C++is a fast, flexible language but its fundamentals must be
understood correctly. These topics are selected to explain the

fundamental concepts of the C++ language to the beginners

M.LIYANAGE

Preface

C++ started in the early 80’s and after more than 30 years later, it is still one of the most
used programming languages. This is so for a very good reason. It’s not just the speed of
C++ that makes it a popular choice. It is a very flexible and predictable language. You can
be sure to have a constant performance with a C++ program. And this is achieved by
being able to control a lot of aspects of the program. C++ puts the programmer in the front
seat. The programmer can take control of how things need to be run. It’s predictable.
There are no suprises. Most importantly, C++ let’s you go very close to the low-level of
the computer.

You can find a lot of discussions about the speed of C++ vs. Java. It is widely accepted
that the speed of Java will match that of C++ in the best case, but not surpass it. But here’s
the caveat. To get the best performance of C++ you need to learn how to use it properly.
Like I said, C++ puts the programmer in full control and it is our responsibility to control
it properly. It is easy to write bad code with C++. But to write good, optimized code, you
need to learn the core of it because unless you know what exactly is happening with your
code, you cannot control it or optimize it.

It’s often said that C++ is a difficult language to learn. Learning a programming language
is not that difficult at all. Same goes for C++. It is not a difficult language. It becomes a
difficult language when you don’t know it properly. When you don’t understand its core
concepts it becomes difficult. C++ has no garbage collection. You need to collect your
own garbage. C++ has the concept of stack memory and heap memory. You need to
control where you want to put your objects. It has constructors and destructors. You need
to know when and how they are called. Then it has multiple inheritance, something that’s
not part of most languages. It has pointers and references. You need to know how and
when you should use them. Then you have virtual functions and virtual tables and virtual
pointers. These are few of the important fundamentals of C++ that should have a firm grip
on.

Purpose of this book

It is not difficult to get up and running with C++. It is like any other language. But once
you go through the basics of the language, classes, constructors, inheritance, conditionals,
loops, etc., C++ will feel like most other high-level languages. But it can be a challenge to
move on from there and to go from being a C++ beginner to an intermediate or advanced
programmer. There are many core concepts of C++ and without knowing them you can’t
know the language in its fullest. You cannot write fast optimized code without knowing
what happens during compilation or runtime.

The aim of this book is to take C++ beginners to the next level. To discuss the
fundamental internals of the language so the beginners can fully understand what happens
with their code. This book is divided in to 20 different topics which attempt to talk about
the most used concepts of C++.

Who this book is for

This book is intended for beginner level C++ programmers. If you know about classes,
inheritance, constructors and virtual functions, you are the intended audience of this book.

Who this book is not for

This book is not for programmers starting to learn C++ from the beginning. That is, this is
not a “Hello, World” book. This should be the book you read after that.

Table of Contents

The size of an object

The Virtual Mechanism

Structs, Classes and their Inheritance

Object Construction

Pointers

Non-Constructible, Non-Copyable Class

Understanding new

Understanding Constructors

Forward Declarations, Compiling and Linking
Copy Constructor and Object Cloning

Class Member Access

Class member offsets

Function Pointers

Function Shadowing
Understanding the Destructor
Operator Overloading
Multiple Inheritance

Casting
Conversions and Promotions

Name [.ookup

Topic 1

The size of an object

Objects are what makes the language Objected-Oriented, so they are at the core of C++.
So it’s only natural we dedicate our first topic to learning about the size and composition
of them. Let’s start with the bare minimum, the empty class.

The empty class

What’s the definition of an empty class?

class emptyClass

{h

So how exactly empty is the empty class? Well it’s pretty empty, but not nothing. Here’s
how empty an empty class is:

#include<iostream>

using namespace std;

class emptyClass

{}

int main(int argc, char** argv)
{
emptyClass emptyClassObj;
cout << “Size of emptyClassObj: “ << sizeof(emptyClassObj) << endl;

Size of emptyClassObj: 1

The size of a class with nothing in it is 1 byte. But why so? Why is a class object 1 byte
when there is nothing in it? Because the standard does not let objects have a size of 0.
Again, why? This is because you need to be able to distinguish between two objects of the
same class!

Take a look at this:

#include<iostream>

using namespace std;

class emptyClass

{h

int main(int argc, char** argv)

{
emptyClass emptyClassObj1;
emptyClass emptyClassObj2;
cout << “Memory address of emptyClassObj1: “ << &emptyClassObj1 << endl;
cout << “Memory address of emptyClassObj2: “ << &emptyClassObj2 << endl;
}

Memory address of emptyClassObj1: Ox7fffffffe43e
Memory address of emptyClassObj2: 0x7fffffffe43f

The memory addresses of two different empty classes are different. This way it lets you
differentiate two different objects. But there really is nothing in there.

Then how big will an object get if we have an empty class derived from an empty class? 2
bytes, perhaps?

#include<iostream>

using namespace std;

class emptyClass

{}

class derivedEmptyClass : public emptyClass
{5

int main(int argc, char** argv)

{

emptyClass emptyClassObj;

derivedEmptyClass derivedEmptyClassObj;

cout << “Size of emptyClassObj: “ << sizeof(emptyClassObj) << endl;

cout << “Size of derivedEmptyClassObj: “ << sizeof(derivedEmptyClassObj) << endl;
}

Size of emptyClassObj: 1
Size of derivedEmptyClassObj: 1

It doesn’t change. You can keep deriving empty classes but the size will still be 1. Well,
the size of an empty class is actually implementation dependent, although it is usually 1,
but the fact to keep in mind is that it will always be the same value regardless of how
many times you keep deriving.

Classes with member variables

#include<iostream>

using namespace std;

class notSoEmptyClass

{
public:

int value;
b

int main(int argc, char** argv)

{
notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
return 0;

}

Size of notSoEmptyClassObj: 4

No surprises here. The object has to contain the integer member variable value. But
perhaps something to note is the size of the object, 4 bytes. Let’s print out a little bit more
information:

#include<iostream>

using namespace std,;

class notSoEmptyClass

{
public:

int value;
b

int main(int argc, char** argv)
{
int intVal = 5;

notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
cout << “Size of integer: “ << sizeof(intVal) << endl;

return 0;

Size of notSoEmptyClassObj: 4

Size of integer: 4

So the size of the object is actually the size of the integer. So when there was nothing in
the object, it had a size of 1 byte, but when we put an integer in there, it got as big as the
integer itself, which is 4 bytes. This shows that this almost empty object just contains the
integer variable, nothing else. Let’s add a bit more stuff and see how things change.

#include<iostream>

using namespace std;

class notSoEmptyClass

{
public:

int value;
b

int main(int argc, char** argv)

{
int intVal = 5;
notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
cout << “Size of integer: “ << sizeof(intVal) << endl;
return O;
}

Size of notSoEmptyClassObj: 16
Size of integer: 4
Size of double: 8

The size of the object is increased, as expected. But why is it 16, and not the summation of
the integer and the double? Why not 12 bytes? This is because of padding. Variables are

padded to certain boundary values. This is mostly implementation/architecture dependent
and in this particular case, it looks like boundaries are at 8 bytes. Let’s confirm this by
adding another integer.

#include<iostream>

using namespace std;

class notSoEmptyClass

{

public:
int intValuel;
double doubleVal,;
int intValue2;

b

int main(int argc, char** argv)

{
notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
return 0;

}

Size of notSoEmptyClassObj: 24

Now the size of the object is 24 bytes. Does this add up with our padding to boundary
concept? Yes. You see, the layout of the variables has to be in 8 byte boundaries or less.
Since the double is 8 bytes long, these variables need to be packed in to 8 byte wide
memory locations. You can visualize the above as packed in to memory as follows:

doubleVa :j::--~3 bytes

Now let’s see what happens if you rearrange the variables positions to be a little more
space efficient.

#include<iostream>

using namespace std;

class notSoEmptyClass

{
public:
int intValuel;
int intValue2;
double doubleVal,;
b

int main(int argc, char** argv)

{
notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
return 0;

}

Size of notSoEmptyClassObj: 16

Just rearranging the positions reduced the object’s size by 8 bytes. You can probably guess
what is happening here. The variables are packed much more efficiently now.

doubleVal

Why are the variables laid out this way then? Why didn’t the compiler make an intelligent
choice to re-arrange the variables to be more space efficient? I’'m sure the modern
compilers are way more intelligent for being able to arrange variables to be memory
efficient, but there are other reasons for laying them out as the programmer intended. We
will discuss that in another topic. Now before we leave member variables, let’s check
something else out very quickly.

What would happen when we make one of our integer variables a static?

#include<iostream>

using namespace std;

class notSoEmptyClass

{

public:
int intValuel;
double doubleVal,;
static int intValue2;

b

int main(int argc, char** argv)

{
notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
return 0;

}

Size of notSoEmptyClassObj: 16

We know from our previous example that if intVal2 was not static, the object size would
have been 24 bytes. But now it’s 16 bytes, as if intVal2 does not exist in the object. And
this is indeed the case. Because static variables are not stored in the objects themselves.
Objects of a class can be many. So there has to be as many intVall’s and doubleVal’s as
there are objects. But there can be only one intVal2. A common one for all of the objects.
So the static variables are not, and practically cannot reside inside one object instance.
Therefore they are in the global memory space. Outside of any object. That’s why no
matter how many static variables you put into an object, they will not bloat the size of the
object.

Classes with member functions

Now we’ll see what happens to the size of an object when you add in functions. Don’t
worry, this won’t be long.

#include<iostream>

using namespace std;

class notSoEmptyClass

{

public:
void foo() {}

int main(int argc, char** argv)

{
notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
return 0;

}

Size of notSoEmptyClassObj: 1

What did we do? We removed all the variables it had and put in a single function in the
class. And the size? 1 byte. This is the same size of the object when it was completely
empty. So functions in a class do not take any space in the object? The answer is yes.

But at that time I said that the 1 byte allocation of an empty class object is to make two
objects of the same class to be distinguishable. So you may not be completely convinced,
arguing that since now there is something in the class, that may be taking up the 1 byte
space. OK, let’s add another function and see.

#include<iostream>

using namespace std;

class notSoEmptyClass

{
public:
void foo() {}
void bar() {}
b

int main(int argc, char** argv)

{
notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
return 0O;

}

Size of notSoEmptyClassObj: 1

It still does not take any space. Now some of you may still be not convinced completely
because the functions are empty. So maybe an intelligent compiler is just getting rid of
them? It does not, even though it can do it in this case as the functions are empty and they
are not called anywhere in the code. Let’s wrap up this topic by confirming that functions
indeed take no space in the object, empty or not.

#include<iostream>

using namespace std;

class notSoEmptyClass

{
public:
void foo() {}

int bar(int count) {

int retVal = 0;

for (inti = 0; i < count; i++)
{

retVal++;

}

return retVal;

int main(int argc, char** argv)

{
notSoEmptyClass notSoEmptyClassObj;
int result = notSoEmptyClassObj.bar(10);
cout << “Result is: “ << result << endl;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
return O;
}

Result is: 10
Size of notSoEmptyClassObj: 1

So I changed the function bar to take in an argument, and have a local variable, a
functions body and a return type. This is a pretty full function. And you can see the

function bar is actually doing its calculation in the result. And yet the size of the object is
still 1 byte. This is because the functions exist outside of the object. Like a static variable.
This makes sense, doesn’t it? A function does the same thing regardless of which object
instance calls it. In our case, the function bar always does the for loop the number of times
passed as the argument. So there is no reason to have a function reside inside the object
itself. This is different from a member variable. Because member variables are usually
used to differentiate objects. Think about a Person class which has a string called
personName, which has the corresponding person’s name. Now it makes perfect sense for
each object to have the personName variable inside it. Because each object will have a
different value for this variable. Now what about a function, for example, GetName, which
simply returns the name of the Person? All this function would do is return the string
variable. And we do not need this function to be inside the object, do we? The function
simply has to take the string variable it was called upon and return it.

I suppose this should do it for this topic. I just showed you the basics of how the sizes of
objects are determined. It should give you a good foundation to think about other
complicated cases.

Topic 2
The Virtual Mechanism

I’m not going to explain what C++ virtual mechanism is. I’'m sure you know what a
virtual function is. In this topic I'm just going to prove its existence in the object level and
show you how it really happens behind the curtains.

Let’s carry on from where we left off in topic 1.

#include<iostream>

using namespace std;

class notSoEmptyClass

{
public:

void foo() {}
b

int main(int argc, char** argv)

{
notSoEmptyClass notSoEmptyClassObj;
cout << “Size of notSoEmptyClassObj: “ << sizeof(notSoEmptyClassObj) << endl;
return 0;

}

Size of notSoEmptyClassObj: 1

We showed that functions do not take any space in an object as they reside out of the
object memory space. Let’s then see what would change when we make our only function
a virtual.

#include<iostream>

using namespace std;

class virtualFuncClass

{
public:

virtual void foo() {}

int main(int argc, char** argv)

{
double *doublePrt;
virtualFuncClass virtualFuncClassObj;
cout << “Size of virtualFuncClassObj: “ << sizeof(virtualFuncClassObj) << endl;
cout << “Size of a pointer: “ << sizeof(doublePrt) << endl;
return 0;
}

Size of virtualFuncClassObj: 4

Size of a pointer: 4

The only difference I made to the class is to make the function foo virtual (that and
changing class name). The size of the object jumped to 4 bytes. So making the function
foo a virtual added something to the object. As you’d guess, this is the virtual-table-
pointer, commonly known as vptr. It is just a pointer. To make it clear I also declared a
pointer to a double and showed that its size is 4 bytes. There is no special reason why I
chose a pointer to a double. It could be a pointer to anything because pointer sizes don’t
change with what they are pointing to. So this makes a slightly convincing argument that
making the function virtual added a pointer to the object. But it might as well be an integer
variable, right? Because we saw in topic 1 that integer variables take 4 bytes of space in an
object. Before we show the actual vptr and what it is pointing to, let’s confirm this
suspicion.

#include<iostream>

using namespace std;

class virtualFuncClass

{
public:
virtual void foo() {}
virtual void bar() {}
5

int main(int argc, char** argv)
{
double *doublePrt;
virtualFuncClass virtualFuncClassObj;
cout << “Size of virtualFuncClassObj: “ << sizeof(virtualFuncClassObj) << endl;
cout << “Size of a pointer: “ << sizeof(doublePrt) << endl;

return O;

Size of virtualFuncClassObj: 4

Size of a pointer: 4

So now there are two virtual functions and yet the size of the object hasn’t changed. Let’s
then see what this pointer is pointing to and what is in it. We will use Visual Studio for this
illustration as this information is visually available in debug mode.

#include<iostream>

using namespace std;

class baseClass

{

public:
void nonVirtualFunc() {}
virtual void virtualNonOverriddenFunc() {}
virtual void virtualOverriddenFunc() {}

b

int main(int argc, char** argv)

{
baseClass baseClassObj1;
baseClass baseClassObj2;
return O;

}

Bear with me for the function names for the time being, they have a purpose. Now if you
put a breakpoint at the return statement and look at the Locals of the debug view window
you will see something similar to this:

Locals - * O X
Mame Value Type
@ argc 1 int
I @ argv 0:006462d0 {0:006462d8 "D\ Documents\\Visual Studio 2013\ Projects\\Vtab char **
4 @ baseClassObjl e baseClas
4 @ vptr 0:0133da58 {Viable.exelconst baseClass: vftable'} {0:0133153 ¢ {Vtable.exelbas void **
m [0] 00133153 ¢ {Vtable.exelbaseClassvirtualMonOverriddenFunc{void) } void *
@ [1] 0:01331537 {Vtable.exelbaseClassvirtualOverriddenFuncivoid)} void *
4 @ baseClassObj2 ey baseClas
4 @ vptr 0:0133da58 {Viable.exelconst baseClass:vitable'} {0x0133153 ¢ {Vtable.exelbas void *
m [0] 00133153 ¢ {Vtable.exelbaseClassvirtualMonOverriddenFunc{void) } void *

@ [1] 0:01331537 {Vtable.exelbaseClassvirtual OverriddenFuncivoid)} void *

The contents are pretty self-explanatory. We are looking at the contents of the two
baseClass objects we created. You can see the following facts from this debug view:

e There is nothing in this object except for the virtual-table-pointer, here named ___
vfptr

__vfptr is a pointer to a pointer of type void. This means that it points to an array
of pointers of type void (check last column)

__vfptr is pointing to __vftable

__Vftable has two entries of type void*

__Vftable makes no mention about the non-virtual nonVirtualFunc(). This is
correct as nonVirtualFunc() is only applicable to baseClass

Examining the __vftable entries, it is obvious what they are pointing to. The first points to
function virtualNonOverriddenFunc and the second to virtualOverriddenFunc. What’s
more to note is that both of these functions are of type baseClass. The significance of this
will become apparent soon.

The reason I created two objects of the same type is to validate the fact that there is only
one copy of a function. This is evident if you look at the values of the __vftable entries.
The addresses of the two virtual functions are the same for baseClassObjl and
baseClassObj2, proving again that there is only one copy of a class member function.
What is even more interesting is that the __ vftable address is also the same for both
objects. That means there is only one virtual function table for all objects of the same type.
Now you need to carefully keep in mind that this is how Visual C++ is doing it. Other
compilers could be doing it differently. But there really is no reason why you would have
two different __ vftables for the same objects because they are both referring to the same
functions. (This applies to just this case, as we have two objects of baseClass which is not
derived of any class. If it is not then this fact would change.)

Now let’s see how things change when we derive our baseClass and override functions.

#include<iostream>

using namespace std,;

class baseClass
{
public:
void nonVirtualFunc() {}
virtual void virtualNonOverriddenFunc() {}

virtual void virtualOverriddenFunc() {}

class derivedClass : public baseClass

{
public:

virtual void virtualOverriddenFunc() {}

int main(int argc, char** argv)

{
baseClass baseClassObj;
derivedClass derivedClassObj;
return 0O;
}
Locals : - M X
Mame Value Type
@ argc 1 int
- @ argv 0:003862d0 {0:003862d8 "D:\\Documents\\Visual Studio 20134\ Projects\\Vtab char**
4 @ derivedClassObj et derivedC
4 @ baseClass R baseClas
4 @ _ viptr 0:00b1db&4 [Vtable.exe!lconst derivedClass: vftable'} {(n00b1153c {Vtable.exe!l void **
@ [0] 0:00b1153 ¢ {Vtable.exelbazeClassivirtualMonOverriddenFuncivoid)} void *
@ [1] 0:00b11541 {Vtable.exelderivedClassavirtual OverriddenFuncivoid)} void *
4 @ baseClassObj e baseClas
4 @ _ viptr 0x00bldas8 {Viable.exelconst baseClass: vitable'} {0nd0b1153¢c {Vtable.exelbas void **
@ [0] 0:00b1153 ¢ {Viable.exelbazeClasssvirtualMonOverriddenFuncivoid)} void *
@ [1] 0:00b11537 {Viable.exelbaszeClassivirtual OverriddenFuncivoid) } void *

Things are as expected. The __vftable for baseClass is not changed. Both the functions
still point to the baseClass versions of the functions. However, the __ vftable entries of
derivedClass is different. The second entry in the _ vftable is of class derivedClass. And
check the addresses they are pointing to. The first virtual function,
virtualNonOverriddenFunc points to the same address in both __ vftables. This is correct
as this function is not overridden. But the virtualOverriddenFunc addresses are different
in the two __ vftables. This, again, is expected since now the derivedClass object has
overridden that function.

Let’s wrap this up with a bit of a complete example which will discuss more aspects of the
virtual mechanism.

#include<iostream>

using namespace std;

class baseClass1
{
public:
void nonVirtualFunc1()
{ cout << “nonVirtualFunc1” << endl; }
virtual void virtualNonOverriddenFunc1()

{ cout << “virtualNonOverriddenFunc1” << endl; }

virtual void virtualOverriddenFunc1()

{ cout << “virtualOverriddenFunc1” << endl; }

class baseClass2

{
public:
void nonVirtualFunc2()
{ cout << “nonVirtualFunc2” << endl; }
virtual void virtualNonOverriddenFunc2()
{ cout << “virtualNonOverriddenFunc2” << endl; }
virtual void virtualOverriddenFunc2()
{ cout << “virtualOverriddenFunc2” << endl; }
b

class derivedClass : public baseClass1, baseClass2

{
public:
virtual void virtualOverriddenFunc1()
{ cout << “virtualOverriddenFunc1” << endl; }
virtual void derivedClassOnlyVirtualFunc()
{ cout << “derivedClassOnlyVirtualFunc” << endl; }
b

int main(int argc, char** argv)

{
baseClass1 baseClass10bj;
baseClass2 baseClass20Obj;
derivedClass derivedClassObj;

baseClass1 *bc1Ptr = new derivedClass;
derivedClass *dcPtr = new derivedClass;
bc1Ptr->virtualOverriddenFunc1();
dcPtr->virtualOverriddenFunc1();

dcPtr->derivedClassOnlyVirtual Func();

return 0O;

First off let me explain a little bit about what is happening here:

e There are now two base classes: baseClass1 and baseClass2
e FEach of the base classes have their own methods
e derivedClass (multiple) inherits from baseClass1 and baseClass2

e derivedClass introduces its own new virtual function
derivedClassOnlyVirtualFunc

e There are two pointers, bclPtr of type baseClassl and dcPtr of type
derivedClass. Both of these points to a derivedClass object

Now here are the points I want to make:

1. This will not compile. There is a compiler error in line bclPtr-
>derivedClassOnlyVirtualFunc():

Y - €3 2Errors

Description

(@)1 error C2039: 'derivedClassOnlyVirtualFunc' : is not a member of 'baseClassl’

[2 IntelliSense: class "baseClassl" has no member "derivedClassOnlyVirtualFunc”

This is important to remember. Polymorphism gives you the ability to do dynamic binding
and call an overridden function in a derived class through a base class pointer. But before
it does dynamic binding at runtime, the compiler has to know there is such a function at
compile time. And for the compiler, it cannot see a derivedClassOnlyVirtualFunc in
baseClass1. Use of __ vfptr and __ vftable happens at runtime. The compiler has no idea
which function is going to be invoked. So for the compiler it looks like you are trying to
call a function that is not defined in the class. It has no idea that you are referring to a
derived class object and the function is defined there. In fact, it doesn’t need to. This is not
what polymorphism is supposed to do. So keep this in mind. Now let’s comment out the
compiler error line and move on.

2. Let’s look in the object for __vfptr and __vftable information:

Locals

Mame Yalue Type
=¥ | | S e NE——— G ——— [.=

I @ argv 0007 b62d0 [0:007b62dE "D\ Documents\\Visual Studio 20138\ Projects\\Vtz char®*

4 @ derivedClassObj derivedClass
4 @ baseClassl {ek baseClassl

4 @ _ viptr 00100 dabd {Viable.exelconst derivedClass:wftable'{for "baseClassl'}} {00100 void **
@ [0] 001001564 [Viable.exelbaseClasslavirtualMonOverriddenFuncl (void]} void *
@ [1] 001001587 {Viable.exeldervedClassivirtual OverriddenFuncl (void) } void *
4 @ baseClass? £k baseClass2
4 @ _ viptr (0100da90 {Viable.exelconst derivedClass:vftable'{for "baseClass2'}} {00100 void * *
@ [0] 00100158 ¢ {Viable.exelbaseClass2uvirtualMonOverniddenFunc2 (void] } void *
@ [1] 001001568 [Vtable exelbaseClass2ivirtual OverriddenFunc? (void) } void *
4 @ haseClasslOhbj {ecy haseClassl
4 @ vfptr 00100 das8 {Vtable.exelconst baseClassl:;wftable'} (001001564 {Vtable.exelb void ¥ ™
m [0] 001001564 [Vtable exelbaseClasslivirtualMonOverriddenFuncl (void)} void *
@ [1] 01001550 [Vtable exelbaseClasslivirtual OverriddenFuncl (void)} void *
4 @ baseClass20hj £k baseClass2
4 @ _vfptr 10080 ¢ {Viable exelconst baseClassdi witable'} {0:0100158c {Vtable.exe!bi void **
@ [0] 00100158 ¢ {Viable.exelbaseClass2ivirtualNonOverriddenFunc2 (void] } void *
@ [1] 001001562 {Viable. exelbaseClass2ovirtual OverriddenFunc2 (void) } void *
4 @ dcPtr 0007 bbbat {...} derivedClass *
4 @ haseClassl R baseClassl
4 @ _ vfptr 0x:0100dabd {Viable.exelconst derivedClass:: " vftable'{for "baseClassl'}} {00100 void * *
@ [0] 001001564 {Vtable.exelbaseClassluvirtualMonOverriddenFuncl (void]} void *
@ [1] 001001587 {Viable exelderived Classovirtual OverriddenFuncl (void) } void *
4 @ baseClass? Lk baseClass2
4 @ vfptr (0100 da%90 {Vtable.exelconst derivedClass: vftable' {for ‘baseClass2'}} {0:0100 void ==
m [0] (0100158 ¢ {Vtable exelbaseClass2uvirtualMonCverriddenFunc (void) } void *
@ [1] 001001568 [Vtable.exelbaseClass2ivirtual OverriddenFunc? (void)} vioid
4 @ bclPtr 007 boked {...} bazeClassl *
4 @ [derivedClazs] toar derivedClass
4 @ haseClassl faik baseClassl

4 @ _vfptr 0100 datd {Vtable. exelconst derivedClass: vftable'[for "baseClassl'}) {0x0100 void * *
m [0] (hdd1001564 {Viable.exelbaseClasslvirtualMonOwverriddenFuncl (void]}} void *
@ [1] 001001587 {Viable.exelderivedClassovirtual DverriddenFuncl (void) } void *

4 @ baseClass2 faik baseClass2

4 @ _ viptr 0:0100da90 {Viable.exelconst derivedClass: vftable'{for "baseClass2'}] {00100 void **
m [0] 00100158 c {Viable exelbaseClass2:virtualMonOverniddenFunc2 (void}} void *
M [1] 001001569 {Vtable exelbaseClass2uvirtual OverriddenFunc (void)} void *

4 @ _ vfptr 0:0100dabd {Viable.exelconst derivedClass:wftable'{for "baseClassl'}} {00100 void **
@ [0] 001001564 [Viable.exelbaseClassluvirtualMonOwverrniddenFuncl (void])} void *
m [1] 1001587 {Vtable.exe!derved ClassovirtualOverriddenFuncl (void) } vioid *

There are a few interesting points here:

e baseClass10bj and baseClass20bj have their __vfptr and __vftable as expected.
Four different functions with four different addresses. __ vftables are different
too.

e derivedClassObj is a bit interesting. It has two subobjects of type baseClass1 and
baseClass2. This is expected as it is multiple inheritance. And these two base
class objects have their own __vfptrs. And these point to different __vftables as
baseClass10bj and baseClassObj2 are pointing at different tables. Also notice the
function addresses. They point to the same functions as baseClass2, as no virtual
functions of baseClass2 is overridden. For baseClass1 functions, the overridden
function has a different address. Nothing new here. Just proving what we’ve been
discussing earlier.

e Now look at the object pointed to by dcPtr. The _ vfptrs and __vftables are
exactly the same as derivedClassObj. Again, nothing surprising as we are creating
and pointing to a derivedClass.

e But bclPtr is a bit different, though. There is a derivedClass component and a
__vfptr. And if you check carefully you can see that the __vftable of baseClass1
inside derivedClass is same as the one pointed to by __vfptr of bc1Ptr. What this
means is that bc1Ptr has only ONE __vftable. You cannot access anything in the
derivedClass part. It is there, just not accessible through the baseClass1 pointer.
So what this means is that if you have a base class pointer with a derived object,
you can only access what is known by the base class.

e So to summarize, dcPtr has two __vftables, because derivedClass has two, but
bc1Ptr has only one, which corresponds to what baseClassObj has, although both
points to derivedClassObj objects.

There is a little tidbit I left out in the above discussion. Whatever happened to
derivedClassOnlyVirtualFunction?

This is a new virtual function in derivedClass. So obviously you won’t be able to call it
from bcl1Ptr. But since this is a virtual function it must be in the __vftable. Go back and
look at all the __ vftable entries there. You will not find it. There is no secret here. It just
doesn’t seem to show up there. And honestly, I don’t know why, but I will prove to you it
is there.

Here’s the thing about __ vfptrs and __vftables. This is not a standard. How the dynamic
binding is performed is implementation dependent. The compiler is free to choose
whatever method to make it work. Although most implementations will use __ vfptrs and
__vftables, they don’t have to. And even when they use virtual function tables and
pointers, they can implement it in different ways.

So, when we added the new virtual function derivedClassOnlyVirtualFunc, basically it can
be supported by adding a new __vfptr and a new __vftable. Or it can be added to the
existing __vftable. It all depends how the compiler and runtime systems looks for it. Then
what is happening here? The new function is definitely not in any of the __vftables. Is
there another __vftable that we can’t see there? Well I had no idea what was happening
and why it was happening. So I tried printing out the size of the derivedClassObj. If you
remember from the earlier discussion, __ vfptr has a size of 4 bytes. So I expected my
‘invisible’ __vfptr to make the object weigh 8 bytes. But it was just 4 bytes! So there really
is just one __vfptr.

Now what I’m saying here is for the Visual Studio 2013 C++ compiler. So if you are using
another compiler this could most probably be different. The way I tried to resolve this
mystery is to look at the memory contents of __vftable. And here is what I saw when I
looked at the memory space of the derivedClassObj __vftable:

Memory 1 A

gt

31860A64 64 15 6@ 01 d... -
pleeDAcs 87 15 60 01 |
gleeDABC 82 15 86 01

St

St

@186DA7E 76 69 72 74 virt
81880A74 75 61 b6c 42 ualN
31880A78 6f 6e 4F 76 onOv
x@188DA7C 65 72 72 69 erri
x@1860A328 64 64 65 6e dden
waleaeDis4 46 75 be 63 Func
xaleeDABE 32 60 66 08 2... |
xB18GDASC cB ec O0 01 Ei..

gt g

gt

S B 5 & 0 D O 0 0 6 8 & D & 2

xBleaDA%8 Bc 15 88 01 ..
x@8188DA94 69 15 @0 81 1.
xeleaDA9E 060 60 66 6B
waleaeDASC O00 60 66 0B -

0x0100DA64 is the memory address of the _ vfptr of derivedClassObj. And you can
clearly see the first two entries are the addresses of the virtual functions: 0x01001564 and
0x01001587 (separated by bytes and backwards). If you look further you will see that
there is a third entry too. Now it is my best guess that this third entry is pointing to
derivedClassOnlyVirtualFunc. For some reason Visual Studio debugger is not showing
this third entry. This is probably due to the _ vfptr we are looking at is part of the
baseClass1. (So why did it go to baseClass1 __vfptr and not baseClass2 __vfptr? I don’t
know. Like I said this mechanism is totally implementation dependent and I’m sure Visual
C++ team had a valid reason for it)

Let me re-iterate. The mechanism of virtual functions and dynamic binding is
implementation dependent. Virtual function tables and pointers are a widely known, or at
least widely taught method of implementing it. What you saw is specific for Visual C++
compiler. But the fundamentals remain the same. Base class pointers can only know
functions defined in it. If there are virtual functions then it can do dynamic binding at
runtime and invoke the overridden function, but at compile time the compiler needs to
know that function is defined in the base class. As you saw in the case of bc1Ptr, although
a derivedClass object is in there, it is inaccessible through the base class pointer.

You’d understand that I cannot leave this like this. I owe it to you to prove that there
indeed is a third entry in the __vftable that points to derivedClassOnlyVirtualFunc. One
way to prove that the third entry in the table is our function is to simply call it with that
address. Doing that isn’t exactly straight forward but here’s how you can do it:

#include<iostream>

using namespace std;

class baseClass1

{
public:
void nonVirtualFunc1()
{
cout << “nonVirtualFuncl” << endl;
}
virtual void virtualNonOverriddenFunc1()
{
cout << “virtualNonOverriddenFunc1” << endl,;
}
virtual void virtualOverriddenFunc1()
{
cout << “virtualOverriddenFuncl” << endl;
}
b

class baseClass?2

{
public:
void nonVirtualFunc2()
{
cout << “nonVirtualFunc2” << endl;
}
virtual void virtualNonOverriddenFunc2()
{
cout << “virtualNonOverriddenFunc2” << endl;
}
virtual void virtualOverriddenFunc2()
{
cout << “virtualOverriddenFunc2” << endl;
}
5

class derivedClass : public baseClass1, public baseClass2
{
public:

virtual void virtualOverriddenFunc1()

{

cout << “virtualDerivedOverriddenFunc1” << endl;

virtual void derivedClassOnlyVirtual Func()
{

cout << “derivedClassOnlyVirtualFunc” << end]l;

int main(int argc, char** argv)

{

derivedClass derivedClassObj;

derivedClass *dcPtr = new derivedClass;

cout << “Invoking function through the object pointer...” << end]l;
dcPtr->virtualNonOverriddenFunc1();
dcPtr->virtualOverriddenFunc1();
dcPtr->derivedClassOnly Virtual Func();

cout << endl;

void(**vtPtr)() = *(void(***)())dcPtr; //obtaining __vftable address

cout << “Printing __vftable...” << endl;

cout << “__vftable address: “ << vtPtr << endl;
cout << “__vftable[0] - “ << *vtPtr << endl;

cout << “__vftable[1] - “ << *(vtPtr + 1) << endl;
cout << “__vftable[2] - “ << *(vtPtr + 2) << end];

cout << endl;

typedef void func(void);

cout << “Invoking functions through __vftable...” << endl << endl;

func* virtFuncPtr = (func*)(*vtPtr); // pointing to the first virtual func.
cout << “__vftable[0] - *;

(virtFuncPtr());

virtFuncPtr = (func*)(*(vtPtr + 1)); // pointing to the second virtual func.
cout << “__vftable[1] - *;

virtFuncPtr();

virtFuncPtr = (func*)(*(vtPtr + 2)); // pointing to the third virtual func.
cout << “__vftable[2] - *;

virtFuncPtr();

return 0;

The only thing out of the ordinary here is that I’'m obtaining a pointer to the __vftable.
And then I’'m simply going through its contents and invoking the functions pointed to by
those entries. Here is the output.

Invoking function through the object pointer...
virtualNonOverriddenFunc1
virtualDerivedOverriddenFunc1l

derivedClassOnly VirtualFunc

Printing __vftable...
__vftable address: 012BDA64
__vftable[0] - 012B1564
__vftable[1] - 012B1587
__vftable[2] - 012B1582

Invoking functions through __vftable...

__vftable[0] - virtualNonOverriddenFunc1l

__vftable[1] - virtualDerivedOverriddenFunc1l

__vftable[2] - derivedClassOnly VirtualFunc

And here are the debug windows.

Locals A e, S

Mame Value Type |
@ argc 1 int
- @ argv 0004 c62d0 {0004 c62d8 "D\ Documents\\Wisual Studio 2013V, Projects\\Vtable' char ™™
4 @ denvedClassObj P} dervedClas
4 @ baseClassl L} baseClassl |
4 @ _ptr 0x012bdabd {Viable.exelconst derivedClass: witable'{for "baseClass1'}} {0x01 2015 void ** |
@ [0] 0:012b1564 [Viable.exelbaseClasslivirtualNonOverriddenFuncl (void)} void * |
@ [1] 0x:012b1587 {Viable.exelderivedClassvirtual OverriddenFuncl (void)} void * |
4 @ baseClass2 e baseClass2 |
4 @ fptr 01 2bda%0 {Vitable.exelconst derivedClass: witable'{for "baseClass2'}} {I012b15% void * * |
fm [0] 00126158 c {Vitable.exelbaseClass2virtualMonOverriddenFunc2 (vaoid) } void * |
@ [1] 0:012b1569 [Vtable.exelbaseClass2:virtual OverriddenFunc2 (void)} void * I
4 @ vt 0x012bdatd {Viable exelconst derivedClass:wftable' {for "baseClass1'}} {001 2015 void (void} *
@ 0x012b1564 {Viable.exelbaseClasslivirtualMonOverriddenFuncl (void) } void (void): |
@ virtFuncPtr 0x012b1582 {Vtable exelderivedClassaderived ClassOnlyVirtualFunc (void) } void (void) °
4 @ dcPir w004 cobao {...} derivedClas
4 @ baseClassl ok baseClassl
4 @ _ viptr 001 2bdabd {Viable.exelconst derivedClass: witable'{for "baseClass1'}} {0:012b15 void * *
@ [0] 0:012b1564 {Viable.exelbaseClasslivirtualMonOverriddenFuncl (void) } void *
@ [1] 001201587 {Vtable.exeldervedClassivirtual OverriddenFuncl (void]}} void *
4 @ basellass? Lo baseClass?
4 @ _ptr 0x01 2bda90 {Vtable.exelconst derivedClass: witable'{for "baseClass2'}} {001 2615 void * *
@ [0] 0:012b158c {Viable.exelbaseClass2ivirtualNonOverriddenFunc2 (void) } void *
M [1] 0:012b1562 {Viable.exelbaseClass2:virtual OverriddenFunc2 (void)} void *
Memory 1 = B
I}:ELEEE;.Ei 64 15 2b 81 d.+. Y
(@xP12BDAGE 87 15 2b @1 ..+
@x@812BDAGC 82 15 2b @1 ..+. -

Let’s go through the output.

First, part of the print out is invoking the functions through the pointer. There is
nothing out of ordinary here.

The next part is the _ vftable address and its contents. Correspond the table
address with that of the debug window: 0x012BDA64. So now we know that we
have access to the correct __vftable.

Then we are printing out the contents of the __ vftable. These are the virtual
function addresses. You can confirm that the first two are exactly the same
between the print out and the debug window __vftable contents.

Our problem is with the third entry, which is not showing up in the debug
window. But look at the memory contents and the printout. They match. So now
we are certain that we have access to the function in the third entry of the
__Vftable.

The last part of the printout is calling the functions through the __vftable entries.
Compare the printous with the first printouts. They are the same. So now we are
absolutely certain that there is indeed a third entry in the __ vftable and it does
correspond to the new virtual function derivedClassOnlyVirtualFunc.

Don’t worry if you didn’t understand the code completely. I will be explaining this code in
the chapter on “Function Pointers”. One point to make clear about this code is that it
assumes the __ vfptr pointer is at the very beginning of the object and that is apparently
how Visual C++ implements it.

Construction of virtual tables

I hope you got a good fundamental understanding of the implementation of virtual
mechanism (at least how it is done in Visual C++). Before we finish off this topic, let’s
quickly look at how vptrs are built during object construction.

#include<iostream>

using namespace std;

class baseClass

{
public:
baseClass()
{
void(**vtPtr)() = *(void(***)())this;
cout << “baseClass vptr:” << vtPtr << endl;
virtual PrintFunc();
}
virtual void virtualPrintFunc() { cout << “baseClass::virtualFunc” << endl; }
|5

class derivedClass : public baseClass

{
public:
derivedClass()
{
void(**vtPtr)() = *(void(***)())this;
cout << “derivedClass constructor. vptr:” << vtPtr << endl;
virtual PrintFunc();
}
virtual void virtualPrintFunc() { cout << “derivedClass::virtualFunc” << endl; }
|5

int main(int argc, char** argv)
{
derivedClass derivedClassObj;

return O;

baseClass vptr:002B32C4
baseClass::virtualFunc
derivedClass constructor. vptr:002B32BC

derivedClass::virtualFunc

We are doing something pretty simple. We have a base class and a derived class and a
virtual function. In the constructors we print out the vptr (the same as we did in the
previous example) and we call the virtual function. There are two very important points to
make here.

e First, you see that when the virtual function is called from each of the
constructors, they call the function defined in that class. Why is this? It’s pretty
simple and goes back to the fundamental mechanism of object construction.
Objects are constructed from the most base class. So when we called
derivedClass cosntructor, it first called the baseClass constructor before
cosntructing the derivedClass part. So when we are in the baseClass constructor,
the derivedClass part does not exist at that time. It’s only baseClass and its virtual
PrintFunc. So when it calls the virtual function, it only has one implementation of
the function.

e Second, the vptrs change during object construction. When in the baseClass
constructor it had a certain vptr, pointing to a vtable that has the virtualPrintFunc
implementation that prints out “baseClass::virtualFunc“. When the baseClass is
constructed and the execution moved to derivedClass constructor, it defined its
own vptr, now pointing to a vtable that has the virtualPrintFunc that prints out
“derivedClass::virtualFunc®. Note that both these constructors use the same
“*this’ object.

So during the construction of an object with a hierarchy, the object goes through different
vptrs until finally it gets the vptr of the most derived class. During construction of each
level of the object, the compiler assigns it a vptr. And this is generated before the
constructor body is entered. So there are two main tasks the compiler needs to do before
the constructor body is entered:

e (Call the base class constructor (if it’s a derived class)

e Define the vptr and vtable

Let me say this one last time. Implementation of the virtual mechanism is completely
compiler dependent. And where the vptr is allocated and when it is generated, these are all
compiler dependent. But for most part, many compilers use a similar vptr/vtable
mechanism, so what we discussed here is very important to understand the object
construction and virtual dispatch mechanism.

One final word. Virtual mechanism, or polymorphism, can only be invoked through
pointers and references. Invoking functions through objects, as we did here, does not do
dynamic binding of the functions. But we used objects to show its contents and the
composition of the vptr.

Topic 3

Structs, Classes and their Inheritance

In this topic we will look at some cases of inheritance that we don’t see everyday. For
example, we will see what inheritance between a struct and a class will look like and also
other fundamental inheritance types such as private and virtual inheritance.

Private inheritance

We are all too familiar with public inheritance of a class, but what does it mean to
privately inherit? We will be using this simple example to prove our points.

#include<iostream>

using namespace std;

class baseClass

{
int pvt_var = 1;
void pvt_func() {}

virtual void pvt_virtFunc() {}

public:
int pub_var = 1;
void pub_func() {}
virtual void pub_virtFunc() {}

class pvtDerivedClass : baseClass

{

void checkMemberAccess()

{
pvt_var = 2;
pub_var = 2;
pvt_func();
pvt_virtFunc();
pub_func();
pub_virtFunc();

class pubDerivedClass : public baseClass

{

void checkMemberAccess()
{
pvt_var = 2;
pub_var = 2;
pvt_func();
pvt_virtFunc();
pub_func();
pub_virtFunc();

int main(int argc, char** argv)

{
baseClass baseClassObj;
pvtDerivedClass pvtDerivedClassObj;
pubDerivedClass pubDerivedClassObj;
return 0;

}

Compile and you will get errors similar to this:

Descripticn
€91 error C2248: 'baseClass:pvt_var : cannot access private member declared in class 'baseClass'
€9 2 error C2248: 'baseClass:pvt_func' : cannot access private member declared in class 'baseClass'
€93 error C2248: 'baseClass:pvt_virtFunc' : cannot access private member declared in class 'baseClass’
€394 error C2248: 'baseClass:pvt_var' : cannot access private member declared in class 'baseClass'
€395 error C2248: 'baseClass:pvt_func' : cannot access private member declared in class 'baseClass'

€36 error C2248: 'baseClass:pvt_virtFunc' : cannot access private member declared in class 'baseClass'

If you follow the error messages you will see that the compiler is complaining about the
access of the three private members of baseClass. So the point I want to make in this
example is, the inheritance type has no influence on what you can access in the class. All
the private members of the base class are still private and all the public members are
public. This is true regardless of whether the class is derived privately or publicly.

