (p+i)->c); i++)

if«p+i)->n % 2) factor *= (-1);

II if there is a new operator
if (i==m)
{

}

if(s==1) II creation operator
{

}

Power *p2;
m++;
p2 = new Power[mJ; assert(p2);
for(int j=O; j<m-1; j++) p2[jJ = p[jJ;
(p2+m-1)->c = ch; (p2+m-1)->n = 1;

delete [J p;
p = p2;

else II annihilation operator
{ m=O; factor=O; delete [J p;}

else II operator appears before
{

}

II creation operator, c1+ (c1+)-n = (c1+)-(n+1)
if(s==1) (p+i)->n++;
else II annihilation operator, [c1,c2+J_+ = I
{

}

if«p+i)->n % 2) II if power of operator is odd
{

}

(p+i)->n--;
if (! (p+i) ->n)
{

}

for(int j=i+1; j<m; j++) p[j-1J = p[jJ;
m--;

else II if power of operator is even
{ m=O; factor=O; delete [J p;}

5.6. OPERATOR OVERLOADING

void State: :display() const
{

}

if(!factor) cout « "0";
else
{

}

if(factor!= 1) cout« "("« factor« ")*";

for(int i=O; i<m; i++)
{

cout « II II « (p+i)->c « "+";
if «p+i)->n != 1) cout « IIAII « (p+i)->n;

}

cout « "10>";

void State::reset()
{

}

m=O; factor=l;
delete [] p; p=NULL;

Fermi: : Fermi (String st) : fest) {}

State Fermi: : operator + (State &s2)
{

}

State s1(s2);
sl.Fermi_creator(i,l);
return sl;

State Fermi: : operator - (State &s2)
{

}

State sl(s2);
sl.Fermi_creator(f,-l);
return sl;

void mainO
{

State g;
Fermi c1(lc1"), C4(IC4");

151

152

}

Result

g = 0

CHAPTER 5. BASIC TOOLS IN C++

g = c1- g;
cout « "g = "; g.displayO; cout « endl;

g.resetO;
g = c1+ g;
cout « "g = "; g.displayO; cout « endl;

g.resetO;
g = c1- (c1+ g);
cout « "g = "; g.displayO; cout « endl;

g.resetO;
g = c4- {c4+ {c1+ (c4+ g)));
cout « "g = "; g.displayO; cout « endl;

g.resetO;
g = {c4- {c4+ {c4+ {c1+ (c4+ g)))));
cout « "g = "; g. display 0; cout « endl;

g.resetO;
g = c4- {c4+ {c4- {c4+ {c4- (c4+ g)))));
cout « "g = "; g. display 0; cout « endl;

g.resetO;
g = {c4+ (c4+ (c4+ (c4+ (c1+ g)))));
cout « "g = "; g.displayO; cout « endl;

g = c1+IO>

g = 10>
g = 0
g = (-1)* c4+ A 2 c1+10>
g = 10>
g = c1+ c4+ A 410>

5.7. CLASS TEMPLATES 153

5.7 Class Templates

Templates are usually used to implement data structures and algorithms that are
independent of the data types of the objects they operate on. It allows the same
code to be used with respect to different types, where the type acts as a parameter of
the data structures or algorithms. They are also known as parametrized types. One
important use for templates is the implementation of container classes, such as stacks,
queues, lists, etc. A stack template may contain objects of type int, double or even
user-defined types. The compiler will automatically generate the implementations of
the Stack classes. The syntax of the class declaration is

template <class T>
class Stack
{

public:
Stack(int) ;

};

where the symbol T serves as the argument for the template which stands for arbitrary
type. To declare a Stack, we use

Stack<char> sl(100); II 100 elements Stack of char
Stack<int> s2(50); II 50 elements Stack of int

The keyword template always preceeds every forward declaration and definition of a
template class. It is followed by a formal template list surrounded by angle brackets
« ». The formal parameter list cannot be empty. Multiple parameters are separated
by commas, e.g.

template <class Tl, class T2, class T3, class T4> class Myclassl

Declarations with specific type such as int, e.g.

template <class T, int size> class Myclass2

are also allowed. When the compiler encounters the object definitions, it substitutes
the template type names by the actual data types. If the class template uses more
than one template, the compiler will perform the type substitutions one at a time,
beginning with the first class referred. As an example, consider a simplified version
of a Vector template class (the full version will be presented in Chapter 6):

II svector.h

#include <iostream.h>
#include <string.h>

154

#include <assert.h>

II definition of class Vector
template <class T> class Vector
{

private:
II Data Fields
int size;
T *data;

public:
II Constructors
VectorO;
Vector (int) ;
Vector(const Vector<T>&);
-VectorO;
II Member Functions
T &operator [] (int) const;
void resize(int);
II Assignment Operator

CHAPTER 5. BASIC TOOLS IN C++

const Vector<T> &operator = (const Vector<T>&);
};

II implementation of class Vector
template <class T> Vector<T>: :Vector() : size(O), data(NULL) {}

template <class T> Vector<T>: :Vector(int n) : size(n),data(new T[n])
{ assert(data!= NULL); }

template <class T> Vector<T>: :Vector(const Vector<T>& v)
: size(v.size), data(new T[v.size])

{

assert(data != NULL);
for(int i=O; i<v.size; i++) data[i] = v.data[i];

}

template <class T> Vector<T>: :-Vector()
{ delete [] data; }

template <class T> T &Vector<T>: :operator[] (int i) const
{

}

assert(i >= 0 && i < size);
return data[i];

5.7. CLASS TEMPLATES

template <class T> void Vector<T>: :resize(int length)
{

}

int i;
T *newData = new T[length]; assert(newData != NULL);
if(length <= size)

for(i=O; i<length; i++) newData[i] = data[i];
else

for(i=O; i<size; i++) newData[i] = data[i];
delete [] data;
size = length;
data = newData;

template <class T>
const Vector<T> &Vector<T>::operator = (const Vector<T> &v)
{

}

if(this -- &v) return *this;
if(size != v.size)
{

delete [] data;
data = new T[v.size]; assert(data != NULL);
size = v.size;

}

for(int i=O; i<v.size; i++) data[i]
return *this;

v .data[i];

void mainO
{

II The symbol Vector must always be accompanied by a
II data type in angle brackets
Vector<int> x(5); II generates a vector of integers
int i,j;

for(i=O; i<5; ++i) xCi] = i*i;
for(i=O; i<5; ++i) cout « xCi] « II ";

cout « endl; cout « endl;

Vector<char> ch(3); II generates a vector of characters

ch[O] = 'a' ; ch[1] = 'b' ; ch[2] = 'c';
cout « ch [1] « endl;
cout « ch [1] -ch [2] « endl;
cout « endl;

155

156 CHAPTER 5. BASIC TOOLS IN C++

Veetor<ehar *> e(2); II generates a vector of strings

e[O] = "aba"; e[l] = "bab";

for(i=O; i<2; i++) eout « e[i] « endl;
strepy(e[O] ,e[l]);
eout « e[O] « endl; eout « endl;

Veetor<Veetor<int> > vee(3);
for(i=O; i<3; i++) vee[i] .resize(4);
vee [0] [0] = 7; vee [0] [1] = 4; vee [0] [2] = -3;
vec[l] [0] = 4; vec[l] [1] = 9; vec[l] [2] = 0;
vee [2] [0] = 7; vee [2] [1] = 11; vee [2] [2] = 8;

for(i=O; i<3; i++)
{

}

for(j=O; j<4; j++) eout « vee[i][j] «" ";
eout « endl;

eout « endl;

eout « "vee [0] [0] = II « vee [0] [0] « endl;

vee [0] [3] = -17;
vee[l] [3] = 5;
vee [2] [3] = 77;

eout « "vee [0] [0] *vee [2] [3] = II « vee [0] [0] *vee [2] [3] « endl;
}

Result
======
o 1 4 9 16

b
-1

aba
bab
bab

7 4 -3 -17
490 5
7 11 8 77

vee [0] [0] = 7

vee [0] [0] *vee [2] [3] = 539

5.8. FUNCTION TEMPLATES 157

5.8 Function Templates

In the last section, we discussed the class templates. In fact, functions can also be
parameterized. In function template, all the type arguments must be mentioned in
the arguments of the function. Therefore, we do not need to specify any template
argument when calling a template function. The compiler will figure out the template
type arguments from the actual arguments.

By using function templates, we can define a family of related functions by making
the data type itself a parameter. It enhances the compactness of the code without
forfeiting any of the benefits of a strongly-typed language. Traditionally, a function
has to be defined for a specific data type to make it work. If we wish to write a
mathematical library containing Bessel functions, then we have to define the Bessel
functions for int, float, double, long double and complex, etc. If we want to
improve the algorithm at a later stage, all the Bessel functions with different types
have to be changed. This is cumbersome and prone to errors. By defining the
functions on templates, the compiler will automatically generate the code for each
data type.

The keyword template always preceeds the definition and forward declaration of a
template function. It is followed by a comma-separated list of parameters, which are
enclosed by a pair of angle brackets « ». This list is known as the formal parameter
list of the template. It cannot be empty. Each formal parameter consists of the
keyword class followed by an identifier, which could be a built-in or user-defined
type. The name of a formal parameter can occur only once within the parameter list.
The function definition follows the formal parameter list. An example is

template <class T> T min(T x,T y) { ... }

We illustrate the function templates using a function that swaps two pointers. In the
first version of the program we use pointers, whereas in the second version we use
references. The schematic diagram is shown in Figure 5.1.

Ox0003bf88 Ox0003bf8c Ox0003bf88 Ox0003bf8c

swap 0

Ox0003bf80 Ox0003bf84 OxOO03bf80 Ox0003bf84

Figure 5.1: Swapping two pointers

158 CHAPTER 5. BASIC TOOLS IN C++

II First version
II swapl.cxx

#inclnde <iostream.h>

template <class T> void swap(T *a,T *b)
{

}

T temp;
temp = *a;
*a = *b;
*b = temp;

void mainO
{

}

int i, *ip;
ip = &i;
cont « "&i = "« &i «endl;
cont « "ip = "« ip «endl;
cont « "&ip = II «&ip «endl;

int j, *jp;

jp = &j;
cont « "&j = II « &j « endl;
cont « "jp = II « jp « endl;
cont « "&jp= II « &jp « endl;

swap(&jp,&jp) ;

cont « "&i = II « &i « endl;
cont « "ip = II « ip « endl;
cont « "&ip = II « &ip « endl;

cont « "&j = II « &j « endl;
cont « "jp = II « jp « endl;
cont « "&jp = II « &jp « endl;

II Ox0003bf8c
II Ox0003bf8c
II Ox0003bf88

II Ox0003bf84
II Ox0003bf84
II Ox0003bf80

II OxOOO3bf8c
II OxOOO3bf84
II OxOOO3bf88

II OxOOO3bf84
II OxOOO3bf8c
II OxOOO3bf80

5.B. FUNCTION TEMPLATES

II Second version
II swap2.cxx

#include <iostream.h>

template <class T> void swap(T& a,T& b)
{

}

T temp;

temp = a;
a = b;

b = temp;

void mainO
{

int i, *ip;

ip = ki;
cout « "&i = "« &i
cout « "ip = "« ip
cout « "&ip = II « &ip

int j, *jp;

jp = &j;
cout « "&j = II « &j
cout « "jp = II « jp
cout « "&jp = II « &jp

swapCip,jp) ;

cout « "&i = II « &i
cout « "ip = II « ip
cout « "&ip = II « kip

cout « "&j = II « &j
cout « "jp = II « jp

« endl;
« endl;
« endl;

« endl;
« endl;
« endl;

« endl;
« endl;
« endl;

« endl;
« endl;

cout « "&jp = II « &jp « endl;
}

II Ox0003bf8c
II Ox0003bf8c
II Ox0003bf88

II OxOOO3bf84
II OxOOO3bf84
II OxOOO3bf80

II OxOOO3bf8c
II OxOOO3bf84
II OxOOO3bf88

II OxOOO3bf84
II OxOOO3bf8c
II OxOOO3bf80

159

160 CHAPTER 5. BASIC TOOLS IN C++

5.9 Friendship

From the previous discussions, we know that only member functions can access the
private data of a class. Sometimes this rule is too restrictive and inefficient. In such
cases, we may want to allow a nonmember function to access the private data directly.
This can be achieved by declaring that nonmember function as a friend of the class
concerned.

A friend F of class X is a function (or class) that, although not a member function
of X, has full access rights to the private and protected members of X. In all other
aspects, X is a normal function (or class) with respect to scope, declarations and
definitions. Class friendship is not transitive: X is a friend of Y and Y is a friend
of Z does not imply X is a friend of Z. However, friendship can be inherited. Like a
member function, a friend function is explicitly specified in the declaration part of a
class. The keyword friend is the function declaration modifier. It takes the general
form

friend return-type function-name (parameter list)

As an example, consider the output stream operator in our String class. Note that
it is declared as a friend in the class declaration. This means that the function has
access to the private data of the class.

class String
{

friend ostream& operator « (ostream&,const String&);
};

ostream& operator « (ostream& out,const String& s)
{

}

out « s .data;
return out;

The function puts the content of the string on the output stream. Note that the
data field s. data is actually a private data member of the class. It is the friendship
between the function and the class which has made the access possible. In fact, we
have already made use of the friendship in the global overloading of the concatenation
operator in the String class, as described in Section 5.6.

Let us consider another example. Suppose we want to construct a simplified Complex
number class (the complete version will be discussed in Chapter 6). Instead of defining
the addO and displayO functions as members, we declare them as friend functions
to the Complex class.

5.9. FRIENDSHIP

II sration.cxx

#include <iostream.h>

class Complex
{

private:
double real, imag;

public:
Complex 0 ;
Complex(double);
Complex(double,double);
friend Complex add(Complex,Complex);
friend void display(Complex);

};

Complex: :Complex() : real(O.O), imag(O.O) { }
Complex: : Complex (double r) : realer), imag(O.O) { }
Complex: : Complex (double r, double i) : realer), imag(i) { }

Complex add(Complex c1,Complex c2)
{

}

Complex result;
result.real = c1.real + c2.real;
result.imag = c1.imag + c2.imag;
return result;

void display{Complex c)
{

cout « "(" « c.real « II + i*" « c.imag « 11)11;

}

void mainO
{

Complex a(1.2, 3.5), b(3.1, 2.7), c;
c = add(a, b);

161

display(a); cout « II + "; display(b); cout « II = "; display(c);
}

Result

(1.2 + i*3.5) + (3.1 + i*2.7) = (4.3 + i*6.2)

162 CHAPTER 5. BASIC TOOLS IN C++

5.10 Inheritance

Inheritance is a powerful reuse mechanism. It enables us to categorize related classes
for sharing common properties. It is a mechanism for deriving new classes from old
ones. For example Circle, Triangle and Square can be grouped under a more
general abstraction - Shape. Instances of Shape possess some common properties
such as area, perimeter, etc. Circle, Triangle and Square are subclasses (or derived
classes) of Shape, whereas Shape is the superclass (or base class). Derived classes
inherit properties and functionalities from the base class. Through inheritance, a
class hierarchy can be created for sharing code and interface. The general form of a
subclass that is derived from an existing base class is

class class-name: [public/protected/private] base-class-name
{

};

The keywords public, protected and pri vate describe how the derived class inherits
information from the base class. They allow us to control how the members of the
superclass appear in the subclass.

• public inheritance: If the superclass is inherited publicly, the access of all the
members of the super class remain unchanged in the subclass.

• protected inheritance: In this type of inheritance, all public members of the
superclass become protected in the subclass.

• private inheritance: Whenever the superclass is inherited privately, all the
public and protected members of the superclass become private in the subclass.
Therefore, the data members and member functions of the superclass are not
accessible to the subclass.

The following table summarizes the behaviours of the three different kinds of inheri­
tance:

Type of inheritance Access in superclass ==> Access in subclass
public members ==> public members

Public inheritance protected members ==> protected members
private members ==> private members
public members ==> protected members

Protected inheritance protected members ==> protected members
private members ==> private members
public members ==> private members

Private inheritance protected members ==> private members
private members ==> private members

5.10. INHERITANCE 163

Public inheritance corresponds to the is-a relationship, i.e. X is-a Y (X is derived
from Y). It is used when the inheritance is part of the interface. For example, the
inheritance described above pertaining to the geometric shape is a public inheritance
because Circle is a Shape, Triangle is also a Shape and so on.

Protected and private inheritance have other meanings. Protected inheritance is used
when the inheritance is part of the interface to the derived classes, but is not part of
the interface to the users. On the other hand, private inheritance is used when the
inheritance is not part of the interface but is an implementation detail.

In the following program, the base class Shape has a protected data member area
and a public member function print_AreaO. The classes Triangle and Circle
are subclasses of Shape (Figure 5.2). Since Triangle is publicly inherited, the public
member function print_AreaO remain public. Therefore, it can be invoked from the
main program. However, Circle is privately inherited, so the function print_AreaO
becomes private in the class. Hence, an attempt to call the function from the main
program generates a compilation error.

Shape

print...AreaO

Triangle ~\ Circle
(public inheritance V (private inheritance)

area area

= ~ x base x height = 7r X (radius)2

Figure 5.2: Schematic diagram of the relationships among Shape, Triangle and
Circle

164

I I shape 1. cxx

#include <iostream.h>
const double PI = 3.14159265;

class Shape
{

};

protected:
double area;

public:
void print_Area() const;

CHAPTER 5. BASIC TOOLS IN C++

void Shape: :print_Area() const { cout« area « endl; }

class Triangle : public Shape
{

};

private:
double base, height;

public:
Triangle(double,double);

Triangle: : Triangle (double b,double h) base(b), height(h)
{ area = O.5*b*h; }

class Circle : private Shape
{

};

private:
double radius;

public:
Circle(double);

Circle: :Circle(double r) radius(r) { area = PI*radius*radius; }

void MainO
{

}

Triangle t(2.5,6.0);
t.print_Area(); II 7.5
Circle r(3.5);
r.print_Area(); II function Shape: :print_Area is inaccessible

II r.print_Area();

5.11. VIRTUAL FUNCTIONS 165

5.11 Virtual Functions

Dynamic binding in C++ is implemented by the virtual function. It allows the system
to select the right method for a particular class during run-time. Virtual functions
are defined in the base class using the keyword virtual. The definition of these
functions can be deferred or overriden in any subclass. If a derived class does not
supply its own implementation, the base class version will be used.

Let us consider the same example as in Section 4.4. An inheritance hierarchy is con­
structed with Shape as the abstract base class and Circle, Triangle as the derived
classes (Figure 5.3). A virtual function named Calculate_AreaO is declared in the
abstract base class Shape. However, its implementation is deferred and redefined in
its derived classes, where well-defined formulae can be applied to calculate the area
of the geometric shapes.

Shape

Calculate...Area

Circle /\ Trianglo

Calculate...Area Calculate...Area
= 7r X (radius)2 = ~ x base x height

Figure 5.3: Schematic diagram of the inheritance hierarchy

II shape2.cxx

#include <iostream.h>
const double PI = 3.14159265;

class Shape
{

public:
virtual double Calculate_Area() const = 0;

};

class Circle public Shape
{

private:

166 CHAPTER 5. BASIC TOOLS IN C++

double radius;
public:

Circle(double);
double Calculate_Area() const;

};

class Triangle public Shape
{

private:
double base, height;

public:

};

Triangle(double,double);
double Calculate_Area() const;

Circle: :Circle(double r) : radius(r) {}

double Circle: :Calculate_Area() const
{ return PI*radius*radius; }

Triangle: : Triangle (double b,double h) : base(b), height(h) {}

double Triangle: :Calculate_Area() const
{ return O.5*base*height; }

void mainO
{

}

Result
======

Shape *s;
Circle c(5);
Triangle t(3,8);
s = lc; II s points at Circle c
cout « "s->Calculate_AreaO = " « s->Calculate_AreaO « endl;
s = It; II s points at Triangle t
cout « "s->Calculate_AreaO = " « s->Calculate_AreaO « endl;

s -> Calculate_Area() = 78.5398
s -> Calculate_Area() = 12

From the result, we observe that the appropriate Calculate_AreaO function is in­
voked depending on the object type pointed to by s during run-time. This form of
polymorphism is called inclusion polymorphism.

5.12. WRAPPER CLASS 167

5.12 Wrapper Class

In C++, data types are classified as basic and abstract data types. In some applica­
tions it would be useful to have the basic data type as an abstract data type. This
leads to a concept called wrapper class. For example, Java has wrapper classes for all
basic data types. In the following program, we show how the basic data type double
is converted into an abstract data type Double.

II doublec.cxx

#include <iostream.h>
#include <stddef.h> II for size_t

class Double
{

private:
double value;

public:
Double(double = 0.0);
void* operator new (size_t);
void operator delete(void*,size_t);
operator double () const; II type conversion operator

};

Double: : Double (double f) : value(f) { }

void* Double: : operator new(size_t s)
{ return (void*) new char[s]; }

void Double: : operator delete(void *p, size_t)
{ delete [] p; }

Double: : operator double () const { return value; }

void mainO
{

}

Double *sl, s2(5.23);
sl = new Double(3.14);
cout « "Content of sl = II « *sl « endl;
cout « "Content of s2 = "« s2« endl;
II conversion operator to 'double' is used
cout « "*sl + s2 = II « *sl + s2 « endl;
delete sl;

II 3.14
II 5.23

II 8.37

168 CHAPTER 5. BASIC TOOLS IN C++

5.13 Standard Template Library

5.13.1 Introduction

The Standard Template Library, or STL, is a C++ library of container classes, algo­
rithms and iterators [1]. It provides many of the basic algorithms and data structures
of computer science. The intent of the STL is to provide a set of container classes
that are both efficient and functional. The presence of such a library will simplify
the creation of complex programs, and because the library is standard the resulting
programs ultimately will have a high degree of portability. This section is about the
new standard version of STL. The use of STL is likely to make software more reli­
able, more portable and more general and to reduce the cost of producing it. One of
the most interesting aspects of the STL is the way it radically departs in structure
from almost all earlier libraries. Since C++ is an object-oriented language, these
earlier libraries have tended to rely heavily on object-oriented techniques, such as
inheritance. The STL uses almost no inheritance. To see this non-object-oriented
perspective, consider that object-oriented programming holds encapsulation as a pri­
mary ideal. A well-designed object will try to encapsulate all the state and behaviour
necessary to perform the task for which it is designed, and at the same time, hide
as many of the internal implementation details as possible. In almost all previous
object-oriented container class libraries this philosophical approach was manifested
by collection classes with exceedingly rich functionality, and consequently with large
interfaces and complex implementations. The designers of STL moved in an entirely
different direction. Each component is designed to operate in conjunction with a rich
collection of generic algorithms. These generic algorithms are independent of the con­
tainers and can therefore operate with many different containers types. By separating
the functionality of the generic algorithms from the container classes themselves, the
STL realizes a great saving in size, in both the library and the generated code. Instead
of duplication of algorithms in each of the dozen or so different container classes, a
single definition of a library function can be used with any container. Furthermore,
the definition of these functions is so general that they can be used with ordinary
C-style arrays and pointers as well as with other data types. The boolean data type
bool is also implemented in the STL. At the core of the STL are three foundational
items:

1. containers

2. algorithms

3. iterators.

These items work in conjunction with one another. Containers are objects that hold
other objects. Algorithms act on the contents of containers. Iterators are objects
that are pointers. They provide us with the ability to cycle through the contents of

5.13. STANDARD TEMPLATE LIBRARY 169

a container in the same way that we apply pointers to cycle through an array. The
classes provided by the STL are:

algorithm deque functional iterator list map

memory numeric queue set stack utility vector

5.13.2 The Namespace Concept

Namespaces are a recent addition to C++. A namespace creates a declarative region
in which various program elements can be placed. Elements declared in one name­
space are separated from elements declared in another. The line using namespace std;
tells the compiler to use the STL namespace.

II namesp.cpp

#include <iostream>
using namespace std;

namespace A { int i = 10; }

namespace B { int i = 5; }

void fAO
{

}

using namespace A;
cout « "In fA: " « A::i « " " « B::i « " " « i « endl;
II => 10 5 10

void fBO
{

}

using namespace B;
cout « "In fB: " « A::i « " " « B::i « " " « i « endl;
II => 10 5 5

void MainO
{

}

fAO; fBO;
cout « A::i « " " « B::i « endl; II => 10 5
using A: : i;
cout « i « endl; II => 10

170 CHAPTER 5. BASIC TOOLS IN C++

5.13.3 The Vector Class

The vector class is a container class. The vector class supports a dynamic array.
This is an array that can grow as needed. We can use the standard array subscript
notation [] to access its elements.

The constructors and methods (member functions) in the class vector are summa­
rized in the following.

Constructors
vector<T> v;
vector<T> v(int);
vector<T> v(int,T);
vector<T> v(aVector);

Element Access
v[i]
v.frontO
v.backO

Insertion
v.push_back(T)
v.insert(iterator,value)
v.swap(vector<T»

Removal
v . pop_back 0
v.erase(iterator)
v.erase(iterator,iterator)

Size
v. capacity 0
v.sizeO
v.resize(unsigned,T)
v. reserve (unsigned)
v.emptyO

Iterators
vector<T>: :iterator itr
v.begin 0
v.end 0

default constructor
initialized with explicit size
size and initial value
copy constructor

subscript access, can be assignment target
first value in collection
last value in collection

push element on to back of vector
insert new element after iterator
swap values with another vector

pop element from back of vector
remove single element
remove range of values

maximum number of elements buffer can hold
number of elements currently held
change to size, padding with value
set physical buffer size
true if vector is empty

declare a new iterator
starting iterator
ending iterator

5.13. STANDARD TEMPLATE LIBRARY

II Mvector.cpp

#include <iostream>
#include <vector>
using namespace std;

int mainO
{

vector<char> w(4);
w[O] = 'X'; w[1] = 'Y'; w[2] = '+';
cout « w[2] «endl; II => +
int j;
for(j=O; j<4; j++)

w[3] =

cout « "W[" « j « II] II « w [j] « endl;

vector<double> v;
double x;

'-' . ,

cout « "enter double number, followed by 0.0: \n" ;
while(cin » x, x != 0.0)

}

v.push_back(x); II adds the double value x at the end
II of the vector v

vector<double>: :iterator i;
for(i=v.begin(); i != v.end(); ++i)
cout « *i « endl; II dereferencing

bool b = v.empty();
cout « lib = II « b « endl;

II insert element in the vector
double y;
cout « "enter value to be inserted: ";
cin » y;
vector<double>: :iterator p = v.begin();
p += 2;
v.insert(p,4,y); II point to 3rd element, insert 4 elements

for(i=v.begin(); i != v.end(); ++i)
cout « *i « endl;

int length = v.size();
cout « "length = II « length « endl;

return 0;

171

172 CHAPTER 5. BASIC TOOLS IN C++

We read a textfile line by line into a vector. We read the file, line by line, until eof
is encountered. The only catch is that with the istream's operator» string cannot
be used. The function only reads a word, and not a whole line. The global

getline (istream&, string&)

is the solution. Let the text file (ASCII file) be william. txt with the contents

to be or
not to be

After compiling and linking to obtain the execute file at the command line we enter:

readinl william.txt

II readinl.cpp

#include <iostream>
#include <fstream>
#include <string>
#include <vector>

using namespace std;

int main(int argc,char *argv[])
{

}

ifstream ifs(argv[l]);
vector<string> v;
string s;

while(getline(ifs,s))
{

v.push_back(s);
cout « s «endl;
}

cout « "v[l] " « vel] «endl; II => not to be

return 0;

5.13. STANDARD TEMPLATE LIBRARY

II bubblest.cpp

#include <algorithm>
#include <vector>
#include <stdlib.h>
#include <iostream.h>
using namespace std;

template <class RandomAccesslterator>

173

void bubbleSort{RandomAccesslterator first,RandomAccesslterator last)
{

}

int exchanged;
do
{

exchanged = 0; last--;
for{RandomAccesslterator iter=first; iter < last; iter++)
{

if{*iter > *(iter+l»
{

iter_swap{iter,iter+l);
exchanged++;
}
}

} while{exchanged);

void main{void)
{

}

const int nData = 6;
vector<unsigned long> data{nData);

for{int n=O; n < nData; n++)
{

data[n] = rand{);
cout « data[n] « " ";
}

cout « endl;

bubbleSort{data.begin{),data.end{»;

II after sorting
for{n=O; n<nData; n++)
cout « data[n] « " ";

174 CHAPTER 5. BASIC TOOLS IN C++

5.13.4 The List Class

The list class is also a container class. A linked list is the data structure we choose
when the number of elements in a collection cannot be bounded, or varies widely dur­
ing the course of execution. Like the vector class, the linked list class maintains values
of uniform type. Lists are not indexed. The following table gives the constructors
and the member functions of the class.

Constructors and Assignment
list<T> 1;
list<T> l(aList);
1 = aList
l.swap (aList)

Element Access
1. front 0
1. backO

Insertion and Removal
l.push_front(value)
l.push_back(value)
l.insert(iterator, value)
l.pop_front()
1.pop_backO
1. erase (iterator)
l.erase(iterator,iterator)
l.remove(value)
l.remove_if(predicate)

Size
1. empty 0
1. sizeO

Iterators
list<T>::iterator itr
l.beginO
l.endO
l.rbeginO
1.rendO

Miscellaneous
l.reverse()
1.sortO
1. sort (comparison)
l.merge(list)

default constructor
copy constructor
assignment
swap values with another list

first element in list
last element in list

add value to front of list
add value to end of list
insert value at specified location
remove value from front of list
remove value from end of list
remove referenced element
remove range of elements
remove all occurrences of value
removal all values that match condition

true if collection is empty
return number of elements in collection

declare a new iterator
starting iterator
ending iterator
starting backwards moving iterator
ending backwards moving iterator

reverse order of elements
place elements into ascending order
order elements using comparison function
merge with another ordered list

5.13. STANDARD TEMPLATE LIBRARY

The following program gives an application of the list class.

II mlist.cpp

#include <iostream>
#include <list>
#include <string>
using namespace std;

void main(void)
{

list<char> 1st;
int i;
for(i=O; i<10; i++)
lst.push_back('X'+i);
cout « II size of list = II « 1st. size 0 « endl;
cout « "contents of list: ";
list<char>: :iterator p = lst.begin();

while(p != lst.endO) { cout« *p « II "; p++; }
lst.push_back('A');
cout « endl;

1st. sort 0 ;
cout « "sorted contents:\n";
p = lst.begin();
while(p != lst.endO) { cout « *p « II II. p++; } ,
cout « endl;

list<string> str;
str.push_back(IGood");
str.push_back(1I II);

str.push_back(INight");
str.push_back(1I II);

str.push_back{IEgoli");
list<string>: :iterator q = str . begin 0 ;

while(q != str.end()) { cout « *q « II II. q++; } ,
}

175

176 CHAPTER 5. BASIC TOOLS IN C++

5.13.5 The Stack Class

The stack class provides a restricted subset of container functionality. By default this
underlying container type is vector. It is a last-in-first-out (LIFO) data structure.
The stack class does not allow iteration through its elements. It is a collection of data
items organized in a linear sequence, together with the following five operations:

1. CreateStack brings a stack into existence

2. MakeStackEmpty deletes all items, if any, from the stack

3. Push adds an item at one end, called the top, of the stack

4. Pop removes the item at the top of a stack and makes it available for use

5. StackIsEmpty tests whether a stack contains any items.

The items in a stack might be integers, real numbers, characters, or abstract data
types. The stack template has two arguments

stack<T,vector<T> > s;

The following list gives the operations provided by the STL for the stack class.

Insertion and Removal
s.push(value)
s. topO
s.popO

Size
s. sizeO
s.emptyO

Assignment
=

Comparisons

!=
<
<=
>
>=

push value on front of stack
access value at front of stack
remove value from front of stack

number of elements in collection
true if collection is empty

5.13. STANDARD TEMPLATE LIBRARY

The following program shows a simple application of the stack class.

I I stack1. cpp

#include <iostream>
#include <vector>
#include <stack>
using namespace std;

int mainO
{

stack<char,vector<char> > S, T, U;
cout « "&S = " « &S « endl;

S . push (, X ') ;
S . push (, Y ,) ;
S . push (, Z ') ;

II => address

cout « "characters pushed onto S: X Y Z\n";

}

cout« "size of S ="« S.sizeO «endl; II => 3

T = S;
cout « "after T = S; we have ";
cout « (S == T ? "s == T" : "s != T") « endl; II => S -- T

U . push (, X ') ;
U . push ('W ') ;
cout « "pushed onto U: X W\n";
cout « "output now";
cout « (S < U ? "s < U" : "s >= U") « endl; I I => S >= U

boo 1 b = (T == S);
cout « "b = " « b « endl; II =) 1 (true)

return 0;

177

178 CHAPTER 5. BASIC TOOLS IN C++

5.13.6 The Queue Class

A queue is a first-in-first-out (FIFO) data structure. This means that elements are
added to the back of the queue and may be removed from the front. Queue is a
container adapter, meaning that it is implemented on top of some underlying container
type. Queue does not allow iteration through its elements. A queue is a collection of
data items organized in a linear sequence, together with the following five operations:

1. Create Queue brings a queue into existence

2. MakeQueueEmpty deletes all items, if any, from the queue

3. EnQueue adds an item at one end, called the rear, of the queue

4. DeQueue removes the item from the other end, called the front, of the queue,
and makes it available for use

5. QueueIsEmpty tests whether a queue is empty.

The queue template has two arguments

queue<T,list<T> > q;

The following list gives the operations provided by the STL for the queue class.

Insertion and Removal
q.push(value) push value on back of queue
q.front() access value at front of queue
q.back() access value at back of queue
q.pop() remove value from front of queue

Size
q.sizeO
q.emptyO

number of elements in collection
true if collection is empty

5.13. STANDARD TEMPLATE LIBRARY

The following program shows a simple application of the queue class.

II queue1.cpp

#include <iostream>
#include <list>
#include <queue>

using namespace std;

int main{)
{

queue<double,list<double> > Q;
cout « "&Q = " « &Q « endl; II => address

}

Q.push(3.14);
Q.push(4.5);
Q.push(6.9);
cout « "after pushing 3.14, 4.5, 6.9:\n";
cout « "Q. front () = " « Q. front () « endl;
cout « "Q. back{) = " « Q. back{) « endl;

Q.pop{) ;
cout « "after Q.pop{):\n";

II => 3.14
II => 6.9

cout « "Q.frontO = " « Q.frontO « endl; II => 4.5

cout « "Q.size{) = " « Q.size{) « endl; II => 2

queue<double,list<double> > P;
P = Q;
cout « "P. front () " « P. front () « endl; I I => 4.5
cout « "P.backO " « P.back{) «endl; II => 6.9

return 0;

179

180 CHAPTER 5. BASIC TOOLS IN C++

5.13.7 The Deque Class

A deque (double-ended queue) is an abstract data type in which insertions and dele­
tions can be made at either the front or the rear. Thus it combines features of both
stacks and queues. In practice, the deque has two variations. The first is the input­
restricted deque, where insertions are restricted to one end only, and the second is
the output-restricted deque, where deletions are restricted to a single end.

The following list give the operations provided by the STL for the stack class.

Constructors and
deque<T> d;

Assignment

deque<T> d(int);
deque<T> d(int,value);
deque<T> d(aDeque);
d = aDeque;
d.swap(aDeque);

default constructor
construct with initial size
construct with initial size and initial value
copy constructor
assignment of deque from another
swap contents with another deque

deque

Element Access and Insertion
d[i] subscript access, can be assignment target
d.frontO first value in collection
d.back() final value in collection
d.insert(iterator,value)
d.push_front(value)
d.push_back(value)

Removal
d. pop_front 0
d.pop_backO
d.erase(iterator)

insert value before iterator
insert value at front of container
insert value at back of container

remove element from front of vector
remove element from back of vector
remove single element

d.erase(iterator,iterator) remove range of elements

Size
d.sizeO
d.emptyO

Iterators
deque<T>: :iterator itr
d. beginO
d.endO
d.rbeginO
d.rendO

number of elements currently held
true if vector is empty

declare a new iterator
starting iterator
stopping iterator
starting iterator for reverse access
stopping iterator for reverse access

5.13. STANDARD TEMPLATE LIBRARY

The following small program shows an application of the deque class.

I I deque 1. cpp

#include <iostream>
#include <de que>
using namespace std;

int mainO
{

}

deque<char> D(10,'A');

deque<char>: :iterator i;
for(i=D.begin(); i != D.end(); ++i)
cout « *i « ""; II => A A A A A A A A A A
cout « endl;

deque<char> E(D); II copy constructor

E.push_front('Z');
E.push_back('Y');

for(i=E.begin(); i != E.end(); ++i)
cout « *i « ""; II => Z A A A A A A A A A A Y
cout « endl;

cout « E.empty() « endl; II => 0 (false)

cout « E.size() «endl; II => 12

char c = E[O];
cout «"c ,,« c «endl; II => Z

c = E[5];

cout « "c = " « c «endl; II => A

return 0;

181

182 CHAPTER 5. BASIC TOOLS IN C++

5.13.8 The Bit Set Class

The bit set class in the STL implements the bitwise operations.

Constructors
bitset<N> s
bitset<N> s(aBitSet)

Bit level operations
s.flipO
s . flip (i)
s.reset(O)
s.reset{i)
s.setO
s.set{i)
s. test{i)

Operations on entire
s.anyO
s.noneO
s.countO

Assignment
=

construct bit set for N bits
copy constructor

flip all bits
flip position i
set all bits to false
set bit position i to false
set all bits to true
set bit position i to true
test if bit position i is true

collection
return true if any bit is true
return true if all bits are false
return number of true bits

Combination with other bit sets
sl & s2 bitwise AND
sl I s2 bitwise inclusive OR
sl A s2
s == s2

Other operations
s « n
s » n
s. to_stringO

bitwise exclusive OR
return true if two sets are the same

shift set left by one
shift set right by one
return string representation of set

5.13. STANDARD TEMPLATE LIBRARY

The following small program shows an application of the bi tset class.

II bitset1.cpp

#include <iostream>
#include <bitset>
#include <string>
using namespace std;

int mainO
{

const unsigned long n = 32;
bitset<n> s;
cout « s.set() « endl;

cout « s.flip(12) « endl;

bitset<n> t;
cout « t.reset() « endl;

t.set(23);
t.set(27);

bitset<n> u;
u = s & t;
cout « "u = " « u « endl;

bitset<n> v;
v = sit;
cout « "v = " « v « endl;

bitset<n> w;
w = s ~ t;

cout « "w = " « w « endl;

bitset<n> z;
z = w w;
cout « lIZ = " « z « endl;

II set all bits to 1

II flip at position 12

II set all bits to false

cout « "z. to_stringO = " « z. to_stringO ;

return 0;
}

183

184 CHAPTER 5. BASIC TOOLS IN C++

5.13.9 The Set Class

The abstract data type set is defined in terms of objects and operations. The objects
are just sets in the mathematical sense with the representation unspecified. The set
and multiset data types in the STL are both template data structures, where the
template argument represents the type of the elements the collection contains. In the
set class each element of a set is identical to its key, and keys are unique. Because
of this, two distinct elements of a set cannot be equal. A multiset differs from a set
only in that it can contain equal elements. The operations in the set class are given
below.

Constructors
set<T> s;
multiset<T> m;
set<T> s(aSet);
multiset<T> m(aMultiset)
s = aSet
s.swap(aSet)

Insertion and Removal
s.insert(value_type)
s.erase(value_type)
s.erase(iterator)
s.erase(iterator,iterator)

Testing for Inclusion
s . empty 0
s. sizeO
s.count(value_type)
s.find(value_type)
s.lower_bound(value_type)
s.upper_boundevalue_type)
s.equal_rangeevalue_type)

Iterators
set<T>: :iterator itr
s. beginO
s.endO
s .rbeginO
s .rendO

default constructor
default constructor
copy constructor
copy constructor
assignment
swap elements with argument set

insert new element
remove all matching elements
remove element specified by iterator
remove range of values

true if collection is empty
number of elements in collection
count number of occurrences
locate value
first occurrence of value
next element after value
lower and upper bound pair

declare a new iterator
starting iterator
stopping iterator
starting iterator for reverse access
stopping iterator for reverse access

5.13. STANDARD TEMPLATE LIBRARY

The following program shows an application of the set class.

II set2.cpp

#include <iostream>
#inc1ude <set>
using namespace std;

int maine)
{

}

set<int> s;

s.insert(23);
s.insert(45);
s.insert(-l);
s.insert(-2);
s.insert(23);
s.insert(51);

cout « s.empty() « endl;

cout « s.size() « endl;

II => 0 (false)

II => 5

cout « s.count(23) « endl; II => 1

set<int>: :iterator i = s.begin();

for(i=s.begin(); i != s.end(); ++i)
cout « *i « " ";

cout « endl;

s.erase(45);

for(i=s.begin(); i != s.end(); ++i)
cout « *i « " ";

cout « endl;

cout « s.size() « endl; II => 4

return 0;

185

186 CHAPTER 5. BASIC TOOLS IN C++

5.13.10 The Map Class

The map class (also called dictionary or table) is an indexed collection. The index
values need not be integers, but can be any ordered data values. Therefore a map is
a collection of associations of key value pairs. For maps no two keys can be equal. A
multimap differs from a map in that duplicated keys are allowed. The following table
gives the operations.

Constructors
map<T1 , T2> m;
multimap<T1,T2> m;
map<T1,T2> m(aMap)
multimap<T1,T2> m(aMultiMap)
m = aMap

Insertion and Removal
m[key]
m.insert(value_type)
m. erase (key)
m.erase(iterator)

Testing for Inclusion
m.emptyO
m. sizeO
m.count(key)
m.find(key)
m.lower_bound(key)
m. upper_bound (key)
m.equal_range(key)

Iterators
map<T>: :iterator itr;
m.beginO
m.endO
m.rbeginO
m.rendO

default constructor
default constructor
copy constructor
copy constructor
assignment

return reference to value with key
insert given key value pair
erase value with given key
erase value at given iterator

true if collection is empty
return size of collection
count number of elements with given key
locate element with given key
first occurrence of key
next element after key
lower and upper bound pair

declare new iterator
starting iterator
ending iterator
backwards moving iterator start
backwards moving iterator end

5.13. STANDARD TEMPLATE LIBRARY

The following two programs show applications of the map class.

II mmap.cpp

#include <iostream>
#inc1ude <map>
#include <string>
using namespace std;

int mainO
{

}

map<char,int> m1;
int i;

for(i=O; i<26; i++)
{

m1.insert(pair<char,int>('A'+i,65+i)); II ASCII table
}

char ch;
cout « "enter key: ";
cin » ch;

map<char, int>: :iterator p1;
1/ find value given key
p1 = m1.find(ch);
if(p1 != m1.end())
cout « "ASCII table number: " « p1 -> second « endl;
else
cout « "key not in map.\n";

map<string,double> m2;
m2.insert(pair<string, double>("Willi",O.O));
m2.insert(pair<string, double>("Fritz",1.0));
m2.insert(pair<string, double>("Charles",2.0));

map<string,double>: :iterator p2;
p2 = m2.find("Fritz");
cout « p2 -> second «endl; II => 1
cout « p2 -> first «endl; II => Fritz

return 0;

187

188 CHAPTER 5. BASIC TOOLS IN C++

II mystl.cpp
#include <iostream>
#inc1ude <map>
#include <string>
using namespace std;

typedef map<string, string> vocabulary;

void main(void)
{

}

string wrd, def;
vocabulary voc;
vocabulary: :iterator itr;
cout « "Populating the dictionary" « endl;
while (true)
{

}

cout « "Enter word: ";
cout.flush{) ;
cin » wrd;
if«wrd == IIQII) I I (wrd == "q")) break;
cout « "Definition: ";
cout. flush{) ;
cin » def;
voc[wrd] = def;

if (voc.empty{))
{

}

cout « "Empty vocabulary! II « endl;
exit(O);

cout « "Vocabulary populated with ";
cout « voc. size () « II elements. II « endl;
cout « "Looking up words in the dictionary" « endl;
while (true)
{

}

cout « "Enter word: "; cin » wrd;
if(wrd == IIQII) I I (wrd == "q")) break;
itr = voc.find(wrd);
if(itr != voc.end()) cout « itr->second « endl;
else cout « "not found!" « endl;

5.13. STANDARD TEMPLATE LIBRARY 189

5.13.11 The Algorithm Class

Algorithms act on the contents of containers. They include functions for initializing,
sorting, searching, and transforming the contents of containers. The functions can
also be applied to arrays of basic data types. The functions are:

sort, find, copy, merge, reverse, replace

The following code shows an application of some of the functions:

II algorithl.cpp

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int mainO
{

const int n = 5;
double x[nJ;
x[OJ = 3.13; x[lJ = 4.5; x[2J = 1.2; x[3J

sort(x,x+n);
cout « "array after sorting: \n";
double* p;
for(p=x; p != x+n; p++)
cout « *p « " ";
cout « endl;

double y;
cout « "double value to be searched for: ";
cin » y;

double* q = find(x,x+n,y);
if(q == x+n)
cout « "not found\n";
else
{

cout « "found";
if(q==x)
cout « " as the first element";
else

0.8; x [4J 0.1;

190 CHAPTER 5. BASIC TOOLS IN C++

}

cout « II after II « *--q;
}

cout « endl;

reverse(x,x+n);
double* r;
cout « "reversed array: II « endl;
for(r=x; r != x+n; r++)
cout « *r « II ";

cout « endl;

int a[6] = { 4, 5, 10, 20, 30, 84 };

int b[5] = { 7, 9, 14, 35, 101 };
int c [11] ;
merge(a,a+6,b,b+5,c);
int i;
for(i=O; i<l1; i++)
cout « "C[" «i« II] = II « c [i]

char str[] = "otto";
int length = strlen(str);
replace(str,str+length,'t','l');
cout « str «endl; II => 0110

vector<int> v(4);

« endl;

v[O] = 1; v[l] = 6; v[2] = 3; v[3] = 2;
vector<int> w(5);
w[O] = 8; w[l] = 10; w[2] = 3; w[3] = 12; w[4] = 5;

sort(v.begin(),v.end(»;
sort(w.begin(),w.end(»;

vector<int> z(9);
merge(v.begin(),v.end() ,w.begin() ,w.end() ,inserter(z,z .begin(»);

for(i=O; i<9; i++)
cout « II Z [II « i « II] = II « z[i] « endl;

return 0;

5.14. RECURSION 191

5.14 Recursion

Recursion plays a central role in computer science. For example a string and a
linear linked list are recursive structures. A recursive function is one whose definition
includes a call to itself. A recursion needs a stopping condition. Of course, it is not
allowed to use the main function in a recursive call.

We consider five examples. In the first example we show how multiplication can
be implemented using recursion. The second example shows an implementation of
division using subtraction and recursion. The length of a string can be found using
recursion. At every step we have to test whether we have reached the end of the string
indicated by the null character I \0 I. In the fourth example we consider a linked list.
All methods use recursion. Finally we give an example for mutual recursion.

II recursion1.cpp
II multiplication of two numbers using recursion

#include <iostream.h>

unsigned long mult(unsigned long a,unsigned long b)
{

}

unsigned long result = 0;
if(a == 0) return 0;
if(b == 0) return 0;
if(a == 1) return b;
if(b == 1) return a;
else result = mult(a,b-1) + a;
return result;

int mainO
{

}

unsigned long n, m;
cout « "enter a non-negative integer n = ";
cin » n;
cout « "enter a non-negative integer m = ";
cin » m;
unsigned long result = mult(n,m);
cout « "result = " « result « endl;

return 0;

192 CHAPTER 5. BASIC TOOLS IN C++

II recursion2.cpp
II
II integer division of two numbers using recursion
II b is the divisor
II a is the dividend

#include <iostream.h>
#include <stdlib.h>

unsigned long divide(unsigned long a,unsigned long b)
{

}

unsigned long result = 0;
if(b > a) return 0;
if(b -- 0) { cout « "division by 0 not allowed"; exit(O); }
if(b == 1) return a;
else
result = divide(a-b,b) + 1;

return result;

int mainO
{

}

unsigned long n, m;
cout « "enter a non-negative integer n = ";
cin » n;
cout « "enter a non-negative integer m = ";

cin » m;

unsigned long result = divide(n,m);
cout « "result = " « result « endl;

return 0;

5.14. RECURSION 193

The program determines the length of a string recursively. A string consists of con­
tiguous characters in memory, ending with the NULL character ' \0'. Conceptually,
we can think of a string as either the NULL string, consisting of just the NULL charac­
ter, or as a character followed by a string. This definition of a string describes it as a
recursive data structure. Thus we can use this to code basic string-handling functions
recursively.

II recursion3.cpp

#include <iostream.h>
#include <string.h> II for strcpy

int length(char *s)
{

}

if(*s == '\0')
return 0;

else
return (1 + length(s+l»;

int mainO
{

}

char* st = "willi hans";
int resl = length(st);
cout « "The length of the string st is: " « resl; II => 10
cout « endl;

char* empty = "\0";
int res2 = length(empty);
cout « "The length of the string empty is: " « res2; II => 0
cout « endl;

char* z = NULL;
z = new char[4];
strcpy(z, "oli");
int res3 = length(z);

II allocating memory

cout « "The length of the string z is: " « res3; II => 3
delete [] z;

return 0;

194 CHAPTER 5. BASIC TOOLS IN C++

The following program shows how to implement a linked list recursively.

II rlist.h

#ifndef RLIST_HEADER
#define RLIST_HEADER

#include <assert.h>

template <class T>
class RList
{

public:
RListO j
RList(const RListk)j
-RListO j

RList koperator=(const RListk)j
int operator==(const RListk)j

void Insert(const Tk)j
int Search(const Tk)j
int Delete(const Tk)j

T Head(void)j
RList* Tail(void)j
int Empty(void)j
RList* Reverse(RList*)j

private:
T headj
RLisu tail j
int emptyj

}j

template <class T>
RList<T>::RList()
{

empty = 1j
}

template <class T>
RList<T>::RList(const RList<T>k RL)
{

empty = RL.emptyj

5.14. RECURSION

head = RL.head;
tail = new RList<T>(*RL.tail);

}

template <class T>
RList<T>: :-RList()
{

}

if (! empty)
delete tail;

template <class T>
RList<T> &RList<T>: :operator=(const RList<T> &RL)
{

}

if(this == &RL) return;
if(!empty) delete tail;
empty = RL.empty;
head = RL.head;
tail = new RList<T>(*RL.tail);

template <class T>
int RList<T>: :operator==(const RList<T> &RL)
{

}

if(empty&&RL.empty) return 1;
if(this == &Rl) return 1;
if(head != RL.head) return 0;
return (*tail == *RL.tail);

template <class T>
void RList<T>: : Insert (const T &tolnsert)
{

}

if (empty)
{

}

head = tolnsert;
tail = new RList<T>;
empty=O;

else
tail->Insert(tolnsert);

template <class T>

195

196 CHAPTER 5. BASIC TOOLS IN C++

int RList<T>: :Search(const T &toSearch)
{

if(empty) return 0;
else if(head == toSearch) return 1;
else return tail -> Search(toSearch);

}

template <class T>
int RList<T>: :Delete(const T &toDelete)
{

if(empty) return 0;
else if(head==toDelete)
{

}

head = tail -> head;
empty = tail -> empty;
tail -> Delete(tail -> head);
if(empty) delete tail;
return 1;

else return tail -> Delete(toDelete);
}

template <class T>
T RList<T>::Head(void)
{

}

assert (! empty) ;
return head;

template <class T>
RList<T> *RList<T>: :Tail(void)
{

}

assert (! empty) ;
return tail;

template <class T>
int RList<T>::Empty(void)
{

return empty;
}

template <class T>
RList<T> *RList<T>: : Reverse (RList<T> *RL)

5.14. RECURSION

{

if (RL->EmptyO)
{

}

RList<T> *temp;
temp = new RList<T>;
return temp;

else
{

}

RList<T> *R;
R = Reverse(RL->Tail(»;
(*R).Insert(RL->Head(»;
return R;

}

#endif

An appliction is as follows:

Ilrlisteg.cpp

#include <iostream.h>
#include "rlist.h"

int main(void)
{

RList<int> L;
int i;
for(i=l; i<=8; i++) L.lnsert(i);

RList<int>* LX = &L;
cout « "The initial RList is: II « endl;
while(!LX -> Empty(»
{

}

cout « LX -> Head() « I ';

LX = LX -> Tail();

cout « endl « endl;

RList<int>* R = L.Reverse(&L);
RList<int>* LP = R;

while(!LP -> Empty(»
{

197

198 CHAPTER 5. BASIC TOOLS IN C++

}

cout « LP -) Head() « I ';

LP = LP -) Tail();

cout « endl « endl;

cout « "what happened to the initial list: "« endl;
LP = tL;
while(!LP -) Empty(»
{

cout « LP -) Head() « I ';

LP = LP -) Tail();
}

cout « endl;

cout « "remove some items: "« endl;
L.Delete(l);

}

L.Delete(4);
L.Delete(8);
LP = ItL;
while(!LP -) Empty(»
{

cout « LP -) Head()
LP = LP -) Tail();

}

cout « endl;

cout « "is 3 in the
cout « "is 4 in the

return 0;

The output is

The initial RList is:
1 2 345 6 7 8

8 7 6 543 2 1

« I I.
I

list: II « L.Search(3)
list: II « L.Search(4)

what happened to the initial list:
1 2 3 4 5 6 7 8
remove some items:
23567
is 3 in the list: 1
is 4 in the list: 0

« endl;
« endl;

5.14. RECURSION 199

In mutual recursion we have two functions which call each other. As an example we
consider an implementation of sine and cosine. The identities

sin (x) == 2sin(x/2}cos(x/2}

cos(x} == cos2(x/2} - sin2(x/2} == 2cos2(x/2} - 1.0

are used. Both sine and cosine call themselves and are therefore recursive. The sine
function calls the cosine function. For the cosine function we have two options. For
speed we select the second option where cosine calls only itself.

II sincos.cpp

#include <iostream.h>
#include <math.h>

double sine(double,double); II forward declaration
double cosine(double,double); II forward declaration

void mainO
{

}

double x = 3.14159;
double eps = 0.001;
double resl = sine(x,eps);
cout « "resl = " « resl « endl;
double res2 = cosine(x,eps);
cout « "res2 = " « res2 « endl;

double sine(double x, double. eps)
{

}

double s;
if(fabs(x) < eps) { s = x*(1.0 - x*x/6.0); }
else s = 2.0*sine(x/2.0,eps)*cosine(x/2.0,eps);
return s;

double cosine(double x,double eps)
{

}

double c;
if(fabs(x) < eps) { c = 1.0 - x*x/2.0; }
else c = 2.0*cosine(x/2,eps)*cosine(x/2,eps) - 1.0;
return c;

200 CHAPTER 5. BASIC TOOLS IN C++

5.15 Summary

This chapter presented the basic programming constructs and tools available in C++.
We began by describing pointers and references in C++: why, when and how they
can be used. Different constructs in C++ were described, they include

• class

• constructors and destructor

• copy constructor and assignment operator

• type conversion

• operators overloading

• lass template

• function template

• friendship

• inheritance

• virtual functions

• Standard Template Library

• recursion.

In each section, examples were used for illustration. They showed the ability to
support the notion of object-orientation, which includes

• encapsulation

• message-passing

• inheritance

• polymorphism, etc.

Based on the features provided in the language, programmers are able to write pow­
erful object-oriented programs.

In the following chapter, a collection of useful classes will be constructed using C++,
where most of the features described here will be used.

Chapter 6

Classes for Computer Algebra

In this chapter we introduce the basic building classes of our symbolic system. The
chapter deals with many structures in mathematics as well as some common data
structures in computer science. The description of the classes are arranged in such a
way that primitive structures like very long integer, rational class are placed earlier
in the chapter than the more sophisticated structures like vector, matrix class, etc.
There are thirteen classes presented in this chapter:

(1) Verylong provides the integer numbers abstract data type without upper
and lower bound.

(2) Rational provides the rational numbers abstract data type.
(3) Complex provides the complex numbers abstract data type.
(4) Quaternion provides the quaternion abstract data type.
(5) Derive provides the exact differentiation class.
(6) Vector provides the vector data structure.
(7) Matrix provides the matrix data structure.
(8) Array provides the array data structure.
(9) String provides the string abstract data type.
(10) BitVector provides the bit vector field abstract data type.
(11) List provides the linked list abstract data type.
(12) Polynomial provides the polynomial abstract data type.
(13) Set provides the set abstract data type for finite sets.

In each class, the basic ideas and the theory of the class are explained, followed by
the abstraction. Different parts of the class, like data fields, constructors, operators
and member functions, etc. are also described. Only short examples are given in each
section. More advanced applications will be presented in Chapter 8.

201

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

202 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.1 The Verylong Integer Class

6.1.1 Abstraction

The integer data type is implemented internally in most programming languages.
However, the effective range is limited due to the nature of the registers of the CPU.
For a 4-byte integer, the effective range is between _231 to 231_1 or -2,147,483,648
to 2,147,483,647. This range is usually not sufficient for an elaborate computation
which requires very large positive integer numbers or negative integer numbers. The
purpose of this section is to break the limitation of the built-in integer data type by
introducing the concept of a verylong integer class.

For a data type to be able to store an arbitrary long integer number, we have to
figure out a storage method in memory that imposes no limitation on representing an
integer number. Using a string of characters to represent a very long integer is one
possibility. Unlike the built-in integer type which could only be stored in 4 bytes of
memory, we go beyond this limit. By using a string to represent an integer number,
we could in principle make the string as long as possible (subject to availability of
memory). This has the implication that an integer number could be represented to
any number of digits.

The string that stores the very long number contains only character digits cO', c 1 ' ,
c 2 " . .. , c 9 '. Each digit in the string represents a decimal digit of the number. For
example, the string "123" represents the value 123 in decimal. With this representa­
tion, the arithmetic operations could be implemented using the usual manipulation
algorithms. Although this is not the only possible representation and it may not be
the best way, some other representations such as binary representation may need some
less straightforward algorithm for implementing the arithmetic operations. Since sim­
plicity is one of our primary goals, we choose the decimal representation.

An abstract data type (ADT) defines not only the representation of the data (for
example, the string of characters of integers in the case of the Verylong class) but
also the operations which may be performed on the class. However, both the data
representation and the implementation details of the operations should be hidden.
The user only needs to know the behaviours of the ADT and the public interfaces.
It is generally a good idea to strive for complete but minimal class interfaces. This
applies to the Verylong class as well. In the following we summarize the behaviours
of the Very long class ADT:

• We have to create new instances of Verylong number abstraction easily.

• We have to use the arithmetic operators such as +, -, *, /, %, ++, -- to manip­
ulate the instances of the Verylong number.

• We have to assign a Verylong number value to a Verylong variable using the
operator =.

6.1. THE VERYLONG INTEGER CLASS 203

• The modification forms of assignment, such as +=, -=, *=, /=, %=, have to be
supported.

• The relational operators >, >=, <, <=, ==, != should be available.

• We have to convert instances of Verylong number to other standard data types
like int, double and char * when necessary.

• Some common functions like absolute value functions abs () , integer power func­
tion powO, integer square root function sqrt 0 and double division operator
di v 0 have to be included as well.

• We have to perform input and output operations using the Verylong numbers.

6.1.2 Data Fields

There are three data fields in the Verylong class, namely vlstr, vlen, vlsign. Fol­
lowing the philosophy of information hiding the data fields are declared as private
which makes them inaccessible from outside the class. To access or manipulate the
private data of the class, one has to use the member functions or operators available.

Below is a description of each data field in the class:

• The variable vlstr stores a string of characters consisting of integers which
represents the very long integer number. The string could in principle be stored
as the usual ordering or stored in the reversed order. We have chosen to store·
it in the reversed order to facilitate some manipulations.

• The variable vlen contains the length of the character integer without counting
the sign bit.

• The variable vlsign stores 0 or 1 which indicates a positive or negative number,
respectively.

6.1.3 Constructors

This section shows how a Verylong number is created. As with all data types, the
simplest way to create a Verylong number is through the declaration statement. For
example,

Verylong x;

It creates a new variable named x. This simple statement actually invokes the default
constructor provided in the class. During the construction, the Verylong number is
initialized to zero internally. However, one may think about initializing the Verylong
number to a specific value other than zero. C++ allows the constructors to be
overloaded with multiple definitions. Different constructors could be differentiated

204 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

by different argument lists in the declaration statement. The following statement, for
example, creates a new variable named y, and the variable y is initialized to the value
3:

Verylong y(3);

Again, there exists some problem with this specification. What happens if the user
wants to initialize a value that exceeds the built-in integer type? One solution to
this problem is to provide a constructor that reads in a string of character integer as
its argument. With this implementation, one could declare a Verylong number yet
initialize it to any possible value. For example,

Verylong u("123") initializes the variable u to the value of 123.
Verylong v("1234567890123") initializes the variable v to a value that exceeds

the bound of the built-in integer type.
Verylong w("-567890") initializes a negative integer number.

Below is a brief description of the constructors available in the class:

• Verylong(const char*) takes in a string of character integer as argument. It
checks and assigns the sign of the integers, allocates memory and stores them
internally. If there is no argument during the construction, it is initialized to
zero.

• VerylongUnt) takes an integer as argument, converts it to a string of character
integer and stores it internally.

• The copy constructor is crucial for the class. Although the C++ compiler
automatically generates one if it is omitted, the generated copy constructor
may not be correct whenever it involves dynamic allocation of data fields as in
this case. The assignment operator would simply copy the pointers. This is not
what we want. Therefore the programmer is responsible to define a proper copy
constructor to ensure that the duplication of instances are correct.

• The destructor simply releases memory that is no longer in use.

6.1.4 Operators

When we multiply two matrices A*B, the method used to perform the operations is
quite different from multiplying two floating point numbers. In C++, arithmetic op­
erators can be overloaded. The only requirement is that a new definition must not be
ambiguous. This means that the definition must not require arguments that match
any existing definition.

In the case of the Verylong class, various operators have been overloaded. They are

++, -(unary), +, -, *, I, %, =,
+=, -=, *=, 1=, %=, -- !=, <, <=, >, >=.

6.1. THE VERYLONG INTEGER CLASS 205

In the following, we describe the functions and the algorithms used for each operator:

• The assignment operator = is used to assign a Verylong number to another.
Its implementation is similar to the copy constructor but their functions are
different.

• Just like any other built-in data type, the increment and decrement operators
are overloaded in the class. However, they can be used in two different ways
- prefix and postfix. In order to overload these operators, we need to know
how to distinguish between them. As shown in the following, the operator with
no parameter is for prefix usage and the operator with an int parameter is for
postfix usage:

class Verylong
{

}

Verylong operator ++ (); II prefix: ++Verylong
Verylong operator ++ (int); II postfix: Verylong++

When implementing the two functions, we should remember that:
(1) For prefix use, change the value and then use it.
(2) For postfix usage, use the value and then change it.

This explains the structure of these functions:

II Prefix increment operator
Verylong Verylong: : operator ++ ()
{

return *this = *this + one;
}

II Postfix increment operator
Verylong Verylong: : operator ++ (int)
{

}

Verylong result(*this);
*this = *this + one;
return result;

• The addition operator + adds two Verylong integers.

The exclusive or (XOR) operator A is used to determine the signs of each ar­
gument which in turn determine how the operations are to be carried out.

206 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

Suppose we are evaluating u+v, where u, v are instances of the Verylong class,
we perform the following:

Step 1. If u and v are of different sign then

- if u is positive then return u -I v I else return v-I u I

- in both cases, the result is evaluated using the subtraction opera-
tor.

else get digit by digit from each operand and add them together using
the usual addition arithmetic.

Step 2. Finally determine the correct sign and return the result.

• The subtraction operator - subtracts one Verylong integer from another. Sim­
ilar to addition, the exclusive or operator A is used to determine the signs of
each argument. Suppose we are evaluating u-v, where u, v are instances of the
Verylong class, we perform the following:

Step 1. if u and v are of different sign then

- if u is positive then return u+ I v I else return - (v+ I u I)

- in both cases, the result is evaluated using the addition operator.

else get digit by digit from each operand and subtract them using the
usual subtraction arithmetic.

Step 2. Finally determine the correct sign and return the result.

Note that the addition and subtraction operators invoke each other during the
manipulation.

• Suppose we are evaluating u*v, where u, v are instances of the Verylong class.
The multiplication is carried out using the usual method:

For each digit in v, we multiply it by u using a private member function
mul tdigi to. The summation of these results gives the product of u and v.

• For the division operator /, the algorithm used is the usual long division. Con­
sider the expression u/v. First we make sure that the divisor v is non-zero. A
zero value is return if u<v. The rest of the operations involves finding the quo­
tient digit by digit. Finally, we assign the correct sign to the value and return
it.

• The modulo operator 'I. is calculated using u - v* (u/ v) .

• There are 6 relational operators defined in the class. For ==, we compare the
signs and the contents of the two numbers. If they are both equal to each other,
then the two numbers must be equal. The ! = could be calculated using ! (u==v) .

To check if u <v is true, we do the following:

6.1. THE VERYLONG INTEGER CLASS 207

- Compare the signs of the two numbers u and v; a positive number is always
greater than a negative number.

- If both numbers have the same sign, compare the lengths of each number
taking their signs into consideration.

- If both numbers have the same length, reverse the string and compare their
values using the built-in function strcmp 0 .

- Return the boolean value - 1 or 0 (True/False).

The rest of the relational operators could be constructed based on the less than
operator <:

- <= could be constructed by (u<v or u==v)

- > could be constructed by (! (u <v) and u! =v)

- >= could be constructed by (u>v or u==v)

6.1.5 Type Conversion Operators

In C++, a floating point number could be assigned to an integer number and vice
versa. The type conversion is done implicitly. In the case of the Verylong class, we
would like to include these properties as well. There are two types of conversion:

1. Convert a Verylong number to a built-in data type.
This type of conversion is accomplished by the conversion operator provided in
C++. Three conversion operators are used in the class:

• operator int 0 converts the Verylong number into a built-in integer type
if it is within the valid range, otherwise an error message is reported.

• operator double 0 converts the Verylong number to a double precision
floating point number where applicable.

• operator char* 0 converts the Very long number to a pointer to char­
acter type. This conversion is useful when we apply the routines in the
library <string.h> (see Chapter 11).

2. Convert a built-in data type to a Verylong number.
This type of conversion is carried out by the constructors of the class. The
constructors read the data type of the arguments and perform the appropriate
transformation which converts a built-in data type to a Verylong number.

208 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.1.6 Private Member Functions

Some operations on the data fields should not be visible to the user. Member functions
like this are declared as private. There are 3 private member functions in the class.
Their behaviours are described as follows:

• mul tdigi t (int num) multiplies this Very long number by num where num is an
integer ranged between 0 and 9. This function is invoked during the multipli­
cation of two Verylong numbers.

• multl0(int num) multiplies this Verylong number by lOnum •

e.g. v.multlO(5) is equivalent to v * 100000.

• strrev(char *s) reverses the order of the string s and returns it.

6.1.7 Other Functions

For a class to be useful, one must include a complete set of public interfaces. A
Verylong class could not be considered as complete if the following functions were
omitted:

• abs(const Verylong&) returns the absolute value of a Verylong number.

• Integer square root function sqrt (const Verylong&)

Given a positive integer b, the integer square root of b is given by a provided

For example, the integer square root of 105 is 10 since 102 ~ 105 < 112.

There are many ways to find an integer square root of a positive integer. The
method we use here is based on the identity (a + W == a2 + 2ab + b2• The
algorithm is as follows:

Step 1. Start from the rightmost digit towards the left and split the number
into 2 digits each. The number of segments is equal to the number of
digits of the integer square root.

Step 2. Get the first digit a of the result by taking the integer square root of
the first segment. Record the result immediately.

Step 3. Subtract a2 from the first segment and get the remainder.

Step 4. Divide the remainder by 2a to obtain the second digit of the root b.
Record the result.

Step 5. Subtract 2ab and b2 from the remainder in the appropriate position.

Step 6. If all the digits required have been obtained, return the final result.

Step 7. Go to Step 4 to find the next few digits of the integer square root.

6.1. THE VERYLONG INTEGER CLASS 209

For the purpose of illustration, consider the following example: v'394384 = ?

3 9 4 3 8 4
3 6 a-t6 · First digit

3 4 3 34 -:- 2*6-t2 · Second digit
2 4 2a * b = 2 * 6 * 2 = 24

4 b2 = 4
9 9 8 4 998 -:- 2 * 62 -t 8 · Third digit
9 9 2 2 ab * c = 2 * 62 * 8 = 992

6 4 c2 = 64
Q

Therefore, sqrt (394384) = 628 .

• pow(const Verylong&, const Verylong&)

Suppose we want to compute X 29 , we could simply start with x and multiply
by x twenty-eight times. However it is possible to obtain the same answer with
only seven multiplications: start with x, square, multiply by x, square, multiply
by x, square, square, multiply by x, forming the sequence

This sequence could be obtained by its binary representation 11101: replace
each "1" by the pair of letters SX, replace each "0" by S, we get SX SX SX
S SX and remove the leading SX to obtain the rule SXSXSSX, where "s" is
interpreted as squaring and "X" is interpreted as multiplying by x. This method
can readily be programmed. However it is usually more convenient to do so from
right to left. Here, we present an algorithm based on a right-to-left scan of the
number:

Consider for positive N:

Step 1. Set N f- n, Y f- 1, Z f- x
Step 2. If N is odd, Y f- Y X Z, N f- IN/2J

If N = 0 return the answer Y
else N f- IN/2J

Step 3. Z f- Z X Z and goto Step 2

where l x J denotes the floor function. It is defined as the largest integer value
smaller than x. Let us consider the steps in the evaluation of X 29 :

210 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

N Y Z
After Step l. 29 1 x
After Step 3. 14 x x2

After Step 3. 7 x X4

After Step 3. 3 x5 x8

After Step 3. 1 x13 X16

After Step 3. 0 X29

• div(const Verylong&,const Verylong&)

The usual division operator / performs integer division. In many cases, however,
we need the floating point value of the quotient of Verylong numbers. The
function di v (u, v) is used to perform floating point division and the return
type of the function is double. In this function, we perform the following:

- First, we ensure that the denominator is not equal to o.
- Next, we find the appropriate scale factor to start with.

- Then, we find the quotient digit by digit.

- The division is completed if there is no remainder or 16 significant digits
have been obtained.

6.1.8 Streams

The» and « operators are used for input and output, respectively. These operators
work with all the built-in data types. For the Verylong class we overload the stream
operators. For example, one could read a value from an input stream into a Verylong
variable named x and then display the value.

#include <iostream.h>
#include "Verylong.h"

void mainO
{

}

Verylong x;
cin » x;
cout « "The value entered is " « x « endl;

The implementation for these functions are quite straightforward:

• istream& operator » (istream&,Verylong&)
It reads in a sequence of characters of integers from the stream (e.g. keyboard),
assuming a maximum string length of 1000 characters .

• ostream& operator « (ostream&,const Verylong&)
It displays the value of the Verylong number.

6.2. THE RATIONAL NUMBER CLASS 211

6.2 The Rational Number Class

6.2.1 Abstraction

In mathematics a number system is built up level by level. In this section, we con­
struct a Rational number class, which is the natural extension of integer Z. The
mathematics of rational numbers has been described in Section 2.3.

Here, we encounter again the problem faced in the last section, namely, the integral
data type in C++ has limited range. In order to solve this problem, instead of using
int, we use the Verylong to represent the numerator and denominator of a Rational
number. However, we have decided to extend it further; we make use of the class
template feature provided in C++ to implement the class. This allows the users to
select the data type that suits their purposes.

We have to specify the behaviours of the Rational number ADT:

• It is a template class for which the data type of the numerator and denominator
are to be specified by the users.

• Creation of a new instance of Rational number is simple.

• The Rational number is reduced and stored in its simplest form, using the
greatest common divisor algorithm.

• Arithmetic operators such as +, -, *, / are available ..

• Assignment and modification forms of assignment =, +=, -=, *=, /= are available.

• The relational operators>, >=, <, <=, ==, ! = are available.

• Conversion to the type double is supported.

• Functions that return the numerator, denominator, and fractional part of Rational
numbers are available.

• Input and output operations with Rational numbers are supported.

6.2.2 Template Class

Rational numbers with numerator and denominator of type int could not represent
the whole class of rational numbers due to the limitation on the data type into This
is possible only if the numerator and denominator can represent the whole range of
the integer. The Verylong class developed in the previous section in principle allows
an arbitrarily long integer number. Therefore, we need to incorporate the Verylong
number into the Rational class somehow.

212 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

The template in C++ provides parametrized types. With this feature, the same code
could be used with respect to different types where the type is a parameter of the
code body. Template classes give us the ability to reuse code in a simple type safe
manner that allows the compiler to automate the process of type instantiation.

We have developed the Rational number as a template class. The reason is that the
data items, numerator and denominator, could be of type int or Verylong as specified
by the user. With this desirable feature, one can perform extensive computation
without worrying that a number could possibly run out of range.

6.2.3 Data Fields

The Rational class declares two fields of data type T. This means that the user has
to specify the actual data type represented in order to use the class. The first field p
maintains the numerator, while the second field q maintains the denominator of the
Rational number. Note that in order to enforce the concept of data hiding, both
fields are declared as private. Therefore they are accessible only within the class.

6.2.4 Constructors

To declare a Rational number, we proceed as follows:

II To declare a Rational number u of int-type which is initialized to 0
Rational<int> u;

II To declare v and initialize it to 5
Rational<int> v(5);

II To declare w and initialize it to 2/3
Rational<int> w(2,3);

II To declare x of Verylong-type and initialize it to 127762/2384623
Rational<Verylong> x(127762,2384623);

II To declare y and initialize it to a value that exceeds the int-bound
Rational<Verylong> y("32872134727762","2348972938479822384623");

There are three constructors in the class which cater for different ways of construction
of a Rational number:

1. The default constructor declares a Rational variable and it is initialized to
zero.

2. Rational(const T N) declares a Rational variable and initializes it to N.

6.2. THE RATIONAL NUMBER CLASS 213

3. Rational (const TN, const T D) declares a Rational variable and initializes
it to N/D.

One may argue that it is possible to combine the three constructors into one by putting
Rational(const T = 0, const T = 1). However, the compilers we use complain
about this construct because it is a class template. To be on the safe side, we decide
to maintain three constructors.

During the construction, a private member function gcd 0 is invoked to reduce the
Rational number into its standard form. The copy constructor and destructor pro­
vided by the compiler work well in this case, but for completeness we have included
them in the class.

6.2.5 Operators

Since the Rational class is a mathematical object, the common operators used in
the class are the arithmetic operators. We have included many operators in the class,
namely

-(unary), +, -, *, /, =, +=, -=, *=, /=, ==, !=, >, >=, <, <=.

The definitions of some of these operators are as follows:

a -a
b b'

a c a*d+b*c a c a*d-b*c -+-=
b*d b b d d b*d

a c a*c a c a*d -*-=-- b7 d ,
b d b * d' b*c

a c - == - => (a == c) and (b == d),
b d

The implementations of these operators are straightforward and can be understood
easily.

6.2.6 Type Conversion Operators

A type conversion operator allows a data type to be cast into another when needed.
A floating point representation of a Rational number is always useful. Here, we
have included a conversion operator to the data type double. The conversion op­
erator in the class exists in two forms. One is the general form which allows any

214 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

data type to be cast into double. The other is only specific to the conversion from
Rational<Verylong> to double. One may ask why we need an extra conversion
operator for the Rational<Verylong> when the other one could do the job as well.
As we see in the following example, there exists a better and more accurate method
for the Rational<Verylong> number.

The general method which works for any data type simply returns the double-cast
value of the Rational number:

return double(p)/double(q);

This method works quite well for the Rational<Verylong> number in general, but it
fails sometimes due to the limited accuracy in double. Recall that there is a function
named divO which could do the double division for Verylong numbers. With this
function we could do a better job:

return div(p,q);

For the purpose of illustration, consider the following example:

II division.cxx

#include <iostream.h>
#include "Verylong.h"

void mainO
{

}

Verylong P("999"), Q("l11"), D("105");

P = pow(P,D); II 999 A l05 = 9.00277e+314 (exceeded double limit)
Q = pow(Q,D); II lll A l05 = 5.74001e+214
cout « div(P,Q) « endl; II 1.56842e+l00 - OK
cout « div(Q,P) « endl; II 6.37583e-l0l - OK
cout « double(P)/double(Q) «endl; II NaN
cout « double(Q)/double(P) «endl; II NaN

The statement double(P)/double(Q) does not work when P or/and Q exceed the
limit of the data type double which is about ± 1. 7977 x 10308 as shown in above.
The word NaN stands for Not A Number. From this example, we conclude that the
definition for the Rational<Verylong> is necessary.

6.2. THE RATIONAL NUMBER CLASS 215

6.2.7 Private Member Functions

Private member functions are internal member functions that are only known to the
class itself. They are inaccessible from outside the class. There is only one private
member function in our class. The private member function

gcd(T a,T b)

returns the greatest common divisor of a and b using the following algorithm:

Step 1. While b > 0, do the following:

* m +- a mod b
* a +- band b +- m

Step 2. Return the answer a.

For example, gcd(4,8) returns 4.

6.2.8 Other Functions

There are only three member functions, other than the arithmetic operators, defined
in the class: num 0, den 0 and frac O. They return the numerator, denominator
and the fractional part of the Rational number, respectively.

template <class T> T Rational<T>: :num() const
{ ... }

template <class T> T Rational<T>: :den() const
{ }

template <class T> Rational<T> Rational<T>: :frac() const
{ ... }

Notice that they are declared as const functions. This indicates that the functions
do net alter the value of the instance. Any value can be declared as constant in
C++. A constant variable is bound to a value and its value can never be changed.
Therefore, only constant operations can be performed on the value. An application
of these methods is given in the following program

II testfrac.cpp

#include <iostream.h>
#include IIRational.h ll

int mainO
{

Rational<int> r(7,3);
int n = r.num();

216 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

}

int d = r.den();
Rational<int> f;
f = r.fracO;
cout « lin = II «n«
cout « lid = II «d«
cout « "f = II « f «

return 0;

endl; II => 7
endl; II => 3
endl; II => 1/3

6.2.9 Streams

In this section, we describe how the » and « operators are overloaded to perform
the input and output for a Rational number:

• The input stream operator » is implemented in the way that one could input a
fraction like alb from the keyboard and the class could recognize that a is the
numerator whereas b is the denominator. On the other hand, if a non-fraction
is entered, the class should be able to recognize that it is an integer (i.e. a
rational number with denominator equal to one).

In order to fulfill the requirement, the function make use of some functions from
<iostream.h> library. The manipulator ws clears any leading white space from
the input. The function peekO is used to have a sneak preview of the next
character and the function get 0 reads a character from the input stream. No
precaution against erroneous input is taken. The users take the full responsi­
bility for handling the function in a proper manner .

• The implementation for the output stream operator « is much simpler. If the
denominator of the Rational number is equal to one, then output only the
numerator. Otherwise, output the value of the fraction.

6.3. THE COMPLEX NUMBER CLASS 217

6.3 The Complex Number Class

6.3.1 Abstraction

The header file <complex. h> is available in the C++ library. However, the data type
of the real and imaginary part is double. This is not sufficient for applications which
require exact manipulation of the complex numbers. This limitation has prompted
us to construct another complex number class which uses the template. This class
allows us to use the Rational number class, developed in the previous section, as the
real and imaginary part of the complex number. Hence, exact manipulation becomes
possible. We describe the abstraction and give an implementation for the Complex
number class. An example is also given at the end of this section to demonstrate how
the class can be used.

Since the Complex ADT is a numeric type, it should have all the properties that a
number should have. The behaviours of the class are as follows:

• It is a template class for which the data type of the real and imaginary parts
are to be specified by the user.

• There are three simple ways to create a Complex number.

• Arithmetic operators such as +, -, *, / are available.

• Assignment and modification forms of assignment =, +=, -=, *=, /= are available.

• Six relational operators>, >=, <, <=, ==, ! = are available.

• Six member functions are supported, they are:

1. realPart 0 returns the real part of a Complex number.

2. imagPartO returns the imaginary part of a Complex number.

3. magnitude () returns the magnitude of a Complex number.

4. argument () returns the argument of a Complex number.

5. conjugate 0 returns the conjugate of a Complex number.

6. negate () returns the negative of a Complex number.

• Input and output operations with Complex numbers are supported.

6.3.2 Template Class

As in the Rational number class, the users may want to have a better control over
the coefficients of a Complex number. This can be achieved by implementing the class
as template. Below are some possible ways to use the Complex number class:

218 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

• Complex<int>

z = x + iy x, yare of data type int

• Complex<double>

Z = x + iy x, yare of data type double

• Complex<Rational<int> >

Z = alb + i cld a, b, c, d are of data type int

• Complex<Rational<Verylong> >

z = alb + i cld a, b, c, d are of data type Verylong

Note that a space between the two >'s that ended the template names is always
required. If the space between the >'s is omitted, the compiler will complain about
it.

6.3.3 Data Fields

Since there are two different ways of representing a complex number, we have to
choose one to represent the data field internally. We use the Cartesian form of the
complex number because this representation is simpler. However, the choice is left
to the readers. No matter which representation has been chosen, the users should be
unaware of which is used internally. Complex numbers in Cartesian form have two
components, i.e. the real and imaginary part. This is represented by the variables
real and imag in the class.

6.3.4 Constructors

The most important functions of a class are the constructors. We provide three
different means to construct a Complex number:

1. The default constructor declares a Complex variable without specifying its initial
value. It is set to zero automatically.

2. The constructor which contains one argument declares a Complex number with
its imaginary part equal to zero and the real part is initialized to the value
specified in the argument.

3. The constructor which contains two arguments declares a Complex number with
the real and imaginary part initialized to the values specified.

The following examples illustrate how a Complex number could be constructed in
different ways:

6.3. THE COMPLEX NUMBER CLASS

II Declare a Complex number u of int-type
II which is initialized to 0
Complex<int> u;

II Declare a Complex number v of double-type
II which is initialized to 0
Complex<double> v;

II Declare w and initialize it to 2
Complex<int> w(2);

II Declare x and initialize it to 2 + 3i
Complex<int> x(2,3);

II Declare and initialize y
II with coefficient of Rational<int>-type

219

Complex<Rational<int> > y(Rational<int>(l,2), Rational<int>(3,4»;

II Declare and initialize z
II with coefficient of Rational<Verylong>-type
Complex<Rational<Verylong> > z(Rational<Verylong>("12345","345123"),

Rational<Verylong>("987659876543","82567834536572693487");

As in the Rational class, one may tend to believe that the constructor with default
argument

Complex(const T = O,const T = 0)

could replace the three constructors mentioned above. However, for the reason of
generality we keep them separated.

The copy constructor and destructor are trivial in this class. However, we have
included them for completeness.

6.3.5 Operators

Here we discuss the behaviours of the arithmetic operators available in the class.
Operators that have been overloaded include

-(unary), +, -, *, I, =, +=, -=, *=, 1=, <, <=, >, >=, -- !=.

The definitions and operations for these operators are as follows:

(a + ib) + (c + id)
(a + ib) - (c+ id)

= (a+c)+i(b+d)
(a - c) + i(b - d)

220 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

(a + ib) x (e + id) = (ae - bd) + i(ad + be)

(a + ib)
= ae + db + i Ce - ad)

(e + id) e2 +d2 e2 +d2

(a + ib) < (e + id) ~ (a2 + b2) < (e2 + ~)
(a + ib) == (e + id) ~ (a == e) and (b == d)

The implementations of these operators are quite straightforward and the readers
should have no difficulty of understanding them.

6.3.6 Type Conversion Operators

We have

ZCQCRCC

i.e. the integers are a subset of the rationals, which are a subset of the reals, which
are a subset of the complex numbers. Thus the set of the complex numbers is the
superset of all the other sets including the built-in data types. Therefore, we do not
define any type conversion function to any built-in data type, because by doing so
the complex number would suffer from loss of information.

