

Preface
C++	started	in	the	early	80’s	and	after	more	than	30	years	later,	it	is	still	one	of	the	most
used	programming	languages.	This	is	so	for	a	very	good	reason.	It’s	not	just	the	speed	of
C++	that	makes	it	a	popular	choice.	It	is	a	very	flexible	and	predictable	language.	You	can
be	 sure	 to	 have	 a	 constant	 performance	 with	 a	 C++	 program.	 And	 this	 is	 achieved	 by
being	able	to	control	a	lot	of	aspects	of	the	program.	C++	puts	the	programmer	in	the	front
seat.	 The	 programmer	 can	 take	 control	 of	 how	 things	 need	 to	 be	 run.	 It’s	 predictable.
There	are	no	suprises.	Most	importantly,	C++	let’s	you	go	very	close	to	the	low-level	of
the	computer.

You	can	find	a	 lot	of	discussions	about	 the	speed	of	C++	vs.	Java.	It	 is	widely	accepted
that	the	speed	of	Java	will	match	that	of	C++	in	the	best	case,	but	not	surpass	it.	But	here’s
the	caveat.	To	get	the	best	performance	of	C++	you	need	to	learn	how	to	use	it	properly.
Like	I	said,	C++	puts	the	programmer	in	full	control	and	it	is	our	responsibility	to	control
it	properly.	It	is	easy	to	write	bad	code	with	C++.	But	to	write	good,	optimized	code,	you
need	to	learn	the	core	of	it	because	unless	you	know	what	exactly	is	happening	with	your
code,	you	cannot	control	it	or	optimize	it.

It’s	often	said	that	C++	is	a	difficult	language	to	learn.	Learning	a	programming	language
is	not	that	difficult	at	all.	Same	goes	for	C++.	It	is	not	a	difficult	language.	It	becomes	a
difficult	 language	when	you	don’t	know	it	properly.	When	you	don’t	understand	its	core
concepts	 it	 becomes	 difficult.	C++	 has	 no	 garbage	 collection.	You	 need	 to	 collect	 your
own	 garbage.	 C++	 has	 the	 concept	 of	 stack	 memory	 and	 heap	 memory.	 You	 need	 to
control	where	you	want	to	put	your	objects.	It	has	constructors	and	destructors.	You	need
to	know	when	and	how	they	are	called.	Then	it	has	multiple	inheritance,	something	that’s
not	 part	 of	most	 languages.	 It	 has	 pointers	 and	 references.	You	 need	 to	 know	 how	 and
when	you	should	use	them.	Then	you	have	virtual	functions	and	virtual	tables	and	virtual
pointers.	These	are	few	of	the	important	fundamentals	of	C++	that	should	have	a	firm	grip
on.

Purpose	of	this	book
It	is	not	difficult	to	get	up	and	running	with	C++.	It	is	like	any	other	language.	But	once
you	go	through	the	basics	of	the	language,	classes,	constructors,	inheritance,	conditionals,
loops,	etc.,	C++	will	feel	like	most	other	high-level	languages.	But	it	can	be	a	challenge	to
move	on	from	there	and	to	go	from	being	a	C++	beginner	to	an	intermediate	or	advanced
programmer.	There	are	many	core	concepts	of	C++	and	without	knowing	them	you	can’t
know	the	 language	 in	 its	 fullest.	You	cannot	write	 fast	optimized	code	without	knowing
what	happens	during	compilation	or	runtime.

The	 aim	 of	 this	 book	 is	 to	 take	 C++	 beginners	 to	 the	 next	 level.	 To	 discuss	 the
fundamental	internals	of	the	language	so	the	beginners	can	fully	understand	what	happens
with	their	code.	This	book	is	divided	in	to	20	different	topics	which	attempt	to	talk	about
the	most	used	concepts	of	C++.

Who	this	book	is	for
This	book	 is	 intended	 for	 beginner	 level	C++	programmers.	 If	 you	know	about	 classes,
inheritance,	constructors	and	virtual	functions,	you	are	the	intended	audience	of	this	book.

Who	this	book	is	not	for
This	book	is	not	for	programmers	starting	to	learn	C++	from	the	beginning.	That	is,	this	is
not	a	“Hello,	World”	book.	This	should	be	the	book	you	read	after	that.

Table	of	Contents
The	size	of	an	object

The	Virtual	Mechanism

Structs,	Classes	and	their	Inheritance

Object	Construction

Pointers

Non-Constructible,	Non-Copyable	Class

Understanding	new

Understanding	Constructors

Forward	Declarations,	Compiling	and	Linking

Copy	Constructor	and	Object	Cloning

Class	Member	Access

Class	member	offsets

Function	Pointers

Function	Shadowing

Understanding	the	Destructor

Operator	Overloading

Multiple	Inheritance

Casting

Conversions	and	Promotions

Name	Lookup

	

Topic	1

The	size	of	an	object
Objects	are	what	makes	the	language	Objected-Oriented,	so	they	are	at	the	core	of	C++.
So	it’s	only	natural	we	dedicate	our	first	topic	to	learning	about	the	size	and	composition
of	them.	Let’s	start	with	the	bare	minimum,	the	empty	class.

The	empty	class
What’s	the	definition	of	an	empty	class?

class	emptyClass

{};

So	how	exactly	empty	is	the	empty	class?	Well	it’s	pretty	empty,	but	not	nothing.	Here’s
how	empty	an	empty	class	is:

#include<iostream>

using	namespace	std;

	

class	emptyClass

{};

	

int	main(int	argc,	char**	argv)

{

emptyClass	emptyClassObj;

cout	<<	“Size	of	emptyClassObj:	“	<<	sizeof(emptyClassObj)	<<	endl;

}

	

Size	of	emptyClassObj:	1

	

The	size	of	a	class	with	nothing	in	it	is	1	byte.	But	why	so?	Why	is	a	class	object	1	byte
when	 there	 is	 nothing	 in	 it?	Because	 the	 standard	does	not	 let	 objects	have	 a	 size	of	0.
Again,	why?	This	is	because	you	need	to	be	able	to	distinguish	between	two	objects	of	the
same	class!

Take	a	look	at	this:
#include<iostream>

using	namespace	std;

	

class	emptyClass

{};

	

int	main(int	argc,	char**	argv)

{

emptyClass	emptyClassObj1;

emptyClass	emptyClassObj2;

cout	<<	“Memory	address	of	emptyClassObj1:	“	<<	&emptyClassObj1	<<	endl;

cout	<<	“Memory	address	of	emptyClassObj2:	“	<<	&emptyClassObj2	<<	endl;

}

	

Memory	address	of	emptyClassObj1:	0x7fffffffe43e

Memory	address	of	emptyClassObj2:	0x7fffffffe43f

	

The	memory	addresses	of	 two	different	empty	classes	are	different.	This	way	it	 lets	you
differentiate	two	different	objects.	But	there	really	is	nothing	in	there.

Then	how	big	will	an	object	get	if	we	have	an	empty	class	derived	from	an	empty	class?	2
bytes,	perhaps?

#include<iostream>

using	namespace	std;

	

class	emptyClass

{};

	

class	derivedEmptyClass	:	public	emptyClass

{};

	

int	main(int	argc,	char**	argv)

{

emptyClass	emptyClassObj;

derivedEmptyClass	derivedEmptyClassObj;

cout	<<	“Size	of	emptyClassObj:	“	<<	sizeof(emptyClassObj)	<<	endl;

cout	<<	“Size	of	derivedEmptyClassObj:	“	<<	sizeof(derivedEmptyClassObj)	<<	endl;

}

	

Size	of	emptyClassObj:	1

Size	of	derivedEmptyClassObj:	1

	

It	doesn’t	change.	You	can	keep	deriving	empty	classes	but	the	size	will	still	be	1.	Well,
the	size	of	an	empty	class	is	actually	implementation	dependent,	although	it	is	usually	1,
but	 the	 fact	 to	 keep	 in	mind	 is	 that	 it	will	 always	 be	 the	 same	value	 regardless	 of	 how
many	times	you	keep	deriving.

Classes	with	member	variables

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

int	value;

};

	

int	main(int	argc,	char**	argv)

{

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	4

	

No	 surprises	 here.	 The	 object	 has	 to	 contain	 the	 integer	 member	 variable	 value.	 But
perhaps	something	to	note	is	the	size	of	the	object,	4	bytes.	Let’s	print	out	a	little	bit	more
information:

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

int	value;

};

	

int	main(int	argc,	char**	argv)

{

int	intVal	=	5;

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

cout	<<	“Size	of	integer:	“	<<	sizeof(intVal)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	4

Size	of	integer:	4

	

So	the	size	of	the	object	is	actually	the	size	of	the	integer.	So	when	there	was	nothing	in
the	object,	it	had	a	size	of	1	byte,	but	when	we	put	an	integer	in	there,	it	got	as	big	as	the
integer	itself,	which	is	4	bytes.	This	shows	that	this	almost	empty	object	just	contains	the
integer	variable,	nothing	else.	Let’s	add	a	bit	more	stuff	and	see	how	things	change.

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

int	value;

};

	

int	main(int	argc,	char**	argv)

{

int	intVal	=	5;

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

cout	<<	“Size	of	integer:	“	<<	sizeof(intVal)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	16

Size	of	integer:	4

Size	of	double:	8

	

The	size	of	the	object	is	increased,	as	expected.	But	why	is	it	16,	and	not	the	summation	of
the	integer	and	the	double?	Why	not	12	bytes?	This	is	because	of	padding.	Variables	are

padded	to	certain	boundary	values.	This	is	mostly	implementation/architecture	dependent
and	 in	 this	particular	 case,	 it	 looks	 like	boundaries	 are	 at	8	bytes.	Let’s	 confirm	 this	by
adding	another	integer.

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

int	intValue1;

double	doubleVal;

int	intValue2;

};

	

int	main(int	argc,	char**	argv)

{

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	24

	

Now	 the	 size	of	 the	object	 is	24	bytes.	Does	 this	 add	up	with	our	padding	 to	boundary
concept?	Yes.	You	see,	the	layout	of	the	variables	has	to	be	in	8	byte	boundaries	or	less.
Since	 the	 double	 is	 8	 bytes	 long,	 these	 variables	 need	 to	 be	 packed	 in	 to	 8	 byte	 wide
memory	locations.	You	can	visualize	the	above	as	packed	in	to	memory	as	follows:

Now	 let’s	 see	what	 happens	 if	 you	 rearrange	 the	 variables	 positions	 to	 be	 a	 little	more
space	efficient.

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

int	intValue1;

int	intValue2;

double	doubleVal;

};

	

int	main(int	argc,	char**	argv)

{

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	16

	

Just	rearranging	the	positions	reduced	the	object’s	size	by	8	bytes.	You	can	probably	guess
what	is	happening	here.	The	variables	are	packed	much	more	efficiently	now.

Why	are	the	variables	laid	out	this	way	then?	Why	didn’t	the	compiler	make	an	intelligent
choice	 to	 re-arrange	 the	 variables	 to	 be	 more	 space	 efficient?	 I’m	 sure	 the	 modern
compilers	 are	 way	 more	 intelligent	 for	 being	 able	 to	 arrange	 variables	 to	 be	 memory
efficient,	but	there	are	other	reasons	for	laying	them	out	as	the	programmer	intended.	We
will	 discuss	 that	 in	 another	 topic.	 Now	 before	 we	 leave	 member	 variables,	 let’s	 check
something	else	out	very	quickly.

What	would	happen	when	we	make	one	of	our	integer	variables	a	static?

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

int	intValue1;

double	doubleVal;

static	int	intValue2;

};

	

int	main(int	argc,	char**	argv)

{

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	16

	

We	know	from	our	previous	example	that	if	intVal2	was	not	static,	the	object	size	would
have	been	24	bytes.	But	now	it’s	16	bytes,	as	if	intVal2	does	not	exist	in	the	object.	And
this	 is	 indeed	 the	case.	Because	static	variables	are	not	stored	 in	 the	objects	 themselves.
Objects	of	a	class	can	be	many.	So	there	has	to	be	as	many	 intVal1’s	and	doubleVal’s	as
there	are	objects.	But	there	can	be	only	one	intVal2.	A	common	one	for	all	of	the	objects.
So	 the	 static	 variables	 are	 not,	 and	 practically	 cannot	 reside	 inside	 one	 object	 instance.
Therefore	 they	 are	 in	 the	 global	 memory	 space.	 Outside	 of	 any	 object.	 That’s	 why	 no
matter	how	many	static	variables	you	put	into	an	object,	they	will	not	bloat	the	size	of	the
object.

Classes	with	member	functions
Now	we’ll	 see	what	happens	 to	 the	 size	of	 an	object	when	you	add	 in	 functions.	Don’t
worry,	this	won’t	be	long.

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

void	foo()	{}

};

	

int	main(int	argc,	char**	argv)

{

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	1

	

What	did	we	do?	We	removed	all	the	variables	it	had	and	put	in	a	single	function	in	the
class.	And	 the	 size?	1	byte.	This	 is	 the	 same	 size	of	 the	object	when	 it	was	 completely
empty.	So	functions	in	a	class	do	not	take	any	space	in	the	object?	The	answer	is	yes.

But	at	that	time	I	said	that	the	1	byte	allocation	of	an	empty	class	object	is	to	make	two
objects	of	the	same	class	to	be	distinguishable.	So	you	may	not	be	completely	convinced,
arguing	 that	since	now	there	 is	something	 in	 the	class,	 that	may	be	 taking	up	 the	1	byte
space.	OK,	let’s	add	another	function	and	see.

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

void	foo()	{}

void	bar()	{}

};

	

int	main(int	argc,	char**	argv)

{

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	1

	

It	still	does	not	take	any	space.	Now	some	of	you	may	still	be	not	convinced	completely
because	 the	 functions	 are	 empty.	So	maybe	 an	 intelligent	 compiler	 is	 just	 getting	 rid	of
them?	It	does	not,	even	though	it	can	do	it	in	this	case	as	the	functions	are	empty	and	they
are	not	called	anywhere	in	the	code.	Let’s	wrap	up	this	topic	by	confirming	that	functions
indeed	take	no	space	in	the	object,	empty	or	not.

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

void	foo()	{}

	

int	bar(int	count)	{

int	retVal	=	0;

	

for	(int	i	=	0;	i	<	count;	i++)

{

retVal++;

}

return	retVal;

}

};

	

int	main(int	argc,	char**	argv)

{

notSoEmptyClass	notSoEmptyClassObj;

int	result	=	notSoEmptyClassObj.bar(10);

cout	<<	“Result	is:	“	<<	result	<<	endl;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

return	0;

}

	

Result	is:	10

Size	of	notSoEmptyClassObj:	1

	

So	 I	 changed	 the	 function	 bar	 to	 take	 in	 an	 argument,	 and	 have	 a	 local	 variable,	 a
functions	 body	 and	 a	 return	 type.	 This	 is	 a	 pretty	 full	 function.	 And	 you	 can	 see	 the

function	bar	is	actually	doing	its	calculation	in	the	result.	And	yet	the	size	of	the	object	is
still	1	byte.	This	is	because	the	functions	exist	outside	of	the	object.	Like	a	static	variable.
This	makes	sense,	doesn’t	 it?	A	function	does	the	same	thing	regardless	of	which	object
instance	calls	it.	In	our	case,	the	function	bar	always	does	the	for	loop	the	number	of	times
passed	as	the	argument.	So	there	is	no	reason	to	have	a	function	reside	inside	the	object
itself.	 This	 is	 different	 from	 a	member	 variable.	 Because	member	 variables	 are	 usually
used	 to	 differentiate	 objects.	 Think	 about	 a	 Person	 class	 which	 has	 a	 string	 called
personName,	which	has	the	corresponding	person’s	name.	Now	it	makes	perfect	sense	for
each	object	 to	have	 the	personName	 variable	 inside	 it.	Because	 each	object	will	 have	 a
different	value	for	this	variable.	Now	what	about	a	function,	for	example,	GetName,	which
simply	 returns	 the	 name	 of	 the	Person?	All	 this	 function	would	 do	 is	 return	 the	 string
variable.	And	we	do	not	need	this	function	to	be	 inside	 the	object,	do	we?	The	function
simply	has	to	take	the	string	variable	it	was	called	upon	and	return	it.

I	suppose	this	should	do	it	for	this	topic.	I	just	showed	you	the	basics	of	how	the	sizes	of
objects	are	determined.	It	should	give	you	a	good	foundation	to	think	about	other
complicated	cases.

Topic	2

The	Virtual	Mechanism
I’m	 not	 going	 to	 explain	 what	 C++	 virtual	 mechanism	 is.	 I’m	 sure	 you	 know	 what	 a
virtual	function	is.	In	this	topic	I’m	just	going	to	prove	its	existence	in	the	object	level	and
show	you	how	it	really	happens	behind	the	curtains.

Let’s	carry	on	from	where	we	left	off	in	topic	1.

#include<iostream>

using	namespace	std;

	

class	notSoEmptyClass

{

public:

void	foo()	{}

};

	

int	main(int	argc,	char**	argv)

{

notSoEmptyClass	notSoEmptyClassObj;

cout	<<	“Size	of	notSoEmptyClassObj:	“	<<	sizeof(notSoEmptyClassObj)	<<	endl;

return	0;

}

	

Size	of	notSoEmptyClassObj:	1

	

We	 showed	 that	 functions	 do	 not	 take	 any	 space	 in	 an	 object	 as	 they	 reside	 out	 of	 the
object	memory	space.	Let’s	then	see	what	would	change	when	we	make	our	only	function
a	virtual.

#include<iostream>

using	namespace	std;

	

class	virtualFuncClass

{

public:

virtual	void	foo()	{}

};

	

int	main(int	argc,	char**	argv)

{

double	*doublePrt;

virtualFuncClass	virtualFuncClassObj;

cout	<<	“Size	of	virtualFuncClassObj:	“	<<	sizeof(virtualFuncClassObj)	<<	endl;

cout	<<	“Size	of	a	pointer:	“	<<	sizeof(doublePrt)	<<	endl;

return	0;

}

	

Size	of	virtualFuncClassObj:	4

Size	of	a	pointer:	4

	

The	 only	 difference	 I	 made	 to	 the	 class	 is	 to	 make	 the	 function	 foo	 virtual	 (that	 and
changing	class	name).	The	size	of	 the	object	 jumped	to	4	bytes.	So	making	the	function
foo	 a	 virtual	 added	 something	 to	 the	 object.	 As	 you’d	 guess,	 this	 is	 the	 virtual-table-
pointer,	commonly	known	as	vptr.	 It	 is	 just	a	pointer.	To	make	 it	clear	 I	also	declared	a
pointer	 to	a	double	and	showed	that	 its	size	is	4	bytes.	There	is	no	special	reason	why	I
chose	a	pointer	to	a	double.	It	could	be	a	pointer	to	anything	because	pointer	sizes	don’t
change	with	what	they	are	pointing	to.	So	this	makes	a	slightly	convincing	argument	that
making	the	function	virtual	added	a	pointer	to	the	object.	But	it	might	as	well	be	an	integer
variable,	right?	Because	we	saw	in	topic	1	that	integer	variables	take	4	bytes	of	space	in	an
object.	 Before	 we	 show	 the	 actual	 vptr	 and	 what	 it	 is	 pointing	 to,	 let’s	 confirm	 this
suspicion.

#include<iostream>

using	namespace	std;

	

class	virtualFuncClass

{

public:

virtual	void	foo()	{}

virtual	void	bar()	{}

};

	

int	main(int	argc,	char**	argv)

{

double	*doublePrt;

virtualFuncClass	virtualFuncClassObj;

cout	<<	“Size	of	virtualFuncClassObj:	“	<<	sizeof(virtualFuncClassObj)	<<	endl;

cout	<<	“Size	of	a	pointer:	“	<<	sizeof(doublePrt)	<<	endl;

return	0;

}

	

Size	of	virtualFuncClassObj:	4

Size	of	a	pointer:	4

	

So	now	there	are	two	virtual	functions	and	yet	the	size	of	the	object	hasn’t	changed.	Let’s
then	see	what	this	pointer	is	pointing	to	and	what	is	in	it.	We	will	use	Visual	Studio	for	this
illustration	as	this	information	is	visually	available	in	debug	mode.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

void	nonVirtualFunc()	{}

virtual	void	virtualNonOverriddenFunc()	{}

virtual	void	virtualOverriddenFunc()	{}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj1;

baseClass	baseClassObj2;

return	0;

}

	

Bear	with	me	for	the	function	names	for	the	time	being,	they	have	a	purpose.	Now	if	you
put	a	breakpoint	at	the	return	statement	and	look	at	the	Locals	of	the	debug	view	window
you	will	see	something	similar	to	this:

The	 contents	 are	 pretty	 self-explanatory.	 We	 are	 looking	 at	 the	 contents	 of	 the	 two
baseClass	objects	we	created.	You	can	see	the	following	facts	from	this	debug	view:

There	is	nothing	in	this	object	except	for	the	virtual-table-pointer,	here	named	__
vfptr
__vfptr	is	a	pointer	to	a	pointer	of	type	void.	This	means	that	it	points	to	an	array
of	pointers	of	type	void	(check	last	column)
__vfptr	is	pointing	to	__vftable
__vftable	has	two	entries	of	type	void*
__vftable	 makes	 no	 mention	 about	 the	 non-virtual	 nonVirtualFunc().	 This	 is
correct	as	nonVirtualFunc()	is	only	applicable	to	baseClass

Examining	the	__vftable	entries,	it	is	obvious	what	they	are	pointing	to.	The	first	points	to
function	 virtualNonOverriddenFunc	 and	 the	 second	 to	 virtualOverriddenFunc.	 What’s
more	to	note	is	that	both	of	these	functions	are	of	type	baseClass.	The	significance	of	this
will	become	apparent	soon.

The	reason	I	created	two	objects	of	the	same	type	is	to	validate	the	fact	that	there	is	only
one	copy	of	a	function.	This	is	evident	if	you	look	at	the	values	of	the	__vftable	entries.
The	 addresses	 of	 the	 two	 virtual	 functions	 are	 the	 same	 for	 baseClassObj1	 and
baseClassObj2,	 proving	 again	 that	 there	 is	 only	 one	 copy	 of	 a	 class	member	 function.
What	 is	 even	 more	 interesting	 is	 that	 the	 __vftable	 address	 is	 also	 the	 same	 for	 both
objects.	That	means	there	is	only	one	virtual	function	table	for	all	objects	of	the	same	type.
Now	you	need	 to	 carefully	keep	 in	mind	 that	 this	 is	how	Visual	C++	 is	doing	 it.	Other
compilers	could	be	doing	it	differently.	But	there	really	is	no	reason	why	you	would	have
two	different	__vftables	for	the	same	objects	because	they	are	both	referring	to	the	same
functions.	(This	applies	to	just	this	case,	as	we	have	two	objects	of	baseClass	which	is	not
derived	of	any	class.	If	it	is	not	then	this	fact	would	change.)

Now	let’s	see	how	things	change	when	we	derive	our	baseClass	and	override	functions.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

void	nonVirtualFunc()	{}

virtual	void	virtualNonOverriddenFunc()	{}

virtual	void	virtualOverriddenFunc()	{}

};

	

class	derivedClass	:	public	baseClass

{

public:

virtual	void	virtualOverriddenFunc()	{}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj;

derivedClass	derivedClassObj;

return	0;

}

	

Things	 are	 as	 expected.	The	__vftable	 for	baseClass	 is	 not	 changed.	Both	 the	 functions
still	 point	 to	 the	baseClass	 versions	 of	 the	 functions.	However,	 the	__vftable	 entries	 of
derivedClass	is	different.	The	second	entry	in	the	__vftable	is	of	class	derivedClass.	And
check	 the	 addresses	 they	 are	 pointing	 to.	 The	 first	 virtual	 function,
virtualNonOverriddenFunc	points	to	the	same	address	in	both	__	vftables.	This	is	correct
as	this	function	is	not	overridden.	But	the	virtualOverriddenFunc	addresses	are	different
in	 the	 two	 __vftables.	 This,	 again,	 is	 expected	 since	 now	 the	 derivedClass	 object	 has
overridden	that	function.

Let’s	wrap	this	up	with	a	bit	of	a	complete	example	which	will	discuss	more	aspects	of	the
virtual	mechanism.

#include<iostream>

using	namespace	std;

	

class	baseClass1

{

public:

void	nonVirtualFunc1()

{	cout	<<	“nonVirtualFunc1”	<<	endl;	}

virtual	void	virtualNonOverriddenFunc1()

{	cout	<<	“virtualNonOverriddenFunc1”	<<	endl;	}

virtual	void	virtualOverriddenFunc1()

{	cout	<<	“virtualOverriddenFunc1”	<<	endl;	}

};

	

class	baseClass2

{

public:

void	nonVirtualFunc2()

{	cout	<<	“nonVirtualFunc2”	<<	endl;	}

virtual	void	virtualNonOverriddenFunc2()

{	cout	<<	“virtualNonOverriddenFunc2”	<<	endl;	}

virtual	void	virtualOverriddenFunc2()

{	cout	<<	“virtualOverriddenFunc2”	<<	endl;	}

};

	

class	derivedClass	:	public	baseClass1,	baseClass2

{

public:

virtual	void	virtualOverriddenFunc1()

{	cout	<<	“virtualOverriddenFunc1”	<<	endl;	}

virtual	void	derivedClassOnlyVirtualFunc()

{	cout	<<	“derivedClassOnlyVirtualFunc”	<<	endl;	}

};

	

int	main(int	argc,	char**	argv)

{

baseClass1	baseClass1Obj;

baseClass2	baseClass2Obj;

derivedClass	derivedClassObj;

	

baseClass1	*bc1Ptr	=	new	derivedClass;

derivedClass	*dcPtr	=	new	derivedClass;

bc1Ptr->virtualOverriddenFunc1();

dcPtr->virtualOverriddenFunc1();

dcPtr->derivedClassOnlyVirtualFunc();

	

return	0;

}

	

First	off	let	me	explain	a	little	bit	about	what	is	happening	here:

There	are	now	two	base	classes:	baseClass1	and	baseClass2
Each	of	the	base	classes	have	their	own	methods
derivedClass	(multiple)	inherits	from	baseClass1	and	baseClass2
derivedClass	 introduces	 its	 own	 new	 virtual	 function
derivedClassOnlyVirtualFunc
There	 are	 two	 pointers,	 bc1Ptr	 of	 type	 baseClass1	 and	 dcPtr	 of	 type
derivedClass.	Both	of	these	points	to	a	derivedClass	object

Now	here	are	the	points	I	want	to	make:

1.	 This	 will	 not	 compile.	 There	 is	 a	 compiler	 error	 in	 line	 bc1Ptr-
>derivedClassOnlyVirtualFunc():

This	is	important	to	remember.	Polymorphism	gives	you	the	ability	to	do	dynamic	binding
and	call	an	overridden	function	in	a	derived	class	through	a	base	class	pointer.	But	before
it	does	dynamic	binding	at	runtime,	the	compiler	has	to	know	there	is	such	a	function	at
compile	 time.	 And	 for	 the	 compiler,	 it	 cannot	 see	 a	 derivedClassOnlyVirtualFunc	 in
baseClass1.	Use	of	__	vfptr	and	__	vftable	happens	at	runtime.	The	compiler	has	no	idea
which	function	is	going	to	be	invoked.	So	for	the	compiler	it	looks	like	you	are	trying	to
call	 a	 function	 that	 is	not	defined	 in	 the	class.	 It	has	no	 idea	 that	you	are	 referring	 to	 a
derived	class	object	and	the	function	is	defined	there.	In	fact,	it	doesn’t	need	to.	This	is	not
what	polymorphism	is	supposed	to	do.	So	keep	this	in	mind.	Now	let’s	comment	out	the
compiler	error	line	and	move	on.

2.	Let’s	look	in	the	object	for	__vfptr	and	__vftable	information:

There	are	a	few	interesting	points	here:

baseClass1Obj	and	baseClass2Obj	have	their	__vfptr	and	__vftable	as	expected.
Four	 different	 functions	with	 four	 different	 addresses.	 __	 vftables	 are	 different
too.
derivedClassObj	is	a	bit	interesting.	It	has	two	subobjects	of	type	baseClass1	and
baseClass2.	 This	 is	 expected	 as	 it	 is	multiple	 inheritance.	 And	 these	 two	 base
class	objects	have	their	own	__vfptrs.	And	these	point	 to	different	__vftables	as
baseClass1Obj	and	baseClassObj2	are	pointing	at	different	tables.	Also	notice	the
function	addresses.	They	point	to	the	same	functions	as	baseClass2,	as	no	virtual
functions	of	baseClass2	 is	overridden.	For	baseClass1	functions,	the	overridden
function	has	a	different	address.	Nothing	new	here.	Just	proving	what	we’ve	been
discussing	earlier.

Now	 look	 at	 the	 object	 pointed	 to	 by	 dcPtr.	 The	 __vfptrs	 and	 __vftables	 are
exactly	the	same	as	derivedClassObj.	Again,	nothing	surprising	as	we	are	creating
and	pointing	to	a	derivedClass.
But	bc1Ptr	 is	 a	 bit	 different,	 though.	There	 is	 a	derivedClass	 component	 and	a
__vfptr.	And	if	you	check	carefully	you	can	see	that	the	__vftable	of	baseClass1
inside	derivedClass	is	same	as	the	one	pointed	to	by	__vfptr	of	bc1Ptr.	What	this
means	is	that	bc1Ptr	has	only	ONE	__vftable.	You	cannot	access	anything	in	the
derivedClass	part.	It	is	there,	just	not	accessible	through	the	baseClass1	pointer.
So	what	this	means	is	that	if	you	have	a	base	class	pointer	with	a	derived	object,
you	can	only	access	what	is	known	by	the	base	class.
So	 to	 summarize,	dcPtr	 has	 two	__vftables,	 because	derivedClass	 has	 two,	 but
bc1Ptr	has	only	one,	which	corresponds	to	what	baseClassObj	has,	although	both
points	to	derivedClassObj	objects.

There	 is	 a	 little	 tidbit	 I	 left	 out	 in	 the	 above	 discussion.	 Whatever	 happened	 to
derivedClassOnlyVirtualFunction?

This	is	a	new	virtual	function	in	derivedClass.	So	obviously	you	won’t	be	able	to	call	 it
from	bc1Ptr.	But	since	this	is	a	virtual	function	it	must	be	in	the	__vftable.	Go	back	and
look	at	all	the	__	vftable	entries	there.	You	will	not	find	it.	There	is	no	secret	here.	It	just
doesn’t	seem	to	show	up	there.	And	honestly,	I	don’t	know	why,	but	I	will	prove	to	you	it
is	there.

Here’s	the	thing	about	__vfptrs	and	__vftables.	This	 is	not	a	standard.	How	the	dynamic
binding	 is	 performed	 is	 implementation	 dependent.	 The	 compiler	 is	 free	 to	 choose
whatever	method	to	make	it	work.	Although	most	implementations	will	use	__vfptrs	and
__vftables,	 they	 don’t	 have	 to.	 And	 even	 when	 they	 use	 virtual	 function	 tables	 and
pointers,	they	can	implement	it	in	different	ways.

So,	when	we	added	the	new	virtual	function	derivedClassOnlyVirtualFunc,	basically	it	can
be	 supported	 by	 adding	 a	 new	 __vfptr	 and	 a	 new	__vftable.	 Or	 it	 can	 be	 added	 to	 the
existing	__vftable.	It	all	depends	how	the	compiler	and	runtime	systems	looks	for	it.	Then
what	 is	 happening	here?	The	new	 function	 is	 definitely	 not	 in	 any	of	 the	__vftables.	 Is
there	another	__vftable	 that	we	can’t	 see	 there?	Well	 I	had	no	 idea	what	was	happening
and	why	it	was	happening.	So	I	tried	printing	out	the	size	of	the	derivedClassObj.	If	you
remember	 from	 the	 earlier	 discussion,	__vfptr	 has	 a	 size	 of	 4	 bytes.	 So	 I	 expected	my
‘invisible’	__vfptr	to	make	the	object	weigh	8	bytes.	But	it	was	just	4	bytes!	So	there	really
is	just	one	__vfptr.

Now	what	I’m	saying	here	is	for	the	Visual	Studio	2013	C++	compiler.	So	if	you	are	using
another	 compiler	 this	 could	most	 probably	 be	 different.	 The	way	 I	 tried	 to	 resolve	 this
mystery	 is	 to	 look	at	 the	memory	contents	of	__vftable.	And	here	 is	what	 I	 saw	when	 I
looked	at	the	memory	space	of	the	derivedClassObj	__vftable:

0x0100DA64	 is	 the	 memory	 address	 of	 the	 __vfptr	 of	 derivedClassObj.	 And	 you	 can
clearly	see	the	first	two	entries	are	the	addresses	of	the	virtual	functions:	0x01001564	and
0x01001587	 (separated	 by	 bytes	 and	 backwards).	 If	 you	 look	 further	 you	will	 see	 that
there	 is	 a	 third	 entry	 too.	 Now	 it	 is	 my	 best	 guess	 that	 this	 third	 entry	 is	 pointing	 to
derivedClassOnlyVirtualFunc.	 For	 some	 reason	 Visual	 Studio	 debugger	 is	 not	 showing
this	 third	 entry.	 This	 is	 probably	 due	 to	 the	 __vfptr	 we	 are	 looking	 at	 is	 part	 of	 the
baseClass1.	(So	why	did	it	go	to	baseClass1	__vfptr	and	not	baseClass2	__vfptr?	I	don’t
know.	Like	I	said	this	mechanism	is	totally	implementation	dependent	and	I’m	sure	Visual
C++	team	had	a	valid	reason	for	it)

	

Let	 me	 re-iterate.	 The	 mechanism	 of	 virtual	 functions	 and	 dynamic	 binding	 is
implementation	dependent.	Virtual	function	tables	and	pointers	are	a	widely	known,	or	at
least	widely	taught	method	of	implementing	it.	What	you	saw	is	specific	for	Visual	C++
compiler.	 But	 the	 fundamentals	 remain	 the	 same.	 Base	 class	 pointers	 can	 only	 know
functions	 defined	 in	 it.	 If	 there	 are	 virtual	 functions	 then	 it	 can	 do	 dynamic	 binding	 at
runtime	 and	 invoke	 the	 overridden	 function,	 but	 at	 compile	 time	 the	 compiler	 needs	 to
know	that	function	is	defined	in	the	base	class.	As	you	saw	in	the	case	of	bc1Ptr,	although
a	derivedClass	object	is	in	there,	it	is	inaccessible	through	the	base	class	pointer.

You’d	 understand	 that	 I	 cannot	 leave	 this	 like	 this.	 I	 owe	 it	 to	 you	 to	 prove	 that	 there
indeed	 is	a	 third	entry	 in	 the	__vftable	 that	points	 to	derivedClassOnlyVirtualFunc.	 One
way	to	prove	that	the	third	entry	in	the	table	is	our	function	is	to	simply	call	it	with	that
address.	Doing	that	isn’t	exactly	straight	forward	but	here’s	how	you	can	do	it:

#include<iostream>

using	namespace	std;

	

class	baseClass1

{

public:

void	nonVirtualFunc1()

{

cout	<<	“nonVirtualFunc1”	<<	endl;

}

virtual	void	virtualNonOverriddenFunc1()

{

cout	<<	“virtualNonOverriddenFunc1”	<<	endl;

}

virtual	void	virtualOverriddenFunc1()

{

cout	<<	“virtualOverriddenFunc1”	<<	endl;

}

};

	

class	baseClass2

{

public:

void	nonVirtualFunc2()

{

cout	<<	“nonVirtualFunc2”	<<	endl;

}

virtual	void	virtualNonOverriddenFunc2()

{

cout	<<	“virtualNonOverriddenFunc2”	<<	endl;

}

virtual	void	virtualOverriddenFunc2()

{

cout	<<	“virtualOverriddenFunc2”	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass1,	public	baseClass2

{

public:

virtual	void	virtualOverriddenFunc1()

{

cout	<<	“virtualDerivedOverriddenFunc1”	<<	endl;

}

virtual	void	derivedClassOnlyVirtualFunc()

{

cout	<<	“derivedClassOnlyVirtualFunc”	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

derivedClass	derivedClassObj;

derivedClass	*dcPtr	=	new	derivedClass;

	

cout	<<	“Invoking	function	through	the	object	pointer…”	<<	endl;

dcPtr->virtualNonOverriddenFunc1();

dcPtr->virtualOverriddenFunc1();

dcPtr->derivedClassOnlyVirtualFunc();

cout	<<	endl;

	

void(**vtPtr)()	=	*(void(***)())dcPtr;	//obtaining	__vftable	address

	

cout	<<	“Printing	__vftable…”	<<	endl;

cout	<<	“__vftable	address:	“	<<	vtPtr	<<	endl;

cout	<<	“__vftable[0]	-	“	<<	*vtPtr	<<	endl;

cout	<<	“__vftable[1]	-	“	<<	*(vtPtr	+	1)	<<	endl;

cout	<<	“__vftable[2]	-	“	<<	*(vtPtr	+	2)	<<	endl;

cout	<<	endl;

	

typedef	void	func(void);

	

cout	<<	“Invoking	functions	through	__vftable…”	<<	endl	<<	endl;

	

func*	virtFuncPtr	=	(func*)(*vtPtr);							//	pointing	to	the	first	virtual	func.

cout	<<	“__vftable[0]	-	“;

(virtFuncPtr());

	

virtFuncPtr	=	(func*)(*(vtPtr	+	1));									//	pointing	to	the	second	virtual	func.

cout	<<	“__vftable[1]	-	“;

virtFuncPtr();

	

virtFuncPtr	=	(func*)(*(vtPtr	+	2));									//	pointing	to	the	third	virtual	func.

cout	<<	“__vftable[2]	-	“;

virtFuncPtr();

	

return	0;

}

	

The	only	 thing	out	of	 the	ordinary	here	 is	 that	 I’m	obtaining	a	pointer	 to	 the	__vftable.
And	then	I’m	simply	going	through	its	contents	and	invoking	the	functions	pointed	to	by
those	entries.	Here	is	the	output.

Invoking	function	through	the	object	pointer…

virtualNonOverriddenFunc1

virtualDerivedOverriddenFunc1

derivedClassOnlyVirtualFunc

	

Printing	__vftable…

__vftable	address:	012BDA64

__vftable[0]	-	012B1564

__vftable[1]	-	012B1587

__vftable[2]	-	012B1582

	

Invoking	functions	through	__vftable…

	

__vftable[0]	-	virtualNonOverriddenFunc1

__vftable[1]	-	virtualDerivedOverriddenFunc1

__vftable[2]	-	derivedClassOnlyVirtualFunc

	

And	here	are	the	debug	windows.

Let’s	go	through	the	output.

First,	part	of	the	print	out	is	invoking	the	functions	through	the	pointer.	There	is
nothing	out	of	ordinary	here.
The	 next	 part	 is	 the	 __vftable	 address	 and	 its	 contents.	 Correspond	 the	 table
address	with	that	of	the	debug	window:	0x012BDA64.	So	now	we	know	that	we
have	access	to	the	correct	__vftable.
Then	 we	 are	 printing	 out	 the	 contents	 of	 the	 __vftable.	 These	 are	 the	 virtual
function	 addresses.	 You	 can	 confirm	 that	 the	 first	 two	 are	 exactly	 the	 same
between	the	print	out	and	the	debug	window	__vftable	contents.
Our	 problem	 is	 with	 the	 third	 entry,	 which	 is	 not	 showing	 up	 in	 the	 debug
window.	But	look	at	the	memory	contents	and	the	printout.	They	match.	So	now
we	 are	 certain	 that	 we	 have	 access	 to	 the	 function	 in	 the	 third	 entry	 of	 the
__vftable.
The	last	part	of	the	printout	is	calling	the	functions	through	the	__vftable	entries.
Compare	the	printous	with	the	first	printouts.	They	are	the	same.	So	now	we	are
absolutely	 certain	 that	 there	 is	 indeed	 a	 third	 entry	 in	 the	__vftable	 and	 it	 does
correspond	to	the	new	virtual	function	derivedClassOnlyVirtualFunc.

Don’t	worry	if	you	didn’t	understand	the	code	completely.	I	will	be	explaining	this	code	in
the	 chapter	 on	 “Function	 Pointers”.	 One	 point	 to	 make	 clear	 about	 this	 code	 is	 that	 it
assumes	 the	__vfptr	pointer	 is	at	 the	very	beginning	of	 the	object	and	 that	 is	apparently
how	Visual	C++	implements	it.

Construction	of	virtual	tables
I	 hope	 you	 got	 a	 good	 fundamental	 understanding	 of	 the	 implementation	 of	 virtual
mechanism	(at	 least	how	it	 is	done	 in	Visual	C++).	Before	we	finish	off	 this	 topic,	 let’s
quickly	look	at	how	vptrs	are	built	during	object	construction.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

baseClass()

{

void(**vtPtr)()	=	*(void(***)())this;

cout	<<	“baseClass	vptr:”	<<	vtPtr	<<	endl;

virtualPrintFunc();

}

	

virtual	void	virtualPrintFunc()	{	cout	<<	“baseClass::virtualFunc”	<<	endl;	}

};

	

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass()

{

void(**vtPtr)()	=	*(void(***)())this;

cout	<<	“derivedClass	constructor.	vptr:”	<<	vtPtr	<<	endl;

virtualPrintFunc();

}

	

virtual	void	virtualPrintFunc()	{	cout	<<	“derivedClass::virtualFunc”	<<	endl;	}

};

	

	

int	main(int	argc,	char**	argv)

{

derivedClass	derivedClassObj;

return	0;

}

	

baseClass	vptr:002B32C4

baseClass::virtualFunc

derivedClass	constructor.	vptr:002B32BC

derivedClass::virtualFunc

	

We	 are	 doing	 something	pretty	 simple.	We	have	 a	 base	 class	 and	 a	 derived	 class	 and	 a
virtual	 function.	 In	 the	 constructors	 we	 print	 out	 the	 vptr	 (the	 same	 as	 we	 did	 in	 the
previous	example)	and	we	call	the	virtual	function.	There	are	two	very	important	points	to
make	here.

First,	 you	 see	 that	 when	 the	 virtual	 function	 is	 called	 from	 each	 of	 the
constructors,	 they	call	 the	function	defined	in	that	class.	Why	is	 this?	It’s	pretty
simple	 and	 goes	 back	 to	 the	 fundamental	 mechanism	 of	 object	 construction.
Objects	 are	 constructed	 from	 the	 most	 base	 class.	 So	 when	 we	 called
derivedClass	 cosntructor,	 it	 first	 called	 the	 baseClass	 constructor	 before
cosntructing	the	derivedClass	part.	So	when	we	are	in	the	baseClass	constructor,
the	derivedClass	part	does	not	exist	at	that	time.	It’s	only	baseClass	and	its	virtual
PrintFunc.	So	when	it	calls	the	virtual	function,	it	only	has	one	implementation	of
the	function.
Second,	 the	 vptrs	 change	 during	 object	 construction.	 When	 in	 the	 baseClass
constructor	it	had	a	certain	vptr,	pointing	to	a	vtable	that	has	the	virtualPrintFunc
implementation	that	prints	out	“baseClass::virtualFunc“.	When	the	baseClass	 is
constructed	 and	 the	 execution	moved	 to	derivedClass	 constructor,	 it	 defined	 its
own	vptr,	now	pointing	 to	a	vtable	 that	has	 the	virtualPrintFunc	 that	prints	out
“derivedClass::virtualFunc“.	 Note	 that	 both	 these	 constructors	 use	 the	 same
‘*this’	object.

So	during	the	construction	of	an	object	with	a	hierarchy,	the	object	goes	through	different
vptrs	until	 finally	 it	gets	 the	vptr	of	 the	most	derived	class.	During	construction	of	each
level	 of	 the	 object,	 the	 compiler	 assigns	 it	 a	 vptr.	 And	 this	 is	 generated	 before	 the
constructor	body	is	entered.	So	there	are	two	main	tasks	the	compiler	needs	to	do	before
the	constructor	body	is	entered:

Call	the	base	class	constructor	(if	it’s	a	derived	class)
Define	the	vptr	and	vtable

Let	 me	 say	 this	 one	 last	 time.	 Implementation	 of	 the	 virtual	 mechanism	 is	 completely
compiler	dependent.	And	where	the	vptr	is	allocated	and	when	it	is	generated,	these	are	all
compiler	 dependent.	 But	 for	 most	 part,	 many	 compilers	 use	 a	 similar	 vptr/vtable
mechanism,	 so	 what	 we	 discussed	 here	 is	 very	 important	 to	 understand	 the	 object
construction	and	virtual	dispatch	mechanism.

One	 final	 word.	 Virtual	 mechanism,	 or	 polymorphism,	 can	 only	 be	 invoked	 through
pointers	and	references.	Invoking	functions	 through	objects,	as	we	did	here,	does	not	do
dynamic	 binding	 of	 the	 functions.	 But	 we	 used	 objects	 to	 show	 its	 contents	 and	 the
composition	of	the	vptr.

Topic	3

Structs,	Classes	and	their	Inheritance
In	 this	 topic	we	will	 look	 at	 some	 cases	 of	 inheritance	 that	we	don’t	 see	 everyday.	For
example,	we	will	see	what	inheritance	between	a	struct	and	a	class	will	look	like	and	also
other	fundamental	inheritance	types	such	as	private	and	virtual	inheritance.

Private	inheritance
We	 are	 all	 too	 familiar	 with	 public	 inheritance	 of	 a	 class,	 but	 what	 does	 it	 mean	 to
privately	inherit?	We	will	be	using	this	simple	example	to	prove	our	points.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

int	pvt_var	=	1;

void	pvt_func()	{}

virtual			void	pvt_virtFunc()	{}

	

public:

int	pub_var	=	1;

void	pub_func()	{}

virtual	void	pub_virtFunc()	{}

};

	

class	pvtDerivedClass	:	baseClass

{

void	checkMemberAccess()

{

pvt_var	=	2;

pub_var	=	2;

pvt_func();

pvt_virtFunc();

pub_func();

pub_virtFunc();

}

};

	

class	pubDerivedClass	:	public	baseClass

{

void	checkMemberAccess()

{

pvt_var	=	2;

pub_var	=	2;

pvt_func();

pvt_virtFunc();

pub_func();

pub_virtFunc();

}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj;

pvtDerivedClass	pvtDerivedClassObj;

pubDerivedClass	pubDerivedClassObj;

	

return	0;

}

	

Compile	and	you	will	get	errors	similar	to	this:

If	you	follow	the	error	messages	you	will	see	that	the	compiler	is	complaining	about	the
access	 of	 the	 three	 private	members	 of	baseClass.	 So	 the	 point	 I	want	 to	make	 in	 this
example	is,	the	inheritance	type	has	no	influence	on	what	you	can	access	in	the	class.	All
the	 private	 members	 of	 the	 base	 class	 are	 still	 private	 and	 all	 the	 public	 members	 are
public.	This	is	true	regardless	of	whether	the	class	is	derived	privately	or	publicly.

Then	what	does	 the	 inheritance	 type	affect?	 It	affects	how	 the	base	class	objects	can	be
accessed	from	outside.	Look	at	this	example:

#include<iostream>

using	namespace	std;

	

class	baseClass

{

int	pvt_var	=	1;

void	pvt_func()	{}

virtual			void	pvt_virtFunc()	{}

	

public:

int	pub_var	=	1;

void	pub_func()	{}

virtual	void	pub_virtFunc()	{}

};

	

class	pvtDerivedClass	:	baseClass

{};

	

class	pubDerivedClass	:	public	baseClass

{};

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj;

pvtDerivedClass	pvtDerivedClassObj;

pubDerivedClass	pubDerivedClassObj;

	

baseClassObj.pub_var;

baseClassObj.pub_func();

baseClassObj.pub_virtFunc();

	

pvtDerivedClassObj.pub_var;

pvtDerivedClassObj.pub_func();

pvtDerivedClassObj.pub_virtFunc();

	

pubDerivedClassObj.pub_var;

pubDerivedClassObj.pub_func();

pubDerivedClassObj.pub_virtFunc();

	

return	0;

}

	

You	will	get	compiler	errors	along	these	lines:

The	 compiler	 errors	 are	 for	 pvtDerivedClassObj	 only.	 Both	 pvtDerivedClass	 and
pubDerivedClass	derive	from	baseClass.	And	 in	 the	example,	both	objects	 try	 to	access
the	 public	methods	 of	 baseClass.	 But	pvtDerivedClassObj	 is	 not	 allowed	 to	 access	 the
public	members	of	baseClass.	So	it	is	obvious	what	is	happening	here.	When	you	derive
privately	from	a	class,	all	inherited	base	class	members	act	as	private	members	defined	in
the	 derived	 class.	 The	 public	members	 are	 still	 accessible	within	 the	 derived	 class,	 but
from	outside,	they	act	as	if	they	are	private	members	in	the	derived	class.	A	similar	effect
is	happening	to	public	as	well	as	protected	inheritance.

It’s	common	knowledge	that	in	the	context	of	C++,	structs	and	classes	are	almost	identical
in	their	functionality	and	the	primary	difference	is	that	structs	have	a	default	access	level
of	 public,	 while	 classes	 are	 private.	 So	 how	 does	 this	 affect	 during	 inheritance?	 Let’s
change	all	of	our	classes	to	structs	and	see.

struct	baseClass

{

private:

int	pvt_var	=	1;

void	pvt_func()	{}

virtual			void	pvt_virtFunc()	{}

	

public:

int	pub_var	=	1;

void	pub_func()	{}

virtual	void	pub_virtFunc()	{}

};

	

struct	pvtDerivedClass	:	baseClass

{};

	

struct	pubDerivedClass	:	public	baseClass

{};

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj;

pvtDerivedClass	pvtDerivedClassObj;

pubDerivedClass	pubDerivedClassObj;

	

baseClassObj.pub_var;

baseClassObj.pub_func();

baseClassObj.pub_virtFunc();

	

pvtDerivedClassObj.pub_var;

pvtDerivedClassObj.pub_func();

pvtDerivedClassObj.pub_virtFunc();

	

pubDerivedClassObj.pub_var;

pubDerivedClassObj.pub_func();

pubDerivedClassObj.pub_virtFunc();

	

return	0;

}

	

Note	 that	 I	made	a	small	modification	 to	 the	baseClass	and	put	private	access	modifier,
because	otherwise	all	members	will	be	public.	Compile	this	and	you	will	see	there	are	no
compilation	 errors.	 This	 is	 because	when	 you	 inherit	 a	 struct	 from	 a	 struct,	 the	 default
inheritance	is	public.	Same	as	default	access	level	for	struct	members.	So	pvtDerivedClass
is	actually	inheriting	public,	not	private	as	it	is	with	classes.	Just	to	prove	our	point	we’ll
explicitly	specify	the	private	inheritance	for	pvtDerivedClass.

struct	baseClass

{

private:

int	pvt_var	=	1;

void	pvt_func()	{}

virtual	void	pvt_virtFunc()	{}

	

public:

int	pub_var	=	1;

void	pub_func()	{}

virtual	void	pub_virtFunc()	{}

};

	

struct	pvtDerivedClass	:	private	baseClass

{};

	

struct	pubDerivedClass	:	public	baseClass

{};

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj;

pvtDerivedClass	pvtDerivedClassObj;

pubDerivedClass	pubDerivedClassObj;

	

baseClassObj.pub_var;

baseClassObj.pub_func();

baseClassObj.pub_virtFunc();

	

pvtDerivedClassObj.pub_var;

pvtDerivedClassObj.pub_func();

pvtDerivedClassObj.pub_virtFunc();

	

pubDerivedClassObj.pub_var;

pubDerivedClassObj.pub_func();

pubDerivedClassObj.pub_virtFunc();

	

return	0;

}

	

Compile	this	and	you	will	see	that	you	get	the	same	compilation	errors	you	got	with	the
class	version.	So	that’s	the	difference	when	you	inherit	structs.

Inheritance	between	structs	and	classes
So	naturally	you	are	now	intrigued	to	know	what	happens	when	we	inherit	one	from	the
other,	 right?	Let’s	 find	out.	First	we	will	derive	a	class	from	a	struct	base	and	explicitly
specify	the	access	level.

struct	baseClass

{

private:

int	pvt_var	=	1;

void	pvt_func()	{}

virtual			void	pvt_virtFunc()	{}

	

public:

int	pub_var	=	1;

void	pub_func()	{}

virtual	void	pub_virtFunc()	{}

};

	

class	pvtDerivedClass	:	private	baseClass

{};

	

class	pubDerivedClass	:	public	baseClass

{};

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj;

pvtDerivedClass	pvtDerivedClassObj;

pubDerivedClass	pubDerivedClassObj;

	

baseClassObj.pub_var;

baseClassObj.pub_func();

baseClassObj.pub_virtFunc();

	

pvtDerivedClassObj.pub_var;

pvtDerivedClassObj.pub_func();

pvtDerivedClassObj.pub_virtFunc();

	

pubDerivedClassObj.pub_var;

pubDerivedClassObj.pub_func();

pubDerivedClassObj.pub_virtFunc();

	

return	0;

}

	

You	will	remember	that	these	are	the	same	errors	we	got	with	classes.	So	with	private	and
public	inheritance,	there	is	nothing	different	in	the	inheritance	of	members	when	deriving
a	class	from	a	struct.	Change	the	base	to	a	class	and	the	derived	one	struct	and	you	will	see
the	same	compilation	errors.	So	when	the	inheritance	level	is	specified,	classes	and	structs
act	the	same	way.	Then,	what	would	be	the	case	if	we	don’t	specify?	What	is	the	default
level?

#include<iostream>

using	namespace	std;

	

struct	baseClass

{

private:

int	pvt_var	=	1;

void	pvt_func()	{}

virtual			void	pvt_virtFunc()	{}

	

public:

int	pub_var	=	1;

void	pub_func()	{}

virtual	void	pub_virtFunc()	{}

};

	

class	defaultDerivedClass	:	baseClass

{};

	

int	main(int	argc,	char**	argv)

{

defaultDerivedClass	defaultDerivedClassObj;

	

defaultDerivedClassObj.pub_var;

defaultDerivedClassObj.pub_func();

defaultDerivedClassObj.pub_virtFunc();

	

return	0;

}

	

These	are	the	compilation	errors	you’d	get:

You	will	realize	that	these	are	the	same	errors	we	got	with	private	inheritance.	So	when	we
are	inheriting	from	a	struct	to	a	derived	class,	the	default	access	specifier	is	similar	to	that
of	class.	What	about	the	other	way	then?

#include<iostream>

using	namespace	std;

	

class	baseClass

{

private:

int	pvt_var	=	1;

void	pvt_func()	{}

virtual			void	pvt_virtFunc()	{}

	

public:

int	pub_var	=	1;

void	pub_func()	{}

virtual	void	pub_virtFunc()	{}

};

	

struct	defaultDerivedStruct	:	baseClass

{};

	

int	main(int	argc,	char**	argv)

{

defaultDerivedStruct	defaultDerivedStructObj;

	

defaultDerivedStructObj.pub_var;

defaultDerivedStructObj.pub_func();

defaultDerivedStructObj.pub_virtFunc();

	

return	0;

}

	

You	will	get	no	compilation	errors.	That	means	when	you	are	inheriting	from	a	class	to	a
derived	struct,	the	default	access	specifier	is	that	of	a	struct.

There	is	nothing	special	or	tricky	about	this	topic	but	nevertheless	it	is	a	topic	that	is	often
left	out.