Then what does the inheritance type affect? It affects how the base class objects can be
accessed from outside. Look at this example:

#include<iostream>

using namespace std;

class baseClass

{

int pvt_var = 1;
void pvt_func() {}

virtual void pvt_virtFunc() {}

public:
int pub_var = 1;
void pub_func() {}

virtual void pub_virtFunc() {}

class pvtDerivedClass : baseClass

{h

class pubDerivedClass : public baseClass

{h

int main(int argc, char** argv)

{
baseClass baseClassObj;
pvtDerivedClass pvtDerivedClassObj;
pubDerivedClass pubDerivedClassObj;

baseClassObj.pub_var;
baseClassObj.pub_func();
baseClassObj.pub_virtFunc();

pvtDerivedClassObj.pub_var;
pvtDerivedClassObj.pub_func();
pvtDerivedClassObj.pub_virtFunc();

pubDerivedClassObj.pub_var;
pubDerivedClassObj.pub_func();

pubDerivedClassObj.pub_virtFunc();

return O;

You will get compiler errors along these lines:

Description

€91 error C2247: 'baseClass:pub_var' not accessible because 'pvtDerivedClass' uses 'private’ to inherit from 'baseClass'
€32 error C2247: 'baseClassipub_func' not accessible because 'pvtDerivedClass' uses 'private’ to inherit from 'baseClass’

£33 error C2247: 'baseClass:pub_virtFunc' not accessible because 'pyvtDerivedClass’ uses 'private’ to inherit from 'baseClass'

The compiler errors are for pvtDerivedClassObj only. Both pvtDerivedClass and
pubDerivedClass derive from baseClass. And in the example, both objects try to access
the public methods of baseClass. But pvtDerivedClassObj is not allowed to access the
public members of baseClass. So it is obvious what is happening here. When you derive
privately from a class, all inherited base class members act as private members defined in
the derived class. The public members are still accessible within the derived class, but
from outside, they act as if they are private members in the derived class. A similar effect
is happening to public as well as protected inheritance.

It’s common knowledge that in the context of C++, structs and classes are almost identical
in their functionality and the primary difference is that structs have a default access level
of public, while classes are private. So how does this affect during inheritance? Let’s
change all of our classes to structs and see.

struct baseClass

{
private:

int pvt_var = 1;

void pvt_func() {}

virtual void pvt_virtFunc() {}
public:

int pub_var = 1;

void pub_func() {}

virtual void pub_virtFunc() {}
|5

struct pvtDerivedClass : baseClass

{}

struct pubDerivedClass : public baseClass
{h

int main(int argc, char** argv)

{
baseClass baseClassObj;
pvtDerivedClass pvtDerivedClassObj;
pubDerivedClass pubDerivedClassObj;

baseClassObj.pub_var;

baseClassObj.pub_func();
baseClassObj.pub_virtFunc();

pvtDerivedClassObj.pub_var;
pvtDerivedClassObj.pub_func();
pvtDerivedClassObj.pub_virtFunc();

pubDerivedClassObj.pub_var;
pubDerivedClassObj.pub_func();

pubDerivedClassObj.pub_virtFunc();

return 0;

Note that [made a small modification to the baseClass and put private access modifier,
because otherwise all members will be public. Compile this and you will see there are no
compilation errors. This is because when you inherit a struct from a struct, the default
inheritance is public. Same as default access level for struct members. So pvtDerivedClass
is actually inheriting public, not private as it is with classes. Just to prove our point we’ll
explicitly specify the private inheritance for pvtDerivedClass.

struct baseClass

{
private:

int pvt_var = 1;

void pvt_func() {}

virtual void pvt_virtFunc() {}
public:

int pub_var = 1;

void pub_func() {}

virtual void pub_virtFunc() {}
b

struct pvtDerivedClass : private baseClass

{}

struct pubDerivedClass : public baseClass
{:

int main(int argc, char** argv)

{

baseClass baseClassObj;
pvtDerivedClass pvtDerivedClassObj;
pubDerivedClass pubDerivedClassObj;

baseClassObj.pub_var;
baseClassObj.pub_func();
baseClassObj.pub_virtFunc();

pvtDerivedClassObj.pub_var;
pvtDerivedClassObj.pub_func();
pvtDerivedClassObj.pub_virtFunc();

pubDerivedClassObj.pub_var;
pubDerivedClassObj.pub_func();

pubDerivedClassObj.pub_virtFunc();

return 0;

Compile this and you will see that you get the same compilation errors you got with the
class version. So that’s the difference when you inherit structs.

Inheritance between structs and classes

So naturally you are now intrigued to know what happens when we inherit one from the
other, right? Let’s find out. First we will derive a class from a struct base and explicitly
specify the access level.

struct baseClass

{

private:
int pvt_var = 1;
void pvt_func() {}

virtual void pvt_virtFunc() {}

public:
int pub_var = 1;
void pub_func() {}
virtual void pub_virtFunc() {}

class pvtDerivedClass : private baseClass

{%

class pubDerivedClass : public baseClass

{h

int main(int argc, char** argv)

{

baseClass baseClassObj;
pvtDerivedClass pvtDerivedClassObj;
pubDerivedClass pubDerivedClassObj;

baseClassObj.pub_var;
baseClassObj.pub_func();
baseClassObj.pub_virtFunc();

pvtDerivedClassObj.pub_var;
pvtDerivedClassObj.pub_func();
pvtDerivedClassObj.pub_virtFunc();

pubDerivedClassObj.pub_var;
pubDerivedClassObj.pub_func();

pubDerivedClassObj.pub_virtFunc();

return 0;

You will remember that these are the same errors we got with classes. So with private and
public inheritance, there is nothing different in the inheritance of members when deriving
a class from a struct. Change the base to a class and the derived one struct and you will see
the same compilation errors. So when the inheritance level is specified, classes and structs
act the same way. Then, what would be the case if we don’t specify? What is the default

Description

€31 error C2247: 'baseClassipub_var' not accessible because 'pvtDerivedClass' uses 'private’ to inherit from 'baseClass'
€92 error C2247: 'baseClass:pub_func' not accessible because 'pwtDerivedClass' uses 'private’ to inherit from 'haseClass'

€93 error C2247: 'baseClass:pub_virtFunc' not accessible because 'pvtDerivedClass' uses 'private’ to inherit from 'baseClass'

level?

#include<iostream>

using namespace std;

struct baseClass

{

private:

int pvt_var = 1;
void pvt_func() {}

virtual void pvt_virtFunc() {}

public:
int pub_var = 1;
void pub_func() {}

virtual void pub_virtFunc() {}

class defaultDerivedClass : baseClass

{h

int main(int argc, char** argv)

{
defaultDerivedClass defaultDerivedClassObj;
defaultDerivedClassObj.pub_var;
defaultDerivedClassObj.pub_func();
defaultDerivedClassObj.pub_virtFunc();
return 0;

}

These are the compilation errors you’d get:

Description

€31 error C2247: 'baseClass:pub_var' not accessible because 'defaultDerivedClass' uses 'private’ to inherit from 'baseClass'
€34 2 error C2247: 'baseClass:pub_func' not accessible because 'defaultDerivedClass' uses 'private’ to inherit from 'baseClass'

€33 error C2247: 'baseClass:pub_vitFunc' not accessible because 'defaultDerivedClass' uses 'private’ to inherit from 'baseClass'

You will realize that these are the same errors we got with private inheritance. So when we
are inheriting from a struct to a derived class, the default access specifier is similar to that
of class. What about the other way then?

#include<iostream>

using namespace std,;

class baseClass

{

private:
int pvt_var = 1;
void pvt_func() {}

virtual void pvt_virtFunc() {}

public:
int pub_var = 1;
void pub_func() {}

virtual void pub_virtFunc() {}

struct defaultDerivedStruct : baseClass

{h

int main(int argc, char** argv)

{
defaultDerivedStruct defaultDerivedStructObj;
defaultDerivedStructObj.pub_var;
defaultDerivedStructObj.pub_func();
defaultDerivedStructObj.pub_virtFunc();
return 0;

}

You will get no compilation errors. That means when you are inheriting from a class to a
derived struct, the default access specifier is that of a struct.

There is nothing special or tricky about this topic but nevertheless it is a topic that is often
left out.

Topic 4

Object Construction

In this topic we will look at how class objects are constructed. There are a few ways
objects can be constructed. Some are explicit and some implicit. Here is a standard class
definition:

#include<iostream>

using namespace std;

class standardClass

{
int objID;

public:

standardClass(int ID) // constructor

{
objID = ID;

cout << “Constructor: “ << objID << endl;

~standardClass() // destructor
{

cout << “Destructor: “ << objID << end];

standardClass(const standardClass &objToCopy) // copy constructor

{
objID = objToCopy.objID;

cout << “Copy constructor: “ << objID << endl;

standardClass & operator=(const standardClass &objToCopy) // assignment operator

{
cout << “Copy assignment operator: “ << objID << endl;
objID = objToCopy.objID;
return *this;

}

int main(int argc, char** argv)
{
standardClass stdClassObj1(1);

cout << “- Line 1 end -” << endl;

standardClass stdClassObj2(stdClassObj1);

cout << “- Line 2 end -” << endl;

standardClass stdClassObj3 = stdClassObj2;

cout << “- Line 3 end -” << end];

stdClassObj1 = stdClassObj2;

cout << “- Line 4 end -” << endl;

stdClassObj2 = standardClass(4);

cout << “- Line 5 end -” << endl;

stdClassObj3 = 5;

cout << “- Line 6 end -” << endl;

standardClass stdClassObj4 = standardClass(4);

cout << “- Line 7 end -” << end];

standardClass stdClassObj5 = 5;

cout << “- Line 8 end -” << endl << endl;

return 0O;

// Line #1

// Line #2

// Line #3

// Line #4

// Line #5

// Line #6

// Line #7

// Line #8

Constructor: 1

- Line 1 end -

Copy constructor: 1

- Line 2 end -

Copy constructor: 1

- Line 3 end -

Copy assignment operator: 1
- Line 4 end -

Constructor: 4

Copy assignment operator: 1
Destructor: 4

- Line 5 end -

Constructor: 5

Copy assignment operator: 1

Destructor:

5

- Line 6 end -

Constructor: 4

- Line 7 end -

Constructor: 5

- Line 8 end -

Destructor:
Destructor:
Destructor:
Destructor:

Destructor:

= A U1 B~ WU

Let’s quickly go over what is happening here.

Line 1 creates a new object by calling the constructor.

Line 2 passes an object to create a new object. This calls the copy constructor.
Notice that in the case when the copy constructor is called, the default constructor
is not called anywhere.

Line 3 creates a new object by assigning an existing object. But this calls the copy
constructor. NOT the assignment operator. This is because we are creating a new
object stdClassObj3. So line 3 has the same effect as line 2.

Line 4 invokes the assignment operator. This is because we are assigning
stdClassObj2 to stdClassObj1, which is already created. So keep in mind that the
assignment operator is only called when you assign to an existing object.

Line 5 assigns existing stdClassObj2 to a newly created object. So this is what is
happening in this case:

o A new temporary object is created by calling the constructor with value 4.
o This object is assigned to stdClassObj2 using assignment operator.

o The destructor is called for the temporary object.

Line 6 assigns stdClassObj3 a new object by passing an integer. This is
completely fine as we have a constructor that takes an integer parameter. So line 6
is equivalent to “stdClassObj3 = standardClass(5)”, which is same as line 5. And
indeed the output is same as that for line 5.

Now look at what happens at lines 7 and 8. We are doing the same operation as
we did in lines 5 and 6, in that respective order, but now we are creating two new
objects. In lines 5 and 6 we did assignments to existing objects. But now we are
instantiating new objects. There are no temporary object constructions and calls

to copy constructors. The compiler is smart to understand that it can directly call
the constructor as this is a new object instance. So keep in mind how the object
creation differs between new objects and assignments to existing ones.

The reason I put line printouts in the middle is to show the boundary between
different statements and also to show the point when the implicit object
destruction before the exit of the main function is happening. After the line 6
printout, the function will return and this invokes the destruction of the stack
objects. Everything we created in the main are local to the main function and
hence they are in the stack. These stack objects will be destroyed by calling their
destructors at the end of the function.

e Finally, all of the destructors of the objects are called. You should note that the
objects are destroyed in the inverse order they were created. Objects created last
are destroyed first. So in our case stdClassObj3 is destroyed first and then
stdClassObj2 and so on. Note they are destroyed in the order they were “created.”
Not the order they are assigned.

Now let’s define some functions and see how this mechanism plays out.

#include<iostream>

using namespace std;

class standardClass

{
int objID;
public:
standardClass(int ID) // constructor
{
objID = 1D;
cout << “Constructor: “ << objID << endl;
}

~standardClass() // destructor
{

cout << “Destructor: “ << objID << endl;

standardClass(const standardClass &objToCopy) // copy constructor

{
objID = objToCopy.objID;

cout << “Copy constructor: “ << objID << endl;

standardClass & operator=(const standardClass &objToCopy) // assignment operator

{

cout << “Copy assignment operator: “ << objID << end];
objID = objToCopy.objID;

return *this;

void funcCallByVal(standardClass stdClass)

{
objID = stdClass.objID;

void funcCallByRef(standardClass &stdClass)

{
objID = stdClass.objID;

void funcCallByPtr(standardClass *stdClass)

{
objID = stdClass->objID;

int main(int argc, char** argv)

{
standardClass stdClassObj1(1); // Line #1
standardClass stdClassObj2(2); // Line #2
cout << “-Line #2 end-” << endl;
stdClassObj1.funcCallByVal(stdClassObj2); // Line #3
cout << “-Line #3 end-" << end];
stdClassObj1.funcCallByVal(3); // Line #4
cout << “-Line #4 end-” << endl;
return 0O;

}

Constructor: 1
Constructor: 2

-Line #2 end-

Copy constructor: 2
Destructor: 2

-Line #3 end-

Constructor: 3
Destructor: 3

-Line #4 end-

Destructor: 2

Destructor: 3

So I defined three functions. The first one takes standardClass argument by value, the
second by reference and the third as a pointer. For clarity we’ll go through the functions
separately, and first I am invoking funcCallByValue.

Pass by value

I have put printouts of line endings to make it clear what constructors are being called at
each statement. Let’s go through the results.

e Lines 1 and 2 create two objects of standardClass. So the constructor is called
twice.

e In line 3 we are invoking funcCallByValue and passing it to the object we created.
Here we see the copy constructor is called first. This is to create the copy of
stdClassObj2. This is a temporary object that is passed to the function. When the
function exits this temporary is destroyed. That is what you see in the next
printout. This is similar to what we saw in the previous example in lines 2 and 3
when new objects are created with existing objects.

e In line 4 we are calling funcCallByVal with just an integer. This is fine. Since
there is a constructor for standardClass that takes an integer, the compiler makes
line 4 look like “stdClassObj1.funcCallByVal(standardClass(3))”. Try it out and
you will get the same result. So in this case we are creating a new object and
passing it to the function. This is evident by the output where we see the
constructor is being called.

e In any case, when calling funcCallByVal, a temporary object is created. In line 3
this temporary is created by calling the copy constructor because we are ‘copying’
an existing object. But in line 4 we are creating the temporary with the
constructor because it is passed as an integer argument. This is the exact same
mechanism we saw in line 6 of the previous example.

Pass by reference

Now let’s move on to the pass by reference. I will only change the function name and keep

the arguments as they are.

#include<iostream>

using namespace std;

class standardClass

{
int objID;
public:
standardClass(int ID) // constructor
{
objID = ID;
cout << “Constructor: “ << objID << endl;
}

~standardClass() // destructor
{

cout << “Destructor: “ << objID << end];

standardClass(const standardClass &objToCopy) // copy constructor

{
objID = objToCopy.objID;

cout << “Copy constructor: “ << objID << endl;

standardClass & operator=(const standardClass &objToCopy) // assignment operator
{

cout << “Copy assignment operator: “ << objID << end];
objID = objToCopy.objID;

return *this;

void funcCallByVal(standardClass stdClass)

{
objID = stdClass.objID;

void funcCallByRef(standardClass &stdClass)

{
objID = stdClass.objID;

void funcCallByPtr(standardClass *stdClass)

{
objID = stdClass->0bjID;

int main(int argc, char** argv)

{
standardClass stdClassObj1(1); // Line #1
standardClass stdClassObj2(2); // Line #2
cout << “-Line #2 end-” << endl;
stdClassObj1.funcCallByRef(stdClassObj2); // Line #3
cout << “-Line #3 end-” << endl;
stdClassObj1.funcCallByRef(3); // Line #4
cout << “-Line #4 end-” << endl;
return 0;

}

Compile and you will most likely see this error:

Description

€31 error C2664: 'void standardClass:funcCallByRef(standardClass 8)' : cannot convert argument 1 from 'int' to 'standardClass &'

Before I explain why, make this small modification to the function call in line 4. Pass an
object argument like this:

stdClassObj1.funcCallByRef(standardClass(3)); // Line #4

If you are using Visual Studio chances are that this compiles fine. But truthfully this does
not adhere to the standard. Compiler vendors add their own extensions to the standard
specifications and this seems to be one of Visual C++’s ones. What you need to do is go to
the project properties, choose C/C++ category and select All Options. In there you will see
“Disable language extensions.” Select Yes. Now try compiling again. You should see a
similar error as before:

Description

€31 error C2664: 'void standardClass:funcCallByRef{standard Class &)' : cannot convert argument 1 from 'standardClass' to 'standardClass &

Now that we have a consistent error case, why is this happening? Why is it saying that it
cannot pass a standardClass object to a reference? After all, aren’t we doing the same
thing in line 3 by passing stdClassObj2? So what is the difference?

Temporaries and const references

Before looking in to that, let me ask you, did you wonder why the copy constructor and
copy assignment operator take “const” arguments? Why do the parameters need to be
references to const?

Let us redo that example again, this time without the const references. Also if you are
using Visual Studio make sure you have the language extensions disabled.

#include<iostream>

using namespace std;

class standardClass

{
int objID;
public:
standardClass(int ID) // constructor
{
objID = ID;
cout << “Constructor: “ << objID << endl;
}

~standardClass() // destructor
{

cout << “Destructor: “ << objID << endl;

standardClass(standardClass &objToCopy) // copy constructor

{
objID = objToCopy.objID;

cout << “Copy constructor: “ << objID << endl;

standardClass & operator=(standardClass &objToCopy) // assignment operator
{

cout << “Copy assignment operator: “ << objID << end];

objID = objToCopy.objID;

return *this;

int main(int argc, char** argv)

{
standardClass stdClassObj1(1); // Line #1
cout << “- Line 1 end -” << endl;
standardClass stdClassObj2(stdClassObj1); // Line #2
cout << “- Line 2 end -” << endl;
standardClass stdClassObj3 = stdClassObj2; // Line #3
cout << “- Line 3 end -” << endl;
stdClassObj1 = stdClassObj2; // Line #4
cout << “- Line 4 end -” << endl;
stdClassObj2 = standardClass(4); // Line #5
cout << “- Line 5 end -” << endl;
stdClassObj3 = 5; // Line #6
cout << “- Line 6 end -” << endl;
return O;

}

You should get the following compilation errors:

Description
€31 error C2679: binary '=': no operator found which takes a right-hand operand of type 'standardClass' (or there is no acceptable conversion)
error : binary "=": no operator found which takes a nght-hand operand o e 'int’ (or there 1= no acceptable conversion
2 C2679: binary '=' B found which tak ight-hand cperand of type 'int' (or there ptabl ion)

So we are having compilation errors in lines 5 and 6. But notice that line 4 is almost the
same as what we do in lines 5 and 6. In line 4 we are calling the copy assignment operator
with an existing object, and in lines 5 and 6 we are passing temporary objects. So what is
the problem here? Here is the output result we got in the previous case when we had the
const specifier.

Constructor: 1
-Line 1 end -

Copy constructor: 1

- Line 2 end -

Copy constructor: 1

- Line 3 end -

Copy assignment operator: 1
- Line 4 end -

Constructor: 4

Copy assignment operator: 1
Destructor: 4

- Line 5 end -

Constructor: 5

Copy assignment operator: 1
Destructor: 5

- Line 6 end -

Destructor: 5

Destructor: 4

Destructor: 1

What does line 5 do? It first constructs an object, and then passes that object to the copy
assignment operator of stdClassObj2 and then calls the destructor of the created object.
The object we created to pass to the copy assignment operator is a temporary. Herein lies
the problem. Because the temporary we created in line 5 by calling standardClass(4) is an
rvalue. There is no storage allocated for it. It is not assigned to any variable. That makes it
an rvalue. And this is the problem. Because the standard says that you cannot bind an
rvalue to a non-const reference. To say it in another way, only lvalues can be bounded to
non-const references

So that is our problem. We are creating a temporary rvalue and passing it to be bound to
objToCopy non-const reference. This is in violation of the standard and hence the compiler
error. Think for a moment why it would be a problem if we could bind a temporary to a
reference. A reference is basically an alias for the object. So unlike passing by value,
which creates a new object, pass by reference does not. That is why it is efficient. Then
think what would happen if we could bind a temporary to a reference. What would happen
when the temporary gets destroyed? Because temporaries go out of scope soon. You will
be left with a dangling reference. Then what happens when we make the reference const?
In that case the standard specifically states that when a temporary is bound to a const
reference, the lifetime of it is extended until the reference goes out of scope.

That is the reason why everything works when you put the const specifier. So then, you
wouldn’t need the const if you are not going to invoke them through statements like lines
5 and 67 If you comment out lines 5 and 6 and remove the const specifier you will see that
you get no compiler errors. The compiler wouldn’t complain to you that the copy
constructor and copy assignment operator are taking non-const parameters. You are free to
define those functions like that. But keep in mind that copy constructors and copy

assignment operators must not modify the reference being passed. The task of those
functions is to copy the object being passed. Not modifying anything in it. Making the
parameter const makes sure that your function does not do anything undesirable to the
object that is being passed to it.

Now go ahead and change the argument to funcCallByRef to a const reference. This time
you should get no compiler errors for line 4. Because the temporary created by the passed
argument, standardClass object with integer 3, can now bind to the const reference. So no
rules are broken.

Let’s go ahead and finish the pass by pointer and wrap up this topic.
Passing the pointer

Just to be clear, there is no concept as pass by pointer. There are only pass by value and
pass by reference. Pass by pointer is essentially pass by value. We are passing a copy of
the arguments’ address as the value.

This is the best you could do with this code:

#include<iostream>

using namespace std;

class standardClass

{
int objID;

public:

standardClass(int ID) // constructor

{
objID = ID;

cout << “Constructor: “ << objID << endl;

~standardClass() // destructor
{

cout << “Destructor: “ << objID << end];

standardClass(const standardClass &objToCopy) // copy constructor

{
objID = objToCopy.objID;

cout << “Copy constructor: “ << objID << endl;

standardClass & operator=(const standardClass &objToCopy) // assignment operator

cout << “Copy assignment operator: “ << objID << end];
objID = objToCopy.objID;

return *this;

void funcCallByVal(standardClass stdClass)

{
objID = stdClass.objID;

void funcCallByRef(const standardClass &stdClass)

{
objID = stdClass.objID;

void funcCallByPtr(const standardClass *stdClass)

{
objID = stdClass->objID;

int main(int argc, char** argv)

{
standardClass stdClassObj1(1); // Line #1
standardClass stdClassObj2(2); // Line #2
cout << “-Line #2 end-" << end];
stdClassObj1.funcCallByPtr(&stdClassObj2); // Line #3
cout << “-Line #3 end-" << end];
//stdClassObj1.funcCallByPtr(3); // Line #4
cout << “-Line #4 end-” << endl;
return O;

}

Since a pointer is a variable containing an address of what it points to, when we do not

have a pointer itself, we need to pass the address of the object we need to pass. Therefore
in line 3 we pass the address of the object. And as for line 4, there is no way we can pass
an integer and make the compiler implicitly call the constructor. Why can’t we do this?

stdClassObj1.funcCallByPtr(3); // Line #4

You will get an compiler error along the lines of:

Description

€31 error C2102: &' requires I-value

What we are trying to do is to get the address of a temporary. This temporary is not an
lvalue and we are not allowed to take the address of non-lvalues. Hence the error.

Explicit constructor

Let’s finish this topic with a discussion on the ‘explicit’ keyword, which was added since
C++11. Before we discuss ‘explicit’ let’s revisit our first example (with a bit of trimming).

#include<iostream>

using namespace std;

class standardClass

{
int objID;
public:
standardClass(int ID)
{
objID = ID;
cout << “Constructor: “ << objID << endl;
}
5

int main(int argc, char** argv)

{
standardClass stdClassObj1(1); // Line #1
standardClass stdClassObj2 = 2; /I Line #2

return 0O;

Constructor: 1

Constructor: 2

These are the two cases where the constructor is directly called. A constructor like this is
called a converting constructor. A converting constructor lets the compiler use that
constructor to convert a parameter to the class type. For example, in line 2 above, what we
should really assign is an object of type standardClass. Instead we are assigning an int.
But the compiler is able to implicitly convert this int to a standardClass instance because
there is a converting constructor. What ‘explicit’ does it take to make the constructor a
non-converting one. This will restrict the compiler from implicitly converting the int to an
object. Let’s do that and see.

#include<iostream>

using namespace std;

class standardClass

{
int objID;
public:
explicit standardClass(int ID) // now explicit
{
objID = 1D;
cout << “Constructor: “ << objID << endl;
}
b

int main(int argc, char** argv)

{
standardClass stdClassObj1(1); // Line #1
standardClass stdClassObj2 = 2; // Line #2
return O;
}
Description

€31 error C2440: 'initializing' : cannot convert from 'int' to 'standardClass'

The compiler now cannot convert the int to an object of standardClass. It is not allowed to

implicitly call the constructor. So what do we need to do then? We need to call the
constructor explicitly.

int main(int argc, char** argv)

{
standardClass stdClassObj1(1); // Line #1
standardClass stdClassObj2 = standardClass(2); // Line #2
return 0;

}

Constructor: 1

Constructor: 2

There really is no reason why we would want this constructor to be explicit in this
example. But there are cases where you don’t want the compiler calling the constructor
implicitly and perhaps making a wrong argument conversion. Although you can make
constructors that take multiple arguments to be explicit, there really is not much benefit in
that. The only effect would be when using list type initialization of C++11.

This ends our topic on the fundamentals involved in C++ object construction. Apart from
the four methods we discussed in this topic, C++11 standard adds a few more methods in
there. The basics you learned in this topic should serve well in understanding the
mechanism of those as well.

Topic 5

Pointers

No discussion on C++ would be complete without talking about pointers. In this topic we
will look into a few different aspects of pointer use.

As usual let’s start with a basic example to get things going.

#include<iostream>

using namespace std;

int main(int argc, char** argv)
{

int val = 10;

int * intPtr = &val;

int **intPtrPtr = &intPtr;
cout << “val: “ << val << endl;
cout << “*intPtr: “ << *intPtr << endl;

cout << “**intPtrPtr: “ << **intPtrPtr << endl;

return 0;

val: 10
*intPtr: 10
**intPtrPtr: 10

Here we have an integer, a point to the integer and a pointer to the pointer to the integer.
You can see what is happening in the debug view:

Locals
Marme Walue
@ argc 000000001
[& argv 0x:00465ad8 {0:004652e0 "D\ Docurmentsiiy
@ val 0x0000000a
W valAddr Ox003ef7 cB
4 @ intPtrPtr 0x003ef7h0 {0:003ef7 c8 {0:0000000a}}
4 @ 0003 ef7 8 {0:0000000a}
o (000000003
4 @ intPtr 0x003ef7 c8 {0x0000000a}
- 000000003
Depicting it pictorially:
0x003EF7B0
intPtrPtr 0x003EF7B0
0x003EF7C8
intPtr

Passing pointers to functions

Now let’s try passing those pointers to functions.

Type
int
char**
int

int

ink **
int *
int
int *
int

0x003EF7C8

10

val

#include<iostream>

using namespace std;

void funcIntPtr(int * intPtr)

{

cout << “Value: “ << *intPtr << endl;

void funcIntPtrPtr(int ** intPtrPtr)

{

cout << “Value: “ << **intPtrPtr << endl;

int main(int argc, char** argv)

{

int val = 10;

int * intPtr = &val;

int **intPtrPtr = &intPtr;

funcIntPtr(intPtr);

funcIntPtrPtr(intPtrPtr);

funcIntPtr(&val);
funcIntPtrPtr(&intPtr);

return 0;

Value: 10
Value: 10
Value: 10
Value: 10

Pretty basic stuff. I’m just showing here how to call functions taking pointers and pointers
to pointers. Now let’s see how things change when arrays come in to play.

#include<iostream>

using namespace std;

void funcIntPtr(int * intPtr)
{

cout << “Value: “ << *intPtr << endl;

void funcIntPtrPtr(int ** intPtrPtr)
{

cout << “Value: “ << **intPtrPtr << endl;

void funcIntArr(int intArr(])
{

cout << “Value: “ << intArr[0] << endl;

int main(int argc, char** argv)
{

int val = 10;

int * intPtr = &val;

int **intPtrPtr = &intPtr;

intintArr[]1=4{1, 2,3 }; // Line 1
intPtr = intAur; // Line 2
funcIntPtr(intArr); // Line 3
funcIntArr(intArr); // Line 4
funcIntPtr(intPtr); // Line 5
funcIntArr(intPtr); // Line 6
funcIntPtrPtr(intPtrPtr); // Line 7
return 0;

}

Value: 1

Value: 1

Value: 1

Value: 1

Value: 1

We defined a new integer array and also a function that takes an integer array parameter.
Let’s go through the lines one by one to see what we are doing here.

e Line 1 defines an integer array with 3 elements and initializes it with values.

e In line 2 we assign the intArr to our previously defined pointer to int. Note the
difference between making intPtr point to an integer and an array. First, intPtr
could point to both an integer and also an integer array. Second, when we want
intPtr to point to the integer val, we would write:

*intPtr = val;

When it is pointing to an array we write:

intPtr = intAurr;

Note the asterisk. What is happening here, then?

intArr is actually a pointer to an integer. That is why we could assign it to intPtr as we did.
Without the asterisk. So what is it pointing to? Keep reading.

e In line 3 we are passing the array to the function, which takes an integer pointer

as a parameter. And you will see, it prints out the first element of the array.

What this means is that, the array is passed as a pointer. And when we
dereferenced that pointer it was printing the first element of the array. That means
the array name is a pointer to its first element.

In fact this is how C/C++ passes arrays to functions. They are not copied as in
pass by value. When an array is passed to a function as an argument, it is passed
as a pointer to its first element.

e Line 4 is passing the array to the function, which is expecting an integer array.
Nothing exciting here.

e In line 5 we are passing the intPtr to the function, expecting a pointer to an
integer, which is exactly what it is pointing to.

e Line 6 is a bit interesting. We are passing the pointer to integer to the function,
which is expecting an integer array as the argument. But as the code compiles, it
seems the compiler is happy to accomodate a pointer to an integer as an integer
array argument.

Why is this? As I said before, this is because the compiler treats an array argument
as a pointer to its first element. So as far as the compiler is concerned, funcIntPtr
and funcIntArr are both exactly the same function, having a point to integer
parameter.

e In line 7 then, we are passing a pointer to pointer to an integer. The same as we
did in the previous example.

Now that we got through that, did you wonder how the compiler was calling the subscript
operator on a pointer in line 7? Let’s find out.

#include<iostream>

using namespace std;

int main(int argc, char** argv)
{
intintArr[]={1, 2,3 };

int *intPtr = intArr;

cout << *intPtr << endl; // Line 1
cout << intPtr[0] << endl; // Line 2
cout << intPtr[1] << endl; // Line 3
cout << *(intPtr + 1) << end]; // Line 4
cout << *(intPtr + 2) << end]; // Line 5
cout << 2[intPtr] << endl; // Line 6
return O;

W W NN =

e Line 1 dereferences the pointer and this prints out 1. This means that intPtr is
indeed pointing to the first element of intArr.

e Line 2 looks a bit weird. We are using the subscript operator on a pointer. But it
works. This will again print out the first element of intArr.

e Line 3 accesses the second element of intArr and it correctly prints out 2. So this
shows that you can indeed dereference a pointer with the subscript operator as
you would with a normal array. But how is this possible?

e Line 4 is the answer to why lines 2 and 3 work. It is because all subscript
operators on a pointer are converted to an expression, as in line 4. The pointer is
advanced by the amount added to it and then dereferenced. But how does the
compiler know exactly how much to advance? It knows it by the type of the
pointer. Since intPtr is an integer pointer, compiler knows it should advance by 4
bytes (we found in topic 1 that an int is 4 bytes in this platform).

e Line 5 is the same as line 4 but now accessing the 3rd element of the array.

e Line 6 looks strange too. You’d probably never want to use this notation but it
shows what we said about the compiler converting a subscript operator in to an
addition and then dereferencing. So for the compiler line 6 just looks like:

cout << *(2 + intPtr) << endl;

In this example we assigned intPtr to intArr. I mentioned that intPtr is a pointer to its first
element. In that sense we should be able to assign intPtr a pointer to the second element of
the array like this:

int *intPtr = intArr[1];

Do that and you will get an error saying it cannot convert from ‘int’ to ‘int *’. But why?

Because intArr by itself is a pointer to its first element. But intArr[1] is just an integer
variable. If that is the case then we should be able to assign its address like we did for val
in the previous example, right? Indeed we can.

#include<iostream>

using namespace std;

int main(int argc, char** argv)
{
intintArr[]1=4{1, 2,3 };
int *intPtr = &(intArr[1]);

cout << *intPtr << endl;

cout << intPtr[0] << end];
cout << intPtr[1] << end];
cout << *(intPtr + 1) << endl;
cout << *(intPtr + 2) << endl;

cout << 2[intPtr] << endl;

return 0;

2
2
3
3
-858993460
-858993460

You can easily decode the output. One thing to note is the final two outputs. You can guess
why they are garbage values. Because intPtr is now pointing to the second element of
intArr and lines 5 and 6 are trying to access the fourth element of the array, when there
isn’t one. So it is reading out of the array bounds and getting garbage values. Note that
you can use the subscript operator or the pointer addition to a pointer that was pointing to
a integer variable as well. That is, intPtr does not need to be pointing to an array. You
could do the same operations when intPtr was pointing to val in the previous example.
You’d just get garbage values.

Dealing with chars and its pointers can be a little confusing sometimes. In this next part
we will look at the basic uses of char and it’s pointers.

Char and its arrays

Let’s change our original code to incorporate a char and a char array. Except for the
function names, you can see that everything else is pretty much the same as in the integer
example.

include<iostream>

using namespace std;

void funcCharPtr(char * charPtr)

{

void funcCharPtrPtr(char ** charPtrPtr)

{

cout << “Value: “ << *charPtr << end];

cout << “Value: “ << **charPtrPtr << endl;

void funcCharArr(char charArr[])

{

cout << “Value: “ << charArr[0] << endl;

int main(int argc, char** argv)

{

char val = ‘a’;
char * charPtr = &val;

char **charPtrPtr = &charPtr;
funcCharPtr(charPtr);
funcCharArr(charPtr);

funcCharPtrPtr(charPtrPtr);

char charAr(] = { ‘x’, y’, ‘2’ };
charPtr = charAurr;

funcCharPtr(charArr);
funcCharArr(charArr);

funcCharPtr(charPtr);
funcCharArr(charPtr);

funcCharPtrPtr(charPtrPtr);

return O;

// Line 1
// Line 2
// Line 3

// Line 4
// Line 5

// Line 6
// Line 7

// Line 8
// Line 9

// Line 10

Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:

e Here we start with a char val and assign it the single character ‘a’. Then we assign

that char to a pointer to char and that to a pointer to pointer to char.

e Lines 1 and 2 pass the char pointer to the functions taking a pointer to char and a

char array. They work the same way they did in the integer example. And line 3
as well. So you can see that a char is nothing different from an int in the way the
compiler handles it.

There is the notion of passing chars as integers but that is a different story. As far
as the pointers are concerned, there is no relationship and they behave the same
way. For example you cannot pass charPtr to a function with a pointer to integer
parameter.

e Line 4 defines a char array with 3 elements and then in line 5 assigns it to the

pointer to char. This, again, is exactly what we did with the intArr and intPtr in
our previous example. So as we discussed then, a char array variable is a pointer.
It is a pointer to its first element, as it was with intArr.

The rest of the lines call the functions passing charPtr and charArr. Nothing is
different here. The charPtr and charArr behave exactly the same way as intPtr
and intArr did. As it did with the integer array, the compiler will convert the
subscript operator to a pointer plus offset so you can use the array name and the
pointer interchangeably.

Now that we found that a char and a char array are nothing much different from an integer
and an integer array in terms of pointer handling, let’s look at an array of char array.

#include<iostream>

using namespace std,;

void funcCharPtrArr(char *charPtrArr[])

{

cout << “Value: “ << charPtrArr[0] << end];

void funcCharPtrl(char * charPtr)
{

cout << “Value: “ << charPtr << endl;

void funcCharPtr2(char * charPtr)
{

cout << “Value: “ << *charPtr << end];

cout << “Value: “ << charPtr[3] << end];

int main(int argc, char** argv)

{
char charArrl[] = { ‘A’, ‘1°, ‘1°, ‘1°, \O’ }; // Line 1
char charArr2[] = { ‘A’, ‘1°, ‘1°, 2°, \0’ }; // Line 2
char charArr3[] = { ‘A’, ‘1°, ‘1°, ‘3°, \0’ }; // Line 3
char *charPtrArr[] = { charArrl, charArr2, charArr3 };
funcCharPtrArr(charPtrArr); // Line 4
funcCharPtr1(*charPtrArr); // Line 5
funcCharPtr1(charArrl); // Line 6
funcCharPtr2(*charPtrArr); // Line 7
return O;

}

Value: Arrl

Value: Arrl

Value: Arrl

Value: A

Value: 3

Before we discuss the results let’s illustrate what is happening here.

[0] | &
[1] e
2] LT
[3] |1
charPtrArr [0] [4] [\
[1] —— (O — [0] [
(2] 1] |r
[2] | ™
[3] |2
[4] | o
[0] | &
1] L™
2] | ™
8] [2
[4] [\

The figure above shows the relationship between the pointers and arrays. Note the arrows.
These arrows show the binding of each element to the variable name. Remember that the
array name is a pointer to its first element. That is what the arrows depict. Each array
name is a pointer to its first element: charPtrArr is a pointer to charArr1, and charArr1 is
a pointer to char ‘A’, and so on.

Now it should be pretty easy to understand the results of the above code. Note that I
included the terminating character at the end of each array. Including this has no special
meaning to the code other than that the printout will be cleaner. If it there was no
terminating character the output would contain garbage values when we print out the char
arrays. Let’s go through the code now.

e charPtrArr is an array of pointers to char. Remember that an array name is a
pointer to it first element. So we can initialize charPtrArr with the three arrays we
defined at the beginning because those are pointers to char (to their first char).

e funcCharPtrArr has an array of pointers to char parameters. This is the same type
as charPtrArr so we should have no problem passing it. It prints out ‘Arrl’ and
you know why.

As we learned before, charPtrArr[0] for the compiler is *charPtrArr. And this
points to charArrl. So we are passing charArrl to the cout and it obliges by
printing out the array contents. This is why we needed the terminating character
for the cout to know where the sequence ends.

e funcCharPtr1 takes a pointer to char parameter and prints it out. In line 5 we are

passing *charPtrArr. You could easily understand what we are actually passing
here. We are passing charArrl and it prints out Arrl as we’d expect. Note the
similarity with line 4’s printout and understand that we are passing the same thing
to cout in both cases.

e Just to solidify your understanding I’m calling funcCharPtr1l with charArrl to
show that it is exactly the same as passing *charPtrArr.

e funcCharPtr2 takes the same type of parameters as funcCharPtrl1, but the cout
statement is a bit different. I want to show the relation of variable name and
pointer again. Also note the passing argument is a bit different here but you could
easily understand what we are passing. *(charPtrArr+2) is just charArr3.

Then in funcCharPtr2 we are passing *charArr3 to the cout. So what are we
passing here then? You know charArr3 is a pointer to the first element ‘A’ so
dereferencing it simply prints out ‘A’. And finally for good measure we are also
printing out the last character in the next statement. This also confirms that we
indeed passed charArr3.

If we replaced the char arrays with integer arrays and with an array of pointers to integers
and changed the types of the function parameters, eveything will work, with one
exception. When we passed the char array to the cout, it printed out the whole array. But if
we do that with the integer array, cout wouldn’t print out all of the integer elements.
Instead it would just print out its pointer value. That is the address of the first element.
This is not because of anything special in a char pointer but rather how cout handles
different types.

Let’s look at one more observation. We discussed earlier that arrays are passed to the
functions as pointers by the compiler. So function parameters *char and char[] are
identical to the compiler. Then we could do the following:

#include<iostream>

using namespace std;

void funcCharPtrArr(char *charPtrArr[])
{

cout << “Value: “ << charPtrArr[0] << end];

void funcCharPtrArr2(char **charPtrArr)
{

cout << “Value: “ << charPtrArr[0] << end];

int main(int argc, char** argv)
{
char charArrl[] = { ‘A’, ‘1°, ‘1°, ‘1°, \0’ };

char charArr2[] = { ‘A’, ‘1°, ‘1°, 2°, \0’ };
char charArr3[] = { ‘A’, ‘1°, ‘1°, ‘3°, \0’ };

char *charPtrArr[] = { charArrl, charArr2, charArr3 };

funcCharPtrArr(charPtrArr);
funcCharPtrArr2(charPtrArr);

return 0;

Value: Arrl
Value: Arrl

funcCharPtrArr is the same as before and funcCharPtrArr2 has a slightly different
parameter type. It takes a pointer to pointer to char. But you by now know that both of
these functions are the same. Because an array name is essentially a pointer, we can write
*charPtrArr[] as *(*charPtrArr). So an array of pointers is a pointer to a pointer.

Before we finish off this topic let’s look at one more example to demonstrate what a
pointer means to a compiler. As I mentioned before, a pointer is just an address to a block
of memory. There is no difference between a pointer to an object and a pointer to an int, or
pointer to anything else. All of the pointers are of the same size and all of them have a
memory address. The type of the pointer is what defines it. The type of the pointer tells the
compiler what is in that block of memory it points to. Because you see, the pointer only
points to the start of the memory block. The compiler has no idea how big that particular
memory block is. It deduces that information from the type of the pointer. It’s a simple
matter of sizeof(typeOfPointer) to determine the size of the memory block. That is why
you can never dereference a void* pointer because the compiler doesn’t know how to
work with that memory block. This example should clarify this point.

#include<iostream>

using namespace std;

class baseClass

{
public:

int baseClassVar;

baseClass(int baseVal) : baseClassVar(baseVal)
{}

void printVals()
{

cout << “baseClass::baseClassVar- “ << baseClassVar << endl;

class derivedClass : public baseClass

{
public:
int derivedClassVar;
derivedClass(int baseVal, int derivedVal) : baseClass(baseVal), derivedClassVar(derivedVal)
{}
void printVals()
{
baseClass::printVals();
cout << “derivedClass::derivedClassVar- “ << derivedClassVar << endl;
}
b

int main(int argc, char** argv)

{
baseClass* baseClassPtr = new baseClass(1);
static_cast<derivedClass*>(baseClassPtr)->printVals();
return O;

}

baseClass::baseClassVar- 1

derivedClass::derivedClassVar- 7536751

What we did was to have a baseClass pointer with a baseClass instance. Then we static
cast it to a derivedClass. Since derivedClass is of the same hierarchy the compiler is fine
with that and it trusts us that it is indeed pointing to a derivedClass instance. Then we
invoke the derivedClass’s printVals function. The derivedClass printVal function accesses
derivedClassVar. The compiler assumes that the memory block pointed to by
baseClassPtr contains a complete derivedClass instance of size sizeof(derivedClass), but
in fact it only contains a baseClass instance, which is smaller than a derivedClass one. So

when the compiler accesses derivedClassVar, it is accessing a location that does not
belong to it, and hence prints out a garbage value. For the compiler, it has no way to do
any boundary checking. The boundary is set by the pointer type. We will learn more on
this when we discuss class member offsets. But until then keep in mind that the compiler’s
only way of knowing an object type and size is through the pointer type.