6.3.7 Other Functions
Other than the operators described above, below are some further properties on the
Complex number a + ib that we would like to obtain:

• The real part and imaginary part of a complex number.

• The magnitude of a complex number which is defined as va2 + b2•

• The argument which is defined as tan-1(b/a) (principle branch).

• The complex conjugate of a + ib which is equal to a - ib.

• The negative of a complex number a + ib which is equal to -a - ib.

They are readily obtained by using the six member functions defined in the class:

realPart(), imagPart(), magnitude(), argument(), conjugate(), negate().

6.3. THE COMPLEX NUMBER CLASS

The following program shows the usage of the six member functions:

II scomplex.cxx

#include <iostream.h>
#include "MComplex.h"

int mainO
{

Complex<int> c(3,4); II declares a complex number 3 + 4i

cout « c . realPart 0 « endl; II 3
cout « c. imagPart 0 « endl; II 4
cout « c . magnitude 0 « endl; II 5
cout « c.argument() « endl; II 0.927295
cout « c. conjugate 0 « endl; II (3,-4i)
cout « c.negateO « endl; II (-3,-4i)

return 0;
}

221

For the Complex class to be complete, we still have to include all the special mathe­
matical functions that can be applied to the Complex numbers, for example

sine), cos(), exp(), cosh(), sinh(), sqrt(), log().

The implementations for these functions are left as exercises for the readers.

222 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.4 The Quaternion Class

6.4.1 Abstraction

The quaternion described in Section 2.7 is a higher level mathematical structure
compared with the basic numeric structures like rational and complex numbers. It is
therefore based on the basic structures. The behaviours of the Quaternion ADT can
be summarized as follows:

• It is a template class for which the underlying data type for the coefficients of
each component is to be specified.

• The construction of instances of Quaternion is simple.

• Arithmetic operators for Quaternion are overloaded. For example, (unary)-,
+, -, *, /.

• The assignment operator = is available.

• Operations like finding the magnitude, conjugate and inverse of a Quaternion
are available.

• Input and output stream operations are supported.

6.4.2 Template Class

The coefficients of a Quaternion could be of type int, double or Verylong, etc. A
class like this is best implemented in template form. By doing so, we could avoid
code duplication for different data type of coefficients. In the following, we list some
possible ways to use the Quaternion class:

• Quaternion<int>, Quaternion<double> declare Quaternion with coefficients
of built-in type int and double, respectively.

• Quaternion<Verylong> declares a Quaternion with coefficients of user-defined
type Verylong.

• Quaternion<Rational<int> >, Quaternion<Rational<Verylong> >
declare Quaternion with coefficients of type Rational.

• Quaternion<Complex<int> >, Quaternion<Complex<Verylong> >,
Quaternion<Complex<Rational<int> > >,
Quaternion<Complex<Rational<Verylong> > >
are different ways to declare Quaternion with coefficients of type Complex.

Note that it is interesting to couple four user-defined types successfully to form a new
data type.

6.4. THE QUATERNION CLASS 223

6.4.3 Data Fields

To define a quaternion uniquely, we have to specify the coefficients of the four compo­
nents. This is exactly what we need to maintain in the data fields of the Quaternion
class. The entries r, i, j, k represent the coefficients of 1,1, J, K respectively.

6.4.4 Constructors

The construction of a Quaternion is simple. What the users have to do is to provide
the four coefficients and a Quaternion is created. The users could also opt for not
providing any coefficient whereby the default constructor would be invoked and the
coefficients would be initialized to zero. Below are some examples of how instances
of Quaternion could be constructed:

II To declare u of int-type that is initialized to 0
Quaternion<int> u;

II To declare v of double-type and initialize to 1 + 2I - 3J + 4K
Quaternion<double> v(1,2,-3,4);

II To declare w and initialize to 1/2 - 2/3 I + 3/4 J - 4/5 K
Quaternion<Rational<int> > w(Rational<int>(1,2),Rational<int>(-2,3),

Rational<int>(3,4),Rational<int>(-4,5»;

The copy constructor and destructor are trivial.

6.4.5 Operators

Suppose q and p are two arbitrary quaternions,

q+p, q-p, q/p

are overloaded as the addition, subtraction, multiplication, division of q and p re­
spectively; whereas -q is the negative of q. The mathematics has been described in
Section 2.7.

6.4.6 Other Functions

In this section, we would like to demonstrate the usage of the functions conjugate 0,
inverse 0 , magnitude 0 and the normalization operator (-):

II squater.cxx

#include <iostream.h>
#include "Quatern.h"

224 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

void mainO
{

Quaternion<double> Ql(3,4,5,6),
Q2 = Ql.conjugate(),
Q3 = Ql.inverse();

double Mag Ql.magnitude(), Magz = (-Ql).magnitude();

cout « "Ql " « Ql « endl;
cout « "Q2 Conjugate of Ql = " « Q2 « endl;
cout « "Q3 Inverse of Ql = " « Q3 « endl;
cout « "Mag = Magnitude of Ql " « Mag « endl;
cout « "Magz = Magnitude of normalized Ql = " « Magz
cout « endl;

cout « "Ql * Q2 = " « Ql * Q2 « endl;
cout « "Q2 * Ql = " « Q2 * Ql « endl;

« endl;

cout « "Mag-2 Square of magnitude = " « Mag * Mag « endl;
cout « endl;

cout « "Ql * Q3 = " « Ql * Q3 « endl;
cout « "Q3 * Ql = " « Q3 * Ql « endl;

}

Results

Ql (3,4,5,6)
Q2 = Conjugate of Ql = (3,-4,-5,-6)
Q3 = Inverse of Ql = (0.0348837,-0.0465116,-0.0581395,-0.0697674)
Mag = Magnitude of Ql = 9.27362
Magz = Magnitude of normalized Ql = 1

Ql * Q2 = (86,0,0,0)
Q2 * Ql = (86,0,0,0)
Mag-2 = Square of magnitude 86

Ql * Q3 = (1,0,0,0)
Q3 * Ql = (1,0,0,0)

6.4.7 Streams

The input and output stream functions in the class are straightforward. The input
stream function simply reads in the four coefficients of each component. For the
output stream function, the quaternion q = al * 1 + aI * I + al * J + aK * K is
formatted and exported as (aI, aI, al, aK).

6.5. THE DERIVE CLASS 225

6.5 The Derive Class

6.5.1 Abstraction
So far we have been dealing with numeric types; here we are going to specify a
somehow quite different abstraction. The Derive class provides an operator which
applies to a numeric type, and the result of the operation is again the numeric type.
The behaviours of the ADT are as follows:

• The data type of the result is the template T which is to be specified by the
users.

• The construction of an expression is simple, using arithmetic operators such as
(unary)-, +, -, *, I.

• The member function set 0 is used to specify the point (a number) where the
derivative is taken.

• The value of the derivative can be obtained using the function df O.

• Output operation with the derivative is supported.

6.5.2 Data Fields

There are only two data fields in the class: one being the variable u, which stores the
value of the point where the derivative is evaluated, whereas the other variable du
stores the derivative value of u.

6.5.3 Constructors

The constructors of the class are as follows:

• The default constructor declares an independent Der i ve variable. The depen­
dent variable is declared using the assignment operator or copy constructor.

• Derive(const T num) declares a constant number num.

• The private constructor Derive (const T, const T) is used to define the values
of the point and its derivative.

• The copy constructor and assignment operator are trivial in this case, and
perform no more than member-wise copying.

• The destructor is trivial.

As an example, the declaration of y = 2x + 1 requires the following statements:

Derive<int> x; II This declares the independent variable x
Derive<int> y = 2*x + 1; II and the dependent variable.

226 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.5.4 Operators

The arithmetic operators

(unary)-, +, -, *, I

are overloaded to perform operations that obey the derivative rules as described in
Section 2.9.

6.5.5 Member Functions

The followings member functions are available in the class:

• The function set (const T) operates on the independent variable. It is used to
specify the value of u which is the point where the derivative of f is evaluated.

• The function df(const Derive &x) returns the value of the derivative evalu­
ated at x.

• The output stream operator « returns the value of u.

Let us consider the function f(x) = 2x3 + 5x + 1. Suppose we intend to evaluate the
value of df(x = 2)/dx, we do the following: .

II sderive1.cxx

#include <iostream.h>
#include "Derive.h"

void mainO
{

}

Result
======

Derive<int> x;
x.set(2);
Derive<int> y = 2*x*x*x + 5*x + 1;

cout « "The derivative of y at x = " « x « " is "
« df(y)« endl;

The derivative of y at x = 2 is 29

6.5. THE DERIVE CLASS 227

Consider another function g(x} = x2 + 3/x. Suppose we want to evaluate the value
of dg(x = 37/29}/dx, then

// sderive2.cxx

#include <iostream.h>
#include "Derive.h"
#include "Rational.h"

void mainO
{

}

Result

Derive<Rational<int> > x;
x.set(Rational<int>(37,29));

Derive<Rational<int> > c(3);
Derive<Rational<int> > y = x*x + c/x;

cout « liThe derivative of y at x = II « x « II is II

« df(y)« endl;

The derivative of y at x = 37/29 is 28139/39701

Notice that after the declaration of the independent variable x, we always set the
value where the derivative is taken. This is important and has to be done before
the declaration of the dependent variable y. Otherwise, unpredictable results will be
obtained.

6.5.6 Possible Improvements

The major drawback of this class is the inflexibility in specifying the function f. For
example, to specify the expression y = x5 + 2x3 - 3, it requires a long statement like
y = x*x*x*x*x + 2*x*x*x - 3. What happens if the function required is of the
order of x100?

Other drawbacks include the fact that the derived function f' is not known. Only the
value of f' (a) can be evaluated. This imposes a strict restriction on the usefulness
and applications of the class.

These shortcomings can be overcome by implementing a more elaborate class which
is shown in the next chapter - the Symbolic Class. The class not only solves all the
problems mentioned above, it also includes many more features.

228 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.6 The Vector Class

6.6.1 Abstraction

A vector is a common mathematical structure in linear a)gebra and vector analysis
(see Section 2.6). This structure could be constructed using arrays. However, C and
C++ arrays have some weaknesses. They are effectively treated as pointers. It is
therefore useful to introduce a Vector class as an abstract data type. With bound
checking and mathematical operators overloaded (for example vector addition), we
built a comprehensive and type-safe Vector class. On the other hand, it could replace
the array supported by C and C++ as a collection of data objects.

The Vector class is a structure that possesses many interesting properties for manip­
ulation. The behaviour of the Vector ADT is summarized as follows.

• It is best implemented as a template class, because it is a container class
whereby the data items could be of any type.

• The construction of a Vector is simple.

• Arithmetic operators such as +, -, *, / with Vector and numeric constants are
available.

• The assignment and modification forms of assignment =, +=, -=, *=, /= are
overloaded. We could also copy one Vector to another by using the assignment
operator.

• The subscript operator [] is overloaded. This is useful for accessing individual
data items in the Vector.

• The equality (==) and inequality (! =) operators check if the two vectors contain
the same elements in the same order.

• Operations such as dot product and cross product for Vector are available.

• The member function lengthO returns the size of a Vector while resizeO
reallocates the Vector to the size specified.

• The Matrix class is declared as a friend of the class. This indicates that the
Matrix class is allowed to access the private region of the class.

• Input and output stream operations with Vector is supported.

• The auxiliary file VecNorm.h contains different types of norm operators: Ilvllt,
Ilv112, Ilvlloo and the normalization function for the Vector.

6.6. THE VECTOR CLASS 229

6.6.2 Templates

A container class implements some data structures that "contain" other objects.
Examples of containers include arrays, lists, sets and vectors, etc. Templates work
especially well for containers since the logic to manage a container is often largely
independent of its contents. In this section, we see how templates can be used to
build one of the fundamental data structures in mathematics - the Vector class.

The container we implement here is homogeneous, i.e. it contains objects of just one
type as opposed to a container that contains objects of a variety of types. It also has
value semantics. Therefore it contains the object itself rather than the reference to
the object.

6.6.3 Data Fields

There are only two data fields in the class:

• The variable size stores the length of the Vector.

• The variable data is a pointer to template type T that is used to store the data
items of the Vector. The memory is allocated dynamically so that it fits the
need of the application. For data types that require a huge amount of memory,
it is advisable to release the memory as soon as it is no longer in use. This is
not possible with static memory allocation. Therefore, most array-based data
types such as vectors and matrices should use dynamic memory for their data
storage.

Note that there is no item in the data fields that records the lower or upper index
bound of the vector; this means that the index will run from 0,1, ... ,size-1. To
make a vector that starts from an index other than zero, we may introduce a derived
class that inherits all the properties and behaviours of the Vector class and adds an
extra data field that indicates the lower index bound of the Vector. It is therefore
important to declare the data fields as protected rather than private. This allows
the derived classes to access the data fields. The implementation of such a bound
vector is left as an exercise for the readers.

6.6.4 Constructors

Whenever an array of n vectors is declared, the compiler automatically invokes the
default constructor. Therefore, in order to ensure the proper execution of the class,
we need to initialize the data items properly in the default constructor. This includes
assigning NULL to data. This step is crucial or else we may run into some run-time
problem.

A common error is to assign a Vector to an uninitialized one using the assignment
operator =, which first frees the old contents (data) of the left-hand side. But there is

230 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

no "old" value, some random value in data is freed, probably with disastrous effect.
The remedy is to nullify the variable data because deleting a NULL pointer is perfectly
valid and has no side effect.

There are, in fact, two more overloaded constructors:

Vector(int n) Vector(int n,T value)

The first constructor allocates n memory locations for the Vector, whereas the other
initializes the data items to value on top of that.

The copy constructor Vector(const Vector& source) constructs a new Vector
identical to source. It will be invoked automatically to make temporary copies when
needed, for example for passing function parameters and return values. It could also
be used explicitly during the construction of a Vector.

In the following, we list some common ways to construct a Vector:

II declare a vector of 10 numbers of type int
Vector<int> u(10);

II declare a vector of 10 numbers and initialize them to 0
Vector<int> v(10,O);

II use a copy constructor to create and duplicate a vector
Vector<int> w(v);

Whenever a local Vector object passes out of scope, the destructor comes into play.
It releases the array storage in free memory. Otherwise, it will constitute unusable
storage, because it is allocated but no pointer points to it.

6.6.5 Operators

Most of the operators applicable to Vector are implemented in the class, namely

(unary)+, (unary)-, +, -, *, I,
=, +=, -=, *=, 1=, ==, !=, I, X, O.

Suppose u, v, ware vectors and c is a numeric constant, then the available operations
are defined as follows:

• u+v, u-v, u*v, u/v adds, subtracts, multiplies or divides corresponding elements
of u and v .

• u+=v, u-=v, u*=v, u/=v adds, subtracts, multiplies or divides corresponding
elements of v into u.

6.6. THE VECTOR CLASS 231

• u+=c, u-=c, u*=c, u/=c adds, subtracts, multiplies or divides each element of u
with the scalar.

• The assignment operator = should be overloaded in the class. Should one omit
to define an assignment operator, the C++ compiler will write one. However,
one should bear in mind that the code produced by the compiler simply makes
a byte-for-byte copy of the data members. In the case where the class allocates
memory dynamically, we usually have to write our own assignment operator.
This is because the byte-for-byteoperation copies only the memory address of
the pointer not the memory content. It is dangerous to have multiple pointers
pointing at the same memory location without proper management. The same
argument applies to the copy constructor.

Two forms of the assignment operator have been overloaded:

- u=v makes a duplication of v into u.

- u=c assigns the constant c to every entry of u.

Note that the assignment operator is defined such that it returns a reference to
the object iteself, thereby allowing constructs like u = v = w.

• u==v returns true if u and v contain the same elements in the same order and
returns false otherwise.

• u! =v is just the converse of u==v.

• We use the symbol I as the dot product operator (also called the scalar product
or inner product). It is defined as u I v = u . v = 2:.}=1 UjVj.

• The vector product (also called the cross product) is operated by % in the class.

• The [] operator allows u [i] to access the i th entry of the Vector u. It must
return a reference to, not the value of, the entry because it must be usable on
the left-hand side of an assignment. In C++ terminology, it must be an Ivalue.

The following shows some examples of the usage of the dot product and cross product
of Vector. Suppose A, B, C, D are four vectors in R 3 , then

A x (B x C) + B x (C x A) + C x (A x B) = 0

(A x B) x (C x D) = B(A· C x D) - A(B· C x D)

C(A . B x D) - D(A . B x C)

A . (B x C) = (A x B) . C

The following excerpt program demonstrates that the identities are obeyed for some
randomly selected vectors:

232 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

II vprod.cxx

#include <iostream.h>
#include IIVector.hll

void mainO
{

Vector<double> A(3), B(3), C(3), 0(3);

A[O] = 1.2; A[1] = 1.3; A[2] = 3.4;
B[O] = 4.3; B[1] = 4.3; B[2] = 5.5;
C[O] = 6.5; C[l] = 2.6; C[2] = 9.3;
0[0] = 1.1; 0[1] = 7.6; 0[2] = 1.8;

cout « A%(B%C) + B%(C%A) + C%(A%B) « endl;

}

Result

cout « (A%B)%(C%O) « endl;
cout « B*(AIC%O)-A*(BIC%O) « endl;
cout « C*(AIB%O)-O*(AIB%C) « endl;

II precedence of I is lower than «
cout « (AIB%C) - (A%BIC) « endl;

[1. 4210ge-14]
[0]
[0]

[372.619]
[376.034]
[540.301]

[372.619]
[376.034]
[540.301]

[372.619]
[376.034]
[540.301]

o

6.6. THE VECTOR CLASS 233

The small, non-zero value 1. 4210ge-14 is due to rounding errors. Thus to obtain the
correct result, namely the zero vector, we use the data type Vector<Rational<int> >.

6.6.6 Member Functions and Norms

Other than the arithmetic operators, there exist some useful operations for the Vector
class. Their definitions and properties are listed as follows:

• The function lengthO returns the size of the Vector.

• resize(int n) sets the Vector's length to n. All elements are unchanged,
except that if the new size is smaller than the original, than trailing elements
are deleted, and if greater, trailing elements are uninitialized.

• resize(int n, T value) behaves similar to the previous function except when
the new size is greater than the original, trailing elements are initialized to
value.

In the auxiliary file VecNorm.h, we implement three different vector norms and the
normalization function:

• norm1(x) is defined as IlxliI := IXII + IX21 + ... + IXnl·

• norm2(x) is defined as IIxll2 := JXI + x~ + ... + x~, the return type of norm20
is double.

• normI(x) is defined as Ilxll oo := max {lXII, IX21, ... , IXnl}·

• The function normalize ex) is used to normalize a vector x. The normalized
form of the vector x is defined as xl I x I where I x I is the 2-norm of x.

In order to have a better understanding about these functions, let us consider some
examples:

II vnorm.cxx

#include <iostream.h>
#include "Vector.h"
#include "VecNorm.h"

void mainO
{

Vector<int> v;
v.resize(5,2);
cout « "The size of vector v is " « v . length 0 « endl;

234 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

cout « endl;

Vector<double> a(4,-3.1), b;
b.resize(4);
b[O] = 2.3; b[l] = -3.6; b[2] = -1.2; b[3] = -5.5;

II Different vector norms
cout « "norm10 of a = II « norm1 (a) « endl;
cout « "norm20 of a = II « norm2(a) « endl;
cout « "normIO of a = II « normI(a) « endl;
cout « endl;
cout « "norm10 of b = II « norm1(b) « endl;
cout « "norm2() of b = " « norm2(b) « endl;
cout « "normIO of b = II « normI(b) « endl;
cout « endl;

II The norm2() of normalized vectors a and b is 1
cout « "norm20 of normalized a = " « norm2 (normalize (a)) « end 1 ;
cout « "norm20 of normalized b = " « norm2 (normalize (b)) « endl;

}

Result
======

The size of vector v is 5

norm10 of a = 12.4
norm20 of a = 6.2
normIO of a = 3.1
norm10 of b = 12.6
norm20 of b = 7.06682
normIO of b = 5.5
norm20 of normalized a = 1
norm20 of normalized b = 1

6.6.7 Streams

The overloaded output stream operator « simply exports all the entries in the vector
v and puts them in between a pair of square brackets [vo, VI, V2,"" Vn-l]'

The input stream operator» first reads in the size of the Vector followed by the
data entries.

6.7. THE MATRIX CLASS 235

6.7 The Matrix Class

6.7.1 Abstraction

Matrices are two-dimensional arrays with a certain number of rows and columns. They
are important structures in linear algebra. To build a matrix class, we do not have
to start from scratch. We make use of the advantages (reusability and extensibility)
of object-oriented programming to build a new class based on the Vector class. A
vector is a special case of a matrix with the number of columns being equal to one.
Thus we are able to define a matrix as a vector of vectors.

template <class T> class Matrix
{

}

private:
II Data Fields
int rowNum, colNum;
Vector<T>* mat;

We have declared the Matrix as a template class. Defining the matrix as a vector
of vectors has the advantage that the matrix class methods can use many of the
vector operations defined for the vector class. For example, we could perform vector
additions on each row of the matrix to obtain the result of a matrix addition. This
reduces the amount of code duplication.

To use the matrix class effectively, the users need to familiarize themselves with the
behaviours and interfaces of the class. Below, we summarize the properties of the
Matrix ADT:

• It is implemented as a template class. This indicates that the data type of the
data items could be of any type including built-in types and user-defined types.

• There are several simple ways to construct a Matrix.

• Arithmetic operators such as +, -, * with Matrix and +, -, *, I with numeric
constants are available.

• The assignment and modification forms of assignment =, +=, -=, *= and 1= are
overloaded.

• The vectorize operator is available.

• The Kronecker product of two matrices is supported.

• The subscript operator [] is overloaded to access the row vector of the matrix
while the parenthesis operator 0 is overloaded to access the column vector of
the matrix.

236 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

• The equality (==) and inequality (! =) operators check if two matrices are iden­
tical.

• The transpose, trace and determinant of a matrix are implemented.

• The inverse of a square matrix is implemented.

• The member function resize 0 reallocates the memory for row and column
vectors according to the new specification provided in the arguments of the
function.

• The member functions rows 0 and cols 0 return the number of rows or columns
of the matrix, respectively.

• Input (») and output (<<) stream operators are supported.

• The auxiliary file MatNorm.h contains the three different matrix norms: IIAIIt,
IIAlloo and IIAIIH'

6.7.2 Data Fields

The data fields rowNum and colNum specify the number of rows and columns of the
matrix respectively.

Vector<T>* mat stores the data items of the matrix. It is declared as a vector of
vectors. To allocate the memory space for an m x n matrix, we have to first allocate
a vector of m pointers to Vector. Then for each pointer, we allocate again a vector
of size n. This would result in a total of m x n memory space for the matrix. After
the initialization has been done properly, the matrix is then operational.

6.7.3 Constructors

There are a couple of ways to construct a Matrix in the class. One prime criterion
for a matrix to exist is the specification of the number of rows and columns:

• MatrixO declares a matrix with no size specified. Such a matrix is not usable.
To activate the matrix, we make use of a member function called resize 0,
which reallocates the matrix with the number of rows and columns specified in
the arguments of the function.

• Matrix(int nr, int nc) declares an nr*nc matrix with the entry values unde­
fined.

• Matrix(int nr, int nc, T value) declares an nr*nc matrix with all the entries
initialized to value.

• Matrix(const Vector<T>& v) constructs a matrix from a vector v. It is un­
derstood that the resultant matrix will contain only one column.

6.7. THE MATRIX CLASS 237

• The copy constructor duplicates a matrix. It is invoked automatically by the
compiler when needed and it can be invoked by the users explicitly as well.

• The destructor releases the unused memory back to the free memory pool.

Below are some examples on how to declare a Matrix:

II declare a 2-by-3 matrix of type int
Matrix<int> m(2,3)

II declare a 3-by-4 matrix and initialize the entries to 5
Matrix<int> n(3,4,5)

II duplicate a matrix using the copy constructor
Matrix<int> p(n);

II construct a matrix q from a vector v
Vector<double> v(3,O);
Matrix<double> q(v);

6.7.4 Operators

There are many matrix operators implemented in the class, namely

(unary) + , (unary)-, +, -, *, I,
=, +=, -=, *=, 1=, 0, (), ==, !=.

Some of the operators are overloaded with more than one meaning! The users are
advised to read the documentation carefully before using the class.

In the following, we discuss the behaviour and usage of the operators. Suppose A, B

are matrices, v is a vector and e is a numeric constant,

• The operations A+B, A-B and A*B add, subtract and multiply two matrices
according to their normal definitions.

• The operations A+e, A-e, A*e and Ale are defined as A+el, A-el, A*el and Aiel
respectively where I is the identity matrix.

• The operations e+A, e-A, e*A and el A have similar definitions as above.

• A=B makes a duplication of B into A whereas A=e assigns the value c to all the
entries of the matrix A.

• A+=B, A-=B and A*=B are just the modification forms of assignments which
perform two operations in one shot. For example, A+=B is equivalent to A = A+B.

238 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

• A+=e, A-=e, A*=e and A/=e are just the modification forms of assignments. For
example, H=e is equivalent to A = He!.

• The function vee (A) is used to create a vector that contains elements of the
matrix A, one column after the other. Suppose

then

vee (A) =

2
o
x
3
a

-3

• The Kronecker produ.ct of two matrices is described in Section 2.12. The function
kron(A.B) is used for calculating the Kronecker product of the matrices A and
B. Note that A ® B i= B ® A in general (if A ® Band B ® A are of the same
size) and (A ® B)(C ® D) = (AC) ® (BD) (if A is compatible with C and B is
compatible with D).

• The subscdpt operator [] is overloaded to access a specific row vector of a
matrix. For example, A [i] returns the i th row vector of matrix A.

• The parenthesis operator 0 is overloaded to access a specific column vector of
a matrix. For example, B (j) returns the lh column vector of matrix B.

• The equality (==) and inequality (! =) operators compare whether the individual
entries of two matrices match each other in the right order.

The precedence of == and ! = are lower than the output stream operator «. This
means that a pair of brackets is required when the users write statements that resem­
ble the following:

eout « (u != v) « endl;
eout « (u == v) « endl;

otherwise, the compiler may complain about it.

6.7. THE MATRIX CLASS 239

6.7.5 Member Functions and Norms

Many useful operations have been included in the class. Their properties are described
as follows:

• The transpose 0 of an m x n matrix A is the n x m matrix AT such that the
ij entry of AT is the ji entry of A.

• The trace 0 of an n x n matrix A is the sum of all the diagonal entries of A,
trA := all + a22 + ... + ann·

• determinant 0: The method for evaluating the determinant of a matrix has
been described in Section 2.13. The method employed depends on whether the
matrix is symbolic or numeric. Since our system is meant to solve symbolic
expressions, we use the Leverrier's method for solving the determinant.

• inverse 0 is used to obtain the inverse of an invertible matrix. The methods
used for finding the inverse of a matrix are different for numeric and symbolic
matrices. For a numeric matrix, we can use the LV decomposition [40] and
backward substitution routines, whereas for a symbolic matrix we use Leverrier's
method. This method can also be used for a numeric matrix.

• resize 0 reallocate the number of rows and columns according to the new
specification provided in the arguments of the function.

• rows 0 and cols 0 return the number of rows and columns of the matrix,
respectively.

In the auxiliary file MatNorm. h, we implement three different matrix norms:

• norm! (A) is defined as the maximum value of the sum of the entries in column
vectors,

• normI (A) is defined as the maximum value of the sum of the entries in row
vectors,

240 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

• normH (A) is the Hilbert-Schmidt norm, defined as

n m

IIAIIH:= [trA*A]1/2 = [trAA*]1/2 = L~]aijI2
i=l j=l

Example 1

In this example, we demonstrate the usage of the Kronecker product of matrices. We
declare and define four matrices and then calculate the Kronecker product.

II kron.cxx

#include <iostream.h>
#include "Matrix.h"

void mainO
{

Matrix<int> A(2,3), B(3,2), C(3,1), D(2,2);

A[O] [0] = 2; A [0] [1] = -4; A [0] [2] = -3;
A[l] [0] = 4; A [1] [1] = -1; A [1] [2] = -2;

B [0] [0] = 2; B[O] [1] = -4;
B[1] [0] = 2; B [1] [lJ = -3;
B [2] [OJ = 3; B [2J [1] = -1;

C[O] [0] = 2' ,
C[1] [0] = l' ,
C [2] [0] = -2;

D [0] [0] = 2; D [0] [1] = 1;
D [1] [0] = 3; D[1] [1] = -1;

cout « kron(A,B) « endl;
cout « kron(B,A) « endl;
cout « kron(A,B)*kron(C,D) - kron(A*C,B*D) « endl;

}

6.7. THE MATRIX CLASS

Result

[4 -8 -8 16 -6 12]
[4 -6 -8 12 -6 9]
[6 -2 -12 4 -9 3]
[8 -16 -2 4 -4 8]
[8 -12 -2 3 -4 6]
[12 -4 -3 1 -6 2]

[4 -8 -6 -8 16 12]
[8 -2 -4 -16 4 8]
[4 -8 -6 -6 12 9]
[8 -2 -4 -12 3 6]
[6 -12 -9 -2 4 3]
[12 -3 -6 -4 1 2]

[0 0]
[0 0]
[0 0]
[0 0]
[0 0]
[0 0]

241

242 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

Example 2

In this example, we demonstrate that

tr(AB} = tr(BA} and tr(AB} 1= tr(A}tr(B}

in general.

II trace.cxx

#include <iostream.h>
#include "Matrix.h"

void mainO
{

Matrix<int> A(3,3), B(3,3,-1);
A[O] [0] = 2; A[O] [1] = -1; A[O] [2]
A[1] [0] = 1; A[l] [1] = -2; A [1] [2]
A[2] [0] = 3; A [2] [1] = 2· A[2] [2] ,

cout « "A =\n" « A « endl;
cout « "B =\n" « B « endl;

= 1· ,
= -1;
= 2;

cout « "tr(A) = " « A. trace 0 « endl;
cout « "tr(B) = " « B.traceO « endl;

}

Result
======

A =

cout « "tr(AB) = " « (A*B). trace 0 « endl;
cout « "tr (BA) = " « (B*A). trace 0 « endl;
cout « "tr (A) tr (B) = " « A. trace 0 * B. trace 0 « endl;

[2 -1 1]
[1 -2 -1]
[3 2 2]
B =
[-1 -1 -1]
[-1 -1 -1]
[-1 -1 -1]

tr(A) = 2
tr(B) = -3
tr(AB) = -7
tr(BA) = -7
tr(A)tr(B) = -6

6.7. THE MATRIX CLASS

Example 3

In this example, we demonstrate the usage of the determinant function.

II deter.cxx

#include <iostream.h>
#include "Matrix.h"

void mainO
{

Matrix<double> A(2,2);

A[O] [0] = 1.0; A[O] [1] = 2.0;
A[l] [0] = 3.0; A[l] [1] = 4.0;

cout « A;

243

cout « "Determinant of the matrix = " « A. determinant 0 « endl;
cout « endl;

for(int i=3; i<5; i++)
{

A.resize(i,i,i);
cout « A;
cout « "Determinant of the matrix = " « A. determinant 0 « endl;
cout « endl;
}
}

Result

[1 2]
[3 4]
Determinant of the matrix = -2

[1 2 3]
[3 4 3]
[3 3 3]
Determinant of the matrix = -6

[1 2 3 4]
[3 4 3 4]
[3 3 3 4]
[4 4 4 4]
Determinant of the matrix = 8

244 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.8 Array Classes

6.8.1 Abstraction

Array is a common data structure in computer programming. Although C and C++
provide built-in array data structures, there are some weaknesses. For example, the
bounds of the array are not checked to prevent possible run-time errors. It is therefore
useful to introduce an Array class as an abstract data type. With bound checking
and some simple mathematical operators overloaded (for example array addition), we
built a comprehensive and type-safe Array class. On the other hand, it could replace
the array supported by C and C++ as a collection of data objects.

In this section, we implement one-, two-, three- and four-dimensional arrays. Every
higher-dimensional array makes use of the member functions and operators of the
lower-dimensional one. Their close relationship shows up transparently in the data
fields:

template <class T> class Array1
{

};

private:
II Data Fields
int n_data;
T *data;

template <class T> class Array3
{

};

private:
I I Data Fields
int rows, cols, levs;
Array2<T> *data3D;

template <class T> class Array2
{

};

private:
II Data Fields
int rows, cols;
Array1<T> *data2D;

template <class T> class Array4
{

};

private:
II Data Fields
int rows, cols, levs, blks;
Array3<T> *data4D;

In doing so, we have greatly simplified the job of construction and the code is more
concise and informative. Once again, we have demonstrated the power of object­
oriented programming in code reusability and extensibility.

The applications for one- and two- dimensional Array are common. The reasons
we extended the Array class to three and four dimensional is because some applica­
tions for tensor fields need it. For example, the Christoffel symbols require a three­
dimensional Array and for the curvature tensor, we need a four-dimensional Array.

6.S. ARRAY CLASSES 245

There are four classes of Array described in this section, we have named them as
Array1, Array2, Array3 and Array4 which stand for one-, two-, three- and four­
dimensional Array, respectively. Although they are different in terms of definitions
and functionalities, they share similar interfaces. Therefore, the behaviours described
below apply to all four classes, except for some minor differences which will be pointed
out as the description goes on.

• It is implemented as a template class, because templates work very well for
container classes.

• The construction of an Array is simple.

• Simple arithmetic operators such as +, -, * are available.

• The assignment and modification forms of assignment =, +=, -=, *= are over­
loaded.

• We could copy one Array to another by using the assignment operator =.

• The subscript operator [J is overloaded. It provides individual element access
and returns a reference to the indexed element.

• The equality (==) and inequality (! =) operators check if the two Arrays contain
the same elements in the same order.

• For Array with dimensionality D, the member function size(int index) re­
turns the number of elements in the index th dimension of the Array, where
index = 0, ... , D - 1. For example, size(O) returns the number of elements
for the zeroth dimension for one-, two-, three- and four-dimensional arrays.

• resize 0 reallocates the Array to the size specified.

• Input and output stream operations with Array is supported.

6.8.2 Data Fields

There are only two data fields in each class. The dimensions of the Array and a
pointer to the data items.

• The one-dimensional array class Array1 maintains only an integer variable
n_data, which specifies the size of the array. It also maintains a pointer to
a contiguous array of Ts.

The memory will be allocated dynamically so that it fits the need of the appli­
cation. For data types that require a huge amount of memory, it is advisable
to release the memory as soon as it is no longer in use. This is not possible
with static memory allocation. Therefore, array-based data types should use
dynamic memory for their data storage.

246 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

• The two-dimensional array class Array2 requires two integers - rows and cols
to specify its size, and a pointer to Arrayl as well. To allocate memory space
for an m x n array, we first allocate an array of m pointers to Arrayl followed
by an allocation of an array of size n to each pointer.

• The three- and four-dimensional array classes Array3 and Array4 require three
and four integer variables, respectively, to specify their sizes. Array3 contains
a pointer to Array2 whereas Array4 maintains a pointer to Array3. These
pointers will be used to allocate the memory space required to store the data
items when necessary. The procedures for the memory allocation for these
pointers follow the same logic as the two-dimensional array described above.

6.8.3 Constructors

The specification for the default constructor is important especially when the data
fields of a class involve some pointers or references. It is important to initialize the
data items in the class including NULLifying the pointers. This would prevent some
unexpected problems which may occur later on. Every class has two other overloaded
constructors:

Arrayl(int)
Array2(int, int)
Array3(int,int,int)
Array4(int,int,int,int)

Arrayl(int,T value)
Array2(int,int,T value)
Array3(int,int,int,T value)
Array4(int,int,int,int,T value)

The first set of constructors allocates an appropriate amount of memory for the Array
while the second set initializes all the data items to value in addition. The copy con­
structor and destructor must be properly implemented for a class which contains
pointers in the data fields.

In the following we give some examples of the usage of the constructors:

II declare u as a one-dimensional array of size 20,
II the entries are uninitialized.
Arrayl<int> u(20);

II declare v as a two-dimensional array of size 2x3,
II the entries are initialized to zero.
Array2<double> v(2,3,0.0);

II declare w as a three-dimensional array of double,
II with size 2x3x2, all its entries are initialized to 2.0
Array3<double> w(2,3,2,2.0);

II declare x as a four-dimensional array of size lx2x3x4,

6.S. ARRAY CLASSES

II all the entries in the array are uninitialized.
Array4<double> x(1,2,3,4);

II copy constructor is invoked to duplicate the array.
Array3 yew);

6.8.4 Operators

247

Some common operators are overloaded in the class, namely (unary)+, (unary)-, +, -,
*, =, +=, -=, *=, ==, ! =, [], « and ». Suppose u, v, 01 are arrays and c is a constant,
then the operations are defined as follows:

• +u has no effect on u while -u negates each element of u.

• u+v, u-v adds or subtracts corresponding elements of u and v.

• u*c multiplies each element of u by the scalar c.

• u+=v, u-=v adds or subtracts corresponding elements of v into u.

• u*=c multiplies the scalar c into each element of u.

• u=v makes a duplicate copy of v and stores into u. Note that the assignment op­
erator returns a reference to the object itself. It means that multiple duplication
like u = v = 01 is allowed.

• u=c overwrites all the entries in u with the constant c.

• u==v returns true if u and v are identical, otherwise returns false.

• u! =v is just the converse of u==v.

• The [J operator is overloaded to perform individual element accessing. The
construct u [i] will return a reference to the i th entry of the array. Since
a reference value is returned, it can be used on either side of an assignment
expression.

• The output stream operator « simply exports all the entries and encloses them
with a pair of square brackets.

An instance u of Array1 is formatted as

An instance v of Array2 is formatted as

Voo Val

VlO Vn

Vrows 0 Vrows 1

Va cols

VI cols

Vrows cols

248 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

The output for Array3 is less obvious; it can be considered as a cube of data
entries to be output. The result is formatted in such a way that every layer
of the cube is output accordingly, separated by an empty line. An instance of
Array3 w(2,3,2) will be printed as

[WOOO WOOl]

[WOlO WOll]

[W020 W021]

[WlOO WlOl]

[WllO W111]

[W120 Wl2l]

The idea for exporting an instance of Array3 is extended to Array4. Here, a
four-dimensional array can be visualized as a collection of three-dimensional
blocks of Array3. Therefore, in printing an instance of Array4, we print a
block of Array3 followed by another until all the fourth dimensional entries are
printed. As an example, we print an instance of Array4 x(2,2,2,3)

[XOOOO XOOOl XOOO2]

[XOOlO XOOll XOO12]

[XOlOO XOIOI XOI02]

[XOllO XOlll X0112]

[XlOOO XlOOl XlOO2]

[XlOlO XlOll XlO12]

[XllOO XllOl Xl102]

[X1110 Xllll X1112]

Each layer in Array3 is separated by an empty line whereas each block in Array4
is separated by two empty lines .

• The input stream operator» is just the reverse of the output stream operator.
It reads in the sizes of each dimension of the arrays, followed by reading in the
individual data entries until all the entries have been input.

6.8. ARRAY CLASSES 249

6.8.5 Member Functions

The member functions available for each array class include:

• int size(int = 0) const;
Returns the number of data entries in each dimension for each class. For ex­
ample, size(O) returns the size for Array1, or the rows number for Array2,
Array3 and Array4. size (2) returns the levs number for Array3 and Array4
as it is not defined for both Array1 and Array2.

Note that default arguments have been used for the function; this indicates that
if an argument is omitted, the size of the zeroth dimension for each array will
be returned .

• void resize(int);
It is an important function for the array classes. The following statement

Array1<int> u;

declares a variable u but no memory space is allocated. Such a variable is not
usable. When the statement

u.resizeCiOO) ;

is executed, the compiler allocates 100 memory spaces for u. After this the
variable becomes operational. If we wish to fill the array with some initial
values upon memory allocation, another form of the function could be used:

void resize(int n,T value);

In addition to the memory allocation, all the entries are initialized to value. The
logic for Array2, Array3 and Array4 are similar, except that resizeO requires
two, three or four arguments to specify the sizes of the arrays, respectively.

The function resize 0 can actually be used to change the sizes of arrays in
use. An expansion of array size would result in the old storage being copied
into the new array with the expanded region left undefined or initialized to
value depending on which form of resizeO is used. When resizeO shrinks
an array only the part of the old storage that will fit is copied into the new
array and the extra entries are "truncated".

The following program demonstrates the usage of the function resize 0:

250 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

II aresize.cxx

#include <iostream.h>
#include "Array.h"

void mainO
{

}

Result

M =

Arrayl<double> M;
M.resize(3);
M[O] = 5.0; M[l] = 8.0; M[2] = 4.0;
cout « "M = \n" « M « endl; cout « endl;

Array2<double> A;
A.resize(2,3);
A[O] [0] = 1.0; A[O][l] = 3.0; A[O] [2] = 2.0;
A[l] [0] = 4.0; A[l] [1] = 5.0; A[l] [2] = 6.0;

A.resize(3,4,2);
cout « "A = \n" « A « endl;
A.resize(2,2);
cout « "A = \n" « A « endl;
A.resize(4,4,9);
cout « "A = \n" « A « endl;

[5 8 4]

A =
[1 3 2 2]
[4 5 6 2]
[2 2 2 2]

A =
[1 3]
[4 5]

A =
[1 3 9 9]
[4 5 9 9]
[9 9 9 9]
[9 9 9 9]

6.9. THE STRING CLASS 251

6.9 The String Class

In traditional C, a string is represented as a pointer to char. This means a string
can be considered as an array of type char. In this representation, the end-of-string
is denoted by '\0'. This convention has a major drawback. The '\0' requires one
byte to store and is part of the string. This means the string" abc" requires 4 bytes of
memory. The inconsistency between the length of the string and the memory required
for the string has caused much confusion to many users. It is also a pitfall. Therefore,
to avoid possible error and improve efficiency on the string operations, it is best to
implement it as an abstract data type. A string class has been included into the C++
standard.

6.9.1 Abstraction

The behaviour of the class is summarized as follows:

• The construction of a String is easy.

• An instance of String can be duplicated using the assignment operator.

• The subscript operator [] is used to access individual characters in the String.

• The addition operator + is used to concatenate two strings.

• The relational operators >, >=, <, <=, ==, != are included.

• Instances of String can be converted to canst char * when necessary.

• reverse 0 reverses the order of the String.

• lengthO returns the length of the String.

• Input and output operations with String are supported.

6.9.2 Data Fields

There are two data fields in the class:

• datalength stores the size of the largest possible String.

• data contains a pointer to char. When it is allocated to some appropriate
memory space, it will be used to store the characters of the String.

252 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.9.3 Constructors

Strings are constructed and initialized as follows:

• String x; String y=O; String z="";

set x, y and z to an empty String. Note that 0 and"" may be used as NULL
string.

• String x('A'), y('#');

set x to A and y to # respectively.

• String x("abc"); String y="abc";

set x and y to the String "abc".

• String x (int n);

allocates n memory spaces to x and initializes it to a NULL String.

• String u(x); String v=x;

invoke the copy constructor to duplicate x into u and v.

• The destructor is invoked to free unused memory back to the pool.

6.9.4 Operators

Some common operators have been included in the class, namely

=, 0, +, ==, !=, >, >=, <, <=, », «.

The properties are described as follows:

• The assignment operator = makes a duplicate of String.

• The subscript operator [] gives permission to access individual characters in
the String.

• The concatenation operator + combines two strings into one.

• The six relational operators ==, !=, >, >=, <, <= compare the ordering of String
lexicographically using the strcmp 0 function.

• The input and output stream operators provide means to import and export
instances of String.

• The type conversion operator will automatically convert the String into the
built-in type const char* when needed.

6.9. THE STRING CLASS 253

6.9.5 Member Functions

There are only two member functions implemented m the class: lengthO and
reverse() :

• length 0 returns the size of the Str ing .

• reverse 0 reverses the order of the String and returns it.

Most of the operations and member functions are self-explanatory and can be un­
derstood easily. The conversion operator to built-in type const char* plays an im­
portant role in the class. It allows all the functions in the <string. h> library to be
used with the class. With this feature, duplication of codes may be avoided although
some of the functions have been re-implemented in a better form. We demonstrate
the usage of the class in the following examples:

II sstring.cxx

#include <iostream.h>
#include "MString.h"

void mainO
{

String S1("Children");
cout « "The string S1 is " « S1 « endl;
cout « "The reverse of S1 is " « S1. reverse 0 « endl;
cout « "The length of S1 is " « S1.lengthO « endl;
cout « endl;

String S2 = "Mother";
String S3(S2);
S3[0] = 'F';
S3[1] = 'a';

cout « "The string S2 is " « S2 « endl;
cout « "The string S3 is " « S3 « endl;
cout « endl;

II Concatenation of strings
cout « S2 + " and" + S3 « endl;
cout « S3 + " and " + S2 « endl;
cout « endl;

II Comparing strings
cout « (S2 -- S3) « endl;
cout « (S2 != S3) « endl;

254 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

cout « (S2 < S3) « endl;
cout « (S2 > S3) « endl;

}

Result

The string Sl is Children
The reverse of Sl is nerdlihC
The length of Sl is 8

The string S2 is Mother
The string S3 is Father

Mother and Father
Father and Mother

o
1
o
1

6.9.6 Type Conversion Operator

The class has o.ne type co.nversio.n o.perato.r, namely, the co.nversio.nto. the built-in
string in the C language (char*). This o.perato.r do.es the co.nversio.n auto.matically
when needed. It co.uld alSo. be invo.ked explicitly using the cast (see Sectio.n 5.5). This
co.nversio.n beco.mes useful when we need the library routines fro.m <string. h>, such
as strlenO, strcpyO, strtokO, etc.

6.9.7 Possible Improvements

It is o.bvio.us that the class may be impro.ved and extended. Fo.r example, substring
extractio.n and mo.dificatio.n is no.t implemented. Other features wo.rth implement­
ing include searching and matching o.f Strings. Fo.r example, the substring, which
pro.vides the ability to. access a subpo.rtio.n o.f a string, can be o.verlo.aded using the
parentheses o.perato.r O. The o.perato.r takes two. arguments, where the first specifies
the left index o.f the substring and the second specifies the right index. The fo.llowing
example illustrates this concept:

String s(IIDiamond Ring");

cout «8(0,4) «endl;
cout « s(8,ll) « endl;

II output => Diamo
II output => Ring

The implementatio.n o.f this extension is left as an exercise for the readers.

6.10. BIT VECTORS 255

6.10 Bit Vectors

A bit vector is simply a vector of 0 or 1 values. Since bits are the most fundamental
values stored in computers, we can implement a bit vector using any data type in
principle. Here, we selected unsigned char to store the bits. Since an unsigned char
is composed of 8 bits, we can store 8 bit values in each character. In other words, to
implement a bit vector we use a Vector of unsigned char to store the bit values.

Bits 0-7 Bits 8-15 Bits 16-23 Bits 24-31

Vector 0 Vector 1 Vector 2 Vector 3

By reusing the Vector data structure in the internal representation, we avoid the
necessity of redeveloping an existing structure. We also need not be concerned with
issues such as dynamic memory allocation or deletion. Hence, the programmers can
concentrate on features available only to the new structure and the potential for
introducing new errors is greatly reduced.

6.10.1 Abstraction

For a bit vector to be useful, it has to be easy to use and to access individual elements.
Below is a summary of the abstraction of the Bi tVector class:

• A BitVector could be constructed easily by specifying the required size of the
vector.

• size 0 returns the size of the bit vector.

• setO, clearO, testO and flipO do the operations on a particular bit as
specified in the arguments.

• The output stream operator is supported.

6.10.2 Data Fields

The class maintains two data fields - bsize and data. bsize stores the flize of the
bit vector whereas data is a Vector of unsigned char used to store the bit values.
Here, we do not need to be concerned about the issue of dynamic memory allocation
and deletion as these operations will be taken care of by the Vector class, which has
been developed and tested carefully.

256 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.10.3 Constructors

There are two possible means to construct a Bi tVector:

• BitVector(unsigned int num) specifies the size num of the bit vector and
allocates a proper amount of vectors to accommodate. An unsigned char is
made up of 8 bits, hence it computes the smallest multiple of 8 larger than or
equal to num. This constructor will initialize the bit vector to all zero values.

• BitVector(unsigned int num,unsigned int value) does the same as the
previous constructor except the initial values of the bit vector are set according
to value as specified in the argument list.

• The copy constructor and destructor simply invoke the code provided by the
Vector class.

6.1004 Member Functions

Suppose v, u are BitVector of size Nand M is a positive integer, then

• v. size 0 returns the size of the bit vector as specified by the user.

• v. reset (M) re-specifies the size of the Bi tVector to M and initializes all the bit
values to zero.

• v. reset (M, flag) does the same as the previous except the initialization of the
bit values follows the flag values (0/1).

• v. set (i) sets the i th bit value.

• v. clear(i) clears the i th bit value.

• v. test (i) checks whether the i th bit value is set or clear.

• v.flip(i) flips the ith bit value (0 -+ lor 1 -+ 0).

• v. unionSet (u) forms the union set of v and u.

• v. intersectSet (u) forms the intersection set of v and u.

• v. differenceSet (u) forms the difference set of v and u.

• v. subset (u) checks if u is a subset of v.

• v==u checks if v is equal to u.

• cout « v puts v on the output stream.

In the operations

6.10. BIT VECTORS

v.subset(u), v.unionSet(u), v.intersectSet(u), v.differenceSet(u)

and v==u, the size of the bit vectors u, v must be equal to each other.

In the following, we demonstrate the usage of these member functions:

II sbitvec.cxx

#include <iostream.h>
#include "Bitvec.h"

void mainO
{

II Set up a bit vector of size=30 with all bits set to 1
BitVector B(30,1);

II Duplicate a bit vector A
BitVector A(B);

II Bits operations
A.clear(5); A.clear(20); A.clear(29);
B.clear(5); B.clear(10); B.clear(12); B.clear(29);
B.flip(O); B.flip(l);

257

cout « "The size of the bit vector A is " « A. size 0 « endl;
cout « endl;

}

cout « "
cout « "

A
B

= " « A « endl;
= " « B « endl;

cout « 11 __ 11 « endl;

II Set operations
cout « "A union B " « A.unionSet(B) « endl;
cout « "A intersect B " « A.intersectSet(B) « endl;
cout « "A difference B = " « A.differenceSet(B) « endl;
cout « endl;

cout « "Is A a subset of B ? " « A.subset(B) « endl;
cout « "Is A equals to B ?"« (A==B) « endl;

258 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

Result

The size of the bit vector A is 30

A = 111110111111111111110111111110
B = 001110111101011111111111111110

A union B = 111110111111111111111111111110
A intersect B = 001110111101011111110111111110
A difference B = 110000000010100000000000000000

Is A a subset of B ? 0
Is A equals to B ? 0

6.10.5 Private Member Functions

Two auxiliary functions do their jobs quietly without being known by the users -
byteNumberO and maskO. They are declared as private member functions .

• byteNumber(i) returns the respective byte number of the ith bit index. It is
obtained by dividing the index value i by 8 because each byte is made up of 8
bits. For example, suppose the index value is 19. Its corresponding bit pattern
is 00010011. Dividing the value by 8 is equivalent to shifting the bit pattern to
the right by 3 places, obtaining 00000010 which corresponds to 2 numerically.
Thus, the 19th bit is located at byte number 2 .

• mask(i) returns the masked value of the selected byte where the ith index
locates. The masked value is represented by a '1' bit for the specified bit and
'0' elsewhere. It is obtained by taking the three least significant bits of the
selected byte, evaluating their value v, and shifting left the numeric one by v
places. For example, consider the selected byte as 19 = 00010011. The three
least significant bits are 011 = 3. The masked value is thus obtained by shifting
the value one by 3 spaces, yielding 00001000.

6.11. THE LINKED LIST CLASS 259

6.11 The Linked List Class

6.11.1 Abstraction

Suppose we have a collection of elements, where the number of elements is not known
in advance, or varies over a wide range. It is natural to keep the data in a linked
list. Basically, a linked list maintains all its elements in a chain. Each component of
the chain holds just a single value and a pointer. The pointer either points at the
next item of the list, or points at NULL if it happens to be the last element in the chain.

~ data I +1 data I +1 data I +1 data [2]
Figure 6.1: Schematic diagram of a linked list

The operations of the linked list abstraction are as follows:

• Insertion: A new element can be added to the beginning of a linked list.

• Removal: A data item may be removed from the beginning of a linked list.

• Access: The value of the first element may be enquired.

• Duplication: The linked list may be duplicated when required.

• Size: It is possible to check if a linked list is empty.

• Inclusion: It is possible to check if an element exists in a linked list.

It seems that the operations available in the linked list data structure are limited.
Operations such as insertion or removal of an element from an arbitrary location are
not possible. This problem will be overcome later with the introduction of the iterator
mechanism.

The linked list data structure consists of two major classes:

• The List class. This class contains the public interface of the linked list data
structure. The interface includes the constructor and all the operations listed
above.

• The Link class. The operations on the list values are built on top of this class.
It contains the data areas as well as the chain to the next link.

260 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.11.2 The List Class

The linked list data structure is declared in this class. All the interfaces and op­
erations are defined in the class. However, the class maintains only one pointer to
the first link. The data values of the list are stored in the Link class. The class is
implemented as a template form so that the linked list may hold elements of different
data types, such as character, string, or other abstract data types.

Data Fields:

The List class maintains only one pointer called head. It points to the first link of
the data items in the Link class.

Constructor:

• The default constructor creates an empty list, where the pointer head points to
NULL.

• The copy constructor duplicates a list when necessary.

• The destructor deletes all the data items in a list. It invokes a member function
called deleteAllNodes () .

Member functions:

The member functions listed here provide the necessary interface of the class:

• first_Node 0 returns the first element of a linked list.

• duplicate 0 makes a duplicate copy of a linked list.

• is_EmptyO checks if a list is empty.

• add_data(T value) adds the data item value to the beginning of a list.

• deleteAllNodes 0 frees the memory space occupied by a list. Hence the linked
list ceases to exist after this operation.

• is_Include (T value) checks if a list contains the data item value.

• delete_First 0 removes the first data item from a linked list.

• The assignment operator (=) allows a linked list to be assigned to another.

Friend class:

The class ListIterator is declared as a friend of this class. The ListIterator
class offers a convenient way to access and manipulate the data items in the linked
list. It will be discussed in a later section.

6.11. THE LINKED LIST CLASS 261

6.11.3 The Link Class

The Link class is a facilitator class. It is used only to facilitate the operations of the
List class. Its existence is not known to the users of the linked list data structure.
Therefore, most of the functions in the class, including the constructor, are declared
as private.

Data Fields:

There are two data members in the class - data and next. The variable data stores
the data item itself whereas the variable next contains a pointer to the next link.

Constructor:

The constructor

Link(const T value,Link<T>* next)

takes two arguments. The first argument takes the value of the data item, whereas
the second argument is a pointer to the next link.

The copy constructor Link(const Link<T>&) copies the data fields as usual.

Member functions:

• Link<T>* insert(const T val);
This is the only public member function in the class. It is used for inserting a
data item after the current location .

• Link<T>* duplicate() const;
It makes a duplication of the whole chain of links.

Friend classes:

Since the classes List and Listlterator are declared as friend, they are able to
access the private region of the class.

262 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.11.4 The List Iterator
This class provides an easy means to access and manipulate the list. This includes
looping over the elements of a list, removing arbitrary elements from a list, and adding
elements at an arbitrary location within a list.

Basically, the idea to maintain an iterator arises because we want a method to exam­
ine each value in turn in a data structure. Usually, this process is performed using a
loop. However, difficulty arises when we want a loop that provides users with access
to individual values easily, yet preventing the inner details of the implementations of
the data structures from being exposed.

On the other hand, creating an iterator that is separated from the actual data struc­
ture has several advantages:

• The responsibilities of an iterator are different from the data structure itself;
separating them is in line with the design of object-oriented programming.

• This implementation allows more than one different style of iterator to operate
on a structure. For example, in the traversal of a binary tree structure, we may
have different iterators such as preorder, inorder and postorder.

• Finally, this implementation allows more than one iterator to operate simulta­
neously on the same data structure.

The ListIterator class is a public derived class of an abstract base class Iterator.
The abstract base class declares the interface of an iterator abstraction. However, the
implementations of these operations are left for the derived classes of this base class.

#ifndef MITERATOR_H
#define MITERATOR_H

II Iterator class
template <class T> class Iterator
{

public:
virtual int init() = 0; II Initialization
virtual int operator !() = 0; II Check if a current element exists
virtual T operator ()() = 0; II Return current element
virtual int operator ++() = 0; II Increment operator
virtual void operator = (const T) = 0; II Assignment operator

};
#endif

6.11. THE LINKED LIST CLASS 263

list

previous

data data

Figure 6.2: Schematic diagram of a list iterator

In general, an iterator has the following five operations:

• Initialization: This operation initializes the iterator to point at the beginning
of the data structure.

• Termination: This operation checks if the iterator has reached the end of the
iterated data structure.

• Current Value: This operation returns the current value of the data item which
the iterator points at.

• Increment: This operation increases the pointer of the iterator to the next item
of the data structure.

• Assignment: This operation assigns a new value to the current data item of the
data structure.

In the following, we describe the design of the ListIterator class.

Data Fields:

The class has three data fields: .

• Link<T>* current maintains a pointer that points at the "current" node of
the linked list.

• Link<T>* previous maintains a pointer that points at the "previous" node,
i.e., the node that is located immediately prior to the "current" node of the
linked list.

• Link<T>& list maintains a reference to a linked list. A reference is used instead
of a pointer because the linked list to be iterated, once assigned, should not be
changed. A reference provides such a restriction. Furthermore, a reference
cannot be assigned to a NULL value.

264 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

Constructor:

The constructor Listlterator(List<T>&:) takes an argument of a reference to a
linked list. It establishes a connection between the iterator and the linked list.

The copy constructor ListIterator (const ListIterator<T>&:) creates another it­
erator that applies on the same linked list. An iterator can only apply on one linked
list, but a linked list may have more than one iterator.

Member function:

• int ini to sets the iterator to the first element in the list.

• T operatorO 0 returns the value of the current element.

• int operator ! 0 checks if the iterator of the linked list has reached NULL or
the end of the list.

• int operator ++ 0 increases the current pointer to the next node.

• void operator = (const T value) assigns the current element to value.

• delete_Current 0 removes the current element from the list.

• add_Bef ore (const T value) adds a new element to the list before the current
node.

• add_After(const T value) adds a new element to the list after the current
node.

Next, we consider some examples on the linked list class. The first example applies
the basic operations available in the List class. It is not trivial to print the content of
a linked list or to access an arbitrary element in the list. However, the task becomes
relatively simple with the use of the list iterator. This point is demonstrated in the
second example, which constructs a linked list while maintaining the data items in
increasing order.

6.11. THE LINKED LIST CLASS

Example 1

In this example, we apply some basic linked list operations on a list of numbers.

II num1.cxx

#include <iostream.h>
#include "MList.h"

void mainO
{

int i;
int N = 10;
List<int> A;

265

cout « "Is the linked list A empty? " « A. is_Empty 0 « endl;
cout « endl;

for(i=O; i<N; i++)
{

A.add(i);
cout « "The first element of linked list A is "

« A.first_Node() « endl;
}

cout « endl;

List<int> B(A);

do
{

II copy constructor

cout « "The first element of linked list B is "
« B.first_Node() « endl;

B.delete_First();
} while(!B.is_Empty());
cout « endl;

II Inclusion test
int p = 3, q = 15;

cout « "Does " « p«
« A.is_Include(p)

cout « "Does " «q«
« B.is_Include(q)

" exist in linked list A ?
« endl;

" exist in linked list B ?
« endl;

"

"

266 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

cout « endl;

A.deleteAllNodes();
B.deleteAllNodes();

cout « "Is the linked list A empty ? " « A.is_Empty() « endl;
cout « "Is the linked list B empty ? " « B. is_Empty () « endl;

}

Result

Is the linked list A empty ? 1

The first element of linked list A is 0
The first element of linked list A is 1
The first element of linked list A is 2
The first element of linked list A is 3
The first element of linked list A is 4
The first element of linked list A is 5
The first element of linked list A is 6
The first element of linked list A is 7
The first element of linked list A is 8
The first element of linked list A is 9

The first element of linked list B is 9
The first element of linked list B is 8
The first element of linked list B is 7
The first element of linked list B is 6
The first element of linked list B is 5
The first element of linked list B is 4
The first element of linked list B is 3
The first element of linked list B is 2
The first element of linked list B is 1
The first element of linked list B is 0

Does 3 exist in linked list A ? 1
Does 15 exist in linked list B ? 0

Is the linked list A empty ? 1
Is the linked list B empty ? 1

6.11. THE LINKED LIST CLASS 267

Example 2

In this example, we use the list iterator to construct a sorted linked list. With the
use of the list iterator, accessing and manipulating a linked list becomes an easy task.

II num2.cxx

#include <iostream.h>
#include IMList.h"

template <class T>
void Insert(List<T>& LL,T value)
{

}

ListIterator<T> LI(LL);
LI.initO;
while(!LI && LI() < value) ++LI;
LI.add_Before(value);

void mainO
{

}

Result
======

List<int> A;
ListIterator<int> peA);

Insert(A,10);
Insert(A,l);
Insert(A,-15);
Insert(A,7) ;
Insert(A,12);
Insert(A,5);
Insert(A,-7);
Insert(A,O);
Insert(A,15);

cout « liThe linked list A is II « endl;

for(P.initO; !P; ++P) cout« PO «" ";

The linked list A is
-15 -7 0 1 5 7 10 12 15

268 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.12 The Polynomial Class

6.12.1 Abstraction

The behaviour of the class is specified as follows:

• It is a template class for which the data type of the polynomial coefficients are
to be specified by the user.

• Creation of a new instance of Polynomial is simple.

• Arithmetic operators such as +, -, *, / are available.

• Assignment and modification forms of assignment =, +=,
available.

• The relational operators == and ! = are available.

*=, /=, '/.= are

• Polynomial variables can be raised to an integer power with the ~ operator.

• A Polynomial can be used as a function and can be evaluated for a given value
for the polynomial's variable.

• Symbolic differentiation and integration of a Polynomial is possible.

• A monomial class is provided to allow the symbolic specification of a polynomial
and represent the polynomial variable.

• The monomial class also supports the operators defined for the Polynomial
class to provide a full symbolic specification of polynomials.

• The monomial class implements the coefficient and power of the polynomial
variable and the sum of monomials is a polynomial.

• Output operations with Polynomial are supported.

The monomial class is called the Poly term class. Since polynomials consist of a sum
of polynomial terms it makes sense to implement a polynomial using a linked list.

6.12.2 Template Class

The Polynomial class is a template class so that the user can select a data type for
the polynomial coefficients and evaluation. For example

Polynomial<Rational<int> >

can be used to create a polynomial with rational coefficients and

6.12. THE POLYNOMIAL CLASS 269

Polynomial<Polynomial<double> >

can be used to create a two-variable polynomial with coefficients of type double.
Thus the template class provides multi-variable polynomials.

6.12.3 Data Fields

The polynomial's variable is required to effectively use the class. The variable is imple­
mented as a simple monomial with the necessary functionality to create polynomials.
The class uses a linked list of monomials to form the polynomial.

6.12.4 Constructors

There are three ways to construct a Polynomial:

1. Construct a Polynomial by specifying the symbol string of the polynomial's
variable (the only argument).

2. Construct a Polynomial by specifying a monomial which is used as the symbol
of the polynomial's variable. This is the easiest way to construct a Polynomial
since the polynomial can be built from the specified monomial.

3. Construct a constant polynomial from an integer.

There is also a copy constructor. The monomial class Poly term is also a template
class taking the same template parameter as the Polynomial class for which it will
be used. Although more functionality is available the most important function of the
Poly term class is the constructor

Poly term<T> (char *name)

(which creates a monomial with symbol string name) and the mathematical operators.
Some examples are:

II Declare a Polynomial pi with integer coefficients and
II symbolic variable "x"
Polynomial<int> pl("x");

II Declare a Polynomial p2 with integer coefficients and
II symbolic variable "x"
Polyterm<int> x("x ll);

Polynomial<int> p2(x);

II Declare a monomial x as a polynomial variable
II Declare a Polynomial q with double coefficients and
II symbolic variable "x" and initialize to x~2+2x+l

270 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

Polyterm<double> X("X");
Polynomial<double> q=(x A 2)+2.0*x+l;

II Declare a monomial y as a polynomial variable
II Declare a Polynomial r with polynomial coefficients
II and symbolic variable "y" and initialize to q(x)*(y A 2+y);
Polyterm<Polynomial<double> > y("y");
Polynomial<Polynomial<double> > r=q*«y A 2)+y);

6.12.5 Operators

The Polynomial class overrides the following operators:

-(unary), +, -, *, I, %, A, =, +=, -=, *=, 1=, %=, ==, !=, O.

Care must be taken with the A operator since the precedence is lower than +, - and
*. Most operators have their usual meaning except for A which raises a polynomial
to a positive integer power and 0 which is used to evaluate the polynomial at a
point. Most operators can be used with the monomial class Poly term. Addition and
subtraction of Poly terms are defined to create Polynomials.

6.12.6 Type Conversion Operators

A constant polynomial can be created from an integer using the Polynomial (int)
constructor (typecast).

6.12.7 Private Member Functions

The Polynomial class has a private member function tidy (void). Its only purpose
is to remove terms with zero coefficients from a polynomial. This is to save memory
resources but also makes output of Polynomials easier to read.

6.12.8 Other Functions

A template function __ poly _power (T ,int) is used to raise an instance of T to a
positive integer power. The function Diff (Polynomial) differentiates a polynomial
with respect to its variable. The function Int (Polynomial) integrates a polynomial
with respect to its variable. The constant of integration is assumed to be zero.

6.12.9 Streams

The output stream operator « first checks if the linked list for the polynomial is
empty and if so outputs zero. Otherwise the operator outputs each term in the linked
list using the overloaded operator « for Poly term which outputs the coefficient,
variable and exponent of the Poly term.

6.12. THE POLYNOMIAL CLASS 271

6.12.10 Example

As an example we create a single and a multivariable polynomial and differentiate,
integrate and square them.

II pexample.cpp

#include <iostream.h>
#include "poly.h"
#include "rational.h"

int main(void)
{

}

Polyterm<double> x("x");
Polyterm<Polynomial<double> > y("y"); Ilmultivariable term

Polynomial<double> p=(x-3)+2.0*(x-2)+7.0;

cout « "p(x)=" « p «endl;
cout « "Diff (p)=" « Diff (p) « endl;
cout « "Int(p)=" « Int(p) « endl;
cout « "p(x)-2=" « (p-2) « endl « endl;

II multivariable polynomial
II differentiation and integration are with respect to y
Polynomial<Polynomial<double> > q=p+(4.0*p)*(y-2);
cout « "q(y)=" « q « endl;
cout « "Diff (q)=" « Diff(q) « endl;
cout « "Int(q)=" « Int(q) « endl;
cout « "q(y)-2=" « (q-2) « endl;
return 0;

Results

p(x)=x-3+(2)x-2+(7)
Diff(p)=(3)x-2+(4)x
Int(p)=(0.25)x-4+(0.666667)x-3+(7)x
p(x)-2=x-6+(4)x-5+(4)x-4+(14)x-3+(28)x-2+(49)

q(y)=«4)x-3+(8)x-2+(28))y-2+(x-3+(2)x-2+(7))
Diff(q)=«8)x-3+(16)x-2+(56))y
Int(q)=«1.33333)x-3+(2.66667)x-2+(9.33333))y-3+(x-3+(2)x-2+(7))y
q(y)-2=«16)x-6+(64)x-5+(64)x-4+(224)x-3+(448)x-2+(784))y-4

+«4)x-6+(16)x-5+(16)x-4+(56)x-3+(112)x-2+(196))y-2
+(x-6+(4)x-5+(4)x-4+(14)x-3+(28)x-2+(49))

272 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

6.13 The Set Class

6.13.1 Abstraction

The behaviour of the class is specified as follows:

• It is a template class for which the data type of the elements of the finite set
are to be specified by the user.

• Creation of a new instance of Set is simple.

• The assignment operator = is overloaded.

• The relational operator == is available.

• The operators + and * are overloaded for union and intersection of finite sets.

• Output operations with Set are supported.

6.13.2 Template Class

The Set class is a template class so that the user can select a data type for the
polynomial coefficients and evaluation. For example

Set <char>

can be used to create a Set with rational coefficients and

Set<string>

can be used to create a finite Set with strings as elements.

6.13.3 Data Fields ..
The data fields contain the elements of the linked list the Set class is based on.

6.13.4 Constructors

The constructor

Set(const T)

is used to construct the list. The copy constructor and destructor are implemented.

6.13. THE SET CLASS

6.13.5 Operators

The Set class overrides the following operators:

+, * = == , ,

Note that the * has higher precedence then the + operator.

6.13.6 Member Functions

273

The Set class has a public member function cardinality 0 which finds the number
of elements in the finite set.

6.13.7 Streams

The output stream operator « is overloaded and first checks if the linked list for the
finite set is empty and if so outputs O. Otherwise it displays the finite set.

6.13.8 Example

The following example shows a simple use of the Set class.

II setapp.cpp

#include <iostream>
#include <string>
#include "set.h"
using namespace std;

void main(void)
{

Set<char> cl, c2, c3;
Set<char> setA('X');
Set<char> setB('Y');
Set<char> setC('Z');
Set<char> setD('Y');

cout « setA « "\n";

cl = setA + setB;
cout « "c1 = " « c1 « endl;

c2 = setA + setB + setC + setD;

274 CHAPTER 6. CLASSES FOR COMPUTER ALGEBRA

cout « "c2 = " « c2 « endl;

}

c3 = cl * c2;
cout « "c3 = " « c3 « endl;

int size = c2.cardinality();
cout « "size of c2 = " « size « endl;

Set<string> sl, s2;
Set<string> setS1("willi") ;
Set<string> setS2("hans");
sl = setSl + setS2;
cout « "sl = " « sl « endl;

s2 = setSl * setS2;
cout « "s2 = " « s2 « endl;

Results
=======
(X)
c1 = (X,Y)
c2 = (X,Y,Z)
c3 = (X,Y)
size of c2 = 3
sl = (hans,willi)
s2 = 0

The Standard Template Library described in Chapter 5 also includes a set class.

6.14. SUMMARY 275

6.14 Summary

This chapter presented a collection of useful classes written in C++ For each class,
the abstraction, data fields, constructors, operators and member functions etc. were
described in great detail.

Among the classes introduced in this chapter:

• The Verylong, Rational, Complex and Quaternion classes form the basic ab­
stract data types.

• The Vector, Matrix, Array, Derive and Polynomial classes are higher level
mathematical structures.

• Last but not least, the String, BitVector, List and Set classes are useful data
structures which will become apparent in later chapters.

The applications of these classes will be described in Chapter 8.

In fact, there are a large number of other classes which could be added to the classes
described above. An example is a class for multivariate polynomials. Other examples
are classes for Lie algebras, finite groups and Galois fields, etc.

In Chapter 9, we introduce a polymorphic linked list which is capable of storing
different data types (basic data types and abstract data types) in a single linked list.
This special linked list forms the basic data structure for the programming language
LISP.

Chapter 7

The Symbolic Class

Computer algebraic systems which perform symbolic manipulations have proved use­
ful in many respects and they have become indispensable tools for research and sci­
entific calculation. However, most of the software systems available are independent
systems and the transfer of mathematical expressions from them to other program­
ming environments such as C is rather tedious, time consuming and error prone. It
is therefore useful to use a high level language that provides all the necessary tools
to perform the task elegantly. This is the aim of this chapter.

In the next few sections we construct, step by step using object-oriented techniques, a
computer algebra system - SymbolicC++ The system can be used in many areas
of study. We describe the structures, functions and special features of the system.
Examples are also included to demonstrate the usage of the functions.

The computer algebra system is built upon the concept of classes in object-oriented
programming. Therefore, it inherits all the advantages and flexibilities of object­
oriented programming. Some major plus points of object-oriented programming are
modularity, reusability and extensibility. These features are very important espe­
cially for computer algebra systems because mathematics is built up level by level.
For example, complex numbers are built upon real numbers, rational numbers are
built upon integers and so on. From this point of view, the mathematical hierarchy
is parallel with the philosophy of object-oriented programming. It seems to indicate
that object-oriented programming is a natural choice for developing a computer al­
gebra system. On the other hand, reusability and extensibility playa crucial role in
clean coding which produce a more robust system.

The programs in this chapter can be found in MSymbol. h. This header file makes use
of Mall.h and MList .h. Mall.h contains classes of the basic data structures, such as
Term, Magnitude, Function, etc. MList.h is a linked list data structure, which has
been described in Chapter 6. The linked list is used to store the dependent list of
symbolic variables.

277

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

278 CHAPTER 7. THE SYMBOLIC CLASS

7.1 Object-Oriented Design

We first define what is meant by an expression. There are a number of ways to define
an expression. Here, we consider it as a recursive data structure - that is, expressions
are defined in terms of themselves. Suppose an expression can only use +, -, *, / and
parentheses, then it can be defined with the following rules:

expression -t term [+ term] [- term]
term -t factor [* factor] [/ factor]
factor -t variable, number or (expression).

The square brackets designate an optional element, and -t means produces. These
rules are usually called the production rules of the expression. Based on these rules, we
could construct classes that work closely among themselves to represent mathematical
expressions in a simple and clear form.

7.1.1 The Expression Tree

For the symbolic system discussed here, an expression is organized in a tree-like struc­
ture. Every node in the tree may represent a variable, a number, a function or a root
of a subtree. A subtree may represent a t.erm or an expression. There are two types
of node defined in the system - Sum and Product. A Sum node is used to represent a
variable, a number, a function or a root of a tree/subtree. A Product node is used to
represent a term which is composed of the product or quotient of two factors. This
representation conforms to the production rules we mentioned above.

Both the Sum and Product classes are derived from a class called Symbol. They
have, therefore, inherited the characteristics from the base class which describes the
symbolic quantities. However, all the algebraic manipulations are done in Sum and
Product which are interrelated.

The Sum class is the most important class as it defines a symbolic variable as well as
a numeric number. It can be added or multiplied by another instance of Sum to form
an expression, which is also represented by the Sum class. All the operators, functions
and interfaces are defined in the class. The Sum class also defines special functions
like sin (x) and cos (x) which will be described in detail in later sections.

7.1. OBJECT-ORIENTED DESIGN 279

Composed object

Object of type "Product"

Elementary root objects

Figure 7.1: Schematic diagram of the expression y = (a+b)*(a+c)

On the other hand, the Product class describes terms that are multiplied or divided.
It is a facilitator class and its existence is not known by the users.

As an example, consider the expression

y (a+b) * (a+c).

The object y has a structure as given in Figure 7.1. Notice that the symbolic variables
a, band c are represented by Sum nodes. They are the leaf nodes of the expression tree.
The expression a+b is composed of another Sum node which points at the variables
a and b. a+c is constructed similarly. The Product node is used to multiply (a+b)
and (a+c) which is in turn pointed to by another Sum node to form a tree as an
expression. A Sum node y points at the final expression.

280 CHAPTER 7. THE SYMBOLIC CLASS

Sum

?~
'I v-a-r-i-ab-l-e""l I Number I I exp 0 II sin 0 II cos 0 I

Figure 7.2: Schematic diagram of a Sum node which contains a pointer Terms and its
descendants

7.1.2 Polymorphism of the Expression Tree

Recall that the Sum node could either hold a variable, a number or a special function.
This is achieved by using inheritance and polymorphism of object-oriented techniques.

Inheritance possesses the ability to create new types by importing or reusing the de­
scription of existing types. Polymorphism with dynamic binding enables functions
available for the base type to work on the derived types. Such a function can have
different implementations which are invoked by a run-time determination of the de­
rived types.

For our case here, the Sum node maintains a pointer to a class called Terms. It has two
derived classes - Magnitude and Function. The Magnitude has two more derived
classes Variable and Number, whereas Function has many derived classes. Each
derived class of Function corresponds to a special function and more functions can
be added if required (Figure 7.2). Making use of virtual junctions, the properties and
behaviours of the derived classes can be determined during run-time.

The class Terms is an abstract base class, as are its descendants Magnitude and
Function:

template <class T>
class Terms
{

public:
virtual -Terms();
virtual char type() const = 0;
virtual String varName() const = 0;
virtual void oprint(ostream&) const 0;

7.1. OBJECT-ORIENTED DESIGN

} ;

template <class T>
class Magnitude : public Terms<T>
{

public:

} ;

virtual -Magnitude();
virtual T vale) const = 0;
virtual void set(const T) = 0;

template <class T>
class Function : public Terms<T>
{

public:
virtual -Function();
virtual double f(const T&) const

};

281

o· ,

The member functions in Terms, Magnitude and Function are pure virtual functions.
Any class that declares or inherits a pure virtual function is an abstract base class.
An attempt to create an object of an abstract base class will cause a compile time
error. Therefore, all the pure virtual functions have to be overridden in the derived
class that is declarable. An abstract base class is used to declare an interface without
declaring a full set of implementations for that interface. That interface specifies the
abstract operations supported by all objects derived from the class; it is up to the
derived classes to supply implementations for those abstract operations.

The interfaces declared by the Terms class include the methods:

• type 0 returns the type information of the class, whether it is a Variable, a
Number or different types of Function.

• varName 0 returns the name of the Variable or the function name. A Number
does not have a variable name.

• oprint (ostream& os) places the name of a Variable, the numerical value of
a Number or the function name on the output stream os.

Magni tude declares the following interfaces:

• valO returns the numerical value of a Variable or a Number.

• set(const T num) assigns the numerical value num to a Variable or a Number.

282 CHAPTER 7. THE SYMBOLIC CLASS

The class Function has only one extra interface, that is, f (const T& a) which re­
turns the numerical value of the function evaluated at a.

Let us consider the derived classes one by one:

1. The class Variable: As the name suggests, it holds the information of a sym­
bolic variable and its corresponding numerical value. It has two data fields -
name and value. The variable name stores the symbolic name for the Variable
whereas value stores the corresponding numerical value of name. The construc­
tor reads in the variable name and its numerical value. The member functions
override the base class definitions:

• type 0 returns a character' V' to indicate that it is a Variable class.

• varName 0 returns name, the symbolic name of the instance.

• oprint 0 puts name on the output stream.

• valO returns value, the numerical value of the instance.

• set (const T num) assigns the numeric constant num to the data field
value.

2. The Number class defines a template for all available built-in or user defined
numeric data types. For example,

Number<double>

declares a user-defined double type which possesses all the original properties
of the built-in double type. It also possesses some extra features that are useful
for the symbolic system which will be discussed later in the section.

The class contains only one data field

T data .

It stores the value of type T. The constructor reads in the numeric value via its
argument. The member functions here override the base class definitions:

• type 0 returns a character 'N' to indicate that it is a Number class.

• varName 0 returns a NULL string because it has no meaningful definition
in the class.

• oprint 0 puts data on the output stream.

• valO returns data, the numerical value of the class.

• set (const T num) assigns the numeric constant num to the data field
data.

7.1. OBJECT-ORIENTED DESIGN 283

In addition to the member functions declared as in the interfaces of the abstract
base class, the class has two extra member functions:

• The assignment operator = makes sure that instances of Number are as­
signed correctly.

• The conversion operator to type T is an important function. It is the gate­
way to all the properties that are possessed by the data type T. It converts
instances of Number to the corresponding type T when necessary, hence
enabling all the functions that are applicable to type T to be applicable to
the class Number.

3. The derived classes of Function declare the special functions

exp(x), sin(x), cos(x), sinh(x), cosh(x), sqrt(x)

Although many functions can be included here, they share some common prop­
erties. Each class contains only one data member Fname, which is used to store
the function name. It also overrides all the interfaces declared by its ancestors:

• type 0 returns a character' e' to indicate that it is an exponential func­
tion exp (). Other characters are returned to indicate different functions.
However, only lower case characters are returned as part of the convention
used in the system.

• varName 0 returns Fname which is the function name.

• oprint 0 puts Fname on the output stream.

• f (const T& x) returns the numerical value of the function. Note that
the return type of the function is double, since we have made use of the
built-in functions provided in the <math. h> library.

284 CHAPTER 7. THE SYMBOLIC CLASS

7.2 Data Fields and Types of Symbol
Recall that Sum is a public derived class of the Symbol class. Here, Symbol is also an
abstract base class. It contains many pure virtual functions which wait to be overrid­
den by its derived class. Next we describe how Symbol, Sum and Product co-operate
among themselves as an expression tree to build a symbolic system.

The Symbol class has four data fields:

• branches stores the number of branches descended from this node.

• Symbol <T> nep is a pointer to a pointer of Symbol <T>. This variable, after
proper memory allocation, will contain an array of pointers to Symbol <T>. The
size of the array is equivalent to branches, as these pointers will point at the
descendants of this node.

• T *fac_exp is a pointer to T. After it is allocated to an array of size branches, it
stores the multiplication factor for a Sum node or the power factor for a Product
node.

• int *next_ var is a pointer to into It will be allocated to an array of size
branches. The array contains only 0 or 1, which is used to indicate whether
the decendent of the tree is of type 'V'. This information is essential for the
destructor of the class.

There are six different types of nodes in an expression tree. Five of them are repre­
sented by a Sum node and one is by the Product node. When the function type 0 is
invoked, different characters are returned to indicate the type of the tree node:

• 'S' is the root of an expression tree or subtree. For example, a+b or a+b*c. It
does not have a variable name.

• 'V' is a Variable node, e.g. a, b. It is usually a leaf of an expression tree.
Every Variable has a name associated with it.

• 'N' is a Number node, e.g. 2.0, 4/5. It is also a leaf of an expression tree.

• 'B' is a 'bound' node in the sense that it is a Variable but it is not a leaf of
an expression tree. For example y=a+b, where y is a bound node.

• 'P' is a Product node, which is used to represent the product of two terms or
expressions. e.g. a*b. It is always preceded by a Sum node.

• The last type of Sum denotes special functions; different characters will be re­
turned to indicate different functions. For example, exp (x) function returns an
'e " sin (x) function returns a 'z' and cos (x) function returns a 'c'. Only
lower case characters are returned for such special functions.

7.2. DATA FIELDS AND TYPES OF SYMBOL

Figure 7.3: Schematic diagram of the expression y = a*b + 1 + sin (x)

Consider the expression

~8
~~G

EJ [J

y = a*b + 1 + sin (x)

285

and its corresponding expression tree in Figure 7.3. Note that all six types of nodes
have been used in this expression: y is 'B' -type; a, b, x are 'V' -type; '1' is 'N'­
type, 'sin' is 'Function' -type and the'S' and 'P' -types are used as intermediate
connecting nodes for different purposes.

Another example is given in Figure 7.4. The expression is

We notice that expressions which contain only +, -, *, / and parentheses can be
represented uniquely by the expression tree. The smaller boxes attached to the'S'
and 'P' nodes are f ac_ exp which represent the multiplication factors or the power
factors respectively. The '1' node is a special node which we discuss later. The
expression that follows the special function is the argument of the function.

286 CHAPTER 7. THE SYMBOLIC CLASS

7.3 Constructors

We have a base class Symbol and two derived classes Sum and Product. For the
symbolic system to be possible, they have to work closely among themselves. Since
the logic of the program may flow from one class to another and due to the nature of
the data structures, we describe the constructors for the three classes all together at
this stage rather than describing all the interfaces of a whole class followed by another.
We start off by describing the role played by the base class constructors. The main
purpose of the constructors is to initialize the data fields in the class including the
allocation of an appropriate amount of memory space for the pointers. This step is
important for ensuring the proper operation of the classes.

• SymbolO: This is the default constructor for the class Symbol. Since it is an
abstract base class, it is not supposed to be invoked to create any instance at
any time. We have included an error message in the body of the function. The
compiler should usually detect this error.

• Symbol(int n): This constructor creates a node with n branches. It allocates
memory space for ep, fac_exp, next_var and initializes them.

• Symbol(int n, T *v, int *w) has a similar function to the previous construc­
tor, except it initializes fac_exp to v and next_var to w.