	

Topic	4

Object	Construction
In	 this	 topic	 we	 will	 look	 at	 how	 class	 objects	 are	 constructed.	 There	 are	 a	 few	 ways
objects	can	be	constructed.	Some	are	explicit	and	some	implicit.	Here	is	a	standard	class
definition:

#include<iostream>

using	namespace	std;

	

class	standardClass

{

int	objID;

	

public:

	

standardClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructor:	“	<<	objID	<<	endl;

}

	

~standardClass()	//	destructor

{

cout	<<	“Destructor:	“	<<	objID	<<	endl;

}

	

standardClass(const	standardClass	&objToCopy)										//	copy	constructor																								

{

objID	=	objToCopy.objID;

cout	<<	“Copy	constructor:	“	<<	objID	<<	endl;

}

	

standardClass	&	operator=(const	standardClass	&objToCopy)	//	assignment	operator

{

cout	<<	“Copy	assignment	operator:	“	<<	objID	<<	endl;

objID	=	objToCopy.objID;

return	*this;

}

};

	

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);																																		//	Line	#1

cout	<<	“-	Line	1	end	-”	<<	endl;

	

standardClass	stdClassObj2(stdClassObj1);													//	Line	#2

cout	<<	“-	Line	2	end	-”	<<	endl;

	

standardClass	stdClassObj3	=	stdClassObj2;												//	Line	#3

cout	<<	“-	Line	3	end	-”	<<	endl;

	

stdClassObj1	=	stdClassObj2;																																						//	Line	#4

cout	<<	“-	Line	4	end	-”	<<	endl;

	

stdClassObj2	=	standardClass(4);																														//	Line	#5

cout	<<	“-	Line	5	end	-”	<<	endl;

	

stdClassObj3	=	5;																																																											//	Line	#6

cout	<<	“-	Line	6	end	-”	<<	endl;

	

standardClass	stdClassObj4	=	standardClass(4);				//	Line	#7

cout	<<	“-	Line	7	end	-”	<<	endl;

	

standardClass	stdClassObj5	=	5;																																	//	Line	#8

cout	<<	“-	Line	8	end	-”	<<	endl	<<	endl;

	

return	0;

}

	

Constructor:	1

-	Line	1	end	-

Copy	constructor:	1

-	Line	2	end	-

Copy	constructor:	1

-	Line	3	end	-

Copy	assignment	operator:	1

-	Line	4	end	-

Constructor:	4

Copy	assignment	operator:	1

Destructor:	4

-	Line	5	end	-

Constructor:	5

Copy	assignment	operator:	1

Destructor:	5

-	Line	6	end	-

Constructor:	4

-	Line	7	end	-

Constructor:	5

-	Line	8	end	-

	

Destructor:	5

Destructor:	4

Destructor:	5

Destructor:	4

Destructor:	1

	

Let’s	quickly	go	over	what	is	happening	here.

Line	1	creates	a	new	object	by	calling	the	constructor.
Line	2	passes	 an	object	 to	 create	 a	new	object.	This	 calls	 the	 copy	constructor.
Notice	that	in	the	case	when	the	copy	constructor	is	called,	the	default	constructor
is	not	called	anywhere.
Line	3	creates	a	new	object	by	assigning	an	existing	object.	But	this	calls	the	copy
constructor.	NOT	the	assignment	operator.	This	is	because	we	are	creating	a	new
object	stdClassObj3.	So	line	3	has	the	same	effect	as	line	2.
Line	 4	 invokes	 the	 assignment	 operator.	 This	 is	 because	 we	 are	 assigning
stdClassObj2	to	stdClassObj1,	which	is	already	created.	So	keep	in	mind	that	the
assignment	operator	is	only	called	when	you	assign	to	an	existing	object.
Line	5	assigns	existing	stdClassObj2	to	a	newly	created	object.	So	this	is	what	is
happening	in	this	case:	

A	new	temporary	object	is	created	by	calling	the	constructor	with	value	4.
This	object	is	assigned	to	stdClassObj2	using	assignment	operator.
The	destructor	is	called	for	the	temporary	object.	

Line	 6	 assigns	 stdClassObj3	 a	 new	 object	 by	 passing	 an	 integer.	 This	 is
completely	fine	as	we	have	a	constructor	that	takes	an	integer	parameter.	So	line	6
is	equivalent	to	“stdClassObj3	=	standardClass(5)”,	which	is	same	as	line	5.	And
indeed	the	output	is	same	as	that	for	line	5.
Now	look	at	what	happens	at	lines	7	and	8.	We	are	doing	the	same	operation	as
we	did	in	lines	5	and	6,	in	that	respective	order,	but	now	we	are	creating	two	new
objects.	In	lines	5	and	6	we	did	assignments	to	existing	objects.	But	now	we	are
instantiating	new	objects.	There	are	no	 temporary	object	constructions	and	calls

to	copy	constructors.	The	compiler	is	smart	to	understand	that	it	can	directly	call
the	constructor	as	this	is	a	new	object	instance.	So	keep	in	mind	how	the	object
creation	differs	between	new	objects	and	assignments	to	existing	ones.

The	 reason	 I	 put	 line	 printouts	 in	 the	middle	 is	 to	 show	 the	 boundary	 between
different	 statements	 and	 also	 to	 show	 the	 point	 when	 the	 implicit	 object
destruction	 before	 the	 exit	 of	 the	main	 function	 is	 happening.	 After	 the	 line	 6
printout,	 the	 function	 will	 return	 and	 this	 invokes	 the	 destruction	 of	 the	 stack
objects.	 Everything	 we	 created	 in	 the	 main	 are	 local	 to	 the	main	 function	 and
hence	they	are	in	the	stack.	These	stack	objects	will	be	destroyed	by	calling	their
destructors	at	the	end	of	the	function.

Finally,	all	of	 the	destructors	of	 the	objects	are	called.	You	should	note	 that	 the
objects	are	destroyed	in	the	inverse	order	they	were	created.	Objects	created	last
are	 destroyed	 first.	 So	 in	 our	 case	 stdClassObj3	 is	 destroyed	 first	 and	 then
stdClassObj2	and	so	on.	Note	they	are	destroyed	in	the	order	they	were	“created.”
Not	the	order	they	are	assigned.

Now	let’s	define	some	functions	and	see	how	this	mechanism	plays	out.

#include<iostream>

using	namespace	std;

	

class	standardClass

{

int	objID;

	

public:

standardClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructor:	“	<<	objID	<<	endl;

}

	

~standardClass()	//	destructor

{

cout	<<	“Destructor:	“	<<	objID	<<	endl;

}

	

standardClass(const	standardClass	&objToCopy)	//	copy	constructor

{

objID	=	objToCopy.objID;

cout	<<	“Copy	constructor:	“	<<	objID	<<	endl;

}

	

standardClass	&	operator=(const	standardClass	&objToCopy)	//	assignment	operator

{

cout	<<	“Copy	assignment	operator:	“	<<	objID	<<	endl;

objID	=	objToCopy.objID;

return	*this;

}

	

void	funcCallByVal(standardClass	stdClass)

{

objID	=	stdClass.objID;

}

	

void	funcCallByRef(standardClass	&stdClass)

{

objID	=	stdClass.objID;

}

	

void	funcCallByPtr(standardClass	*stdClass)

{

objID	=	stdClass->objID;

}

};

	

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);																												//	Line	#1

standardClass	stdClassObj2(2);																												//	Line	#2

cout	<<	“-Line	#2	end-”	<<	endl;

	

stdClassObj1.funcCallByVal(stdClassObj2);							//	Line	#3

cout	<<	“-Line	#3	end-”	<<	endl;

	

stdClassObj1.funcCallByVal(3);																												//	Line	#4

cout	<<	“-Line	#4	end-”	<<	endl;

	

return	0;

}

	

Constructor:	1

Constructor:	2

-Line	#2	end-

	

Copy	constructor:	2

Destructor:	2

-Line	#3	end-

	

Constructor:	3

Destructor:	3

-Line	#4	end-

	

Destructor:	2

Destructor:	3

	

So	 I	 defined	 three	 functions.	 The	 first	 one	 takes	 standardClass	 argument	 by	 value,	 the
second	by	reference	and	the	third	as	a	pointer.	For	clarity	we’ll	go	through	the	functions
separately,	and	first	I	am	invoking	funcCallByValue.

Pass	by	value
I	have	put	printouts	of	line	endings	to	make	it	clear	what	constructors	are	being	called	at
each	statement.	Let’s	go	through	the	results.

Lines	1	 and	2	 create	 two	objects	of	 standardClass.	So	 the	 constructor	 is	 called
twice.
In	line	3	we	are	invoking	funcCallByValue	and	passing	it	to	the	object	we	created.
Here	 we	 see	 the	 copy	 constructor	 is	 called	 first.	 This	 is	 to	 create	 the	 copy	 of
stdClassObj2.	This	is	a	temporary	object	that	is	passed	to	the	function.	When	the
function	 exits	 this	 temporary	 is	 destroyed.	 That	 is	 what	 you	 see	 in	 the	 next
printout.	This	is	similar	to	what	we	saw	in	the	previous	example	in	lines	2	and	3
when	new	objects	are	created	with	existing	objects.
In	 line	 4	we	 are	 calling	 funcCallByVal	with	 just	 an	 integer.	 This	 is	 fine.	 Since
there	is	a	constructor	for	standardClass	that	takes	an	integer,	the	compiler	makes
line	4	look	like	“stdClassObj1.funcCallByVal(standardClass(3))”.	Try	it	out	and
you	will	 get	 the	 same	 result.	 So	 in	 this	 case	we	 are	 creating	 a	 new	 object	 and
passing	 it	 to	 the	 function.	 This	 is	 evident	 by	 the	 output	 where	 we	 see	 the
constructor	is	being	called.
In	any	case,	when	calling	funcCallByVal,	a	temporary	object	is	created.	In	line	3
this	temporary	is	created	by	calling	the	copy	constructor	because	we	are	‘copying’
an	 existing	 object.	 But	 in	 line	 4	 we	 are	 creating	 the	 temporary	 with	 the
constructor	 because	 it	 is	 passed	 as	 an	 integer	 argument.	This	 is	 the	 exact	 same
mechanism	we	saw	in	line	6	of	the	previous	example.

Pass	by	reference
Now	let’s	move	on	to	the	pass	by	reference.	I	will	only	change	the	function	name	and	keep

the	arguments	as	they	are.

#include<iostream>

using	namespace	std;

	

class	standardClass

{

int	objID;

	

public:

standardClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructor:	“	<<	objID	<<	endl;

}

	

~standardClass()	//	destructor

{

cout	<<	“Destructor:	“	<<	objID	<<	endl;

}

	

standardClass(const	standardClass	&objToCopy)	//	copy	constructor

{

objID	=	objToCopy.objID;

cout	<<	“Copy	constructor:	“	<<	objID	<<	endl;

}

	

standardClass	&	operator=(const	standardClass	&objToCopy)	//	assignment	operator

{

cout	<<	“Copy	assignment	operator:	“	<<	objID	<<	endl;

objID	=	objToCopy.objID;

return	*this;

}

	

void	funcCallByVal(standardClass	stdClass)

{

objID	=	stdClass.objID;

}

	

void	funcCallByRef(standardClass	&stdClass)

{

objID	=	stdClass.objID;

}

	

void	funcCallByPtr(standardClass	*stdClass)

{

objID	=	stdClass->objID;

}

};

	

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);																											//	Line	#1

standardClass	stdClassObj2(2);																											//	Line	#2

cout	<<	“-Line	#2	end-”	<<	endl;

	

stdClassObj1.funcCallByRef(stdClassObj2);						//	Line	#3

cout	<<	“-Line	#3	end-”	<<	endl;

	

stdClassObj1.funcCallByRef(3);																											//	Line	#4

cout	<<	“-Line	#4	end-”	<<	endl;

	

return	0;

}

	

Compile	and	you	will	most	likely	see	this	error:

Before	I	explain	why,	make	this	small	modification	to	the	function	call	in	line	4.	Pass	an
object	argument	like	this:

…

stdClassObj1.funcCallByRef(standardClass(3));		//	Line	#4

…

	

If	you	are	using	Visual	Studio	chances	are	that	this	compiles	fine.	But	truthfully	this	does
not	 adhere	 to	 the	 standard.	 Compiler	 vendors	 add	 their	 own	 extensions	 to	 the	 standard
specifications	and	this	seems	to	be	one	of	Visual	C++’s	ones.	What	you	need	to	do	is	go	to
the	project	properties,	choose	C/C++	category	and	select	All	Options.	In	there	you	will	see
“Disable	 language	 extensions.”	Select	Yes.	Now	 try	 compiling	 again.	You	 should	 see	 a
similar	error	as	before:

Now	that	we	have	a	consistent	error	case,	why	is	this	happening?	Why	is	it	saying	that	it
cannot	 pass	 a	 standardClass	 object	 to	 a	 reference?	After	 all,	 aren’t	we	 doing	 the	 same
thing	in	line	3	by	passing	stdClassObj2?	So	what	is	the	difference?

Temporaries	and	const	references

Before	looking	in	to	that,	 let	me	ask	you,	did	you	wonder	why	the	copy	constructor	and
copy	 assignment	 operator	 take	 “const”	 arguments?	Why	 do	 the	 parameters	 need	 to	 be
references	to	const?

Let	 us	 redo	 that	 example	 again,	 this	 time	without	 the	 const	 references.	Also	 if	 you	 are
using	Visual	Studio	make	sure	you	have	the	language	extensions	disabled.

#include<iostream>

using	namespace	std;

	

class	standardClass

{

int	objID;

	

public:

standardClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructor:	“	<<	objID	<<	endl;

}

	

~standardClass()	//	destructor

{

cout	<<	“Destructor:	“	<<	objID	<<	endl;

}

	

standardClass(standardClass	&objToCopy)	//	copy	constructor

{

objID	=	objToCopy.objID;

cout	<<	“Copy	constructor:	“	<<	objID	<<	endl;

}

	

standardClass	&	operator=(standardClass	&objToCopy)	//	assignment	operator

{

cout	<<	“Copy	assignment	operator:	“	<<	objID	<<	endl;

objID	=	objToCopy.objID;

return	*this;

}

};

	

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);																													//	Line	#1

cout	<<	“-	Line	1	end	-”	<<	endl;

	

standardClass	stdClassObj2(stdClassObj1);						//	Line	#2

cout	<<	“-	Line	2	end	-”	<<	endl;

	

standardClass	stdClassObj3	=	stdClassObj2;				//	Line	#3

cout	<<	“-	Line	3	end	-”	<<	endl;

	

stdClassObj1	=	stdClassObj2;																														//	Line	#4

cout	<<	“-	Line	4	end	-”	<<	endl;

	

stdClassObj2	=	standardClass(4);																						//	Line	#5

cout	<<	“-	Line	5	end	-”	<<	endl;

	

stdClassObj3	=	5;																																																		//	Line	#6

cout	<<	“-	Line	6	end	-”	<<	endl;

	

return	0;

}

	

You	should	get	the	following	compilation	errors:

So	we	are	having	compilation	errors	in	lines	5	and	6.	But	notice	that	line	4	is	almost	the
same	as	what	we	do	in	lines	5	and	6.	In	line	4	we	are	calling	the	copy	assignment	operator
with	an	existing	object,	and	in	lines	5	and	6	we	are	passing	temporary	objects.	So	what	is
the	problem	here?	Here	is	the	output	result	we	got	in	the	previous	case	when	we	had	the
const	specifier.

	

Constructor:	1

-	Line	1	end	-

Copy	constructor:	1

-	Line	2	end	-

Copy	constructor:	1

-	Line	3	end	-

Copy	assignment	operator:	1

-	Line	4	end	-

Constructor:	4

Copy	assignment	operator:	1

Destructor:	4

-	Line	5	end	-

Constructor:	5

Copy	assignment	operator:	1

Destructor:	5

-	Line	6	end	-

Destructor:	5

Destructor:	4

Destructor:	1

	

What	does	line	5	do?	It	first	constructs	an	object,	and	then	passes	that	object	to	the	copy
assignment	operator	of	 stdClassObj2	 and	 then	 calls	 the	destructor	of	 the	 created	object.
The	object	we	created	to	pass	to	the	copy	assignment	operator	is	a	temporary.	Herein	lies
the	problem.	Because	the	temporary	we	created	in	line	5	by	calling	standardClass(4)	is	an
rvalue.	There	is	no	storage	allocated	for	it.	It	is	not	assigned	to	any	variable.	That	makes	it
an	 rvalue.	And	 this	 is	 the	 problem.	Because	 the	 standard	 says	 that	 you	 cannot	 bind	 an
rvalue	to	a	non-const	reference.	To	say	it	in	another	way,	only	lvalues	can	be	bounded	to
non-const	references

So	that	is	our	problem.	We	are	creating	a	temporary	rvalue	and	passing	it	to	be	bound	to
objToCopy	non-const	reference.	This	is	in	violation	of	the	standard	and	hence	the	compiler
error.	Think	for	a	moment	why	it	would	be	a	problem	if	we	could	bind	a	temporary	to	a
reference.	 A	 reference	 is	 basically	 an	 alias	 for	 the	 object.	 So	 unlike	 passing	 by	 value,
which	creates	a	new	object,	pass	by	reference	does	not.	That	 is	why	it	 is	efficient.	Then
think	what	would	happen	if	we	could	bind	a	temporary	to	a	reference.	What	would	happen
when	the	temporary	gets	destroyed?	Because	temporaries	go	out	of	scope	soon.	You	will
be	left	with	a	dangling	reference.	Then	what	happens	when	we	make	the	reference	const?
In	 that	 case	 the	 standard	 specifically	 states	 that	 when	 a	 temporary	 is	 bound	 to	 a	 const
reference,	the	lifetime	of	it	is	extended	until	the	reference	goes	out	of	scope.

That	 is	 the	reason	why	everything	works	when	you	put	 the	const	specifier.	So	then,	you
wouldn’t	need	the	const	if	you	are	not	going	to	invoke	them	through	statements	like	lines
5	and	6?	If	you	comment	out	lines	5	and	6	and	remove	the	const	specifier	you	will	see	that
you	 get	 no	 compiler	 errors.	 The	 compiler	 wouldn’t	 complain	 to	 you	 that	 the	 copy
constructor	and	copy	assignment	operator	are	taking	non-const	parameters.	You	are	free	to
define	 those	 functions	 like	 that.	 But	 keep	 in	 mind	 that	 copy	 constructors	 and	 copy

assignment	 operators	 must	 not	 modify	 the	 reference	 being	 passed.	 The	 task	 of	 those
functions	 is	 to	 copy	 the	 object	 being	 passed.	Not	modifying	 anything	 in	 it.	Making	 the
parameter	 const	makes	 sure	 that	 your	 function	 does	 not	 do	 anything	 undesirable	 to	 the
object	that	is	being	passed	to	it.

Now	go	ahead	and	change	the	argument	to	funcCallByRef	to	a	const	reference.	This	time
you	should	get	no	compiler	errors	for	line	4.	Because	the	temporary	created	by	the	passed
argument,	standardClass	object	with	integer	3,	can	now	bind	to	the	const	reference.	So	no
rules	are	broken.

Let’s	go	ahead	and	finish	the	pass	by	pointer	and	wrap	up	this	topic.

Passing	the	pointer
Just	to	be	clear,	there	is	no	concept	as	pass	by	pointer.	There	are	only	pass	by	value	and
pass	by	reference.	Pass	by	pointer	is	essentially	pass	by	value.	We	are	passing	a	copy	of
the	arguments’	address	as	the	value.

This	is	the	best	you	could	do	with	this	code:

#include<iostream>

using	namespace	std;

	

class	standardClass

{

int	objID;

	

public:

standardClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructor:	“	<<	objID	<<	endl;

}

	

~standardClass()	//	destructor

{

cout	<<	“Destructor:	“	<<	objID	<<	endl;

}

	

standardClass(const	standardClass	&objToCopy)	//	copy	constructor

{

objID	=	objToCopy.objID;

cout	<<	“Copy	constructor:	“	<<	objID	<<	endl;

}

	

standardClass	&	operator=(const	standardClass	&objToCopy)	//	assignment	operator

{

cout	<<	“Copy	assignment	operator:	“	<<	objID	<<	endl;

objID	=	objToCopy.objID;

return	*this;

}

	

void	funcCallByVal(standardClass	stdClass)

{

objID	=	stdClass.objID;

}

	

void	funcCallByRef(const	standardClass	&stdClass)

{

objID	=	stdClass.objID;

}

	

void	funcCallByPtr(const	standardClass	*stdClass)

{

objID	=	stdClass->objID;

}

};

	

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);																																		//	Line	#1

standardClass	stdClassObj2(2);																																		//	Line	#2

	

cout	<<	“-Line	#2	end-”	<<	endl;

	

stdClassObj1.funcCallByPtr(&stdClassObj2);										//	Line	#3

	

cout	<<	“-Line	#3	end-”	<<	endl;

	

//stdClassObj1.funcCallByPtr(3);																															//	Line	#4

	

cout	<<	“-Line	#4	end-”	<<	endl;

	

return	0;

}

	

Since	a	pointer	 is	a	variable	containing	an	address	of	what	 it	points	 to,	when	we	do	not

have	a	pointer	itself,	we	need	to	pass	the	address	of	the	object	we	need	to	pass.	Therefore
in	line	3	we	pass	the	address	of	the	object.	And	as	for	line	4,	there	is	no	way	we	can	pass
an	integer	and	make	the	compiler	implicitly	call	the	constructor.	Why	can’t	we	do	this?

…

stdClassObj1.funcCallByPtr(3);																			//	Line	#4

	

You	will	get	an	compiler	error	along	the	lines	of:

What	we	are	 trying	 to	do	 is	 to	get	 the	address	of	a	 temporary.	This	 temporary	 is	not	an
lvalue	and	we	are	not	allowed	to	take	the	address	of	non-lvalues.	Hence	the	error.

Explicit	constructor
Let’s	finish	this	topic	with	a	discussion	on	the	‘explicit’	keyword,	which	was	added	since
C++11.	Before	we	discuss	‘explicit’	let’s	revisit	our	first	example	(with	a	bit	of	trimming).

#include<iostream>

using	namespace	std;

	

class	standardClass

{

int	objID;

	

public:

	

standardClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor:	“	<<	objID	<<	endl;

}

	

};

	

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);																		//	Line	#1

standardClass	stdClassObj2	=	2;																	//	Line	#2

	

return	0;

}

	

Constructor:	1

Constructor:	2

	

These	are	the	two	cases	where	the	constructor	is	directly	called.	A	constructor	like	this	is
called	 a	 converting	 constructor.	 A	 converting	 constructor	 lets	 the	 compiler	 use	 that
constructor	to	convert	a	parameter	to	the	class	type.	For	example,	in	line	2	above,	what	we
should	 really	assign	 is	an	object	of	 type	standardClass.	 Instead	we	are	assigning	an	 int.
But	the	compiler	is	able	to	implicitly	convert	this	int	to	a	standardClass	instance	because
there	 is	 a	 converting	 constructor.	What	 ‘explicit’	 does	 it	 take	 to	make	 the	 constructor	 a
non-converting	one.	This	will	restrict	the	compiler	from	implicitly	converting	the	int	to	an
object.	Let’s	do	that	and	see.

#include<iostream>

using	namespace	std;

	

class	standardClass

{

int	objID;

public:

explicit	standardClass(int	ID)																					//	now	explicit

{

objID	=	ID;

cout	<<	“Constructor:	“	<<	objID	<<	endl;

}

	

};

	

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);																		//	Line	#1

standardClass	stdClassObj2	=	2;																	//	Line	#2

return	0;

}

	

The	compiler	now	cannot	convert	the	int	to	an	object	of	standardClass.	It	is	not	allowed	to

implicitly	 call	 the	 constructor.	 So	 what	 do	 we	 need	 to	 do	 then?	 We	 need	 to	 call	 the
constructor	explicitly.

…

…

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);																																		//	Line	#1

standardClass	stdClassObj2	=	standardClass(2);				//	Line	#2

return	0;

}

	

Constructor:	1

Constructor:	2

	

There	 really	 is	 no	 reason	 why	 we	 would	 want	 this	 constructor	 to	 be	 explicit	 in	 this
example.	But	 there	are	cases	where	you	don’t	want	 the	compiler	 calling	 the	constructor
implicitly	 and	 perhaps	 making	 a	 wrong	 argument	 conversion.	 Although	 you	 can	 make
constructors	that	take	multiple	arguments	to	be	explicit,	there	really	is	not	much	benefit	in
that.	The	only	effect	would	be	when	using	list	type	initialization	of	C++11.

This	ends	our	topic	on	the	fundamentals	involved	in	C++	object	construction.	Apart	from
the	four	methods	we	discussed	in	this	topic,	C++11	standard	adds	a	few	more	methods	in
there.	 The	 basics	 you	 learned	 in	 this	 topic	 should	 serve	 well	 in	 understanding	 the
mechanism	of	those	as	well.

	

Topic	5

Pointers
No	discussion	on	C++	would	be	complete	without	talking	about	pointers.	In	this	topic	we
will	look	into	a	few	different	aspects	of	pointer	use.

As	usual	let’s	start	with	a	basic	example	to	get	things	going.

#include<iostream>

using	namespace	std;

	

int	main(int	argc,	char**	argv)

{

int	val	=	10;

int	*	intPtr	=	&val;

int	**intPtrPtr	=	&intPtr;

	

cout	<<	“val:	“	<<	val	<<	endl;

cout	<<	“*intPtr:	“	<<	*intPtr	<<	endl;

cout	<<	“**intPtrPtr:	“	<<	**intPtrPtr	<<	endl;

	

return	0;

}

	

val:	10

*intPtr:	10

**intPtrPtr:	10

	

Here	we	have	an	integer,	a	point	to	the	integer	and	a	pointer	to	the	pointer	to	the	integer.
You	can	see	what	is	happening	in	the	debug	view:

Depicting	it	pictorially:

Passing	pointers	to	functions
Now	let’s	try	passing	those	pointers	to	functions.

#include<iostream>

using	namespace	std;

	

void	funcIntPtr(int	*	intPtr)

{

cout	<<	“Value:	“	<<	*intPtr	<<	endl;

}

	

void	funcIntPtrPtr(int	**	intPtrPtr)

{

cout	<<	“Value:	“	<<	**intPtrPtr	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

int	val	=	10;

int	*	intPtr	=	&val;

int	**intPtrPtr	=	&intPtr;

	

funcIntPtr(intPtr);

funcIntPtrPtr(intPtrPtr);

	

funcIntPtr(&val);

funcIntPtrPtr(&intPtr);

	

return	0;

}

	

Value:	10

Value:	10

Value:	10

Value:	10

	

Pretty	basic	stuff.	I’m	just	showing	here	how	to	call	functions	taking	pointers	and	pointers
to	pointers.	Now	let’s	see	how	things	change	when	arrays	come	in	to	play.

#include<iostream>

using	namespace	std;

	

void	funcIntPtr(int	*	intPtr)

{

cout	<<	“Value:	“	<<	*intPtr	<<	endl;

}

	

void	funcIntPtrPtr(int	**	intPtrPtr)

{

cout	<<	“Value:	“	<<	**intPtrPtr	<<	endl;

}

	

void	funcIntArr(int	intArr[])

{

cout	<<	“Value:	“	<<	intArr[0]	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

int	val	=	10;

int	*	intPtr	=	&val;

int	**intPtrPtr	=	&intPtr;

	

int	intArr[]	=	{	1,	2,	3	};																			//	Line	1

intPtr	=	intArr;																																	//	Line	2

	

funcIntPtr(intArr);																											//	Line	3

funcIntArr(intArr);																										//	Line	4

funcIntPtr(intPtr);																											//	Line	5

funcIntArr(intPtr);																										//	Line	6

funcIntPtrPtr(intPtrPtr);															//	Line	7

return	0;

}

	

Value:	1

Value:	1

Value:	1

Value:	1

Value:	1

	

We	defined	a	new	integer	array	and	also	a	function	that	takes	an	integer	array	parameter.
Let’s	go	through	the	lines	one	by	one	to	see	what	we	are	doing	here.

Line	1	defines	an	integer	array	with	3	elements	and	initializes	it	with	values.
In	 line	2	we	assign	 the	 intArr	 to	our	previously	defined	pointer	 to	 int.	Note	 the
difference	between	making	 intPtr	 point	 to	 an	 integer	 and	 an	 array.	 First,	 intPtr
could	point	 to	both	an	integer	and	also	an	integer	array.	Second,	when	we	want
intPtr	to	point	to	the	integer	val,	we	would	write:

*intPtr	=	val;

	

When	it	is	pointing	to	an	array	we	write:

intPtr	=	intArr;

	

Note	the	asterisk.	What	is	happening	here,	then?

intArr	is	actually	a	pointer	to	an	integer.	That	is	why	we	could	assign	it	to	intPtr	as	we	did.
Without	the	asterisk.	So	what	is	it	pointing	to?	Keep	reading.

In	line	3	we	are	passing	the	array	to	the	function,	which	takes	an	integer	pointer

as	a	parameter.	And	you	will	see,	it	prints	out	the	first	element	of	the	array.

What	 this	 means	 is	 that,	 the	 array	 is	 passed	 as	 a	 pointer.	 And	 when	 we
dereferenced	that	pointer	it	was	printing	the	first	element	of	the	array.	That	means
the	array	name	is	a	pointer	to	its	first	element.

In	 fact	 this	 is	 how	C/C++	passes	 arrays	 to	 functions.	They	are	not	 copied	 as	 in
pass	by	value.	When	an	array	is	passed	to	a	function	as	an	argument,	it	is	passed
as	a	pointer	to	its	first	element.

Line	4	 is	passing	 the	array	 to	 the	 function,	which	 is	expecting	an	 integer	array.
Nothing	exciting	here.
In	 line	 5	 we	 are	 passing	 the	 intPtr	 to	 the	 function,	 expecting	 a	 pointer	 to	 an
integer,	which	is	exactly	what	it	is	pointing	to.
Line	6	 is	a	bit	 interesting.	We	are	passing	the	pointer	 to	 integer	 to	 the	function,
which	is	expecting	an	integer	array	as	the	argument.	But	as	the	code	compiles,	it
seems	the	compiler	is	happy	to	accomodate	a	pointer	to	an	integer	as	an	integer
array	argument.

Why	is	this?	As	I	said	before,	this	is	because	the	compiler	treats	an	array	argument
as	a	pointer	to	its	first	element.	So	as	far	as	the	compiler	is	concerned,	funcIntPtr
and	 funcIntArr	 are	 both	 exactly	 the	 same	 function,	 having	 a	 point	 to	 integer
parameter.

In	line	7	then,	we	are	passing	a	pointer	to	pointer	to	an	integer.	The	same	as	we
did	in	the	previous	example.

Now	that	we	got	through	that,	did	you	wonder	how	the	compiler	was	calling	the	subscript
operator	on	a	pointer	in	line	7?	Let’s	find	out.

#include<iostream>

using	namespace	std;

	

int	main(int	argc,	char**	argv)

{

int	intArr[]	=	{	1,	2,	3	};

int	*intPtr	=	intArr;

	

cout	<<	*intPtr	<<	endl;																								//	Line	1

cout	<<	intPtr[0]	<<	endl;																					//	Line	2

cout	<<	intPtr[1]	<<	endl;																					//	Line	3

cout	<<	*(intPtr	+	1)	<<	endl;														//	Line	4

cout	<<	*(intPtr	+	2)	<<	endl;														//	Line	5

cout	<<	2[intPtr]	<<	endl;																					//	Line	6

	

return	0;

}

	

1

1

2

2

3

3

	

Line	 1	 dereferences	 the	 pointer	 and	 this	 prints	 out	 1.	 This	means	 that	 intPtr	 is
indeed	pointing	to	the	first	element	of	intArr.
Line	2	looks	a	bit	weird.	We	are	using	the	subscript	operator	on	a	pointer.	But	it
works.	This	will	again	print	out	the	first	element	of	intArr.
Line	3	accesses	the	second	element	of	intArr	and	it	correctly	prints	out	2.	So	this
shows	 that	 you	 can	 indeed	dereference	 a	 pointer	with	 the	 subscript	 operator	 as
you	would	with	a	normal	array.	But	how	is	this	possible?
Line	 4	 is	 the	 answer	 to	 why	 lines	 2	 and	 3	 work.	 It	 is	 because	 all	 subscript
operators	on	a	pointer	are	converted	to	an	expression,	as	in	line	4.	The	pointer	is
advanced	 by	 the	 amount	 added	 to	 it	 and	 then	 dereferenced.	 But	 how	 does	 the
compiler	 know	 exactly	 how	much	 to	 advance?	 It	 knows	 it	 by	 the	 type	 of	 the
pointer.	Since	intPtr	is	an	integer	pointer,	compiler	knows	it	should	advance	by	4
bytes	(we	found	in	topic	1	that	an	int	is	4	bytes	in	this	platform).
Line	5	is	the	same	as	line	4	but	now	accessing	the	3rd	element	of	the	array.
Line	6	 looks	 strange	 too.	You’d	probably	never	want	 to	use	 this	notation	but	 it
shows	what	we	said	about	 the	compiler	converting	a	subscript	operator	 in	 to	an
addition	and	then	dereferencing.	So	for	the	compiler	line	6	just	looks	like:

cout	<<	*(2	+	intPtr)	<<	endl;

	

In	this	example	we	assigned	intPtr	to	intArr.	I	mentioned	that	intPtr	is	a	pointer	to	its	first
element.	In	that	sense	we	should	be	able	to	assign	intPtr	a	pointer	to	the	second	element	of
the	array	like	this:

int	*intPtr	=	intArr[1];

	

Do	that	and	you	will	get	an	error	saying	it	cannot	convert	from	‘int’	to	‘int	*’.	But	why?

Because	 intArr	 by	 itself	 is	 a	pointer	 to	 its	 first	 element.	But	 intArr[1]	 is	 just	 an	 integer
variable.	If	that	is	the	case	then	we	should	be	able	to	assign	its	address	like	we	did	for	val
in	the	previous	example,	right?	Indeed	we	can.

#include<iostream>

using	namespace	std;

	

int	main(int	argc,	char**	argv)

{

int	intArr[]	=	{	1,	2,	3	};

int	*intPtr	=	&(intArr[1]);

	

cout	<<	*intPtr	<<	endl;

cout	<<	intPtr[0]	<<	endl;

cout	<<	intPtr[1]	<<	endl;

cout	<<	*(intPtr	+	1)	<<	endl;

cout	<<	*(intPtr	+	2)	<<	endl;

cout	<<	2[intPtr]	<<	endl;

	

return	0;

}

	

2

2

3

3

-858993460

-858993460

	

You	can	easily	decode	the	output.	One	thing	to	note	is	the	final	two	outputs.	You	can	guess
why	 they	 are	 garbage	 values.	Because	 intPtr	 is	 now	 pointing	 to	 the	 second	 element	 of
intArr	and	 lines	5	and	6	are	 trying	 to	access	 the	fourth	element	of	 the	array,	when	there
isn’t	one.	So	 it	 is	 reading	out	of	 the	array	bounds	and	getting	garbage	values.	Note	 that
you	can	use	the	subscript	operator	or	the	pointer	addition	to	a	pointer	that	was	pointing	to
a	 integer	variable	 as	well.	That	 is,	 intPtr	 does	 not	 need	 to	 be	pointing	 to	 an	 array.	You
could	do	 the	 same	operations	when	 intPtr	was	pointing	 to	val	 in	 the	previous	 example.
You’d	just	get	garbage	values.

Dealing	with	chars	and	its	pointers	can	be	a	little	confusing	sometimes.	In	this	next	part
we	will	look	at	the	basic	uses	of	char	and	it’s	pointers.

Char	and	its	arrays
Let’s	 change	 our	 original	 code	 to	 incorporate	 a	 char	 and	 a	 char	 array.	 Except	 for	 the
function	names,	you	can	see	that	everything	else	is	pretty	much	the	same	as	in	the	integer
example.

include<iostream>

using	namespace	std;

	

void	funcCharPtr(char	*	charPtr)

{

cout	<<	“Value:	“	<<	*charPtr	<<	endl;

}

	

void	funcCharPtrPtr(char	**	charPtrPtr)

{

cout	<<	“Value:	“	<<	**charPtrPtr	<<	endl;

}

	

void	funcCharArr(char	charArr[])

{

cout	<<	“Value:	“	<<	charArr[0]	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

char	val	=	‘a’;

char	*	charPtr	=	&val;

char	**charPtrPtr	=	&charPtr;

	

funcCharPtr(charPtr);																												//	Line	1

funcCharArr(charPtr);																												//	Line	2

funcCharPtrPtr(charPtrPtr);																	//	Line	3

	

char	charArr[]	=	{	‘x’,	‘y’,	‘z’	};															//	Line	4

charPtr	=	charArr;																																		//	Line	5

	

funcCharPtr(charArr);																												//	Line	6

funcCharArr(charArr);																											//	Line	7

	

funcCharPtr(charPtr);																												//	Line	8

funcCharArr(charPtr);																											//	Line	9

	

funcCharPtrPtr(charPtrPtr);																//	Line	10

	

return	0;

}

	

Value:	a

Value:	a

Value:	a

Value:	x

Value:	x

Value:	x

Value:	x

Value:	x

	

Here	we	start	with	a	char	val	and	assign	it	the	single	character	‘a’.	Then	we	assign
that	char	to	a	pointer	to	char	and	that	to	a	pointer	to	pointer	to	char.
Lines	1	and	2	pass	the	char	pointer	to	the	functions	taking	a	pointer	to	char	and	a
char	array.	They	work	the	same	way	they	did	in	the	integer	example.	And	line	3
as	well.	So	you	can	see	that	a	char	is	nothing	different	from	an	int	in	the	way	the
compiler	handles	it.

There	is	the	notion	of	passing	chars	as	integers	but	that	is	a	different	story.	As	far
as	 the	pointers	are	concerned,	 there	 is	no	relationship	and	 they	behave	 the	same
way.	For	example	you	cannot	pass	charPtr	to	a	function	with	a	pointer	to	integer
parameter.

Line	4	defines	a	 char	 array	with	3	elements	 and	 then	 in	 line	5	assigns	 it	 to	 the
pointer	to	char.	This,	again,	is	exactly	what	we	did	with	the	intArr	and	intPtr	 in
our	previous	example.	So	as	we	discussed	then,	a	char	array	variable	is	a	pointer.
It	is	a	pointer	to	its	first	element,	as	it	was	with	intArr.
The	rest	of	 the	 lines	call	 the	 functions	passing	charPtr	and	charArr.	Nothing	 is
different	here.	The	charPtr	and	charArr	 behave	exactly	 the	 same	way	as	 intPtr
and	 intArr	 did.	 As	 it	 did	 with	 the	 integer	 array,	 the	 compiler	 will	 convert	 the
subscript	operator	to	a	pointer	plus	offset	so	you	can	use	the	array	name	and	the
pointer	interchangeably.

Now	that	we	found	that	a	char	and	a	char	array	are	nothing	much	different	from	an	integer
and	an	integer	array	in	terms	of	pointer	handling,	let’s	look	at	an	array	of	char	array.

#include<iostream>

using	namespace	std;

	

void	funcCharPtrArr(char	*charPtrArr[])

{

cout	<<	“Value:	“	<<	charPtrArr[0]	<<	endl;

}

	

void	funcCharPtr1(char	*	charPtr)

{

cout	<<	“Value:	“	<<	charPtr	<<	endl;

}

	

void	funcCharPtr2(char	*	charPtr)

{

cout	<<	“Value:	“	<<	*charPtr	<<	endl;

cout	<<	“Value:	“	<<	charPtr[3]	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

char	charArr1[]	=	{	‘A’,	‘r’,	‘r’,	‘1’,	‘\0’	};														//	Line	1

char	charArr2[]	=	{	‘A’,	‘r’,	‘r’,	‘2’,	‘\0’	};														//	Line	2

char	charArr3[]	=	{	‘A’,	‘r’,	‘r’,	‘3’,	‘\0’	};														//	Line	3

	

char	*charPtrArr[]	=	{	charArr1,	charArr2,	charArr3	};

	

funcCharPtrArr(charPtrArr);																																//	Line	4

funcCharPtr1(*charPtrArr);																																	//	Line	5

funcCharPtr1(charArr1);																																						//	Line	6

funcCharPtr2(*charPtrArr);																																//	Line	7

	

return	0;

}

	

Value:	Arr1

Value:	Arr1

Value:	Arr1

Value:	A

Value:	3

	

Before	we	discuss	the	results	let’s	illustrate	what	is	happening	here.

The	figure	above	shows	the	relationship	between	the	pointers	and	arrays.	Note	the	arrows.
These	arrows	show	the	binding	of	each	element	to	the	variable	name.	Remember	that	the
array	 name	 is	 a	 pointer	 to	 its	 first	 element.	 That	 is	what	 the	 arrows	 depict.	 Each	 array
name	is	a	pointer	to	its	first	element:	charPtrArr	is	a	pointer	to	charArr1,	and	charArr1	is
a	pointer	to	char	‘A’,	and	so	on.

Now	 it	 should	 be	 pretty	 easy	 to	 understand	 the	 results	 of	 the	 above	 code.	 Note	 that	 I
included	the	terminating	character	at	 the	end	of	each	array.	Including	this	has	no	special
meaning	 to	 the	 code	 other	 than	 that	 the	 printout	 will	 be	 cleaner.	 If	 it	 there	 was	 no
terminating	character	the	output	would	contain	garbage	values	when	we	print	out	the	char
arrays.	Let’s	go	through	the	code	now.

charPtrArr	 is	 an	 array	 of	 pointers	 to	 char.	 Remember	 that	 an	 array	 name	 is	 a
pointer	to	it	first	element.	So	we	can	initialize	charPtrArr	with	the	three	arrays	we
defined	at	the	beginning	because	those	are	pointers	to	char	(to	their	first	char).
funcCharPtrArr	has	an	array	of	pointers	to	char	parameters.	This	is	the	same	type
as	charPtrArr	so	we	should	have	no	problem	passing	it.	It	prints	out	‘Arr1’	and
you	know	why.

As	we	 learned	before,	charPtrArr[0]	 for	 the	 compiler	 is	*charPtrArr.	And	 this
points	 to	 charArr1.	 So	 we	 are	 passing	 charArr1	 to	 the	 cout	 and	 it	 obliges	 by
printing	out	 the	array	contents.	This	 is	why	we	needed	the	terminating	character
for	the	cout	to	know	where	the	sequence	ends.

funcCharPtr1	takes	a	pointer	to	char	parameter	and	prints	it	out.	In	line	5	we	are

passing	*charPtrArr.	You	could	easily	understand	what	we	are	actually	passing
here.	We	are	 passing	charArr1	 and	 it	 prints	 out	Arr1	 as	we’d	 expect.	Note	 the
similarity	with	line	4’s	printout	and	understand	that	we	are	passing	the	same	thing
to	cout	in	both	cases.
Just	 to	 solidify	 your	 understanding	 I’m	 calling	 funcCharPtr1	 with	 charArr1	 to
show	that	it	is	exactly	the	same	as	passing	*charPtrArr.
funcCharPtr2	 takes	 the	 same	 type	 of	 parameters	 as	 funcCharPtr1,	 but	 the	 cout
statement	 is	 a	 bit	 different.	 I	 want	 to	 show	 the	 relation	 of	 variable	 name	 and
pointer	again.	Also	note	the	passing	argument	is	a	bit	different	here	but	you	could
easily	understand	what	we	are	passing.	*(charPtrArr+2)	is	just	charArr3.

Then	 in	 funcCharPtr2	 we	 are	 passing	 *charArr3	 to	 the	 cout.	 So	 what	 are	 we
passing	 here	 then?	You	 know	 charArr3	 is	 a	 pointer	 to	 the	 first	 element	 ‘A’	 so
dereferencing	it	simply	prints	out	‘A’.	And	finally	for	good	measure	we	are	also
printing	out	 the	 last	 character	 in	 the	 next	 statement.	This	 also	 confirms	 that	we
indeed	passed	charArr3.

If	we	replaced	the	char	arrays	with	integer	arrays	and	with	an	array	of	pointers	to	integers
and	 changed	 the	 types	 of	 the	 function	 parameters,	 eveything	 will	 work,	 with	 one
exception.	When	we	passed	the	char	array	to	the	cout,	it	printed	out	the	whole	array.	But	if
we	 do	 that	 with	 the	 integer	 array,	 cout	 wouldn’t	 print	 out	 all	 of	 the	 integer	 elements.
Instead	 it	would	 just	print	out	 its	pointer	value.	That	 is	 the	address	of	 the	 first	 element.
This	 is	 not	 because	 of	 anything	 special	 in	 a	 char	 pointer	 but	 rather	 how	 cout	 handles
different	types.

Let’s	 look	 at	 one	 more	 observation.	We	 discussed	 earlier	 that	 arrays	 are	 passed	 to	 the
functions	 as	 pointers	 by	 the	 compiler.	 So	 function	 parameters	 *char	 and	 char[]	 are
identical	to	the	compiler.	Then	we	could	do	the	following:

#include<iostream>

using	namespace	std;

	

void	funcCharPtrArr(char	*charPtrArr[])

{

cout	<<	“Value:	“	<<	charPtrArr[0]	<<	endl;

}

	

void	funcCharPtrArr2(char	**charPtrArr)

{

cout	<<	“Value:	“	<<	charPtrArr[0]	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

char	charArr1[]	=	{	‘A’,	‘r’,	‘r’,	‘1’,	‘\0’	};

char	charArr2[]	=	{	‘A’,	‘r’,	‘r’,	‘2’,	‘\0’	};

char	charArr3[]	=	{	‘A’,	‘r’,	‘r’,	‘3’,	‘\0’	};

	

char	*charPtrArr[]	=	{	charArr1,	charArr2,	charArr3	};

	

funcCharPtrArr(charPtrArr);

funcCharPtrArr2(charPtrArr);

	

return	0;

}

	

Value:	Arr1

Value:	Arr1

	

funcCharPtrArr	 is	 the	 same	 as	 before	 and	 funcCharPtrArr2	 has	 a	 slightly	 different
parameter	 type.	 It	 takes	a	pointer	 to	pointer	 to	char.	But	you	by	now	know	 that	both	of
these	functions	are	the	same.	Because	an	array	name	is	essentially	a	pointer,	we	can	write
*charPtrArr[]	as	*(*charPtrArr).	So	an	array	of	pointers	is	a	pointer	to	a	pointer.

Before	 we	 finish	 off	 this	 topic	 let’s	 look	 at	 one	 more	 example	 to	 demonstrate	 what	 a
pointer	means	to	a	compiler.	As	I	mentioned	before,	a	pointer	is	just	an	address	to	a	block
of	memory.	There	is	no	difference	between	a	pointer	to	an	object	and	a	pointer	to	an	int,	or
pointer	 to	anything	else.	All	of	 the	pointers	are	of	 the	same	size	and	all	of	 them	have	a
memory	address.	The	type	of	the	pointer	is	what	defines	it.	The	type	of	the	pointer	tells	the
compiler	what	is	in	that	block	of	memory	it	points	to.	Because	you	see,	the	pointer	only
points	to	the	start	of	the	memory	block.	The	compiler	has	no	idea	how	big	that	particular
memory	block	 is.	 It	deduces	 that	 information	 from	 the	 type	of	 the	pointer.	 It’s	 a	 simple
matter	of	sizeof(typeOfPointer)	 to	determine	 the	 size	of	 the	memory	block.	That	 is	why
you	 can	 never	 dereference	 a	 void*	 pointer	 because	 the	 compiler	 doesn’t	 know	 how	 to
work	with	that	memory	block.	This	example	should	clarify	this	point.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassVar;

	

baseClass(int	baseVal)	:	baseClassVar(baseVal)

{}

	

void	printVals()

{

cout	<<	“baseClass::baseClassVar-	“	<<	baseClassVar	<<	endl;

}

};

	

	

class	derivedClass	:	public	baseClass

{

public:

int	derivedClassVar;

	

derivedClass(int	baseVal,	int	derivedVal)	:	baseClass(baseVal),	derivedClassVar(derivedVal)

{}

	

void	printVals()

{

baseClass::printVals();

cout	<<	“derivedClass::derivedClassVar-	“	<<	derivedClassVar	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

baseClass*	baseClassPtr	=	new	baseClass(1);

static_cast<derivedClass*>(baseClassPtr)->printVals();

return	0;

}

	

baseClass::baseClassVar-	1

derivedClass::derivedClassVar-	7536751

	

What	we	did	was	to	have	a	baseClass	pointer	with	a	baseClass	 instance.	Then	we	static
cast	it	to	a	derivedClass.	Since	derivedClass	is	of	the	same	hierarchy	the	compiler	is	fine
with	 that	 and	 it	 trusts	 us	 that	 it	 is	 indeed	 pointing	 to	 a	derivedClass	 instance.	Then	we
invoke	the	derivedClass’s	printVals	function.	The	derivedClass	printVal	function	accesses
derivedClassVar.	 The	 compiler	 assumes	 that	 the	 memory	 block	 pointed	 to	 by
baseClassPtr	contains	a	complete	derivedClass	 instance	of	size	sizeof(derivedClass),	but
in	fact	it	only	contains	a	baseClass	instance,	which	is	smaller	than	a	derivedClass	one.	So

when	 the	 compiler	 accesses	 derivedClassVar,	 it	 is	 accessing	 a	 location	 that	 does	 not
belong	to	it,	and	hence	prints	out	a	garbage	value.	For	the	compiler,	it	has	no	way	to	do
any	boundary	checking.	The	boundary	 is	set	by	 the	pointer	 type.	We	will	 learn	more	on
this	when	we	discuss	class	member	offsets.	But	until	then	keep	in	mind	that	the	compiler’s
only	way	of	knowing	an	object	type	and	size	is	through	the	pointer	type.

So	now	you	should	understand	the	second	argument	of	the	main	function	that	you’ve	been
writing	all	along.	char**	argv	is	basically	char	*argv[].	It	is	an	array	of	pointers	to	char,
exactly	the	same	as	charPtrArr	in	our	example,	and	argv,	as	you	know,	contains	a	list	of
parameters	passed	to	the	main	function.

Topic	6

Non-Constructible,
Non-Copyable	Class

In	 the	 topic	 “Object	 Construction”	 we	 discussed	 how	 objects	 are	 created,	 copied	 and
assigned.	 There	 are	 three	 principal	 functions	 that	 every	 class	 should	 have:	 constructor,
copy	constructor	and	assignment	operator.	There	are	additional	functions	added	in	C++11
but	we	will	limit	our	focus	to	these	three	primary	functions.	In	this	topic	we	will	discuss
how	to	make	a	class	non	constructible	or	copyable	and	investigate	these	functions	in	more
detail.

Non-constructible	class
What	does	it	mean	to	construct,	or	instantiate,	an	object?	It	simply	means	calling	one	of
the	class	constructors.	So	how	do	you	then	make	a	class	non-constructible?	You	just	make
it	so	that	the	class	constructor	cannot	be	called.	And	there	are	two	ways	you	can	do	that:

Make	the	class	abstract
Make	the	constructors	private

Abstract	class

Unlike	Java,	C++	doesn’t	have	an	‘abstract’	keyword	to	make	a	class	abstract.	The	way	to
make	a	C++	class	abstract	is	to	have	a	pure	virtual	function.	How	do	you	make	a	virtual
function	pure?	Assign	the	function	a	value	of	zero.

class	AbstractClass	{

public:

AbstractClass();

virtual	void	pureVirtFunc()	=	0;		//	<—	this	makes	this	class	abstract.

}

	

So	what	does	it	mean	for	a	class	to	be	abstract?

#include<iostream>

using	namespace	std;

	

class	AbstractClass	{

public:

AbstractClass();

virtual	void	pureVirtFunc()	=	0;	//	<—	this	makes	this	class	abstract.

};

	

int	main(int	argc,	char**	argv)

{

AbstractClass	absClass;

return	0;

};

	

It	means	you	cannot	 instantiate	an	object	by	calling	 the	constructor.	And	you	know	that
only	 way	 you	 can	 do	 it	 is	 by	 deriving	 this	 class	 and	 implementing	 the	 pure	 virtual
function.

By	the	way,	what	does	it	mean	for	a	non-virtual	function	to	be	abstract?	It	makes	no	sense.
The	point	of	making	a	function	‘pure’	is	for	a	deriving	class	to	define	it.	Then	you	must
have	the	function	as	virtual.	But	what	happens	if	you	try	 to	make	a	non-virtual	function
pure?

#include<iostream>

using	namespace	std;

	

class	AbstractClass	{

public:

AbstractClass();

void	pureVirtFunc()	=	0;	//	<—	(^_^)

};

	

int	main(int	argc,	char**	argv)

{

cout	<<	“Can	we	make	it	pure???”	<<	endl;

return	0;

};

	

The	compiler	apparently	is	smart.

So	what	does	making	a	class	abstract	do?	It	makes	the	class	non-instantiable	by	itself.	But
any	class	that	derives	(and	defines	the	pure	virtual	function)	can.	Then,	the	real	motivation
in	making	a	class	abstract	is	to	make	that	class	a	base	class.	To	make	sure	whoever	wants
to	use	that	class	derives	it	and	implements	the	pure	virtual	function.	We	will	look	into	this

concept	in	a	different	topic,	but	what	you	need	to	understand	here	is	the	difference	in	non-
constructability	of	 an	 abstract.	Abstract	 class	objects	 are	non-constructible	because	 they
are	not	supposed	to	be	constructed	as	they	are.	Not	because	they	shouldn’t	be.	There	is	a
difference	as	we’ll	see	next.

An	 abstract	 class	 can	 still	 be	 constructed	 through	 derivation.	 The	 constructors	 of	 an
abstract	class	are	public	or	protected.	The	motive	of	making	a	class	abstract	is	to	make	it	a
base	class.	Base	classes	must	be	able	to	be	constructed.	But	what	if	you	want	your	class	to
be	 completely	 non-constructible?	You	 remove	 the	 only	way	 it	 can	 be	 constructed.	 You
know	a	 constructor	 is	 the	only	way	a	 class	 can	be	 instantiated.	You	make	 it	 so	 that	 the
constructor	 cannot	 be	 called	 from	 outside	 the	 class.	 How	 do	 you	 do	 it?	 Make	 the
constructor	private.

#include<iostream>

using	namespace	std;

	

class	NonContructible	{

private:

NonContructible()	{	cout	<<	“Haha.	You	can’t	call	this.”	<<	endl;	}

};

	

int	main(int	argc,	char**	argv)

{

NonContructible	nonCons;

	

return	0;

};

	

The	compiler	is	not	happy	because	it	cannot	call	the	private	method.	So	what	do	you	do
with	a	class	like	this?	Like	this,	you	can’t	do	much.	There	is	no	way	you	can	instantiate
this	 class	 as	 it	 is.	 One	 use	 of	making	 a	 constructor	 private	 is	 in	 the	 Singleton	 pattern,
where	you	only	want	one	instance	of	the	class	in	existence.	So	you	will	have	something
like	this:

#include<iostream>

using	namespace	std;

	

class	SingletonClass	{

private:

static	SingletonClass	*	theSingleton;

SingletonClass()	{	cout	<<	“This	will	be	called	only	once.”	<<	endl;	}

	

public:

static	SingletonClass	*	getSingleton()

{

if	(!theSingleton)

SingletonClass::theSingleton	=	new	SingletonClass;

	

return	theSingleton;

}

	

};

SingletonClass*	SingletonClass::theSingleton	=	NULL;

	

	

int	main(int	argc,	char**	argv)

{

SingletonClass	*singleton1	=	SingletonClass::getSingleton();

SingletonClass	*singleton2	=	SingletonClass::getSingleton();

SingletonClass	*singleton3	=	SingletonClass::getSingleton();

return	0;

}

	

This	will	be	called	only	once.

You	will	see	in	this	case	the	SingletonClass	constructor	was	called	only	once	and	from	the
locals	window	you	see	that	all	three	SingletonClass	pointers	point	to	the	same	object.	This
is	 one	 use	 of	making	 the	 constructor	 private	 to	 restrict	 the	 object	 construction,	 but	 still
provide	a	utility	function	to	receive	an	object.

So	 far	 what	 we	 looked	 at	 was	making	 a	 class	 non-constructible.	 Next	 we	 will	 look	 at
making	it	non-copyable.

Non-copyable	class
Let’s	refresh	copy	constructors	from	topic	4.