So now you should understand the second argument of the main function that you’ve been
writing all along. char** argv is basically char *argv[]. It is an array of pointers to char,
exactly the same as charPtrArr in our example, and argv, as you know, contains a list of
parameters passed to the main function.

Topic 6

Non-Constructible,
Non-Copyable Class

In the topic “Object Construction” we discussed how objects are created, copied and
assigned. There are three principal functions that every class should have: constructor,
copy constructor and assignment operator. There are additional functions added in C++11
but we will limit our focus to these three primary functions. In this topic we will discuss
how to make a class non constructible or copyable and investigate these functions in more
detail.

Non-constructible class

What does it mean to construct, or instantiate, an object? It simply means calling one of
the class constructors. So how do you then make a class non-constructible? You just make
it so that the class constructor cannot be called. And there are two ways you can do that:

e Make the class abstract
e Make the constructors private
Abstract class

Unlike Java, C++ doesn’t have an ‘abstract’ keyword to make a class abstract. The way to
make a C++ class abstract is to have a pure virtual function. How do you make a virtual
function pure? Assign the function a value of zero.

class AbstractClass {
public:
AbstractClass();

virtual void pureVirtFunc() = 0; // <— this makes this class abstract.

So what does it mean for a class to be abstract?

#include<iostream>

using namespace std;

class AbstractClass {
public:
AbstractClass();

virtual void pureVirtFunc() = 0; / <— this makes this class abstract.

int main(int argc, char** argv)
{
AbstractClass absClass;

return 0;

Description

€31 error C2259: 'AbstractClass' : cannot instantiate abstract class

It means you cannot instantiate an object by calling the constructor. And you know that
only way you can do it is by deriving this class and implementing the pure virtual
function.

By the way, what does it mean for a non-virtual function to be abstract? It makes no sense.
The point of making a function ‘pure’ is for a deriving class to define it. Then you must
have the function as virtual. But what happens if you try to make a non-virtual function
pure?

#include<iostream>

using namespace std;

class AbstractClass {
public:
AbstractClass();
void pureVirtFunc() = 0; // <— (A_N)

int main(int argc, char** argv)

{
cout << “Can we make it pure???” << endl;
return 0O;
b
Description

€31 error C2253: 'AbstractClass:pureVirtFunc' : pure specifier or abstract override specifier only allowed on virtual function

The compiler apparently is smart.

So what does making a class abstract do? It makes the class non-instantiable by itself. But
any class that derives (and defines the pure virtual function) can. Then, the real motivation
in making a class abstract is to make that class a base class. To make sure whoever wants
to use that class derives it and implements the pure virtual function. We will look into this

concept in a different topic, but what you need to understand here is the difference in non-
constructability of an abstract. Abstract class objects are non-constructible because they
are not supposed to be constructed as they are. Not because they shouldn’t be. There is a
difference as we’ll see next.

An abstract class can still be constructed through derivation. The constructors of an
abstract class are public or protected. The motive of making a class abstract is to make it a
base class. Base classes must be able to be constructed. But what if you want your class to
be completely non-constructible? You remove the only way it can be constructed. You
know a constructor is the only way a class can be instantiated. You make it so that the
constructor cannot be called from outside the class. How do you do it? Make the
constructor private.

#include<iostream>

using namespace std;
class NonContructible {

private:

NonContructible() { cout << “Haha. You can’t call this.” << endl; }

int main(int argc, char** argv)

{
NonContructible nonCons;
return 0O;
b
Description

€31 error C2248: 'NonContructiblezNonContructible' : cannot access private member declared in class 'MonContructible'

The compiler is not happy because it cannot call the private method. So what do you do
with a class like this? Like this, you can’t do much. There is no way you can instantiate
this class as it is. One use of making a constructor private is in the Singleton pattern,
where you only want one instance of the class in existence. So you will have something
like this:

#include<iostream>

using namespace std;

class SingletonClass {
private:
static SingletonClass * theSingleton;

SingletonClass() { cout << “This will be called only once.” << end]l; }

public:
static SingletonClass * getSingleton()

{
if (!theSingleton)
SingletonClass::theSingleton = new SingletonClass;
return theSingleton;
}

b
SingletonClass* SingletonClass::theSingleton = NULL;

int main(int argc, char** argv)

{
SingletonClass *singleton1 = SingletonClass::getSingleton();
SingletonClass *singleton2 = SingletonClass::getSingleton();
SingletonClass *singleton3 = SingletonClass::getSingleton();
return 0;
}
Locals * X
Mame Value Type
W argc 1 int
P @ argv 0:00745a50 {0:00745a58 "DAN\Docums char ™™
@ singleton2 (h007462€0 {...} SingletonClass *
@ singletond (h007462€0 {...} SingletonClass *
@ singletonl 0x:0074062€0{...} SingletonClass *

This will be called only once.

You will see in this case the SingletonClass constructor was called only once and from the
locals window you see that all three SingletonClass pointers point to the same object. This
is one use of making the constructor private to restrict the object construction, but still
provide a utility function to receive an object.

So far what we looked at was making a class non-constructible. Next we will look at
making it non-copyable.

Non-copyable class

Let’s refresh copy constructors from topic 4.

#include<iostream>

using namespace std;

class standardClass

{
int objID;
public:
standardClass(int ID) // constructor

{
objID = ID;

~standardClass() // destructor
{ }

standardClass(const standardClass &objToCopy) // copy constructor

{
objID = objToCopy.objID;

standardClass & operator=(const standardClass &objToCopy) // assignment operator

{
objID = objToCopy.objID;

return *this;

int main(int argc, char** argv)

{
standardClass stdClassObj1(1);
standardClass stdClassObj2(stdClassObj1); // Line #1
standardClass stdClassObj3 = stdClassObj2; // Line #2
stdClassObj1 = stdClassObj2; // Line #3
stdClassObj2 = standardClass(4); // Line #4
stdClassObj3 = 5; // Line #5
return 0O;

}

Lines 1 and 2 call the copy constructor and lines 3-5 call the assignment operator
(constructor is also called in lines 4 and 5). Making a class non-copyable means to not let
the user do operations like in the above code. So it means that you restrict making one

object from another object. Stop copying. And now you know how we could do that. We
just make the functions that do the copying private. We simply make the copy constructor
and the copy assignment operator private. Let’s do that.

#include<iostream>

using namespace std;

class nonCopyable

{
int objID;
public:
nonCopyable(int ID) // constructor
{
objID = ID;
}
~nonCopyable() // destructor
{}
private:
nonCopyable(const nonCopyable &objToCopy) // copy constructor
{
objID = objToCopy.objID;
}
nonCopyable & operator=(const nonCopyable &objToCopy) // assignment operator
{
objID = objToCopy.objID;
return *this;
}
b

int main(int argc, char** argv)

{
nonCopyable ncClassObj1(1);
nonCopyable ncClassObj2(ncClassObj1); // Line #1
nonCopyable ncClassObj3 = ncClassObj2; // Line #2
ncClassObj1 = ncClassObj2; // Line #3
ncClassObj2 = nonCopyable(4); // Line #4
ncClassObj3 = 5; // Line #5

return 0;

Description

€31 error C2248: 'standardClass::standardClass' : cannot access private member declared in class 'standardClass'
€3 2 error C2248: 'standardClass::standardClass' : cannot access private member declared in class 'standardClass'
€33 error C2248: 'standardClass::operator =' : cannot access private member declared in class 'standardClass'
€34 error C2248: 'standardClass::operator =' : cannot access private member declared in class 'standardClass'
€35 error C2248: 'standardClass:operator =' : cannot access private member declared in class 'standardClass'

€36 error C2248: 'standardClass::standardClass' : cannot access private member declared in class 'standardClass'

The compiler throws more than a few errors and you can easily understand what they
mean. It cannot access the copy constructor and the assignment operator to do the

copying.

Note in the above code that we have made the constructor public. Of course it needs to be
because we need to instantiate an object and there is no utility function to otherwise. Now
what if we want to make a class non-constructible and non-copyable? Is it sufficient to

make only the constructor private? After all, how can you copy if you can’t construct,
right? Let’s look at an obvious example.

#include<iostream>

using namespace std;

class nonCopyable

{
int objID;
class nonCopyable(int ID) // constructor
{
objID = ID;
}
public:
nonCopyable(const nonCopyable &objToCopy) // copy constructor
{
objID = objToCopy.objID;
}

nonCopyable & operator=(const nonCopyable &objToCopy) // assignment operator

{
objID = objToCopy.objID;

return *this;

~nonCopyable() // destructor
{ }

static nonCopyable * getObject()
{

return new nonCopyable(1);

int main(int argc, char** argv)

{
nonCopyable *ncClassObjPtr = nonCopyable::getObject();
nonCopyable ncClassObj2(*ncClassObjPtr);
nonCopyable ncClassObj3 = ncClassObj2;
delete ncClassObjPtr;
return 0;
}

In the above code we have made the constructor private and provided a utility function to
receive a new object (similar to the Singleton pattern but we are not restricting to one
object). Then we have made the copy constructor and the assignment operator public. This
code compiles and works, for obvious reasons. I just wanted to show you that if you want
to make a class non-constructible and non-copyable, it is not sufficient to make only the
constructor private. But what if we don’t define the copy constructor and assignment
operator at all? Let’s remove those two functions and see.

#include<iostream>

using namespace std,;

class nonCopyable

{
int objID;
class nonCopyable(int ID) // constructor
{
objID = ID;
}
public:

static nonCopyable * getObject()
{

return new nonCopyable(1);

int main(int argc, char** argv)

{
nonCopyable *ncClassObjPtr = nonCopyable::getObject();
nonCopyable ncClassObj2(*ncClassObjPtr);
nonCopyable ncClassObj3 = ncClassObj2;
delete ncClassObjPtr;
return 0;
}

This code compiles happily and it will copy ncClassObjPtr with no issues. But why?
Because, since we did not define the copy constructor and the assignment operator, the
compiler obliged by making them for us. There are a few rules governing whether the
compiler will generate default copy constructors and assignment operators. But what you
need to keep in mind is that these compiler generated ones are public. In an almost empty
class like this the compiler will opt to do bit-wise copying and not define explicit
functions. We’ll look into that in a later topic. But what needs to be kept in mind is that if
you don’t define them, the compiler will do that for you. So in this case the compiler is
happy to do the copying for us. Therefore, if you don’t want your class to be copied,
define those functions privately.

I should mention that there is a notion of not defining the copy constructor and the
assignment operator, in addition to making them private. Like this:

#include<iostream>

using namespace std,;
class nonCopyable
{

int objID;

public:

nonCopyable(int ID) // constructor

{
objID = ID;
}
~nonCopyable() // destructor
{}

private:

nonCopyable(const nonCopyable &objToCopy); // Not defined
nonCopyable & operator=(const nonCopyable &objToCopy); // Not defined

The idea here is that if there is a friend class, then even that class would not be able to
copy, because otherwise friends are allowed to call private functions. When these
functions are not defined, the code will compile fine but there will be a linker error as the
linker cannot find the implementation for these functions. But you might have a need to
have an implementation for the copy constructor and the assignment operator, depending
on your application. Maybe for an internal function use. Like we had an implementation
for the constructor in the Singleton class. Whatever way you choose, keep in mind that if
you want these functions to be private, define them private. Otherwise the compiler will
define them public.

Before we leave non-copyable classes, what would be the fate of a derived class of a non-
copyable class?

#include<iostream>

using namespace std;

class nonCopyable

{
int objID;
public:
nonCopyable(int ID) // constructor
{
objID = ID;
}
~nonCopyable() /I destructor
{}
private:

nonCopyable(const nonCopyable &objToCopy) // copy constructor

{
objID = objToCopy.objID;

nonCopyable & operator=(const nonCopyable &objToCopy) // assignment operator

{
objID = objToCopy.objID;

return *this;

class derivedNonCopyable : public nonCopyable

{

public:
derivedNonCopyable(int ID) : nonCopyable(ID)
{}

b

int main(int argc, char** argv)

{
derivedNonCopyable dncClassObj1(2);
derivedNonCopyable dncClassObj2(dncClassObjl); // Line #1
derivedNonCopyable dncClassObj3 = dncClassObj2; // Line #2
dncClassObj1 = dncClassObj2; // Line #3
dncClassObj2 = derivedNonCopyable(4); // Line #4
dncClassObj3 = 5; // Line #5
return 0;

}

Description

€31 error C2248: 'nonCopyable:nonCopyable' : cannot access private member declared in class 'nonCopyable’

€39 2 error C2248: 'nonCopyable:operator =': cannot access private member declared in class 'nonCopyable'

The compiler isn’t happy. It is complaining of nonCopyable class’s copy constructor and
assignment operator being private. As you’ve seen many times, lines 1 and 2 above make
calls to the copy constructor while lines 3-5 call the assignment operator. If you
commented out lines 1-5, you will see that there are no compiler errors. dncClassObj1 is
constructible with no problems as the constructors are public. But if you then uncomment
only line 1, the compiler will throw an error saying the copy constructor of nonCopyable
is private. And if you uncomment any of lines 3-5 it will complain about the assignment
operator being private. What is happening is that as long the program is not calling for
copy constructor or assignment operator, the compiler will not bother with them. But
when there is a statement that calls for the copy constructor or the assignment operator, if
the class hasn’t defined them, the compiler will generate them for you, which will contain
a call to the base class copy constructor and the assignment operator. But it cannot do that
if the nonCopyable has them private, so you get the errors.

Let me make a small detour. Let’s say all the nonCopyable functions were public (it’s not
non-copyable anymore). How would you implement the copy-constructor for the derived
class?

This is how you’d write. Note that nonCopyable is copyable now.

#include<iostream>

using namespace std;

class nonCopyable

{
int objID;
public:
nonCopyable(int ID) // constructor
{
objID = ID;
}
~nonCopyable() // destructor
{ }
public:
nonCopyable(const nonCopyable &objToCopy) // copy constructor
{
objID = objToCopy.objID;
}
nonCopyable & operator=(const nonCopyable &objToCopy) // assignment operator
{
objID = objToCopy.objID;
return *this;
}
b

class derivedNonCopyable : public nonCopyable

{
public:
derivedNonCopyable(int ID) : nonCopyable(ID)
{}
derivedNonCopyable(const derivedNonCopyable &objToCopy) : nonCopyable(objToCopy)
{}
b

int main(int argc, char** argv)

{

derivedNonCopyable dncClassObj1(2);
derivedNonCopyable dncClassObj2(dncClassObj1); // Line #1
derivedNonCopyable dncClassObj3 = dncClassObj2; // Line #2

return 0;

We invoke the nonCopyable copy constructor in the initializer list. But did you know you
must call it in the initializer list? What if not?

#include<iostream>

using namespace std;

class nonCopyable

{
int objID;
public:
nonCopyable(int ID) // constructor
{
objID = ID;
}
~nonCopyable() // destructor
{ }
public:
nonCopyable(const nonCopyable &objToCopy) // copy constructor
{
objID = objToCopy.objID;
}
|5

class derivedNonCopyable : public nonCopyable

{

public:
derivedNonCopyable(int ID) : nonCopyable(ID)
{}

derivedNonCopyable(const derivedNonCopyable &objToCopy)

{
nonCopyable::nonCopyable(objToCopy);

int main(int argc, char** argv)

{
derivedNonCopyable dncClassObj1(2);
derivedNonCopyable dncClassObj2(dncClassObj1); // Line #1
derivedNonCopyable dncClassObj3 = dncClassObj2; // Line #2

return 0;

Description

€91 error C2512: 'nonCopyable’ : no appropriate default constructor available

Why are you getting errors about no default constructor? Why can’t we call the base class
copy constructor in the method body?

Because, remember that when we are invoking the copy constructor, unlike when the
assignment operator is invoked, there is no object in existence. The copy constructor is
going to instantiate a new object. So when the derived class copy constructor gets invoked
to create a new derived class object, it must first have a base class object. Because at this
point there is no base class object in existence. This is similar to calling a derived class
constructor. Before the derived class constructor does its work, it first calls the base class
constructor to construct its part. The copy constructor does the same thing. It needs the
base class to construct itself first. So what does the derived class copy constructor do? It
calls the base class constructor. That is why we are getting this error. Because
nonCopyable does not have a constructor that takes no arguments (if it did, we wouldn’t
have this error). So how does making the copy constructor call in initializer list change
this? Same reason as we’d initialize a const variable or a reference in the initializer list of
the constructor. We initialize it before the body of the method. Because the compiler needs
to initialize them before it reaches the method body. Same case with the copy constructor.
It tries to initialize the base class object by calling the default constructor if there is no call
for the base class constructor or the copy constructor to initialize the base object. So
instead of calling the copy-constructor in the initializer list, you could very well call the
constructor. (Not in our case though as the variable is private we can’t pass it to the
constructor.)

Notice that I called the nonCopyable copy constructor with class qualifier? Had we called
like this:

class derivedNonCopyable : public nonCopyable
{
public:
derivedNonCopyable(int ID) : nonCopyable(ID)

{

derivedNonCopyable(const derivedNonCopyable &objToCopy)

{
nonCopyable(objToCopy); // Line 1

you’d get a new additional error:

Description

€31 error C2512: 'nonCopyable' : no appropriate default constructor available

(%)2 error C2082: redefinition of formal parameter 'objToCopy’

£33 error C2512: 'nonCopyable’ : no appropriate default constructor available
What does it mean “redefinition of formal parameter ‘objToCopy’?”

Because you see, since you are never allowed to call constructors directly, what line 1
above does is define a new variable called objToCopy of type nonCopyable. It is like
defining an integer like int(5). Since there is already a variable by that name, the compiler
is complaining about redefinition. That is why you need to qualify this call with the
classname to let compiler know exactly that you are calling the copy constructor.

Apologies for that rather long detour. I thought it’s an interesting bit to mention.

Now that we know how to make a class non-constructible and non-copyable, let’s see how
we can control ‘where’ they are instantiated.

Stack and heap allocation

There are two entities where an object can reside in C++: the ‘stack’ and the ‘heap’. Stack
is where you have things such as procedure records and local variables, while heap is
where you do the dynamic allocations. Here’s a simple example.

#include<iostream>

using namespace std,;

class someClass

{
int objID;

public:
someClass(int ID)

{
objID = ID;

cout << “Constructor for ID: “ << objID << endl;

~someClass()

{

cout << “Destructor for ID: “ << objID << endl;

int main(int argc, char** argv)

{
someClass someClassObj(1); //Line 1
someClass *someClassPtr = new someClass(2); //Line 2
delete someClassPtr; //Line 3
return 0;

Constructor for ID: 1
Constructor for ID: 2
Destructor for ID: 2

Destructor for ID: 1

e Line 1 creates the someClassObj in the stack. This is the first constructor printout
in the output.

e Line 2 creates a someClass object in the heap and returns its address to
someClassPtr. The second constructor printout corresponds to this instantiation.

e Line 3 deletes someClassPtr by explicitly calling the destructor. We must
deallocate each heap memory we allocated. This is the third printout in the output.

e Then finally we see the someClassObj destructor being called.
A couple of things to note here:

e All heap allocated objects must be deallocated explicitly. The compiler will not
do this for us.

e Stack allocated objects are automatically deallocated when they go out of scope.
someClassObj was created in the scope of main and when main returns,
someClassObj goes out of scope, so its destructor is called automatically.

This is one of the important things to note about C++. Unlike Java/C# where they have
automatic garbage collection, in C++, you need to do your own housekeeping whenever

you use the heap. Stack is a different story. Compiler will take care to clean it up. So all of
the auto variables will be taken care of by the compiler when they go out of scope. Let’s
make a small addition to our code.

#include<iostream>

using namespace std;

class someClass

{
int objID;
public:
someClass(int ID)
{
objID = ID;
cout << “Constructor for ID: “ << objID << end];
}
~someClass()
{
cout << “Destructor for ID: “ << objID << endl;
}
b

int main(int argc, char** argv)

{
someClass someClassObj(1); // Linel
{

someClass someClassObj2(3); // Line 2

}
someClass *someClassPtr = new someClass(2); / Line 3
delete someClassPtr; // Line 4
return 0O;

}

Constructor for ID: 1
Constructor for ID: 3
Destructor for ID: 3

Constructor for ID: 2

Destructor for ID: 2

Destructor for ID: 1

Note that we added a scoped object someClassObj2. Because it is within a pair of curly
braces, the scope of someClassObj2 is confined to within those braces. As soon as the
execution leaves right curly brace someClassObj2 goes out of scope, and the compiler
calls its destructor. That is why you see the constructor and the destructor being called in
succession.

Things will become much more convincing if you take a look at the disassembly for the
above code.

int main(int argc, char** argv)
{
009D8BAO push ebp
009D8BA1 mov ebp, esp

someClass someClassObj(1);
009D8BDD push 1
009D8BDF lea ecx, [someClassObj]
009D8BE?2 call someClass::someClass(09D14E7h) <—(1)
009D8BE7 mov dword ptr[ebp - 4], 0

{
someClass someClassObj(3);
009D8BEE push 3
009D8BFO lea ecx, [ebp - 20h]
009D8BF3 call someClass::someClass(09D14E7h) <—(2)
}

009D8BF8 lea ecx, [ebp - 20h]
009D8BFB call someClass::~someClass(09D150Fh) <—(3)

someClass *someClassPtr = new someClass(2);
009D8CO00 push 4

009D8CO02 call operator new (09D13DEh) <—(4)

009D8CO07 add esp, 4

009D8COA mov dword ptr[ebp - 11Ch], eax

009D8C25 call someClass::someClass(09D14E7h) <—(5)

009D8C4C mov ecx, dword ptr[ebp - 128h]
009D8C52 mov dword ptr[someClassPtr], ecx

delete someClassPtr;

009D8C55 mov eax, dword ptr[someClassPtr]

009D8C75 mov ecx, dword ptr[ebp - 110h]
009D8C7B call someClass:: scalar deleting destructor’ (09D1500h) <—(6)

return 0;

009D8C92 mov dword ptr[ebp - 0F8h], 0

009D8CIC mov dword ptr[ebp - 4], OFFFFFFFFh
009D8CA3 lea ecx, [someClassObj]

009D8CAG call someClass::~someClass(09D150Fh) <—(7)
009D8CAB mov eax, dword ptr[ebp - 0F8h]

The code statements are clearly printed out in the disassembly so you can easily see what
the disassembly is for that particular statement. Note that I have removed a lot of assembly
statements in between.

(1) is the call to the constructor for instantiating the first object (Line 1).

(2) is the constructor call to the explicitly scoped object we instantiate within the
curly braces.

Right after the right curly brace we see (3) calling the destructor for
someClassObj2. So you see that this call is right after the object goes out of
scope.

(4) calls the operator new to allocate memory in the heap. And after some
operations it calls the constructor in (5).

(6) is our call to delete the heap object.

Then finally after the return statement you can see the compiler calling the
destructor for someClassObj in (7).

Looking at the disassembly makes it pretty clear what is actually going on behind the
curtains. The destructor calls at (3) and (7) are automatically added by the compiler. So
you can see how stack objects are automatically deleted when they go out of scope.

So why are we discussing this? Because this is what we are going to use to put restrictions

for stack and heap allocations.
Restricting stack allocation

Let’s first look at restricting allocation on stack. How would you program to restrict your
class being instantiated on the stack? For example you want to restrict statements like line
1 in the above program.

What happens when we create an object on stack by calling a statement like line 1? As we
also saw in the disassembly, two things happen:

e The ompiler first puts a call to the constructor of the class

e Then after the object goes out of scope, it calls the destructor

Although the call to the destructor is something we don’t explicitly do, the compiler adds
the call for us. We saw this in point (7) of the disassembly. Then, how would we restrict
stack allocation of a class? We can certainly make the constructor private, but that makes
the class non-constructible altogether. What we want is to make it non-constructible on the
stack. How about we make the destructor private?

#include<iostream>

using namespace std;

class someClass

{
int objID;
public:
someClass(int ID)
{
objID = 1ID;
cout << “Constructor for ID: “ << objID << end];
}
private:
~someClass()
{
cout << “Destructor for ID: “ << objID << endl;
}
5

int main(int argc, char** argv)

{
someClass someClassObj(1); // Line 1
someClass *someClassPtr = new someClass(2); // Line 2

return 0O;

Description

€91 error C2248: 'someClass:~someClass' : cannot access private member declared in class 'someClass'

It works. The compiler throws an error for line 1 where we are going to instantiate
someClassObj on the stack. But notice that the compiler has no problem with line 2 where
the object will be on the heap. So you see this is one way you can restrict stack allocation
of a class. But did you notice something was missing in the above code? Yes, we are not
deleting someClassPtr. It is because we cannot. If you put a delete statement you will get
exactly the same compiler error as we got here. It is because the delete statement itself is a
call to the destructor. So how do we handle this then? We restrict stack allocation, forcing
the objects to be allocated only on the heap, but we cannot delete them. Well, in this case
we need to provide an utility function to delete the object. The same way we did for
private constructors in the Singleton class.

There are two cases of this private destructor that makes me curious.

e What if we derive this class?

e What if we have this class as a member object?

Let’s find out.

#include<iostream>

using namespace std;

class someClass

{
int objID;
public:
someClass(int ID)
{
objID = ID;
cout << “Constructor for ID: “ << objID << end];
}
private:
~someClass()
{
cout << “Destructor for ID: “ << objID << endl;
}
b

class derivedSomeClass : public someClass

{

public:
derivedSomeClass(int ID) : someClass(ID)
{}
~derivedSomeClass() {}

b

int main(int argc, char** argv)

{
derivedSomeClass derivedSomeClassObj(1);
return 0;
}
Descrption

£ 1 error C2248: "someClass: ~someClass - cannot sccess private member declared in class ‘someClass’

You get the same compiler error as before. derivedSomeClass destructor is trying to call
the someClass destructor and it is private. So making the destructor private makes even
the derived classes unable to be on the stack. So what if you want the derived classes to be
able to be on the stack? You make the destructor in someClass protected. Try it and you
will see the code above works fine. But you will not be able to instantiate the someClass
object on the stack, only the derived classes.

Then what about when someClass is a member object?

#include<iostream>

using namespace std;

class someClass

{
int objID;
public:
someClass(int ID)
{
objID = ID;
cout << “Constructor for ID: “ << objID << end];
}
private:
~someClass()
{

cout << “Destructor for ID: “ << objID << endl;

class someOtherClass

{
someClass someClassObj;
public:
someOtherClass(int ID) : someClassObj(ID)
{}
~someOQtherClass() {}
b

int main(int argc, char** argv)

{
someOtherClass someOtherClassObj(1);
return 0;
}
Descnption

E31 error C2248: "someClass: ~someClass’ : cannot sccess private member declared in class ‘someClass

You get the same error. The compiler still needs to call the destructor for the member
objects and it cannot do so with the private destructor. And in this case making the
destructor protected wouldn’t help either.

So you see, that by making the destructor private, you can completely restrict the stack
allocation of a class. But also keep in mind that this makes you not able to call delete on
heap allocated objects. You need some other utility function to take care of that.

Restricting heap allocation

Now let’s look at how we restrict heap allocation. Do you remember the disassembly we
saw a while back? The heap allocation had a call to the operator new in the disassembly.
In C++, the way to allocate objects in the heap is to use operator new. So then, how do we
control heap allocation? We do something similar to what we did for stack allocation. We
make operator new private.

#include<iostream>

using namespace std;

class notOnHeapClass

{

int objID;

public:
notOnHeapClass(int ID)
{
objID = ID;
cout << “Constructor for ID: “ << objID << endl;
}
~notOnHeapClass()
{
cout << “Destructor for ID: “ << objID << endl;
}
private:

void *operator new(size_t);

int main(int argc, char** argv)

{
notOnHeapClass notOnHeapObj(1); // Line 1
notOnHeapClass *notOnHeapPtr = new notOnHeapClass(2); // Line 2
delete notOnHeapPtr;
return 0;
}
Description

€91 error C2248: 'notOnHeapClass:operator new' : cannot access private member declared in class 'notOnHeapClass'

As expected, the compiler throws an error saying that it cannot access the operator new.
That’s it. That is how you restrict heap allocation. We will look in to operator new in more
detail when we talk about placement new in another topic.

Ideally, when we restrict heap allocation by making the operator new private, we usually
make all of the following four operators private too.

#include<iostream>

using namespace std,;
class notOnHeapClass
{

int objID;

public:

notOnHeapClass()

{
objID = 0;
}
notOnHeapClass(int ID)
{
objID = ID;
cout << “Constructor for ID: “ << objID << endl;
}
~notOnHeapClass()
{
cout << “Destructor for ID: “ << objID << endl;
}
private:

void *operator new(size_t);
void *operator new[](size_t);
void operator delete(void*);

void operator delete[](void*);

int main(int argc, char** argv)

{
notOnHeapClass notOnHeapObj(1);
notOnHeapClass *notOnHeapPtr = new notOnHeapClass(2); // Line 1
notOnHeapClass *notOnHeapArr = new notOnHeapClass[5]; // Line 2
delete notOnHeapPtr; // Line 3
delete[] notOnHeapArr; // Line 4
return 0O;

}

Description

€31 error C2248: 'notOnHeapClass:operator new' : cannot access private member declared in class 'notOnHeapClass'
€9 2 error C2248: 'notOnHeapClass:operator new' : cannot access private member declared in class 'notOnHeapClass'

€9 3 error C2440: 'initializing' : cannot convert from 'initializer-list' to 'notOnHeapClass *

Without making new[], delete and delete[] private, lines 2, 3 and 4, respectively, would
compile without any errors. Although you would not delete without being able to new, it is
always better to make them all private, if that is your intention. Note that operator new is
different from operator new[]. So if you need to restrict heap allocation for arrays of
objects, make sure you make array operator new private too.

Before we finish this topic, keep in mind that making operator new private will not help
you restrict heap allocation in a case like this:

#include<iostream>
using namespace std;

#include <vector>

class notOnHeapClass
{
int objID;
public:
notOnHeapClass()
{
objID = 0;
}
notOnHeapClass(int ID)
{
objID = 1D;
cout << “Constructor for ID: “ << objID << end];
}
~notOnHeapClass()

{

cout << “Destructor for ID: “ << objID << endl;

private:
void *operator new(size_t){}
void *operator new[](size_t){}
void operator delete(void*){}

void operator delete[](void*){}

int main(int argc, char** argv)
{
std::vector<notOnHeapClass> notOnHeapClassVec;
notOnHeapClassVec.push_back(notOnHeapClass(1));

return O;

This program works fine. You’d think this should work because we are not allocating
anything on the heap as notOnHeapClassVec is on the stack. Actually, this is not the case.

STLs like Vector allocate the vector itself, that is, the vector related header data on the
stack, but the actual vector elements, that is notOnHeapClass objects, are actually always
allocated on the heap. So when we pushback a notOnHeapClass object to the vector, that
object is actually instantiated on the heap. But then why is there no error when the
operator new is private? Because the compiler does not call operator new. See the
disassembly of this code shown below:

int main(int argc, char** argv)
{
00B38280 push ebp
00B38281 mov ebp,esp

std::vector<notOnHeapClass> notOnHeapClass Vec;
00B382BD lea ecx,[notOnHeapClassVec]

00B382C0 call std::vector<notOnHeapClass,std::allocator<notOnHeapClass>
>::vector<notOnHeapClass,std::allocator<notOnHeapClass> > (0B3134Dh)

00B382C5 mov dword ptr [ebp-4],0

notOnHeapClassVec.push_back(notOnHeapClass(1));

00B382CC push 1

00B382CE lea ecx,[ebp-0F8h]

00B382D4 call notOnHeapClass::notOnHeapClass (0B31005h) <—(1)
00B382D9 mov dword ptr [ebp-100h],eax

00B382F6 lea ecx,[notOnHeapClassVec]

00B382F9 call std::vector<notOnHeapClass,std::allocator<notOnHeapClass> >::push_back (0B31334h)
00B382FE mov byte ptr [ebp-4],0

00B38302 lea ecx,[ebp-0F8h]

00B38308 call notOnHeapClass::~notOnHeapClass (0B3150Ah) <—(2)

return O;

00B3830D mov dword ptr [ebp-OECh],0
00B38317 mov dword ptr [ebp-4],0FFFFFFFFh
00B3831E lea ecx,[notOnHeapClassVec]

00B38321 call std::vector<notOnHeapClass,std::allocator<notOnHeapClass>
>::~vector<notOnHeapClass,std::allocator<notOnHeapClass> > (0B31064h)

00B38326 mov eax,dword ptr [ebp-0ECh]

You see the vector never calls the operator new even though the object is on the heap.

Why? Because it doesn’t need to. Operator new is one way the compiler helps us allocate
memory and call the constructor for the object. We can certainly do this in the C-style by
manually calling ‘malloc’ and then invoking the constructor. Operator new is sort of a
convenient way to do both memory allocation and constructor invocation in one call. So
the Vector does not need to do it. It has its own way of allocating heap memory. But you
can be sure that it calls the constructor when we call pushback, as evident from point 1.
And then it calls the destructor (point 2) when the vector goes out of scope.

So this is one case where making the operators private will not restrict the heap allocation.
We can restrict heap allocation this way only when operator new is called to do the
allocation

I hope this section gave you a solid understanding on the basics of stack and heap
allocation and also how to manipulate object construction and copying. Everything is
handled through a few basic fundamental functions and we can manipulate those functions
to achieve the implementation we need.

Topic 7

Understanding new

new is C++‘s version of C’s malloc and the variants. But new actually does more than
malloc does. There is very little reason to manually allocate memory using malloc (or its
variants) in C++ because new will do all that for you. We’ve used new in many occasions
in other topics but let’s take some time here to formally get to know it.

#include<iostream>

using namespace std;

class simpleClass

{
int objID;
public:
simpleClass(int ID) // constructor
{
objID = ID;
cout << “Constructing object with ID: “ << objID << endl;
}
b

int main(int argc, char** argv)
{
simpleClass *simpleClassPtr = new simpleClass(1);

return O;

Constructing object with ID: 1

To get to know a little bit more of what is happening behind the scenes, let’s look at the
disassembly (I have removed most parts).

int main(int argc, char** argv)

{

simpleClass *simpleClassPtr = new simpleClass(2015);
0010591D push 4

0010591F call operator new (0101514h) <—(1)

0010593D push 7DFh <—(2)
00105942 mov ecx,dword ptr [ebp-OECh]
00105948 call simpleClass::simpleClass (010162Ch) <—(@3)

delete simpleClassPtr;

0010598B call operator delete (01011B3h) <—(4)
00105990 add esp,4

return 0;

}

There are a few interesting points here and I believe they provide very good insight into
what is happening at the compiler level.

e When we call new, notice that the compiler actually calls the operator new at (1).
As we will investigate later, operator new is what allocates memory. So the first
task of new is to allocate memory using operator new.

e Notice how I passed 2015 as the object initializer? There is nothing special about
2015. T just wanted to pass something more unique than a number like ‘1’ and
show how this number is used in the disassembly. In (2) you see 2015 is being
pushed to a register to be used in the object construction.

¢ In (3) we see the constructor for the object is being called. This is the second task
of new. First it allocated memory by calling operator new, and now it calls the
constructor.

e (4) calls the operator delete on the object.
So what we see is that new does two main operations:

e (Calls operator new to allocate memory

e Calls the class constructor
Let’s then take a closer look at operator new.
Operator new and placement new

There are two main variants of operator new:

void* operator new (std::size_t size);

void* operator new (std::size_t size, void* ptr);

And these two operator versions do slightly different things.

The first syntax:

void* operator new (std::size_t size);

Takes as an argument the size in bytes, and allocates that amount of storage and returns a
void pointer to the first byte of that memory allocation. This is generally called the
operator new.

The second syntax:

void* operator new (std::size_t size, void* ptr);

This does something different. It simply returns the passed ptr argument. It might not
make much sense but it will become clear as you see its purpose. This syntax is called
placement new. It is used when we need to construct the desired object at the location
specified by ptr.

Let’s do an example.

#include<iostream>

using namespace std;

class simpleClass

{
int objID;
public:
simpleClass(int ID) // constructor
{
objID = ID;
cout << “Constructing object with ID: “ << objID << endl;
}
~simpleClass()
{
cout << “Destructing object with ID: “ << objID << end];
}
b

int main(int argc, char** argv)

void *ptrToMem = operator new(sizeof(simpleClass)); // Line 1

simpleClass *simpleClassPtr = new (ptrToMem)simpleClass(26); // Line 2

simpleClassPtr->~simpleClass(); // Line 3
operator delete(ptrToMem); // Line 4
//delete simpleClassPtr; // Line 5
return 0;

Constructing object with ID: 26
Destructing object with ID: 26

e Line 1 calls the operator new (syntax 1), or the allocation function, with the size.
It simply allocates a chunk of memory and returns a pointer to that memory
location.

e Line 2 calls the placement new (syntax 2), and passes it the pointer to the
allocated memory, and also passes the argument for the constructor. This line
places a simpleClass object at ptrToMem and calls the constructor on that.

e What actually happens in line 2 is that new will call placement new (because of
the calling syntax). Then placement new will simply return back ptr; this is the
allocated memory where we want the object constructed. After that, new calls the
class constructor, the same second step when we used new.

e Line 3 calls the destructor explicitly. We will look at this more in the topic on
destructors but destructors can be called like this. But if we are going to call the
destructor like this, then we need to call operator delete explicitly as in like 4,
too. Call to operator delete will deallocate the memory.

¢ You do not need to call destructor and operator delete. You can use delete as in
line 5 and it will call both the destructor and the operator delete for you. It does
the reverse of new. But notice that I have commented out line 5. Because if you
are going to deallocate the memory using operator delete (line 4) you must not do
delete again. Deallocating an already deallocated memory is an undefined
operation in C++.

Placement new

This is probably a good place to explain placement new a bit more as its functionality is a
little peculiar. It simply returns the void* pointer passed to in the arguments. The compiler
decides whether it should call operator new or placement new by looking at the syntax.
The syntaxes are clearly different for the two. If we are simply calling new with no
additional parameters, the compiler will:

e Call operator new and receive the pointer to the allocated memory.

e Call class constructor to construct the object at the memory it received.
If we are calling new with additional parameters, the compiler will:

e (Call placement new and receive the pointer to the allocated memory.

e Call class constructor to construct the object at the memory it received.

So you see, the same functionality happens whether operator new is called or placement
new is called, as far as new is concerned. The only difference is which operator (new or
placement) it calls to get the memory block. In the case of operator new it allocates
memory dynamically and passes the pointer. And with placement new, the purpose is NOT
to allocate memory dynamically but instead use the memory block address passed to it as
an argument. So placement new simply needs to pass back that memory address to new,
because that’s what new needs from it. In both cases new calls the class constructor.

To show that there is nothing fancy about operator new, here is the same code, replaced
with your trusty malloc:

#include<iostream>

using namespace std;

class simpleClass

{
int objID;
public:
simpleClass(int ID) // constructor

{
objID = ID;

cout << “Constructing object with ID: “ << objID << endl;

int main(int argc, char** argv)

{
void *ptrToMem = malloc(sizeof(simpleClass));
simpleClass *simpleClassPtr = new (ptrToMem)simpleClass(26);
simpleClassPtr->~simpleClass();
free(ptrToMem);
return O;
}

So you see that operator new isn’t doing anything special. It simply allocates memory as
malloc does. Also note that we are calling free to deallocate the memory.

So far you’ve seen what new does. It calls operator new to allocate memory and then calls

the constructor to create an object on the allocated memory. As you saw above, we can do
what new does manually by calling operator new and then placement new.

If new does both of these for us, why would we want to do them manually by calling them
explicitly? In most cases, we don’t. We need not call operator new and placement new.
But there are certain situations where you would want to do it. And C++ provides the
flexibility to do it.

e Restrict heap allocation: We discussed this in the topic on object construction. By
defining operator new in the class and making it private, we can restrict the class
being allocated on the heap.

e Memory pools: There are situations where we don’t want to do dynamic memory
allocation. It takes time and if there isn’t enough memory it throws exceptions. So
we can allocate memory beforehand and keep it in a pool. And then when we
want to create new objects, we call placement new on the already allocated
memory.

OK, so we’ve looked at how operator new and placement new work. These are global
scope operators. They have defined behavior. Operator new allocates memory and
placement new constructs objects on already allocated memory. What if we want to
change this behavior? We definitely can and all we need to do is define our own operator
new in our class. A custom class specific operator. Let’s see a simple example.

#include<iostream>

using namespace std;

class simpleClass

{
int objID;
public:
simpleClass(int ID) // constructor

{
objID = ID;

cout << “Constructing object with ID: “ << objID << endl;

void* operator new(std::size_t size)
{
void * ptr = malloc(size);
cout << “Custom operator new. Allocating “ << size << ” bytes at “ << ptr << end];

return ptr;

void operator delete(void* ptr)

{

cout << “Custom operator delete” << endl;

std::free(ptr);

void* operator new (std::size_t count, void* ptr)

{

cout << “Custom placement new.” << endl;

int main(int argc, char** argv)

{

simpleClass *simpleClassPtr = new simpleClass(10);

cout << “simpleClassPtr at “ << simpleClassPtr << endl;

delete simpleClassPtr;

return 0;

Custom operator new. Allocating 4 bytes at 003A95B8

Constructing object with ID: 10
simpleClassPtr at 003A95B8

Custom operator delete

What did we do here?

We defined a custom class specific operator new by overriding it. In here we
simply allocate the required number of bytes using malloc and return the pointer
returned from malloc. We already saw that we can use malloc as operator new
replacement.

We also override operator delete. Since we are allocating memory with malloc
we must take care to deallocate it with free.

In the result output, we see new is calling our custom operator new, which
allocates 4 bytes and returns the pointer to the memory.

Then we see the constructor is being called.

As confirmation, we see that address of the memory allocated from our custom
operator new is the same as where the object was constructed.

Finally we call delete, which calls our overloaded version.

Also note how we defined a class specific placement new. It does nothing but a
printout and not even returning a void*. But see that it was not called by new. So
new doesn’t use placement new to construct the object.

So you see how we can easily customize the memory allocation routine by having class
specific operator new. What if you simply want to log, or do some other kind of
housekeeping in your custom operator new and not mess with the global operator new.
Just change your custom function as follows:

void* operator new(std::size_t size)

{
void * ptr = ::operator new(size); // calling global operator new
cout << “Custom operator new. Allocating “ << size << ” bytes at “ << ptr << endl;
return ptr;

}

Note that we called ::operator new, with global-scope specifier. This is important.
Otherwise our operator new would be calling itself recursively. And also in this case the
operate delete overload should call ::operate delete.

One more thing; how are we calling our class specific operator new without an
instantiation? We are calling it as if it were static function but we didn’t define it as static.
It’s because these allocation functions are indeed static. They are actually special
operators and are handled in a special way (we’ll learn more on this in the operator
overloading topic).

So let’s recap what we have done so far:
e We found out what the new operator does. It calls operator new and then calls the
constructor to create the object.

e We saw how operator new is simply allocating memory and returning a void*.
And that we could do the same with malloc.

e We used placement new to construct a new object on already allocated memory.

e We defined custom class specific operator new and saw how calling new calls our
custom operator new to allocate memory, and then calls the constructor as it
normally would.

We’ve covered a lot of ground on new. Let’s finish off this topic by looking at how we can
further customize the new behavior.

