DE GRUYTER

'laxmisha,ﬂm lu | ’..L

'PRoGR‘Ar{MlN

++
!agngmnﬁﬁ

i]
] { _
i 1
-
EE s
r 3
] -
1 3
:
3]
1 -
1
-
13
INFORMATION AND COMPUTILR

o
B

£

ISR EETRE R EREERER L L 22 2t 2

.]
1111111
i

-'i.':lr;u,‘ |

[L i
i K g
‘l:.?"p,
I-r

h“ﬂ:HH

By L

Laxmisha Rai
Programming in C++

Information and
Computer Engineering

Volume 5
Already published in the series

Volume 4
Shugin Lou, Chunling Yan, Digital Electronic Circuits, 2018
ISBN 978-3-11-061466-4, e-ISBN 978-3-11-061491-6, e-ISBN (EPUB) 978-3-11-061493-0

Volume 3
Baolong Guo, Signals and Systems, 2018
ISBN 978-3-11-059541-3, e-ISBN 978-3-11-059390-7, e-ISBN (EPUB) 978-3-11-059296-2

Volume 2
Jie Yang, Congfeng Liu, Random Signal Analysis, 2018
ISBN 978-3-11-059536-9, e-ISBN 978-3-11-059380-8, e-ISBN (EPUB) 978-3-11-059297-9

Volume 1
Beija Ning, Analog Electronic Circuit, 2018
ISBN 978-3-11-059540-6, e-ISBN 978-3-11-059386-0, e-ISBN (EPUB) 978-3-11-059319-8

Laxmisha Rai
Programming in C++

Object-Oriented Features

Science Press

DE GRUYTER Sh soime

Author

Laxmisha Rai

College of Electronic and Information Engineering
Shandong University of Science and Technology,
Qingdao, China.

ISBN 978-3-11-059539-0

e-ISBN (PDF) 978-3-11-059384-6
e-ISBN (EPUB) 978-3-11-059295-5
ISSN 2570-1614

Library of Congress Control Number: 2018954463

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2019 Walter de Gruyter GmbH, Berlin/Boston, Science Press
Typesetting: Integra Software Services Pvt. Ltd.

Printing and binding: CPl books GmbH, Leck

Cover image: Prill/iStock/Getty Images Plus

www.degruyter.com

http://dnb.dnb.de
www.degruyter.com

Preface

Today, use of computers and application of software can be seen everywhere. The
rapid progress in information technology (IT) has changed our conventional ways of
thinking. It is hard to imagine life without computers and software these days.
Programming is an essential part of computing. Many programming languages
were developed over the years, however, very few of them survived in the IT market.
C++ is one such programming language that can rightly be called as a successor to C
language. C++ is a general-purpose programming language with a rich set of object-
oriented programming (OOP) and generic programming features. This language was
created by Bjarne Stroustrup, a Danish computer scientist, in 1980s. Today, C++ is
one of the most prominent and useful OOP languages. It is studied widely by students
and programmers alike. C++ supports a number of features, such as classes, objects,
inheritance, constructors, and polymorphism that make it so useful. This book covers
all of these concepts along with the basics of programming, including selection
statements, looping, arrays, strings, function sorting, and searching algorithms.

The book is written by focusing programmers, both experienced and inexper-
ienced, who would like to learn C++ with or without any prior programming experi-
ence. The main objective of the book is to present an overview of C++ programming
language with OOP concepts. The book is presented in simple English and easy
examples. It can be used as a textbook for graduate or undergraduate programs.
The book will provide every reader an idea to write and practice C++ programs as well
as understanding various computers and programming terms in English. There are
many features that will make this book unique among C++ textbooks. A large number
of example programs and illustrations will be presented throughout the book. All of
the programs are written with maximum care and attention. Many programming
exercises are also provided, wherever necessary. We are sure that every reader will
enjoy C++ programming while reading this book.