#include<iostream>

using	namespace	std;

	

class	standardClass

{

int	objID;

public:

standardClass(int	ID)	//	constructor

{

objID	=	ID;

}

	

~standardClass()									//	destructor

{														}

	

standardClass(const	standardClass	&objToCopy)					//	copy	constructor

{

objID	=	objToCopy.objID;

}

	

standardClass	&	operator=(const	standardClass	&objToCopy)	//	assignment	operator

{

objID	=	objToCopy.objID;

return	*this;

}

};

	

int	main(int	argc,	char**	argv)

{

standardClass	stdClassObj1(1);

standardClass	stdClassObj2(stdClassObj1);													//	Line	#1

standardClass	stdClassObj3	=	stdClassObj2;											//	Line	#2

stdClassObj1	=	stdClassObj2;																																					//	Line	#3

stdClassObj2	=	standardClass(4);																														//	Line	#4

stdClassObj3	=	5;																																																											//	Line	#5

return	0;

}

	

Lines	 1	 and	 2	 call	 the	 copy	 constructor	 and	 lines	 3-5	 call	 the	 assignment	 operator
(constructor	is	also	called	in	lines	4	and	5).	Making	a	class	non-copyable	means	to	not	let
the	user	do	operations	 like	 in	 the	above	code.	So	 it	means	 that	you	 restrict	making	one

object	from	another	object.	Stop	copying.	And	now	you	know	how	we	could	do	that.	We
just	make	the	functions	that	do	the	copying	private.	We	simply	make	the	copy	constructor
and	the	copy	assignment	operator	private.	Let’s	do	that.

	

#include<iostream>

using	namespace	std;

	

class	nonCopyable

{

int	objID;

public:

nonCopyable(int	ID)	//	constructor

{

objID	=	ID;

}

	

~nonCopyable()									//	destructor

{}

	

private:

nonCopyable(const	nonCopyable	&objToCopy)								//	copy	constructor

{

objID	=	objToCopy.objID;

}

	

nonCopyable	&	operator=(const	nonCopyable	&objToCopy)	//	assignment	operator

{

objID	=	objToCopy.objID;

return	*this;

}

};

	

int	main(int	argc,	char**	argv)

{

nonCopyable	ncClassObj1(1);

nonCopyable	ncClassObj2(ncClassObj1);							//	Line	#1

nonCopyable	ncClassObj3	=	ncClassObj2;					//	Line	#2

ncClassObj1	=	ncClassObj2;																															//	Line	#3

ncClassObj2	=	nonCopyable(4);																								//	Line	#4

ncClassObj3	=	5;																																																			//	Line	#5

return	0;

}

	

The	 compiler	 throws	more	 than	 a	 few	 errors	 and	 you	 can	 easily	 understand	what	 they
mean.	 It	 cannot	 access	 the	 copy	 constructor	 and	 the	 assignment	 operator	 to	 do	 the
copying.

Note	in	the	above	code	that	we	have	made	the	constructor	public.	Of	course	it	needs	to	be
because	we	need	to	instantiate	an	object	and	there	is	no	utility	function	to	otherwise.	Now
what	 if	we	want	 to	make	 a	 class	non-constructible	 and	non-copyable?	 Is	 it	 sufficient	 to
make	 only	 the	 constructor	 private?	After	 all,	 how	 can	 you	 copy	 if	 you	 can’t	 construct,
right?	Let’s	look	at	an	obvious	example.

#include<iostream>

using	namespace	std;

	

class	nonCopyable

{

int	objID;

	

class	nonCopyable(int	ID)	//	constructor

{

objID	=	ID;

}

	

public:

nonCopyable(const	nonCopyable	&objToCopy)	//	copy	constructor

{

objID	=	objToCopy.objID;

}

	

nonCopyable	&	operator=(const	nonCopyable	&objToCopy)	//	assignment	operator

{

objID	=	objToCopy.objID;

return	*this;

}

	

~nonCopyable()	//	destructor

{														}

	

static	nonCopyable	*	getObject()

{

return	new	nonCopyable(1);

}

};

	

int	main(int	argc,	char**	argv)

{

nonCopyable	*ncClassObjPtr	=	nonCopyable::getObject();

nonCopyable	ncClassObj2(*ncClassObjPtr);

nonCopyable	ncClassObj3	=	ncClassObj2;

delete	ncClassObjPtr;

	

return	0;

}

	

In	the	above	code	we	have	made	the	constructor	private	and	provided	a	utility	function	to
receive	 a	 new	 object	 (similar	 to	 the	 Singleton	 pattern	 but	we	 are	 not	 restricting	 to	 one
object).	Then	we	have	made	the	copy	constructor	and	the	assignment	operator	public.	This
code	compiles	and	works,	for	obvious	reasons.	I	just	wanted	to	show	you	that	if	you	want
to	make	a	class	non-constructible	and	non-copyable,	it	 is	not	sufficient	to	make	only	the
constructor	 private.	 But	 what	 if	 we	 don’t	 define	 the	 copy	 constructor	 and	 assignment
operator	at	all?	Let’s	remove	those	two	functions	and	see.

#include<iostream>

using	namespace	std;

	

class	nonCopyable

{

int	objID;

class	nonCopyable(int	ID)	//	constructor

{

objID	=	ID;

}

public:

static	nonCopyable	*	getObject()

{

return	new	nonCopyable(1);

}

};

	

int	main(int	argc,	char**	argv)

{

nonCopyable	*ncClassObjPtr	=	nonCopyable::getObject();

nonCopyable	ncClassObj2(*ncClassObjPtr);

nonCopyable	ncClassObj3	=	ncClassObj2;

delete	ncClassObjPtr;

return	0;

}

	

This	 code	 compiles	 happily	 and	 it	 will	 copy	 ncClassObjPtr	 with	 no	 issues.	 But	 why?
Because,	 since	we	did	 not	 define	 the	 copy	 constructor	 and	 the	 assignment	 operator,	 the
compiler	 obliged	 by	making	 them	 for	 us.	 There	 are	 a	 few	 rules	 governing	whether	 the
compiler	will	generate	default	copy	constructors	and	assignment	operators.	But	what	you
need	to	keep	in	mind	is	that	these	compiler	generated	ones	are	public.	In	an	almost	empty
class	 like	 this	 the	 compiler	 will	 opt	 to	 do	 bit-wise	 copying	 and	 not	 define	 explicit
functions.	We’ll	look	into	that	in	a	later	topic.	But	what	needs	to	be	kept	in	mind	is	that	if
you	don’t	define	them,	the	compiler	will	do	that	for	you.	So	in	 this	case	the	compiler	 is
happy	 to	 do	 the	 copying	 for	 us.	 Therefore,	 if	 you	 don’t	 want	 your	 class	 to	 be	 copied,
define	those	functions	privately.

I	 should	 mention	 that	 there	 is	 a	 notion	 of	 not	 defining	 the	 copy	 constructor	 and	 the
assignment	operator,	in	addition	to	making	them	private.	Like	this:

#include<iostream>

using	namespace	std;

	

class	nonCopyable

{

int	objID;

	

public:

	

nonCopyable(int	ID)	//	constructor

{

objID	=	ID;

}

	

~nonCopyable()															//	destructor

{}

	

private:

nonCopyable(const	nonCopyable	&objToCopy);																														//	Not	defined

nonCopyable	&	operator=(const	nonCopyable	&objToCopy);					//	Not	defined

};

	

The	 idea	here	 is	 that	 if	 there	 is	a	 friend	class,	 then	even	 that	class	would	not	be	able	 to
copy,	 because	 otherwise	 friends	 are	 allowed	 to	 call	 private	 functions.	 When	 these
functions	are	not	defined,	the	code	will	compile	fine	but	there	will	be	a	linker	error	as	the
linker	cannot	find	the	implementation	for	 these	functions.	But	you	might	have	a	need	to
have	an	implementation	for	the	copy	constructor	and	the	assignment	operator,	depending
on	your	application.	Maybe	for	an	internal	function	use.	Like	we	had	an	implementation
for	the	constructor	in	the	Singleton	class.	Whatever	way	you	choose,	keep	in	mind	that	if
you	want	these	functions	to	be	private,	define	them	private.	Otherwise	the	compiler	will
define	them	public.

Before	we	leave	non-copyable	classes,	what	would	be	the	fate	of	a	derived	class	of	a	non-
copyable	class?

#include<iostream>

using	namespace	std;

	

class	nonCopyable

{

int	objID;

public:

nonCopyable(int	ID)	//	constructor

{

objID	=	ID;

}

	

~nonCopyable()															//	destructor

{}

	

private:

nonCopyable(const	nonCopyable	&objToCopy)	//	copy	constructor

{

objID	=	objToCopy.objID;

}

	

nonCopyable	&	operator=(const	nonCopyable	&objToCopy)	//	assignment	operator

{

objID	=	objToCopy.objID;

return	*this;

}

};

	

class	derivedNonCopyable	:	public	nonCopyable

{

public:

derivedNonCopyable(int	ID)	:	nonCopyable(ID)

{}

};

	

int	main(int	argc,	char**	argv)

{

derivedNonCopyable	dncClassObj1(2);

derivedNonCopyable	dncClassObj2(dncClassObj1);				//	Line	#1

derivedNonCopyable	dncClassObj3	=	dncClassObj2;		//	Line	#2

dncClassObj1	=	dncClassObj2;																																									//	Line	#3

dncClassObj2	=	derivedNonCopyable(4);																					//	Line	#4

dncClassObj3	=	5;																																																														//	Line	#5

return	0;

}

	

The	compiler	isn’t	happy.	It	is	complaining	of	nonCopyable	class’s	copy	constructor	and
assignment	operator	being	private.	As	you’ve	seen	many	times,	lines	1	and	2	above	make
calls	 to	 the	 copy	 constructor	 while	 lines	 3-5	 call	 the	 assignment	 operator.	 If	 you
commented	out	lines	1-5,	you	will	see	that	there	are	no	compiler	errors.	dncClassObj1	is
constructible	with	no	problems	as	the	constructors	are	public.	But	if	you	then	uncomment
only	line	1,	the	compiler	will	throw	an	error	saying	the	copy	constructor	of	nonCopyable
is	private.	And	if	you	uncomment	any	of	lines	3-5	it	will	complain	about	the	assignment
operator	being	private.	What	 is	happening	 is	 that	 as	 long	 the	program	 is	not	 calling	 for
copy	 constructor	 or	 assignment	 operator,	 the	 compiler	 will	 not	 bother	 with	 them.	 But
when	there	is	a	statement	that	calls	for	the	copy	constructor	or	the	assignment	operator,	if
the	class	hasn’t	defined	them,	the	compiler	will	generate	them	for	you,	which	will	contain
a	call	to	the	base	class	copy	constructor	and	the	assignment	operator.	But	it	cannot	do	that
if	the	nonCopyable	has	them	private,	so	you	get	the	errors.

Let	me	make	a	small	detour.	Let’s	say	all	the	nonCopyable	functions	were	public	(it’s	not
non-copyable	anymore).	How	would	you	implement	the	copy-constructor	for	the	derived
class?

This	is	how	you’d	write.	Note	that	nonCopyable	is	copyable	now.

#include<iostream>

using	namespace	std;

	

class	nonCopyable

{

int	objID;

	

public:

nonCopyable(int	ID)	//	constructor

{

objID	=	ID;

}

	

~nonCopyable()															//	destructor

{														}

	

public:

nonCopyable(const	nonCopyable	&objToCopy)	//	copy	constructor

{

objID	=	objToCopy.objID;

}

	

nonCopyable	&	operator=(const	nonCopyable	&objToCopy)	//	assignment	operator

{

objID	=	objToCopy.objID;

return	*this;

}

};

	

class	derivedNonCopyable	:	public	nonCopyable

{

public:

derivedNonCopyable(int	ID)	:	nonCopyable(ID)

{}

	

derivedNonCopyable(const	derivedNonCopyable	&objToCopy)	:	nonCopyable(objToCopy)

{}

};

	

int	main(int	argc,	char**	argv)

{

derivedNonCopyable	dncClassObj1(2);

derivedNonCopyable	dncClassObj2(dncClassObj1);									//	Line	#1

derivedNonCopyable	dncClassObj3	=	dncClassObj2;								//	Line	#2

return	0;

}

	

We	invoke	the	nonCopyable	copy	constructor	in	the	initializer	list.	But	did	you	know	you
must	call	it	in	the	initializer	list?	What	if	not?

#include<iostream>

using	namespace	std;

	

class	nonCopyable

{

int	objID;

public:

nonCopyable(int	ID)	//	constructor

{

objID	=	ID;

}

	

~nonCopyable()	//	destructor

{														}

	

public:

nonCopyable(const	nonCopyable	&objToCopy)	//	copy	constructor

{

objID	=	objToCopy.objID;

}

};

	

class	derivedNonCopyable	:	public	nonCopyable

{

public:

derivedNonCopyable(int	ID)	:	nonCopyable(ID)

{}

	

derivedNonCopyable(const	derivedNonCopyable	&objToCopy)

{

nonCopyable::nonCopyable(objToCopy);

}

};

	

int	main(int	argc,	char**	argv)

{

derivedNonCopyable	dncClassObj1(2);

derivedNonCopyable	dncClassObj2(dncClassObj1);									//	Line	#1

derivedNonCopyable	dncClassObj3	=	dncClassObj2;							//	Line	#2

return	0;

}

	

Why	are	you	getting	errors	about	no	default	constructor?	Why	can’t	we	call	the	base	class
copy	constructor	in	the	method	body?

Because,	 remember	 that	 when	 we	 are	 invoking	 the	 copy	 constructor,	 unlike	 when	 the
assignment	operator	 is	 invoked,	 there	 is	 no	object	 in	 existence.	The	 copy	 constructor	 is
going	to	instantiate	a	new	object.	So	when	the	derived	class	copy	constructor	gets	invoked
to	create	a	new	derived	class	object,	it	must	first	have	a	base	class	object.	Because	at	this
point	 there	 is	no	base	class	object	 in	existence.	This	 is	similar	 to	calling	a	derived	class
constructor.	Before	the	derived	class	constructor	does	its	work,	it	first	calls	the	base	class
constructor	 to	construct	 its	part.	The	copy	constructor	does	 the	 same	 thing.	 It	needs	 the
base	class	to	construct	itself	first.	So	what	does	the	derived	class	copy	constructor	do?	It
calls	 the	 base	 class	 constructor.	 That	 is	 why	 we	 are	 getting	 this	 error.	 Because
nonCopyable	does	not	have	a	constructor	that	takes	no	arguments	(if	it	did,	we	wouldn’t
have	 this	 error).	So	how	does	making	 the	copy	constructor	 call	 in	 initializer	 list	 change
this?	Same	reason	as	we’d	initialize	a	const	variable	or	a	reference	in	the	initializer	list	of
the	constructor.	We	initialize	it	before	the	body	of	the	method.	Because	the	compiler	needs
to	initialize	them	before	it	reaches	the	method	body.	Same	case	with	the	copy	constructor.
It	tries	to	initialize	the	base	class	object	by	calling	the	default	constructor	if	there	is	no	call
for	 the	 base	 class	 constructor	 or	 the	 copy	 constructor	 to	 initialize	 the	 base	 object.	 So
instead	of	calling	the	copy-constructor	 in	the	initializer	 list,	you	could	very	well	call	 the
constructor.	 (Not	 in	 our	 case	 though	 as	 the	 variable	 is	 private	 we	 can’t	 pass	 it	 to	 the
constructor.)

Notice	that	I	called	the	nonCopyable	copy	constructor	with	class	qualifier?	Had	we	called
like	this:

…

class	derivedNonCopyable	:	public	nonCopyable

{

public:

derivedNonCopyable(int	ID)	:	nonCopyable(ID)

{}

	

derivedNonCopyable(const	derivedNonCopyable	&objToCopy)

{

nonCopyable(objToCopy);	//	Line	1

}

};

…

	

you’d	get	a	new	additional	error:

What	does	it	mean	“redefinition	of	formal	parameter	‘objToCopy’?”

Because	 you	 see,	 since	 you	 are	 never	 allowed	 to	 call	 constructors	 directly,	what	 line	 1
above	 does	 is	 define	 a	 new	 variable	 called	 objToCopy	 of	 type	 nonCopyable.	 It	 is	 like
defining	an	integer	like	int(5).	Since	there	is	already	a	variable	by	that	name,	the	compiler
is	 complaining	 about	 redefinition.	 That	 is	 why	 you	 need	 to	 qualify	 this	 call	 with	 the
classname	to	let	compiler	know	exactly	that	you	are	calling	the	copy	constructor.

Apologies	for	that	rather	long	detour.	I	thought	it’s	an	interesting	bit	to	mention.

Now	that	we	know	how	to	make	a	class	non-constructible	and	non-copyable,	let’s	see	how
we	can	control	‘where’	they	are	instantiated.

Stack	and	heap	allocation
There	are	two	entities	where	an	object	can	reside	in	C++:	the	‘stack’	and	the	‘heap’.	Stack
is	 where	 you	 have	 things	 such	 as	 procedure	 records	 and	 local	 variables,	 while	 heap	 is
where	you	do	the	dynamic	allocations.	Here’s	a	simple	example.

#include<iostream>

using	namespace	std;

	

class	someClass

{

int	objID;

	

public:

someClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor	for	ID:	“	<<	objID	<<	endl;

}

	

~someClass()

{

cout	<<	“Destructor	for	ID:	“	<<	objID	<<	endl;

}

	

};

	

int	main(int	argc,	char**	argv)

{

someClass	someClassObj(1);																																																						//Line	1

someClass	*someClassPtr	=	new	someClass(2);																				//Line	2

delete	someClassPtr;																																																																		//Line	3

return	0;

}

	

Constructor	for	ID:	1

Constructor	for	ID:	2

Destructor	for	ID:	2

Destructor	for	ID:	1

	

Line	1	creates	the	someClassObj	in	the	stack.	This	is	the	first	constructor	printout
in	the	output.
Line	 2	 creates	 a	 someClass	 object	 in	 the	 heap	 and	 returns	 its	 address	 to
someClassPtr.	The	second	constructor	printout	corresponds	to	this	instantiation.
Line	 3	 deletes	 someClassPtr	 by	 explicitly	 calling	 the	 destructor.	 We	 must
deallocate	each	heap	memory	we	allocated.	This	is	the	third	printout	in	the	output.
Then	finally	we	see	the	someClassObj	destructor	being	called.

A	couple	of	things	to	note	here:

All	heap	allocated	objects	must	be	deallocated	explicitly.	The	compiler	will	not
do	this	for	us.
Stack	allocated	objects	are	automatically	deallocated	when	they	go	out	of	scope.
someClassObj	 was	 created	 in	 the	 scope	 of	 main	 and	 when	 main	 returns,
someClassObj	goes	out	of	scope,	so	its	destructor	is	called	automatically.

This	 is	one	of	 the	 important	 things	 to	note	about	C++.	Unlike	Java/C#	where	 they	have
automatic	garbage	collection,	 in	C++,	you	need	to	do	your	own	housekeeping	whenever

you	use	the	heap.	Stack	is	a	different	story.	Compiler	will	take	care	to	clean	it	up.	So	all	of
the	auto	variables	will	be	taken	care	of	by	the	compiler	when	they	go	out	of	scope.	Let’s
make	a	small	addition	to	our	code.

#include<iostream>

using	namespace	std;

	

class	someClass

{

int	objID;

public:

someClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor	for	ID:	“	<<	objID	<<	endl;

}

	

~someClass()

{

cout	<<	“Destructor	for	ID:	“	<<	objID	<<	endl;

}

	

};

	

int	main(int	argc,	char**	argv)

{

someClass	someClassObj(1);																																						//	Line1

{

someClass	someClassObj2(3);																	//	Line	2

}

someClass	*someClassPtr	=	new	someClass(2);	//	Line	3

delete	someClassPtr;																																																//	Line	4

	

return	0;

}

	

Constructor	for	ID:	1

Constructor	for	ID:	3

Destructor	for	ID:	3

Constructor	for	ID:	2

Destructor	for	ID:	2

Destructor	for	ID:	1

	

Note	 that	we	added	a	scoped	object	someClassObj2.	Because	 it	 is	within	a	pair	of	curly
braces,	 the	 scope	 of	 someClassObj2	 is	 confined	 to	within	 those	 braces.	As	 soon	 as	 the
execution	 leaves	 right	 curly	 brace	 someClassObj2	 goes	 out	 of	 scope,	 and	 the	 compiler
calls	its	destructor.	That	is	why	you	see	the	constructor	and	the	destructor	being	called	in
succession.

Things	will	become	much	more	convincing	if	you	take	a	look	at	the	disassembly	for	the
above	code.

int	main(int	argc,	char**	argv)

{

009D8BA0	push	ebp

009D8BA1	mov	ebp,	esp

…

…

someClass	someClassObj(1);

009D8BDD	push	1

009D8BDF	lea	ecx,	[someClassObj]

009D8BE2	call	someClass::someClass(09D14E7h)	<—(1)

009D8BE7	mov	dword	ptr[ebp	-	4],	0

	

{

someClass	someClassObj(3);

009D8BEE	push	3

009D8BF0	lea	ecx,	[ebp	-	20h]

009D8BF3	call	someClass::someClass(09D14E7h)	<—(2)

}

009D8BF8	lea	ecx,	[ebp	-	20h]

009D8BFB	call	someClass::~someClass(09D150Fh)				<—(3)

	

someClass	*someClassPtr	=	new	someClass(2);

009D8C00	push	4

009D8C02	call	operator	new	(09D13DEh)																<—(4)

009D8C07	add	esp,	4

009D8C0A	mov	dword	ptr[ebp	-	11Ch],	eax

…

…

009D8C25	call	someClass::someClass(09D14E7h)					<—(5)

…

…

009D8C4C	mov	ecx,	dword	ptr[ebp	-	128h]

009D8C52	mov	dword	ptr[someClassPtr],	ecx

	

delete	someClassPtr;

009D8C55	mov	eax,	dword	ptr[someClassPtr]

…

…

009D8C75	mov	ecx,	dword	ptr[ebp	-	110h]

009D8C7B	call	someClass::`scalar	deleting	destructor’	(09D1500h)	<—(6)

…

…

	

return	0;

	

009D8C92	mov	dword	ptr[ebp	-	0F8h],	0

009D8C9C	mov	dword	ptr[ebp	-	4],	0FFFFFFFFh

009D8CA3	lea	ecx,	[someClassObj]

009D8CA6	call	someClass::~someClass(09D150Fh)	<—(7)

009D8CAB	mov	eax,	dword	ptr[ebp	-	0F8h]

}

	

The	code	statements	are	clearly	printed	out	in	the	disassembly	so	you	can	easily	see	what
the	disassembly	is	for	that	particular	statement.	Note	that	I	have	removed	a	lot	of	assembly
statements	in	between.

(1)	is	the	call	to	the	constructor	for	instantiating	the	first	object	(Line	1).
(2)	is	the	constructor	call	to	the	explicitly	scoped	object	we	instantiate	within	the
curly	braces.
Right	 after	 the	 right	 curly	 brace	 we	 see	 (3)	 calling	 the	 destructor	 for
someClassObj2.	 So	 you	 see	 that	 this	 call	 is	 right	 after	 the	 object	 goes	 out	 of
scope.
(4)	 calls	 the	 operator	 new	 to	 allocate	 memory	 in	 the	 heap.	 And	 after	 some
operations	it	calls	the	constructor	in	(5).
(6)	is	our	call	to	delete	the	heap	object.
Then	 finally	 after	 the	 return	 statement	 you	 can	 see	 the	 compiler	 calling	 the
destructor	for	someClassObj	in	(7).

Looking	 at	 the	 disassembly	makes	 it	 pretty	 clear	 what	 is	 actually	 going	 on	 behind	 the
curtains.	The	destructor	calls	at	 (3)	and	 (7)	are	automatically	added	by	 the	compiler.	So
you	can	see	how	stack	objects	are	automatically	deleted	when	they	go	out	of	scope.

So	why	are	we	discussing	this?	Because	this	is	what	we	are	going	to	use	to	put	restrictions

for	stack	and	heap	allocations.

Restricting	stack	allocation

Let’s	first	look	at	restricting	allocation	on	stack.	How	would	you	program	to	restrict	your
class	being	instantiated	on	the	stack?	For	example	you	want	to	restrict	statements	like	line
1	in	the	above	program.

What	happens	when	we	create	an	object	on	stack	by	calling	a	statement	like	line	1?	As	we
also	saw	in	the	disassembly,	two	things	happen:

The	ompiler	first	puts	a	call	to	the	constructor	of	the	class
Then	after	the	object	goes	out	of	scope,	it	calls	the	destructor

Although	the	call	to	the	destructor	is	something	we	don’t	explicitly	do,	the	compiler	adds
the	call	for	us.	We	saw	this	in	point	(7)	of	the	disassembly.	Then,	how	would	we	restrict
stack	allocation	of	a	class?	We	can	certainly	make	the	constructor	private,	but	that	makes
the	class	non-constructible	altogether.	What	we	want	is	to	make	it	non-constructible	on	the
stack.	How	about	we	make	the	destructor	private?

#include<iostream>

using	namespace	std;

	

class	someClass

{

int	objID;

public:

someClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor	for	ID:	“	<<	objID	<<	endl;

}

	

private:

~someClass()

{

cout	<<	“Destructor	for	ID:	“	<<	objID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

someClass	someClassObj(1);																																						//	Line	1

someClass	*someClassPtr	=	new	someClass(2);			//	Line	2

return	0;

}

	

It	 works.	 The	 compiler	 throws	 an	 error	 for	 line	 1	 where	 we	 are	 going	 to	 instantiate
someClassObj	on	the	stack.	But	notice	that	the	compiler	has	no	problem	with	line	2	where
the	object	will	be	on	the	heap.	So	you	see	this	is	one	way	you	can	restrict	stack	allocation
of	a	class.	But	did	you	notice	something	was	missing	in	the	above	code?	Yes,	we	are	not
deleting	someClassPtr.	It	is	because	we	cannot.	If	you	put	a	delete	statement	you	will	get
exactly	the	same	compiler	error	as	we	got	here.	It	is	because	the	delete	statement	itself	is	a
call	to	the	destructor.	So	how	do	we	handle	this	then?	We	restrict	stack	allocation,	forcing
the	objects	to	be	allocated	only	on	the	heap,	but	we	cannot	delete	them.	Well,	in	this	case
we	 need	 to	 provide	 an	 utility	 function	 to	 delete	 the	 object.	 The	 same	 way	 we	 did	 for
private	constructors	in	the	Singleton	class.

There	are	two	cases	of	this	private	destructor	that	makes	me	curious.

What	if	we	derive	this	class?
What	if	we	have	this	class	as	a	member	object?

Let’s	find	out.

#include<iostream>

using	namespace	std;

	

class	someClass

{

int	objID;

public:

someClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor	for	ID:	“	<<	objID	<<	endl;

}

	

private:

~someClass()

{

cout	<<	“Destructor	for	ID:	“	<<	objID	<<	endl;

}

	

};

	

class	derivedSomeClass	:	public	someClass

{

public:

derivedSomeClass(int	ID)	:	someClass(ID)

{}

	

~derivedSomeClass()	{}

};

	

int	main(int	argc,	char**	argv)

{

derivedSomeClass	derivedSomeClassObj(1);

return	0;

}

	

You	get	 the	same	compiler	error	as	before.	derivedSomeClass	destructor	 is	 trying	to	call
the	someClass	destructor	and	 it	 is	private.	So	making	 the	destructor	private	makes	even
the	derived	classes	unable	to	be	on	the	stack.	So	what	if	you	want	the	derived	classes	to	be
able	to	be	on	the	stack?	You	make	the	destructor	in	someClass	protected.	Try	it	and	you
will	see	the	code	above	works	fine.	But	you	will	not	be	able	to	instantiate	the	someClass
object	on	the	stack,	only	the	derived	classes.

Then	what	about	when	someClass	is	a	member	object?

#include<iostream>

using	namespace	std;

	

class	someClass

{

int	objID;

public:

someClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor	for	ID:	“	<<	objID	<<	endl;

}

	

private:

~someClass()

{

cout	<<	“Destructor	for	ID:	“	<<	objID	<<	endl;

}

	

};

	

class	someOtherClass

{

someClass	someClassObj;

public:

someOtherClass(int	ID)	:	someClassObj(ID)

{}

	

~someOtherClass()	{}

};

	

int	main(int	argc,	char**	argv)

{

someOtherClass	someOtherClassObj(1);

return	0;

}

	

You	 get	 the	 same	 error.	 The	 compiler	 still	 needs	 to	 call	 the	 destructor	 for	 the	member
objects	 and	 it	 cannot	 do	 so	 with	 the	 private	 destructor.	 And	 in	 this	 case	 making	 the
destructor	protected	wouldn’t	help	either.

So	you	 see,	 that	by	making	 the	destructor	private,	you	can	completely	 restrict	 the	 stack
allocation	of	a	class.	But	also	keep	in	mind	that	this	makes	you	not	able	to	call	delete	on
heap	allocated	objects.	You	need	some	other	utility	function	to	take	care	of	that.

Restricting	heap	allocation

Now	let’s	look	at	how	we	restrict	heap	allocation.	Do	you	remember	the	disassembly	we
saw	a	while	back?	The	heap	allocation	had	a	call	to	the	operator	new	in	the	disassembly.
In	C++,	the	way	to	allocate	objects	in	the	heap	is	to	use	operator	new.	So	then,	how	do	we
control	heap	allocation?	We	do	something	similar	to	what	we	did	for	stack	allocation.	We
make	operator	new	private.

#include<iostream>

using	namespace	std;

	

class	notOnHeapClass

{

int	objID;

public:

notOnHeapClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor	for	ID:	“	<<	objID	<<	endl;

}

	

~notOnHeapClass()

{

cout	<<	“Destructor	for	ID:	“	<<	objID	<<	endl;

}

	

private:

void	*operator	new(size_t);

};

	

int	main(int	argc,	char**	argv)

{

notOnHeapClass	notOnHeapObj(1);																																																					//	Line	1

notOnHeapClass	*notOnHeapPtr	=	new	notOnHeapClass(2);							//	Line	2

delete	notOnHeapPtr;

return	0;

}

	

As	expected,	 the	compiler	 throws	an	error	saying	that	 it	cannot	access	the	operator	new.
That’s	it.	That	is	how	you	restrict	heap	allocation.	We	will	look	in	to	operator	new	in	more
detail	when	we	talk	about	placement	new	in	another	topic.

Ideally,	when	we	restrict	heap	allocation	by	making	the	operator	new	private,	we	usually
make	all	of	the	following	four	operators	private	too.

#include<iostream>

using	namespace	std;

	

class	notOnHeapClass

{

int	objID;

	

public:

notOnHeapClass()

{

objID	=	0;

}

notOnHeapClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor	for	ID:	“	<<	objID	<<	endl;

}

	

~notOnHeapClass()

{

cout	<<	“Destructor	for	ID:	“	<<	objID	<<	endl;

}

	

private:

void	*operator	new(size_t);

void	*operator	new[](size_t);

void	operator	delete(void*);

void	operator	delete[](void*);

};

	

int	main(int	argc,	char**	argv)

{

notOnHeapClass	notOnHeapObj(1);

notOnHeapClass	*notOnHeapPtr	=	new	notOnHeapClass(2);						//	Line	1

notOnHeapClass	*notOnHeapArr	=	new	notOnHeapClass[5];					//	Line	2

delete	notOnHeapPtr;																																																																											//	Line	3

delete[]	notOnHeapArr;																																																																								//	Line	4

return	0;

}

	

Without	making	new[],	delete	and	delete[]	private,	 lines	2,	3	and	4,	 respectively,	would
compile	without	any	errors.	Although	you	would	not	delete	without	being	able	to	new,	it	is
always	better	to	make	them	all	private,	if	that	is	your	intention.	Note	that	operator	new	is
different	 from	 operator	 new[].	 So	 if	 you	 need	 to	 restrict	 heap	 allocation	 for	 arrays	 of
objects,	make	sure	you	make	array	operator	new	private	too.

Before	we	finish	this	topic,	keep	in	mind	that	making	operator	new	private	will	not	help
you	restrict	heap	allocation	in	a	case	like	this:

#include<iostream>

using	namespace	std;

#include	<vector>

	

class	notOnHeapClass

{

int	objID;

public:

notOnHeapClass()

{

objID	=	0;

}

notOnHeapClass(int	ID)

{

objID	=	ID;

cout	<<	“Constructor	for	ID:	“	<<	objID	<<	endl;

}

~notOnHeapClass()

{

cout	<<	“Destructor	for	ID:	“	<<	objID	<<	endl;

}

	

private:

void	*operator	new(size_t){}

void	*operator	new[](size_t){}

void	operator	delete(void*){}

void	operator	delete[](void*){}

};

	

int	main(int	argc,	char**	argv)

{

std::vector<notOnHeapClass>	notOnHeapClassVec;

notOnHeapClassVec.push_back(notOnHeapClass(1));

return	0;

}

	

This	 program	works	 fine.	 You’d	 think	 this	 should	 work	 because	 we	 are	 not	 allocating
anything	on	the	heap	as	notOnHeapClassVec	is	on	the	stack.	Actually,	this	is	not	the	case.

STLs	 like	Vector	 allocate	 the	 vector	 itself,	 that	 is,	 the	 vector	 related	header	 data	 on	 the
stack,	but	the	actual	vector	elements,	that	is	notOnHeapClass	objects,	are	actually	always
allocated	on	the	heap.	So	when	we	pushback	a	notOnHeapClass	object	to	the	vector,	that
object	 is	 actually	 instantiated	 on	 the	 heap.	 But	 then	 why	 is	 there	 no	 error	 when	 the
operator	 new	 is	 private?	 Because	 the	 compiler	 does	 not	 call	 operator	 new.	 See	 the
disassembly	of	this	code	shown	below:

int	main(int	argc,	char**	argv)

{

00B38280	push	ebp

00B38281	mov	ebp,esp

…

…

	

std::vector<notOnHeapClass>	notOnHeapClassVec;

00B382BD	lea	ecx,[notOnHeapClassVec]

00B382C0	call	std::vector<notOnHeapClass,std::allocator<notOnHeapClass>
>::vector<notOnHeapClass,std::allocator<notOnHeapClass>	>	(0B3134Dh)

00B382C5	mov	dword	ptr	[ebp-4],0

	

notOnHeapClassVec.push_back(notOnHeapClass(1));

00B382CC	push	1

00B382CE	lea	ecx,[ebp-0F8h]

00B382D4	call	notOnHeapClass::notOnHeapClass	(0B31005h)	<—(1)

00B382D9	mov	dword	ptr	[ebp-100h],eax

…

00B382F6	lea	ecx,[notOnHeapClassVec]

00B382F9	call	std::vector<notOnHeapClass,std::allocator<notOnHeapClass>	>::push_back	(0B31334h)

00B382FE	mov	byte	ptr	[ebp-4],0

00B38302	lea	ecx,[ebp-0F8h]

00B38308	call	notOnHeapClass::~notOnHeapClass	(0B3150Ah)	<—(2)

	

return	0;

00B3830D	mov	dword	ptr	[ebp-0ECh],0

00B38317	mov	dword	ptr	[ebp-4],0FFFFFFFFh

00B3831E	lea	ecx,[notOnHeapClassVec]

00B38321	call	std::vector<notOnHeapClass,std::allocator<notOnHeapClass>
>::~vector<notOnHeapClass,std::allocator<notOnHeapClass>	>	(0B31064h)

00B38326	mov	eax,dword	ptr	[ebp-0ECh]

}

	

You	 see	 the	vector	never	 calls	 the	operator	new	 even	 though	 the	object	 is	 on	 the	heap.

Why?	Because	it	doesn’t	need	to.	Operator	new	is	one	way	the	compiler	helps	us	allocate
memory	and	call	the	constructor	for	the	object.	We	can	certainly	do	this	in	the	C-style	by
manually	 calling	 ‘malloc’	 and	 then	 invoking	 the	 constructor.	 Operator	 new	 is	 sort	 of	 a
convenient	way	to	do	both	memory	allocation	and	constructor	invocation	in	one	call.	So
the	Vector	does	not	need	to	do	it.	It	has	its	own	way	of	allocating	heap	memory.	But	you
can	be	sure	that	it	calls	 the	constructor	when	we	call	pushback,	as	evident	from	point	1.
And	then	it	calls	the	destructor	(point	2)	when	the	vector	goes	out	of	scope.

So	this	is	one	case	where	making	the	operators	private	will	not	restrict	the	heap	allocation.
We	 can	 restrict	 heap	 allocation	 this	 way	 only	 when	 operator	 new	 is	 called	 to	 do	 the
allocation

I	 hope	 this	 section	 gave	 you	 a	 solid	 understanding	 on	 the	 basics	 of	 stack	 and	 heap
allocation	 and	 also	 how	 to	 manipulate	 object	 construction	 and	 copying.	 Everything	 is
handled	through	a	few	basic	fundamental	functions	and	we	can	manipulate	those	functions
to	achieve	the	implementation	we	need.

Topic	7

Understanding	new
new	 is	C++‘s	 version	 of	C’s	malloc	 and	 the	 variants.	But	 new	 actually	 does	more	 than
malloc	does.	There	is	very	little	reason	to	manually	allocate	memory	using	malloc	(or	its
variants)	in	C++	because	new	will	do	all	that	for	you.	We’ve	used	new	in	many	occasions
in	other	topics	but	let’s	take	some	time	here	to	formally	get	to	know	it.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

int	objID;

public:

simpleClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructing	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

simpleClass	*simpleClassPtr	=	new	simpleClass(1);

return	0;

}

	

Constructing	object	with	ID:	1

	

To	get	to	know	a	little	bit	more	of	what	is	happening	behind	the	scenes,	let’s	look	at	the
disassembly	(I	have	removed	most	parts).

int	main(int	argc,	char**	argv)

{

…

…

simpleClass	*simpleClassPtr	=	new	simpleClass(2015);

0010591D	push	4

0010591F	call	operator	new	(0101514h)																												<—(1)

…

…

0010593D	push	7DFh																																																																<—(2)

00105942	mov	ecx,dword	ptr	[ebp-0ECh]

00105948	call	simpleClass::simpleClass	(010162Ch)							<—(3)

…

…

delete	simpleClassPtr;

…

…

0010598B	call	operator	delete	(01011B3h)																							<—(4)

00105990	add	esp,4

return	0;

}

	

There	are	a	few	interesting	points	here	and	I	believe	they	provide	very	good	insight	into
what	is	happening	at	the	compiler	level.

When	we	call	new,	notice	that	the	compiler	actually	calls	the	operator	new	at	(1).
As	we	will	investigate	later,	operator	new	is	what	allocates	memory.	So	the	first
task	of	new	is	to	allocate	memory	using	operator	new.
Notice	how	I	passed	2015	as	the	object	initializer?	There	is	nothing	special	about
2015.	 I	 just	wanted	 to	pass	 something	more	unique	 than	 a	number	 like	 ‘1’	 and
show	how	this	number	 is	used	 in	 the	disassembly.	 In	 (2)	you	see	2015	 is	being
pushed	to	a	register	to	be	used	in	the	object	construction.
In	(3)	we	see	the	constructor	for	the	object	is	being	called.	This	is	the	second	task
of	new.	First	 it	allocated	memory	by	calling	operator	new,	 and	now	 it	 calls	 the
constructor.
(4)	calls	the	operator	delete	on	the	object.

So	what	we	see	is	that	new	does	two	main	operations:

Calls	operator	new	to	allocate	memory
Calls	the	class	constructor

Let’s	then	take	a	closer	look	at	operator	new.

Operator	new	and	placement	new
There	are	two	main	variants	of	operator	new:

void*	operator	new	(std::size_t	size);

void*	operator	new	(std::size_t	size,	void*	ptr);

	

And	these	two	operator	versions	do	slightly	different	things.

The	first	syntax:

void*	operator	new	(std::size_t	size);

	

Takes	as	an	argument	the	size	in	bytes,	and	allocates	that	amount	of	storage	and	returns	a
void	 pointer	 to	 the	 first	 byte	 of	 that	 memory	 allocation.	 This	 is	 generally	 called	 the
operator	new.

The	second	syntax:

void*	operator	new	(std::size_t	size,	void*	ptr);

	

This	 does	 something	 different.	 It	 simply	 returns	 the	 passed	 ptr	 argument.	 It	 might	 not
make	much	 sense	but	 it	will	 become	clear	 as	you	 see	 its	 purpose.	This	 syntax	 is	 called
placement	new.	 It	 is	 used	when	we	 need	 to	 construct	 the	 desired	 object	 at	 the	 location
specified	by	ptr.

Let’s	do	an	example.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

int	objID;

	

public:

simpleClass(int	ID)											//	constructor

{

objID	=	ID;

cout	<<	“Constructing	object	with	ID:	“	<<	objID	<<	endl;

}

	

~simpleClass()

{

cout	<<	“Destructing	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

void	*ptrToMem	=	operator	new(sizeof(simpleClass));																	//	Line	1

simpleClass	*simpleClassPtr	=	new	(ptrToMem)simpleClass(26);							//	Line	2

simpleClassPtr->~simpleClass();																																																		//	Line	3

operator	delete(ptrToMem);																																																					//	Line	4

//delete	simpleClassPtr;																																																															//	Line	5

return	0;

}

	

Constructing	object	with	ID:	26

Destructing	object	with	ID:	26

	

Line	1	calls	the	operator	new	(syntax	1),	or	the	allocation	function,	with	the	size.
It	 simply	 allocates	 a	 chunk	 of	 memory	 and	 returns	 a	 pointer	 to	 that	 memory
location.
Line	 2	 calls	 the	 placement	 new	 (syntax	 2),	 and	 passes	 it	 the	 pointer	 to	 the
allocated	 memory,	 and	 also	 passes	 the	 argument	 for	 the	 constructor.	 This	 line
places	a	simpleClass	object	at	ptrToMem	and	calls	the	constructor	on	that.
What	actually	happens	in	line	2	is	that	new	will	call	placement	new	 (because	of
the	calling	syntax).	Then	placement	new	will	 simply	return	back	ptr;	 this	 is	 the
allocated	memory	where	we	want	the	object	constructed.	After	that,	new	calls	the
class	constructor,	the	same	second	step	when	we	used	new.
Line	 3	 calls	 the	 destructor	 explicitly.	We	will	 look	 at	 this	more	 in	 the	 topic	 on
destructors	but	destructors	can	be	called	like	this.	But	if	we	are	going	to	call	the
destructor	 like	 this,	 then	we	need	 to	call	operator	delete	 explicitly	 as	 in	 like	4,
too.	Call	to	operator	delete	will	deallocate	the	memory.
You	do	not	need	to	call	destructor	and	operator	delete.	You	can	use	delete	as	in
line	5	and	it	will	call	both	the	destructor	and	the	operator	delete	for	you.	It	does
the	reverse	of	new.	But	notice	that	I	have	commented	out	line	5.	Because	if	you
are	going	to	deallocate	the	memory	using	operator	delete	(line	4)	you	must	not	do
delete	 again.	 Deallocating	 an	 already	 deallocated	 memory	 is	 an	 undefined
operation	in	C++.

Placement	new

This	is	probably	a	good	place	to	explain	placement	new	a	bit	more	as	its	functionality	is	a
little	peculiar.	It	simply	returns	the	void*	pointer	passed	to	in	the	arguments.	The	compiler
decides	whether	 it	 should	call	operator	new	or	placement	new	by	 looking	at	 the	 syntax.
The	 syntaxes	 are	 clearly	 different	 for	 the	 two.	 If	 we	 are	 simply	 calling	 new	 with	 no
additional	parameters,	the	compiler	will:

Call	operator	new	and	receive	the	pointer	to	the	allocated	memory.

Call	class	constructor	to	construct	the	object	at	the	memory	it	received.

If	we	are	calling	new	with	additional	parameters,	the	compiler	will:

Call	placement	new	and	receive	the	pointer	to	the	allocated	memory.
Call	class	constructor	to	construct	the	object	at	the	memory	it	received.

So	you	see,	the	same	functionality	happens	whether	operator	new	 is	called	or	placement
new	 is	called,	as	far	as	new	 is	concerned.	The	only	difference	 is	which	operator	(new	or
placement)	 it	 calls	 to	 get	 the	 memory	 block.	 In	 the	 case	 of	 operator	 new	 it	 allocates
memory	dynamically	and	passes	the	pointer.	And	with	placement	new,	the	purpose	is	NOT
to	allocate	memory	dynamically	but	instead	use	the	memory	block	address	passed	to	it	as
an	argument.	So	placement	new	 simply	needs	 to	pass	back	 that	memory	address	 to	new,
because	that’s	what	new	needs	from	it.	In	both	cases	new	calls	the	class	constructor.

To	show	that	there	is	nothing	fancy	about	operator	new,	here	is	the	same	code,	replaced
with	your	trusty	malloc:

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

int	objID;

public:

simpleClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructing	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

void	*ptrToMem	=	malloc(sizeof(simpleClass));

simpleClass	*simpleClassPtr	=	new	(ptrToMem)simpleClass(26);

simpleClassPtr->~simpleClass();

free(ptrToMem);

return	0;

}

	

So	you	see	that	operator	new	isn’t	doing	anything	special.	It	simply	allocates	memory	as
malloc	does.	Also	note	that	we	are	calling	free	to	deallocate	the	memory.

So	far	you’ve	seen	what	new	does.	It	calls	operator	new	to	allocate	memory	and	then	calls

the	constructor	to	create	an	object	on	the	allocated	memory.	As	you	saw	above,	we	can	do
what	new	does	manually	by	calling	operator	new	and	then	placement	new.

If	new	does	both	of	these	for	us,	why	would	we	want	to	do	them	manually	by	calling	them
explicitly?	 In	most	cases,	we	don’t.	We	need	not	call	operator	new	and	placement	 new.
But	 there	 are	 certain	 situations	where	 you	would	want	 to	 do	 it.	And	C++	 provides	 the
flexibility	to	do	it.

Restrict	heap	allocation:	We	discussed	this	in	the	topic	on	object	construction.	By
defining	operator	new	in	the	class	and	making	it	private,	we	can	restrict	the	class
being	allocated	on	the	heap.
Memory	pools:	There	are	situations	where	we	don’t	want	to	do	dynamic	memory
allocation.	It	takes	time	and	if	there	isn’t	enough	memory	it	throws	exceptions.	So
we	 can	 allocate	memory	 beforehand	 and	 keep	 it	 in	 a	 pool.	And	 then	when	we
want	 to	 create	 new	 objects,	 we	 call	 placement	 new	 on	 the	 already	 allocated
memory.

OK,	 so	we’ve	 looked	 at	 how	operator	new	 and	 placement	 new	 work.	 These	 are	 global
scope	 operators.	 They	 have	 defined	 behavior.	 Operator	 new	 allocates	 memory	 and
placement	 new	 constructs	 objects	 on	 already	 allocated	 memory.	 What	 if	 we	 want	 to
change	this	behavior?	We	definitely	can	and	all	we	need	to	do	is	define	our	own	operator
new	in	our	class.	A	custom	class	specific	operator.	Let’s	see	a	simple	example.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

int	objID;

public:

simpleClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructing	object	with	ID:	“	<<	objID	<<	endl;

}

	

void*	operator	new(std::size_t	size)

{

void	*	ptr	=	malloc(size);

cout	<<	“Custom	operator	new.	Allocating	“	<<	size	<<	”	bytes	at	“	<<	ptr	<<	endl;

return	ptr;

}

	

void	operator	delete(void*	ptr)

{

cout	<<	“Custom	operator	delete”	<<	endl;

std::free(ptr);

}

	

void*	operator	new	(std::size_t	count,	void*	ptr)

{

cout	<<	“Custom	placement	new.”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

simpleClass	*simpleClassPtr	=	new	simpleClass(10);

cout	<<	“simpleClassPtr	at	“	<<	simpleClassPtr	<<	endl;

delete	simpleClassPtr;

return	0;

}

	

Custom	operator	new.	Allocating	4	bytes	at	003A95B8

Constructing	object	with	ID:	10

simpleClassPtr	at	003A95B8

Custom	operator	delete

	

What	did	we	do	here?

We	 defined	 a	 custom	 class	 specific	 operator	 new	 by	 overriding	 it.	 In	 here	 we
simply	allocate	the	required	number	of	bytes	using	malloc	and	return	the	pointer
returned	from	malloc.	We	already	 saw	 that	we	can	use	malloc	as	operator	 new
replacement.
We	also	override	operator	delete.	 Since	we	are	 allocating	memory	with	malloc
we	must	take	care	to	deallocate	it	with	free.
In	 the	 result	 output,	 we	 see	 new	 is	 calling	 our	 custom	 operator	 new,	 which
allocates	4	bytes	and	returns	the	pointer	to	the	memory.
Then	we	see	the	constructor	is	being	called.
As	confirmation,	we	see	 that	address	of	 the	memory	allocated	from	our	custom
operator	new	is	the	same	as	where	the	object	was	constructed.
Finally	we	call	delete,	which	calls	our	overloaded	version.
Also	note	how	we	defined	a	class	specific	placement	new.	 It	does	nothing	but	a
printout	and	not	even	returning	a	void*.	But	see	that	it	was	not	called	by	new.	So
new	doesn’t	use	placement	new	to	construct	the	object.

So	you	see	how	we	can	easily	customize	 the	memory	allocation	routine	by	having	class
specific	 operator	 new.	 What	 if	 you	 simply	 want	 to	 log,	 or	 do	 some	 other	 kind	 of
housekeeping	 in	your	custom	operator	new	 and	not	mess	with	 the	global	operator	new.
Just	change	your	custom	function	as	follows:

void*	operator	new(std::size_t	size)

{

void	*	ptr	=	::operator	new(size);	//	calling	global	operator	new

cout	<<	“Custom	operator	new.	Allocating	“	<<	size	<<	”	bytes	at	“	<<	ptr	<<	endl;

return	ptr;

}

Note	 that	 we	 called	 ::operator	 new,	 with	 global-scope	 specifier.	 This	 is	 important.
Otherwise	our	operator	new	would	be	calling	itself	recursively.	And	also	in	this	case	the
operate	delete	overload	should	call	::operate	delete.

One	 more	 thing;	 how	 are	 we	 calling	 our	 class	 specific	 operator	 new	 without	 an
instantiation?	We	are	calling	it	as	if	it	were	static	function	but	we	didn’t	define	it	as	static.
It’s	 because	 these	 allocation	 functions	 are	 indeed	 static.	 They	 are	 actually	 special
operators	 and	 are	 handled	 in	 a	 special	 way	 (we’ll	 learn	 more	 on	 this	 in	 the	 operator
overloading	topic).

So	let’s	recap	what	we	have	done	so	far:

We	found	out	what	the	new	operator	does.	It	calls	operator	new	and	then	calls	the
constructor	to	create	the	object.
We	saw	how	operator	new	 is	 simply	 allocating	memory	 and	 returning	 a	void*.
And	that	we	could	do	the	same	with	malloc.
We	used	placement	new	to	construct	a	new	object	on	already	allocated	memory.
We	defined	custom	class	specific	operator	new	and	saw	how	calling	new	calls	our
custom	 operator	 new	 to	 allocate	 memory,	 and	 then	 calls	 the	 constructor	 as	 it
normally	would.

We’ve	covered	a	lot	of	ground	on	new.	Let’s	finish	off	this	topic	by	looking	at	how	we	can
further	customize	the	new	behavior.

Let’s	assume	you	want	to	do	some	housekeeping	tasks	before	you	construct	new	objects.
You	don’t	want	to	put	these	into	the	class	constructor.	You	can	simply	overload	placement
new	with	additional	parameters.	As	an	example:

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

int	objID;

public:

simpleClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“Constructing	object	with	ID:	“	<<	objID	<<	endl;

}

	

void*	operator	new(std::size_t	size)

{

void	*	ptr	=	::operator	new(size);	//	calling	global	operator	new

cout	<<	“Custom	operator	new.”	<<	endl;

return	ptr;

}

	

void*	operator	new(std::size_t	size,	bool	memoryFull,	int	objCount)

{

cout	<<	“Custom	placement	new:	Obj.	count:	“	<<	objCount	<<	endl;

	

if	(memoryFull)

{

cout	<<	“Memory	full!”	<<	endl;

//	call	function	to	delete	objects

}

//LogObjectCount(objCount);			//	do	logging

return	::operator	new(size);

}

	

void*	operator	new	(std::size_t	count,	void*	ptr)

{

cout	<<	“Custom	placement	new.”	<<	endl;

}

	

void	operator	delete(void*	ptr)

{

cout	<<	“Custom	placement	delete.”	<<	endl;

::operator	delete(ptr);

}

};

	

	

int	main(int	argc,	char**	argv)

{

simpleClass	*simpleClassPtr1	=	new	simpleClass(10);																				//	Line	1

simpleClass	*simpleClassPtr2	=	new	(true,	1)	simpleClass(20);				//	Line	2

delete	simpleClassPtr1;

delete	simpleClassPtr2;

return	0;

}

	

Custom	operator	new.

Constructing	object	with	ID:	10

Custom	placement	new:	Obj.	count:	1

Memory	full!

Constructing	object	with	ID:	20

Custom	placement	delete.

Custom	placement	delete.

	

Not	a	very	meaningful	example	but	it	can	clarify	some	points.

Line	 1	 calls	 new	 with	 no	 additional	 parameters.	 This	 calls	 the	 overloaded
operator	new	in	the	class.	Then	the	class	constructor	is	also	called	implicitly	by
new.
Line	2	passes	a	bool	and	an	int	to	new.	This	matches	with	the	custom	overloaded
placement	new	we	defined	in	the	class.	As	there	is	a	matching	function,	new	first
calls	this	function	to	obtain	a	pointer	to	the	memory.	You	can	see	the	bool	and	the
int	is	properly	passed	to	the	placement	new	function.
After	calling	the	custom	placement	new	and	getting	the	memory,	new	 then	calls
the	class	constructor.
Note	 how	 our	 regular	 placement	 new	was	 never	 called.	 This	 shows	 again	 that
regular	placement	new	will	only	be	called	if	we	pass	a	void*	to	allocated	memory.
Finally	we	see	the	custom	operator	delete	is	called.

Last	 thing	 to	 note	 is	 that	placement	new	 does	 not	 always	 needs	 to	 be	 passed	 a	 pointer.
Placement	new	is	any	overloaded	version	of	operator	new.

I	 hope	 this	 topic	 provided	 you	with	 a	 solid	 understanding	 of	what	 goes	 on	 behind	new
operator	 and	 how	 you	 can	 overload	 the	 operator	 new	 allocation	 functions	 to	 get	 the
flexibility	you	need.

Topic	8

Understanding	Constructors
Constructors.	We	all	know	what	they	are	so	let’s	get	right	to	it.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

}

	

baseClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass()

{

cout	<<	“(3)	Constructing	derived	object	with	default	ID:	“	<<	objID	<<	endl;

}

	

derivedClass(int	ID)	:	baseClass(ID)

{

cout	<<	“(4)	Constructing	derived	object	with	ID:	“	<<	objID	<<	endl;

}

	

derivedClass(float	ID)

{

cout	<<	“(5)C	onstructing	derived	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

derivedClass	dcObj1();																																		//	Line	1

cout	<<	“—	Line	1	—”	<<	endl;

derivedClass	dcObj2;																																				//	Line	2

cout	<<	“—	Line	2	—”	<<	endl;

derivedClass	dcObj3(1);																														//	Line	3

cout	<<	“—	Line	3	—”	<<	endl;

derivedClass	dcObj4(2.0f);																									//	Line	4

return	0;

}

	

—	Line	1	—

(1)	Default	constructor-858993460

(3)	Constructing	derived	object	with	default	ID:	-858993460

—	Line	2	—

(2)	Constructing	base	object	with	ID:	1

(4)	Constructing	derived	object	with	ID:	1

—	Line	3	—

(1)	Default	constructor-858993460

(5)C	onstructing	derived	object	with	ID:	-858993460

	

Let’s	go	through	the	steps	quickly:

The	first	output	is	“—	Line	1	—”.	This	means	line	1	of	the	code	has	not	called	the
constructor.	Why	is	that?	Well	it	doesn’t,	because	line	1	is	not	defining	an	object
of	type	derivedClass.	For	the	compiler,	line	1	is	a	function	prototype.	A	function
named	dcObj1,	that	returns	a	derivedClass	object.	So	it	does	nothing	but	declare	a
function	prototype.	So	make	sure	you	omit	the	parentheses!
Line	 2	 instantiates	 an	 object	 by	 calling	 the	 default	 constructor.	 See,	 no
parentheses.	 This	 is	 how	 you	 call	 the	 default	 constructor.	 Remember	 that	 the
default	constructor	is	the	one	with	no	arguments.	There’s	one	more	point	to	note
here.	 The	 variable	objID	 is	 not	 initialized.	We	will	 discuss	 this	 in	more	 detail
later,	but	just	keep	in	mind	that	the	compiler	does	not	automatically	initialize	your
class	variables.

dcObj2	 also	 shows	 how	 the	 baseClass	 constructor	 is	 called	 first	 and	 then	 the
derived	class	constructor.	This	is	the	most	basic	thing	to	know	about	constructors
and	inheritance.	Base	class	constructors	are	always	called	before	the	derived	class
one.
Also	 see	 that	 the	 derivedClass	 default	 constructor	 is	 not	 calling	 the	 base	 class
constructor	explicitly.	The	compiler	does	this	for	you.	It	implicitly	adds	the	call	to
the	base	class	default	constructor	before	the	function	body.
Line	 3	 instantiates	 an	 object	 with	 an	 int	 argument.	 And	 this	 constructor	 is
explicitly	 calling	 the	baseClass	 constructor	with	 the	 argument.	You	can	 see	 the
objID	is	now	correctly	initialized	by	the	baseClass	constructor.
Finally	in	line	4	we	call	with	the	float	argument.	The	thing	to	note	here	is	that	the
default	constructor	of	the	baseClass	is	explicitly	called.
The	 take	 aways	 here	 are:	 base	 class	 constructor	 is	 always	 called	 before	 the
derived	 class	 one,	 and	 if	 the	 derived	 class	 doesn’t	 explicitly	 call	 a	 base	 class
constructor	 in	 the	 initializer	 list,	 the	 compiler	 will	 always	 implicitly	 call	 the
default	 constructor.	We	will	 see	 why	 it	 is	 essential	 that	 we	 call	 the	 base	 class
constructor	in	the	initializer	list.