Let’s assume you want to do some housekeeping tasks before you construct new objects.
You don’t want to put these into the class constructor. You can simply overload placement
new with additional parameters. As an example:

#include<iostream>

using namespace std;

class simpleClass

{
int objID;
public:

simpleClass(int ID) // constructor

{
objID = ID;

cout << “Constructing object with ID: “ << objID << endl;

void* operator new(std::size_t size)

{
void * ptr = ::operator new(size); // calling global operator new
cout << “Custom operator new.” << endl;
return ptr;

}

void* operator new(std::size_t size, bool memoryFull, int objCount)
{

cout << “Custom placement new: Obj. count: “ << objCount << endl;

if (memoryFull)
{
cout << “Memory full!” << endl;

// call function to delete objects

}
//LogObjectCount(objCount); // do logging

return ::operator new(size);

void* operator new (std::size_t count, void* ptr)

{

cout << “Custom placement new.” << endl;

void operator delete(void* ptr)

{
cout << “Custom placement delete.” << end];

::operator delete(ptr);
}

int main(int argc, char** argv)
{
simpleClass *simpleClassPtrl = new simpleClass(10); // Line 1

simpleClass *simpleClassPtr2 = new (true, 1) simpleClass(20); // Line 2
delete simpleClassPtr1;
delete simpleClassPtr2;

return 0;

Custom operator new.

Constructing object with ID: 10
Custom placement new: Obj. count: 1
Memory full!

Constructing object with ID: 20
Custom placement delete.

Custom placement delete.

Not a very meaningful example but it can clarify some points.

e Line 1 calls new with no additional parameters. This calls the overloaded
operator new in the class. Then the class constructor is also called implicitly by
new.

e Line 2 passes a bool and an int to new. This matches with the custom overloaded
placement new we defined in the class. As there is a matching function, new first
calls this function to obtain a pointer to the memory. You can see the bool and the
int is properly passed to the placement new function.

e After calling the custom placement new and getting the memory, new then calls
the class constructor.

e Note how our regular placement new was never called. This shows again that
regular placement new will only be called if we pass a void* to allocated memory.

e Finally we see the custom operator delete is called.

Last thing to note is that placement new does not always needs to be passed a pointer.
Placement new is any overloaded version of operator new.

I hope this topic provided you with a solid understanding of what goes on behind new
operator and how you can overload the operator new allocation functions to get the
flexibility you need.

Topic 8

Understanding Constructors

Constructors. We all know what they are so let’s get right to it.

#include<iostream>

using namespace std;

class baseClass

{
public:
int objID;
baseClass()
{
cout << “(1) Default constructor” << objID << endl;
}
baseClass(int ID) // constructor
{
objID = 1D;
cout << “(2) Constructing base object with ID: “ << objID << endl;
}
b

class derivedClass : public baseClass

{
public:

derivedClass()
{

cout << “(3) Constructing derived object with default ID: “ << objID << end],;

derivedClass(int ID) : baseClass(ID)
{

cout << “(4) Constructing derived object with ID: “ << objID << endl;

derivedClass(float ID)
{

cout << “(5)C onstructing derived object with ID: “ << objID << endl;

int main(int argc, char** argv)

{
derivedClass dcObj1(); // Line 1
cout << “— Line 1 —” << end];
derivedClass dcObj2; // Line 2
cout << “— Line 2 —” << end];
derivedClass dcObj3(1); // Line 3
cout << “— Line 3 —” << end];
derivedClass dcObj4(2.0f); // Line 4
return 0;

}

— Line 1 —

(1) Default constructor-858993460

(3) Constructing derived object with default ID: -858993460
— Line 2 —

(2) Constructing base object with ID: 1

(4) Constructing derived object with ID: 1

— Line 3 —

(1) Default constructor-858993460

(5)C onstructing derived object with ID: -858993460

Let’s go through the steps quickly:

e The first output is “— Line 1 —”. This means line 1 of the code has not called the
constructor. Why is that? Well it doesn’t, because line 1 is not defining an object
of type derivedClass. For the compiler, line 1 is a function prototype. A function
named dcObj1, that returns a derivedClass object. So it does nothing but declare a
function prototype. So make sure you omit the parentheses!

e Line 2 instantiates an object by calling the default constructor. See, no
parentheses. This is how you call the default constructor. Remember that the
default constructor is the one with no arguments. There’s one more point to note
here. The variable objID is not initialized. We will discuss this in more detail
later, but just keep in mind that the compiler does not automatically initialize your
class variables.

e dcObj2 also shows how the baseClass constructor is called first and then the
derived class constructor. This is the most basic thing to know about constructors
and inheritance. Base class constructors are always called before the derived class
one.

e Also see that the derivedClass default constructor is not calling the base class
constructor explicitly. The compiler does this for you. It implicitly adds the call to
the base class default constructor before the function body.

e Line 3 instantiates an object with an int argument. And this constructor is
explicitly calling the baseClass constructor with the argument. You can see the
objID is now correctly initialized by the baseClass constructor.

¢ Finally in line 4 we call with the float argument. The thing to note here is that the
default constructor of the baseClass is explicitly called.

e The take aways here are: base class constructor is always called before the
derived class one, and if the derived class doesn’t explicitly call a base class
constructor in the initializer list, the compiler will always implicitly call the
default constructor. We will see why it is essential that we call the base class
constructor in the initializer list.

Calling base class contrsuctor

Let’s look at another example.

#include<iostream>

using namespace std;

class baseClass

{
public:
int objID;
baseClass()
{
cout << “(1) Default constructor” << objID << endl;
}
baseClass(int ID)
{
objID = ID;
cout << “(2) Constructing base object with ID: “ << objID << endl;
}
b

class derivedClass : public baseClass

{

public:
derivedClass(int ID)
{
baseClass(ID);
cout << “(4) Constructing derived object with ID: “ << objID << endl;
}
I8

int main(int argc, char** argv)
{
derivedClass dcObj(1);

return 0;

Description

€31 error C2082: redefinition of formal parameter '1D"

Note how I changed the call to the baseClass constructor in the derivedClass constructor?
Before we had it in the initializer list. Here I removed it from there and put it in the
function body. So why this error?

Because what is happening when we call baseClass(ID) inside the function is, the
compiler interprets it as a declaration of a baseClass type called ID. So with the argument
named ID in the parameter list, the compiler is complaining that we are redefining the
parameter ID. This happens because you are not allowed to call constructors directly, that
is, unless you do it in the initializer list.

Now just for fun, what do you think would happen if we had the derived class like this in
the example above?

class derivedClass : public baseClass
{
public:
derivedClass(int ID)
{
baseClass(1); // calling with an int

cout << “(4) Constructing derived object with ID: “ << objID << end];

(1) Default constructor-858993460
(2) Constructing base object with ID: 1
(4) Constructing derived object with ID: -858993460

So instead of passing parameter ID, we pass an int explicitly. You will see that it works.
This will call baseClass constructor. But why? Why did we get the error when we pass ID,
but not when we pass in an int? After all, ID is an integer.

The same thing as before happens. First, the compiler will try to interpret the call as a
declaration. In the previous example, baseClass(ID) is interpreted as “baseClass ID”. So
the compiler in that case attempted to make a baseClass type ID and found the
redefinition. But when we pass the integer it is interpreted as “baseClass 1”. And this
clearly cannot be a declaration, so the compiler constructs an unnamed baseClass object,
which will be destructed immediately.

Can you explain the output?

e Since there is no call to the base class constructor in the initializer list of derived
class constructor, the compiler adds a call to the base class default constructor.
Since no argument is passed objID is not initialized; that is why the garbage
value.

e The second output line corresponds to “baseClass(1)”, which, as we discussed,
creates a temporary baseClass object with value 1.

e The third output is the final cout statement in the derivedClass constructor.

OK, so we now know that we cannot call a base class constructor in the method body of a
derived class constructor. But how about calling a base class constructor in one of its own
constructors. Let’s do one.

In the simple example below we are calling the default constructor from the constructor
that takes an int. This isn’t doing anything meaningful but I just want to show you
something.

#include<iostream>

using namespace std;

class baseClass

{
public:
int objID;

baseClass()
{

cout << “(1) Default constructor” << objID << endl;

baseClass(int ID)
{
baseClass();
objID = ID;

cout << “(2) Constructing base object with ID: “ << objID << endl;

int main(int argc, char** argv)
{
baseClass bcObj(1);

return 0;

(1) Default constructor-858993460
(2) Constructing base object with ID: 1

Things look fine here. We are calling the constructor with the int argument, which first
calls the default constructor. The default constructor prints out objID, which is garbage,
but it is expected as we haven’t set the value yet; then the constructor sets the value of
objID and prints it out, which correctly prints out the expected value 1. Everything seems
OK so far. But let’s change the order of calling the default constructor. Let us first set the
objID value and call the default constructor, which I think makes more sense.

#include<iostream>

using namespace std;

class baseClass

{
public:
int objID;
baseClass()
{
cout << “(1) Default constructor” << objID << endl;
}
baseClass(int ID)

{

objID = ID;
baseClass();

cout << “(2) Constructing base object with ID: “ << objID << endl;

int main(int argc, char** argv)
{
baseClass bcObj(1);

return 0;

(1) Default constructor-858993460
(2) Constructing base object with ID: 1

What is going on here? Why isn’t the default constructor seeing the value we set for
objID? Is it because we need to initialize objID in the initializer list, and not in the method
body? Nope. Although we should be initializing it in the initializer list. Let’s define the
destructor and things will become a lot clearer.

#include<iostream>

using namespace std;

class baseClass

{

public:
int objID;
baseClass()
{

cout << “(1) Default constructor” << objID << endl;

baseClass(int ID) // constructor
{

objID = ID;

baseClass();

cout << “(2) Constructing base object with ID: “ << objID << endl;

~baseClass()
{

cout << “(3) Default destructor” << objID << endl;

int main(int argc, char** argv)
{
baseClass bcObj(1);

return 0;

(1) Default constructor-858993460

(3) Default desstructor-858993460

(2) Constructing base object with ID: 1
(3) Default destructorl

Do you see what is happening here?

First, the default constructor is called and immediately after that, the destructor is called.
What?

What is happening here is that the call “baseClass()” is constructing an unnamed
baseClass object and then the compiler destroys it immediately. And then the compiler
goes on to execute the rest of the statements in the constructor. So we are not calling the
default constructor of the this object. We are calling it on another object, an unnamed
temporary one, that gets destroyed in the very next line, without serving any purpose. So
is this any different from what we saw in the case of the derived class constructor calling
the base class constructor? No. It is the same thing. You simple cannot call a constructor in
the method body. Why then, did we get an error in the previous case and not in this one?
Because we were calling the default constructor, no arguments. The following example
should make it clear.

#include<iostream>

using namespace std;

class baseClass
{
public:

int objID;

baseClass()
{

cout << “(1) Default constructor” << objID << endl;

baseClass(int ID) // constructor

{
objID = ID;

cout << “(2) Constructing base object with ID: “ << objID << endl;

baseClass(int ID1, int ID2) // constructor
{
baseClass(ID1);

cout << “(3) Constructing base object with ID: “ << objID << endl;

int main(int argc, char** argv)
{
baseClass bcObj(12);

return 0;

Description

€91 error C2082: redefinition of formal parameter 'TD1°

I’m sure you don’t need any further explanation.

So the bottom line is, you cannot call a constructor directly, ever. The only way you can
do it is in the initializer list. Like this.

#include<iostream>

using namespace std;

class baseClass

{
public:

int objID;

baseClass()

cout << “(1) Default constructor” << objID << endl;

baseClass(int ID) : baseClass()

{
objID = ID;

cout << “(2) Constructing base object with ID: “ << objID << endl;

baseClass(int ID1, int ID2) : baseClass(ID1)
{

cout << “(3) Constructing base object with ID: “ << objID << endl;

int main(int argc, char** argv)
{
baseClass bcObj(1, 2);

return 0;

(1) Default constructor-858993460
(2) Constructing base object with ID: 1
(3) Constructing base object with ID: 1

Constructor delegation

The type of constructors that call other constructors (in the initializer list, of course), are
called delegating constructors, for obvious reasons. But there is a limitation in delegating
constructors. You cannot do any other initialization in the initializer list. That is, you
cannot do something like this:

baseClass(int ID) : baseClass(), objID(ID)
{

cout << “(2) Constructing base object with ID: “ << objID << endl,

The compiler will dutifully let you know this fact.

Description

€91 error C3511: 'baseClass' : a call to a delegating constructor shall be the only member-initializer

€9 2 error C2437: 'objID' : already initialized

Delegating constructors can be very efficient in eliminating code repeat in similar
constructors, but with a small restriction, of course.

Member initialization

In the examples above we saw how the member variable objID has to be initialized in the
constructor explicitly and the compiler will not do that for us. So how exactly are member
variables initialized by the compiler? Let’s start with a very simple one.

#include<iostream>

using namespace std;

class baseClass

{
public:

int objID;
b

int main(int argc, char** argv)

{
baseClass bcObyj;
cout << “bcObj.objID: “ << bcObj.objID << endl;
return 0;

}

bcObj.objID: 4114384

Here we are not defining any constructor. We let the compiler generate one for us. But in
reality even the compiler wouldn’t provide one, actually. Because we only have one
integer member variable and the compiler doesn’t need to do anything about it. So here we
see that the integer is indeed left alone. No initialization is done. Make sure you initialize
variables before using; uninitialized variables have undefined behavior.

Let’s add a bit more context.

#include<iostream>

using namespace std;

class baseClass

{
public:

int baseClassObjID;
b

class anotherClass

{
public:
int anotherClassObjID;
baseClass baseClassObj;
b

int main(int argc, char** argv)

{
anotherClass acObj;
cout << “anotherClassObjID: “ << acObj.anotherClassObjID << endl;
cout << “baseClassObjID: “ << acObj.baseClassObj.baseClassObjID << endl;
return 0;
}

anotherClassObjID: -858993460
baseClassObjID: -858993460

Here too, as expected, the integer member variables are not being initialized. Now what if
the baseClass has a default constructor defined?

#include<iostream>

using namespace std,;

class baseClass

{

public:
int baseClassObjID;
baseClass()
{

baseClassObjID = 1;

cout << “baseClass constructor” << endl;

class anotherClass

{
public:
int anotherClassObjID;
baseClass baseClassObj;
b

int main(int argc, char** argv)

{
anotherClass acObj;
cout << “anotherClassObjID: “ << acObj.anotherClassObjID << endl;
cout << “baseClassObjID: “ << acObj.baseClassObj.baseClassObjID << endl;
return 0;
}

baseClass constructor
anotherClassObjID: -858993460
baseClassObjID: 1

Here we see that the baseClass default constructor is being called implicitly by the
compiler. Why? Remember I said earlier that the compiler isn’t even generating a default
constructor when we had only the integer member variable? But in this case, the compiler
definitely generates a default constructor for anotherClass. This is because it has a
member variable that has a default constructor defined. So the compiler is obliged to call
it. This is the difference between a class type member variable and a POD like the integer.
For a POD, the compiler is not going to do any initialization. But for a class type, if there
is a default constructor defined, the compiler must call it to initialize.

So here we had a default constructor defined for baseClass. What if it had a constructor
with parameters?

#include<iostream>

using namespace std;

class baseClass

{
public:
int baseClassObjID;

baseClass(int ID)

{
baseClassObjID = ID;

cout << “baseClass constructor” << endl,;

class anotherClass

{
public:
int anotherClassObjID;
baseClass baseClassObj;
b

int main(int argc, char** argv)

{
anotherClass acObj;
cout << “anotherClassObjID: “ << acObj.anotherClassObjID << endl;
cout << “baseClassObjID: “ << acObj.baseClassObj.baseClassObjID << endl;
return 0;
}

Description

€31 error C2512: 'anotherClass' : no appropriate default constructor available

Compiler complains about the lack of a default constructor for anotherClass. What’s
happening is that the compiler sees that there is a constructor defined for baseClass. It is
not a default constructor, so it must be called explicitly. Compilers will never call non-
default constructors (well, it doesn’t know what the arguments are to call anyway). But the
compiler sees that there is no constructor in anotherClass that calls the baseClass
constructor and emits the error. So if your member variable has a non-default constructor,
your enclosing class must have a constructor that initializes the member class object.

What if you defined a constructor for anotherClass, but it doesn’t call the baseClass
constructor? Something like this:

class anotherClass

{

public:
int anotherClassObjID;
baseClass baseClassObj;

anotherClass()

{
anotherClassObjID = 2;

Description

€31 error C2512: 'baseClass' : no appropriate default constructor available

It’s the same problem. Because this is the same error we saw when we had a derived class
with a base class that had no default constructor. We saw in the case of derived class
constructors that we always need to call the base class constructor from the initializer list.
And if we don’t initialize the base class, the compiler will try to do that before entering the
constructor body. But the compiler can only call the default constructor. And if there is no
default constructor, it complains.

If there is a class-type member variable with a constructor, the compiler needs to make
sure it is called. If it is not called explicitly in the program, it tries to invoke the default
constructor. If there is no default constructor, it will not compile.

Another thing to note here. We saw before that the compiler will generate a default
constructor if one is required (for example when there is a class member variable with a
constructor). But you need to remember that if there is a constructor defined by the user,
the compiler will never generate a default constructor. That is why the compiler is
complaining that baseClass doesn’t have a default constructor. Because there is a non-
default constructor. So the compiler will not generate one for us.

Now how would you get around a situation like this? You have your baseClass, that has a
constructor that takes an integer. This is how you intend to initialize your baseClass. How
can you avoid errors for other classes which want to have baseClass as a member? Like
anotherClass. Of course it becomes anotherClass’s responsibility to initialize baseClass as
it is intended. But if your implementation can allow it, you can simply provide default
values to your constructor parameters and the problem will go away.

#include<iostream>

using namespace std;

class baseClass

{
public:

int baseClassObjID;

baseClass(int ID = 1)
{

baseClassObjID = ID;

cout << “baseClass constructor” << endl,;

class anotherClass

{

public:
int anotherClassObjID;
baseClass baseClassObj;
anotherClass()
{

anotherClassObjID = 2;

}

b

int main(int argc, char** argv)

{
anotherClass acObj;
cout << “anotherClassObjID: “ << acObj.anotherClassObjID << endl;
cout << “baseClassObjID: “ << acObj.baseClassObj.baseClassObjID << endl;
return 0;
}

baseClass constructor
anotherClassObjID: 2
baseClassObjID: 1

See, no problem. When we gave a default value, the compiler can call it as it would a
default constructor.

Let’s look at two things quickly.

e Can you have a base class instance as a member variable in the derived class?

#include<iostream>

using namespace std;

class derivedClass;

class baseClass

{

public:

int objID;
baseClass()
{
cout << “(1) Default constructor” << objID << endl;
}
baseClass(int ID)
{
objID = ID;
cout << “(2) Constructing base object with ID: “ << objID << endl;
}

class derivedClass : public baseClass

{
public:
baseClass baseClassObj;
derivedClass() : baseClass(), baseClassObj()
{}
derivedClass(int ID) : baseClass(ID), baseClassObj(ID)
{
cout << “(3) Constructing derived object with ID: “ << objID << endl;
}
b

int main(int argc, char** argv)
{
derivedClass dcObj(9);

return 0O;

(2) Constructing base object with ID: 9
(2) Constructing base object with ID: 9
(3) Constructing derived object with ID: 9

So yes, you can. No problem.

e What about a derived class instance in the base class then?

#include<iostream>

using namespace std;

class derivedClass;

class baseClass

{
public:
int objID;
derivedClass *derivedClassObj;
baseClass();
baseClass(int ID)
{
objID = ID;
cout << “(2) Constructing base object with ID: “ << objID << endl;
}
b

class derivedClass : public baseClass

{
public:
derivedClass()
{}
derivedClass(int ID) : baseClass(ID)
{
cout << “(3) Constructing derived object with ID: “ << objID << end];
}
|5

baseClass::baseClass()
{

cout << “(1) Default constructor” << objID << endl;

derivedClassObj = new derivedClass();

int main(int argc, char** argv)

{

derivedClass dcObj;

return 0;

Note that the derived class is a pointer, not an instance as we had with the base class in the
previous example. This is because we cannot define an instance in the baseClass, because
at that point derivedClass is not defined yet. We can use a pointer, with a forward
declaration at the top, and move the definition of the constructor after the definition of the
derivedClass. We will discuss more on this in another topic.

This will compile and run. But what happens? It will be stuck in an infinite loop.
derivedClass is inherited from baseClass, so it has an instance of baseClass in itself. And
this baseClass instance will have a derivedClass instance in, and so on. So you cannot
have a derived class instance in the base class.

So what have we learned so far:

¢ If no default constructor (constructor with no arguments) is defined, the compiler
will generate one (if required).

e If a constructor is defined, default or otherwise, the compiler will not generate
any constructor (even if required).

e The compiler will not initialize any member variable that is a POD. They must be
initialized explicitly by a constructor we define.

o If there are class-type member variables that have constructors of their own, they
will be initialized by the compiler by calling the default constructors. This is
important. If there is no default constructor for the class, the compiler will
generate one, and this compiler generated constructor will call default
constructors of the member classes. If there is a constructor defined, and this
constructor is not initializing the member classes by calling their constructors,
then the compiler will implicitly call the default constructors. Remember, the
compiler can only call default constructors by itself. If the member classes have
no default constructors, they need to be initialized explicitly, otherwise there will
be compiler errors.

e Base class constructors and member class constructors must be called in the
initializer list. Because the initializer list is the only place you can call a
constructor.

Member initialization overhead

So is there any situation where we can initialize a class-type member in the constructor
body and not in the initializer list? Yes, but you may not want to do it. Then what are the
other options? Consider this:

#include<iostream>

using namespace std;

class baseClass

{
public:
int baseClassObjID;
baseClass()
{
baseClassObjID = 99;
cout << “(1) baseClass constructor:” << baseClassObjID << end];
}
baseClass(int ID)
{
cout << “(2) baseClass constructor: “ << baseClassObjID << endl;
baseClassObjID = ID;
cout << “(3) baseClass constructor: “ << baseClassObjID << endl;
}
baseClass & operator =(const baseClass & baseClassObj)
{
baseClassObjID = baseClassObj.baseClassObjID;
cout << “(4) baseClass assignment operator: “ << baseClassObjID << endl;
return *this;
}
~baseClass()
{
cout << “Destructor for object: “ << baseClassObjID << end];
}
b

class anotherClass

{

public:

int anotherClassObjID;
baseClass baseClassObj;

anotherClass(int ID)

{
baseClassObj = ID;
anotherClassObjID = 2;

int main(int argc, char** argv)
{
anotherClass acObj(5);

return 0;

(1) baseClass constructor:99

(2) baseClass constructor: -858993460
(3) baseClass assignment operator: 5
(4) Destructor for object: 5

(4) Destructor for object: 5

What are we doing here? We are passing an int argument to the anotherClass constructor
and this argument is then assigned to the baseClass member. Let’s go through the output:

e Line 1 of the output is when the default constructor for baseClass is called.
Where is this called? This is called in the anotherClass constructor. And this is
called implicitly by the compiler. Why? Because as I said before, if there is a
member class that has a default cosntructor defined, the compiler is obliged to
call it, if and only if, there is no call to the constructor in the initialize list. We are
not doing any initializing in the initializer list of anotherClass constructor, so the
compiler is calling the default constructor for baseClassObj.

e Now we are inside the anotherClass constructor body and executing the
assignment. We saw in the topic on Constructors that in this case, what the
compiler does is create a temporary class with the argument ID and then pass this
temporary object to the baseClassObj assignment operator. That is what you see
in line 2 of the output. It is creating a temporary object by calling the constructor
with the int argument. I did two printouts to show that we are dealing with
different objects. So in output line 2, baseClassObjID is not initialized, proving
that this is not the baseClassObj member, but a new temporary.

e Line 3 of the output is the assignment operator. The new temporary that was
created before is passed to the assignment operator of baseClassObj. Now
baseClassObj is set with value 5. This is what we intended to do.

e Then there are two invocations of the destructor. The first one for the temporary
we created to pass to the assignment operator, and the other when acObj went out
of scope.

Now compare that with what happens if we do this in the initializer list:

#include<iostream>

using namespace std;

class baseClass

{
public:
int baseClassObjID;
baseClass()
{
baseClassObjID = 99;
cout << “(1) baseClass constructor:” << baseClassObjID << endl;
}
baseClass(int ID)
{
cout << “(2) baseClass constructor: “ << baseClassObjID << endl;
baseClassObjID = ID;
}
baseClass & operator =(const baseClass & baseClassObj)
{
baseClassObjID = baseClassObj.baseClassObjID;
cout << “(3) baseClass assignment operator: “ << baseClassObjID << endl;
return *this;
}
~baseClass()
{
cout << “(4) Destructor for object: “ << baseClassObjID << endl;
}
b

{

class anotherClass

public:

int anotherClassObjID;
baseClass baseClassObj;

anotherClass(int ID) : baseClassObj(5) // <— In the initializer list
{

anotherClassObjID = 2;

int main(int argc, char** argv)
{
anotherClass acObj(5);

return 0;

(2) baseClass constructor: -858993460

(4) Destructor for object: 5

See the difference? When we do this in the initializer list it directly calls the constructor
with the argument. We save a lot of steps here. First, there is no call to the default
constructor and then there is no construction and destruction of the temporary object. So
always try to initialize in the initializer list. It is much more efficient.

We looked at many different scenarios of constructors and I believe now you have a solid
grasp on constructors. Just a few more things to talk about.

Const and reference members

We saw earlier that member variables such as integers are not initialized and also that base
classes must be initialized in the initializer list. These add a restriction to const variables
and references. You see, if you have consts or references as members, you must initialize
them in the initializer list. You cannot omit the initialization as you would for a class-type
variable and expect the compiler to do it, nor can you initialize them in the constructor
body.

#include<iostream>

using namespace std;

class baseClass
{
public:
int intVar;
const float floatVar;

int &intRefVar;

baseClass()
{

cout << “(1) Default constructor” << endl;

int main(int argc, char** argv)

{
baseClass bcObj;
cout << “objID: “ << bcObj.intVar << end];
return 0;

}

Description

€31 error C2758: 'baseClass:doubVar' : a member of reference type must be initialized
€39 2 error C2758: 'baseClass:intRefVar' : a member of reference type must be initialized

You get a compiler error that you need to initialize the const and the reference. And you
cannot do this either.

#include<iostream>

using namespace std;

class baseClass

{
public:
int intVar;
const float floatVar;
int &intRefVar;
baseClass()
{
intVar = 1;
floatVar = 2.0f;
intRefVar = intVar;
cout << “(1) Default constructor” << endl;
}
5

int main(int argc, char** argv)
{
baseClass bcObj;
cout << “objID: “ << bcObj.intVar << end];

return O;

The const and the reference must be ‘explicitly’ initialized in the initializer list. And what
if you don’t define any constructor?

#include<iostream>

using namespace std;

class baseClass

{

public:
int intVar;
const float floatVar;
int &intRefVar;

b

int main(int argc, char** argv)
{
baseClass bcObj;

return 0;

Description
€91 error C2512: 'baseClass' : no appropriate default constructor available
No again. When you have a const or a reference you must define a constructor, and you

must initialize them and you must do it in the initializer list. So this is how you need to
write this.

#include<iostream>

using namespace std;

class baseClass

{

public:
int intVar;
const float floatVar;
int &intRefVar;

baseClass() : intVar(1), floatVar(2.0f), intRefVar(intVar)
{

cout << “Default constructor” << endl;

int main(int argc, char** argv)

{
baseClass bcObj;
cout << “floatVar: “ << bcObj.floatVar << endl;
cout << “intRefVar: “ << bcObj.intRefVar << endl;
return 0;

}

Default constructor
floatVar: 2
intRefVar: 1

So that’s about all there is to it with consts and references. Just remember to initialize
them.

Member initialization order

The other little tidbit I need to discuss about the initializer list is the order of initialization.
A simple example is sufficient.

#include<iostream>

using namespace std;

class baseClass

{
public:
int baseClassObjID;
baseClass(int ID)
{
baseClassObjID = ID;
cout << “baseClass constructor: “ << baseClassObjID << end];
}
b

class anotherClass

{
public:

baseClass baseClassObj1;
baseClass baseClassObj3;
baseClass baseClassObj2;

anotherClass(int varl, int var2, int var3) : baseClassObj1(var1l), baseClassObj2(var2), baseClassObj3(var3)
{}

int main(int argc, char** argv)
{
anotherClass acObj(1, 2, 3);

return 0;

baseClass constructor: 1
baseClass constructor: 3

baseClass constructor: 2

Did you notice something in the output? It’s constructing baseClassObj1, then
baseClassObj3, and then baseClassObj2. But in the initializer list we initialize
baseClassObj1 first, baseClassObj2 second and finally baseClassObj3. This is because
the compiler always initializes member variables in the order they were defined. Not in the
order they are initialized in the initializer list. See how we have defined baseClassObj1,
then baseClassObj3 and then baseClassObj2. So the constructor initializes them in that
order. And then the destructor destructs them in the reverse order. This fact might not have
any effect on an initialization like this, but if you have member variables which are
initialized with relation to another variable, then this fact becomes very crucial.

One final thing about constructors and initialization: “value initialization”. Since C++11
you can initialize your class members without explicitly doing it in the constructor. Like
this:

#include<iostream>

using namespace std;

class baseClass

{

public:
int varl;
int var2;

int var3;

int main(int argc, char** argv)

{
baseClass bcObj = { 10, 20, 30 };
cout << “varl: “ << bcObj.varl << endl;
cout << “var2: “ << bcObj.var2 << endl;
cout << “var3: “ << bcObj.var3 << endl;
return 0;

}

varl: 10

var2: 20

var3: 30

Simple. You just define the values you want your member variables to be initialized as
inside braces and the compiler does it for you. Pretty neat. So that means we don’t need to
initialize them in the initializer list, right? Not so fast.

#include<iostream>

using namespace std;

class baseClass

{
public:
int varl;
int var2;
int var3;
baseClass()
{
cout << “Constructor” << endl;
}
b

int main(int argc, char** argv)
{
baseClass bcObj = { 10, 20, 30 };

cout << “varl: “ << bcObj.varl << end];

cout << “var2: “ << bcObj.var2 << endl;
cout << “var3: “ << bcObj.var3 << endl;

return 0;

Description

€91 error C2440: 'initializing' : cannot convert from 'initializer-list' to 'baseClass'

You see, if you define a constructor then the compiler is not going to do the initialization
for you. It makes sense, right? If you are defining a constructor you do that to initialize the
object. So you should initialize them. So when you implement your constructor, the
compiler backs off and doesn’t involve in your business of initialization.

That was pretty lengthy but we covered a lot of ground here. I believe you gained quite a
bit of insight as to how constructors are working.

Topic 9

Forward Declarations,
Compiling and Linking

Sometimes we take things for granted. If you are using an IDE, like Visual Studio or
Eclipse, you build your project and run it, never thinking about compiling and linking. But
these two steps happen all the time and it’s useful to understand its basics.

Function forward declaration

Let’s start simple.

#include<iostream>

using namespace std;

void printFunction(int var); // forward declaration

class simpleClass

{
public:
int var;
simpleClass(int value)
{
var = value;
printFunction(var);
}
b

void printFunction(int var)

{

cout << “Passed value is: “ << var << endl;

int main(int argc, char** argv)
{
simpleClass(10);

return 0O;

Passed value is: 10

This program isn’t doing anything meaningful. We instantiate an object by passing it an
integer, and the constructor passes this value to printFunction to print it, or do whatever it

does.
These are the starting points:

e Before the start of the class definition we have forward declared the function.
This is the function prototype.

e The simpleClass constructor calls printFunction and passes it the integer. It’s
important to understand that at this point, the compiler does not know the
definition of the printFunction. It simply knows that there is a function by that
name and it takes an integer argument and returns nothing. Comment out the
forward declaration at the top and you will get this:

Description

€31 error C3861: 'printFunction’: identifier not found

So you see, you get a compiler error, even though we have defined the function
(after the class definition), the compiler isn’t aware of it. This is because the
compiler is going through the code sequentially. So when it is in the constructor it
has no idea that the function definition is right below it. Go ahead and uncomment
the forward declaration now.

e Now keep the forward declaration and comment out the entire function definition.
You should get en error like this:

Description +

1 error LNE2001; unresolved external symbol "void _cdecl printFunction{int)” (¥
¥ E P
printFunction@@YAXHDZ)

(%)2 error LNK1120: 1 unresolved externals

This is a linker error. Earlier it was a compiler error. It is important to note the
difference. Linking is something that happens after compiling. So here we know
that our code compiled fine. But it couldn’t link. The linker errors aren’t as
friendly as compiler errors. But you can make out that it is complaining about the
printFunction.

Before we go any further it’s important to understand the compiling and linking a little bit.
The figure below shows a very basic mechanism of compiling and linking.

simpleClass.cpp Source file

N
B

simpleClass.obj Object file

1)

simpleClass.exe Executable file

Your source file with the code is first analyzed by the compiler. This is where errors such
as syntaxes, definitions, etc. are found. The compiler then generates an object file. If you
are using a Unix environment it will be an .o file, or if you are using Visual Studio it
would be an .obj file. This object file is then sent to the linker, which outputs the
executable file. In the example we did so far we had only one source file. But note that we
are making use of the <iostream> library. This is where the linker does its work. You see,
the object file contains placeholders. These placeholders are for variables or methods
which are not defined in the source file itself. What the linker does is take this object file
and fill the placeholders with other object files. Let’s modify our example to see this in
action.

We will have our main file as follows:

//main.cpp
#include<iostream>

using namespace std;

void printFunction(int var); // forward declaration

class simpleClass
{
public:
int var;
simpleClass(int value)
{
var = value;

printFunction(var);

int main(int argc, char** argv)
{
simpleClass(10);

return 0;

Note that we have the forward declaration for ‘printFunction’ but the definition is not
there. Now compile this. If you are using Visual Studio you can do “Ctrl+F7”, or you can
do it through Visual Studio command prompt. You can compile by

CL /c main.cpp

This will create a main.obj file. If you are using an Unix environment you can do

g++ main.cpp main.o

You will see that you get no errors. If you try to build this program, however, you will get
the linker error we encountered before. So now you know that the compiler is happy with
this program, but the linker is not.

So why does the compiler have no complaints, but the linker is throwing an error?
Because you see, the compiler is perfectly happy with the forward declaration. The
compiler is confident that there is a function named printFunction defined somewhere and
this function takes an int argument and returns void. The compiler trusts you when you
forward declared the function. From the compiler’s point of view it does not need to know
anything more. It simply puts a placeholder where we call the printFunction that says
something like “add the printFunction address here” and creates the object file.

Now it becomes the linker’s job to find where the definition of printFunction is and fill
that placeholder. But you see we have not defined the function anywhere. So the linker
naturally complains.

Now let’s go ahead and define it. But this time, let’s do it in a separate file. Call it
printFunction.cpp. It should just have the definition we had before in our main.cpp file.

//printFunction.cpp
#include<iostream>

using namespace std;

void printFunction(int var)

{

cout << “Passed value is: “ << var << endl;

Now if you build the project you will see that it compiles and links and runs without any
issues. So you know that the linker found it and ‘linked’. But let’s take it step by step.

What we want to do now is to compile the printFunction.cpp. Do what we did before.

CL /c printFunction.cpp

This should create a printFunction.obj or an .o file, depending on your environment.
Again, you see that the compiler has no issues. What we want to do now is to link our two
object files. Let’s first pass only main.obj to the compiler and see what it thinks.

LINK main.obj

You should see the same linker error we got before. So now you have an idea of what
happens when you build a project in Visual Studio. It does compiling and linking both in
one step for you. So you see the linker is not happy with the information it has. Or the lack
of it.

Let’s give the linker more information to work with.

LINK main.obj printFunction.obj

You will see that the linker has no complaints now. It creates the executable file. Because
now we passed the printFunction object file the linker can now fill the printFunction
placeholder in the main.obj file with the function definition in printFunction.obj.

What we discussed here is the very basic functionality of the compiler and linker but it
should give you an understanding of what is happening behind the scenes.

Forward declaring class-types

Now let’s look at this slightly differently. Instead of a function, we will define a class. Our
main file will be like this:

// main.cpp
#include<iostream>
using namespace std;

class fwdDeclClass; // forward declaration

class simpleClass

{

public:
fwdDeclClass fwdDeclClassObj;
simpleClass() : fwdDeclClassObj()
{}

b

int main(int argc, char** argv)
{
simpleClass simpleClassObj;

return 0O;

And we will define our fwdDeclClass like this.

// fwdDeclClass.cpp
#include<iostream>

using namespace std;

class fwdDeclClass

{

public:
fwdDeclClass()
{

cout << “fwdDeclClass cosntructor” << endl,;

Now try to compile your main.cpp. You will get an error similar to:

Description *

[2 IntelliSense: incomplete type is not allowed
€91 error C2079: 'simpleClass:fwdDeclClassObj' uses undefined class ‘fwdDeclClass’

The compiler is basically complaining about using an undefined class. But why? Let’s go
ahead and try to compile our fwdDeclClass.cpp. You should see no errors. It should
compile fine. So then, why is our main.cpp refusing to compile? Why is it complaining
that fwdDeclClass is undefined when we have forward declared it? OK, let’s change our
simpleClass so that instead of a fwdDeclClass instance it has a pointer to a fwdDeclClass.

#include<iostream>

using namespace std;

class fwdDeclClass; // forward declaration

class simpleClass

{

public:
fwdDeclClass *fwdDeclClassPtr;
simpleClass()
{}

b

int main(int argc, char** argv)
{
simpleClass simpleClassObj;

return 0O;

This should compile fine. In fact, you can build and run. The question is why the compiler
couldn’t work with the forward declaration when we had a member class object, but it is
fine with a pointer to that class?

The reason is, the compiler doesn’t need to know anything about the class to have a
pointer. A pointer occupies the same memory space regardless of its type. A pointer to

fwdDeclClass and a pointer to an integer are both of same size. So the compiler can
allocate memory to the fwdDeclClass pointer without having to know its implementation.
This is the same case when we forward declared a function. The compiler only needed to
know the function signature to check the syntax and put a placeholder for the linker.
That’s all the compiler had to do with the function call, and the forward declaration
provided the necessary information.

But this is not the case when we have a class object. When we have a class object as a
member, the compiler must know about the class composition because it needs to allocate
memory for it. That object is going to be part of the class itself. So the compiler needs to
know about fwdDeclClass to instantiate it inside simpleClass. And the compiler cannot do
this with just the forward declaration. It contains no information other than that there is a
class by the name fwdDeclClass.

This will become clearer when you modify the simpleClass constructor to initialize the
fwdDeclClassPtr.

#include<iostream>

using namespace std;

class fwdDeclClass; // forward declaration

class simpleClass

{
public:
fwdDeclClass *fwdDeclClassPtr;
simpleClass()
{
fwdDeclClassPtr = new fwdDeclClass();
}
|5

int main(int argc, char** argv)
{
simpleClass simpleClassObj;

return O;

Description *

[2 IntelliSense: incomplete type is not allowed
o plete typ
€31 error C2512: ‘fwdDeclClass' : no appropriate default constructor available

Can you see why now? We are trying to initialize fwdDeclClassPtr with an instance of
fwdDeclClass and you can see why this is going to be a problem for the compiler. The
compiler knows nothing about fwdDeclClass. It doesn’t know whether fwdDeclClass has
a default constructor or not. Now if you just include “fwdDeclClass.cpp” to main.cpp the
compiler errors will be gone (usually you would have fwdDeclIClass in a .h header file).

#include<iostream>
using namespace std;

#include “fwdDeclClass.cpp”

class simpleClass

{

public:
fwdDeclClass *fwdDeclClassPtr;
fwdDeclClass fwdDeclClassObj;

simpleClass(int value) : fwdDeclClassObj()

{
fwdDeclClassPtr = new fwdDeclClass();

~simpleClass()

{
delete fwdDeclClassPtr;

int main(int argc, char** argv)
{
simpleClass simpleClassObj;

return O;

fwdDeclClass cosntructor

fwdDeclClass cosntructor

Before we finish this topic off let me ask this. What if we have an undefined function in
the class? We saw earlier that if we call this function, then we’d have a linker error. But
what if we don’t call this function in the code? Would there still be errors? Let’s find out
quickly.

#include<iostream>

using namespace std;

class simpleClass

{
public:

int var;

simpleClass(int value)

{

var = value;

memberFunc(var); // <— Line A

void memberFunc(int var);

int main(int argc, char** argv)
{
simpleClass(10);

return 0;

Try compiling and then running the code above. You’d see that it compiles fine but does
not link. That is because we have declared the memberFunc in the class so the compiler is
aware of it. But there is a linker error and we know why. Because there is no definition for
the function. Now what would happen if we comment out line “A”? That is, we don’t call
our memberFunc anywhere in the code. You will see that neither the compiler nor the
linker has any problems. It compiles and runs. So you see, if we are not calling a function
we don’t need to provide its definition. It is when we call them that the linker starts
looking for the implementation.

Did you notice something odd about the code above? Did you notice that the declaration
of memberFunc is after the call to the function in the constructor? Shouldn’t we get an
“identifier not found” compiler error, because the compiler is not aware of memberFunc
when in the constructor? Well, in C++, classes are compiled differently. The compiler
actually goes through the class twice. The first time it will look for all of the declarations
(including defined ones) available, and then in the next round it will perform the
compilation.

So those are the very fundamentals of forward declaration and linking. You see forward
declaration doesn’t always work. It only works when the declaration provides the compiler
enough information to compile.

Topic 10

Copy Constructor and Object Cloning

We discussed copy constructors before but in this topic we’ll look at their functionality in
more detail and see how we can clone objects.

Class member copy

Let’s start simple.

#include<iostream>

using namespace std;

class simpleClass

{
public:
int val;
simpleClass(int value)
{
val = value;
cout << “SimpleClass constructor: “ << val << endl;
}
b

class anotherClass

{
public:
int var;
int* varPtr;
simpleClass simpleObj;
anotherClass(int value) : var(value), varPtr(&var), simpleObj(value)
{
cout << “anotherClass constructor: “ << var << endl;
}
|5

int main(int argc, char** argv)
{
anotherClass anotherObj1(10);

anotherClass anotherObj2(anotherObj1);

cout << endl;

cout << “anotherObject2.simpleObj.val: “ << anotherObj2.simpleObj.val << end];
cout << “anotherObject2.var: “ << anotherObj2.var << end];

cout << “*anotherObject2.varPtr: “ << *anotherObj2.varPtr << endl;

return 0;

SimpleClass constructor: 10

anotherClass constructor: 10

anotherObject2.simpleObj.varl: 10
anotherObject2.var: 10
*anotherObject2.varPtr: 10

We aren’t doing much here. We have two classes, simpleClass and anotherClass.
simpleClass is a member of anotherClass. There is an int pointer in anotherClass that
points to its own var. We are instantiating anotherObj1 and then use that instance to create
anotherObj2. We print out the values of anotherObj2 and we see that it has copied the
correct values for not only anotherClass member but also the simpleClass::val. Everything
looks nice and dandy. The compiler generated copy constructor seems to have done a
superb job, or has it?

Actually, it is an absolute disaster. Let’s just print out the pointers of the two objects and
you will see.

int main(int argc, char** argv)

{
anotherClass anotherObj1(10);
anotherClass anotherObj2(anotherObj1);

cout << endl;
cout << “anotherObject1.varPtr: “ << anotherObj1l.varPtr << endl;
cout << “anotherObject2.varPtr: “ << anotherObj2.varPtr << endl;

return O;

SimpleClass constructor: 10

anotherClass constructor: 10

anotherObject1.varPtr: 0029FD90
anotherObject2.varPtr: 0029FD90

Here we are printing out the pointer addresses, not what it points to as we did before. And
you see they are the same. What does that mean? Yes, it means they are both pointing to
the same variable! Can you see how this is absolutely not what we’d want? What we
wanted was just to copy the values of anotherObj1, but we wanted an independent object.
Not one that is tied to the original. Can you see how this can go wrong in so many ways?