• Symbol{int n,Symbol<T> **s,T *v,int *w) creates a symbolic node and ini­
tializes entries of ep to s, fac_exp to v and next_var to w.

• The destructor simply releases unused memory back to the pool.

All the constructors are declared as protected. These constructors are only visible
and accessible to the member functions and derived classes but not to the users or
functions outside the class.

Consider the constructors in the Sum class. The class has a data field Terms<T> *data
and it is a public derived class of Symbol. A constructor of Sum will always invoke the
constructor of Symbol first, followed by the initialization of data and other operations:

• The default constructor declares a "zero" node. The "zero" node and "one"
node are two special nodes in the classes. They have the following node struc­
tures:

7.3. CONSTRUCTORS 287

A number n other than "one" or "zero", is represented by putting n in the
fac_exp of the Sum node as a multiplication factor as shown in the structure
below:

• Sum(const T n) creates a number node with numerical value equal to n as
described above.

• Sum (const Tn, char) creates a leaf node of type 'N' with its numerical value
equal to n. It is a private constructor which is used internally.

• Sum(char ftype,char) creates a 'Function' node according to the ftype
provided by the caller. For example, if ftype = 'e', an exp () function is
created. It is also a private constructor.

• Sum(int n,int) creates a Sum node which has n branches.

• Sum(String name, int) is used to declare a symbolic variable name.

• Sum(int i,Symbol<T> **newep,T *new_fe,int *new_nx,String nm)
creates a Sum node with all its data fields and base class structures initialized
according to the items in the argument.

• The copy constructor duplicates the Sum node and the tree expression rooted
on this node.

• The destructor releases memory that is no longer in use back to the free memory
pool.

The constructors for the Product class are much simpler because the Product has
only one data field Comm, which indicates the commutativity of the multiplication
operator *.

• Product (int n) creates a Product node with n branches.

• Product(int i, Symbol<T> **newep, T *new_fe, int *new_nx) creates a
Product node with the base class structure initialized as specified in the argu­
ment.

• The copy constructor and destructor for Product are trivial.

288 CHAPTER 7. THE SYMBOLIC CLASS

• The data field Comm is declared as static. It is therefore shared by all instances
of the class and is stored uniquely in one place. Since a static member is inde­
pendent of any particular instance, it is accessed in the form Product<T>: : Comm.
We have specified the algebra system to be commutative by default and it is
initialized by the following statement:

template <class T> int Product<T>::Comm = 1;

where 1 specifies a commutative system and 0 specifies otherwise.

7.4 Operators

In this section, we describe the arithmetic and mathematical operators available in
the system:

(unary)+, (unary)-, +, -, *, I, = +=, -=
power(), df(), lnt(), expand(), coeff()

*=, 1=, --, !=,

Suppose x, yare symbolic variables of type Sum and c is a numerical constant of type
T, the operators do the following:

• x+y, x+c, c+x add symbolic variables, expressions or numerical constants.

• x-y, x-c, c-x subtract symbolic variables, expressions or numerical constants.

• x*y, x*c, c*x multiply symbolic variables, expressions or numerical constants.

• x/y, xl c, c/x divide symbolic variables, expressions or numerical constants.

• x=y assigns a symbolic variable/expression y to x.

• x=c assigns a numerical constant c to x.

• +=, -=, *= and 1= are just the modification forms of the assignment operator.

• ==, ! = compare the equality of two expressions. For example, x+y==y+x returns
true and x! =x returns false.

The result actually depends on the commutativity of the * operator as well. For
example, a*b==b*a will return true if it is commutative, otherwise it is false.

• power (const Sum<T> &s, int n) raises expression s to power n. For example,
y=power(x,5) has the structures shown on the next page.

For the other case when the power is equal to zero, e.g. y=power ex, 0), the
function simply returns a constant value' 1'.

7.4. OPERATORS 289

• power (T x, T n) evaluates xn using the algorithm discussed in Section 6.1. Note
that the function works only for numeric powers. Terms such as XX cannot be
expressed using the power () function. An alternative way to express the term
making use of the exponential function is given by

XX == exp(x * In(x)) .

• df (const Sum<T>& y, const Sum<T>& x) evaluates the partial derivative of y
with respect to x. The evaluation of df (y ,x) proceeds as follows:

1. Suppose y is expressed in terms of x, then each term of y which contains
the variable x is differentiated according to the standard rules.

2. If z is another variable then its derivative with respect to x is zero, un­
less z has been declared previously as dependent on x, in which case the
derivative is df(z,x).

Consider a polynomial P of degree n,

Since the derivative of the monomial akxk is kakxk-l, we obtain by using diff 0
in the function df 0 :

In the process, we have made use of several derivative rules.

- The function Sum<T>: : diff () manipulates expressions following the prop­
erties listed below:

l dx ldc Dh· ·1 . dx = , dx = were c IS a numenca constant.

d
{

dY
Y - if Y is dependent on x

2. dx = dOx
otherwise

290 CHAPTER 7. THE SYMBOLIC CLASS

3. The differentiation operator is a linear operator, i.e.

where a, b are numerical constants, x is an independent variable and
u(x), v(x) are functions of x.

4. Chain-rule:

d df du
- f (u(x)) = - * -
dx du dx

where f is a function of u which is dependent on x.

5. Integration is the inverse of differentiation

J d~y(x)dx = y(x) .

- The Product<T> : : diff 0 implements the product rule for differentiation

and the derivative rule for monomials

~ (a * (u(x)t) = n * a * un- 1 * (dU) dx dx

where a is a constant.

The differentiation operator needs knowledge of the dependency between various
variables. Such dependency may be declared by the function depend (). For
example, y . depend (x) ; y. depend (z) ; declares that y is dependent on x and z.
After such declarations are made, df (y, x) would be evaluated to itself df (y, x),
instead of 0 as prior to the declarations.

7.4. OPERATORS 291

If, for some reason, the dependency needs to be removed, then nodepend 0 can
be used. For example, given the above dependencies, y.nodepend(x) indicates
that y is no longer dependent on x, although it remains dependent on z.

Sometimes, we need the information about the dependencies on various vari­
ables. We could check them using isdepend(). For example, y. isdepend(z)
would return true for the above dependencies whereas y. isdepend (x) would
return false.

All the information regarding the dependencies between variables is stored using
a linked list MList .h. Note that a linked list data structure is chosen because
the number of dependent variables varies for different symbolic variables. It is
therefore difficult to preassign the memory space required for such a case .

• df(const Sum<T>& y, const Sum<T>& x, int n) evaluates the nth derivative
of y with respect to x .

• lnt (const Sum<T> &y, const Sum<T> &x) evaluates simple integrals of y with
respect to x, neglecting constants of integration.

Consider a polynomial P of degree n,

P(x) = anxn + an_lXn- l + ... + akxk + ... + a2x2 + alX + ao.

Since the integral of the monomial akxk is akxk+1 / (k + 1), we obtain by using
integrate 0 in the function lnt 0 :

P X dx = --X + --X + ... + --X + ... + -X + -X + aox. ! () an n+1 an-l n ak k+1 a2 3 al 2

n+1 n k+1 3 2

In the process, we have made use of several integration rules.

- The function Sum<T>: : integrate 0 manipulates expressions following the
properties listed below:

1. For c a numerical constant and X an independent variable

! c dx = c* X,

2.

!YdX={ !ydx
y*x

if Y is dependent on X

otherwise

292 CHAPTER 7. THE SYMBOLIC CLASS

3. The integration operator is a linear operator, i.e.

I[a * u(x) + b * v(x)] dx = a * I u(x) dx + b * I v(x) dx

where a, b are numerical constants, x is an independent variable and u(x),
v(x) are functions of x.

4. Integration is the inverse operation of differentiation:

I d~Y(x) dx = y(x).

The function Product<T>: : integrate 0 implements the integration rules for
monomials

where a is a constant.

n #-1
n =-1

The integration operator sometimes needs knowledge of the dependency be­
tween various variables. Such dependency may be declared by the function
depend 0 . For example, y. depend(x) ; declares that y is dependent on x. Af­
ter such a declaration is made, lnt (y ,x) would be evaluated to itself lnt (y, x),
instead of y*x as prior to the declaration. The description of df () expands on
this discussion.

• lnt (const Sum<T> &y, const Sum<T> &x, int n) evaluates the nth integral of
y with respect to x.

• expand () expands the product of expressions that may be raised to a power n.
It is composed of two major functions - dxpand 0 and mxpand O. dxpand 0
expands expressions using the distributive law, whereas mxpandO uses the bi­
nomial theorem to perform the binomial expansion

For a multinomial expansion, where the expression is a sum of more than two
components, we further extend the idea of the binomial theorem by grouping

7.4. OPERATORS 293

terms into only two sets of terms. However, we have to decide how to split it
into the a and b pieces. There are two obvious ways: either cut the expression
in half, so that a and b will be of equal size, or split off one component at a
time. It can be shown that the latter method is more efficient in most cases.
In other words, an expression tl + t2 + t3 + ... + tk will be treated as the sum
a + b where a = tl and b = t2+ t3 + ... + tk, i.e.

and the binomial expansion is applied.

• coeff 0 returns the symbolic or numeric coefficients of an expression. It is
overloaded in three different forms:

- Sum<T> coeff(con5t Sum<T>& 5) con5t;
returns the coefficient of the term 5 in the expression.

- T coeff(int) con5t;
returns the constant term in the expression.

- Sum<T> coeff(con5t Sum<T>& 5,int n) con5t;
returns the coefficient of the term 5n in the expression .

• put (con5t Sum<T>& 51, con5t Sum<T>& 52) replaces all the terms 51 in an
expression by another term 52. The function returns a non-zero integer if a
replacement is successful, otherwise a zero is returned.

The function proceeds by checking through each term of the expression. If a
match with 51 is found, it replaces 51 with 52. This is a useful function that aids
the simplification of expressions. For example, an expression with a mixture of
sin2 x and cos2 x terms such as

10 * sin2 x + 5 * cos2 X

may be simplified to

5 * sin2 x + 5

by replacing all the cos2 x term by 1 - sin2 x and combining like terms.

294 CHAPTER 7. THE SYMBOLIC CLASS

Example 1

In this example, we consider the function power () .

II expand.cxx

#include <iostream.h>
#include IMSymbol.h"

void mainO
{

Sum<int> a(la",O) , b(lb",O), C("C",O) , y, z;

}

y = power(7,3);
y = power(a,O);
y = power(a,3);
cout « endl;

y = power(a+b-c,3);
cout « endl;

y = (a+b)*(a-c);
cout« endl;

y = a+b;
z = power(y,4);

1*
Results

y = 343
Y = 1
Y = a A (3)

cout « II y = II « y « endl;
cout « II y = II « y « endl;
cout « II y = II « y « endl;

cout « II y = II « y « endl;

cout « II y = II « y « endl;

cout « II z = II « z « endl;

y = aA(3)+3*aA(2)*b-3*aA(2)*c+3*a*bA(2)-6*a*b*c+3*a*cA(2)+bA(3)
-3*bA(2)*c+3*b*cA(2)-cA(3)

z = aA(4)+4*aA(3)*b+6*aA(2)*bA(2)+4*a*bA(3)+bA(4)
*/

7.4. OPERATORS

Example 2

In this example, we consider the derivatives of

with respect to x. Notice that

1
y(x) = -- + 2x3 - z

1-x

dz = 0
dx

295

because the system assumes no dependency for any two variables unless specified
otherwise. In the second part of this example, we consider the derivatives of the
expression

121 u(v) = _v3/5 _ _ V I/5 + _
3 7 6

with respect to v. Note that the coefficients and the degrees of the variable v are
rational numbers.

II derivatv.cxx

#include <iostream.h>
#include "Rational.h"
#include "MSymbol.h"

void mainO
{

int i;
Sum<int> x("x",O), z("z",O), y;

y = 1/(l-x) + 2*x*x*x - z;
cout « "y = " « y « endl;

for(i=O; i<8; i++)
{

y = df(y,x);
cout « "y = " « y « endl;

296 CHAPTER 7. THE SYMBOLIC CLASS

}

cout « endl;

Sum<Rational<int> > V("V" ,0), u;

}

u = Rational<int>(1,3) * power(v,Rational<int>(3,5»
- Rational<int>(2,7) * power(v,Rational<int>(1,5»
+ Rational<int>(1,6);

cout « "U = II « u « endl;

for(i=O; i<8; i++)
{

u = df(u,v);
cout « "U = II « u « endl;

}

/*
Results
=======
y = (1-x)-(-1)+2*x-(3)-z
y = (1-x)-(-2)+6*x-(2)
y = 2*(1-x)-(-3)+12*x
y = 6*(1-x)-(-4)+12
y = 24*(1-x)-(-5)
y = 120*(1-x)-(-6)
y = 720*(1-x)-(-7)
y = 5040*(1-x)-(-8)
y = 40320*(1-x)-(-9)

u = 1/3*v-(3/5)-2/7*v-(1/5)+1/6
u = 1/5*v-(-2/5)-2/35*v-(-4/5)
u = -2/25*v-(-7/5)+8/175*v-(-9/5)
u = 14/125*v-(-12/5)-72/875*v-(-14/5)
u = -168/625*v-(-17/5)+144/625*v-(-19/5)
u = 2856/3125*v-(-22/5)-2736/3125*v-(-24/5)
u = -62832/15625*v-(-27/5)+65664/15625*v-(-29/5)
u = 1696464/78125*v-(-32/5)-1904256/78125*v-(-34/5)
u = -54286848/390625*v-(-37/5)+64744704/390625*v-(-39/5)
*/

7.4. OPERATORS 297

Example 3

In this example, we investigate the properties of the df 0 operator. By default,
any two variables are assumed to be independent of each other. Dependency can be
created by depend () and removed by nodepend () .

II depend.cxx

#include <iostream.h>
#include "MSymbol.h"

void mainO
{

Sum<int> a("a" ,0), b("b" ,0), u("u" ,0), v("v" ,0),
x("x" ,0), z("z" ,0), y("y" ,0);

cout « "System assumes no dependency by default" « endl;
cout « "dfCy,x) => " « dfCy,x) « endl;

cout « "y is dependent on x" «
y.depend(x);
cout « "dfCy,x) => " « df(y,x)
y = sin(x*x+5) + x· , cout « "y =
cout « "dfCy,x) => " « df(y,x)
cout « endl;

cout « "u depends on x" « endl;
u.depend(x);

endl;

« endl;
" « y « endl;
« endl;

cout « "dfCcos(u) ,x) => " « df(cos(u) ,x) « endl;

cout « "u depends on x, and x depends on v" « endl;
x.depend(v);
cout« "dfCcos(u),v) =>"« dfCcos(u),v)« endl;

II example
y = cos (x*x+5) -2*sin (a*z+b*x); cout « "y = " « y « endl;
cout « "dfCy, v) => " « dfCy, v) « endl;
cout « endl;

cout « "check dependency" « endl;
cout « "y.isdepend(x) -> " « y.isdepend(x) « endl;
cout « "y.isdepend(v) -> " « y.isdepend(v) « endl;
cout « "y.isdepend(z) -> " « y.isdepend(z) « endl;
cout « endl;

298

}

CHAPTER 7. THE SYMBOLIC CLASS

cout « IIremove dependency II « endl;
x.nodepend(v);
cout « IIdf(y,v) => II « df(y,v) « endl;
cout « endl;

cout « IIderivative of constants gives zero ll « endl;
cout « IIdf(5,x) => II « df(5,x) « endl; .
cout « endl;

II renew the variable y
y.clearO;
y.depend(x);
y.depend(z);
cout « IIdf(y,x)+df(y,x) => II « df(y,x)+df(y,x) « endl;
cout « IIdf(y,x)*df(y,x) => II « df(y,x)*df(y,x) « endl;
cout « endl;

cout « IIAnother example, II « endl;
x.clearO;
y.clearO;
u.clearO;
y.depend(u);
u.depend(v);
v.depend(x);
y = df(u,x)*sin(x);
cout « lIy = II « y « endl;
u = 2*v*x;
cout « IIlet u = II « u « II then,1I « endl;
cout « lIy => II « y « endl;
cout « IIdf(y,x) => II « df(y,x) « endl;

1*
Results
=======
System assumes no dependency by default
df(y,x) => 0

Y is dependent on x
df(y,x) => df(y,x)
y = sin(x-(2)+5)+x
df(y,x) => 2*x*cos(x-(2)+5)+1

u depends on x

7.4. OPERATORS

df(cos(u),x) =) -df(u,x)*sin(u)
u depends on x, and x depends on v
df(cos(u),v) =) -df(u,v)*sin(u)
y = cos(xA(2)+5)-2*sin(a*z+b*x)
df(y,v) =) -2*x*df(x,v)*sin(xA(2)+5)-2*b*df(x,v)*cos(a*z+b*x)

check dependency
y.isdepend(x) -)

y.isdepend(v) -)

y.isdepend(z) -)

remove dependency
df(y,v) =) 0

1
1
0

derivative of constants gives zero
di{5,x) =) 0

df(y,x)+df(y,x) =) 2*df(y,x)
df(y,x)*df(y,x) =) df(y,X)A(2)

Another example,
y = df(u,x)*sin(x)
let u = 2*v*x then,
y =) (2*df(v,x)*x+2*v)*sin(x)

299

df(y,x) =) (2*df(df(v,x),x)*x+4*df(v,x))*sin(x)+(2*df(v,x)*x+2*v)*cos(x)
*/

300 CHAPTER 7. THE SYMBOLIC CLASS

Examples 4, 5 and 6 demonstrate how different forms of coeff 0 could be used to
extract coefficients of expressions. Example 7 illustrates the use of put 0 and how
identities can be used for simplification.

Example 4

II coeffl.cxx

#include <iostream.h>
#include IMSymbol.h"

void mainO
{

Sum<int> a("a" ,0), b("b" ,0), d"c" ,0);

cout « (2*a-3*b*a-2+c).coeff(a) « endl;
cout « (2*a-3*b*a-2+c) .coeff(b*a) « endl;
cout « (2*a-3*b*a-2+c).coeff(b) « endl;
cout « endl;

cout « (b*b+c-3).coeff(a,O) « endl;
cout « (-b).coeff(a,O) « endl;

}

1*
Results
=======

7.4. OPERATORS

Example 5

II coeff2.cxx

#include <iostream.h>
#include IMSymbol.h"

void mainO
{

Sum<int> a(la",O), b(lb",O), C("C",O), d(ld",O),
y, z;

y = -a*5*a*b*b*c + 4*a - 2*a*b*c*c + 6 - 2*a*b
+ 3*a*b*c - 8*c*c*b*a + 4*c*c*c*a*b - 3*b*c;

cout « "y = II « y « endl; cout « endl;

z = a· , cout « y.coeff(z) « endl;
z = b; cout « y. coeff(z) « endl;
z = c; cout « y. coeff (z) « endl;
z = a*a; cout « y.coeff(z) « endl;
z = a*b; cout « y.coeff(z) « endl;
z = d; cout « y.coeff(z) « endl;
cout « endl;

II find coefficients of the constant term
z = a; cout « y.coeff(z,O) « endl;
cout « y.coeff(O) « endl;

}

1*
Results
=======

4-10*b*c-(2)-2*b+3*b*c+4*c-(3)*b
-10*a*c-(2)-2*a+3*a*c+4*c-(3)*a-3*c
-5*a-(2)*b-(2)+3*a*b-3*b
-5*b-(2)*c
-10*c-(2)-2+3*c+4*c-(3)
o

301

302

Example 6

// coeff3.cxx

#include <iostream.h>
#include "Rational.h"
#include "MSymbol.h"

void mainO
{

int ij

CHAPTER 7. THE SYMBOLIC CLASS

Sum<Rational<int> > x("x" ,0) ,w("w" ,0) ,p("p" ,0) j
w = Rational<int>(O)j

for(i=-5j i<=5j i++)
w += Rational<int>(6+i,6-i)*power(p,5-i)*power(x,i)j

cout « "w = " « w « endlj cout « endlj

cout « "And the coefficients are" « endlj
for (i=-5j i<=5j i++)

}

/*
Results

cout « w.coeff(x,i) « endlj

w = 1/11*p-(10)*x-(-5)+1/5*p-(9)*x-(-4)+1/3*p-(8)*x-(-3)
+1/2*p-(7)*x-(-2)+5/7*p-(6)*x-(-1)+p-(5)+7/5*p-(4)*x+2*p-(3)*x-(2)
+3*p-(2)*x-(3)+5*p*x-(4)+11*x-(5)

And the coefficients are
l/l1*p- (10)
1/5*p-(9)
1/3*p-(8)
1/2*p-(7)
5!7*p-(6)
p-(5)
7/5*p-(4)
2*p-(3)
3*p-(2)
5*p
11

*/

7.4. OPERATORS

Example 7

II put.cxx

#include <iostream.h>
#include "MSymbol.h"

void mainO
{

}

Sum<int> a("a",O), b("b",O), c("c",O), w, y;

I I Test (1)
y = (a+b)*(a+sin(power(cos(a),2»)*b;
cout « "y = " « y « endl;
y.put(b,c+c); cout « "y = " « y « endl;
y.put(cos(a)*cos(a) ,l-power(sin(a) ,2»;
cout « "y = " « y « endl; cout « endl;

II Test (2)
y = sin(power(cos(a) ,2» + b; cout « "y = " « y « endl;
y.put(cos(a)*cos(a),l-power(sin(a),2»;
cout « "y = " « y « endl; cout « endl;

II Test (3)
a.depend(c); b.depend(c);
y = 2*a*df(b*a*a,c) + a*b*c; cout « "y = " « y « endl;
y.put(a,cos(c»; cout « "y = " « y « endl;
w = df(b,c); y.put(w,exp(a»; cout « "y = " « y « endl;

1*
Results

y = a-(2)*b+a*sin(cos(a)-(2»*b+b-(2)*a+b-(2)*sin(cos(a)-(2»

303

y = 2*a-(2)*c+2*a*sin(cos(a)-(2»*c+4*c-(2)*a+4*c-(2)*sin(cos(a)-(2»
y = 2*a-(2)*c+2*a*sin(l-sin(a)-(2»*c+4*c-(2)*a+4*c-(2)*sin(l-sin(a)-(2»

y = sin(cos(a)-(2»+b
y = sin(l-sin(a)-(2»+b

y = 2*a-(3)*df(b,c)+4*a-(2)*b*df(a,c)+a*b*c
y = 2*cos(c)-(3)*df(b,c)-4*cos(c)-(2)*b*sin(c)+cos(c)*b*c
y = 2*cos(c)-(3)*exp(a)-4*cos(c)-(2)*b*sin(c)+cos(c)*b*c
*1

304 CHAPTER 7. THE SYMBOLIC CLASS

Example 8

In this example, we integrate the expression

y(x) = (1- X)2 + cos (x) + xex + c+ z

with respect to x. We declare z to be dependent on x. Since the system assumes no
dependency for any two variables we can use c as a symbolic constant. We also make
use of

// integ.cpp

#include <iostream.h>
#include "MSymbo1.h"
#include "rationa1.h"

void mainO
{

}

int ij
Sum<Rational<int> > x("x",O), c("c",O), z("z",O), Yj
Sum<Rational<int> > one(Rational<int>(l»j
z.depend(x)j
y:(one-x) * (one-x)+cos (x)+x*exp(x)+c+Zj
cout « "y : " « y « endlj

for(i:Oj i<3j i++)
{

Y : Int(y,x)j
y.put(Int(x*exp(x),x), x*exp(x) - exp(x»j
cout « "y : " « y « endlj
}

cout « endlj

Results

y : 1-2*x+xA(2)+cos(x)+x*exp(x)+c+z
y : x-xA(2)+1/3*xA(3)+sin(x)+x*exp(x)-exp(x)+c*x+lnt(z,x)
y : 1/2*xA(2)-1/3*xA(3)+1/12*xA(4)-cos(x)+x*exp(x)-2*exp(x)

+1/2*c*xA(2)+Int(Int(z,x) ,x)
y : 1/6*xA(3)-1/12*xA(4)+1/60*xA(5)-sin(x)+x*exp(x)-3*exp(x)

+1/6*c*xA(3)+Int(Int(Int(z,x) ,x) ,x)

7.5. FUNCTIONS 305

7.5 Functions

We have described the availability of special functions such as sine and cosine in our
symbolic system. All the operations available can be applied to these functions, e.g.
the differentiation operator df () .

A function is stored in the expression tree as a leaf node, i.e. it has no descendant.
However, a function has to operate on an argument. We need to find an appropriate
place to store the argument. Since an argument is attached to every function, it should
also belong to the expression tree. We have decided to make it like an expression tree
rooted at the function itself. Consider the function sin(x+y) and its tree structure
in Figure 7.5.

Figure 7.5: Schematic diagram of the function sin(x+y)

In the diagram, the' z' node denotes a sinO function with its data points at the sin
class. Its argument is pointed to by ep which is the root of the argument expression
tree. With this representation, we have successfully implemented the function as a
component of the expression tree. Below, we listed the functions available in the
symbolic system and the operations associated with them. For the time being, there
are only seven special functions implemented in the class:

expO, sinhO, coshO, sinO, cosO, sqrtO, InO

Member functions that are associated with them include:

• The differentiation rules:

d du
dx exp(u) = dx exp(u),

d du
dx sinh u = dx cosh u,

• The value for special arguments:

exp(O) = 1, sinh(O) = 0,

cos(O) = 1, J1 = 1,

cosh(O) = 1,

Va = 0,

d h du. h
dx cos u = dx sm u,

sin(O) = 0,

In(l) = O.

306 CHAPTER 7. THE SYMBOLIC CLASS

7.6 Simplification

Simplification plays a vital role in a symbolic system. It produces an equivalent but
simpler form of a given expression. The following are some examples of simplification
of algebraic expressions:

-) 7
-) x
-) u

sin(2*x-x-x) -) 0

where the symbol -) means "simplifies to" or "transforms to". Consider another
expression,

There exists some obvious redundancy. By applying the algebraic simplification, a
much more "clean" and "useful" result can be obtained, such as the simplified form
of the expression above,

Expression simplification is based on the existence of simplification rules for each
type of mathematical expression. For example, simplification of the expression above
involved the following algebraic manipulations:

8*a*a + b*c*(a + b - a - 2*b + b) + 2 - power(a,2)*3 + cos(x - x)
-+ 8*a~2 + b*c*O + 2 - 3*a~2 + cos(O)
-+ 5*a~2 + 0 + 2 + 1
-+ 5*a~2 + 3

In fact, there is no finite set of simplification rules that could simplify all kinds of
algebraic expressions. This means that it is hard to find an algorithm that can
completely simplify an arbitrary algebraic expression. However, with a suitable finite
set of simplification rules, very good results can be achieved in practice.

7.6.1 Canonical Forms

Mathematical expressions may exist in several different but equivalent symbolic rep­
resentations. A canonical form is a designated or "standard" representation for such
expressions. For example, polynomials are usually represented by a series of terms
with decreasing exponents, with each term preceded by a numerical coefficient. Fol­
lowing the "standard" convention, the conversion below would be appropriate:

-5 * x3 + x6 * 8 + 4 - 2 * x 2 -+ 8 * x6 - 5 * x 3 - 2 * x 2 + 4 .

A conversion to canonical form may increase or decrease the complexity of an expres­
sion, or simply result in the rearrangement of terms. Quite often, such a conversion is

7.6. SIMPLIFICATION 307

to improve the readability. Nevertheless, the most important application is the deter­
mination of two distinct symbolic representations for their "equivalence". Therefore,
we need some rules that permit equivalent transformation from one representation to
another. However, it is difficult to obtain the complete set of correct rules.

When a canonical form of an expression is carefully defined, transformation to the
canonical form of two equivalent expressions will produce identical, or nearly identical
representations. This will greatly reduce the complexity for comparison.

A mathematical expression is represented by a tree structure for our symbolic system.
The simplification process consists of two major parts: One being the transformation
to the canonical form, and the other being the reduction to simplified form based
on some known rules. For example, a* (-1) could be rewritten as -a. Its symbolic
simplification is as follows:

a* (-1)
[Step 1J -+ -(a*(1))
[Step 2J -+ -(a*1)
[Step 3J -+ -(a)

[Step 4J -+ -a

The process involves three steps of canonical transformations [Step 1, 2, 4J and
one step of rule-based simplification [Step 3J (Figure 7.6).

This example illustrates that a canonical form is a way of restricting the forms of
expression which are allowed. Hence the simplification rules need only deal with a
restricted class of expressions.

7.6.2 Simplification Rules and Member Functions

In this section, we describe in greater detail the simplification rules and the transfor­
mation to canonical forms. Suppose e,el,e2,e3,e4 are arbitrary algebraic expressions
and c, Cl, C2 denote positive numerical constants. Some sample rules of simplification
for each operator are listed in Figure 7.7.

The subtraction operator (-) has similar properties to the addition operator (+) while
the division operator (I) has similar properties to the multiplication operator (*).
Meanwhile, the transformation rules to canonical forms are given in Figure 7.S.

Finally, individual terms are grouped, summed or multiplied if they belong to the
same class. For example,

2*a + 3*a
exp(z) + exp(z)
p~(-2) * p~(5)
cos(x) * cos(x)

-) 5*a
-) 2*exp(z)
-) p~(3)

-) (cos(x))~2

308 CHAPTER 7. THE SYMBOLIC CLASS

~~ [Step!]
IS' 'P'

1 ~

~ 1cSl--~
'uJ ~qJ--8

[jL-.J

~ [jL-.JL-.J

j [Step 4]

~
~L-.J

[Step 3]

j [Step 2]

~ ~
LT] '~EJ

Figure 7.6: Schematic diagram of the simplification process for a* (-1)

and the final simplified expression is obtained. One may wonder with this limited set
of simplification rules, could an expression be simplified to its simplest possible form?
The answer to this question is not obvious. However, transformation to canonical
form does play an important role in the process as it reduces the number of rule­
based simplifications and also the complexity of the process.

In our canonical form for product expressions with numeric operands, only the first
operand may be numeric. This implies that

which is just the application of commutative law for multiplication. Hence the fol­
lowing rules are equivalent and they are not shown in Figure 7.7:

7.6. SIMPLIFICATION 309

Operations Functions

Cl + C2 -+ c Sum: :shrinkAO
e+O-+e Sum: :shrink_30

Cl * C2 -+ C Sum::shrink_lO
O*e-+O Product: : shrink_3 0
l*e-+e Product: : shrink_l ()

OC -+ 0 Product: : shrink_3 ()
F -+ 1 Product: : shrink_l 0
eO -+ 1 Product: : gather 0

Figure 7.7: Simplification rules

Operations Functions

(Cl * el) * (C2 * e2) -+ C * (el * e2) where C = Cl * C2 Sum::shrink_lO
((el + e2) + e3) + e4 -+ el + e2 + e3 + e4 Sum::shrink_2O

((el * e2) * e3) * e4 -+ el * e2 * e3 * e4 Product: : shrink_2 ()

el + (e2) -+ el + e2 Sum::shrink_50

Figure 7.8: Canonical conversion rules

Similarly, the commutative law for addition may be employed:

(e+c)-+(c+e).

This eliminates many unnecessary addition rules. Another important canonical con­
version rule is the outward propagation multiplication rule. For example,

(Cl * el) * (C2 * e2) +--+ (Cl * C2) * (el * e2)
(Cl * el)/(c2 * e2) +--+ (CI/C2) * (eI/e2)

These rules do not result in simplifications, but convert expressions to canonical forms
which may result in simplifications later.

310 CHAPTER 7. THE SYMBOLIC CLASS

7.7 Commutativity

So far we have assumed the commutative law holds for multiplication of symbols.
However, in some applications this is not necessarily true. For example,

A*B#B*A

in general if A, B are matrices. This leads us to think about the need for a non­
commutative operator. In fact, a large branch of mathematics called Lie Algebra
involves operators which are non-commutative. Therefore, non-commutative opera­
tors must be built into a symbolic system.

For our computer algebra system, we have made the system commutative by default.
To specify a non-commutative algebra, use the function Commutative (T, int t). The
first argument specifies the type with which the underlying field is concerned. This
is the type as specified during the declaration of the variables. The second argument
t specifies the choice of commutativity. If t = 0, non-commutativity prevails. Oth­
erwise, commutativity prevails.

Consider the following program:

II commute.cxx

#include <iostream.h>
#include "MSymbol.h"

void mainO
{

Sum<int> a("a",O), b("b",O), y;

cout « "Commutative Algebra" « endl;
cout « "===================" « endl;

II The system is commutative by default
y a*b*a; cout « " y = " « y « endl;
y a*b-b*a; cout « "y "« y « endl;

y = power(a-b,2);
cout « endl;

cout « " y = " « y « endl;

cout « "Non-commutative Algebra" « endl;
cout « "=======================" « endl;

Commutative(int(),O);

7.7. COMMUTATIVITY

y a*b*a;
y a*b-b*a;

y :: power(a-b,2);
cout « endl;

cout « " y :: " « y « endl;
cout « "y ,,« y « endl;

cout « " y :: " « y « endl;

cout « "Commutative Algebra" « endl;
cout « "::::::::::::::::::::::::::::::::::::::" « endl;

}

1*
Result
======

Commutative(int(),l);
cout « " y :: " « y « endl;

Commutative Algebra
===================
y = a-(2)*b
y = 0
y = a-(2)-2*a*b+b-(2)

Non-commutative Algebra
=======================

y = a*b*a
y = a*b-b*a
y = a-(2)-a*b-b*a+b-(2)

Commutative Algebra
===================
y = a-(2)-2*a*b+b-(2)

*/

311

From the result obtained, we notice that the function could be invoked at any time
within a program to specify or change the status of commutativity. The last two
display statements show that by switching the mode from non-commutative to com­
mutative, expressions will be evaluated automatically. This rule does not apply the
other way round.

312 CHAPTER 7. THE SYMBOLIC CLASS

7.8 Symbolic and Numeric Interface

When a symbolic algebraic expression is evaluated, its numerical algebraic value is
also needed. Our system handles the situation in the following way:

1. Starting with the algebraic values of the parts, all variables and operators with
an argument list have the algebraic values as they were last assigned, or if never
assigned, are taken as the variable itself.

2. In evaluating expressions, the standard rules of algebra are applied.

3. Three functions have been included to specify the numerical values and evaluate
the numerical algebraic values of expressions. Suppose x, y, z are symbolic
variables, y has been assigned to an algebraic expression in terms of x, whereas
z has been assigned to a numerical constant value, then

• x. set (const T num) assigns the numeric constant num to the variable x.

• y. value 0 returns the evaluated algebraic value of the expression y.

• z. nvalue 0 returns the numerical value of the variable z.

Note that assigning a numerical constant to a variable by x. set (num) is different to
using the assignment operator x=num. The x. set 0 operator merely gives the nu­
merical counterpart of the variable x. This value could be modified and the symbolic
properties of the variable x still remains. However, the assignment operator replaces x
by the number num. x is now semantically equivalent to num, and after the operation,
it loses its symbolic properties in an expression and these cannot be retrieved. Their
different properties are demonstrated in the following program:

II setvalue.cxx

#include <iostream.h>
#include "MSymbol.h"

void mainO
{

Sum<double> x("x",O), y("y",O), z("z",O);
double c1 = 0.5, c2 = 1.2;
Y = x*x + z/2.0;
cout « lOy = " « y « endl;
cout « "The value of y is " « y. value 0 « endl;
cout « endl;

x.set(c1); z.set(c2);
cout « "Put x = " « c1 «" z = " « c2 « endl;

7.8. SYMBOLIC AND NUMERIC INTERFACE 313

cout « "The value of y " «y« " is " « y. value () « endl;
cout « endl;

cout « "Substitute x with " «c1« " and z with"
« " then" « endl; ,

x = c1;
z = c2;

cout « fly = " « y « endl; cout « endl;

}

1*
Result

x.clear(); z.clear();

y = x*x*z + 0.7*z - x*z;
cout « fly = " « y « endl;

x.set(c1);
cout « "Put x = " « c1 « endl;
cout « "The value of y is " « y. value () « endl;
cout « endl;

z.set(c2);
cout « "Put z = " « c2 « endl;
cout « "The value of y is " « y. value () « endl;

y = x-(2)+0.5*z
The value of y is x-(2)+0.5*z

Put x = 0.5, z = 1.2
The value of y = x-(2)+0.5*z is 0.85

Substitute x with 0.5 and z with 1.2, then
y 0.85

y = x-(2)*z+0.7*z-x*z
Put x = 0.5
The value of y is 0.45*z

Put z = 1.2
The value of y is 0.54
*1

« c2

314 CHAPTER 7. THE SYMBOLIC CLASS

7.9 Summary

This chapter introduced a new computer algebra system which is built using the
concept of object-oriented programming. We pointed out that the mathematical
hierarchy is parallel with the philosophy of object-oriented programming, which served
as the motivation for this development using C++. In this chapter we described the
following:

• Object-oriented design: We explained how mathematical expressions may be
defined using the production rules and how it is related to our symbolic system.

• Data fields and types of symbol: We outlined the data fields defined in the classes
and the basic types of symbol used in the system.

• Operators: The functionalities and properties of the arithmetic operators and
functions were described. Differentiation and integration are explained.

• Functions: Special mathematical functions like sine, cosine, etc. were explained.

• Simplification: It is an important part of a computer algebra system, whereby
complicated expressions are reduced to simpler forms.

• Commutativity: We described how commutativity plays an important role in
the system.

• Symbolic and numeric interface: A computer algebra system is never complete
without the interface between the symbolic and numerical aspects. Here, the
rules and member functions that provide such an interface were described.

In the next chapter, we apply the classes implemented in Chapter 6 and this chapter
to applications in different areas, such as number theory, chaotic dynamics, spherical
harmonics, curvature and so on.

Chapter 8

Applications

The functionalities of a computer algebra system are best illustrated by applications.
In this chapter, we present the applications of the classes introduced in Chapters 6 and
7. The problems presented here relate to number theory, nonlinear dynamics, special
functions in mathematics and physics, etc. In general, applications are categorized
under different classes. In each application, the mathematical background is first
described, followed by the proposed solution to the problem and then the excerpt of
a program that solves the problem symbolically. There are twenty-eight applications
presented in this chapter:

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)

Prime Numbers
Big Prime Numbers
Inverse Map and Denumerable Set
Godel Numbering
Logistic Map
Contracting Mapping Theorem
Ghost Solutions

(23) Pseudospherical Surfaces
and Soliton Equations

(24) Picard's Method
(25) Lie Series Techniques
(26) Spectra of Small Spin Clusters
(27) Systems and Nonlinear Maps

with Chaotic Behaviour
Iterated Function Systems (28) Numerical-Symbolic Application
Logistic Map and Ljapunov Exponent
Mandelbrot Set
Polynomials
Cumulant Expansion
Exterior Product
First Integrals
Spherical Harmonics
N ambu Mechanics
Taylor Expansion of Differential Equations
Commutator of Two Vector Fields
Lie Derivative and Killing Vector Field
Hilbert-Schmidt Norm
Lax Pair and Hamilton System
Pade Approximant

315

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

316 CHAPTER 8. APPLICATIONS

8.1 Bit Vector Class

8.1.1 Prime Numbers

In this section, we apply the Bi tVector class to number theory - the prime num­
bers. A prime number is a positive integer p > 1 such that no other integer divides
p except 1 and p. The sequence formed by the prime numbers is perhaps the most
famous sequence in number theory. We generate the prime number sequence using
the "sieve of Eratosthenes" described in Section 2.2.

To implement the sieve algorithm, one must decide how numbers are stored and
crossed out in the sequence. We could maintain an array of flags with each entry
corresponding to a number in the sequence. The array is initialized by setting all the
flags true. The crossing out of multiples is equivalent to setting the respective flag
to false. When we reach a prime p with p2 > N, all the primes below N have been
found, then the array entries with flags equal to true will correspond to all the prime
numbers :S N.

Usually, an array of flags is represented by a bit field. It is simply a vector of 0/1
values. The field is maintained by a vector of unsigned char. Since each character
is composed of 8 bits, it can store 8 flags. This data structure is very effective in
terms of storage space.

Actually, we only need to store flags for the odd numbers, because we know that all
even numbers besides 2 are not prime. In this way, we need 1000000/(8 x 2) = 62500
bytes to store the table of primes less than one million. The space complexity of the
algorithm is O(N).

In the following we list the class Prime, which generates the prime number sequence.
Note that the header file "Bitvec.h" is included.

II Prime.h

#ifndef PRIME_H
#define PRIME_H

#include <assert.h>
#include <iostream.h>
#include "Bitvec.h"

class Prime
{

private:
I I Data Fields
unsigned int max_num, max_index, index, p, q, current;

8.1. BIT VECTOR CLASS

BitVector bvec;

public:

};

II Constructors
Prime 0 ;
Prime(unsigned int num);
void reset(unsigned int);
int step();
void run 0 ;
int is_prime(unsigned int) const;
unsigned int current_prime() const;

unsigned int operator () (unsigned int) const;

Prime: : Prime ()
max_num(O), max_index (0) , index(O) ,
p(O), q(O), current (0) , bvec() {}

Prime: : Prime (unsigned int num)
max_num(num), max_index«num+1)/2 - 1), index(O) ,
p(3), q(3), current (2) , bvec (max_index , OxFF) {}

void Prime: :reset(unsigned int num)
{

}

assert(num > 1);
max_num = num;
max_index = (num+1)/2 - 1;
index = 0; p = 3; q = 3; current
bvec.reset(max_index, OxFF);

int Prime: :step()
{

if(index < max_index)
{

while(!bvec.test(index))
{

++index;
p += 2;

2' ,

if(q < max_index) q += p+p-2;
if(index > max_index) return 0;

}

current = p;

317

318

}

}

CHAPTER 8. APPLICATIONS

if(q < max_index)
{

}

II cross out all odd multiples of p, starting with p-2
II k = index of p-2
unsigned int k = q;

while(k < max_index) { bvec.clear(k); k += p; }

++index;
p += 2;
q += p+p - 2;
return 1;

II p-2 > n, so bvec[] has all primes <= n recorded
else II to next odd number
{

}

P += 2;
++index;
return 2;

else return 0;

void Prime::run()
{ while(step() == 1) ; }

int Prime::is_prime(unsigned int num) const
{

}

if(!(num%2» return 0;
if(bvec.test«num-3)/2» return 1;
return 0;

unsigned int Prime: :current_prime() const
{ return current; }

unsigned int Prime::operator () (unsigned int idx) const
{

if(idx == 0) return 2;

for (unsigned int i=O; idx && i<max_index; i++)
if(bvec.test(i» --idx;

8.1. BIT VECTOR CLASS

}

#endif

return i+i + 1;

319

The constructor Prime(unsigned int N) specifies the upper limit N of the prime
number sequence {pd where 1 < Pk :S N, sets up the bit vector and turns all the
bits on.

Suppose p is an instance of the class Prime, the six member functions work as follows:

• step 0 finds out the next prime number, step by step, starting from 3 and
crosses out all the multiples of that prime number.

• run 0 repeatly executes the function step 0 until all the prime numbers less
than N are found.

• reset (int M) re-specifies the upper limit of the prime number sequence.

• is_prime(int num) checks if num is a prime number. It works provided the bit
table has already been built.

• current_prime 0 returns the current prime number being iterated by the func­
tion stepO.

• The subscript operator p (int M) returns the Mth prime number on the sequence.

Let us look at a simple program that calculates the total number of primes below
100, 1000, 10000, 100000, 1000000 and displays the first 20 prime numbers. It also
demonstrates the ability to access the ith prime number.

II sprime.cxx

#include <iostream.h>
#include "Prime.h"

void mainO
{

unsigned int i, j, maxO = 1000000, count = 0;

Prime p(maxO);
p.runO;

II specifies the upper limit of the sequence
II generates the prime number sequence

II for all odd numbers greater than 3
II check if they are prime

320

}

Result
======
There
There
There
There
There

CHAPTER 8. APPLICATIONS

for(i=3, j=100; i<=maxO; i+=2)
{

if(p.is_prime(i» count++;

II sum the number of primes below 100, 1000, ... , 1000000
if(i -- j-l)
{

j *= 10;
cout « "There are " « count + 1

« " primes below" « i+l « endl;
}

}

cout « endl;

II print the first 20 primes
for(i=O; i<20; i++) cout « p(i) « " ";
cout « endl; cout « endl;

II randomly pick some primes
cout
cout
cout
cout
cout

are
are
are
are
are

« "The 100th prime is
« "The 200th prime is
« "The 3000th prime is
« "The 10000th prime is
« "The 12500th prime is

25 primes below 100
168 primes below 1000
1229 primes below 10000
9592 primes below 100000
78498 primes below 1000000

" « p(99)
" « p(199)
" « p(2999)
" « p(9999)
" « p(12499)

«
«
«
«
«

endl;
endl;
endl;
endl;
endl;

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

The 100th prime is 541
The 200th prime is 1223
The 3000th prime is 27449
The 10000th prime is 104729
The 12500th prime is 134053

8.2. VERYLONG CLASS 321

8.2 Verylong Class

8.2.1 Big Prime Numbers

In this section, we make use of the Verylong class to test whether a large positive
integer number is a prime number. A prime number is a positive integer p > 1 such
that no other integer divides p except 1 and p.

The function is_prime (unsigned int num) which we described in Section 8.1.1 can
be used for checking whether num is a prime. It works provided the bit table has al­
ready been built. For a large number greater than 232 , the built-in type unsigned int
is too small. The Verylong integer can be used to overcome this problem. However,
the main problem with this algorithm is the huge space requirement for the bit table.
For large numbers such as a 20-digit number, it becomes highly impractical.

We describe another algorithm that tests the primality for a positive integer with lit­
tle memory requirement. It is an obvious algorithm for a primality test. For a given
positive integer N, we divide N by successive primes p = 2,3,5, ... until a smallest p
for which N mod p = 0, then N is not prime and has a factor p. If at any stage we
find that N mod p i 0 but IN /p J ::; p, we conclude that N is prime.

Let us restate the arguments above:

Given a positive integer N, we divide N by a sequence of "trial divisors"

2 = do < d1 < d2 < d3 < ... < dn

which includes all prime numbers::; IN (the sequence may also include some non­
prime numbers if it is convenient). The last divisor in the sequence dn is the smallest
number 2: ViV, If, at any stage, N mod di = 0 for 0 ~ i ~ n, then N is not prime.
Otherwise, it is prime.

The trial divisors sequence do, d1 , d2 , . .. ,dn works best when it contains only prime
numbers. Sometimes it is convenient to include some non-prime numbers as well
because such a sequence is usually easier to generate. One good sequence can be
generated using the following recurrence relation:

do = 2, d1 = 3, d2 = 5,
dk = dk - 1 + 2 for odd k > 2
dk = dk - 1 + 4 for even k > 2

The first few trial divisors generated using the relation above are as follows:

2 3 5 7 11 13 17 19 23 25 29 31 35 37 41 43 ...

This sequence contains no multiples of 2 or 3 and the first 9 numbers are all prime.
However, it also includes some non-prime numbers such as 25, 35, 49, etc.

322 CHAPTER 8. APPLICATIONS

II isprime.cxx

#include <iostream.h>
#include "Verylong.h"

template <class T> int is_prime(T p)
{

}

T j(2), zero(O), one(l), two(2), four(4);
T limit = T(sqrt(p» + one;

if(j < limit && p%j -- zero)
j++;
if(j < limit && p%j == zero)
j += two;
while(j < limit)
{

if(p%j == zero) return 0;
j += two;

}

if(p%j == zero) return 0;
j += four;

return 1;

return 0;

return 0;

void mainO
{

Verylong x;

cout « "Please enter a positive integer number
cin » x;

II. ,

if (is_prime (x» cout « liThe number II « x « II is prime II « endl;
else cout « liThe number II « x « II is not prime II « endl;

}

Result
======
Please enter a positive integer number 20
The number 20 is not prime

Please enter a positive integer number 624682384467
The number 624682384467 is not prime

Please enter a positive integer number 48957934859
The number 48957934859 is prime

8.2. VERYLONG CLASS 323

Although this is not the best way to check for primality, it illustrates how the
Verylong class could be incorporated into number theory. Sometimes, it is good
to have the prime numbers table (see Section 8.1.1) as part of the program. For
example, if the table contains all the 78498 prime numbers less than one million, we
could test the primality of N less than 1012 . Such a table could be built easily by the
class Prime which we have discussed in Section 8.1.1.

So far, there are no known efficiently methods to test for the primality of large num­
bers. However, there are some algorithms [27] that will perform the testing in a
reasonable amount of time.

An interesting extension of the program would be to find all the prime twins, for
example 21,23. Why are there no prime triplets other than 2,3,5 ?

The numbers 2k - 1 (k E N) are called Mersenne numbers. For k = 2, 3, 4, 7, 13,
19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941,
11213, ... , we obtain prime numbers. Big prime numbers also play an important role
in data encryption and network security.

The prime number 2k -1 (k = 11213) can be found using the following small program.
It is a large number consisting of 2816 digits.

II Mersenne.cxx

#include <iostream.h>
#include "Verylong.h"

int mainO
{

}

Verylong p,
one(ll"),
two(12"),
mersenne(111213");

p = pow(two,mersenne) - one;
cout « p « endl;

return 0;

324 CHAPTER 8. APPLICATIONS

8.2.2 Inverse Map and Denumerable Set

The set N x N is denumerable because it is equipotent to the natural numbers N. In
other words, there exists a 1-1 map between N and N x N.

Let us write the elements of N x N in the form of an array as follows:

(1,1) (1,2) (1,3) (1,4) (1,5)

(2~2~(2'3 ~(2'4~ (2,5)

(3,1);:/,,{3,2)/{3,3) (3,4) (3,5)

(4,1)~ 4,2) (4,3) (4,4) (4,5)

(5,1) (5,2) (5,3) (5,4) (5,5)

From the figure we see that we could arrange the elements of N x N into a linear
sequence as indicated by the arrows, i.e.

{I, 1), (2,1), (1,2), (3,1), (2,2), (1,3), (4,1), (3,2), ...

Therefore a 1-1 map between Nand N x N exists. If (m, n) EN x N we have

1
f(m, n) = "2(m + n - l)(m + n - 2) + n. (8.1)

The above relation can be obtained as follows. The pair (m, n) lies in the (m+n-l)th
diagonal stripe in the above figure and it is the nth pair counting from the left of the
stripe. The first stripe contains only one pair. In the second, there are two pairs and
so on. Thus (m, n) is located at the position numbered by

m+n-2

n+ L k
k=l

in the counting procedure. Thus (8.1) follows. How could we find the inverse of the
problem? This means to find m and n if f(m, n) is given.

8.2. VERYLONG CLASS 325

To find the inverse map, we first have to find out in which diagonal stripe f(m, n)
lies. Note that m = 1 corresponds to the last element on the diagonal stripe. Let
k = m + n - I, thus for m = I, k = 1 + n - 1 = n. By (8.1),

f(I, n)
1

= 2(n)(-I+n)+n

The last element in the kth diagonal is given by

k2 + k
f(m,n) = -2-

whereas the last element in the (k - l)th diagonal is given by

(k-l)2+(k-l) k2-k
f(m,n) = 2 = -2-'

Thus, if f(m, n) lies in the kth diagonal stripe, then

k2 - k k2 + k
-- < f(m n) < --. 2 ,- 2

Let x E R such that

x 2 + x
-2- = f(m,n)

then

x2 +x-2f(m,n)=O and
-1 + VI + 8f(m, n)

x = ---'-------
2

(8.2)

(8.3)

where we obviously choose the positive root. Using (8.2) and (8.3), we get k - 1 <
x::; k. Thus, k is the smallest positive integer number greater than or equal to x.

326 CHAPTER 8. APPLICATIONS

After we have obtained k, the values of m and n can readily be calculated by (8.1):

k(k - 1)
n=f(m,n)- 2 ' m=k-n+l.

We implemented the inverse map using the algorithm described above. The program
makes use of the Verylong class to handle very long integers. The sqrt 0 function
used here is implemented in the Verylong class. It evaluates the integer square root
of a Verylong number. An interesting extension would be to find a 1-1 map between
Nand N x N x N.

II inverse.cxx

#include <iostream.h>
#include "Verylong.h"

void InverseMap(Verylong f, Verylong &m, Verylong &n)
{

}

Verylong zero(O), one(l), two(2), eight(8), k;
k = (sqrt(one+eight*f)-one)/two + one;
n = f - k*(k-one)/two;
if (n==zero) {--k; n += k;}
m = k-n+onej

void mainO
{

Verylong one(l), two(2)j
Verylong f, m, n, resultj

cout « "Enter a number
cin »f;
InverseMap(f,m,n);

" . ,

cout « "The corresponding m is " « m « endl;
cout « " and n is " « n « endlj

}

Result

Enter a number : 123456789012345
The corresponding m is 8553526

and n is 7159959

8.2. VERYLONG CLASS 327

8.2.3 Godel Numbering

We can work with an alphabet which contains only a single letter, e.g. the letter I.
The words constructed from this alphabet (apart from the empty word) are: I, II, III,
etc. These words can, in a trivial way, be identified with the natural numbers 0,
1, 2, Such an extreme standardization of the "material" is advisable for some
considerations. On the other hand, it is often convenient to disperse the diversity of
an alphabet consisting of several elements.

The use of an alphabet consisting of one element does not imply any essential limi­
tation. We can associate the words W over an alphabet A consisting of N elements
with natural numbers G(W), in such a way that each natural number is associated
with at most one word. Similar arguments apply to words of an alphabet consisting of
one element. Such a representation of G is called a Cadel numbering [14] (also called
arithmetization) and G(W) is the Cadel number of the the word W with respect to
G. The following are the requirements for an arithmetizatioD of W:

2. There exists an algorithm such that for any given word W, the corresponding
natural number G(W) can be computed in a finite number of steps.

3. For any natural number n, it can be decided whether n is the Godel number of·
a word W over A in a finite number of steps.

4. There exists an algorithm such that if n is the Godel number of a word W over
A, then this word W (which is unique by argument (1)) can be constructed in
a finite number of steps.

Here is an example of a Godel numbering. Consider the alphabet with the letters a,
b, c. A word is constructed by any finite concatenation of these - that is, a placement
of these letters side by side in a line. For example, abcbba is a word. We can then
number the words as follows:

Given a word XIX2 ... Xn where each Xi is a, b or c, we assign to it the number

where Pi is the ith prime number (and 2 is the oth prime) and

1 if Xi IS a
2 if Xi is b
3 if Xi is c

The empty word is given the number O.

328 CHAPTER 8. APPLICATIONS

For example, the word acbc has number 21 * 33 * 52 * 73 = 463050, and abc has the num­
ber 21*32*53 = 2250. The number 7350 represents aabb because 7350 = 21*31*52*72.

To show that this numbering satisfies the criteria given above, we use the fundamental
theorem of arithmetic:

Any natural number ~ 2 can be represented as a product of primes, and that
product is, except for the order of the primes, unique.

We may number all kinds of objects, not just alphabets. In general, the criteria for a
numbering to be useful are:

1. No two objects have the same number.

2. Given any object, we can "effectively" find the number that corresponds to it.

3. Given any number, we can "effectively" find if it is assigned to an object and,
if so, to which object.

In the following, we list the Goedel class as described above. It uses Prime.h imple­
mented in Section 8.1.1:

II Goedel.h

#ifndef GOEDEL_H
#define GOEDEL_H

#include <assert.h>
#include <iostream.h>
#include "Prime.h"
#include "MString.h"
#include "Verylong.h"

class Goedel
{

private:
I I Data Fields
Verylong nvalue;
String wvalue;
int is_G;

public:
II Constructors
GoedelO;
Goedel(String);
Goedel(Verylong);

8.2. VERYLONG CLASS

};

II Member Functions
Verylong number() const;
String word() const;
int is_goedel() const;
void rename(String);
void resize(Verylong);

Goedel: :Goedel()
: nvalue(Verylong("O")), wvalue(String("")), is_GO) {}

Goedel: : Goedel(String s)

{

}

: nvalue(Verylong("l")), wvalue(s), is_GO)

static Prime p(100);
Verylong temp, prim, zero("O"), one("l");
p.runO;

for(int i=O; i<s.length(); i++)
{

}

if(s[i]>='a' && s[i]<='c')
{

}

temp = one;
prim = Verylong(p(i));
for(char j='a'; j<=s[i]; j++) temp *= prim;
nvalue *= temp;

else
{

}

nvalue zero;
break;

Goedel: : Goedel(Verylong num) nvalue(num), wvalue(String(""))
{

static Prime p(100);
static Verylong zero("O"), one("l");
Very long prim;
int i=O, factor;
p.runO;

while (num>one)

329

330

{

}

CHAPTER 8. APPLICATIONS

factor = 0; prim = Verylong(p(i»;
while(num % prim == zero) { num /= prim; ++factor; }
switch(factor)
{

}

case 1: wvalue = wvalue + String("a"); break;
case 2: wvalue = wvalue + String(lIb ll); break;
case 3: wvalue = wvalue + String("c"); break;
default : is_G = 0; return;

++i;

Verylong Goedel: :number() const {return nvalue; }

String Goedel: :word() const
{

}

if(is_G) return wvalue;
return String(IIII);

int Goedel::is_goedel() const {return is_G; }

void Goedel: : rename (String s)
{

static Prime p(100);
static Verylong zero(IO"), one(II!,,);
Verylong temp, prim;
p.runO;
nvalue = one;
wvalue = s;
is_G = 1;

for(int i=O; i<s.length(); i++)
{

if(s[i]>='a' && s[i]<='c')
{

}

temp = one;
prim = Verylong(p(i»;
for(char j='a'; j<=s[i]; j++) temp *= prim;
nvalue *= temp;

8.2. VERYLONG CLASS

}

}

else
{

}

nvalue = zero;
break;

void Goedel: :resize(Verylong num)
{

static Verylong zero(IO"), one(ll");
assert(num >= zero);
if(num == one) { is_G = 0; return; }

static Prime p(100);
int i=O, factor;
Verylong prim;
p.runO;
nvalue = num; wvalue String(III1);

while(num > one)
{

factor = 0; prim = Verylong(p(i));
while(num % prim == zero) { num /= prim; ++factor; }
switch(factor)
{

}

case 1:
case 2:
case 3:
default

++i;

wvalue
wvalue
wvalue

is G

=
=

wvalue + String("a"); break;
wvalue + String(lIb ll); break;
wvalue + String("c"); break;
0; return;

}

#endif

331

332 CHAPTER 8. APPLICATIONS

Next let us look at a simple program which calculates the corresponding G6del number
of acbc and aabb. It also lists all the G6del numbers below 1500:

II sgoedel1.cxx

#include <iostream.h>
#include "Goedel.h"

void mainO
{

}

Goedel g(String(lacbc"»;

cout « liThe word is II « g.wordO;
cout « II and its corresponding Goedel number

« g.number() « endl;
cout « endl;

g.rename("aabb");

cout « liThe word is II « g.wordO;
cout « II and its corresponding Goedel number

« g.numberO « endl;
cout « endl;

g.rename("abcbc");

cout « liThe word is II « g. word 0 ;
cout « II and its corresponding Goedel number

« g.number() « endl;
cout « endl;

Goedel h;

II List all the Goedel Numbers below 1500
for (int i=O; i<1500; i++)
{

h.resize(i);
if (h.is_goedel(»

cout « i « II => II « h.wordO
« II is a Goedel number" « endl;

}

is II

is II

is II

8.2. VERYLONG CLASS

Result
======

The word is acbc and its corresponding Goedel number is 463050

The word is aabb and its corresponding Goedel number is 7350

The word is abcbc and its corresponding Goedel number is 146742750

o => is a Goedel number
2 => a is a Goedel number
4 => b is a Goedel number
6 => aa is a Goedel number
8 => c is a Goedel number
12 => ba is a Goedel number
18 => ab is a Goedel number
24 => ca is a Goedel number
30 => aaa is a Goedel number
36 => bb is a Goedel number
54 => ac is a Goedel number
60 => baa is a Goedel number
72 => cb is a Goedel number
90 => aba is a Goedel number
108 => bc is a Goedel number
120 => caa is a Goedel number
150 => aab is a Goedel number
180 => bba is a Goedel number
210 => aaaa is a Goedel number
216 => cc is a Goedel number
270 => aca is a Goedel number
300 => bab is a Goedel number
360 => cba is a Goedel number
420 => baaa is a Goedel number
450 => abb is a Goedel numb.er
540 => bca is a Goedel number
600 => cab is a Goedel number
630 => abaa is a Goedel number
750 => aac is a Goedel number
840 => caaa is a Goedel number
900 => bbb is a Goedel number
1050 => aaba is a Goedel number
1080 => cca is a Goedel number
1260 => bbaa is a Goedel number
1350 => acb is a Goedel number
1470 => aaab is a Goedel number

333

334 CHAPTER 8. APPLICATIONS

Let us consider another example. It calculates the Codel numbers for the strings:
a, aa, aaa, aaaa, ... Note that some of the Codel numbers exceed the limit of the
built-in unsigned long type.

II sgoede12.cxx

#include <iostream.h>
#include IMString.h"
#include "Goedel.h"

void mainO
{

}

Result

String s;
Goedel g;
for(int i=l; i<=20; i++)
{

}

s = s + String('a');
g.rename(s);
cout « i «" "« g. wordO « II => II « g . number 0 « endl;

1 a => 2
2 aa => 6
3 aaa => 30
4 aaaa => 210
5 aaaaa => 2310
6 aaaaaa => 30030
7 aaaaaaa => 510510
8 aaaaaaaa => 9699690
9 aaaaaaaaa => 223092870
10 aaaaaaaaaa => 6469693230
11 aaaaaaaaaaa => 200560490130
12 aaaaaaaaaaaa => 7420738134810
13 aaaaaaaaaaaaa => 304250263527210
14 aaaaaaaaaaaaaa => 13082761331670030
15 aaaaaaaaaaaaaaa => 614889782588491410
16 aaaaaaaaaaaaaaaa => 32589158477190044730
17 aaaaaaaaaaaaaaaaa => 1922760350154212639070
18 aaaaaaaaaaaaaaaaaa => 117288381359406970983270
19 aaaaaaaaaaaaaaaaaaa => 7858321551080267055879090
20 aaaaaaaaaaaaaaaaaaaa => 557940830126698960967415390

8.3. VERYLONG AND RATIONAL CLASSES

8.3 Verylong and Rational Classes

8.3.1 Logistic Map

The logistic map f : [0,1] -+ [0,1] is given by

f(x) = 4x(1 - x).

It can also be written as the difference equation

t = 0, 1,2, ... , Xo E [0,1]

where Xt E [0,1] for all tEN U {O}. Let Xo = 1/3 be the initial value. Then

32
X2 = 81'

6272
X3 = 6561'

7250432
X4 = 43046721'

335

This is a so-called chaotic orbit [51]. The exact solution of the logistic map is given
by

Xt = l-l cos(2t arccos(l - 2xo)).

Depending on the data type of xo, we may get an approximate or exact orbit of the
map. For an approximate orbit, we use the built-in data type double for xo, whereas
for the exact orbit of the logistic map, we use the Rational class that we have devel­
oped in Chapter 6.

We demonstrate the features of the Rational class as well as the coupling with the
Verylong class. We compare Rational<long> and Rational<Verylong> in the iter­
ation of the map.

From the result obtained we notice that the lengths of the numerator and denomina­
tor increase so fast that Rational<long> could only hold the result up to the fourth
iteration. We conclude that the data type Rational<Verylong> is very useful for a
calculation like this.

Quite often long fractions do not give a good idea of how large the value is; the
floating point representation may be better. The conversion operator to double in
the class provides such a function.

336

// logistic.cxx

#include <iostream.h>
#include "Rational.h"
#include "Verylong.h"

void mainO
{

CHAPTER 8. APPLICATIONS

Rational<long> a(4,1), b(l,l), xO(1,3); // initial value xO 1/3
int i;
cout « "x [OJ = " « xO « " or " « double (xO) « endl;

for(i=l; i<=4; i++)
{

xO = a*xO*(b - xO);

// cannot use higher values than 4
// out of range for data type int

cout « "x[" « i « "J = " « xO « " or " « double(xO) « endl;
}

cout « endl;

Rational<Verylong> cl("l","l"), c2("4","1"),
yO("1","3"); // initial value yO = 1/3

cout « "y[OJ = " « yO « " or " « double(yO) « endl;

}

Result
======

for(i=l; i<=6; i++)
{

yO = c2*yO*(cl - yO);
cout « "y[" « i « "J
}

x[OJ = 1/3 or 0.333333
x[lJ = 8/9 or 0.888889
x[2J = 32/81 or 0.395062
x[3J = 6272/6561 or 0.955952

" « yO « " or " « double (yO) « endl;

x[4J = 7250432/43046721 or 0.168432
y[OJ = 1/3 or 0.333333
y[lJ = 8/9 or 0.888889
y[2J = 32/81 or 0.395062
y[3J = 6272/6561 or 0.955952
y[4] = 7250432/43046721 or 0.168432
y[5] = 1038154236987392/1853020188851841 or 0.56025
y[6] = 3383826162019367796397224108032/3433683820292512484657849089281

or 0.98548

8.3. VERYLONG AND RATIONAL CLASSES 337

8.3.2 Contracting Mapping Theorem

Let S be a closed set on a complete metric space X. A contracting mapping is a
mapping J : S -+ S such that

d(f(x) , J(y)) ::; kd(x, y), 0::; k < 1, d is the distance in X.

One also says that "J is lipschitzian of order k < 1".

Contracting mapping theorem. A contracting mapping J has strictly one fixed point;
i.e. there is one and only one point x* such that

x* = J(x*).

The proof is by successive iteration. Let x* E S, then

and

Since k < 1 the sequence J(n)(xo) is a Cauchy sequence and it tends to a limit x* E S
when n tends to infinity

x* = lim J(n)(xo) = lim J(f(n-l) (xo)) = J(x*).
n-too n-too

The uniqueness of x* results from the defining property of contracting mappings.
Assume that there is another point y* such that y* = J (y*), then

d(f(y*),J(x*)) = d(y*,x*)

On the other hand d(f(y*),j(x*)) ::; kd(y*, x*), where k < 1. Hence, d(y*, x*) = 0
and y* = x*. 0

In the following program, we consider the map J : (O,lJ -+ (0, 1J

5
J(x) = 2'x(l- x).

Obviously the map J has a stable fixed point x* = 3/5. We apply the contracting
mapping theorem with the initial value Xo = 9/lD.

338 CHAPTER 8. APPLICATIONS

A brief description of the program is given below:

• The constructor of the program reads in two arguments. The first argument
is the function name of the mapping while the second argument is the initial
value.

• The increment operator (++) applies the mapping on the current value to obtain
the next iteration value.

• The function Is_FP 0 checks if the values have converged to a fixed point by
considering the relative difference between the previous and current values. If
the relative difference is less than 10-5 , we claim that a fixed point has been
obtained.

From the result obtained, we notice that the numerical value of the mapping converges
to 0.6, which agrees with our discussion. However, the rational values (exact values)
of the iteration grow very quickly.

II contract.cxx

#include <iostream.h>
#include "Rational.h"
#include "Verylong.h"

class Map
{

private:
Rational<Verylong> (*function)(Rational<Verylong»;
Rational<Verylong> value; II current iterated value

public:
Map (Rational<Verylong>
void operator ++ ();
void Is_FP 0 ;

(*f)(Rational<Verylong»,Rational<Verylong»;
II next iteration
II Is there a fixed point?

};

Map: :Map(Rational<Verylong> (*f)(Rational<Verylong»,
Rational<Verylong> xO) : function(f), value(xO) {}

void Map::operator ++ ()
{ value = (*function)(value); }

II Is there a fixed point?
void Map: :Is_FP()
{

Rational<Verylong> temp, II the value in previous step
dist; II the relative difference

8.3. VERYLONG AND RATIONAL CLASSES 339

// between previous and current step

}

do
{

temp = value;
++(*this);
dist = abs«value-temp)/temp); // the relative difference
cout « "Value: " « value « " or " « double(value) « endl;
cout « endl;
} while(double(dist) > le-5);

// f(x) = 5/2 x(l-x)
Rational<Verylong> mapping(Rational<Verylong> x)
{

return(Rational<Verylong>("5","2")*x*(Rational<Verylong>("l")-x));
}

void mainO
{

// initial value = 9/10
Map M(mapping, Rational<Verylong>("9","10"));
M.Is]PO;
}

Result

Value: 9/40 or 0.225

Value: 279/640 or 0.435938

Value: 100719/163840 or 0.61474

Value: 6357483999/10737418240 or 0.592087

Value: 27845361853829709759/46116860184273879040 or 0.6038

Value: 508776482622863300319753571750093713279/
850705917302346158658436518579420528640 or 0.598064

Value: 173965655081451382405789767664737533188675751088414
948631221274520980106878719/
2894802230932904885589274625217197696331749616641014100
98643960019782824099840 or 0.600959

340 CHAPTER 8. APPLICATIONS

8.3.3 Ghost Solutions

Consider the ordinary differential equation

du - = u(l- u)
dt

with initial condition u(O) = Uo > o. The fixed points are given by

u· = 0, u· = 1.

The fixed point u· = 1 is asymptotically stable. The exact solution of the differential
equation is given by

t
u(t) = uoe

1 - Uo + uoet
for 0 < Uo < 1.

The exact solution starting from initial value Uo = 99/100 = 0.99 is monotonously
increasing and it converges to 1 as t tends to 00. For t = In 99 ~ 4.5951, we find that

u(t) = 0.9999 .

So, u(t) is already quite near the asymptotically stable fixed point u· = 1. In order to
integrate this equation by a finite difference scheme, we apply the central difference
scheme:

Un+l - Un-l = (1 _)
2h Un Un n = 1,2,3, ... (8.4)

with initial conditions Uo = XO, Ul = Xo + hXo(1- xo). This second order difference
equation can be rewritten as a system of two first order difference equations:

Vn+l = Un
Un+l Vn + 2hun(1- Un) for n = 1,2,3, ...

with Vl = Uo = Xo and Ul = Xo + hXo(l - xo). We iterate the system of nonlin­
ear difference equations using the Rational and Verylong class with initial value
Xo = 99/100 and time-mesh length h = 0.1. This system does not converge to the
fixed point u· = 1 and we find oscillating behaviour. Such a phenomenon is called
the ghost solution (also called spurious solution).

8.3. VERYLONG AND RATIONAL CLASSES

II ghost.cpp

#include <fstream.h>
#include <math.h>
#include IIRational.h ll

#include IIVerylong.h ll

const Rational<Verylong> h(1I1 11 ,1I10 1l);

const Rational<Verylong> xO(1I99 11 ,1I100 1l);

void mainO
{

Rational<Verylong> u, v, ul, twoh, t,

II time-mesh length
II initial value

341

zero(IIOIl), one(1I1 11), two(1I2 11), fifty(1I50 1l);

of stream sout(lIghosts.dat ll); II contains rational number values
II initial values

}

u = xO; v = u + h*u*(one-u);
t = zero; twoh·= two*h;

while(t <= fifty)
{

}

ul = u; u = v;
v = ul + twoh*u*(one-u);
t += h;
sout « t « II II « v « endl;

For 0 < t < 1.4, the numerical solution gives a good approximation to the true
solution. The solution Un increases monotonously approaching 1. After t = 1.5,
the numerical solution is no longer monotonous. At t = 3.0, the value Un becomes
greater than 1 for the first time and the solution begins to oscillate thereafter. The
amplitude of the oscillation grows larger and larger. The growth of this amplitude is
geometric and the rate of growth is such that the amplitude is multiplied by about
e ~ 2.71828 for each unit t increment. When t = 10, the oscillation loses its symmetry
with respect to u· = 1. The repetition of such cycles seems to be nearly periodic.
The ghost solutions also appear even if h is quite small. One of the reasons for this
phenomenon is that the central difference scheme is a second order difference scheme
and that the instability enters at u· = 1 and u· = O. The global behaviour of the
solution computed is very sensitive to the initial condition and the time-mesh length.
To show that the behaviour of (8.4) is not caused by the finite precision used in
a digital computer we iterate the equations using exact arithmetic (ghost. cxx) to
avoid rounding-off error. The Rational and Verylong class have been employed.
From the result obtained, we see that the oscillating behaviour exists even for the
exact arithmetics. The behaviour is an inherited property of the difference equation.

342 CHAPTER 8. APPLICATIONS

8.3.4 Iterated Function Systems

A hyperbolic iterated function [5] system consists of a complete metric space (X, d)
together with a finite set of contraction mappings Wn : X ~ X, with contractivity
factors Sn, for n = 1,2, ... , N. The notation for the iterated function system is
{X; Wn , n = 1,2, ... , N} and its contractivity factor is

S = max{ Sn : n = 1,2, ... , N}.

Let (X, d) be a complete metric space and (ll(X), h(d)) denotes the corresponding
space of non-empty compact subsets, with the Hausdorff metric h(d). The following
theorem summarizes the facts about a hyperbolic iterated function system:

Theorem. Let
{X;wn,n= 1,2, ... ,N}

be a hyperbolic iterated function system with contractivity factor s, then the trans­
formation W : ll(X) ~ ll(X) defined by

N

W(B) := U wn(B)
n=l

for all BE ll(X), is a contraction mapping on the complete metric space (ll(X), h(d))
with contractivity factor s, i.e.

h(W(B), W(C)) ~ s· h(B, C)

for all B, C E ll(X). Its unique fixed point, A E ll(X), obeys

N

A := W(A) = U wn(A)
n=l

and is given by
A:= lim w(n)(B)

n-too

for any B E ll(X). The fixed point A E ll(X) is called the attractor of the iterated
function system. For the proof we refer to the excellent book of Barnsley [5J.

Next, we present an interesting example in fractals - the standard Cantor set.

8.3. VERYLONG AND RATIONAL CLASSES

o 1
~----------------1----------------~2~----------------

1 2

1
9

Jf 2L-

2
9

3' 3'
7

____ ---'9
19 20

Jf 2L-

Figure 8.1: Construction of the Cantor set

8
9

25 26
Jf 2L-

The standard Cantor set is described by the following iterated function system

This is an iterated function system with contractivity factor s = 1/3. Suppose

Bo = [0,1] and Bn = w(n) (Bo)

343

Then B = limn -+oo Bn is the standard Cantor set. It is also called the Cantor
middle third set or ternary Cantor set. The sets Bo, B1, B2 , ... are given by

Bo = [0,1]

This means we remove the open middle third, i.e. the interval (~, ~) for the first
step and remove the pair of intervals (!,~) and (~, ~) in the second step. Continuing
to remove the middle thirds in this fashion, we arrive at the Cantor set as n -7 00

(Figure 8.1).

The standard Cantor set has cardinal c, is perfect, nowhere dense and has Lebesgue
measure zero. Every x E B can be written as

where aj E {O,2}.

344 CHAPTER 8. APPLICATIONS

The corresponding Cantor function is called the Devil's staircase.

Next, we iterate the Cantor set Bn for n = 1,2,3,4,5,6 with the Verylong and
Rational class:

II Cantor.cxx

#include <iostream.h>
#include "Rational.h"
#include "Verylong.h"
#include "Vector.h"

const Rational<Verylong> a = Rational<Verylong>(O); II lower limit
const Rational<Verylong> b = Rational<Verylong>(l); II upper limit

class Cantor
{

private:
Vector<Rational<Verylong> > CS;
int currentSize;

public:

};

Cantor(int);
Cantor(const Cantor&);
int step();
void runO;
friend ostream& operator « (ostream&,const Cantor&);

Cantor: : Cantor (int numStep)
: CS(power(2,numStep+l», currentSize(2)

{ CS[O] = a; CS[l] = b; }

Cantor: : Cantor (const Cantor& s)
: CS(s.CS), currentSize(s.currentSize) {}

int Cantor::step()
{

int i, newSize;
static Rational<Verylong> three(3), tt(2,3);
static int maxSize = CS.length();

if(currentSize < maxSize)
{

8.3. VERYLONG AND RATIONAL CLASSES

}

}

for(i=O; i<currentSize; i++) CS[i] /= three;
newSize = currentSize + currentSize;
for(i=currentSize; i<newSize; i++)

CS[i] = CS[i-currentSize] + tt;
currentSize = newSize;
return 1;

return 0;

void Cantor: :run() { while (step()) ; }

ostream& operator « (ostream& s,const Cantor& c)
{

}

for(int i=O; i<c.currentSize; i+=2)
{

}

s « "[" « c.CS[i] « II ";

s « c.CS[i+1] « II] ";

return s;

void mainO
{

}

Result
======
[0 1]

const int N = 6;
Cantor C(N);
cout « C « endl;

for(int i=O; i<N; i++)
{

C.stepO;
cout « C « endl;

}

[0 1/3] [2/3 1]
[0 1/9] [2/9 1/3] [2/3 7/9] [8/9 1]

345

346 CHAPTER 8. APPLICATIONS

8.4 Verylong, Rational and Derive Classes

8.4.1 Logistic Map and Ljapunov Exponent

In this section, we calculate the Ljapunov exponent of the logistic map [51] which is
given by

Xt+l = 4xt(1 - xd

where t = 0, 1,2, ... and Xo E [0,1]. The variational equation of the logistic map (also
called the linearized equation) is defined by

where

Since

it follows that

f(x) = 4x(1 - x).

df
- = 4-8x
dx

Yt+l = (4 - 8xt)Yt

with Yo #- O. The Ljapunov exponent .\ is defined as

.\(xo, Yo) := lim -T1 In IYT I,
T~oo Yo Yo #- o.

For almost all initial values we find that the Ljapunov exponent is given by

.\ = In2.

We iterate the logistic map and the variational equation to find the Ljapunov ex­
ponent. The following program makes use of the Very long, Rational and Derive
classes to approximate the Ljapunov exponent. The Derive class will do the differ­
entiation. Thus the variational equation is obtained via exact differentiation.

8.4. VERYLONG, RATIONAL AND DERIVE CLASSES

II Ljapunov.cpp

#include <iostream.h>
#include <math.h>
#include "Verylong.h"
#include "Rational.h"
#include "Derive.h"

void mainO
{

int N = 100;
double xl, x = 1.0/3.0, Y = 1.0;
Derive<double> Cl(1.0); II constant 1.0
Derive<double> C4(4.0); II constant 4.0
Derive<double> X;

cout « "i = 0 x = " « x « "
for(int i=l; i<=N; i++)
{

xl = x;
x = 4.0*xl*(1.0 - xl);
X.set(xl);

" « "y = " « y « endl;

Derive<double> Y = C4*X*(Cl - X);
y = df(Y)*y;

" cout « "i = " « i « "
« "x = " « x « " " « "y = " « y « endl;

}

double lam = log(fabs(y»/N;
cout « "Approximation value for lambda = " « lam « endl;
cout « endl;

int M = 9;
Rational<Verylong> ul;
Rational<Verylong> u("1","3"), v("l");
Rational<Verylong> K1("l");
Rational<Verylong> K2("4");
Derive<Rational<Verylong> > Dl(Kl); II constant 1
Derive<Rational<Verylong> > D4(K2); II constant 4
Derive<Rational<Verylong> > U;

cout « "j = 0 u = " « u « "
for(int j=l; j<=M; j++)
{

ul = u;

" « "v = " « v « endl;

347

348

}

Result
======
i = 0
i = 1
i = 2
i = 3
i = 4

i = 96
i = 97
i = 98
i = 99

}

CHAPTER 8. APPLICATIONS

u = K2*ul*(Kl - ul);
U.set(Rational<Verylong>(ul));
Derive<Rational<Verylong> > V = D4*U*(Dl - U);
v = df(V)*v;
cout « "j = " « j « "

« IOU = " « u « "
"
" « "v = " « v « endl;

lam = log(fabs(double(v)))/M;
cout « "Approximation value for lambda = " « lam « endl;

x = 0.333333 Y = 1
x = 0.888889 y = 1.33333
x = 0.395062 Y = -4.14815
x = 0.955952 Y = -3.4824
x = 0.168432 Y = 12.7024

x = 0.298676 y = -7.69211e+28
x = 0.837875 Y = -1.23888e+29
x = 0.543363 Y = 3.3487e+29
x = 0.992479 Y = -1.16167e+29

i = 100 x = 0.0298588 Y = 4.57677e+29
Approximation value for lambda = 0.68296

j = 0 u = 1/3 v = 1
j = 1 u = 8/9 v = 4/3
j = 2 u = 32/81 v = -112/27
j = 3 u = 6272/6561 v = -7616/2187
j = 4 u = 7250432/43046721 v = 182266112/14348907

Approximation value for lambda = 0.69225

8.5. VERYLONG, RATIONAL AND COMPLEX CLASSES

8.5 Verylong, Rational and Complex Classes

8.5.1 Mandelbrot Set

Suppose C is the complex plane, then the Mandelbrot set M is defined by

M:={CEC: C, c2+c, (C2+C)2+C, ... ftoo}.

To find the Mandelbrot set we study the recursion relation

2
Zt+l = Zt + c, t = 0,1,2, ...

349

with initial value Zo = O. Since Z := x + iy and C := CI + iC2 with x, y, CI, C2 E R, we
can write the recursion relation as

2 2
Xt - Yt + CI

Yt+l = 2xtYt + C2

with the initial value (xo, Yo) = (0,0). Let us consider some points in the complex
plane C and determine whether they belong to the Mandelbrot set M:

• (Cl, C2) = (0,0) belongs to M

• (Cl, C2) = (~,~) belongs to M

• (Cl, C2) = (~, 0) does not belong to M, because

O 1 3 17
Zo = , Zl = 2' Z2 = 4' Z3 = 16' '" --700

We iterate the recursion relation with the starting point

1 .1
Z=-+Z-.

8 3

Here, we have coupled three classes: the Verylong, Rational and Complex classes.
We wrap up this section by comparing the virtues of the two data types:

Complex<Rational<long> > and Complex<Rational<Verylong> >.

It is obvious that Rational<long> has limited application since it is restricted by
the precision of the built-in data type long. However, Rational <Verylong> removes
this restriction and it can be applied to problems that require multi-precision.

350

/ / Mandel. cpp

#include <iostream.h>
#include IMComplex.h"
#include "Rational.h"
#include "Verylong.h"

void mainO
{

CHAPTER 8. APPLICATIONS

Complex<Rational<long> >
c(Rational<long>(1,8),Rational<long>(1,3)),
zO(Rational<long>(O,l),Rational<long>(O,l));

cout « "Using data type Rational<long>" « endl;
for(int i=l; i<=3; i++)
{

zO = zO*zO + c;
cout « IIZ[II « i « II] = II « zO « endl;

}

cout « endl;
Complex<Rational<Verylong> >

d(Rational<Verylong>(1,8),Rational<Verylong>(1,3)),
wO(Rational<Verylong>(O,l),Rational<Verylong>(O,l));

cout « "Using data type Rational<Verylong>" « endl;
for(int j=l; j<=5; j++)
{

wO = wO*wO + d;
cout « "W[" « j « II]

}

}

Result

Using data type Rational<long>
z[l] = (1/8,1/3i)
z[2] = (17/576,5/12i)
z[3] = (-15839/331776,1237/3456i)
Using data type Rational<Verylong>
w[l] = (1/8,1/3i)
w[2] = (17/576,5/12i)
w[3] = (-15839/331776,1237/3456i)

II « wO « endl;

w[4] = (-91749311/110075314176,171510133/573308928i)
w[5] = (430198953800280967297/12116574790945106558976,10502124125052025525/
31553580184752881664i)

8.6. SYMBOLIC CLASS

8.6 Symbolic Class

8.6.1 Polynomials

Legendre Polynomials

The Legendre differential equation is given by

351

where n is a constant.

This equation arises in the solution of problems in mechanics, quantum mechanics,
etc. The solution to this differential equation is called the Legendre polynomials which
can be represented by Rodrigue's formula

Po{x) := 1, n = 1,2, ...

The above equation can be rewritten as

Pn{X) = 2n ~ ((~)n (~)n) .
n! dxn 2 2

Now, if we apply the well-known Leibniz rule for differentiating products, we get

The Legendre polynomials form a set of orthonormal functions on (-I, 1), that is

Furthermore, we have the recursion relation

(n + 1)Pn+1{x) = (2n + l)xPn{x) - nPn- 1{x), n = 1,2, ...