Calling	base	class	contrsuctor
Let’s	look	at	another	example.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

}

	

baseClass(int	ID)

{

objID	=	ID;

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	ID)

{

baseClass(ID);

cout	<<	“(4)	Constructing	derived	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

derivedClass	dcObj(1);

return	0;

}

	

Note	how	I	changed	the	call	to	the	baseClass	constructor	in	the	derivedClass	constructor?
Before	 we	 had	 it	 in	 the	 initializer	 list.	 Here	 I	 removed	 it	 from	 there	 and	 put	 it	 in	 the
function	body.	So	why	this	error?

Because	 what	 is	 happening	 when	 we	 call	 baseClass(ID)	 inside	 the	 function	 is,	 the
compiler	interprets	it	as	a	declaration	of	a	baseClass	type	called	ID.	So	with	the	argument
named	 ID	 in	 the	 parameter	 list,	 the	 compiler	 is	 complaining	 that	we	 are	 redefining	 the
parameter	ID.	This	happens	because	you	are	not	allowed	to	call	constructors	directly,	that
is,	unless	you	do	it	in	the	initializer	list.

Now	just	for	fun,	what	do	you	think	would	happen	if	we	had	the	derived	class	like	this	in
the	example	above?

…

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	ID)

{

baseClass(1);	//	calling	with	an	int

cout	<<	“(4)	Constructing	derived	object	with	ID:	“	<<	objID	<<	endl;

}

};

…

	

(1)	Default	constructor-858993460

(2)	Constructing	base	object	with	ID:	1

(4)	Constructing	derived	object	with	ID:	-858993460

	

So	instead	of	passing	parameter	ID,	we	pass	an	int	explicitly.	You	will	see	that	it	works.
This	will	call	baseClass	constructor.	But	why?	Why	did	we	get	the	error	when	we	pass	ID,
but	not	when	we	pass	in	an	int?	After	all,	ID	is	an	integer.

The	 same	 thing	 as	 before	 happens.	 First,	 the	 compiler	will	 try	 to	 interpret	 the	 call	 as	 a
declaration.	In	the	previous	example,	baseClass(ID)	is	interpreted	as	“baseClass	 ID”.	So
the	 compiler	 in	 that	 case	 attempted	 to	 make	 a	 baseClass	 type	 ID	 and	 found	 the
redefinition.	 But	when	we	 pass	 the	 integer	 it	 is	 interpreted	 as	”baseClass	 1”.	And	 this
clearly	cannot	be	a	declaration,	so	the	compiler	constructs	an	unnamed	baseClass	object,
which	will	be	destructed	immediately.

Can	you	explain	the	output?

Since	there	is	no	call	to	the	base	class	constructor	in	the	initializer	list	of	derived
class	 constructor,	 the	 compiler	 adds	 a	 call	 to	 the	base	 class	 default	 constructor.
Since	 no	 argument	 is	 passed	 objID	 is	 not	 initialized;	 that	 is	 why	 the	 garbage
value.
The	 second	output	 line	 corresponds	 to	 “baseClass(1)”,	which,	 as	we	discussed,
creates	a	temporary	baseClass	object	with	value	1.
The	third	output	is	the	final	cout	statement	in	the	derivedClass	constructor.

OK,	so	we	now	know	that	we	cannot	call	a	base	class	constructor	in	the	method	body	of	a
derived	class	constructor.	But	how	about	calling	a	base	class	constructor	in	one	of	its	own
constructors.	Let’s	do	one.

In	 the	simple	example	below	we	are	calling	 the	default	constructor	from	the	constructor
that	 takes	 an	 int.	 This	 isn’t	 doing	 anything	 meaningful	 but	 I	 just	 want	 to	 show	 you
something.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

}

	

baseClass(int	ID)

{

baseClass();

objID	=	ID;

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj(1);

return	0;

}

	

(1)	Default	constructor-858993460

(2)	Constructing	base	object	with	ID:	1

	

Things	 look	 fine	here.	We	are	 calling	 the	constructor	with	 the	 int	 argument,	which	 first
calls	 the	default	 constructor.	The	default	 constructor	prints	out	objID,	which	 is	garbage,
but	 it	 is	 expected	as	we	haven’t	 set	 the	value	yet;	 then	 the	constructor	 sets	 the	value	of
objID	and	prints	it	out,	which	correctly	prints	out	the	expected	value	1.	Everything	seems
OK	so	far.	But	let’s	change	the	order	of	calling	the	default	constructor.	Let	us	first	set	the
objID	value	and	call	the	default	constructor,	which	I	think	makes	more	sense.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

}

	

baseClass(int	ID)

{

objID	=	ID;

baseClass();

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj(1);

return	0;

}

	

(1)	Default	constructor-858993460

(2)	Constructing	base	object	with	ID:	1

	

What	 is	 going	 on	 here?	Why	 isn’t	 the	 default	 constructor	 seeing	 the	 value	 we	 set	 for
objID?	Is	it	because	we	need	to	initialize	objID	in	the	initializer	list,	and	not	in	the	method
body?	Nope.	Although	we	should	be	 initializing	 it	 in	 the	 initializer	 list.	Let’s	define	 the
destructor	and	things	will	become	a	lot	clearer.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

}

	

baseClass(int	ID)	//	constructor

{

objID	=	ID;

baseClass();

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

	

~baseClass()

{

cout	<<	“(3)	Default	destructor”	<<	objID	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj(1);

return	0;

}

	

(1)	Default	constructor-858993460

(3)	Default	desstructor-858993460

(2)	Constructing	base	object	with	ID:	1

(3)	Default	destructor1

	

Do	you	see	what	is	happening	here?

First,	the	default	constructor	is	called	and	immediately	after	that,	the	destructor	is	called.
What?

What	 is	 happening	 here	 is	 that	 the	 call	 “baseClass()”	 is	 constructing	 an	 unnamed
baseClass	 object	 and	 then	 the	 compiler	 destroys	 it	 immediately.	And	 then	 the	 compiler
goes	on	to	execute	the	rest	of	the	statements	in	the	constructor.	So	we	are	not	calling	the
default	 constructor	 of	 the	 this	 object.	We	 are	 calling	 it	 on	 another	 object,	 an	 unnamed
temporary	one,	that	gets	destroyed	in	the	very	next	line,	without	serving	any	purpose.	So
is	this	any	different	from	what	we	saw	in	the	case	of	the	derived	class	constructor	calling
the	base	class	constructor?	No.	It	is	the	same	thing.	You	simple	cannot	call	a	constructor	in
the	method	body.	Why	then,	did	we	get	an	error	in	the	previous	case	and	not	in	this	one?
Because	we	were	 calling	 the	 default	 constructor,	 no	 arguments.	 The	 following	 example
should	make	it	clear.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

}

	

baseClass(int	ID)	//	constructor

{

objID	=	ID;

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

	

baseClass(int	ID1,	int	ID2)	//	constructor

{

baseClass(ID1);

cout	<<	“(3)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj(12);

return	0;

}

	

I’m	sure	you	don’t	need	any	further	explanation.

So	the	bottom	line	is,	you	cannot	call	a	constructor	directly,	ever.	The	only	way	you	can
do	it	is	in	the	initializer	list.	Like	this.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

}

	

baseClass(int	ID)	:	baseClass()

{

objID	=	ID;

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

	

baseClass(int	ID1,	int	ID2)	:	baseClass(ID1)

{

cout	<<	“(3)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj(1,	2);

return	0;

}

	

(1)	Default	constructor-858993460

(2)	Constructing	base	object	with	ID:	1

(3)	Constructing	base	object	with	ID:	1

	

Constructor	delegation
The	type	of	constructors	that	call	other	constructors	(in	the	initializer	list,	of	course),	are
called	delegating	constructors,	for	obvious	reasons.	But	there	is	a	limitation	in	delegating
constructors.	 You	 cannot	 do	 any	 other	 initialization	 in	 the	 initializer	 list.	 That	 is,	 you
cannot	do	something	like	this:

baseClass(int	ID)	:	baseClass(),	objID(ID)

{

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

	

The	compiler	will	dutifully	let	you	know	this	fact.

Delegating	 constructors	 can	 be	 very	 efficient	 in	 eliminating	 code	 repeat	 in	 similar
constructors,	but	with	a	small	restriction,	of	course.

Member	initialization
In	the	examples	above	we	saw	how	the	member	variable	objID	has	to	be	initialized	in	the
constructor	explicitly	and	the	compiler	will	not	do	that	for	us.	So	how	exactly	are	member
variables	initialized	by	the	compiler?	Let’s	start	with	a	very	simple	one.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

	

};

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj;

cout	<<	“bcObj.objID:	“	<<	bcObj.objID	<<	endl;

return	0;

}

	

bcObj.objID:	4114384

	

Here	we	are	not	defining	any	constructor.	We	let	the	compiler	generate	one	for	us.	But	in
reality	 even	 the	 compiler	 wouldn’t	 provide	 one,	 actually.	 Because	 we	 only	 have	 one
integer	member	variable	and	the	compiler	doesn’t	need	to	do	anything	about	it.	So	here	we
see	that	the	integer	is	indeed	left	alone.	No	initialization	is	done.	Make	sure	you	initialize
variables	before	using;	uninitialized	variables	have	undefined	behavior.

Let’s	add	a	bit	more	context.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassObjID;

};

	

class	anotherClass

{

public:

int	anotherClassObjID;

baseClass	baseClassObj;

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	acObj;

cout	<<	“anotherClassObjID:	“	<<	acObj.anotherClassObjID	<<	endl;

cout	<<	“baseClassObjID:	“	<<	acObj.baseClassObj.baseClassObjID	<<	endl;

return	0;

}

	

anotherClassObjID:	-858993460

baseClassObjID:	-858993460

	

Here	too,	as	expected,	the	integer	member	variables	are	not	being	initialized.	Now	what	if
the	baseClass	has	a	default	constructor	defined?

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassObjID;

	

baseClass()

{

baseClassObjID	=	1;

cout	<<	“baseClass	constructor”	<<	endl;

}

};

	

class	anotherClass

{

public:

int	anotherClassObjID;

baseClass	baseClassObj;

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	acObj;

cout	<<	“anotherClassObjID:	“	<<	acObj.anotherClassObjID	<<	endl;

cout	<<	“baseClassObjID:	“	<<	acObj.baseClassObj.baseClassObjID	<<	endl;

return	0;

}

	

baseClass	constructor

anotherClassObjID:	-858993460

baseClassObjID:	1

	

Here	 we	 see	 that	 the	 baseClass	 default	 constructor	 is	 being	 called	 implicitly	 by	 the
compiler.	Why?	Remember	I	said	earlier	that	the	compiler	isn’t	even	generating	a	default
constructor	when	we	had	only	the	integer	member	variable?	But	in	this	case,	the	compiler
definitely	 generates	 a	 default	 constructor	 for	 anotherClass.	 This	 is	 because	 it	 has	 a
member	variable	that	has	a	default	constructor	defined.	So	the	compiler	is	obliged	to	call
it.	This	is	the	difference	between	a	class	type	member	variable	and	a	POD	like	the	integer.
For	a	POD,	the	compiler	is	not	going	to	do	any	initialization.	But	for	a	class	type,	if	there
is	a	default	constructor	defined,	the	compiler	must	call	it	to	initialize.

So	here	we	had	a	default	constructor	defined	for	baseClass.	What	 if	 it	had	a	constructor
with	parameters?

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassObjID;

	

baseClass(int	ID)

{

baseClassObjID	=	ID;

cout	<<	“baseClass	constructor”	<<	endl;

}

};

	

class	anotherClass

{

public:

int	anotherClassObjID;

baseClass	baseClassObj;

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	acObj;

cout	<<	“anotherClassObjID:	“	<<	acObj.anotherClassObjID	<<	endl;

cout	<<	“baseClassObjID:	“	<<	acObj.baseClassObj.baseClassObjID	<<	endl;

return	0;

}

	

Compiler	 complains	 about	 the	 lack	 of	 a	 default	 constructor	 for	 anotherClass.	 What’s
happening	is	that	the	compiler	sees	that	there	is	a	constructor	defined	for	baseClass.	It	is
not	 a	 default	 constructor,	 so	 it	must	 be	 called	 explicitly.	Compilers	will	 never	 call	 non-
default	constructors	(well,	it	doesn’t	know	what	the	arguments	are	to	call	anyway).	But	the
compiler	 sees	 that	 there	 is	 no	 constructor	 in	 anotherClass	 that	 calls	 the	 baseClass
constructor	and	emits	the	error.	So	if	your	member	variable	has	a	non-default	constructor,
your	enclosing	class	must	have	a	constructor	that	initializes	the	member	class	object.

What	 if	 you	 defined	 a	 constructor	 for	 anotherClass,	 but	 it	 doesn’t	 call	 the	 baseClass
constructor?	Something	like	this:

class	anotherClass

{

public:

int	anotherClassObjID;

baseClass	baseClassObj;

	

anotherClass()

{

anotherClassObjID	=	2;

}

};

	

It’s	the	same	problem.	Because	this	is	the	same	error	we	saw	when	we	had	a	derived	class
with	 a	 base	 class	 that	 had	 no	 default	 constructor.	We	 saw	 in	 the	 case	 of	 derived	 class
constructors	that	we	always	need	to	call	the	base	class	constructor	from	the	initializer	list.
And	if	we	don’t	initialize	the	base	class,	the	compiler	will	try	to	do	that	before	entering	the
constructor	body.	But	the	compiler	can	only	call	the	default	constructor.	And	if	there	is	no
default	constructor,	it	complains.

If	 there	 is	 a	 class-type	member	variable	with	 a	 constructor,	 the	 compiler	needs	 to	make
sure	it	 is	called.	If	 it	 is	not	called	explicitly	in	the	program,	it	 tries	to	invoke	the	default
constructor.	If	there	is	no	default	constructor,	it	will	not	compile.

Another	 thing	 to	 note	 here.	 We	 saw	 before	 that	 the	 compiler	 will	 generate	 a	 default
constructor	if	one	is	required	(for	example	when	there	is	a	class	member	variable	with	a
constructor).	But	you	need	to	remember	that	if	there	is	a	constructor	defined	by	the	user,
the	 compiler	 will	 never	 generate	 a	 default	 constructor.	 That	 is	 why	 the	 compiler	 is
complaining	 that	 baseClass	 doesn’t	 have	 a	 default	 constructor.	 Because	 there	 is	 a	 non-
default	constructor.	So	the	compiler	will	not	generate	one	for	us.

Now	how	would	you	get	around	a	situation	like	this?	You	have	your	baseClass,	that	has	a
constructor	that	takes	an	integer.	This	is	how	you	intend	to	initialize	your	baseClass.	How
can	you	avoid	errors	for	other	classes	which	want	to	have	baseClass	as	a	member?	Like
anotherClass.	Of	course	it	becomes	anotherClass’s	responsibility	to	initialize	baseClass	as
it	 is	 intended.	But	 if	 your	 implementation	 can	 allow	 it,	 you	 can	 simply	 provide	 default
values	to	your	constructor	parameters	and	the	problem	will	go	away.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassObjID;

	

baseClass(int	ID	=	1)

{

baseClassObjID	=	ID;

cout	<<	“baseClass	constructor”	<<	endl;

}

};

	

class	anotherClass

{

public:

int	anotherClassObjID;

baseClass	baseClassObj;

	

anotherClass()

{

anotherClassObjID	=	2;

}

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	acObj;

cout	<<	“anotherClassObjID:	“	<<	acObj.anotherClassObjID	<<	endl;

cout	<<	“baseClassObjID:	“	<<	acObj.baseClassObj.baseClassObjID	<<	endl;

return	0;

}

	

baseClass	constructor

anotherClassObjID:	2

baseClassObjID:	1

	

See,	 no	 problem.	When	we	 gave	 a	 default	 value,	 the	 compiler	 can	 call	 it	 as	 it	would	 a
default	constructor.

Let’s	look	at	two	things	quickly.

Can	you	have	a	base	class	instance	as	a	member	variable	in	the	derived	class?

#include<iostream>

using	namespace	std;

	

class	derivedClass;

class	baseClass

{

public:

int	objID;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

}

	

baseClass(int	ID)

{

objID	=	ID;

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

baseClass	baseClassObj;

derivedClass()	:	baseClass(),	baseClassObj()

{}

	

derivedClass(int	ID)	:	baseClass(ID),	baseClassObj(ID)

{

cout	<<	“(3)	Constructing	derived	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

derivedClass	dcObj(9);

return	0;

}

	

(2)	Constructing	base	object	with	ID:	9

(2)	Constructing	base	object	with	ID:	9

(3)	Constructing	derived	object	with	ID:	9

	

So	yes,	you	can.	No	problem.

What	about	a	derived	class	instance	in	the	base	class	then?

#include<iostream>

using	namespace	std;

	

class	derivedClass;

class	baseClass

{

public:

int	objID;

derivedClass	*derivedClassObj;

	

baseClass();

	

baseClass(int	ID)

{

objID	=	ID;

cout	<<	“(2)	Constructing	base	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass()

{}

	

derivedClass(int	ID)	:	baseClass(ID)

{

cout	<<	“(3)	Constructing	derived	object	with	ID:	“	<<	objID	<<	endl;

}

};

	

	

baseClass::baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	objID	<<	endl;

derivedClassObj	=	new	derivedClass();

}

	

int	main(int	argc,	char**	argv)

{

derivedClass	dcObj;

return	0;

}

	

Note	that	the	derived	class	is	a	pointer,	not	an	instance	as	we	had	with	the	base	class	in	the
previous	example.	This	is	because	we	cannot	define	an	instance	in	the	baseClass,	because
at	 that	 point	 derivedClass	 is	 not	 defined	 yet.	 We	 can	 use	 a	 pointer,	 with	 a	 forward
declaration	at	the	top,	and	move	the	definition	of	the	constructor	after	the	definition	of	the
derivedClass.	We	will	discuss	more	on	this	in	another	topic.

This	 will	 compile	 and	 run.	 But	 what	 happens?	 It	 will	 be	 stuck	 in	 an	 infinite	 loop.
derivedClass	is	inherited	from	baseClass,	so	it	has	an	instance	of	baseClass	in	itself.	And
this	baseClass	 instance	will	 have	 a	derivedClass	 instance	 in,	 and	 so	 on.	 So	 you	 cannot
have	a	derived	class	instance	in	the	base	class.

So	what	have	we	learned	so	far:

If	no	default	constructor	(constructor	with	no	arguments)	is	defined,	the	compiler
will	generate	one	(if	required).
If	 a	 constructor	 is	 defined,	 default	 or	 otherwise,	 the	 compiler	will	 not	 generate
any	constructor	(even	if	required).
The	compiler	will	not	initialize	any	member	variable	that	is	a	POD.	They	must	be
initialized	explicitly	by	a	constructor	we	define.
If	there	are	class-type	member	variables	that	have	constructors	of	their	own,	they
will	 be	 initialized	 by	 the	 compiler	 by	 calling	 the	 default	 constructors.	 This	 is
important.	 If	 there	 is	 no	 default	 constructor	 for	 the	 class,	 the	 compiler	 will
generate	 one,	 and	 this	 compiler	 generated	 constructor	 will	 call	 default
constructors	 of	 the	 member	 classes.	 If	 there	 is	 a	 constructor	 defined,	 and	 this
constructor	 is	 not	 initializing	 the	member	 classes	 by	 calling	 their	 constructors,
then	 the	 compiler	 will	 implicitly	 call	 the	 default	 constructors.	 Remember,	 the
compiler	can	only	call	default	constructors	by	itself.	If	the	member	classes	have
no	default	constructors,	they	need	to	be	initialized	explicitly,	otherwise	there	will
be	compiler	errors.
Base	 class	 constructors	 and	 member	 class	 constructors	 must	 be	 called	 in	 the
initializer	 list.	 Because	 the	 initializer	 list	 is	 the	 only	 place	 you	 can	 call	 a
constructor.

Member	initialization	overhead
So	 is	 there	any	situation	where	we	can	 initialize	a	class-type	member	 in	 the	constructor
body	and	not	in	the	initializer	list?	Yes,	but	you	may	not	want	to	do	it.	Then	what	are	the
other	options?	Consider	this:

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassObjID;

	

baseClass()

{

baseClassObjID	=	99;

cout	<<	“(1)	baseClass	constructor:”	<<	baseClassObjID	<<	endl;

}

	

baseClass(int	ID)

{

cout	<<	“(2)	baseClass	constructor:	“	<<	baseClassObjID	<<	endl;

baseClassObjID	=	ID;

cout	<<	“(3)	baseClass	constructor:	“	<<	baseClassObjID	<<	endl;

}

	

baseClass	&	operator	=(const	baseClass	&	baseClassObj)

{

baseClassObjID	=	baseClassObj.baseClassObjID;

cout	<<	“(4)	baseClass	assignment	operator:	“	<<	baseClassObjID	<<	endl;

return	*this;

}

	

~baseClass()

{

cout	<<	“Destructor	for	object:	“	<<	baseClassObjID	<<	endl;

}

};

	

class	anotherClass

{

public:

int	anotherClassObjID;

baseClass	baseClassObj;

	

anotherClass(int	ID)

{

baseClassObj	=	ID;

anotherClassObjID	=	2;

}

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	acObj(5);

return	0;

}

	

(1)	baseClass	constructor:99

(2)	baseClass	constructor:	-858993460

(3)	baseClass	assignment	operator:	5

(4)	Destructor	for	object:	5

(4)	Destructor	for	object:	5

	

What	are	we	doing	here?	We	are	passing	an	int	argument	to	the	anotherClass	constructor
and	this	argument	is	then	assigned	to	the	baseClass	member.	Let’s	go	through	the	output:

Line	 1	 of	 the	 output	 is	 when	 the	 default	 constructor	 for	 baseClass	 is	 called.
Where	 is	 this	called?	This	 is	called	 in	 the	anotherClass	constructor.	And	 this	 is
called	 implicitly	 by	 the	 compiler.	Why?	Because	 as	 I	 said	 before,	 if	 there	 is	 a
member	 class	 that	 has	 a	 default	 cosntructor	 defined,	 the	 compiler	 is	 obliged	 to
call	it,	if	and	only	if,	there	is	no	call	to	the	constructor	in	the	initialize	list.	We	are
not	doing	any	initializing	in	the	initializer	list	of	anotherClass	constructor,	so	the
compiler	is	calling	the	default	constructor	for	baseClassObj.
Now	 we	 are	 inside	 the	 anotherClass	 constructor	 body	 and	 executing	 the
assignment.	 We	 saw	 in	 the	 topic	 on	 Constructors	 that	 in	 this	 case,	 what	 the
compiler	does	is	create	a	temporary	class	with	the	argument	ID	and	then	pass	this
temporary	object	to	the	baseClassObj	assignment	operator.	That	is	what	you	see
in	line	2	of	the	output.	It	is	creating	a	temporary	object	by	calling	the	constructor
with	 the	 int	 argument.	 I	 did	 two	 printouts	 to	 show	 that	 we	 are	 dealing	 with
different	objects.	So	in	output	 line	2,	baseClassObjID	 is	not	 initialized,	proving
that	this	is	not	the	baseClassObj	member,	but	a	new	temporary.
Line	 3	 of	 the	 output	 is	 the	 assignment	 operator.	 The	 new	 temporary	 that	 was
created	 before	 is	 passed	 to	 the	 assignment	 operator	 of	 baseClassObj.	 Now
baseClassObj	is	set	with	value	5.	This	is	what	we	intended	to	do.
Then	there	are	two	invocations	of	the	destructor.	The	first	one	for	the	temporary
we	created	to	pass	to	the	assignment	operator,	and	the	other	when	acObj	went	out
of	scope.

Now	compare	that	with	what	happens	if	we	do	this	in	the	initializer	list:

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassObjID;

	

baseClass()

{

baseClassObjID	=	99;

cout	<<	“(1)	baseClass	constructor:”	<<	baseClassObjID	<<	endl;

}

	

baseClass(int	ID)

{

cout	<<	“(2)	baseClass	constructor:	“	<<	baseClassObjID	<<	endl;

baseClassObjID	=	ID;

}

	

baseClass	&	operator	=(const	baseClass	&	baseClassObj)

{

baseClassObjID	=	baseClassObj.baseClassObjID;

cout	<<	“(3)	baseClass	assignment	operator:	“	<<	baseClassObjID	<<	endl;

return	*this;

}

	

~baseClass()

{

																cout	<<	“(4)	Destructor	for	object:	“	<<	baseClassObjID	<<	endl;

}

};

	

class	anotherClass

{

public:

int	anotherClassObjID;

baseClass	baseClassObj;

	

anotherClass(int	ID)	:	baseClassObj(5)	//	<—	In	the	initializer	list

{

anotherClassObjID	=	2;

}

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	acObj(5);

return	0;

}

	

(2)	baseClass	constructor:	-858993460

(4)	Destructor	for	object:	5

	

See	the	difference?	When	we	do	this	in	the	initializer	list	 it	directly	calls	the	constructor
with	 the	 argument.	 We	 save	 a	 lot	 of	 steps	 here.	 First,	 there	 is	 no	 call	 to	 the	 default
constructor	and	then	there	is	no	construction	and	destruction	of	the	temporary	object.	So
always	try	to	initialize	in	the	initializer	list.	It	is	much	more	efficient.

We	looked	at	many	different	scenarios	of	constructors	and	I	believe	now	you	have	a	solid
grasp	on	constructors.	Just	a	few	more	things	to	talk	about.

Const	and	reference	members
We	saw	earlier	that	member	variables	such	as	integers	are	not	initialized	and	also	that	base
classes	must	be	initialized	in	the	initializer	list.	These	add	a	restriction	to	const	variables
and	references.	You	see,	if	you	have	consts	or	references	as	members,	you	must	initialize
them	in	the	initializer	list.	You	cannot	omit	the	initialization	as	you	would	for	a	class-type
variable	 and	expect	 the	compiler	 to	do	 it,	 nor	 can	you	 initialize	 them	 in	 the	 constructor
body.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	intVar;

const	float	floatVar;

int	&intRefVar;

	

baseClass()

{

cout	<<	“(1)	Default	constructor”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj;

cout	<<	“objID:	“	<<	bcObj.intVar	<<	endl;

return	0;

}

	

You	get	a	compiler	error	that	you	need	to	initialize	the	const	and	the	reference.	And	you
cannot	do	this	either.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	intVar;

const	float	floatVar;

int	&intRefVar;

	

baseClass()

{

intVar	=	1;

floatVar	=	2.0f;

intRefVar	=	intVar;

cout	<<	“(1)	Default	constructor”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj;

cout	<<	“objID:	“	<<	bcObj.intVar	<<	endl;

return	0;

}

	

The	const	and	the	reference	must	be	‘explicitly’	initialized	in	the	initializer	list.	And	what
if	you	don’t	define	any	constructor?

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	intVar;

const	float	floatVar;

int	&intRefVar;

};

	

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj;

return	0;

}

	

No	again.	When	you	have	a	const	or	a	reference	you	must	define	a	constructor,	and	you
must	initialize	them	and	you	must	do	it	 in	the	initializer	 list.	So	this	 is	how	you	need	to
write	this.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	intVar;

const	float	floatVar;

int	&intRefVar;

	

baseClass()	:	intVar(1),	floatVar(2.0f),	intRefVar(intVar)

{

cout	<<	“Default	constructor”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj;

cout	<<	“floatVar:	“	<<	bcObj.floatVar	<<	endl;

cout	<<	“intRefVar:	“	<<	bcObj.intRefVar	<<	endl;

return	0;

}

	

Default	constructor

floatVar:	2

intRefVar:	1

	

So	 that’s	 about	 all	 there	 is	 to	 it	with	 consts	 and	 references.	 Just	 remember	 to	 initialize
them.

Member	initialization	order
The	other	little	tidbit	I	need	to	discuss	about	the	initializer	list	is	the	order	of	initialization.
A	simple	example	is	sufficient.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassObjID;

	

baseClass(int	ID)

{

baseClassObjID	=	ID;

cout	<<	“baseClass	constructor:	“	<<	baseClassObjID	<<	endl;

}

};

	

class	anotherClass

{

public:

baseClass	baseClassObj1;

baseClass	baseClassObj3;

baseClass	baseClassObj2;

	

anotherClass(int	var1,	int	var2,	int	var3)	:	baseClassObj1(var1),	baseClassObj2(var2),	baseClassObj3(var3)

{}

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	acObj(1,	2,	3);

return	0;

}

	

baseClass	constructor:	1

baseClass	constructor:	3

baseClass	constructor:	2

	

Did	 you	 notice	 something	 in	 the	 output?	 It’s	 constructing	 baseClassObj1,	 then
baseClassObj3,	 and	 then	 baseClassObj2.	 But	 in	 the	 initializer	 list	 we	 initialize
baseClassObj1	 first,	 baseClassObj2	 second	 and	 finally	 baseClassObj3.	 This	 is	 because
the	compiler	always	initializes	member	variables	in	the	order	they	were	defined.	Not	in	the
order	 they	are	 initialized	in	 the	 initializer	 list.	See	how	we	have	defined	baseClassObj1,
then	baseClassObj3	 and	 then	baseClassObj2.	 So	 the	 constructor	 initializes	 them	 in	 that
order.	And	then	the	destructor	destructs	them	in	the	reverse	order.	This	fact	might	not	have
any	 effect	 on	 an	 initialization	 like	 this,	 but	 if	 you	 have	 member	 variables	 which	 are
initialized	with	relation	to	another	variable,	then	this	fact	becomes	very	crucial.

One	 final	 thing	about	constructors	and	 initialization:	“value	 initialization”.	Since	C++11
you	can	initialize	your	class	members	without	explicitly	doing	it	in	the	constructor.	Like
this:

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var1;

int	var2;

int	var3;

};

	

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj	=	{	10,	20,	30	};

cout	<<	“var1:	“	<<	bcObj.var1	<<	endl;

cout	<<	“var2:	“	<<	bcObj.var2	<<	endl;

cout	<<	“var3:	“	<<	bcObj.var3	<<	endl;

return	0;

}

	

var1:	10

var2:	20

var3:	30

	

Simple.	You	 just	 define	 the	values	you	want	your	member	variables	 to	be	 initialized	 as
inside	braces	and	the	compiler	does	it	for	you.	Pretty	neat.	So	that	means	we	don’t	need	to
initialize	them	in	the	initializer	list,	right?	Not	so	fast.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var1;

int	var2;

int	var3;

	

baseClass()

{

cout	<<	“Constructor”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

baseClass	bcObj	=	{	10,	20,	30	};

cout	<<	“var1:	“	<<	bcObj.var1	<<	endl;

cout	<<	“var2:	“	<<	bcObj.var2	<<	endl;

cout	<<	“var3:	“	<<	bcObj.var3	<<	endl;

return	0;

}

	

You	see,	if	you	define	a	constructor	then	the	compiler	is	not	going	to	do	the	initialization
for	you.	It	makes	sense,	right?	If	you	are	defining	a	constructor	you	do	that	to	initialize	the
object.	 So	 you	 should	 initialize	 them.	 So	 when	 you	 implement	 your	 constructor,	 the
compiler	backs	off	and	doesn’t	involve	in	your	business	of	initialization.

That	was	pretty	lengthy	but	we	covered	a	lot	of	ground	here.	I	believe	you	gained	quite	a
bit	of	insight	as	to	how	constructors	are	working.

	

Topic	9

Forward	Declarations,
Compiling	and	Linking

Sometimes	 we	 take	 things	 for	 granted.	 If	 you	 are	 using	 an	 IDE,	 like	 Visual	 Studio	 or
Eclipse,	you	build	your	project	and	run	it,	never	thinking	about	compiling	and	linking.	But
these	two	steps	happen	all	the	time	and	it’s	useful	to	understand	its	basics.

Function	forward	declaration
Let’s	start	simple.

#include<iostream>

using	namespace	std;

	

void	printFunction(int	var);	//	forward	declaration

	

class	simpleClass

{

public:

int	var;

	

simpleClass(int	value)

{

var	=	value;

printFunction(var);

}

};

	

void	printFunction(int	var)

{

cout	<<	“Passed	value	is:	“	<<	var	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

simpleClass(10);

return	0;

}

	

Passed	value	is:	10

	

This	program	isn’t	doing	anything	meaningful.	We	instantiate	an	object	by	passing	 it	an
integer,	and	the	constructor	passes	this	value	to	printFunction	to	print	it,	or	do	whatever	it
does.

These	are	the	starting	points:

Before	 the	 start	 of	 the	 class	 definition	we	 have	 forward	 declared	 the	 function.
This	is	the	function	prototype.
The	 simpleClass	 constructor	 calls	 printFunction	 and	 passes	 it	 the	 integer.	 It’s
important	 to	 understand	 that	 at	 this	 point,	 the	 compiler	 does	 not	 know	 the
definition	of	 the	printFunction.	 It	 simply	knows	 that	 there	 is	 a	 function	by	 that
name	 and	 it	 takes	 an	 integer	 argument	 and	 returns	 nothing.	 Comment	 out	 the
forward	declaration	at	the	top	and	you	will	get	this:

So	you	see,	you	get	a	compiler	error,	even	though	we	have	defined	the	function
(after	 the	 class	 definition),	 the	 compiler	 isn’t	 aware	 of	 it.	 This	 is	 because	 the
compiler	is	going	through	the	code	sequentially.	So	when	it	is	in	the	constructor	it
has	no	idea	that	the	function	definition	is	right	below	it.	Go	ahead	and	uncomment
the	forward	declaration	now.

Now	keep	the	forward	declaration	and	comment	out	the	entire	function	definition.
You	should	get	en	error	like	this:

This	 is	 a	 linker	 error.	Earlier	 it	was	a	 compiler	 error.	 It	 is	 important	 to	note	 the
difference.	Linking	is	something	that	happens	after	compiling.	So	here	we	know
that	 our	 code	 compiled	 fine.	 But	 it	 couldn’t	 link.	 The	 linker	 errors	 aren’t	 as
friendly	as	compiler	errors.	But	you	can	make	out	that	it	is	complaining	about	the
printFunction.

Before	we	go	any	further	it’s	important	to	understand	the	compiling	and	linking	a	little	bit.
The	figure	below	shows	a	very	basic	mechanism	of	compiling	and	linking.

Your	source	file	with	the	code	is	first	analyzed	by	the	compiler.	This	is	where	errors	such
as	syntaxes,	definitions,	etc.	are	found.	The	compiler	then	generates	an	object	file.	If	you
are	 using	 a	Unix	 environment	 it	will	 be	 an	 .o	 file,	 or	 if	 you	 are	 using	Visual	 Studio	 it
would	 be	 an	 .obj	 file.	 This	 object	 file	 is	 then	 sent	 to	 the	 linker,	 which	 outputs	 the
executable	file.	In	the	example	we	did	so	far	we	had	only	one	source	file.	But	note	that	we
are	making	use	of	the	<iostream>	library.	This	is	where	the	linker	does	its	work.	You	see,
the	 object	 file	 contains	 placeholders.	 These	 placeholders	 are	 for	 variables	 or	 methods
which	are	not	defined	in	the	source	file	itself.	What	the	linker	does	is	take	this	object	file
and	fill	 the	placeholders	with	other	object	 files.	Let’s	modify	our	example	 to	see	 this	 in
action.

We	will	have	our	main	file	as	follows:

//main.cpp

#include<iostream>

using	namespace	std;

	

void	printFunction(int	var);	//	forward	declaration

	

class	simpleClass

{

public:

int	var;

simpleClass(int	value)

{

var	=	value;

printFunction(var);

}

};

	

int	main(int	argc,	char**	argv)

{

simpleClass(10);

return	0;

}

	

Note	 that	 we	 have	 the	 forward	 declaration	 for	 ‘printFunction’	 but	 the	 definition	 is	 not
there.	Now	compile	this.	If	you	are	using	Visual	Studio	you	can	do	“Ctrl+F7”,	or	you	can
do	it	through	Visual	Studio	command	prompt.	You	can	compile	by

	

CL	/c	main.cpp

	

This	will	create	a	main.obj	file.	If	you	are	using	an	Unix	environment	you	can	do

	

g++	main.cpp	main.o

	

You	will	see	that	you	get	no	errors.	If	you	try	to	build	this	program,	however,	you	will	get
the	linker	error	we	encountered	before.	So	now	you	know	that	the	compiler	is	happy	with
this	program,	but	the	linker	is	not.

So	 why	 does	 the	 compiler	 have	 no	 complaints,	 but	 the	 linker	 is	 throwing	 an	 error?
Because	 you	 see,	 the	 compiler	 is	 perfectly	 happy	 with	 the	 forward	 declaration.	 The
compiler	is	confident	that	there	is	a	function	named	printFunction	defined	somewhere	and
this	 function	 takes	an	 int	argument	and	 returns	void.	The	compiler	 trusts	you	when	you
forward	declared	the	function.	From	the	compiler’s	point	of	view	it	does	not	need	to	know
anything	more.	 It	 simply	 puts	 a	 placeholder	 where	 we	 call	 the	 printFunction	 that	 says
something	like	“add	the	printFunction	address	here”	and	creates	the	object	file.

Now	it	becomes	 the	 linker’s	 job	 to	find	where	 the	definition	of	printFunction	 is	and	fill
that	placeholder.	But	you	 see	we	have	not	defined	 the	 function	anywhere.	So	 the	 linker
naturally	complains.

Now	 let’s	 go	 ahead	 and	 define	 it.	 But	 this	 time,	 let’s	 do	 it	 in	 a	 separate	 file.	 Call	 it
printFunction.cpp.	It	should	just	have	the	definition	we	had	before	in	our	main.cpp	file.

//printFunction.cpp

#include<iostream>

using	namespace	std;

	

void	printFunction(int	var)

{

cout	<<	“Passed	value	is:	“	<<	var	<<	endl;

}

	

Now	if	you	build	the	project	you	will	see	that	it	compiles	and	links	and	runs	without	any
issues.	So	you	know	that	the	linker	found	it	and	‘linked’.	But	let’s	take	it	step	by	step.

What	we	want	to	do	now	is	to	compile	the	printFunction.cpp.	Do	what	we	did	before.

	

CL	/c	printFunction.cpp

	

This	 should	 create	 a	 printFunction.obj	 or	 an	 .o	 file,	 depending	 on	 your	 environment.
Again,	you	see	that	the	compiler	has	no	issues.	What	we	want	to	do	now	is	to	link	our	two
object	files.	Let’s	first	pass	only	main.obj	to	the	compiler	and	see	what	it	thinks.

	

LINK	main.obj

	

You	 should	 see	 the	 same	 linker	 error	we	got	 before.	So	now	you	have	 an	 idea	 of	what
happens	when	you	build	a	project	in	Visual	Studio.	It	does	compiling	and	linking	both	in
one	step	for	you.	So	you	see	the	linker	is	not	happy	with	the	information	it	has.	Or	the	lack
of	it.

Let’s	give	the	linker	more	information	to	work	with.

	

LINK	main.obj	printFunction.obj

	

You	will	see	that	the	linker	has	no	complaints	now.	It	creates	the	executable	file.	Because
now	 we	 passed	 the	 printFunction	 object	 file	 the	 linker	 can	 now	 fill	 the	 printFunction
placeholder	in	the	main.obj	file	with	the	function	definition	in	printFunction.obj.

What	we	discussed	here	 is	 the	very	basic	 functionality	of	 the	compiler	and	 linker	but	 it
should	give	you	an	understanding	of	what	is	happening	behind	the	scenes.

Forward	declaring	class-types
Now	let’s	look	at	this	slightly	differently.	Instead	of	a	function,	we	will	define	a	class.	Our
main	file	will	be	like	this:

//	main.cpp

#include<iostream>

using	namespace	std;

	

class	fwdDeclClass;	//	forward	declaration

	

class	simpleClass

{

public:

fwdDeclClass	fwdDeclClassObj;

	

simpleClass()	:	fwdDeclClassObj()

{}

};

	

int	main(int	argc,	char**	argv)

{

simpleClass	simpleClassObj;

return	0;

}

	

And	we	will	define	our	fwdDeclClass	like	this.

//	fwdDeclClass.cpp

#include<iostream>

using	namespace	std;

	

class	fwdDeclClass

{

public:

fwdDeclClass()

{

cout	<<	“fwdDeclClass	cosntructor”	<<	endl;

}

};

	

Now	try	to	compile	your	main.cpp.	You	will	get	an	error	similar	to:

The	compiler	is	basically	complaining	about	using	an	undefined	class.	But	why?	Let’s	go
ahead	 and	 try	 to	 compile	 our	 fwdDeclClass.cpp.	 You	 should	 see	 no	 errors.	 It	 should
compile	 fine.	So	 then,	why	 is	our	main.cpp	 refusing	 to	compile?	Why	 is	 it	 complaining
that	fwdDeclClass	 is	undefined	when	we	have	forward	declared	it?	OK,	let’s	change	our
simpleClass	so	that	instead	of	a	fwdDeclClass	instance	it	has	a	pointer	to	a	fwdDeclClass.

#include<iostream>

using	namespace	std;

	

class	fwdDeclClass;	//	forward	declaration

	

class	simpleClass

{

public:

fwdDeclClass	*fwdDeclClassPtr;

	

simpleClass()

{}

};

	

int	main(int	argc,	char**	argv)

{

simpleClass	simpleClassObj;

return	0;

}

	

This	should	compile	fine.	In	fact,	you	can	build	and	run.	The	question	is	why	the	compiler
couldn’t	work	with	the	forward	declaration	when	we	had	a	member	class	object,	but	it	is
fine	with	a	pointer	to	that	class?

The	 reason	 is,	 the	 compiler	 doesn’t	 need	 to	 know	 anything	 about	 the	 class	 to	 have	 a
pointer.	A	 pointer	 occupies	 the	 same	memory	 space	 regardless	 of	 its	 type.	A	 pointer	 to

fwdDeclClass	 and	 a	 pointer	 to	 an	 integer	 are	 both	 of	 same	 size.	 So	 the	 compiler	 can
allocate	memory	to	the	fwdDeclClass	pointer	without	having	to	know	its	implementation.
This	is	the	same	case	when	we	forward	declared	a	function.	The	compiler	only	needed	to
know	 the	 function	 signature	 to	 check	 the	 syntax	 and	 put	 a	 placeholder	 for	 the	 linker.
That’s	 all	 the	 compiler	 had	 to	 do	 with	 the	 function	 call,	 and	 the	 forward	 declaration
provided	the	necessary	information.

But	 this	 is	not	 the	case	when	we	have	a	class	object.	When	we	have	a	class	object	as	a
member,	the	compiler	must	know	about	the	class	composition	because	it	needs	to	allocate
memory	for	it.	That	object	is	going	to	be	part	of	the	class	itself.	So	the	compiler	needs	to
know	about	fwdDeclClass	to	instantiate	it	inside	simpleClass.	And	the	compiler	cannot	do
this	with	just	the	forward	declaration.	It	contains	no	information	other	than	that	there	is	a
class	by	the	name	fwdDeclClass.

This	will	 become	 clearer	when	 you	modify	 the	 simpleClass	 constructor	 to	 initialize	 the
fwdDeclClassPtr.

#include<iostream>

using	namespace	std;

	

class	fwdDeclClass;	//	forward	declaration

	

class	simpleClass

{

public:

fwdDeclClass	*fwdDeclClassPtr;

	

simpleClass()

{

fwdDeclClassPtr	=	new	fwdDeclClass();

}

};

	

int	main(int	argc,	char**	argv)

{

simpleClass	simpleClassObj;

return	0;

}

	

Can	you	 see	why	now?	We	are	 trying	 to	 initialize	 fwdDeclClassPtr	with	 an	 instance	of
fwdDeclClass	 and	you	can	 see	why	 this	 is	going	 to	be	a	problem	 for	 the	compiler.	The
compiler	knows	nothing	about	fwdDeclClass.	It	doesn’t	know	whether	fwdDeclClass	has
a	default	constructor	or	not.	Now	if	you	just	include	“fwdDeclClass.cpp”	to	main.cpp	the
compiler	errors	will	be	gone	(usually	you	would	have	fwdDeclClass	in	a	.h	header	file).

#include<iostream>

using	namespace	std;

#include	“fwdDeclClass.cpp”

	

class	simpleClass

{

public:

fwdDeclClass	*fwdDeclClassPtr;

fwdDeclClass	fwdDeclClassObj;

	

simpleClass(int	value)	:	fwdDeclClassObj()

{

fwdDeclClassPtr	=	new	fwdDeclClass();

}

	

~simpleClass()

{

delete	fwdDeclClassPtr;

}

};

	

int	main(int	argc,	char**	argv)

{

simpleClass	simpleClassObj;

return	0;

}

	

fwdDeclClass	cosntructor

fwdDeclClass	cosntructor

	

Before	we	finish	this	topic	off	let	me	ask	this.	What	if	we	have	an	undefined	function	in
the	class?	We	saw	earlier	that	if	we	call	this	function,	then	we’d	have	a	linker	error.	But
what	if	we	don’t	call	this	function	in	the	code?	Would	there	still	be	errors?	Let’s	find	out
quickly.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

public:

int	var;

	

simpleClass(int	value)

{

var	=	value;

memberFunc(var);	//	<—	Line	A

}

	

void	memberFunc(int	var);

};

	

int	main(int	argc,	char**	argv)

{

simpleClass(10);

return	0;

}

	

Try	compiling	and	then	running	the	code	above.	You’d	see	that	it	compiles	fine	but	does
not	link.	That	is	because	we	have	declared	the	memberFunc	in	the	class	so	the	compiler	is
aware	of	it.	But	there	is	a	linker	error	and	we	know	why.	Because	there	is	no	definition	for
the	function.	Now	what	would	happen	if	we	comment	out	line	“A”?	That	is,	we	don’t	call
our	memberFunc	 anywhere	 in	 the	 code.	 You	will	 see	 that	 neither	 the	 compiler	 nor	 the
linker	has	any	problems.	It	compiles	and	runs.	So	you	see,	if	we	are	not	calling	a	function
we	 don’t	 need	 to	 provide	 its	 definition.	 It	 is	 when	 we	 call	 them	 that	 the	 linker	 starts
looking	for	the	implementation.

Did	you	notice	something	odd	about	the	code	above?	Did	you	notice	that	the	declaration
of	memberFunc	 is	 after	 the	 call	 to	 the	 function	 in	 the	 constructor?	Shouldn’t	we	get	 an
“identifier	not	found”	compiler	error,	because	the	compiler	 is	not	aware	of	memberFunc
when	 in	 the	 constructor?	Well,	 in	 C++,	 classes	 are	 compiled	 differently.	 The	 compiler
actually	goes	through	the	class	twice.	The	first	time	it	will	look	for	all	of	the	declarations
(including	 defined	 ones)	 available,	 and	 then	 in	 the	 next	 round	 it	 will	 perform	 the
compilation.

So	 those	are	 the	very	fundamentals	of	 forward	declaration	and	 linking.	You	see	forward
declaration	doesn’t	always	work.	It	only	works	when	the	declaration	provides	the	compiler
enough	information	to	compile.

Topic	10

Copy	Constructor	and	Object	Cloning
We	discussed	copy	constructors	before	but	in	this	topic	we’ll	look	at	their	functionality	in
more	detail	and	see	how	we	can	clone	objects.

Class	member	copy
Let’s	start	simple.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

public:

int	val;

	

simpleClass(int	value)

{

val	=	value;

cout	<<	“SimpleClass	constructor:	“	<<	val	<<	endl;

}

};

	

	

class	anotherClass

{

public:

int	var;

int*	varPtr;

simpleClass	simpleObj;

	

anotherClass(int	value)	:	var(value),	varPtr(&var),	simpleObj(value)

{

cout	<<	“anotherClass	constructor:	“	<<	var	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	anotherObj1(10);

anotherClass	anotherObj2(anotherObj1);

	

cout	<<	endl;

cout	<<	“anotherObject2.simpleObj.val:	“	<<	anotherObj2.simpleObj.val	<<	endl;

cout	<<	“anotherObject2.var:	“	<<	anotherObj2.var	<<	endl;

cout	<<	“*anotherObject2.varPtr:	“	<<	*anotherObj2.varPtr	<<	endl;

return	0;

}

	

SimpleClass	constructor:	10

anotherClass	constructor:	10

	

anotherObject2.simpleObj.var1:	10

anotherObject2.var:	10

*anotherObject2.varPtr:	10

	

We	 aren’t	 doing	 much	 here.	 We	 have	 two	 classes,	 simpleClass	 and	 anotherClass.
simpleClass	 is	 a	member	 of	anotherClass.	 There	 is	 an	 int	 pointer	 in	 anotherClass	 that
points	to	its	own	var.	We	are	instantiating	anotherObj1	and	then	use	that	instance	to	create
anotherObj2.	We	print	 out	 the	values	of	anotherObj2	 and	we	 see	 that	 it	 has	 copied	 the
correct	values	for	not	only	anotherClass	member	but	also	the	simpleClass::val.	Everything
looks	 nice	 and	 dandy.	 The	 compiler	 generated	 copy	 constructor	 seems	 to	 have	 done	 a
superb	job,	or	has	it?

Actually,	it	is	an	absolute	disaster.	Let’s	just	print	out	the	pointers	of	the	two	objects	and
you	will	see.

…

…

int	main(int	argc,	char**	argv)

{

anotherClass	anotherObj1(10);

anotherClass	anotherObj2(anotherObj1);

	

cout	<<	endl;

cout	<<	“anotherObject1.varPtr:	“	<<	anotherObj1.varPtr	<<	endl;

cout	<<	“anotherObject2.varPtr:	“	<<	anotherObj2.varPtr	<<	endl;

return	0;

}

	

SimpleClass	constructor:	10

anotherClass	constructor:	10

	

anotherObject1.varPtr:	0029FD90

anotherObject2.varPtr:	0029FD90

	

Here	we	are	printing	out	the	pointer	addresses,	not	what	it	points	to	as	we	did	before.	And
you	see	they	are	the	same.	What	does	that	mean?	Yes,	it	means	they	are	both	pointing	to
the	 same	 variable!	 Can	 you	 see	 how	 this	 is	 absolutely	 not	 what	 we’d	 want?	What	 we
wanted	was	just	to	copy	the	values	of	anotherObj1,	but	we	wanted	an	independent	object.
Not	one	that	is	tied	to	the	original.	Can	you	see	how	this	can	go	wrong	in	so	many	ways?

Let’s	see	some	examples.	(I	have	omitted	the	class	definitions.	They	do	not	change.)

Disaster	#1:

int	main(int	argc,	char**	argv)

{

anotherClass	anotherObj1(10);

anotherClass	anotherObj2(anotherObj1);

	

cout	<<	endl;

cout	<<	“anotherObject1.var:	“	<<	anotherObj1.var	<<	endl;

cout	<<	“*anotherObject1.varPtr:	“	<<	*anotherObj1.varPtr	<<	endl;

cout	<<	“anotherObject2.var:	“	<<	anotherObj2.var	<<	endl;

cout	<<	“*anotherObject2.varPtr:	“	<<	*anotherObj2.varPtr	<<	endl	<<	endl;

	

anotherObj1.var	=	20;

	

cout	<<	“anotherObject1.var:	“	<<	anotherObj1.var	<<	endl;

cout	<<	“*anotherObject1.varPtr:	“	<<	*anotherObj1.varPtr	<<	endl;

cout	<<	“anotherObject2.var:	“	<<	anotherObj2.var	<<	endl;

cout	<<	“*anotherObject2.varPtr:	“	<<	*anotherObj2.varPtr	<<	endl	<<	endl;

return	0;

}

	

anotherObject1.var:	10

*anotherObject1.varPtr:	10

anotherObject2.var:	10

*anotherObject2.varPtr:	10

	

anotherObject1.var:	20

*anotherObject1.varPtr:	20

anotherObject2.var:	10

*anotherObject2.varPtr:	20

	

anotherObject1.var:	30

*anotherObject1.varPtr:	30

anotherObject2.var:	10

*anotherObject2.varPtrPtr:	30

	

In	the	first	part	of	the	printout	we	see	that	var	of	both	objects	have	a	value	of	10,	which	is
what	we	expect,	and	the	two	dereferenced	pointers	are	also	10s.	So	far	things	look	right.
Then	we	see	how	things	go	horribly	wrong	in	the	second	part	of	the	printout.	What	we	do
is	to	change	var	of	anotherObj1	to	20.	What	we	would	expect	is	varPtr	of	anotherObj1	to
have	a	value	of	20,	and	we	expect	absolutely	no	change	 in	anotherObj2.	But	 that	 is	not
what	we	 are	 seeing.	 Then	 in	 the	 third	 part,	 we	 dereference	 varPtr	 of	anotherObj2	 and
change	the	value.	And	this	changed	the	var	of	anotherObj1.	This	is	madness!

So	these	two	objects	are	acting	completely	against	our	expectations.	varPtr	is	not	pointing
to	 var	 of	 this	 object.	 It	 is	 pointing	 to	 var	 of	 anotherObj1.	 That	 means	 every	 time	 we
change	varPtr	of	one	object,	it	affects	the	other	too.	Why	is	this	happening	then?

It	 is	 because	 the	 compiler	 generated	 copy	 constructor	 has	 done	 a	 ‘bit-wise’	 copy.	 That
means	 the	 copy	 constructor	 has	 copied	 the	 anotherObj1	 to	 anotherObj2,	 bit-to-bit.
Whatever	 the	 bits	 were	 in	 anotherObj1.var	 was	 copied	 to	 anotherObj2.var2	 memory
space.	And	the	same	for	varPtr.	It	has	basically	done	a	memcopy.	The	compiler	generated
copy	constructor	could	very	well	be	of	the	form:

anotherClass(const	anotherClass&	objToCopy)

{

std::memcpy(this,	&objToCopy,	sizeof(anotherClass));

}

	

Another	clue	should	be	the	constructor	printouts.	See,	in	the	first	example	there	was	only
one	 call	 to	 each	 constructor	 of	 the	 classes.	That	means	when	we	 copied	 the	 object,	 the
constructor	was	never	called.	There	are	cases	where	this	is	fine.	But	this	is	absolutely	not
right	when	we	have	a	pointer.	You	see	 the	pointer	 is	 the	 root	cause	of	all	 this	madness.
Both	varPtr’s	point	to	var	of	anotherObj1.	Here’s	another	way	that	this	can	go	wrong:

Disaster	#2:

…

…

int	main(int	argc,	char**	argv)

{

anotherClass*	anotherPtr1	=	new	anotherClass(10);

anotherClass*	anotherPtr2	=	new	anotherClass(*anotherPtr1);

	

cout	<<	endl;

cout	<<	“anotherPtr1->var:	“	<<	anotherPtr1->var	<<	endl;

cout	<<	“*anotherPtr1->varPtr:	“	<<	*anotherPtr1->varPtr	<<	endl;

cout	<<	“anotherPtr2->var:	“	<<	anotherPtr2->var	<<	endl;

cout	<<	“*anotherPtr2->varPtr:	“	<<	*anotherPtr2->varPtr	<<	endl	<<	endl;

	

delete	anotherPtr1;

	

cout	<<	“anotherPtr2->var:	“	<<	anotherPtr2->var	<<	endl;

cout	<<	“*anotherPtr2->varPtr:	“	<<	*anotherPtr2->varPtr	<<	endl	<<	endl;

return	0;

}

	

anotherPtr1->var2:	10

*anotherPtr1->var2Ptr:	10

anotherPtr2->var2:	10

*anotherPtr2->var2Ptr:	10

	

anotherPtr2->var2:	10

*anotherPtr2->var2Ptr:	-572662307

	

We	 are	 using	 pointers	 here.	 It’s	 easy	 to	 see	 what’s	 going	 wrong	 here.	 varPtr	 of
anotherPtr2	is	pointing	to	var	of	anotherPtr1	object.	So	when	we	delete	anotherPtr1,	the
variable	anotherPtr->varPtr	was	pointing	to	was	deleted.	We	are	dereferencing	a	deleted
pointer.	This	has	undefined	behavior.