Let’s see some examples. (I have omitted the class definitions. They do not change.)

e Disaster #1:

int main(int argc, char** argv)

{

anotherClass anotherObj1(10);
anotherClass anotherObj2(anotherObj1);

cout << endl;

cout << “anotherObjectl.var: “ << anotherObjl.var << end];

cout << “*anotherObject1.varPtr: “ << *anotherObjl.varPtr << endl;
cout << “anotherObject2.var: “ << anotherObj2.var << end];

cout << “*anotherObject2.varPtr: “ << *anotherObj2.varPtr << endl << endl;

anotherObj1.var = 20;

cout << “anotherObjectl.var: “ << anotherObj1l.var << endl;

cout << “*anotherObject1.varPtr: “ << *anotherObj1l.varPtr << endl;

cout << “anotherObject2.var: “ << anotherObj2.var << end];

cout << “*anotherObject2.varPtr: “ << *anotherObj2.varPtr << endl << endl;

return 0O;

anotherObject1.var: 10

*anotherObject1.varPtr: 10

anotherObject2.var: 10

*anotherObject2.varPtr: 10

anotherObject1.var: 20

*anotherObject1.varPtr: 20
anotherObject2.var: 10
*anotherObject2.varPtr: 20

anotherObject1.var: 30
*anotherObject1.varPtr: 30
anotherObject2.var: 10
*anotherObject2.varPtrPtr: 30

In the first part of the printout we see that var of both objects have a value of 10, which is
what we expect, and the two dereferenced pointers are also 10s. So far things look right.
Then we see how things go horribly wrong in the second part of the printout. What we do
is to change var of anotherObj1 to 20. What we would expect is varPtr of anotherObj1 to
have a value of 20, and we expect absolutely no change in anotherObj2. But that is not
what we are seeing. Then in the third part, we dereference varPtr of anotherObj2 and
change the value. And this changed the var of anotherObj1. This is madness!

So these two objects are acting completely against our expectations. varPtr is not pointing
to var of this object. It is pointing to var of anotherObjl. That means every time we
change varPtr of one object, it affects the other too. Why is this happening then?

It is because the compiler generated copy constructor has done a ‘bit-wise’ copy. That
means the copy constructor has copied the anotherObjl to anotherObj2, bit-to-bit.
Whatever the bits were in anotherObjl.var was copied to anotherObj2.var2 memory
space. And the same for varPtr. It has basically done a memcopy. The compiler generated
copy constructor could very well be of the form:

anotherClass(const anotherClass& objToCopy)

{
std::memcpy(this, &objToCopy, sizeof(anotherClass));

Another clue should be the constructor printouts. See, in the first example there was only
one call to each constructor of the classes. That means when we copied the object, the
constructor was never called. There are cases where this is fine. But this is absolutely not
right when we have a pointer. You see the pointer is the root cause of all this madness.
Both varPtr’s point to var of anotherObj1. Here’s another way that this can go wrong;:

e Disaster #2:

int main(int argc, char** argv)

{

anotherClass* anotherPtrl = new anotherClass(10);

anotherClass* anotherPtr2 = new anotherClass(*anotherPtr1);

cout << endl;

cout << “anotherPtrl->var: “ << anotherPtrl->var << endl;

cout << “*anotherPtrl->varPtr: “ << *anotherPtr1->varPtr << endl;
cout << “anotherPtr2->var: “ << anotherPtr2->var << endl;

cout << “*anotherPtr2->varPtr: “ << *anotherPtr2->varPtr << endl << endl;

delete anotherPtr1;

cout << “anotherPtr2->var: “ << anotherPtr2->var << endl;

cout << “*anotherPtr2->varPtr: “ << *anotherPtr2->varPtr << endl << endl;

return 0;

anotherPtr1->var2: 10
*anotherPtr1->var2Ptr: 10
anotherPtr2->var2: 10

*anotherPtr2->var2Ptr: 10

anotherPtr2->var2: 10
*anotherPtr2->var2Ptr: -572662307

We are using pointers here. It’s easy to see what’s going wrong here. varPtr of
anotherPtr2 is pointing to var of anotherPtr1 object. So when we delete anotherPtr1, the
variable anotherPtr->varPtr was pointing to was deleted. We are dereferencing a deleted
pointer. This has undefined behavior.

So you see why it is very important to pay special attention to the copy constructor, and of
course the assignment operator, which does a similar thing. Never rely on compiler
generated functions to do what you are expecting them to do. Let’s fix this example.

#include<iostream>

using namespace std,;

class simpleClass
{
public:

int val;

simpleClass(int value) : val(value)

{

cout << “SimpleClass constructor: “ << val << endl;

simpleClass(const simpleClass& objToCopy) : val(objToCopy.val)
{

cout << “SimpleClass copy constructor: “ << endl;

class anotherClass
{
public:

int var;

int* varPtr;

simpleClass simpleObj;

anotherClass(int value) : var(value), varPtr(&var), simpleObj(value)

{

cout << “anotherClass constructor: “ << var << endl;

anotherClass(const anotherClass& objToCopy) : var(objToCopy.var), varPtr(&var),
simpleObj(objToCopy.simpleObj)

{

cout << “anotherClass copy constructor: “ << endl;

int main(int argc, char** argv)

{
anotherClass anotherObj1(10);
anotherClass anotherObj2(anotherObj1);

cout << endl;

cout << “anotherObjectl.var: “ << anotherObj1l.var << endl;

cout << “*anotherObject1.varPtr: “ << *anotherObj1.varPtr << endl;
cout << “anotherObject2.var: “ << anotherObj2.var << end];

cout << “*anotherObject2.varPtr: “ << *anotherObj2.varPtr << endl << endl;

anotherObj1.var = 20;

cout << “anotherObjectl.var: “ << anotherObjl.var << endl;
cout << “*anotherObjectl.varPtr: “ << *anotherObjl.varPtr << endl;
cout << “anotherObject2.var: “ << anotherObj2.var << end];

cout << “*anotherObject2.varPtr: “ << *anotherObj2.varPtr << endl << end];

return 0;

SimpleClass constructor: 10
anotherClass constructor: 10
SimpleClass copy constructor:

anotherClass copy constructor:

anotherObjectl.var: 10
*anotherObject1.varPtr: 10
anotherObject2.var: 10
*anotherObject2.varPtr: 10

anotherObject1.var: 20
*anotherObject1.varPtr: 20
anotherObject2.var: 10
*anotherObject2.varPtr: 10

Everything is working as expected. There is no link between anotherObjl and
anotherObj2. They are two independent objects now. See how the copy constructor is
called for both simpleClass and anotherClass? This shows that the defined copy
constructor is used by the compiler to do the copying. If you haven’t defined it then the
compiler will do the bit-wise copy itself.

It’s time we can introduce the words ‘shallow’ copy and ‘deep’ copy. Shallow copy is
what the compiler generated copy constructor would do. It is simply just copying member
to member, bit-by-bit. This is what we said is bit-wise copy. But in a situation like when
we have pointers or dynamically allocated memory, we need to do ‘deep’ copy. What we
did above is sort of deep copy. Do not expect the compiler to do any deep copying for you.

Let’s take some time now to explore the behavior of the copy constructor. See how I called
the simpleObj copy constructor in the initializer list? You see this must be called in the
initializer list. The copy constructor cannot be called within the body. Sounds familiar?
Remember we saw the same thing with calling base class constructors or member class
constructors. Just remember the copy constructor is another kind of constructor. There

isn’t much difference. The copy constructor constructs the object by copying another
object. But both types of constructors do the same thing; construct the object. So the rules
are the same. Now what if I didn’t call the copy constructor of simpleObj at all?

class anotherClass
{
public:

int var;

int* varPtr;

simpleClass simpleObj;

anotherClass(int value) : var(value), varPtr(&var), simpleObj(value)

{}

anotherClass(const anotherClass& objToCopy)
{
var = objToCopy.var;

varPtr = &var;

Description

€31 error C2512: 'simpleClass' : no appropriate default constructor available

Why is the compiler complaining there is no default constructor? This is what we
discussed earlier, that the copy constructor is another constructor. The compiler sees that
the simpleClass has a constructor and so the compiler is now obliged to call that
constructor. And it is complaining that there is no default constructor. Isn’t this the same
thing we saw when calling derived class constructors or classes that have a member class
with a constructor? It’s the same thing. The compiler is trying to construct the
anotherClass object and there is a simpleClass object in it which has a constructor
defined. And now the compiler needs to call the constructor and it cannot because there is
no default one. Remember what I said before, the compiler can only call default
constructors. Let’s look at two different scenarios now.

1. simpleClass with no constructor:

#include<iostream>

using namespace std,;

class simpleClass

{
public:

int val;
b

class anotherClass
{
public:

int var;

int* varPtr;

simpleClass simpleObj;

anotherClass(int value) : var(value), varPtr(&var)

{}

anotherClass(const anotherClass& objToCopy)
{

var = objToCopy.var;

varPtr = &var;

int main(int argc, char** argv)

{
anotherClass anotherObj1(10);
anotherClass anotherObj2(anotherObj1);
return 0O;

}

This compiles and runs fine. But note how I removed both the constructor and the copy
constructor from simpleClass? Because had I left the copy constructor there, I would’ve
gotten:

Description

Errcr s simpleClass @ no approprate ault constructor availlable
1 C2512: 'simpleClass’ ppropri defaul ilabl
errar y simpleClass : no appropriate ault constructor availlable

2 (C2512: 'simpleClass’ ppropriate defaul ilabl

Why two errors? One for the constructor and the other for the copy constructor. So this
should convince you that for the compiler, the copy constructor is a constructor that takes

const reference argument. Nothing more than that. This brings us to another point: if you
ever implement the copy constructor for a class you must implement the constructor too,
because the compiler will not do that for you now.

2. simpleClass with default constructor:

Now you should already know the answer to this one.

#include<iostream>

using namespace std;

class simpleClass

{
public:
int val;
simpleClass(int value = 99) : val(value)
{
cout << “SimpleClass constructor: “ << val << endl;
}
simpleClass(const simpleClass& objToCopy)
{
val = objToCopy.val;
cout << “SimpleClass copy constructor: “ << endl;
}
b

class anotherClass
{
public:

int var;

int* varPtr;

simpleClass simpleObj;

anotherClass(int value) : var(value), varPtr(&var), simpleObj(value)

{}

anotherClass(const anotherClass& objToCopy)
{
var = objToCopy.var;

varPtr = &var;

int main(int argc, char** argv)

{
anotherClass anotherObj1(10);
anotherClass anotherObj2(anotherObj1);
return 0;

}

SimpleClass constructor: 10

SimpleClass constructor: 99

It’s easy to see what is going on here. Construction of anotherObj1 calls the constructor
with the argument 10. The copy constructor of anotherObj2 calls the constructor with the
default argument, 99. As we’ve seen before, a constructor with a default argument is a
default constructor.

OK, so we have defined a copy constructor that does what we want. When we didn’t
define the copy constructor the compiler did a bit-wise copy and landed us in all sorts of
trouble. What if we define a constructor that does nothing? It should be pretty intuitive but
let’s see for ourselves anyway.

#include<iostream>

using namespace std;

class simpleClass

{
public:

int val;

simpleClass(int value = 99) : val(value)

{

cout << “SimpleClass constructor: “ << val << endl;

simpleClass(const simpleClass& objToCopy)

{
val = objToCopy.val;

cout << “SimpleClass copy constructor: “ << endl;

class anotherClass
{
public:

int var;

int* varPtr;

simpleClass simpleObj;

anotherClass(int value) : var(value), varPtr(&var), simpleObj(value)

{}

anotherClass(const anotherClass& objToCopy)
{

cout << “anotherClass copy constructor” << endl;

int main(int argc, char** argv)

{
anotherClass anotherObj1(10);
anotherClass anotherObj2(anotherObj1);

cout << endl;

cout << “anotherObjectl.var: “ << anotherObj1l.var << end];

cout << “*anotherObject1.varPtr: “ << *anotherObj1l.varPtr << endl;

cout << “anotherObject2.var: “ << anotherObj2.var << end];

cout << “*anotherObject2.varPtr: “ << *anotherObj2.varPtr << endl << endl;

return O;

SimpleClass constructor: 10
SimpleClass constructor: 99

anotherClass copy constructor

anotherObject1.var: 10
*anotherObject1.varPtr: 10

anotherObject2.var: -858993460

There is no telling what will actually happen. One thing for sure is that this code will not
run properly. Depending on the environment you’d probably be getting a runtime
exception at least. You see, when you didn’t implement any copying in the copy
constructor, the compiler didn’t do anything. So the var and varPtr were uninitialized in
anotherObj2. And we tried to use those variables, the behavior of which is undefined. We
are being reminded again how the copy constructor is another constructor. If you define it,
implement the full functionality. Because once you define it the compiler completely takes
its hands off and will give you no assistance.

Now let’s look at how the copy constructor should work in a derived class. It’s not that
much different from what we’ve seen so far so let’s go through it quickly.

#include<iostream>

using namespace std;

class baseClass

{
public:
int var;
int* varPtr;
baseClass(int value) : var(value), varPtr(&var)
{}
b

class derivedClass : public baseClass

{

public:
derivedClass(int value) : baseClass(value)
{}

b

int main(int argc, char** argv)

{
derivedClass derivedObj1(5);
derivedClass derivedObj2(derivedObj1);

cout << “redivedObjl.var: “ << derivedObjl.var << endl;
cout << “redivedObj1.varPtr: “ << derivedObjl.varPtr << endl;

cout << “redivedObj2.var: “ << derivedObj2.var << endl;

cout << “redivedObj2.varPtr: “ << derivedObj2.varPtr << endl;

return 0;

redivedObjl.var: 5
redivedObj1.varPtr: 002DFD1C
redivedObj2.var: 5
redivedObj2.varPtr: 002DFD1C

Here we have a base class and have derived a class from it. The base class has an int
variable and a pointer variable. Same as our examples earlier. No copy constructor is
defined. So the compiler is doing the copying. Looking at the output, we are certain that
the compiler is doing shallow copy. It is bitwise copy. No different from the copying we
saw earlier.

Let’s define a copy constructor for the derivedClass. Since it has nothing to copy in it
we’ll leave it blank.

#include<iostream>

using namespace std;

class baseClass

{
public:
int var;
int* varPtr;
baseClass(int value) : var(value), varPtr(&var)
{
cout << “baseClass constructor” << endl;
}
b

class derivedClass : public baseClass

{
public:
derivedClass(int value) : baseClass(value)

{}

derivedClass(const derivedClass& objToCopy)
{}

int main(int argc, char** argv)

{
derivedClass derivedObj1(5);
derivedClass derivedObj2(derivedObj1);
cout << “redivedObjl.var: “ << derivedObjl.var << endl;
cout << “redivedObjl.varPtr: “ << derivedObj1.varPtr << endl;
cout << “redivedObj2.var: “ << derivedObj2.var << endl;
cout << “redivedObj2.varPtr: “ << derivedObj2.varPtr << endl;
return 0;
}

Description

€91 error C2512: 'baseClass' : no appropriate default constructor available

By now you should’ve anticipated this error. You know what is happening. We are
defining a copy constructor for the derived class but not calling any copy constructor in
the base class. The compiler needs to construct the base class so it tries to call the default
constructor. Remember the compiler can only call the default constructor by itself. It finds
no default constructor defined and hence the error. Let’s fix this code and see how this
should be written.

#include<iostream>

using namespace std;

class baseClass

{
public:
int var;

int* varPtr;

baseClass(int value) : var(value), varPtr(&var)

{

cout << “baseClass constructor” << endl;

baseClass(const baseClass& objToCopy) : var(objToCopy.var), varPtr(&var)
{

cout << “baseClass copy constructor” << endl;

class derivedClass : public baseClass

{
public:
derivedClass(int value) : baseClass(value)
{
cout << “derivedClass constructor” << endl;
}
derivedClass(const derivedClass& objToCopy) : baseClass(objToCopy)
{
cout << “derivedClass copy constructor” << endl;
}
b

int main(int argc, char** argv)

{
derivedClass derivedObj1(5);
derivedClass derivedObj2(derivedObj1);

cout << endl;

cout << “redivedObj1.var: “ << derivedObjl.var << endl;

cout << “redivedObj1.varPtr: “ << derivedObj1.varPtr << endl;
cout << “redivedObj2.var: “ << derivedObj2.var << endl;

cout << “redivedObj2.varPtr: “ << derivedObj2.varPtr << endl;

return O;

baseClass constructor
derivedClass constructor
baseClass copy constructor

derivedClass copy constructor

redivedObjl.var: 5
redivedObj1.varPtr: 0017FE88
redivedObj2.var: 5
redivedObj2.varPtr: 0017FE78

A copy constructor of a derived class is no different from a derived class constructor. You
need to call the base class copy constructor in the initializer list. Never in the body. If you
tried to do this:

derivedClass(const derivedClass& objToCopy)
{
baseClass(objToCopy);

cout << “derivedClass copy constructor” << endl;

The compiler will complain that there is no default constructor for baseClass. As you
already know, this is because the compiler now needs to call a constructor to create the
object and it cannot find one. What if we had a default constructor for baseClass? As we
discussed in the topic on object construction, in that case the compiler treats
“baseClass(objToCopy)” as a declaration of objToCopy of type baseClass and complains
about the redefinition of ‘objToCopy’.

Copying consts and references

In the topic on constructors we discovered that when we have a const or a reference
member, variables behave a little differently. In that case we must provide a constructor
and we must initialize those variables in the initializer list. What about the copy
constructor?

#include<iostream>

using namespace std;

class baseClass
{
public:
int var;
int* varPtr;
const float floatVar;

int &intRefVar;

baseClass(int value) : var(value), varPtr(&var), floatVar(value), intRefVar(var)

{

cout << “baseClass constructor” << endl;

class derivedClass : public baseClass

{

public:
derivedClass(int value) : baseClass(value)

{

cout << “derivedClass constructor” << endl;

derivedClass(const derivedClass& objToCopy) : baseClass(objToCopy)
{

cout << “derivedClass copy constructor” << endl;

int main(int argc, char** argv)

{
derivedClass derivedObj1(5);
derivedClass derivedObj2(derivedObj1);

cout << endl;

cout << “derivedObj1.var: “ << derivedObjl.var << endl;

cout << “derivedObjl.varPtr: “ << derivedObj1.varPtr << endl;

cout << “derivedObj1.intRefVar: “ << derivedObj1.intRefVar << endl;
cout << “derivedObj2.var: “ << derivedObj2.var << endl;

cout << “derivedObj2.varPtr: “ << derivedObj2.varPtr << endl;

cout << “derivedObj2.intRefVar: “ << derivedObj2.intRefVar << endl;

derivedObj1.intRefVar = 99;
cout << “redivedObj2.intRefVar: “ << derivedObj2.intRefVar << endl << endl;

return 0O;

baseClass constructor
derivedClass constructor

derivedClass copy constructor

redivedObj1.var: 5
redivedObj1.varPtr: 0043FEBO
redivedObj1.intRefVar: 5
redivedObj2.var: 5
redivedObj2.varPtr: 0043FEBO
redivedObj2.intRefVar: 5

redivedObj2.intRefVar: 99

So apparently the compiler has no problem with the fact that we are not defining a copy
constructor to explicitly initialize the const and the reference. You can see from the output
that the compiler has done a shallow copy. And you know the consequences of that. The
references of the two objects are tied. Changing one affects the other object. This is the
same issue we saw earlier with the pointer. So there is a subtle difference here with the
copy constructor and the constructor. The compiler is happy to just copy the values of the
object passed to it to initialize the const and reference.

Default copy constructor call

OK, before we leave this section, did something about the previous code feel odd to you?
Did you notice how we are explicitly calling the copy constructor of the baseClass from
derivedClass, but we haven’t defined any copy constructor in baseClass? Yet the compiler
had no complaints. Although when we did not call any baseClass constructors, the
compiler was complaining about no default constructor. What’s going on here with the
compiler? Well, this is just how it is. When we do not explicitly call the copy constructor,
the compiler will always attempt to call the default constructor. So now we have
established the fact that unless told otherwise, the compiler will always try to call the
default constructor. But a copy constructor is actually generated by the compiler. Since we
did not define a copy constructor, the compiler did that for us. A copy constructor that
does bitwise copy. But the compiler just does not bother to call it. If we don’t ask for the
copy constructor (in the initializer list), it will just call the default constructor. But what
happens when we call the copy constructor explicitly is the compiler will call its generated
copy constructor. We need to tell the compiler to use the one it generated. But the same
rules apply when we define the copy constructor. If we define it, we need to initialize the
const and the reference. Otherwise if we just do this:

class baseClass
{
public:
int var;
int* varPtr;
const float floatVar;

int &intRefVar;

baseClass(int value) : var(value), varPtr(&var), floatVar(value), intRefVar(var)

{

cout << “baseClass constructor” << endl;

baseClass(const baseClass& objToCopy) : var(objToCopy.var), varPtr(&var)
{

cout << “derivedClass copy constructor” << endl;

we get our all too familiar error:

Description

€9 2 error C2758: 'baseClass:floatVar' : a member of reference type must be initialized
€3 3 error C2758: 'baseClass:intRefVar' : a member of reference type must be initialized

Now we are on to the last part. First we talked about copying when we have a class type
member. Then we discussed about copying a class hierarchy. Now let’s see how to handle
when we have a member class which has a hierarchy.

#include<iostream>

using namespace std;

class baseClass
{
public:
int var;
int* varPtr;
const float floatVar;

int &intRefVar;

baseClass(int value) : var(value), varPtr(&var), floatVar(value), intRefVar(var)

{

cout << “baseClass constructor” << endl;

baseClass(const baseClass& objToCopy) : var(objToCopy.var), varPtr(&var), floatVar(objToCopy.floatVar),
intRefVar(var)

{

cout << “baseClass copy constructor” << endl;

class derivedClass : public baseClass

{

public:
derivedClass(int value) : baseClass(value)
{

cout << “derivedClass constructor” << endl;

derivedClass(const derivedClass& objToCopy) : baseClass(objToCopy)
{

cout << “derivedClass copy constructor” << endl;

class theOtherClass

{
public:
derivedClass derivedClassObj;
theOtherClass(int value) : derivedClassObj(value)
{
cout << “theOtherClass constructor” << endl;
}
b

int main(int argc, char** argv)
{
cout << “— Object construction —” << endl;
theOtherClass theOtherClassObj1(5);
cout << endl;
cout << “— Object copy —” << endl;
theOtherClass theOtherClassObj2(theOtherClassObj1);

return O;

—- Object construction —
baseClass constructor
derivedClass constructor

theOtherClass constructor

—- Object copy —
baseClass copy constructor

derivedClass copy constructor

You can clearly see in the output the construction of the object and the copying of the
object. When we copied the object the compiler properly called the copy constructors of

baseClass and derivedClass. So you see, when we have the copy constructors properly
defined, we don’t need to take any extra care when we have a member object with a
hierarchy. Note that we didn’t define any copy constructor for theOtherClass. The
compiler generated one for us and it correctly called the copy constructor defined in
derivedClass. It did not do a shallow copy. What if derivedClass didn’t have a copy
constructor defined?

#include<iostream>

using namespace std;

class baseClass
{
public:
int var;
int* varPtr;
const float floatVar;

int &intRefVar;
baseClass(int value) : var(value), varPtr(&var), floatVar(value), intRefVar(var)

{

cout << “baseClass constructor” << endl;

class derivedClass : public baseClass

{
public:
derivedClass(int value) : baseClass(value)
{
cout << “derivedClass constructor” << endl;
}
b

class theOtherClass

{
public:
derivedClass derivedClassObj;

theOtherClass(int value) : derivedClassObj(value)
{

cout << “theOtherClass constructor” << endl;

int main(int argc, char** argv)
{
cout << “— Object construction —” << endl;

theOtherClass theOtherClassObj1(5);

cout << endl;
cout << “— Object copy —” << endl;
theOtherClass theOtherClassObj2(theOtherClassObj1);

cout << endl;

cout << “— Print varPtr —” << endl;

cout << “theOtherClassObj1.derivedClassObj.varPtr: “ << theOtherClassObj1.derivedClassObj.varPtr << end];
cout << “theOtherClassObj2.derivedClassObj.varPtr: “ << theOtherClassObj2.derivedClassObj.varPtr << end];

return 0;

— Object construction —
baseClass constructor
derivedClass constructor

theOtherClass constructor

—- Object copy —

— Print varPtr —

theOtherClassObj1.derivedClassObj.varPtr: 003AF740
theOtherClassObj2.derivedClassObj.varPtr: 003AF740

You see, the rules don’t change. The compiler generated copy constructor sees that
derivedClass has not provided any copy constructor, so it does a shallow copy. We see that
from the two varPtr‘s. They are the same.

We looked at a lot of different scenarios. Let’s summarize the compiler copy mechanism.

e If a copy constructor is not defined the compiler will generate one. This copy
constructor will do a bit-wise copy (we will see when this is not the case).

e If a copy constructor is explicitly defined the compiler will not generate any type
of constructor. Not even the default constructor.

But if a constructor is defined, but not a copy constructor, the compiler will
generate a copy constructor.

If a copy constructor is defined, the member class or base class copy constructor
must be called in the initializer list.

If the copy constructor does not call the member class or base class copy
constructor in the initializer list, the compiler will try to call the default
constructor of the member class or base class.

If a copy constructor is defined and calls the member class or base class copy
constructor in the initializer list, the compiler will call the copy constructor. In
this case, if a copy constructor is not defined in the member class or base class,
the compiler generated copy constructor will be called.

The compiler generated copy constructor will always call the copy constructor of
the member class or base class.

Remember, a copy constructor is always generated by the compiler (if not
defined). Always. But whether the compiler calls the copy constructor depends on
how and if it is called.

So I assume that list made some sense. There aren’t a lot of rules. The easiest way to deal
with this is to implement your own copy constructor.

Object cloning

So far we saw how to copy objects. Whether they are derived classes or member classes.
But the situation is a bit complicated when we are dealing with pointers. Look at this class

hierarchy.

#include<iostream>

using namespace std;

class classA

{
public:
int classAVar;
classA(int value) : classAVar(value)
{
cout << “classAVar constructor” << endl;
}
5

class classB : public classA
{
public:

int classBVar;

classB(int valuel, int value2) : classA(valuel), classBVar(value2)

{

cout << “classB constructor” << endl;

class classC : public classB

{
public:
int classCVar;
classC(int valuel, int value2, int value3) : classB(valuel, value2), classCVar(value3)
{
cout << “classC constructor” << endl;
}
b

int main(int argc, char** argv)
{
classA* classAptrl = new classC(1, 2, 3);

return 0;

No copy constructor is defined for these classes. That is fine. The compiler generated ones
do the job. Note how our pointer is of type classA but it has a classC object. This is
usually what you would see when handling pointers and class hierarchies. Pointers let us
use polymorphism. Now the problem is, how can we copy classAptr to another pointer?
You could try this:

int main(int argc, char** argv)

{
classA* classAptrl = new classC(1, 2, 3);
classA* classAptr2 = new classC(*classAptrl);
return O;

}

But this wont work.

Description

€31 error C2664: 'classCclassC(const classC &)': cannot convert argument 1 from 'classA’ to 'const classC &'

The compiler cannot convert a classA type to a classC reference. The only way we can
make the compiler happy is if we instantiate a new classA type. Let’s do that and see what
happens.

#include<iostream>

using namespace std;

class classA

{
public:
int classAVar;
classA(int value) : classAVar(value)
{}
virtual void printVars()
{
cout << “classAVar: “ << classAVar << endl;
}
b

class classB : public classA

{
public:
int classBVar;
classB(int valuel, int value2) : classA(valuel), classBVar(value2)
{}
virtual void printVars()
{
cout << “classAVar: “ << classAVar << endl;
cout << “classBVar: “ << classBVar << endl;
}
|5

class classC : public classB
{
public:

int classCVar;

classC(int valuel, int value2, int value3) : classB(valuel, value2), classCVar(value3)

{}

virtual void printVars()

{
cout << “classAVar: “ << classAVar << endl,;
cout << “classBVar: “ << classBVar << endl;
cout << “classCVar: “ << classCVar << endl;
}

int main(int argc, char** argv)

{
classA* classAptrl = new classC(1, 2, 3);
cout << “classAptrl->printVars()” << endl;

classAptr1->printVars(); cout << endl;

classA* classAptr2 = new classA(*classAptrl);
cout << “classAptr2->printVars()” << endl;
classAptr2->printVars();

return 0;

classAptr1->printVars()
classAVar: 1
classBVar: 2
classCVar: 3

classAptr2->printVars()
classAVar: 1

Obviously this is not what we want. classAptr2 is just a classA object. The called copy
constructor is of classA and the copy constructor only receives the classA part of the
object. So it only can copy that part. How are we going to fix this? For starters, we need
something other than copy constructors. Because we now need to ‘clone’ the object.

So we now understand that we need a new way to do the copying, or the cloning. What
would this method need to do? Let’s call this function clone.

This is what clone needs to be:

e This function needs to support a cloning of a hierarchy of a class, so it needs to be
a virtual method.

e This function should return a pointer to a new cloned object.

e This function needs to copy its values to the new cloned object.

This is how simple this function is:

virtual classType* clone()

{

return new classType(*this);

Think about it. All we need to do is to return a new object that is a copy of itself. And
what function does that? Yes, the copy constructor. So what we are doing here is calling
the copy constructor to create a new object and returning it. The trick is we need to
implement this in each derived class.

#include<iostream>

using namespace std;

class classA

{
public:
int classAVar;
classA(int value) : classAVar(value)
{}
virtual void printVars()
{
cout << “classAVar: “ << classAVar << end];
}
virtual classA* clone()
{
return new classA(*this);
}
b

class classB : public classA

{
public:

int classB Var;

classB(int valuel, int value2) : classA(valuel), classBVar(value2)

{}

virtual void printVars()

{
cout << “classAVar: “ << classAVar << endl;

cout << “classBVar: “ << classBVar << endl;

virtual classB* clone()
{

return new classB(*this);

class classC : public classB

{
public:
int classCVar;
classC(int valuel, int value2, int value3) : classB(valuel, value2), classCVar(value3)
{}
virtual void printVars()
{
cout << “classAVar: “ << classAVar << endl;
cout << “classBVar: “ << classBVar << endl;
cout << “classCVar: “ << classCVar << endl;
}
virtual classC* clone()
{
return new classC(*this);
}
b

int main(int argc, char** argv)
{
classA* classAptrl = new classC(1, 2, 3);

cout << “classAptrl->printVars()” << endl;

classAptr1->printVars(); cout << endl;

classA* classAptr2 = classAptrl->clone();
cout << “classAptr2->printVars()” << endl;
classAptr2->printVars();

return 0;

classAptrl->printVars()
classAVvar: 1
classBVar: 2
classCVar: 3

classAptr2->printVars()
classAVar: 1
classBVar: 2
classCVar: 3

Because clone is virtual, when called through the pointer, it calls the clone of the correct
object type. And it calls the copy constructor of itself, which copies the entire object,
including the base classes. Remember we discussed how copy constructors of derived
classes work? They always need to copy the base class part. By the way, in case you are
wondering about the difference in a clone’s return type across classes, it is allowed as long
as the they are of the same hierarchy.

This cloning mechanism is called ‘virtual copy pattern’ and it is an example of deep
copying.

Trivial/ non-trivial copy constructors

Before we leave this section I need to mention about the trivial and non-trivial copy
constructors. The compiler generated copy constructors we saw for the most part of this
discussion are ‘trivial’ copy constructors. They don’t do much more than a member-wise
copy. But the compiler can’t always do this. Especially in a program like the last one
where we had the virtual clone function. There are a few other cases when a copy
constructor cannot be trivial and having a virtual function is one of the main reasons.

You see, when a class has a virtual function, it has a virtual table pointer (vptr) and an
associated virtual table (vtable). We discuss this on the ‘virtual mechanism’ topic. And
when there is an associated vptr for the object, it cannot simply be copied to the newly
copy constructed class. The vtable and vptr need to be generated for each object
depending on its type. Now you might wonder why the vptr cannot be the same as the

copying object? Well, if the object being copied and object being constructed are both of
the same inheritance level, then you can. But this is not always the case. For example, in
our last example, a classB copy constructor has the following form:

class classB : public classA

{
classB(const classB& objToCopy)
{
// copy object
}
b

We need to consider two possibilities here.

First one, both objects are classB:

int main(int argc, char** argv)

{
classB classBObj1 = classBObj(1, 2);
classB classBObj2(classBObj1);
return 0;

}

In this case, yes, you can have the same vptr and vtable for both the objects. They are of
same type.

But what about this case?

int main(int argc, char** argv)

{
classC classCObj = classCObj(1, 2, 3);
classB classBObj(classCObj);
return O;

}

Pass the objToCopy as a reference; it gets “sliced” to a classB. So a direct bit-wise copy
will not work at all. This is why when there is a virtual function the copy constructor is
non-trivial. It needs to do more work than just simply copying bits. Having a virtual
function is just one case. There are a few other cases that require a non-trivial copy
constructor.

One last bit. Although I talked about vptrs and vtables, I need to tell you that this concept

of vptrs and vtables are not specified in the standard. The compiler is free to implement
the virtual mechanism in any way it wants (but vptrs and vtables are the most used way).
So having a vptr is not a definite reason for a non-trivial copy constructor, although in
most compilers it would be.

So if the class needs a non-trivial copy constructor, the compiler will generate that for you.
If you have defined a copy constructor, the compiler will add the non-trivial part before
the copy constructor body, such that properties like vptrs are correctly defined so you
don’t need to worry about it.

Topic 11

Class Member Access

We will discuss a minor topic here. It is not complex but could be a little confusing at
times so it is better to look at some examples.

Let’s get things going with an example.

#include<iostream>

using namespace std;

class baseClass

{
public:
int baseClassVar;
int commonVar;
baseClass(int baseVal, int comVal) : baseClassVar(baseVal), common Var(comVal)
{}
void printVals()
{
cout << “baseClass::printVals()}—>" << endl;
cout << “baseClass::baseClassVar- “ << baseClassVar << endl;
cout << “baseClass::commonVar- “ << commonVar << endl;
}
|5

class derivedClass : public baseClass
{
public:

int derivedClassVar;

int commonVar;

derivedClass(int baseVal, int baseComVal, int derivedVal, int derivedComVal) : baseClass(baseVal, baseComVal),
derivedClassVar(derivedVal), common Var(derivedComVal)

{}

void printVals()
{

cout << “derivedClass::printVals()” << endl;
baseClass::printVals();
cout << “derivedClass::derivedClassVar- “ << derivedClassVar << endl;

cout << “derivedClass::commonVar- “ << commonVar << endl << endl;

}

void printAllVals()

{
cout << “derivedClass::printAllVals()” << end];
cout << “baseClass::baseClassVar- “ << baseClassVar << endl;
cout << “baseClass::commonVar- “ << baseClass::commonVar << end];
cout << “derivedClass::derivedClassVar- “ << derivedClassVar << endl;
cout << “derivedClass::commonVar- “ << common Var << endl;

}

int main(int argc, char** argv)

{
derivedClass derivedClassObj(1, 2, 3, 4);
derivedClassObj.printVals();
derivedClassObj.printAllVals();
return 0;

}

derivedClass::printVals()—>
baseClass::printVals
baseClass::baseClassVar- 1
baseClass::commonVar- 2
derivedClass::derivedClassVar- 3

derivedClass::commonVar- 4

derivedClass::printAllVals()—>
baseClass::baseClassVar- 1
baseClass::commonVar- 2
derivedClass::derivedClassVar- 3

derivedClass::commonVar- 4

Here we have a base class and a derived class. Each class has its own unique integer
variable and another integer variable which has the same name. Each also have their own

non-virtual printVals function. These are the take aways:

e It is possible for the derived class to have its own member variable with the same
name as a base class member. When accessed, there is no ambiguity. The
compiler chooses the one in the enclosing class.

e The derived class can access the base class member variables and functions by
specifying the base class name with the scope resolution operator.

Pretty straightforward. Nothing complex here. Now let’s get the pointers in!

int main(int argc, char** argv)

{
baseClass* baseClassPtr = new baseClass(1, 2);
baseClassPtr->printVals(); cout << endl;
derivedClass* derivedClassPtr = new derivedClass(3, 4, 5, 6);
derivedClassPtr->printVals();
return 0;

}

baseClass::printVals()—>
baseClass::baseClassVar- 1

baseClass::commonVar- 2

derivedClass::printVals()—>
baseClass::printVals()—>
baseClass::baseClassVar- 3
baseClass::commonVar- 4
derivedClass::derivedClassVar- 5

derivedClass::commonVar- 6

Again, nothing special here. We have a baseClass pointer with a baseClass instance and a
derivedClass pointer with a derivedClass instance. Nothing much interesting going on
here. Now let’s see how things behave when we have different pointer and instance types.

int main(int argc, char** argv)

{

baseClass* baseClassPtr = new derivedClass(1, 2, 3, 4);
baseClassPtr->printAll Vals();

return 0;

Description

€31 error C2039: 'printAllVals' : is not a member of 'baseClass’

This shouldn’t come as a surprise but it’s good to validate this fact. It doesn’t matter which
type the instance is. The compiler does not care what type of object the pointer is pointing
to. It must not. Because the baseClassPtr can point to different instances throughout the
program. So the compiler does not attempt to look into the type of the instance. This is one
of the principles of polymorphism and dynamic binding. For the compiler, it is pointing to
a baseClass instance. And baseClass does not have a printAllVals function defined.

But we know it is pointing to a derivedClass instance. So we can cast it like this:

int main(int argc, char** argv)

{
baseClass* baseClassPtr = new derivedClass(1, 2, 3, 4);
static_cast<derivedClass*>(baseClassPtr)->printAll Vals();
return 0;

}

derivedClass::printAllVals()—>
baseClass::baseClassVar- 1
baseClass::commonVar- 2
derivedClass::derivedClassVar- 3

derivedClass::commonVar- 4

Here we are casting the baseClassPtr to a derivedClass type. We are telling the compiler
to take our word that baseClassPtr is indeed pointing to a derivedClass instance. And the
compiler obliges. You see, there is no difference between a pointer to a derivedClass and a
pointer to a plain old integer. They are both memory addresses with the same amount of
bits. The pointer contains just a memory address. What is in this memory address is
determined by the pointer type. So here we are telling the compiler that baseClassPtr is
pointing to a memory block that has a derivedClass object. And indeed it does, so we have
no issues. This will become clear when we do this:

int main(int argc, char** argv)

{
baseClass* baseClassPtr = new baseClass(1, 2);
static_cast<derivedClass*>(baseClassPtr)->printAllVals();
return 0;

}

derivedClass::printAllVals()—>
baseClass::baseClassVar- 1
baseClass::commonVar- 2
derivedClass::derivedClassVar- 1359395851
derivedClass::commonVar- -2013265804

Here we only have a baseClass instance but we are lying to the compiler that it is pointing
to a derivedClass object. The compiler does no validation. It takes our word and tries to
read the member variables and gets garbage because those variables don’t exist.

Now let’s see an example of accessing member variables through pointers.

#include<iostream>

using namespace std;

class baseClass

{

public:
int commonVar;
baseClass(int comVal) : commonVar(comVal)
{}

|5

class derivedClass : public baseClass

{
public:

int commonVar;

derivedClass(int baseComVal, int derivedComVal) : baseClass(baseComVal), commonVar(derivedComVal)

{

int main(int argc, char** argv)
{
baseClass* baseClassPtr = new derivedClass(1, 2);

cout << “baseClassPtr->commonVar: “ << baseClassPtr->commonVar << endl;

derivedClass* derivedClassPtr = new derivedClass(3, 4);
cout << “derivedClassPtr->commonVar: “ << derivedClassPtr->common Var << endl;
cout << “derivedClassPtr->baseClass::commonVar: “ << derivedClassPtr->baseClass::commonVar << endl;

return 0;

baseClassPtr->commonVar: 1
derivedClassPtr->commonVar: 4

derivedClassPtr->baseClass::commonVar: 3

The accessed variable, then, depends on the type of the pointer, not the type of the object it
points to. This is because member variables are accessed through offsets. You will learn
more on this in the next chapter. The offset value for baseClass::commonVar is different
from derivedClass::commonVar. In fact, we can print them out and see.

int main(int argc, char** argv)

{
cout << offsetof(baseClass, commonVar) << endl;
cout << offsetof(derivedClass, commonVar) << endl;
return 0O;

}

4

As you can see, the offset values for commonVar are different. That is how the compiler is
able to access the correct variable depending on the type.

There are no suprises here. But I wanted to show you the access of member variables and
functions in the class hierarchy when the same name is shared and how it works with
object types and pointer types.

Topic 12

Class member offsets

In this short topic we will discuss class member offsets. When you define member
variables in a class they need to be located at certain places within the class. What I am
going to discuss here is not part of the standard. As with virtual mechanism, the compiler
developers are free to use their own methods.

Member placement within an object

Class member offsets define the offset, usually in bytes, that a particular member has
within the object. When you create an object of a class, it occupies a block of memory and
the compiler knows where this memory block starts. And it knows how long the block
spans, which can be found by using the sizeof(classType). But how does the compiler find
a member variable within that object? It is through the offset. Here’s an example.

#include<iostream>

using namespace std;

class baseClass

{
public:
int varl;
int var2;
int var3;
baseClass(int vall, int val2, int val3) : varl(vall), var2(val2), var3(val3)
{}
b

int main(int argc, char** argv)

{
cout << “Offset of baseClass::varl: “ << offsetof(baseClass, varl) << endl;
cout << “Offset of baseClass::var2: “ << offsetof(baseClass, var2) << endl;
cout << “Offset of baseClass::var3: “ << offsetof(baseClass, var3) << endl;
return 0O;

}

Offset of baseClass::varl: 0
Offset of baseClass::var2: 4
Offset of baseClass::var3: 8

We have a simple class with three integer variables. And note what we are printing out.
We are looking at the offset. This offsetof macro gives the offset the variable has from the
beginning of the object. Note how we’re not making any objects. Just the class itself. So
we see that our first variable, varl, is at an offset 0. This means varl1 is at the start of the
object memory space. And var2 after 4 bytes and var3 after 8 bytes. This makes sense. An
integer is 4 bytes long. So these variables are offset one after the other. Let’s really make
sure this is indeed the case by looking at the memory.

int main(int argc, char** argv)

{
cout << “Offset of baseClass::varl: “ << offsetof(baseClass, varl) << endl;
cout << “Offset of baseClass::var2: “ << offsetof(baseClass, var2) << endl;
cout << “Offset of baseClass::var3: “ << offsetof(baseClass, var3) << endl;
baseClass baseClassObj(4, 5, 6);
cout << “&baseClassObj: “ << &baseClassObj << end];
cout << “&baseClassObj.varl: “ << &baseClassObj.varl << endl;
cout << “&baseClassObj.var2: “ << &baseClassObj.var2 << endl;
cout << “&baseClassObj.var3: “ << &baseClassObj.var3 << end];
return 0;

}

Offset of baseClass::varl: 0
Offset of baseClass::var2: 4
Offset of baseClass::var3: 8

&baseClassObj: 0016F980

&baseClassObj.varl: 0016F980
&baseClassObj.var2: 0016F984
&baseClassObj.var3: 0016F988

Here we create an object and print out the actual memory addresses of the three variables.
And you can clearly see from the memory addresses that the variables are laid out 4 bytes
apart in memory. Here’s a look at the memory space.