352 CHAPTER 8. APPLICATIONS

with Po(x) = 1 and P1(x) = x. The generating function for the Legendre polynomials
is given by

In the following program, we make use of the recursion relation to generate the first
few Legendre polynomials

Po(x) = 1,

(1 3
P3 x) = 2(5x - 3x),

We also show that the Legendre differential equation holds for n = 4.

II Legendre.h

#include <iostream.h>
#include <assert.h>
#include "MSymbol.h"
#include "Rational.h"

class Legendre
{

private:
int maxTerm, currentStep;
Sum<Rational<int> > P, Q;
const Sum<Rational<int> >& x;

public:
Legendre(int,const Sum<Rational<int> >&);

int step{);
void run{);
void reset () ;
Sum<Rational<int> > current() const;
Sum<Rational<int> > operator () (int);

friend ostream& operator « (ostream&,const Legendre&);

8.6. SYMBOLIC CLASS

};

Legendre: : Legendre (int n, const Sum<Rational<int> > &kernal)
: maxTerm(n), current Step (0) , P(l), x(kernal) {}

int Legendre::step()
{

}

int prev = currentStep;
Sum<Rational<int> > R, one(l);
++currentStep;

if(currentStep==l) { Q = one; P = x; return 1; }

if(currentStep <= maxTerm)
{

}

R = Rational<int>(prev+currentStep,currentStep)*x*P
- Rational<int> (prev,currentStep)*Q;

Q = P; P = R;

return 1;

return 0;

void Legendre::run()
{ while (step(» ; }

void Legendre: :reset()
{

currentStep = 0;
P = Rational<int>(l);

}

Sum<Rational<int> > Legendre: :current() const
{ return P; }

Sum<Rational<int> > Legendre: : operator () (int m)
{

assert(m <= maxTerm);

resetO;
for(int i=O; i<m; i++) step();

return P;

353

354 CHAPTER 8. APPLICATIONS

}

ostream& operator « (ostream& s,const Legendre& L)
{ return s « L.P; }

II Legendre.cxx

#include <iostream.h>
#include "MSymbo1.h"
#include "Rational.h"
#include "Legendre.h"

void mainO
{

}

int n=4;
Sum<Rational<int> > x("x",O), one(l);
Legendre P(n,x);

II Calculate the first few Legendre polynomials
cout « "P(O) = " « P « endl;
for(int i=l; i<=n; i++)
{

P.stepO;
cout « "P("« i « ") = " « P « endl;

}

cout « endl;

II Another way to access the Legendre polynomial
cout « "P(l) = " « p(1) « endl;
cout « "P(2) = " « P(2) « endl;
cout « "P(3) = " « P(3) « endl;
cout « "P(4) = " « P(4) « endl; cout « endl;

II To show that for n=4,
II the Legendre differential equation is satisfied
Sum<Rational<int> > result;
result = df«one-x*x)*df(P.current(),x),x)

+ Sum<Rational<int> >(n*(n+l»*P.current();

cout « result «endl; II ==> 0

8.6. SYMBOLIC CLASS 355

Associated Legendre Functions

Having solved the Legendre differential equation, we now obtain the solution of

(1-x2)--2x-+n(n+1)--- pm(x)=O (d2 d m 2)

dx2 dx 1 - x2 n

where m, n are constants and m is not necessarily equal to zero. The solution to
this equation plml(x) is called the associated Legendre functions of degree n (n =
0,1,2, ...) and order Iml ~ n. It is defined by the relation

Note that for m = 0, we have P~(x) = Pn(x) which are the Legendre polynomials.
The functions plml satisfy the recurrence relation

(2n + l)xp~ml(x) = (n -Iml + l)P~~~(x) + (n + ImI)P~~~(x)

and the orthogonality relation

j+1p1ml ()plml()d = _2 _ (n + 1m!)! ..
n X n' X x 2n + 1 (n _Iml)!unn"

-1

Finally, it can be shown that the plml form a complete set in the Hilbert space
L2(-1,1). The first few associated Legendre functions are given by

In the following program, we make use of (8.5) and the Legendre polynomials devel­
oped in the previous section to construct the associated Legendre polynomials.

356

II AssLegendre.h
#include <iostream.h>
#include "MSymbol.h"
#include "Rational.h"
#include "Legendre.h"

class AssLegendre
{

private:
Sum<Rational<int> > P;
const Sum<Rational<int> >& x;

public:

CHAPTER 8. APPLICATIONS

AssLegendre(const Sum<Rational<int> >&);
AssLegendre(int,int,const Sum<Rational<int> >&);
void redefine(int,int);
Sum<Rational<int> > current() const;
friend ostream& operator « (ostream&,const AssLegendre&);

};

AssLegendre: : AssLegendre(const Sum<Rational<int> >& kernal)
: x(kernal) {}

AssLegendre: : AssLegendre(int l,int m,const Sum<Rational<irit> > &kernal)
: x(kernal)

{

}

int i, absm = abs(m);
Rational<int> one(l);
Legendre L(l,x);
P = L(l);
for(i=O; i<absm; i++) P = df(P,x);
P *= power(one-x*x,Rational<int>(absm,2));

void AssLegendre: : redefine (int l,int m)
{

}

int i, absm = abs(m);
Rational<int> one(l);
Legendre L(l,x);
P=L(l);
for(i=O; i<absm; i++) P = df(P,x);
P *= power(one-x*x,Rational<int>(absm,2));

Sum<Rational<int> > AssLegendre: :current() const { return P; }

8.6. SYMBOLIC CLASS

ostream& operator « (ostream& s,const AssLegendre& L)
{ return s « L.P; }

// AssLegendre.cxx

#include <iostream.h>
#include IMSymbol.h"
#include "Rational.h"
#include IAssLegendre.h"

void mainO
{

int i, j, n=5;
Sum<Rational<int> > X("X",O) , Y;
AssLegendre P(x);

}

Result

for(i=O; i<n; i++)
{

}

for(j=O; j<=i; j++)
{

}

P . redefine (i , j) ;
Y = P.current();
cout « IIP(II « i «

cout « endl;

P(O,O) = 1
P(l,O) = x
P(l,l) = (l-xA(2))A(1/2)
P(2,O) = 3/2*xA(2)-1/2
P(2,1) = 3*x*(1-xA(2))A(1/2)
P(2,2) = 3-3*xA(2)
P(3,O) = 5/2*xA(3)-3/2*x

II II , « j « ") = II « Y « endl;

P(3,1) = l5/2*xA(2)*(1-xA(2))A(1/2)-3/2*(1-xA(2))A(1/2)
P(3,2) = 15*x-15*xA(3)
P(3,3) = l5*(l-xA(2))A(3/2)
P(4,O) = 35/8*xA(4)-15/4*xA(2)+3/8
P(4,1) = 35/2*xA(3)*(l-xA(2))A(1/2)-15/2*x*(1-xA(2))A(1/2)
P(4,2) = 60*xA(2)-105/2*xA(4)-15/2
P(4,3) = 105*x*(l-xA(2))A(3/2)
P(4,4) = 105-2l0*xA(2)+105*xA(4)

357

358 CHAPTER 8. APPLICATIONS

Laguerre Polynomials

The Laguerre polynomials may be defined by Rodrigue's formula:

n = 0,1, ...

where Lo(x) = 1. Using the Leibniz rule, we obtain

The Laguerre polynomials Ln are the solutions of the linear second order differential
equation

cPLn ()dLn
x dx2 + 1 - x dx + nLn = O. (8.6)

They obey the recursion relation

Ln+1 (x) = (2n + 1 - x)Ln(x) - n2 Ln - 1 (x)

where Lo(x) = 1 and Ll(X) = 1 - x. The Laguerre polynomials can also be defined
by the generating function

_l_exp (-xt) = f Ln(x)tn
1 - t 1 - t n=O n!

The orthogonality relation of the Laguerre polynomials is given by

00

J e-x Lm(x)Ln(x)dx = (n!?Omn.
o

Furthermore we have

8.6. SYMBOLIC CLASS 359

In the following program, we make use of the recursion relation to generate the first
few Laguerre polynomials. We also show that (8.6) holds for n = 4. The first few
Laguerre polynomials are given by

Lo{x) = 1, Ll(X) = 1- X, L2{x) = 2 - 4x + X2,

L3 {x) = 6 - 18x + 9x2 - x3 , L4{X) = 24 - 96x + 72x2 - 16x3 + X4.

II Laguerre.cxx

#include <iostream.h>
#include IMSymbol.h"

class Laguerre
{

private:
int maxTerm, currentStep;
Sum<int> P, Q;
const Sum<int> &x;

public:

};

Laguerre(int,const Sum<int>&);
int stepO;
void run 0 ;
Sum<int> current() const;
friend ostream& operator « (ostream&,const Laguerre&);

Laguerre::Laguerre(int n,const Sum<int> &kernal)
: maxTerm(n), currentStep(O) , P(l), x(kernal) {}

int Laguerre::step()
{

int prey = currentStep;
Sum<int> R;
++currentStep;
if(currentStep==l) { Q = 1; P = i-x; return 1; }
if(currentStep <= maxTerm)
{

}

R = (2*prev+l-x)*P-prev*prev*Q;
Q = P; P = R;
return 1;

return 0;

360 CHAPTER 8. APPLICATIONS

}

void Laguerre: :run() { while (step()) ; }

Sum<int> Laguerre: : current () const { return P; }

ostream & operator « (ostream& s,const Laguerre& L)
{ return s « L.P; }

void mainO
{

}

int n=4;
Sum<int> X("X" ,0);
Laguerre L(n,x);

II Calculate the first few Laguerre polynomials
cout « "L(O) = II « L « endl;
for (int i=1; i<=n; i++)
{

L.stepO;
cout « "L("« i « ") II « L « endl;

}

cout « endl;

II To show that for n=4,
II the Laguerre differential equation is satisfied.
Sum<int> result;
result = x*df(L.current(),x,2) + (1-x)*df(L.current(),x)

+ n*L.current();
cout « result «endl; II ==> 0

Result
======
L(O) = 1
L(1)
L(2) =
L(3) =
L(4) =

1-x
2-4*x+x A (2)
6-18*x+9*x A (2)-xA (3)
24-96*x+72*x A (2)-16*x A (3)+x A (4)

o

8.6. SYMBOLIC CLASS 361

Hermite Polynomials

The Hermite polynomials are defined by

where n = 0, 1,2, ... It can be proved that they satisfy the linear differential equation

d2Hn dHn
-d 2 - 2X-d + 2nHn = O.

x x
(8.7)

Using the differential equation, we can prove that the Hermite polynomials are or­
thogonal on (-00,00) with respect to the weight function e-x2 . We have

00

j e-x2 Hn(x)Hm(x)dx = y7r2nn!8nm
-00

where n, m = 0, 1,2, ... and 8nm is the Kronecker delta. The recursion formula takes
the form

Hn+l(x) = 2xHn(x) - 2nHn- 1(x)
where Ho(x) = 1 and Hl(X) = 2x. The Hermite polynomials can also be defined by
the generating function:

2tx-t2 _ ~ Hn(x)tn
e -L..J ,.

n=O n.

Furthermore we have

jx H (t)dt = Hn+l(x) _ Hn+1(0) .
n 2(n+1) 2(n+1)

o

In the following program, we make use of the recursion relation to generate the first
few Hermite polynomials, and show that (8.7) holds for n = 4:

Ho(x) = 1, Hl(X) = 2x, H2(X) = 4x2 - 2, H3(X) = 8x3 - 12x,

H4(X) = 16x4 - 48x2 + 12, H5(X) = 32x5 - 160x3 + 120x.

362

II Hermite.cxx

#include <iostream.h>
#include IMSymbol.h"

class Hermite
{

private:
int maxTerm, currentStep;
Sum<int> P, Q;
const Sum<int>& x;

public:
Hermite(int,const Sum<int>&);
int stepO;
void runO;
Sum<int> current() const;

CHAPTER 8. APPLICATIONS

friend ostream& operator « (ostream&,const Hermite&);
};

Hermite: : Hermite (int n,const Sum<int>& kernal)
: maxTerm(n), currentStep(O) , P(l), x(kernal) {}

int Hermite: :step()
{

}

int prev = currentStep;
Sum<int> R;
++currentStep;
if (currentStep==l)
{

}

Q = 1;
p = 2*x;
return 1;

if(currentStep <= maxTerm)
{

}

R = 2*x*P-2*prev*Q;
Q = P; p = R;
return 1;

return 0;

void Hermite: :run()

8.6. SYMBOLIC CLASS

{ while (step(»; }

Sum<int> Hermite: :current() const
{ return P; }

ostream& operator « (ostream& s,const Hermite& H)
{ return s « H.P; }

void mainO
{

int n=4;
Sum<int> X("X" ,0) ;
Hermite H(n,x);

II Calculate the first few Hermite polynomials
cout « "H(O) = II « H « endl;
for (int i=l; i<=n; i++)
{

H. stepO;
cout « "H("« i « ") = II « H « endl;

}

cout « endl;

II To show that for n=4,
II the Hermite differential equation is satisfied.
Sum<int> result;

363

result = df(H.current(),x,2) - 2*x*df(H.current(),x)+2*n*H.current();

}

Result

cout « result «endl; II ==> 0

H(O) = 1
H(l) = 2*x
H(2) = 4*x~(2)-2
H(3) = 8*x~(3)-12*x
H(4) = 16*x~(4)-48*x~(2)+12

o

364 CHAPTER 8. APPLICATIONS

Chebyshev Polynomials

The Chebyshev polynomials are defined by the relation

Tn(x) := cos(n arccos x), n = 0, 1,2, ...

Note that T_n(x) = Tn(x) and from the trigonometric formulae we get

For m = 1, we obtain the recursion relation

where To(x) = 1 and Tl(X) = x. Thus we can successively compute all Tn(x). Let
x := cos 0, then

y Tn(x) = cos (nO)

dy n sin (nO)
dx sinO

d2y _n2 cos(nO) + n sin(nO) cot 0
dX2 sin2 0

n2 y x dy
---+---1 - X2 1 - X2 dx .

Thus the polynomials Tn(x) satisfy the second order linear ordinary differential equa­
tion

2 d2y dy 2
(1 - x)- - x- + n y = o.

dX2 dx

The first few polynomials are

To(x) = 1, Tl(X) = x, T2(x) = 2X2 - 1,

T3(X) = 4X3 - 3x, T4(X) = 8x4 - 8X2 + 1.

8.6. SYMBOLIC CLASS

II Chebyshev.cxx

#include <iostream.h>
#include IIMSymbol.hll

class Chebyshev
{

private:
int maxTerm, currentStep;
Sum<int> P, Q;
const Sum<int>& x;

public:

};

Chebyshev(int,const Sum<int>&);
int stepO;
void runO;
Sum<int> current() const;
friend ostream& operator « (ostream&,const Chebyshev&);

Chebyshev: : Chebyshev (int n, const Sum<int> &kernal)
: maxTerm(n), currentStep(O), P(l), x(kernal) {}

int Chebyshev::step()
{

}

Sum<int> R;
++currentStep;

if (currentStep==l)
{

}

Q = 1;
P = x;
return 1;

if(currentStep <= maxTerm)
{

}

R = 2*x*P-Q;
Q = P; P = R;
return 1;

return 0;

void Chebyshev::run()

365

366 CHAPTER 8. APPLICATIONS

{ while (step{)); }

Sum<int> Chebyshev: :current{) const
{ return P; }

ostream & operator « (ostream &s, const Chebyshev &T)
{ return s « T.P; }

void mainO
{

}

int n=4;
Sum<int> X{"X" ,0);
Chebyshev T{n,x);

II Calculate the first few Chebyshev polynomials
cout « "T{O) = II « T « endl;
for{int i=l; i<=n; i++)
{

T.stepO;
cout « "T{"« i « ") = II « T « endl;

}

cout « endl;

II To show that for n=4,
II the Chebyshev differential equation is satisfied.
Sum<int> result;

result = (1-x*x)*df{T.current{),x,2) - x*df{T.current{),x)
+ n*n*T.current{);

cout « result « endl; II ==> 0

Result
======

T{O) = 1
T(1) = x
T(2) = 2*x A (2)-1
T(3) = 4*x A (3)-3*x
T(4) = 8*x A (4)-8*x A {2)+1

o

8.6. SYMBOLIC CLASS

8.6.2 Cumulant Expansion

Suppose x, an, bn E Rand

[00 bnxn] _ 00 anxn eXPL, -L "
n=l n. n=O n.

367

with ao = 1. We determine the relation between the coefficients an and bn. The kth

term of the exponential function on the left-hand side is given by

1 (00 bnxn)k -L:-k! n=l n!

Therefore,

Equating terms of the same order in x, we can obtain the relation between an and bn
for all positive integers n. The first three terms are

Xl : al = bl , x2 : a2 = b2 + bi, x3 : a3 = b3 + 3b2bl + b~.
It follows that

bl = aI, ~ = a2 - ai, b3 = a3 - 3a2al + 2a~.

In the program, we repeat the process of deriving the coefficients. The process shows
that a computer algebra system can obtain the coefficients efficiently.

368 CHAPTER 8. APPLICATIONS

II cumu.cpp

#include <iostream.h>
#include IMSymbol.h"
#include "Vector.h"
#include "Rational.h"

Sum<Rational<int> >
Taylor(Sum<Rational<int> > u,Sum<Rational<int> >& x,int n)
{

}

Rational<int> zero(O);
x.set(zero);
Sum<Rational<int> > series(u.value());
int j, f ac = 1;
for(j=l; j<=n; j++)
{

u = df(u,x); fac = fac * j;
series += Rational<int>(l,fac) * u.value() * power(x,j);

}

return series;

void mainO
{

int i, fac, n = 5;
Vector<Sum<Rational<int> > > a(n) , ben);
Sum<Rational<int> > X("X",O), y, P, Q,

aO(laO",O), a1(lal",O), a2(la2",O) ,
a3(l a3",O), a4(la4",O),
bO(lbO",O) , b1(lbl",O) , b2(lb2",O) ,
b3(lb3" ,0), b4(lb4" ,0);

a[O] = aO; a[l] = al; a[2] = a2; a[3] = a3; a[4] = a4;
b[O] = bO; b[l] = bl; b[2] = b2; b[3] = b3; b[4] = b4;

fac = 1; P = a[O];
for(i=l; i<n; i++)
{

}

fac *= i;
P += Rational<int>(l,fac) * a[i] * power(x,i);
Q += Rational<int>(l,fac) * b[i] * power(x,i);

cout « lip = II « P « endl;
cout « "Q = II « Q « endl; cout « endl;

8.6. SYMBOLIC CLASS

}

Result

y = Taylor(exp(Q),x,5);

cout « "Taylor series expansion of exp(Q)
cout « y « endl; cout « endl;
cout « "Coefficient of x : ,,« endl;
cout « "exp (Q) => " « y. coeff (x, 1) « endl;

" « endl;

cout «" P =>"« P. coeff (x, 1) « endl; cout « endl;
cout « "Coefficient of x~2 : ,,« endl;
cout « "exp(Q) => " « y.coeff(x,2) « endl;
cout «" P =>,,« P.coeff(x,2) « endl; cout « endl;
cout « "Coefficient of x~3 : ,,« endl;
cout « "exp(Q) => " « y.coeff(x,3) « endl;
cout «" P =>,,« P. coeff (x, 3) « endl; cout « endl;
cout « "Coefficient of x~4 : ,,« endl;
cout « "exp(Q) => " « y.coeff(x,4) « endl;
cout «" P =>,,« P.coeff(x,4) « endl;

P = aO+al*x+l/2*a2*x~(2)+1/6*a3*x~(3)+1/24*a4*x~(4)
Q = bl*x+l/2*b2*x~(2)+1/6*b3*x~(3)+1/24*b4*x~(4)

369

Taylor series expansion of exp(Q) =
1+bl*x+l/2*bl~(2)*x~(2)+1/2*b2*x~(2)+1/6*bl~(3)*x~(3)+1/2*bl*b2*x~(3)

+1/6*b3*x~(3)+1/24*bl~(4)*x~(4)+1/4*bl~(2)*b2*x~(4)+1/6*bl*b3*x~(4)

+1/8*b2~(2)*x~(4)+1/24*b4*x~(4)+1/120*bl~(5)*x~(5)+1/12*bl~(3)*b2*x~(5)

+1/12*bl~(2)*b3*x~(5)+1/8*bl*b2~(2)*x~(5)+1/24*bl*b4*x~(5)

+1/12*b2*b3*x~(5)

Coefficient of x :
exp(Q) => bl

P => al

Coefficient of x~2 :
exp(Q) => 1/2*bl~(2)+1/2*b2

P => 1/2*a2

Coefficient of x~3
exp(Q) => 1/6*bl~(3)+1/2*bl*b2+1/6*b3

P => 1/6*a3

Coefficient of x~4
exp(Q) => 1/24*bl~(4)+1/4*bl~(2)*b2+1/6*bl*b3+1/8*b2~(2)+1/24*b4

P => 1/24*a4

370 CHAPTER 8. APPLICATIONS

8.6.3 Exterior Product

In this section, we give an implementation of the exterior product (also called wedge
product or Grassmann product) described in Section 2.13. In the program the exterior
product /\ is written as *. We evaluate the determinant of the 4 x 4 matrix:

by calculating the exterior product

The exterior product gives 24el /\ e2/\ e3/\ e4, where el, e2, e3, e4 is the standard basis
in R4. Thus, we find that detA = 24.

II Grass.cpp

#include <iostream.h>
#include "Vector.h"
#include "Matrix.h"
#include "MSymbol.h"

void mainO
{

int i,j,n=4;
Sum<int> eO("eO" ,0), e1("e1" ,0), e2("e2" ,0), e3("e3" ,0),

y, result;
Matrix<Sum<int> > A(n,n);
Vector<Sum<int> > e(n);

Commutative(int() ,0);

A [0] [0] = 1; A [0] [1] = 2; A [0] [2] = 5; A [0] [3] = 2;
A [1] [0] = 0; A [1] [1] = 1; A [1] [2] = 2' A [1] [3] = 3; ,
A[2] [0] = 1; A [2] [1] = 0; A [2] [2] = 1; A [2] [3] = 0;

8.6. SYMBOLIC CLASS

}

A[3] [0] = 0; A[3] [1] = 3; A[3] [2] = 0; A[3] [3] = 7;

e[O] = eO; e[l] = el; e[2] = e2; e[3] = e3;

result = 1;
for(i=O; i<n; i++) result *= (A[i] Ie);

cout « result « endl; cout « endl;

II for all i>j, put e[i]*e[j] into -e[j]*e[i]
int flag;

do
{

flag=O;
for(i=O; i<n; i++)

for(j=O; j<i; j++)
flag += result.put(e[i]*e[j], -e[j]*e[i]);

} while (flag) ;

II put e[i]*e[i] into 0
for(i=O; i<n; i++) result.put(e[i]*e[i],O);
for(i=O; i<n; i++) result.put(e[i]*e[i]*e[i] ,0);

cout « "result = " « result « endl;

Result

371

3*eO*el*eO*el+7*eO*el*eO*e3+3*eO*el*e2*el+7*eO*el*e2*e3+6*eO*e2*eO*el
+14*eO*e2*eO*e3+6*eO*e2-(2)*el+14*eO*e2-(2)*e3+9*eO*e3*eO*el+21*eO*e3
*eO*e3+9*eO*e3*e2*el+21*eO*e3*e2*e3+6*el-(2)*eO*el+14*el-(2)*eO*e3+6*
el-(2)*e2*el+14*el-(2)*e2*e3+12*el*e2*eO*el+28*el*e2*eO*e3+12*el*e2-(2)
*el+28*el*e2-(2)*e3+18*el*e3*eO*el+42*el*e3*eO*e3+18*e1*e3*e2*el+42*el
*e3*e2*e3+15*e2*el*eO*el+35*e2*el*eO*e3+15*e2*el*e2*el+35*e2*el*e2*e3
+30*e2-(2)*eO*el+70*e2-(2)*eO*e3+30*e2-(3)*el+70*e2-(3)*e3+45*e2*e3*eO
*el+l05*e2*e3*eO*e3+45*e2*e3*e2*el+l05*e2*e3*e2*e3+6*e3*el*eO*el+14*e3
*el*eO*e3+6*e3*el*e2*el+14*e3*el*e2*e3+12*e3*e2*eO*el+28*e3*e2*eO*e3+12
*e3*e2-(2)*el+28*e3*e2-(2)*e3+18*e3-(2)*eO*el+42*e3-(2)*eO*e3+18*e3-(2)
*e2*el+42*e3-(2)*e2*e3

372 CHAPTER 8. APPLICATIONS

8.7 Symbolic Class and Symbolic Differentiation

8.7.1 First Integrals

Consider an autonomous system of first order ordinary differential equations

du = V(u)
dt

where u = (Ul, U2,"" un) and Vj are smooth functions of Ub U2, ... , Un. A smooth
function I(u) is called a first integral of the differential equations if

d
d/(u(t))

n 01
= L:-Vj(u) = O.

j=lOUj

A smooth function I(u(t), t) is called an explicitly time-dependent first integral of the
differential equations if

d
d/(u(t), t)

01 n 01
= at + ~ OUj Vj(u(t), t) = O.

Example 1. Consider the following differential equations

We show that III 12 and 13 where

are the first integrals of the system.

Example 2. Consider the Lorenz model

dUl
- = -aUl +au2
dt '

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION 373

For certain values of the bifurcation parameters (1, band r the system admits explicitly
the time-dependent first integrals. We insert the ansatz

I(u(t), t) = (u~ + u~) exp(2t)

into the system in order to find the conditions on the coefficients (1, r, b such that
I(u(t), t) is a first integral.

Example 1

II first1.cpp

#include <iostream.h>
#inc1ude "MSymbol.h"
#inc1ude "Vector.h"

void mainO
{

int i, j, N=3;
Sum<int> u1{"ul" ,0), u2("u2" ,0), u3("u3" ,0),

term, sum=O;

}

Vector<Sum<int> > u(N), v(N), leN);

u[O] = ul; u[l] = u2; u[2] = u3;
v[O] = u2*u3; v[l] = ul*u3; v[2] = ul*u2;
1[0] = ul*ul-u2*u2; 1[1] = u3*u3-ul*ul; 1[2] = u2*u2-u3*u3;

for(i=O; i<Nj i++)
{

for(j=O; j<N; j++)
{

term = df(l[i],u[j]) * v[j] j
sum += termj
cout « "Partial Term" « j « " = " « term « endl;

}

}

cout « "Sum = " « sum « endl;
cout « endl;

II output: 0

374 CHAPTER 8. APPLICATIONS

Example 2

II first2.cpp

#include <iostream.h>
#include IMSymbol.h"
#include "Vector.h"

void mainO
{

}

Result

int i;
Vector<Sum<int> > u(3), v(4);
Sum<int> term, sum, I, R1, R2,

u1(lu1" ,0), U2(IU2" ,0), U3(IU3" ,0), t("t" ,0),
S("S",O), b(lb",O), r(lr",O);

u[O] = u1; u[l] = u2; u[2] = u3;

II Lorenz Model
v[O] = s*u2- s*u1; v[l] = -u2 - u1*u3 + r*u1;
v[2] = u1*u2 - b*u3; v[3] = 1;
II The ansatz
I = (u2*u2 + u3*u3)*exp(2*t);

sum = 0;
for(i=O; i<3; i++) sum += v[i]*df(I,u[i]);
sum += v[3]*df(I,t);
cout « "sum = II « sum « endl; cout « endl;
R1 = sum.coeff(u3,2);
R1 = R1/(exp(2*t));
cout « "R1 = II « R1 « endl;
R2 = sum.coeff(u1,l); R2 = R2.coeff(u2,l);
R2 = R2/(exp(2*t));
cout « "R2 = II « R2 « endl;

sum = 2*r*u1*u2*exp(2*t)-2*b*u3 A (2)*exp(2*t)+2*u3 A (2)*exp(2*t)
R1 = -2*b+2
R2 = 2*r

From the results obtained, it is obvious that for R1, R2 to be equal to zero, we need
b = 1 and r = O.

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION 375

8.7.2 Spherical Harmonics

Spherical harmonics are complex, single-valued functions on the surface of the unit
sphere, i.e. functions of two real-valued arguments 0 ~ B ~ 11", 0 ~ ¢ < 211". They are
defined by

1

Y, (B "') ._ ()m [(2l + 1)(l - m)!] 2 p,m(B) imif>
1m ,If' .- -1 411"(l+m)! I cos e ,

where ~m(w) is the associated Legendre functions defined as

m~O

with l = 0, 1,2, ... and m = -l, -t + 1, ... , t. For negative values of m we have

where the asterisk (*) denotes the complex conjugate. The spherical harmonics satisfy
the orthonormality relations

2... ...

/ ~iml (B, ¢)Ylm(B, ¢)dO = / d¢ / dB sin B ~:ml (B, ¢)Ylm(B, ¢)
o 0

where we have written dO == sin BdBd¢ and J 0 means that we integrate over the full
range of the angular variables (B, ¢), namely

2... ...

/ 0 == / d¢ / dB sin B.
o 0

The spherical harmonics form a basis in the Hilbert space L2(S2) where

376 CHAPTER 8. APPLICATIONS

The first few spherical harmonics are given by

Any function in the Hilbert space L2(S2) can be written as a linear combination of
the spherical harmonics.

II spheric.cpp

#include <iostream.h>
#include IIMSymbol.hll
#include IIRational.h ll
#include IIAssLegendre.h ll

Sum<Rational<int> > PHIIPI II ,0), Hllrn ,0);

int factorial(int n)
{

}

int i, result=l;
for(i=2; i<=n; i++) result *= i;
return result;

Sum<Rational<int> > Y(int l,int m,const Sum<Rational<int> >& phi,
const Sum<Rational<int> >& w)

{

}

Sum<Rational<int> > a, b, U(IIUIl,O), result;
int absm = abs(m);
AssLegendre A(l,m,u);
a = A.current(); a.put(u,cos(w»;

if(m>O && m%2) a = -a;
b = sqrt(Rational<int>«2*1+1)*factorial(1-absm),

4*factorial(1+absm»/PI);
result = a*b*exp(I*Rational<int>(m)*phi);
return result;

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION

void MainO
{

int i, j, n=3;
Sum<Rational<int> > phi{"phi" ,0), 01("01" ,0), result, one (1) ;

for(i=O; i<=n; i++)
{

for(j=-i; j<=i; j++)
{

result = Y(i,j,phi,w);
result.put(cos(w)*cos(w),one-sin(w)*sin(w));

377

cout « "Y(" « i « "," « j « ") = II « result « endl;
}

cout « endl;
}

}

Result

Y(l,-l) = sin(w)*sqrt(3/8*PI~(-1))*exp(-I*phi)
Y(l,O) = cos(w)*sqrt(3/4*PI~(-1))
Y(l,l) = -sin(w)*sqrt(3/8*PI~(-1))*exp(I*phi)

Y(2,-2) = 3*sin(w)~(2)*sqrt(5/96*PI~(-1))*exp(-2*I*phi)
Y(2,-1) = 3*cos(w)*sin(w)*sqrt(5/24*PI~(-1))*exp(-I*phi)
Y(2,0) = sqrt(5/4*PI~(-1))-3/2*sin(w)~(2)*sqrt(5/4*PI~(-1))
Y(2,1) = -3*cos(w)*sin(w)*sqrt(5/24*PI~(-1))*exp(I*phi)
Y(2,2) = 3*sin(w)~(2)*sqrt(5/96*PI~(-1))*exp(2*I*phi)

Y(3,-3) = 15*sin(w)~(3)*sqrt(7/2880*PI~(-1))*exp(-3*I*phi)
Y(3,-2) = 15*cos(w)*sin(w)~(2)*sqrt(7/480*PI~(-1))*exp(-2*I*phi)
Y(3,-1) = 6*sin(w)*sqrt(7/48*PI~(-1))*exp(-I*phi)

-15/2*sin(w)~(3)*sqrt(7/48*PI~(-1))*exp(-I*phi)

Y(3,0) = cos(w)*sqrt(7/4*PI~(-1))
-5/2*cos(w)*sin(w)~(2)*sqrt(7/4*PI~(-1))

Y(3,1) = -6*sin(w)*sqrt(7/48*PI~(-1))*exp(I*phi)
+15/2*sin(w)~(3)*sqrt(7/48*PI~(-1))*exp(I*phi)

Y(3,2) = 15*cos(w)*sin(w)~(2)*sqrt(7/480*PI~(-1))*exp(2*I*phi)
Y(3,3) = -15*sin(w)~(3)*sqrt(7/2880*PI~(-1))*exp(3*I*phi)

378 CHAPTER 8. APPLICATIONS

8.7.3 Nambu Mechanics

In Nambu mechanics the phase space is spanned by an n-tuple of dynamical vari­
ables Ui, for i = 1, ... , n. The equations of motion of Nambu mechanics (i.e., the
autonomous system of first order ordinary differential equations) can be constructed
as follows. Let Ik : Rn -+ R, for k = 1, ... ,n - 1 be smooth functions, then

dUi a(Ui,Il, ... ,In- l)
dt a(Ul' U2,' .. , un)

(8.8)

where a(Ui' II, . . , ,In-l)/a(Ul, U2,'" ,Un) denotes the Jacobian. Consequently, the
equations of motion can also be written as (summation convention)

where Eijk ... l is the generalized Levi-Cevita symbol and OJ == a/aUj. The proof that
II, ... ,In - l are first integrals of system (8.8) is as follows. Since (summation conven­
tion)

dli ali dUj
dt aUj dt

we have

Since the Jacobian matrix has two equal rows, it is singular. If the first integrals are
polynomials, then the dynamical system (8.8) is algebraically completely integrable.
For the case n = 3, we obtain the equations of motion

dUl OIl 0I2 all 012 dU3
-=-----,
dt aU2 aU3 aU3 aU2

=-----
dt

As an example, we consider the Nambu machanics of the following first integrals:

II = Ul + U2 + U3 and 12 = Ul U2U3 .

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION 379

The program uses (8.8) to construct the 3 x 3 matrices and calculate their determi­
nants:

dUi d -= et
dt

II nambu.cpp
#include <iostream.h>
#include IMSymbol.h"
#include "Vector.h"
#include "Matrix.h"

8Ui
8U1
8Ui
8U2
8Ui
8U3

811 812
8U1 8U1
811 812

for i = 1,2,3.
8U2 8U2
811 812

8U3 8U3

void nambu(Vector<Sum<double> > I,Vector<Sum<double> > u,int n)
{

}

int i, j;
Matrix<Sum<double> > J(n,n);
for(i=O; i<n; i++)

for(j=l; j<n; j++) J[i] [j] = df(I[j-1], u[i]);

for(i=O; i<n; i++)
{

for (j=O; j<n; j++) J[j] [0] = df(u[i], u[j]);
cout « "du(" « i « ")/dt = II « J . determinant 0 « endl;

}

void mainO
{

}

Result

Sum<double> ul(lul" ,0), U2(IU2" ,0), U3(IU3" ,0);
Vector<Sum<double> > 1(2), u(3);
u[O] = ul; u[l] = u2; u[2] = u3;
1[0] = ul + u2 + u3; 1[1] = ul * u2 * u3;
nambu(I, u,3);

du(O)/dt = ul*u2-ul*u3
du(l)/dt = -ul*u2+u2*u3
du(2)/dt = ul*u3-u2*u3

380 CHAPTER 8. APPLICATIONS

8.7.4 Taylor Expansion of Differential Equations

Consider the first order ordinary differential equation

du
dx = f(x, u), u(xo) = Uo

where f is an analytic function of x and u. The Taylor series expansion gives an
approximate solution about x = Xo and the solution of the differential equation is
given by

The derivatives can be obtained by the successive differentiation of the differential
equation,

The formulae for higher derivatives become very complicated. As an example consider
the Riccati differential equation

du 2
dx = u +x, u(O) = 1.

This equation has no solution in terms of elementary functions. Bessel functions
are needed to solve it. Suppose the solution may be represented by a Taylor series
expansion,

00 xj (dju)
u(x) = 1 + ~ '1 dx j

3=1 J x=xo

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION 381

We compute all the successive derivatives

These derivatives can be found using computer algebra. The initial value is then
inserted and we obtain the Taylor series expansion up to order n. In Example 1,
we solve the Riccati differential equation using the Taylor series method up to order
n = 4, with initial value u(O) = 1. The solution is:

) 3 2 4 3 17 4 u(x = 1 + x + -x + -x + -x + ...
2 3 12

Example 1

II Taylorl.cpp

#include <iostream.h>
#include "MSymbol. h"
#include "Vector.h"
#include "Rational.h"

int factorial(int N)
{

int result=1;

for(int i=2; i<=N; i++) result *= i;

return result;
}

void mainO
{

int i, j, n=4;
Rational<int> one(l);
Sum<Rational<int> > u("u" ,0), xC'x" ,0), result;
Vector<Sum<Rational<int> > > uO(n), yen);

u.depend(x);

382

}

Result
======

CHAPTER 8. APPLICATIONS

uO[O] = u*u+x;
for(j=l; j<n; j++) uO[j] = df(uO[j-1] ,x);

cout « uO « endl;

II initial condition u(O)=l
x.set(O); u.set(l);
uO[O] = uO[O] .value();

yeo] = u;
for(i=l; i<n; i++) y[i] = df(y[i-1] ,x);

II substitution of initial conditions
for(i=l; i<n; i++)
{

}

for(j=i; j>O; j--) uO[i].put(y[j],uO[j-1]);
uO[i] . expand 0 ;

cout « uO « endl;

u = one;
cout « uO « endl;

II Taylor series expansion
result = one;
for(i=O; i<n; i++)

result += Rational<int>(1,factorial(i+1»*uO[i]*power(x,i+1);
cout « "u(x) = " « result « endl;

[u- (2)+x]
[2*u*df(u,x)+1]
[2*df(u,x)-(2)+2*u*df(df(u,x) ,x)]
[6*df(u,x)*df(df(u,x) ,x)+2*u*df(df(df(u,x) ,x),x)]

[1]
[2*u+1]
[2+4*u - (2) +2*u]
[16*u+6+8*u-(3)+4*u-(2)]

[1]
[3]

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION

[8]
[34]

As another example, let us consider the nonlinear initial value problem

du
- = X2 + xu - u2 where u(O) = l.
dx '

It is straightforward, though tedious, to compute all the derivatives:

d2u du du
= 2x + u + x- - 2u-

dx2 dx dx

d3u du d2u (du) 2 ~u = 2 + 2- + x- - 2 - - 2u-
dx3 dx dx2 dx dx2

d4u ~u d3u du d2u d3u
= 3 dx2 + X dx3 - 6 dx dx2 - 2u dx3 dx4

At the point x = 0, u(x = 0) = 1,

(dU) = -1,
dx x=O

Finally, the solution u(x) of the initial value problem near x = 0 is given by

383

In the following, we reproduce the procedure of the calculation using the algebra
system.

384 CHAPTER 8. APPLICATIONS

Example 2

II Taylor2.cpp

#include <iostream.h>
#include "MSymbol.h"
#include "Vector.h"
#include "Rational.h"

int factorial(int N)
{

int result=1;

for(int i=2; i<=N; i++) result *= i;

return result;
}

void mainO
{

int i, j, n=4;
Rational<int> zero(O) , one(1);
Sum<Rational<int> > x("x" ,0), u("u" ,0), result;
Vector<Sum<Rational<int> > > uO(n), wen);

u.depend(x);
uO[O] = x*x + x*u - u*u;

for(i=1; i<n; i++) uO[i]

cout « uO « endl;

II initial condition u(0)=1
x.set(O); u.set(1);
uO[O] = uO[O].value();

w[O] = u;

df(uO[i-1] ,x);

for(i=1; i<n; i++) wEi] = df(w[i-1] ,x);

II substitution of initial conditions
for(i=1; i<n; i++)
{

for(j=i; j>O; j--) uO[i] .put(w[j] ,uO[j-1]);
uO[i] . expand 0 ;

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION

}

cout « uO « endl;

x = zero; u = one;
cout « uO « endl;

II Taylor series expansion
x.clearO;
result = one;
for(i=O; i<n; i++)

385

result += Rational<int>(l,factorial(i+1»*uO[i]*power(x,i+1);
cout « IOU = " « result « endl;

}

Result

[x~(2)+x*u-u~(2)]

[2*x+u+x*df(u,x)-2*u*df(u,x)]
[2+2*df(u,x)+x*df(df(u,x),x)-2*df(u,x)~(2)-2*u*df(df(u,x),x)]

[3*df(df(u,x),x)+x*df(df(df(u,x),x),x)-6*df(u,x)*df(df(u,x),x)
-2*u*df(df(df(u,x),x),x)]

[-1]

[x+3*u]
[x~(2)+x*u-2-6*u~(2)]

[7*x+31*u+x~(3)-x~(2)*u-8*x*u~(2)+12*u~(3)]

[-1]
[3]
[-8]
[43]

386 CHAPTER 8. APPLICATIONS

8.7.5 Commutator of Two Vector Fields

Consider an autonomous system of first order ordinary differential equations

dx = V(x)
dt

where l'J : Rn -+ Rand j = 1,2, ... , n. We assume that the functions l'J are analytic.
We can associate the vector field

n a
v = L l'J(x)-

j=l aXj

with the differential equation. Let W be another vector field

We define the commutator of V and W as follows

We find that the commutator satisfies the following properties:

• [V, W] = -[W, V]

• [V, U + W] = [V, U] + [V, W]

• the Jacobi identity [[V, W], U] + flU, V], W] + [[W, u], V] = 0

where U is analytic vector field on Rn. The analytic vector fields define a Lie algebra.

In the following program, we consider three vector fields V, W, U and show that they
satisfy the three properties listed above.

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION

II comm.cpp

#include <iostream.h>
#include IMSymbol.h"
#include "Vector.h"

const int n = 3;
Vector<Sum<int> > x(n);

387

Vector<Sum<int> > commutator(Vector<Sum<int> > V,Vector<Sum<int> > W)
{

}

int j,k;
Vector<Sum<int> > U(V.length(),O);

for(k=O; k<n; k++)
for(j=O; j<n; j++)

U [k] += V [j] *df(W [k] ,x [j]) - W [j] *df (V [k] ,x [j]) ;
return U;

void mainO
{

}

Vector<Sum<int> > V(n), W(n), U(n), Y(n);
Sum<int> x1{lxl" ,0), X2(I X2" ,0), X3(I X3" ,0);
x[O] = xl; x[l] = x2; x[2] = x3;

YEO] = xl*xl; V[l] = x2*x3; V[2] = x3*x3;
W[O] = x3; W[l] = xl-x2; W[2] = x2*x3;
U[O] = x2*xlj U[l] = x2j U[2] = xl-x3j

II [V,W] = -[W,V]
Y = commutator(V,W) + commutator(W,V);
cout « Y «endl; II output: [0 0 0]

II [V,U+W] = [V,U] + [V,W]
Y = commutator(V,U+W) - (commutator(V,U)+commutator(V,W));
cout « Y «endl; II output: [0 0 0]

II Jacobian Identity [[V,W] ,U] + [[U,V] ,W] + [[W,U] ,V] = 0
Y = commutator(commutator(V,W),U)

+ commutator(commutator(U,V),W)
+ commutator(commutator(W,U) ,V);

cout « Y «endl; II output: [0 0 0]

388 CHAPTER 8. APPLICATIONS

8.7.6 Lie Derivative and Killing Vector Field

Let M be a Riemannian manifold with metric tensor field

4 4

9 = L L gjk(x)dXj ® dXk
j=lk=1

and V be a smooth vector field defined on M. The vector field V is called a Killing
vector field if

Lvg = 0

where Lvg denotes the Lie derivative of 9 with respect to V. The Lie derivative is
linear, i.e.

Lv(T + S) = LvT + LvS

where T and S are (r, s) tensor fields. Furthermore the Lie derivative obeys the
product rule

Lv(S ® T) = (LvS) ® T + S ® (LvT)

where S is an (r, s) tensor field and T is a (p, q) tensor field. Finally, we have in local
coordinates

where V is given by

4 a
V = LVj(X)-a .

j=1 Xj

Consequently, we obtain

8.7. SYMBOLIC CLASS AND SYMBOLIC DIFFERENTIATION

In the program, we consider the Cadel metric tensor field

The metric tensor field can also be written in matrix form:

We show that the vector field

is the Killing vector field of g.

II kill.cpp

#include <iostream.h>
#include "Vector.h"
#include "Matrix.h"
#include "Rational.h"
#include "MSymbol.h"

void mainO
{

int j, k, 1, N=4;

o 0
- exp(2xd/2 0

o 1
- exp(xl) 0

Rat10nal<int> zero(O) , one(l), half(1,2), two(2);
Matrix<Sum<Rational<int> > > g(N,N), Lg(N,N,zero);
Vector<Sum<Rational<int> > > V(N), x(N);

389

Sum<Rational<int> > xl("xl" ,0) ,x2("x2" ,0) ,x3("x3" ,0) ,x4("x4" ,0);

x[O] = xl; x[l] = x2; x[2] = x3; x[3] = x4;

390 CHAPTER 8. APPLICATIONS

II The Goedel metric
g[O] [0] = one; g[O] [1] = zero; g [0] [2] = zero; g [0] [3] = zero;
g[l] [0] = zero; g [1] [1] = -half*exp(two*xl);
g [1] [2] = zero; g[1] [3] = -exp(xl);
g[2] [0] = zero; g[2] [1] = zero; g[2] [2] = one;
g[3] [0] = zero; g[3] [1] = -exp(xl); g[3] [2] = zero;

II The Killing vector field of the Goedel metric
V[O] = x2; V[l] = exp(-two*xl) - half*x2*x2;
V[2] = zero; V[3] = -two*exp(-xl);

II The Lie derivative
for(j=O; j<N; j++)

for(k=O; k<N; k++)
for(l=O; l<N; 1++)

g[2] [3] = zero;
g[3] [3] = -one;

Lg[j] [k] += V[l]*df(g[j] [k] ,x[l]) + gEl] [k]*df(V[l] ,x[j])
+ g [j] [1] *df (V [1] ,x [k]) ;

}

cout « liThe Goedel Metric, g\n" « g « endl;
cout « liThe Killing vector field of the Goedel metric, V\n"

« V « endl; cout « endl;
cout « liThe Lie derivative of g with respect to V, Lg\n"

« Lg « endl;

Result

The Goedel Metric, g
[1 0 0 0]
[0 -1/2*exp(2*xl) 0 -exp(xl)]
[0 0 1 0]
[0 -exp(xl) 0 -1]

The Killing vector field of the Goedel metric,
[x2]
[exp(-2*xl)-1/2*x2~(2)]

[0]

[-2*exp(-xl)]

The Lie derivative of g with respect to V, Lg
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

8.8. MATRIX CLASS

8.8 Matrix Class

8.8.1 Hilbert-Schmidt Norm
Let A and B be two arbitrary n x n matrices over R. Define

(A, B) := tr(ABT)

where BT denotes the transpose of Band trO denotes the trace. We find that

(A, A)
(A,B)

(cA, B)
(AI + A2,B)

>
=
=
=

0

(B,A)
c(A,B)
(AI> B) + (A2 , B)

391

where c E R. Thus (A, B) defines a scalar product for n x n matrices over R. The
scalar product induces a norm, which is given by

IIAII := V(A,A) =
n n

LL laijl2.
i=l j=l

The norm is called the Hilbert-Schmidt norm. The results can be extended to infinite
dimensions when we impose the condition

00 00

LLlaijl2 < 00.
i=l j=l

If an infinite dimensional matrix A satisfies this condition, we call A a Hilbert-Schmidt
operator.

In the following program we consider a 2 x 2 symbolic matrix

The norm is implemented in the Matrix class which has been described in Chapter 6.

392

II Hilbert.cpp

#include <iostream.h>
#include "Matrix.h"
#include "MatNorm.h"
#include "MSymbol.h"

void mainO
{

int n = 2;
Sum<double> a("a",O), b("b",O), y1;
Matrix<Sum<double> > A(n,n);

A[O] [0] = a; A[O] [1] = b;
A[l] [0] = b; A[1] [1] = a;

CHAPTER 8. APPLICATIONS

cout « "The" « n « "x" « n « " matrix A is \n" « A « endl;

y1 = normH(A);

}

Result

cout « "The Hilbert-Schmidt norm of matrix A is " « y1 « endl;
cout « endl;

a = 2.0; b = 3.0;
cout « "Put a = " « a « " and b = " « b « endl;
cout « "The Hilbert-Schmidt norm of matrix A is "

« y1 « " or " « y1.valueO « endl;

The 2x2 matrix A is
[a b]
[b a]

The Hilbert-Schmidt norm of matrix A is sqrt(2*aA (2)+2*b A (2»

Put a = 2 and b = 3
The Hilbert-Schmidt norm of matrix A is sqrt(26) or 5.09902

8.8. MATRIX CLASS

8.8.2 Lax Pair and Hamilton System

Consider the Hamilton function (Toda lattice)

393

where p, q are the momentum and position vectors, respectively. The Hamilton
equations of motion are given by

for j = 1,2,3.

Introducing the quantities

and cyclic boundary conditions (i.e. q4 == qI), we find that the Hamilton equations of
motion take the form (with a3 = 0)

da·
_J = a·(b - b·+I) dt J J J '

db I _ -2 2
dt - aI'

where j = 1,2. Now, let us introduce the matrices

(8.9)

The eigenvalues of the matrix L are constants of motion and thus the coefficients of
the characteristic polynomial are also constants of motion. The equations of motion
(8.9) can be rewritten as the Lax representation:

dL
dt = [A, L](t). (8.10)

394 CHAPTER 8. APPLICATIONS

It can be shown that the first integrals of the system take the forms

tr(Ln) where n = 1,2, ...

In the following program, we demonstrate that equations (8.9) and (8.10) are equiv­
alent. In the second part of the program, we show that

trL = b1 + b2 + b3 and tr(L2) = bi + b~ + b~ + 2ai + 2a~

are the first integrals. The determinant of L,

det(L) = bl~b3 - bla~ - b3ai

is also a first integral of the system. Can det(L) be expressed in the form tr(Ln) for
some n > 0 ? Notice that det(L) is the product of the eigenvalues of Land tr(L) is
the sum of the eigenvalues of L.

II Lax.cpp

#include <iostream.h>
#include "MSymbol.h"
#include "Matrix.h"
#include "Rational.h"

void mainO
{

Matrix<Sum<Rational<int> > > L(3,3), A(3,3), Lt(3,3); II Lt == dL/dt
Sum<Rational<int> > a1("al",O), a2("a2",O),

b1("bl" ,0), b2("b2" ,0), b3("b3" ,0),
alt, a2t, blt, b2t, b3t;

Rational<int> zero(O);

L[O] [0] = bl; L[0][1] = al; L[O] [2] = zero;
L[1] [0] = al; L[l] [1] = b2; L[1] [2] = a2;
L[2] [0] = zero; L[2] [1] = a2; L[2] [2] = b3;
A [0] [0] = zero; A[O] [1] = -al; A[O] [2] = zero;
A[l] [0] = al; A [1] [1] = zero; A[l] [2] = -a2;
A[2] [0] = zero; A[2] [1] = a2; A[2] [2] = zero;

Lt = A*L - L*A; cout « "Lt =\n" « Lt « endl;

blt = Lt[O] [0]; b2t = Lt[l][l]; b3t = Lt[2] [2];
alt = Lt[O] [1]; a2t = Lt[l] [2];
cout « "blt = " « b1t « ", b2t = " « b2t « ", b3t = "

« b3t « endl;
cout « "alt = " « alt « ", a2t = " « a2t « endl;

B.B. MATRIX CLASS

cout « endlj

II Show that 1[0] ,1[1] ,1[2] are first integrals
int i, n=3j
Sum<Rational<int> > resultj
Vector<Sum<Rational<int> > > I(n)j

I[O] = L. trace 0 j
I[1] = (L*L). traceO j
I[2] = L.determinant()j
cout « endl j

for(i=Oj i<nj i++)
{

cout « "I[O]
cout « "I[l]
cout « "I [2]

= " « 1[0]
= " « I[1]
= " « 1[2]

395

« endlj
« endlj
« endlj

result = blt*df(I[i] ,bl) + b2t*df(I[i],b2) + b3t*df(I[i] ,b3)
+ alt*df(I[i],al) + a2t*df(I[i],a2)j

}
}

Result

Lt =

cout « "result" « i+l « " = " « result « endlj

[-2*al~(2) -al*b2+bl*al 0]
[al*bl-b2*al 2*al~(2)-2*a2~(2) -a2*b3+b2*a2]
[0 a2*b2-b3*a2 2*a2~(2)]

bit = -2*al~(2), b2t = 2*al~(2)-2*a2~(2), b3t = 2*a2~(2)

alt = -al*b2+bl*al, a2t = -a2*b3+b2*a2

1[0] = bl+b2+b3
1[1] = bl~(2)+2*al~(2)+b2~(2)+2*a2~(2)+b3~(2)
1[2] = bl*b2*b3-bl*a2~(2)-al~(2)*b3

resultl = 0
result2 = 0
result3 = 0

In the program, Lt corresponds to dL/dt and bit, b2t, b3t, alt, a2t correspond to
dbt/dt, db2/dt, db3/dt, dat/dt, da2/dt, respectively.

The output shows that (8.9) is equivalent to (8.10) by comparing dbt/dt to the (0,0)­
th, db2/dt to the (I,I)-th, ... entry of the matrix 1. result! = 0, result2 = 0,
result3 = 0 indicate that 1[0], I [1] and I [2] are first integrals of the system.

396 CHAPTER 8. APPLICATIONS

8.8.3 Parle Approximant

When a power series of a function diverges, the function has singularities in a certain
region. A Pade approximant is a ratio of polynomials that contains the same infor­
mation as the power series over an interval, often with information about whether
singularities exist. In the [N, M] Pade approximant the numerator has degree M
and the denominator has degree N. The coefficients are determined by equating like
powers of x in the following equation

f(x)Q(x) - P(x) = AxM+N+1 + BxM+N+2 +... with Q(O) = 1

where P(x)jQ(x) is the [N, M] Pade approximant to f(x).

Suppose the solution to a differential equation can be expressed by a kth order Taylor
series

The [N, M] Pade approximant Pf/ (x) is given explicitly in terms of the coefficients
aj

aM-N+2

det

det

with N + M + 1 = k. Note that aj = 0 if j < 0, and the sums for which the initial
value is larger than the final value are taken to be zero. It often happens that Pf/(x)
converges to the true solution of the differential equation as N, M -t 00 even when
the Taylor series solution diverges. Usually we only consider the convergence of the
Pade sequence

{ pi (x), p(+1(x), pf+2(X), ... }

having M = N + J and J is held constant while N -t 00. The special sequence with
J = 0 is called the diagonal sequence.

S.S. MATRIX CLASS 397

In the following program we calculate the Pade approximant [1,1]' [2,2] and [3,3] for

f(x) sin(x) 1 3
X - -x + ...

6

Specifically, [2,2] can be calculated as follows:

al a2 a3
det a2 a3 a4

[2,2] = -'-----------------'-------
aox2 aOx+alx2 ao + alx + a2x2

a2 a3 al
det a2 a3 a4

x2 x 1

with ao = O,al = 1,a2 = O,a3 = -1/6 and a4 = 0. We find that

II Pade.cpp
#include <iostream.h>
#include "MSymbol.h"
#include "Rational.h"
#include "Vector.h"
#include "Matrix.h"

Sum<Rational<int> >

x
[2,2] = --2'

x
1+-

6

Taylor(Sum<Rational<int> > u, Sum<Rational<int> > &x, int n)
{

x.set(Rational<int>(O));
Sum<Rational<int> > series(u.value());
int j, fac = 1;
for(j=l; j<=n; j++)
{

u = df(u,x); fac = fac * j;
series += Rational<int>(u.nvalue() ,fac) * power(x,j);

}

398 CHAPTER 8. APPLICATIONS

return series;
}

Sum<Rational<int> >
Pade(const Sum<Rational<int> > &f,Sum<Rational<int> > &x,int N,int M)
{

}

int i, j, k, Ni = N+i, Mi = M+i, n = M + Ni;
Rational<int> zero(O);
Sum<Rational<int> > y, z;
Vector<Sum<Rational<int> > > a(n);
Matrix<Sum<Rational<int> > > P(Ni,Ni), Q(Ni,Ni);
y = Taylor(f,x,n);
for(i=O; i<n; i++) a[i] = y.coeff(x,i);
for(i=O; i<N; i++)

for(j=O; j<Ni; j++)
{

}

k = M-N+i+j+i;
if(k >= 0) P[i][j] = Q[i][j] = ark];
else P[i][j] = Q[i][j] = zero;

for(i=O; i<Ni; i++)
{

}

for(j=N-i; j<Mi; j++)
{

k = j-N+i;
if(k >= 0) P[N][i] += a[k]*power(x,j);

}

Q[N][i] = power(x,N-i);

y = P.determinant();
z = Q.determinant();
return y/z;

void mainO
{

}

Sum<Rational<int> > X("X" ,0), f, g;
f = sin(x);
cout « Pade(f,x,i,i) « endl; II => x
cout « Pade(f,x,2,2) « endl; II => -1/6*x*(-1/6-i/36*x-(2»-(-1)
cout « Pade(f,x,3,3) « endl;
II => (7/2160*x-1589885/33068i6*x-(3»*(7/2i60+7/43200*x-(2))-(-1)

8.9. ARRAY AND SYMBOLIC CLASSES 399

8.9 Array and Symbolic Classes

8.9.1 Pseudospherical Surfaces and Soliton Equations

In Section 3.2.2, we described how to find the sine-Gordon equation from a metric
tensor field. An implementation using REDUCE was given. Here we give an imple­
mentation using SymbolicC++. In this case u is declared as a variable dependent
on xl and x2. The operator df 0 denotes differentiation. Since terms of the form
cos2(x) and sin2(x) result from our calculation, we have included the identity

to simplify the expressions. This is done using the put 0 function in MSymbol. h.

II tensor.cpp

#include <iostream.h>
#include "Matrix.h"
#include "Array.h"
#include "MSymbol.h"

void mainO
{

int a,b,m,n,c,K=2;
Matrix<Sum<double> > g(K,K),

gl(K,K); II inverse of g
Arrayl<Sum<double> > x(K);
Array2<Sum<double> > Ricci(K,K), Riccil(K,K);
Array3<Sum<double> > gamma(K,K,K);
Array4<Sum<double> > R(K,K,K,K);
Sum<double> u("u",O), sum, RR,

x1("xl" ,0), x2("x2" ,0);

g[O] [0] = 1; g[O] [1] =
g[l] [0] = cos(u); g[l] [1]

x[O] = xl; x[l] = x2;

gl '= g.inverse();
u.depend(xl); u.depend(x2);

for(a=O; a<K; a++)
for(m=O; m<K; m++)

for(n=O; n<K; n++)
{

cos(u);
1 ;

400 CHAPTER 8. APPLICATIONS

sum = 0;
for(b=O; b<K; b++)

sum += g1[a] [b] * (df(g [b] Em] , x [n]) + df(g [b] En] , x Em])
- df (g Em] En] , x [b])) ;

}

gamma [a] Em] En] = 0.5*sum;

cout « "gamma(" « a « "," « m «
« gamma[a] Em] En] « endl;

cout « endl;

for(a=O; a<K; a++)
for(m=O; m<K; m++)

for(n=O; n<K; n++)
for(b=O; b<K; b++)
{

II " , « n « ") = II

R [a] Em] En] [b] = df (gamma [a] Em] [b] , x En])
-df(gamma[a] [m] [n],x[b]);

for(c=O; c<K; c++)
{

}

R[a] em] En] [b] += gamma [a] [c] en] *gamma[c] em] [b]
- gamma [a] [c] [b] *gamma [c] em] En] ;

R[a] Em] En] [b] .put(cos(u)*cos(u),l-sin(u)*sin(u»;
}

for(m=O; m<K; m++)
for(n=O; n<K; n++)
{

}

Ricci em] En] = 0;
for(b=O; b<K; b++) Ricci[m] En] += R[b] [m] [b] [n];

cout « "Ricci(" « m « ", II « n « ") = II

« Ricci[m] en] « endl;

cout « endl;

for(m=O; m<K; m++)
for(n=O; n<K; n++)
{

Riccil[m][n] = 0;
for(b=O; b<K; b++) Riccil[m] En] += gl[m] [b]*Ricci[n] [b];

}

8.9. ARRAY AND SYMBOLIC CLASSES

}

Result

RR = 0;

for(b=O; b<K; b++) RR += Riccil[b] [b];
RR.put(cos(u)*cos(u),l-sin(u)*sin(u));
RR.expand();
RR.put(df(df(u,x2),xl),df(df(u,xl),x2));
cout « "R = " « RR « endl;

gamma(O,O,O) = -cos(u)*(-1+cos(u)~(2))~(-1)*df(u,xO)*sin(u)
gamma(O,O,l) = °
gamma(O,l,O) = °
gamma(O,l,l) = (-1+cos(u)~(2))~(-1)*df(u,xl)*sin(u)
gamma(l,O,O) = (-1+cos(u)~(2))~(-1)*df(u,xO)*sin(u)
gamma(l,O,l) = °
gamma(l,l,O) = °
gamma(l,l,l) = -cos(u)*(-1+cos(u)~(2))~(-1)*df(u,xl)*sin(u)

Ricci(O,O) = -sin(u)~(-l)*df(df(u,xO),xl)
Ricci(O,l) = -cos(u)*sin(u)~(-l)*df(df(u,xO),xl)
Ricci(l,O) = -cos(u)*sin(u)~(-l)*df(df(u,xl),xO)
Ricci(l,l) = -sin(u)~(-l)*df(df(u,xl),xO)

401

402 CHAPTER 8. APPLICATIONS

8.10 Polynomial and Symbolic Classes

8.10.1 Picard's Method
We consider Picard's method to approximate a solution to the differential equation

dy
dx = f(x, y)

with initial condition y(xo) = Yo, where f is an analytic function of x and y. Inte­
grating both sides yields

x

y(x) = Yo + J f(s,y(s))ds.
Xo

Now starting with Yo this formula can be used to approach the exact solution itera­
tively if the procedure converges. The next approximation is given by

x

Yn+l(X) = Yo + J f(s,Yn(s))ds.
xo

The example approximates the solution of the linear differential equation

dy
-=x+y
dx

and the nonlinear differential equation

dy
_ = X+y2
dx

using five and four steps of Picard's method. The initial conditions are y(x = 0) = l.
We also give the value y(x = 2) for these approximations. In the first program
picard. cpp we use the Polynomial class and integration from this class. In the
second program picard1. cpp we use integration from the Symbolic class.

8.10. POLYNOMIAL AND SYMBOLIC CLASSES

II picard.cpp

#include "pol y .h"
#include "rational.h"

int main(void)
{

Polyterm<Rational<Verylong> > X("X");
Polynomial<Rational<Verylong> > pic(x);
Rational<Verylong> zero(IO"), one (II !") , two(12");
int i;

cout « endl « "X+y up to fifth approximation .11 « endl;
pic = one;

}

cout « pic « endl;
for(i=1;i<=5;i++)
{

Ilintegrate and evaluate at the boundaries x and zero
pic = one + Int(x+pic)-(Int(x+pic))(zero);
cout « pic « endl;

}

cout « liThe approximation at x=2 gives II « pic (two) « endl;

cout « end 1 « "x+y-2 up to fourth approximation :" « endl;
pic = one;
cout « pic « endl;
for(i=1;i<=4;i++)
{

}

Ilintegrate and evaluate at the boundaries x and zero
pic = one+lnt(x+(pic-2))-(Int(x+(pic-2)))(zero);
cout « pic « endl;

cout « lithe approximation at x=2 gives II « pic (two) « endl;

return 0;

403

404 CHAPTER 8. APPLICATIONS

Results

x+y up to fifth approximation
(1)

(1/2)xA2+x+ (1)

(1/6)xA3+xA2+x+(1)
(1/24)xA4+(1/3)xA3+xA2+x+(1)
(1/120)x-5+(1/12)xA4+(1/3)xA3+xA2+x+(1)
(1/720)xA6+(1/60)xA5+(1/12)x-4+(1/3)x-3+xA2+x+(1)
The approximation at x=2 gives 523/45

x+yA2 up to fourth approximation
(1)

(1/2)xA2+x+(1)
(1/20)xA5+(1/4)xA4+(2/3)xA3+(3/2)xA2+x+(1)
(1/4400)xA11+(1/400)xA10+(31/2160)xA9+(29/480)xA8+(233/1260)xA7

+(13/30)xA6+(49/60)xA5+(13/12)xA4+(4/3)xA3+(3/2)xA2+x+(1)
(1/445280000)x-23+(1/19360000)xA22+(607/997920000)xA21
+(943/190080000)xA20+(265897/8532216000)xA19
+(569963/3592512000)xA18+(5506583/8143027200)xA17
+(1963837/798336000)xA16+(1350761/174636000)xA15
+(2967707/139708800)xA14+(190159/3706560)xA13
+(1096099/9979200)xA12+(116621/554400)xA11
+(2195/6048)xA10+(6479/11340)xA9+(1657/2016)xA8
+(271/252)xA7+(13/10)xA6+(17/12)xA5+(17/12)xA4
+(4/3)xA3+(3/2)xA2+x+(1)

The approximation at x=2 gives 295683385548145447/86964389386875

8.10. POLYNOMIAL AND SYMBOLIC CLASSES

II spicard.cpp

#include "MSymbol.h"
#include "Rational.h"

int main(void)
{

}

Sum<double> x("x" ,0);
Sum<double> pic;
Sum<double> zero(0.0),one(1.0),two(2.0);
int i;

cout«endl«"x+y up to fifth approximation :"«endl;
x.set(O.O);
pic=one;
cout«pic«endl;
for(i=1;i<=5;i++)
{

Ilintegrate and evaluate at the boundaries x and zero
pic=one+lnt(x+pic,x)-Int(x+pic,x).value();
cout«pic«endl;

}

x.set(2.0);
cout«"The approximation at x=2 gives "«pic.valueO«endl;

cout«endl«"x+y-2 up to fourth approximation :"«endl;
x.set(O.O);
pic=one;
cout«pic«endl;
for(i=1;i<=4;i++)
{

}

//integrate and evaluate at the boundaries x and zero
pic=one+lnt(x+pic*pic,x)-Int(x+pic*pic,x).value() ;
cout«pic«endl;

x.set(2.0);
cout«"The approximation at x=2 gives "«pic.valueO«endl;

return 0;

405

406 CHAPTER 8. APPLICATIONS

Results

x+y up to fifth approximation :
1
1+0.5*x-(2)+x
1+x-(2)+x+0.166667*x-(3)
1+x-(2)+x+0.333333*x-(3)+0.0416667*x-(4)
1+x-(2)+x+0.333333*x-(3)+0.0833333*x-(4)+0.00833333*x-(5)
1+x-(2)+x+0.333333*x-(3)+0.0833333*x-(4)+0.0166667*x-(5)
+0.00138889*x-(6)
The approximation at x=2 gives 11.6222

x+y-2 up to fourth approximation
1
1+0.5*x-(2)+x
1+1.5*x-(2)+x+0.666667*x-(3)+0.05*x-(5)+0.25*x-(4)
1+1.5*x-(2)+x+1.33333*x-(3)+1.08333*x-(4)+0.433333*x-(6)+0.816667*x-(5)
+0.0604167*x-(8)+0.184921*x-(7)+0.0143519*x-(9)+0.000227273*x-(11)
+0. 0025*x- (10)

1+1.5*x-(2)+x+1.33333*x-(3)+1.41667*x-(4)+1.41667*x-(5)+1.0754*x-(7)
+1.3*x-(6)+0.57134*x-(9)+0.821925*x-(8)+0.36293*x-(10)+0.109838*x-(12)
+0.210355*x-(11)+0.0212421*x-(14)+0.0513034*x-(13)+0.00773472*x-(15)
+0.00245991*x-(16)+0.000158653*x-(18)+0.000676233*x-(17)
+4.96107e-006*x-(20)+3.1163ge-005*x-(19)+6.08265e-007*x-(21)
+2.24578e-009*x-(23)+5.1652ge-008*x-(22)

The approximation at x=2 gives 3400.05

8.11. LIE SERIES TECHNIQUES 407

8.11 Lie Series Techniques

Let us consider an autonomous system of ordinary differential equations

dx
dt = f(x), x(t = 0) == Xo

where x = (Xl, ... , xnf and Xo is the initial value at t = O. Let h be analytic
functions defined on Rn. We consider the analytic vector field

n a
v := L h(x)-a .

j=l Xj

Then the solution of the initial value problem, for sufficiently small t, can be written
as

Xj(t) = exp(tV)xjlx=x(o)

where j = 1,2, ... , n. Expanding the exponential function yields

This method is called the Lie series technique. Let us consider the Lorenz model
which is given by

dXl
0'(X2 - Xl) =

dt

dX2
-X1X3 + rXl - X2 - =

dt

where 0', b and r are positive constants. The vector field is given by

408 CHAPTER 8. APPLICATIONS

Hence the solution for the system is

where

and

x(t) = (::~~:)
etV x 3 x=x(O)

=

V(xd = O'(X2 - Xl)

V(X2) = -X2 - X1X3 + rXl
V(X3) = X1X2 - bX3

V(V(Xl)) = -O'2(X2 - Xl) + 0'(-X2 - X1X3 + rXl)
V(V(X2)) = O'(X2 - Xl)(-X3 + r) + X2 + X1X3 - rXl - Xl(X1X2 - bX3)
V(V(X3)) = O'X2(X2 - xd + Xl(-X2 - X1X3 + rXl) - b(X1X2 - bX3).

The Lorenz model possesses a number of interesting properties. The divergence is
-(a + b + 1). Hence each small volume element shrinks to zero as t -+ 00, at a rate
independent of Xl, X2, X3' However, this does not imply that each volume element
shrinks to a point. For certain parameter values (for example a = 10, b = 8/3 and
r = 28) we find that nearby trajectories separate exponentially. The system shows
chaotic behaviour.

In the following program, we apply the Lie series techniques to the Lorenz model.
Here, we have expanded the exponential function up to second order. In the second
part of the program, we iterate the Lie Series solution with a = 10, b = 8/3 and
r = 28.

8.11. LIE SERIES TECHNIQUES

II Lie.cpp

#include <iostream.h>
#include "Vector.h"
#include IMSymbol.h"

const int N=3;

Vector<Sum<double> > x(N), xt(N);

II The vector field V
template <class T> T V(const T& ss)
{

T sum(O);

for(int i=O; i<N; i++) sum += xt[i]*df(ss,x[i]);

return sum;
}

void mainO
{

int i,j;
Sum<double> x1(lxi",O) , X2(I X2",0), X3(I X3",0) , t(lt",O),

S(" S",O), b(lb",O) , r(l r ",O),
p1(lpi" ,0), p2(lp2" ,0), p3(lp3" ,0);

Vector<Sum<double> > xs(N), xg(N);
double half = 0.5;
x[O] = xi; x[i] = x2; x[2] = x3;
xg[O] = pi; xg[i] = p2; xg[2] = p3;

II Lorenz model
xt[O] s*(x2-xi);
xt[i] = -x2 - xi*x3 + r*xi;
xt[2] xi*x2 - b*x3;

II Taylor series expansion up to order 2
for(i=O; i<N; i++)

xs[i] = x[i] + t*V(x[i]) + half*t*t*V(V(x[i]»;

cout « "XS =\n" « xs « endl;

II Evolution of the approximate solution
t.set(O.Ol); r.set(28.0); s.set(10.0); b.set(8.0/3.0);

409

410 CHAPTER 8. APPLICATIONS

xg[O] .set(0.8); xg[1] .set(0.8); xg[2] .set(0.8);

}

for(j=O; j<100; j++)
{

}

for(i=O; i<N; i++) xCi] .set(xg[i] .nvalue(»;

for(i=O; i<N; i++)
{

xg[i] .set(xs[i] .nvalue(»;
cout « "X[" « i « II] = II « xg[i] .valueO « endl;

}

cout « endl;

Result

xs =
[x1+t*s*x2-t*s*x1-0.5*t-(2)*s-(2)*x2+0.5*t-(2)*s-(2)*x1-0.5*t-(2)*x2*s
-0.5*t-(2)*x1*x3*s+0.5*t-(2)*r*x1*s]
[x2-t*x2-t*x1*x3+t*r*x1-0.5*t-(2)*s*x2*x3+0.5*t-(2)*s*x2*r
+0.5*t-(2)*s*x1*x3-0.5*t-(2)*s*x1*r+0.5*t-(2)*x2+0.5*t-(2)*x1*x3
-0.5*t-(2)*r*x1-0.5*t-(2)*x1-(2)*x2+0.5*t-(2)*b*x3*x1]
[x3+t*x1*x2-t*b*x3+0.5*t-(2)*s*x2-(2)-0.5*t-(2)*s*x1*x2
-0.5*t-(2)*x2*x1-0.5*t-(2)*x1-(2)*x3+0.5*t-(2)*r*x1-(2)
-0.5*t-(2)*x1*x2*b+0.5*t-(2)*b-(2)*x3]

x[O] = 0.81048
x [1] = 1.00861
x[2] = 0.786104

x[O] = 0.839826
x[1] = 1.22078
x[2] = 0.774439

x[0] =0.886839
x [1] = 1.44137
x[2] = 0.76532

x[O] = 0.950876
x [1] 1.67493
x[2] = 0.759203

8.12. SPECTRA OF SMALL SPIN CLUSTERS

8.12 Spectra of Small Spin Clusters

Consider the spin Hamilton operator

3 3

II = a I: (I3(j)(I3(j + 1) + b I: (I1(j)
j=l j=l

where a, b are real constants and

(Ii(1) = (Ii ® I ® I

(Ii(2) = I ® (Ii ® I

(Ii(3) = I ® I ® (Ii

where (Ii are the Pauli matrices given by

Here, we adopt the cyclic boundary conditions, i.e.,

411

The matrix representation of the first term on the right-hand side is a diagonal matrix

3

I: (I3(j)(I3(j + 1) = diag(3a, -a, -a, -a, -a, -a, -a, 3a).
j=l

The second term leads to non-diagonal terms. The 8 x 8 symmetric matrix for II
becomes

3a b b 0 b 0 0 0
b -a 0 b 0 b 0 0
b 0 -a b 0 0 b 0
0 b b -a 0 0 0 b
b 0 0 0 -a b b 0
0 b 0 0 b -a 0 b
0 0 b 0 b 0 -a b
0 0 0 b 0 b b 3a

412 CHAPTER 8. APPLICATIONS

In the following program, we calculate the spin Hamilton operator symbolically. We
determine the trace and determinant of the matrix symbolically. Then we substitute

1
a = 2' b= ~

3

into the matrix and the determinant to get a matrix with numerical values.

II spinS3.cpp

#include <iostream.h>
#include <fstream.h>
#include ItMSymbol.h lt
#include ItMatrix.h lt
#include ItRational.h lt

of stream fout(lt spinS3.dat lt);

Matrix<Sum<Rational<int> > > sigma(char coord,int index,int N)
{

int i;
Matrix<Sum<Rational<int> > > 1(2,2);
1. identityO ;
Matrix<Sum<Rational<int> > > result, s(2,2);
Sum<Rational<int> > zero(O), one(l);

if(coord == 'x')
{

s [0] [0] zero; s [0] [1] one;
s [1] [0] one; s [1] [1] zero;

}

else II 'z'
{

s [0] [0] = one; s [0] [1] = zero;
s [1] [0] = zero; s [1][1] = -one;

}

if (index == 0)
{

result = s' ,
for{i=l; i<N; i++) result = kron (result, 1) ;

}

8.12. SPECTRA OF SMALL SPIN CLUSTERS

else
{

result = I' ,
for(i=l; i<index; i++) result = kron(result,1) ;
result = kron(result,s);
for(i=index+l; i<N; i++) result = kron (result, 1) ;

}

return result;
}

template <class T>
Matrix<T> H(int N,T a,T b)
{

}

int i, size=pow(2,N);
Matrix<T> result, part(size,size,T(O)), *sigmaX, *sigmaZ;
sigmaX = new Matrix<T>[N];
sigmaZ = new Matrix<T>[N];

for(i=O; i<N; i++) sigmaX[i] = sigma('x' ,i,N);
for(i=O; i<N; i++) sigmaZ[i] = sigma(lzl ,i,N);
for(i=l; i<=N; i++) part += sigmaZ[i-l]*sigmaZ[i%N];
result = a * part;

part.fill(T(O));

for(i=O; i<N; i++) part += sigmaX[i];
result += b * part;

delete [] sigmaX; delete [] sigmaZ;
return result;

void mainO
{

int N=3, size = pow(2,N);
Rational<int> c(1,2), d(1,3);
Sum<Rational<int> > a("a" ,0), b("b" ,0), p("p" ,0), det;
Matrix<Sum<Rational<int> > > result, HI, I(size,size);
I. identi ty 0 ;
result = H(N,a,b);
fout « result « endl;
fout « "trace = " « result .. trace 0 « endl;

det = result.determinant();

413

414 CHAPTER 8. APPLICATIONS

fout « "determinant = " « det « endl;
fout « endl;

// Assigning numerical values
a = c; b = d;
fout « "Put a = " « a « " and b = " « d « endl;
fout « endl;

fout « "The matrix becomes:" « endl;
fout « result « endl;

fout « "determinant = " « det « endl;
}

Result

[3*a b bOb 0 0 0]
[b -a 0 bOb 0 0]
[b 0 -a bOO b 0]
[0 b b -a 0 0 0 b]
[b 0 0 0 -a b b 0]
[0 bOO b -a 0 b]
[0 0 bOb 0 -a b]
[0 0 0 bOb b 3*a]

trace = 0
determinant = 9*a~(8)-36*a~(6)*b~(2)+54*a~(4)*b~(4)-36*a~(2)*b~(6)

+9*b~(8)

Put a = 1/2 and b = 1/3

The matrix becomes:
[3/2 1/3 1/3 0 1/3 0 0 0]
[1/3 -1/2 0 1/3 0 1/3 0 0]
[1/3 0 -1/2 1/3 0 0 1/3 0]
[0 1/3 1/3 -1/2 0 0 0 1/3]
[1/3 0 0 0 -1/2 1/3 1/3 0]
[0 1/3 0 0 1/3 -1/2 0 1/3]
[0 0 1/3 0 1/3 0 -1/2 1/3]
[0 0 0 1/3 0 1/3 1/3 3/2]

determinant = 625/186624

8.13. NONLINEAR MAPS AND CHAOTIC BEHAVIOUR 415

8.13 Nonlinear Maps and Chaotic Behaviour

We consider the map

Xt+l r(3Yt + l)xt(1- Xt)

Yt+l r(3xt + l)Yt(1- Yt)

which shows the Ruelle-Takens-Newhouse transition into chaos. The bifurcation
parameter is r. We calculate the variational equation symbolically

Ut+l r(3Yt + 1)(1 - 2xt)Ut + 3rxt(1- Xt)Vt
Vt+l 3rYt(1- Yt)Ut + r(3xt + 1)(1 - 2Yt)Vt

and then iterate these four equations using the data type double. The largest
Ljapunov exponent is calculated approximately for r = 1.0834

where T is large. The fixed points of the map are given as the solutions of

We find

r(3y* + l)x*(l - x*) = x*,

x~ = 31r (-vi 4r2 - 3r + r) ,

x; = 31r (vi 4r2 - 3r + r) ,

* r - 1
X3 = --,

r

x: = 0,

x; = 0,

r(3x* + l)y*(l - yO) = yO.

Y; = 0,

r-l Y; = --.
r

The fixed points (xi, yn and (x;, Y;) exist only for r ~ 3/4.

416 CHAPTER 8. APPLICATIONS

In the following program, we calculate symbolically the variational equations of the
map described above. Then, we calculate the Ljapunov exponent with r = 1.0834
and the initial conditions

Xo = 0.3, Yo = 0.4, Uo = 0.5, Vo = 0.6.

From the result obtained, we see that the Ljapunov exponent for the map is approx­
imately 0.22.

II var.cpp

#include <iostream.h>
#include <math.h>
#include "MSymbol.h"

template <class T> T f(T x,T y,T r)
{

}

template <class T> T geT x,T y,T r)
{

}

void mainO
{

int T, N = 1000;
double x2, y2, u2, v2;
Sum<double> x("x" ,0), x1("x1" ,0), Y("y" ,0), y1("yl" ,0), r("r" ,0),

u("u" ,0), u1("ul" ,0), v("v" ,0), v1("vl" ,0);

xl = f(x,y,r);
yl = g(x,y,r);
cout « "xl = " « xl « endl;
cout « "yl = " « yl « endl;

II Variational Equation
ul = df(xl,x)*u + df(xl,y)*v;
vl = df(yl,y)*v + df(yl,x)*u;
cout « "ul = " « ul « endl;
cout « "vl = " « vl « endl;
cout « endl;

8.13. NONLINEAR MAPS AND CHAOTIC BEHAVIOUR

}

II Calculation of the Ljapunov exponent
II by iterating the four equations.

II Initial values
x.set(0.3); y.set(0.4); r.set(1.0834);
u.set(0.5); v.set(0.6);

for(T=l; T<N; T++)
{

}

x2 = xl.nvalue();
y2 = yl.nvalue();
u2 = ul.nvalue();
v2 = vl.nvalue();

x.set(x2); y.set(y2); u.set(u2); v.set(v2);
cout « "The Ljapunov exponent for T = " « T « " is "

« log(fabs(u.nvalue())+fabs(v.nvalue()))/T « endl;

Result

xl = 3*r*y*x-3*r*y*x-(2)+r*x-r*x-(2)
yl = 3*r*x*y-3*r*x*y-(2)+r*y-r*y-(2)
ul 3*r*y*u-6*r*y*x*u+r*u-2*r*x*u+3*r*x*v-3*r*x-(2)*v
vl 3*r*x*v-6*r*x*y*v+r*v-2*r*y*v+3*r*y*u-3*r*y-(2)*u

The Ljapunov exponent for T = 1 is 0.420853
The Ljapunov exponent for T = 2 is 0.113849
The Ljapunov exponent for T = 3 is -0.2017
The Ljapunov exponent for T = 4 is -0.0178022
The Ljapunov exponent for T = 5 is 0.1242
The Ljapunov exponent for T = 6 is 0.224871

The Ljapunov exponent for T = 994 is 0.216136
The Ljapunov exponent for T = 995 is 0.216531
The Ljapunov exponent for T = 996 is 0.215979
The Ljapunov exponent for T = 997 is 0.215501
The Ljapunov exponent for T = 998 is 0.215698
The Ljapunov exponent for T = 999 is 0.215851

417

418 CHAPTER 8. APPLICATIONS

8.14 Numerical-Symbolic Application

Consider the equation

f(x) = 0

where it is assumed that f is at least twice differentiable. Let I be some interval
containing a root of f. A method that approximates the root of f can be derived by
taking the tangent line to the curve y = f(x) at the point (xn' f(xn)) corresponding to
the current estimate, Xn , of the root. The intersection of this line with the x-axis gives
the next estimate to the root, Xn+l. The gradient of the curve y = f (x) at the point
(xn' f(xn)) is f'(xn). The tangent line at this point has the form y = f'(xn) * X + b.
Since this passes through (xn' f(xn)) we see that b = f(xn) - Xn * f'(xn). Therefore
the tangent line is

y = f'(xn) * X + f(xn) - Xn * f'(xn).

To determine where this line cuts the x-axis we set y = O. Taking the point of
intersection as the next estimate, Xn+l, to the root, we have 0 = f'(xn) * Xn+l +
f(xn) - Xn * f'(xn). It follows that

f(xn)
Xn+l = Xn - f'(xn)·

This is the Newton-Raphson scheme [15], which has the following form

next-estimate = current estimate + correction term .