So	you	see	why	it	is	very	important	to	pay	special	attention	to	the	copy	constructor,	and	of
course	 the	 assignment	 operator,	 which	 does	 a	 similar	 thing.	 Never	 rely	 on	 compiler
generated	functions	to	do	what	you	are	expecting	them	to	do.	Let’s	fix	this	example.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

public:

int	val;

	

simpleClass(int	value)	:	val(value)

{

cout	<<	“SimpleClass	constructor:	“	<<	val	<<	endl;

}

	

simpleClass(const	simpleClass&	objToCopy)	:	val(objToCopy.val)

{

cout	<<	“SimpleClass	copy	constructor:	“	<<	endl;

}

};

	

class	anotherClass

{

public:

int	var;

int*	varPtr;

simpleClass	simpleObj;

	

anotherClass(int	value)	:	var(value),	varPtr(&var),	simpleObj(value)

{

cout	<<	“anotherClass	constructor:	“	<<	var	<<	endl;

}

	

anotherClass(const	anotherClass&	objToCopy)	:	var(objToCopy.var),	varPtr(&var),
simpleObj(objToCopy.simpleObj)

{

cout	<<	“anotherClass	copy	constructor:	“	<<	endl;

}

	

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	anotherObj1(10);

anotherClass	anotherObj2(anotherObj1);

	

cout	<<	endl;

cout	<<	“anotherObject1.var:	“	<<	anotherObj1.var	<<	endl;

cout	<<	“*anotherObject1.varPtr:	“	<<	*anotherObj1.varPtr	<<	endl;

cout	<<	“anotherObject2.var:	“	<<	anotherObj2.var	<<	endl;

cout	<<	“*anotherObject2.varPtr:	“	<<	*anotherObj2.varPtr	<<	endl	<<	endl;

	

anotherObj1.var	=	20;

	

cout	<<	“anotherObject1.var:	“	<<	anotherObj1.var	<<	endl;

cout	<<	“*anotherObject1.varPtr:	“	<<	*anotherObj1.varPtr	<<	endl;

cout	<<	“anotherObject2.var:	“	<<	anotherObj2.var	<<	endl;

cout	<<	“*anotherObject2.varPtr:	“	<<	*anotherObj2.varPtr	<<	endl	<<	endl;

	

return	0;

}

	

SimpleClass	constructor:	10

anotherClass	constructor:	10

SimpleClass	copy	constructor:

anotherClass	copy	constructor:

	

anotherObject1.var:	10

*anotherObject1.varPtr:	10

anotherObject2.var:	10

*anotherObject2.varPtr:	10

	

anotherObject1.var:	20

*anotherObject1.varPtr:	20

anotherObject2.var:	10

*anotherObject2.varPtr:	10

	

Everything	 is	 working	 as	 expected.	 There	 is	 no	 link	 between	 anotherObj1	 and
anotherObj2.	 They	 are	 two	 independent	 objects	 now.	 See	 how	 the	 copy	 constructor	 is
called	 for	 both	 simpleClass	 and	 anotherClass?	 This	 shows	 that	 the	 defined	 copy
constructor	 is	used	by	the	compiler	 to	do	the	copying.	If	you	haven’t	defined	it	 then	the
compiler	will	do	the	bit-wise	copy	itself.

It’s	 time	we	 can	 introduce	 the	words	 ‘shallow’	 copy	 and	 ‘deep’	 copy.	 Shallow	 copy	 is
what	the	compiler	generated	copy	constructor	would	do.	It	is	simply	just	copying	member
to	member,	bit-by-bit.	This	is	what	we	said	is	bit-wise	copy.	But	in	a	situation	like	when
we	have	pointers	or	dynamically	allocated	memory,	we	need	to	do	‘deep’	copy.	What	we
did	above	is	sort	of	deep	copy.	Do	not	expect	the	compiler	to	do	any	deep	copying	for	you.

Let’s	take	some	time	now	to	explore	the	behavior	of	the	copy	constructor.	See	how	I	called
the	simpleObj	 copy	constructor	 in	 the	 initializer	 list?	You	see	 this	must	be	called	 in	 the
initializer	 list.	The	 copy	 constructor	 cannot	 be	 called	within	 the	 body.	Sounds	 familiar?
Remember	we	 saw	 the	 same	 thing	with	calling	base	class	 constructors	or	member	class
constructors.	 Just	 remember	 the	 copy	 constructor	 is	 another	 kind	 of	 constructor.	 There

isn’t	 much	 difference.	 The	 copy	 constructor	 constructs	 the	 object	 by	 copying	 another
object.	But	both	types	of	constructors	do	the	same	thing;	construct	the	object.	So	the	rules
are	the	same.	Now	what	if	I	didn’t	call	the	copy	constructor	of	simpleObj	at	all?

…

…

class	anotherClass

{

public:

int	var;

int*	varPtr;

simpleClass	simpleObj;

	

anotherClass(int	value)	:	var(value),	varPtr(&var),	simpleObj(value)

{}

	

anotherClass(const	anotherClass&	objToCopy)

{

var	=	objToCopy.var;

varPtr	=	&var;

}

};

…

…

	

Why	 is	 the	 compiler	 complaining	 there	 is	 no	 default	 constructor?	 This	 is	 what	 we
discussed	earlier,	that	the	copy	constructor	is	another	constructor.	The	compiler	sees	that
the	 simpleClass	 has	 a	 constructor	 and	 so	 the	 compiler	 is	 now	 obliged	 to	 call	 that
constructor.	And	it	is	complaining	that	there	is	no	default	constructor.	Isn’t	this	the	same
thing	we	saw	when	calling	derived	class	constructors	or	classes	that	have	a	member	class
with	 a	 constructor?	 It’s	 the	 same	 thing.	 The	 compiler	 is	 trying	 to	 construct	 the
anotherClass	 object	 and	 there	 is	 a	 simpleClass	 object	 in	 it	 which	 has	 a	 constructor
defined.	And	now	the	compiler	needs	to	call	the	constructor	and	it	cannot	because	there	is
no	 default	 one.	 Remember	 what	 I	 said	 before,	 the	 compiler	 can	 only	 call	 default
constructors.	Let’s	look	at	two	different	scenarios	now.

1.	simpleClass	with	no	constructor:

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

public:

int	val;

};

	

class	anotherClass

{

public:

int	var;

int*	varPtr;

simpleClass	simpleObj;

	

anotherClass(int	value)	:	var(value),	varPtr(&var)

{}

	

anotherClass(const	anotherClass&	objToCopy)

{

var	=	objToCopy.var;

varPtr	=	&var;

}

	

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	anotherObj1(10);

anotherClass	anotherObj2(anotherObj1);

return	0;

}

	

This	compiles	and	runs	fine.	But	note	how	I	removed	both	 the	constructor	and	the	copy
constructor	from	simpleClass?	Because	had	I	 left	 the	copy	constructor	 there,	 I	would’ve
gotten:

Why	 two	errors?	One	for	 the	constructor	and	 the	other	 for	 the	copy	constructor.	So	 this
should	convince	you	that	for	the	compiler,	the	copy	constructor	is	a	constructor	that	takes

const	reference	argument.	Nothing	more	than	that.	This	brings	us	to	another	point:	if	you
ever	implement	the	copy	constructor	for	a	class	you	must	implement	the	constructor	too,
because	the	compiler	will	not	do	that	for	you	now.

2.	simpleClass	with	default	constructor:

Now	you	should	already	know	the	answer	to	this	one.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

public:

int	val;

	

simpleClass(int	value	=	99)	:	val(value)

{

cout	<<	“SimpleClass	constructor:	“	<<	val	<<	endl;

}

	

simpleClass(const	simpleClass&	objToCopy)

{

val	=	objToCopy.val;

	

cout	<<	“SimpleClass	copy	constructor:	“	<<	endl;

}

};

	

	

class	anotherClass

{

public:

int	var;

int*	varPtr;

simpleClass	simpleObj;

	

anotherClass(int	value)	:	var(value),	varPtr(&var),	simpleObj(value)

{}

	

anotherClass(const	anotherClass&	objToCopy)

{

var	=	objToCopy.var;

varPtr	=	&var;

}

	

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	anotherObj1(10);

anotherClass	anotherObj2(anotherObj1);

return	0;

}

	

SimpleClass	constructor:	10

SimpleClass	constructor:	99

	

It’s	easy	to	see	what	is	going	on	here.	Construction	of	anotherObj1	calls	the	constructor
with	the	argument	10.	The	copy	constructor	of	anotherObj2	calls	the	constructor	with	the
default	 argument,	 99.	As	we’ve	 seen	 before,	 a	 constructor	with	 a	 default	 argument	 is	 a
default	constructor.

OK,	 so	 we	 have	 defined	 a	 copy	 constructor	 that	 does	 what	 we	 want.	When	 we	 didn’t
define	the	copy	constructor	the	compiler	did	a	bit-wise	copy	and	landed	us	in	all	sorts	of
trouble.	What	if	we	define	a	constructor	that	does	nothing?	It	should	be	pretty	intuitive	but
let’s	see	for	ourselves	anyway.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

public:

int	val;

	

simpleClass(int	value	=	99)	:	val(value)

{

cout	<<	“SimpleClass	constructor:	“	<<	val	<<	endl;

}

	

simpleClass(const	simpleClass&	objToCopy)

{

val	=	objToCopy.val;

	

cout	<<	“SimpleClass	copy	constructor:	“	<<	endl;

}

};

	

	

class	anotherClass

{

public:

int	var;

int*	varPtr;

simpleClass	simpleObj;

	

anotherClass(int	value)	:	var(value),	varPtr(&var),	simpleObj(value)

{}

	

anotherClass(const	anotherClass&	objToCopy)

{

cout	<<	“anotherClass	copy	constructor”	<<	endl;

}

	

};

	

int	main(int	argc,	char**	argv)

{

anotherClass	anotherObj1(10);

anotherClass	anotherObj2(anotherObj1);

	

cout	<<	endl;

cout	<<	“anotherObject1.var:	“	<<	anotherObj1.var	<<	endl;

cout	<<	“*anotherObject1.varPtr:	“	<<	*anotherObj1.varPtr	<<	endl;

cout	<<	“anotherObject2.var:	“	<<	anotherObj2.var	<<	endl;

cout	<<	“*anotherObject2.varPtr:	“	<<	*anotherObj2.varPtr	<<	endl	<<	endl;

return	0;

}

	

SimpleClass	constructor:	10

SimpleClass	constructor:	99

anotherClass	copy	constructor

	

anotherObject1.var:	10

*anotherObject1.varPtr:	10

anotherObject2.var:	-858993460

	

There	is	no	telling	what	will	actually	happen.	One	thing	for	sure	is	that	this	code	will	not
run	 properly.	 Depending	 on	 the	 environment	 you’d	 probably	 be	 getting	 a	 runtime
exception	 at	 least.	 You	 see,	 when	 you	 didn’t	 implement	 any	 copying	 in	 the	 copy
constructor,	the	compiler	didn’t	do	anything.	So	the	var	and	varPtr	were	uninitialized	 in
anotherObj2.	And	we	tried	to	use	those	variables,	the	behavior	of	which	is	undefined.	We
are	being	reminded	again	how	the	copy	constructor	is	another	constructor.	If	you	define	it,
implement	the	full	functionality.	Because	once	you	define	it	the	compiler	completely	takes
its	hands	off	and	will	give	you	no	assistance.

Now	let’s	 look	at	how	the	copy	constructor	should	work	 in	a	derived	class.	 It’s	not	 that
much	different	from	what	we’ve	seen	so	far	so	let’s	go	through	it	quickly.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var;

int*	varPtr;

	

baseClass(int	value)	:	var(value),	varPtr(&var)

{}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	value)	:	baseClass(value)

{}

};

	

	

int	main(int	argc,	char**	argv)

{

derivedClass	derivedObj1(5);

derivedClass	derivedObj2(derivedObj1);

	

cout	<<	“redivedObj1.var:	“	<<	derivedObj1.var	<<	endl;

cout	<<	“redivedObj1.varPtr:	“	<<	derivedObj1.varPtr	<<	endl;

cout	<<	“redivedObj2.var:	“	<<	derivedObj2.var	<<	endl;

cout	<<	“redivedObj2.varPtr:	“	<<	derivedObj2.varPtr	<<	endl;

return	0;

}

	

redivedObj1.var:	5

redivedObj1.varPtr:	002DFD1C

redivedObj2.var:	5

redivedObj2.varPtr:	002DFD1C

	

Here	we	 have	 a	 base	 class	 and	 have	 derived	 a	 class	 from	 it.	 The	 base	 class	 has	 an	 int
variable	 and	 a	 pointer	 variable.	 Same	 as	 our	 examples	 earlier.	 No	 copy	 constructor	 is
defined.	So	the	compiler	is	doing	the	copying.	Looking	at	the	output,	we	are	certain	that
the	compiler	is	doing	shallow	copy.	It	is	bitwise	copy.	No	different	from	the	copying	we
saw	earlier.

Let’s	 define	 a	 copy	 constructor	 for	 the	derivedClass.	 Since	 it	 has	 nothing	 to	 copy	 in	 it
we’ll	leave	it	blank.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var;

int*	varPtr;

	

baseClass(int	value)	:	var(value),	varPtr(&var)

{

cout	<<	“baseClass	constructor”	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	value)	:	baseClass(value)

{}

	

derivedClass(const	derivedClass&	objToCopy)

{}

};

	

	

int	main(int	argc,	char**	argv)

{

derivedClass	derivedObj1(5);

derivedClass	derivedObj2(derivedObj1);

	

cout	<<	“redivedObj1.var:	“	<<	derivedObj1.var	<<	endl;

cout	<<	“redivedObj1.varPtr:	“	<<	derivedObj1.varPtr	<<	endl;

cout	<<	“redivedObj2.var:	“	<<	derivedObj2.var	<<	endl;

cout	<<	“redivedObj2.varPtr:	“	<<	derivedObj2.varPtr	<<	endl;

return	0;

}

	

By	 now	 you	 should’ve	 anticipated	 this	 error.	 You	 know	 what	 is	 happening.	 We	 are
defining	a	copy	constructor	for	 the	derived	class	but	not	calling	any	copy	constructor	 in
the	base	class.	The	compiler	needs	to	construct	the	base	class	so	it	tries	to	call	the	default
constructor.	Remember	the	compiler	can	only	call	the	default	constructor	by	itself.	It	finds
no	default	 constructor	 defined	 and	hence	 the	 error.	Let’s	 fix	 this	 code	 and	 see	how	 this
should	be	written.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var;

int*	varPtr;

	

baseClass(int	value)	:	var(value),	varPtr(&var)

{

cout	<<	“baseClass	constructor”	<<	endl;

}

	

baseClass(const	baseClass&	objToCopy)	:	var(objToCopy.var),	varPtr(&var)

{

cout	<<	“baseClass	copy	constructor”	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	value)	:	baseClass(value)

{

cout	<<	“derivedClass	constructor”	<<	endl;

}

	

derivedClass(const	derivedClass&	objToCopy)	:	baseClass(objToCopy)

{

cout	<<	“derivedClass	copy	constructor”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

derivedClass	derivedObj1(5);

derivedClass	derivedObj2(derivedObj1);

	

cout	<<	endl;

cout	<<	“redivedObj1.var:	“	<<	derivedObj1.var	<<	endl;

cout	<<	“redivedObj1.varPtr:	“	<<	derivedObj1.varPtr	<<	endl;

cout	<<	“redivedObj2.var:	“	<<	derivedObj2.var	<<	endl;

cout	<<	“redivedObj2.varPtr:	“	<<	derivedObj2.varPtr	<<	endl;

return	0;

}

	

baseClass	constructor

derivedClass	constructor

baseClass	copy	constructor

derivedClass	copy	constructor

	

redivedObj1.var:	5

redivedObj1.varPtr:	0017FE88

redivedObj2.var:	5

redivedObj2.varPtr:	0017FE78

	

A	copy	constructor	of	a	derived	class	is	no	different	from	a	derived	class	constructor.	You
need	to	call	the	base	class	copy	constructor	in	the	initializer	list.	Never	in	the	body.	If	you
tried	to	do	this:

derivedClass(const	derivedClass&	objToCopy)

{

baseClass(objToCopy);

cout	<<	“derivedClass	copy	constructor”	<<	endl;

}

	

The	 compiler	 will	 complain	 that	 there	 is	 no	 default	 constructor	 for	 baseClass.	 As	 you
already	know,	 this	 is	because	 the	compiler	now	needs	 to	call	 a	constructor	 to	create	 the
object	and	it	cannot	find	one.	What	if	we	had	a	default	constructor	for	baseClass?	As	we
discussed	 in	 the	 topic	 on	 object	 construction,	 in	 that	 case	 the	 compiler	 treats
“baseClass(objToCopy)”	as	a	declaration	of	objToCopy	of	type	baseClass	and	complains
about	the	redefinition	of	‘objToCopy’.

Copying	consts	and	references
In	 the	 topic	 on	 constructors	 we	 discovered	 that	 when	 we	 have	 a	 const	 or	 a	 reference
member,	variables	behave	a	 little	differently.	 In	 that	case	we	must	provide	a	constructor
and	 we	 must	 initialize	 those	 variables	 in	 the	 initializer	 list.	 What	 about	 the	 copy
constructor?

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var;

int*	varPtr;

const	float	floatVar;

int	&intRefVar;

	

baseClass(int	value)	:	var(value),	varPtr(&var),	floatVar(value),	intRefVar(var)

{

cout	<<	“baseClass	constructor”	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	value)	:	baseClass(value)

{

cout	<<	“derivedClass	constructor”	<<	endl;

}

	

derivedClass(const	derivedClass&	objToCopy)	:	baseClass(objToCopy)

{

cout	<<	“derivedClass	copy	constructor”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

derivedClass	derivedObj1(5);

derivedClass	derivedObj2(derivedObj1);

	

cout	<<	endl;

cout	<<	“derivedObj1.var:	“	<<	derivedObj1.var	<<	endl;

cout	<<	“derivedObj1.varPtr:	“	<<	derivedObj1.varPtr	<<	endl;

cout	<<	“derivedObj1.intRefVar:	“	<<	derivedObj1.intRefVar	<<	endl;

cout	<<	“derivedObj2.var:	“	<<	derivedObj2.var	<<	endl;

cout	<<	“derivedObj2.varPtr:	“	<<	derivedObj2.varPtr	<<	endl;

cout	<<	“derivedObj2.intRefVar:	“	<<	derivedObj2.intRefVar	<<	endl;

	

derivedObj1.intRefVar	=	99;

cout	<<	“redivedObj2.intRefVar:	“	<<	derivedObj2.intRefVar	<<	endl	<<	endl;

return	0;

}

	

baseClass	constructor

derivedClass	constructor

derivedClass	copy	constructor

	

redivedObj1.var:	5

redivedObj1.varPtr:	0043FEB0

redivedObj1.intRefVar:	5

redivedObj2.var:	5

redivedObj2.varPtr:	0043FEB0

redivedObj2.intRefVar:	5

	

redivedObj2.intRefVar:	99

	

So	apparently	the	compiler	has	no	problem	with	the	fact	that	we	are	not	defining	a	copy
constructor	to	explicitly	initialize	the	const	and	the	reference.	You	can	see	from	the	output
that	the	compiler	has	done	a	shallow	copy.	And	you	know	the	consequences	of	that.	The
references	of	 the	 two	objects	are	 tied.	Changing	one	affects	 the	other	object.	This	 is	 the
same	 issue	we	saw	earlier	with	 the	pointer.	So	 there	 is	a	 subtle	difference	here	with	 the
copy	constructor	and	the	constructor.	The	compiler	is	happy	to	just	copy	the	values	of	the
object	passed	to	it	to	initialize	the	const	and	reference.

Default	copy	constructor	call
OK,	before	we	leave	this	section,	did	something	about	the	previous	code	feel	odd	to	you?
Did	you	notice	how	we	are	explicitly	calling	the	copy	constructor	of	the	baseClass	from
derivedClass,	but	we	haven’t	defined	any	copy	constructor	in	baseClass?	Yet	the	compiler
had	 no	 complaints.	 Although	 when	 we	 did	 not	 call	 any	 baseClass	 constructors,	 the
compiler	was	 complaining	 about	 no	 default	 constructor.	What’s	 going	 on	 here	with	 the
compiler?	Well,	this	is	just	how	it	is.	When	we	do	not	explicitly	call	the	copy	constructor,
the	 compiler	 will	 always	 attempt	 to	 call	 the	 default	 constructor.	 So	 now	 we	 have
established	 the	 fact	 that	 unless	 told	 otherwise,	 the	 compiler	 will	 always	 try	 to	 call	 the
default	constructor.	But	a	copy	constructor	is	actually	generated	by	the	compiler.	Since	we
did	 not	 define	 a	 copy	 constructor,	 the	 compiler	 did	 that	 for	 us.	A	 copy	 constructor	 that
does	bitwise	copy.	But	the	compiler	just	does	not	bother	to	call	it.	If	we	don’t	ask	for	the
copy	constructor	(in	 the	 initializer	 list),	 it	will	 just	call	 the	default	constructor.	But	what
happens	when	we	call	the	copy	constructor	explicitly	is	the	compiler	will	call	its	generated
copy	constructor.	We	need	to	 tell	 the	compiler	 to	use	 the	one	it	generated.	But	 the	same
rules	apply	when	we	define	the	copy	constructor.	If	we	define	it,	we	need	to	initialize	the
const	and	the	reference.	Otherwise	if	we	just	do	this:

class	baseClass

{

public:

int	var;

int*	varPtr;

const	float	floatVar;

int	&intRefVar;

	

baseClass(int	value)	:	var(value),	varPtr(&var),	floatVar(value),	intRefVar(var)

{

cout	<<	“baseClass	constructor”	<<	endl;

}

	

baseClass(const	baseClass&	objToCopy)	:	var(objToCopy.var),	varPtr(&var)

{

cout	<<	“derivedClass	copy	constructor”	<<	endl;

}

};

	

we	get	our	all	too	familiar	error:

Now	we	are	on	to	the	last	part.	First	we	talked	about	copying	when	we	have	a	class	type
member.	Then	we	discussed	about	copying	a	class	hierarchy.	Now	let’s	see	how	to	handle
when	we	have	a	member	class	which	has	a	hierarchy.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var;

int*	varPtr;

const	float	floatVar;

int	&intRefVar;

	

baseClass(int	value)	:	var(value),	varPtr(&var),	floatVar(value),	intRefVar(var)

{

cout	<<	“baseClass	constructor”	<<	endl;

}

	

baseClass(const	baseClass&	objToCopy)	:	var(objToCopy.var),	varPtr(&var),	floatVar(objToCopy.floatVar),
intRefVar(var)

{

cout	<<	“baseClass	copy	constructor”	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	value)	:	baseClass(value)

{

cout	<<	“derivedClass	constructor”	<<	endl;

}

	

derivedClass(const	derivedClass&	objToCopy)	:	baseClass(objToCopy)

{

cout	<<	“derivedClass	copy	constructor”	<<	endl;

}

};

	

class	theOtherClass

{

public:

derivedClass	derivedClassObj;

	

theOtherClass(int	value)	:	derivedClassObj(value)

{

cout	<<	“theOtherClass	constructor”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

cout	<<	“–-	Object	construction	–-”	<<	endl;

theOtherClass	theOtherClassObj1(5);

cout	<<	endl;

cout	<<	“–-	Object	copy	–-”	<<	endl;

theOtherClass	theOtherClassObj2(theOtherClassObj1);

return	0;

}

	

–-	Object	construction	–-

baseClass	constructor

derivedClass	constructor

theOtherClass	constructor

	

–-	Object	copy	–-

baseClass	copy	constructor

derivedClass	copy	constructor

	

You	 can	 clearly	 see	 in	 the	 output	 the	 construction	 of	 the	 object	 and	 the	 copying	 of	 the
object.	When	we	copied	the	object	the	compiler	properly	called	the	copy	constructors	of

baseClass	 and	derivedClass.	 So	 you	 see,	when	we	 have	 the	 copy	 constructors	 properly
defined,	 we	 don’t	 need	 to	 take	 any	 extra	 care	 when	 we	 have	 a	 member	 object	 with	 a
hierarchy.	 Note	 that	 we	 didn’t	 define	 any	 copy	 constructor	 for	 theOtherClass.	 The
compiler	 generated	 one	 for	 us	 and	 it	 correctly	 called	 the	 copy	 constructor	 defined	 in
derivedClass.	 It	 did	 not	 do	 a	 shallow	 copy.	 What	 if	 derivedClass	 didn’t	 have	 a	 copy
constructor	defined?

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var;

int*	varPtr;

const	float	floatVar;

int	&intRefVar;

	

baseClass(int	value)	:	var(value),	varPtr(&var),	floatVar(value),	intRefVar(var)

{

cout	<<	“baseClass	constructor”	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	value)	:	baseClass(value)

{

cout	<<	“derivedClass	constructor”	<<	endl;

}

};

	

	

class	theOtherClass

{

public:

derivedClass	derivedClassObj;

	

theOtherClass(int	value)	:	derivedClassObj(value)

{

cout	<<	“theOtherClass	constructor”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

cout	<<	“–-	Object	construction	–-”	<<	endl;

theOtherClass	theOtherClassObj1(5);

	

cout	<<	endl;

cout	<<	“–-	Object	copy	–-”	<<	endl;

theOtherClass	theOtherClassObj2(theOtherClassObj1);

	

cout	<<	endl;

cout	<<	“–-	Print	varPtr	–-”	<<	endl;

cout	<<	“theOtherClassObj1.derivedClassObj.varPtr:	“	<<	theOtherClassObj1.derivedClassObj.varPtr	<<	endl;

cout	<<	“theOtherClassObj2.derivedClassObj.varPtr:	“	<<	theOtherClassObj2.derivedClassObj.varPtr	<<	endl;

	

return	0;

}

	

–-	Object	construction	–-

baseClass	constructor

derivedClass	constructor

theOtherClass	constructor

	

–-	Object	copy	–-

	

–-	Print	varPtr	–-

theOtherClassObj1.derivedClassObj.varPtr:	003AF740

theOtherClassObj2.derivedClassObj.varPtr:	003AF740

	

You	 see,	 the	 rules	 don’t	 change.	 The	 compiler	 generated	 copy	 constructor	 sees	 that
derivedClass	has	not	provided	any	copy	constructor,	so	it	does	a	shallow	copy.	We	see	that
from	the	two	varPtr‘s.	They	are	the	same.

We	looked	at	a	lot	of	different	scenarios.	Let’s	summarize	the	compiler	copy	mechanism.

If	 a	 copy	 constructor	 is	 not	 defined	 the	 compiler	will	 generate	 one.	 This	 copy
constructor	will	do	a	bit-wise	copy	(we	will	see	when	this	is	not	the	case).
If	a	copy	constructor	is	explicitly	defined	the	compiler	will	not	generate	any	type
of	constructor.	Not	even	the	default	constructor.

But	 if	 a	 constructor	 is	 defined,	 but	 not	 a	 copy	 constructor,	 the	 compiler	 will
generate	a	copy	constructor.
If	a	copy	constructor	is	defined,	the	member	class	or	base	class	copy	constructor
must	be	called	in	the	initializer	list.
If	 the	 copy	 constructor	 does	 not	 call	 the	 member	 class	 or	 base	 class	 copy
constructor	 in	 the	 initializer	 list,	 the	 compiler	 will	 try	 to	 call	 the	 default
constructor	of	the	member	class	or	base	class.
If	 a	 copy	 constructor	 is	 defined	 and	 calls	 the	member	 class	 or	 base	 class	 copy
constructor	 in	 the	 initializer	 list,	 the	 compiler	will	 call	 the	 copy	 constructor.	 In
this	case,	if	a	copy	constructor	is	not	defined	in	the	member	class	or	base	class,
the	compiler	generated	copy	constructor	will	be	called.
The	compiler	generated	copy	constructor	will	always	call	the	copy	constructor	of
the	member	class	or	base	class.
Remember,	 a	 copy	 constructor	 is	 always	 generated	 by	 the	 compiler	 (if	 not
defined).	Always.	But	whether	the	compiler	calls	the	copy	constructor	depends	on
how	and	if	it	is	called.

So	I	assume	that	list	made	some	sense.	There	aren’t	a	lot	of	rules.	The	easiest	way	to	deal
with	this	is	to	implement	your	own	copy	constructor.

Object	cloning
So	far	we	saw	how	to	copy	objects.	Whether	they	are	derived	classes	or	member	classes.
But	the	situation	is	a	bit	complicated	when	we	are	dealing	with	pointers.	Look	at	this	class
hierarchy.

#include<iostream>

using	namespace	std;

	

class	classA

{

public:

int	classAVar;

	

classA(int	value)	:	classAVar(value)

{

cout	<<	“classAVar	constructor”	<<	endl;

}

};

	

class	classB	:	public	classA

{

public:

int	classBVar;

	

classB(int	value1,	int	value2)	:	classA(value1),	classBVar(value2)

{

cout	<<	“classB	constructor”	<<	endl;

}

};

	

class	classC	:	public	classB

{

public:

int	classCVar;

	

classC(int	value1,	int	value2,	int	value3)	:	classB(value1,	value2),	classCVar(value3)

{

cout	<<	“classC	constructor”	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

classA*	classAptr1	=	new	classC(1,	2,	3);

return	0;

}

	

No	copy	constructor	is	defined	for	these	classes.	That	is	fine.	The	compiler	generated	ones
do	 the	 job.	 Note	 how	 our	 pointer	 is	 of	 type	 classA	 but	 it	 has	 a	 classC	 object.	 This	 is
usually	what	you	would	see	when	handling	pointers	and	class	hierarchies.	Pointers	let	us
use	polymorphism.	Now	the	problem	is,	how	can	we	copy	classAptr	 to	another	pointer?
You	could	try	this:

int	main(int	argc,	char**	argv)

{

classA*	classAptr1	=	new	classC(1,	2,	3);

classA*	classAptr2	=	new	classC(*classAptr1);

return	0;

}

	

But	this	wont	work.

The	compiler	cannot	convert	a	classA	 type	 to	a	classC	 reference.	The	only	way	we	can
make	the	compiler	happy	is	if	we	instantiate	a	new	classA	type.	Let’s	do	that	and	see	what
happens.

#include<iostream>

using	namespace	std;

	

class	classA

{

public:

int	classAVar;

	

classA(int	value)	:	classAVar(value)

{}

	

virtual	void	printVars()

{

cout	<<	“classAVar:	“	<<	classAVar	<<	endl;

}

};

	

class	classB	:	public	classA

{

public:

int	classBVar;

	

classB(int	value1,	int	value2)	:	classA(value1),	classBVar(value2)

{}

	

virtual	void	printVars()

{

cout	<<	“classAVar:	“	<<	classAVar	<<	endl;

cout	<<	“classBVar:	“	<<	classBVar	<<	endl;

}

};

	

class	classC	:	public	classB

{

public:

int	classCVar;

	

classC(int	value1,	int	value2,	int	value3)	:	classB(value1,	value2),	classCVar(value3)

{}

	

virtual	void	printVars()

{

cout	<<	“classAVar:	“	<<	classAVar	<<	endl;

cout	<<	“classBVar:	“	<<	classBVar	<<	endl;

cout	<<	“classCVar:	“	<<	classCVar	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

classA*	classAptr1	=	new	classC(1,	2,	3);

cout	<<	“classAptr1->printVars()”	<<	endl;

classAptr1->printVars();	cout	<<	endl;

	

classA*	classAptr2	=	new	classA(*classAptr1);

cout	<<	“classAptr2->printVars()”	<<	endl;

classAptr2->printVars();

return	0;

}

	

classAptr1->printVars()

classAVar:	1

classBVar:	2

classCVar:	3

	

classAptr2->printVars()

classAVar:	1

	

Obviously	 this	 is	not	what	we	want.	classAptr2	 is	 just	 a	classA	 object.	The	called	copy
constructor	 is	 of	 classA	 and	 the	 copy	 constructor	 only	 receives	 the	 classA	 part	 of	 the
object.	So	it	only	can	copy	that	part.	How	are	we	going	to	fix	this?	For	starters,	we	need
something	other	than	copy	constructors.	Because	we	now	need	to	‘clone’	the	object.

So	we	now	understand	that	we	need	a	new	way	to	do	the	copying,	or	 the	cloning.	What
would	this	method	need	to	do?	Let’s	call	this	function	clone.

This	is	what	clone	needs	to	be:

This	function	needs	to	support	a	cloning	of	a	hierarchy	of	a	class,	so	it	needs	to	be
a	virtual	method.
This	function	should	return	a	pointer	to	a	new	cloned	object.
This	function	needs	to	copy	its	values	to	the	new	cloned	object.

This	is	how	simple	this	function	is:

virtual	classType*	clone()

{

return	new	classType(*this);

}

	

Think	about	 it.	All	we	need	 to	do	 is	 to	 return	a	new	object	 that	 is	a	copy	of	 itself.	And
what	function	does	that?	Yes,	the	copy	constructor.	So	what	we	are	doing	here	is	calling
the	 copy	 constructor	 to	 create	 a	 new	 object	 and	 returning	 it.	 The	 trick	 is	 we	 need	 to
implement	this	in	each	derived	class.

#include<iostream>

using	namespace	std;

	

class	classA

{

public:

int	classAVar;

	

classA(int	value)	:	classAVar(value)

{}

	

virtual	void	printVars()

{

cout	<<	“classAVar:	“	<<	classAVar	<<	endl;

}

	

virtual	classA*	clone()

{

return	new	classA(*this);

}

};

	

class	classB	:	public	classA

{

public:

int	classBVar;

	

classB(int	value1,	int	value2)	:	classA(value1),	classBVar(value2)

{}

	

virtual	void	printVars()

{

cout	<<	“classAVar:	“	<<	classAVar	<<	endl;

cout	<<	“classBVar:	“	<<	classBVar	<<	endl;

}

	

virtual	classB*	clone()

{

return	new	classB(*this);

}

};

	

class	classC	:	public	classB

{

public:

int	classCVar;

	

classC(int	value1,	int	value2,	int	value3)	:	classB(value1,	value2),	classCVar(value3)

{}

	

virtual	void	printVars()

{

cout	<<	“classAVar:	“	<<	classAVar	<<	endl;

cout	<<	“classBVar:	“	<<	classBVar	<<	endl;

cout	<<	“classCVar:	“	<<	classCVar	<<	endl;

}

	

virtual	classC*	clone()

{

return	new	classC(*this);

}

};

	

	

int	main(int	argc,	char**	argv)

{

classA*	classAptr1	=	new	classC(1,	2,	3);

cout	<<	“classAptr1->printVars()”	<<	endl;

classAptr1->printVars();	cout	<<	endl;

	

classA*	classAptr2	=	classAptr1->clone();

cout	<<	“classAptr2->printVars()”	<<	endl;

classAptr2->printVars();

return	0;

}

	

classAptr1->printVars()

classAVar:	1

classBVar:	2

classCVar:	3

	

classAptr2->printVars()

classAVar:	1

classBVar:	2

classCVar:	3

	

Because	clone	is	virtual,	when	called	through	the	pointer,	it	calls	the	clone	of	the	correct
object	 type.	 And	 it	 calls	 the	 copy	 constructor	 of	 itself,	 which	 copies	 the	 entire	 object,
including	 the	 base	 classes.	 Remember	 we	 discussed	 how	 copy	 constructors	 of	 derived
classes	work?	They	always	need	to	copy	the	base	class	part.	By	the	way,	in	case	you	are
wondering	about	the	difference	in	a	clone’s	return	type	across	classes,	it	is	allowed	as	long
as	the	they	are	of	the	same	hierarchy.

This	 cloning	 mechanism	 is	 called	 ‘virtual	 copy	 pattern’	 and	 it	 is	 an	 example	 of	 deep
copying.

Trivial/	non-trivial	copy	constructors
Before	 we	 leave	 this	 section	 I	 need	 to	 mention	 about	 the	 trivial	 and	 non-trivial	 copy
constructors.	The	compiler	generated	copy	constructors	we	saw	for	 the	most	part	of	 this
discussion	are	‘trivial’	copy	constructors.	They	don’t	do	much	more	than	a	member-wise
copy.	 But	 the	 compiler	 can’t	 always	 do	 this.	 Especially	 in	 a	 program	 like	 the	 last	 one
where	 we	 had	 the	 virtual	 clone	 function.	 There	 are	 a	 few	 other	 cases	 when	 a	 copy
constructor	cannot	be	trivial	and	having	a	virtual	function	is	one	of	the	main	reasons.

You	 see,	when	a	 class	has	 a	virtual	 function,	 it	 has	 a	virtual	 table	pointer	 (vptr)	 and	an
associated	 virtual	 table	 (vtable).	We	 discuss	 this	 on	 the	 ‘virtual	mechanism’	 topic.	And
when	 there	 is	an	associated	vptr	 for	 the	object,	 it	 cannot	 simply	be	copied	 to	 the	newly
copy	 constructed	 class.	 The	 vtable	 and	 vptr	 need	 to	 be	 generated	 for	 each	 object
depending	on	 its	 type.	Now	you	might	wonder	why	 the	vptr	 cannot	 be	 the	 same	 as	 the

copying	object?	Well,	if	the	object	being	copied	and	object	being	constructed	are	both	of
the	same	inheritance	level,	then	you	can.	But	this	is	not	always	the	case.	For	example,	in
our	last	example,	a	classB	copy	constructor	has	the	following	form:

class	classB	:	public	classA

{

…

classB(const	classB&	objToCopy)

{

//	copy	object

}

};

We	need	to	consider	two	possibilities	here.

	

First	one,	both	objects	are	classB:

int	main(int	argc,	char**	argv)

{

classB	classBObj1	=	classBObj(1,	2);

classB	classBObj2(classBObj1);

return	0;

}

	

In	this	case,	yes,	you	can	have	the	same	vptr	and	vtable	for	both	the	objects.	They	are	of
same	type.

But	what	about	this	case?

int	main(int	argc,	char**	argv)

{

classC	classCObj	=	classCObj(1,	2,	3);

classB	classBObj(classCObj);

return	0;

}

	

Pass	the	objToCopy	as	a	reference;	it	gets	“sliced”	to	a	classB.	So	a	direct	bit-wise	copy
will	not	work	at	all.	This	is	why	when	there	is	a	virtual	function	the	copy	constructor	is
non-trivial.	 It	 needs	 to	 do	 more	 work	 than	 just	 simply	 copying	 bits.	 Having	 a	 virtual
function	 is	 just	 one	 case.	 There	 are	 a	 few	 other	 cases	 that	 require	 a	 non-trivial	 copy
constructor.

One	last	bit.	Although	I	talked	about	vptrs	and	vtables,	I	need	to	tell	you	that	this	concept

of	vptrs	and	vtables	are	not	specified	 in	 the	standard.	The	compiler	 is	 free	 to	 implement
the	virtual	mechanism	in	any	way	it	wants	(but	vptrs	and	vtables	are	the	most	used	way).
So	having	a	vptr	 is	 not	 a	 definite	 reason	 for	 a	 non-trivial	 copy	 constructor,	 although	 in
most	compilers	it	would	be.

So	if	the	class	needs	a	non-trivial	copy	constructor,	the	compiler	will	generate	that	for	you.
If	you	have	defined	a	copy	constructor,	 the	compiler	will	add	 the	non-trivial	part	before
the	 copy	 constructor	 body,	 such	 that	 properties	 like	 vptrs	 are	 correctly	 defined	 so	 you
don’t	need	to	worry	about	it.

	

Topic	11

Class	Member	Access
We	will	 discuss	 a	minor	 topic	 here.	 It	 is	 not	 complex	but	 could	 be	 a	 little	 confusing	 at
times	so	it	is	better	to	look	at	some	examples.

Let’s	get	things	going	with	an	example.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	baseClassVar;

int	commonVar;

	

baseClass(int	baseVal,	int	comVal)	:	baseClassVar(baseVal),	commonVar(comVal)

{}

	

void	printVals()

{

cout	<<	“baseClass::printVals()—>”	<<	endl;

cout	<<	“baseClass::baseClassVar-	“	<<	baseClassVar	<<	endl;

cout	<<	“baseClass::commonVar-	“	<<	commonVar	<<	endl;

}

};

	

	

class	derivedClass	:	public	baseClass

{

public:

int	derivedClassVar;

int	commonVar;

	

derivedClass(int	baseVal,	int	baseComVal,	int	derivedVal,	int	derivedComVal)	:	baseClass(baseVal,	baseComVal),
derivedClassVar(derivedVal),	commonVar(derivedComVal)

{}

	

void	printVals()

{

cout	<<	“derivedClass::printVals()”	<<	endl;

baseClass::printVals();

cout	<<	“derivedClass::derivedClassVar-	“	<<	derivedClassVar	<<	endl;

cout	<<	“derivedClass::commonVar-	“	<<	commonVar	<<	endl	<<	endl;

}

	

void	printAllVals()

{

cout	<<	“derivedClass::printAllVals()”	<<	endl;

cout	<<	“baseClass::baseClassVar-	“	<<	baseClassVar	<<	endl;

cout	<<	“baseClass::commonVar-	“	<<	baseClass::commonVar	<<	endl;

cout	<<	“derivedClass::derivedClassVar-	“	<<	derivedClassVar	<<	endl;

cout	<<	“derivedClass::commonVar-	“	<<	commonVar	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

derivedClass	derivedClassObj(1,	2,	3,	4);

derivedClassObj.printVals();

derivedClassObj.printAllVals();

return	0;

}

	

derivedClass::printVals()—>

baseClass::printVals

baseClass::baseClassVar-	1

baseClass::commonVar-	2

derivedClass::derivedClassVar-	3

derivedClass::commonVar-	4

	

derivedClass::printAllVals()—>

baseClass::baseClassVar-	1

baseClass::commonVar-	2

derivedClass::derivedClassVar-	3

derivedClass::commonVar-	4

	

Here	 we	 have	 a	 base	 class	 and	 a	 derived	 class.	 Each	 class	 has	 its	 own	 unique	 integer
variable	and	another	integer	variable	which	has	the	same	name.	Each	also	have	their	own

non-virtual	printVals	function.	These	are	the	take	aways:

It	is	possible	for	the	derived	class	to	have	its	own	member	variable	with	the	same
name	 as	 a	 base	 class	 member.	 When	 accessed,	 there	 is	 no	 ambiguity.	 The
compiler	chooses	the	one	in	the	enclosing	class.
The	derived	class	 can	access	 the	base	class	member	variables	 and	 functions	by
specifying	the	base	class	name	with	the	scope	resolution	operator.

Pretty	straightforward.	Nothing	complex	here.	Now	let’s	get	the	pointers	in!

…

…

int	main(int	argc,	char**	argv)

{

baseClass*	baseClassPtr	=	new	baseClass(1,	2);

baseClassPtr->printVals();	cout	<<	endl;

	

derivedClass*	derivedClassPtr	=	new	derivedClass(3,	4,	5,	6);

derivedClassPtr->printVals();

return	0;

}

	

baseClass::printVals()—>

baseClass::baseClassVar-	1

baseClass::commonVar-	2

	

derivedClass::printVals()—>

baseClass::printVals()—>

baseClass::baseClassVar-	3

baseClass::commonVar-	4

derivedClass::derivedClassVar-	5

derivedClass::commonVar-	6

	

Again,	nothing	special	here.	We	have	a	baseClass	pointer	with	a	baseClass	instance	and	a
derivedClass	 pointer	 with	 a	 derivedClass	 instance.	 Nothing	 much	 interesting	 going	 on
here.	Now	let’s	see	how	things	behave	when	we	have	different	pointer	and	instance	types.

	

…

…

int	main(int	argc,	char**	argv)

{

baseClass*	baseClassPtr	=	new	derivedClass(1,	2,	3,	4);

baseClassPtr->printAllVals();

return	0;

}

	

This	shouldn’t	come	as	a	surprise	but	it’s	good	to	validate	this	fact.	It	doesn’t	matter	which
type	the	instance	is.	The	compiler	does	not	care	what	type	of	object	the	pointer	is	pointing
to.	It	must	not.	Because	the	baseClassPtr	can	point	to	different	instances	throughout	the
program.	So	the	compiler	does	not	attempt	to	look	into	the	type	of	the	instance.	This	is	one
of	the	principles	of	polymorphism	and	dynamic	binding.	For	the	compiler,	it	is	pointing	to
a	baseClass	instance.	And	baseClass	does	not	have	a	printAllVals	function	defined.

But	we	know	it	is	pointing	to	a	derivedClass	instance.	So	we	can	cast	it	like	this:

…

…

int	main(int	argc,	char**	argv)

{

baseClass*	baseClassPtr	=	new	derivedClass(1,	2,	3,	4);

static_cast<derivedClass*>(baseClassPtr)->printAllVals();

return	0;

}

	

derivedClass::printAllVals()—>

baseClass::baseClassVar-	1

baseClass::commonVar-	2

derivedClass::derivedClassVar-	3

derivedClass::commonVar-	4

	

Here	we	are	casting	the	baseClassPtr	to	a	derivedClass	type.	We	are	telling	the	compiler
to	take	our	word	that	baseClassPtr	is	indeed	pointing	to	a	derivedClass	instance.	And	the
compiler	obliges.	You	see,	there	is	no	difference	between	a	pointer	to	a	derivedClass	and	a
pointer	to	a	plain	old	integer.	They	are	both	memory	addresses	with	the	same	amount	of
bits.	 The	 pointer	 contains	 just	 a	 memory	 address.	 What	 is	 in	 this	 memory	 address	 is
determined	by	the	pointer	 type.	So	here	we	are	 telling	the	compiler	 that	baseClassPtr	 is
pointing	to	a	memory	block	that	has	a	derivedClass	object.	And	indeed	it	does,	so	we	have
no	issues.	This	will	become	clear	when	we	do	this:

…

…

int	main(int	argc,	char**	argv)

{

baseClass*	baseClassPtr	=	new	baseClass(1,	2);

static_cast<derivedClass*>(baseClassPtr)->printAllVals();

return	0;

}

	

derivedClass::printAllVals()—>

baseClass::baseClassVar-	1

baseClass::commonVar-	2

derivedClass::derivedClassVar-	1359395851

derivedClass::commonVar-	-2013265804

	

Here	we	only	have	a	baseClass	instance	but	we	are	lying	to	the	compiler	that	it	is	pointing
to	a	derivedClass	object.	The	compiler	does	no	validation.	It	 takes	our	word	and	tries	to
read	the	member	variables	and	gets	garbage	because	those	variables	don’t	exist.

Now	let’s	see	an	example	of	accessing	member	variables	through	pointers.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	commonVar;

	

baseClass(int	comVal)	:	commonVar(comVal)

{}

};

	

class	derivedClass	:	public	baseClass

{

public:

int	commonVar;

	

derivedClass(int	baseComVal,	int	derivedComVal)	:	baseClass(baseComVal),	commonVar(derivedComVal)

{}

};

	

int	main(int	argc,	char**	argv)

{

baseClass*	baseClassPtr	=	new	derivedClass(1,	2);

cout	<<	“baseClassPtr->commonVar:	“	<<	baseClassPtr->commonVar	<<	endl;

	

derivedClass*	derivedClassPtr	=	new	derivedClass(3,	4);

cout	<<	“derivedClassPtr->commonVar:	“	<<	derivedClassPtr->commonVar	<<	endl;

cout	<<	“derivedClassPtr->baseClass::commonVar:	“	<<	derivedClassPtr->baseClass::commonVar	<<	endl;

return	0;

}

	

baseClassPtr->commonVar:	1

derivedClassPtr->commonVar:	4

derivedClassPtr->baseClass::commonVar:	3

	

The	accessed	variable,	then,	depends	on	the	type	of	the	pointer,	not	the	type	of	the	object	it
points	 to.	This	 is	because	member	variables	are	accessed	through	offsets.	You	will	 learn
more	on	this	in	the	next	chapter.	The	offset	value	for	baseClass::commonVar	is	different
from	derivedClass::commonVar.	In	fact,	we	can	print	them	out	and	see.

…

….

int	main(int	argc,	char**	argv)

{

cout	<<	offsetof(baseClass,	commonVar)	<<	endl;

cout	<<	offsetof(derivedClass,	commonVar)	<<	endl;

return	0;

}

	

0

4

	

As	you	can	see,	the	offset	values	for	commonVar	are	different.	That	is	how	the	compiler	is
able	to	access	the	correct	variable	depending	on	the	type.

There	are	no	suprises	here.	But	I	wanted	to	show	you	the	access	of	member	variables	and
functions	in	the	class	hierarchy	when	the	same	name	is	shared	and	how	it	works	with
object	types	and	pointer	types.

Topic	12

Class	member	offsets
In	 this	 short	 topic	 we	 will	 discuss	 class	 member	 offsets.	 When	 you	 define	 member
variables	in	a	class	they	need	to	be	located	at	certain	places	within	the	class.	What	I	am
going	to	discuss	here	is	not	part	of	the	standard.	As	with	virtual	mechanism,	the	compiler
developers	are	free	to	use	their	own	methods.

Member	placement	within	an	object
Class	 member	 offsets	 define	 the	 offset,	 usually	 in	 bytes,	 that	 a	 particular	 member	 has
within	the	object.	When	you	create	an	object	of	a	class,	it	occupies	a	block	of	memory	and
the	 compiler	 knows	where	 this	memory	block	 starts.	And	 it	 knows	how	 long	 the	 block
spans,	which	can	be	found	by	using	the	sizeof(classType).	But	how	does	the	compiler	find
a	member	variable	within	that	object?	It	is	through	the	offset.	Here’s	an	example.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var1;

int	var2;

int	var3;

	

baseClass(int	val1,	int	val2,	int	val3)	:	var1(val1),	var2(val2),	var3(val3)

{}

};

	

int	main(int	argc,	char**	argv)

{

cout	<<	“Offset	of	baseClass::var1:	“	<<	offsetof(baseClass,	var1)	<<	endl;

cout	<<	“Offset	of	baseClass::var2:	“	<<	offsetof(baseClass,	var2)	<<	endl;

cout	<<	“Offset	of	baseClass::var3:	“	<<	offsetof(baseClass,	var3)	<<	endl;

return	0;

}

	

Offset	of	baseClass::var1:	0

Offset	of	baseClass::var2:	4

Offset	of	baseClass::var3:	8

	

We	have	a	simple	class	with	 three	 integer	variables.	And	note	what	we	are	printing	out.
We	are	looking	at	the	offset.	This	offsetof	macro	gives	the	offset	the	variable	has	from	the
beginning	of	the	object.	Note	how	we’re	not	making	any	objects.	Just	the	class	itself.	So
we	see	that	our	first	variable,	var1,	is	at	an	offset	0.	This	means	var1	is	at	the	start	of	the
object	memory	space.	And	var2	after	4	bytes	and	var3	after	8	bytes.	This	makes	sense.	An
integer	is	4	bytes	long.	So	these	variables	are	offset	one	after	the	other.	Let’s	really	make
sure	this	is	indeed	the	case	by	looking	at	the	memory.

int	main(int	argc,	char**	argv)

{

cout	<<	“Offset	of	baseClass::var1:	“	<<	offsetof(baseClass,	var1)	<<	endl;

cout	<<	“Offset	of	baseClass::var2:	“	<<	offsetof(baseClass,	var2)	<<	endl;

cout	<<	“Offset	of	baseClass::var3:	“	<<	offsetof(baseClass,	var3)	<<	endl;

	

baseClass	baseClassObj(4,	5,	6);

cout	<<	“&baseClassObj:	“	<<	&baseClassObj	<<	endl;

cout	<<	“&baseClassObj.var1:	“	<<	&baseClassObj.var1	<<	endl;

cout	<<	“&baseClassObj.var2:	“	<<	&baseClassObj.var2	<<	endl;

cout	<<	“&baseClassObj.var3:	“	<<	&baseClassObj.var3	<<	endl;

return	0;

}

	

Offset	of	baseClass::var1:	0

Offset	of	baseClass::var2:	4

Offset	of	baseClass::var3:	8

	

&baseClassObj:	0016F980

&baseClassObj.var1:	0016F980

&baseClassObj.var2:	0016F984

&baseClassObj.var3:	0016F988

	

Here	we	create	an	object	and	print	out	the	actual	memory	addresses	of	the	three	variables.
And	you	can	clearly	see	from	the	memory	addresses	that	the	variables	are	laid	out	4	bytes
apart	in	memory.	Here’s	a	look	at	the	memory	space.

So	 this	 is	 how	 the	 compiler	 is	 able	 to	 find	 the	member	 variables	 within	 a	 class.	 Each
object	of	the	same	type	is	laid	with	the	same	offsets.	Now	let’s	look	at	a	case	where	this
offset	 changes.	 Let’s	 define	 a	 simple	 virtual	 function.	 This	 makes	 the	 class	 objects	 to
include	a	vptr	and	a	corresponding	vtable.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var1;

int	var2;

int	var3;

	

baseClass(int	val1,	int	val2,	int	val3)	:	var1(val1),	var2(val2),	var3(val3)

{}

	

virtual	void	virtFunc()

{

cout	<<	“virtual	function”	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj(4,	5,	6);

	

cout	<<	“&baseClass::var1:	“	<<	offsetof(baseClass,	var1)	<<	endl;

cout	<<	“&baseClass::var2:	“	<<	offsetof(baseClass,	var2)	<<	endl;

cout	<<	“&baseClass::var3:	“	<<	offsetof(baseClass,	var3)	<<	endl	<<	endl;

	

cout	<<	“&baseClassObj:	“	<<	&baseClassObj	<<	endl;

cout	<<	“&baseClassObj.var1:	“	<<	&baseClassObj.var1	<<	endl;

cout	<<	“&baseClassObj.var2:	“	<<	&baseClassObj.var2	<<	endl;

cout	<<	“&baseClassObj.var3:	“	<<	&baseClassObj.var3	<<	endl;

return	0;

}

	

offsetof(baseClass,	var1):	4

offsetof(baseClass,	var2):	8

offsetof(baseClass,	var3):	12

	

&baseClassObj:	0017FC30

&baseClassObj.var1:	0017FC34

&baseClassObj.var2:	0017FC38

&baseClassObj.var3:	0017FC3C

	

Did	you	see	how	the	offsets	of	the	variables	changed	by	4	bytes	when	we	add	the	virtual
function?	Because	the	compiler	has	put	the	vptr	at	offset	0.	vptr	is	like	any	other	pointer
and	it	is	taking	4	bytes,	hence	the	variables	are	shifted	by	4	bytes.	It	is	important	to	keep	in
mind	that	this	is	not	the	standard	to	put	the	vptr	at	the	beginning	of	the	class,	or	even	to
use	a	vptr.	This	is	just	how	the	Visual	C++	compiler	is	doing	it.	But	this	insight	gives	us	a
peek	at	how	the	compiler	is	handling	this	member	access.	Let’s	look	at	 the	object	locals
and	the	corresponding	memory	block.