Memory 1 bl
| b
BxealaFose a4 o8 68 oo . Y
BxeplarFasd @5 98 68 od "
IE’KE‘EIECHEE a6 88 B8 88
|8x8816F98C cc cc cc cc IIII
inEElEzEl'-:'E ed 9 16 88 3.
iﬂxEElE:jEl-i 099 f6d Bl 88 ™m.
inEElEzj':"E a9l &3 B8 a8
EE:{EE"_E:E":'“: 28 59 41 a8 YA.
iExEElE==.3-.E de aa 41 @8 D3A.
lexee16Fosll 6@ 2d a7 58 " -§x ¥

So this is how the compiler is able to find the member variables within a class. Each
object of the same type is laid with the same offsets. Now let’s look at a case where this
offset changes. Let’s define a simple virtual function. This makes the class objects to
include a vptr and a corresponding vtable.

#include<iostream>

using namespace std;

class baseClass

baseClass(int vall, int val2, int val3) : varl(vall), var2(val2), var3(val3)

virtual void virtFunc()

cout << “virtual function” << endl;

{

public:
int varl;
int var2;
int var3;
{}
{
}

b

int main(int argc, char** argv)

{

baseClass baseClassObj(4, 5, 6);

cout << “&baseClass::varl: “ << offsetof(baseClass, varl) << endl;

cout << “&baseClass::var2: “ << offsetof(baseClass, var2) << endl;

cout << “&baseClass::var3: “ << offsetof(baseClass, var3) << endl << endl;

cout << “&baseClassObj: “ << &baseClassObj << end];

cout << “&baseClassObj.varl: “ << &baseClassObj.varl << endl;
cout << “&baseClassObj.var2: “ << &baseClassObj.var2 << endl;
cout << “&baseClassObj.var3: “ << &baseClassObj.var3 << endl;

return 0;

offsetof(baseClass, varl): 4
offsetof(baseClass, var2): 8
offsetof(baseClass, var3): 12

&baseClassObj: 0017FC30

&baseClassObj.varl: 0017FC34
&baseClassObj.var2: 0017FC38
&baseClassObj.var3: 0017FC3C

Did you see how the offsets of the variables changed by 4 bytes when we add the virtual
function? Because the compiler has put the vptr at offset 0. vptr is like any other pointer
and it is taking 4 bytes, hence the variables are shifted by 4 bytes. It is important to keep in
mind that this is not the standard to put the vptr at the beginning of the class, or even to
use a vptr. This is just how the Visual C++ compiler is doing it. But this insight gives us a
peek at how the compiler is handling this member access. Let’s look at the object locals
and the corresponding memory block.

Mame Value Type

@ argc 1 int
- & argv 0x006849e8 {0:006849f0 "D\\Docurments\\Visua char™™
4 @ baseClassObj {varl=4 var2=5 var3=56} baselClas

4 @ _ vfptr 000223318 {Vtable.exelconst baseClass: vitable void **
@ [0] 00023160 {Vtable.exelbaseClaszvirtFuncivoid void *

@ varl 4 int
w var? 5 int
W vard B int

The object locals show the variable values and also the vptr contents. It shows that the vptr
is pointing to memory address ‘0x002A3318’. This means the vtable is at this address. So
how are we sure that the variables got offset by 4 bytes because of vptr? Let’s look at the
memory block of the object at 0x0017FC30:

Memory1 -

gt
Ey
Ll

I
1 i
L

= & M O A @

-
=

HT
LiLl 1
ad L

gt
w
L]

t
=
]

- = L

e

it el
=
L]

] [

=

w

18
@
a5
86
el
84
7t
a1
e8

33
(505
(=25
o8
ea
fc
1e
(=25]
459

2a
505]
5 15]
515]
e
17
2a
515]
B8

aa
ea
e
aa
aa
aa
e
aa
aa

w s
%

eIh.

T s TR e Y e T i O
L own |- -
| &= & M Co

b5

S & & G R 5 O & & &
| ™=

|& & & & R D D 2 ®» @
J

o
L
=
L
A
L
=
L
=
o
=
L
=
e
a
L
=
L

e

50 b5 68 60 Puh. v

See the contents at the offset 0 of the object start address (which we printed out earlier)? It
is the same as the address of the vptr that we saw in the locals view. This confirms that the
(Visual C++) compiler puts the vptr at the zero offset of the object.

I hope you understood a little bit about how the compiler is accessing objects. Although
the implementation is compiler dependent, having memebr offsets are an efficient way of
accessing objects and their contents.

Pointer to class member

OK, so we know how the compiler is doing things, but is there any benefit we can take
from this?

int main(int argc, char** argv)

{
baseClass baseClassObj(4, 5, 6);
cout << “baseClassObj.varl: “ << baseClassObj.varl << endl;
int baseClass::*intVarPtr; // Line 1
intVarPtr = &baseClass::varl; // Line 2
baseClassObj.*intVarPtr = 10; // Line 3
cout << “baseClassObj.varl: “ << baseClassObj.varl << endl;
return 0O;

}

baseClassObj.varl: 4
baseClassObj.varl: 10

Let’s quickly go through what we are doing here:

e In line 1 we are creating a pointer intVarPtr that will point to an integer variable

of class baseClass. This pointer can point to any integer of baseClass.

e In line 2 we assign intVarPtr to point to varl of baseClass. Note how we are
taking the address of a baseClass, not the baseClassObj instance. When we use
‘address of’ operator on a class member, unless that member is static, it gives the
offset of that variable (If the member is static then the actual memory address is
obtained). Now intVarPtr is locked to point to varl of baseClass instances only.

e In line 3 we are using intVarPtr to dereference and access varl member of
instance baseClassObj.

What this means is that you can have a single pointer that is able to point to a particular
member of a class. Can you see how this can be useful?

int main(int argc, char** argv)

{
baseClass baseClassObj1(1, 2, 3);
baseClass baseClassObj2(4, 5, 6);
cout << “baseClassObjl.varl: “ << baseClassObjl.varl << endl;
cout << “baseClassObj2.varl: “ << baseClassObj2.varl << endl << end];
int baseClass::*intVarPtr;
intVarPtr = &baseClass::varl;
baseClassObj1.*intVarPtr = 10;
cout << “baseClassObjl.varl: “ << baseClassObj1.*intVarPtr << endl;
baseClassObj2.*intVarPtr = 20;
cout << “baseClassObj2.varl: “ << baseClassObj2.*intVarPtr << endl;
return 0O;
}

baseClassObj1l.varl: 1
baseClassObj2.varl: 4

baseClassObj1.varl: 10
baseClassObj2.varl: 20

See how we can have just one pointer to access a particular variable of any object? This is
another very convenient way of utilizing polymorphism. Look at this example.

#include<iostream>

using namespace std;

class baseClass

{

public:
int varl;
int var2;

int var3;

baseClass(int vall, int val2, int val3) : varl(vall), var2(val2), var3(val3)
{}

virtual void virtFunc()

{

cout << “virtual function” << end];

class derivedClass : public baseClass

{

public:
int var4;
derivedClass(int vall, int val2, int val3, int val4) : baseClass(vall, val2, val3), var4(val4)
{}

b

void memberVarPrintFunc(baseClass object, int baseClass::*varPtr)

{

cout << object.*varPtr << endl;

int main(int argc, char** argv)

{
baseClass baseClassObij(1, 2, 3);
derivedClass derivedClassObj(4, 5, 6, 7);

int baseClass::*intVarPtr;

intVarPtr = &baseClass::varl;

cout << “baseClassObj.varl: «;
memberVarPrintFunc(baseClassObj, intVarPtr);
cout << “derivedClassObj.varl: “;

memberVarPrintFunc(derivedClassObj, intVarPtr);

intVarPtr = &baseClass::var3;

cout << “baseClassObj.var3: «;
memberVarPrintFunc(baseClassObj, intVarPtr);
cout << “derivedClassObj.var3: “;
memberVarPrintFunc(derivedClassObj, intVarPtr);

return 0;

baseClassObj.varl: 1
derivedClassObj.varl: 4
baseClassObj.var3: 3
derivedClassObj.var3: 6

For this example I introduced a derived class. This is just to demonstrate to you that you
can use this concept with inheritance and how to make use of it. The function
memberVarPrintFunc takes as argument an object of baseClass and an integer pointer to a
member of baseClass. Now see how conveniently we can utilize intVarPtr to access any
int variable of baseClass or any derived class of it? We have one pointer and we can make
it point to any integer member of baseClass. And memberVarPrintFunc does not need to
know anything about the baseClass variables. You can change the variable names in
baseClass and it wouldn’t have any effect on the function. You can make the function
access any of the integer members. See how beneficial this offset mechanism can be?

Topic 13

Function Pointers

This topic will discuss the mechanism of function pointers. They are not much different
than a normal pointer but the syntax can be a little confusing. Function pointer syntax can
be extremely confusing and complex if you want to make it be so, but I’m only going to
discuss the basics of it which will help you in deciphering complex notation if you ever
need to.

Let’s start with a simple example.

#include<iostream>

using namespace std;

void simpleFunc(int val)

{

cout << “simpleFunc with val:” << val << end]l;

int main(int argc, char** argv)

{
void(*funcPtr)(int) = &simpleFunc;
(*funcPtr)(10);

return O;

simpleFunc with val:10

What are we doing here?

First we define a function simpleFunc, which takes an integer parameter and returns void.
Then we create our function pointer funcPtr which we want to refer to simpleFunc. The
thing with function pointers is that they cannot be general. You cannot have one function
pointer that can point to a function with any signature. The return type and argument types
need to match. So we need to make funcPtr return void and take an integer argument.

Look at the syntax. The parantheses are important. (*funcPtr) declares a pointer to a
function. The parantheses to the right of it declares the arguments, which in our case is just
an integer. To the left is the return type. That’s it. Not that complicated right? But
remember that the parentheses are important. Note the difference between these two
statements:

void(*funcPtr)(int);

void *funcPtr(int);

The first statement is a declaration for a function pointer that takes in an integer parameter
and returns void. The second is a function prototype that takes an integer argument and
returns a void*. So be mindful of the parentheses.

Now let’s look at a few different caveats of using function pointers.

#include<iostream>

using namespace std;

void intArgFunc(int val)

{

cout << “intArgFunc with val:” << val << endl;

void floatArgFunc(float val)
{

cout << “floatArgFunc with val:” << val << end];

int intReturnFunc(int val)

{

cout << “Returning val:” << val << endl;

return val;

int main(int argc, char** argv)

{

void(*intArgFuncPtr1)(int) = &intArgFunc; // Line 1
void(*intArgFuncPtr2)(int) = &floatArgFunc; // Line 2
void(*floatArgFuncPtrl)(float) = &intArgFunc; // Line 3
void(*floatArgFuncPtr2)(float) = &floatArgFunc; // Line 4
void(*intRetFuncPtrl)(int) = &intReturnFunc; // Line 5
int(*intRetFuncPtr2)(int) = &intReturnFunc; // Line 6
return 0O;

Description

Ei 1 error C2440: "initializing' : cannot convert from 'void (__cdecl *){float)’ to 'void [__cdecl *)(int)’
Ei 2 error C2440: "initializing' : cannot convert from 'void (__cdecl ®)(int)' to 'void (__cdecl *){float)’
E\i 3 error C2440: "initializing' : cannot convert from 'int (__cdecl *)(int)’ to ‘void (__cdecl *){int)’

We have compiler errors in lines 2, 3 and 5. So we see that the function parameter types
and return types need to match. There is no argument promotion possible here. We can call
floatArgFunc with an integer argument and the compiler is fine with that. But not when
we are dealing with function pointers. The function signature needs to match in this case.

A minor piece of information about using function pointers: you do not need to use the
address of operator to assign the function to the pointer, nor do you need ‘*’ to dereference
it. In the case of function pointers the compiler is happy to do that for you. So you can
write the first example as:

#include<iostream>

using namespace std;
void simpleFunc(int val)

{

cout << “simpleFunc with val:” << val << endl;

int main(int argc, char** argv)

{
void(*funcPtr)(int) = simpleFunc;
funcPtr(10);
return O;

}

The compiler can figure out for itself what you want to do.

Member function pointers

Things aren’t much different if you want a function pointer to a class member function.

#include<iostream>

using namespace std;

class simpleClass

{

public:
void simpleClassFunc1()
{

cout << “simpleClassFunc1” << end];

void simpleClassFunc2()

{

cout << “simpleClassFunc2” << endl;

int main(int argc, char** argv)

{
simpleClass simpleClassObj;
void(simpleClass::*simpleClassFuncPtr)() = &simpleClass::simpleClassFunc];
(simpleClassObj.*simpleClassFuncPtr)();
simpleClassFuncPtr = &simpleClass::simpleClassFunc2;
(simpleClassObj.*simpleClassFuncPtr)();
return 0;

}

simpleClassFunc1

simpleClassFunc?

So you can see how it is possible to invoke class member functions through pointers and
also how you can re-assign them to different functions (with the same signature, of
course).

There are a number of uses of function pointers. The most obvious one is as a callback
mechanism. Take a look at this example.

#include<iostream>

using namespace std;

class baseClass

{

public:
int objID;
baseClass(int id) : objID(id)
{}

virtual void callbackFunc()

{

cout << “callbackFunc: baseClass: “ << objID << endl;

class derivedClass : public baseClass

{
public:
derivedClass(int id) : baseClass(id)
{}
virtual void callbackFunc()
{
cout << “callbackFunc: derivedClass: “ << objID << endl;
}
b

void callbackFunc(baseClass *obj, void (baseClass::*callbackFuncPtr)())

{
(obj->*callbackFuncPtr)();

int main(int argc, char** argv)
{
baseClass* baseClassPtr = new baseClass(1);

derivedClass* derivedClassPtr = new derivedClass(2);
void(baseClass::*callbackFuncPtr)() = &baseClass::callbackFunc;
callbackFunc(baseClassPtr, callbackFuncPtr);

callbackFunc(derivedClassPtr, callbackFuncPtr);

return O;

callbackFunc: baseClass: 1

callbackFunc: derivedClass: 2

I included a derived class and a virtual function to show you that this mechanism works
fine with inheritance and dynamic binding. Can you see how this concept of function
pointers can be easily used for the callback mechanism? It is important that we used a
pointer to baseClass in the callbackFunc argument. This is essential if we need the virtual

functions to work. Dynamic binding only works with pointers (and references). What
would happen if we didn’t use pointers?

#include<iostream>

using namespace std;

class baseClass

{
public:
int objID;
baseClass(int id) : objID(id)
{}
virtual void callbackFunc()
{
cout << “callbackFunc: baseClass: “ << objID << endl;
}
b

class derivedClass : public baseClass

{
public:
derivedClass(int id) : baseClass(id)
{}
virtual void callbackFunc()
{
cout << “callbackFunc: derivedClass: “ << objID << endl;
}
I8

void callbackFunc(baseClass obj, void (baseClass::*callbackFuncPtr)())

{
(obj.*callbackFuncPtr)();

int main(int argc, char** argv)

{
baseClass baseClassObj(1);
derivedClass derivedClassObj(2);

void(baseClass::*callbackFuncPtr)() = &baseClass::callbackFunc;

callbackFunc(baseClassObj, callbackFuncPtr);
callbackFunc(derivedClassObj, callbackFuncPtr);

return 0;

callbackFunc: baseClass: 1

callbackFunc: baseClass: 2

The derived class function will not be called. Why? Because when we pass a derivedClass
object to a function that takes in a baseClass as pass by value, the derivedClass object is
‘sliced’ to a baseClass object. The derivedClass implementation is no longer in that
object. That is why we must be careful to use pointers (or references) whenever we need
dynamic binding.

Virtual pointer example

Let’s finish this topic after discussing something we conveniently avoided explaining in
the ‘Virtual Mechanism’ topic. Here’s the program.

#include<iostream>

using namespace std;

class baseClass1

{
public:
void nonVirtualFunc1()
{
cout << “nonVirtualFuncl” << endl;
}
virtual void virtualNonOverriddenFunc1()
{
cout << “virtualNonOverriddenFunc1” << endl;
}
virtual void virtualOverriddenFunc1()
{
cout << “virtualOverriddenFunc1” << endl;
}
b

class baseClass2

{

public:

void nonVirtualFunc2()

{
cout << “nonVirtualFunc2” << endl;
}
virtual void virtualNonOverriddenFunc2()
{
cout << “virtualNonOverriddenFunc2” << endl,;
}
virtual void virtualOverriddenFunc2()
{
cout << “virtualOverriddenFunc2” << endl;
}

class derivedClass : public baseClass1, public baseClass2
{

public:
virtual void virtualOverriddenFunc1()
{
cout << “virtualDerivedOverriddenFuncl” << endl;
}
virtual void derivedClassOnlyVirtualFunc()
{
cout << “derivedClassOnlyVirtualFunc” << endl;
}

int main(int argc, char** argv)
{
derivedClass derivedClassObj;

derivedClass *dcPtr = new derivedClass;

cout << “Invoking function through the object pointer...” << endl;
dcPtr->virtualNonOverriddenFunc1();
dcPtr->virtualOverriddenFunc1();
dcPtr->derivedClassOnly Virtual Func();

cout << endl;

void(**vtPtr)() = *(void(***)())dcPtr; //obtaining _ vftable address

cout << “Printing __vftable...” << endl;

cout << “__vftable address: “ << vtPtr << endl;
cout << “__vftable[0] - ©“ << *vtPtr << end];

cout << “__vftable[1] - “ << *(vtPtr + 1) << endl;
cout << “__vftable[0] - “ << *(vtPtr + 2) << endl;

cout << endl;

typedef void func(void);

cout << “Invoking functions through __vftable...” << endl << end];
func* virtFuncPtr = (func*)(*vtPtr); // pointing to the first virtual func.
cout << “__vftable[0] - “;

(virtFuncPtr());

virtFuncPtr = (func*)(*(vtPtr + 1)); // pointing to the second virtual func.
cout << “__vftable[1] - ;

virtFuncPtr();
virtFuncPtr = (func*)(*(vtPtr + 2)); // pointing to the third virtual func.
cout << “__vftable[2] - *;

virtFuncPtr();

return 0;

Invoking function through the object pointer...
virtualNonOverriddenFunc1
virtualDerivedOverriddenFunc1l

derivedClassOnly VirtualFunc

Printing __vftable...
__vftable address: 009133B0
__vftable[0] - 009116E0
__vftable[1] - 00911740
__vftable[0] - 00911760

Invoking functions through __vftable...
__vftable[0] - virtualNonOverriddenFunc1

__vftable[1] - virtualDerivedOverriddenFunc1l

__vftable[2] - derivedClassOnlyVirtualFunc

This program is about vptr and invoking the virtual functions through the vtable. But here
we will look at how it was done. Here’s the code segment we are concerned about:

derivedClass *dcPtr = new derivedClass;
void(**vtPtr)() = *(void(***)())dcPtr; //obtaining __vftable address

Here we have a pointer dcPtr that points to an object of derivedClass. This mechanism
depends on one fact: the vptr of the class is at zero offset. That is, dcPtr is actually
pointing to the vptr. We have confirmed that this is indeed the case with at least the Visual
C++ compiler.

Let’s dissect the second statement:

void(**vtPtr)() = *(void(***)())dcPtr; //obtaining __ vftable address

We know that “void (*vtPtr)()” is a declaration of a pointer to a function that has no
arguments and no return value. Therefore, “void (**vtPtr)()” is a ‘pointer to a pointer to a
function with no arguments and returns void’. But why do we have this structure?
Remember what a vtable is? A vtable is an array of function pointers. Perhaps an
illustration of what we are dealing with will help.

&derivedClass
dePtr \ derivedClass
vtable
vptr \ vtable
vtable[0] \
Virt. funcl

vtable[1]
table|2] \ Virt. func2
vtable

\‘ Virt. func3

Remember that an array can be represented by a pointer. The array name itself is a pointer
to its first element. Since vtable is an array of function pointers, by pointing to vtable, vptr
is a “pointer to pointer to a function pointer”. So what dcPtr ultimately is a ‘pointer-to-
pointer-pointer-to-function’. Trace the figure from left and this will become clear.

So where does vtPtr fit in here?

&derivedClass
dcPtr \ derivedClass

vtable

vptr vtable

vtable[0] \

Virt. funcl
vtable[1] \

Virt. func2

vtable[2]
vtable \ :
cery e Virt. func3

Remember we discussed that vtPtr is a ‘pointer-to-pointer-function’. So vtPtr is pointing
to the vtable array. Now we know what vtPtr needs to point to. It needs to point to the
vtable. How do we get that, then? We know that the virtual table pointer (vptr) is at the
beginning of the object, so dcPtr is pointing to it.

But what are we exactly doing in this part of the code?

*(void(***)())dcPtr

‘(void(***)())’ is nothing more than a cast. A cast of type what? A ‘pointer-to-pointer-to-
pointer-to-function’. Right? This is what dcPtr is. What we are doing here, is we are
telling the compiler that dcPtr is a ‘pointer-to-pointer-to-pointer-to-function‘. That’s it.
Then we dereference it once. Once only. And what do you get when you dereference dcPtr
once? Check the figure. If we dereference dcPtr once we get ‘vtable’. Which is what? Yes,
a ‘pointer-to-pointer-to-function‘. And this is exactly what we need to assign to our vtPtr.

The syntax looks rather complex but if you layer it out, it’s nothing much. All we do is
cast dcPtr to a ‘pointer-to-pointer-pointer-to-function‘, and then dereference it to get to
the object’s ‘vtable‘, which is what we want. Now let’s look at calling the virtual functions
through the vtable entries.

In the rest of the code we are invoking the virtual functions through the vtable. We use a
typedef in the code to make the call look like more of a regular function call but let’s
rewrite that part without typedef. We need to understand clearly how this function pointer
is working.

So what is vtPtr again? It is a ‘pointer-to-pointer-to-function’. Currently it is pointing to
the first element of the vtable. So to call the function pointer at vtable[0], we just need to
dereference vtPtr. And do you recall how we called a function pointer? You should not
forget the parentheses. We can simply call the first virtual function like this:

(*(*vtPm)();

The inner dereference is to get to vtable[0]. Since vtable[0] is a pointer-to-function we

have the outer dereference. But remember we saw earlier that in the case of function
pointers we actually don’t need to dereference the function pointer itself. So you can
simply do the following:

(vtPtr)();

To get to other pointers you just need to add one and two. Since vtPtr is a pointer, it does
the correct pointer arithmetic to refer to vtable[1] and vtable[2]. Let’s rewrite the code and
confirm that we are correct.

int main(int argc, char** argv)
{
derivedClass derivedClassObj;

derivedClass *dcPtr = new derivedClass;

cout << “Invoking function through the object pointer...” << end]l;
dcPtr->virtualNonOverriddenFunc1();
dcPtr->virtualOverriddenFunc1();
dcPtr->derivedClassOnly Virtual Func();

cout << endl;

void(**vtPtr)() = *(void(***)())dcPtr;

cout << “Invoking functions through vtPtr...” << endl;

cout << “(* vtPtr)() - “;
(*vtPtr)();

cout << “(*(vtPtr +1))() -
(*(vtPtr + 1))();

cout << “(*(vtPtr + 2))() -
(*(vtPtr + 2))();

return O;

Invoking function through the object pointer...
virtualNonOverriddenFunc1

virtualDerivedOverriddenFunc1

derivedClassOnlyVirtualFunc

Invoking functions through vtPtr...

(* vtPtr)() - virtualNonOverriddenFunc1

(*(vtPtr +1))() - virtualDerivedOverriddenFunc1
(*(vtPtr + 2))() - derivedClassOnly VirtualFunc

It’s working as it should. So you see function pointers might seem complex in certain
cases but if you break it down they are pretty simple. I hope you’ve got a good
fundamental grasp of them.

Topic 14

Function Shadowing
This is not a big topic but nonetheless an important one to know about in C++. As usual,
let’s start off with an example.

We have three very simple classes with each implementing function foo. Each class
overloads function foo so each of these functions are different.

#include<iostream>

using namespace std;

class A
{
public:
void foo()
{
cout << “Function foo in class A” << endl;
}
b

class B : public A

{
public:
void foo(int val)
{
cout << “Function foo(int) in class B” << endl;
}
void foo(int vall, int val2)
{
cout << “Function foo(int, int) in class B” << end];
}
5

class C : public B

{

public:
void foo(string str)
{

cout << “Function foo(string) in class C” << end]l;

int main(int argc, char** argv)

{
A classAobj;
B classBobj;
C classCobj;
classAobj.foo(); // Line 1
classBobj.foo(); // Line 2
classBobj.foo(1); // Line 3
classBobj.foo(1, 2); // Line 4
classCobj.foo(); // Line 5
classCobj.foo(1); // Line 6
classCobj.foo(1, 2); // Line 7
classCobj.foo(“foo”); // Line 8
return 0;

}

Description

€31 error C2661: 'B:foo’ : no overloaded function takes 0 arguments

€9 2 error C2660: 'C::foo’ : function does not take 0 arguments

€33 error C2664: 'void C::foo(stdastring)' : cannot convert argument 1 from 'int' to 'std:string’
€34 error C2660: 'C::foo’ : function does not take 2 arguments

Intuitively, we would assume class B to be able to access A’s methods and class C to be
able to access A’s and B’s methods. After all, the methods are public and the inheritance is
public. But we are getting quite a bit of compiler errors. The problem is not with access. B
has access to A’s method and C has access to A’s and B’s. The problem is the compiler just
can’t see those functions in the base classes. Because the functions are shadowed.

Take a look at the compiler errors. The first error is for line 2 about class B having no zero
argument function. Class B has two overloaded functions, one taking an integer argument
and the other taking two integer arguments. The second error is for line 5 and it is the
same as the first error, but for class C this time. The third error is for line 6, and it says that
the integer argument we passed in line 6 cannot be converted to a string argument.
Because class C has only one foo which takes in a string argument. The fourth error for
line 7 is about having no function that takes two arguments.

What do all of these errors say? They are saying that the compiler simply cannot find the
foo functions that we want it to. But we know that these functions are properly inherited
and accessible. They are just shadowed. They are shadowed by the overloaded functions
of the same name. Whenever we overload an inherited function, all the base class
functions with the same function name are shadowed. But, because something is in the
shadows doesn’t mean it’s not there. The functions are there. We just need to tell the
compiler that those functions exist. It’s pretty simple to do that. Let’s make this right.

#include<iostream>

using namespace std;

class A
{
public:
void foo()
{
cout << “Function foo in class A” << endl;
}
b

class B : public A

{
public:
using A::foo;
void foo(int val)
{
cout << “Function foo(int) in class B” << endl;
}
void foo(int vall, int val2)
{
cout << “Function foo(int, int) in class B” << end];
}
|5

class C : public B

{

public:
using B::foo;
void foo(string str)
{

cout << “Function foo(string) in class C” << endl;

int main(int argc, char** argv)
{

A classAobj;

B classBobj;

C classCobj;

classAobj.foo();

classBobj.foo();
classBobj.foo(1);
classBobj.foo(1, 2);

classCobj.foo();
classCobj.foo(1);
classCobj.foo(1, 2);
classCobj.foo(“foo”);

return 0;

Function foo in class A
Function foo in class A
Function foo(int) in class B
Function foo(int, int) in class B
Function foo in class A
Function foo(int) in class B
Function foo(int, int) in class B

Function foo(string) in class C

We just need to use the using directive to bring the function we need in to the scope. This
is the same thing we do when we say ‘using namespace std‘. We just bring those
definitions in to the scope where we need them. So when we said ‘using A::foo‘, we
brought all the foo functions defined in class A in to B. And we do the same thing in class
C. Note how we only brought class B::foo in to class C scope, although we are using the
class A::foo. We don’t need to because class A::foo is already in the scope of B, so B::foo
already has A::foo in its scope.

Now here’s an important point. The place where you put the using directive matters. Let’s
change class C like this so that the using directive is called before the public declaration.

class C : public B

{

using B::foo; // before declaring public members
public:

void foo(string str)

{

cout << “Function foo(string) in class C” << endl;

}

I8

Description

€31 error C2248: 'Cufoo' : cannot access private member declared in class 'C'
€9 2 error C2248: 'C::foo’ : cannot access private member declared in class 'C'

€9 2 error C2248: 'C::foo’ : cannot access private member declared in class 'C'

Now the compiler is complaining about trying to access private methods. The compiler is
now fully aware of the functions in classes A and B, but unfortunately these functions are
brought in to the scope as private. This is all because our using directive is before the
public declaration. So you see, using directive is just about bringing functions in to that
scope, and it matters where we bring these functions in to. Since the functions were
brought in before we declared public, for the compiler it is as if these foo functions of A
and B were defined in the private section of class C. The functions are there, the compiler
knows it, but we just don’t have the access rights to them.

That’s just about it function shadowing. Nothing much to it but it is important to realize
what is happening when you overload a base class function. Before we leave this topic,
would you think anything would’ve changed if function foo was virtual? No it wouldn’t.
Because virtual functions are about dynamic dispatching. It’s a runtime mechanism, not
compile time. Before we get to the runtime we need to pass the compilation. There is no
relation between function shadowing and virtualness. Overloaded functions are different
functions, so foo() is a different function than foo(int). foo() being virtual has no affect on
foo(int, int).

Topic 15

Understanding the Destructor

We know what a destructor is and what it does but let’s take some time in this topic to
really understand what happens in the destruction phase of an object. Here we go.

#include<iostream>

using namespace std;

class A
{
public:
AQ
{
cout << “A constructor” << endl;
}
~AQ)
{
cout << “A destructor” << endl;
}
b

class B : public A

{
public:
B()
{
cout << “B constructor” << endl;
}
~B()
{
cout << “B destructor” << endl;
}
b

int main(int argc, char** argv)
{
B Bobj;

return 0;

A constructor
B constructor
B destructor

A destructor

We are all too familiar with this. B’s constructor first calls A’s constructor and then B’s.
When the object goes out of scope the destructor is called by the compiler automatically.
B’s destructor is called first and then A’s. We know this.

Virtual destructor

Let’s get the pointers in.

int main(int argc, char** argv)

{
A* Aptr = new B;
delete Aptr;
return 0O;

}

A constructor

B constructor

A destructor

We have an issue now, don’t we? We are calling both A and B constructors but only A’s
destructor is called. This is important to note. B’s destructor is not called because the
destructor is not virtual. When we created the object we called the B’s constructor directly.
But when we deleted it, we called the delete on a pointer of class type A. So the compiler
called the destructor of class A. Let’s fix this.

class A

{

public:
AQ)
{

cout << “A constructor” << endl;

}
virtual ~A()
{
cout << “A destructor” << endl;
}

A constructor
B constructor
B destructor

A destructor

So make sure you make the destructor virtual if your class is designed to be inherited.
Because it is common for derived classes to be associated with base class pointers, we
need to make sure when those base class pointers are deleted and the required destructors
are called.

Object size through destruction

It’ll be interesting to see how an object’s size is changed during construction and
destruction.

#include<iostream>

using namespace std;

class A
{
int varl;
int var2;
public:
AQ)
{
cout << “A constructor. Size: “ << sizeof(*this) << end];
}

virtual ~A()
{

cout << “A destructor. Size: “ << sizeof(*this) << endl;

class B : public A

{
int var3;
int var4;
public:
B()
{
cout << “B constructor. Size: “ << sizeof(*this) << end];
}
~B0
{
cout << “B destructor. Size: “ << sizeof(*this) << endl;
}
|5

int main(int argc, char** argv)
{
B Bobj;

return 0O;

A constructor. Size: 12
B constructor. Size: 20
B destructor. Size: 20

A destructor. Size: 12

Size of object A is 12 bytes. Know why? There are two integers, each with 4 bytes and
then we have the vptr, which is another 4 bytes. Object B has two integers so it adds 8
more bytes. See how the size of the object changes from construction and destruction?

Calling destructor for class members

When you have pointer allocations in your class it is important that you deallocate them in
your destructor by yourself. The compiler is only going to call the base class destructor. It
is not going to do any pointer deleting.

#include<iostream>

using namespace std;

class A

{
public:

AQ
{

cout << “A constructor” << endl;

virtual ~A()

{
cout << “A destructor” << endl;
}
b
class B
{
A* Aptr;
public:
B0
{
Aptr = new A;
cout << “B constructor” << endl;
}
~B()
{
cout << “B destructor” << endl;
}
b

int main(int argc, char** argv)
{
B Bobj;

return 0O;

A constructor

B constructor

B destructor

Note that the A’s destructor is not called. So remember that if you have pointer allocations,
deallocate them yourself. This is not the case if you have an automatic variable.

class B
{
A Aobj;
public:
B0
{
cout << “B constructor” << endl;
}
~B()
{
cout << “B destructor” << endl;
}
b
A constructor

B constructor
B destructor

A destructor

When Bobj goes out of scope the destructor of B is called and this destructor in turn calls
the member variable’s destructors. This is why it is always a good idea to use smart
pointers and use the concept of Resource-Aquisition-Is-Initialization (RAII).

Delete this

Let’s end this topic with this: what exactly does ‘delete this’ do? Try this out.

#include<iostream>

using namespace std;

class A

{

public:

AQ)
{
cout << “A constructor” << endl;
}
~A()
{
cout << “A destructor” << endl;
}
void callDeleteThis()
{
delete this;
}

int main(int argc, char** argv)
{
A Aobj;
aobj.callDeleteThis();

return 0;

A constructor

A destructor

This shouldn’t work. The result depends on the runtime system but you must get some
type of runtime failure. If you put a breakpoint at the return statement though, you could
see the output shown above.

We are trying to do an undefined operation here. What does ‘delete this’ do then? It
simply calls the destructor. That’s it. Why then is this giving a runtime error? Because we
are trying to call the destructor on an object that’s already destructed. The destructor is
first called when we call callDeleteThis. And when the object goes out of scope the
compiler implicitly calls the destructor on Aobj. But Aobj is already destructed. This is
undefined behavior.

Then how about calling the destructor explicitly? Can you do that? You sure can.

int main(int argc, char** argv)

{
A Aobj;
aobj.~A();
return 0;

}

Did you notice something different now? This code don’t have any runtime failures. It
executes the fine. But we are doing the same thing as before when we did ‘delete this’,
right? Actually, no.

Now here’s the caveat. Destructor does not deallocate the object. The destructor is just
another function that is supposed to do some housekeeping before the object is
deallocated. But the destructor itself does not deallocate the memory. After the destructor
is called, the object memory is still there intact. The object still technically exists. This is
the difference between calling the destructor explicitly and calling it through operator
delete. Note how we got a runtime error before when did ‘delete this’, but we had no
issues when we called the destructor explicitly. This is because delete is the one that
actually does the memory deallocation. So operator delete has two operations:

e First calls the destructor, and lets it do the necessary housekeeping.
e Deallocates the memory of the object.

Does the functionality of operator delete sound familiar? This is the exact opposite of
operator new. Operator new allocates memory and then constructs the object, while
operator delete destructs the object and deallocates the memory. Here’s an example.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A() : var(10)
{

cout << “A constructor” << endl;

~A()

cout << “A destructor” << endl;

void callDeleteThis()
{

delete this;

int main(int argc, char** argv)

{
A Aobj;
aobj.~A();
aobj.var = 20;
cout << “Aobj.A: “ << Aobj.var << endl;
return 0;

}

A constructor

A destructor

Aobj.A: 20

A destructor

Here we are constructing an object, then (trying to) destruct it by calling the destructor
explicitly, and then we assign a value to its member variable and read it back. All without
having any issues. Now are you convinced that the destructor is just another function? Its
only speciality is that it is automatically called just before the object is deleted.

The story’s different if we do this:

int main(int argc, char** argv)

{
A Aobj;
aobj.callDeleteThis();
aobj.var = 20;
cout << “Aobj.A: “ << Aobj.var << endl;
return O;
}

This is a runtime failure. Why? Because we destruct the object through delete. This
actually deallocates the memory so the object does not exist anymore. And we are trying
to access a non-existent object, which causes the runtime failure.

Why, then, would we need to call the destructor explicitly? There aren’t many cases where

you should be calling the destructor explicitly. One case where you would call the
destructor explicitly is when you want to destroy the object but not to deallocate the
memory. When would we want to do that? Remember ‘placement new’? Where we
construct new objects on memory that is already allocated. This is one situation where we
would call the destructor explicitly. We call the destructor explicitly to destroy the object,
but not to deallocate the memory, but then use placement new to construct a new object on
that block of memory. Like this:

#include<iostream>

using namespace std;

class A
{
public:
int var;

A(int val) : var(val)

{
cout << “A constructor” << endl;
}
~A()
{
cout << “A destructor: “ << var << endl;
}

int main(int argc, char** argv)
{
A* Aptr = new A(1);
cout << “Aptr->var: “ << Aptr->var << endl;

aptr->~A();

new (Aptr)A(2);
cout << “Aptr->var: “ << Aptr->var << endl;
delete Aptr;

return O;

A constructor
Aptr->var: 1

A destructor: 1

A constructor
Aptr->var: 2
A destructor: 2

You can confirm that we are indeed constructing two different objects in one place. We
destruct the first object, which actually does nothing more than a printout, and then we call
placement new to construct a new object on the memory block Aptr is allocated to.

I believe this topic provided you with some internals of the destructor. A destructor is
almost a normal function, except for the fact that the compiler implicitly calls it before
deallocating the object’s memory. Other than that it is just another pretty normal function.

Topic 16

Operator Overloading

Operator overloading is a new important feature added to C++. Every time you do ‘cout
<<’ you are using operator overloading. As important as it is I’ve found that references
that do a proper treatment of this topic is rather scarce. Operator overloading isn’t difficult
but there are a few rules you need to know about it.

What is exactly operator overloading? It is the same as function overloading. You change
the behavior of an existing operator to do something else you want. It’s important to
remember that you can only overload existing C++ operators. You cannot invent new
ones. And when you overload an operator, it must be overloaded to work with an user
defined type. What that means is that you cannot overload an operator to something
different on a built in type. For example when you do ‘x+y’, where ‘x‘ and ‘y‘ are
integers, operator ‘+’ will always do integer addition. You cannot change the behavior of
operator ‘+’ for built in types such as integers. What you can do is to overload the operator
‘+” for a class type you defined. Let’s say you have two instances of myClass, objl and
obj2; you can overload operator ‘+’ to define an implementation for ‘objl1+obj2’. We’ll
look at examples later, but first let’s have a look at the fundamental rules.

Rules of operator overloading
Here are the basic rules:

e Only existing operators can be overloaded.

e The following operators cannot be overloaded: scope resolution (::), member
access (. and .*), ternary conditional (?:).

e Most operators have a fixed number of arguments.

e Most operators can be overloaded as either a member function or a non-member
function.

Having said that, here’s the other thing about operators: most operators can be divided into
either unary operators or binary operators. You must have noticed that I used ‘most’ in a
few places; this is because there are a few exceptions. But the rule holds for the majority.

e Unary operators — These are the operators that take only one parameter.

o Increment (++) and decrement (—) operators

o Positive (+), negative (-) and logical not (!)

e Binary operators — These are the operators that take two parameters.

o Arithmetic operators — plus(+), minus (-), division (/) and multiplication (*)
o [/O operators - << and >>

o Comparison operators — greater than (<, <=), less than (>, >=), equal (==

Unary operator overloading

Let’s start with non-member function for unary operator ‘+’.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator+(const A& Aref)
{

cout << “Received value: “ << Aref.var << end];

return A(Aref.var + 1);

int main(int argc, char** argv)

{
A Aobj1(20);
A Aobj2(+Aobjl);
cout << “Aobj2.var: “ << Aobj2.var << endl;
return 0;
}

Received value: 20

Aobj2.var: 21

It’s easy to understand the implementation. The operator ‘+’ simply increments the
received reference’s value and returns an object with that value. Note how I called the
operator on the object as ‘+Aobj1°? The operator is on the left of the object. What if it was
on the right, like ‘Aobj1+°? You can’t. You’d get an error similar to the following:

Description

€31 error C2059: syntax error: ')’
€9 2 error C2065: 'Achj2' : undeclared identifier
€3 3 error C2228: left of 'wvar' must have class/struct/union

Can you guess what is happening? Did you notice that the operator ‘+’ is both a unary and
a binary operator? When the operator appears on the right, the compiler treats it as the
binary operator ‘+’. And binary operators need two arguments, the one on its left and the
one on the right. When we write ‘Aobj1+°, the compiler parses it as the binary operator ‘+’
and expects the second argument to the right of the operator. These compiler errors are
because it is missing that argument. It would become clear when we look at binary
operators but now keep in mind that unary operators must be on the left of the operand.
Well, at least in most cases.

Now how would we implement this unary operator ‘+’ as a member-function? It’s pretty
straight forward. When the function was a non-member we had to pass the class type as
the parameter. And there must be only one parameter since this is a unary operator. When
this operator overloaded function is a member of the class, we no longer need to specify a
parameter, because every member function gets an implicit “*this’. And “*this’ is the one
argument that the operator requires. So for unary operators we must not have any function
parameters. This is how we make this a member function.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator+()
{
cout << “‘this’ value: “ << this->var << endl;

return A(this->var + 1);

int main(int argc, char** argv)
{

A Aobjl(1);

A Aobj2(+Aobjl);

cout << “Aobj2.var: “ << Aobj2.var << endl;

return 0;

‘this’ value: 1

Aobj2.var: 2

See, nothing much to it. The parameter we had in the non-member function now becomes
the implicit ‘this’ in the member-function. Now let’s take a quick look at the increment
and decrement operators.

You know that increment and decrement operators come in two versions: prefix and
postfix. Prefix is when the operator is on the left of the operand and postfix is when it is on
the right. Let’s look at the prefix increment. There isn’t anything different from the
increment operator.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator++(A& Aref)
{
cout << “Received value: “ << Aref.var << endl;

return A(Aref.var + 1);

int main(int argc, char** argv)
{
A Aobjl1(1);
A Aobj2(++Aobjl);
cout << “Aobj2.var: “ << Aobj2.var << endl;

return O;

Received value: 1
Aobj2.var: 2

How are we going to implement the postfix version? Because from increment operator we
know that the operator needs to be on the left side. There is a special handling for this
case. Insert a dummy integer parameter to the overloaded operator.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator++(A& Aref, int dummy)
{

cout << “Received value: “ << Aref.var << endl;

return A(Aref.var + 1);

int main(int argc, char** argv)

{
A Aobjl1(1);
A Aobj2(Aobjl++);
cout << “Aobj2.var: “ << Aobj2.var << endl;
return 0O;
}

Received value: 1
Aobj2.var: 2

Pretty neat right? But you must be wondering now about this dummy parameter. What
does the dummy parameter do? And does it need to be an integer? Let’s put a float in
there. After all this is a dummy parameter. It shouldn’t matter what type it is. Or does it?

A operator++(A& Aref, float dummy)
{
cout << “Received value: “ << Aref.var << endl;

return A(Aref.var + 1);

Description

1 error C2807: the second formal parameter to postfix 'operator ++' must be 'int’
P P F
2 error C2264: 'operator ++' 1 error in function definition or declaration: function not called
p
3 error C2088: '++' 1 illegal far class
4
4 error C2512: 'A' : no appropriate default constructor available
PRIop

That’s a bunch of errors but only look at the first one. The compiler is saying that the
second parameter for the postfix operator must be an int. If you want to overload the
postfix operator you must make the second operand an int. That’s the rule. Just obey it.

Now you must be scratching your head trying to generalize the rules of operator
overloading. Don’t! Do not try to find a set of general rules for operator overloading.
Certain operators have their special overload function signature. This will become clear to
you when we look at overloading operator new. Just keep in mind that these operators
have their way of being overloaded. You need to adhere to their ways. In case of
increment/decrement postfix operator, the second parameter must be an int. Not a float,
not a *void, but only an int.