The correction term is - f(xn)/ f'(xn) and this must be small when Xn is close to the
root if convergence is to be achieved. This depends on the behaviour of l' (x) near
the root and, in particular, difficulty will be encountered when f'(x) and f(x) have
roots close together. The Newton-Raphson method is of the form Xn+l = g(xn) with
g(x) := x - f(x)/ f'(x). The order of the method can be examined. Differentiating
this equation leads to g'(x) = (f(x)f"(x))/((f'(x))2). For convergence we require
that

If(X)f"(X) I 1
(f'(X))2 <

for all x in some interval I containing the root. Since f(a) = 0, the above condition
is satisfied at the root x = a provided that f'(a) =I- o. Then, provided that g(x)

8.14. NUMERICAL-SYMBOLIC APPLICATION 419

is continuous, an interval I must exist in the neighbourhood of the root over which
the condition is satisfied. Difficulty is sometimes encountered when the interval I is
small because the initial guess must be taken within this interval. This usually arises
when f(x) and f'(x) have roots close together since the correction term is inversely
proportional to f'(x).

In the following, we make use of the method described above to find the root of the
function

f(x) = 4x - cos(x).

In the program, we compare the built-in data type double and the symbolic iteration
with numerical substitution at each step. The sequence converges to the value x =
0.2426746806.

II Newton.cpp

#include <iostream.h>
#include <iomanip.h> II for setprecision()
#include IMSymbol.h"

template <class T> T f(T x) II f(x)
{

return 4*x-cos(x);
}

void mainO
{

int i, N=7;
double y, uO = -1.0;
Sum<double> X("X",O) , ff, ffl, ff2, C;

ff = f(x);
ffl = df (ff ,x);
ff2 = df(ffl,x);

II Set numerical precision to 10 decimal places
cout « setprecision(lO);

cout « IIf(x) = II « ff « endl;
cout « IIfl (x) = II « ffl « endl;
cout « IIfll (x) = II « ff2 « endl;
cout « endl;

420 CHAPTER 8. APPLICATIONS

II ======= Condition for convergence =======
C = fhff2/ff1;
x.set(uO);
cout « "C = " « C « endl;
cout« "IC(x=uO)I ="« fabs(C.nvalueO)« endl;
cout « endl;

II ======= Symbolic computation =========
x.set(uO);
for(i=O; i<N; i++)
{

}
}

Result
======

y = (x - ff/ff1).nvalue();
x.set(y);
cout « "x = " « x.nvalueO « endl;

f(x) = 4*x-cos(x)
f'(x) = 4+sin(x)
f' , (x) = cos (x)

C = 4*x*cos(x)*(4+sin(x»A(-1)-cos(x)A(2)*(4+sin(x»A(-1)
IC(x=uO)I = 0.7766703403

x = 0.4374736734
x = 0.2466653145
x = 0.2426765006
x = 0.2426746806
x = 0.2426746806
x = 0.2426746806
x = 0.2426746806

8.15 Summary

In this chapter, we presented many useful applications in mathematics and physics,
such as the Mandelbrot set, first integrals, Killing vector fields, Lie series technique
and so on. We demonstrated the usefulness of the classes which we developed in pre­
vious chapters. However, the readers should take note that the applications presented
here are far from being complete. Many possible fields of study will have applications
in different aspects using computer algebra systems.

Chapter 9

Lisp and Computer Algebra

9.1 Introduction

Lisp is short for List Processing. It is a computer language that is used in many
applications of artificial intelligence. One of its major qualities is that it can manipu­
late lists easily. Lisp was developed in the 1950s by John McCarthy [32]. It is one of
the most commonly used languages for writing a computer algebra system. Reduce,
Macsyma, Derive and Axiom are based on Lisp. The basic data types in Lisp are
atoms and dotted pairs. Lists are built from dotted pairs. Most of the functions in
Lisp operate on lists. Moreover arithmetic operations are also possible in Lisp.

In this chapter we show how a computer algebra system can be built using Lisp. This
includes how simplification, differentiation, and polynomials are handled. We make
use of functions and rely strongly on recursion. There are different dialects in Lisp.
In this chapter we use Portable Standard Lisp. The programs listed here also run
under Common Lisp with some small modifications. In Portable Standard Lisp, a
function is indicated by (de), whereas in Common Lisp a function is indicated by
(defun). A comment in Portable Standard Lisp is written as

% This is a single line comment in Portable Standard Lisp

whereas a comment line in Common Lisp is indicated by a semicolon (;).

; This is a single line comment in Common Lisp

The function (mapcan) is also implemented differently in Common Lisp and Portable
Standard Lisp.

Lisp is described in a number of excellent textbooks [2], [60]. Some of them also
discuss the implementations of symbolic manipulations [8], [20], [38], [58].

421

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

422 CHAPTER 9. LISP AND COMPUTER ALGEBRA

9.2 Basic Functions of Lisp

Values in Lisp are termed S-expressions, a contraction for symbolic expressions. An
S-expression may be either an atom, which is written as a symbol, such as

a
apple
part 2

or a dotted pair, written in the form

where 8_1 and 8_2 stand for arbitrary S-expressions. Some examples of dotted pairs
are

(a . b)

(a . (bl b2»
«u.v) (x.(y.z»)

An important subset of the S-expressions is the list, which satisfies the following
constraints

• An atom is a list if it is the atom nil.

• A dotted pair (8_1 . 8_2) is a list if 8_2 is a list.

The atom nil is regarded as the null list. Therefore, a list in LISP is a sequence
whose components are S-expressions. The following S-expressions

nil
(apple . nil)
(a . (b . (c . nil»)
«apple. a2) . nil)

are all lists. Lists are more conveniently expressed in list notation

for n ~ O. This is an abbreviation of

For example,

(a b c)

abbreviates

(a . (b . (c . nil»)

9.2. BASIC FUNCTIONS OF LISP 423

The list (a) abbreviates

(a . nil)

and the list () (the so-called empty list) abbreviates

nil

Note the difference between the dotted pair (a . b), and the two-component list
(a b) which may also be written as (a . (b . nil)). Obviously a and (a) are not
equivalent, because the latter abbreviates the pair (a . nil).

S-expressions are the values manipulated by Lisp programs. However, Lisp programs
are also S-expressions. For example, the notation for literals in Lisp is

(quote S)

where S is an S-expression. Instead of (quote S) we can also write l S. Syntactically,
this is just a two-component list. The first component is the atom quote and the
second is an S-expression S. Semantically, its value (relative to any state) is the S­
expression S. For example, the value of

(quote apple)

is the atom apple, and the value of

(quote (a . b))

is the dotted pair (a . b). In Lisp, an unquoted atom used as an expression is an
identifier, except when it is nil or t, which always denote themselves.

Lisp provides five primitive operations for constructing, selecting and testing S­
expression values

cons car cdr atom null

The function cons constructs a dotted pair from its two arguments. For example, the
value of

(cons (quote a) (quote b))

is (a . b). Of course, the actual parameters of an invocation need not be literals.
For example, the value of

(cons (quote a) (cons (quote b) nil))

is (a b). The functions car and cdr require a dotted pair (s_l . s_2) as an argu­
ment and return the components s_l and s_2, respectively. For example, the values
of

424 CHAPTER 9. LISP AND COMPUTER ALGEBRA

(car (quote (a . b») and (cdr (quote (a . b»)

are a and b, respectively. Next we consider the results of the functions cons, car and
cdr on list arguments. The value of

(cons (quote a) (quote (b cd»)

is the list (a bed). The result of applying car and cdr to a list argument is the
first component of the list and the rest of the list, respectively. For example, the
values of

(car (quote (a bed») and (cdr (quote (a bed»)

are a and (b c d), respectively. Note also that the values of

(cons (quote a) nil), (car (quote (a»), (cdr (quote (a»)

are (a), a, and nil, respectively. The remaining two primitive functions in Lisp are
predicates, for which the result is one of the atoms - nil (representing false) or t
(representing true). The value of

(atom E)

is t if the S-expression E is an atom, and nil if it is a dotted pair. The function null
takes one argument. It returns t if its argument evaluates to nil, and returns nil
otherwise. An example is

(null nil)

where the return value is t. The function greaterp takes one or more arguments and
returns t if they are ordered in decreasing order numerically. Otherwise, the function
returns nil. For example,

(greaterp 9 4) % return value : t

The function zerop takes a numeric argument and returns t if the argument evaluates
to O. Otherwise, the function returns nil. For example,

(zerop 1) % return value : nil

The arithmetic function plus adds the arguments. For example,

(plus 2 4 -7) % return value : -1

The arithmetic function times multiplies the arguments. For example,

(times 4 5 6 7) % return value : 840

9.2. BASIC FUNCTIONS OF LISP 425

The function list accepts one or more arguments. It places all of its arguments in a
list. This function can also be invoked with no arguments, in which case it returns nil.

The function cond is used for conditional processing. It takes zero or more arguments,
called cases. Every case is a list, whose first element is a test and the remaining el­
ements are actions. The cases in a cond are evaluated one at a time, from first to
last. When one of the tests returns a non-nil value, the remaining cases are skipped.
The actions in the case are evaluated and the result is returned. If none of the tests
returns a non-nil value, cond returns nil. For example, the function length_list,
defined as

(de length_list (L)
(cond

«null L) 0)
(t (plus 1 (length_list (cdr L»»»

can be applied as follows:

(setq L '(1 2 3 4 5 xx» % return value
(length_list L) % return value

(1 2 3 4 5 xx)
6

The function mapcan takes two arguments: a function and a list. It maps the function
over the elements in the list. The function used here must return a list, and the lists
from the mapping are destructively spliced together. For example in Common Lisp
we have

(mapcan 'cdr '«a b c) (d e») % return value (b c e)

In Portable Standard Lisp this is expressed as

(mapcan '«a b c) (d e» 'cdr) % return value: (b c e)

Many functions in Lisp can be defined in terms of other functions. For example,
caar can be defined in terms of car. It is, therefore, natural to ask whether there
is a smallest set of primitives necessary to implement the language. In fact, there
is no single "best" minimal set of primitives; it all depends on the implementation.
One possible set of primitives might include car, cdr and cons for manipulation of
S-expressions, quote, atom, read, print, eq for equality, cond for conditionals, setq
for assignment, and defun for definitions.

426 CHAPTER 9. LISP AND COMPUTER ALGEBRA

9.3 Examples from Symbolic Computation

9.3.1 Polynomials

In this section we show how to add and multiply polynomials [12] of the form

n

p(x) = Lajxi.
j=O

First we have to give a representation for the polynomial p, using a list of dotted
pairs. The first element of the dotted pair is the exponent and the second element is
the factor. Thus the car of the dotted pair is the exponent and the cdr of the dotted
pair is the coefficient, e.g.

(car '(3 5» % return value 3
(cdr '(3 5» % return value 5

Consider, for example, the polynomial

p(x) = 3x2 + 7x + l.
The representation as a list of dotted pairs is given by

«2 . 3) (1 . 7) (0 . 1»

Consider another example: the polynomial 3x2 + 2 is represented as

«2. 3) (0 . 2»

Using this representation, the polynomial 0 can be represented by nil or «0 . 0»,
whereas the polynomial 1 is represented by «0 . 1».

In the following we give an implementation for the addition and multiplication of
two polynomials [12]. Recursion is used here (i.e. the function calls itself). If the
polynomial P has m terms and the polynomial Q has n terms, the calculation time
(that is the number of Lisp operations) for add is bounded by O(m + n), and for
multiply is bounded by O(m2n). Roughly speaking, we ought to sort the terms of
the product so that they appear in decreasing order, and make use of the add function,
corresponding to a sorting algorithm by insertion. Of course, the use of a better
sorting method (such as quicksort) offers a more efficient multiplication algorithm, say
O(mn log m). But most systems use an algorithm similar to the procedure described.

9.3. EXAMPLES FROM SYMBOLIC COMPUTATION

% poly.sl

(de add (P Q)

(cond
«null P) Q)
«null Q) p)
«greaterp (caar P) (caar Q)) (cons (car P) (add (cdr P) Q)))

«greaterp (caar Q) (caar P)) (cons (car Q) (add P (cdr Q))))
«zerop (plus (cdar P) (cdar Q))) (add (cdr p) (cdr Q)))

(t (cons (cons (caar p) (plus (cdar P) (cdar Q)))

(add (cdr p) (cdr Q))))))

(de multiply (p Q)

(cond
«or (null P) (null Q)) nil)

427

(t (cons (cons (plus (caar P) (caar Q)) (times (cdar P) (cdar Q)))

(add (multiply (list (car P)) (cdr Q))

(multiply (cdr P) Q))))))

% Applications of the functions
Yo add and multiply are as follows:

(add' «2 . 3) (1 . 7) (0 . 1)) '«2 4) (0 . 2)))
(add ,((0 . 0)) ,((3 . 4) (1 . 2) (0 7)))
(multiply' «3 3) (0 2))' «2 4) (1 . 1)))
(multiply '«3 . 3) (0 . 2)) '«0 . 0)))

In the first example, we add the two polynomials

(3x2 + 7x + 1) + (4x2 + 2) = 7x2 + 7x + 3.

In the second example, we add the two polynomials

o + (4x3 + 2x + 7) = 4x3 + 2x + 7.

In the third example, we multiply two polynomials

(3x3 + 2) * (4x2 + x) = 12x5 + 3x4 + 8x2 + 2x.

In the fourth example, we multiply two polynomials

(3x3 + 2) * 0 = O.

The output of the last example is «3 . 0) (0 . 0)) which is 0 * x3 + 0 * xo. This
simplifies to O.

428 CHAPTER 9. LISP AND COMPUTER ALGEBRA

9.3.2 Simplifications

Here we show how simplification can be implemented in Lisp. We assume that the
mathematical expression is given in prefix notation. This means an expression is ar­
ranged in the way that the operator appears before its operands.

In simpl. sl we implement the rules

+ x => x
- 0 => 0
exp{O) => 1
log(1) => 0
sin{O) => 0
cos{O) => 1
arcsin{O) => 0
arctan{O) => 0
sinh{O) => 0
cosh{O) => 1

Basically, the simplification is done by comparing the expression case by case. If there
is a match, replace the expression by the simplified form. Notice that

{simp-unary '{plus (plus x»)
{simp-unary '{minus (plus x»)
{simp-unary '{plus (exp 0»)
{simp-unary '{exp (sin 0»)
{simp-unary '{log {exp (sin 0»»

are not simplified completely. This indicates that a recursion process is needed for
the simplification to apply on different levels. Furthermore, we find that

{simp-unary '(plus x y»

gives a wrong answer, and

(simp-unary 'x)
{simp-unary '(x»

give error messages! This has prompted us that extra attention has to be given to the
number and types of the arguments for the function simp-unary. The next attempt
(simp2. sl) tries to overcome these problems.

9.3. EXAMPLES FROM SYMBOLIC COMPUTATION

'I. simp1.s1

(de simp-unary (f)
(prog (op opd)
(setq op (car f))
(setq opd (cadr f))
(return (cond

«eq op 'plus) opd) 'I. + x => x
«and (eq op 'minus) (zerop opd)) 0) 'I. - 0 => 0
«and (eq op 'exp) (zerop opd)) 1) 'I. exp(O) => 1
«and (eq op 'log) (onep opd)) 0) 'I. log(1) => 0
«and (eq op 'sin) (zerop opd)) 0) 'I. sin(O) => 0
«and (eq op 'cos) (zerop opd)) 1) 'I. cos(O) => 1
«and (eq op 'arcsin) (zerop opd)) 0) 'I. arcsin(O) => 0
«and (eq op , arctan) (zerop opd)) 0) 'I. arctan(O) => 0
«and (eq op 'sinh) (zerop opd)) 0) 'I. sinh(O) => 0
«and (eq op 'cosh) (zerop opd)) 1) 'I. cosh(O) => 1

(t (list op opd)))))

'I. Applications of the simplification

(simp-unary '(plus x)) 'I. => x
(simp-unary '(exp 0)) 'I. => 1
(simp-unary '(log 1)) 'I. => 0
(simp-unary '(cosh 0)) 'I. => 1
(simp-unary '(exp 1)) 'I. => (exp 1)

(simp-unary '(minus x)) 'I. => (minus x)
(simp-unary '(minus 0)) 'I. => 0

(simp-unary '(plus (plus x») 'I. => (plus x) <--- not simplified
(simp-unary '(minus (plus x)) 'I. => (minus (plus x)) <--- not simplified
(simp-unary '(plus (exp 0))) 'I. => (exp 0) <--- not simplified

(simp-unary '(exp (sin 0))) 'I. => (exp (sin 0)) <--- not simplified
(simp-unary '(log (exp (sin 0)))

(simp-unary 'x)

(simp-unary ,(x))

(simp-unary '(plus x y»

'I. => (log (exp (sin 0)))) <--- not simplified

'I. An attempt was made to do car on 'x',
'I. which is not a pair <--- ERROR !

'I. An attempt was made to do car on 'nil',
'I. which is not a pair <--- ERROR

'I. => x <--- WRONG

429

430 CHAPTER 9. LISP AND COMPUTER ALGEBRA

In the program simp2. sl, we have successfully overcome all the problems existing in
the previous version. In this version, simplification may be applied on

• atoms, for which the original expression is returned;

• a list with only one element, for which we apply the function simp again on the
argument;

• a list with two elements, for which we apply the function simp-unary, with the
first argument being the operator and the other being the operand;

• a list with more than two elements, for which the message cannot_simplify is
printed, because this expression can only be simplified by a binary operator.

We have built one more level on top of the function simp-unary. The new function
simp plays an important role in handling the arguments provided by the users. It
checks for the types as well as the number of arguments. A different action is taken
for each case.

In the function simp-unary, most of the statements are the same as the previous
program simp1. s1. We have changed only one statement (line number 4) in this
function to make it recursive:

(setq opd (simp (cadr f)))

This statement applies the simplification on the second argument of the function,
enabling the simplification to apply on different levels of the operand.

Note that the statement

(simp '(minus (minus x)))

is not simplified because the program does not cater for the interaction between
different levels of expressions, i.e. the minus operators do not interact and cancel out
each other. Furthermore, we see that the statement

(simp '(plus x y))

prompts the message cannot_simplify. This is because we have not implemented the
binary operators yet. In the next program simp3. sl, we consider the simplification
of binary operators like plus, minus, times, quotient and power.

9.3. EXAMPLES FROM SYMBOLIC COMPUTATION

Yo simp2.s1

(de simp (f)
(cond

«atom f) f) Yo f is an atom
«null (cdr f» (simp (car f»)
«null (cddr f» (simp-unary f»
(t (quote cannot_simplify» »

Yo f has only one element
Yo f has two elements
Yo f has more than two elements

(de simp-unary (f)
(prog (op opd) Yo local variables op, opd
(setq op (car f»
(setq opd (simp (cadr f»)
(return (cond

«eq op 'plus) opd) Yo + x => x
«and (eq op 'minus) (zerop opd» 0) Yo - 0 => 0
«and (eq op 'exp) (zerop opd» 1) Yo exp(O) => 1
«and (eq op 'log) (onep opd» 0) Yo log(l) => 0
«and (eq op 'sin) (zerop opd» 0) Yo sin(O) => 0
«and (eq op 'cos) (zerop opd» 1) Yo cos(O) => 1
«and (eq op 'arcsin) (zerop opd» 0) Yo arcsin(O) => 0
«and (eq op 'arctan) (zerop opd» 0) Yo arctan(O) => 0
«and (eq op 'sinh) (zerop opd» 0) Yo sinh(O) => 0
«and (eq op 'cosh) (zerop opd» 1) Yo cosh(O) => 1
(t (list op opd»»)

)

Yo Applications of the simplification
(simp 'x) Yo => x
(simp ,(x» Yo => x

(simp '(plus x» Yo => x
(simp '(plus (plus x») Yo => x
(simp '(plus (minus x») Yo => (minus x)
(simp '(plus (minus 0») Yo => 0
(simp '(minus (plus x») Yo => (minus x)

(simp '(minus (sin 0») Yo => 0
(simp '(plus (exp 0») Yo => 1
(simp '(minus (exp 0») Yo => (minus 1)
(simp , (plus (log 1)) Yo => 0
(simp '(plus (cosh 0») Yo => 1
(simp '(exp (sin 0») Yo => 1
(simp '(log (exp (sin 0»» Yo => 0

(simp '(minus (minus x») Yo => (minus (minus x»
(simp '(plus x y» Yo => cannot_simplify

431

432 CHAPTER 9. LISP AND COMPUTER ALGEBRA

In the program simp3. sl, on top of the unary operators simplification, we implement
the following binary operators:

plus minus times quotient power

In the function simp, we change the statement in line number 6 from

(t (quote cannot_simplify))

to

(t (simp-binary f))

This statement simply means if the argument contains more than two elements, apply
the binary operator simplification.

In the new function simp-binary, we consider the following simplification:

• operation x + y:

if x = 0 return y
if Y = 0 return x

• operation x - y:

if x = 0,
if y = 0 return 0
else return -y

if Y = 0 return x
if x = y return 0

• operation x * y:

if x = 0 or y = 0 return 0
if x = 1 return y
if Y = 1 return x

• operation x/y:

if x = 0 return 0
if y = 0 return infinity
if y = 1 return x

• operation xY:

if x = 0 return 0
if Y = 0 or x = 1 return 1
if Y = 1 return x

9.3. EXAMPLES FROM SYMBOLIC COMPUTATION

% simp3.s1

(de simp (f)
(cond

«atom f) f)
«null (cdr f» (simp (car f»)
«null (cddr f» (simp-unary f»
(t (simp-binary f» »

(de simp-unary (f)
(prog (op opd)
(setq op (car f»
(setq opd (simp (cadr f»)
(return (cond

«eq op 'plus)
«and (eq op 'minus)
«and (eq op 'exp)
«and (eq op 'log)
«and (eq op 'sin)
«and (eq op , cos)
«and (eq op 'arcsin)
«and (eq op 'arctan)
«and (eq op 'sinh)
«and (eq op 'cosh)
(t (list op opd»»)

(de simp-binary (f)
(prog (op opd1 opd2)
(setq op (car f»

(zerop opd»
(zerop opd»
(onep opd»
(zerop opd»
(zerop opd»
(zerop opd»
(zerop opd»
(zerop opd»
(zerop opd»

(setq opd1 (simp (cadr f»)
(setq opd2 (simp (caddr f»)

(return (cond
«and (eq op 'plus)
(cond «zerop opd1) opd2)

«zerop opd2) opd1»»

«and (eq op 'minus)
(cond «zerop opd1)

(cond «zerop opd2) 0)

% f is an atom
% f has only one element
% f has two elements
% f has more than two elements

% local variables: op, opd

opd) % + x => x
0) % - 0 => 0
!) % exp(O) => 1
0) % loge!) => 0
0) % sin(O) => 0
1) % cos(O) => 1
0) % arcsin(O) => 0
0) % arctan(O) => 0
0) % sinh(O) => 0
1) % cosh(O) => 1

% simplify first operand
% simplify second operand

% operation: x + y
% if x=O return y
% if y=O return x

% operation: x - y
% if x=O,

(t (list 'minus opd2»»
«zerop opd2) opd1)

% if y=O return 0
% else return -y
% if y=O return x

«eq opd1 opd2) 0»» % if x=y return 0

«and (eq op 'times) % operation: x * y
(cond «or (zerop opd1) (zerop opd2» 0) % if x=O or y=O return 0

433

434 CHAPTER 9. LISP AND COMPUTER ALGEBRA

«onep opd1) opd2)
«onep opd2) opd1))))

«and (eq op 'quotient)
(cond «zerop opd1) 0)

«zerop opd2) 'infinity)
«onep opd2) opd1))))

«and (eq op 'power)
(cond «zerop opd1) 0)

«or (zerop opd2) (onep opd1)) 1)
«onep opd2) opd1))))

(t (list op opd1 opd2)))))

Yo Applications of the simplification

(simp '(plus (plus x))) Yo => x
(simp '(plus (minus x))) Yo => (minus x)

Yo if x=l return y
Yo if y=l return x

Yo operation: x / y
Yo if x=O return 0
Yo if y=O return infinity
Yo if y=l return x

Yo operation: x~y
Yo if x=O return 0
Yo if y=O or x=l return 1
Yo if y=l return x

(simp '(minus (minus x))) Yo => (minus (minus x)) <- not simplified

(simp '(plus (sin 0))) Yo => 0
(simp '(plus (exp 0))) Yo => 1
(simp '(plus (log 1))) Yo => 0
(simp '(minus (cosh 0))) Yo => (minus 1)

(simp '(minus (sin 0))) Yo => 0
(simp '(minus (arctan 0))) Yo => 0

(simp '(plus x 0)) Yo => x
(simp '(plus 0 x)) Yo => x
(simp '(minus x 0)) Yo => x
(simp '(times x 0)) Yo => 0
(simp '(quotient x 0)) Yo => infinity
(simp '(quotient 0 x)) Yo => 0
(simp '(minus (quotient x 0))) Yo => (minus infinity)
(simp '(power x 0)) Yo => 1

(simp '(plus x y)) Yo => (plus x y)
(simp '(plus (times x 0) (times x 1))) Yo => x
(simp '(minus (plus 0 x) (times 1 x))) Yo => 0

(simp '(minus (plus x y) (minus y x)))
Yo => (minus (plus x y) (minus y x)) <- not simplified

9.3. EXAMPLES FROM SYMBOLIC COMPUTATION 435

9.3.3 Differentiation
In this section, we consider the differentiation of algebraic (polynomial) expressions.
The following rules are implemented

de = 0
dx '

e is a constant

dx = 1
dx

d df dg
dx (f(x) + g(x)) = dx + dx

d df dg
-(f(x) - g(x)) = - - -
dx dx dx

d dg df
dx (f(x) * g(x)) = f(x) * dx + dx * g(x) .

In the program differ. 51, ex is the expression to be differentiated and v stands
for the variable. The expression is given in prefix notation. A prefix notation is one
in which the operator appears before its operands. For example, the mathematical
expression

when it is expressed in the prefix notation using Lisp, becomes

(times (plus 3 x) (minus x a))

Basically, the program proceeds by checking and matching the operators. When a
match is found, it applies the corresponding differentiation rules on the expression.
Sometimes, the expression becomes more complicated after the differentiation. Sim­
plification of the expression becomes necessary. Therefore, we apply the simplification
program simp3. 51, which we have just developed, when such a case arises.

436 CHAPTER 9. LISP AND COMPUTER ALGEBRA

The implementation of the function diff together with some applications is as follows.

'!. differ. sl

(de diff (ex v)
(cond

'!. d(ex)/dv

«atom ex)
(cond «eq ex v) 1) (t 0))) '!. d(v)/dv = 1, d(constant)/dv = 0

«eq (car ex) 'plus) '!. d(a+b)/dv = da/dv + db/dv
(list 'plus (diff (cadr ex) v) (diff (caddr ex) v)))

«eq (car ex) 'times) '!. d(a*b)/dv = da/dv * b + a * db/dv
(list 'plus

(list 'times (diff (cadr ex) v) (caddr ex))
(list 'times (cadr ex) (diff (caddr ex) v))))

«eq (car ex) 'minus) '!. d(a-b)/dv = da/dv - db/dv
(list 'minus (diff (cadr ex) v) (diff (caddr ex) v))))

'!. Applications

(diff 'x 'x) '!. => 1
(diff '2 'x) '!. => 0
(diff 2 'x) '!. => 0
(diff 'x 'u) '!. => 0

(diff '(plus x x) 'x)

(diff '(times x x) 'x)
(simp (diff '(times x x) 'x))

'!. => (plus 1 1)

'!. => (plus (times 1 x) (times x 1)
'!. => (plus x x)

(diff '(times (plus 3 x) (minus a x)) 'x)
'!. => (plus (times (plus 0 1) (minus a x))
'!. (times (plus 3 x) (minus 0 1)))

(simp (diff '(times (plus 3 x) (minus a x)) 'x))
'!. => (plus (minus a x) (times (plus 3 x) (minus 1)))

(diff '(times (times x x) x) 'x)
'!. => (plus (times (plus (times 1 x) (times 1 x)) x)
'!. (times (times x x) 1))

(simp (diff '(times (times x x) x) 'x))
'!. => (plus (times (plus x x) x) (times x x))

9.4. LISP SYSTEM BASED ON C++ 437

9.4 Lisp System based on C++

In this section, we show how a Lisp system can be implemented using object-oriented
programming with C++. In the program, we implement the following functions:

car cdr atom cons cond append

The basic data structures of a Lisp system are the atom and dotted pair. Lists are
built from dotted pairs. A list may consist of basic data types (e.g. int, double) or
abstract data types (e.g. String, Verylong, Matrix).

Basically, the program consists of three classes related to each other as shown in
Figure 9.l.

7~
~~
(dotted pair) (atom)

Figure 9.1: Schematic diagram of the inheritance relationship

The inheritance hierarchy consists of an abstract base class Element and two derived
classes: Pair and Type. The Pair class corresponds to the dotted pairs in Lisp,
whereas the Type class corresponds to the atoms in Lisp.

The Element class, which is an abstract base class, specifies only the interface but
not the implementation of the member functions available in the derived classes. All
the functions in the class are declared as virtual. This allows the derived classes to
override the definition of the functions. There are four member functions declared in
the class:

• virtual Element* clone() const = 0;
it declares a function that duplicates an Element.

• virtual void print(ostream&) const = 0;
it declares a function that displays the content of an Element.

• virtual int atom() const = 0;
it declares a function that checks if an Element is an atom.

• friend ostream& operator « (ostream&,const Element*);
it declares an output stream function.

438 CHAPTER 9. LISP AND COMPUTER ALGEBRA

The structure and functionalities of the Pair class may be summarized as follows:

• Data field: The class contains only two data fields _car and _cdr. They repre­
sent the first and second element of the dotted pair, respectively.

• Constructors and destructor:

- Pair(): The default constructor assigns NULL to both _car and _cdr.

- Pair(const Element *ee): it assigns ee to _car and NULL to _cdr.

- Pair(const Element *el,const Element *e2): it assigns el and e2 to
the first and second element of the dotted pair, respectively.

- The copy constructor and destructor are overloaded as well.

• Member functions:

- Element* car() const;
it returns the first element of the dotted pair.

- Element* cdr() const;
it returns the second element of the dotted pair.

- void car(const Element *ee)";
it sets the first element of the dotted pair to ee.

- void cdr(const Element *ee);
it sets the second element of the dotted pair to ee.

- The virtual functions

Element* clone() const;
void print(ostream&) const;
int atom() const;

and the output stream operator

ostream& operator « (ostream&,const Pair*);

are overridden with new definitions for the class.

The Type class is implemented as a template class. Its structure and functionalities
may be summarized as follows:

• Data field: The only data member in the class is thing. It represents the
numerical value of an instance of the Type class.

• Constructors:

- Type 0: The default constructor sets the value of thing to zero.

- Type (T vv): It sets the value of thing to vv.

- The copy constructor is overloaded.

9.4. LISP SYSTEM BASED ON C++

• Member functions:

- const T& va1ue() const;
it returns the value of thing.

- The virtual functions

E1ement* c1one() const;
void print(ostream&) const;
int atom() const;

and the output stream operator

ostream& operator « (ostream&,const Type<T>*);

are overridden with new definitions for the class.

439

A class has been derived from Element to provide the atoms nil and t. The atoms
are passed as function parameters using the address of operator (&) for example
cons(&t,&nil); Notice that only the function atomO is declared as a member func­
tion for the class. The rest of the functions which we intend to implement are declared
as global functions:

• Element* car (const Element*);
It applies on a dotted pair and returns the first element of the pair. An error
message is reported if the argument is an atom.

• Element* cdr (const Element*);
It applies on a dotted pair and returns the second element of the pair. If the
argument is an atom, an error message is reported.

• Pair* cons(const Element *p1,const Element *p2);
It forms a dotted pair with p1 and p2 as the first and second element of the
pair, respectively.

• Pair* append(const Element *p1,const Element *p2);
It replaces the last element of the dotted pair p1 with p2. Note that p2 may be
an atom or dotted pair(s). An error message is reported if p1 is an atom.

• E1ement* null(Element *e);
Returns &t if e points to the nil atom and &nil otherwise.

• int is_lisp_list(Element *1);
Determines if 1 points to a valid Lisp list.

• int is_nonempty_lisp_list(E1ement *1);
Determines if 1 points to a valid Lisp list which is not empty.

440 CHAPTER 9. LISP AND COMPUTER ALGEBRA

• Element *cond(Element *c);
Implements the Lisp cond conditional statement. c must point to a non-empty
list of lists where each list represents a condition to evaluate. cond returns &nil
if no condition is satisfied.

In the following, we list the program of the implementation. The listing is followed
by an application program lisprun. cpp, which makes use of the functions. Notice
that the dotted pairs may contain elements of different types, such as Verylong and
double.

II Lisp.h

#ifndef __ LISP_H
#define __ LISP_H

#include <iostream.h>

II Abstract base class
class Element
{

public:
virtual Element* clone() const = 0;
virtual void print(ostream&) const = 0;
virtual int atom() const = 0;
friend ostream& operator « (ostream&,const Element*);

};

Ilunique class for atoms nil and t
class __ nil_and_t_lisp_class : public Element
{

private:

public:
int is_t;

__ nil_and_t_lisp_class(int i=O) : is_t(i) {}
void print(ostream &s) const { s«((is_t)?"t": "nil"); }
Element *clone(void) const { return (Element*)this; }
int atom(void) const {return 1;}

} nil(O), to);

class Pair: public Element II Dotted pair
{
private:

Element *_car;
Element *_cdr;

II First element of the dotted pair
II Second element of the dotted pair

9.4. LISP SYSTEM BASED ON C++

public:

};

II Constructors
Pair() ;
Pair(const Element*);
Pair(const Element*,const Element*);
Pair(const Pair&);
-Pair() ;

Pair& operator = (const Pair&);

II Member functions
Element* car() const;
Element* cdr() const;
void car(const Element*);
void cdr(const Element*);
Element* clone() const;
void print(ostream&) const;
int atom() const;

II Friend function
friend ostream& operator « (ostream&,const Pair*);

template <class T> class Type public Element II Atom
{

private:
T thing;

public:

};

II Constructors
Type 0 ;
Type(T);
Type(const Type<T>&);

II Member functions
const T& value() const;

Type<T>& operator = (const Type<T>&);
Element* clone() const;
void print(ostream&) const;
int atom() const;

II Friend function
friend ostream& operator « (ostream&,const Type<T>*) ;

441

442 CHAPTER 9. LISP AND COMPUTER ALGEBRA

II Global functions
Pair* cons{const Element*,const Element *);
Element* append{const Element*,const Element*);
Element* car{const Element*);
Element* cdr{const Element*);

II Implementation

I I class Pair
Pair: :Pair{) : _car{&nil), _cdr{&nil) {}

Pair: :Pair{const Element *e) : _car{e->clone{)), _cdr{&nil) {}

Pair: :Pair{const Element *e1, const Element *e2)
_car{e1->clone{)), _cdr{e2->clone{)) {}

Pair: :Pair{const Pair& p)
{

}

_car = &nil; _cdr = &nil;
*this = p;

Pair: : -Pair()
{

}

II don't delete constants of the system
if«_car != &nil)&&(_car != &t))

delete _car; _car = &nil;
if«_cdr != &nil)&&(_cdr != &t))

delete _cdr; _cdr = &nil;

Pair& Pair: : operator = (const Pair& p)
{

if(this != &p)
{

}

if«_car != &nil)&&(_car != &t))
delete _car;

if«_car != &nil)&&(_car != &t))
delete _cdr;

car = (p.car())->clone();
cdr = (p.cdr())->clone();

9.4. LISP SYSTEM BASED ON C++

return *this;
}

Element* Pair: :car() const
{ return _car; }

Element* Pair: :cdr() const
{ return _cdr; }

void Pair: : car (const Element *e)
{

if(e != &nil) _car = e->clone();
}

void Pair: : cdr (const Element *e)
{

if(e != &nil) _cdr = e->clone();
}

Element* Pair: :clone() const
{

}

Pair* p = new Pair(*this);
return p;

void Pair: : print (ostream &05) const
{

os « "(" « _car « II • II « _cdr « ")";
}

int Pair: :atom() const
{ return 0; }

ostream& operator « (ostream&os,const Pair* p)
{

}

if (p ! = NULL)
{

}

p->print(os);
return os;

os « "nil";
return os;

443

444 CHAPTER 9. LISP AND COMPUTER ALGEBRA

ostream& operator « (ostream& os,const Element* e)
{

}

if (e ! = NULL)
{

}

e->print(os);
return os;

os « "nil";
return os;

template <class T> Type<T>: :Type() : thing(T(O» {}

template <class T> Type<T>: : Type (T t) : thing(t) {}

template <class T> Type<T>: : Type (const Type<T>& t)
{ thing = t.value(); }

template <class T>
Type<T> & Type<T>: : operator = (const Type<T>& t)
{

}

if(this != &t) thing = t.value();
return *this;

template <class T> const T& Type<T>: : value () const
{ return thing; }

template <class T> int Type<T>: :atom() const
{ return 1; }

template <class T> Element* Type<T>: :clone() const
{

}

Type<T>* t = new Type<T>(*this);
return t;

template <class T> void Type<T>: :print(ostream& os) const
{ os « thing; }

template <class T>
ostream& operator « (ostream& os,const Type<T>* t)
{

t->print(os);

9.4. LISP SYSTEM BASED ON C++

return os;
}

Pair* cons(const Element* el,const Element* e2)
{

}

Pair* p = new Pair;
p->carCe1) ;
p->cdr(e2);
return p;

Element* append(const Element *el,const Element *e2)
{

}

if(! el->atom())
{

}

Pair *p = new Pair(*(Pair *)el);
Pair *e = p;
while(e->cdr() != &nil) e = (Pair *)e->cdr();
e->cdr(e2);
return p;

cerr « lI\nFirst argument of append must be a list ll « endl;
return &nil;

Element * car(const Element *e)
{

}

if(!e->atom()) return «Pair*)e)->car();
cerr « lI\ncar: cannot take car of an atom! II « endl;
return &nil;

Element* cdr(const Element *e)
{

}

if(! e->atom()) return «Pair*)e)->cdr();
cerr « lI\ncdr: cannot take cdr of an atom! II « endl;
return &nil;

Element* null(Element *e)
{

}

if(e==&nil) return &t;
return &nil;

445

446 CHAPTER 9. LISP AND COMPUTER ALGEBRA

int is_lisp_list(Element *1)
{

}

if(l==&nil) return 1;
if(l->atom()) return 0;
return is_lisp_list«(Pair*)l)->cdr());

int is_nonempty_lisp_list(Element *1)
{

if(l->atom()) return 0;
return is_lisp_list«(Pair*)l)->cdr());

}

Element *cond(Element *e)
{

if (is_nonempty_lisp_list (e))
{

}

Element *firstcase=«Pair*)e)->car();
if(is_nonempty_lisp_list(firstcase))
{

}

Element *condition=«Pair*)firstcase)->car();
if (condition->atom())
{

if (condition==&nil)
return cond«(Pair*)e)->cdr());
else if(condition==&t)
return «Pair*)firstcase)->cdr();
else cerr«" cond expects a case first element to be nil or t."«endl;
}

else cerr«" cond expects a case first element to be nil or t."«endl;

else cerr«"cond expects a list for each case."«endl;

else cerr«" cond expects a list for evaluation."«endl;
return &nil;

}

#endif

9.4. LISP SYSTEM BASED ON C++ 447

The following program applies the classes in Lisp. h which has just been developed.

II lisprun.cpp

#include <iostream.h>
#include "Lisp.h"
#include "Verylong.h"

typedef Type<int> l_int;
typedef Type<char> I_char;
typedef Type<double> I_double;
typedef Type<Verylong> l_verylong;

Element *plus(Element *e)
{

}

if (is_nonempty_lisp_list(e»
{

}

if (is_nonempty_lisp_list(cdr(e»)
{

Ilassume int for calculations
Element *paraml,*param2;
paraml = car(e); param2 = car(cdr(e»;
if(param2!=&nil)
return
l_int«(I_int*)paraml)->value()+«I_int*)param2)->value(».clone();
}

cerr«"Plus takes a list of two integers as arguments"«endl;
return &nil;

Element* length_list(Element *e)
{

}

l_int zero(O),one(l);

Iistop C++ recursion
if(e==&nil) return cons(&zero,&nil);

return cond(cons(cons(null(e),cons(&zero,&nil»,
cons(cons(&t,cons(plus(
cons(&one,length_list(cdr(e»»,&nil»,&nil»
) ;

448 CHAPTER 9. LISP AND COMPUTER ALGEBRA

void mainO
{

II Define two "atoms"
l_int a(l); II 1
I_char b('a'); II a

cout « "Examples on the cons function:" « endl;

Pair *A = cons(&a,&nil);
Pair *B = cons(&b,&nil);

Pair *C = cons(&a,&b);
cout « "(cons '1 'a)

C = cons(&a,B);
cout « "(cons '1 ' (a»

II in Lisp
II in Lisp

II in Lisp
=> "«C«

(1)
(a)

(cons
endl;

II in Lisp (cons '1
=> " « C « end I ;

'1 'a)

'(a))

C = cons(A,&b); II in Lisp (cons '(1) 'a)
cout « "(cons ' (1) 'a) => " « C « endl;

C = cons(A,B); II in Lisp (cons '(1) '(a»
cout « "(cons '(1) '(a» => " « C « endl;
cout « endl;

cout « "Examples on the append function:" « endl;

II (setq Dl '(1 2 3»
Pair *Dl =
cons(new l_int(l),cons(new l_int(2),cons(new l_int(3),&nil»);

II (setq D2 '(a b c»
Pair *D2 = cons(new l_char('a'),cons(new l_char('b'),
cons(new l_char('c'),&nil»);

Pair *D = (Pair*)append(Dl,D2);
cout « "(append '(1 2 3) , (a b c» => " « D « endl;
cout « endl;

cout « "Examples on the car and cdr functions:" « endl;

II setq E '«1 2 3) (a b c»
Pair *E = cons(Dl,cons(D2,&nil»;

9.4. LISP SYSTEM BASED ON C++ 449

cout « II (car ' « 1 2 3) (a b c)) => II « car (E) « endl;
cout « II (car (car' «(1 2 3) (a b c»»=> II « car(car(E» « endl;
cout « II {cdr '«123) (a be») => II « cdr (E) « endl;
cout « II (car (cdr '«(1 2 3) (a b c»»=> II « car(cdr(E» « endl;
cout « II (cdr (cdr '«1 2 3) (a b c»»=> II « cdr(cdr(E» « endl;
cout « II (car 'a) => II « car(&a) « endl;
cout « endl;

II Abstract data types
cout « II Applications with abstract data type Verylong ll « endl;

}

l_verylong v(1I123456789012");
l_double r(3.14159);
Pair *Very = cons(&v, cons(&r,&nil»;
cout « "(cons 'v '(r» => " « Very « endl;

cout « endl « "Applications on the cond function:" « endl;

11«nil r) (t v»
cout « lI(cond (nil 3.14159) (t 123456789012» => "

« cond(cons(cons(&nil,cons(&r,&nil»,
cons(cons(&t,cons{&v,&nil»,&nil»)

« endl;
11{{t r) (nil v»
cout « "{cond (t 3.14159) (nil 123456789012» => "

« cond{cons{cons{&t,cons{&r,&nil»,
cons{cons{&nil,cons{&v,&nil»,&nil»)

« endl;

Pair *test=cons{&a,cons{&b,cons{&v,cons{&r,&nil»»;
cout « endl « "(a b v r) => " « test « endl;
cout « "{length_list (a b v r» => " « length_list{test) « endl;

1*
Result

Examples on the cons function:
(cons '1 'a) => (1 . a)
(cons '1 '(a» => {1 . (a . nil»
(cons ' (1) 'a) => {(1 nil) a)
(cons ' (1) , (a» => ({1 . nil) (a . nil»

450 CHAPTER 9. LISP AND COMPUTER ALGEBRA

Examples on the append function:
(append' (1 2 3) '(a be» => (1 . (2 . (3 . (a . (b . (c . nil»»»

Examples on the car and cdr functions:
(car' «1 2 3) (a be») => (1 . (2 . (3 . nil»)
(car (car '«1 2 3) (a be»» => 1
(cdr' «1 2 3) (a be») => «a . (b . (c . nil») . nil)
(car (cdr '((1 2 3) (a b c»» => (a . (b . (c . nil»)
(cdr (cdr '«1 2 3) (a be»» => nil

car: cannot take car of an atom!
(car 'a) => nil

Applications with the abstract data type: Verylong
(cons 'v '(r» => (123456789012 . (3.14159 . nil»

Applications on the cond function:
(cond (nil 3.14159) (t 123456789012» => (123456789012 . nil)
(cond (t 3.14159) (nil 123456789012» => (3.14159 . nil)

(a b v r) => (1 . (a . (123456789012 . (3.14159 . nil»»
(length_list (a b v r» => (4 . nil)
*/

Chapter 10

Program Listing

This chapter contains the listing of the header files of the classes presented in Chap­
ters 6 and 7. For each class, a brief description of the public member functions is
given prior to the complete program listing.

10.1 Verylong Class

The public interface of the Verylong class:

• Verylong(const char* = NULL) : Constructor.

• Verylong(int) : Constructor.

• abs(const Verylong&) : Absolute value function.

• sqrt(const Verylong&) : Integer square root function.

• pow(const Verylong&,const Verylong&) : Integer power function.

• div(const Verylong&,const Verylong&) : Double division function.

• Arithmetic operators: ++, --, -(unary), +, -, *, /, %, =, +=, -=, *=, /=, %=

• Relational operators: ==, !=, <, <=, >, >=

• Type conversion operators : operator int 0, operator double 0

• Stream operators : », «

For a detailed description of the class structure and each member function, please
refer to Section 6.1.

451

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

452

II Verylong.h

#ifndef VERYLONG_H
#define VERYLONG_H

#include <assert.h>
#include <iostream.h>
#include <iomanip.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <limits.h>
#include <math.h>

class Very long
{

private:

CHAPTER 10. PROGRAM LISTING

II Data Fields
char* vlstr;
int vlen;
int vlsign;

II The string is stored in reverse order.
II Length of the Verylong string
II Sign of Verylong: +=>0; -=>1

II Private member functions
char *strrev(char *s) const;
Verylong multdigit(int) const;
Verylong mult10(int) const;

II Class Data
static const Verylong zero;
static const Verylong one;
static const Verylong two;

public:
II Constructors and destructor
Verylong(const char* = NULL);
Verylong{int) ;
Verylong(const Verylongt);
·VerylongO;

II Conversion operators
operator int () const;
operator double () const;
operator char * () const;

II Reverse string s

II Arithmetic operators and Relational operators
const Verylongt operator = (const Verylongt);
Verylong operator - () const; II negate operator

10.1. VERYLONG CLASS

};

II

Verylong operator ++ 0; II prefix increment operator
Verylong operator ++ (int) ; II postfix increment operator
Verylong operator 0; II prefix decrement operator
Very long operator (int); II postfix decrement operator

Very long operator += (const Verylong&);
Verylong operator (const Verylong&);
Very long operator *= (const Verylong&);
Verylong operator 1= (const Verylong&);
Very long operator '1.= (const Verylong&);

friend Very long operator + (const Verylong&,const Verylong&);
friend Verylong operator - (const Verylong&,const Verylong&);
friend Verylong operator * (const Verylong&,const Verylong&);
friend Verylong operator I (const Verylong&,const Verylong&);
friend Verylong operator 'I. (const Verylong&,const Verylong&) ;

friend int operator (const Verylong&,const Verylong&);
friend int operator != (const Verylong&,const
friend int operator < (const Verylong&,const
friend int operator <= (const Verylong&,const
friend int operator > (const Verylong&,const
friend int operator >= (const Verylong&,const

II Others functions
friend Verylong abs(const Verylong&);
friend Verylong sqrt(const Verylong&);

Verylong&) ;
Verylong&) ;
Verylong&);
Verylong&);
Verylong&);

friend Verylong pow(const Verylong&,const Verylong&);
friend double div(const Verylong&,const Verylong&);

II liD stream functions
friend ostream & operator« (ostream&,const Verylong&);
friend istream & operator » (istream&,Verylong &);

II Class Data
const Verylong Verylong::zero = Verylong(IO");
const Verylong Verylong::one Verylong("l");
const Verylong Verylong::two = Verylong(12");

II
II Constructors, Destructors and Conversion operators.
Verylong::Verylong(const char *value)
{

if (value)
{

453

454 CHAPTER 10. PROGRAM LISTING

}

}

vlsign = (*value == ,-,) ? 1:0j II check for negative sign

if (ispunct (*value)) II if the first character is a
{ II punctuation mark.

}

vlen = strlen(value)-1j
vlstr = new char[vlen + 1]j assert(vlstr != NULL)j
strcpy(vlstr, value+1)j

else
{

vlen = strlen(value)j
vlstr = new char[vlen + 1]j assert(vlstr != NULL)j
strcpy(vlstr, value)j

}

strrev(vlstr)j

else II initialize to zero
{

}

vlstr = new char[2]j assert(vlstr != NULL)j
*vlstr = 'O'j *(vlstr+1) = '\O'j
vlen = 1j vlsign = OJ

Verylong::Verylong(int n)
{

int i;
if (n<O) {vlsign = 1j n = (-n); } II check for sign and convert the
else vlsign = OJ II number to positive if it is negative

if(n)
{

}

i = (int)log10(n)+2; II check for the length of the integer
vlstr = new char[i]; assert(vlstr != NULL);
vlen = i-1;
i = 0;
while (n >= 1)
{

II extract the number digit by digit and store
II internally

vlstr[i] = n%10 + '0';
n 1= 10j
i++j

}

vlstr[i] '\0';

else II else number is zero
{

vlstr = new char[2]; assert(vlstr != NULL);

10.1. VERYLONG CLASS

}

}

*vlstr = '0'; *(vlstr+l)
vlen = 1;

'\0' ;

Verylong::Verylong(const Verylong& x) : vlen(x.vlen), vlsign(x.vlsign)
{

}

vlstr = new char[x.vlen + 1]; assert(vlstr != NULL);
strcpy(vlstr, x.vlstr);

Verylong::~Verylong() { delete [] vlstr; }

Verylong::operator int() const
{

static Verylong maxO(INT_MAX);
static Verylpng minO(INT_MIN+l);
int number, factor=l;
if{*this > maxO)
{

455

cerr « "Error: Conversion Verylong->integer is not possible" « endl;
return INT_MAX;

}

}

else if(*this < minO)
{

cerr « "Error: Conversion Verylong->integer is not possible" « endl;
return INT_MIN;
}

number = vlstr[O]-'O';
for(int j=l; j<vlen; j++)
{

factor *= 10;
number += (vlstr[j]-'O') * factor;

}

if(vlsign) return -number;
return number;

Verylong::operator double() const
{

double sum, factor = 1.0;
sum = double(vlstr[O]-'O');
for(int i=l; i<vlen; i++)
{

factor *= 10.0;
sum += double(vlstr[i]-'O') * factor;

456 CHAPTER 10. PROGRAM LISTING

}

}

if(vlsign) return -sum;
return sum;

Verylong::operator char * () const
{

}

II

char *temp = new char[vlen + 1]; assert(temp != NULL);
char *s;

if(vlen > 0)
{

}

strcpy(temp, vlstr);
if (vlsign)
{

s = new char[vlen + 2];
strcpy(s,"_");
}

else
{

s = new char[vlen + 1];
strcpy(s,"");
}

strcat(s,strrev(temp));

else
{

}

s = new char[2];
strcpy(s,IO");

delete [] temp;
return s;

II Various member operators
const Verylong& Verylong::operator = (const Verylong& rhs)
{

}

if(this == &rhs) return *this;
delete [] vlstr;
vlstr = new char [rhs.vlen + 1]; assert(vlstr != NULL);
strcpy(vlstr, rhs.vlstr);
vlen = rhs.vlen;
vlsign = rhs.vlsign;
return *this;

10.1. VERYLONG CLASS 457

II Unary - operator
Verylong Verylong::operator -C) const
{

}

Verylong temp(*this);
if(temp != zero) temp.vlsign = !vlsign;
return temp;

II Prefix increment operator
Verylong Verylong: : operator ++ ()
{

return *this = *this + one;
}

II Postfix increment operator
Verylong Verylong: : operator ++ (int)
{

}

Verylong result(*this);

*this = *this + one;
return result;

II Prefix decrement operator
Verylong Verylong::operator -- ()
{ return *this = *this - one; }

II Postfix decrement operator
Verylong Verylong::operator -- (int)
{

}

Verylong result(*this):
*this = *this - one:
return result:

Verylong Verylong::operator += (const Verylong& v)
{ return *this = *this + v; }

Verylong Verylong::operator -= (const Verylong& v)
{ return *this = *this - v; }

Verylong Verylong: : operator *= (const Verylong& v)
{ return *this = *this * v; }

Verylong Verylong::operator 1= (const Verylong& v)
{ return *this = *this I v; }

458 CHAPTER 10. PROGRAM LISTING

Very10ng Very1ong::operator Yo= (const Very1ong& v)
{ return *this = *this Yo v; }

II
II Various friendship operators and functions.
Very10ng operator + (const Very10ng &u,const Very10ng &v)
{

}

if(u.v1sign A v.v1sign)
{

if(u.vlsign == 0) { Verylong tl = u-abs(v); return tl;}
else { Verylong t2 = v-abs(u); return t2;}

}

int j,dl, d2, digitsum, carry = 0,
max1en = (u.vlen > v.vlen) ? u.vlen:v.v1en;

char *temp = new char[maxlen+2]; assert(temp != NULL);

for(j=O; j<max1en; j++)
{

dl = (j > u.v1en-l)
d2 = (j > v.vlen-l)
digit sum = dl + d2
if(digitsum >= 10)
{

digit sum -= 10;
carry = 1;
}

else
carry • 0;

II addition starts from left
II because string is reversed

? 0 : u.v1str[j]-'0'; II get digit
? 0 : v.vlstr[j]-'O'; II get digit

+ carry; II add digits
II if there's a carry,
II decrease sum by 10

II set carry to 1

temp[j] = digit sum + '0';
II otherwise carry is 0
II insert char in string

}

if (carry)
temp[j++] = '1';

if(u.v1sign) temp[j++]

temp[j] = '\0';
u.strrev(temp);
Very10ng resu1t(temp);
delete [] temp;
return result;

,-, . ,

II if carry at end,
II last digit is 1

II terminate string

Verylong operator - (const Verylong& u,const Verylong& v)
{

if(u.vlsign A v.vlsign)

10.1. VERYLONG CLASS

}

{

if(u.vlsign == 0) { Verylong tl
else { Verylong t2

u+abs(v)j return tlj}
-(v+abs(u))j return t2j}

}

int maxlen = (u.vlen>v.vlen) ? u.vlen:v.vlen,
d, dl, d2, i, negative, borrow=Oj

char *temp = new char[maxlen+l]j assert(temp != NULL)j

Verylong w, Yj

if(u.vlsign == 0) II both u,v are positive
if(u < v) {w=Vj y=Uj negative=lj}
else { W=Uj y=Vj negative=Oj}

else II both u,v are negative
if(u < v) { W=Uj y=Vj negative=lj}
else { W=Vj y=Uj negative=Oj}

for(i=Oj i<maxlenj i++)
{

dl = (i>w.vlen-l) ? O:w.vlstr[i]-'O'j
d2 = (i>y.vlen-l) ? O:y.vlstr[i]-'O'j
d = dl - d2 - borrowj
if(d < 0) II if this is less than 0

{ II 10 is added to d and
d += 10j
borrow

II 1 is borrowed from next digit
1· ,

}

else
borrow = OJ II else no need to borrow

temp[i] = d + 'O'j
}

while(i-l > 0 && temp[i-l]
--i;

if (negative) temp [i++]
temp[i] = '\0' j
u.strrev(temp)j

Verylong result(temp)j
delete [] temp j
return resultj

,-, . ,

, 0') II if result is zero

Verylong operator * (const Verylong& u,const Verylong& v)
{

459

460

}

Verylong pprod("l"), tempsum("O");

for(int j=O; j<v.vlen; j++)
{

}

int digit = v.vlstr[j] - '0';
pprod = u.multdigit(digit);
pprod = pprod.multl0(j);
tempsum = tempsum + pprod;

CHAPTER 10. PROGRAM LISTING

II extract a digit
II multiplied by the digit
II "adds" suitable zeros behind
II result added to tempsum

tempsum.vlsign = u.vlsignAv.vlsign; II to determine sign
return tempsum;

II This algorithm is the long division algorithm.
Very long operator I (const Verylong& u,const Verylong& v)
{

Verylong w,y,b,c,d,quotient=Verylong: :zero;
int len = u.vlen - v.vlen;
if(v Verylong::zero)
{

cerr « "Error : division by zero" « endl;
return Verylong::zero;
}

w=abs(u); y=abs(v);
if(w<y) return Verylong: :zero;

char *temp = new char[w.vlen+l]; assert(temp != NULL);
strcpy(temp, w.vlstr + len);
b.strrev(temp); II b is dummy for strrev()
c = Verylong(temp);
delete [] temp;
for(int i=O; i<=len; i++)
{

quotient = quotient.multl0(1);
b = d = Verylong::zero;
while(b < c)

II initialize b and d to 0

{ b = b + y; d = d +

if(c < b)
{

Verylong::one; }
II if b>c, then
II we have added

d = d - Verylong::one;
}

one count too many

quotient = quotient + d; II add to the quotient

if(i < len)
{

c = (c-b).multl0(1);

10.1. VERYLONG CLASS

}

}

c = c + Verylong(w.vlstr[len-i-l]-'O');
}

quotient.vlsign = u.vlsign~v.vlsign;
return quotient;

Verylong operator % (const Verylong& u,const Verylong& v)
{

return (u - v*(u/v»;
}

int operator == (const Verylong& u,const Verylong& v)
{

return (u.vlsign==v.vlsign && !strcmp(u.vlstr,v.vlstr»;
}

int operator != (const Verylong& u,const Verylong& v)
{

return! (u==v);
}

int operator < (const Verylong& u,const Verylong& v)
{

if(u.vlsign < v.vlsign) return 0;
else if(u.vlsign > v.vlsign) return 1;
if(u.vlen < v.vlen) return (l~u.vlsign); II XOR (~)

else if(u.vlen > v.vlen) return (O~u.vlsign); II to determine sign

int temp;
char *templ = new char [u.vlen+l], *temp2 new char[v.vlen+l];
assert(templ != NULL);
assert(temp2 != NULL);

strcpy(templ, u.vlstr);
strcpy(temp2, v.vlstr);
u.strrev(templ);
u.strrev(temp2); II u is dummy variable

temp = strcmp(templ,temp2);
delete [] tempi; delete [] temp2;

if(temp < 0)
return (l~u.vlsign); II use XOR (~) to determine sign

else if (temp> 0)
return (O~u.vlsign);

461

462 CHAPTER 10. PROGRAM LISTING

else
return 0; II if u==v return 0

}

int operator <= (const Verylong& u,const Verylong& v)
{

return (u<v II u==v);
}

int operator> (const Verylong& u,const Verylong& v)
{

return (!(u<v) && u!=v);
}

int operator >= (const Verylong& u,const Verylong& v)
{

return (u>v I I u==v);
}

II Calculate the absolute value of a number
Verylong abs(const Verylong tv)
{

}

Verylong u(v);
if(u.vlsign) u.vlsign = 0;
return u;

II Calculate the integer square root of a number
II based on the formula (a+b)A2 = aA2 + 2ab + bA2
Very long sqrt(const Verylong& v)
{

II if v is negative, error is reported
if(v.vlsign) { cerr« "NaN" « endl; return Verylong::zero; }

int j, k = v.vlen+1, num = k » 1;
Verylong y, z, sum, tempsum, digit sum;

char *temp = new char[num + 1]; assert(temp != NULL);
char *w = new char[k]; assert(w != NULL);

strcpy(w,v.vlstr);
k = v.vlen-1;
j = 1;

II segmentate the number 2 digits by 2 digits
if(v.vlen % 2) digit sum = Verylong(w[k--] - '0');
else

10.1. VERYLONG CLASS

}

{

}

digit sum = Verylong«w[k] - '0')*10 + w[k-1] - 'O')j
k -= 2j

II find the first digit of the integer square root
sum = Z = Verylong(int(sqrt(double(digitsum))))j

II store partial result
temp[O] = int(z) + 'O'j
digit sum = digit sum - z*Zj

fore j j<numj j++)
{

}

II get next digit from the number
digitsum = digitsum.mult10(1) + Verylong(w[k--] - 'O')j
Y = Z + Zj II 2*a
Z = digitsum/yj
tempsum = digitsum.mult10(1) + Verylong(w[k] - 'O')j
digit sum = -y*z.mult10(1) + tempsum - z*Zj

II decrease Z by 1 and re-calculate when it is over-estimated.
while(digitsum < Verylong: :zero)
{

--Zj
digit sum = -y*z.mult10(1) + tempsum - z*Zj

}

--kj

temp[j] int(z) + 'O'j
Z = sum = sum.mult10(1) + Zj

temp[num] = '\O'j
Verylong result(temp)j
delete [] tempj delete [] Wj
return resultj

II Raise a number X to a power of degree
Verylong pow(const Verylong& X,const Verylong& degree)
{

Verylong N(degree), Y(ll"), x(X)j
if(N == Verylong::zero) return Verylong::onej
if(N < Verylong::zero) return Verylong::zeroj

while (1)

463

464 CHAPTER 10. PROGRAM LISTING

{

}

}

if(N%Verylong::two != Verylong::zero)
{

y = y * x;
N = N I Verylong::two;
if(N == Verylong::zero) return Y;

}

else N = N I Verylong::two;
x = x * x;

II Double division function
double div(const Verylong& u,const Verylong& v)
{

double qq = 0.0, qqscale = 1.0;
Verylong w,y,b,c;
int d, count,

decno = 16; II number of significant digits

if(v == Verylong::zero)
{

cerr « "ERROR : Division by zero" « endl;
return 0.0;

}

if(u == Verylong::zero) return 0.0;

w=abs(u); y=abs(v);
while (w<y) { w = w.multl0(1); qqscale *= 0.1; }

int len = w.vlen - y.vlen;
char *temp = new char[w.vlen+l]; assert(temp != NULL);

strcpy(temp,w.vlstr+len);
w.strrev(temp); II w is dummy variable
c = Verylong(temp);
delete [] temp;

for(int i=O; i<=len; i++)
{

qq *= 10.0;
b = Verylong::zero; d = 0;

while(b < c)
{ b +- y; d += 1;}

if(c < b)

II initialize b and d to 0

II if b>c, then

10.1. VERYLONG CLASS 465

{ b -= y; d -= 1;} II we have added one count too many

}

qq += double(d); II add to the quotient

c = (c-b).multl0(1); II the partial remainder * 10

if(i < len) II and add to next digit
C += Verylong(w.vlstr[len-i-l]-'O');

}

qq *= qqscale; count = 0;

while(c != Verylong::zero && count < decno)
{

}

qqscale *= 0.1;

b = Verylong: :zero; d 0; II initialize b and d to 0

while(b < c)
{ b += y; d += 1;}

if (c<b)
{ b -= y; d -= 1;}

qq += double(d)*qqscale;

c = (c-b).multl0(1);
count++;

II if b>c, then
II we have added one count too many

if(u.vlsign-v.vlsign) qq *= (-1.0); II check for the sign
return qq;

ostream& operator « (ostream& s,const Verylong& v)
{

}

char *temp = new char[v.vlen + 1]; assert(temp != NULL);
if(v. vlen > 0)
{

}

strcpy (temp , v.vlstr);
if(v.vlsign) s « "-";
s « v.strrev(temp);

else s« "0";
delete [] temp;
return s;

466 CHAPTER 10. PROGRAM LISTING

istreamt operator » (istreamt s,Verylongl v)
{

}

char temp[100000]j
s » tempj

delete [] v.vlstrj
v.vlen = strlen(temp)j
v.strrev(temp)j
v.vlstr = new char[v.vlen+1]j assert(v.vlstr != NULL)j
strcpy(v.vlstr, temp)j
return Sj

II Private member functions: strrev(), multdigit(), mult10().
II
II Reverse the string s, with the original string changed
char* Verylong::strrev(char *s) const
{

}

int len = strlen(s), len1 len - 1, index,
limit = len » 1j

char tj

for(int i=Oj i<limitj i++)
{

}

index = len1-ij
t = s[index];
s[index] = s[i]j
s [i) = tj

return s;

II Multiply this Verylong number by num
Verylong Verylong::multdigit(int num) const
{

int j, carry = 0;
if (num)
{

char *temp = new char[vlen + 2]j assert(temp != NULL)j
for(j = 0; j<vlenj j++)
{

int d1 = vlstr[j] - '0', digitprod = d1*num + carry;

if(digitprod >= 10)
{

carry = digitprod/10j

II if there's a new carry,

II carry is high digit

10.1. VERYLONG CLASS

}

}

digitprod -= carry*10;
}

else carry = 0;
temp[j] = digitprod + '0';
}

if (carry)
temp[j++] = carry + '0';

temp[j] = '\0';

strrev(temp);
Verylong result(temp);
delete [] temp;
return result;

else return zero;

II result is low digit

II otherwise carry is 0
II insert char in string

II if carry at end,
II it's last digit
II terminate string

II Multiply this Verylong number by 10*num
Verylong Verylong::mult10(int num) const
{

if(*this != zero)
{

}

int j, dd = vlen + num, bb = vlen - 1;
char *temp = new char [dd + 1]; assert(temp != NULL);

for(j=O; j<vlen; j++) temp[j] = vlstr[bb-j];
for(j=vlen; j<dd; j++) temp[j] = '0';

temp[dd] = '\0';
Verylong result(temp);
delete [] temp;
return result;

else return zero;
}

#endif

467

468 CHAPTER 10. PROGRAM LISTING

10.2 Rational Class

The public interface of the Rational class:

• RationalO : Default constructor.

• Rational(T) : Integer constructor.

• Rational(T, T) : Rational number constructor.

• numO : Numerator of the rational number.

• denO : Denominator of the rational number.

• fracO : Fractional part of the rational number.

• normalizeO : Normalization of the rational number.

• Arithmetic operators' -(unary) + - * / = += -= *= /= . , , , , " , , ,

• Relational operators : ==, !=, <, <=, >, >=

• Type conversion operator : operator double 0

• Stream operators : », «

For a detailed description of the class structure and each member function, please
refer to Section 6.2.

II Rational.h

#ifndef RATIONAL_H
#define RATIONAL_H
#include <iostream.h>
#include <stdlib.h>
#include <ctype.h>

template <class T> class Rational
{

private:
II Data Fields: Numerator and Denominator
T p, qj
II Private member function
T gcd(T,T)j

public:
1/ Constructors and Destructor
Rational 0 j

10.2. RATIONAL CLASS

Rational(T);
Rational(T,T);
Rational(const Rational<T>&);
-Rational 0 ;

II Conversion operator
operator double () const;

II Member functions
T num() const; II numerator of r
T den() const; II denominator of r
Rational<T> frac() const; II fractional part of r
void normalize(); II normalize the rational number

II Arithmetic operators and Relational operators
const Rational<T>& operator = (const Rational<T>&);
Rational<T> operator - () const;
const Rational<T>& operator += (const Rational<T>&);
const Rational<T>& operator (const Rational<T>&);
const Rational<T>& operator *= (const Rational<T>&);
const Rational<T>& operator 1= (const Rational<T>&);

469

friend Rational<T> operator + (const Rational<T>&,const Rational<T>&);

};

friend Rational<T> operator - (const Rational<T>&,const Rational<T>&);
friend Rational<T> operator * (const Rational<T>&,const Rational<T>&);
friend Rational<T> operator I (const Rational<T>&,const Rational<T>&);
friend int operator (const Rational<T>&,const Rational<T>&);
friend int operator != (const Rational<T>&,const Rational<T>&);
friend int operator > (const Rational<T>&,const Rational<T>&);
friend int operator < (const Rational<T>&,const Rational<T>&);
friend int operator >= (const Rational<T>&,const Rational<T>&);
friend int operator <= (const Rational<T>&,const Rational<T>&);

II IIO stream functions
friend ostream& operator « (ostream &,const Rational<T>&);
friend istream& operator » (istream &,Rational<T>&);

II Constructors, destructor and conversion operator.
template <class T> Rational<T>::Rational() : p(T(O», q(T(l» {}
template <class T> Rational<T>::Rational(T N) : peN), q(T(l» {}

template <class T> Rational<T>: :Rational(T N,T D) : peN), qeD)
{

static T zero(O);
if(D == zero)
{

470 CHAPTER 10. PROGRAM LISTING

}

}

cerr « "Zero denominator in Rational Number" « endl;
return;

if(q < zero) { p = -Pi q = -q; }
normalize 0 ;

template <class T> Rational<T>::Rational(const Rational<T>& r)
: p(r.p), q(r.q) {}

template <class T> Rational<T>::-Rational() { }

template <class T> Rational<T>::operator double() const
{ return double(p)/double(q); }

#include "Verylong.h"
Rational<Verylong>::operator double() const { return div(p,q); }

II Member functions
template <class T> T Rational<T>::num() const { return p; }
template <class T> T Rational<T>::den() const {return q; }

template <class T> Rational<T> Rational<T>::frac() const
{

}

static Rational<T> zero(O) , one(l);
Rational<T> temp(*this);
if(temp < zero)
{

while(temp < zero) temp = temp + one;
return temp - one;

}

else
{

while (zero < temp) temp = temp - one;
return temp + one;

}

template <class T> void Rational<T>::normalize()
{

}

static T zero(O); static T one(l);
T t;
if(p < zero) t = -Pi
else t = p;
t = gcd(t,q);
if(t > one) {p /= t; q /= t; }

10.2. RATIONAL CLASS

II Various operators
template <class T>
const Rational<T>& Rational<T>::operator = (const Rational<T>& r)
{ p = r.p; q = r.q; return *this; }

template <class T> Rational<T> Rational<T>::operator - () const
{ return Rational<T>(-p,q); }

template <class T>
const Rational<T>& Rational<T>::operator += (const Rational<T>& r)
{ return *this = *this + r; }

template <class T>
const Rational<T>& Rational<T>::operator
{ return *this = *this - r; }

template <class T>

(const Rational<T>& r)

const Rational<T>& Rational<T>: : operator *= (const Rational<T>& r)
{ return *this = *this * r; }

template <class T>
const Rational<T>& Rational<T>::operator 1= (const Rational<T>& r)
{ return *this = *this I r; }

II Various friendship operators and functions.
template <class T>
Rational<T> operator + (const Rational<T>& rl,const Rational<T>& r2)
{ return Rational<T> (rl.p * r2.q + r2.p * rl.q, rl.q * r2.q); }

template <class T>
Rational<T> operator - (const Rational<T>& rl,const Rational<T>& r2)
{ return Rational<T> (rl.p * r2.q - r2.p * rl.q, rl.q * r2.q); }

template <class T>
Rational<T> operator * (const Rational<T>& rl,const Rational<T>& r2)
{ return Rational<T> (rl.p * r2.p, rl.q * r2.q); }

template <class T>
Rational<T> operator I (const Rational<T>& rl,const Rational<T>& r2)
{ return Rational<T> (rl.p * r2.q, rl.q * r2.p); }

template <class T>
int operator == (const Rational<T>& rl,const Rational<T>& r2)
{ return (rl.p * r2.q) == (r2.p * rl.q); }

template <class T>

471

472 CHAPTER 10. PROGRAM LISTING

int operator != (const Rational<T>& rl,const Rational<T>& r2)
{ return !(rl == r2); }

template <class T>
int operator> (const Rational<T>& rl,const Rational<T>& r2)
{

static T zero(O);
return (rl.p*r2.q - r2.p*rl.q > zero);

}

template <class T>
int operator < (const Rational<T>& rl,const Rational<T>& r2)
{

static T zero(O);
return (rl.p*r2.q - r2.p*rl.q < zero);

}

template <class T>
int operator >= (const Rational<T>& rl,const Rational<T>& r2)
{ return (rl>r2) I I (rl==r2); }

template <class T>
int operator <= (const Rational<T>& rl,const Rational<T>& r2)
{ return (rl<r2) I I (rl==r2); }

template <class T>
ostream& operator « (ostream& s,const Rational<T>& r)
{

}

static T one(l);
if(r.q == one) return s « r.p;
return s « r.p « "I" « r.q;

template <class T>
istream& operator » (istream& s,Rational<T>& r)
{

char c;
Tn, d(l);
s. clearO;
s » n;
if(! s.good(» return s;
c = s.peekO;
if(c == 'I')
{

c = s.getO;
s » d;
if (! s . good 0)

II set stream state to good
II read numerator

II can't get an integer, just return
II peek next character

II clear 'I'
II read denominator

10.2. RATIONAL CLASS

}

{

}

}

s.clear(s.rdstate() I ios::badbit);
return s;

r = Rational<T>(n,d);
return s;

II Private member function: gcd()
template <class T> T Rational<T>: :gcd(T a,T b)
{

}

static T zero(O);
while(b > zero)
{

T m = a%b; a = b; b = m;
}

return a;

II This function is a global functions.
II It should be in a global header file.
template <class T> T abs(const T& x)
{

if(x > T(O» return x;
return -x;

}

#endif

473

474 CHAPTER 10. PROGRAM LISTING

10.3 Complex Class

The public interface of the Complex class:

• ComplexO : Default constructor.

• Complex (T) : Real number constructor.

• Complex (T , T) : Complex number constructor.

• realPart 0 : Real part of the complex number.

• imagPart 0 : Imaginary part of the complex number.

• magnitude 0 : Magnitude of the complex number.

• argument 0 : Argument of the complex number.

• conjugateO : Conjugate of the complex number.

• negate 0 : Negative of the complex number.

• Arithmetic operators: -(unary), +, -, *, /, =, +=, -=, *=, /=

• Relational operators: ==, !=, <, <=, >, >=

• Stream operators : > >, < <

For a detailed description of the class structure and each member function, please
refer to Section 6.3.

II MComplex.h

#ifndef COMPLEX_H
#define COMPLEX_H

#include <iostream.h>
#include <math.h>

template <class T> class Complex
{

private:
II Data Fields real part and imaginary part
T realj
T imagj

public:
II Constructors and Destructor
Complex()j
Complex(T)j

10.3. COMPLEX CLASS

Complex(T,T);
Complex(const Complex<T>&);
-Complex 0 ;

II Member Functions
T realPart() const;
T imagPart() const;
double magnitude() const;
double argument() const;
Complex<T> conjugate();
Complex<T> negate();

II Arithmetic operators and relational operators
const Complex<T>& operator = (const Complex<T>&);
Complex<T> operator - () const;
Complex<T> operator += (const Complex<T>&);
Complex<T> operator (const Complex<T>&);
Complex<T> operator *= (const Complex<T>&);
Complex<T> operator 1= (const Complex<T>&);

475

friend Complex<T> operator + (const Complex<T>&,const Complex<T>&);
friend Complex<T> operator - (const Complex<T>&,const Complex<T>&);
friend Complex<T> operator * (const Complex<T>&,const Complex<T>&);
friend Complex<T> operator I (const Complex<T>&,const Complex<T>&);
friend int operator < (const Complex<T>&,const Complex<T>&);
friend int operator <=(const Complex<T>&,const Complex<T>&);

};

friend int operator> (const Complex<T>&,const Complex<T>&);
friend int operator >=(const Complex<T>&,const Complex<T>&);
friend int operator ==(const Complex<T>&,const Complex<T>&);
friend int operator !=(const Complex<T>&,const Complex<T>&);

II 1/0 stream functions
friend istream& operator » (istream&,Complex<T>&);
friend ostream& operator « (ostream&,const Complex<T>&);

II Constructors, Destructor and Copy constructor
template <class T> Complex<T>::Complex() : real(T(O», imag(T(O» {}
template <class T> Complex<T>::Complex(T r) : real(r), imag(T(O» {}

template <class T> Complex<T>::Complex(T r,T i) : real(r), imag(i) {}

template <class T> Complex<T>::Complex(const Complex<T> &c)
: real(c.real), imag(c.imag) {}

template <class T> Complex<T>::-Complex() {}

476 CHAPTER 10. PROGRAM LISTING

II Member Functions
template <class T> T Complex<T>::realPart() const {return real; }

template <class T> T Complex<T>::imagPart() const {return imag; }

template <class T> double Complex<T>::magnitude() const
{ return sqrt(double(real*real+imag*imag)); }

template <class T> double Complex<T>::argument() const
{ return atan2(double(imag),double(real)); }

template <class T> Complex<T> Complex<T>::conjugate()
{ return Complex<T>(real, imag = -imag); }

template <class T> Complex<T> Complex<T>::negate()
{ return Complex<T>(real = -real, imag); }

II Arithmetic Operators and Relational Operators
template <class T>
const Complex<T>& Complex<T>::operator = (const Complex<T>& c)
{

}

real = c.real; imag = c.imag;
return *this;

template <class T> Complex<T> Complex<T>::operator - () const
{ return Complex<T>(-real, -imag); }

template <class T>
Complex<T> Complex<T>::operator += (const Complex<T>& c)
{ return *this = *this + c; }

template <class T>
Complex<T> Complex<T>::operator -= (const Complex<T>& c)
{ return *this = *this - c; }

template <class T>
Complex<T> Complex<T>::operator *= (const Complex<T>& c)
{ return *this = *this * c; }

template <class T>
Complex<T> Complex<T>: : operator 1= (const Complex<T>& c)
{ return *this = *this I c; }

template <class T>
Complex<T> operator + (const Complex<T>& cl,const Complex<T>& c2)
{ return Complex<T>(cl.real+c2.real, cl.imag+c2.imag); }

10.3. COMPLEX CLASS

template <class T>
Complex<T> operator - (const Complex<T>& cl,const Complex<T>& c2)
{ return Complex<T>(cl.real-c2.real, cl.imag-c2.imag)j }

template <class T>
Complex<T> operator * (const Complex<T>& cl,const Complex<T>& c2)
{

}

return Complex<T>(cl.real*c2.real - cl.imag*c2.imag,
cl.real*c2.imag + cl.imag*c2.real)j

template <class T>
Complex<T> operator / (const Complex<T>& cl,const Complex<T>& c2)
{

}

T modulus = c2.real * c2.real + c2.imag * c2.imagj
static T zero(O)j
if(modulus == zero)
{

}

cerr « "Error: Zero divisor" « endlj
return Complex<T>(zero,zero)j

return Complex<T>«cl.imag * c2.imag + cl.real * c2.real)/modulus,
(cl.imag * c2.real - cl.real * c2.imag)/modulus)j

template <class T>
int operator < (const Complex<T>& cl,const Complex<T>& c2)
{ return (cl.real*cl.real+cl.imag*cl.imag <

c2.real*c2.real+c2.imag*c2.imag)j }

template <class T>
int operator <= (const Complex<T>& cl,const Complex<T>& c2)
{ return (cl<c2) I I (cl==c2)j }

template <class T>
int operator> (const Complex<T>& cl,const Complex<T>& c2)
{ return (cl.real*cl.real+cl.imag*cl.imag >

c2.real*c2.real+c2.imag*c2.imag)j }

template <class T>
int operator >= (const Complex<T>& cl,const Complex<T>& c2)
{ return (cl>c2) I I (cl==c2)j }

template <class T>
int operator == (const Complex<T>& cl,const Complex<T>& c2)
{ return (cl.real==c2.real) && (cl.imag==c2.imag)j }

477

478 CHAPTER 10. PROGRAM LISTING

template <class T>
int operator != (const Complex<T>& cl,const Complex<T>& c2)
{ return !(cl==c2)j }

II liD Stream Functions
template <class T> istream& operator » (istream& s,Complex<T>& z)
{

}

static T zero(O)j
T r, ij
char Cj
s » WSj
c = s.peekO j
if(c=='(')
{

c = s .getO j
s » rj
s » WSj
c = s.peekO j
if(c == ',')
{

}

c = s.getO j
s » ij
s » WSj
c = s.peek() j

II remove leading whitespace
II peek next character

I I Clear' (,
II read real part
II remove extra whitespace
II peek next character

II read imaginary part

else i = zeroj II no imaginary part
if(c != ')') s.clear(s.rdstate() I ios::badbit)j

}

else
{

s » rj
i = zerOj

}

z = Complex<T>(r,i)j
return Sj

II it is a real number

II read real part
II initialize real part

template <class T>
ostream& operator « (ostream& s,const Complex<T>& c)
{

static T zero(O)j
if(c.imag==zero) return s « c.realj
if(c.real==zero) return s « c.imag « "i"j
return s « "(,, « c.real «

}

#endif

II II , « c.imag « "i)"j

10.4. QUATERNION CLASS 479

10.4 Quaternion Class

The public interface of the Quaternion class:

• QuaternionO : Default constructor.

• Quaternion(T, T, T, T) : Constructor.

• sqr () : Square of the quaternion.

• conj ugate () : Conjugate of the quaternion.

• inverse 0 : Inverse of the quaternion.

• magnitude () : Magnitude of the quaternion.

• Arithmetic operators : - (unary), +, -, *, /, -

• Stream operators : > >, < <

For a detailed description of the class structure and each member function, please
refer to Section 6.4.

II Quatern.h

#ifndef QUATERNION_H
#define QUATERNION_H

#include <iostream.h>
#include <math.h> II for sqrt()

template <class T> class Quaternion
{

private:
I I Data Fields
T r, i, j, k;

public:
II Constructors
Quaternion 0 ;
Quaternion(T,T,T,T);
Quaternion(const Quaternion<T>&);
-QuaternionO;

II Operators
const Quaternion<T>& operator = (const Quaternion<T>&);
Quaternion<T> operator + (const Quaternion<T>&);
Quaternion<T> operator - (const Quaternion<T>&);

480 CHAPTER 10. PROGRAM LISTING

}j

Quaternion<T> operator - 0 constj
Quaternion<T> operator * (const Quaternion<T>&)j
Quaternion<T> operator * (T) j
Quaternion<T> operator I (const Quaternion<T>&)j
Quaternion<T> operator - 0 constj

II Member Functions
Quaternion<T> sqr()j
Quaternion<T> conjugate() constj
Quaternion<T> inverse() constj
double magnitude() constj

II Friendship Functions
friend Quaternion<T> operator * (T,Quaternion<T>&)j

II Streams
friend ostream& operator « (ostream&,const Quaternion<T>&)j
friend istream& operator » (istream&,Quaternion<T>&)j

template <class T> Quaternion<T>::Quaternion()
: r(T(O)), i(T(O)), j(T(O)), k(T(O)) {}

template <class T> Quaternion<T>::Quaternion(T r1,T i1,T j1,T k1)
: r(r1), i(i1), j(j1), k(k1) {}

template <class T> Quaternion<T>::Quaternion(const Quaternion<T>& arg)
: r(arg.r), i(arg.i), j(arg.j), k(arg.k) {}

template <class T> Quaternion<T>::-Quaternion() {}

template <class T> const Quaternion<T>&
Quaternion<T>: : operator = (const Quaternion<T>& rvalue)
{

}

r = rvalue.rj i = rvalue.ij j = rvalue.jj k = rvalue.kj
return *thisj

template <class T>
Quaternion<T> Quaternion<T>::operator + (const Quaternion<T>& arg)
{ return Quaternion<T>(r+arg.r,i+arg.i,j+arg.j,k+arg.k)j }

template <class T>
Quaternion<T> Quaternion<T>::operator - (const Quaternion<T>& arg)
{ return Quaternion<T>(r-arg.r,i-arg.i,j-arg.j,k-arg.k)j }

template <class T>

10.4. QUATERNION CLASS

Quaternion<T> Quaternion<T>: : operator - () const
{ return Quaternion<T>(-r,-i,-j,-k); }

template <class T>
Quaternion<T> Quaternion<T>::operator * (const Quaternion<T>& arg)
{

}

return Quaternion<T>(r*arg.r - i*arg.i - j*arg.j k*arg.k,
r*arg.i + i*arg.r + j*arg.k k*arg.j,
r*arg.j + j*arg.r + k*arg.i i*arg.k,
r*arg.k + k*arg.r + i*arg.j - j*arg.i);

template <class T>
Quaternion<T> Quaternion<T>: : operator * (T arg)
{ return Quaternion<T>(r*arg,i*arg,j*arg,k*arg); }

template <class T>
Quaternion<T> Quaternion<T>::operator I (const Quaternion<T>& arg)
{ return *this * arg.inverse(); }

II Normalize Quaternion
template <class T>
Quaternion<T> Quaternion<T>: : operator - () const
{

}

Quaternion<T> result;
double length = magnitude();
result.r = r/length; result.i i/length;
result.j = j/length; result.k = k/length;
return result;

template <class T> Quaternion<T> Quaternion<T>::sqr()
{

}

Quaternion<T> result;
T temp;
T two = T(2);
temp = two*r;
result.r
result.i
result.j
result.k

r*r - i*i - j*j - k*k;
temp*i;
temp*j;
temp*k;

return result;

template <class T> Quaternion<T> Quaternion<T>::conjugate() const
{ return Quaternion<T>(r,-i,-j,-k); }

481

482 CHAPTER 10. PROGRAM LISTING

template <class T> Quaternion<T> Quaternion<T>::inverse() const
{

Quaternion<T> templ(conjugate(»j
T temp2 = r*r + i*i + j*j + k*kj
return Quaternion<T>(templ.r/temp2,templ.i/temp2,

templ.j/temp2,templ.k/temp2)j
}

template <class T> double Quaternion<T>::magnitude() const
{ return sqrt(r*r + i*i + j*j + k*k)j }

template <class T> Quaternion<T> operator * (T factor,Quaternion<T>l arg)
{ return arg * factorj }

template <class T>
ostreaml operator « (ostreaml s,const Quaternion<T>l arg)
{

}

s « "(,, « arg.r «
« arg.j «

return Sj

template <class T>

II II ,
II II ,

« argo i «
« arg.k «

II II ,
11)11;

istreaml operator » (istreaml s,Quaternion<T>l arg)
{

s » arg.r » arg.i » arg.j » arg.kj
return s;

}

#endif

10.5. DERIVE CLASS 483

10.5 Derive Class

The public interface of the Derive class:

• Derive 0 : Default constructor.