The	object	locals	show	the	variable	values	and	also	the	vptr	contents.	It	shows	that	the	vptr
is	pointing	to	memory	address	‘0x002A3318’.	This	means	the	vtable	is	at	this	address.	So
how	are	we	sure	that	the	variables	got	offset	by	4	bytes	because	of	vptr?	Let’s	look	at	the
memory	block	of	the	object	at	0x0017FC30:

See	the	contents	at	the	offset	0	of	the	object	start	address	(which	we	printed	out	earlier)?	It
is	the	same	as	the	address	of	the	vptr	that	we	saw	in	the	locals	view.	This	confirms	that	the
(Visual	C++)	compiler	puts	the	vptr	at	the	zero	offset	of	the	object.

I	hope	you	understood	a	little	bit	about	how	the	compiler	is	accessing	objects.	Although
the	implementation	is	compiler	dependent,	having	memebr	offsets	are	an	efficient	way	of
accessing	objects	and	their	contents.

Pointer	to	class	member
OK,	so	we	know	how	the	compiler	 is	doing	things,	but	 is	 there	any	benefit	we	can	take
from	this?

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj(4,	5,	6);

cout	<<	“baseClassObj.var1:	“	<<	baseClassObj.var1	<<	endl;

	

int	baseClass::*intVarPtr;																													//	Line	1

intVarPtr	=	&baseClass::var1;																					//	Line	2

baseClassObj.*intVarPtr	=	10;																				//	Line	3

cout	<<	“baseClassObj.var1:	“	<<	baseClassObj.var1	<<	endl;

return	0;

}

	

baseClassObj.var1:	4

baseClassObj.var1:	10

	

Let’s	quickly	go	through	what	we	are	doing	here:

In	line	1	we	are	creating	a	pointer	intVarPtr	that	will	point	to	an	integer	variable

of	class	baseClass.	This	pointer	can	point	to	any	integer	of	baseClass.
In	 line	 2	we	 assign	 intVarPtr	 to	 point	 to	 var1	 of	baseClass.	 Note	 how	we	 are
taking	the	address	of	a	baseClass,	not	the	baseClassObj	 instance.	When	we	use
‘address	of’	operator	on	a	class	member,	unless	that	member	is	static,	it	gives	the
offset	of	that	variable	(If	the	member	is	static	then	the	actual	memory	address	is
obtained).	Now	intVarPtr	is	locked	to	point	to	var1	of	baseClass	instances	only.
In	 line	 3	 we	 are	 using	 intVarPtr	 to	 dereference	 and	 access	 var1	 member	 of
instance	baseClassObj.

What	this	means	is	that	you	can	have	a	single	pointer	that	is	able	to	point	to	a	particular
member	of	a	class.	Can	you	see	how	this	can	be	useful?

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj1(1,	2,	3);

baseClass	baseClassObj2(4,	5,	6);

cout	<<	“baseClassObj1.var1:	“	<<	baseClassObj1.var1	<<	endl;

cout	<<	“baseClassObj2.var1:	“	<<	baseClassObj2.var1	<<	endl	<<	endl;

	

int	baseClass::*intVarPtr;

intVarPtr	=	&baseClass::var1;

	

baseClassObj1.*intVarPtr	=	10;

cout	<<	“baseClassObj1.var1:	“	<<	baseClassObj1.*intVarPtr	<<	endl;

baseClassObj2.*intVarPtr	=	20;

cout	<<	“baseClassObj2.var1:	“	<<	baseClassObj2.*intVarPtr	<<	endl;

return	0;

}

	

baseClassObj1.var1:	1

baseClassObj2.var1:	4

	

baseClassObj1.var1:	10

baseClassObj2.var1:	20

	

See	how	we	can	have	just	one	pointer	to	access	a	particular	variable	of	any	object?	This	is
another	very	convenient	way	of	utilizing	polymorphism.	Look	at	this	example.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	var1;

int	var2;

int	var3;

	

baseClass(int	val1,	int	val2,	int	val3)	:	var1(val1),	var2(val2),	var3(val3)

{}

	

virtual	void	virtFunc()

{

cout	<<	“virtual	function”	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

int	var4;

	

derivedClass(int	val1,	int	val2,	int	val3,	int	val4)	:	baseClass(val1,	val2,	val3),	var4(val4)

{}

};

	

void	memberVarPrintFunc(baseClass	object,	int	baseClass::*varPtr)

{

cout	<<	object.*varPtr	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj(1,	2,	3);

derivedClass	derivedClassObj(4,	5,	6,	7);

	

int	baseClass::*intVarPtr;

	

intVarPtr	=	&baseClass::var1;

cout	<<	“baseClassObj.var1:	“;

memberVarPrintFunc(baseClassObj,	intVarPtr);

cout	<<	“derivedClassObj.var1:	“;

memberVarPrintFunc(derivedClassObj,	intVarPtr);

	

intVarPtr	=	&baseClass::var3;

cout	<<	“baseClassObj.var3:	“;

memberVarPrintFunc(baseClassObj,	intVarPtr);

cout	<<	“derivedClassObj.var3:	“;

memberVarPrintFunc(derivedClassObj,	intVarPtr);

return	0;

}

	

baseClassObj.var1:	1

derivedClassObj.var1:	4

baseClassObj.var3:	3

derivedClassObj.var3:	6

	

For	this	example	I	introduced	a	derived	class.	This	is	just	to	demonstrate	to	you	that	you
can	 use	 this	 concept	 with	 inheritance	 and	 how	 to	 make	 use	 of	 it.	 The	 function
memberVarPrintFunc	takes	as	argument	an	object	of	baseClass	and	an	integer	pointer	to	a
member	of	baseClass.	Now	see	how	conveniently	we	can	utilize	intVarPtr	 to	access	any
int	variable	of	baseClass	or	any	derived	class	of	it?	We	have	one	pointer	and	we	can	make
it	point	to	any	integer	member	of	baseClass.	And	memberVarPrintFunc	does	not	need	to
know	 anything	 about	 the	 baseClass	 variables.	 You	 can	 change	 the	 variable	 names	 in
baseClass	 and	 it	wouldn’t	 have	 any	 effect	 on	 the	 function.	You	 can	make	 the	 function
access	any	of	the	integer	members.	See	how	beneficial	this	offset	mechanism	can	be?

Topic	13

Function	Pointers
This	 topic	will	discuss	 the	mechanism	of	function	pointers.	They	are	not	much	different
than	a	normal	pointer	but	the	syntax	can	be	a	little	confusing.	Function	pointer	syntax	can
be	extremely	confusing	and	complex	if	you	want	to	make	it	be	so,	but	I’m	only	going	to
discuss	the	basics	of	 it	which	will	help	you	in	deciphering	complex	notation	if	you	ever
need	to.

Let’s	start	with	a	simple	example.

#include<iostream>

using	namespace	std;

	

void	simpleFunc(int	val)

{

cout	<<	“simpleFunc	with	val:”	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

void(*funcPtr)(int)	=	&simpleFunc;

(*funcPtr)(10);

return	0;

}

	

simpleFunc	with	val:10

	

What	are	we	doing	here?

First	we	define	a	function	simpleFunc,	which	takes	an	integer	parameter	and	returns	void.
Then	we	create	our	function	pointer	 funcPtr	which	we	want	 to	refer	 to	simpleFunc.	The
thing	with	function	pointers	is	that	they	cannot	be	general.	You	cannot	have	one	function
pointer	that	can	point	to	a	function	with	any	signature.	The	return	type	and	argument	types
need	to	match.	So	we	need	to	make	funcPtr	return	void	and	take	an	integer	argument.

Look	 at	 the	 syntax.	 The	 parantheses	 are	 important.	 (*funcPtr)	 declares	 a	 pointer	 to	 a
function.	The	parantheses	to	the	right	of	it	declares	the	arguments,	which	in	our	case	is	just
an	 integer.	 To	 the	 left	 is	 the	 return	 type.	 That’s	 it.	 Not	 that	 complicated	 right?	 But
remember	 that	 the	 parentheses	 are	 important.	 Note	 the	 difference	 between	 these	 two
statements:

void(*funcPtr)(int);

void	*funcPtr(int);

	

The	first	statement	is	a	declaration	for	a	function	pointer	that	takes	in	an	integer	parameter
and	 returns	void.	The	second	 is	a	 function	prototype	 that	 takes	an	 integer	argument	and
returns	a	void*.	So	be	mindful	of	the	parentheses.

Now	let’s	look	at	a	few	different	caveats	of	using	function	pointers.

#include<iostream>

using	namespace	std;

	

void	intArgFunc(int	val)

{

cout	<<	“intArgFunc	with	val:”	<<	val	<<	endl;

}

	

void	floatArgFunc(float	val)

{

cout	<<	“floatArgFunc	with	val:”	<<	val	<<	endl;

}

	

int	intReturnFunc(int	val)

{

cout	<<	“Returning	val:”	<<	val	<<	endl;

return	val;

}

	

	

int	main(int	argc,	char**	argv)

{

void(*intArgFuncPtr1)(int)	=	&intArgFunc;																											//	Line	1

void(*intArgFuncPtr2)(int)	=	&floatArgFunc;																							//	Line	2

void(*floatArgFuncPtr1)(float)	=	&intArgFunc;																			//	Line	3

void(*floatArgFuncPtr2)(float)	=	&floatArgFunc;															//	Line	4

void(*intRetFuncPtr1)(int)	=	&intReturnFunc;																				//	Line	5

int(*intRetFuncPtr2)(int)	=	&intReturnFunc;																							//	Line	6

return	0;

}

	

We	have	compiler	errors	in	lines	2,	3	and	5.	So	we	see	that	the	function	parameter	types
and	return	types	need	to	match.	There	is	no	argument	promotion	possible	here.	We	can	call
floatArgFunc	with	an	 integer	argument	and	 the	compiler	 is	 fine	with	 that.	But	not	when
we	are	dealing	with	function	pointers.	The	function	signature	needs	to	match	in	this	case.

A	minor	piece	of	 information	about	using	 function	pointers:	you	do	not	need	 to	use	 the
address	of	operator	to	assign	the	function	to	the	pointer,	nor	do	you	need	‘*’	to	dereference
it.	 In	 the	case	of	 function	pointers	 the	compiler	 is	happy	 to	do	 that	 for	you.	So	you	can
write	the	first	example	as:

#include<iostream>

using	namespace	std;

	

void	simpleFunc(int	val)

{

cout	<<	“simpleFunc	with	val:”	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

void(*funcPtr)(int)	=	simpleFunc;

funcPtr(10);

return	0;

}

The	compiler	can	figure	out	for	itself	what	you	want	to	do.

Member	function	pointers
Things	aren’t	much	different	if	you	want	a	function	pointer	to	a	class	member	function.

#include<iostream>

using	namespace	std;

	

class	simpleClass

{

public:

void	simpleClassFunc1()

{

cout	<<	“simpleClassFunc1”	<<	endl;

}

	

void	simpleClassFunc2()

{

cout	<<	“simpleClassFunc2”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

simpleClass	simpleClassObj;

void(simpleClass::*simpleClassFuncPtr)()	=	&simpleClass::simpleClassFunc1;

(simpleClassObj.*simpleClassFuncPtr)();

	

simpleClassFuncPtr	=	&simpleClass::simpleClassFunc2;

(simpleClassObj.*simpleClassFuncPtr)();

return	0;

}

	

simpleClassFunc1

simpleClassFunc2

	

So	you	can	see	how	it	is	possible	to	invoke	class	member	functions	through	pointers	and
also	 how	 you	 can	 re-assign	 them	 to	 different	 functions	 (with	 the	 same	 signature,	 of
course).

There	are	a	number	of	uses	of	 function	pointers.	The	most	obvious	one	 is	as	a	callback
mechanism.	Take	a	look	at	this	example.

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

baseClass(int	id)	:	objID(id)

{}

	

virtual	void	callbackFunc()

{

cout	<<	“callbackFunc:	baseClass:	“	<<	objID	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	id)	:	baseClass(id)

{}

	

virtual	void	callbackFunc()

{

cout	<<	“callbackFunc:	derivedClass:	“	<<	objID	<<	endl;

}

};

	

void	callbackFunc(baseClass	*obj,	void	(baseClass::*callbackFuncPtr)())

{

(obj->*callbackFuncPtr)();

}

	

int	main(int	argc,	char**	argv)

{

baseClass*	baseClassPtr	=	new	baseClass(1);

derivedClass*	derivedClassPtr	=	new	derivedClass(2);

	

void(baseClass::*callbackFuncPtr)()	=	&baseClass::callbackFunc;

	

callbackFunc(baseClassPtr,	callbackFuncPtr);

callbackFunc(derivedClassPtr,	callbackFuncPtr);

return	0;

}

	

callbackFunc:	baseClass:	1

callbackFunc:	derivedClass:	2

	

I	 included	a	derived	class	and	a	virtual	function	to	show	you	that	this	mechanism	works
fine	 with	 inheritance	 and	 dynamic	 binding.	 Can	 you	 see	 how	 this	 concept	 of	 function
pointers	 can	 be	 easily	 used	 for	 the	 callback	mechanism?	 It	 is	 important	 that	we	 used	 a
pointer	to	baseClass	in	the	callbackFunc	argument.	This	is	essential	if	we	need	the	virtual

functions	 to	 work.	 Dynamic	 binding	 only	 works	 with	 pointers	 (and	 references).	 What
would	happen	if	we	didn’t	use	pointers?

#include<iostream>

using	namespace	std;

	

class	baseClass

{

public:

int	objID;

baseClass(int	id)	:	objID(id)

{}

	

virtual	void	callbackFunc()

{

cout	<<	“callbackFunc:	baseClass:	“	<<	objID	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass

{

public:

derivedClass(int	id)	:	baseClass(id)

{}

	

virtual	void	callbackFunc()

{

cout	<<	“callbackFunc:	derivedClass:	“	<<	objID	<<	endl;

}

};

	

void	callbackFunc(baseClass	obj,	void	(baseClass::*callbackFuncPtr)())

{

(obj.*callbackFuncPtr)();

}

	

int	main(int	argc,	char**	argv)

{

baseClass	baseClassObj(1);

derivedClass	derivedClassObj(2);

	

void(baseClass::*callbackFuncPtr)()	=	&baseClass::callbackFunc;

	

callbackFunc(baseClassObj,	callbackFuncPtr);

callbackFunc(derivedClassObj,	callbackFuncPtr);

return	0;

}

	

callbackFunc:	baseClass:	1

callbackFunc:	baseClass:	2

	

The	derived	class	function	will	not	be	called.	Why?	Because	when	we	pass	a	derivedClass
object	to	a	function	that	takes	in	a	baseClass	as	pass	by	value,	the	derivedClass	object	is
‘sliced’	 to	 a	 baseClass	 object.	 The	 derivedClass	 implementation	 is	 no	 longer	 in	 that
object.	That	is	why	we	must	be	careful	to	use	pointers	(or	references)	whenever	we	need
dynamic	binding.

Virtual	pointer	example
Let’s	 finish	 this	 topic	after	discussing	something	we	conveniently	avoided	explaining	 in
the	‘Virtual	Mechanism’	topic.	Here’s	the	program.

#include<iostream>

using	namespace	std;

	

class	baseClass1

{

public:

void	nonVirtualFunc1()

{

cout	<<	“nonVirtualFunc1”	<<	endl;

}

virtual	void	virtualNonOverriddenFunc1()

{

cout	<<	“virtualNonOverriddenFunc1”	<<	endl;

}

virtual	void	virtualOverriddenFunc1()

{

cout	<<	“virtualOverriddenFunc1”	<<	endl;

}

};

	

class	baseClass2

{

public:

void	nonVirtualFunc2()

{

cout	<<	“nonVirtualFunc2”	<<	endl;

}

virtual	void	virtualNonOverriddenFunc2()

{

cout	<<	“virtualNonOverriddenFunc2”	<<	endl;

}

virtual	void	virtualOverriddenFunc2()

{

cout	<<	“virtualOverriddenFunc2”	<<	endl;

}

};

	

class	derivedClass	:	public	baseClass1,	public	baseClass2

{

public:

virtual	void	virtualOverriddenFunc1()

{

cout	<<	“virtualDerivedOverriddenFunc1”	<<	endl;

}

virtual	void	derivedClassOnlyVirtualFunc()

{

cout	<<	“derivedClassOnlyVirtualFunc”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

derivedClass	derivedClassObj;

derivedClass	*dcPtr	=	new	derivedClass;

	

cout	<<	“Invoking	function	through	the	object	pointer…”	<<	endl;

dcPtr->virtualNonOverriddenFunc1();

dcPtr->virtualOverriddenFunc1();

dcPtr->derivedClassOnlyVirtualFunc();

cout	<<	endl;

	

void(**vtPtr)()	=	*(void(***)())dcPtr;			//obtaining	__vftable	address

	

cout	<<	“Printing	__vftable…”	<<	endl;

cout	<<	“__vftable	address:	“	<<	vtPtr	<<	endl;

cout	<<	“__vftable[0]	-	“	<<	*vtPtr	<<	endl;

cout	<<	“__vftable[1]	-	“	<<	*(vtPtr	+	1)	<<	endl;

cout	<<	“__vftable[0]	-	“	<<	*(vtPtr	+	2)	<<	endl;

cout	<<	endl;

	

typedef	void	func(void);

	

cout	<<	“Invoking	functions	through	__vftable…”	<<	endl	<<	endl;

func*	virtFuncPtr	=	(func*)(*vtPtr);								//	pointing	to	the	first	virtual	func.

cout	<<	“__vftable[0]	-	“;

(virtFuncPtr());

	

virtFuncPtr	=	(func*)(*(vtPtr	+	1));									//	pointing	to	the	second	virtual	func.

cout	<<	“__vftable[1]	-	“;

virtFuncPtr();

	

virtFuncPtr	=	(func*)(*(vtPtr	+	2));								//	pointing	to	the	third	virtual	func.

cout	<<	“__vftable[2]	-	“;

virtFuncPtr();

	

return	0;

}

	

Invoking	function	through	the	object	pointer…

virtualNonOverriddenFunc1

virtualDerivedOverriddenFunc1

derivedClassOnlyVirtualFunc

	

Printing	__vftable…

__vftable	address:	009133B0

__vftable[0]	-	009116E0

__vftable[1]	-	00911740

__vftable[0]	-	00911760

	

Invoking	functions	through	__vftable…

	

__vftable[0]	-	virtualNonOverriddenFunc1

__vftable[1]	-	virtualDerivedOverriddenFunc1

__vftable[2]	-	derivedClassOnlyVirtualFunc

	

This	program	is	about	vptr	and	invoking	the	virtual	functions	through	the	vtable.	But	here
we	will	look	at	how	it	was	done.	Here’s	the	code	segment	we	are	concerned	about:

derivedClass	*dcPtr	=	new	derivedClass;

void(**vtPtr)()	=	*(void(***)())dcPtr;			//obtaining	__vftable	address

	

Here	we	have	a	pointer	dcPtr	 that	points	 to	an	object	of	derivedClass.	This	mechanism
depends	 on	 one	 fact:	 the	 vptr	 of	 the	 class	 is	 at	 zero	 offset.	 That	 is,	 dcPtr	 is	 actually
pointing	to	the	vptr.	We	have	confirmed	that	this	is	indeed	the	case	with	at	least	the	Visual
C++	compiler.

Let’s	dissect	the	second	statement:

void(**vtPtr)()	=	*(void(***)())dcPtr;			//obtaining	__vftable	address

	

We	 know	 that	 “void	 (*vtPtr)()”	 is	 a	 declaration	 of	 a	 pointer	 to	 a	 function	 that	 has	 no
arguments	and	no	return	value.	Therefore,	“void	(**vtPtr)()”	is	a	‘pointer	to	a	pointer	to	a
function	 with	 no	 arguments	 and	 returns	 void’.	 But	 why	 do	 we	 have	 this	 structure?
Remember	 what	 a	 vtable	 is?	 A	 vtable	 is	 an	 array	 of	 function	 pointers.	 Perhaps	 an
illustration	of	what	we	are	dealing	with	will	help.

Remember	that	an	array	can	be	represented	by	a	pointer.	The	array	name	itself	is	a	pointer
to	its	first	element.	Since	vtable	is	an	array	of	function	pointers,	by	pointing	to	vtable,	vptr
is	a	“pointer	 to	pointer	 to	a	 function	pointer”.	So	what	dcPtr	ultimately	 is	 a	 ‘pointer-to-
pointer-pointer-to-function’.	Trace	the	figure	from	left	and	this	will	become	clear.

So	where	does	vtPtr	fit	in	here?

Remember	we	discussed	that	vtPtr	is	a	‘pointer-to-pointer-function’.	So	vtPtr	 is	pointing
to	 the	vtable	 array.	Now	we	know	what	vtPtr	 needs	 to	point	 to.	 It	needs	 to	point	 to	 the
vtable.	How	do	we	get	 that,	 then?	We	know	that	 the	virtual	 table	pointer	(vptr)	is	at	the
beginning	of	the	object,	so	dcPtr	is	pointing	to	it.

But	what	are	we	exactly	doing	in	this	part	of	the	code?

*(void(***)())dcPtr

	

‘(void(***)())’	is	nothing	more	than	a	cast.	A	cast	of	type	what?	A	‘pointer-to-pointer-to-
pointer-to-function’.	 Right?	 This	 is	 what	 dcPtr	 is.	 What	 we	 are	 doing	 here,	 is	 we	 are
telling	 the	 compiler	 that	 dcPtr	 is	 a	 ‘pointer-to-pointer-to-pointer-to-function‘.	 That’s	 it.
Then	we	dereference	it	once.	Once	only.	And	what	do	you	get	when	you	dereference	dcPtr
once?	Check	the	figure.	If	we	dereference	dcPtr	once	we	get	‘vtable’.	Which	is	what?	Yes,
a	‘pointer-to-pointer-to-function‘.	And	this	is	exactly	what	we	need	to	assign	to	our	vtPtr.

The	syntax	 looks	rather	complex	but	 if	you	 layer	 it	out,	 it’s	nothing	much.	All	we	do	 is
cast	dcPtr	 to	 a	 ‘pointer-to-pointer-pointer-to-function‘,	 and	 then	dereference	 it	 to	 get	 to
the	object’s	‘vtable‘,	which	is	what	we	want.	Now	let’s	look	at	calling	the	virtual	functions
through	the	vtable	entries.

In	the	rest	of	the	code	we	are	invoking	the	virtual	functions	through	the	vtable.	We	use	a
typedef	 in	 the	 code	 to	make	 the	 call	 look	 like	more	 of	 a	 regular	 function	 call	 but	 let’s
rewrite	that	part	without	typedef.	We	need	to	understand	clearly	how	this	function	pointer
is	working.

So	what	is	vtPtr	again?	It	is	a	‘pointer-to-pointer-to-function’.	Currently	it	 is	pointing	to
the	first	element	of	the	vtable.	So	to	call	the	function	pointer	at	vtable[0],	we	just	need	to
dereference	vtPtr.	And	do	you	 recall	how	we	called	a	 function	pointer?	You	 should	not
forget	the	parentheses.	We	can	simply	call	the	first	virtual	function	like	this:

(*(*vtPtr))();

	

The	 inner	dereference	 is	 to	get	 to	vtable[0].	 Since	vtable[0]	 is	 a	pointer-to-function	 we

have	 the	 outer	 dereference.	 But	 remember	 we	 saw	 earlier	 that	 in	 the	 case	 of	 function
pointers	 we	 actually	 don’t	 need	 to	 dereference	 the	 function	 pointer	 itself.	 So	 you	 can
simply	do	the	following:

(*vtPtr)();

	

To	get	to	other	pointers	you	just	need	to	add	one	and	two.	Since	vtPtr	is	a	pointer,	it	does
the	correct	pointer	arithmetic	to	refer	to	vtable[1]	and	vtable[2].	Let’s	rewrite	the	code	and
confirm	that	we	are	correct.

…

…

int	main(int	argc,	char**	argv)

{

derivedClass	derivedClassObj;

derivedClass	*dcPtr	=	new	derivedClass;

	

cout	<<	“Invoking	function	through	the	object	pointer…”	<<	endl;

dcPtr->virtualNonOverriddenFunc1();

dcPtr->virtualOverriddenFunc1();

dcPtr->derivedClassOnlyVirtualFunc();

cout	<<	endl;

	

void(**vtPtr)()	=	*(void(***)())dcPtr;

	

cout	<<	“Invoking	functions	through	vtPtr…”	<<	endl;

	

cout	<<	“(*	vtPtr)()	-	“;

(*vtPtr)();

	

cout	<<	“(*(vtPtr	+1))()	-	“;

(*(vtPtr	+	1))();

	

cout	<<	“(*(vtPtr	+	2))()	-	“;

(*(vtPtr	+	2))();

return	0;

}

	

Invoking	function	through	the	object	pointer…

virtualNonOverriddenFunc1

virtualDerivedOverriddenFunc1

derivedClassOnlyVirtualFunc

	

Invoking	functions	through	vtPtr…

(*	vtPtr)()	-	virtualNonOverriddenFunc1

(*(vtPtr	+1))()	-	virtualDerivedOverriddenFunc1

(*(vtPtr	+	2))()	-	derivedClassOnlyVirtualFunc

	

It’s	 working	 as	 it	 should.	 So	 you	 see	 function	 pointers	might	 seem	 complex	 in	 certain
cases	 but	 if	 you	 break	 it	 down	 they	 are	 pretty	 simple.	 I	 hope	 you’ve	 got	 a	 good
fundamental	grasp	of	them.

	

Topic	14

Function	Shadowing
This	is	not	a	big	topic	but	nonetheless	an	important	one	to	know	about	in	C++.	As	usual,
let’s	start	off	with	an	example.

We	 have	 three	 very	 simple	 classes	 with	 each	 implementing	 function	 foo.	 Each	 class
overloads	function	foo	so	each	of	these	functions	are	different.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

void	foo()

{

cout	<<	“Function	foo	in	class	A”	<<	endl;

}

};

	

class	B	:	public	A

{

public:

void	foo(int	val)

{

cout	<<	“Function	foo(int)	in	class	B”	<<	endl;

}

	

void	foo(int	val1,	int	val2)

{

cout	<<	“Function	foo(int,	int)	in	class	B”	<<	endl;

}

};

	

class	C	:	public	B

{

public:

void	foo(string	str)

{

cout	<<	“Function	foo(string)	in	class	C”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

A	classAobj;

B	classBobj;

C	classCobj;

	

classAobj.foo();																																//	Line	1

	

classBobj.foo();																																//	Line	2

classBobj.foo(1);																														//	Line	3

classBobj.foo(1,	2);																									//	Line	4

	

classCobj.foo();																																//	Line	5

classCobj.foo(1);																														//	Line	6

classCobj.foo(1,	2);																									//	Line	7

classCobj.foo(“foo”);																					//	Line	8

	

return	0;

}

	

Intuitively,	we	would	assume	class	B	to	be	able	to	access	A’s	methods	and	class	C	to	be
able	to	access	A’s	and	B’s	methods.	After	all,	the	methods	are	public	and	the	inheritance	is
public.	But	we	are	getting	quite	a	bit	of	compiler	errors.	The	problem	is	not	with	access.	B
has	access	to	A’s	method	and	C	has	access	to	A’s	and	B’s.	The	problem	is	the	compiler	just
can’t	see	those	functions	in	the	base	classes.	Because	the	functions	are	shadowed.

Take	a	look	at	the	compiler	errors.	The	first	error	is	for	line	2	about	class	B	having	no	zero
argument	function.	Class	B	has	two	overloaded	functions,	one	taking	an	integer	argument
and	 the	 other	 taking	 two	 integer	 arguments.	The	 second	 error	 is	 for	 line	 5	 and	 it	 is	 the
same	as	the	first	error,	but	for	class	C	this	time.	The	third	error	is	for	line	6,	and	it	says	that
the	 integer	 argument	 we	 passed	 in	 line	 6	 cannot	 be	 converted	 to	 a	 string	 argument.
Because	class	C	has	only	one	 foo	which	takes	in	a	string	argument.	The	fourth	error	for
line	7	is	about	having	no	function	that	takes	two	arguments.

What	do	all	of	these	errors	say?	They	are	saying	that	the	compiler	simply	cannot	find	the
foo	functions	that	we	want	it	to.	But	we	know	that	these	functions	are	properly	inherited
and	accessible.	They	are	just	shadowed.	They	are	shadowed	by	the	overloaded	functions
of	 the	 same	 name.	 Whenever	 we	 overload	 an	 inherited	 function,	 all	 the	 base	 class
functions	with	 the	 same	 function	name	 are	 shadowed.	But,	 because	 something	 is	 in	 the
shadows	 doesn’t	 mean	 it’s	 not	 there.	 The	 functions	 are	 there.	We	 just	 need	 to	 tell	 the
compiler	that	those	functions	exist.	It’s	pretty	simple	to	do	that.	Let’s	make	this	right.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

void	foo()

{

cout	<<	“Function	foo	in	class	A”	<<	endl;

}

};

	

class	B	:	public	A

{

public:

using	A::foo;

void	foo(int	val)

{

cout	<<	“Function	foo(int)	in	class	B”	<<	endl;

}

	

void	foo(int	val1,	int	val2)

{

cout	<<	“Function	foo(int,	int)	in	class	B”	<<	endl;

}

};

	

class	C	:	public	B

{

public:

using	B::foo;

void	foo(string	str)

{

cout	<<	“Function	foo(string)	in	class	C”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

A	classAobj;

B	classBobj;

C	classCobj;

	

classAobj.foo();

	

classBobj.foo();

classBobj.foo(1);

classBobj.foo(1,	2);

	

classCobj.foo();

classCobj.foo(1);

classCobj.foo(1,	2);

classCobj.foo(“foo”);

return	0;

}

	

Function	foo	in	class	A

Function	foo	in	class	A

Function	foo(int)	in	class	B

Function	foo(int,	int)	in	class	B

Function	foo	in	class	A

Function	foo(int)	in	class	B

Function	foo(int,	int)	in	class	B

Function	foo(string)	in	class	C

	

We	just	need	to	use	the	using	directive	to	bring	the	function	we	need	in	to	the	scope.	This
is	 the	 same	 thing	 we	 do	 when	 we	 say	 ‘using	 namespace	 std‘.	 We	 just	 bring	 those
definitions	 in	 to	 the	 scope	 where	 we	 need	 them.	 So	 when	 we	 said	 ‘using	 A::foo‘,	 we
brought	all	the	foo	functions	defined	in	class	A	in	to	B.	And	we	do	the	same	thing	in	class
C.	Note	how	we	only	brought	class	B::foo	in	to	class	C	scope,	although	we	are	using	the
class	A::foo.	We	don’t	need	to	because	class	A::foo	is	already	in	the	scope	of	B,	so	B::foo
already	has	A::foo	in	its	scope.

Now	here’s	an	important	point.	The	place	where	you	put	the	using	directive	matters.	Let’s
change	class	C	like	this	so	that	the	using	directive	is	called	before	the	public	declaration.

…

…

class	C	:	public	B

{

using	B::foo;							//	before	declaring	public	members

public:

void	foo(string	str)

{

cout	<<	“Function	foo(string)	in	class	C”	<<	endl;

}

};

…

…

	

Now	the	compiler	is	complaining	about	trying	to	access	private	methods.	The	compiler	is
now	fully	aware	of	the	functions	in	classes	A	and	B,	but	unfortunately	these	functions	are
brought	 in	 to	 the	 scope	 as	 private.	 This	 is	 all	 because	 our	 using	 directive	 is	 before	 the
public	declaration.	So	you	see,	using	directive	 is	 just	about	bringing	functions	 in	 to	 that
scope,	 and	 it	 matters	 where	 we	 bring	 these	 functions	 in	 to.	 Since	 the	 functions	 were
brought	in	before	we	declared	public,	for	the	compiler	it	is	as	if	these	foo	functions	of	A
and	B	were	defined	in	the	private	section	of	class	C.	The	functions	are	there,	the	compiler
knows	it,	but	we	just	don’t	have	the	access	rights	to	them.

That’s	just	about	it	function	shadowing.	Nothing	much	to	it	but	it	 is	 important	to	realize
what	 is	happening	when	you	overload	a	base	class	 function.	Before	we	 leave	 this	 topic,
would	you	think	anything	would’ve	changed	if	function	foo	was	virtual?	No	it	wouldn’t.
Because	virtual	 functions	are	about	dynamic	dispatching.	 It’s	 a	 runtime	mechanism,	not
compile	time.	Before	we	get	to	the	runtime	we	need	to	pass	the	compilation.	There	is	no
relation	between	 function	shadowing	and	virtualness.	Overloaded	 functions	are	different
functions,	so	foo()	is	a	different	function	than	foo(int).	foo()	being	virtual	has	no	affect	on
foo(int,	int).

	

Topic	15

Understanding	the	Destructor
We	know	what	a	destructor	 is	and	what	 it	does	but	 let’s	 take	 some	 time	 in	 this	 topic	 to
really	understand	what	happens	in	the	destruction	phase	of	an	object.	Here	we	go.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

A()

{

cout	<<	“A	constructor”	<<	endl;

}

	

~A()

{

cout	<<	“A	destructor”	<<	endl;

}

};

	

class	B	:	public	A

{

public:

B()

{

cout	<<	“B	constructor”	<<	endl;

}

	

~B()

{

cout	<<	“B	destructor”	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

B	Bobj;

return	0;

}

	

A	constructor

B	constructor

B	destructor

A	destructor

	

We	are	all	 too	familiar	with	this.	B’s	constructor	first	calls	A’s	constructor	and	then	B’s.
When	the	object	goes	out	of	scope	the	destructor	is	called	by	the	compiler	automatically.
B’s	destructor	is	called	first	and	then	A’s.	We	know	this.

Virtual	destructor
Let’s	get	the	pointers	in.

…

…

int	main(int	argc,	char**	argv)

{

A*	Aptr	=	new	B;

delete	Aptr;

return	0;

}

	

A	constructor

B	constructor

A	destructor

	

We	have	an	issue	now,	don’t	we?	We	are	calling	both	A	and	B	constructors	but	only	A’s
destructor	 is	 called.	 This	 is	 important	 to	 note.	 B’s	 destructor	 is	 not	 called	 because	 the
destructor	is	not	virtual.	When	we	created	the	object	we	called	the	B’s	constructor	directly.
But	when	we	deleted	it,	we	called	the	delete	on	a	pointer	of	class	type	A.	So	the	compiler
called	the	destructor	of	class	A.	Let’s	fix	this.

class	A

{

public:

A()

{

cout	<<	“A	constructor”	<<	endl;

}

	

virtual	~A()

{

cout	<<	“A	destructor”	<<	endl;

}

};

…

…

	

A	constructor

B	constructor

B	destructor

A	destructor

	

So	make	 sure	 you	make	 the	 destructor	 virtual	 if	 your	 class	 is	 designed	 to	 be	 inherited.
Because	 it	 is	 common	 for	 derived	 classes	 to	 be	 associated	with	 base	 class	 pointers,	we
need	to	make	sure	when	those	base	class	pointers	are	deleted	and	the	required	destructors
are	called.

Object	size	through	destruction
It’ll	 be	 interesting	 to	 see	 how	 an	 object’s	 size	 is	 changed	 during	 construction	 and
destruction.

#include<iostream>

using	namespace	std;

	

class	A

{

int	var1;

int	var2;

public:

A()

{

cout	<<	“A	constructor.	Size:	“	<<	sizeof(*this)	<<	endl;

}

	

virtual	~A()

{

cout	<<	“A	destructor.	Size:	“	<<	sizeof(*this)	<<	endl;

}

};

	

class	B	:	public	A

{

int	var3;

int	var4;

public:

B()

{

cout	<<	“B	constructor.	Size:	“	<<	sizeof(*this)	<<	endl;

}

	

~B()

{

cout	<<	“B	destructor.	Size:	“	<<	sizeof(*this)	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

B	Bobj;

return	0;

}

	

A	constructor.	Size:	12

B	constructor.	Size:	20

B	destructor.	Size:	20

A	destructor.	Size:	12

	

Size	of	object	A	is	12	bytes.	Know	why?	There	are	 two	integers,	each	with	4	bytes	and
then	we	have	 the	vptr,	which	 is	another	4	bytes.	Object	B	has	 two	 integers	 so	 it	adds	8
more	bytes.	See	how	the	size	of	the	object	changes	from	construction	and	destruction?

Calling	destructor	for	class	members
When	you	have	pointer	allocations	in	your	class	it	is	important	that	you	deallocate	them	in
your	destructor	by	yourself.	The	compiler	is	only	going	to	call	the	base	class	destructor.	It
is	not	going	to	do	any	pointer	deleting.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

A()

{

cout	<<	“A	constructor”	<<	endl;

}

	

virtual	~A()

{

cout	<<	“A	destructor”	<<	endl;

}

};

	

class	B

{

A*	Aptr;

public:

B()

{

Aptr	=	new	A;

cout	<<	“B	constructor”	<<	endl;

}

	

~B()

{

cout	<<	“B	destructor”	<<	endl;

}

};

	

	

int	main(int	argc,	char**	argv)

{

B	Bobj;

return	0;

}

	

A	constructor

B	constructor

B	destructor

	

Note	that	the	A’s	destructor	is	not	called.	So	remember	that	if	you	have	pointer	allocations,
deallocate	them	yourself.	This	is	not	the	case	if	you	have	an	automatic	variable.

…

…

class	B

{

A	Aobj;

	

public:

B()

{

cout	<<	“B	constructor”	<<	endl;

}

	

~B()

{

cout	<<	“B	destructor”	<<	endl;

}

};

	

A	constructor

B	constructor

B	destructor

A	destructor

	

When	Bobj	goes	out	of	scope	the	destructor	of	B	is	called	and	this	destructor	in	turn	calls
the	 member	 variable’s	 destructors.	 This	 is	 why	 it	 is	 always	 a	 good	 idea	 to	 use	 smart
pointers	and	use	the	concept	of	Resource-Aquisition-Is-Initialization	(RAII).

Delete	this
Let’s	end	this	topic	with	this:	what	exactly	does	‘delete	this’	do?	Try	this	out.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

A()

{

cout	<<	“A	constructor”	<<	endl;

}

	

~A()

{

cout	<<	“A	destructor”	<<	endl;

}

	

void	callDeleteThis()

{

delete	this;

}

};

	

int	main(int	argc,	char**	argv)

{

A	Aobj;

aobj.callDeleteThis();

return	0;

}

	

A	constructor

A	destructor

	

This	 shouldn’t	work.	The	 result	 depends	 on	 the	 runtime	 system	but	 you	must	 get	 some
type	of	runtime	failure.	If	you	put	a	breakpoint	at	the	return	statement	though,	you	could
see	the	output	shown	above.

We	 are	 trying	 to	 do	 an	 undefined	 operation	 here.	 What	 does	 ‘delete	 this’	 do	 then?	 It
simply	calls	the	destructor.	That’s	it.	Why	then	is	this	giving	a	runtime	error?	Because	we
are	 trying	 to	 call	 the	destructor	on	 an	object	 that’s	 already	destructed.	The	destructor	 is
first	 called	 when	 we	 call	 callDeleteThis.	 And	 when	 the	 object	 goes	 out	 of	 scope	 the
compiler	 implicitly	 calls	 the	 destructor	 on	Aobj.	But	Aobj	 is	 already	 destructed.	This	 is
undefined	behavior.

Then	how	about	calling	the	destructor	explicitly?	Can	you	do	that?	You	sure	can.

…

…

int	main(int	argc,	char**	argv)

{

A	Aobj;

aobj.~A();

return	0;

}

	

Did	 you	 notice	 something	 different	 now?	This	 code	 don’t	 have	 any	 runtime	 failures.	 It
executes	 the	 fine.	But	we	are	doing	 the	same	 thing	as	before	when	we	did	 ‘delete	 this’,
right?	Actually,	no.

Now	here’s	 the	 caveat.	Destructor	 does	 not	 deallocate	 the	 object.	 The	 destructor	 is	 just
another	 function	 that	 is	 supposed	 to	 do	 some	 housekeeping	 before	 the	 object	 is
deallocated.	But	the	destructor	itself	does	not	deallocate	the	memory.	After	the	destructor
is	called,	the	object	memory	is	still	there	intact.	The	object	still	technically	exists.	This	is
the	 difference	 between	 calling	 the	 destructor	 explicitly	 and	 calling	 it	 through	 operator
delete.	 Note	 how	we	 got	 a	 runtime	 error	 before	when	 did	 ‘delete	 this’,	 but	we	 had	 no
issues	 when	 we	 called	 the	 destructor	 explicitly.	 This	 is	 because	 delete	 is	 the	 one	 that
actually	does	the	memory	deallocation.	So	operator	delete	has	two	operations:

First	calls	the	destructor,	and	lets	it	do	the	necessary	housekeeping.
Deallocates	the	memory	of	the	object.

Does	 the	 functionality	 of	operator	 delete	 sound	 familiar?	 This	 is	 the	 exact	 opposite	 of
operator	 new.	 Operator	 new	 allocates	 memory	 and	 then	 constructs	 the	 object,	 while
operator	delete	destructs	the	object	and	deallocates	the	memory.	Here’s	an	example.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A()	:	var(10)

{

cout	<<	“A	constructor”	<<	endl;

}

	

~A()

{

cout	<<	“A	destructor”	<<	endl;

}

	

void	callDeleteThis()

{

delete	this;

}

};

	

int	main(int	argc,	char**	argv)

{

A	Aobj;

aobj.~A();

aobj.var	=	20;

cout	<<	“Aobj.A:	“	<<	Aobj.var	<<	endl;

return	0;

}

	

A	constructor

A	destructor

Aobj.A:	20

A	destructor

	

Here	we	are	 constructing	 an	object,	 then	 (trying	 to)	destruct	 it	 by	 calling	 the	destructor
explicitly,	and	then	we	assign	a	value	to	its	member	variable	and	read	it	back.	All	without
having	any	issues.	Now	are	you	convinced	that	the	destructor	is	just	another	function?	Its
only	speciality	is	that	it	is	automatically	called	just	before	the	object	is	deleted.

The	story’s	different	if	we	do	this:

int	main(int	argc,	char**	argv)

{

A	Aobj;

aobj.callDeleteThis();

aobj.var	=	20;

cout	<<	“Aobj.A:	“	<<	Aobj.var	<<	endl;

return	0;

}

	

This	 is	 a	 runtime	 failure.	 Why?	 Because	 we	 destruct	 the	 object	 through	 delete.	 This
actually	deallocates	the	memory	so	the	object	does	not	exist	anymore.	And	we	are	trying
to	access	a	non-existent	object,	which	causes	the	runtime	failure.

Why,	then,	would	we	need	to	call	the	destructor	explicitly?	There	aren’t	many	cases	where

you	 should	 be	 calling	 the	 destructor	 explicitly.	 One	 case	 where	 you	 would	 call	 the
destructor	 explicitly	 is	 when	 you	 want	 to	 destroy	 the	 object	 but	 not	 to	 deallocate	 the
memory.	 When	 would	 we	 want	 to	 do	 that?	 Remember	 ‘placement	 new’?	 Where	 we
construct	new	objects	on	memory	that	is	already	allocated.	This	is	one	situation	where	we
would	call	the	destructor	explicitly.	We	call	the	destructor	explicitly	to	destroy	the	object,
but	not	to	deallocate	the	memory,	but	then	use	placement	new	to	construct	a	new	object	on
that	block	of	memory.	Like	this:

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{

cout	<<	“A	constructor”	<<	endl;

}

	

~A()

{

cout	<<	“A	destructor:	“	<<	var	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

A*	Aptr	=	new	A(1);

cout	<<	“Aptr->var:	“	<<	Aptr->var	<<	endl;

aptr->~A();

	

new	(Aptr)A(2);

cout	<<	“Aptr->var:	“	<<	Aptr->var	<<	endl;

delete	Aptr;

return	0;

}

	

A	constructor

Aptr->var:	1

A	destructor:	1

A	constructor

Aptr->var:	2

A	destructor:	2

	

You	can	confirm	 that	we	are	 indeed	constructing	 two	different	objects	 in	one	place.	We
destruct	the	first	object,	which	actually	does	nothing	more	than	a	printout,	and	then	we	call
placement	new	to	construct	a	new	object	on	the	memory	block	Aptr	is	allocated	to.

I	 believe	 this	 topic	 provided	 you	with	 some	 internals	 of	 the	 destructor.	 A	 destructor	 is
almost	 a	normal	 function,	 except	 for	 the	 fact	 that	 the	 compiler	 implicitly	 calls	 it	 before
deallocating	the	object’s	memory.	Other	than	that	it	is	just	another	pretty	normal	function.

Topic	16

Operator	Overloading
Operator	overloading	is	a	new	important	feature	added	to	C++.	Every	time	you	do	‘cout
<<’	you	are	using	operator	overloading.	As	important	as	 it	 is	I’ve	found	that	references
that	do	a	proper	treatment	of	this	topic	is	rather	scarce.	Operator	overloading	isn’t	difficult
but	there	are	a	few	rules	you	need	to	know	about	it.

What	is	exactly	operator	overloading?	It	is	the	same	as	function	overloading.	You	change
the	 behavior	 of	 an	 existing	 operator	 to	 do	 something	 else	 you	 want.	 It’s	 important	 to
remember	 that	 you	 can	 only	 overload	 existing	 C++	 operators.	 You	 cannot	 invent	 new
ones.	And	when	 you	 overload	 an	 operator,	 it	must	 be	 overloaded	 to	work	with	 an	 user
defined	 type.	 What	 that	 means	 is	 that	 you	 cannot	 overload	 an	 operator	 to	 something
different	 on	 a	 built	 in	 type.	 For	 example	 when	 you	 do	 ‘x+y’,	 where	 ‘x‘	 and	 ‘y‘	 are
integers,	operator	‘+’	will	always	do	integer	addition.	You	cannot	change	the	behavior	of
operator	‘+’	for	built	in	types	such	as	integers.	What	you	can	do	is	to	overload	the	operator
‘+’	 for	a	class	 type	you	defined.	Let’s	say	you	have	 two	 instances	of	myClass,	obj1	and
obj2;	 you	can	overload	operator	 ‘+’	 to	define	 an	 implementation	 for	 ‘obj1+obj2’.	We’ll
look	at	examples	later,	but	first	let’s	have	a	look	at	the	fundamental	rules.

Rules	of	operator	overloading
Here	are	the	basic	rules:

Only	existing	operators	can	be	overloaded.
The	 following	 operators	 cannot	 be	 overloaded:	 scope	 resolution	 (::),	 member
access	(.	and	.*),	ternary	conditional	(?:).
Most	operators	have	a	fixed	number	of	arguments.
Most	operators	can	be	overloaded	as	either	a	member	function	or	a	non-member
function.

Having	said	that,	here’s	the	other	thing	about	operators:	most	operators	can	be	divided	into
either	unary	operators	or	binary	operators.	You	must	have	noticed	that	I	used	‘most’	in	a
few	places;	this	is	because	there	are	a	few	exceptions.	But	the	rule	holds	for	the	majority.

Unary	operators	–	These	are	the	operators	that	take	only	one	parameter.	

Increment	(++)	and	decrement	(—)	operators
Positive	(+),	negative	(-)	and	logical	not	(!)	

Binary	operators	–	These	are	the	operators	that	take	two	parameters.	

Arithmetic	operators	–	plus(+),	minus	(-),	division	(/)	and	multiplication	(*)
I/O	operators	-	<<	and	>>
Comparison	operators	–	greater	than	(<,	<=),	less	than	(>,	>=),	equal	(==)

Unary	operator	overloading
Let’s	start	with	non-member	function	for	unary	operator	‘+’.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

};

	

A	operator+(const	A&	Aref)

{

cout	<<	“Received	value:	“	<<	Aref.var	<<	endl;

return	A(Aref.var	+	1);

}

	

int	main(int	argc,	char**	argv)

{

A	Aobj1(20);

A	Aobj2(+Aobj1);

cout	<<	“Aobj2.var:	“	<<	Aobj2.var	<<	endl;

return	0;

}

	

Received	value:	20

Aobj2.var:	21

	

It’s	 easy	 to	 understand	 the	 implementation.	 The	 operator	 ‘+’	 simply	 increments	 the
received	 reference’s	 value	 and	 returns	 an	 object	with	 that	 value.	Note	 how	 I	 called	 the
operator	on	the	object	as	‘+Aobj1’?	The	operator	is	on	the	left	of	the	object.	What	if	it	was
on	the	right,	like	‘Aobj1+‘?	You	can’t.	You’d	get	an	error	similar	to	the	following:

Can	you	guess	what	is	happening?	Did	you	notice	that	the	operator	‘+’	is	both	a	unary	and
a	binary	operator?	When	 the	 operator	 appears	 on	 the	 right,	 the	 compiler	 treats	 it	 as	 the
binary	operator	‘+’.	And	binary	operators	need	two	arguments,	the	one	on	its	left	and	the
one	on	the	right.	When	we	write	‘Aobj1+’,	the	compiler	parses	it	as	the	binary	operator	‘+’
and	expects	 the	 second	argument	 to	 the	 right	of	 the	operator.	These	 compiler	 errors	 are
because	 it	 is	 missing	 that	 argument.	 It	 would	 become	 clear	 when	 we	 look	 at	 binary
operators	but	now	keep	in	mind	that	unary	operators	must	be	on	the	left	of	 the	operand.
Well,	at	least	in	most	cases.

Now	how	would	we	implement	this	unary	operator	‘+’	as	a	member-function?	It’s	pretty
straight	forward.	When	the	function	was	a	non-member	we	had	to	pass	the	class	type	as
the	parameter.	And	there	must	be	only	one	parameter	since	this	is	a	unary	operator.	When
this	operator	overloaded	function	is	a	member	of	the	class,	we	no	longer	need	to	specify	a
parameter,	because	every	member	function	gets	an	implicit	‘*this’.	And	‘*this’	is	the	one
argument	that	the	operator	requires.	So	for	unary	operators	we	must	not	have	any	function
parameters.	This	is	how	we	make	this	a	member	function.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

	

A	operator+()

{

cout	<<	“‘this’	value:	“	<<	this->var	<<	endl;

return	A(this->var	+	1);

}

};

	

int	main(int	argc,	char**	argv)

{

A	Aobj1(1);

A	Aobj2(+Aobj1);

cout	<<	“Aobj2.var:	“	<<	Aobj2.var	<<	endl;

return	0;

}

	

‘this’	value:	1

Aobj2.var:	2

	

See,	nothing	much	to	it.	The	parameter	we	had	in	the	non-member	function	now	becomes
the	 implicit	 ‘this’	 in	 the	member-function.	Now	 let’s	 take	a	quick	 look	at	 the	 increment
and	decrement	operators.

You	 know	 that	 increment	 and	 decrement	 operators	 come	 in	 two	 versions:	 prefix	 and
postfix.	Prefix	is	when	the	operator	is	on	the	left	of	the	operand	and	postfix	is	when	it	is	on
the	 right.	 Let’s	 look	 at	 the	 prefix	 increment.	 There	 isn’t	 anything	 different	 from	 the
increment	operator.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

};

	

A	operator++(A&	Aref)

{

cout	<<	“Received	value:	“	<<	Aref.var	<<	endl;

return	A(Aref.var	+	1);

}

	

int	main(int	argc,	char**	argv)

{

A	Aobj1(1);

A	Aobj2(++Aobj1);

cout	<<	“Aobj2.var:	“	<<	Aobj2.var	<<	endl;

return	0;

}

	

Received	value:	1

Aobj2.var:	2

	

How	are	we	going	to	implement	the	postfix	version?	Because	from	increment	operator	we
know	 that	 the	operator	needs	 to	be	on	 the	 left	 side.	There	 is	 a	 special	 handling	 for	 this
case.	Insert	a	dummy	integer	parameter	to	the	overloaded	operator.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

};

	

A	operator++(A&	Aref,	int	dummy)

{

cout	<<	“Received	value:	“	<<	Aref.var	<<	endl;

return	A(Aref.var	+	1);

}

	

int	main(int	argc,	char**	argv)

{

A	Aobj1(1);

A	Aobj2(Aobj1++);

cout	<<	“Aobj2.var:	“	<<	Aobj2.var	<<	endl;

return	0;

}

	

Received	value:	1

Aobj2.var:	2

	

Pretty	 neat	 right?	But	 you	must	 be	wondering	 now	 about	 this	 dummy	parameter.	What
does	 the	 dummy	parameter	 do?	And	 does	 it	 need	 to	 be	 an	 integer?	Let’s	 put	 a	 float	 in
there.	After	all	this	is	a	dummy	parameter.	It	shouldn’t	matter	what	type	it	is.	Or	does	it?

…

…

A	operator++(A&	Aref,	float	dummy)

{

cout	<<	“Received	value:	“	<<	Aref.var	<<	endl;

return	A(Aref.var	+	1);

}

…

…

	

That’s	 a	 bunch	 of	 errors	 but	 only	 look	 at	 the	 first	 one.	 The	 compiler	 is	 saying	 that	 the
second	 parameter	 for	 the	 postfix	 operator	 must	 be	 an	 int.	 If	 you	 want	 to	 overload	 the
postfix	operator	you	must	make	the	second	operand	an	int.	That’s	the	rule.	Just	obey	it.

Now	 you	 must	 be	 scratching	 your	 head	 trying	 to	 generalize	 the	 rules	 of	 operator
overloading.	 Don’t!	 Do	 not	 try	 to	 find	 a	 set	 of	 general	 rules	 for	 operator	 overloading.
Certain	operators	have	their	special	overload	function	signature.	This	will	become	clear	to
you	when	we	 look	 at	 overloading	 operator	new.	 Just	 keep	 in	mind	 that	 these	 operators
have	 their	 way	 of	 being	 overloaded.	 You	 need	 to	 adhere	 to	 their	 ways.	 In	 case	 of
increment/decrement	postfix	operator,	 the	 second	parameter	must	be	an	 int.	Not	 a	 float,
not	a	*void,	but	only	an	int.

To	 finish	 off	 unary	 operators	 let’s	 look	 at	 how	 we’d	 implement	 the	 postfix	 decrement
operator	as	a	member-function.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

	

A	operator—(int	dummy)

{

cout	<<	“Received	value:	“	<<	this->var	<<	endl;

return	A(this->var	-	1);

}

};

	

int	main(int	argc,	char**	argv)

{

A	Aobj1(1);

A	Aobj2(Aobj1—);

cout	<<	“Aobj2.var:	“	<<	Aobj2.var	<<	endl;

return	0;

}

	

Received	value:	1

Aobj2.var:	0

	

Binary	operator	overloading
Now	we’ll	move	on	to	overloading	binary	operators.	Let’s	start	with	the	‘+’	operator.	This
is	one	operator	 that	works	as	both	a	unary	and	a	binary	operator.	Let’s	 look	at	 the	non-
member	function	first.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

};

	

A	operator+(A&	leftOp,	A&	rightOp)

{

cout	<<	“Received	left:	“	<<	leftOp.var	<<	endl;

cout	<<	“Received	right:	“	<<	rightOp.var	<<	endl;

return	A(leftOp.var	+	rightOp.var);

}

	

int	main(int	argc,	char**	argv)

{

A	Aobj1(1);

A	Aobj2(2);

A	Aobj3(Aobj1	+	Aobj2);

cout	<<	“Aobj3.var:	“	<<	Aobj3.var	<<	endl;

return	0;

}

	

Received	left:	1

Received	right:	2

Aobj3.var:	3

	

As	this	is	a	binary	operator	you	need	two	operands.	One	for	the	operand	on	the	left	of	the
operator	and	the	other	for	the	one	on	the	right.	It	is	important	to	note	the	association	of	the
function	parameters	and	the	operator	operands.	The	first	parameter	leftOp	is	the	one	that
comes	to	the	left	of	the	operator	and	the	rightOp	is	the	one	that	goes	on	the	right.	Pretty
intuitive.	Remember	 I	 said	 that	 you	 cannot	 overload	 operators	 for	 built-in	 types?	What
would	happen	if	we	try	it?