To finish off unary operators let’s look at how we’d implement the postfix decrement
operator as a member-function.

#include<iostream>

using namespace std,;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator—(int dummy)
{
cout << “Received value: “ << this->var << end];

return A(this->var - 1);

int main(int argc, char** argv)

{
A Aobjl(1);
A Aobj2(Aobjl—);
cout << “Aobj2.var: “ << Aobj2.var << endl;
return 0;
}

Received value: 1
Aobj2.var: 0

Binary operator overloading

Now we’ll move on to overloading binary operators. Let’s start with the ‘+’ operator. This
is one operator that works as both a unary and a binary operator. Let’s look at the non-
member function first.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator+(A& leftOp, A& rightOp)

{
cout << “Received left: “ << leftOp.var << end]l;
cout << “Received right: “ << rightOp.var << endl;
return A(leftOp.var + rightOp.var);

}

int main(int argc, char** argv)
{
A Aobjl(1);

A Aobj2(2);
A Aobj3(Aobjl + Aobj2);
cout << “Aobj3.var: “ << Aobj3.var << endl;

return 0;

Received left: 1
Received right: 2
Aobj3.var: 3

As this is a binary operator you need two operands. One for the operand on the left of the
operator and the other for the one on the right. It is important to note the association of the
function parameters and the operator operands. The first parameter leftOp is the one that
comes to the left of the operator and the rightOp is the one that goes on the right. Pretty
intuitive. Remember I said that you cannot overload operators for built-in types? What
would happen if we try it?

#include<iostream>

using namespace std,;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator+(int leftOp, int rightOp)

{
cout << “Received left: “ << leftOp << end];
cout << “Received right: “ << rightOp << endl;
return A(leftOp + rightOp);

}

int main(int argc, char** argv)
{
A Aobj(1 + 2);
cout << “Aobj.var: “ << Aobj.var << endl;

return O;

Description File

€91 error C2803: 'operator +' must have at least one formal parameter of class type main.cpp

We cannot. And what does it mean that “must have at least one formal parameter?”

It means that when you overload an operator it must have a formal parameter. That is, a
user defined type. Not built in types. So does that mean we can have one class type
parameter and the a built-in type? Yes.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator+(A& leftOp, int rightOp)

{
cout << “Received left: “ << leftOp.var << end];
cout << “Received right: “ << rightOp << endl;
return A(leftOp.var + rightOp);

}

int main(int argc, char** argv)

{
A Aobjl1(1);
A Aobj2(Aobjl + 2);
cout << “Aobj2.var: “ << Aobj2.var << endl;
return O;
}

Received left: 1
Received right: 2
Aobj3.var: 3

So you can make your class type work with built in types. But make sure you have the
operand association. In the example above the left operand must be of our class type. It
cannot be the other way around. That is, we couldn’t write “A Aobj2(2 + Aobj1)“. For that
we need to have another overloaded operator “A operator+(int leftOp, A& rightOp)“.

Now how would this look as a member-function?

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

A operator+(A& rightOp)

{
cout << “Received left: “ << this->var << endl;
cout << “Received right: “ << rightOp.var << endl;
return A(this->var + rightOp.var);

}

int main(int argc, char** argv)

{
A Aobjl1(1);
A Aobj2(2);
A Aobj3(Aobjl + Aobj2);
cout << “Aobj3.var: “ << Aobj3.var << endl;
return 0O;
}

Received left: 1
Received right: 2
Aobj3.var: 3

Remember, we discussed how the member functions always have an implicit “*this’ that
corresponds to the object that the function was called on. It’s the same thing here. The left
operand of the operator becomes the ‘*this’. In our example we are invoking the operator

of object Aobj1 and Aobj2 becomes the rightOp argument. This would become clearer
when you see that you can actually call the overloaded operator as calling a member
function.

int main(int argc, char** argv)
{
A Aobj1(1);
A Aobj2(2);
A Aobj3(Aobjl.operator+(Aobj2));
cout << “Aobj3.var: “ << Aobj3.var << endl;

return 0;

You see overloaded operators are just functions. Functions that the compiler handles a bit
differently so you can call them as you would a normal operator. Would you really want to
call the operator ‘+’ as ‘Aobj1.operator+(Aobj2)’? What’s the point? You’d rather define a
member function ‘A Plus(A& obj)’ to do that. But it helps to clear things, that it is another
member function that is called on the object on the left of the operator.

Now how about if we want to have a member-function but with an int parameter like we
discussed before in the non-member case “A operator+(A& leftOp, int rightOp)“? How
would it work in the member-function version? We definitely could make a member-
function version where the left operand is the class type.

A operator+(int rightOp)

{
cout << “Received left: “ << this->var << end];
cout << “Received right: “ << rightOp << endl;

return A(this->var + rightOp);

We can do this because the left operand should be of class type. But what about when we
want to implement a member-function for having the integer as the left operand? That is,
what is the member-function version of non-member function “A operator+(int leftOp,
A& rightOp)“? There isn’t one. This is one limitation you have with the member-function.
There is no special handling with dummy variables. You just cannot do this with a

member function. If you want to overload the plus operator to have a built-in type left
operand you must use a non-member function.

The rules are the same for the other binary operators: I/O operators and comparison
operators. There is no restriction on the operator return type. So far we only looked at a
simple case where we return an object. But you could have different return types
depending on the operator. For example, comparison operators in all cases should be
returning a boolean value. But you are free to return any value.

Finally we will look at two other operators that have some special handling.
Function operator overloading

First is overloading the function call operator ‘()’, which is called the function operator.
This has quite nifty use cases.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

void operator() ()
{

cout << “In overloaded operator ()” << endl;

int main(int argc, char** argv)
{

A Aobj(1);

aobj();

return 0O;

In overloaded operator ()

Did you notice how we called the overloaded operator? Pretty neat syntax, isn’t it? And
we are not limited to a no argument function. We can load it up.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

void operator() (int a, int b)

{

cout << “In overloaded operator(): “ << a <<” and “ << b << endl;

int main(int argc, char** argv)

{
A Aobj(1);
aobj(1, 2);
return 0;

}

One thing you must adhere with this overloaded function operator is that it must be a
member-function. And also that the parentheses must come to the left of the operand.

Operator new overloading

Our last operator is the new operator (and of course the associated delete operator). We
actually did operator new overloading in the topic on “Understanding new”. Remember
placement new? That was operator overloading. Operator new has three main formats:

e The global standard operator new has the signature

void* operator new(std::size_t count);

e Placement new has the signature

void* operator new(std::size_t count, void* ptr);

e An user defined overloaded operator has the signature

void* operator new(std::size_t count, user_args...);

All three of the above operator formats are overloadable. There is a special operator new
specific way of calling these functions. Remember I told you not to try to generalize the
function overloading mechanism. This is another one of those operator specific ones.

Let’s look at a simple example.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

int main(int argc, char** argv)
{
A* Aptr = new A(1); // Line 1

return 0;

I want to point out something important in this example. See the call to new in line 1? It is
important to understand that this is NOT the call to operator new. What we call in line 1 is
the ‘new-expression’. ‘new-expression’ is the one that calls operator new. Operator new is
only responsible for memory allocation while ‘new-expression’ does two things: It first
calls the operator new to allocate memory and then constructs the object at the allocated
memory by calling the constructor. Keep the distinction in mind. What we are overloading
here is the operator new, the function that will be called by the new-expression first. So
you must understand the importance of proper overloading of operator new. Because you
see if we don’t do the proper memory allocation in our overloaded operator new, then
when we call new-expression, it is not going to work. The compiler will do its part to
make sure we overload it properly.

#include<iostream>

using namespace std;

class A

{

public:
int var;
A(int val) : var(val)
{}

void operator new(size_t count)
{

cout << “Operator new” << end];

int main(int argc, char** argv)
{
A* Aptr = new A(1);

return 0;

Description
€31 error C2824: return type for 'operator new' must be 'void *
€9 2 error C2333: 'Azoperator new’ : error in function declaration; skipping function body

€33 error C2264: 'Azoperator new' : error in function definition or declaration; function not called

See, the compiler wants us to have the correct return type. We cannot overload it as we
wish. Also, notice that the new-expression calculates the size and passes it as the first
argument to the operator new. Let’s see how improper implementation can fail things.

#include<iostream>

using namespace std;

class A
{
public:
int varl;
int var2;
int var3;
A(int val) : var3(val)
{}

void* operator new(size_t count)

{

return ::operator new(8);

int main(int argc, char** argv)

{
cout << “Size of A: “ << sizeof(A) << endl;
A* Aptr = new A(1);
cout << “Aptr->var: “ << Aptr->var3 << endl;
return 0;

}

Here I put two more int variables to the class. This should make the size of a A object to
be 12 bytes (one int is 32-bits). And in the operator new, which is supposed to allocate 12
bytes of heap memory, it only allocates half of it. So the memory block returned by
operator new to the new-expression does not have enough space to put three ints. new-
expression then constructs the 12 byte object in a 8 byte space and then we try to access
the last int variable, which is clearly out of the object memory space. This should result in
a runtime error. Depending on the system, even if we tried to access the first variable we
could see a runtime failure because we are clearly violating the allocated memory
boundaries. So if you are overloading the operator new, make sure you implement it
correctly.

Now in the final part let’s see how we can overload the new operator for a custom
signature.

#include<iostream>

using namespace std;

class A

{
public:

int var;

A(int val) : var(val)
{}

void* operator new(size_t count, int varl, int var2, bool state)
{

if (state)

{

cout << “TRUE state: varl- “ << varl << “, var2- “ << var2 << endl;

}

return ::operator new(count);

int main(int argc, char** argv)
{
A* Aptr = new (1, 2, true) A(1);

return 0;

TRUE state: varl- 1, var2- 2

You see, you can pass any number of arguments to your overloaded operator new. The
first argument, count, is always passed implicitly by the new-expression. The rest of the
arguments, however, need to be passed as a list before the operand. Notice how we pass
the list of arguments. It comes before the operand. It looks peculiar but remember, the
compiler has its way of handling operator overloads. Keep in mind that you don’t need to
pass the first argument, which is passed by new-expression.

I hope you’ve realized how operator overloading works and how powerful that mechanism
can be to make the operators perform customized functionality to suit your needs.

Topic 17

Multiple Inheritance

Multiple inheritance can be a powerful feature when done right. But the longer the
inheritance hierarchy the more error prone it becomes. This topic will do a quick
discussion on multiple inheritance, the dreaded diamond problem and then virtual
inheritance.

Here’s a simple multiple inheritance example.

#include<iostream>

using namespace std;

class A

{
public:

int var;

A(int val) : var(val)

{}
void foo()
{
cout << “Class A foo()” << endl;
}
I8
class B
{
public:
int var;

B(int val) : var(val)

{}
void foo()
{
cout << “Class B foo()” << endl;
}

class ABDerived : public A, public B

{

public:
ABDerived(int varl, int var?) : A(varl), B(var2)
{}

b

int main(int argc, char** argv)

{
ABDerived ABDerObij(1, 2);
aBDerObj.foo();
return 0;

}

Classes A and B have common member names they share, var and foo. You know this is
going to be trouble. Class ABDerived has access to function foo of both classes A and B.
So which foo are we calling? Luckily the compiler doesn’t randomly choose one. It
complains that it doesn’t know which one to choose.

Description

€31 error C2385: ambiguous access of 'foo'
€9 2 error C3861: 'foo': identifier not found

All we need to do is tell the compiler which foo we want to invoke by correctly qualifying

the call with the class name.

int main(int argc, char** argv)

{
ABDerived ABDerObj(1, 2);
aBDerObj.A::foo(); //qualifying the function call
return O;

}

Class A foo()

What if foo was private in class A? In that case ABDerived has access to only B::foo so we
don’t need to qualify the call to foo, right? Nope.

#include<iostream>

using namespace std;

class A

{
public:

int var;

A(int val) : var(val)

{}
private:
void foo()
{
cout << “Class A foo()” << endl;
}
b
class B
{
public:
int var;
B(int val) : var(val)
{}
void foo()
{
cout << “Class B foo()” << endl;
}
b

class ABDerived : public A, public B

{

public:
ABDerived(int varl, int var2) : A(varl), B(var2)
{}

b

int main(int argc, char** argv)

{

ABDerived ABDerObj(1, 2);
aBDerObj.foo();

return 0;

Description

€31 error C2385: ambiguous access of 'foo'
€3 2 error C2248: 'Axfoo' : cannot access private member declared in class ‘A’
€3 3 error C3861: 'foo'; identifier not found

Why is the call still ambiguous to the compiler? There is obviously one foo that
ABDerived has access to. This is because function access rights is the one that the
compiler checks at the very end. Simply, it is because before the compiler knows that
ABDerived has no right to access foo, it finds two possible foos and complains about the
call ambiguity before going further and finding out A::foo() is inaccessible. So even
though one of the foos is private, you still need to qualify the function call. Now let’s look
at what the ‘dreaded diamond problem is.

The diamond problem

This is our class hierarchy.

class Base

{
public:

int var;

Base(int val) : var(val)

{}
void foo()
{
cout << “Class Base foo()” << endl;
}

class Derived_A : public Base

{

public:
Derived_A(int val) : Base(val)
{}

void foo()

cout << “Class Derived_A foo()” << endl;

class Derived_B : public Base

{
public:
Derived_B(int val) : Base(val)
{}
void foo()
{
cout << “Class Derived_B foo()” << endl;
}
I8

class Derived_AB : public Derived_A, Derived_B

{

public:
Derived_AB(int varl, int var2) : Derived_A(varl), Derived_B(var2)
{}

b

Pictorially this is what we have:

Base

Derived_A Derived_B

Derived_AB

We have a Base class and then classes Derived_A and Derived_B inheriting from Base
class. Base class function foo has been overridden by both derived classes. And then we
have class Derived_AB inheriting from both Derived_A and Derived_B classes. You notice
that this is nothing different from what we discussed in the earlier example. The only
difference is that there wasn’t a common base class. It’s obvious where the diamond shape

is coming from and this is a far more common occurrence, where two classes derive from
the same base class and then another class doing multiple inheritance. You already know
what needs to be done. You need to qualify your function call to let the compiler know
which foo to call.

We are clear about calling foo. Both the derived classes have overridden foo functions so
we need to explicitly qualify the call. But what about var? There is only var and it is in the
Base class. Can there be any ambiguity in accessing var?

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base(int val) : var(val)

{}
void foo()
{
cout << “Class Base foo()” << endl;
}

class Derived_A : public Base

{
public:
Derived_A(int val) : Base(val)
{}
void foo()
{
cout << “Class Derived_A foo()” << endl;
}
b

class Derived_B : public Base

{

public:
Derived_B(int val) : Base(val)
{}

void foo()
{

cout << “Class Derived_B foo()” << endl;

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int varl, int var2) : Derived_A(varl), Derived_B(var2)
{}

I8

int main(int argc, char** argv)

{
Derived_AB ABDerObij(1, 2);
aBDerObj.var;
return 0;

}

Description

€31 error C2385: ambiguous access of 'var'

Yes. There still is ambiguity in var for the compiler. But why? Here’s the debug view of
the Derived_AB class object.

Locals v [X
Mame Value Type
Clame—— (1. e
@ argv (007950 dE {0007950el "1 char ™™
4 @ ABDerObj e Derived AB
4 @ Derved A e Derrved A
4 @ Base fwar=1} Base
W var 1 int
4 @ Derived B e Derived_B
4 @ Baze fwar=2 } Base
W var 2 int

That should convince you why the compiler has ambiguity in finding var. There is only
one var but there are two Base class instances. One in Derived_A and one in Derived_B.
So there are two var variables in the Derived_AB object. So just as we did for the foo

function call, we need to qualify var too.

int main(int argc, char** argv)

{
Derived_AB ABDerObj(1, 2);
cout << “var: “ << ABDerObj.Derived_B::var << endl;
return 0;

}

var: 2

Could we qualify var with Base class? Like this:

int main(int argc, char** argv)

{
Derived_AB ABDerObj(1, 2);
cout << “var: “ << ABDerObj.Base::var << endl;
return 0;

}

var: 1

Well, it shouldn’t. Unfortunately it does compile and run in the version of Visual Studio I
am running, although there is a tooltip warning that says “base class Base is ambiguous*.
So it understands the ambiguity of the call yet does not even seem to warn, even at higher
warning levels.

Base class function access

So you see, the real problem here is that our class hierarchy is actually like this:

Base Base

Derived_A Derived_B

Derived_AB

We have two instances of Base and we need to explicitly tell the compiler which one we
want to use. Now we understand this for var. There are two var‘s, one with value 1 and
the other 2. And we also understood about the ambiguity of foo call. There are two
overridden versions. But what if we didn’t override function foo in the derived classes?
Like this:

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base(int val) : var(val)

{}
void foo()
{
cout << “Class Base foo()” << endl;
}

class Derived_A : public Base

{

public:
Derived_A(int val) : Base(val)
{}

class Derived_B : public Base

{

public:
Derived_B(int val) : Base(val)
{}

b

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int varl, int var2) : Derived_A(varl), Derived_B(var2)
{}

I8

int main(int argc, char** argv)

{
Derived_AB ABDerObij(1, 2);
aBDerObj.foo();

return 0;

Description

€91 error C2385: ambiguous access of 'foo'
€9 2 error C3861: 'foo': identifier not found

There shouldn’t be any ambiguity about function foo, right? Because foo is not overridden
anywhere and Base class is the only place with foo implementation and functions are not
instance specific. They are class specific. So there must be only one version of foo. Why is
the call to foo still ambiguous then?

You see, there are actually two versions of foo the compiler can call. Remember that every
member-function of a class has an implicit ‘*this‘ argument passed by the compiler. That
is why you can access object specific variables in member-functions. So the call to foo has
an implicit ‘Base*‘ argument passed to it by the compiler. The problem is our Derived_AB
object has two Base sub-objects as we saw before. So which one should be passed to foo?
This is where the compiler gets confused. So we need to explicitly specify which sub-
object we want passed by qualifying the call.

Copy construction with multiple inheritance

Now these multiple base class instances are not only a problem for function and member

variables accessing. It can be problematic in other places too, like shown here.

int main(int argc, char** argv)

{
Derived_AB ABDerObj(1, 2);
Base BaseObj = static_cast< Base&> (ABDerObj);
return 0;

}

Here we are trying to instantiate a Base object using a Derived_AB object. If there was no
multiple inheritance this wouldn’t have any issues. But there is ambiguity now.
Description

€31 error C2594: 'argument’ : ambiguous conversions from 'Derived_AB' to 'const Base &'

We are calling the Base class copy constructor, which takes an argument of type “Base
&“. The problem here is that the Derived_AB object has two instances of Base objects.
Which one should the compiler use? As always, we need to explicitly tell it.

int main(int argc, char** argv)

{
Derived_AB ABDerObj(1, 2);
Base BaseObj = static_cast<Derived_B&> (ABDerObj);
return O;

}

BaseObj.var: 2

We cast the object to a Derived_B instance. And you can see that the compiler indeed
copied the correct Base instance, the one with var with a value of 2.

Virtual inheritance

Now there is a mechanism that avoids all of these messy qualified accesses and
ambiguities. It’s called virtual inheritance.

Let’s see what exactly happens in our diamond class hierarchy when we instantiate a
Derived_AB object.

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base(int val) : var(val)

{
cout << “Base constructor with var: “ << var << endl;
}
void foo()
{
cout << “Class Base foo()” << endl;
}

class Derived_A : public Base

{
public:
Derived_A(int val) : Base(val)
{
cout << “Derived_A constructor.” << endl;
}
b

class Derived_B : public Base

{
public:
Derived_B(int val) : Base(val)
{
cout << “Derived_B constructor.” << endl;
}
b

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int var1, int var2) : Derived_A(varl), Derived_B(var2)
{

cout << “Derived_AB constructor.” << endl;

int main(int argc, char** argv)
{
Derived_AB ABDerObj(1, 2);

return 0;

Base constructor with var: 1
Derived_A constructor.
Base constructor with var: 2
Derived_B constructor.

Derived_AB constructor.

Take a look at the sequence of object construction. First, the Base constructor with 1 is
called by Derived_A constructor, then Derived_A constructor itself, then Base constructor
is again called with 2 by Derived_B constructor, and then Derived_B constructor itself,
and then finally Derived_AB constructor.

Order of base object construction

The constructor call sequence seems logical. It seems to be calling in the order we passed
the arguments to Derived_AB constructor. Derived_A is initialized in the initializer list
before Derived_B, so it seems that is the order in which the constructors are called. Let’s
change the order in the initializer list and see.

class Derived_AB : public Derived_A, public Derived_B

{
public:
Derived_AB(int varl, int var2) : Derived_B(var1l), Derived_A(var2) // initialization order changed
{
cout << “Derived_AB constructor.” << endl;
}
h

Base constructor with var: 2
Derived_A constructor.

Base constructor with var: 1

Derived_B constructor.

Derived_AB constructor.

Derived_A constructor is still called first. So it is not the order of initialization. Is it the
order of derivation, then?

class Derived_AB : public Derived_B, public Derived_A // Derivation order changed

{
public:
Derived_AB(int varl, int var2) : Derived_A(varl), Derived_B(var2)
{
cout << “Derived_AB constructor.” << endl;
}
b

Base constructor with var: 2
Derived_B constructor.
Base constructor with var: 1
Derived_A constructor.

Derived_AB constructor.

Yes, it is. The order of constructor invocation depends on the order of derivation.

So we have now confirmed that in multiple inheritance, where there is a shared base class,
this base class gets constructed multiple times. And these multiple base class sub-objects
are the source of many ambiguities for the compiler. C++ has the virtual inheritance
mechanism to circumvent this situation. All you need to do is specify ‘virtual’ inheritance.
Let’s redo our example with virtual inheritance.

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base(int val) : var(val)

{

cout << “Base constructor with var: “ << var << endl;

}
void foo()
{
cout << “Base foo()” << endl;
}

class Derived_A : public virtual Base // virtual inheritance

{

public:
Derived_A(int val) : Base(val)
{
cout << “Derived_A constructor.” << endl;
}
b
class Derived_B : public virtual Base // virtual inheritance
{
public:
Derived_B(int val) : Base(val)
{
cout << “Derived_B constructor.” << endl;
}
b

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int varl, int var2) : Derived_A(varl), Derived_B(var2)
{

cout << “Derived_AB constructor.” << endl;

int main(int argc, char** argv)
{
Derived_AB ABDerObij(1, 2);

return 0;

Description

€91 error C2512: 'BasenBase' : no appropriate default constructor available

What is going on here? Why is the compiler trying to call the default constructor of Base
class? So obviously just deriving virtually is not enough.

Let’s understand what virtual inheritance does. What it does is to have only one base class
sub-object. We saw earlier that when we didn’t have virtual inheritance we called
constructors of both Derived A and Derived B. These constructors in turn call the Base
class constructor. So Base class gets constructed twice. And this is what we want to avoid.

Under virtual inheritance, the virtual base class, in our case Base class constructor, should
not be called by the classes that inherit virtually from it. That means Derived_A and
Derived_B classes’ constructors should not be calling the Base class constructor, because,
that would mean that Base class will be constructed multiple times. Instead, with virtual
inheritance, the final concrete class has the responsibility of calling the virtual base class’s
constructor. Concrete class means the class that we are instantiating an object with, which
in our case is Derived_AB. So the compiler expects the Derived_AB constructor to call the
Base class constructor. And since we are not making a call to Base class constructor in
Derived_AB constructor, the compiler tries to call the default constructor of Base, which it
does not have, and hence the compiler error. Let’s implement a default constructor to Base
class and see the result.

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base()
{

cout << “Base default constructor.” << end];
}
Base(int val) : var(val)
{

cout << “Base constructor with var: “ << var << endl;

void foo()
{

cout << “Base foo()” << endl;

class Derived_A : public virtual Base

{
public:
Derived_A(int val) : Base(val)
{
cout << “Derived_A constructor.” << endl;
}
b

class Derived_B : public virtual Base

{
public:
Derived_B(int val) : Base(val)
{
cout << “Derived_B constructor.” << endl;
}
b

class Derived_AB : public Derived_A, public Derived_B
{
public:
Derived_AB(int varl, int var2) : Derived_A(varl), Derived_B(var2)

{

cout << “Derived_AB constructor.” << endl;

int main(int argc, char** argv)
{
Derived_AB ABDerObj(1, 2);

return O;

Base default constructor.
Derived_A constructor.
Derived_B constructor.

Derived_AB constructor.

It’s working. The compiler implicitly makes a call to the Base class default constructor.
And then Derived_A and Derived_B constructors are called. Did you notice something
about the Derived_A and Derived_B constructor calls? They are not calling the Base class
constructor anymore. Usually the derived class constructor always calls its base class
constructor before executing its own constructor. But things happen a little differently
under virtual inheritance. We discussed earlier how derived classes should not be calling
the base class constructors as that would mean multiple base class objects. So when in
virtual inheritance, the compiler avoids the calls to the base class constructor from the
derived classes. The virtual base class constructor must only be called by the concrete
class. Note that this is the only scenario where a derived class is allowed to call the
constructor of a class which is not its immediate base class.

So our original example should be called as follows. Note the call to Base class
constructor in the Derived AB constructor.

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base(int val) : var(val)

{
cout << “Base constructor with var: “ << var << endl;
}
void foo()
{
cout << “Base foo()” << endl;
}

class Derived_A : public virtual Base
{
public:
Derived_A(int val) : Base(val)
{

cout << “Derived_A constructor.” << endl;

class Derived_B : public virtual Base

{
public:
Derived_B(int val) : Base(val)
{
cout << “Derived_B constructor.” << endl;
}
b

class Derived_AB : public Derived_A, public Derived_B

{
public:
Derived_AB(int varl, int var2) : Base(1), Derived_A(varl), Derived_B(var2)
{
cout << “Derived_AB constructor.” << endl;
}
|5

int main(int argc, char** argv)

{
Derived_AB ABDerObj(1, 2);
aBDerObj.var;
aBDerObj.foo();
return O;

}

Base constructor with var: 1
Derived_A constructor.
Derived_B constructor.
Derived_AB constructor.

Base foo()

No more ambiguities for the compiler. Take a look at the object structure now.

Locals 0 X

Mame WValue Type
©oge 11 T
@ argv 000626400 {0:006a6408 "D:\\Documents\\Vi char™*
4 @ ABDerOb) .} Derived_
4 @ Derived_! {...} Derived_

[@ Base [var=1} Base
4 @ Derived_E {...} Derived_

[# Base {var=1} Base

4 g Base fwar=1} Baze

W var 1 int

Compare it with the object structure we had before (shown below) without virtual
inheritance.

Locals * [X
MName Value Type
I e | E—
@ argv 0007950 dE [0007950el "l char**
4 @ ABDerObj e Derived_AB
4 @ Derved_ A = Derived_A
4 @ Basze {war=1} Baze
W var 1 int
4 @ Derved B e Derrved B
4 @ Bace fwar=2} Baze
@ var 2 int

With multiple inheritance you can see a separate Base class sub-object directly under the
Derived_AB object. Although this view shows there are Base class objects under
Derived_A and Derived_B, there really aren’t. There is only one Base sub-object. What
this structure depicts is that this Base sub-object logically is inside Derived_A and
Derived_B. That means we can access Base class as we did earlier when we didn’t do
virtual inheritance and had multiple Base sub-objects.

int main(int argc, char** argv)

{
Derived_AB ABDerObj(1, 2);
aBDerObj.Derived_A::foo();
aBDerObj.Derived_A::var;
aBDerObj.Derived_B::foo();
aBDerObj.Derived_B::var;

return 0;

Base constructor with var: 1
Derived_A constructor.
Derived_B constructor.
Derived_AB constructor.
Base foo()

Base foo()

Although we are qualifying the accesses we are effectively accessing the same Base sub-
object.

This is the core of virtual inheritance. The mechanism is pretty simple. Let’s finish this
topic by looking at some different cases.

Function overriding in one derived class

Here we override foo in Derived_B class only.

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base(int val) : var(val)

{}
void foo()
{
cout << “Base foo()” << endl;
}

class Derived_A : public virtual Base
{
public:
Derived_A(int val) : Base(val)
{}

class Derived_B : public virtual Base

{
public:
Derived_B(int val) : Base(val)
{}
void foo()
{
cout << “Derived_B foo()” << end];
}
b

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int varl, int var2) : Base(1), Derived_A(varl), Derived_B(var2)
{}

|5

int main(int argc, char** argv)

{
Derived_AB ABDerObj(1, 2);
aBDerObj.foo();
aBDerObj.Derived_A::foo();
aBDerObj.Derived_B::foo();
return O;

}

Derived_B foo()
Base foo()
Derived_B foo()

When we don’t qualify the function call it calls the overridden function, which is what we
want. When we qualify the call to Derived_A, then it calls the Base class function, which
again is what we want. Derived_A hasn’t overridden foo so Base::foo needs to be called.

Instantiating a virtually derived class.

What effect would virtual inheritance have if we instantiated a Derived_A or Derived B

class?

int main(int argc, char** argv)

{
Derived_A derAobj(1);
Derived_B derBobj(2);
derAobj.foo();
derBobj.foo();
return 0;

}

Base constructor with var: 1
Derived_A constructor.
Base constructor with var: 2
Derived_B constructor.
Class Base foo()
Derived_B foo()

As you see, virtual inheritance has no effect when we instantiate directly derived classes.
They behave normally.

Only one class with virtual inheritance.

What would happen if we had only Derived_A with virtual inheritance?

#include<iostream>

using namespace std,;

class Base

{
public:

int var;

Base(int val) : var(val)

{}

class Derived_A : public virtual Base

{
public:

Derived_A(int val) : Base(val)
{}

class Derived_B : public Base

{

public:
Derived_B(int val) : Base(val)
{}

b

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int varl, int var2) : Base(1), Derived_A(varl), Derived_B(var2)
{}

I8

int main(int argc, char** argv)
{
Derived_AB ABDerObj(1, 2);

return 0;

Description
€31 error C2385: ambiguous access of 'Base’
It doesn’t work. You need to have all of your inheriting classes deriving from Base to have
virtual inheritance.
More levels of derivation.

Let’s see how things change when you have one more derived class. This is our class
hierarchy now.

Base

Derived_A Derived_B

Derived AB

Since we are calling the virtual base class constructor in Derived_AB, we probably don’t
need to do anything special in Derived_C. So let’s go ahead and try.

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base(int val) : var(val)

{}

class Derived_A : public virtual Base

{
public:

Derived_A(int val) : Base(val)
{}

class Derived_B : public virtual Base

{

public:
Derived_B(int val) : Base(val)
{}

b

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int varl, int var2) : Base(1), Derived_A(varl), Derived_B(var2)
{} // calling virtual Base constructor here

I8

class Derived_C : public Derived_AB

{

public:
Derived_D(int varl, int var2) : Derived_AB(varl, var2)
{}

b

int main(int argc, char** argv)
{
Derived_C CDerObj(1, 2);

return O;

Description

€91 error C2512: 'Base:Base’ : no appropriate default constructor available

The compiler is looking for the default constructor of Base. This is the same thing that
happened earlier when we didn’t call the Base class constructor in the Derived_AB
constructor. So the compiler expects Derived_C to call the virtual base class constructor.
Let’s add the constructor call:

class Derived_C : public Derived_AB

{

public:
Derived_C(int varl, int var2) : Base(10), Derived_AB(varl, var2)
{}

b

int main(int argc, char** argv)

{
Derived_C CDerObj(1, 2);
cout << “CDerObj.var: “ << CDerObj.var << endl;
return 0;

}

CDerObj.var: 10

This works fine. What does this mean, then?

It means that if you have virtual inheritance in your class hierarchy, you must call the
virtual base class constructor from the most derived class. So can we remove the call to
Base constructor from Derived_AB then? Nope.

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int varl, int var2) : Derived_A(varl), Derived_B(var2) // No call to Base constructor
{}

|5

class Derived_C : public Derived_AB

{

public:
Derived_C(int varl, int var2) : Base(10), Derived_AB(var1, var2)
{}

|5

int main(int argc, char** argv)
{
Derived_C CDerObj(1, 2);

cout << “CDerObj.var: “ << CDerObj.var << endl;

return 0;

Description

€31 error C2512: 'Base:Base' : no appropriate default constructor available

Even though you are not instantiating a Derived_AB object, if your class is inheriting from
a virtual derived class, you need to call the virtual base class constructor.

#include<iostream>

using namespace std;

class Base

{
public:

int var;

Base(int val) : var(val)

{}

class Derived_A : public virtual Base

{

public:
Derived_A(int val) : Base(val)
{}

b

class Derived_B : public virtual Base

{

public:
Derived_B(int val) : Base(val)
{}

b

class Derived_AB : public Derived_A, public Derived_B

{

public:
Derived_AB(int varl, int var2) : Base(10), Derived_A(varl), Derived_B(var2)
{}

class Derived_C : public Derived_AB

{

public:
Derived_C(int varl, int var2) : Base(20), Derived_AB(varl, var2)
{}

b

int main(int argc, char** argv)

{
Derived_AB ABDerObj(1, 2);
cout << “ABDerObj.var: “ << ABDerObj.var << endl;
Derived_C CDerObj(3, 4);
cout << “CDerObj.var: “ << CDerObj.var << endl;
return 0;

}

ABDerObj.var: 10
CDerObj.var: 20

See, you need the call to Base in Derived_AB because if you are instantiating a
Derived_AB object, then you need that call. You don’t need that for a Derived_C object.
But the compiler doesn’t know which classes you are planning to instantiate so it wants
you to call virtual base constructor if it is needed.

So that is virtual inheritance.

Topic 18

Casting

C++ introduced four types of casts. These casts fundamentally do the same casting
functionality as C casts, but there are a few differences. Casts also have quite a bit of
special usages, but in this topic I will limit the discussion to the most used types of
castings.

Here are the four casts:

e Static cast
e Dynamic cast
e Reinterpret cast

e (Const cast

Before we start discussing the casts it is important to define upcast and downcast. Upcast
is when casting up the hierarchy. That is, casting to a base type from a derived type.
Downcasting is casting to a derived type from a base type.

Static cast

Static cast is used in many implicit castings. Implicit casts are automatically done by the
compiler and explicitly stating the cast is not necessary. But it is often good practice to
explicitly cast when you want to let that fact be known. An upcast is implicit and does not
require a static cast. But a downcast does.

#include<iostream>

using namespace std,;

class Base {

int Base_ID;

public:
Base(int val) : Base_ID(val)
{}

void func()

{

cout << “Base class func. ID: “ << Base_ID << end];

class Derived : public Base {

int Derived_ID;

public:
Derived(int baselD, int derivedID) : Base(baselD), Derived_ID(derivedID)
{}
void func()
{
cout << “Derived class func. ID: “ << Derived_ID << endl;
}
b

int main(int argc, char** argv)
{
Base* basePtrl = new Base(1);

Derived* derivedPtrl = new Derived(2, 3);

basePtr1->func();
derivedPtr1->func();

Base* basePtr2 = static_cast<Base*> (derivedPtr1);

Derived* derivedPtr2 = static_cast<Derived*> (basePtrl);

basePtr2->func();
derivedPtr2->func();

return O;

Base class func. ID: 1
Derived class func. ID: 3
Base class func. ID: 2

Derived class func. ID: -33686019

Here we have a Base class and a Derived class. They both have implemented function
func but note that this is not virtual. First, we define two pointers, one of type Base and the
other Derived, and assign Base and Derived instances respectively. Then we call func
through these pointers. They call the correct functions. Then we define two new pointers
of types Base and Derived. This time we assign the Derived pointer to the new Base
pointer and the Base pointer to the new Derived pointer and the call func.

First note that there are no compiler errors. Assigning derivedPtr2 with basePtr1 is not a

proper assignment. A Derived instance has a Base instance inside and has two int
variables. But the instance pointed to by basePtr1 is only a Base object. So derivedPtr2 is
pointing to an incomplete Derived object, although the compiler believes it is pointing to a
proper Derived object. Calling func through basePtr2 works as expected. It prints the
correct Base_ID. But func does not work well with the derivedPtr2. We know it is
pointing to a Base object. Two things to note here. First, although derivedPtr2 is pointing
to a Base object, the invoked func correctly calls Derived version of func. Second, the
printed value of func is a garbage value.

The reason why the Derived version of func is called is because a function is not part of
the object. Remember that we discussed that a function resides outside of an object and is
tied to the class type. So when we called func through a Derived pointer the compiler
actually called the Derived::func. It didn’t matter that the object it was pointing to is of
type Base. The object does not have the implementation of func. But the object is passed
to the function by the compiler. Every non-static member-function is passed the ‘*this‘ by
the compiler implicitly. So when we called ‘func’ through Derived type pointer, the
compiler called Derived::func and passed it the Base object it is pointing to. And then the
function tried to access Derived_ID from that object. Remember we discussed how each
member variable of a class has an offset? The function func simply accessed a memory
location at a particular offset, which is supposed to be the location of Derived_ID. But it is
passed an object of Base, and as we have seen before, must be smaller than that of a
Derived object. The offset for Derived_ID is past the memory block belonging to basePtr1
and that is why we are seeing garbage values.

Now how would the behavior change if func was virtual? (I know we are going out of
topic, but this is important to know.)

class Base {

int Base_ID;

public:
Base(int val) : Base_ID(val)
{}

virtual void func()

{

cout << “Base class func. ID: “ << Base_ID << end];

Base class func. ID: 1

Derived class func. ID: 3

Derived class func. ID: 3

Base class func. ID: 1

We are not seeing any problems here, although it may not be doing what we’d expect.
There is no effect of virtualness for the first two func calls. The third func call is a classic
example of virtual mechanism. Calling a derived class overridden function through a base
class pointer. The last call, although it is invoking the correct function, is not the usual
way of using the virtual mechanism. As you know, when a function is virtual the compiler
refrains from binding the function call during compilation. The function to call is
determined during runtime. Unlike when func was not virtual, in this case the function to
call is determined through the vtable. And we’ve seen, the vtable is object specific. And in
our case, basePtr]l points to an Base object, whose vtable has the implementation of
Base::func. So the Base version of func is called and it is passed an object of Base. This is
same as before, but now the func is accessing Base_ID, not Derived_ID, so the offset is
fine.

What if we omitted the static_casts?

int main(int argc, char** argv)
{
Base* basePtrl = new Base(1);

Derived* derivedPtr1l = new Derived(2, 3);

basePtr1->func();

derivedPtr1->func();

Base* basePtr2 = (derivedPtrl); // no casting
Derived* derivedPtr2 = (basePtrl); // no casting

basePtr2->func();
derivedPtr2->func();

return O;

Description

€9 1 error C2440; 'initializing' : cannot convert from 'Base ™' to 'Derived *

So you see, upcasting is implicit. You do not need to static_cast it. But downcast does.
This is because the compiler knows that downcasting a base class object to a derived class
type can be trouble. So it doesn’t do it implicitly. But with a static_cast, we are explicitly

letting the compiler know that we know what we are doing. Because basePtr1 could very
well be pointing to a Derived instance. Like this:

int main(int argc, char** argv)

{
Base* basePtrl = new Derived(4, 5); / Derived object
Derived* derivedPtrl = new Derived(2, 3);

basePtr1->func();

derivedPtr1->func();

Base* basePtr2 = static_cast<Base*> (derivedPtr1);

Derived* derivedPtr2 = static_cast<Derived*> (basePtrl);

basePtr2->func();
derivedPtr2->func();

return 0;

Base class func. ID: 4
Derived class func. ID: 3
Base class func. ID: 2

Derived class func. ID: 5

This type checking is an important part of static_cast. It does not do any type checking at
compile time or runtime. That is why we were able to cast a Base instance to a Derived
pointer. But does static_cast ignore all checks?

#include<iostream>

using namespace std;

class Base {

int ID;

public:
Base(int val) : ID(val)
{}

void func()

cout << “Base class func. ID: “ << ID << endl;

class Derived : public Base {

int ID;

public:
Derived(int baselD, int derivedID) : Base(baselD), ID(derivedID)
{}

void func()

{

cout << “Derived class func. ID: “ << ID << endl;

class AnotherClass {

public:
void func()
{
cout << “AnotherClass func.” << endl;
}

int main(int argc, char** argv)

{
Base* basePtrl = new Base(1);
Derived* derivedPtrl = new Derived(2, 3);
AnotherClass* anotherPtr = new AnotherClass;
anotherPtr = static_cast<AnotherClass*> (basePtrl);
return 0O;

}

Description

€31 error C2440: 'static_cast' : cannot convert from 'Base *' to 'AnotherClass *

Here we tried to cast a Base pointer to an AnotherClass pointer and the compiler isn’t
happy with that. Although we were able to cast a base instance to a derived pointer,
static_cast isn’t all that naive. It doesn’t let us cast between different types. And it also

does not let us downcast when using objects:

int main(int argc, char** argv)
{
Base baseObj1(1);
Derived derivedObj1(2, 3);

baseObj1.func();
derivedObj1.func();

Base baseObj2 = static_cast<Base>(derivedObj1);
Derived derivedObj2 = static_cast<Derived>(baseObj1);

baseObj2.func();
derivedObj2.func();

return 0;

Description

€31 error C2440: 'static_cast': cannot convert from 'Base’ to 'Derived'

€3 2 error C2512: 'Derived' : no appropriate default constructor available

But just as with pointers, we can do the downcast with references.

int main(int argc, char** argv)
{
Base baseObj1(1);
Derived derivedObj1(2, 3);

Base& baseRefl = baseObj1;
Derived& derivedRef1 = derivedObij1;

baseRef1.func();
derivedRef1.func();

Base& baseRef2 = static_cast<Base&>(derivedRef1);
Derived& derivedRef2 = static_cast<Derived&>(baseRef1);

baseRef2.func();
derivedRef2.func();

return 0;

Base class func. ID: 1

Derived class func. ID: 3

Base class func. ID: 2

Derived class func. ID: -858993460

So when you are using pointers and references we can downcast with static_cast and force
the compiler to accept the type but not with objects.

As we saw before with downcasting, explicitly casting with a static_cast is a way of
telling the compiler that you intended to do what you did. This works not only for class
types, but also for built in types.

int main(int argc, char** argv)
{
short shortVar = 1;
int intVar = 2;
float floatVar = 3.0f;
double doubleVar = 4;

intVar = shortVar;
floatVar = intVar;
doubleVar = floatVar;

shortVar = intVar;
intVar = floatVar;

floatVar = doubleVar;

return O;

1»C1Compile:
1> main.cpp

1:!main.cpp(l2): warning C4244: '=" : conversion from 'int' to 'float', possible loss of data
1»main.cpp(16): warning C4242: '=" : conversion from 'int' to 'short’, possible loss of data
1*main.cpp(17): warning C4244: '=" : conversion from 'float' to 'int', possible loss of data
1:main.cpp(18): warning C4244: '=" : conversion from 'double' to 'float', possible loss of data
1:main.cpp(4): warning C4188: 'argv' : unreferenced formal parameter

1:main.cpp(4): warning C4188: 'argc' : unreferenced formal parameteﬂ

1>

1:Build succeeded.

The code above compiles with no errors (although all values end up just being 1 due to
chain assignment), but as you see, the compiler does give out some warnings. Here we
have four variables with different magnitudes. The compiler warns about possible loss of
data during conversions. Usually there is no loss of data when the variable is promoted.
But when an int is promoted to a float it can lose a bit of precision. But this loss of
precision is very small compared to the loss of data that could happen when the values are
truncated, for example when converting from int to short. Although the loss of precision
or data cannot be avoided during conversion, using static_cast will help us get rid of the
warnings.

int main(int argc, char** argv)
{
short shortVar = 1;
int intVar = 2;
float floatVar = 3.0f;
double doubleVar = 4;

intVar = shortVar;
floatVar = static_cast<float> (intVar);

doubleVar = floatVar;
shortVar = static_cast<short> (intVar);
intVar = static_cast<int> (floatVar);

floatVar = static_cast<float> (doubleVar);

return 0O;

1>ClCompile:

1> main.cpp

1»main.cpp(4): warning C4188: 'argv' : unreferenced formal parameter
1»main.cpp(4): warning C4188: 'argc' : unreferenced formal parameter
1>

1»Build succeeded.