• Derive(const T) : Constructor.

• set (const T) : Specifies the point where the derivative takes place.

• exp(const Derive<T>&) : Exponential function.

• cos (const Deri ve<T>&) : Cosine function.

• sin (const Deri ve<T>&) : Sine function.

• df(const Deri ve<T>&) : Exact derivative of an expression.

• Arithmetic operators: -(unary), +, -, *, I, +=, -=, *=, 1=

• Stream operator : «

For a detailed description of the class structure and each member function, please
refer to Section 6.5.

II Derive.h

#ifndef DERIVE_H
#define DERIVE_H

#include <iostream.h>
#include <math.h>

template <class T> class Derive
{

private:
II Data Field
T u, du;
II Private Constructor
Derive(const T,const T);

public:
II Constructors
Derive 0 ;
Derive(const T);

Derive(const Derive<T>&);

II Member Function

484

};

void set(const T);

II Arithmetic Operators
Derive<T> operator - () const;

CHAPTER 10. PROGRAM LISTING

Derive<T> operator += (const Derive<T>&);
Derive<T> operator (const Derive<T>&);
Derive<T> operator *= (const Derive<T>&);
Derive<T> operator 1= (const Derive<T>&);

friend Derive<T> operator + (const Derive<T>&,const Derive<T>&);
friend Derive<T> operator - (const Derive<T>&,const Derive<T>&);
friend Derive<T> operator * (const Derive<T>&,const Derive<T>&);
friend Derive<T> operator I (const Derive<T>&,const Derive<T>&);
friend Derive<T> exp(const Derive<T>&);
friend Derive<T> sin(const Derive<T>&);
friend Derive<T> cos(const Derive<T>&);
friend T df(const Derive<T>&);
friend ostream & operator « (ostream&,const Derive<T>&);

template <class T> Derive<T>::Derive() : u(T(O)), du(T(l)) {}

template <class T> Derive<T>::Derive(const T v) : u(v), du(T(O)) {}

template <class T>
Derive<T>::Derive(const T v,const T dv)

template <class T>

u(v), du(dv) {}

Derive<T>::Derive(const Derive<T>& r) : u(r.u), du(r.du) {}

template <class T> void Derive<T>::set(const T v) {u = v; }

template <class T> Derive<T> Derive<T>::operator - () const
{ return Derive<T>(-u,-du); }

template <class T> Derive<T> Derive<T>::operator += (const Derive<T>& r)
{ return *this = *this + r; }

template <class T> Derive<T> Derive<T>::operator -= (const Derive<T>& r)
{ return *this = *this - r; }

template <class T> Derive<T> Derive<T>::operator *= (const Derive<T>& r)
{ return *this = *this * r; }

template <class T> Derive<T> Derive<T>::operator 1= (const Derive<T>& r)
{ return *this = *this I r; }

10.5. DERIVE CLASS

template <class T>
Derive<T> operator + (const Derive<T>& x,const Derive<T>& y)
{ return Derive<T>(x.u + y.u,x.du + y.du); }

template <class T>
Derive<T> operator - (const Derive<T>& x,const Derive<T>& y)
{ return Derive<T>(x.u - y.u,x.du - y.du); }

template <class T>
Derive<T> operator * (const Derive<T>& x,const Derive<T>& y)
{ return Derive<T>(x.u*y.u,y.u*x.du + x.u*y.du); }

template <class T>
Derive<T> operator / (const Derive<T>& x,const Derive<T>& y)
{ return Derive<T>(x.u/y.u,(y.u*x.du - x.u*y.du)/(y.u*y.u»; }

template <class T>
Derive<T> exp(const Derive<T>& x)
{ return Derive<T>(exp(x.u),x.du*exp(x.u»; }

template <class T>
Derive<T> sin(const Derive<T> &x)
{ return Derive<T>(sin(x.u),x.du*cos(x.u»; }

template <class T>
Derive<T> cos(const Derive<T>& x)
{ return Derive<T>(cos(x.u),-x.du*sin(x.u»; }

template <class T> T df(const Derive<T>& x)
{ return x.du; }

template <class T>
ostream & operator « (ostream& s,const Derive<T>& r)
{ return s « r.u; }
#endif

485

486 CHAPTER 10. PROGRAM LISTING

10.6 Vector Class

The public interface of the Vector class:

• VectorO : Default constructor.

• Vector(int) : Constructor.

• Vector(int, T) : Constructor.

• lengthO : Length of the vector.

• resize (int n) : Resizes the vector to size n.

• re size (in tn, Tv) : Resizes the vector to size n and fills the rest of the vector
entries with value v.

• reset (int n) : Resets the vector to size n.

• reset(int n,T v) : Resets the vector to size n and initializes entries to v.

• Arithmetic operators: +(unary), -(unary), +, -, *, I, =, +=, -=, *=, 1=

• Relational operators : ==, ! =

• Subscript operator: []

• Dot product: I

• Cross product : %

• Stream operators : », «

Auxiliary functions in VecNorm.h:

• norm1(const Vector&;) : One-norm of the vector.

• norm2(const Vector&;) : Two-norm of the vector.

• normI(const Vector&;) : Infinite-norm of the vector.

• normalize (const Vector&;) : Normalization of the vector.

For a detailed description of the class structure and each member function, please
refer to Section 6.6.

10.6. VECTOR CLASS

II Vector.h

#ifndef MVECTOR_H
#define MVECTOR_H

#include <iostream.h>
#include <string.h>
#include <math.h>
#include <assert.h>

II forward declaration
template <class T> class Matrix;

II declaration class Vector
template <class T> class Vector
{

private:
I I Data Fields
int size;
T *data;

public:
II Constructors
VectorO;
Vector(int);
Vector(int,T);
Vector(const Vector<T>&);
-VectorO;

II Member Functions
T & operator [] (int) const;
int length() const;
void resize(int);
void resize(int,T);
void reset(int);
void reset(int,T);

II Arithmetic Operators
const Vector<T>& operator = (const Vector<T>&);
const Vector<T>& operator = (T);
Vector<T> operator + () const;
Vector<T> operator - () const;
Vector<T> operator += (const Vector<T>&);
Vector<T> operator -= (const Vector<T>&);
Vector<T> operator *= (const Vector<T>&);
Vector<T> operator 1= (const Vector<T>&);
Vector<T> operator + (const Vector<T>&) const;
Vector<T> operator - (const Vector<T>&) const;

487

488 CHAPTER 10. PROGRAM LISTING

};

Vector<T> operator * (const Vector<T>&) const;
Vector<T> operator I (const Vector<T>&) const;

Vector<T> operator += (T) ;
Vector<T> operator (T) ;
Vector<T> operator *= (T) ;
Vector<T> operator 1= (T);
Vector<T> operator + (T) const;
Vector<T> operator - (T) const;
Vector<T> operator * (T) const;
Vector<T> operator I (T) const;

T operator I (const Vector<T>&); II Inner product
Vector<T> operator % (const Vector<T>&); II Vector product

II liD stream functions
friend class Matrix<T>;
friend ostream& operator « (ostream&,const Vector<T>&);
friend istream& operator » (istream&,Vector<T>&);

II implementation of class Vector
template <class T> Vector<T>::Vector() : size(O), data(NULL) {}

template <class T> Vector<T>::Vector(int n) : size(n), data(new T[n])
{ assert(data!= NULL); }

template <class T> Vector<T>::Vector(int n,T value)
: size(n), data(new T[n])

{

assert(data != NULL);
for(int i=O; i<n; i++) data[i] value;

}

template <class T> Vector<T>::Vector(const Vector<T> &v)
: size(v.size), data(new T[v.size])

{

assert(data != NULL);
for(int i=O; i<v.size; i++) data[i] v.data[i];

}

template <class T> Vector<T>::-Vector() { delete [] data; }

template <class T> T & Vector<T>::operator[] (int i) const
{

assert(i >= 0 && i < size);
return data [i] ;

10.6. VECTOR CLASS

}

template <class T> int Vector<T>::length() const
{ return size; }

template <class T> void Vector<T>: :resize(int length)
{

}

int i;
T zero(O);
T *newData = new T[length); assert(newData != NULL);
if(length <= size)
for(i=O; i<length; i++) newData[i) = data[i);
else
{

for(i=O; i<size; i++) newData[i) = data[i);
for(i=size; i<length; i++) newData[i) = zero;
}

delete [] data;
size = length;
data = newData;

template <class T> void Vector<T>::resize(int length,T value)
{

}

int i;
T* newData = new T[length); assert(newData != NULL);
if(length <= size)
for(i=O; i<length; i++) newData[i) = data[i);
else
{

for(i=O; i<size; i++) newData[i) = data[i);
for(i=size; i<length; i++) newData[i) = value;
}

delete [] data;
size = length;
data = newData;

template <class T> void Vector<T>::reset(int length)
{

}

T zero(O);
delete [] data;
data = new T[length); assert(data != NULL);
size = length;
for(int i=O; i<size; i++) data[i) = zero;

489

490 CHAPTER 10. PROGRAM LISTING

template <class T> void Vector<T>::reset(int length,T value)
{

}

delete [J data;
data = new T[length]; assert(data != NULL);
size = length;
for(int i=O; i<size; i++) data[i] = value;

template <class T>
const Vector<T>& Vector<T>::operator = (const Vector<T>& v)
{

}

if(this == &v) return *this;
if(size != v.size)
{

delete [] data;
data = new T[v.size]; assert(data != NULL);
size = v.size;
}

for(int i=O; i<v.size; i++) data[i]
return *this;

v .data[i] ;

template <class T> const Vector<T>& Vector<T>::operator = (T value)
{

}

for(int i=O; i<size; i++) data[i] = value;
return *this;

template <class T> Vector<T> Vector<T>::operator + () const
{ return *this; }

template <class T> Vector<T> Vector<T>::operator - () const
{ return *this * T(-l); }

template <class T>
Vector<T> Vector<T>::operator += (const Vector<T>& v)
{

}

assert(size==v.size);
for(int i=O; i<size; i++) data[i] += v.data[i];
return *this;

template <class T>
Vector<T> Vector<T>::operator -= (const Vector<T>& v)
{

assert(size==v.size);
for(int i=O; i<size; i++) data[i] v.data[i] ;

10.6. VECTOR CLASS

return *thisj
}

template <class T>
Vector<T> Vector<T>::operator *= (const Vector<T>l v)
{

}

assert(size==v.size)j
for(int i=Oj i<sizej i++) data[i] *= v.data[i]j
return *thisj

template <class T>
Vector<T> Vector<T>::operator /= (const Vector<T>l v)
{

}

assert(size==v.size)j
for(int i=Oj i<sizej i++) data[i] /= v.data[i]j
return *thisj

template <class T>
Vector<T> Vector<T>::operator + (const Vector<T>l v) const
{

}

Vector<T> result(*this)j
return result += Vj

template <class T>
Vector<T> Vector<T>::operator - (const Vector<T>l v) const
{

}

Vector<T> result(*this)j
return result -= Vj

template <class T>
Vector<T> Vector<T>::operator.* (const Vector<T>l v) const
{

}

Vector<T> result(*this)j
return result *= Vj

template <class T>
Vector<T> Vector<T>::operator / (const Vector<T>l v) const
{

}

Vector<T> result(*this)j
return result /= Vj

491

492 CHAPTER 10. PROGRAM LISTING

template <class T> Vector<T> Vector<T>: : operator += (T c)
{

}

for(int i=O; i<size; i++) data[i] += c;
return *this;

template <class T> Vector<T> Vector<T>: : operator -= (T c)
{

}

for(int i=O; i<size; i++) data[i] -= c;
return *this;

template <class T> Vector<T> Vector<T>::operator *= (T c)
{

}

for(int i=O; i<size; i++) data[i] *= c;
return *this;

template <class T> Vector<T> Vector<T>::operator /= (T c)
{

}

for(int i=O; i<size; i++) data[i] /= c;
return *this;

template <class T> Vector<T> Vector<T>::operator + (T c) const
{

}

Vector<T> result(*this);
return result += c;

template <class T> Vector<T> Vector<T>::operator - (T c) const
{

}

Vector<T> result(*this);
return result -= c;

template <class T> Vector<T> Vector<T>: : operator * (T c) const
{

}

Vector<T> result(*this);
return result *= c;

template <class T> Vector<T> Vector<T>::operator / (T c) const
{

}

Vector<T> result(*this);
return result /= c;

10.6. VECTOR CLASS

template <class T> Vector<T> operator + (T c,const Vector<T>& v)
{ return v+c; }

template <class T> Vector<T> operator - (T c,const Vector<T>& v)
{ return -v+c; }

template <class T> Vector<T> operator * (T c,const Vector<T>i v)
{ return v*c; }

template <class T> Vector<T> operator I (T c,const Vector<T>i v)
{

}

Vector<T> result(v.length(»;
for(int i=O; i<result.length(); i++) result[i] c/v[i];
return result;

II Inner Product
template <class T> T Vector<T>::operator I (const Vector<T>& v)
{

}

assert(size == v.size);
T result(O);
for(int i=O; i<size; i++) result = result + data[i]*v.data[i];
return result;

II Vector Product
template <class T> Vector<T> Vector<T>::operator % (const Vector<T>& v)
{

}

assert(size == 3 && v.size == 3);
Vector<T> result(3);
result.data[O] = data[l] * v.data[2] - v.data[l] * data[2];
result.data[l] = v.data[O] * data[2] - data[O] * v.data[2];
result.data[2] = data[O] * v.data[l] - v.data[O] * data[l];
return result;

II Equality
template <class T>
int operator == (const Vector<T>& u,const Vector<T>& v)
{

}

if(u.length() != v.length(» return 0;
for(int i=O; i<u.length(); i++)

if(u[i] != v[i]) return 0;
return 1;

493

494

II Inequality
template <class T>

CHAPTER 10. PROGRAM LISTING

int operator != (const Vector<T>& u,const Vector<T>& v)
{ return !(u==v); }

template <class T> ostream & operator « (ostream &s,const Vector<T>& v)
{

}

int lastnum = v.length();
for(int i=O; i<lastnum; i++) s « II [II « v[i] « II] II « endl;
return s;

template <class T> istream & operator » (istream& s,Vector<T>& v)
{

int i, num;
s. clearO;
s » num;
if(!s.good()) return s;
v.resize(num);
for(i=O; i<num; i++)
{

s»v[i];
if (! s . good 0)
{

II set stream state to good
II read size of Vector

II can't get an integer, just return
II resize Vector v

II read in entries

s.clear(s.rdstate() I ios::badbit);
return s;

}

}

return s;
}

#endif

10.6. VECTOR CLASS

II VecNorm.h
II Norms of Vectors

#ifndef MVECNORM_H
#define MVECNORM_H

#include <iostream.h>
#include <math.h>

template <class T> T norml(const Vector<T>k v)
{

}

T result(O);

for(int i=O; i<v.length(); i++)
result = result + abs(v[i]);

return result;

double norml(const Vector<double>k v)
{

}

double result(O);

for(int i=O; i<v.length(); i++)
result = result + fabs(v[i]);

return result;

template <class T> double norm2(const Vector<T>k v)
{

}

T result(O);

for(int i=O; i<v.length(); i++)
result = result + v[i]*v[i];

return sqrt(double(result));

template <class T> T normI(const Vector<T>k v)
{

T maxltem(abs(v[O])), temp;

for(int i=l; i<v.length(); i++)
{

temp = abs(v[i]);
if(temp > maxltem) maxltem = temp;

495

496

}

return maxItem;
}

double normI(const Vector<double>& v)
{

}

double maxItem(fabs(v[O])), temp;

for(int i=l; i<v.length(); i++)
{

temp = fabs(v[i]);
if(temp > maxItem) maxItem = temp;

}

return maxItem;

CHAPTER 10. PROGRAM LISTING

template <class T> Vector<T> normalize(const Vector<T>& v)
{

Vector<T> result(v.length());
double length = norm2(v);

for(int i=O; i<v.length(); i++)
result[i] = v[i]/length;

return result;
}

#endif

10.7. MATRIX CLASS 497

10.7 Matrix Class

The public interface of the Matrix class:

• Matrix 0 : Default constructor.

• Matrix(int,int) : Constructor.

• Matrix (int, int, T) : Constructor.

• Matrix(const Vector<T>&) : Constructor.

• identityO : Creates an identity matrix.

• transpose 0 : Transpose of the matrix.

• inverse 0 : Inverse of the matrix.

• trace 0 : Trace of the matrix.

• determinant () : Determinant of the matrix.

• rows 0 : Number of rows of the matrix.

• colsO : Number of columns of the matrix.

• resize (int, int) : Resizes the matrix.

• resize (int, int, T) : Resizes the matrix and initializes the rest of the entries.

• vee (const Matrix<T>&) : Vectorize operator.

• kron(const Matrix<T>&,const Matrix<T>&) : Kronecker product.

• fill(T v) : Fills the matrix with the value v.

• Arithmetic operators: +(unary) , -(unary), +, -, *, /, =, +=, -=, *=, /=

• Row vector operator: []

• Column vector operator : ()

• Stream operators : », «

498 CHAPTER 10. PROGRAM LISTING

Auxiliary functions in MatNorm.h:

• norm1(const Matrix&;) : One-norm of the matrix.

• norm! (const Matrix&;) : Infinite-norm of the matrix.

• normH(const Matrix&;) : Hilbert-Schmidt norm of the matrix.

For a detailed description of the class structure and each member function, please
refer to Section 6.7.

II Matrix.h

#ifndef MATRIX_H
#define MATRIX_H

#include <iostream.h>
#include <math.h>
#include <assert.h>
#include "Vector.h"

II definition of class Matrix
template <class T> class Matrix
{

protected:
/ / Data Fields
int rowNum, colNum;
Vector<T> *mat;

public:
II Constructors
Matrix 0 ;
Matrix(int,int);
Matrix(int,int, T);
Matrix(const Vector<T>&);
Matrix(const Matrix<T>&);
-Matrix();

II Member Functions
Vector<T>& operator [] (int) const;
Vector<T> operator () (int) const;

Matrix<T> identity();
Matrix<T> transpose() const;
Matrix<T> inverse() const;
T trace() const;

10.7. MATRIX CLASS

};

T determinant() const;

int rows() const;
int cols() const;
void resize(int,int);
void resize(int,int,T);
void fill(T);

II Arithmetic Operators
const Matrix<T>& operator = (const Matrix<T>&);
const Matrix<T>& operator = (T);

Matrix<T> operator + () const;
Matrix<T> operator - () const;
Matrix<T> operator += (const Matrix<T>&);
Matrix<T> operator (const Matrix<T>&) ;
Matrix<T> operator *= (const Matrix<T>&);
Matrix<T> operator + (const Matrix<T>&) const;
Matrix<T> operator - (const Matrix<T>&) const;
Matrix<T> operator * (const Matrix<T>&) const;
Vector<T> operator * (const Vector<T>&) const;

Matrix<T> operator += (T) ;
Matrix<T> operator -= (T) ;
Matrix<T> operator *= (T);
Matrix<T> operator 1= (T) ;
Matrix<T> operator + (T) const;
Matrix<T> operator - (T) const;
Matrix<T> operator * (T) const;
Matrix<T> operator I (T) const;

friend Vector<T> vec(const Matrix<T>&);
friend Matrix<T> kron(const Matrix<T>&,const Matrix<T>&);
friend ostream & operator« (ostream&,const Matrix<T>&);
friend istream & operator » (istream&,Matrix<T>&);

II implementation of class Matrix
template <class T> Matrix<T>::Matrix()

: rowNum(O), colNum(O), mat(NULL) {}

template <class T> Matrix<T>::Matrix(int r,int c)
: rowNum(r), colNum(c), mat(new Vector<T>[r])

{

assert(mat != NULL);
for(int i=O; i<r; i++) mat[i],resize(c);

}

499

500 CHAPTER 10. PROGRAM LISTING

template <class T> Matrix<T>::Matrix(int r,int c,T value)
: rowNum(r), colNum(c), mat(new Vector<T>[r])

{

assert(mat != NULL);
for(int i=O; i<r; i++) mat[i].resize(c,value);

}

template <class T> Matrix<T>::Matrix(const Vector<T>& v)
: rowNum(v.length(», colNum(l), mat(new Vector<T> [rowNum])

{

assert(mat != NULL);
for(int i=O; i<rowNum; i++) mat[i].resize(l,v[i]);

}

template <class T> Matrix<T>::Matrix(const Matrix<T>& m)
: rowNum(m.rowNum), colNum(m.colNum), mat(new Vector<T>[m.rowNum])

{

assert(mat != NULL);
for(int i=O; i<m.rowNum; i++) mat[i] = m.mat[i];

}

template <class T> Matrix<T>::-Matrix()
{

delete [] mat;
}

template <class T> Vector<T> & Matrix<T>::operator [] (int index) const
{

}

assert(index>=O && index<rowNum);
return mat[index];

template <class T> Vector<T> Matrix<T>::operator () (int index) const
{

}

assert (index>=O && index<colNum);
Vector<T> result(rowNum);

for(int i=O; i<rowNum; i++) result[i] = mat[i] [index];
return result;

template <class T> Matrix<T> Matrix<T>::identity()
{

for(int i=O; i<rowNum; i++)
for(int j=O; j<colNum; j++)

if(i==j) mat[i][j] = T(l);

10.7. MATRIX CLASS

else mat[i][j] = T(O)j
return *thisj

}

template <class T> Matrix<T> Matrix<T>::transpose() const
{

}

Matrix<T> result(colNum,rowNum)j
for(int i=Oj i<rowNumj i++)

for(int j=Oj j<colNumj j++)
result [j] [i] = mat [i] [j] j

return resultj

II Symbolical Inverse using Leverrier's Method
template <class T> Matrix<T> Matrix<T>::inverse() const
{

}

assert(rowNum == colNum)j
Matrix<T> B(*this), D, I(rowNum,colNum)j
T cO(B.trace()), clj
int ij
I.identityO j
for(i=2j i<rowNumj i++)
{

}

B = *this * (B-cO*I)j
cO = B.trace()/T(i)j

D = *this * (B-cO*I)j
cl = D.trace()/T(i)j
return (B-cO*I)/clj

template <class T> T Matrix<T>::trace() const
{

}

assert(rowNum == colNum)j
T result(O)j
for(int i=Oj i<rowNumj i++) result += mat[i] [i]j
return resultj

II Symbolical determinant
template <class T> T Matrix<T>::determinant() const
{

assert(rowNum==colNum)j
Matrix<T> B(*this), I(rowNum,colNum,T(O))j
T c(B.traceO) j
int ij
for(i=Oj i<rowNumj i++) I[i] [i] = T(l)j

501

502 CHAPTER 10. PROGRAM LISTING

}

II Note that determinant of int-type gives zero
II because of division by T(i)
for(i=2; i<=rowNum; i++)
{

}

B = *this * (B-c*I);
c = B.trace()/T(i);

if(rowNumy'2) return c;
return -c;

template <class T> int Matrix<T>::rows() const
{

return rowNum;
}

template <class T> int Matrix<T>::cols() const
{

return colNum;
}

template <class T> void Matrix<T>::resize(int r,int c)
{

}

int i;
Vector<T> *newMat = new Vector<T>[r]; assert(newMat != NULL);
if (r<=rowNum)
{

}

for(i=O; i<r; i++)
{

}

(mat+i) -> resize(c);
newMat[i] = mat[i];

else
{

}

for(i=O; i<rowNum; i++)
{

}

(mat+i) -> resize(c);
newMat[i] = mat[i];

for (i=rowNum; i<r; i++) newMat[i].resize(c);

delete [] mat;
rowNum = r; colNum = c;
mat = newMat;

10.7. MATRIX CLASS

template <class T> void Matrix<T>::resize(int r,int c,T value)
{

}

int ii
Vector<T> *newMat new Vector<T>[r]i assert(newMat != NULL)i
if (r<=rowNum)
{

}

for(i=Oi i<ri i++)
{

}

(mat+i) -> resize(c,value)i
newMat[i] = mat[i]i

else
{

}

for(i=Oi i<rowNumi i++)
{

}

(mat+i) -> resize(c,value)i
newMat[i] = mat[i]i

for(i=rowNumi i<ri i++) newMat[i] .resize(c,value)i

delete [] mati
rowNum = ri colNum = Ci
mat = newMati

template <class T> void Matrix<T>::fill(T value)
{

}

for(int i=Oi i<rowNum; i++)
for(int j=Oi j<colNumi j++)

mat[i][j] = value;

template <class T>
const Matrix<T>& Matrix<T>: : operator = (const Matrix<T>& m)
{

}

if(this == &m) return *thisi
delete [] mat i
rowNum = m.rowNumi colNum = m.colNumi
mat = new Vector<T>[m.rowNum]i assert(mat != NULL)i
for(int i=Oi i<m.rowNumi i++) mat[i] = m.mat[i]i
return *thisi

template <class T>
const Matrix<T>& Matrix<T>::operator = (T value)

503

504 CHAPTER 10. PROGRAM LISTING

{

}

for(int i=Oj i<rowNumj i++) mat[i]
return *thisj

valuej

template <class T> Matrix<T> Matrix<T>::operator + () const
{

return *thisj
}

template <class T> Matrix<T> Matrix<T>::operator - () const
{

return *this * T(-l)j
}

template <class T>
Matrix<T> Matrix<T>::operator += (const Matrix<T>& m)
{

return *this = *this + mj
}

template <class T>
Matrix<T> Matrix<T>::operator -= (const Matrix<T>& m)
{

return *this = *this - mj
}

template <class T>
Matrix<T> Matrix<T>::operator *= (const Matrix<T>& m)
{

return *this = *this * mj
}

template <class T>
Matrix<T> Matrix<T>::operator + (const Matrix<T>& m) const
{

}

assert (rowNum == m.rowNum && colNum == m.colNum)j
Matrix<T> result(*this)j
for(int i=O; i<rowNumj i++) result[i] += m[i]j
return resultj

template <class T>
Matrix<T> Matrix<T>::operator - (const Matrix<T>& m) const
{

assert(rowNum == m.rowNum && colNum == m.colNum)j
Matrix<T> result(*this)j

10.7. MATRIX CLASS

}

for(int i=O; i<rowNum; i++) result[i] -= m[i];
return result;

template <class T>
Matrix<T> Matrix<T>::operator * (const Matrix<T>& m) const
{

}

assert (colNum == m.rowNum);
Matrix<T> result (rowNum, m.colNum, T(O»;
for(int i=O; i<rowNum; i++)

for(int j=O; j<m.colNum; j++)
for(int k=O; k<colNum; k++)

result [i] [j] += mat [i] [k) * m[k] [j] ;
return result;

template <class T>
Vector<T> Matrix<T>::operator * (const Vector<T>& v) const
{

}

assert (colNum == v.length(»;
Vector<T> result(rowNum);

II dot product I is used
for (int i=O; i<rowNum; i++) result[i]
return result;

(mat [i] I v);

template <class T> Matrix<T> Matrix<T>: : operator += (T c)
{

}

assert (rowNum == colNum);
for(int i=O; i<rowNum; i++) mat[i][i] += c;
return *this;

template <class T> Matrix<T> Matrix<T>: : operator -= (T c)
{

assert (rowNum == colNum);
for(int i=O; i<rowNum; i++) mat[i][i] c;
return *this;

}

template <class T> Matrix<T> Matrix<T>::operator *= (T c)
{

}

for(int i=O; i<rowNum; i++) mat[i] *= c;
return *this;

505

506 CHAPTER 10. PROGRAM LISTING

template <class T> Matrix<T> Matrix<T>::operator /= (T c)
{

}

for(int i=O; i<rowNum; i++) mat[i] /= c;
return *this;

template <class T>
Matrix<T> Matrix<T>::operator + (T value) const
{

}

assert (rowNum == colNum);
Matrix<T> result(*this);
return result += value;

template <class T>
Matrix<T> Matrix<T>: : operator - (T value) const
{

}

assert(rowNum == colNum);
Matrix<T> result(*this);
return result -= value;

template <class T>
Matrix<T> Matrix<T>::operator * (T value) const
{

}

Matrix<T> result(*this);
return result *= value;

template <class T>
Matrix<T> Matrix<T>::operator / (T value) const
{

}

Matrix<T> result(*this);
return result /= value;

template <class T>
Matrix<T> operator + (T value, const Matrix<T> &m)
{

return m + value;
}

template <class T>
Matrix<T> operator - (T value,const Matrix<T>& m)
{

return -m + value;
}

10.7. MATRIX CLASS

template <class T>
Matrix<T> operator * (T value,const Matrix<T>& m)
{

return m * valuej
}

template <class T>
Matrix<T> operator I (T value,const Matrix<T>& m)
{

}

Matrix<T> result(m.rows(),m.cols(»j
for(int i=Oj i<result.rows()j i++) result[i]
return resultj

II Vectorize operator

value/m[iJ j

template <class T> Vector<T> vec(const Matrix<T> &m)
{

}

int i=O, j, k, size = m.rowNum * m.colNumj
Vector<T> result(size)j
for(j=Oj j<m.colNumj j++)

for(k=Oj k<m.rowNumj k++) result[i++] m.mat[k][j]j
return resultj

II Kronecker Product
template <class T>
Matrix<T> kron(const Matrix<T>& s,const Matrix<T>& m)
{

}

int size1 = s.rowNum * m.rowNum,
size2 = s.colNum * m.colNum,
i, j, k, pj

Matrix<T> result(size1, size2)j

for(i=Oj i<s.rowNumj i++)
for(j=Oj j<s.colNumj j++)

for(k=Oj k<m.rowNumj k++)
for(p=Oj p<m.colNumj p++)

result[k + i*m.rowNum] [p + j*m.colNum]
= s.mat[i][j] * m.mat[k] [p]j

return resultj

template <class T>
int operator == (const Matrix<T>& m1,const Matrix<T>& m2)
{

if(m1.rows() != m2.rows(» return OJ

507

508 CHAPTER 10. PROGRAM LISTING

}

for(int i=O; i<m1.rows(); i++)
if(m1[i] 1= m2[i]) return 0;

return 1;

template <class T>
int operator 1= (const Matrix<T>& m1,const Matrix<T>& m2)
{

return 1 (m1==m2);
}

template <class T> ostream& operator « (ostream& s,const Matrix<T>& m)
{

}

int t = m.cols()-l;
for(int i=O; i<m.rows(); i++)
{

}

s « II [II;

for(int j=O; j<t; j++) s « m[i] [j] « II ";
s « m[i] [t] « 11]11 « endl;

return s;

template <class T> istream& operator » (istream& s,Matrix<T>& m)
{

int i, j, numl, num2;
s. clearO;
s » numl;
if(ls.good()) return s;
s » num2;
if(ls.good()) return s;
m.resize(num1,num2);
for(i=O; i<numl; i++)

for(j=O; j<num2; j++)
{

s » m[i] [j];

if (1 s . good 0)
{

II set stream state to good
II read in row number
II can't get an integer, just return
II read in column number
II can't get an integer, just return
II resize to Matrix into right order

s.clear(s.rdstate() I ios::badbit);
return s;

}

}

return s;
}

#endif

10.7. MATRIX CLASS

II MatNorm.h
II Norms of Matrices

#ifndef MATNORM_H
#define MATNORM_H

#include <iostream.h>
#include <math.h>
#include "Vector.h"
#include "VecNorm.h"

template <class T> T norml(const Matrix<T>& m)
{

}

T maxltem(O), temp;
int i,j;

for(i=O; i<m.rows(); i++) maxltem += m[i] [0];

for(i=l; i<m.cols(); i++)
{

}

temp = T(O);
for(j=O; j<m.rows(); j++)

temp += abs(m[j] [i]);
if(temp > maxltem) maxltem = temp;

return maxltem;

template <class T> T normI(const Matrix<T>& m)
{

}

T maxltem(norml(m[O]»;

for(int i=l; i<m.rows(); i++)
if(norml(m[i]) > maxltem) maxltem = norml(m[i]);

return maxltem;

template <class T> T normH(const Matrix<T>& m)
{

return sqrt«m*(m.transpose(»).trace(»;
}

#endif

509

510 CHAPTER 10. PROGRAM LISTING

10.8 Array Class

The public interface of the Array! class:

• Array 1 Cint = 0) : Constructor.

• Array1(int, T) : Constructor.

• resize (int) : Resizes the one-dimensional array.

• resize (int, Tv) : Resizes the one-dimensional array and initializes the rest
of the entries with v.

• sizeCint = 0) : Size of the array.

• Arithmetic operators: +, -, *, =, +=, -=, *=

• Subscript operator: [J

• Stream operator : «

The public interface of the Array2 class:

• Array2(int = O,int = 0) : Constructor.

• Array2 (int , int , T) : Constructor.

• resize (int, int) : Resizes the two-dimensional array.

• resize (int, int, Tv) : Resizes the two-dimensional array and initializes the
rest of the entries with v.

• size(int = 0) : Size of the array.

• Arithmetic operators: +, -, *, =, +=, -=, *=

• Subscript operator: []

• Stream operator : < <

The public interface of the Array3 class:

• Array3 (int = 0, int = 0, int = 0) : Constructor.

• Array3 (int, int, int, T) : Constructor.

• resize (int, int, int) : Resizes the three-dimensional array.

• resize (int , int , int , Tv) : Resizes the three-dimensional array and initializes
the rest of the entries with v.

10.8. ARRAY CLASS 511

• size{int = 0) : Size of the array.

• Arithmetic operators: +, -, *, =, +=, -=, *=

• Subscript operator: []

• Stream operator : «

The public interface of the Array4 class:

• Array4{int = O,int = O,int = O,int = 0) Constructor.

• Array4 (int, int, int, int, T) : Constructor.

• resize (int, int, int, int) : Resizes the four-dimensional array.

• resize(int,int,int,int,T v) : Resizes the four-dimensional array and ini­
tializes the rest of the entries with v.

• size (int = 0) : Size of the array.

• Arithmetic operators: +, -, *, =, +=, -=, *=

• Subscript operator: []

• Stream operator : «

For a detailed description of the classes and each member function, please refer to
Section 6.8.

II Array.h

#ifndef ARRALH
#define ARRAY_H

#include <iostream.h>
#include <assert.h>

template <class T>
class Arrayl
{

private:
I I Data Fields
int n_data;
T *data;

public:
II Constructors
Array 1 (int = 0);
Arrayl(int,T);

512

Arrayl(const Arrayl<T>&);
~Arrayl0 ;

II Member Functions
void resize(int);
void resize(int,T);
T& operator [] (int) const;
int size(int = 0) const;

II Arithmetic Operators
const Arrayl<T>& operator =
const Arrayl<T>& operator =
Arrayl<T> operator *= (T) ;
Arrayl<T> operator += (const
Arrayl<T> operator -= (const
Arrayl<T> operator + (const
Arrayl<T> operator - (const

II 1/0 stream functions

CHAPTER 10. PROGRAM LISTING

(const Arrayl<T>&);
(T) ;

Arrayl<T>&);
Arrayl<T>&);
Arrayl<T>&);
Arrayl<T>&);

friend ostream & operator « (ostream&,const Arrayl<T>&);
}; II end declaration class Arrayl

II Constructors, destructors and copy constructor.
II
template <class T> Arrayl<T>::Arrayl(int n) : n_data(n), data(new T[n])
{ assert(data != NULL); }

template <class T>
Arrayl<T>::Arrayl(int n,T num)
{

assert(data != NULL);

n_data(n), data(new T[n])

for(int i=O; i<n_data; i++) data[i] num;
}

template <class T> Arrayl<T>::Arrayl(const Arrayl<T> &v)
: n_data(v.n_data) , data(new T[v.n_data])

{

assert(data != NULL);
for(int i=O; i<v.n_data; i++) data[i] v.data[i] ;

}

template <class T> Arrayl<T>::~Arrayl() {delete [] data; }

II Member functions
template <class T> void Arrayl<T>: :resize(int n)
{

int i;

10080 ARRAY CLASS

}

T *newData = new T[n]j assert(newData != NULL)j
if (n <= n_data)

for(i=Oj i<nj i++) newData[i]
else

for(i=Oj i<n_dataj i++) newData[i]
delete [] dataj
n_data = nj
data = newDataj

data[i] j

data[i] j

template <class T> void Arrayl<T>::resize(int n,T value)
{

}

int ij
T *newData = new T[n]j assert(newData != NULL)j
if (n <= n_data)

for(i=Oj i<nj i++) newData[i] = data[i]j
else
{

}

for(i=Oj i<n_dataj i++) newData[i]
for(i=n_dataj i<nj i++) newData[i]

delete [] dataj
n_data = nj
data = newDataj

data[i] j
valuej

II Various member operators
template <class T> T& Arrayl<T>::operator [](int i) const
{

}

assert(i >= 0 && i < n_data)j
return data[i]j

template <class T> int Arrayl<T>::size(int index) const
{

}

assert(index == O)j
return n_dataj

template <class T>
const Arrayl<T>& Arrayl<T>::operator = (const Arrayl<T>& v)
{

if(this == &v) return *thisj
if(n_data != von_data)
{

delete [] dataj
n_data = von_dataj

513

514

}

CHAPTER 10. PROGRAM LISTING

data = new T[v.n_data]; assert(data != NULL);
}

for(int i=O; i<v.n_data; i++) data[i] = v.data[i];
return *this;

template <class T> const Arrayl<T>& Arrayl<T>::operator = (T num)
{

for(int i=O; i<n_data; i++) data[i] = num;
return *this;

}

template <class T> Arrayl<T> Arrayl<T>::operator *= (T num)
{

for(int i=O; i<n_data; i++) data[i] *= num;
return *this;

}

template <class T>
Arrayl<T> Arrayl<T>::operator += (const Arrayl<T>& v)
{ return *this = *this + v; }

template <class T>
Arrayl<T> Arrayl<T>::operator -= (const Arrayl<T>& v)
{ return *this = *this - v; }

template <class T> Arrayl<T>
Arrayl<T>::operator + (const Arrayl<T>& v)
{

}

assert(n_data==v.n_data);
Arrayl<T> temp(n_data);
for(int i=O; i<n_data; i++) temp[i]
return temp;

template <class T>

data[i] + v.data[i];

Arrayl<T> Arrayl<T>::operator - (const Arrayl<T>& v)
{

}

assert(n_data==v.n_data);
Arrayl<T> temp(n_data);
for(int i=O; i<n_data; i++) temp[i]
return temp;

II Friendship functions

data[i] - v.data[i];

template <class T> ostream& operator « (ostream& s,const Arrayl<T>& v)
{

10.8. ARRAY CLASS

}

int n_data = v.n_data-1;
s « "[";
for(int i=O; i<n_data; i++) s « v .data[i] « " ";
s « v. data En_data] « "]";
return s;

template <class T>
int operator == (const Array1<T>& v1,const Array1<T>& v2)
{

}

if(v1.size() != v2.size()) return 0;
for(int i=O; i<v1.size(); i++)
{

if(v1[i] != v2[i]) return 0;
}

return 1;

template <class T>
int operator != (const Array1<T>& v1,const Array1<T>& v2)
{ return !(vl==v2); }

template <class T> class Array2
{

private:
II Data Fields
int rows, cols;
Array1<T> *data2D;

public:
II Constructors
Array2(int = O,int = 0);
Array2(int,int,T);
Array2(const Array2<T>&);
-Array2();

II Member Functions
void resize(int,int);
void resize(int,int,T);
Array1<T>& operator [] (int) const;
int size(int = 0) const;

II Arithmetic Operators
const Array2<T>& operator = (const Array2<T>&);
const Array2<T>& operator = (T);
Array2<T> operator *= (T);
Array2<T> operator += (const Array2<T>&);
Array2<T> operator (const Array2<T>&);

515

516 CHAPTER 10. PROGRAM LISTING

Array2<T> operator +
Array2<T> operator -

(const Array2<T>&);
(const Array2<T>&);

II liD stream functions
friend ostream & operator « (ostream&,const Array2<T>&);

}; II end declaration class Array2

II Constructor, destructor and copy constructor.
template <class T> Array2<T>::Array2(int r,int c)

: rows(r), cols(c), data2D(new Arrayl<T>[r])
{

assert(data2D != NULL);
for(int i = 0; i<r; ++i) (data2D+i) -> resize(c);

}

template <class T> Array2<T>::Array2(int r,int c,T num)
: rows(r), cols(c), data2D(new Arrayl<T>[r])

{

assert(data2D != NULL);
for(int i = 0; i<r; ++i) (data2D+i) -> resize(c,num);

}

template <class T> Array2<T>::Array2(const Array2<T>& m)
: rows(m.rows), cols(m.cols), data2D(new Arrayl<T> [m.rows])

{

assert(data2D != NULL);
for(int i=O; i<m.rows; ++i) data2D[i] = m.data2D[i];

}

template <class T> Array2<T>::-Array2() {delete [] data2D; }

II Member functions
template <class T> void Array2<T>::resize(int r,int c)
{

int i;
Arrayl<T> *newArray = new Arrayl<T>[r]; assert(newArray != NULL);
if(r <= rows)
{

}

for(i=O; i<rj i++)
{

}

(data2D+i) -> resize(c)j
newArray[i] = data2D[i]j

else
{

for(i=Oj i<rowsj i++)

10.8. ARRAY CLASS

}

}

{

}

(data2D+i) -> resize(c);
newArray[i) = data2D[i);

for(i=rows; i<r; i++) newArray[i).resize(c);

delete [) data2D;
rows = r; cols = c;
data2D = newArray;

template <class T> void Array2<T>::resize(int r,int c,T value)
{

}

int i;
Arrayl<T> *newArray = new Arrayl<T>[r); assert(newArray != NULL);
if (r<=rows)
{

}

for(i=O; i<r; i++)
{

}

(data2D+i) -> resize(c,value);
newArray[i) = data2D[i);

else
{

}

for(i=O; i<rows; i++)
{

}

(data2D+i) -> resize(c,value);
newArray[i) = data2D[i);

for(i=rows; i<r; i++) newArray[i).resize(c,value);

delete [) data2D;
rows = r; cols = c;
data2D = newArray;

II Various member operators
template <class T> Arrayl<T>k Array2<T>::operator [) (int i) const
{

}

assert(i >= 0 kk i < rows);
return data2D[i);

template <class T> int Array2<T>::size(int index) const
{

assert(index==O I I index==l);

517

518 CHAPTER 10. PROGRAM LISTING

}

if(index) return cols;
return rows;

template <class T>
const Array2<T>& Array2<T>::operator = (const Array2<T>& m)
{

}

if(this == &m) return *this;
delete [] data2D;
cols = m.cols; rows = m.rows;
data2D = new Arrayl<T>[m.rows]; assert(data2D != NULL);
for(int i=O; i<m.rows; i++) data2D[i] = m.data2D[i];
return *this;

template <class T> const Array2<T>& Array2<T>::operator = (T num)
{

}

for(int i=O; i<rows; i++) data2D[i] = num;
return *this;

template <class T> Array2<T> Array2<T>::operator *= (T num)
{

}

for(int i=O; i<rows; i++) data2D[i] *= num;
return *this;

template <class T> Array2<T> Array2<T>::operator += (const Array2<T>& m)
{ return *this = *this + m; }

template <class T> Array2<T> Array2<T>::operator -= (const Array2<T>& m)
{ return *this = *this - m; }

template <class T> Array2<T> Array2<T>::operator + (const Array2<T>& m)
{

}

assert«m.cols == cols) && (m.rows == rows));
Array2<T> temp(rows,cols);
for(int i=O; i<rows; i++) temp[i] = data2D[i] + m.data2D[i];
return temp;

template <class T> Array2<T> Array2<T>::operator - (const Array2<T>& m)
{

assert«m.cols == cols) && (m.rows == rows));
Array2<T> temp(rows,cols);
for(int i=O; i<rows; i++) temp[i] = data2D[i] - m.data2D[i];
return temp;

10.8. ARRAY CLASS

}

template <class T> ostream & operator « (ostream& s,const Array2<T>& m)
{

}

for(int i=O; i<m.rows; i++) s « m.data2D[i] « endl;
return s;

template <class T>
int operator == (const Array2<T>& m1,const Array2<T>& m2)
{

}

if(m1.size() != m2.size()) return 0;
for(int i=O; i<m1.size(); i++)
{

if(m1[i] != m2[i]) return 0;
}

return 1;

template <class T>
int operator != (const Array2<T>& m1,const Array2<T>& m2)
{return !(m1==m2); }

template <class T> class Array3
{

private:
I I Data Fields
int rows, cols, levs;
Array2<T> *data3D;

public:
II Constructors
Array3(int = O,int = O,int 0);
Array3(int,int,int,T);
Array3(const Array3<T> &);
-Array30;

II Member Functions
void resize(int,int,int);
void resize(int,int,int,T);
Array2<T> & operator [] (int) const;
int size(int = 0) const;

II Arithmetic Operators
const Array3<T>& operator = (const Array3<T>&);
const Array3<T>& operator = (T);
Array3<T> operator *= (T);
Array3<T> operator += (const Array3<T>&);

519

520

Array3<T> operator -= (const
Array3<T> operator +
Array3<T> operator -

(const
(const

II lID stream functions

CHAPTER 10. PROGRAM LISTING

Array3<T>&)j
Array3<T>&)j
Array3<T>&)j

friend ostream& operator « (ostream&,const Array3<T>&)j
}j II end declaration class Array3

II Constructor, destructor and copy constructor.
template <class T> Array3<T>::Array3(int r,int c,int v)

: rows(r), cols(c), levs(v), data3D(new Array2<T>[r])
{

assert(data3D != NULL)j
for(int i=Oj i<rj ++i) (data3D+i) -> resize(c,v)j

}

template <class T> Array3<T>::Array3(int r,int c,int v,T num)
: rows(r) ,cols(c) ,levs(v) ,data3D(new Array2<T>[r])

{

}

assert(data3D != NULL)j
int ij
for(i=Oj i<rj ++i) (data3D+i) -> resize(c,v,num)j

template <class T> Array3<T>::Array3(const Array3<T>& m)
: rows(m.rows), cols(m,cols), levs(m.levs), data3D(new Array2<T>[m.rows])

{

assert(data3D != NULL)j
for(int i=Oj i<m.rowsj i++) data3D[i] = m,data3D[i]j

}

template <class T> Array3<T>::-Array3() {delete [] data3Dj }

II Member functions
template <class T> void Array3<T>::resize(int r,int c,int v)
{

int ij
Array2<T> *newArray = new Array2<T>[r]j assert(newArray != NULL)j
it(r <= rows)
{

}

for(i=Oj i<rj i++)
{

}

(data3D+i) -> resize(c,v)j
newArray[i] = data3D[i]j

else

10.8. ARRAY CLASS

}

{

}

for(i=Oj i<rowsj i++)
{

}

(data3D+i) -> resize(c,v)j
newArray[i] = data3D[i]j

for(i=rowsj i<rj i++) newArray[i].resize(c,v)j

delete [] data3Dj
rows = rj cols = Cj levs Vj
data3D = newArrayj

template <class T> void Array3<T>::resize(int r,int c,int v,T value)
{

}

int ij
Array2<T> *newArray = new Array2<T>[r]j assert(newArray != NULL)j
if(r <= rows)
{

}

for(i=Oj i<rj i++)
{

}

(data3D+i) -> resize(c,v,value)j
newArray[i] = data3D[i]j

else
{

}

for(i=Oj i<rowsj i++)
{

}

(data3D+i) -> resize(c,v,value)j
newArray[i] = data3D[i]j

for(i=rowsj i<rj i++) newArray[i].resize(c,v,value)j

delete [] data3Dj
rows = rj cols = Cj levs Vj
data3D = newArrayj

II Various member operators
template <class T> Array2<T> & Array3<T>::operator [] (int i) const
{

}

assert(i >= 0 && i < rows)j
return data3D[i]j

template <class T> int Array3<T>::size(int index) const

521

522 CHAPTER 10. PROGRAM LISTING

{

}

assert(index>=O && index<3):
swi t ch (index)
{

}

case 0: return rows:
case 1: return cols:
default: return levs:

template <class T>
const Array3<T> & Array3<T>::operator = (const Array3<T>& m)
{

}

if(this == &m) return *this:
delete [] data3D:
cols = m.cols: rows = m.rows: levs = m.levs:
data3D = new Array2<T>[m.rows]: assert(data3D != NULL):
for(int i=O: i<m.rows: i++) data3D[i] = m.data3D[i]:
return *this:

template <class T> const Array3<T>& Array3<T>::operator = (T num)
{

}

for(int i=O: i<rows: i++) data3D[i] = num:
return *this:

template <class T> Array3<T> Array3<T>::operator *= (T num)
{

}

for(int i=O: i<rows: i++) data3D[i] *= num:
return *this:

template <class T> Array3<T> Array3<T>::operator += (const Array3<T>& m)
{ return *this = *this + m: }

template <class T> Array3<T> Array3<T>::operator -= (const Array3<T>& m)
{ return *this = *this - m: }

template <class T> Array3<T> Array3<T>::operator + (const Array3<T> &m)
{

}

assert«m.cols == cols) && (m.rows == rows) && (m.levs == levs»:
Array3<T> temp(rows,cols,levs);
for(int i=O; i<rows: i++) temp[i] = data3D[i] + m.data3D[i];
return temp;

10.8. ARRAY CLASS 523

template <class T> Array3<T> Array3<T>::operator - (const Array3<T>1 m)
{

}

assert«m.cols == cols) 11 (m.rows == rows) 11 (m.levs == levs»;
Array3<T> temp(rows,cols,levs);
for(int i=O; i<rows; i++) temp[i] = data3D[i] - m.data3D[i];
return temp;

template <class T> ostreaml operator « (ostreaml s,const Array3<T>1 m)
{

}

for(int i=O; i<m.rows; i++) s « m.data3D[i] « endl;
return s;

template <class T>
int operator == (const Array3<T>1 m1,const Array3<T>1 m2)
{

}

if(m1.size() != m2.size(» return 0;
for(int i=O; i<m1.size(); i++)
{ if(m1[i] != m2[i]) return 0; }
return 1;

template <class T>
int operator != (const Array3<T>1 m1,const Array3<T>1 m2)
{ return !(m1==m2); }

template <class T> class Array4
{

private:
II Data Fields
int rows, cols, levs, blks;
Array3<T> *data4D;

public:
II Constructors
Array4(int = 0, int = 0, int 0, int = 0);
Array4(int,int,int,int,T);
Array4(const Array4<T>1);
-Array40;

II Member Functions
void resize(int,int,int,int);
void resize(int,int,int,int,T);
Array3<T>1 operator [] (int) const;
int size(int = 0) const;

II Arithmetic Operators

524 CHAPTER 10. PROGRAM LISTING

const Array4<T>& operator = (const Array4<T>&);
const Array4<T>& operator = (T);
Array4<T> operator *= (T);
Array4<T> operator += (const Array4<T>&);
Array4<T> operator -= (const Array4<T>&);
Array4<T> operator + (const Array4<T>&);
Array4<T> operator - (const Array4<T>&);

II liD stream functions
friend ostream & operator« (ostreaffi&,const Array4<T>&);

}; II end declaration class Array4

II Constructor, destructor and copy constructor.
template <class T> Array4<T>::Array4(int r,int c,int v,int b)

: rows(r), cols(c), levs(v), blks(b), data4D(new Array3<T>[r])
{

assert(data4D != NULL);
for(int i=O; i<r; ++i) (data4D+i) -> resize(c,v,b);

}

template <class T> Array4<T>::Array4(int r,int c,int v,int b,T num)
: rows(r), cols(c), levs(v), blks(b), data4D(new Array3<T>[r])

{

assert(data4D != NULL);
for (int i=O; i<r; ++i) (data4D+i) -> resize(c,v,b,num);

}

template <class T> Array4<T>::Array4(const Array4<T> &m)
rows(m.rows), cols(m.cols), levs(m.levs), blks(m.blks),
data4D(new Array3<T>[m.rows])

{

assert(data4D != NULL);
for (int i=O; i<m.rows; i++) data4D[i] = m.data4D[i];

}

template <class T> Array4<T>::-Array4() {delete [] data4D; }

II Member functions
template <class T> void Array4<T>::resize(int r,int c,int v,int b)
{

int i;
Array3<T> *newArray = new Array3<T>[r]; assert(newArray != NULL);
if(r <= rows)
{

for(i=O; i<r; i++)
{

(data4D+i) -> resize(c,v,b);

10.8. ARRAY CLASS

}

newArray[i] = data4D[i];
}

}

else
{

}

for(i=O; i<rows; i++)
{

}

(data3D+i) -> resize(c,v,b);
newArray[i] = data4D[i];

for(i=rows; i<r; i++) newArray[i].resize(c,v,b);

delete [] data4D;
rows = r; cols = c; levs v; blks b;
data4D = newArray;

template <class T>
void Array4<T>::resize(int r,int c,int v,int b,T value)
{

}

int i;
Array3<T> *newArray = new Array3<T>[r]; assert(newArray != NULL);
if(r <= rows)
{

}

for(i=O; i<r; i++)
{

}

(data4D+i) -> resize(c,v,b,value);
newArray[i] = data4D[i];

else
{

for(i=O; i<rows; i++)
{

(data4D+i) -> resize(c,v,b,value);
newArray[i] = data4D[i];

}

for(i=rows; i<r; i++) newArray[i].resize(c,v,b,value);
}

delete [] data4D;
rows = r; cols = c; levs
data4D = newArray;

v; blks b' ,

II Various member operators
template <class T> Array3<T> & Array4<T>::operator [] (int i) const
{

525

526

}

assert(i >= 0 && i < rows)j
return data4D[i]j

CHAPTER 10. PROGRAM LISTING

template <class T> int Array4<T>::size(int index) const
{

}

assert(index>=O && index<4)j
switch (index)
{

case 0: return rOWSj
case 1 : return colsj
case 2: return levsj
default: return blks j

}

template <class T>
const Array4<T>& Array4<T>::operator = (const Array4<T>& m)
{

}

if(this == &m) return *thisj
int ij
delete [] data4Dj
cols = m.colsj rows = m.rOWSj levs = m.levsj blks = m.blksj
data4D = new Array3<T>[m.rows]j assert(data4D!= NULL)j
for(i=Oj i<m.rowsj i++) data4D[i] = m.data4D[i]j
return *this;

template <class T> const Array4<T>& Array4<T>::operator = (T num)
{

}

for(i=Oj i<m.rowsj i++) data4D[i] = numj
return *this j

template <class T> Array4<T> Array4<T>::operator *= (T num)
{

}

for(int i=Oj i<rowsj i++) data4D[i] *= numj
return *thisj

template <class T>
Array4<T> Array4<T>::operator += (const Array4<T>& m)
{ return *this = *this + mj }

template <class T>
Array4<T> Array4<T>::operator -= (const Array4<T>& m)
{ return *this = *this - mj }

10.8. ARRAY CLASS

template <class T>
Array4<T> Array4<T>: : operator + (const Array4<T>& m)
{

}

assert«m.cols == cols) && (m.rows == rows) &&
(m.levs == levs) && (m.blks == blks»;

Array4<T> temp(rows,cols,levs,blks);
for(int i=O; i<rows; i++) temp[i] = data4D[i] + m.data4D[i];
return temp;

template <class T> Array4<T> Array4<T>::operator - (const Array4<T>& m)
{

}

assert«m.cols == cols) && (m.rows == rows) &&
(m.levs == levs) && (m.blks == blks»;

Array4<T> temp(rows,cols,levs,blks);
for(int i=O; i<rows; i++) temp[i] = data4D[i] - m.data4D[i];
return temp;

template <class T> ostream& operator « (ostream& s,const Array4<T>& m)
{

}

for(int i=O; i<m.rows; i++) s « m.data4D[i] « endl;
return s;

template <class T>
int operator == (const Array4<T>& m1,const Array4<T>& m2)
{

}

if(m1.size() != m2.size(» return 0;
for(int i=O; i<m1.size(); i++)
{ if(m1[i] != m2[i]) return 0; }
return 1;

template <class T>
int operator != (const Array4<T>& m1,const Array4<T>& m2)
{ return !(m1==m2); }
#endif

527

528

10.9 String Class

The public interface of the String class:

• StringO : Default constructor.

• String(char) : Constructor.

• String(int) : Constructor.

• String (const char*) : Constructor.

CHAPTER 10. PROGRAM LISTING

• String(const String&) : Copy constructor.

• reverse 0 : Reverses the string.

• length 0 : Length of the string.

• Assignment operator : =

• Subscript operator: []

• Concatenation operator : +

• Type conversion operator: operator char* 0

• Relational operators : ==, ! =, <, <=, >, >=

• Stream operators : », «

For a detailed description of the class structure and each member function, please
refer to Section 6.9.

II MString.h

#ifndef MSTRING_H
#define MSTRING_H

#include <iostream.h>
#include <assert.h>
#include <string.h>

class String
{

private:
II data field
int datalength;
char *data;

10.9. STRING CLASS

public:
II constructors and destructor
StringO;
String(char);
String(int);
String(const char*);
String(const String&);
-StringO;

II assignment operator
const String& operator = (const String&);

II member functions and index operator
String reverse() const;
int length() const;
char& operator [](int) const;

II conversion operator
operator const char *() const;

II concatenation
friend String operator + (const String&,const String&);

II friendship operators
friend ostream& operator « (ostream&,const String&);
friend istream& operator » (istream&,String&);

II relational operators
friend int operator < (const String&,const String&);
friend int operator <= (const String&,const String&);
friend int operator != (const String&,const String&);
friend int operator (const String&,const String&);
friend int operator >= (const String&,const String&) ;
friend int operator > (const String&,const String&) ;

};

II Class implementation
II constuctor and destructor
String: :String() : datalength(l), data(new char[l])
{

}

assert(data != NULL);
data[O] = '\0';

String: : String (char c) : datalength(2), data(new char[2])
{

assert(data != NULL);

529

530

}

data[O] =
data[l] =

c' .
'\0' ;

String::String(int size)
{

assert(size >= 0);

datalength = size + 1;

data = new char[datalength];
assert(data != NULL);

CHAPTER 10. PROGRAM LISTING

data[O] = '\0'; II The string is assigned as a NULL string
}

String::String(const char *s)

{

}

: datalength(strlen(s) + 1), data(new char[datalength])

assert(data != NULL);
strcpy(data,s);

String::String(const String& s)

{

}

: datalength(strlen(s.data) + 1), data(new char[datalength])

assert(data != NULL);
strcpy(data,s.data);

String::-String()
{ delete [] data; }

II assignment operator
const String& String::operator = (const String& s)
{

}

if(ts != this)
{

}

delete [] data;

datalength = strlen(s.data) + 1;
data = new char[datalength];
assert(data != NULL);
strcpy(data,s.data);

return *this;

10.9. STRING CLASS

II member function and index operator
String String::reverse() const
{

}

char tj
int i, idx, len = length()j
String temp(*this)j

for(i=Oj i<len/2j i++)
{

}

idx = len-l-ij
t = temp[idx]j
temp[idx] = temp[i]j
temp[i] = tj

return tempj

int String::length() const {return strlen(data)j }

char& String::operator [](int index) const
{ return data[index]j }

II conversion operator
String::operator const char *() const
{ return dataj }

II friendship operators
ostream& operator « (ostream& out,const String& s)
{

}

out « s.dataj
return outj

istream& operator » (istream& in,String& str)
{

}

char temp[1000]j
if(in » temp)

str = tempj
else

str = ""j
return inj

II concatenation operator
String operator + (const String& sl,const String& s2)
{

531

532

}

String S(sl.length() + s2.length());
strcpy(S.data,sl.data);
strcat(S.data,s2.data);
return S;

II relational operators

CHAPTER 10. PROGRAM LISTING

int operator < (const String& left,const String& right)
{ return strcmp(left.data,right.data) < O;}

int operator <= (const String& left,const String& right)
{ return strcmp(left.data,right.data) <= 0; }

int operator == (const String& left,const String& right)
{ return strcmp(left.data,right.data) == 0; }

int operator != (const String& left,const String& right)
{ return strcmp(left.data,right.data) != 0; }

int operator> (const String& left,const String& right)
{ return strcmp(left.data,right.data) > O;}

int operator >= (const String& left,const String& right)
{ return strcmp(left.data,right.data) >= 0; }
#endif

10.10. BIT VECTOR CLASS 533

10.10 Bit Vector Class

The public interface of the BitVector class:

• Bit Vector 0 : Default constructor.

• BitVector(unsigned int) : Constructor.

• BitVector(unsigned int,unsigned int) : Constructor.

• BitVector(const BitVector&) : Copy constructor.

• size () : Size of the bit vector.

• reset(unsigned int) : Re-specifies the size of the vector.

• reset (unsigned int, unsigned int) : Re-specifies the size of the vector and
initializies the bit field.

• set (unsigned int) : Turns a specific bit on.

• clear (unsigned int) : Turns a specific bit off.

• test (unsigned int) : Checks if a specific bit is set.

• flip (unsigned int) : Flips a specific bit value.

• unionSet(const BitVector&) : Takes the union set of two bit vectors.

• intersectSet (const BitVector&) : Takes the intersection set of two bit vec­
tors.

• differenceSet(const BitVector&) Takes the difference set of two bit vec­
tors.

• subset(const BitVector&) : Checks if a bit vector is a subset of the other.

• Equality operator : ==

• Stream operator : «

For a detailed description of the class structure and each member function, please
refer to Section 6.10.

534 CHAPTER 10. PROGRAM LISTING

II Bitvec.h

#ifndef BITVEC_H
#define BITVEC_H

#include <iostream.h>
#include <assert.h>
#include "Vector.h"

II A vector of binary values (0 or 1)
class BitVector
{

private:
unsigned int bsizej
Vector<unsigned char> dataj

II Position decoding functions
unsigned int byteNumber(unsigned int) constj
unsigned int mask(unsigned int) constj

public:
II Constructors
BitVectorO j
BitVector(unsigned int)j
BitVector(unsigned int, unsigned int)j
BitVector(const BitVector&)j

unsigned int size() constj II Size of the bit vector
void reset(unsigned int)j II re-specify the size of the vector
void reset(unsigned int,unsigned int)j

II Bit operations
void set (unsigned int)j
void clear(unsigned int)j
int test(unsigned int) constj
void flip(unsigned int)j

II Set operations

II re-specify the size of the vector
II and initialize the bit field

BitVector unionSet(const BitVector&)j
BitVector intersectSet(const BitVector&)j
BitVector differenceSet(const BitVector&)j
int operator == (const BitVector&)j
int subset(const BitVector&)j

II Friends
friend ostream& operator « (ostream&,const BitVector&)j

10.10. BIT VECTOR CLASS

};

BitVector: :BitVector() : bsize(O) , data() {}

BitVector::BitVector(unsigned int num)
: bsize(num), data«num+7)/S, 0) {}

BitVector::BitVector(unsigned int num,unsigned int value) bsize(num)
{

if(value) data.reset«num+7)/S, OxFF);
else data.reset«num+7)/S);

}

535

BitVector: :BitVector(const BitVector& b) bsize(b.bsize), data(b.data) {}

II return the size of the bit vector
unsigned int BitVector::size() const {return bsize; }

II re-specify the size of the vector
void BitVector::reset(unsigned int num)
{ bsize = num; data.reset«num+7)/S, 0); }

II re-specify the size of the vector
II and initialize the rest of the bit with value (0 or 1)

void BitVector::reset(unsigned int num, unsigned int value)
{

bsize = num;
if(value) data.reset«num+7)/S, OxFF);
else data.reset«num+7)/S, 0);

}

II set the indicated bit in the vector
void BitVector::set(unsigned int index)
{ data [byteNumber (index)] 1= mask(index); }

II clear the indicated bit in the vector
void BitVector::clear(unsigned int index)
{ data[byteNumber(index)] &= - mask(index); }

II check the indicated bit in the vector
int BitVector::test(unsigned int index) const
{ return (data[byteNumber(index)] & mask(index» != 0; }

II flip the indicated bit in the vector
void BitVector: : flip (unsigned int index)
{ data[byteNumber(index)] ~= mask(index); }

536 CHAPTER 10. PROGRAM LISTING

II return the index of byte containing the specified index
II where byte number is index value divided by 8
unsigned int BitVector::byteNumber(unsigned int index) const
{ return index » 3j }

II produce a mask for the specified index
unsigned int BitVector::mask(unsigned int index) const
{

}

II compute the amount to shift by examining
II the low order 3 bits of the index
const int shiftAmount = index & 07j

II make a mask by shifting the value '1' left by the given amount
return 1 « shiftAmountj

II form the union of set with argument set
BitVector BitVector::unionSet(const BitVector& b)
{

}

assert(bsize == b.bsize)j
BitVector resu1t(bsize)j
int i, total = (bsize+7)/8j
for(i=Oj i<totalj i++)

resu1t.data[i] = data[i] I b.data[i]j
return resultj

II form the intersection of set with argument set
BitVector BitVector: :intersectSet(const BitVector &b)
{

}

assert(bsize == b.bsize)j
BitVector resu1t(bsize)j
int i, total = (bsize+7)/8j
for(i=Oj i<totalj i++)

result.data[i] = data[i] & b.data[i]j
return resultj

II form the difference of set from argument set
BitVector BitVector::differenceSet(const BitVector& b)
{

assert(bsize == b.bsize)j
BitVector result(bsize)j
int i, total = (bsize+7)/8j
for(i=Oj i<totalj i++)

resu1t.data[i] = data[i] & (-b.data[i])j
return resu1tj

10.10. BIT VECTOR CLASS

}

II check if two sets are the same
int BitVector::operator == (const BitVector& b)
{

}

assert(bsize == b.bsize);
II check if every position is equal to the argument
for(int i=O; i<bsize; i++)

if(data[i] != b.data[i])
return 0;

return 1;

II return true if set is subset of argument
int BitVector::subset(const BitVector &b)
{

}

assert(bsize == b.bsize);
II check if every position of the argument
II is a subset of the corresponding receiver position
for(int i=O; i<bsize; i++)

if(b.data[i] != (data[i] & b.data[i]» return 0;
return 1;

II output the bit vector to the stream
ostream& operator « (ostream& s,const BitVector& b)
{

for(int i=O; i<b.bsize; i++) s « b.test(i);
return s;

}

#endif

537

538 CHAPTER 10. PROGRAM LISTING

10.11 Linked List Class

The public interface of the List class;

• List 0 ; Default constructor.

• List(const List<T>&) ; Copy constructor.

• add (T) ; Adds an element in front of the list.

• duplicate 0 ; Makes a duplication of the list.

• first_NodeO ; First element of the list.

• is_EmptyO ; Checks if the list is empty.

• deleteAllNodes 0 ; Removes all the nodes in the list.

• is_Include(T v) ; Checks if v exists in the list.

• delete_First 0 ; Removes the first element of the list.

The public interface of the ListIterator class;

• ListIterator(List<T>&) ; Constructor.

• ini to; Initializes the iterator.

• delete_Current 0 ; Removes the element pointed to by the iterator.

• add_Before(const T v) ; Adds the element v before the node pointed to by
the iterator.

• add_After(const T v) ; Adds the element v after the node pointed to by the
iterator.

• Current value operator ; 0

• End-of-list operator; !

• Increment operator ; ++

• Assignment operator ; =

For a detailed description of the class structure and each member function, please
refer to Section 6.11.

10.11. LINKED LIST CLASS

II MList.h

#ifndef MITERATOR_H
#define MITERATOR_H

template <class T> class Iterator
{

public:
virtual int initO = 0; II Initialization

539

virtual int
virtual T

operator
operator

!() = 0; II Check if a current element exists
()() = 0; II return current element

virtual int
virtual void

};

#endif

#ifndef MLIST_H
#define MLIST_H

operator
operator

#include <assert.h>

II Forward declarations

++() = 0; II Increment operator
= (const T) = 0; II Assignment operator

template <class T> class Link;
template <class T> class ListIterator;

template <class T> class List
{

protected:
I I Data field
Link<T> *head; II The head pointer to the first link node

friend class ListIterator<T>;
public:

II Constructors
ListO;
List(const List<T>&);
virtual -List 0 ;

II Member functions
void add(const T);
List<T>* duplicate() const;
T first_Node() const;
int is_Empty() const;

II Virtual functions
virtual void deleteAllNodes();
virtual int is_Include(T) const;

540 CHAPTER 10. PROGRAM LISTING

virtual void delete_First()j
virtual const List<T>& operator = (const List<T>&)j

}j

template <class T> class Link
{

private:
II Constructors
Link(const T,Link<T>*)j
Link(const Link<T>&)j

Link<T>* duplicate() constj

I I Data Fields
T dataj
Link<T> *nextj

friend class List<T>j
friend class ListIterator<T>j

public:
Link<T>* insert(const T)j

}j

II Insert a new element after
II the current value

template <class T~ class ListIterator public Iterator<T>
{

protected:
II Data Fields
Link<T> *currentj
Link<T> *previousj
List<T>& listj

public:
II Constructors
ListIterator(List<T>&)j
ListIterator(const ListIterator<T>&)j

II Iterator protocol
virtual int init()j
virtual T operator
virtual int operator

OOj
!OJ

virtual int operator ++ 0 j
virtual void operator = (const T)j

II New functions specific to list iterators
void delete_Current()j
void add_Before(const T)j
void add_After(const T)j

10.11. LINKED LIST CLASS

}j

II class List implementation
template <class T> List<T>::List() head(NULL) {}

II Empty all elements from the list
template <class T> List<T>: :-List()
{ deleteAllNodes()j}

II Add a new value to the front of a linked list
template <class T> void List<T>::add(const T val)
{

}

head = new Link<T>(val,head)j
assert(head != NULL)j

II Clear all items from the list
template <class T> void List<T>::deleteAllNodes()
{

}

Link<T> *nxtj
nxt = NULLj
II delete the element pointed to by p
for(Link<T> *p = headj pj p = nxt)
{

}

nxt = p->nextj
p->next = NULLj
delete pj

head = NULLj

II Duplicate a linked list
template <class T> List<T> * List<T>::duplicate() const
{

}

List<T> *newlist = new List<T>j assert(newlist != NULL);

II copy list
if(head) newlist->head = head->duplicate();
return newlistj

II Copy constructor
template <class T> List<T>::List(const List<T>& 1st)
{

II duplicate elements from 1st list
if(lst.is_Empty(» head = NULL;
else

541

542 CHAPTER 10. PROGRAM LISTING

{

}

}

Link<T> *firstLink = Ist.head;
head = firstLink->duplicate();

template <class T>
const List<T> & List<T>::operator = (const List<T>& 1st)
{

}

if (this != &lst)
{

}

II duplicate elements from 1st list
if(lst.is_Empty()) head = NULL;
else
{

}

Link<T> *firstLink = Ist.headj
head = firstLink->duplicate()j

return *thisj

II Return first value in list
template <class T> T List<T>::first_Node() const
{

assert(head != NULL)j return head->dataj
}

II Check if v exists in the list
template <class T> int List<T>::is_Include(T v) const
{

}

for(Link<T> *p = headj pj p = p->next)
if(v == p->data) return 1;

return 0;

II Check if the list is empty
template <class T> int List<T>::is_Empty() const
{ return head == NULLj }

II Remove the first element from the list
template <class T> void List<T>::delete_First()
{

assert(head != NULL);
Link<T> *p = headj
head = p->nextj
delete pj

10.11. LINKED LIST CLASS

}

II class Link implementation
II Insert a new link behind current node
template <class T> Link<T>* Link<T>::insert(const T val)
{

}

next = new Link<T>(val, next);
assert(next != NULL);
return next;

II Create and initialize a new link field
template <class T> Link~T>::Link(const T val,Link<T> *nxt)

: data(val), next(nxt) {}

II Copy constructor
template <class T> Link<T>::Link(const Link<T> &lst)

: data(lst.data), next(lst.next) {}

II duplicate the link
template <class T> Link<T>* Link<T>::duplicate() const
{

}

Link<T> *newlink;

II if there is a next field copy remainder of list
if(next != NULL)

newlink = new Link<T>(data,next->duplicate());
else

newlink = new Link<T>(data, NULL);

II check that allocation was successful
assert(newlink != NULL);
return newlink;

II class ListIterator implementation
II Create and initialize a new list
template <class T> ListIterator<T>::ListIterator(List<T>& aList)

: list(aList)
{ initO; }

II Copy constructor
template <class T>
ListIterator<T>::ListIterator(const ListIterator<T>& x)
{ initO; }

II Set the iterator to the first element in the list

list(x.list)

543

544 CHAPTER 10. PROGRAM LISTING

template <class T> int ListIterator<T>::init()
{

}

previous = NULLj current = list.headj
return current != NULLj

II Return value of the current element
template <class T> T ListIterator<T>::operator ()()
{

}

assert(current != NULL)j
return current->dataj

II Check for the termination of the iterator
template <class T> int ListIterator<T>::operator !()
{

}

II if current link references a removed value,
II update current to point to next position
if(current == NULL)

if (previous != NULL) current = previous->nextj

II check if current is valid
return current != NULLj

II The increment operator that move current pointer to next element
template <class T> int ListIterator<T>::operator ++()
{

}

II if current link is deleted
if(current == NULL)
{

if (previous == NULL) current
else current

}

else II advance pointer
{

}

previous = currentj
current = current->nextj

list.headj
previous->nextj

II return true if current element is valid
return current != NULLj

II Assignment operator: modify value of the current element
template <class T> void ListIterator<T>::operator = (const T val)
{

10.11. LINKED LIST CLASS

}

assert(current != NULL);
current->data = val;

II Remove the current element from a list
template <class T> void Listlterator<T>: :delete_Current()
{

}

assert(current != NULL);

II remove the first element
if (previous == NULL) list.head = current->next;
else previous->next = current->next;

II delete current node and set current pointer to null
delete current;
current = NULL;

II Add a new element to the list before current value
template <class T> void Listlterator<T>: : add_Before (const T val)
{

}

if (previous) II not at the beginning
previous = previous->insert(val);
else II at the beginning of the list
{

}

list.add(val);
previous = list.head;
current = previous->next;

II Add a new element to the list after current value
template <class T> void Listlterator<T>::add_After(const T val)
{

if(current != NULL) II not at the beginning
current->insert(val);

else if (previous != NULL) II at the end of list
current = previous->insert(val);

else II at the beginning of the list
list.add(val);

}

#endif

545

546 CHAPTER 10. PROGRAM LISTING

10.12 Polynomial Class

The public interface of the Poly term class:

• Polyterm(char*) : Constructor giving the variable name (default is "x").

• Polyterm(const Polyterm<T>&) : Copy constructor.

• Polyterm<T>& operator+=(Polyterm<T»

• Polyterm<T>& operator-=(Polyterm<T»

• Polyterm<T>& operator*=(Polyterm<T»

• Polyterm<T>& operator*=(T)

• Polyterm<T>& operator/=(Polyterm<T»

• Polyterm<T>& operator/=(T)

• Polyterm<T> operator / (Polyterm<T» : Division neglecting remainder.

• Polyterm<T> operator/(T)

• int operator> (Polyterm<T» : Comparison for ordering in Polynomial.

• int operator==(Polyterm<T»

• int operator!=(Polyterm<T»

• Polyterm<T>& operator=(Polyterm<T»

• Polyterm<T>& operator=(T)

• int equal (Polyterm<T» : Check if the Poly terms represent the same vari­
able.

• Polyterm<T> operator*(Polyterm<T»

• Polyterm<T> operator~ (unsigned int) : Set the term's exponent.

• Polyterm<T> variable 0 : Return a simple Poly term for the variable with
coefficient and exponent 1.

• T value (T t) : Calculate the value of the term for t.

• -PolytermO : Destructor.

The friend functions of the Poly term class:

• Polyterm<T> operator*(T,Polyterm<T»

10.12. POLYNOMIAL CLASS 547

• Polyterm<T> operator*(Polyterm<T>,T)

• Polyterm<T> operator-(Polyterm<T»

• Polyterm<T> operator+(Polyterm<T»

• Polyterm<T> Diff (Polyterm<T» : Differentiate the term.

• Polyterm<T> Int (Polyterm<T» : Integrate the term neglecting constant of
integration.

• ostream& operator«(ostream&,Polyterm<T>&)

The public interface of the Polynomial class:

• Polynomial (Polyterm<T> x) : Constructor for polynomial with variable x.

• Polynomial(char*) : Constructor giving the variable name.

• Polynomial(Polynomial<T» : Copy constructor.

• Polynomial(int) : Constant integer polynomial constructor.

• Polynomial<T>& operator=(Polynomial<T»

• Polynomial<T>& operator+=(Polyterm<T»

• Polynomial<T>& operator-=(Polyterm<T»

• Polynomial<T> operator+(Polyterm<T»

• Polynomial<T> operator-(Polyterm<T»

• Polynomial<T> operator+=(T)

• Polynomial<T> operator-=(T)

• Polynomial<T> operator+(Polynomial<T»

• Polynomial<T> operator-(Polynomial<T»

• Polynomial<T>& operator+=(Polynomial<T»

• Polynomial<T>& operator-=(Polynomial<T»

• Polynomial<T>& operator=(Polyterm<T»

• Polynomial<T> operator+(T)

• Polynomial<T> operator-(T)

• Polynomial<T>& operator=(T)

548 CHAPTER 10. PROGRAM LISTING

• Polynomial<T>& operator*=(T)

• Polynomial<T>& operator*=(Polyterm<T»

• Polynomial<T>& operator*=(Polynomial<T»

• Polynomial<T> operator*(T)

• Polynomial<T> operator*(Polyterm<T»

• Polynomial<T> operator*(Polynomial<T»

• Polynomial<T> operator~(unsigned int)

• Polynomial<T>& operator/=(T)

• Polynomial <T>& operator /= (Polyterm<T» : Division neglecting remainder.

• Polynomial <T>& operator /= (Polynomial <T» : Division neglecting remain­
der.

• Polynomial<T> operator/(T)

• Polynomial<T> operator/ (Polyterm<T» : Division neglecting remainder.

• Polynomial <T> operator / (Polynomial <T» : Division neglecting remainder.

• Polynomial<T>& operator%=(T)

• Polynomial <T>& operator%= (Polyterm<T» : Remainder after division.

• Polynomial <T>& operator%= (Polynomial <T» : Remainder after division.

• Polynomial<T> operator%(T)

• Polynomial <T> operator% (Polyterm<T» : Remainder after division.

• Polynomial <T> operator% (Polynomial <T» : Remainder after division.

• int operator==(Polynomial<T»

• int operator==(Polyterm<T»

• int operator==(T)

• int operator!=(Polynomial<T»

• int operator!=(Polyterm<T»

• int operator!=(T)

• T value(T t) : Calculate the polynomial's value at t.

10.12. POLYNOMIAL CLASS 549

• T operator 0 (T t) : Calculate the polynomial's value at t.

• -PolynomialO : Destructor.

The friend functions of the Polynomial class:

• Polynomial<T> operator-(Polynomial<T»

• Polynomial<T> operator+(Polynomial<T»

• Polynomial<T> operator+(Polyterm<T>,Polynomial<T»

• Polynomial<T> operator-(Polyterm<T>,Polynomial<T»

• Polynomial <T> Diff (Polynomial <T» : Differentiate the polynomial.

• Polynomial <T> lnt (Polynomial <T» : Integrate the polynomial neglecting
constant of integration.

• Polynomial<T> operator+(T,Polynomial<T»

• Polynomial<T> operator-(T,Polynomial<T»

• Polynomial <T> operator+ (Polyterm<T>, Polyterm<T» : Sum of Poly terms
is a Polynomial.

• Polynomial <T> operator- (Polyterm<T>, Polyterm<T» : Difference of
Poly terms is a Polynomial.

• Polynomial<T> operator+(T,Polyterm<T»

• Polynomial<T> operator-(T,Polyterm<T»

• Polynomial <T> operator+ (Polyterm<T>, T) : Sum of a constant and Poly term
is a Polynomial.

• Polynomial <T> operator- (Polyterm<T> , T) Difference of a constant and
Poly term is a Polynomial.

• Polynomial<T> operator*(T,Polynomial<T»

• Polynomial<T> operator*(Polyterm<T>,Polynomial<T»

• int operator==(Polyterm<T>,Polynomial<T»

• int operator==(T,Polynomial<T»

• int operator!=(Polyterm<T>,Polynomial<T»

• int operator!=(T,Polynomial<T»

550 CHAPTER 10. PROGRAM LISTING

• ostream& operator«(ostream&,Polynomial<T>&)

For a detailed description of the class structure and each member function, please
refer to Section 6.12.