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

};

	

A	operator+(int	leftOp,	int	rightOp)

{

cout	<<	“Received	left:	“	<<	leftOp	<<	endl;

cout	<<	“Received	right:	“	<<	rightOp	<<	endl;

return	A(leftOp	+	rightOp);

}

	

int	main(int	argc,	char**	argv)

{

A	Aobj(1	+	2);

cout	<<	“Aobj.var:	“	<<	Aobj.var	<<	endl;

return	0;

}

	

We	cannot.	And	what	does	it	mean	that	“must	have	at	least	one	formal	parameter?”

It	means	that	when	you	overload	an	operator	it	must	have	a	formal	parameter.	That	is,	a
user	 defined	 type.	 Not	 built	 in	 types.	 So	 does	 that	 mean	 we	 can	 have	 one	 class	 type
parameter	and	the	a	built-in	type?	Yes.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

};

	

A	operator+(A&	leftOp,	int	rightOp)

{

cout	<<	“Received	left:	“	<<	leftOp.var	<<	endl;

cout	<<	“Received	right:	“	<<	rightOp	<<	endl;

return	A(leftOp.var	+	rightOp);

}

	

int	main(int	argc,	char**	argv)

{

A	Aobj1(1);

A	Aobj2(Aobj1	+	2);

cout	<<	“Aobj2.var:	“	<<	Aobj2.var	<<	endl;

return	0;

}

	

Received	left:	1

Received	right:	2

Aobj3.var:	3

	

So	you	can	make	your	class	 type	work	with	built	 in	 types.	But	make	sure	you	have	 the
operand	association.	 In	 the	example	above	 the	 left	operand	must	be	of	our	class	 type.	 It
cannot	be	the	other	way	around.	That	is,	we	couldn’t	write	“A	Aobj2(2	+	Aobj1)“.	For	that
we	need	to	have	another	overloaded	operator	“A	operator+(int	leftOp,	A&	rightOp)“.

Now	how	would	this	look	as	a	member-function?

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

	

A	operator+(A&	rightOp)

{

cout	<<	“Received	left:	“	<<	this->var	<<	endl;

cout	<<	“Received	right:	“	<<	rightOp.var	<<	endl;

return	A(this->var	+	rightOp.var);

}

};

	

int	main(int	argc,	char**	argv)

{

A	Aobj1(1);

A	Aobj2(2);

A	Aobj3(Aobj1	+	Aobj2);

cout	<<	“Aobj3.var:	“	<<	Aobj3.var	<<	endl;

return	0;

}

	

Received	left:	1

Received	right:	2

Aobj3.var:	3

	

Remember,	we	discussed	how	the	member	functions	always	have	an	implicit	‘*this’	 that
corresponds	to	the	object	that	the	function	was	called	on.	It’s	the	same	thing	here.	The	left
operand	of	the	operator	becomes	the	‘*this’.	In	our	example	we	are	invoking	the	operator

of	 object	Aobj1	 and	Aobj2	 becomes	 the	 rightOp	 argument.	 This	 would	 become	 clearer
when	 you	 see	 that	 you	 can	 actually	 call	 the	 overloaded	 operator	 as	 calling	 a	 member
function.

…

…

int	main(int	argc,	char**	argv)

{

A	Aobj1(1);

A	Aobj2(2);

A	Aobj3(Aobj1.operator+(Aobj2));

cout	<<	“Aobj3.var:	“	<<	Aobj3.var	<<	endl;

return	0;

}

	

You	see	overloaded	operators	are	just	functions.	Functions	that	the	compiler	handles	a	bit
differently	so	you	can	call	them	as	you	would	a	normal	operator.	Would	you	really	want	to
call	the	operator	‘+’	as	‘Aobj1.operator+(Aobj2)’?	What’s	the	point?	You’d	rather	define	a
member	function	‘A	Plus(A&	obj)’	to	do	that.	But	it	helps	to	clear	things,	that	it	is	another
member	function	that	is	called	on	the	object	on	the	left	of	the	operator.

Now	how	about	if	we	want	to	have	a	member-function	but	with	an	int	parameter	like	we
discussed	before	 in	 the	non-member	case	 “A	operator+(A&	 leftOp,	 int	 rightOp)“?	How
would	 it	 work	 in	 the	 member-function	 version?	 We	 definitely	 could	 make	 a	 member-
function	version	where	the	left	operand	is	the	class	type.

…

…

A	operator+(int	rightOp)

{

cout	<<	“Received	left:	“	<<	this->var	<<	endl;

cout	<<	“Received	right:	“	<<	rightOp	<<	endl;

return	A(this->var	+	rightOp);

}

…

…

	

We	can	do	this	because	the	left	operand	should	be	of	class	type.	But	what	about	when	we
want	to	implement	a	member-function	for	having	the	integer	as	the	left	operand?	That	is,
what	 is	 the	member-function	 version	 of	 non-member	 function	 “A	 operator+(int	 leftOp,
A&	rightOp)“?	There	isn’t	one.	This	is	one	limitation	you	have	with	the	member-function.
There	 is	 no	 special	 handling	 with	 dummy	 variables.	 You	 just	 cannot	 do	 this	 with	 a

member	 function.	 If	 you	want	 to	 overload	 the	 plus	 operator	 to	 have	 a	 built-in	 type	 left
operand	you	must	use	a	non-member	function.

The	 rules	 are	 the	 same	 for	 the	 other	 binary	 operators:	 I/O	 operators	 and	 comparison
operators.	There	is	no	restriction	on	the	operator	return	type.	So	far	we	only	looked	at	a
simple	 case	 where	 we	 return	 an	 object.	 But	 you	 could	 have	 different	 return	 types
depending	 on	 the	 operator.	 For	 example,	 comparison	 operators	 in	 all	 cases	 should	 be
returning	a	boolean	value.	But	you	are	free	to	return	any	value.

Finally	we	will	look	at	two	other	operators	that	have	some	special	handling.

Function	operator	overloading
First	 is	overloading	 the	function	call	operator	 ‘()’,	which	 is	called	 the	function	operator.
This	has	quite	nifty	use	cases.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

	

void	operator()	()

{

cout	<<	“In	overloaded	operator	()”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

A	Aobj(1);

aobj();

return	0;

}

	

In	overloaded	operator	()

	

Did	you	notice	how	we	called	the	overloaded	operator?	Pretty	neat	syntax,	 isn’t	 it?	And
we	are	not	limited	to	a	no	argument	function.	We	can	load	it	up.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

	

void	operator()	(int	a,	int	b)

{

cout	<<	“In	overloaded	operator():	“	<<	a	<<	”	and	“	<<	b	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

A	Aobj(1);

aobj(1,	2);

return	0;

}

	

One	 thing	 you	must	 adhere	with	 this	 overloaded	 function	 operator	 is	 that	 it	must	 be	 a
member-function.	And	also	that	the	parentheses	must	come	to	the	left	of	the	operand.

Operator	new	overloading
Our	 last	operator	 is	 the	new	 operator	 (and	of	 course	 the	associated	delete	operator).	We
actually	did	operator	new	overloading	in	the	topic	on	“Understanding	new”.	Remember
placement	new?	That	was	operator	overloading.	Operator	new	has	three	main	formats:

The	global	standard	operator	new	has	the	signature

void*	operator	new(std::size_t	count);

	

Placement	new	has	the	signature

void*	operator	new(std::size_t	count,	void*	ptr);

	

An	user	defined	overloaded	operator	has	the	signature

void*	operator	new(std::size_t	count,	user_args…);

	

All	three	of	the	above	operator	formats	are	overloadable.	There	is	a	special	operator	new
specific	way	of	calling	these	functions.	Remember	I	told	you	not	to	try	to	generalize	the
function	overloading	mechanism.	This	is	another	one	of	those	operator	specific	ones.

Let’s	look	at	a	simple	example.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

};

	

int	main(int	argc,	char**	argv)

{

A*	Aptr	=	new	A(1);								//	Line	1

return	0;

}

	

I	want	to	point	out	something	important	in	this	example.	See	the	call	to	new	in	line	1?	It	is
important	to	understand	that	this	is	NOT	the	call	to	operator	new.	What	we	call	in	line	1	is
the	‘new-expression’.	‘new-expression’	is	the	one	that	calls	operator	new.	Operator	new	is
only	 responsible	 for	memory	 allocation	while	 ‘new-expression’	 does	 two	 things:	 It	 first
calls	the	operator	new	to	allocate	memory	and	then	constructs	the	object	at	the	allocated
memory	by	calling	the	constructor.	Keep	the	distinction	in	mind.	What	we	are	overloading
here	 is	 the	operator	new,	 the	function	 that	will	be	called	by	 the	new-expression	first.	So
you	must	understand	the	importance	of	proper	overloading	of	operator	new.	Because	you
see	 if	we	 don’t	 do	 the	 proper	memory	 allocation	 in	 our	 overloaded	 operator	 new,	 then
when	we	 call	 new-expression,	 it	 is	 not	 going	 to	work.	 The	 compiler	will	 do	 its	 part	 to
make	sure	we	overload	it	properly.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

A(int	val)	:	var(val)

{}

	

void	operator	new(size_t	count)

{

cout	<<	“Operator	new”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

A*	Aptr	=	new	A(1);

return	0;

}

	

See,	 the	compiler	wants	us	 to	have	 the	correct	 return	 type.	We	cannot	overload	 it	as	we
wish.	 Also,	 notice	 that	 the	 new-expression	 calculates	 the	 size	 and	 passes	 it	 as	 the	 first
argument	to	the	operator	new.	Let’s	see	how	improper	implementation	can	fail	things.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var1;

int	var2;

int	var3;

A(int	val)	:	var3(val)

{}

	

void*	operator	new(size_t	count)

{

return	::operator	new(8);

}

};

	

int	main(int	argc,	char**	argv)

{

cout	<<	“Size	of	A:	“	<<	sizeof(A)	<<	endl;

A*	Aptr	=	new	A(1);

cout	<<	“Aptr->var:	“	<<	Aptr->var3	<<	endl;

return	0;

}

	

Here	I	put	two	more	int	variables	to	the	class.	This	should	make	the	size	of	a	A	object	to
be	12	bytes	(one	int	is	32-bits).	And	in	the	operator	new,	which	is	supposed	to	allocate	12
bytes	 of	 heap	 memory,	 it	 only	 allocates	 half	 of	 it.	 So	 the	 memory	 block	 returned	 by
operator	new	 to	 the	new-expression	does	not	have	enough	 space	 to	put	 three	 ints.	 new-
expression	then	constructs	the	12	byte	object	in	a	8	byte	space	and	then	we	try	to	access
the	last	int	variable,	which	is	clearly	out	of	the	object	memory	space.	This	should	result	in
a	runtime	error.	Depending	on	the	system,	even	if	we	tried	to	access	the	first	variable	we
could	 see	 a	 runtime	 failure	 because	 we	 are	 clearly	 violating	 the	 allocated	 memory
boundaries.	 So	 if	 you	 are	 overloading	 the	 operator	 new,	 make	 sure	 you	 implement	 it
correctly.

Now	 in	 the	 final	 part	 let’s	 see	 how	 we	 can	 overload	 the	 new	 operator	 for	 a	 custom
signature.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

	

A(int	val)	:	var(val)

{}

	

void*	operator	new(size_t	count,	int	var1,	int	var2,	bool	state)

{

if	(state)

{

cout	<<	“TRUE	state:	var1-	“	<<	var1	<<	“,	var2-	“	<<	var2	<<	endl;

}

return	::operator	new(count);

}

};

	

int	main(int	argc,	char**	argv)

{

A*	Aptr	=	new	(1,	2,	true)	A(1);

return	0;

}

	

TRUE	state:	var1-	1,	var2-	2

	

You	 see,	 you	 can	 pass	 any	number	 of	 arguments	 to	 your	 overloaded	operator	 new.	The
first	argument,	count,	 is	always	passed	 implicitly	by	 the	new-expression.	The	rest	of	 the
arguments,	however,	need	to	be	passed	as	a	list	before	the	operand.	Notice	how	we	pass
the	 list	 of	 arguments.	 It	 comes	 before	 the	 operand.	 It	 looks	 peculiar	 but	 remember,	 the
compiler	has	its	way	of	handling	operator	overloads.	Keep	in	mind	that	you	don’t	need	to
pass	the	first	argument,	which	is	passed	by	new-expression.

I	hope	you’ve	realized	how	operator	overloading	works	and	how	powerful	that	mechanism
can	be	to	make	the	operators	perform	customized	functionality	to	suit	your	needs.

Topic	17

Multiple	Inheritance
Multiple	 inheritance	 can	 be	 a	 powerful	 feature	 when	 done	 right.	 But	 the	 longer	 the
inheritance	 hierarchy	 the	 more	 error	 prone	 it	 becomes.	 This	 topic	 will	 do	 a	 quick
discussion	 on	 multiple	 inheritance,	 the	 dreaded	 diamond	 problem	 and	 then	 virtual
inheritance.

Here’s	a	simple	multiple	inheritance	example.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

	

A(int	val)	:	var(val)

{}

	

void	foo()

{

cout	<<	“Class	A	foo()”	<<	endl;

}

};

	

class	B

{

public:

int	var;

	

B(int	val)	:	var(val)

{}

	

void	foo()

{

cout	<<	“Class	B	foo()”	<<	endl;

}

};

	

class	ABDerived	:	public	A,	public	B

{

public:

ABDerived(int	var1,	int	var2)	:	A(var1),	B(var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

ABDerived	ABDerObj(1,	2);

aBDerObj.foo();

return	0;

}

	

Classes	A	and	B	have	common	member	names	they	share,	var	and	foo.	You	know	this	is
going	to	be	trouble.	Class	ABDerived	has	access	to	function	foo	of	both	classes	A	and	B.
So	 which	 foo	 are	 we	 calling?	 Luckily	 the	 compiler	 doesn’t	 randomly	 choose	 one.	 It
complains	that	it	doesn’t	know	which	one	to	choose.

All	we	need	to	do	is	tell	the	compiler	which	foo	we	want	to	invoke	by	correctly	qualifying
the	call	with	the	class	name.

…

…

int	main(int	argc,	char**	argv)

{

ABDerived	ABDerObj(1,	2);

aBDerObj.A::foo();									//qualifying	the	function	call

return	0;

}

	

Class	A	foo()

	

What	if	foo	was	private	in	class	A?	In	that	case	ABDerived	has	access	to	only	B::foo	so	we
don’t	need	to	qualify	the	call	to	foo,	right?	Nope.

#include<iostream>

using	namespace	std;

	

class	A

{

public:

int	var;

	

A(int	val)	:	var(val)

{}

	

private:

void	foo()

{

cout	<<	“Class	A	foo()”	<<	endl;

}

};

	

class	B

{

public:

int	var;

	

B(int	val)	:	var(val)

{}

	

void	foo()

{

cout	<<	“Class	B	foo()”	<<	endl;

}

};

	

class	ABDerived	:	public	A,	public	B

{

public:

ABDerived(int	var1,	int	var2)	:	A(var1),	B(var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

ABDerived	ABDerObj(1,	2);

aBDerObj.foo();

return	0;

}

	

Why	 is	 the	 call	 still	 ambiguous	 to	 the	 compiler?	 There	 is	 obviously	 one	 foo	 that
ABDerived	 has	 access	 to.	 This	 is	 because	 function	 access	 rights	 is	 the	 one	 that	 the
compiler	 checks	 at	 the	 very	 end.	 Simply,	 it	 is	 because	 before	 the	 compiler	 knows	 that
ABDerived	has	no	right	to	access	foo,	it	finds	two	possible	foos	and	complains	about	the
call	 ambiguity	 before	 going	 further	 and	 finding	 out	 A::foo()	 is	 inaccessible.	 So	 even
though	one	of	the	foos	is	private,	you	still	need	to	qualify	the	function	call.	Now	let’s	look
at	what	the‘dreaded	diamond	problem	is.

The	diamond	problem
This	is	our	class	hierarchy.

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{}

	

void	foo()

{

cout	<<	“Class	Base	foo()”	<<	endl;

}

};

	

class	Derived_A	:	public	Base

{

public:

Derived_A(int	val)	:	Base(val)

{}

	

void	foo()

{

cout	<<	“Class	Derived_A	foo()”	<<	endl;

}

};

	

class	Derived_B	:	public	Base

{

public:

Derived_B(int	val)	:	Base(val)

{}

	

void	foo()

{

cout	<<	“Class	Derived_B	foo()”	<<	endl;

}

};

	

class	Derived_AB	:	public	Derived_A,	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_A(var1),	Derived_B(var2)

{}

};

	

Pictorially	this	is	what	we	have:

We	have	 a	Base	 class	 and	 then	 classes	Derived_A	 and	Derived_B	 inheriting	 from	Base
class.	Base	class	function	 foo	has	been	overridden	by	both	derived	classes.	And	then	we
have	class	Derived_AB	inheriting	from	both	Derived_A	and	Derived_B	classes.	You	notice
that	 this	 is	 nothing	 different	 from	what	 we	 discussed	 in	 the	 earlier	 example.	 The	 only
difference	is	that	there	wasn’t	a	common	base	class.	It’s	obvious	where	the	diamond	shape

is	coming	from	and	this	is	a	far	more	common	occurrence,	where	two	classes	derive	from
the	same	base	class	and	then	another	class	doing	multiple	inheritance.	You	already	know
what	needs	 to	be	done.	You	need	 to	qualify	your	 function	call	 to	 let	 the	compiler	know
which	foo	to	call.

We	are	clear	about	calling	foo.	Both	the	derived	classes	have	overridden	foo	functions	so
we	need	to	explicitly	qualify	the	call.	But	what	about	var?	There	is	only	var	and	it	is	in	the
Base	class.	Can	there	be	any	ambiguity	in	accessing	var?

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{}

	

void	foo()

{

cout	<<	“Class	Base	foo()”	<<	endl;

}

};

	

class	Derived_A	:	public	Base

{

public:

Derived_A(int	val)	:	Base(val)

{}

	

void	foo()

{

cout	<<	“Class	Derived_A	foo()”	<<	endl;

}

};

	

class	Derived_B	:	public	Base

{

public:

Derived_B(int	val)	:	Base(val)

{}

	

void	foo()

{

cout	<<	“Class	Derived_B	foo()”	<<	endl;

}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_A(var1),	Derived_B(var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

aBDerObj.var;

return	0;

}

	

Yes.	There	still	is	ambiguity	in	var	for	the	compiler.	But	why?	Here’s	the	debug	view	of
the	Derived_AB	class	object.

That	should	convince	you	why	the	compiler	has	ambiguity	 in	finding	var.	There	is	only
one	var	but	there	are	two	Base	class	instances.	One	in	Derived_A	and	one	in	Derived_B.
So	 there	 are	 two	var	 variables	 in	 the	Derived_AB	 object.	 So	 just	 as	we	 did	 for	 the	 foo

function	call,	we	need	to	qualify	var	too.

…

…

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

cout	<<	“var:	“	<<	ABDerObj.Derived_B::var	<<	endl;

return	0;

}

	

var:	2

	

Could	we	qualify	var	with	Base	class?	Like	this:

…

…

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

cout	<<	“var:	“	<<	ABDerObj.Base::var	<<	endl;

return	0;

}

	

var:	1

	

Well,	it	shouldn’t.	Unfortunately	it	does	compile	and	run	in	the	version	of	Visual	Studio	I
am	running,	although	there	is	a	tooltip	warning	that	says	“base	class	Base	is	ambiguous“.
So	it	understands	the	ambiguity	of	the	call	yet	does	not	even	seem	to	warn,	even	at	higher
warning	levels.

Base	class	function	access
So	you	see,	the	real	problem	here	is	that	our	class	hierarchy	is	actually	like	this:

We	have	two	instances	of	Base	and	we	need	to	explicitly	tell	the	compiler	which	one	we
want	to	use.	Now	we	understand	this	for	var.	There	are	two	var‘s,	one	with	value	1	and
the	 other	 2.	 And	 we	 also	 understood	 about	 the	 ambiguity	 of	 foo	 call.	 There	 are	 two
overridden	versions.	But	what	 if	we	didn’t	override	 function	 foo	 in	 the	derived	 classes?
Like	this:

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{}

	

void	foo()

{

cout	<<	“Class	Base	foo()”	<<	endl;

}

};

	

class	Derived_A	:	public	Base

{

public:

Derived_A(int	val)	:	Base(val)

{}

};

	

class	Derived_B	:	public	Base

{

public:

Derived_B(int	val)	:	Base(val)

{}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_A(var1),	Derived_B(var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

aBDerObj.foo();

return	0;

}

	

	

There	shouldn’t	be	any	ambiguity	about	function	foo,	right?	Because	foo	is	not	overridden
anywhere	and	Base	class	is	the	only	place	with	foo	implementation	and	functions	are	not
instance	specific.	They	are	class	specific.	So	there	must	be	only	one	version	of	foo.	Why	is
the	call	to	foo	still	ambiguous	then?

You	see,	there	are	actually	two	versions	of	foo	the	compiler	can	call.	Remember	that	every
member-function	of	a	class	has	an	implicit	‘*this‘	argument	passed	by	the	compiler.	That
is	why	you	can	access	object	specific	variables	in	member-functions.	So	the	call	to	foo	has
an	implicit	‘Base*‘	argument	passed	to	it	by	the	compiler.	The	problem	is	our	Derived_AB
object	has	two	Base	sub-objects	as	we	saw	before.	So	which	one	should	be	passed	to	foo?
This	 is	where	 the	 compiler	 gets	 confused.	 So	we	 need	 to	 explicitly	 specify	which	 sub-
object	we	want	passed	by	qualifying	the	call.

Copy	construction	with	multiple	inheritance
Now	these	multiple	base	class	instances	are	not	only	a	problem	for	function	and	member

variables	accessing.	It	can	be	problematic	in	other	places	too,	like	shown	here.

…

…

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

Base	BaseObj	=	static_cast<	Base&>	(ABDerObj);

return	0;

}

Here	we	are	trying	to	instantiate	a	Base	object	using	a	Derived_AB	object.	If	there	was	no
multiple	inheritance	this	wouldn’t	have	any	issues.	But	there	is	ambiguity	now.

We	are	calling	 the	Base	 class	 copy	 constructor,	which	 takes	 an	 argument	 of	 type	 “Base
&“.	The	problem	here	 is	 that	 the	Derived_AB	 object	has	 two	 instances	of	Base	 objects.
Which	one	should	the	compiler	use?	As	always,	we	need	to	explicitly	tell	it.

…

…

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

Base	BaseObj	=	static_cast<Derived_B&>	(ABDerObj);

return	0;

}

	

BaseObj.var:	2

	

We	 cast	 the	 object	 to	 a	Derived_B	 instance.	And	 you	 can	 see	 that	 the	 compiler	 indeed
copied	the	correct	Base	instance,	the	one	with	var	with	a	value	of	2.

Virtual	inheritance
Now	 there	 is	 a	 mechanism	 that	 avoids	 all	 of	 these	 messy	 qualified	 accesses	 and
ambiguities.	It’s	called	virtual	inheritance.

Let’s	 see	 what	 exactly	 happens	 in	 our	 diamond	 class	 hierarchy	 when	 we	 instantiate	 a
Derived_AB	object.

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{

cout	<<	“Base	constructor	with	var:	“	<<	var	<<	endl;

}

	

void	foo()

{

cout	<<	“Class	Base	foo()”	<<	endl;

}

};

	

class	Derived_A	:	public	Base

{

public:

Derived_A(int	val)	:	Base(val)

{

cout	<<	“Derived_A	constructor.”	<<	endl;

}

};

	

class	Derived_B	:	public	Base

{

public:

Derived_B(int	val)	:	Base(val)

{

cout	<<	“Derived_B	constructor.”	<<	endl;

}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_A(var1),	Derived_B(var2)

{

cout	<<	“Derived_AB	constructor.”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

return	0;

}

	

Base	constructor	with	var:	1

Derived_A	constructor.

Base	constructor	with	var:	2

Derived_B	constructor.

Derived_AB	constructor.

	

Take	a	 look	at	 the	 sequence	of	object	construction.	First,	 the	Base	 constructor	with	1	 is
called	by	Derived_A	constructor,	then	Derived_A	constructor	itself,	then	Base	constructor
is	 again	 called	with	2	by	Derived_B	 constructor,	 and	 then	Derived_B	 constructor	 itself,
and	then	finally	Derived_AB	constructor.

Order	of	base	object	construction

The	constructor	call	sequence	seems	logical.	It	seems	to	be	calling	in	the	order	we	passed
the	 arguments	 to	Derived_AB	 constructor.	Derived_A	 is	 initialized	 in	 the	 initializer	 list
before	Derived_B,	so	it	seems	that	is	the	order	in	which	the	constructors	are	called.	Let’s
change	the	order	in	the	initializer	list	and	see.

…

…

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_B(var1),	Derived_A(var2)	//	initialization	order	changed

{

cout	<<	“Derived_AB	constructor.”	<<	endl;

}

};

	

Base	constructor	with	var:	2

Derived_A	constructor.

Base	constructor	with	var:	1

Derived_B	constructor.

Derived_AB	constructor.

	

Derived_A	constructor	 is	still	called	first.	So	 it	 is	not	 the	order	of	 initialization.	 Is	 it	 the
order	of	derivation,	then?

…

…

class	Derived_AB	:	public	Derived_B,	public	Derived_A			//	Derivation	order	changed

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_A(var1),	Derived_B(var2)

{

cout	<<	“Derived_AB	constructor.”	<<	endl;

}

};

	

Base	constructor	with	var:	2

Derived_B	constructor.

Base	constructor	with	var:	1

Derived_A	constructor.

Derived_AB	constructor.

	

Yes,	it	is.	The	order	of	constructor	invocation	depends	on	the	order	of	derivation.

So	we	have	now	confirmed	that	in	multiple	inheritance,	where	there	is	a	shared	base	class,
this	base	class	gets	constructed	multiple	times.	And	these	multiple	base	class	sub-objects
are	 the	 source	 of	 many	 ambiguities	 for	 the	 compiler.	 C++	 has	 the	 virtual	 inheritance
mechanism	to	circumvent	this	situation.	All	you	need	to	do	is	specify	‘virtual’	inheritance.
Let’s	redo	our	example	with	virtual	inheritance.

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{

cout	<<	“Base	constructor	with	var:	“	<<	var	<<	endl;

}

	

void	foo()

{

cout	<<	“Base	foo()”	<<	endl;

}

};

	

class	Derived_A	:	public	virtual	Base								//	virtual	inheritance

{

public:

Derived_A(int	val)	:	Base(val)

{

cout	<<	“Derived_A	constructor.”	<<	endl;

}

};

	

class	Derived_B	:	public	virtual	Base									//	virtual	inheritance

{

public:

Derived_B(int	val)	:	Base(val)

{

cout	<<	“Derived_B	constructor.”	<<	endl;

}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_A(var1),	Derived_B(var2)

{

cout	<<	“Derived_AB	constructor.”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

return	0;

}

	

What	is	going	on	here?	Why	is	the	compiler	trying	to	call	the	default	constructor	of	Base
class?	So	obviously	just	deriving	virtually	is	not	enough.

Let’s	understand	what	virtual	inheritance	does.	What	it	does	is	to	have	only	one	base	class
sub-object.	 We	 saw	 earlier	 that	 when	 we	 didn’t	 have	 virtual	 inheritance	 we	 called
constructors	of	both	Derived_A	and	Derived_B.	These	constructors	 in	 turn	call	 the	Base
class	constructor.	So	Base	class	gets	constructed	twice.	And	this	is	what	we	want	to	avoid.

Under	virtual	inheritance,	the	virtual	base	class,	in	our	case	Base	class	constructor,	should
not	 be	 called	 by	 the	 classes	 that	 inherit	 virtually	 from	 it.	 That	 means	Derived_A	 and
Derived_B	classes’	constructors	should	not	be	calling	the	Base	class	constructor,	because,
that	would	mean	that	Base	class	will	be	constructed	multiple	times.	Instead,	with	virtual
inheritance,	the	final	concrete	class	has	the	responsibility	of	calling	the	virtual	base	class’s
constructor.	Concrete	class	means	the	class	that	we	are	instantiating	an	object	with,	which
in	our	case	is	Derived_AB.	So	the	compiler	expects	the	Derived_AB	constructor	to	call	the
Base	 class	 constructor.	And	 since	we	are	not	making	a	 call	 to	Base	 class	 constructor	 in
Derived_AB	constructor,	the	compiler	tries	to	call	the	default	constructor	of	Base,	which	it
does	not	have,	and	hence	the	compiler	error.	Let’s	implement	a	default	constructor	to	Base
class	and	see	the	result.

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base()

{

cout	<<	“Base	default	constructor.”	<<	endl;

}

Base(int	val)	:	var(val)

{

cout	<<	“Base	constructor	with	var:	“	<<	var	<<	endl;

}

	

void	foo()

{

cout	<<	“Base	foo()”	<<	endl;

}

};

	

class	Derived_A	:	public	virtual	Base

{

public:

Derived_A(int	val)	:	Base(val)

{

cout	<<	“Derived_A	constructor.”	<<	endl;

}

};

	

class	Derived_B	:	public	virtual	Base

{

public:

Derived_B(int	val)	:	Base(val)

{

cout	<<	“Derived_B	constructor.”	<<	endl;

}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_A(var1),	Derived_B(var2)

{

cout	<<	“Derived_AB	constructor.”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

return	0;

}

	

Base	default	constructor.

Derived_A	constructor.

Derived_B	constructor.

Derived_AB	constructor.

	

It’s	working.	The	compiler	 implicitly	makes	a	call	 to	 the	Base	 class	default	 constructor.
And	 then	Derived_A	 and	Derived_B	 constructors	 are	 called.	 Did	 you	 notice	 something
about	the	Derived_A	and	Derived_B	constructor	calls?	They	are	not	calling	the	Base	class
constructor	 anymore.	 Usually	 the	 derived	 class	 constructor	 always	 calls	 its	 base	 class
constructor	 before	 executing	 its	 own	 constructor.	 But	 things	 happen	 a	 little	 differently
under	virtual	inheritance.	We	discussed	earlier	how	derived	classes	should	not	be	calling
the	 base	 class	 constructors	 as	 that	would	mean	multiple	 base	 class	 objects.	 So	when	 in
virtual	 inheritance,	 the	 compiler	 avoids	 the	 calls	 to	 the	 base	 class	 constructor	 from	 the
derived	 classes.	 The	 virtual	 base	 class	 constructor	must	 only	 be	 called	 by	 the	 concrete
class.	 Note	 that	 this	 is	 the	 only	 scenario	 where	 a	 derived	 class	 is	 allowed	 to	 call	 the
constructor	of	a	class	which	is	not	its	immediate	base	class.

So	 our	 original	 example	 should	 be	 called	 as	 follows.	 Note	 the	 call	 to	 Base	 class
constructor	in	the	Derived_AB	constructor.

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{

cout	<<	“Base	constructor	with	var:	“	<<	var	<<	endl;

}

	

void	foo()

{

cout	<<	“Base	foo()”	<<	endl;

}

};

	

class	Derived_A	:	public	virtual	Base

{

public:

Derived_A(int	val)	:	Base(val)

{

cout	<<	“Derived_A	constructor.”	<<	endl;

}

};

	

class	Derived_B	:	public	virtual	Base

{

public:

Derived_B(int	val)	:	Base(val)

{

cout	<<	“Derived_B	constructor.”	<<	endl;

}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Base(1),	Derived_A(var1),	Derived_B(var2)

{

cout	<<	“Derived_AB	constructor.”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

aBDerObj.var;

aBDerObj.foo();

return	0;

}

	

Base	constructor	with	var:	1

Derived_A	constructor.

Derived_B	constructor.

Derived_AB	constructor.

Base	foo()

	

No	more	ambiguities	for	the	compiler.	Take	a	look	at	the	object	structure	now.

Compare	 it	 with	 the	 object	 structure	 we	 had	 before	 (shown	 below)	 without	 virtual
inheritance.

With	multiple	inheritance	you	can	see	a	separate	Base	class	sub-object	directly	under	the
Derived_AB	 object.	 Although	 this	 view	 shows	 there	 are	 Base	 class	 objects	 under
Derived_A	and	Derived_B,	 there	 really	 aren’t.	There	 is	only	one	Base	 sub-object.	What
this	 structure	 depicts	 is	 that	 this	 Base	 sub-object	 logically	 is	 inside	 Derived_A	 and
Derived_B.	 That	means	we	 can	 access	Base	 class	 as	we	 did	 earlier	when	we	 didn’t	 do
virtual	inheritance	and	had	multiple	Base	sub-objects.

…

…

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

aBDerObj.Derived_A::foo();

aBDerObj.Derived_A::var;

aBDerObj.Derived_B::foo();

aBDerObj.Derived_B::var;

return	0;

}

	

Base	constructor	with	var:	1

Derived_A	constructor.

Derived_B	constructor.

Derived_AB	constructor.

Base	foo()

Base	foo()

	

Although	we	are	qualifying	the	accesses	we	are	effectively	accessing	the	same	Base	 sub-
object.

This	 is	 the	core	of	virtual	 inheritance.	The	mechanism	 is	pretty	 simple.	Let’s	 finish	 this
topic	by	looking	at	some	different	cases.

Function	overriding	in	one	derived	class

Here	we	override	foo	in	Derived_B	class	only.

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{}

	

void	foo()

{

cout	<<	“Base	foo()”	<<	endl;

}

};

	

class	Derived_A	:	public	virtual	Base

{

public:

Derived_A(int	val)	:	Base(val)

{}

};

	

class	Derived_B	:	public	virtual	Base

{

public:

Derived_B(int	val)	:	Base(val)

{}

	

void	foo()

{

cout	<<	“Derived_B	foo()”	<<	endl;

}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Base(1),	Derived_A(var1),	Derived_B(var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

aBDerObj.foo();

aBDerObj.Derived_A::foo();

aBDerObj.Derived_B::foo();

return	0;

}

	

Derived_B	foo()

Base	foo()

Derived_B	foo()

	

When	we	don’t	qualify	the	function	call	it	calls	the	overridden	function,	which	is	what	we
want.	When	we	qualify	the	call	to	Derived_A,	then	it	calls	the	Base	class	function,	which
again	is	what	we	want.	Derived_A	hasn’t	overridden	foo	so	Base::foo	needs	to	be	called.

Instantiating	a	virtually	derived	class.

What	effect	would	virtual	 inheritance	have	 if	we	instantiated	a	Derived_A	or	Derived_B

class?

…

…

int	main(int	argc,	char**	argv)

{

Derived_A	derAobj(1);

Derived_B	derBobj(2);

derAobj.foo();

derBobj.foo();

return	0;

}

	

Base	constructor	with	var:	1

Derived_A	constructor.

Base	constructor	with	var:	2

Derived_B	constructor.

Class	Base	foo()

Derived_B	foo()

	

As	you	see,	virtual	inheritance	has	no	effect	when	we	instantiate	directly	derived	classes.
They	behave	normally.

Only	one	class	with	virtual	inheritance.

What	would	happen	if	we	had	only	Derived_A	with	virtual	inheritance?

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{}

};

	

class	Derived_A	:	public	virtual	Base

{

public:

Derived_A(int	val)	:	Base(val)

{}

};

	

class	Derived_B	:	public	Base

{

public:

Derived_B(int	val)	:	Base(val)

{}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Base(1),	Derived_A(var1),	Derived_B(var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

return	0;

}

	

It	doesn’t	work.	You	need	to	have	all	of	your	inheriting	classes	deriving	from	Base	to	have
virtual	inheritance.

More	levels	of	derivation.

Let’s	 see	 how	 things	 change	when	 you	 have	 one	more	 derived	 class.	 This	 is	 our	 class
hierarchy	now.

Since	we	are	calling	the	virtual	base	class	constructor	in	Derived_AB,	we	probably	don’t
need	to	do	anything	special	in	Derived_C.	So	let’s	go	ahead	and	try.

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{}

};

	

class	Derived_A	:	public	virtual	Base

{

public:

Derived_A(int	val)	:	Base(val)

{}

};

	

class	Derived_B	:	public	virtual	Base

{

public:

Derived_B(int	val)	:	Base(val)

{}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Base(1),	Derived_A(var1),	Derived_B(var2)

{}	//	calling	virtual	Base	constructor	here

};

	

class	Derived_C	:	public	Derived_AB

{

public:

Derived_D(int	var1,	int	var2)	:	Derived_AB(var1,	var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

Derived_C	CDerObj(1,	2);

return	0;

}

	

The	compiler	 is	 looking	 for	 the	default	 constructor	of	Base.	This	 is	 the	 same	 thing	 that
happened	 earlier	 when	 we	 didn’t	 call	 the	 Base	 class	 constructor	 in	 the	 Derived_AB
constructor.	So	the	compiler	expects	Derived_C	to	call	the	virtual	base	class	constructor.
Let’s	add	the	constructor	call:

…

…

class	Derived_C	:	public	Derived_AB

{

public:

Derived_C(int	var1,	int	var2)	:	Base(10),	Derived_AB(var1,	var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

Derived_C	CDerObj(1,	2);

cout	<<	“CDerObj.var:	“	<<	CDerObj.var	<<	endl;

return	0;

}

	

CDerObj.var:	10

	

This	works	fine.	What	does	this	mean,	then?

It	means	 that	 if	 you	 have	 virtual	 inheritance	 in	 your	 class	 hierarchy,	 you	must	 call	 the
virtual	base	class	constructor	from	the	most	derived	class.	So	can	we	remove	the	call	 to
Base	constructor	from	Derived_AB	then?	Nope.

…

…

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Derived_A(var1),	Derived_B(var2)	//	No	call	to	Base	constructor

{}

};

	

class	Derived_C	:	public	Derived_AB

{

public:

Derived_C(int	var1,	int	var2)	:	Base(10),	Derived_AB(var1,	var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

Derived_C	CDerObj(1,	2);

cout	<<	“CDerObj.var:	“	<<	CDerObj.var	<<	endl;

return	0;

}

	

Even	though	you	are	not	instantiating	a	Derived_AB	object,	if	your	class	is	inheriting	from
a	virtual	derived	class,	you	need	to	call	the	virtual	base	class	constructor.

#include<iostream>

using	namespace	std;

	

class	Base

{

public:

int	var;

	

Base(int	val)	:	var(val)

{}

};

	

class	Derived_A	:	public	virtual	Base

{

public:

Derived_A(int	val)	:	Base(val)

{}

};

	

class	Derived_B	:	public	virtual	Base

{

public:

Derived_B(int	val)	:	Base(val)

{}

};

	

class	Derived_AB	:	public	Derived_A,	public	Derived_B

{

public:

Derived_AB(int	var1,	int	var2)	:	Base(10),	Derived_A(var1),	Derived_B(var2)

{}

};

	

class	Derived_C	:	public	Derived_AB

{

public:

Derived_C(int	var1,	int	var2)	:	Base(20),	Derived_AB(var1,	var2)

{}

};

	

int	main(int	argc,	char**	argv)

{

Derived_AB	ABDerObj(1,	2);

cout	<<	“ABDerObj.var:	“	<<	ABDerObj.var	<<	endl;

Derived_C	CDerObj(3,	4);

cout	<<	“CDerObj.var:	“	<<	CDerObj.var	<<	endl;

return	0;

}

	

ABDerObj.var:	10

CDerObj.var:	20

	

See,	 you	 need	 the	 call	 to	 Base	 in	 Derived_AB	 because	 if	 you	 are	 instantiating	 a
Derived_AB	object,	then	you	need	that	call.	You	don’t	need	that	for	a	Derived_C	object.
But	 the	compiler	doesn’t	know	which	classes	you	are	planning	 to	 instantiate	so	 it	wants
you	to	call	virtual	base	constructor	if	it	is	needed.

So	that	is	virtual	inheritance.

Topic	18

Casting
C++	 introduced	 four	 types	 of	 casts.	 These	 casts	 fundamentally	 do	 the	 same	 casting
functionality	 as	 C	 casts,	 but	 there	 are	 a	 few	 differences.	 Casts	 also	 have	 quite	 a	 bit	 of
special	 usages,	 but	 in	 this	 topic	 I	 will	 limit	 the	 discussion	 to	 the	 most	 used	 types	 of
castings.

Here	are	the	four	casts:

Static	cast
Dynamic	cast
Reinterpret	cast
Const	cast

Before	we	start	discussing	the	casts	it	is	important	to	define	upcast	and	downcast.	Upcast
is	 when	 casting	 up	 the	 hierarchy.	 That	 is,	 casting	 to	 a	 base	 type	 from	 a	 derived	 type.
Downcasting	is	casting	to	a	derived	type	from	a	base	type.

Static	cast
Static	cast	is	used	in	many	implicit	castings.	Implicit	casts	are	automatically	done	by	the
compiler	 and	explicitly	 stating	 the	cast	 is	not	necessary.	But	 it	 is	often	good	practice	 to
explicitly	cast	when	you	want	to	let	that	fact	be	known.	An	upcast	is	implicit	and	does	not
require	a	static	cast.	But	a	downcast	does.

#include<iostream>

using	namespace	std;

	

class	Base	{

	

int	Base_ID;

public:

Base(int	val)	:	Base_ID(val)

{}

	

void	func()

{

cout	<<	“Base	class	func.	ID:	“	<<	Base_ID	<<	endl;

}

};

	

	

class	Derived	:	public	Base	{

	

int	Derived_ID;

public:

Derived(int	baseID,	int	derivedID)	:	Base(baseID),	Derived_ID(derivedID)

{}

void	func()

{

cout	<<	“Derived	class	func.	ID:	“	<<	Derived_ID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

Base*	basePtr1	=	new	Base(1);

Derived*	derivedPtr1	=	new	Derived(2,	3);

	

basePtr1->func();

derivedPtr1->func();

	

Base*	basePtr2	=	static_cast<Base*>	(derivedPtr1);

Derived*	derivedPtr2	=	static_cast<Derived*>	(basePtr1);

	

basePtr2->func();

derivedPtr2->func();

return	0;

}

	

Base	class	func.	ID:	1

Derived	class	func.	ID:	3

Base	class	func.	ID:	2

Derived	class	func.	ID:	-33686019

	

Here	we	 have	 a	Base	 class	 and	 a	Derived	 class.	 They	 both	 have	 implemented	 function
func	but	note	that	this	is	not	virtual.	First,	we	define	two	pointers,	one	of	type	Base	and	the
other	Derived,	 and	 assign	 Base	 and	Derived	 instances	 respectively.	 Then	 we	 call	 func
through	these	pointers.	They	call	the	correct	functions.	Then	we	define	two	new	pointers
of	 types	Base	 and	Derived.	 This	 time	 we	 assign	 the	Derived	 pointer	 to	 the	 new	 Base
pointer	and	the	Base	pointer	to	the	new	Derived	pointer	and	the	call	func.

First	note	that	there	are	no	compiler	errors.	Assigning	derivedPtr2	with	basePtr1	is	not	a

proper	 assignment.	 A	 Derived	 instance	 has	 a	 Base	 instance	 inside	 and	 has	 two	 int
variables.	But	the	instance	pointed	to	by	basePtr1	is	only	a	Base	object.	So	derivedPtr2	is
pointing	to	an	incomplete	Derived	object,	although	the	compiler	believes	it	is	pointing	to	a
proper	Derived	 object.	 Calling	 func	 through	 basePtr2	 works	 as	 expected.	 It	 prints	 the
correct	 Base_ID.	 But	 func	 does	 not	 work	 well	 with	 the	 derivedPtr2.	 We	 know	 it	 is
pointing	to	a	Base	object.	Two	things	to	note	here.	First,	although	derivedPtr2	is	pointing
to	 a	Base	 object,	 the	 invoked	 func	 correctly	 calls	Derived	 version	 of	 func.	 Second,	 the
printed	value	of	func	is	a	garbage	value.

The	reason	why	the	Derived	version	of	func	is	called	is	because	a	function	is	not	part	of
the	object.	Remember	that	we	discussed	that	a	function	resides	outside	of	an	object	and	is
tied	 to	 the	 class	 type.	 So	when	we	 called	 func	 through	 a	Derived	 pointer	 the	 compiler
actually	called	 the	Derived::func.	 It	didn’t	matter	 that	 the	object	 it	was	pointing	 to	 is	of
type	Base.	The	object	does	not	have	the	implementation	of	func.	But	the	object	is	passed
to	the	function	by	the	compiler.	Every	non-static	member-function	is	passed	the	‘*this‘	by
the	 compiler	 implicitly.	 So	 when	 we	 called	 ‘func’	 through	 Derived	 type	 pointer,	 the
compiler	called	Derived::func	and	passed	it	the	Base	object	it	is	pointing	to.	And	then	the
function	tried	to	access	Derived_ID	 from	that	object.	Remember	we	discussed	how	each
member	variable	of	a	class	has	an	offset?	The	 function	 func	 simply	accessed	a	memory
location	at	a	particular	offset,	which	is	supposed	to	be	the	location	of	Derived_ID.	But	it	is
passed	 an	 object	 of	Base,	 and	 as	 we	 have	 seen	 before,	 must	 be	 smaller	 than	 that	 of	 a
Derived	object.	The	offset	for	Derived_ID	is	past	the	memory	block	belonging	to	basePtr1
and	that	is	why	we	are	seeing	garbage	values.

Now	how	would	 the	behavior	 change	 if	 func	was	virtual?	 (I	 know	we	are	going	out	 of
topic,	but	this	is	important	to	know.)

class	Base	{

	

int	Base_ID;

public:

Base(int	val)	:	Base_ID(val)

{}

	

virtual	void	func()

{

cout	<<	“Base	class	func.	ID:	“	<<	Base_ID	<<	endl;

}

};

…

…

	

Base	class	func.	ID:	1

Derived	class	func.	ID:	3

Derived	class	func.	ID:	3

Base	class	func.	ID:	1

	

We	 are	 not	 seeing	 any	 problems	 here,	 although	 it	may	 not	 be	 doing	what	we’d	 expect.
There	is	no	effect	of	virtualness	for	the	first	two	func	calls.	The	third	func	call	is	a	classic
example	of	virtual	mechanism.	Calling	a	derived	class	overridden	function	through	a	base
class	pointer.	The	 last	 call,	 although	 it	 is	 invoking	 the	 correct	 function,	 is	 not	 the	usual
way	of	using	the	virtual	mechanism.	As	you	know,	when	a	function	is	virtual	the	compiler
refrains	 from	 binding	 the	 function	 call	 during	 compilation.	 The	 function	 to	 call	 is
determined	during	runtime.	Unlike	when	func	was	not	virtual,	in	this	case	the	function	to
call	is	determined	through	the	vtable.	And	we’ve	seen,	the	vtable	is	object	specific.	And	in
our	 case,	 basePtr1	 points	 to	 an	 Base	 object,	 whose	 vtable	 has	 the	 implementation	 of
Base::func.	So	the	Base	version	of	func	is	called	and	it	is	passed	an	object	of	Base.	This	is
same	as	before,	but	now	the	 func	 is	accessing	Base_ID,	not	Derived_ID,	 so	 the	offset	 is
fine.

What	if	we	omitted	the	static_casts?

…

…

int	main(int	argc,	char**	argv)

{

Base*	basePtr1	=	new	Base(1);

Derived*	derivedPtr1	=	new	Derived(2,	3);

	

basePtr1->func();

derivedPtr1->func();

	

Base*	basePtr2	=	(derivedPtr1);															//	no	casting

Derived*	derivedPtr2	=	(basePtr1);									//	no	casting

	

basePtr2->func();

derivedPtr2->func();

return	0;

}

	

So	you	 see,	 upcasting	 is	 implicit.	You	do	not	need	 to	 static_cast	 it.	But	downcast	 does.
This	is	because	the	compiler	knows	that	downcasting	a	base	class	object	to	a	derived	class
type	can	be	trouble.	So	it	doesn’t	do	it	implicitly.	But	with	a	static_cast,	we	are	explicitly

letting	the	compiler	know	that	we	know	what	we	are	doing.	Because	basePtr1	could	very
well	be	pointing	to	a	Derived	instance.	Like	this:

…

…

int	main(int	argc,	char**	argv)

{

Base*	basePtr1	=	new	Derived(4,	5);	//	Derived	object

Derived*	derivedPtr1	=	new	Derived(2,	3);

	

basePtr1->func();

derivedPtr1->func();

	

Base*	basePtr2	=	static_cast<Base*>	(derivedPtr1);

Derived*	derivedPtr2	=	static_cast<Derived*>	(basePtr1);

	

basePtr2->func();

derivedPtr2->func();

return	0;

}

	

Base	class	func.	ID:	4

Derived	class	func.	ID:	3

Base	class	func.	ID:	2

Derived	class	func.	ID:	5

	

This	type	checking	is	an	important	part	of	static_cast.	It	does	not	do	any	type	checking	at
compile	time	or	runtime.	That	is	why	we	were	able	to	cast	a	Base	 instance	to	a	Derived
pointer.	But	does	static_cast	ignore	all	checks?

#include<iostream>

using	namespace	std;

	

class	Base	{

	

int	ID;

public:

Base(int	val)	:	ID(val)

{}

	

void	func()

{

cout	<<	“Base	class	func.	ID:	“	<<	ID	<<	endl;

}

};

	

class	Derived	:	public	Base	{

	

int	ID;

public:

Derived(int	baseID,	int	derivedID)	:	Base(baseID),	ID(derivedID)

{}

void	func()

{

cout	<<	“Derived	class	func.	ID:	“	<<	ID	<<	endl;

}

};

	

class	AnotherClass	{

public:

void	func()

{

cout	<<	“AnotherClass	func.”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

Base*	basePtr1	=	new	Base(1);

Derived*	derivedPtr1	=	new	Derived(2,	3);

AnotherClass*	anotherPtr	=	new	AnotherClass;

	

anotherPtr	=	static_cast<AnotherClass*>	(basePtr1);

return	0;

}

	

Here	we	 tried	 to	 cast	 a	Base	 pointer	 to	 an	AnotherClass	 pointer	 and	 the	 compiler	 isn’t
happy	 with	 that.	 Although	 we	 were	 able	 to	 cast	 a	 base	 instance	 to	 a	 derived	 pointer,
static_cast	 isn’t	 all	 that	naive.	 It	 doesn’t	 let	us	 cast	between	different	 types.	And	 it	 also

does	not	let	us	downcast	when	using	objects:

…

…

int	main(int	argc,	char**	argv)

{

Base	baseObj1(1);

Derived	derivedObj1(2,	3);

	

baseObj1.func();

derivedObj1.func();

	

Base	baseObj2	=	static_cast<Base>(derivedObj1);

Derived	derivedObj2	=	static_cast<Derived>(baseObj1);

	

baseObj2.func();

derivedObj2.func();

return	0;

}

	

But	just	as	with	pointers,	we	can	do	the	downcast	with	references.

…

…

int	main(int	argc,	char**	argv)

{

Base	baseObj1(1);

Derived	derivedObj1(2,	3);

	

Base&	baseRef1	=	baseObj1;

Derived&	derivedRef1	=	derivedObj1;

	

baseRef1.func();

derivedRef1.func();

	

Base&	baseRef2	=	static_cast<Base&>(derivedRef1);

Derived&	derivedRef2	=	static_cast<Derived&>(baseRef1);

	

baseRef2.func();

derivedRef2.func();

return	0;

}

	

Base	class	func.	ID:	1

Derived	class	func.	ID:	3

Base	class	func.	ID:	2

Derived	class	func.	ID:	-858993460

	

So	when	you	are	using	pointers	and	references	we	can	downcast	with	static_cast	and	force
the	compiler	to	accept	the	type	but	not	with	objects.

As	 we	 saw	 before	 with	 downcasting,	 explicitly	 casting	 with	 a	 static_cast	 is	 a	 way	 of
telling	the	compiler	 that	you	intended	to	do	what	you	did.	This	works	not	only	for	class
types,	but	also	for	built	in	types.

int	main(int	argc,	char**	argv)

{

short	shortVar	=	1;

int	intVar	=	2;

float	floatVar	=	3.0f;

double	doubleVar	=	4;

	

intVar	=	shortVar;

floatVar	=	intVar;

doubleVar	=	floatVar;

	

shortVar	=	intVar;

intVar	=	floatVar;

floatVar	=	doubleVar;

	

return	0;

}

	

The	code	above	compiles	with	no	errors	(although	all	values	end	up	 just	being	1	due	 to
chain	 assignment),	 but	 as	you	 see,	 the	 compiler	 does	give	out	 some	warnings.	Here	we
have	four	variables	with	different	magnitudes.	The	compiler	warns	about	possible	loss	of
data	during	conversions.	Usually	 there	 is	no	 loss	of	data	when	the	variable	 is	promoted.
But	 when	 an	 int	 is	 promoted	 to	 a	 float	 it	 can	 lose	 a	 bit	 of	 precision.	 But	 this	 loss	 of
precision	is	very	small	compared	to	the	loss	of	data	that	could	happen	when	the	values	are
truncated,	for	example	when	converting	from	int	to	short.	Although	the	loss	of	precision
or	data	cannot	be	avoided	during	conversion,	using	static_cast	will	help	us	get	rid	of	the
warnings.

int	main(int	argc,	char**	argv)

{

short	shortVar	=	1;

int	intVar	=	2;

float	floatVar	=	3.0f;

double	doubleVar	=	4;

	

intVar	=	shortVar;

floatVar	=	static_cast<float>	(intVar);

doubleVar	=	floatVar;

	

shortVar	=	static_cast<short>	(intVar);

intVar	=	static_cast<int>	(floatVar);

floatVar	=	static_cast<float>	(doubleVar);

	

return	0;

}

	

No	warnings	here	(I	have	all	of	the	warnings	turned	on	here	with	‘-Wall’).

Dynamic	cast
Dynamic	 cast	 is	 similar	 to	 static	 cast	 in	 the	 sense	 that	 you	 can	 do	 both	 upcast	 and
downcast,	 but	 it	 differs	 in	 one	 important	 way.	 Dynamic	 cast	 does	 check	 the	 types	 at
compile	time	and	runtime.	As	we	will	see,	dynamic	cast	is	a	way	of	finding	out	the	real
type	 of	 a	 pointer	 or	 a	 reference.	 But	 there	 is	 a	 downside	 to	 using	 dynamic	 cast.	 That
runtime	 checking	 comes	 at	 a	 a	 cost	 of	 a	 performance	 hit	 because	 the	 type	 needs	 to	 be
checked	at	runtime.	Let’s	start	with	the	same	example.

#include<iostream>

using	namespace	std;

	

class	Base	{

	

int	Base_ID;

public:

Base(int	val)	:	Base_ID(val)

{}

	

void	func()

{

cout	<<	“Base	class	func.	ID:	“	<<	Base_ID	<<	endl;

}

};

	

	

class	Derived	:	public	Base	{

	

int	Derived_ID;

public:

Derived(int	baseID,	int	derivedID)	:	Base(baseID),	Derived_ID(derivedID)

{}

void	func()

{

cout	<<	“Derived	class	func.	ID:	“	<<	Derived_ID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

Base*	basePtr1	=	new	Base(1);

Derived*	derivedPtr1	=	new	Derived(2,	3);

	

basePtr1->func();

derivedPtr1->func();

	

Base*	basePtr2	=	dynamic_cast<Base*>	(derivedPtr1);

Derived*	derivedPtr2	=	dynamic_cast<Derived*>	(basePtr1);

	

basePtr2->func();

derivedPtr2->func();

return	0;

}

	

The	 compiler	 doesn’t	 let	 us	 cast	 basePtr1	 to	 a	 Derived	 pointer	 because	 Base	 is	 not	 a
polymorphic	type.	What	the	compiler	is	basically	complaining	about	is	that	Base	does	not
have	 any	 virtual	 functions.	 Polymorphism	 is	 used	 through	 virtual	 functions.	 So	 to
downcast	with	dynamic_cast	we	first	need	 the	class	 type	 to	be	polymorphic.	Let’s	make
func	virtual.

class	Base	{

	

int	Base_ID;

public:

Base(int	val)	:	Base_ID(val)

{}

	

virtual	void	func()

{

cout	<<	“Base	class	func.	ID:	“	<<	Base_ID	<<	endl;

}

};

…

…

	

This	time	the	code	compiles	fine	and	runs	but	you	will	most	definitely	get	a	runtime	error.
This	is	because	we	are	dereferencing	a	NULL	pointer.	Let’s	see	this.