1>

No warnings here (I have all of the warnings turned on here with ‘-Wall’).

Dynamic cast

Dynamic cast is similar to static cast in the sense that you can do both upcast and
downcast, but it differs in one important way. Dynamic cast does check the types at
compile time and runtime. As we will see, dynamic cast is a way of finding out the real
type of a pointer or a reference. But there is a downside to using dynamic cast. That
runtime checking comes at a a cost of a performance hit because the type needs to be
checked at runtime. Let’s start with the same example.

#include<iostream>

using namespace std;
class Base {
int Base_ID;
public:
Base(int val) : Base_ID(val)
{}
void func()

{

cout << “Base class func. ID: “ << Base_ID << end];

class Derived : public Base {

int Derived_ID;

public:
Derived(int baseID, int derivedID) : Base(baseID), Derived_ID(derivedID)
{}
void func()
{
cout << “Derived class func. ID: “ << Derived_ID << end];
}
b

int main(int argc, char** argv)
{
Base* basePtrl = new Base(1);

Derived* derivedPtrl = new Derived(2, 3);

basePtr1->func();

derivedPtr1->func();

Base* basePtr2 = dynamic_cast<Base*> (derivedPtrl);

Derived* derivedPtr2 = dynamic_cast<Derived*> (basePtr1);

basePtr2->func();
derivedPtr2->func();

return 0;

Description

€31 error C2683: 'dynamic_cast' : 'Base’ is not a polymorphic type

The compiler doesn’t let us cast basePtrl to a Derived pointer because Base is not a
polymorphic type. What the compiler is basically complaining about is that Base does not
have any virtual functions. Polymorphism is used through virtual functions. So to
downcast with dynamic_cast we first need the class type to be polymorphic. Let’s make
func virtual.

class Base {

int Base_ID;

public:
Base(int val) : Base_ID(val)
{}

virtual void func()

{

cout << “Base class func. ID: “ << Base_ID << end];

This time the code compiles fine and runs but you will most definitely get a runtime error.
This is because we are dereferencing a NULL pointer. Let’s see this.

int main(int argc, char** argv)

Base* basePtrl = new Base(1);

Derived* derivedPtrl = new Derived(2, 3);

basePtr1->func();

derivedPtr1->func();

Base* basePtr2 = dynamic_cast<Base*> (derivedPtrl);

Derived* derivedPtr2 = dynamic_cast<Derived*> (basePtrl);

if (basePtr2 == NULL)

{
cout << “basePtr2 == NULL” << endl;
}
else
{
basePtr2->func();
}

if (derivedPtr2 == NULL)

{
cout << “derivedPtr2 == NULL” << endl;
}
else
{
derivedPtr2->func();
}
return O;

Base class func. ID: 1
Derived class func. ID: 3
Derived class func. ID: 3

derivedPtr2 == NULL

See, derivedPtr2 was NULL and we tried to dereference it. That’s why the runtime error.

But why was derivedPtr2 NULL? This is because of the checking dynamic_cast does at
runtime. Dynamic cast checks if the object pointed to by basePtr1 is indeed of type
Derived, and if not returns a NULL pointer.

So you see, dynamic casting checks the casting type against the object to make sure the
cast is valid. And this is done at runtime and uses the object’s typeid to determine the type.
Now let’s see what happens with references (Hint: there’s a surprise).

int main(int argc, char** argv)

{
Base baseObj1(1);
Derived derivedObj1(2, 3);

Base& baseRefl = baseObj1;
Derived& derivedRef1 = derivedObj1;

baseRef1.func();
derivedRef1.func();

Base& baseRef2 = dynamic_cast<Base&>(derivedRef1);
Derived& derivedRef2 = dynamic_cast<Derived&>(baseRef1);

baseRef2.func();
derivedRef2.func();

return 0;

This code too compiles and runs but will crash with an unhandled exception. You see,
whereas a NULL pointer is returned when casting pointers, with references it throws an
exception. Let’s try to catch it.

int main(int argc, char** argv)
{
Base baseObj1(1);
Derived derivedObj1(2, 3);

Base& baseRefl = baseObij1;
Derived& derivedRef1 = derivedObij1;

baseRef1.func();
derivedRef1.func();

try

{
base& baseRef2 = dynamic_cast<Base&>(derivedRef1);
Derived& derivedRef2 = dynamic_cast<Derived&>(baseRef1);
baseRef2.func();
derivedRef2.func();

}

catch (exception e)

{
cout << e.what() << endl;

}

return 0;

Base class func. ID: 1
Derived class func. ID: 3

Bad dynamic_cast!

Runtime throws a bad cast exception.

These are the two important differences of dynamic casting. If the casted types don’t
match it will return a NULL pointer in case of pointers, or throw a bad cast exception for
references. Then what about using dynamic casts on an object like we upcasted with static
cast?

int main(int argc, char** argv)
{
Base baseObj1(1);
Derived derivedObj1(2, 3);

baseObj1.func();
derivedObj1.func();

Base baseObj2 = dynamic_cast<Base>(derivedObj1);
baseObj2.func();

return O;

Description
€91 error C2680: 'Base' : invalid target type for dynamic_cast
€3 2 error C2512: 'Base' : no appropriate default constructor available

Dynamic cast wouldn’t even let you upcast in this case, which was perfectly fine with
static cast. This is because dynamic casting can only used with pointers and references.

Reinterpret cast

This is a dangerous one. It will let you do things static and dynamic cast won’t.
Reinterpret cast literally makes the compiler interpret a certain pointer or reference as the
casting type. No questions asked. Let’s see an example first with static cast.

#include<iostream>

using namespace std;

class Base {
public:

int Base_ID;

Base(int val) : Base_ID(val)
{}

void func()

{

cout << “Base class func. Base_ID: “ << Base_ID << end];

class AnotherClass {
public:
int AnotherClass_ID;

AnotherClass(int val) : AnotherClass_ID(val)
{}

void func()

{

cout << “AnotherClass func. AnotherClass_ID: “ << AnotherClass_ID << endl;

int main(int argc, char** argv)

{
Base* basePtr]l = new Base(10);
AnotherClass* anotherPtr = new AnotherClass(20);
anotherPtr = static_cast<AnotherClass*> (basePtrl);
anotherPtr->func();
return 0;
}
Description

€31 error C2440: 'static_cast' : cannot convert from 'Base *' to 'AnotherClass *'

We have seen this error before. Although static casting can be used to downcast in the
hierarchy, it doesn’t let us cast to a different class type. Now let’s try reinterpret cast.

int main(int argc, char** argv)

{
Base* basePtrl = new Base(10);
AnotherClass* anotherPtr = new AnotherClass(20);
anotherPtr = reinterpret_cast<AnotherClass*> (basePtr1);
anotherPtr->func();
return O;

}

AnotherClass func. AnotherClass_ID: 10

It not only compiles, the code almost works! We assigned a Base type pointer to an
AnotherClass pointer and invoked the function in AnotherClass. By now you should know
why the correct function is called but the wrong value is printed. What the reinterpret cast
does here is to tell the compiler to treat the object pointed to by anotherPtr as an object of
AnotherClass. The compiler does not question your actions here. And then when we
invoked the function it called the correct function because functions are not part of the
instance. They are class specific. This function was suppoed to get a ‘*anotherPtr
implicitly. But it really was a ‘*Base’. So why didn’t we get any runtime exceptions?
Because luckily Base and AnotherClass have the same structure. They both have one int
variable and this variable is at the top of the object. That means Base::ID and

AnothehrClass::ID both have the same offset. But it doesn’t take much to crash this
program. Let’s make func virtual in Base class.

class Base {
public:
int Base_ID;

Base(int val) : Base_ID(val)
{}

virtual void func()

{

cout << “Base class func. Base_ID: “ << Base_ID << end];

AnotherClass func. AnotherClass_ID: 4076188

As you know making the function virtual puts the vptr at the top of the object (remember
this is compiler specific). So vptr is at offset zero and the variable is after that. But in
AnotherClass the variable offset doesn’t change. Looking at the debug class structure will
convince you even more.

Mame Value Type
W argc 00000001 int
& argv (00362 cef (0003620 "D\ Documents\\Visual Studio 20034, char ™~
4 @ bazePtrl 000362d70 {Base_ID=0:0000000a } Base™
e _ fptr 00007754 {Viable exelconst Basenvftable'} {0x000c11 ef {Vtabl wvoid * *
@ Baze D 00000002 int
4 @@ anotherPtr h10362d70 { AnotherClass_ID=0:000c7754 } Anothern
#@ AnotherClass ID 0:000c7754 int

Note how __vfptr of basePtr and AnotherClass_ID of anotherPtr have the same value.

So you see that reinterpret cast can be dangerous if you cast the wrong type. Unlike
dynamic cast, reinterpret casting does not have any runtime hit. Reinterpret cast literally
tells the compiler to interpret the pointer or reference as the desired type.

Const cast

Const cast is pretty simple but yet it does something that all three previous casts cannot
do. Const cast is able to remove or add the constness of a pointer or reference. But it is
important to understand when this wouldn’t work. Let’s start with a simple example.

int main(int argc, char** argv)

{
int non_const_int = 1;
const int* const_int_ptr = &non_const_int;
*const_int_ptr = 2;
return 0;
}

Description

€31 error C3892: 'const_int_ptr' : you cannot assign to a variable that is const

We cannot change non_const_int through const_int_ptr because the pointer is const. This
is where we can use const cast.

#include<iostream>

using namespace std,;

int main(int argc, char** argv)

{
int non_const_int = 1;
const int* const_int_ptr = &non_const_int;
int* non_const_int_ptr = const_cast<int*> (const_int_ptr);
*non_const_int_ptr = 2;
cout << “non_const_int: “ << non_const_int << endl;
return O;

}

non_const_int: 2

Here we used const_cast to get a pointer without the constness and then use it to modify
non_const_int.

Now let’s see where const cast fails.

#include<iostream>

using namespace std;

int main(int argc, char** argv)
{
const int const_int = 1;
const int* const_int_ptr = &const_int;
int* non_const_int_ptr = const_cast<int*> (const_int_ptr);
*non_const_int_ptr = 2;

cout << “const_int: “ << const_int << endl;

return 0;

non_const_int: 1

See that the value is not changed. In this case (Visual C++ 2013) the code compiles and
runs without an issue (except the value not being modified as we wanted), but actually this
behavior is undefined. So you might see different results with other compilers. The
important thing to note is that you cannot use const_cast to modify a value that was
declared const. Here const_int was declared as a constant. The const cast cannot make this
a non-const.

I’m going to leave the topic of casts at that. We discussed the basics of the casts and some
special cases. Each cast has its own use and now you should know where to use them.

Topic 19

Conversions and Promotions

A conversion is when a value of a certain type is converted to that of a different type.
Promotion is similar in the sense that it also changes the type of the value, but it is
promoted to a type that is higher in the hierarchy. We will go through examples of
different kinds of conversions and promotions in this topic.

Before we get into examples, where do you think conversions and promotions happen?
They can happen in the following cases:

e When using different types of operands with an operator

e When passing an argument to a function

When initializing objects

In if/switch statements

Let’s look at these cases with examples now.

Arithmetic conversions

#include<iostream>

using namespace std;

void Func(short val)

{

cout << “Short arg. Result: “ << val << end];

void Func(int val)

{

cout << “Int arg. Result: “ << val << endl;

void Func(float val)

{

cout << “Float arg. Result: “ << val << end];

int main(int argc, char** argv)
{

short shortVal = 1;

int intVal = 2;

float floatVal = 3.0f;

Func(shortVal + intVal);
Func(shortVal + floatVal);
Func(intVal + floatVal);

return 0;

Int arg. Result: 3
Float arg. Result: 4
Float arg. Result: 5

We have three different overloaded functions, taking arguments of types short, int and
float. Then we perform additions between short, int and float types and pass them as
arguments to Func. It is not difficult to understand what is happening. When an operator
gets different types of operands, one of the operands needs to be converted to bring both
operands to a common type. For example, in the case of passing a short and an int to the
‘+’ operator, short operand is converted to an int. The result is then an int, which is then
passed to the function that takes an int parameter.

These types of conversions are called ‘arithmetic conversions®.

Let’s see a few more examples of arithmetic conversions involving chars and booleans.

#include<iostream>

using namespace std;

void Func(bool val)

{

cout << “Bool arg. Result: “ << val << endl;

void Func(char val)

{

cout << “Char arg. Result: “ << val << endl;

void Func(short val)

{

cout << “Short arg. Result: “ << val << endl;

void Func(int val)

cout << “Int arg. Result: “ << val << endl;

int main(int argc, char** argv)
{
bool boolVal = true;
char charVal = ‘a’;
short shortVal = 1;

int intVal = 2;

Func(charVal + boolVal);
Func(charVal + shortVal);
Func(charVal + charVal);
Func(shortVal + shortVal);
Func(charVal + intVal);

return 0;

Int arg. Result: 98
Int arg. Result: 98
Int arg. Result: 194
Int arg. Result: 2
Int arg. Result: 99

You see, all of the additions resulted in an integer result. So when the operands are
converted they are not converted to the higher type between the two of them. For example,
earlier we saw when a short and an int resulted in an int. The short was converted to an int.
But here, when we added two chars or two shorts, the result was not a char or a short.
They were integers. So you see, if you are adding two operands which are lower than ints,
both operands are converted to ints before the operation. The situation is different when
you have types larger than integers.

#include<iostream>

using namespace std;

void Func(int val)

{

cout << “Int arg. Result: “ << val << endl;

void Func(float val)

{

cout << “Float arg. Result: “ << val << end];

void Func(double val)

{

cout << “double arg. Result: “ << val << end];

void Func(long int val)

{

cout << “Long int arg. Result: “ << val << end];

void Func(long double val)

{

cout << “Long double arg. Result: “ << val << end];

int main(int argc, char** argv)
{
int intVal = 1;
float floatVal = 2.0f;
double doubleVal = 3;
long int 1IntVal = 4;
long double IDoubleVal = 5;

cout << “Func(intVal + intVal) - “; Func(intVal + intVal);

cout << “Func(intVal + floatVal) - “; Func(intVal + floatVal);

cout << “Func(intVal + doubleVal) - “; Func(intVal + doubleVal);

cout << “Func(intVal + lIntVal) - “; Func(intVal + 1IntVal);

cout << “Func(intVal + IDoubleVal) - “; Func(intVal + 1DoubleVal);
cout << endl;

cout << “Func(floatVal + doubleVal) - “; Func(floatVal + doubleVal);
cout << “Func(floatVal + 1IntVal) - “; Func(floatVal + 1IntVal);

cout << “Func(floatVal + 1DoubleVal) - “; Func(floatVal + 1DoubleVal);
cout << endl;

cout << “Func(doubleVal + lIntVal) - “; Func(doubleVal + lIntVal);
cout << “Func(doubleVal + IDoubleVal) - “; Func(doubleVal + 1DoubleVal);

return 0O;

Func(intVal + intVal) - Int arg. Result: 2

Func(intVal + floatVal) - Float arg. Result: 3
Func(intVal + doubleVal) - double arg. Result: 4
Func(intVal + lIntVal) - Long int arg. Result: 5
Func(intVal + 1DoubleVal) - Long double arg. Result: 6

Func(floatVal + doubleVal) - double arg. Result: 5
Func(floatVal + lIntVal) - Float arg. Result: 6
Func(floatVal + IDoubleVal) - Long double arg. Result: 7

Func(doubleVal + lIntVal) - double arg. Result: 7
Func(doubleVal + 1DoubleVal) - Long double arg. Result: 8

Here we look at larger types: floats, doubles, long ints and long doubles. The conversion is
different than when we had chars and shorts. You can see that there is an order of level:
int, long int, float, double, long double. When we mix operands of these types, the smaller
type gets converted to the larger type.

Now let’s finally look at how arithmetic conversions happen with unsigned types.

#include<iostream>

using namespace std,;

void Func(int val)

{

cout << “Int arg. Result: “ << val << endl;

void Func(unsigned int val)

{

cout << “Unsigned int arg. Result: “ << val << end];

void Func(float val)

{

cout << “Float arg. Result: “ << val << end];

void Func(double val)

cout << “Double arg. Result: “ << val << end];

int main(int argc, char** argv)

{
int intVal = -10;
unsigned int unsIntVal = 5;
float floatVal = 1.0f;
double doubleVal = 2;

cout << “Func(intVal + unsIntVal) - “; Func(intVal + unsIntVal);
cout << “Func(unsIntVal + unsIntVal) - “; Func(unsIntVal + unsIntVal);
cout << “Func(unsIntVal + floatVal) - “; Func(intVal + floatVal);

cout << “Func(unsIntVal + doubleVal) - “; Func(unsIntVal + doubleVal);

return 0;

Func(intVal + unsIntVal) - Unsigned int arg. Result: 4294967291
Func(unsintVal + unsIntVal) - Unsigned int arg. Result: 10
Func(unsintVal + floatVal) - Float arg. Result: -9

Func(unsintVal + doubleVal) - Double arg. Result: 7

We have an int, an unsigned int, a float and a double. The important fact to note here is
that when you have an int operand and an unsigned int operand, the int is converted to an
unsigned. You can see that the result of the addition of the signed int and the unsigned is
not what we would have expected. It’s giving us a very large value. This is because when
the (signed) int was converted to an unsigned, its sign-ness was lost. The negative values
of signed ints are depicted by two’s complement, which uses the most significant bits to
denote the sign. So in this case, when our int was -10, the most significant bits were set.
And when it was converted to an unsigned, these bits makes a very large unsigned value.
That is the reason we see that large value. The rest of the combinations behave as we
would expect. Float and double are still larger than unsigned int. So you need to be careful
when you mix signed types with unsigned.

Function argument conversion

Let’s look at the second case now. What if we didn’t have a function that takes a parameter
of type unsigned?

#include<iostream>

using namespace std;

void Func(int val)

{

cout << “Int arg. Result: “ << val << endl;

void Func(float val)

{

cout << “Float arg. Result: “ << val << end];

void Func(double val)

{

cout << “Double arg. Result: “ << val << end];

int main(int argc, char** argv)

{
int intVal = -10;
unsigned int unsIntVal = 5;
float floatVal = 1.0f;
double doubleVal = 2;

cout << “Func(intVal + unsIntVal) - “; Func(intVal + unsIntVal);

cout << “Func(unsIntVal + unsIntVal) - “; Func(unsIntVal + unsIntVal);

return O;

Description

€31 error C2668: 'Func': ambiguous call to overloaded function
€9 2 error C2668: 'Func': ambiguous call to overloaded function

The compiler is facing an ambiguity. You see, the result of the additions are of type
unsigned. And when there is no function that takes an unsigned, the compiler tries to
convert the unsigned result to a type of a function that is defined. The unsigned can be
converted to a type of int and we have a function that takes an int. The ambiguity is
because we have two other functions that takes floats and doubles. The unsigned can be
converted to an int, but then the int can be converted to a float or a double. So the result
can be passed to any of the three functions. That is why we get the error. Let’s leave only

the function with int parameter.

#include<iostream>

using namespace std;

void Func(int val)

{

cout << “Int arg. Result: “ << val << endl;

int main(int argc, char** argv)

{
int intVal = -10;
unsigned int unsIntVal = 5;
float floatVal = 1.0f;
double doubleVal = 2;

cout << “Func(intVal + unsIntVal) - “; Func(intVal + unsIntVal);
cout << “Func(unsIntVal + unsIntVal) - “; Func(unsIntVal + unsIntVal);

return 0;

Func(intVal + unsintVal) - Int arg. Result: -5
Func(unsintVal + unsIntVal) - Int arg. Result: 10

No problems. Now let’s have only the float parameter function.

#include<iostream>

using namespace std,;

void Func(int val)

{

cout << “Int arg. Result: “ << val << endl;

int main(int argc, char** argv)
{
int intVal = -10;

unsigned int unsIntVal = 5;

cout << “Func(intVal + unsIntVal) - “; Func(intVal + unsIntVal);

cout << “Func(unsIntVal + unsIntVal) - “; Func(unsIntVal + unsIntVal);

return 0;

Func(intVal + unsIntVal) - Float arg. Result: 4.29497e+009
Func(unsintVal + unsIntVal) - Float arg. Result: 10

The results are implicitly converted to floats. The conversion to float happens after the
operator result. That is why you see a large number because the result of the signed and
unsigned ints is an unsigned, which is a very large value as we saw earlier.

So what you see here is implicit function argument conversion. The compiler will convert
the passed argument to the available function parameter type, if the conversion is possible.
Keep in mind that if the correct parameter type is not available the compiler may do a
conversion which would yield completely unexpected results as we saw in the example
above. It is also possible that you lose the resolution of the value during conversion. When
a float is converted to an int, the fractional part is discarded. Likewise an int may not be
exactly representable as a float. So you need to pay attention when you have functions
which take numeric arguments and also the result types of arithmetic operators.

Object instantiation

Now let’s discuss how argument conversion happens when we instantiate classes.

#include<iostream>

using namespace std;

class conversion
public:
float var;

conversion(float val) : var(val)

{

cout << “Constructor” << endl;

conversion(const conversion& objToCopy)

{
var = objToCopy.var;

cout << “Copy constructor” << endl;

conversion & operator=(const conversion &objToCopy)

var = objToCopy.var;
cout << “Copy assignment operator” << endl;

return *this;

int main(int argc, char** argv)

{
float floatVal = 1.0f;
int intVal = 2;
cout << “Line #1: “; conversion convObj1(floatVal);
cout << “Line #2: “; conversion convObj2 = convObj1;
cout << “Line #3: “; conversion convObj3(convObj2);
cout << “Line #4: “; conversion convObj4 = floatVal;
cout << “Line #5: “; conversion convObj5(intVal);
cout << “Line #6: “; conversion convObj6 = intVal;
return 0;

}

Line #1: Constructor
Line #2: Copy constructor
Line #3: Copy constructor
Line #4: Constructor
Line #5: Constructor

Line #6: Constructor

There isn’t anything of note happening in lines 1 to 4. The constructor and copy
constructor are being called as we expect. Lines 5 and 6 are what we want to see. We are
instantiating with an int. And it works the same way as we passed an int to a function with
a float parameter. The compiler converts the int to a float before passing to the constructor.
The int is promoted, in this case, to a float.

So you see argument conversions and promotions are happening in many places. These
implicit conversions and promotions can make things easier but it is important to keep an
eye out for these cases because they can result in unexpected results.

Topic 20

Name Lookup

Name lookup is the mechanism of finding the correct declaration of a name. Name look
ups can be used for functions, types (including built-in ones) and enumerations. The
mechanism of name lookup can be a complex mechanism when it involves multiple levels
of inheritance, namespaces and templates. In this topic we will look at the basic
functionality of name lookup when accessing functions or types.

All name lookups are one of two types only:

¢ Qualified name lookup

¢ Unqualified name lookup

We have used both types so far in the examples we have done. Let’s start with qualified
name lookup.

Qualified Name Lookup

Qualified name lookup takes place when you explicitly qualify the name with the scope
resolution operator (::). Let’s first look at an example of using a namespace.

#include<iostream>

using namespace std;

namespace A {
void foo()

{

cout << “A::foo()” << endl;

int main(int argc, char** argv)
{
foo();

return O;

Description
€31 error C3861: 'foo": identifier not found

Here we declare a namespace A and define the function foo in that scope. Then we call foo
in main. Note that this is an unqualified call, as we are not qualifying foo with any

namespace of type. But we don’t have to, do we? Because there is only one foo and that is
in namespace A. You see, even though foo is defined it is not in the scope. You need to
explicitly bring namespace A into the scope. There are two ways you can do that:

e With the using directive
e With qualifying the call

If we want to bring foo into the scope with ‘using’ directive:

int main(int argc, char** argv)

{
using namespace A;
foo();
return 0;

}

A::foo()

You do not need to use ‘using’ directive right before calling the function. It can be
anywhere between the function call and the namespace definition.

Now if we wanted to qualify the function call we do this:

int main(int argc, char** argv)
{
a::foo(); // qualified call

return O;

Before we continue with the qualified name lookup, a word on the namespaces.
Namespace

As you saw in the example above we need to explicitly bring the namespace into the
scope. The compiler will not look in a namespace even if it is in the same compilation
unit. This is why we need to always do ‘using namespace std‘ for using cout and endl. If
we removed ‘using namespace std‘ we’d get:

Description

€31 error C2065: 'cout' : undeclared identifier
€3 2 error C2065: 'end!' : undeclared identifier

The functions are defined in iostream and we include it in our compilation unit, but that is
not enough. When the function or type is declared inside a namespace you need to
explicitly bring it into the scope, or qualify the call. So if we removed ‘using namespace
std’ we’d have to qualify our calls for cout and endlI.

namespace A {
void foo()

{
std::cout << “A::foo()” << std::endl; //qualified calls

Qualified name lookup is pretty much that, qualifying the calling name. We will look at
different aspects of this in the following examples.

Multiple namespaces

#include<iostream>

using namespace std;

void foo()
{

cout << “::foo()” << endl;

namespace A {
void foo()
{

cout << “A::foo()” << endl;

namespace B {

using namespace A;

void foo(int val)

cout << “B::foo(int)” << endl;

int main(int argc, char** argv)

{
b::foo(1);
return 0;
}
B::foo(int)

Here we have three foo implementations: in global scope, in namespace A and in
namespace B. Note B::foo(int) is overloaded and namespace B includes namespace A.
Then we are making a qualified function call to B::foo(int). The compiler has no problem
locating it in namespace B. Now we would like to call A::foo(). We need to qualify this
call as there is another foo in the global scope. We can do this in two ways. First we can
qualify with namespace A and then we can also qualify through namespace B. Note that
namespace B brings in namespace A into its scope.

int main(int argc, char** argv)
{
b::foo();

return 0O;

Description

€31 error C2660: 'Bufoo’ : function does not take 0 arguments

It seems the compiler is having a problem with finding B::foo() though. But why so?
A::foo() is in the namespace of B. We saw earlier that we can bring in a namespace into
the scope by the ‘using’ directive. Let’s do a small modification. Change function name
B::foo(int) into something different and try.

namespace B {

using namespace A;

void fooBar(int val)

{

cout << “B::fooBar(int)” << endl;

A::foo()
A::foo()

When we changed the function name in namespace B, the compiler had no problems
finding A::foo() in namespace B. What happened?

The problem is, when we qualify the function name with the namespace the compiler first
searches in that namespace only. So in our case, the compiler searched for foo in
namespace B and it found a foo function. But that foo didn’t match our call as it takes an
int argument. So the compiler marks this as an error and complains that there is no foo
function that takes 0 arguments. The problem is, once the compiler finds a declaration for
foo it terminates the search. The compiler is not going to keep looking for a function foo
that takes 0 arguments. Once it finds a foo it tries to call that function. If the function
declaration doesn’t fit the call, then it’s an error. Then why did the call to B::foo()
succeeed when we changed the function name to fooBar? Because now there is no foo in
the namespace of B so the compiler now moves on to search for namespaces that are in the
scope by the ‘using’ directive. Namespace B has brought in namespace A with the ‘using’
directive and the compiler goes in to A to find foo, and finds it. So rememeber that when
we qualify the name, the compiler will first check in the qualified namespace and only if it
cannot find it, will move to other namespaces included in there.

What about the global namespace? Will the iterative search ultimately move to the global
scope? Let’s change the names of A::foo and B::foo and leave only ::foo.

#include<iostream>

using namespace std;

void foo()
{

cout << “::foo()” << endl;

namespace A {
void fooA()
{

cout << “A::fooA()” << endl;

namespace B {

using namespace A;

void fooB(int val)
{

cout << “B::fooB(int)” << endl;

int main(int argc, char** argv)
{
b::foo();

return 0;

Description

€91 error C2039: 'foo': is not a member of 'B'

No. The compiler will not move on to the global namespace. So keep in mind that when
you do a qualified lookup, the compiler will only search the specified namespace and the
included namespaces thereof. Although global namespace is, you know, global, it doesn’t
come into the scope when the compiler does a qualified name look up.

Let’s add two more namespaces.

#include<iostream>

using namespace std;

void foo()
{

cout << “::foo()” << endl;

namespace A {

void foo()

cout << “A::foo()” << endl;

namespace B {

using namespace A;

void foo(int val)

{

cout << “B::foo(int)” << endl;

namespace C {
void foo(int val)
{

cout << “C::foo(int)” << end];

namespace D {
using namespace B;

using namespace C;

int main(int argc, char** argv)
{
d::foo(1);

return O;

Description

€31 error C2668: 'Cifoo’ : ambiguous call to overloaded function

Namespace D includes namespaces B and C and both of these have foo(int) defined. And
the compiler is complaining about an ambiguous call. This is because there are two
foo(int) definitions. This shows that when searching included namespaces, the compiler
does not go through them one after the other. If that is the case then the compiler must’ve
found either B::foo(int) or C::foo(int) first and invoked it. But the compiler clearly has
both foo(int) implementations available in the scope. That is why the ambiguity. But there

is something odd in the error message. It says ambiguous call of C::foo, when we are
doing D::foo. It sounds a little odd but there is nothing to it. Let’s change the order of the
using directives in namespace D.

namespace D {
using namespace C;

using namespace B;

Description

€91 error C2668: 'Bufoo' : ambiguous call to overloaded function

This time it complains about an ambiguous call to B::foo. It depends on which order the
compiler brings in the namespaces into the scope. This is all very compiler dependent. But
what matters is that all of the included namespaces are brought in to scope iteratively.
Let’s look at one more example.

#include<iostream>

using namespace std;

void foo()
{

cout << “::foo()” << endl;

namespace A {
void foo()
{

cout << “A::foo()” << endl;

namespace B {

using namespace A;

void fooBar(int val)

{

cout << “B::foo(int)” << endl;

namespace C {

void foo()
{

cout << “C::foo()” << endl;

namespace D {
using namespace C;

using namespace B;

int main(int argc, char** argv)
{
d::foo();

return 0;

C::foo()

Now we have only two foo() implementations in the namespaces (excluding ::foo, as
global namespace is not looked at). The qualified call to D::foo() can find either C::foo()
or A::foo() through namespace B. But you see, there is no ambiguity. The compiler
resolves the call to C::foo(). Why wasn’t A::foo() found? The search didn’t reach to that
level. There is no D::foo() so the search went one included namespace level up, which are
C and B, where the compiler found C::foo() in the scope. The search stopped and C::foo()
was called. There was no need to go up to namespace A. If there was no function C::foo(),
then the search will move to included namespaces, in this case namespace A included in B,
and have found A::foo(). If instead there was C::foo(int), then we would’ve gotten the
compiler error about C::foo(int) not taking 0 arguments.

(However in Visual C++, although it compiles fine and doesn’t give out any warnings,
there is a tooltip below “D::foo()” that says multiple instances of foo() is found.)

Nested namespaces

What about a namespace inside a namespace?

#include<iostream>

using namespace std;

namespace A {
void foo()

{

cout << “A::foo()” << endl;

namespace B {

using namespace A;
void fooB()

{

cout << “B::fooB()” << endl;

namespace C {

void foo()
{

cout << “B::C::foo()” << endl;
}
void fooC()
{

cout << “B::C::fooC()” << endl;
}

int main(int argc, char** argv)

{
b::foo();
b::fooC();
b::C::foo();
return 0O;

}

Description

€91 error C2039: 'fooC' : is not a member of 'B’
€3 2 error C3861: 'fooC': identifier not found

Here we have namespace A, and namespace B, which includes namespace A, and then
namespace C is defined within B. And there is foo() defined in namespace C as well. So
there are two foo functions within namespace B.

As you can see from the compiler error, the compiler could not find fooC. So although
namespace C is defined within B, the functions inside C are not in the scope. If we
comment out B::fooC(), we get:

A::foo()
B::C::foo()

So you see, the foo in B‘s scope is only A::foo. B::C::foo() is not in the scope. If we want
to call functions in namespace C we need to qualify the call. But look at this example.

#include<iostream>

using namespace std;

namespace A {
void fooA()

{

cout << “A::fooA()” << endl;

namespace B {

using namespace A;
void fooB()

{

cout << “B::fooB()” << endl;

namespace C {

void fooC()

{
fooA();
fooB();

int main(int argc, char** argv)

{

b::C::fooC();

return 0;

A::fooA()
B::fooB()

Even though namespace C was in the scope of namespace B, everything in B, including
the namespaces brought in to scope with ‘using’, is in the scope of namespace C.

This is pretty much all there is to common uses of qualified name lookups with
namespaces. Remember the iterative process of namespace look up when you qualify the
call. This is a bit different from what happens when we do an unqualified call.

Unqualified name lookup

Unqualified name look up is exactly what it means. It is name lookup when the name is
not qualified. Earlier we discussed about qualified calls where the calling name is
qualified with the scope resolution operator. Whereas in qualified name lookup we mainly
considered namespaces, unqualified name lookup is all about the scope. Let’s start with an
example.

#include<iostream>

using namespace std;

namespace A {
intx=1;
void fool()
{

cout << “A::fool - x=“ << x << end];

namespace B {

intx=2;
void foo2()
{

cout << “B::foo02 - x =” << x << endl;

using namespace A;

void foo3()
{

cout << “B::foo3 - x =” << x << end];

namespace C {

void foo4()
{
cout << “B::C::foo4 - x =” << x << endl;
}
int x = 3;
void foo5()
{
cout << “B::C::foo5 - x =” << x << endl;
}

int main(int argc, char** argv)

{
a::fool();
b::fool();
b::fo02();
b::foo3();
b::C::foo4();
b::C::foo5();
return O;

}

A:fool -x=1

A:fool -x=1

B::foo2 - x =2

B::foo3 - x =2

B::C::foo4 - x =2
B::C::foo5 - x =3

It’s not difficult to understand what is happening here. We are trying to see the scope

boundaries of variable x. As we saw in the last example of qualified name lookup, the
inner namespace has in its scope everything in the enclosing namespace. So namespace C
has variable x in B in its scope.

In qualified name lookup we saw that namespaces are searched iteratively for the name.
First the qualified namespace is searched, then if the name is not found the included
namespaces are searched and it continues like that until it is found or the last namespace
was reached. We also saw that the search does not go to the global namespace. The same
mechanism is happening in unqualified lookup too. The lookup for the name starts with
the current scope and moves upwards.

So when I mentioned earlier that inner namespace has outer namespaces in its scope, it
was actually incorrect. It is incorrect to say that innermost namespace has outer
namespaces in its ‘scope’. It doesn’t. But the thing about unqualified name lookup is that
name lookup moves to outer scopes.

#include<iostream>

using namespace std;

namespace A {

inta=1;

namespace B {
intb =2;

namespace C {
intc=3;

intd = 4;

namespace D {

intd = 5;

void scopeCheck()
cout << “a = “ << a <<endl;
cout << “b = “ << b << end];
cout << “c = “ << c << endl;

cout << “d = “ << d << endl;

int main(int argc, char** argv)

{
a::B::C::D::scopeCheck();
return 0;

}

a=1

b=2

c=3

d=5

Here you see that unqualified name lookup in namespace D moves out to the outermost
namespace scope. It is clear that the outer namespaces’ scope doesn’t extend to the inner
namespace and vice versa. That is why we don’t have any multiple definition errors for
variable d. Now see what happens when we have variables defined after the function call.

#include<iostream>

using namespace std;

namespace A {

inta=1;

namespace B {

intb = 2;

namespace C {
intc=3;
intd = 4;

namespace D {

intd = 5;

void scopeCheck()
{

cout << “e = “ << e << endl;

cout << “f = “ << f << endl;

}

inte=>5;

int f =6;

int main(int argc, char** argv)
{
a::B::C::D::scopeCheck();

return 0;

Description

€31 error C2065: 'e': undeclared identifier
€9 2 error C2065: 'f' : undeclared identifier

Although variable is in namespace C’s scope, it is not found in the lookup. Anything that
is defined after the function is not in the scope search.

The rules of unqualified name lookup apply to classes the same way.

#include<iostream>

using namespace std;

class A {
public:

static const int a = 1;

class B {
public:

static const int b = 2;

class C {
public:
static const int c = 3;

static const int d = 4;
class D {
public:

static const intd = 5;

static void scopeCheck()

cout << “a =“ << a<<endl
cout << “b = “ << b << endl;
cout << “c = “ << ¢ << endl;

cout << “d = “ << d << endl;

int main(int argc, char** argv)

{
A::B::C::D::scopeCheck();
return 0;

}

a=1

b=2

c=3

d=5

Next we move to the final topic on name lookups, ‘argument dependent lookup’.
Argument dependent lookup

Argument dependent lookup is also called “Koenig lookup” and is part of the unqualified
name lookup. Let’s discuss this with an example.

#include<iostream>

using namespace std,;

namespace A {

struct A_struct

{}
void foo()
{
cout << “A:::foo” << endl;
}

int main(int argc, char** argv)
{
foo();

return 0;

Description
€31 error C3861: 'foo": identifier not found

It’s easy to understand why the compiler cannot find foo. It is in namespace A and since
we are doing an unqualified call the search only extends to the global namespace, not into
namespace A. Completely normal behavior. Now let’s pass an argument to foo, an
argument that is part of namespace A and see how things change.

#include<iostream>

using namespace std;

namespace A {

struct A_struct

{}

void foo(A_struct)
{

cout << “A::foo” << end];

int main(int argc, char** argv)

{
a::A_struct structA;
foo(structA);
return O;

}

A:::foo

This is Koening lookup or argument dependent lookup. But how was the compiler able to
find foo? Why did the compiler decide to search in namespace A? Because foo has a
parameter that is in namespace A. This is what argument dependent lookup is. The

compiler will lookup in namespaces of the passed arguments. Let’s expand this a little bit.

#include<iostream>

using namespace std;

namespace A {

struct A_struct

{h
void fooA1()
{
cout << “A::fooAl” << endl;
}

void fooA2(A_struct)
{

cout << “A::fooA2” << endl;

namespace B {

struct B_struct

{}

void fooB(A::A_struct structA)
{

cout << “B::fooB calling fooA...” << endl;

fooA1();

int main(int argc, char** argv)

{
a::A_struct structA;
b::fooB(structA);
return O;

}

Description

€31 error C3861: 'fooAl': identifier not found

Now we have two namespaces, A and B, and fooB in namespace B is trying to call fooAl
in namespace A. The compiler cannot find fooAl in the search scope. But why? We are
passing an argument of namespace A to fooB. See, it doesn’t work like that. The function
itself must have an argument passed to it with the namespace. Although A_struct is passed
to fooB, it is not passed to fooAl, so the compiler does not look for fooAl in A_struct‘s
namespace. Then what about fooA2?

namespace B {

struct B_struct

{h

void fooB(A::A_struct structA)
{
cout << “B::fooB calling fooA...” << endl;

fooA2(structA);

B::fooB calling fooA...
A::fooA2

As expected, now the compiler searches for fooA2 in namespace of A because we are
passing an argument in A. This is the basic mechanism of argument dependent lookup
(ADL). However, there are some limitations to this.

Does not work with built-in type arguments:

#include<iostream>

using namespace std;

namespace A {

int A_var=1;

struct A_struct

{}

void fooA1()
{

cout << “A::fooAl” << endl;

void fooA2(int var)

{

cout << “A::fooA2” << endl;

namespace B {

struct B_struct

{h

void fooB(A::A_struct structA)
{

cout << “B::fooB calling fooA...” << endl;

fooA2(A::A_var);

int main(int argc, char** argv)

{
a::A_struct structA;
b::fooB(structA);
return O;

}

Description
€91 error C3861: 'fooA2': identifier not found

We change fooAZ2 to take an int parameter instead of A::struct_A and then pass it A_var,
the int variable in namespace A. Apparently the compiler doesn’t care to go into
namespace A in this case although we are passing an int in namespace A. So ADL does not
work for built-in types. It works on class types, as we saw with the struct before, and also
for enumerations. There are quite a few rules and conditions governing the ADL lookup
but let’s keep this discussion to the most common ways of using ADL.

Namespace search is not iterative:

Earlier in qualified name lookup we saw that the lookup does the search iteratively in the
namespaces within namespaces. This is not true for ADL.

#include<iostream>

using namespace std;

namespace A {

struct A_struct

{h
void fooA1()
{
cout << “A::fooAl” << endl;
}

void fooA2(A_struct)
{

cout << “A::fooA2” << endl;

namespace insideA {

void fooA3(A_struct)
{

cout << “A::insideA::fooA3” << endl;

}

using namespace insideA;

namespace B {

struct B_struct

{}

void fooB(A::A_struct structA)
{

cout << “B::fooB calling fooA...” << endl;

fooA3(structA);

int main(int argc, char** argv)
{

a::A_struct structA;
b::fooB(structA);

return 0;

Description
€91 error C3861: 'fooA3": identifier not found

Here we define a namespace insideA within A and define fooA3 that takes a parameter of
type A. But you see the compiler is not able to find it, even though we have included
namespace insideA with the using directive. So ADL limits its search just to the
namespace of the argument.

ADL is different for classes and namespaces:

Let’s look at namespaces first. We define function foo in namespace A and also in the
namespace B, and then call from namespace B.

#include<iostream>

using namespace std;

namespace A {

struct A_struct

{h

void foo(A_struct)
{

cout << “A::foo” << end];

namespace B {

void foo(A::A_struct)
{

cout << “B::foo” << endl;

void fooB(A::A_struct structA)
{

cout << “B::fooB calling foo” << endl;

foo(structA);

int main(int argc, char** argv)

a::A_struct structA;
b::fooB(structA);

return 0;

Description

€91 error C2668: 'B::foo’ : ambiguous call to overloaded function

[2 IntelliSense: more than one instance of function "B::foo” matches the argument list:
function "Asfoo(AnA_struct)”
function "B::foo(A:A_struct)”
argument types are: (AnA_struct)

There is ambiguity because the compiler finds both the foo functions, B::foo in the current
scope and A::foo through ADL.

But things are a little different with classes. Let’s turn the same program to use classes
instead of namespaces.

#include<iostream>

using namespace std;

class A {
public:
struct A_struct

{}

static void foo(A_struct)

{
cout << “A::foo” << end];
}
b
class B {
public:
static void foo(A::A_struct)
{
cout << “B::foo” << endl;
}

static void fooB(A::A_struct structA)

{

cout << “B::fooB calling foo” << endl;

foo(structA);

int main(int argc, char** argv)

{
A::A_struct structA;
B::fooB(structA);
return 0;

}

B::fooB calling foo
B::foo

With classes there is no ambiguity. Compiler finds B::foo in its current scope and calls it.
So when working with classes, ADL is used only when the compiler cannot find a class
member function.

As discussed earlier, there are quite a few rules and conditions regarding ADL. So qualify
your calls to make sure the code is calling the function you want. Keep an eye out for
iterative scope searches because you might not be accessing the variable you intend to.

	The size of an object
	The Virtual Mechanism
	Structs, Classes and their Inheritance
	Object Construction
	Pointers
	Non-Constructible, Non-Copyable Class
	Understanding new
	Understanding Constructors
	Forward Declarations, Compiling and Linking
	Copy Constructor and Object Cloning
	Class Member Access
	Class member offsets
	Function Pointers
	Function Shadowing
	Understanding the Destructor
	Operator Overloading
	Multiple Inheritance
	Casting
	Conversions and Promotions
	Name Lookup