II poly.h

#ifndef _POLYNOMIAL
#define _POLYNOMIAL

#include <string.h>
#include <iostream.h>

II Assumption: T has typecasts defined
II and can act as a numeric data type

template <class P>
P __ poly __ power(P x,unsigned int y)
{

}

P resu1t(l)j
for(int i=lji<=yji++) result*=xj
return resultj

IIPolyterm class for monomials

template <class T> class Poly term
{

public:
Polyterm(char *sym="x")j
Polyterm(const Polyterm<T> &)j
Polyterm<T>& operator+=(const Polyterm<T>&)j
Polyterm<T>& operator-=(const Polyterm<T>&)j
Polyterm<T>& operator*=(const Polyterm<T>&)j
Polyterm<T>& operator*=(T)j
Polyterm<T>& operator/=(const Polyterm<T>&)j
Polyterm<T>& operator/=(T)j
Polyterm<T> operator/(const Polyterm<T>&) constj
Polyterm<T> operator/(T) constj
int operator>(const Polyterm<T>&) constj
int operator==(const Polyterm<T>&) constj
int operator!=(const Polyterm<T>&) constj
Polyterm<T> &operator=(const Polyterm<T>&)j
Polyterm<T> &operator=(T)j
int equal(const Polyterm<T>&) constj
Polyterm<T> operator*(const Polyterm<T>&) constj
friend Polyterm<T> operator*(T,const Polyterm<T>&)j

10.12. POLYNOMIAL CLASS

friend Polyterm<T> operator*(const Polyterm<T>&,T);
Polyterm<T> operator-(unsigned int) const;
friend Polyterm<T> operator-(const Polyterm<T>&);
friend Polyterm<T> operator+(const Polyterm<T>&);
Polyterm<T> variable() const;
friend Polyterm<T> Diff(Polyterm<T»;
friend Polyterm<T> Int(Polyterm<T»;
T value(T);
friend ostream &operator«(ostream&,const Polyterm<T>&);
-PolytermO;

protected:
Polyterm(T coeff,char *sym,unsigned int exp);
char *symbol;
T coefficient;
unsigned int exponent;

};

template <class T>
Polyterm<T>::Polyterm(char *sym)
{

coefficient(T(l»

}

exponent=l;
symbol=new char[strlen(sym)+l];
strcpy(symbol,sym);

template <class T>
Polyterm<T>: :Polyterm(const Polyterm<T> &p)
{

}

symbol=new char[strlen(p.symbol)+l];
strcpy(symbol,p.symbol);
exponent=p.exponent;

template <class T>

coefficient(p.coefficient)

Polyterm<T>& Polyterm<T>::operator+=(const Polyterm<T> &p)
{

}

if«p.exponent==exponent) && (!strcmp(symbol,p.symbol)I I (exponent==O»)
coefficient+=p.coefficient;

return *this;

template <class T>
Polyterm<T>& Polyterm<T>: :operator-=(const Polyterm<T> &p)
{

if«p.exponent==exponent) && (!strcmp(symbol,p.symbol) I I (exponent==O»)
coefficient-=p.coefficient;

return *this;

551

552 CHAPTER 10. PROGRAM LISTING

}

template <class T>
Polyterm<T>& Polyterm<T>::operator*=(const Polyterm<T> &p)
{

}

char *symj
if(!strcmp(symbol,p.symbol)I I (exponent==O) I I (p.exponent==O))
{

}

if(exponent!=Ollp.exponent==O) sym=symbolj
else sym=p.symbolj
return *this=Polyterm<T>(coefficient*p.coefficient,

sym,exponent+p.exponent)j

return *thisj

template <class T>
Polyterm<T>& Polyterm<T>: :operator*=(T c)
{

}

coefficient*=cj
return *thisj

template <class T>
Polyterm<T>& Polyterm<T>: :operator/=(const Polyterm<T> &x)
{

}

if(x.coefficient==T(O))
{

}

*this=T(O)j
return *thisj

coefficient/=x.coefficientj
if(exponent>=x.exponent) exponent-=x.exponentj
else coefficient=T(O)j
return *thisj

template <class T> Polyterm<T>& Polyterm(T>::operator/=(T c)
{

}

if(c==T(O))
{

}

*this=T(O)j
return *thisj

coefficient/=cj
return *thisj

10.12. POLYNOMIAL CLASS 553

template <class T>
Polyterm<T> Polyterm<T>::operator/(const Polyterm<T> &x) const
{

}

Polyterm<T> xl(*this);
xl/=x;
return xl;

template <class T> Polyterm<T> Polyterm<T>: :operator/(T c) const
{

}

Polyterm<T> xl(*this);
xl/=c;
return xl;

template <class T>
int Polyterm<T>::operator>(const Polyterm<T> &p) const
{

return (exponent>p.exponent);
}

template <class T>
int Polyterm<T>::operator==(const Polyterm<T> &p) const
{

}

if«coefficient==T(O))&&(coefficient==p.coefficient)) return 1;
return «exponent==p.exponent)&&

(lstrcmp(symbol,p.symbol) I I (exponent==O))&&
(coefficient==p.coefficient));

template <class T>
int Polyterm<T>: :operatorl=(const Polyterm<T> &p) const
{

return l(*this==p);
}

template <class T>
Polyterm<T> &Polyterm<T>: :operator=(const Polyterm<T> &p)
{

}

delete[] symbol;
coefficient=p.coefficient;
symbol=new char[strlen(p.symbol)+l];
strcpy(symbol,p.symbol);
exponent=p.exponent;
return *this;

554 CHAPTER 10. PROGRAM LISTING

template <class T> Polyterm<T> tPolyterm<T>::operator=(T c)
{

}

exponent=Oj
coefficient=cj
return *thisj

template <class T>
int Polyterm<T>::equal(const Polyterm<T> tp) const
{

}

return «!strcmp(symbol,p.symbol»I I
(exponent==O)I I (p.exponent==O»j

template <class T>
Polyterm<T> Polyterm<T>::operator*(const Polyterm<T> tp) const
{

}

if(strcmp(symbol,p.symbol)tt(exponent!=O)tt(p.exponent!=0»
return Polyterm<T>(T(O),symbol,O)j

return Poly term<T> (coefficient*p. coefficient , symbol,
exponent+p.exponent)j

template <class T> Polyterm<T> operator*(T c,const Polyterm<T> tp)
{

return Polyterm<T>(c*p.coefficient,p.symbol,p.exponent);
}

template <class T>
Polyterm<T> operator*(const Polyterm<T> tp,T c)
{

return Polyterm<T>(c*p.coefficient,p.symbol,p.exponent);
}

template <class T>
Polyterm<T> Polyterm<T>::operator~(unsigned int y) const
{

return Polyterm<T>(coefficient,symbol,Y)j
}

template <class T> Polyterm<T> operator-(const Polyterm<T> tx)
{

return (Polyterm<T>(T(O)*x)-=x)j
}

template <class T> Polyterm<T> operator+(const Polyterm<T> tx)

10.12. POLYNOMIAL CLASS

{ return x; }

template <class T> Polyterm<T> Polyterm<T>::variable() const
{ return Polyterm<T>(T(l),this->symbol,l); }

template <class T> Polyterm<T> Diff(Polyterm<T> p)
{

}

p.coefficient*=T(p.exponent);
p.exponent--;
return p;

template <class T> Polyterm<T> Int(Polyterm<T> p)
{

}

p.coefficient/=T(p.exponent+l);
p.exponent++;
return p;

template <class T> T Polyterm<T>: : value (T x)
{

return coefficient* __ poly __ power(x,exponent);
}

template <class T>
ostream toperator«(ostream to,const Polyterm<T> tp)
{

}

if«(p.coefficient!=T(l»tt(p.coefficientl=T(-l»)I I
(p.exponent==O»

o«"("«p.coefficient«")";
if(p.exponent) o«p.symbol;
if(p.exponent>l) o«"-"«p.exponent;
return 0;

template <class T> Polyterm<T>::-Polyterm()
{ delete[] symbol; }

template <class T>
Polyterm<T>::Polyterm(T coeff,char *sym,unsigned int exp)

coefficient (coeff)
{

}

exponent=exp;
symbol=new char[strlen(sym)+l];
strcpy(symbol,sym);

555

556 CHAPTER 10. PROGRAM LISTING

II structure to support list for polynomial
template <class T> struct polyListltem
{

Polyterm<T> *item;
polyListltem<T> *next;
polyListltem<T> *previous;

};

II Polynomial class
template <class T> class Polynomial
{

public:
Polynomial(Polyterm<T> x): variable(x.variable()), head(O) {};
Polynomial(char *sym): variable(Polyterm<T>(sym)), head(O) {};
Polynomial(const Polynomial<T>&);
Polynomial(int);
Polynomial<T>& operator=(const Polynomial<T>&);
friend Polynomial<T> operator+(const Polynomial<T>&);
friend Polynomial<T> operator-(const Polynomial<T>&);
Polynomial<T>& operator+=(const Polyterm<T>&);
Polynomial<T>& operator-=(const Polyterm<T>&);
Polynomial<T> operator+(const Polyterm<T>&) const;
Polynomial<T> operator-(const Polyterm<T>&) const;
Polynomial<T> operator+=(T);
Polynomial<T> operator-=(T);
friend Polynomial<T> operator+(const Polyterm<T>&,

const Polynomial<T>&);
friend Polynomial<T> operator-(const Polyterm<T>&,

const Polynomial<T>&);
Polynomial<T> operator+(const Polynomial<T>&) const;
Polynomial<T> operator-(const Polynomial<T>&) const;
Polynomial<T>& operator+=(const Polynomial<T>&);
Polynomial<T>& operator-=(const Polynomial<T>&);
Polynomial<T>& operator=(const Polyterm<T>&);
friend Polynomial<T> Diff(Polynomial<T»;
friend Polynomial<T> Int(Polynomial<T»;
Polynomial<T> operator+(T) const;
Polynomial<T> operator-(T) const;
friend Polynomial<T> operator+(T,const Polynomial<T>&);
friend Polynomial<T> operator-(T,const Polynomial<T>&);
Polynomial<T>& operator=(T);
friend Polynomial<T> operator+(const Polyterm<T>&,

const Polyterm<T>&);
friend Polynomial<T> operator-(const Polyterm<T>&,

const Polyterm<T>&);
friend Polynomial<T> operator+(T,const Polyterm<T>&);
friend Polynomial<T> operator-(T,const Polyterm<T>&);

10.12. POLYNOMIAL CLASS

friend Polynomial<T> operator+(const Polyterm<T>&,T)j
friend Polynomial<T> operator-(const Polyterm<T>&,T)j
Polynomial<T>& operator*=(T)j
Polynomial<T>& operator*=(const Polyterm<T>&)j
Polynomial<T>& operator*=(const Polynomial<T>&)j
Polynomial<T> operator*(T) constj
Polynomial<T> operator*(const Polyterm<T>&) constj
Polynomial<T> operator*(const Polynomial<T>&) constj
Polynomial<T> operator-(unsigned int)j
friend Polynomial<T> operator*(T,const Polynomial<T>&)j
friend Polynomial<T> operator*(const Polyterm<T>&,

const Polynomial<T>&)j
Polynomial<T>& operator/=(T)j
Polynomial<T>& operator/=(const Polyterm<T>&)j
Polynomial<T>& operator/=(const Polynomial<T>&)j
Polynomial<T> operator/(T) constj
Polynomial<T> operator/(const Polyterm<T>&) constj
Polynomial<T> operator/(const Polynomial<T>&) constj
Polynomial<T>& operatory'=(T)j
Polynomial<T>& operatorY.=(const Polyterm<T>&)j
Polynomial<T>& operatorY.=(const Polynomial<T>&)j
Polynomial<T> operatorY.(T) constj
Polynomial<T> operatorY.(const Polyterm<T>&) constj
Polynomial<T> operatorY.(const Polynomial<T>&) constj
int operator==(T) constj
int operator==(const Polyterm<T>&) constj
int operator==(const Polynomial<T>&) constj
friend int operator==(T,const Polynomial<T>&)j
friend int operator==(const Polyterm<T>&,const Polynomial<T>&)j
int operator!=(T) constj
int operator!=(const Polyterm<T>&) constj
int operator!=(const Polynomial<T>&) constj
friend int operator!=(T,const Polynomial<T>&)j
friend int operator!=(const Polyterm<T>&,const Polynomial<T>&)j
T value(T)j
T operator() (T)j
friend ostream &operator«(ostream&,const Polynomial<T> &)j
~Polynomial 0 j

protected:

}j

void tidy(void)j
Polyterm<T> variablej
polyListltem<T> *headj

template <class T> Polynomial<T>::Polynomial(const Polynomial<T> &p)
{

head=NULLj

557

558 CHAPTER 10. PROGRAM LISTING

polyListltem<T> *templ=p.head,*temp2;
variable=p.variable;
if (templ)
{

head=new polyListltem<T>;
head->item=new Polyterm<T>(*(templ->item));
head->previous=NULL;
head->next=NULL;
templ=templ->next;

}

temp2=head;
while (templ)
{

temp2->next=new polyListltem<T>;
(temp2->next)->previous=temp2;
temp2=temp2->next;
temp2->item=new Polyterm<T>(*(templ->item));
temp2->next=NULL;
templ=templ->next;

}

}

template <class T> Polynomial<T>: : Polynomial (int c)
{

}

if(c!=O)
{

}

variable=Polyterm<T>(lx");
head=new polyListltem<T>;
head->item=new Polyterm<T>(T(c)*variable-O);
head->previous=NULL;
head->next=NULL;

else
{

}

variable=Polyterm<T>(" x");
head=NULL;

template <class T>
Polynomial<T>& Polynomial<T>: :operator=(const Polynomial<T> &p)
{

if(head==p.head) return *this;
//destroy Polynomial
polyListltem<T> *temp=head;

variable=p.variable;

10.12. POLYNOMIAL CLASS

while (temp)
{

}

head=temp->next;
delete temp->item;
delete temp;
temp=head;

II construct new Polynomial
polyListltem<T> *templ=p.head,*temp2;
variable=p.variable;

}

if (templ)
{

}

head=new polyListltem<T>;
head->item=new Polyterm<T>(*(templ->item»;
head->previous=NULL;
head->next=NULL;
templ=templ->next;

temp2=head;
while (templ)
{

}

temp2->next=new polyListltem<T>;
(temp2->next)->previous=temp2;
temp2=temp2->next;
temp2->item=new Polyterm<T>(*(templ->item»;
temp2->next=NULL;
templ=templ->next;

return *this;

template <class T> Polynomial<T> operator+(const Polynomial<T> &p)
{ return p; }

template <class T> Polynomial<T> operator-(const Polynomial<T> &p)
{

return Polynomial<T>(p.variable)-p;
}

template <class T>
Polynomial<T>& Polynomial<T>: :operator+=(const Polyterm<T> &x)
{

polyListltem<T> *temp=head,*temp2;

if(!variable.equal(x» return *this;
if (head==NULL)
{

559

560 CHAPTER 10. PROGRAM LISTING

}

head=new polyListltem<T>j
head->item=new Polyterm<T>(x)j
head->previous=NULLj
head->next=NULLj

else
{

while«temp->next!=NULL)&&(*(temp->item»x»
{

temp=temp->nextj
}

if«*(temp->item)+=x)==(*(temp->item»&&(x>*(temp->item»)
{

temp2=new polyListltem<T>j
temp2->next=tempj
temp2->previous=temp->previousj
if(temp->previous==NULL) head=temp2j
else (temp->previous)->next=temp2j
temp->previous=temp2j
temp2->item=new Polyterm<T>(x)j

}

else if(*(temp->item»x)
{

}

}

temp2=new polyListltem<T>j
temp->next=temp2j
temp2->next=NULLj
temp2->previous=tempj
temp2->item=new Polyterm<T>(x)j

tidy 0 j

return *thisj
}

template <class T>
Polynomial<T>& Polynomial<T>::operator-=(const Polyterm<T> &x)
{

}

*this+=-xj
return *thisj

template <class T> Polynomial<T>
Polynomial<T>::operator+(const Polyterm<T> &x) const
{

}

if(head==NULL) return (Polynomial<T>(x)+=x)j
return (Polynomial<T>(*this)+=x)j

10.12. POLYNOMIAL CLASS 561

template <class T> Polynomial<T>
Polynomial<T>: :operator-(const Polyterm<T> &x) const
{

}

if(head==NULL) return (Polynomial<T>(x)-=X)i
return (Polynomial<T>(*this)-=X)i

template <class T> Polynomial<T> Polynomial<T>: :operator+=(T x)
{

}

Polyterm<T> Yi
y=Xi
*this+=Yi
return *thisi

template <class T> Polynomial<T> Polynomial<T>: :operator-=(T x)
{

Polyterm<T> Yi
y=Xi
*this-=Yi
return *thisi

}

template <class T> Polynomial<T>
operator+(const Polyterm<T> &x,const Polynomial<T> &p)
{ return p+Xi }

template <class T> Polynomial<T>
operator-(const Polyterm<T> &x,const Polynomial<T> &p)
{ return X+(-P)i }

template <class T> Polynomial<T>
Polynomial<T>::operator+(const Polynomial<T> &p) const
{

}

if(head==NULL) return Pi
Polynomial<T> p1(*this)i
polyListltem<T> *temp=p.headi
while (temp)
{

}

p1+=*(temp->item)i
temp=temp->nexti

return p1i

template <class T> Polynomial<T>

562 CHAPTER 10. PROGRAM LISTING

Polynomial<T>::operator-(const Polynomial<T> &p) const
{

if(head==NULL) return T(-i)*p;
Polynomial<T> pi(*this);
polyListltem<T> *temp=p.head;
while (temp)
{

}

pi-=*(temp->item);
temp=temp->next;

return p1;
}

template <class T> Polynomial<T>&
Polynomial<T>: :operator+=(const Polynomial<T> &p)
{ return (*this=*this+p); }

template <class T> Polynomial<T>&
Polynomial<T>: :operator-=(const Polynomial<T> &p)
{ return (*this=*this-p); }

template <class T> Polynomial<T>&
Polynomial<T>::operator=(const Polyterm<T> &x)
{ return *this=Polynomial<T> (variable)+x; }

template <class T>
Polynomial<T> Diff(Polynomial<T> p)
{

}

Polynomial<T> pi(p);
polyListltem<T> *temp=p1.head;
while (temp)
{

}

(temp->item)=Diff((temp->item»;
temp=temp->next;

p1.tidyO;
return p1;

template <class T> Polynomial<T> Int(Polynomial<T> p)
{

Polynomial<T> p1(p);
polyListltem<T> *temp=p1.head;
while (temp)
{

(temp->item)=Int((temp->item»;
temp=temp->next;

10.12. POLYNOMIAL CLASS

}

p1.tidyO;
return pl;

}

template <class T> Polynomial<T> Polynomial<T>: : operator+(T c) const
{ return (*this)+(c*(variableAO»; }

template <class T> Polynomial<T> Polynomial<T>::operator-(T c) const
{ return (*this)-(c*(variableAO»; }

template <class T> Polynomial<T> operator+(T c,const Polynomial<T> &p)
{ return p+(c*(p.variableAO»; }

template <class T> Polynomial<T> operator-(T c,const Polynomial<T> &p)
{ return (c*(p.variableAO»-p; }

template <class T> Polynomial<T>& Polynomial<T>: :operator=(T c)
{ return *this=Polynomial<T>(variable).operator+(c); }

template <class T> Polynomial<T>
operator+(const Polyterm<T> &xl,const Polyterm<T> &x2)
{

Polynomial<T> pl(xl.variable(»;
return pl+xl+x2;

}

template <class T> Polynomial<T>
operator-(const Polyterm<T> &xl,const Polyterm<T> &x2)
{

}

Polynomial<T> pl(xl.variable(»;
return pl+xl-x2;

template <class T> Polynomial<T>
operator+(T xl,const Polyterm<T> &x2)
{

}

Polynomial<T> pl(x2.variable(»;
return pl+xl+x2;

template <class T> Polynomial<T>
operator-(T xl,const Polyterm<T> &x2)
{

}

Polynomial<T> pl(x2.variable(»;
return pl+xl-x2;

563

564

template <class T> Polynomial<T>
operator+(const Polyterm<T> &xl,T x2)
{

Polynomial<T> pl(xl.variable());

CHAPTER 10. PROGRAM LISTING

return (pl.operator+(xl)).operator+(x2);
}

template <class T> Polynomial<T>
operator-(const Polyterm<T> &xl,T x2)
{

Polynomial<T> pl(xl.variable());
return (pl.operator+(xl)).operator-(x2);

}

template <class T> Polynomial<T>&
Polynomial<T>::operator*=(T c)
{

}

Polyterm<T> x;
x=c;
return *this*=x;

template <class T> Polynomial<T>&
Polynomial<T>::operator*=(const Polyterm<T> &x)
{

}

polyListltem<T> *temp=head;
while (temp)
{

}

(temp->item)=x;
temp=temp->next;

tidyO;
return *this;

template <class T> Polynomial<T>&
Polynomial<T>::operator*=(const Polynomial<T> &p)
{

Polynomial<T> pl(this->variable),p2(this->variable);
polyListltem<T> *temp=p.head;
while (temp)
{

pl=*this;
pl*=*(temp->item);
p2+=pl;
temp=temp->next;

10.12. POLYNOMIAL CLASS

}

}

*this=p2;
return *this;

template <class T> Polynomial<T>
Polynomial<T>::operator*(T c) const
{

}

Polynomial<T> p1(*this);
p1*=c;
return p1;

template <class T> Polynomial<T>
Polynomial<T>::operator*(const Polyterm<T> &x) const
{

}

Polynomial<T> p1(*this);
ph=x;
return p1;

template <class T> Polynomial<T>
Polynomial<T>: :operator*(const Polynomial<T> &p) const
{

}

Polynomial<T> p1(*this);
ph=p;
return p1;

template <class T> Polynomial<T>
Polynomial<T>::operator-(unsigned int n)
{ return __ poly __ power(*this,n); }

template <class T> Polynomial<T>
operator*(T c,const Polynomial<T> &p)
{ return p*c; }

template <class T> Polynomial<T>
operator*(const Polyterm<T> &x,const Polynomial<T> &p)
{ return p*x; }

template <class T> Polynomial<T>& Polynomial<T>::operator/=(T c)
{

polyListltem<T> *temp=head;
while (temp)
{

*(temp->item)/=c;

565

566 CHAPTER 10. PROGRAM LISTING

}

temp=temp->next;
}

tidyO;
return *this;

template <class T> Polynomial<T>&
Polynomial<T>: :operator/=(const Polyterm<T> &x)
{

}

polyListltem<T> *temp=head;
while (temp)
{

}

* (temp->item)/=x;
temp=temp->next;

tidyO;
return *this;

template <class T> Polynomial<T>&
Polynomial<T>::operator/=(const Polynomial<T> &p)
{

}

polyListltem<T> *templ=head,*temp2=p.head;
Polynomial<T> result(this->variable);
Polyterm<T> temp(this->variable),zero;
zero=T(O);
if(temp2==NULL) return *this;
while«temp!=zero)&&(templ!=NULL))
{

}

temp=(*(templ->item))/(*(temp2->item));
*this-=temp*p;
result+=temp;
templ=head;

*this=result;
return *this;

template <class T> Polynomial<T>
Polynomial<T>: :operator/(T c) const
{

}

Polynomial<T> pl(*this);
pl/=c;
return p1;

template <class T> Polynomial<T>

10.12. POLYNOMIAL CLASS

Polynomial<T>::operator/(const Polyterm<T> &x) const
{

}

Polynomial<T> pi(*this);
pi/=x;
return pi;

template <class T> Polynomial<T>
Polynomial<T>::operator/(const Polynomial<T> &p) const
{

}

Polynomial<T> pi(*this);
p1/=p;
return pi;

template <class T> Polynomial<T>& Polynomial<T>::operator%=(T c)
{ return *this-=c*(*this/c); }

template <class T> Polynomial<T>&
Polynomial<T>::operator%=(const Polyterm<T> &x)
{ return *this-=x*(*this/x); }

template <class T> Polynomial<T>&
Polynomial<T>::operator%=(const Polynomial<T> &p)
{ return *this-=p*(*this/p); }

template <class T> Polynomial<T>
Polynomial<T>::operator%(T c) const
{ return *this-c*(*this/c); }

template <class T> Polynomial<T>
Polynomial<T>: :operator%(const Polyterm<T> &x) const
{

return *this-x*(*this/x);
}

template <class T> Polynomial<T>
Polynomial<T>::operator%(const Polynomial<T> &p) const
{ return *this-p*(*this/p); }

template <class T> int Polynomial<T>::operator==(T c) const
{

}

Polyterm<T> X;
x=c;
return *this==x;

567

568 CHAPTER 10. PROGRAM LISTING

template <class T>
int Polynomial<T>::operator==(const Polyterm<T> &x) const
{

}

Polynomial<T> p(x);
p=x;
return *this==p;

template <class T>
int Polynomial<T>::operator==(const Polynomial<T> &p) const
{ return C~*this-p). head==NULL); }

/

template <class T> int operator==(T c,const Polynomial<T> &p)
{ return p==c; }

template <class T>
int operator==(const Polyterm<T> &x,const Polynomial<T> &p)
{ return p==x; }

template <class T> int Polynomial<T>::operator!=(T c) const
{ return !(*this==c); }

template <class T>
int Polynomial<T>::operator!=(const Polyterm<T> &x) const
{ return !(*this==x); }

template <class T>
int Polynomial<T>: : operator! =(const Polynomial<T> &p) const
{ return !(*this==p); }

template <class T> int operator!=(T c,const Polynomial<T> &p)
{ return p!=c; }

template <class T>
int operator!=(const Polyterm<T> &x,const Polynomial<T> &p)
{ return p!=x; }

template <class T> T Polynomial<T>::value(T c)
{

polyListltem<T> *temp=head;
T sum=T(O);
while (temp)
{

}

sum+=(temp->item)->value(c);
temp=temp->next;

return sum;

10.12. POLYNOMIAL CLASS

}

template <class T> T Polynomial<T>: :operator()(T c)
{ return value(c); }

template <class T>
ostream &operator«(ostream &o,const Polynomial<T> &p)
{

}

polyListltem<T> *temp=p.head;
T zero(O);
if (p.head==O)
{

}

o«zero;
return 0;

while (temp)
{

}

o«*«temp)->item);
temp=«temp)->next);
if(temp) 0«"+";

return 0;

template <class T> Polynomial<T>::-Polynomial()
{

polyListltem<T> *temp=head;
while (temp)
{

head=temp->next;
delete temp->item;
delete temp;
temp=head;

}

}

template <class T> void Polynomial<T>: :tidy(void)
{

polyListltem<T> *temp,*temp2;
while «head!=NULL)&&«T(O)*(*(head->item)))==(*(head->item))))
{

}

temp=head;
head=head->next;
if(head) head->previous=NULL;
delete temp->item;
delete temp;

569

570 CHAPTER 10. PROGRAM LISTING

temp=head;
while (temp)
{

}

temp2=temp->next;
if«(T(O)*(*(temp->item»)==(*(temp->item»»
{

}

if(temp->previous) (temp->previous)->next=temp->next;
if(temp->next) (temp->next)->previous=temp->previous;
delete temp->item;
delete temp;

temp=temp2;

}

#endif

10.13. SET CLASS 571

10.13 Set Class

The public interface of the Set class:

• Set 0 : Default Constructor.

• Set (const T) : Constructor for a single element.

• -Set 0 : Destructor.

• Set(const Set<T>&) : Copy constructor.

• Set<T>& operator = (const Set<T>&) : Assignment operator.

• int cardinalityO const: Number of elements in set.

The friend functions of the Set class:

• friend int operator == (Set<T>&,Set<T>&) : Equals operator.

• friend Set<T> operator + (Set<T>&,Set<T>&) : Union of two sets.

• friend Set<T> operator * (Set<T>&, Set<T>&) : intersection of two sets.

• ostream& operator « (ostream&,Set<T>&): Output stream operator.

For a detailed description of the class structure and each member function, please
refer to Section 6.13.

II set.h

#ifndef _SET
#define _SET

#include <iostream>
#include <stdlib.h> II for exit(O)

using namespace std;

II Declaration class Set
template <class T> class Set
{

public:
SetO;
Set(const T);
-SetO;

II default constructor
II constructor single element
II destructor

Set(const Set<T>t); II copy constructor
Set<T>k operator = (const Set<T>t); II assignment operator

572 CHAPTER 10. PROGRAM LISTING

};

int cardinality() const; II number of elements

friend Set<T> operator + (Set<T>&,Set<T>&); II union
friend Set<T> operator * (Set<T>&,Set<T>&); II intersection
friend int operator == (Set<T>&,Set<T>&);

friend ostream& operator « (ostream&,Set<T>&);

struct Box {
T value;
Box* next;
};

struct Set_DESC {
Box* root;
Box* last;
int no_of_elements;
int references;
};

private:

II element of linked list
II the value of the item in the set
II pointer to next Box

II the descriptor
II root of list of values
II last element
II number of elements in list
II references to this item

void first_element(); II iterate set first element
void next_element(); II iterate move to next
T current_element() const; II iterate return current item
int is_at_end() const; II iterate at end
void add_at_end(const T); II add to list at end
void releasee); II release sets storage
void fail(const char[]) const; II give up
Set_DESC* the_desc;
Box* the_current;

II description of set
II current element looked at

II defintion class Set
template <class T> Set<T>::Set()
{

the_desc = new Set_DESC[l];
if(the_desc == (Set_DESC*) NULL) fail("Cannot create Set - descriptor");
the_desc -> no_of_elements = 0;
the_desc -> references = 1;
the_desc -> root (Box*) NULL;
the_desc -> last = (Box*) NULL;

}

template <class T> Set<T>::Set(const T item)
{

10.13. SET CLASS 573

if(the_desc == (Set_DESC*) NULL) fail("Cannot create Set-descriptor");

}

the_desc -> no_of_elements = 1;
the_desc -> references = 1;
the_desc -> root = new Box[l];
if(the_desc -> root == (Bou) NULL) fail("Cannot create Box-descriptor");

the_desc -> last = the_desc -> root;
the_desc -> root->value = item;
the_desc -> root->next = (Box*) NULL;

template <class T> void Set<T>::release()
{

}

if (--(the_desc->references) ==0)
{

}

Box* p_active = the_desc->root;
while(p_active != (Box*) NULL)
{

Box* p_remove = p_active;
p_active = p_active->next;
delete [] p_remove;
}

delete [] the_desc;

template <class T> Set<T>::-Set()
{ release(); }

template <class T> void Set<T>::fail(const char mes[]) const
{

}

cout « "\n" « "Error in class: Set" « "\n";
cout « mes « "\n";
exit (-1) ;

template <class T> Set<T>::Set(const Set <T>& copy)
{

}

copy.the_desc -> references++; II copied item reference count
the_desc = copy.the_desc; II copy pointer to desc.
the_current = copy.the_desc -> root; II current element

template <class T> int Set<T>::cardinality() const
{ return the_desc -> no_of_elements; }

574 CHAPTER 10. PROGRAM LISTING

template <class T> void Set<T>::first_element()
{ the_current = the_desc -> root; }

template <class T> void Set<T>::next_element()
{

}

if (the_current != (Box*) NULL)
the_current = the_current->next;

template <class T> T Set<T>::current_element(void) const
{

}

if (the_current == (Box*) NULL)
{

fail("Selecting item beyond end");
}

return the_current -> value;

template <class T> int Set<T>::is_at_end() const
{ return the_current == (Box*) NULL; }

template <class T> void Set<T>::add_at_end(const T item)
{

}

Box* p_add = new Box[l];
if(p_add == (Box*) NULL) fail("Cannot create new element");
p_add -> value = item; p_add->next = (Box*) NULL;
if(the_desc->root == (Box*) NULL)
{

the_desc->root = p_add;
the_desc->last = p_add;

} else {

}

the_desc -> last -> next = p_add;
the_desc -> last = p_add;

the_desc -> no_of_elements++;

template <class T>
Set<T>& Set<T>::operator = (const Set<T>& sl)
{

sl.the_desc->references++; II copied items ref count
releasee); II storage for overwritten element
the_desc = sl.the_desc;
return *this;

}

template <class T> Set<T> operator + (Set<T>& sl,Set<T>& s2)

10.13. SET CLASS

{

}

Set<T> result;
sl.first_element(); s2.first_element();
while(!sl.is_at_end() I I !s2.is_at_end())
{

}

if(sl.is_at_end())
{

result.add_at_end(s2.current_element());
s2.next_element();
} else
if(s2.is_at_end())
{

result.add_at_end(sl.current_element());
sl.next_element 0;
} else
if(sl.current_element() < s2.current_element())
{

result.add_at_end(sl.current_element());
sl.next_element();
} else
if(sl.current_element() > s2.current_element())
{

result.add_at_end(s2.current_element());
s2.next_element();
} else
if(sl.current_element() == s2.current_element())
{

result.add_at_end(sl.current_element());
sl.next_element(); s2.next_element();
}

return result;

template <class T> Set<T> operator * (Set<T>& sl,Set<T>& s2)
{

int flag = 0;
Set<T> intersection;
sl.first_element(); s2.first_element();
while(!sl.is_at_end())
{

while«!s2.is_at_end()) && (!flag))
{

if(sl.current_element() == s2.current_element())
{

intersection.add_at_end(sl.current_element());
flag = 1;

575

576 CHAPTER 10. PROGRAM LISTING

}

}

s2.next_element();
}

flag = 0;
sl.next_element();
}

return intersection;

template <class T> int operator == (Set<T>& sl,Set<T>& s2)
{

}

sl.first_element(); s2.first_element();
if(sl.cardinality() != s2.cardinality(»
return 0;
if(sl.cardinality() 0) return 1;
while(!sl.is_at_end(»
{

if(sl.current_element() != s2.current_element(»
return 0;
sl.next_element(); s2.next_element();
}

return 1;

template <class T> ostream& operator « (ostream& s,Set<T>& sl)
{

int i;
sl. first_element 0; s « "(";
for(i=O; i < sl.cardinality(); i++)
{

s « sl.current_element();
sl.next_element();
if(i != sl.cardinality()-l) s «
}
s « 11)11;

return s;

II II. , ,

}

#endif

10.14. SYMBOLIC CLASS 577

10.14 Symbolic Class

The header file Mall. h includes the classes Terms, Magnitude, Variable, Number,
Function, Fsqrt, Fdf, FInt, Fexp, Fsinh, Fcosh, Fsin, Fcos, Fcos, Fln. The header
file MSymbol. h includes the classes Symbol, Sum, Product.

The public interface of the Variable class:

• Variable () : Default constructor.

• Variable(String) : Constructor.

• Variable (String, T) : Constructor.

• type () : Returns the character 'V' to indicate the object type.

• varName () : Returns the variable name.

• oprint (ostream&) : Puts the Variable on the output stream.

• val{) : Numerical value of the Variable.

• set (const T) : Sets the numerical value of the Variable.

The public interface of the Number class:

• Number{) : Default constructor.

• Number (T) : Constructor.

• Type conversion operator: operator TO

• Assignment operator : =.

• type{) : Returns the character 'N' to indicate the object type.

• varName () : Returns a NULL string.

• oprint (ostream&) : Puts the Number on the output stream.

• valO : Numerical value of the Number.

• set (const T) : Sets the numerical value of the Number.

The public interface of the classes Fsqrt, Fdf, FInt, Fexp, Fsinh, Fcosh, Fsin, Fcos,
Fln:

• varName () : Returns the function name Fname.

578 CHAPTER 10. PROGRAM LISTING

• oprint 0 : Puts the function name on the output stream.

• f (const T&) : Numerical value of the function.

• type 0 : Returns a character to indicate different functions.

The public interface of the Sum class:

• SumO: Default constructor.

• Sum(const T) : Constructor for numeric numbers.

• Sum(String, int) : Constructor for symbolic variables.

• clear 0 : Removes the value and dependency of a variable.

• expandO : Distributive law and binomial/multinomial expansion.

• set (const T) : Assigns a numerical value to a variable.

• put(const Sum<T>&,const Sum<T> &) : Replaces an expression by another.

• nvalue 0 : Numeric value of an expression.

• value 0 : Symbolic value of an expression.

• coeff(int) : Coefficient of constant term.

• coeff (const Sum<T>&) : Coefficient of a term.

• coeff (const Sum<T>&, int n) : Coefficient of a term with degree n.

• depend(const Sum<T>&) : Declares dependency of variables.

• nodepend(const Sum<T>&) : Declares no-dependency of variables.

• isdepend(const Sum<T>&) : Checks dependency of variables.

• is_NumberO : Checks if a variable is a numeric number.

• df(const Sum<T>&, const Sum<T>&) : The first derivative of an expression.

• df (const Sum<T>&, const Sum<T>&, int n) : The n-th derivative of an expres­
sion.

• lnt (const Sum<T>&, const Sum<T>&) : The integral of an expression.

• Int (const Sum<T>&, const Sum<T>&, iny n) : The n-th integral of an expres­
sion.

• power (const Sum<T>&, T) : Defines an integer power function.

10.14. SYMBOLIC CLASS 579

• exp(const Sum<T>&) : Defines an exponential function.

• cosh(const Sum<T>&) Defines a hyperbolic cosine function.

• sinh(const Sum<T>&) Defines a hyperbolic sine function.

• cos (const Sum<T>&) Defines a cosine function.

• sin(const Sum<T>&) Defines a sine function.

• In(const Sum<T>&) : Defines a logarithm function.

• sqrt (const Sum<T>&) : Defines a square root function.

• Arithmetic operators: +(unary), -(unary), +, -, *, /, =, +=, -=, *=, /=

• Relational operators: ==, ! =

• Stream operators : > >, < <

For a detailed description of the class structure and each member function, please
refer to Chapter 7.

/ / Mall.h

#ifndef ALL_H
#define ALL_H

#include <iostream.h>
#include <math.h>
#include IMString.h"

template <class T> class Terms
{

public:

}j

virtual -Terms()j
virtual char type() const = OJ
virtual String varName() const = OJ
virtual void oprint(ostreaml) const 0;

template <class T> class Magnitude public Terms<T>
{

public:
virtual -Magnitude()j
virtual T val() const = OJ
virtual void set(const T) = OJ

580 CHAPTER 10. PROGRAM LISTING

};

template <class T> class Variable public Magnitude<T>
{

private:
String name;
T value;

public:

};

Variable 0 ;
Variable(String);
Variable (String, T);
Variable(const Variable<T>&);
virtual -Variable();
virtual char type() const;
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual T val() const;
virtual void set(const T);

template <class T> class Number public Magnitude<T>
{

private:
T data;

public:

};

II Constructor
Number 0 ;
Number(T);
Number(const Number<T>&);
virtual -Number();

II Conversion operator
operator T () const;

II Member functions
Number<T> & operator = (const Number<T>&);
virtual char type() const;
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual T val() const;
virtual void set(const T);

template <class T> class Function public Terms<T>
{

public:
virtual -Function();

10.14. SYMBOLIC CLASS

virtual double f(const T&) const 0;
};

template <class T> class Fsqrt public Function<T>
{

private:
static const char* const Fname;

public:

};

FsqrtO;
virtual -Fsqrt();
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual char type() const;
virtual double f(const T&) const;

template <class T> class Fdf public Function<T>
{

private:
static const char* const Fname;

public:

};

FdfO;
virtual -Fdf 0 ;
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual char type() const;
virtual double f(const T&) const;

template <class T> class Flnt
{

public Function<T>

private:
static const char* const Fname;

public:

};

FIntO;
virtual -FInt 0 ;
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual char type() const;
virtual double f(const T&) const;

template <class T> class Fexp public Function<T>
{

private:
static const char* const Fname;

public:

581

582

};

FexpO;
virtual -FexpO;
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual char type() const;
virtual double f(const T&) const;

CHAPTER 10. PROGRAM LISTING

template <class T> class Fsinh public Function<T>
{

private:
static const char* const Fname;

public:

};

FsinhO;
virtual -Fsinh();
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual char type() const;
virtual double f(const T&) const;

template <class T> class Fcosh public Function<T>
{

private:
static const char* const Fname;

public:

};

FcoshO;
virtual -Fcosh();
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual char type() const;
virtual double f(const Tt) const;

template <class T> class Fsin public Function<T>
{

private:
static const char* const Fname;

public:

};

FsinO;
virtual -FsinO;
virtual String varName() const;
virtual void oprint(ostream&) const;
virtual char type() const;
virtual double f(const Tt) const;

10.14. SYMBOLIC CLASS 583

template <class T> class Fcos public Function<T>
{

private:
static const char. const Fname;

public:

};

FcosO;
virtual -Fcos 0 ;
virtual String varName() const;
virtual void oprint(ostreami) const;
virtual char type() const;
virtual double f(const T&) const;

template <class T> class FIn public Function<T>
{

private:
static const char. const Fname;

public:

};

FlnO;
virtual -Fln();
virtual String varName() const;
virtual void oprint(ostreami) const;
virtual char type() const;
virtual double f(const T&) const;

II Terms class
template <class T> Terms<T>::-Terms() {}

II Magnitude class
template <class T> Magnitude<T>::-Magnitude() {}

II Variable class
template <class T> Variable<T>: : Variable 0 : name (" ") , value(T(O)) {}
template <class T> Variable<T>::Variable(String nm)

: name(nm), value(T(O)) {}
template <class T> Variable<T>::Variable(String nm,T v)

: name(nm), value(v) {}
template <class T> Variable<T>::Variable(const Variable<T> & v)

: name(v.name) , value(v.value) {}
template <class T> Variable<T>::-Variable() {}
template <class T> void Variable<T>::set(const T num) { value = num; }
template <class T> char Variable<T>::type() const {return 'V'; }
template <class T> String Variable<T>::varName() const {return name; }
template <class T> void Variable<T>::oprint(ostreami os) const

{ os « name;}
template <class T> T Variable<T>::val() const { return value; }

584 CHAPTER 10. PROGRAM LISTING

II Number class
template <class T> Number<T>::Number() : data(T(O» {}
template <class T> Number<T>::Number(T num) : data(num) {}
template <class T> Number<T>::Number(const Number<T>& num)

: data(num.data) {}
template <class T> Number<T>::-Number() {}

template <class T> Number<T> & Number<T>::operator = (const Number<T>& num)
{

if(this != &num) data = num.dataj
return *thisj

}

template <class T> Number<T>::operator T () const
template <class T> char Number<T>::type() const
template <class T> String Number<T>::varName() const

{ return dataj
{ return 'N' j }
{ return "" j }

template <class T> void Number<T>::oprint(ostream& os) const
{ os « dataj }

template <class T> T Number<T>: : val () const { return dataj
template <class T> void Number<T>::set(const T num) {data = numj

II Function class
template <class T> Function<T>::-Function() {}

II Fsqrt
template const char* const Fsqrt<T>: : Fname = "sqrt";
template Fsqrt<T>::Fsqrt() {}
template Fsqrt<T>::-Fsqrt() {}
template char Fsqrt<T>::type() const {return 'q'j }

}

}

}

template String Fsqrt<T>::varName() const {return Fnamej }
template <class T> void Fsqrt<T>::oprint(ostream& os) const

{ os « Fnamej }
template <class T> double Fsqrt<T>::f(const T& x) const

{ return sqrt(double(x»j }

II Fdf class
template <class T> const char* const Fdf<T>::Fname = "df"j
template <class T> Fdf<T>::Fdf() {}
template <class T> Fdf<T>::-Fdf() {}
template <class T> char Fdf<T>::type() const {return 'd'j }
template <class T> String Fdf<T>::varName() const {return Fnamej }
template <class T> void Fdf<T>::oprint(ostreaffi& os) const

{ os « Fname; }
template <class T> double Fdf<T>::f(const T&) const

{ return 0.0; }

10.14. SYMBOLIC CLASS

II FInt class
template <class T> const char* const FInt<T>::Fname "Int" ;
template <class T> FInt<T>::FInt() {}
template <class T> FInt<T>: :-FInt() {}
template <class T> char FInt<T>: :type() const { return ' i ' ; }

template <class T> String FInt<T>::varName() const { return Fname;
template <class T> void FInt<T>::oprint(ostream& os)

{ os « Fname; }

template <class T> double FInt<T>::f(const T&) const
{ return 0.0; }

II Fexp class

const

template <class T> const char* const Fexp<T>::Fname "exp";
template <class T> Fexp<T>::Fexp() {}
template <class T> Fexp<T>::-Fexp() {}
template <class T> char Fexp<T>::type() const {return 'e'; }

}

template <class T> String Fexp<T>::varName() const {return Fname; }
template <class T> void Fexp<T>: :oprint(ostream& os) const

{ os « Fname; }
template <class T> double Fexp<T>::f(const T& x) const

{ return exp(double(x)); }

II Fsinh class
template <class T> const char* const Fsinh<T>::Fname = "sinh";
template <class T> Fsinh<T>::Fsinh() {}
template <class T> Fsinh<T>::-Fsinh() {}
template <class T> char Fsinh<T>::type() const {return 'j'; }
template <class T> String Fsinh<T>::varName() const { return Fname; }
template <class T> void Fsinh<T>::oprint(ostream& os) const

{ os « Fname; }
template <class T> double Fsinh<T>::f(const T& x) const

{ return sinh(double(x)); }

II Fcosh class
template <class T> const char* const Fcosh<T>::Fname
template <class T> Fcosh<T>::Fcosh() {}
template <class T> Fcosh<T>: :-Fcosh() {}

"cosh";

template <class T> char Fcosh<T>: :type() const { return 'w'; }

template <class T> String Fcosh<T>: :varName() const { return Fname;
template <class T> void Fcosh<T>: : oprint(ostream& os)

{ os « Fname; }

template <class T> double Fcosh<T>::f(const T& x) const
{ return cosh(double(x)); }

II Fsin class

const

template <class T> const char* const Fsin<T>::Fname
template <class T> Fsin<T>::Fsin() {}

IIsin";

}

585

586 CHAPTER 10. PROGRAM LISTING

template <class T> Fsin<T>::-Fsin() {}
template <class T> char Fsin<T>: :type() const { return 'z'; }
template <class T> String Fsin<T>::varName() const {return Fname; }
template <class T> void Fsin<T>::oprint(ostreamt os) const

{ os « Fname; }
template <class T> double Fsin<T>::f(const T & x) const

{ return sin(double(x»; }

II Fcos class
template <class T> const char* const Fcos<T>::Fname = "cos";
template <class T> Fcos<T>::Fcos() {}
template <class T> Fcos<T>::-Fcos() {}
template <class T> char Fcos<T>::type() const {return 'c'; }
template <class T> String Fcos<T>::varName() const {return Fname; }
template <class T> void Fcos<T>::oprint(ostreamt os) const

{ os « Fname; }
template <class T> double Fcos<T>::f(const T& x) const

{ return cos(double(x»; }

II FIn class
template <class T> const char* const Fln<T>: : Fname = "In";
template <class T> Fln<T>::Fln() {}
template <class T> Fln<T>::-Fln() {}
template <class T> char Fln<T>: :typeO const {return '1'; }

template <class T> String Fln<T>::varName() const {return Fname;
template <class T> void Fln<T>::oprint(ostreamt os)

{ os « Fname; }

template <class T> double Fln<T>::f(const T& x) const
{ return log(double(x»; }

#endif

const
}

10.14. SYMBOLIC CLASS

II MSymbol.h

#ifndef SYMBOLIC_H
#define SYMBOLIC_H

#include <assert.h>
include <iostream.h>
#include <stdlib.h>
#include <ctype.h>
#include "MString.h"
#include "Mall.h"
#include "MList.h"

typedef Number<int> Integer;
typedef Number<double> Double;

II Forward declaration
template <class T> class Sum;
template <class T> class Product;

II Declaration and Definition of class Symbol
template <class T>
class Symbol
{

protected:
II Constructor
Symbol 0 ;
Symbol(int) ;
Symbol(int,T*,int*);
Symbol(int,Symbol<T>**,T*,int*);

public:
I I Data Fields
int branches;
Symbol<T> **ep;
T *fac_exp;
int *next_var;

I I virtual destructor .
virtual -Symbol();

II Non-virtual member functions
void remove(int); II remove unwanted node
void removeB(); II remove variables of type()=='B'
int simpFuncs(Symbol<T>**,char); II simplify constant functions
Symbol<T> * zero() const; II special function for constant 0
Symbol<T> * one() const; II special function for constant 1
void Shrink(); II Simplify an expression

587

588 CHAPTER 10. PROGRAM LISTING

};

1/ Pure virtual member functions
virtual char typeO const 0;
virtual Sum<T> valO const 0;
virtual T

virtual int
virtual int
virtual int
virtual int
virtual void
virtual void
virtual void
virtual void

virtual int
virtual int
virtual void
virtual void
virtual int

nvalO const 0;

replacel(Symbol<T>*,Symbol<T>*) 0;
equal_index(Syrnbol<T>*) = 0;
is_equal(Symbol<T>*) const = 0;
gatherO = 0;
copy(Symbol<T>**) const = 0;
oprint(ostrearn&) const = 0;
deleteOneNode() = 0; // remove this node only
deleteAlINodes() = 0; II remove all nodes at this node

mxpand(Symbol<T>**) = 0;
dxpand(Symbol<T>**) = 0; II Distributive Law
diff(Syrnbol<T>**,Syrnbol<T>*) const = 0;
integrate(Symbol<T>**,Symbol<T>*) const = 0;
funcSimp(int&,int&) = 0; II Functions Simplification

virtual int shrink_l() = 0;
virtual int shrink_2() = 0;

// removes ones from products
/1 removes too many Sums and products

/1 removes zero
virtual int
virtual int
virtual int

products and summands
shrink_3(Symbol<T>**) = 0;
shrink_4() 0; II sums ones from sums
shrink_5() = 0; // removes sums with only one summand

1/ Declaration class Product
template <class T> class Product public Symbol<T>
{

private:
// Data Field
static int Cornrn;

II Private Constructor
Product(int, Symbol<T> **, T *, int *);

/1 Private virtual functions
virtual char type() const;
virtual Sum<T> val() const;
virtual T nval() const;
virtual int replacel(Symbol<T> *, Symbol<T> *);
virtual int equal_index(Symbol<T>*);
virtual int is_equal(Symbol<T> *) const;
virtual int gather();

10.14. SYMBOLIC CLASS

};

virtual void copy(Symbol<T> **) const;
virtual void oprint(ostream &)
virtual void deleteOneNode();
virtual void deleteAllNodes();

virtual int mxpand(Symbol<T> **);
virtual int dxpand(Symbol<T> **);

const;

virtual void diff(Symbol<T> **, Symbol<T> *) const;
virtual void integrate(Symbol<T> **, Symbol<T> *) const;
virtual int funcSimp(int &, int i);

virtual int shrink_l() ;
virtual int shrink_2();
virtual int shrink_3(Symbol<T>
virtual int shrink30 ;
virtual int shrink_50 ;

public:
II Constructors
Product(int);
-Product 0 ;

**) ;

friend void Commutative(T, int);

II Declaration of class Sum
template <class T> class Sum public Symbol<T>
{

private:
II Private constructor
Sum(const T,char);
Sum(char,char);
Sum(int,Symbol<T>**,T*,int*,String);

II Private member functions
void diffRules(Symbol<T>**,char) const;
void IntRules(Symbol<T>**,char) const;

II Private Virtual functions
virtual char type() const;
virtual Sum<T> val() const;
virtual T nval() const;
virtual int replacel(Symbol<T>*,Symbol<T>*);
virtual int equal_index(Symbol<T>*);
virtual int is_equal(Symbol<T>*) const;
virtual int gather();
virtual void copy(Symbol<T>**) const ;

589

590 CHAPTER 10. PROGRAM LISTING

virtual void oprint(ostreami) const;
virtual void deleteOneNode();
virtual void deleteAllNodes();

virtual int mxpand(Symbol<T>**);
virtual int dxpand(Symbol<T>**);
virtual void diff(Symbol<T>**,Symbol<T>*) const;
virtual void integrate(Symbol<T>**,Symbol<T>*) const;
virtual int funcSimp(inti,inti);

virtual int shrink_i{) ;
virtual int shrink_2();
virtual int shrink_3(Symbol<T>**);
virtual int shrink_40;
virtual int shrink_50 ;

I I Data fields
int is_Bound, is_Set;
Terms<T> *data;
List<Sum<T>*> deplist;

public:
II Constructors
SumO;
Sum(const T);
Sum{int, int);
Sum(String,int);
Sum(const Sum<T>i);
·SumO;

II Member function available only to Sum<T>
void clear(); II Renew a used variable
void expand(); II Expand an expression
void set(const T); II Assign a value to a variable
int put(const Sum<T>i,const Sum<T>i);

II Assign an expression to another
T nvalue() const; II Return the numeric value of a variable
Sum<T> value() const; II Return the value of an expression
T coeff(int) const; II Return coefficient of constant term
Sum<T> coeff(const Sum<T>i) const; II Return coefficient of a term
Sum<T> coeff(const Sum<T>i,int) const; II Return coefficient of a term

void depend(const Sum<T>i);
void nodepend(const Sum<T>i);
int isdepend(const Sum<T>i)
int is_Number() const;

II with degree int n.
II declare dependency of variables
II declare no-dependency of variables

const; II check dependency of variables
II check if a variable is pure number

10.14. SYMBOLIC CLASS

};

II Arithmetic operators
Sum<T> & operator = (const Sum<T>&);
Sum<T> operator + () const;
Sum<T> operator - () const;
Sum<T> operator += (const Sum<T>&);
Sum<T> operator (const Sum<T>&);
Sum<T> operator *= (const Sum<T>&);
Sum<T> operator 1= (const Sum<T>&);

friend Sum<T> operator + (const Sum<T>&,const
friend Sum<T> operator - (const Sum<T>&,const
friend Sum<T> operator * (const Sum<T>&,const
friend Sum<T> operator I (const Sum<T>&,const

Sum<T>&);
Sum<T>&);
Sum<T>&);
Sum<T>&);

friend int operator == (const Sum<T>&,const Sum<T>&);
friend int operator != (const Sum<T>&,const Sum<T>&);

friend ostream & operator « (ostream&,const Sum<T>&);
friend istream & operator» (istream&,Sum<T>&);

friend Sum<T> exp(const Sum<T>&);
friend Sum<T> sinh(const Sum<T>&);
friend Sum<T> cosh(const Sum<T>&);
friend Sum<T> sin(const Sum<T>&);
friend Sum<T> cos(const Sum<T>&);
friend Sum<T> In(const Sum<T>&);
friend Sum<T> sqrt(const Sum<T>&);
friend Sum<T> power(const Sum<T>&,T);
friend Sum<T> df(const Sum<T>&,const Sum<T>&);
friend Sum<T> df(const Sum<T>&,const Sum<T>&,int);
friend Sum<T> Int(const Sum<T>&,const Sum<T>&);
friend Sum<T> Int(const Sum<T>&,const Sum<T>&,int);

friend Symbol<T>* Symbol<T>::zero() const;
friend Symbol<T>* Symbol<T>::one() const;
friend int Product<T>::mxpand(Symbol<T>**);
friend void Product<T>::integrate(Symbol<T>**,Symbol<T>*) const;

II Definition for Symbol class
template <class T> Symbol<T>::Symbol()

: branches (0) , ep(NULL) , fac_exp(NULL) , next_var(NULL)
{ cerr « "Symbol: Default constructor invoked!" « endl;}

template <class T> Symbol<T>: : Symbol (int num)
: branches (num), ep(NULL), fac_exp(NULL) , next_var(NULL)

{

591

592 CHAPTER 10. PROGRAM LISTING

}

II if num is zero, do nothing
if (num)
{

}

ep = new Symbol<T>*[num]; assert(ep != NULL)j
fac_exp = new T[num]j assert(fac_exp != NULL);
next_var = new int[num]; assert(next_var!= NULL)j

II initialize ep[] to NULL, fac_exp[] to 1 and next_yare] to 0
for(int i=O; i<numj i++)
{

}

ep[i] = NULLj
fac_exp[i] = T(l);
next_var[i] = OJ

template <class T> Symbol<T>::Symbol(int num, T *new_fe, int *new_nx)
: branches(num), ep(NULL), fac_exp(NULL), next_var(NULL)

{

}

II if num is zero, do nothing
if (num)
{

ep = new Symbol<T>*[num]; assert(ep != NULL)j
fac_exp = new T[num]; assert(fac_exp != NULL);
next_var = new int[num]j assert(next_var!= NULL)j
II initialize ep[] to NULL, fac_exp[] and next_yare]

II to respective values
for(int i=Oj i<num; i++)
{

}

}

ep[i] = NULL;
fac_exp[i] = new_fe[i]j
next_var[i] = new_nx[i]j

template <class T>
Symbol<T>::Symbol(int num, Symbol<T> **newep, T *new_fe, int *new_nx)

: branches(num), ep(NULL), fac_exp(NULL), next_var(NULL)
{

II if num is zero, do nothing
if (num)
{

ep = new Symbol<T>*[num]j assert(ep != NULL);
fac_exp = new T[num]j assert(fac_exp != NULL);
next_var = new int[num]j assert(next_var!= NULL)j

10.14. SYMBOLIC CLASS

}

}

II initialize ep[] and fac_exp[] to repective values
for(int i=O; i<num; i++)
{

}

ep[i] = newep[i];
fac_exp[i] = new_fe[i];
next_var[i] = new_nx[i];

II Destructor
template <class T> Symbol<T>::-Symbol() {}

II Remove the link and useless memory
II Note: branches will decrease by 1
II index is the position of the node to be removed
template <class T> void Symbol<T>::remove(int index)
{

int k, mj
Symbol<T> **ept;
T *fac_expt;
int *next_vart;
II delete node will result in branches decrease by 1
branches--j
ept = new Symbol<T>*[branches]; assert(ept != NULL)j
fac_expt = new T[branches]; assert(fac_expt != NULL);
next_vart = new int[branches]; assert(next_vart!= NULL);
II copy node that are not to be deleted
for (k=O j k<indexj k++)
{

}

ept[k] = ep[k];
fac_expt[k] = fac_exp[k];
next_vart[k] = next_var[k];

for(k=index, m=index+l; k<branches; k++, m++)
{

}

ept[k] = ep[m]j
fac_expt[k] = fac_exp[m];
next_vart[k] = next_var[m]j

II delete old memory location
ep[index]->deleteAllNodes();
delete [] ep; delete [] fac_exp; delete [] next_var;

II assign new memory location

593

594 CHAPTER 10. PROGRAM LISTING

}

ep = epti
fac_exp = fac_expti
next_var = next_varti

II remove variables of type()=='B' (defined variables)
template <class T> void Symbol<T>::removeB()
{

int ii
for(i=Oi i<branchesi i++)
{

}

if(ep[i]->type() == 'B')
{

ep[i]->ep[O]->copy(ep+i)i
if(ep[i]->type() == 'V') next_var[i] 1· ,

}

ep[i]->removeB()i

if(!ep[i]->branches)
{

}

if«ep[i]->type() == 'd')1 I (ep[i]->type() == 'i'»
II it is a differentiation or integration operator

{

}

if(ep[i]->ep[O]->type() == 'B')
ep[i]->ep[O]->ep[O]->copy(ep[i]->ep)i II remove 'B' node

if(ep[i]->ep[1]->type() == 'B')
ep[i]->ep[1]->ep[O]->copy(ep[i]->ep+1)i II remove 'B' node

if(ep[i]->ep[O]->type()
if(ep[i]->ep[1]->type()

'V') ep[i]->next_var[O]
'V') ep[i]->next_var[1]

if(ep[i]->type() == 'd')
ep[i]->ep[O]->diff(ep+i,ep[i]->ep[1])i

else II type == 'i'
ep[i]->ep[O]->integrate(ep+i,ep[i]->ep[1])i

1· ,
1· ,

else if(islower(ep[i]->type(») II it is a function
{

}

if(ep[i]->ep[O]->type() == 'B')
ep[i]->ep[O]->ep[O]->copy(ep[i]->ep)i II remove 'B' node

if(ep[i]->ep[O]->type() == 'V') ep[i]->next_var[O] = 1i
ep[i]->ep[O]->Shrink()i
ep[i]->simpFuncs(ep+i,ep[i]->type(»i

10.14. SYMBOLIC CLASS

}

II Simplify constant functions
template <class T> int Symbol<T>::simpFuncs(Symbol<T> **s,char t)
{

}

switch (t)
{

}

case 'e':
if(ep[O]->branches==l && ep[O]->ep[O]==zero(»

{ (*s) = one(); return 1; }
break;

case' j':
if(ep[O]->branches==l && ep[O]->ep[O]==zero(»

{ (*s) = zero(); return 1; }
break;

case 'w':
if(ep[O]->branches==l && ep[O]->ep[O]==zero(»

{ (*s) = one(); return 1; }
break;

case 'z':
if(ep[O]->branches==l && ep[O]->ep[O]==zero(»

{ (*s) = zero(); return 1; }
break;

case 'c':
if(ep[O]->branches==l && ep[O]->ep[O]==zero(»

{ (*s) = one(); return 1; }
break;

case '1':
if(ep[O]->branches==l && ep[O]->ep[O]==one(»

{ (*s) = zero(); return 1; }
break;

case 'q':
if (ep[O]->branches==l)
{

if(ep[O]->ep[O]==zero(» { (*s) = zero(); return 1; }
else if(ep[O]->ep[O]==one() && ep[O]->fac_exp[O] == T(l»

{ (*s) = one(); return 1; }
}

break;
default:

return 0;

template <class T> Symbol<T>* Symbol<T>: :zero() const
{

static Symbol<T> *addr = new Sum<T>(T(O),char(»;

595

596 CHAPTER 10. PROGRAM LISTING

}

assert(addr != NULL);
return addr;

template <class T> Symbol<T>* Symbol<T>::one() const
{

}

static Symbol<T> *addr = new Sum<T>(T(l),char());
assert(addr != NULL);
return addr;

II Definition class Sum
II Create a Sum node that contain no data
template <class T> Sum<T>: :Sum()

: Symbol<T> (0) , is_Bound(O), is_Set(O) , data(new Variable<T»
{ assert(data != NULL); }

II Create a Sum node that has n branches
template <class T> Sum<T>::Sum(int n, int)

: Symbol<T>(n), is_Bound(O), is_Set(O) , data(new Variable<T»
{ assert(data != NULL); }

II Create a Number node with value num
template <class T> Sum<T>::Sum(const T num)

{

}

: Symbol<T>(l), is_Bound(O), is_Set(O), data(newVariable<T>('"', num))

assert(data != NULL);
if(num == T(O)) ep[O] zero();
else
{

}

ep[O] = oneO;
fac_exp[O] = num;

next_var[O] = 1;

template <class T> Sum<T>::Sum(const T num, char)
: Symbol<T> (0) , is_Bound(O), is_Set(O), data(new Number<T>(num))

{ assert(data != NULL); }

template <class T> Sum<T>: : Sum (char ftype, char)
: Symbol<T> (2) , is_Bound(O), is_Set(O)

{

switch(ftype)
{

case 'd': data = new Fdf<T>; break;
case 'i': data = new Flnt<T>; break;

10.14. SYMBOLIC CLASS

}

case 'e' :
case 'j' :
case 'w' :
case 'z' :
case 'c' :
case '1' :
case 'q' :
default :

}

data = new Fexp<T>; break;
data = new Fsinh<T>; break;
data = new Fcosh<T>; break;
data = new Fsin<T>; break;
data = new Fcos<T>; break;
data = new Fln<T>; break;
data = new Fsqrt<T>; break;

assert(data != NULL);
branches = 0; II to indicate this is a leaf node

template <class T>
Sum<T>::Sum(int i,Symbol<T> **newep,T *new_ef, int *new_nx,String nm)

: Symbol<T>(i, newep, new_ef, new_nx), is_Bound(O), is_Set(O),
data(new Variable<T>(nm))

{ assert(data != NULL); }

template <class T> Sum<T>: : Sum (String new_name, int)

597

: Symbol<T>(O), is_Bound(O), is_Set(O) , data(new Variable<T>(new_name))
{ assert(data != NULL); }

template <class T> Sum<T>::Sum(const Sum<T> &s)
: Symbol<T>(l), is_Bound(O), is_Set(O) , data(new Variable<T»

{

assert(data != NULL);
if(s.type() == 'B') s.ep[O]->copy(ep);
else s.copy(ep);
if (s.type() == 'V') next_var[O] = 1;

}

template <class T> Sum<T>::-Sum()
{

}

if (! branches)
{

}

if(islower(type())) ep[O]->deleteAllNodes();
deleteOneNode 0 ;

else deleteAllNodes();
deplist.deleteAllNodes();

template <class T> Sum<T> & Sum<T>::operator = (const Sum<T> &s)
{

if(this == &s) return *this;
«Sum<T>&)s).Shrink();

598 CHAPTER 10. PROGRAM LISTING

}

II delete the old value of *this if it has been assigned
II The removeB() is important, because if it is not included,
II y = a+bj a = Xj Y = Cj
II The y = c will first free all the old memory of y which includes
II the memory of a
II y -> 1I11_>a->x
I I ->b
if (is_Bound) { removeB()j ep[O]->deleteAIINodes()j }
delete [] epj delete [] fac_expj delete [] next_varj
branches = 1 j
ep = new Symbol<T>*[l]j
fac_exp = new T[l]j
next_var = new int[l]j
is_Bound = lj is_Set
next_var[O] = OJ

assert(ep != NULL)j
assert(fac_exp != NULL)j
assert(next_var != NULL);

O' ,

if(s.type() == 'B') s.ep[O]->copy(ep)j
else if(s.branches) s.copy(ep)j
else
{

}

ep[O] = new Sum<T>(l,O)j assert(ep[O] != NULL)j
s.copy(ep[O]->ep);
ep[O]->next_var[O] = 1;

fac_exp[O] T(l);
expandO j

return *this;

II return the type of node pointed by the pointer
template <class T> char Sum<T>::type() const
{

}

if (branches)
{

}

if(is_Bound) return 'B';
return'S' j

return data->type()j

II print the numerical value of the expression
template <class T> Sum<T> Sum<T>::val() canst
{

int i;

10.14. SYMBOLIC CLASS

Sum<T> s(T(O»;

II print the value, if this is a leaf node
if(!branches)
{

if(islower(type(») II it is a function
{

if«(Sum<T>*)ep[O)->is_Number(»

599

return Sum<T>«(Function<T>*)data)->f«(Sum<T>*)ep[O)->nvalue(»);
else

}

{

}

}

else
{

Sum<T> r(type(),char(», p;
p = ep[O)->val();
p.copy(r.ep);
if(r.ep[O)->typeO 'V') r.next_var[O)

return r;
l' ,

if (is_Set) return Sum<T>«(Magnitude<T>*)data)->val(»;
else return *this;

}

}

else
for(i=O; i<branches; i++)

s += Sum<T>(fac_exp[i) * ep[i)->val();

return s;

II replace expression 1 by expression 2
template <class T> int Sum<T>: :replacel(Symbol<T> *sl, Symbol<T> *s2)
{

int i, index, flag=O;
for(i=O; i<branches; i++) flag += ep[i)->replacel(sl,s2);

if(islower(type(»)
flag +=«Sum<T>*)ep[0)->put(*«Sum<T>*)sl),*«Sum<T>*)s2»;

if(sl->branches >= 1)
{

index = equal_index(sl);
if(index >= 0)
{

s2->copy(ep+index);
fac_exp[index] = T(l);

600 CHAPTER 10. PROGRAM LISTING

}

flag++ ;
}

}

else
{

}

for(i=O; i<branches; i++)
if(ep[i]->is_equal(s1»
{ s2->copy(ep+i)j flag++j }

return flagj

II return the index of equal component
II return (-1) if no such component is found
template <class T> int Sum<T>::equal_index(Symbol<T> *)
{ return (-1); }

II check if 2 expressions are equal
template <class T> int Sum<T>::is_equal(Symbol<T> *s) const
{

int i,kj
int *ipj

II if s is a product node, return 0
if(s->type() == 'P') return OJ

II if s is equivalent to this return 1
if(s == (Symbol<T>*)this) return 1;

II so s not equal to this, if both are a leaf node, check for function
if(!s->branches && !branches)
{

}

if(islower(type(» && s->type() == type(»
{

}

if «type 0 == 'd') II (typeO == 'i'»
return (ep[O]->is_equal(s->ep[O]) && ep[1]->is_equal(s->ep[1]»;
return ep[O]->is_equal(s->ep[O])j

else return OJ

II if branches are not equal, return 0
if (branches != s->branches) return 0;

ip = new int[branches]j assert(ip != NULL)j

for(i=Oj i<branchesj i++) ip[i] = OJ

10.14. SYMBOLIC CLASS

}

II check if all the branches are equal
for(i=O; i<branches; i++)
{

for(k=O; k<branches; k++)
{

}

if(ep[i]->is_equal(s->ep[k])
fac_exp[i] == s->fac_exp[k]

{ ip[k] = 1; break; }

&&
&& ip[k]

II if there is no match terms, return 0
if(k == branches) return 0;

}

delete [] ip;
return 1;

0)

II Collect/combine terms that have the same variable
template <class T> int Sum<T>: :gather()
{

int i, j, flag=O;

for(i=O; i<branches; i++) flag += ep[i]->gather();

II comparing different subtrees, if equal, group/combine them
for(i=O; i<branches; i++)

for(j=i+l; j<branches; j++)
{

}

if(ep[i]->is_equal(ep[j]))
{

}

flag++;
fac_exp[i] += fac_exp[j]; II sum factors

II if fac_exp[] == 0 after added
if(fac_exp[i] == T(O))

if (branches > 2)
{ remove(j); remove(i); j=i;}
else II remove one term and create a zero() node
{

}

remove(j); j=i;
ep [0] = zero () ;
fac_exp[O] = T(l);

else { remove(j); j=i; }

return flag;

601

602 CHAPTER 10. PROGRAM LISTING

}

II copy subtree from this to sp
template <class T> void Sum<T>::copy(Symbol<T> **sp) const
{

}

if (branches)
{

}

int ij
*sp = new Sum<T>(branches,O)j assert(*sp != NULL)j
«Sum<T>*) (*sp»->is_Bound = is_Boundj
«Sum<T>*) (*sp»->is_Set = is_Setj

for(i=Oj i<branchesj i++) (*sp)->fac_exp[i] = fac_exp[i]j
for(i=Oj i<branchesj i++) (*sp)->next_var[i] = next_var[i]j
for(i=Oj i<branchesj i++) ep[i]->copy«*sp)->ep+i)j

else
{

}

if(islower(data->type(»)
{

}

*sp = new Sum<T>(data->type(),char(»j assert(*sp != NULL)j
ep[O]->copy«*sp)->ep)j
if«data->type() == 'd')1 I (data->type() == 'i'»
ep[1]->copy«*sp)->ep+1)j

else *sp = (Symbol<T> *)thisj

II print the algebraic expression
template <class T> void Sum<T>::oprint(ostream los) const
{

II print the content, if this is a leaf node
if (! branches)
{

data->oprint(os)j
if(islower(data->type(»)
{

if«data->typeO == 'd') II (data->typeO 'i'»
{

}

os « 1I(lI j

if(ep[O]->branches==l && ep[O]->fac_exp[O] == T(1»
ep[O]->ep[O]->oprint(os)j

else ep[O]->oprint(os)j
os « ","j
ep[1]->oprint(os)j os « 1I)lI j

10.14. SYMBOLIC CLASS

}

else ep[O]->oprint(os)j
}

}

else
{

}

os « "("j

II do not print + as this is the first term
if(fac_exp[O] == T(-l) { os « "-"j ep[O]->oprint(os)j }
else if(fac_exp[O] != T(i»
{

}

os « fac_exp[O]j
if(ep[O] != one(»

else ep[O]->oprint(os)j

II print the rest of the terms
for(int i=ij i<branchesj i++)
{

if(fac_exp[i] > T(O»
{

os « "+" j

{ os « "*"j ep[O]->oprint(os)j }

if(fac_exp[i] == T(i» ep[i]->oprint(os);

}

}

else
{

}

os « fac_exp[i]j
if(ep[i] != one(»

else II fac_exp[i] < T(O)
{

}

if(fac_exp[i] == T(-i»
else
{

}

os « fac_exp[i];
if(ep[i] != one(»

os « ")";

{ os « "*" j ep[i]->oprint(os) j }

II_".
I ep[i]->oprint(os); } { os «

{ os « 10*10; ep [iJ ->oprint (os) j }

II Delete this node only
template <class T> void Sum<T>::deleteOneNode()
{

delete data;

603

604 CHAPTER 10. PROGRAM LISTING

delete [] ep; delete [] fac_exp; delete [] next_var;
}

II Delete all the nodes rooted at this
template <class T> void Sum<T>::deleteAIINodes()
{

}

if (branches)
{

}

for(int i=O; i<branches; i++)
if(!next_var[i]) ep[i]->deleteAIINodes();

deleteOneNode 0 ;

else if(islower(type()))
{

}

ep[O]->deleteAIINodes();
deleteOneNode 0 ;

II Binomial and Multinomial expansion
template <class T> int Sum<T>::mxpand(Symbol<T> **)
{

}

int i, flag = 0;
for(i=O; i<branches; i++) flag += ep[i]->mxpand(ep+i);
return flag;

II Distributive law
template <class T> int Sum<T>::dxpand(Symbol<T> **)
{

}

int i, flag = 0;
for(i=O; i<branches; i++) flag += ep[i]->dxpand(ep+i);
return flag;

II Differentiation
template <class T> void Sum<T>::diff(Symbol<T> **s, Symbol<T> *t) const
{

int i;
if (branches)
{

*s = new Sum<T>(branches,O); assert(*s != NULL);

II copy all the coefficients
for(i=O; i<branches; i++) (*s)->fac_exp[i] fac_exp[i);
II differentiate all the terms

10.14. SYMBOLIC CLASS 605

for(i=O; i<branches; i++)
{

ep[i]->diff«*s)->ep+i, t);

if«*s)->ep[i]->typeO == 'V' II (*s)->ep[i]->typeO 'N')
(*s)->next_var[i] = 1;

else (*s)->next_var[i] = 0;
}

}

else II type()=='V' or 'N' or Functions dx/dx = 1, dy/dx = 0, dC/dx = 0
{

if(type() == 'd') II it is a differentiation operator
{

II (d/dx) df(y,x) = df(df(y,x),x)
*s = new Sum<T>('d' ,char()); assert(*s!= NULL);
copy«*s)->ep) ;
t->copy«*s)->ep+1);

}

else if(type() == 'i')
{

}

if(ep[l] == t) Ild/dx Int(y(x) ,x) = y(x);
{

ep[O]->copy(s);
}

else if(isdepend(*«Sum<T>*)t)))
{

*s = new Sum<T>('d' ,char()); assert(*s != NULL);
copy«*s)->ep) ;
t->copy«*s)->ep+1);
}

else *s = zero();

else if(islower(type())) II it is functions
{

}

*s = new Sum<T>(l,O); assert«*s) != NULL);
(*s)->ep[O] = new Product<T>(2); assert«*s)->ep[O] != NULL);
ep[O]->diff«*s)->ep[O]->ep,t);

diffRules«*s)->ep[O]->ep+1, type());

else if (type 0
else I I type 0
{

'N') *s = zero();
'V'

if«Symbol<T>*)this == t) *s = one();
else if(isdepend(*«Sum<T>*)t)))
{

*s = new Sum<T>('d' ,char()); assert(*s != NULL);

606 CHAPTER 10. PROGRAM LISTING

}

}

}

}

copy«*s)->ep) ;
t->copy«*s)->ep+1);

else *s = zero();

II Integration
template <class T> void Sum<T>::integrate(Symbol<T> **s,Symbol<T> *t) const
{

int i;
II make expression as simple as possible for integration of products
«Sum<T>*)this)->expand();

if (branches)
{

}

*s = new Sum<T>(branches,O); assert(*s != NULL);
II copy all the coefficients
for(i=O; i<branches; i++) (*s)->fac_exp[i] = fac_exp[i];

II integrate all the terms
for(i=O; i<branches; i++)

{

ep[i]->integrate«*s)->ep+i, t);

if «*s)->ep[i]->type() == 'V' I I (*s)->ep[i]->type() 'N')
(*s)->next_var[i] = 1;

else (*s)->next_var[i] = 0;
}

else II type() == 'V' or 'N' or Functions
{

if(type() == 'i') II it is an integration operator
{

}

II Int(Int(y,x),x)
*s = new Sum<T>('i',char(»; assert(*s != NULL);
copy«*s)->ep);
t->copy«*s)->ep+1);

else if(type() == 'd') II it is a differentiation operator
{

II Int(df(y,x),x) y
if(ep[l] == t)
{

*s=new Sum<T>(l,O);
ep[O]->copy«*s)->ep);

10.14. SYMBOLIC CLASS

}

}

II Int(y(x) ,x)
else if(isdepend(*«Sum<T>*)t)))
{

*s = new Sum<T>('i',char()); assert(*s != NULL);
copy « *s) ->ep) ;
t->copy«*s)->ep+l);

}

else II Int(y,x)=yx
{

}

*s = new Sum<T>(l,O);
(*s)->ep[O] = new Product<T>(2);
copy«*s)->ep[O]->ep);
t->copy«*s)->ep[O]->ep+l) ;

assert«*s) != NULL);
assert«*s) != NULL);

else if(islower(type())) II it is functions
{

}

Symbol<T> *p=ep[O];
while«p->branches==l)&&(p->type()!='V'))
p=p->ep[O];

if(p == t)
IntRules(s,type());

else if(isdepend(*«Sum<T>*)t)))
{

*s = new Sum<T>('i',char()); assert(*s != NULL);
copy « *s) ->ep) ;
t->copy«*s)->ep+l);

}

else IIInt(y,x)=yx
{

}

*s = new Sum<T>(l,O);
(*s)->ep[O] = new Product<T>(2);
copy«*s)->ep[O]->ep);
t->copy«*s)->ep[O]->ep+l);

assert«*s) != NULL);
assert«*s) != NULL);

else if(type() == 'N')
{

}

II int(O,x)=O
if«(Number<T>*)data)->val()==T(O)) *8 zero();
else Ilint(C,x)=Cx
{

}

*s = new Sum<T>(l,O); assert«*s)!= NULL);
t->copy«*s)->ep);

607

608 CHAPTER 10. PROGRAM LISTING

}

}

else II type() == 'V'
{

}

if«Symbol<T>*)this == t) IIInt(x,x)=(x~2)/2

{

}

*s = new Sum<T>(l,O)j
(*s)->ep[O]=new Product<T>(l)j
(*s)->fac_exp[O] = T(1)/T(2)j
(*s)->ep[O]->fac_exp[O] = T(2)j
t->copy«*s)->ep[O]->ep)j

else if(isdepend(*«Sum<T>*)t»)
{

assert «*s) != NULL)j
assert «*s)->ep[O] != NULL)j

*s = new Sum<T>('i',char(»j assert(*s != NULL)j
copy ((*s) ->ep) j
t->copy«*s)->ep+l)j

}

else II Int(y,x)=yx, y is a variable other than x
{

*s = new Sum<T>(l,O)j
(*s)->ep[O] = new Product<T>(2)j
copy«*s)->ep[O]->ep)j
t->copy«*s)->ep[O]->ep+l)j
}

assert«*s) != NULL)j
assert«*s)->ep[O] != NULL)j

// Simplify Special Functions
template <class T> int Sum<T>: :funcSimp(intt,intt)
{ return OJ }

/1 Simplify algebraic into simplest possible form
template <class T> void Symbol<T>::Shrink()
{

int i, flagj
if(type() 'B') ep[O]->Shrink()j
else
{

removeBO j
do
{

do
{

flag = OJ
for(i=Oj i<branchesj i++) flag += shrink_2()j
for(i=Oj i<branchesj i++) flag += shrink_5()j
for(i=Oj i<branchesj i++) flag += shrink_3(ep+i)j

10.14. SYMBOLIC CLASS

}

}

for(i=O; i<branches; i++) flag += shrink_1();
for(i=O; i<branches; i++) flag += shrink_4();

} while(flag); II repeat loop if there is any simplification
} while(gather(»; II repeat loop if there are some terms combined

II return coefficient of s
template <class T> Sum<T> Sum<T>::coeff(const Sum<T> &s) const
{

int i, j, k, m, found;
Symbol<T> *ptr, *sptr, *mptr;
Sum<T> result(T(O»);

II simplify expressions first before extract a coefficient
«Sum<T>*)this)->Shrink();
«Sum<T>&)s).Shrink();

II x.coeff(x) -> 1
if (! branches &&

(&s==this I I
(s.type() == 'B' && s.ep[O]->type() == 's' &&

609

s.ep[O]->branches == 1 && s.ep[O]->ep[O] == (Symbol<T>*)this»)
{ result = T(l); return result; }

II initializing various pointers: ptr, sptr, mptr
II depends on different situation
if(type() == 'B')
{

}

ptr = ep[O];
if(s.type() == 'B')
{

}

mptr = s.ep[O];
if(mptr->type() == 's' && mptr->branches == 1

&& mptr->fac_exp[O] == T(l) && !mptr->ep[O]->branches)
mptr = mptr->ep[O];

if(mptr->branches == 1) sptr = s.ep[O]->ep[O];

else
{

}

mptr = (Symbol<T>*) (&s);
if(mptr->type() == 's' && mptr->branches == 1

&& mptr->fac_exp[O] == T(l) && !mptr->ep[O)->branches)
mptr = mptr->ep[O];

if(mptr->branches == 1) sptr = s.ep[O);

610 CHAPTER 10. PROGRAM LISTING

else
{

ptr = (Symbol<T>*)thisj
if(s.type() == 'B')

}

{

}

mptr = s.ep[O]j
if(mptr->type() == 's' && mptr->branches == 1

&& mptr->fac_exp[O] == T(l) && !mptr->ep[O]->branches)
mptr = mptr->ep[O]j

if(mptr->branches == 1) sptr = s.ep[O]->ep[O]j

else
{

}

mptr = (Symbol<T>*)(&s)j
if(mptr->type() == 's' && mptr->branches == 1

&& mptr->fac_exp[O] == T(l) && !mptr->ep[O]->branches)
mptr = mptr->ep[O]j

if(mptr->branches == 1) sptr = s.ep[O]j

II if s is a products of 2 variables and above
if (mptr->branches)
{

if(mptr->branches == 1)
{

II avoid z = a+b
II assumed p->branches==l

for(i=Oj i<ptr->branchesj i++)
{

if(ptr->ep[i]->type() == 'p')
{

II allocate memory to store indices of matched-terms
int *index = new int[sptr->branches]j assert(index != NULL)j
II check if terms in this & s match, if so record the index
for(m=Oj m<sptr->branchesj m++)
{

}

for(j=Oj j<ptr->ep[i]->branchesj j++)
{

}

if(ptr->ep[i]->ep[j]->is_equal(sptr->ep[m])
&& ptr->ep[i]->fac_exp[j] == sptr->fac_exp[m])

{ index[m] = jj breakj }

II term not match (use index[O] = -1 to indicate)
if(j == ptr->ep[i]->branches) { index[O] = -lj breakj }

II if the required term is matched
if(index[O] >= 0)

10.14. SYMBOLIC CLASS 611

}

}

}

}

{

}

II if every term matches, then the coefficient must be
II a numeric number
if(ptr->ep[i]->branches == sptr->branches)
{ result += Sum<T>(ptr->fac_exp[i]); }
else II the coefficient could be symbolic variables
{

}

II allocate memory for coefficients
Sum<T> tempsum(l,O);
Product<T> *p;
p = new Product<T>(ptr->ep[i]->branches-sptr->branches);
tempsum.ep[O] = p;

II extract terms that does not belong to the comparison
II list. These terms are the coefficients
found = 0;
for(m=O, k=O; k<ptr->ep[i]->branches; k++)
{

}

for(j=O; j<sptr->branches; j++)
{

if(index[j] == k) { found = 1; break; }
}

if(found) { found = 0; continue; }

ptr->ep[i]->ep[k]->copy(tempsum.ep[O]->ep+m);
tempsum.ep[O]->fac_exp[m] = ptr->ep[i]->fac_exp[k];
tempsum.ep[O]->next_var[m] = ptr->ep[i]->next_var[k];

m++;

II add this term to the final coefficient
result += Sum<T>(ptr->fac_exp[i]) * tempsum;

delete [] index;

else II if s is of type 'V' or 'N'
{

if(! ptr->branches ii ptr->is_equal(mptr)) result += T(l);
for(i=O; i<ptr->branches; i++)
{

II if this is a one term expression
if(ptr->ep[i]->type() != 'P')

612 CHAPTER 10. PROGRAM LISTING

}

}

}

{

if(ptr->ep[i]->is_equal(mptr» result += Sum<T>(ptr->fac_exp[i])i
}

else
{

}

for(j=Oi j<ptr->ep[i]->branchesi j++)
{

}

II check if there exists a match term
if(ptr->ep[i]->ep[j]->is_equal(mptr) &&

(ptr->ep[i]->fac_exp[j] == T(l»)
{

}

Sum<T> tempsum(l,O)i
Product<T> *P = new Product<T>(ptr->ep[i]->branches-l)i
tempsum.ep[O] = Pi
for(k=Oi k<ji k++)
{

}

ptr->ep[i]->ep[k]->copy(tempsum.ep[O]->ep+k)i
tempsum.ep[O]->fac_exp[k] = ptr->ep[i]->fac_exp[k]i
tempsum.ep[O]->next_var[k] = ptr->ep[i]->next_var[k]i

for(m=j, k=j+li k<ptr->ep[i]->branchesi k++, m++)
{

}

ptr->ep[i]->ep[k]->copy(tempsum.ep[O]->ep+m)i
tempsum.ep[O]->fac_exp[m] = ptr->ep[i]->fac_exp[k];
tempsum.ep[O]->next_var[m] = ptr->ep[i]->next_var[k]i

result += Sum<T>(ptr->fac_exp[i]) * tempsumi
breaki

return resulti

II return coefficient of constant term
template <class T> T Sum<T>::coeff(int) const
{

int ii
T resulti
«Sum<T>*)this)->Shrink();
if(type() •• 'B')
{

for(i=Oi i<ep[O]->branchesi i++)
if(ep[O]->ep[i] == one(» return ep[O]->fac_exp[i];