…

…

int	main(int	argc,	char**	argv)

{

Base*	basePtr1	=	new	Base(1);

Derived*	derivedPtr1	=	new	Derived(2,	3);

	

basePtr1->func();

derivedPtr1->func();

	

Base*	basePtr2	=	dynamic_cast<Base*>	(derivedPtr1);

Derived*	derivedPtr2	=	dynamic_cast<Derived*>	(basePtr1);

	

if	(basePtr2	==	NULL)

{

cout	<<	“basePtr2	==	NULL”	<<	endl;

}

else

{

basePtr2->func();

}

	

if	(derivedPtr2	==	NULL)

{

cout	<<	“derivedPtr2	==	NULL”	<<	endl;

}

else

{

derivedPtr2->func();

}

return	0;

}

	

Base	class	func.	ID:	1

Derived	class	func.	ID:	3

Derived	class	func.	ID:	3

derivedPtr2	==	NULL

	

See,	derivedPtr2	was	NULL	and	we	tried	to	dereference	it.	That’s	why	the	runtime	error.

But	why	was	derivedPtr2	NULL?	This	 is	because	of	 the	checking	dynamic_cast	does	at
runtime.	 Dynamic	 cast	 checks	 if	 the	 object	 pointed	 to	 by	 basePtr1	 is	 indeed	 of	 type
Derived,	and	if	not	returns	a	NULL	pointer.

So	you	see,	dynamic	casting	checks	 the	casting	type	against	 the	object	 to	make	sure	 the
cast	is	valid.	And	this	is	done	at	runtime	and	uses	the	object’s	typeid	to	determine	the	type.
Now	let’s	see	what	happens	with	references	(Hint:	there’s	a	surprise).

…

…

int	main(int	argc,	char**	argv)

{

Base	baseObj1(1);

Derived	derivedObj1(2,	3);

	

Base&	baseRef1	=	baseObj1;

Derived&	derivedRef1	=	derivedObj1;

	

baseRef1.func();

derivedRef1.func();

	

Base&	baseRef2	=	dynamic_cast<Base&>(derivedRef1);

Derived&	derivedRef2	=	dynamic_cast<Derived&>(baseRef1);

	

baseRef2.func();

derivedRef2.func();

return	0;

}

	

This	 code	 too	 compiles	 and	 runs	 but	will	 crash	with	 an	 unhandled	 exception.	You	 see,
whereas	a	NULL	pointer	 is	 returned	when	casting	pointers,	with	 references	 it	 throws	an
exception.	Let’s	try	to	catch	it.

…

…

int	main(int	argc,	char**	argv)

{

Base	baseObj1(1);

Derived	derivedObj1(2,	3);

	

Base&	baseRef1	=	baseObj1;

Derived&	derivedRef1	=	derivedObj1;

	

baseRef1.func();

derivedRef1.func();

	

try

{

base&	baseRef2	=	dynamic_cast<Base&>(derivedRef1);

Derived&	derivedRef2	=	dynamic_cast<Derived&>(baseRef1);

	

baseRef2.func();

derivedRef2.func();

}

catch	(exception	e)

{

cout	<<	e.what()	<<	endl;

}

return	0;

}

	

Base	class	func.	ID:	1

Derived	class	func.	ID:	3

Bad	dynamic_cast!

	

Runtime	throws	a	bad	cast	exception.

These	 are	 the	 two	 important	 differences	 of	 dynamic	 casting.	 If	 the	 casted	 types	 don’t
match	it	will	return	a	NULL	pointer	in	case	of	pointers,	or	throw	a	bad	cast	exception	for
references.	Then	what	about	using	dynamic	casts	on	an	object	like	we	upcasted	with	static
cast?

…

…

int	main(int	argc,	char**	argv)

{

Base	baseObj1(1);

Derived	derivedObj1(2,	3);

	

baseObj1.func();

derivedObj1.func();

	

Base	baseObj2	=	dynamic_cast<Base>(derivedObj1);

baseObj2.func();

return	0;

}

	

Dynamic	 cast	wouldn’t	 even	 let	 you	 upcast	 in	 this	 case,	which	was	 perfectly	 fine	with
static	cast.	This	is	because	dynamic	casting	can	only	used	with	pointers	and	references.

Reinterpret	cast
This	 is	 a	 dangerous	 one.	 It	 will	 let	 you	 do	 things	 static	 and	 dynamic	 cast	 won’t.
Reinterpret	cast	literally	makes	the	compiler	interpret	a	certain	pointer	or	reference	as	the
casting	type.	No	questions	asked.	Let’s	see	an	example	first	with	static	cast.

#include<iostream>

using	namespace	std;

	

class	Base	{

public:

int	Base_ID;

	

Base(int	val)	:	Base_ID(val)

{}

	

void	func()

{

cout	<<	“Base	class	func.	Base_ID:	“	<<	Base_ID	<<	endl;

}

};

	

class	AnotherClass	{

public:

int	AnotherClass_ID;

	

AnotherClass(int	val)	:	AnotherClass_ID(val)

{}

	

void	func()

{

cout	<<	“AnotherClass	func.	AnotherClass_ID:	“	<<	AnotherClass_ID	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

Base*	basePtr1	=	new	Base(10);

AnotherClass*	anotherPtr	=	new	AnotherClass(20);

	

anotherPtr	=	static_cast<AnotherClass*>	(basePtr1);

anotherPtr->func();

return	0;

}

	

We	 have	 seen	 this	 error	 before.	Although	 static	 casting	 can	 be	 used	 to	 downcast	 in	 the
hierarchy,	it	doesn’t	let	us	cast	to	a	different	class	type.	Now	let’s	try	reinterpret	cast.

…

…

int	main(int	argc,	char**	argv)

{

Base*	basePtr1	=	new	Base(10);

AnotherClass*	anotherPtr	=	new	AnotherClass(20);

	

anotherPtr	=	reinterpret_cast<AnotherClass*>	(basePtr1);

anotherPtr->func();

return	0;

}

	

AnotherClass	func.	AnotherClass_ID:	10

	

It	 not	 only	 compiles,	 the	 code	 almost	 works!	 We	 assigned	 a	 Base	 type	 pointer	 to	 an
AnotherClass	pointer	and	invoked	the	function	in	AnotherClass.	By	now	you	should	know
why	the	correct	function	is	called	but	the	wrong	value	is	printed.	What	the	reinterpret	cast
does	here	is	to	tell	the	compiler	to	treat	the	object	pointed	to	by	anotherPtr	as	an	object	of
AnotherClass.	 The	 compiler	 does	 not	 question	 your	 actions	 here.	 And	 then	 when	 we
invoked	 the	 function	 it	 called	 the	 correct	 function	 because	 functions	 are	 not	 part	 of	 the
instance.	 They	 are	 class	 specific.	 This	 function	 was	 suppoed	 to	 get	 a	 ‘*anotherPtr‘
implicitly.	 But	 it	 really	 was	 a	 ‘*Base’.	 So	 why	 didn’t	 we	 get	 any	 runtime	 exceptions?
Because	luckily	Base	and	AnotherClass	have	the	same	structure.	They	both	have	one	int
variable	 and	 this	 variable	 is	 at	 the	 top	 of	 the	 object.	 That	 means	 Base::ID	 and

AnothehrClass::ID	 both	 have	 the	 same	 offset.	 But	 it	 doesn’t	 take	 much	 to	 crash	 this
program.	Let’s	make	func	virtual	in	Base	class.

class	Base	{

public:

int	Base_ID;

	

Base(int	val)	:	Base_ID(val)

{}

	

virtual	void	func()

{

cout	<<	“Base	class	func.	Base_ID:	“	<<	Base_ID	<<	endl;

}

};

…

…

	

AnotherClass	func.	AnotherClass_ID:	4076188

	

As	you	know	making	the	function	virtual	puts	the	vptr	at	the	top	of	the	object	(remember
this	 is	 compiler	 specific).	 So	vptr	 is	 at	 offset	 zero	 and	 the	 variable	 is	 after	 that.	 But	 in
AnotherClass	the	variable	offset	doesn’t	change.	Looking	at	the	debug	class	structure	will
convince	you	even	more.

Note	how	__vfptr	of	basePtr	and	AnotherClass_ID	of	anotherPtr	have	the	same	value.

So	 you	 see	 that	 reinterpret	 cast	 can	 be	 dangerous	 if	 you	 cast	 the	 wrong	 type.	 Unlike
dynamic	cast,	 reinterpret	casting	does	not	have	any	runtime	hit.	Reinterpret	cast	 literally
tells	the	compiler	to	interpret	the	pointer	or	reference	as	the	desired	type.

Const	cast

Const	cast	 is	pretty	simple	but	yet	 it	does	something	 that	all	 three	previous	casts	cannot
do.	Const	cast	 is	able	 to	remove	or	add	the	constness	of	a	pointer	or	reference.	But	 it	 is
important	to	understand	when	this	wouldn’t	work.	Let’s	start	with	a	simple	example.

int	main(int	argc,	char**	argv)

{

int	non_const_int	=	1;

const	int*	const_int_ptr	=	&non_const_int;

*const_int_ptr	=	2;

return	0;

}

	

We	cannot	change	non_const_int	through	const_int_ptr	because	the	pointer	is	const.	This
is	where	we	can	use	const	cast.

#include<iostream>

using	namespace	std;

	

int	main(int	argc,	char**	argv)

{

int	non_const_int	=	1;

const	int*	const_int_ptr	=	&non_const_int;

int*	non_const_int_ptr	=	const_cast<int*>	(const_int_ptr);

*non_const_int_ptr	=	2;

cout	<<	“non_const_int:	“	<<	non_const_int	<<	endl;

	

return	0;

}

	

non_const_int:	2

	

Here	we	used	const_cast	to	get	a	pointer	without	the	constness	and	then	use	it	to	modify
non_const_int.

Now	let’s	see	where	const	cast	fails.

#include<iostream>

using	namespace	std;

	

int	main(int	argc,	char**	argv)

{

const	int	const_int	=	1;

const	int*	const_int_ptr	=	&const_int;

int*	non_const_int_ptr	=	const_cast<int*>	(const_int_ptr);

*non_const_int_ptr	=	2;

cout	<<	“const_int:	“	<<	const_int	<<	endl;

	

return	0;

}

	

non_const_int:	1

	

See	that	the	value	is	not	changed.	In	this	case	(Visual	C++	2013)	the	code	compiles	and
runs	without	an	issue	(except	the	value	not	being	modified	as	we	wanted),	but	actually	this
behavior	 is	 undefined.	 So	 you	 might	 see	 different	 results	 with	 other	 compilers.	 The
important	 thing	 to	 note	 is	 that	 you	 cannot	 use	 const_cast	 to	 modify	 a	 value	 that	 was
declared	const.	Here	const_int	was	declared	as	a	constant.	The	const	cast	cannot	make	this
a	non-const.

I’m	going	to	leave	the	topic	of	casts	at	that.	We	discussed	the	basics	of	the	casts	and	some
special	cases.	Each	cast	has	its	own	use	and	now	you	should	know	where	to	use	them.

Topic	19

Conversions	and	Promotions
A	conversion	 is	when	 a	 value	 of	 a	 certain	 type	 is	 converted	 to	 that	 of	 a	 different	 type.
Promotion	 is	 similar	 in	 the	 sense	 that	 it	 also	 changes	 the	 type	 of	 the	 value,	 but	 it	 is
promoted	 to	 a	 type	 that	 is	 higher	 in	 the	 hierarchy.	 We	 will	 go	 through	 examples	 of
different	kinds	of	conversions	and	promotions	in	this	topic.

Before	we	get	 into	 examples,	where	 do	 you	 think	 conversions	 and	promotions	 happen?
They	can	happen	in	the	following	cases:

When	using	different	types	of	operands	with	an	operator
When	passing	an	argument	to	a	function
When	initializing	objects
In	if/switch	statements

Let’s	look	at	these	cases	with	examples	now.

Arithmetic	conversions

#include<iostream>

using	namespace	std;

	

void	Func(short	val)

{

cout	<<	“Short	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(int	val)

{

cout	<<	“Int	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(float	val)

{

cout	<<	“Float	arg.	Result:	“	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

short	shortVal	=	1;

int	intVal	=	2;

float	floatVal	=	3.0f;

	

Func(shortVal	+	intVal);

Func(shortVal	+	floatVal);

Func(intVal	+	floatVal);

return	0;

}

	

Int	arg.	Result:	3

Float	arg.	Result:	4

Float	arg.	Result:	5

	

We	 have	 three	 different	 overloaded	 functions,	 taking	 arguments	 of	 types	 short,	 int	 and
float.	 Then	 we	 perform	 additions	 between	 short,	 int	 and	 float	 types	 and	 pass	 them	 as
arguments	to	Func.	It	is	not	difficult	to	understand	what	is	happening.	When	an	operator
gets	different	types	of	operands,	one	of	the	operands	needs	to	be	converted	to	bring	both
operands	to	a	common	type.	For	example,	in	the	case	of	passing	a	short	and	an	int	to	the
‘+’	operator,	short	operand	is	converted	to	an	int.	The	result	is	then	an	int,	which	is	then
passed	to	the	function	that	takes	an	int	parameter.

These	types	of	conversions	are	called	‘arithmetic	conversions‘.

Let’s	see	a	few	more	examples	of	arithmetic	conversions	involving	chars	and	booleans.

#include<iostream>

using	namespace	std;

	

void	Func(bool	val)

{

cout	<<	“Bool	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(char	val)

{

cout	<<	“Char	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(short	val)

{

cout	<<	“Short	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(int	val)

{

cout	<<	“Int	arg.	Result:	“	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

bool	boolVal	=	true;

char	charVal	=	‘a’;

short	shortVal	=	1;

int	intVal	=	2;

	

Func(charVal	+	boolVal);

Func(charVal	+	shortVal);

Func(charVal	+	charVal);

Func(shortVal	+	shortVal);

Func(charVal	+	intVal);

return	0;

}

	

Int	arg.	Result:	98

Int	arg.	Result:	98

Int	arg.	Result:	194

Int	arg.	Result:	2

Int	arg.	Result:	99

	

You	 see,	 all	 of	 the	 additions	 resulted	 in	 an	 integer	 result.	 So	 when	 the	 operands	 are
converted	they	are	not	converted	to	the	higher	type	between	the	two	of	them.	For	example,
earlier	we	saw	when	a	short	and	an	int	resulted	in	an	int.	The	short	was	converted	to	an	int.
But	here,	when	we	added	 two	chars	or	 two	 shorts,	 the	 result	was	not	 a	 char	or	 a	 short.
They	were	integers.	So	you	see,	if	you	are	adding	two	operands	which	are	lower	than	ints,
both	operands	are	converted	 to	 ints	before	 the	operation.	The	situation	 is	different	when
you	have	types	larger	than	integers.

#include<iostream>

using	namespace	std;

	

void	Func(int	val)

{

cout	<<	“Int	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(float	val)

{

cout	<<	“Float	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(double	val)

{

cout	<<	“double	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(long	int	val)

{

cout	<<	“Long	int	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(long	double	val)

{

cout	<<	“Long	double	arg.	Result:	“	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

int	intVal	=	1;

float	floatVal	=	2.0f;

double	doubleVal	=	3;

long	int	lIntVal	=	4;

long	double	lDoubleVal	=	5;

	

cout	<<	“Func(intVal	+	intVal)	-	“;	Func(intVal	+	intVal);

cout	<<	“Func(intVal	+	floatVal)	-	“;	Func(intVal	+	floatVal);

cout	<<	“Func(intVal	+	doubleVal)	-	“;	Func(intVal	+	doubleVal);

cout	<<	“Func(intVal	+	lIntVal)	-	“;	Func(intVal	+	lIntVal);

cout	<<	“Func(intVal	+	lDoubleVal)	-	“;	Func(intVal	+	lDoubleVal);

cout	<<	endl;

cout	<<	“Func(floatVal	+	doubleVal)	-	“;	Func(floatVal	+	doubleVal);

cout	<<	“Func(floatVal	+	lIntVal)	-	“;	Func(floatVal	+	lIntVal);

cout	<<	“Func(floatVal	+	lDoubleVal)	-	“;	Func(floatVal	+	lDoubleVal);

cout	<<	endl;

cout	<<	“Func(doubleVal	+	lIntVal)	-	“;	Func(doubleVal	+	lIntVal);

cout	<<	“Func(doubleVal	+	lDoubleVal)	-	“;	Func(doubleVal	+	lDoubleVal);

	

return	0;

}

	

Func(intVal	+	intVal)	-	Int	arg.	Result:	2

Func(intVal	+	floatVal)	-	Float	arg.	Result:	3

Func(intVal	+	doubleVal)	-	double	arg.	Result:	4

Func(intVal	+	lIntVal)	-	Long	int	arg.	Result:	5

Func(intVal	+	lDoubleVal)	-	Long	double	arg.	Result:	6

	

Func(floatVal	+	doubleVal)	-	double	arg.	Result:	5

Func(floatVal	+	lIntVal)	-	Float	arg.	Result:	6

Func(floatVal	+	lDoubleVal)	-	Long	double	arg.	Result:	7

	

Func(doubleVal	+	lIntVal)	-	double	arg.	Result:	7

Func(doubleVal	+	lDoubleVal)	-	Long	double	arg.	Result:	8

	

Here	we	look	at	larger	types:	floats,	doubles,	long	ints	and	long	doubles.	The	conversion	is
different	than	when	we	had	chars	and	shorts.	You	can	see	that	there	is	an	order	of	level:
int,	long	int,	float,	double,	long	double.	When	we	mix	operands	of	these	types,	the	smaller
type	gets	converted	to	the	larger	type.

Now	let’s	finally	look	at	how	arithmetic	conversions	happen	with	unsigned	types.

#include<iostream>

using	namespace	std;

	

void	Func(int	val)

{

cout	<<	“Int	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(unsigned	int	val)

{

cout	<<	“Unsigned	int	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(float	val)

{

cout	<<	“Float	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(double	val)

{

cout	<<	“Double	arg.	Result:	“	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

int	intVal	=	-10;

unsigned	int	unsIntVal	=	5;

float	floatVal	=	1.0f;

double	doubleVal	=	2;

	

cout	<<	“Func(intVal	+	unsIntVal)	-	“;	Func(intVal	+	unsIntVal);

cout	<<	“Func(unsIntVal	+	unsIntVal)	-	“;	Func(unsIntVal	+	unsIntVal);

cout	<<	“Func(unsIntVal	+	floatVal)	-	“;	Func(intVal	+	floatVal);

cout	<<	“Func(unsIntVal	+	doubleVal)	-	“;	Func(unsIntVal	+	doubleVal);

	

return	0;

}

	

Func(intVal	+	unsIntVal)	-	Unsigned	int	arg.	Result:	4294967291

Func(unsIntVal	+	unsIntVal)	-	Unsigned	int	arg.	Result:	10

Func(unsIntVal	+	floatVal)	-	Float	arg.	Result:	-9

Func(unsIntVal	+	doubleVal)	-	Double	arg.	Result:	7

	

We	have	an	int,	an	unsigned	int,	a	float	and	a	double.	The	important	fact	to	note	here	is
that	when	you	have	an	int	operand	and	an	unsigned	int	operand,	the	int	is	converted	to	an
unsigned.	You	can	see	that	the	result	of	the	addition	of	the	signed	int	and	the	unsigned	is
not	what	we	would	have	expected.	It’s	giving	us	a	very	large	value.	This	is	because	when
the	(signed)	int	was	converted	to	an	unsigned,	its	sign-ness	was	lost.	The	negative	values
of	signed	ints	are	depicted	by	two’s	complement,	which	uses	the	most	significant	bits	to
denote	the	sign.	So	in	this	case,	when	our	int	was	-10,	the	most	significant	bits	were	set.
And	when	it	was	converted	to	an	unsigned,	these	bits	makes	a	very	large	unsigned	value.
That	 is	 the	 reason	we	 see	 that	 large	 value.	 The	 rest	 of	 the	 combinations	 behave	 as	we
would	expect.	Float	and	double	are	still	larger	than	unsigned	int.	So	you	need	to	be	careful
when	you	mix	signed	types	with	unsigned.

Function	argument	conversion
Let’s	look	at	the	second	case	now.	What	if	we	didn’t	have	a	function	that	takes	a	parameter
of	type	unsigned?

#include<iostream>

using	namespace	std;

	

void	Func(int	val)

{

cout	<<	“Int	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(float	val)

{

cout	<<	“Float	arg.	Result:	“	<<	val	<<	endl;

}

	

void	Func(double	val)

{

cout	<<	“Double	arg.	Result:	“	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

int	intVal	=	-10;

unsigned	int	unsIntVal	=	5;

float	floatVal	=	1.0f;

double	doubleVal	=	2;

	

cout	<<	“Func(intVal	+	unsIntVal)	-	“;	Func(intVal	+	unsIntVal);

cout	<<	“Func(unsIntVal	+	unsIntVal)	-	“;	Func(unsIntVal	+	unsIntVal);

	

return	0;

}

	

The	 compiler	 is	 facing	 an	 ambiguity.	 You	 see,	 the	 result	 of	 the	 additions	 are	 of	 type
unsigned.	 And	 when	 there	 is	 no	 function	 that	 takes	 an	 unsigned,	 the	 compiler	 tries	 to
convert	 the	unsigned	 result	 to	a	 type	of	a	 function	 that	 is	defined.	The	unsigned	can	be
converted	 to	 a	 type	 of	 int	 and	 we	 have	 a	 function	 that	 takes	 an	 int.	 The	 ambiguity	 is
because	we	have	two	other	functions	that	 takes	floats	and	doubles.	The	unsigned	can	be
converted	to	an	int,	but	then	the	int	can	be	converted	to	a	float	or	a	double.	So	the	result
can	be	passed	to	any	of	the	three	functions.	That	is	why	we	get	the	error.	Let’s	leave	only

the	function	with	int	parameter.

#include<iostream>

using	namespace	std;

	

void	Func(int	val)

{

cout	<<	“Int	arg.	Result:	“	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

int	intVal	=	-10;

unsigned	int	unsIntVal	=	5;

float	floatVal	=	1.0f;

double	doubleVal	=	2;

	

cout	<<	“Func(intVal	+	unsIntVal)	-	“;	Func(intVal	+	unsIntVal);

cout	<<	“Func(unsIntVal	+	unsIntVal)	-	“;	Func(unsIntVal	+	unsIntVal);

return	0;

}

	

Func(intVal	+	unsIntVal)	-	Int	arg.	Result:	-5

Func(unsIntVal	+	unsIntVal)	-	Int	arg.	Result:	10

	

No	problems.	Now	let’s	have	only	the	float	parameter	function.

#include<iostream>

using	namespace	std;

	

void	Func(int	val)

{

cout	<<	“Int	arg.	Result:	“	<<	val	<<	endl;

}

	

int	main(int	argc,	char**	argv)

{

int	intVal	=	-10;

unsigned	int	unsIntVal	=	5;

	

cout	<<	“Func(intVal	+	unsIntVal)	-	“;	Func(intVal	+	unsIntVal);

cout	<<	“Func(unsIntVal	+	unsIntVal)	-	“;	Func(unsIntVal	+	unsIntVal);

return	0;

}

	

Func(intVal	+	unsIntVal)	-	Float	arg.	Result:	4.29497e+009

Func(unsIntVal	+	unsIntVal)	-	Float	arg.	Result:	10

	

The	 results	 are	 implicitly	 converted	 to	 floats.	 The	 conversion	 to	 float	 happens	 after	 the
operator	result.	That	is	why	you	see	a	large	number	because	the	result	of	the	signed	and
unsigned	ints	is	an	unsigned,	which	is	a	very	large	value	as	we	saw	earlier.

So	what	you	see	here	is	implicit	function	argument	conversion.	The	compiler	will	convert
the	passed	argument	to	the	available	function	parameter	type,	if	the	conversion	is	possible.
Keep	 in	mind	 that	 if	 the	 correct	 parameter	 type	 is	 not	 available	 the	 compiler	may	do	 a
conversion	which	would	yield	 completely	unexpected	 results	 as	we	 saw	 in	 the	 example
above.	It	is	also	possible	that	you	lose	the	resolution	of	the	value	during	conversion.	When
a	float	is	converted	to	an	int,	the	fractional	part	is	discarded.	Likewise	an	int	may	not	be
exactly	 representable	 as	 a	 float.	 So	 you	need	 to	 pay	 attention	when	you	have	 functions
which	take	numeric	arguments	and	also	the	result	types	of	arithmetic	operators.

Object	instantiation
Now	let’s	discuss	how	argument	conversion	happens	when	we	instantiate	classes.

#include<iostream>

using	namespace	std;

	

class	conversion

{

public:

float	var;

conversion(float	val)	:	var(val)

{

cout	<<	“Constructor”	<<	endl;

}

	

conversion(const	conversion&	objToCopy)

{

var	=	objToCopy.var;

cout	<<	“Copy	constructor”	<<	endl;

}

	

conversion	&	operator=(const	conversion	&objToCopy)

{

var	=	objToCopy.var;

cout	<<	“Copy	assignment	operator”	<<	endl;

return	*this;

}

};

	

int	main(int	argc,	char**	argv)

{

float	floatVal	=	1.0f;

int	intVal	=	2;

	

cout	<<	“Line	#1:	“;	conversion	convObj1(floatVal);

cout	<<	“Line	#2:	“;	conversion	convObj2	=	convObj1;

cout	<<	“Line	#3:	“;	conversion	convObj3(convObj2);

cout	<<	“Line	#4:	“;	conversion	convObj4	=	floatVal;

	

cout	<<	“Line	#5:	“;	conversion	convObj5(intVal);

cout	<<	“Line	#6:	“;	conversion	convObj6	=	intVal;

return	0;

}

	

Line	#1:	Constructor

Line	#2:	Copy	constructor

Line	#3:	Copy	constructor

Line	#4:	Constructor

Line	#5:	Constructor

Line	#6:	Constructor

	

There	 isn’t	 anything	 of	 note	 happening	 in	 lines	 1	 to	 4.	 The	 constructor	 and	 copy
constructor	are	being	called	as	we	expect.	Lines	5	and	6	are	what	we	want	to	see.	We	are
instantiating	with	an	int.	And	it	works	the	same	way	as	we	passed	an	int	to	a	function	with
a	float	parameter.	The	compiler	converts	the	int	to	a	float	before	passing	to	the	constructor.
The	int	is	promoted,	in	this	case,	to	a	float.

So	you	 see	 argument	 conversions	 and	promotions	 are	happening	 in	many	places.	These
implicit	conversions	and	promotions	can	make	things	easier	but	it	is	important	to	keep	an
eye	out	for	these	cases	because	they	can	result	in	unexpected	results.

Topic	20

Name	Lookup
Name	lookup	is	the	mechanism	of	finding	the	correct	declaration	of	a	name.	Name	look
ups	 can	 be	 used	 for	 functions,	 types	 (including	 built-in	 ones)	 and	 enumerations.	 The
mechanism	of	name	lookup	can	be	a	complex	mechanism	when	it	involves	multiple	levels
of	 inheritance,	 namespaces	 and	 templates.	 In	 this	 topic	 we	 will	 look	 at	 the	 basic
functionality	of	name	lookup	when	accessing	functions	or	types.

All	name	lookups	are	one	of	two	types	only:

Qualified	name	lookup
Unqualified	name	lookup

We	have	used	both	types	so	far	in	the	examples	we	have	done.	Let’s	start	with	qualified
name	lookup.

Qualified	Name	Lookup
Qualified	name	lookup	takes	place	when	you	explicitly	qualify	 the	name	with	 the	scope
resolution	operator	(::).	Let’s	first	look	at	an	example	of	using	a	namespace.

#include<iostream>

using	namespace	std;

	

namespace	A	{

void	foo()

{

cout	<<	“A::foo()”	<<	endl;

}

}

	

int	main(int	argc,	char**	argv)

{

foo();

return	0;

}

	

Here	we	declare	a	namespace	A	and	define	the	function	foo	in	that	scope.	Then	we	call	foo
in	 main.	 Note	 that	 this	 is	 an	 unqualified	 call,	 as	 we	 are	 not	 qualifying	 foo	 with	 any

namespace	of	type.	But	we	don’t	have	to,	do	we?	Because	there	is	only	one	foo	and	that	is
in	namespace	A.	You	see,	even	 though	 foo	 is	defined	 it	 is	not	 in	 the	scope.	You	need	 to
explicitly	bring	namespace	A	into	the	scope.	There	are	two	ways	you	can	do	that:

With	the	using	directive
With	qualifying	the	call

If	we	want	to	bring	foo	into	the	scope	with	‘using’	directive:

…

…

int	main(int	argc,	char**	argv)

{

using	namespace	A;

foo();

return	0;

}

	

A::foo()

	

You	 do	 not	 need	 to	 use	 ‘using’	 directive	 right	 before	 calling	 the	 function.	 It	 can	 be
anywhere	between	the	function	call	and	the	namespace	definition.

Now	if	we	wanted	to	qualify	the	function	call	we	do	this:

…

…

int	main(int	argc,	char**	argv)

{

a::foo();															//	qualified	call

return	0;

}

	

Before	we	continue	with	the	qualified	name	lookup,	a	word	on	the	namespaces.

Namespace

As	 you	 saw	 in	 the	 example	 above	 we	 need	 to	 explicitly	 bring	 the	 namespace	 into	 the
scope.	The	 compiler	will	 not	 look	 in	 a	namespace	 even	 if	 it	 is	 in	 the	 same	compilation
unit.	This	is	why	we	need	to	always	do	‘using	namespace	std‘	for	using	cout	and	endl.	 If
we	removed	‘using	namespace	std‘	we’d	get:

The	functions	are	defined	in	iostream	and	we	include	it	in	our	compilation	unit,	but	that	is
not	 enough.	 When	 the	 function	 or	 type	 is	 declared	 inside	 a	 namespace	 you	 need	 to
explicitly	bring	it	into	the	scope,	or	qualify	the	call.	So	if	we	removed	‘using	namespace
std’	we’d	have	to	qualify	our	calls	for	cout	and	endl.

namespace	A	{

void	foo()

{

std::cout	<<	“A::foo()”	<<	std::endl;	//qualified	calls

}

}

…

…

	

Qualified	name	lookup	is	pretty	much	that,	qualifying	the	calling	name.	We	will	 look	at
different	aspects	of	this	in	the	following	examples.

Multiple	namespaces

#include<iostream>

using	namespace	std;

	

void	foo()

{

cout	<<	“::foo()”	<<	endl;

}

	

namespace	A	{

void	foo()

{

cout	<<	“A::foo()”	<<	endl;

}

}

	

namespace	B	{

using	namespace	A;

	

void	foo(int	val)

{

cout	<<	“B::foo(int)”	<<	endl;

}

}

	

int	main(int	argc,	char**	argv)

{

b::foo(1);

return	0;

}

	

B::foo(int)

	

Here	 we	 have	 three	 foo	 implementations:	 in	 global	 scope,	 in	 namespace	 A	 and	 in
namespace	B.	 Note	B::foo(int)	 is	 overloaded	 and	 namespace	B	 includes	 namespace	 A.
Then	we	are	making	a	qualified	function	call	to	B::foo(int).	The	compiler	has	no	problem
locating	it	 in	namespace	B.	Now	we	would	like	 to	call	A::foo().	We	need	 to	qualify	 this
call	as	there	is	another	foo	in	the	global	scope.	We	can	do	this	in	two	ways.	First	we	can
qualify	with	namespace	A	and	then	we	can	also	qualify	 through	namespace	B.	Note	that
namespace	B	brings	in	namespace	A	into	its	scope.

…

…

int	main(int	argc,	char**	argv)

{

b::foo();

return	0;

}

	

It	 seems	 the	 compiler	 is	 having	 a	 problem	 with	 finding	B::foo()	 though.	 But	 why	 so?
A::foo()	is	in	the	namespace	of	B.	We	saw	earlier	that	we	can	bring	in	a	namespace	into
the	scope	by	 the	 ‘using’	directive.	Let’s	do	a	small	modification.	Change	 function	name
B::foo(int)	into	something	different	and	try.

…

…

namespace	B	{

using	namespace	A;

	

void	fooBar(int	val)

{

cout	<<	“B::fooBar(int)”	<<	endl;

}

}

…

…

	

A::foo()

A::foo()

	

When	 we	 changed	 the	 function	 name	 in	 namespace	 B,	 the	 compiler	 had	 no	 problems
finding	A::foo()	in	namespace	B.	What	happened?

The	problem	is,	when	we	qualify	the	function	name	with	the	namespace	the	compiler	first
searches	 in	 that	 namespace	 only.	 So	 in	 our	 case,	 the	 compiler	 searched	 for	 foo	 in
namespace	B	and	it	found	a	foo	function.	But	that	foo	didn’t	match	our	call	as	it	takes	an
int	 argument.	So	 the	compiler	marks	 this	 as	 an	error	 and	complains	 that	 there	 is	no	 foo
function	that	takes	0	arguments.	The	problem	is,	once	the	compiler	finds	a	declaration	for
foo	it	terminates	the	search.	The	compiler	is	not	going	to	keep	looking	for	a	function	foo
that	 takes	 0	 arguments.	Once	 it	 finds	 a	 foo	 it	 tries	 to	 call	 that	 function.	 If	 the	 function
declaration	 doesn’t	 fit	 the	 call,	 then	 it’s	 an	 error.	 Then	 why	 did	 the	 call	 to	 B::foo()
succeeed	when	we	changed	the	function	name	to	fooBar?	Because	now	there	is	no	foo	in
the	namespace	of	B	so	the	compiler	now	moves	on	to	search	for	namespaces	that	are	in	the
scope	by	the	‘using’	directive.	Namespace	B	has	brought	in	namespace	A	with	the	‘using’
directive	and	the	compiler	goes	in	to	A	to	find	foo,	and	finds	it.	So	rememeber	that	when
we	qualify	the	name,	the	compiler	will	first	check	in	the	qualified	namespace	and	only	if	it
cannot	find	it,	will	move	to	other	namespaces	included	in	there.

What	about	the	global	namespace?	Will	the	iterative	search	ultimately	move	to	the	global
scope?	Let’s	change	the	names	of	A::foo	and	B::foo	and	leave	only	::foo.

#include<iostream>

using	namespace	std;

	

void	foo()

{

cout	<<	“::foo()”	<<	endl;

}

	

namespace	A	{

void	fooA()

{

cout	<<	“A::fooA()”	<<	endl;

}

}

	

namespace	B	{

using	namespace	A;

	

void	fooB(int	val)

{

cout	<<	“B::fooB(int)”	<<	endl;

}

}

	

int	main(int	argc,	char**	argv)

{

b::foo();

return	0;

}

	

No.	The	compiler	will	not	move	on	to	the	global	namespace.	So	keep	in	mind	that	when
you	do	a	qualified	lookup,	the	compiler	will	only	search	the	specified	namespace	and	the
included	namespaces	thereof.	Although	global	namespace	is,	you	know,	global,	it	doesn’t
come	into	the	scope	when	the	compiler	does	a	qualified	name	look	up.

Let’s	add	two	more	namespaces.

#include<iostream>

using	namespace	std;

	

void	foo()

{

cout	<<	“::foo()”	<<	endl;

}

	

namespace	A	{

void	foo()

{

cout	<<	“A::foo()”	<<	endl;

}

}

	

namespace	B	{

using	namespace	A;

	

void	foo(int	val)

{

cout	<<	“B::foo(int)”	<<	endl;

}

}

	

namespace	C	{

void	foo(int	val)

{

cout	<<	“C::foo(int)”	<<	endl;

}

}

	

namespace	D	{

using	namespace	B;

using	namespace	C;

}

	

int	main(int	argc,	char**	argv)

{

d::foo(1);

return	0;

}

	

Namespace	D	includes	namespaces	B	and	C	and	both	of	these	have	foo(int)	defined.	And
the	 compiler	 is	 complaining	 about	 an	 ambiguous	 call.	 This	 is	 because	 there	 are	 two
foo(int)	 definitions.	This	 shows	 that	when	 searching	 included	 namespaces,	 the	 compiler
does	not	go	through	them	one	after	the	other.	If	that	is	the	case	then	the	compiler	must’ve
found	 either	B::foo(int)	 or	C::foo(int)	 first	 and	 invoked	 it.	But	 the	 compiler	 clearly	 has
both	foo(int)	implementations	available	in	the	scope.	That	is	why	the	ambiguity.	But	there

is	 something	 odd	 in	 the	 error	message.	 It	 says	 ambiguous	 call	 of	C::foo,	 when	we	 are
doing	D::foo.	It	sounds	a	little	odd	but	there	is	nothing	to	it.	Let’s	change	the	order	of	the
using	directives	in	namespace	D.

…

….

namespace	D	{

using	namespace	C;

using	namespace	B;

}

…

…

	

This	time	it	complains	about	an	ambiguous	call	to	B::foo.	It	depends	on	which	order	the
compiler	brings	in	the	namespaces	into	the	scope.	This	is	all	very	compiler	dependent.	But
what	matters	 is	 that	 all	 of	 the	 included	 namespaces	 are	 brought	 in	 to	 scope	 iteratively.
Let’s	look	at	one	more	example.

#include<iostream>

using	namespace	std;

	

void	foo()

{

cout	<<	“::foo()”	<<	endl;

}

	

namespace	A	{

void	foo()

{

cout	<<	“A::foo()”	<<	endl;

}

}

	

namespace	B	{

using	namespace	A;

	

void	fooBar(int	val)

{

cout	<<	“B::foo(int)”	<<	endl;

}

}

	

namespace	C	{

void	foo()

{

cout	<<	“C::foo()”	<<	endl;

}

}

	

namespace	D	{

using	namespace	C;

using	namespace	B;

}

	

int	main(int	argc,	char**	argv)

{

d::foo();

return	0;

}

	

C::foo()

	

Now	 we	 have	 only	 two	 foo()	 implementations	 in	 the	 namespaces	 (excluding	 ::foo,	 as
global	namespace	is	not	looked	at).	The	qualified	call	to	D::foo()	can	find	either	C::foo()
or	 A::foo()	 through	 namespace	 B.	 But	 you	 see,	 there	 is	 no	 ambiguity.	 The	 compiler
resolves	the	call	to	C::foo().	Why	wasn’t	A::foo()	found?	The	search	didn’t	reach	to	that
level.	There	is	no	D::foo()	so	the	search	went	one	included	namespace	level	up,	which	are
C	and	B,	where	the	compiler	found	C::foo()	in	the	scope.	The	search	stopped	and	C::foo()
was	called.	There	was	no	need	to	go	up	to	namespace	A.	If	there	was	no	function	C::foo(),
then	the	search	will	move	to	included	namespaces,	in	this	case	namespace	A	included	in	B,
and	 have	 found	A::foo().	 If	 instead	 there	was	C::foo(int),	 then	we	would’ve	 gotten	 the
compiler	error	about	C::foo(int)	not	taking	0	arguments.

(However	 in	Visual	C++,	 although	 it	 compiles	 fine	 and	 doesn’t	 give	 out	 any	warnings,
there	is	a	tooltip	below	“D::foo()”	that	says	multiple	instances	of	foo()	is	found.)

Nested	namespaces

What	about	a	namespace	inside	a	namespace?

#include<iostream>

using	namespace	std;

	

namespace	A	{

void	foo()

{

cout	<<	“A::foo()”	<<	endl;

}

}

	

namespace	B	{

using	namespace	A;

	

void	fooB()

{

cout	<<	“B::fooB()”	<<	endl;

}

	

namespace	C	{

void	foo()

{

cout	<<	“B::C::foo()”	<<	endl;

}

	

void	fooC()

{

cout	<<	“B::C::fooC()”	<<	endl;

}

}

}

	

int	main(int	argc,	char**	argv)

{

b::foo();

b::fooC();

b::C::foo();

return	0;

}

	

Here	we	 have	 namespace	A,	 and	 namespace	B,	 which	 includes	 namespace	A,	 and	 then
namespace	C	is	defined	within	B.	And	there	is	foo()	defined	in	namespace	C	as	well.	So
there	are	two	foo	functions	within	namespace	B.

As	you	can	 see	 from	 the	 compiler	 error,	 the	 compiler	 could	not	 find	 fooC.	 So	 although
namespace	C	 is	 defined	 within	 B,	 the	 functions	 inside	 C	 are	 not	 in	 the	 scope.	 If	 we
comment	out	B::fooC(),	we	get:

A::foo()

B::C::foo()

	

So	you	see,	the	foo	in	B‘s	scope	is	only	A::foo.	B::C::foo()	is	not	in	the	scope.	If	we	want
to	call	functions	in	namespace	C	we	need	to	qualify	the	call.	But	look	at	this	example.

#include<iostream>

using	namespace	std;

	

namespace	A	{

void	fooA()

{

cout	<<	“A::fooA()”	<<	endl;

}

}

	

namespace	B	{

using	namespace	A;

	

void	fooB()

{

cout	<<	“B::fooB()”	<<	endl;

}

	

namespace	C	{

void	fooC()

{

fooA();

fooB();

}

}

}

	

int	main(int	argc,	char**	argv)

{

b::C::fooC();

return	0;

}

	

A::fooA()

B::fooB()

	

Even	though	namespace	C	was	 in	 the	scope	of	namespace	B,	everything	 in	B,	 including
the	namespaces	brought	in	to	scope	with	‘using’,	is	in	the	scope	of	namespace	C.

This	 is	 pretty	 much	 all	 there	 is	 to	 common	 uses	 of	 qualified	 name	 lookups	 with
namespaces.	Remember	the	iterative	process	of	namespace	look	up	when	you	qualify	the
call.	This	is	a	bit	different	from	what	happens	when	we	do	an	unqualified	call.

Unqualified	name	lookup
Unqualified	name	look	up	is	exactly	what	it	means.	It	is	name	lookup	when	the	name	is
not	 qualified.	 Earlier	 we	 discussed	 about	 qualified	 calls	 where	 the	 calling	 name	 is
qualified	with	the	scope	resolution	operator.	Whereas	in	qualified	name	lookup	we	mainly
considered	namespaces,	unqualified	name	lookup	is	all	about	the	scope.	Let’s	start	with	an
example.

#include<iostream>

using	namespace	std;

	

namespace	A	{

int	x	=	1;

void	foo1()

{

cout	<<	“A::foo1	-	x=	“	<<	x	<<	endl;

}

}

	

namespace	B	{

	

int	x	=	2;

void	foo2()

{

cout	<<	“B::foo2	-	x	=”	<<	x	<<	endl;

}

	

using	namespace	A;

	

void	foo3()

{

cout	<<	“B::foo3	-	x	=”	<<	x	<<	endl;

}

	

	

namespace	C	{

void	foo4()

{

cout	<<	“B::C::foo4	-	x	=”	<<	x	<<	endl;

}

	

int	x	=	3;

void	foo5()

{

cout	<<	“B::C::foo5	-	x	=”	<<	x	<<	endl;

}

}

}

	

int	main(int	argc,	char**	argv)

{

a::foo1();

b::foo1();

b::foo2();

b::foo3();

b::C::foo4();

b::C::foo5();

return	0;

}

	

A::foo1	-	x=	1

A::foo1	-	x=	1

B::foo2	-	x	=2

B::foo3	-	x	=2

B::C::foo4	-	x	=2

B::C::foo5	-	x	=3

	

It’s	 not	 difficult	 to	 understand	 what	 is	 happening	 here.	We	 are	 trying	 to	 see	 the	 scope

boundaries	 of	 variable	 x.	As	we	 saw	 in	 the	 last	 example	 of	 qualified	 name	 lookup,	 the
inner	namespace	has	in	its	scope	everything	in	the	enclosing	namespace.	So	namespace	C
has	variable	x	in	B	in	its	scope.

In	qualified	name	lookup	we	saw	that	namespaces	are	searched	iteratively	for	 the	name.
First	 the	 qualified	 namespace	 is	 searched,	 then	 if	 the	 name	 is	 not	 found	 the	 included
namespaces	are	searched	and	it	continues	like	that	until	it	is	found	or	the	last	namespace
was	reached.	We	also	saw	that	the	search	does	not	go	to	the	global	namespace.	The	same
mechanism	is	happening	 in	unqualified	 lookup	 too.	The	 lookup	for	 the	name	starts	with
the	current	scope	and	moves	upwards.

So	when	 I	mentioned	earlier	 that	 inner	namespace	has	outer	namespaces	 in	 its	 scope,	 it
was	 actually	 incorrect.	 It	 is	 incorrect	 to	 say	 that	 innermost	 namespace	 has	 outer
namespaces	in	its	‘scope’.	It	doesn’t.	But	the	thing	about	unqualified	name	lookup	is	that
name	lookup	moves	to	outer	scopes.

#include<iostream>

using	namespace	std;

	

namespace	A	{

int	a	=	1;

	

namespace	B	{

int	b	=	2;

	

namespace	C	{

int	c	=	3;

int	d	=	4;

	

namespace	D	{

int	d	=	5;

	

void	scopeCheck()

{

cout	<<	“a	=	“	<<	a	<<	endl;

cout	<<	“b	=	“	<<	b	<<	endl;

cout	<<	“c	=	“	<<	c	<<	endl;

cout	<<	“d	=	“	<<	d	<<	endl;

}

}

}

}

}

	

int	main(int	argc,	char**	argv)

{

a::B::C::D::scopeCheck();

return	0;

}

	

a	=	1

b	=	2

c	=	3

d	=	5

	

Here	you	see	 that	unqualified	name	lookup	in	namespace	D	moves	out	 to	 the	outermost
namespace	scope.	It	is	clear	that	the	outer	namespaces’	scope	doesn’t	extend	to	the	inner
namespace	and	vice	versa.	That	 is	why	we	don’t	have	any	multiple	definition	errors	 for
variable	d.	Now	see	what	happens	when	we	have	variables	defined	after	the	function	call.

#include<iostream>

using	namespace	std;

	

namespace	A	{

int	a	=	1;

	

namespace	B	{

int	b	=	2;

	

namespace	C	{

int	c	=	3;

int	d	=	4;

	

namespace	D	{

int	d	=	5;

	

void	scopeCheck()

{

cout	<<	“e	=	“	<<	e	<<	endl;

cout	<<	“f	=	“	<<	f	<<	endl;

}

int	e	=	5;

}

int	f	=	6;

}

}

}

	

	

int	main(int	argc,	char**	argv)

{

a::B::C::D::scopeCheck();

return	0;

}

	

Although	variable	is	in	namespace	C’s	scope,	it	is	not	found	in	the	lookup.	Anything	that
is	defined	after	the	function	is	not	in	the	scope	search.

The	rules	of	unqualified	name	lookup	apply	to	classes	the	same	way.

#include<iostream>

using	namespace	std;

	

class	A	{

public:

static	const	int	a	=	1;

	

class	B	{

public:

static	const	int	b	=	2;

	

class	C	{

public:

static	const	int	c	=	3;

static	const	int	d	=	4;

	

class	D	{

public:

static	const	int	d	=	5;

	

static	void	scopeCheck()

{

cout	<<	“a	=	“	<<	a	<<	endl;

cout	<<	“b	=	“	<<	b	<<	endl;

cout	<<	“c	=	“	<<	c	<<	endl;

cout	<<	“d	=	“	<<	d	<<	endl;

}

};

};

};

};

	

int	main(int	argc,	char**	argv)

{

A::B::C::D::scopeCheck();

return	0;

}

	

a	=	1

b	=	2

c	=	3

d	=	5

	

Next	we	move	to	the	final	topic	on	name	lookups,	‘argument	dependent	lookup’.

Argument	dependent	lookup

Argument	dependent	lookup	is	also	called	“Koenig	lookup”	and	is	part	of	the	unqualified
name	lookup.	Let’s	discuss	this	with	an	example.

#include<iostream>

using	namespace	std;

	

namespace	A	{

struct	A_struct

{};

	

void	foo()

{

cout	<<	“A:::foo”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

foo();

return	0;

}

	

It’s	easy	to	understand	why	the	compiler	cannot	find	foo.	It	is	in	namespace	A	and	since
we	are	doing	an	unqualified	call	the	search	only	extends	to	the	global	namespace,	not	into
namespace	 A.	 Completely	 normal	 behavior.	 Now	 let’s	 pass	 an	 argument	 to	 foo,	 an
argument	that	is	part	of	namespace	A	and	see	how	things	change.

#include<iostream>

using	namespace	std;

	

namespace	A	{

struct	A_struct

{};

	

void	foo(A_struct)

{

cout	<<	“A::foo”	<<	endl;

}

};

	

int	main(int	argc,	char**	argv)

{

a::A_struct	structA;

foo(structA);

return	0;

}

	

A:::foo

	

This	is	Koening	lookup	or	argument	dependent	lookup.	But	how	was	the	compiler	able	to
find	 foo?	Why	 did	 the	 compiler	 decide	 to	 search	 in	 namespace	A?	 Because	 foo	 has	 a
parameter	 that	 is	 in	 namespace	 A.	 This	 is	 what	 argument	 dependent	 lookup	 is.	 The

compiler	will	lookup	in	namespaces	of	the	passed	arguments.	Let’s	expand	this	a	little	bit.

#include<iostream>

using	namespace	std;

	

namespace	A	{

struct	A_struct

{};

	

void	fooA1()

{

cout	<<	“A::fooA1”	<<	endl;

}

	

void	fooA2(A_struct)

{

cout	<<	“A::fooA2”	<<	endl;

}

};

	

namespace	B	{

struct	B_struct

{};

	

void	fooB(A::A_struct	structA)

{

cout	<<	“B::fooB	calling	fooA…”	<<	endl;

fooA1();

}

}

	

int	main(int	argc,	char**	argv)

{

a::A_struct	structA;

b::fooB(structA);

return	0;

}

	

Now	we	have	two	namespaces,	A	and	B,	and	fooB	in	namespace	B	is	trying	to	call	fooA1
in	namespace	A.	The	compiler	cannot	 find	 fooA1	 in	 the	search	scope.	But	why?	We	are
passing	an	argument	of	namespace	A	to	fooB.	See,	it	doesn’t	work	like	that.	The	function
itself	must	have	an	argument	passed	to	it	with	the	namespace.	Although	A_struct	is	passed
to	fooB,	 it	 is	not	passed	to	 fooA1,	 so	 the	compiler	does	not	 look	for	 fooA1	 in	A_struct‘s
namespace.	Then	what	about	fooA2?

…

…

namespace	B	{

struct	B_struct

{};

	

void	fooB(A::A_struct	structA)

{

cout	<<	“B::fooB	calling	fooA…”	<<	endl;

fooA2(structA);

}

}

…

…

	

B::fooB	calling	fooA…

A::fooA2

	

As	 expected,	 now	 the	 compiler	 searches	 for	 fooA2	 in	 namespace	 of	A	 because	 we	 are
passing	 an	 argument	 in	A.	 This	 is	 the	 basic	mechanism	 of	 argument	 dependent	 lookup
(ADL).	However,	there	are	some	limitations	to	this.

Does	not	work	with	built-in	type	arguments:

#include<iostream>

using	namespace	std;

	

namespace	A	{

int	A_var	=	1;

	

struct	A_struct

{};

	

void	fooA1()

{

cout	<<	“A::fooA1”	<<	endl;

}

	

void	fooA2(int	var)

{

cout	<<	“A::fooA2”	<<	endl;

}

};

	

namespace	B	{

struct	B_struct

{};

	

void	fooB(A::A_struct	structA)

{

cout	<<	“B::fooB	calling	fooA…”	<<	endl;

fooA2(A::A_var);

}

}

	

int	main(int	argc,	char**	argv)

{

a::A_struct	structA;

b::fooB(structA);

return	0;

}

	

We	change	fooA2	to	take	an	int	parameter	instead	of	A::struct_A	and	then	pass	it	A_var,
the	 int	 variable	 in	 namespace	 A.	 Apparently	 the	 compiler	 doesn’t	 care	 to	 go	 into
namespace	A	in	this	case	although	we	are	passing	an	int	in	namespace	A.	So	ADL	does	not
work	for	built-in	types.	It	works	on	class	types,	as	we	saw	with	the	struct	before,	and	also
for	enumerations.	There	are	quite	a	few	rules	and	conditions	governing	the	ADL	lookup
but	let’s	keep	this	discussion	to	the	most	common	ways	of	using	ADL.

Namespace	search	is	not	iterative:

Earlier	in	qualified	name	lookup	we	saw	that	the	lookup	does	the	search	iteratively	in	the
namespaces	within	namespaces.	This	is	not	true	for	ADL.

#include<iostream>

using	namespace	std;

	

namespace	A	{

struct	A_struct

{};

	

void	fooA1()

{

cout	<<	“A::fooA1”	<<	endl;

}

	

void	fooA2(A_struct)

{

cout	<<	“A::fooA2”	<<	endl;

}

	

namespace	insideA	{

	

void	fooA3(A_struct)

{

cout	<<	“A::insideA::fooA3”	<<	endl;

}

}

using	namespace	insideA;

};

	

namespace	B	{

struct	B_struct

{};

	

void	fooB(A::A_struct	structA)

{

cout	<<	“B::fooB	calling	fooA…”	<<	endl;

fooA3(structA);

}

}

	

int	main(int	argc,	char**	argv)

{

a::A_struct	structA;

b::fooB(structA);

return	0;

}

	

Here	we	define	a	namespace	insideA	within	A	and	define	fooA3	that	takes	a	parameter	of
type	A.	 But	 you	 see	 the	 compiler	 is	 not	 able	 to	 find	 it,	 even	 though	we	 have	 included
namespace	 insideA	 with	 the	 using	 directive.	 So	 ADL	 limits	 its	 search	 just	 to	 the
namespace	of	the	argument.

ADL	is	different	for	classes	and	namespaces:

Let’s	 look	 at	 namespaces	 first.	We	 define	 function	 foo	 in	 namespace	A	 and	 also	 in	 the
namespace	B,	and	then	call	from	namespace	B.

#include<iostream>

using	namespace	std;

	

namespace	A	{

struct	A_struct

{};

	

void	foo(A_struct)

{

cout	<<	“A::foo”	<<	endl;

}

};

	

namespace	B	{

	

void	foo(A::A_struct)

{

cout	<<	“B::foo”	<<	endl;

}

	

void	fooB(A::A_struct	structA)

{

cout	<<	“B::fooB	calling	foo”	<<	endl;

foo(structA);

}

}

	

int	main(int	argc,	char**	argv)

{

a::A_struct	structA;

b::fooB(structA);

return	0;

}

	

There	is	ambiguity	because	the	compiler	finds	both	the	foo	functions,	B::foo	in	the	current
scope	and	A::foo	through	ADL.

But	 things	 are	 a	 little	different	with	 classes.	Let’s	 turn	 the	 same	program	 to	use	 classes
instead	of	namespaces.

#include<iostream>

using	namespace	std;

	

class	A	{

public:

struct	A_struct

{};

	

static	void	foo(A_struct)

{

cout	<<	“A::foo”	<<	endl;

}

};

	

class	B	{

public:

static	void	foo(A::A_struct)

{

cout	<<	“B::foo”	<<	endl;

}

	

static	void	fooB(A::A_struct	structA)

{

cout	<<	“B::fooB	calling	foo”	<<	endl;

foo(structA);

}

};

	

int	main(int	argc,	char**	argv)

{

A::A_struct	structA;

B::fooB(structA);

return	0;

}

	

B::fooB	calling	foo

B::foo

	

With	classes	there	is	no	ambiguity.	Compiler	finds	B::foo	in	its	current	scope	and	calls	it.
So	when	working	with	classes,	ADL	is	used	only	when	the	compiler	cannot	find	a	class
member	function.

As	discussed	earlier,	there	are	quite	a	few	rules	and	conditions	regarding	ADL.	So	qualify
your	 calls	 to	make	 sure	 the	 code	 is	 calling	 the	 function	 you	want.	Keep	 an	 eye	 out	 for
iterative	scope	searches	because	you	might	not	be	accessing	the	variable	you	intend	to.

	The size of an object
	The Virtual Mechanism
	Structs, Classes and their Inheritance
	Object Construction
	Pointers
	Non-Constructible, Non-Copyable Class
	Understanding new
	Understanding Constructors
	Forward Declarations, Compiling and Linking
	Copy Constructor and Object Cloning
	Class Member Access
	Class member offsets
	Function Pointers
	Function Shadowing
	Understanding the Destructor
	Operator Overloading
	Multiple Inheritance
	Casting
	Conversions and Promotions
	Name Lookup