10.14. SYMBOLIC CLASS

}

}

else
{

}

for(i=Oj i<branchesj i++)
if(ep[i] == one(»
{

}

result = fac_exp[i]j
return resultj

return T(O)j

II return coefficient of s~n
II note that s could only be of type() == 'V'
template <class T> Sum<T> Sum<T>::coeff(const Sum<T> &s,int n) const
{

if(n == 1) return coeff(s)j
else if(n) II if n != 0,1
{

}

Sum<T> news(l,O)j
Product<T> *p = new Product<T>(l)j assert(p != NULL)j
news.ep[O] = pj
s.copy(news.ep[O]->ep)j
news.ep[O]->fac_exp[O] = T(n)j
if(s.type() == 'V') news.ep[O]->next_var[O] lj
return coeff(news)j

else II n == 0
{

int i, j j
Symbol<T> *ptr, *sptrj
Sum<T> *tempj
Sum<T> result(T(O»j

II initializing various pointers: ptr, sptr
if(type() == 'B')
{

}

ptr = ep[O]j
if(s.typeO
else

'B') sptr = s.ep[O]j
sptr = (Symbol<T>*)(&s)j

if (sptr->type() 'S' && sptr->branches == 1
&& sptr->fac_exp[O] == T(l» sptr = sptr->ep[O]j

else
{

613

614 CHAPTER 10. PROGRAM LISTING

ptr = (Symbol<T>*)thisj
if(s.type() == 'B') sptr = s.ep[O]j
else sptr = (Symbol<T>*)(&s)j
if(sptr->type() == 's' && sptr->branches == 1

&& sptr->fac_exp[O] == T(l» sptr = sptr->ep[O]j
}

if(!(ptr->branches I I ptr->is_equal(sptr»)
{

}

temp = (Sum<T>*)ptrj
result += *tempj

for(i=Oj i<ptr->branchesj i++)
{

if(ptr->ep[i]->type() != 'P')
{

}

if(! ptr->ep[i]->is_equal(sptr»
{

temp = (Sum<T>*) (ptr->ep[i])j
result += Sum<T>(ptr->fac_exp[i]) * *tempj

}

else
{

II to check if s exists in the expression
for(j=Oj j<ptr->ep[i]->branchesj j++)

if (ptr->ep[i]->ep[j]->is_equal(sptr» breakj
II if it does not exist,

II then this term is part of the coefficient
if(j == ptr->ep[i]->branches)

}
}

}

}

{

}

Sum<T> tempsum(l,O)j
ptr->ep[i]->copy(tempsum.ep)j
result += Sum<T>(ptr->fac_exp[i]) * tempsumj

return resultj

II declare dependency of variables
template <class T> void Sum<T>::depend(const Sum<T> &x)
{ if(!deplist.is_Include«Sum<T>*)&x» deplist.add«Sum<T>*)&x)j }

II declare no-dependency of variables

10.14. SYMBOLIC CLASS

template <class T> void Sum<T>::nodepend(const Sum<T>& x)
{

}

Listlterator<Sum<T>*> m«List<Sum<T>*>&)deplist)i
for(m.init()i !mi ++m)

if(mO == &x)
{

}

m.delete_Current()i
returni

II check implicit dependency of variables
template <class T> int implicit_depend(Symbol<T> **s,Symbol<T> *x,int n)
{

}

int ii
for(i=Oii<nii++)
{

if(s[i] == x) return 1i
}

for(i=Oii<nii++)
{

II check for explicit and implicit dependency of variables and sums
if«s[i]->type() == 'S')I 1 (s[i]->type() == 'B')I 1 (s[i]->type() == 'V'»
{

if«(Sum<T>*)s[i])->isdepend(*«Sum<T>*)x») return 1i
}

else if(s[i]->type() != 'N')
{

II check for implicit dependency - or implicit dependency
II of function parameters
if (implicit_depend(s [i]->ep,x, s[i]->branches+(s [i]->bran ches==O»)
return 1i

}

}

return Oi

II check dependency of variables
template <class T> int Sum<T>::isdepend(const Sum<T> &x) const
{

if(type() == 'N') return Oi
if(this == &x) return 1i
if(deplist.is_Include«Sum<T>*)&x» return 1i

Listlterator<Sum<T>*> m«List<Sum<T>*>&)deplist)i
for(m.init()i !mi ++m)

if(m()->isdepend(x» return 1i

615

616

}

CHAPTER 10. PROGRAM LISTING

II check for implicit dependency
II or implicit dependency of function parameters
if«branches)I I «branches==O)&&islower(type())))
return implicit_depend(ep,(Symbol<T>*)&x,branches+(branches==O));
return 0;

II check if a variable is pure number
template <class T> int Sum<T>::is_Number() const
{

}

Symbol<T> *ptr;
if(type() == 'B') ptr = ep[O];
else ptr = (Symbol<T>*)this;
if(ptr->branches == 1 && ptr->ep[O]->type()
return 0;

II Exponential Function
template <class T> Sum<T> exp(const Sum<T> &5)
{

Sum<T> r('e',char());
«Sum<T>&)s).Shrink();
if(s.type() == 'B') s.ep[O]->copy(r.ep);
else if(s.branches) s.copy(r.ep);
else
{

, N ,) return 1;

r.ep[O] = new Sum<T>(l,O); assert(r.ep[O] != NULL);
r.ep[O]->ep[O] = (Symbol<T>*)&s;
r.ep[O]->next_var[O] = 1;

}

return r;
}

II Hyperbolic Sine Function
template <class T> Sum<T> sinh(const Sum<T> &5)
{

Sum<T> r('j',char());
«Sum<T>&)s).Shrink();
if(s.type() == 'B') s.ep[O]->copy(r.ep);
else if(s.branches) s.copy(r.ep);
else
{

}

r.ep[O] = new Sum<T>(l,O); assert(r.ep[O] != NULL);
r.ep[O]->ep[O] = (Symbol<T>*)&s;
r.ep[O]->next_var[O] = 1;

10.14. SYMBOLIC CLASS

return rj
}

il Hyperbolic Cosine Function
template <class T> Sum<T> cosh(const Sum<T> &s)
{

}

Sum<T> r('w',char(»j
«Sum<T>&)s).Shrink()j
if(s.type() == 'B') s.ep[O]->copy(r.ep)j
else if(s.branches) s.copy(r.ep)j
else
{

}

r.ep[O] = new Sum<T>(l,O)j assert(r.ep[O] != NULL)j
r.ep[O]->ep[O] = (Symbol<T>*)&sj
r.ep[O]->next_var[O] = 1j

return rj

II Sine Function
template <class T> Sum<T> sin(const Sum<T> &s)
{

}

Sum<T> r('z',char(»j
«Sum<T>&) s) . Shrink 0 j
if(s.type() == 'B') s.ep[O]->copy(r.ep)j
else if(s.branches) s.copy(r.ep)j
else
{

}

r.ep[O] = new Sum<T>(l,O)j assert(r.ep[O] != NULL)j
r.ep[O]->ep[O] = (Symbol<T>*)&sj
r.ep[O]->next_var[O] = 1j

return rj

II Cosine Function
template <class T> Sum<T> cos(const Sum<T> &s)
{

Sum<T> r('c',char(»j
«Sum<T>&)s).Shrink()j
if(s.tfpe() == 'B') s.ep[O]->copy(r.ep)j
else if(s.branches) s.copy(r.ep)j
else
{

r.ep[O] = new Sum<T>(l,O)j assert(r.ep[O] != NULL)j
r.ep[O]->ep[O] = (Symbol<T>*)&sj
r.ep[O]->next_var[O] = 1j

617

618 CHAPTER 10. PROGRAM LISTING

}

return r;
}

II Logarithm Function
template <class T> Sum<T> In(const Sum<T> &s)
{

}

Sum<T> r('l',char(»;
«Sum<T>&)s).Shrink();
if(s.type() == 'B') s.ep[O]->copy(r.ep);
else if(s.branches) s.copy(r.ep):
else
{

}

r.ep[O] = new Sum<T>(l,O); assert(r.ep[O] != NULL);
r.ep[O]->ep[O] = (Symbol<T>*)&s;
r.ep[O]->next_var[O] = 1;

return r;

II Square Root Function
template <class T> Sum<T> sqrt(const Sum<T> &s)
{

}

Sum<T> r('q',char(»;
«Sum<T>&)s).Shrink();
if(s.type() == 'B') s.ep[O]->copy(r.ep);
else if(s.branches) s.copy(r.ep);
else
{

}

r.ep[O] = new Sum<T>(l,O); assert(r.ep[O] != NULL);
r.ep[O]->ep[O] = (Symbol<T>*)&s;
r.ep[O]->next_var[O] = 1;

return r;

II raise Sum s to a power n
template <class T> Sum<T> power(const Sum<T> &s, T n)
{

static T zero(O);
Sum<T> r(l,O);
if(n != zero)
{

Product<T> *p = new Product<T>(l);
r.ep[O] = p;

II simplify expression first before rise to a power n

10.14. SYMBOLIC CLASS

}

«Sum<T>&)s).Shrink();

if(s.type() == 'B') s.ep[O]->copy(r.ep[O]->ep);
else s.copy(r.ep[O]->ep);

if(s.type() == 'V') r.ep[O]->next_var[O] 1;

r.ep[O]->fac_exp[O] = n;
}

else
{

}

r.ep[O] = s.one();
r.fac_exp[O] = T(l);

return r;

II rise T x to a power n
template <class T> T power(T x,T n)
{

}

int N;
T Y(l);
if(n < T(O»
{

}

x = T(l)/x;
N = int(-n);

else
N = int(n);

if(N==O) return T(l);
while(l)
{

}

if (N%2)
{

}

Y = Y * x;
N 1= 2;
if(N==O) return Y;

else N 1= 2;

x = x * x;

II Partial derivative of s with respect to t
template <class T> Sum<T> df(const Sum<T> &s,const Sum<T> &t)
{

Sum<T> result(l,O);

619

620 CHAPTER 10. PROGRAM LISTING

Symbol<T> *tt;
«Sum<T>&)s).Shrink();
if(t.type() == 'B') tt = t.ep[O];
else tt = (Symbol<T>*)&t;

if(tt->type() 's' && tt->branches == 1 && tt->fac_exp[O] == T(l))
tt = tt->ep[O];

}

s.diff(result.ep,tt);
result.ShrinkO;
return result;

II The n-th partial derivative of s with respect to t
template <class T> Sum<T> df(const Sum<T> &s, const Sum<T> &t, int n)
{

}

Sum<T> result(s);
for(int i=O; i<n; i++) result = df(result,t);
return result;

II Partial integral of s with respect to t
template <class T> Sum<T> Int(const Sum<T> &s, const Sum<T> &t)
{

}

Sum<T> result(l,O);
Symbol<T> *tt;
«Sum<T>&)s).Shrink();
if(t.type() == 'B') tt = t.ep[O];
else tt = (Symbol<T>*)&t;

if(tt->type() 's' && tt->branches == 1 && tt->fac_exp[O]
tt = tt->ep[O];

s.integrate(result.ep,tt);
result. Shrink 0 ;
return resultj

II The n-th partial integral of s with respect to t

T(1))

template <class T> Sum<T> Int(const Sum<T> &s, const Sum<T> &t, int n)
{

}

Sum<T> result(s)j
for(int i=O; i<nj i++)

result = Int(result,t)j
return result;

/1 set a numerical value to a variable

10.14. SYMBOLIC CLASS

template <class T> void Sum<T>::set(const T num)
{

}

if(type() == 'B') { (*(Sum<T>*)ep[O)).set(num)j returnj }
if(type() == 's' && branches==1 && fac_exp[0)==T(1))

{ (*(Sum<T>*)ep[O)).set(num)j returnj }
is_Set = 1j
«Variable<T>*)data)->set(num)j

II Assign an expression to another
template <class T> int Sum<T>::put(const Sum<T> &s1,const Sum<T> &s2)
{

int i, flag=O j
Symbol<T> *ptrj
if(s1.type() 'B') return put(*(Sum<T>*)(s1.ep[0)),s2)j
if(type() == 'B') ptr = ep[O)j
else ptr = (Symbol<T> *)thisj
«Sum<T>&)s1).Shrink()j

if(s1.type() == 's' && s1.branches == 1)
{

}

for(i=Oj i<ptr->branchesj i++)
{

}

flag += ptr->ep[i)->replace1(s1.ep[0),(Symbol<T>*)(&s2))j
if(ptr->ep[i)->is_equal(s1.ep[0)))
{ s2.copy(ptr->ep+i)j flag++j }

else II (s1.branches == 0)
{

for(i=Oj i<ptr->branchesj i++)
{

621

flag += ptr->ep[i)->replace1«Symbol<T>*)(&s1),(Symbol<T>*)(&s2))j
if(ptr->ep[i)->is_equal«Symbol<T>*) (&s1)))

}

{ s2.copy(ptr->ep+i)j flag++j }
}

}

Shrink 0 j
return flagj

II Return the numeric value of a variable
template <class T> T Sum<T>::nvalue() const
{

return nval()j
}

622 CHAPTER 10. PROGRAM LISTING

template <class T> T Sum<T>::nval() const
{

}

if(type() == 'B') return (*(Sum<T>*)ep[O]).nval()j
if(type() == 's' ii branches==l ii fac_exp[O]==T(l»

return (*(Sum<T>*)ep[O]).nval()j
int ij
T s(O)j
if(!branches)
{

}

if(islower(type(») II it is a function
return «Function<T>*)data)->f«(Sum<T>*)ep[O])->nval(»j

else
return «Magnitude<T>*)data)->val()j

else
for(i=Oj i<branchesj i++)

s += fac_exp[i] * «Sum<T>*)ep[i])->nval()j
return Sj

II Return the value of an expression
template <class T> Sum<T> Sum<T>::value() const
{

return valO j
}

II Renew a used variable
template <class T> void Sum<T>::clear()
{

}

if(ep) { removeB()j ep[O]->deleteAIlNodes()j }
delete [] epj delete [] fac_expj
delete [] next_varj deplist.deleteAllNodes()j

branches = OJ
ep = NULL; fac_exp = NULL; next_var = NULLj
is_Bound = 0; is_Set = 0;

II Expand an expression
template <class T> void Sum<T>::expand()
{

int i, flagj
ShrinkO;
do {

do {
flag = OJ
for(i=Oj i<branchesj i++) flag += ep[i]->mxpand(ep+i)j

10.14. SYMBOLIC CLASS 623

if(!flag) for(i=O; i<branches; i++) flag += ep[i]->dxpand(ep+i);
ShrinkO;

}

} while (flag) ;
} while(gather(»;
Shrink 0 ;

/ / unary pI us
template <class T> Sum<T> Sum<T>: : operator + () const
{ return *this; }

/ / unary minus
template <class T> Sum<T> Sum<T>::operator - () const
{ return *this * T(-1); }

template <class T> Sum<T> Sum<T>::operator += (const Sum<T> &s)
{ return *this = *this + s; }

template <class T> Sum<T> Sum<T>::operator -= (const Sum<T> &s)
{ return *this = *this - s; }

template <class T> Sum<T> Sum<T>::operator *= (const Sum<T> &s)
{ return *this = *this * s; }

template <class T> Sum<T> Sum<T>::operator /= (const Sum<T> &s)
{ return *this = *this / s; }

template <class T> Sum<T> operator + (const Sum<T> &s1,const Sum<T> &s2)
{

}

Sum<T> r(2,O);
if (s1. typeO
else

if(s2.typeO
else

if(s1.typeO
if (s2. type 0
return r;

'B') sl.ep[O]->copy(r.ep);
s1. copy(r. ep) ;

'B') s2.ep[O]->copy(r.ep+l);
s2.copy(r.ep+1) ;

'V') r.next_var[O]
'V') r.next_var[1]

1 ;
1 ;

template <class T> Sum<T> operator - (const Sum<T>& s1,const Sum<T>& s2)
{

Sum<T> r(2,O);
if (s1. type 0
else
if(s2.typeO

'B') sl.ep[O]->copy(r.ep);
sl.copy(r.ep);

'B') s2.ep[O]->copy(r.ep+l);

624 CHAPTER 10. PROGRAM LISTING

}

else
if(s1. type 0
if(s2.typeO
r.fac_exp[1]
return r;

s2.copy(r.ep+1);
== 'V') r.next_var[O] l' ,
== 'V') r.next_var[1] = 1;
= T(-1);

template <class T> Sum<T> operator * (const Sum<T> &s1,const Sum<T> &s2)
{

}

Sum<T> r(1,O);
Product<T> *P;
p = new Product<T>(2); assert(p != NULL);
r.ep[O] = p;
if(s1.type() == 'B') s1.ep[O]->copy(r.ep[O]->ep);
else s1.copy(r.ep[O]->ep);

if(s2.typeO
else

if(s1.typeO
if(s2.typeO
return r;

'B') s2.ep[O]->copy(r.ep[O]->ep+1);
s2.copy(r.ep[O]->ep+1);

'V') r.ep[O]->next_var[O]
'V') r.ep[O]->next_var[1]

l' ,
1 ;

template <class T> Sum<T> operator / (const Sum<T> &s1,const Sum<T> &s2)
{

«Sum<T>&)s2).Shrink();
if(s2.branches == 1 && s2.ep[O] == s2.zero(»
{

}

cerr « "Division by zero" « endl;
exit(1);

Sum<T> r(1,O);
Product<T> *p = new Product<T>(2);
r.ep[O] = p;
if(s1.type() == 'B') s1.ep[O]->copy(r.ep[O]->ep);
else s1.copy(r.ep[O]->ep);

if (s2. type 0
else

'B') s2.ep[O]->copy(r.ep[O]->ep+1);
s2.copy(r.ep[O]->ep+1);

if(s1.typeO
if (s2. type 0

== 'V') r.ep[O]->next_var[O]
'V') r.ep[O]->next_var[1]

r.ep[O]->fac_exp[l] = T(-1);
return r;

1 ;
1 ;

10.14. SYMBOLIC CLASS

}

template <class T> int operator == (const Sum<T> &sl,const Sum<T> &s2)
;{

}

«Sum<T>&)sl).Shrink()j
«Sum<T>&)s2).Shrink()j
return sl.is_equal«Symbol<T>*)&s2)j

template <class T> int operator != (const Sum<T> &sl,const Sum<T> &s2)
{ return !(sl==s2)j }

template <class T> ostream & operator « (ostream &os,const Sum<T> is)
{

Symbol<T> *ptrj
«Sum<T>&)s).Shrink()j
if(s.type() == 'B') ptr = s.ep[O]j
else ptr = (Symbol<T>*)&sj

II print the content, if this is a leaf node
if(!ptr->branches)
{

«Sum<T>*)ptr)->data->oprint(os)j
if(islower«(Sum<T>*)ptr)->data->type(»)

{

if(ptr->ep[O]->branches) ptr->ep[O]->oprint(os)j
else if««Sum<T>*)ptr)->data->type() == 'd')1 I

«(Sum<T>*)ptr)->data->type() == 'i'»

}

}

else
{

{

}

os « 1I(lI j ptr->ep[O]->oprint(os)j os «
ptr->ep[l]->oprint(os)j os « 1I)lI j

else

II II. , ,

{ os « 1I(lI j ptr->ep[O]->oprint(os)j os « 1I)lI j }

II do not print + as this is the first term

625

if(ptr->fac_exp[O] == T(-l» { os « "_"j ptr->ep[O]->oprint(os)j }
else if(ptr->fac_exp[O] != T(l»
{

}

os « ptr->fac_exp[O]j
if(ptr->ep[O] != ptr->one(»

{ os « "*" j ptr->ep[O]->oprint(os)j }

else ptr->ep[O]->oprint(os)j

626 CHAPTER 10. PROGRAM LISTING

}

}

II print the rest of the terms
for(int i=l; i<ptr->branches; i++)
{

}

if(ptr->fac_exp[i) > T(O»
{

}

os « "+";
if(ptr->fac_exp[i) == T(l» ptr->ep[i)->oprint(os);
else
{

os « ptr->fac_exp[i];
if (ptr->ep[i] != ptr->one(»

{os« "*"; ptr->ep[i]->oprint(os);}
}

else
{

}

if(ptr->fac_exp[i] == T(-l»
{os« "_"; ptr->ep[i]->oprint(os); }
else
{

}

os « ptr->fac_exp[i];
if(ptr->ep[i] != ptr->one(»

{ os « "*"; ptr->ep[i)->oprint(os); }

return os;

template <class T> istream & operator » (istream &s,Sum<T> &)
{ return s; }

II Shift factor out to outer level, rised to appropriate power
II in order to preserve the canonical form representation
template <class T> int Sum<T>::shrink_l()
{

int i, flag=O, k;
Symbol<T> *ptr;
for(i=O; i<branches; i++)
{

if(ep[i]->type() == 'P')
{

if(ep[i]->branches == 1 && ep[i]->fac_exp[O] == T(l»
{

ptr = ep[i]->ep[O);

10.14. SYMBOLIC CLASS

}

next_var[i] = ep[i]->next_var[O];
ep[i]->deleteOneNode();
ep[i] = ptr;
flag++;

else
for(k=O; k < ep[i]->branches; k++)
{

if(ep[i]->ep[k]->type() == 's' &&
ep[i]->ep[k]->branches == i &&
ep[i]->ep[k]->fac_exp[O] != T(i))

{

flag++;
II Shift factor out to outer level

627

fac_exp[i) *= power(ep[i]->ep[k]->fac_exp[O),ep[i]->fac_exp[k]);
ep[i)->ep[k]->fac_exp[O] = T(i);

}

}

}

}

}

for(i=O; i<branches; i++) flag += ep[i]->shrink_i();
return flag;

II removes extra Sum nodes: moves the lower level of a consecutive level
II of Sum node to the upper level
template <class T> int Sum<T>::shrink_2()
{

int i, k, j, n, flag=O;
Symbol<T> **ept;
T *fac_expt;
int *next_vart;

for(i=O; i<branches; i++)
{

if(ep[i]->type() == 'S')
{

n = bran~hes - i + ep[i]->branches;
ept = new Symbol<T>*[n]; assert(ept != NULL);
fac_expt = new T[n]; assert(fac_expt != NULL);
next_vart = new int[n]; assert(next_vart!= NULL);

II copy nodes that are not affected
for(k=O; k<i; k++)
{

ept[k] = ep[k];
fac_expt[k] = fac_exp[k];

628 CHAPTER 10. PROGRAM LISTING

}

}
}

}

II moves Sum node to one level up
for(j=i, k=Oj k < ep[i)->branchesj k++, j++)
{

}

ept[j) = ep[i)->ep[k)j
fac_expt[j) = ep[i)->fac_exp[k) * fac_exp[i)j
next_vart[j) = ep[i)->next_var[k)j

II copy nodes that are not affected
for(k=i+lj k<branchesj k++, j++)
{

}

ept [j) = ep [k) j
fac_expt[j) = fac_exp[k)j
next_vart[j) = next_var[k)j

branches = nj

ep[i)->deleteOneNode()j
delete [) epj delete [) fac_expj delete [) next_varj
ep = eptj
fac_exp = fac_exptj
next_var = next_vartj
flag++j

for(i=Oj i<branchesj i++) flag += ep[i)->shrink_2()j
return flag j

II remove zero Summands
template <class T> int Sum<T>::shrink_3(Symbol<T>**)
{

int i, flag '" OJ
II for-loop is in reverse order since remove(j) decreases branches by 1
for(i=branches-lj i>=Oj i--)
{

if(fac_exp[i) == T(O»
{

}

ep[i)->deleteAllNodes()j
ep[i) '" zero()j fac_exp[i) = T(l);
next_var[i) = lj flag++j

if(ep[i) == zero(»

10.14. SYMBOLIC CLASS

}

{

}

}

if (branches > 1)
{ remove(i); flag++; }

else if (branches == 1 && fac_exp[i] != T(1»
{ fac_exp[i] = T(1); flag++; }

for(i=O; i<branches; i++) flag += ep[i]->shrink_3(ep+i);
return flag;

II sums Numbers (type()=='N') from Sums
template <class T> int Sum<T>::shrink_4()
{

int i, k, flag=O;
for(i=O; i<branches; i++) flag += ep[i]->shrink_4();

II find the first 'N' node
for(i=O; i<branches; i++)

if(ep[i]->type() == 'N') break;

629

II check for the rest of the node, if there exists any 'N' node, add to
II the first node

}

for(k=i+1; k<branches; k++)
if(ep[k]->type() == 'N')
{

}

flag++;

fac_exp[i] = fac_exp[i]*«Number<T>*) «Sum<T>*)ep[i])->data)->val()
+ fac_exp[k]*«Number<T>*) «Sum<T>*)ep[k])->data)->val();

ep[i] = oneO;
remove(k); k--;

return flag;

template <class T> int Sum<T>::shrink_5()
{

}

int i, flag=O;
for(i=O; i<branches; i++) flag += ep[i]->shrink_5();
return flag;

II Private member functions
template <class T> void Sum<T>::diffRules(Symbol<T> **s,char t) const
{

switch(t)

630

}

CHAPTER 10. PROGRAM LISTING

{

case 'e': II (d/dx)exp(u) = exp(u) (du/dx)
(*s) = nev Sum<T>('e',char(»; assert«*s) != NULL);
ep[O]->copy«*s)->ep);
break;

case 'j': II (d/dx)sinh(u) = cosh(u) (du/dx)
(*s) = nev Sum<T>('v',char(»; assert«*s) != NULL);
ep[O]->copy«*s)->ep);
break;

case 'v': II (d/dx)cosh(u) = sinh(u) (du/dx)
(*s) = nev Sum<T>('j',char(»; assert«*s) != NULL);
ep[O]->copy«*s)->ep);
break;

case 'z': II (d/dx)sin(u) = cos(u) (du/dx)
(*s) = nev Sum<T>('c',char(»; assert«*s) != NULL);
ep[O]->copy«*s)->ep);
break;

case 'c': II (d/dx)cos(u) = -sin(u) (du/dx)
(*s) = nev Sum<T>(l,O); assert«*s) != NULL);
(*s)->ep[O] = nev Sum<T>('z',char(»;
(*s)->fac_exp[O] = T(-l);
ep [0] ->copy« *s) ->ep [0] ->ep) ;
break;

case '1': II (d/dx)ln(u) = 1/(u) (du/dx)
(*s) = nev Sum<T>(l,O); assert«*s) != NULL);
(*s)->ep[O] = nev Product<T>(l); assert«*s)->ep[O] != NULL);
(*s)->ep[O]->fac_exp[O] = T(-l);
ep[O]->copy«*s)->ep[O]->ep);
break;

case 'q': II (d/dx)sqrt(u) = 1/(2*sqrt(u» (du/dx)

default
}

(*s) = nev Sum<T>(l,O); assert«*s) != NULL);
(*s)->ep[O] = nev Product<T>(l); assert«*s)->ep[O] != NULL);
(*s)->ep[O]->ep[O] = nev Sum<T>(l,O);
assert«*s)->ep[O]->ep[O] != NULL);
(*s)->ep[O]->ep[O]->ep[O] = nev Sum<T>('q',char(»;
assert«*s)->ep[O]->ep[O]->ep[O] != NULL);
(*s)->ep[O]->fac_exp[O] = T(-l);
(*s)->ep[O]->ep[O]->fac_exp[O] = T(2);
ep[O]->copy«*s)->ep[O]->ep[O]->ep[O]->ep);
break;

template <class T> void Sum<T>::IntRules(Symbol<T> **s,char t) const
{

svitch (t)

10.14. SYMBOLIC CLASS

{

case 'e': II Int(exp(u),y) exp(u)
copy(s);
break;

case 'j': II Int(sinh(u),u) = cosh(u)
(*5) = new Sum<T>('w',char(»; assert«*s) != NULL);
ep[O]->copy«*s)->ep);
break;

case 'w': II Int(cosh(u),u = sinh(u)
(*5) = new Sum<T>('j',char(»; assert«*s) != NULL);
ep[O]->copy«*s)->ep);
break;

case 'Z': II Int(sin(u),u) = -cos(u)
(*5) = new Sum<T>(1,O); assert«*s) != NULL);
(*s)->ep[O] = new Sum<T>('c'.char(»;
(*s)->fac_exp[O] = T(-1);
ep[O]->copy«*s)->ep[O]->ep);
break;

case 'c': II Int(cos(u),u) = sin(u)
(*5) = new Sum<T>('z',char(»; assert«*s) != NULL);
ep[O]->copy«*s)->ep);
break;

case '1': II Int(ln(u),u) = u*ln(u)-u
(*5) = new Sum<T>(2,O); . assert«*s) != NULL);

631

(*s)->ep[O] = new Product<T>(2); assert«*s)->ep[O] != NULL);
(*s)->ep[O]->ep[1] = new Sum<T>('l',char(»;
assert«*s)->ep[O] != NULL);

}

(*s)->fac_exp[1] = T(-1);
ep[O]->copy«*s)->ep[O]->ep);
ep[O]->copy«*s)->ep[O]->ep[1]->ep);
ep[O]->copy«*s)->ep+l);
break;

case 'q': II Int(sqrt(u),u) = (2/3)*u-(3/2) = (2/3)*(sqrt(u»-3
(*5) = new Sum<T>(l,O); assert«*s) != NULL);

default
}

(*s)->ep[O] = new Product<T>(l); assert«*s)->ep[O] != NULL);

(*s)->fac_exp[O]=T(2)/T(3);
(*s)->ep[O]->fac_exp[O] = T(3)/T(2);
ep[O]->copy«*s)->ep[O]->ep);
break;

II Definition of class Product
II operator * is commutative by default
template <class T> int Product<T>::Comm = 1;

632 CHAPTER 10. PROGRAM LISTING

template <class T> Product<T>::Product(int i) Symbol<T>(i) {}

template <class T>
Product<T>::Product(int i, Symbol<T> **newep, T *new_fe, int *new_nx)

: Symbol<T>(i, newep, new_fe, new_nx) {}

template <class T> Product<T>::-Product()
{ deleteOneNode()j }

II return the type Product
template <class T> char Product<T>::type() const
{ return 'P' j }

II print the numerical value of the expression (return type Sum<T»
template <class T> Sum<T> Product<T>::val() const
{

}

Sum<T> s(T(1»j
for(int i=Oj i<branchesj i++)

s *= power(ep[i]->val(),fac_exp[i])j
return Sj

II print the numerical value of the expression (return type T)
template <class T> T Product<T>::nval() const
{

}

T s(1)j
for (int i=Oj i<branchesj i++)

s *= power(ep[i]->nval(), fac_exp[i])j
return Sj

II replace expression 1 by expression 2
template <class T> int Product<T>::replace1(Symbol<T> *s1, Symbol<T> *s2)
{

int i, index, flag=Oj
for(i=Oj i<branchesj i++) flag += ep[i]->replace1(s1,s2)j
if(s1->branches >= 1)
{

}

index = equal_index(s1)j
if(index >= 0)
{

}

s2->copy(ep+index)j
fac_exp[index] = T(l)j
flag++j

10.14. SYMBOLIC CLASS

}

else
{

}

for(i=Oj i<branchesj i++)
if(ep[i]->is_equal(sl))
{ s2->copy(ep+i)j flag++j }

return flagj

II return the index of equal component
II return (-1) if no such component is found
template <class T> int Product<T>::equal_index(Symbol<T> *s)
{

int i,j ,kj
if(Comm) II Commutative Algebra
{

if (branches >= s->branches)
{

633

int *ip, II ip[] is used as an indicator for the visited node

}

}

count=Oj II number of match components
ip = new int[branches]j assert(ip != NULL)j
for(i=Oj i<branchesj i++) ip[i] = OJ
for(j=Oj j<branchesj j++)
{

}

for(i=Oj i<s->branchesj i++)
if(s->ep[i]->is_equal(ep[j]) && s->fac_exp[i]
{ ip[count) = jj ++countj breakj }

if(count == s->branches)
{

}

for(count--j count>Oj count--) remove(ip[count))j
return ip[O]j

return (-l)j

else II Non-commutative Algebra
{

for(j=Oj j<branches-s->branches+1j j++)
{

for(i=O, k=jj i<s->branchesj i++, k++)
if(!(s->ep[i]->is_equal(ep[k]) && s->fac_exp[i)

breakj
if(i == s->branches)
{

for(i--, k--j i>Oj i--, k--) remove(k)j

634 CHAPTER 10. PROGRAM LISTING

return kj
}

}

return (-l)j
}

}

II check if 2 expressions are equal
template <class T> int Product<T>::is_equal(Symbol<T> *s) const
{

if(Comm) II for commutative algebra
{

int i,kj
int *ipj II ip[] is used as an indicator for the visited node

II a product node must equals to a product node
if(s->type() != 'p') return OJ

II if s is equivalent to this return 1
if(s == (Symbol<T>*)this) return 1j

II if either s or this is a leaf node, return 0
if(!s->branches I I !branches) return OJ

II if branches are not equal, return 0
if (branches != s->branches) return OJ

II branches are equal
ip = new int[branches]j assert(ip != NULL)j

for(i=Oj i<branchesj i++) ip[i] = OJ

II check if all the subtree are equal
for(i=Oj i<branchesj i++)
{

}

for(k=Oj k<branchesj k++)
{

}

if(ep[i]->is_equal(s->ep[k]) &&
fac_exp[i] == s->fac_exp[k] && ip[k] -- 0)

{ ip[k] = 1j breakj }

II if there is no match terms, return 0
if(k == branches) return OJ

delete [] ip j
return 1j

10.14. SYMBOLIC CLASS

}

}

else II for non-commutative algebra
{

}

int i;

II a product node must equals to a product node
if(s->type() != 'P') return 0;

II if s is equivalent to this return 1
if(s == (Symbol<T>*)this) return 1;

II if either s or this is a leaf node, return 0
if(!s->branches I I !branches) return 0;

II if branches are not equal, return 0
if (branches != s->branches) return 0;

II branches are equal
II check if all the subtree are equal
for(i=O; i<branches; i++)
{

}

if(!(ep[i]->is_equal(s->ep[i]» I I fac_exp[i] != s->fac_exp[i])
return 0;

return 1;

II Collect/combine terms that have the same variable
template <class T> int Product<T>::gather()
{

if(Comm) II for commutative algebra
{

int i, j, flag;
flag = 0;
for(i=O; i<branches; i++) flag += ep[i]->gather();

II comparing different subtrees, if equal, group/combine them
for(i=O; i<branches; i++)

for(j=i+1; j<branches; j++)
{

if(ep[i]->is_equal(ep[j]»
{

flag++;
fac_exp[i] += fac_exp[j]; I I sum factors

II if fac_exp[] == 0 after added

635

636

}

}

}

if(fac_exp[i] == T(O))
if (branches > 2)

CHAPTER 10. PROGRAM LISTING

{ remove(j); remove(i); j=i;}
else // remove one term and create a one() node
{

}

remove(j); j=i;
ep[O] = oneO;
fac_exp[O] = T(l);

else { remove(j); j=i; }

else if(lep[i]->branches && lep[j]->branches)
{

}

if(islower(ep[i]->type()) && ep[i]->type() == ep[j]->type())
flag += funcSimp(i,j);

return flag;

else // for non-commutative algebra
{

int i, j, flag;
flag = 0;
for(i=O; i<branches; i++) flag += ep[i]->gather();

// comparing different subtrees, if equal, group/combine them
for(i=O; i<branches; i++)

if«j=i+l) < branches)
{

if(ep[i]->is_equal(ep[j]))
{

}

flag++;
fac_exp[i] += fac_exp[j]; // sum factors

// if fac_exp[] == 0 after added
if(fac_exp[i] == T(O))

if (branches > 2)
{ remove(j); remove(i); }
else // remove one term and create a one() node
{

}

remove(j);
ep[O] = one(); assert(ep[O] l= NULL);
fac_exp[O] = T(l);

else remove(j);

else if(lep[i]->branches && lep[j]->branches)

10.14. SYMBOLIC CLASS 637

{

if(islower(ep[i]->type(» && ep[i]->type()
flag += funcSimp(i,j);

ep [j] ->typeO)

}

}

return flag;
}

}

II copy subtree from this to sp
template <class T> void Product<T>::copy(Symbol<T> **sp) const
{

}

int i;
*sp = new Product<T>(branches); assert(*sp != NULL);
for(i=O;i<branches;i++) (*sp)->fac_exp[i] = fac_exp[i];
for(i=O;i<branches;i++) (*sp)->next_var[i] = next_var[i] ;
for(i=O;i<branches;i++) ep[i]->copy«*sp)->ep+i);

II print the algebraic expression
template <class T> void Product<T>::oprint(ostream &os) const
{

}

II do not print * as this is the first terms
ep[O]->oprint(os);
if (fac_exp[O] != T(l» os « "A(" « fac_exp[O] « 11)11;

II print the rest of the terms
for(int i=l; i<branches; i++)
{

}

os « "*";
ep[i]->oprint(os);
if(fac_exp[i] != T(1» os« "A("« fac_exp[i] «")";

II Delete this node only
template <class T> void Product<T>::deleteOneNode()
{

delete [] ep; delete [] fac_exp; delete [] next_var;
}

II Delete all the nodes rooted at this
template <class T> void Product<T>: :deleteAllNodes()
{

if (branches)
{

for(int i=O; i<branches; i++)

638

}

}

CHAPTER 10. PROGRAM LISTING

if(!next_var[i]) ep[i]->deleteAllNodes();
deleteOneNode 0 ;

II Binomial/Multinomial Expansion
template <class T> int Product<T>::mxpand(Symbol<T> **f)
{

if(Comm) II for commutative algebra
{

int i, flag=O, m;
(*f) = new Product<T>(branches, ep, fac_exp, next_var);
assert(*f != NULL);
for(i=O; i<branches; i++)
{

if(ep[i]->type() == 'S' && ep[i]->branches > 1
&& fac_exp[i] > T(l)

{
&& double(fac_exp[i]) == int(double(fac_exp[i])))

flag++;
int k, n,

newbranches = int(fac_exp[i]) + 1,
last index = newbranches - 1,
bcenter = int(fac_exp[i]) » 1;

T *bcoeff = new T[newbranches-2]; assert(bcoeff != NULL);

II Calculate the binomial coefficient
bcoeff[O] = fac_exp[i];

for(k=(int)fac_exp[i]-l, n=2, m=l; m<bcenter; m++, k--, n++)
bcoeff[m] = bcoeff[m-l]*T(k)/T(n)j

for(k=O, m=newbranches-3j m>=bcenterj m--, k++)
bcoeff[m] = bcoeff[k]j

II Create new nodes to store expanded expression
(*f)->ep[i] = new Sum<T>(newbranches,O)j
assert«*f)->ep[i] != NULL)j
(*f)->fac_exp[i] = T(l)j

Sum<T> *suml = new Sum<T>(l,O)j
Sum<T> *sum2 = new Sum<T>(ep[i]->branches-l,O)j
assert(suml != NULL)j assert(sum2 != NULL)j

II if the expression to be expanded contains more than 2 terms
II then group front/rear expressions into 1 term in order to
II apply binomial expansion

10.14. SYMBOLIC CLASS

if(ep[i]->branches > 2)
{

}

suml->ep[O] = ep[i]->ep[O];
suml->fac_exp[O] = ep[i]->fac_exp[O];

for(m=l; m<ep[i]->branches; m++)
{

}

k = m-l;
sum2->ep[k] = ep[i]->ep[m];
sum2->fac_exp[k] = ep[i]->fac_exp[m];

else II front/rear are clear
{

}

suml->ep[O] = ep[i]->ep[O];
suml->fac_exp[O] = ep[i]->fac_exp[O];
sum2->ep[O] = ep[i]->ep[l];
surn2->fac_exp[O] = ep[i]->fac_exp[l];

II Binomial Expansion
II For term Oth
(*f)->ep[i]->fac_exp[O] = T(l);
(*f)->ep[i]->ep[O] = new Product<T>(l);
assert«*f)->ep[i]->ep[O] != NULL);
suml->copy«*f)->ep[i]->ep[O]->ep);
(*f)->ep[i]->ep[O]->fac_exp[O] = fac_exp[i] ;

II For term (lastindex)th
(*f)->ep[i]->fac_exp[lastindex] = T(l);
(*f)->ep[i]->ep[lastindex] = new Product<T>(l);
assert«*f)->ep[i]->ep[lastindex] != NULL);
sum2->copy«*f)->ep[i]->ep[lastindex]->ep);
(*f)->ep[i]->ep[lastindex]->fac_exp[O] = fac_exp[i];

II All other terms
for(m=l; m<lastindex; m++)
{

II coefficient of each term
(*f)->ep[i]->fac_exp[m] = bcoeff[m-l];
(*f)->ep[i]->ep[m] = new Product<T>(2);
assert«*f)->ep[i]->ep[m] != NULL);
suml->copy«*f)->ep[i]->ep[m]->ep);
sum2->copy«*f)->ep[i]->ep[m]->ep+l);

II degree of each term
(*f)->ep[i]->ep[m]->fac_exp[O] = fac_exp[i]-T(m);

639

640

}

}

}

CHAPTER 10. PROGRAM LISTING

(*f)->ep[i]->ep[m]->fac_exp[l] = T(m)i
}

delete [] bcoeffi
suml->deleteOneNode()i
sum2->deleteOneNode()i
ep[i]->deleteAllNodes()i

for(m=Oi m<newbranchesi m++)
flag += (*f)->ep[i]->ep[m]->mxpand«*f)->ep[i]->ep+m)i

return flagi

else II for non-commutative algebra
{

}

}

int i, flag=O, flagli
(*f) = new Product<T>(branches, ep, fac_exp, next_var)i
assert(*f != NULL)i

for(i=Oi i<branchesi i++)
{

}

if(ep[i]->type() == 'S' && ep[i]->branches > 1
&& fac_exp[i] > T(l)

{

}

&& double(fac_exp[i]) == int(double(fac_exp[i]»)

int m, newbranches = int(fac_exp[i])i
flag++i
(*f)->ep[i] = new Product<T>(newbranches)i
assert«*f)->ep[i] != NULL)i
(*f)->fac_exp[i] = T(l)i

for(m=Oi m<newbranchesi m++) ep[i]->copy«*f)->ep[i]->ep+m)i

ep[i]->deleteAllNodes()i
do {

flagl = Oi
flagl = (*f)->ep[i]->dxpand«*f)->ep+i)i

} while(flagl)i

return flagi

II Distributive law
template <class T> int Product<T>::dxpand(Symbol<T> **f)
{

10.14. SYMBOLIC CLASS 641

}

int i, flag=O, k, mj
for(i=Oj i«*f)->branchesj i++) flag += (*f)->ep[i]->dxpand«*f)->ep+i)j

II find the index of the term that could apply distributive law
for(i=Oj i<branchesj i++)

if(ep[i]->type() == 'S' && ep[i]->branches > 1) breakj

II check for fac_exp[]==l or else we use binomial/multinomial expansion
if(i < branches && fac_exp[i] == T(l))
{

}

flag++j
*f = new Sum<T>(ep[i]->branches,O)j assert(*f != NULL)j
for(k=Oj k < ep[i]->branchesj k++)
{

(*f)->ep[k] = new Product<T>(branches)j assert«*f)->ep[k] != NULL)j
(*f)->fac_exp[k] = ep[i]->fac_exp[k]j

for(m=Oj m<ij m++)
{

}

ep[m] -> copy«*f)->ep[k]->ep+m)j
(*f)->ep[k]->fac_exp[m] = fac_exp[m]j
(*f)->ep[k]->next_var[m] = next_var[m]j

II Do not assign fac_exp[] because is preset to be 1 by constructor
II it is set to be 1 because of distributive law
ep[i]->ep[k] -> copy«*f)->ep[k]->ep+i)j
(*f)->ep[k]->next_var[i] = ep[i]->next_var[k]j

for(m=i+1j m<branchesj m++)
{

}

ep[m]->copy«*f)->ep[k]->ep+m)j
(*f)->ep[k]->fac_exp[m] = fac_exp[m]j
(*f)->ep[k]->next_var[m] = next_var[m]j

}

deleteAllNodes()j

return flagj

II Differentiation
template <class T> void Product<T>::diff(Symbol<T> **s,Symbol<T> *t) const
{

int i, j, k, newbranches = branches + 1j
*s = new Sum<T>(branches,O)j assert(*s != NULL)j

642 CHAPTER 10. PROGRAM LISTING

II d/dx (a1 a2 ... aN) = da1/dx * a2 .. aN + a1 * da2/dx .. aN + ...
for(i=O; i<branches; i++)
{

if(fac_exp[i] == T(l»
{

}

(*s)->ep[i] = new Product<T>(branches);
assert«*s)->ep[i] != NULL);

for(j=O; j<i; j++)
{

}

(*s)->ep[i]->fac_exp[j] = fac_exp[j];
(*s)->ep[i]->next_var[j] = next_var[j];
ep[j]->copy«*s)->ep[i]->ep+j);

(*s)->ep[i]->fac_exp[i] = fac_exp[i];
ep[i]->diff«*s)->ep[i]->ep+i,t);

if«*s)->ep[i]->ep[i]->type() == 'V' I I
(*s)->ep[i]->ep[i]->type() == 'N')
(*s)->ep[i]->next_var[i] = 1;

else (*s)->ep[i]->next_var[i] = 0;

for(j=i+1; j<branches; j++)
{

}

(*s)->ep[i]->fac_exp[j] = fac_exp[j];
(*s)->ep[i]->next_var[j] = next_var[j];
ep[j]->copy«*s)->ep[i]->ep+j);

else II fac_exp[i] != T(l)
{

(*s)->ep[i] = new Product<T>(newbranches);
assert«*s)->ep[i] != NULL);
for(j=O; j<=i; j++)
{

}

(*s)->ep[i]->fac_exp[j] = fac_exp[j];
(*s)->ep[i]->next_var[j] = next_var[j];
ep[j]->copy«*s)->ep[i]->ep+j);

for(k=i+1, j=i+2; j<newbranches; j++, k++)
{

}

(*s)->ep[i]->fac_exp[j] = fac_exp[k];
(*s)->ep[i]->next_var[j] = next_var[k];
ep[k]->copy«*s)->ep[i]->ep+j);

10.14. SYMBOLIC CLASS 643

}

}

}

II d/dx (u~n) = n u~(n-l) du/dx
(*s)->ep[i]->fac_exp[i] = fac_exp[i] - T(l);
(*s)->fac_exp[i] *= fac_exp[i];
ep[i]->diff«*s)->ep[i]->ep+i+l, t);

II Integration
template <class T>
void Product<T>::integrate(Symbol<T> **s,Symbol<T> *t) const
{

if (branches == 1)
{

if(ep[O] == t)
{

if(fac_exp[O]!=T(-l» II Int(x~n,x)=x~(n+l)/(n+l)
{

}

*s = new Sum<T>(l,O); assert(*s != NULL);
assert«*s)->ep[O] != NULL); (*s)->ep[O] = new Product<T>(l);

t->copy«*s)->ep[O]->ep);
(*s)->fac_exp[O]=T(l)/(fac_exp[O]+T(l»;
(*s)->ep[O]->fac_exp[O]=(fac_exp[O]+T(l»;
(*s)->ep[O]->next_var[O] =0;

else II Int(x~(-l),x)=ln(x);
{

*s = new Sum<T>('l',char(»;
(*s)->ep[O] = new Sum<T>(l,O);
t->copy«*s)->ep[O]->ep);

assert(*s != NULL);
assert«*s)->ep[O] != NULL);

}
}

else if(implicit_depend(ep,t,branches»
{

}

*s = new Sum<T>('i',char(»; assert(*s!= NULL);
copy«*s)->ep);
t->copy«*s)->ep+1) ;

else
{

}
}

*s = new Product<T>(2); assert(*s!= NULL);
copy«*s)->ep);
t->copy«*s)->ep+l);

else Ilbranches>l

644 CHAPTER 10. PROGRAM LISTING

}

{

}

int i,j,constant_found=-l;

Iisearch for constants with respect to integration
if(Comm == 1)
for(i=O;(i<branches)&&(constant_found<O);i++)
{

if«ep[i]->typeO == 'S') II (ep[i]->typeO=='B') II (ep[i]->typeO=='V'»
{

if(!«Sum<T>*)ep[i])->isdepend(*«Sum<T>*)t») constant_found=i;
}

else
{

if(ep[i]->type() == 'N') constant_found=i;
else
if(!implicit_depend(ep[i]->ep,t,ep[i]->branches+(ep[i]->branches==O»)
constant_found=i;

}

}

if (constant_found<O)
{

}

*s = new Sum<T>('i',char(»; assert(*s!= NULL);
copy«*s)->ep);
t->copy«*s)->ep+1);

else
{

}

*s = new Product<T>(branches); assert(*s != NULL);
Product<T> *p=new Product<T>(branches-l); assert(p != NULL);

ep[constant_found]->copy«*s)->ep);
for(i=O,j=O;i<branches;i++)
if(i!=constant_found)

{

p->fac_exp[j]=fac_exp[i];
p->next_var[j]=next_var[i];
ep[i]->copy(p->ep+(j++»;

}

p->integrate«*s)->ep+l,t);
delete p;

II Simplify Special Functions
template <class T> int Product<T>::funcSimp(int& i,int& j)

10.14. SYMBOLIC CLASS

{

}

switch(ep[i]->type(»
{

}

case 'e':
Symbol<T> .ptr;

ptr = ep[i]->ep[O];
ep[i]->ep[O] = new Sum<T>(2,O); assert(ep[i] != NULL);
ep[i]->ep[O]->fac_exp[O] = fac_exp[i];
ep[i]->ep[O]->fac_exp[l] = fac_exp[j];
ep[i]->ep[O]->ep[O] = ptr;
ep[j]->ep[0]->copy(ep[i]->ep[0]->ep+1);
fac_exp[i] = fac_exp[j] = T(l);
ep[i]->ep[O]->Shrink();
remove(j); j=i;
return 1;

default: return 0;

II removes ones from products
template <class T> int Product<T>::shrink_1()
{

}

int i, flag=O;

for(i=O; i<branches; i++)
{

}

if(ep[i] == one(»
{

}

if (branches > 1)
{

}

remove(i); i--;
flag++;

II (branches==l), put l~(n) = 1
else if(fac_exp[i] != T(l» fac_exp[i] = T(l);

for(i=O; i<branches; i++) flag += ep[i]->shrink_1();
return flag;

II removes extra Product nodes: moves the lower level of a consecutive
II level of Product node to the upper level
template <class T> int Product<T>::shrink_2()
{

int i, j, k, n, flag=O;

645

646 CHAPTER 10. PROGRAM LISTING

Symbol<T> **ept;
T *fac_expt;
int *next_vart;

for(i=O; i<branches; i++)
{

}

if(ep[i]->type() == 'p')
{

}

n = branches - 1 + ep[i]->branches;
ept = new Symbol<T>*[n]; assert(ept != NULL);
fac_expt = new T[n]; assert(fac_expt != NULL);
next_vart = new int[n]; assert(next_vart!= NULL);

II copy nodes that are not affected
for(k=O; k<i; k++)
{

}

ept[k] = ep[k];
fac_expt[k] = fac_exp[k];
next_vart[k] = next_var[k];

II moves Product node to one level up
for(j=i, k=O; k < ep[i]->branches; k++, j++)
{

}

ept[j] = ep[i]->ep[k];
fac_expt[j] = ep[i]->fac_exp[k] * fac_exp[i];
next_vart[j] = ep[i]->next_var[k];

II copy nodes that are not affected
for(k=i+l; k<branches; k++, j++)
{

}

ept [j] = ep[k];
fac_expt[j] = fac_exp[k];
next_vart[j] = next_var[k];

branches = n;
ep[i]->deleteOneNode();
delete [] ep; delete [] fac_exp; delete [] next_var;
ep = ept;
fac_exp = fac_expt;
next_var = next_vart;
flag++;

for(i=O; i<branches; i++) flag += ep[i]->shrink_2();

10.14. SYMBOLIC CLASS

return flag;
}

II remove zero Products
template <class T> int Product<T>: :shrink_3(Symbol<T> **f)
{

}

int i, flag=O;
for(i=O; i<branches; i++)

if(ep[i] == zero())
{

}

*f = zero 0 ;
deleteAllNodes();
return 1;

for(i=O; i<branches; i++) flag += ep[i]->shrink_3(ep+i);
return flag;

II sums Numbers (type()=='N') from Sums
template <class T> int Product<T>::shrink_4()
{

}

int i, flag=O;
for(i=O; i<branches; i++) flag += ep[i]->shrink_4();
return flag;

II remove Sums with only one summand
template <class T> int Product<T>: :shrink_5()
{

}

int i, flag=O;
Symbol<T> *ptr;
for(i=O; i<branches; i++)

if(ep[i]->type() == 'S' &&
ep[i]->branches == 1 &&
ep[i]->fac_exp[O] == T(l))

{

}

ptr = ep[i]->ep[O];
next_var[i] = ep[i]->next_var[O];
ep[i]->deleteOneNode();
ep[i] = ptr;
flag++;

for(i=O; i<branches; i++) flag += ep[i]->shrink_5();
return flag;

647

648 CHAPTER 10. PROGRAM LISTING

// declare a commutative/non-commutative operator *
template <class T> void Commutative(T,int flag)
{

if(flag) Product<T>::Comm = 1;
else Product<T>::Comm = 0;

}

#endif

Chapter 11

PVM and Abstract Data Types

Parallel Virtual Machine (PVM) [16] is a software system that permits a network of
heterogeneous Unix computers to be used as a single large parallel computer. Thus
large computational problems can be solved by using the aggregate power of many
computers. Applications, which may be written in Fortran 77, C or C++, can be par­
allelized by using message-passing constructs common to most distributed-memory
computers. By sending and receiving messages, multiple tasks of an application can
cooperate to solve a problem in parallel.

The PVM system is composed of two parts. The first part is a daemon which resides
on all the computers making up the virtual machine. The second part of the system
is a library of PVM interface routines. This library contains C routines for message
passing, spawning processes, coordinating tasks, and modifying the virtual machine.
All basic data types in C and strings (arrays of characters) can be packed, sent and
unpacked. Data encoding is a binary representation for data objects (e.g., integers,
floating point numbers) such as XDR or the native format of a microprocessor. PVM
can contain data in XDR or native format. XDR stands for eXternal Data Repre­
sentation. This is an Internet standard data encoding (essentially big-endian integers
and IEEE format floating point numbers). PVM converts data to XDR format to
allow communication between hosts with different native data formats.

Typical applications of PVM are when the problems under consideration can be
parallelized or the divide-and-conquer method can be applied. For example consider
the logistic map

t = 0,1,2, ...

with Xo (initial value) given. The map can be split up into two maps given by

649

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

650 CHAPTER 11. PVM AND ABSTRACT DATA TYPES

Xt+2 = 16Xt(1- Xt)(1 - 4Xt(1- Xt))

Xt+3 = 16Xt+l(1 - xt+l)(1 - 4Xt+l(1 - Xt+l)).

The two series are independent and can be calculated separately. Two tasks are
spawned to calculate the two series. These are then finally combined. Since the two
maps are identical (except for a offset of one in their indices) two identical slaves can
be spawned.

Next we show how the PVM may be used together with Abstract Data Types (ADT).
In the following program, we calculate the addition of two rational numbers A and
B, where

A 41152 and B = 123234
= 218107 333445

then A+B =
40600126678
72726688615

The program consists of two parts. The master program and the slave program.

• The master program specifies the values for A and B, packs the numbers and
then sends them to the slave program across the network. The slave program
does the calculation A + B and returns the result of the calculation to the master
program.

• The slave program which resides on the remote machine first receives the packet
sent by the master program, unpacks it, performs the addition and finally re­
turns the result of the calculation back to the master program.

Note that the library routines of the PVM do not support the packing of abstract
data types. Therefore, we have to supply our own packing and unpacking functions:

• pvm_pkvlongO packs the Verylong data type.

• pvm_upkvlongO unpacks the Verylong data type.

• pvm_pkrat 0 packs the Rational data type.

• pvm_upkrat 0 unpacks the Rational data type.

II master.cc (The master program)
II In this example we show how to send abstract data types.
II Note that only the data members needed to reconstruct the object
II are packed and sent.

#include <iostream.h>
#include <pvm3.h>

#include "Verylong.h"
#include "Rational.h"

II We write our own versions of the PVM packing functions
II Pack and unpack a Verylong
void pvm_pkvlong(const Verylong *1)
{

651

char *s = (char*)(*l); II type conversion Verylong -> char*
int length = strlen(s);
pvm_pkint(&length,l,l);
pvm_pkstr(s);

}

void pvm_upkvlong(Verylong *1)
{

}

int length;
pvm_upkint(&length,l,l);
char *s = new char [length+l] ;
pvm_upkstr(s);
Verylong v(s);
*1 = v;

II Pack and unpack a Rational
void pvm_pkrat(const Rational<Verylong> *r)
{

}

Verylong v = r->num();
pvm_pkvlong(&v);
v = r->denO;
pvm_pkvlong(&v);

void pvm_upkrat(Rational<Verylong> *r)
{

}

Verylong num' den;
pvm_upkvlong(&num);
pvm_upkvlong(&den);
Rational<Verylong> a(num,den);
*r = a;

void mainO
{

II Enroll task into PVM by querying task 1D

652

}

CHAPTER 11. PVM AND ABSTRACT DATA TYPES

int tid = pvm_mytid();

II Create two rational numbers:
Rational<Verylong> A("41152", "218107"), B("123234", "333445");

II Spawn the slave task
int slaveid;
int error = pvm_spawn("slave", (char**)NULL,

PvmTaskDefault, "", 1, &slaveid);

if(error > 0) II If error < 0, the slave could not be spawned
{

}

II Send the two rational numbers
pvm_initsend(PvmDataDefault);

pvm_pkrat(&A);
pvm_pkrat(&B);
pvm_send(slaveid, 1);

II Receive the answer
pvm_recv(slaveid,2);
Rational<Verylong> C;
pvm_upkrat(&C);

cout « A « " + " « B « " = " « C « endl;

II Unhook current task from PVM
pvm_exitO;

II slave.cc (The slave program)

#include <iostream.h>
#include <pvm3.h>
#inc1ude "Verylong.h"
#inc1ude "Rational.h"

II We write our own versions of the PVM packing functions
II Pack and unpack a Verylong
void pvm_pkvlong(const Very long *1)
{

char *s = (char*) (*1); II type conversion Verylong -> char*
int length = strlen(s);
pvm_pkint(&length,l,l);

pvm_pkstr(s);
}

void pvm_upkvlong(Verylong *1)
{

}

int length;
pvm_upkint(&length,l,l);
char *s = new char [length+l] ;
pvm_upkstr(s) ;
Verylong v(s);
*1 = v;

II Pack and unpack a Rational
void pvm_pkrat(const Rational<Verylong> *r)
{

}

Verylong v = r->num();
pvm_pkvlong(&v);
v = r->denO;
pvm_pkvlong(&v);

void pvm_upkrat(Rational<Verylong> *r)
{

}

Verylong num, den;
pvm_upkvlong(&num);
pvm_upkvlong(&den);
Rational<Verylong> a(num,den);
*r = a;

void mainO
{

II Enroll task into PVM by querying parent task ID
int ptid = pvm_parent();

II Receive the two rational numbers
Rational<Verylong> A, B;

pvm_recv(ptid,l);
pvm_upkrat(&A); pvm_upkrat(&B);

II Do the calculation
Rational<Verylong> C = A + B;

653

654

}

CHAPTER 11. PVM AND ABSTRACT DATA TYPES

// Send the answer back
pvm_initsend(PvmDataDefault);
pvm_pkrat(&C);
pvm_send(ptid,2);

// Task completed successfully
pvm_exit() ;

The output of the program is

41152/218107 + 123234/333445 = 40600126678/72726688615

Note that in the packing function pvm_pkvlongO, the statement

converts a Verylong number to the built-in data type char*. This step is neces­
sary because PVM supports only the packing of built-in data types. The conversion
operator has been implemented in the Verylong class (see Chapter 6).

Chapter 12

Error Handling Techniques

An exception is an error that occurs at run-time. A typical example is division by
zero. Thus it may be a good idea to classify a program into distinct subsystems that
either execute successfully or fail. Thus, local error checking should be implemented
throughout the system for a sound program. It is, therefore, important to identify the
possible source of errors. They could be caused by the programmer himself. This case
includes the detection of an internal logic error, such as an assertion failure. Some­
times, special attention has to be paid to the preconditions of calling a function. For
example, an attempt to get the seventh character of a three-character String would
cause an error. However, some problems are not logic errors, but a failure to get some
resource during run-time. These errors might include running out of memory, a write
failure due to disk full, etc.

A fault-tolerant system is usually designed hierarchically, with each level coping with
as many errors as possible. However, some errors cannot be handled locally. Thus, we
need a global error communication mechanism, which would be one of the following:

• Error state, i.e. the different return values of a function or class method repre­
sent the different status of the function execution.

• Exception handling.

In C we can use the function void assert (int test) to test a condition and pos­
sibly abort. This function is a macro that expands to an if statement; if test
evaluates to zero, assert prints a message on stderr and aborts the program by
calling abort. Using C++'s exception handling subsystem we can in a structured
and controlled manner handle run-time errors. C++ exception handling is built upon
three keywords: try, catch and throTN.

655

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

656 CHAPTER 12. ERROR HANDLING TECHNIQUES

12.1 Error State

One can implement error states via class variables. Typically, each object has an
error flag (error state variable). If an error occurs, the error state variable is set to
a value indicating the error type. For example, the <iostream. h> library of C++
has an integer state variable called state. The different bits of this variable indicate
different error states. The error state can be queried via the class methods bad 0,
eof 0, fail O. The user can then implement his own error-handling mechanism.

12.2 Exception Handling

A more sophisticated method that controls error detection and error handling is called
exception handling. It is a non-local mechanism which provides a means of commu­
nicating errors between the classes/functions and programs that make use of these
classes/functions. It also lets the programmers write their code without worrying
about errors at every function call.

In the exception handling mechanism in C++, the function that detects an error
raises an exception using the keyword throw. The handler function then catches and
handles the exception. The function that raises the exception must come within a
try-block. The handlers, which are declared using the keyword catch, are placed at
the end of the try-block.

As an example, consider the following Rational class, together with the mainO
program:

II except.cpp

#include <iostream.h>
#include "MString.h"

class Rational
{

private:
long int num, den;

public:
Rational(const long int = 0, const long int 1);

};

class Check_Error
{

private:
String reason;

12.2. EXCEPTION HANDLING

public:

};

Check_Error(const String &s) : reason(s) {}
String diagnostic() const { return reason; }

Rational: : Rational (const long int N, const long int D)
: num(N), den(D)

{

}

int
{

}

Result

if(D==O) throw Check_Error(IIDivision by zero !");

mainO

try
{

long int a, b;

a = 5; b = 0;

Rational R1(a,b);
}

catch(Check_Error diag)
{

}

cerr « "Internal error "« diag.diagnosticO « endl;
return 1;

return 0;

Internal error : Division by zero !

657

The constructor of the Rational class checks if the denominator of the number is
zero. It throws an exception when this error occurs. The thrown object contains the
diagnostic message, which is

Division by zero !

in this case.

658 CHAPTER 12. ERROR HANDLING TECHNIQUES

The class Check_Error handles all the exceptions that might happen within the pro­
gram. It contains a pri vate data member which stores a string containing the reason
for the exception. The membedunction diagnosticO prints the diagnostic message
of the failure. It is used in the catch function of the program.

Note that in the mainO function the whole program is placed in the try-block.
Immediately after the block is the catch function, which is the actual exception
handler. The catch function specifies the type of exception it handles.

Chapter 13

Gnuplot and PostScript

Gnuplot is a command-driven interactive function-plotting program. It can be used to
plot ordinary or user-defined mathematical functions and data points in both two- and
three-dimensional space. The original software was developed by Thomas Williams
and Colin Kelley. It is available over a number of platforms, such as Unix, Atari,
VMS, MS-DOS and OS/2. It accommodates many of the needs of today's scientists
for graphic data representation.

A wide-range of commands and functions are available in Gnuplot. It handles both
curves (two-dimensional) and surfaces (three-dimensional). Surfaces can be plotted
as a mesh, floating in three-dimensional coordinate space, or as a contour plot on the
x - y plane. For two-dimensional plots, the plot styles includes lines, points and error
bars, etc. Graphs may be labelled with arbitrary labels and arrows, axes labels, a
title, date and time, and a key.

The plot and splot commands are two primary commands in Gnuplot. The com­
mand plot is used to plot two-dimensional functions and data, whereas splot plots
three-dimensional surfaces and data. For example,

gnuplot> plot cos (x)

plots a simple cosine curve, and

gnuplot> splot x*x*y

plots a three-dimensional surface. To plot a data file called result. dat, we type

gnuplot> plot 'result.txt'

659

T. K. Shi et al., SymbolicC++: An Introduction to Computer Algebra using Object-Oriented Programming
© Springer-Verlag London Limited 2000

660 CHAPTER 13. GNUPLOT AND POSTSCRIPT

Gnuplot has an on-line help, which can be invoked by the help command, with the
following syntax:

gnuplot> help <topic>

where <topic> refers to a particular topic in the context. For other gnuplot com­
mands, we refer to the user's manual [59].

PostScript was designed and developed by Adobe Systems Incorporated. Basically,
it is a page-description language that is designed specifically to provide a device­
independent description of a printable document from a computer system to a printer.
It is also a general-purpose programming language that contains a wide range of
graphics operations. It supports data types such as reals, booleans, arrays and strings.
Moreover, it contains variables and allows the construction of more complex proce­
dures and functions by combining different operators.

PostScript is embedded in an interpreter program that generally runs in an indepen­
dent device, such as a laser printer. The interpreter program translates PostScript
operations and data into device-specific codes and generates the graphics being de­
scribed on the page. One of the greatest strengths of PostScript is that it is indepen­
dent of the output device, such as a typesetter or a high dot-density publishing device.

A PostScript file should start with the i.! character. It is a magic number to indicate
a PostScript file rather than some kind of text file. PostScript is a postfix language,
where the operators follow their arguments. For example, the statement

x y moveto

moves the current pointer to the coordinate (x, y). In general, the syntax of a given
command is

argn operator

The following PostScript program draws a triangle and displays the text message
"SymbolicC++" at a 50° angle to the horizontal.

661

'I. ! PostScript 'I. PostScipt "Magic Number"
70 140 moveto 'I. set starting point
300 620 lineto 'I. add line segment
530 140 lineto 'I. add line segment
closepath 'I. close the shape
stroke 'I. draw the path
IPalatino-Roman findfont 'I. find the required font
65 scalefont 'I. scale the font size
setfont 'I. select the current font
140 148 moveto 'I. set current point
50 rotate 'I. rotate coordinate system
(SymbolicC++) show 'I. specific the text message
showpage 'I. display page

For other commands in the PostScript language, we refer to [21], [33].

Suppose we intend to visualize the time evolution of the logistic map

t = 0,1,2, ... , Xo E [0,1]

with Xo = 1/3. We first generate the data set (timeev.dat) using the following
program:

II logis.cpp

#include <fstream.h> II for of stream, close()
#include "Verylong.h"
#include "Rational.h"

void mainO
{

of stream data("timeev.dat");
Rational<Verylong> cH"l"), c2("4"),

xO("1","3");

data « 0 « " " « double (xO) « endl;
int i;
for(i=l; i<=10; i++)
{

xO = c2*xO*(cl - xO);

II initial value xO

data « i « " " « double(xO) « endl;
}

data. close 0 ;
}

1/3

662 CHAPTER 13. GNUPLOT AND POSTSCRIPT

The time evolution of the map (timeev .dat) can now be viewed using Gnuplot. In
the Gnuplot environment, we type the following command:

gnuplot> plot [0:10] 'timeev.dat'

This command plots the first eleven points of the time evolution. We can create a
postscript file using the commands:

gnuplot> set term postscript default
gnuplot> set output "timeev. ps "
gnuplot> plot 'timeev.dat'

The postscript file (timeev.ps) may be sent to the printer using the command:

copy timeev.ps lpt1

for MS-DOS, OS/2, Windows NT and

lp timeev.ps

for Unix systems.

Bibliography

[1] Ammeraal Leen, STL for c++ Programmers, John Wiley, Chichester (1997).

[2] Anderson J. R., Corbett A. T. and Reiser B. J., Essential LISP, Addison-Wesley
(1987).

[3] Aslaksen H., Multiple-valued Complex Functions and Computer Algebra,
SIGSAM Bull., 30, 12-20 (1996).

[4] Ayres F., Modern Algebra, Schaum's Outline Series, McGraw-Hill, New York
(1965).

[5] Barnsley M. F., Fractals Everywhere, 2nd ed., Academic Press Professional,
Boston (1993).

[6] Berry J. T., The Waite Group's C++ Programming, 2nd ed., SAMS, Carmel,
Indiana (1992).

[7] Birtwistle G. M., Dahl O. J., Myhrhaug B. and Nygaard K., SIMULA BEGIN,
Studentlitteratur, Sweden, Auerbach, Philadelphia (1973).

[8] Brackx F., Computer Algebra with LISP and REDUCE: An Introduction to
Computer-aided Pure Mathematics, Kluwer Academic, Boston (1991).

[9] Budd T. A., Classic Data Structures in C++, Addison-Wesley (1994).

[10] Char B. W., First Leaves - A Tutorial Introduction to MAPLE V, Springer­
Verlag, New York (1991).

[11] Dautcourt G., Jann K. P., Riemer E. and Riemer M., Astronomische
Nachrichten, 102, 1 (1981).

[12] Davenport J. H., Siret Y. and Tournier E., Computer Algebra: Systems and
Algorithms for Algebraic Computation, 2 ed., Academic Press, London (1993).

[13] Ellis M. A. and Stroustrup B., The Annotated C++ Reference Manual, Addison­
Wesley, (1990).

663

664 BIBLIOGRAPHY

[14] Epstein R L. and Carnielli W. A., Computability, Wadsworth & Brooks/Cole,
Pacific Grove, California (1989).

[15] Froberg C. E., Numerical Mathematics, Theory and Computer Applications,
Benjamin-Cummings, Menlo Park (1985).

[16] Geist A., Beguelin A., Dongarra J., Jiang Weicheng, Manchek Rand Sunderam
V., PVM: Parallel Virtual Machine, A User's Guide and Tutorial for Networked
Parallel Computing, MIT Press, Cambridge, MA (1994).

[17] Gray P. D. and Mohamed R, Smalltalk-80: A Practical Introduction, Pitman,
London (1990).

[18] Hearn A., REDUCE User's Manuel, Version 3.5, RAND publication CP78 (Rev.
10/93).

[19] Hehl F. W., Winkelmann V. and Meyer H., REDUCE, 2 ed., Springer-Verlag
(1993).

[20] Hekmatpour S., An Introduction to LISP and Symbol Manipulation, Prentice
Hall, New York (1988).

[21] Holzgang D. A., Understanding PostScript Programming, second edition,
SYBEX Inc., Alameda (1987).

[22] Howson A. G., A Handbook of Terms used in Algebra and Analysis, Cambridge
University Press, Cambridge (1972).

[23] Jamsa K., Success with C++, Jamsa Press, Las Vegas (1994).

[24] Jenks R D. and Sutor R S., Axiom: The Scientific Computation System,
Springer-Verlag, New York (1992).

[25] Kim W., Introduction to Object-Oriented Databases, MIT Press, Cambridge, MA
(1990).

[26] Knuth D. E., Fundamental Algorithms, vol. 1 of The Art of Computer Program­
ming, Addison-Wesley, Reading, MA (1968).

[27] Knuth D. E., Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer
Programming, Addison-Wesley, Reading, MA (1981).

[28] Knuth D. E., Sorting and Searching, vol. 3 of The Art of Computer Programming,
Addison-Wesley, Reading, MA (1973).

[29] Lafore R, Object-Oriented Programming in TURBO C++, Waite Group Press,
Mill Valley (1991).

[30] Lang S., Linear Algebra, Addison-Wesley, Reading, MA (1968).

BIBLIOGRAPHY 665

[31] Lippman S. B., C++ Primer, 2nd ed., Addison-Wesley, Reading, MA (1991).

[32] McCarthy J. et al., LISP 1.5 Programmer's Manual, 2 ed., MIT Press (1965).

[33] McGilton H. and Campione M., PostScript by Example, Addison-Wesley (1992).

[34J MacCallum M. A. H. and Wright F. J., Algebraic Computing with Reduce, Claren-
don Press, Oxford (1991).

[35J Mevel A. and Gueguen T., Smalltalk-BO, Macmillan Education, London (1987).

[36] Meyer B., Object-Oriented Software Construction, Prentice-Hall International
(1988).

[37J Meyers S., Effective C++, Addison-Wesley, Reading, MA (1992).

[38J Norvig P., Paradigms of Artificial Intelligence Programming: Case Studies in
Common Lisp, Morgan Kaufman, San Mateo (1991).

[39J Oevel W., Postel F., Riischer G., and Wehmeier S., Das MuPAD Tutorium,
SciFace Software, Paderborn (1998).

[40J Press W. H., Teukolsky S. A., Vetterling W. T. and Flannery B. P., Numeri­
cal Recipes in C, The Art of Scientific Computing, Cambridge University Press
(1992).

[41] Rayna G., REDUCE: Software for Algebraic Computation, Springer-Verlag, New
York (1987).

[42J Reiser M., The Oberon System: user guide and programmer's manual, Addison­
Wesley (1991).

[43J Reiser M. and Wirth N., Programming in Oberon, Addison-Wesley (1992).

[44J Risch R. H., Transactions of the American Mathematical Society, 139, 167-189
(1969).

[45J Smith M. A., Object-Oriented Software in C++, Chapman and Hall, London
(1993).

[46] Steeb W. H. and Euler N., Nonlinear Evolution Equations and Painleve Test,
World Scientific, Singapore (1988).

[47J Steeb W. H. and Lewien D., Algorithms and Computation with Reduce, BI­
Wissenschaftsverlag, Mannheim (1992).

[48] Steeb W. H., Lewien D. and Boine-Frankenhein 0., Object-Oriented Program­
ming in Science with C++, BI-Wissenschaftsvedag, Mannheim (1993).

666 BIBLIOGRAPHY

[49] Steeb W. H., Quantum Mechanics using Computer Algebra, World Scientific,
(1994).

[50] Steeb W. H. and Euler N., Continuous Symmetries, Lie Algebras and Differential
Equations, World-Scientific, Singapore (1996).

[51] Steeb W. H., Problems and Solutions in Theoretical and Mathematical Physics,
World Scientific, Singapore (1996).

[52] Steeb W. H., The Nonlinear Workbook: Chaos, Fractals, Cellular Automata,
Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, Symbol­
icC++ and Reduce Programs, World Scientific, Singapore (1999).

[53] Stephani H., General Relativity, Cambridge University Press, Cambridge (1985).

[54] Stoutemeyer D. R, Notices of the American Mathematical Society, Volume 38,
pp. 778-785, (1991).

[55] Stroustrup B., The C++ Programming Language, 2nd ed., Addison-Wesley,
Reading, MA (1991).

[56] Tennent R D., Principles of Programming Languages, Prentice-Hall, Englewood
Cliffs (1981).

[57] Thomas P. and Weedon R, Object-Oriented Programming in Eiffel, Addison­
Wesley, Wokingham (1985).

[58] Touretzky D. S., Common Lisp: A Gentle Introduction to Symbolic Computation,
Benjamin/Cummings, Redwood City (1990).

[59] Williams T., Kelley C. et al., Gnuplo: An Interactive Plotting Program,
http://www.cs.dartmouth.edu/gnuplot-info.html.

[60] Winston P. H., Lisp, Addison-Wesley, (1989).

[61] Wirth N. and Gutknecht J., Project Oberon: The Design of an Operating System
and Compilers, Addison-Wesley (1992).

[62] Wolfram S., Mathematica: A System for Doing Mathematics by Computer, 2nd
ed., Addison-Wesley (1992).

[63] Yan S. S., Collofello J. S. and MacGergor T., Ripple Effect Analysis of Software
Maintenance, In Proc. COMPSAC'78, pp.60-65 (1978).

Index

car, 423
cdr, 423
cond, 425
map, 186
map can, 425
null, 424
private, 130
protected, 130
public, 130
this pointer, 126

Absolute value, 21, 24
Abstract

base class, 280
classes, 83
data type, 5, 78, 118, 202

Access specifier, 130
Aggregation, 78
Algebra, 27
Alternating product, 53
Annihilation operator, 145
Anticommutation relations, 148
Archimedean property, 19
Argand diagram, 24
Argument, 25
Arithmetization, 327
Array, 244

literals, 117
Assignment operator, 136
Associated Legendre functions, 355, 375
Associative algebra, 49
Atom, 422

Basis, 28
Bessel functions, 380
Binomial

expansion, 292
667

theorem, 292
Bit vector, 255
Bose operators, 145

Canonical form, 306
Cantor set, 342, 343
Cases, 425
Cast, 137, 254
Categories, 68
Cauchy sequence, 337
Central difference scheme, 340
Chain-rule, 290
Chaotic orbit, 335
Character literals, 116
Characteristic, 10

polynomial, 56
Chebyshev polynomials, 364
Christoffel symbols, 62, 244
Class, 5, 79, 87, 130

attributes, 79
methods, 115
variable, 114

Coefficient, 34
Columns, 29
Common divisor, 13
Common Lisp, 421
Commutative, 2

algebra, 27
law, 310
ring, 9, 12

Commutator, 72,386
Complex

conjugate, 24
numbers, 24

Conditional processing, 425
Congruence class, 16
Constructor, 134

668

Container class, 228, 229, 245
Container classes, 153
Contract, 76, 110
Contracting mapping, 337

theorem, 337
Contractivity factor, 342
Copy constructor, 135
Creation

operator, 145
Cross product, 27, 231
Cumulant expansion, 367
Curvature

scalar, 62
tensor, 244

Dangling, 135
Data hiding, 77, 212
Decimal representation, 20
Dedekind cut, 21
Default instance attributes, 79
Degree, 34
Denominator, 18
Density property, 19
Denumerable, 324
Dereferencing, 124
Derivative, 42

rules, 226
Destructor, 134
Determinant, 239
Devil's staircase, 344
Diagonal sequence, 396
Differential, 42
Dimension, 29
Direct sum, 31
Division

algorithm, 13
operator, 206
ring, 10

Divisor, 12
Domains, 68

of computation, 68
Dot product, 231
Dotted pair, 422
Dual space, 31

Dynamic binding, 84

Eiffel, 110
Eigenvalue equation, 66
Encapsulation, 78
Error states, 656
Exception handling, 656
Expanded type, 112
Expectation value, 66
Expression, 278
Extensible design, 118
Exterior product, 53, 370

Facilitator class, 261
Factor, 37
Fermi operator, 148
Field, 10, 18
First integral, 372
Fixed point, 337
Floor function, 209
Fraction, 18
Function, 157

overloading, 85

INDEX

Fundamental theorem of arithmetic, 328

Gadel
metric tensor field, 389
number, 327
numbering, 327

General linear group, 31
Generalization, 81
Generalized-specialization, 81
Generating function, 352
Generic, 111

parameter, 111
Ghost solution, 340
Global

overloading, 143
variables, 114

Grabner basis, 70
Grassmann

algebra, 54
product, 53

Greatest common divisor, 11, 13, 40,
215

INDEX

Hamilton
equations of motion, 393
function, 393

Hausdorff metric, 342
Heap, 122

leak, 128
Hermite polynomials, 361
Hermite's method, 45
Hilbert-Schmidt norm, 240, 391
Hilbert-Schmidt operator, 391
Homogeneous, 229
Homomorphism, 28
Horowitz method, 46
Hyperbolic iterated function, 342

Ideal, 10, 70
Identifier, 111, 423
Identity matrix, 30
Imaginary part, 24
Indeterminate, 34
Indexed instance variables, 114
Infimum, 22
Information hiding, 78, 118, 203
Inheritance, 89, 280
Inner product, 231
Instance, 79

methods, 115
variables, 114

Instructions, 111
Integers, 12
Integral domain, 10
Interface, 281
Inverse, 30, 239
Invertible, 30

element, 10
Irrational numbers, 22
Iterator, 259

Jacobi identity, 28, 386
Jacobian, 378
Java, 90

Killing vector field, 388
Kronecker

delta, 30, 361

product, 51, 235, 238

L'Hospital's rule, 4
Laguerre polynomials, 358
Late binding, 84
Lax representation, 393
Legendre

differential equation, 351
polynomials, 351

Leibniz rule, 351, 358
Leverrier's method, 56
Levi-Cevita symbol, 378
Lie

algebra, 27, 49, 310, 386
derivative, 388
series technique, 407

Line element, 61
Linear

algebra, 235
functionals, 31
mapping, 28
operator, 290
space, 27
transformation, 28

Linearized equation, 346
Linearly independent, 28
Linked list, 259
Lipschitzian, 337
List, 422

processing, 421
Ljapunov exponent, 346
Logarithmic part method, 46
Logistic map, 335, 346, 649
Lorenz model, 372, 407

Mandelbrot set, 349
Matrix, 29, 235
Matrix representation, 33
Member overloading, 143
Mersenne numbers, 323
Message passing, 76, 80, 114
Metaclass, 115
Metric tensor field, 61, 388
Modular design, 118
Modulo operator, 206

669

670

Modulus, 21, 24
Multinomial expansion, 292
Multiple inheritance, 81
Mutual recursion, 199

Naive method, 44
Nambu mechanics, 378
Named instance variables, 114
Namespaces, 169
Newton-Raphson scheme, 418
Non-invertible, 30
Non-singular, 30
Normalize, 233
Numerator, 18
Numeric

literals, 116

Oberon, 117
Object, 88
Ordered field, 22

Pade approximant, 396
Parallel Virtual Machine, 649
Parametrized types, 153, 212
Pauli spin matrices, 33
Picard's method, 74, 402
Pointer, 122
Polar coordinates, 25
Polymorphism, 84, 280
Polynomials, 34
Pool variables, 114
Portable Standard Lisp, 421
Postfix, 660
Prefix notation, 428, 435
Prime, 12

number, 316, 321
Principal argument, 25
Private, 89
Product rule, 290
Production rules, 278
Pseudo-variable, 117
Public, 89
Pure virtual functions, 281

Quaternion, 222

algebra, 32
Queue, 178
Quotient, 13

Rank, 3
Rational numbers, 18, 211
Real

number, 21
part, 24

Receiver, 80
Recursion, 191, 426
Reference, 128
Relatively prime, 14
Remainder, 13
Repeated inheritance, 82
Residue classes, 15

INDEX

Riccati differential equation, 380
Ricci tensor, 62
Riemann curvature tensor, 62
Ring, 9
Risch algorithm, 48
Rodrigue's formula, 351, 358
Rows, 29

S-expression, 422
Scalar product, 231
Scalars, 27
Selective inheritance, 82
Self-referential pointer, 126
Sender, 80
Separate compilation, 118
Shared instance attributes, 79
Sieve of Eratosthenes, 16, 316
Simplification, 306
Sine-Gordon equation, 61, 399
Singular, 30
Smalltalk, 113
Special linear group, 31
Specialization, 81
Spherical harmonics, 375
Spin-l matrices, 72
Spurious solution, 340
Stack, 176
Standard Template Library, 168
Static binding, 84

INDEX

String, 251
literals, 116

Sub-algebra, 27
Subclass, 114
Subfield, 10
Subring,9
Sum

convention, 62
rule, 43

Superc1ass, 114
Supremum, 22
Symbol

file, 118
literals, 117

Symmetric, 31

Taylor series expansion, 380
Templates, 153
Tensor product, 51
Term, 34
Time-dependent first integral, 372
Toda lattice, 393
Trace, 31, 239

Transpose, 30, 239
Trial function, 66
Triangle inequality, 25
Trichotomy law, 19
Type conversion operator, 213

Unit matrix, 30

Vacuum state, 148
Value semantics, 229
Variational equation, 346
Vector, 27, 228

product, 27, 231
space, 27
subspace, 27

Verylong integer, 202
Virtual function, 165, 280

Wrapper class, 167

Zero
divisors, 10
matrix, 30

671