This book covers almost all of the necessary features of object-oriented program-
ming with C++. There are a total of 18 chapters in the book. Each chapter starts with a
brief introduction about its contents and scope. Each chapter has a set of questions
for the reader to answer and think about possible answers as well. The book presents
over 180 complete programs with their respective input and output details. We
suggest every reader to go through all of the chapters starting from 1 to 18 in order
to master C++ programming. This book can be divided into two parts. The first part is
from Chapters 1 to 13, which covers the basics of C++ programming, or concepts
which are not directly related OOP. Even though these chapters use the terms classes
and objects here and there, there is no need of exclusive knowledge of OOP concepts.
So, teachers who are willing to train their students in the basics of C++ may choose
these chapters as introductory lessons on C++ programming. The second part is from
Chapters 14 to 18. This part is about topics that are directly related to OOP. These
chapters provide the readers the exclusive features of OOP in C++. So, the learners

https://doi.org/10.1515/9783110593846-201

https://doi.org/10.1515/9783110593846-201

VI —— Preface

who are familiar with the basics of C++ may start from Chapter 14 to understand the
OOP concepts directly. However, the book is written in such a way that the reader can
jump to any chapter to acquire exact information without following the sequence of
chapters.

In addition to all these chapters, the book presents five appendices for support-
ing the materials presented in this book. Appendix A provides the list of C++ header
files and library functions. It is provided as a quick reference for learners to locate
several library functions provided by C++. The brief description of these header files
and respective library functions are provided in multiple tables. Appendices B and C
provide a list of non-OOP and OOP exercises of C++, respectively. The book provides
two different sections, so that the instructors are able to divide the exercises on the
basis of the students’ ability and course requirements. In some universities or
colleges, instructors prefer their students to learn object-oriented concepts of C++
only. In such cases, it is better to refer to the exercises shown in Appendix C.
However, if the instructor is more focused on teaching fundamentals of programming
concepts through C++, then programming exercises listed in Appendix B are pref-
erable. In addition to these programming exercises, there are also some programming
exercises presented at the end of each chapter in section “Review Questions.”

Appendix D lists the Decimal-Binary-Octal-Hex ASCII (American Standard Code
for Information Interchange) conversion chart. It is very useful while writing pro-
grams of especially related character data type. In addition, it is necessary for
learners to understand how the numbers are represented in different formats.
Appendix E provides Bibliography information.

The book uses different fonts such as bold, and Inconsolata , to identify the
various concepts. For example, the bold text reminds the user that these words are
important and commonly used terms in understanding concepts of C++ and OOP. All
the programs shown in the book are in Inconsolata, so that the readers can easily
identify them. Moreover, we have also used this font within the text for describing the
concepts, to show the readers that these words may form a part of a program, or
beclosely related to a program. The outputs of example programs are also provided so
that the readers can easily guess that the results obtained after the execution of
program.

We hope that you find this book interesting, enjoyable, and informative. We wish
all the readers every success in C++ programming.

Happy Programming!

Laxmisha Rai

Contents

Preface —V

About the Author — XIII

1

11
1.2
1.3
1.4
1.5
1.6

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

2.13

3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction to Computers and Programming —1

History of computers —1

Introduction to computer and computer science —1
Introduction to software — 3

Programming languages — 6

Types of programming languages —7

Review questions — 9

Introduction to Object-Oriented Programming and C++ — 11

Introduction —11

Object-oriented concepts — 11

Introduction to C++ —13

Versions of C++ — 14

Writing the first C++ program — 14

Compiling and running C++ Programs — 17

Running C++ programs online — 18

Running C++ programs in visual studio 2017 — 23
Running C++ programs in microsoft visual C++ — 28
Running C++ programs in codeblocks IDE — 32
Writing the first C++ program in CodeBlocks IDE — 38
Comprehensive understanding of object-oriented concepts
in C++ — 41

Review questions — 45

Programming Basics — 47

Introduction — 47

Variables and identifiers — 47

C++ Keywords — 48

Data types — 49

C++ Literals and constants — 52
Type casting— 60

Input and output manipulators — 62
Storage duration and scope — 63
Review questions — 69

VIl — Contents

4 Operators and Expressions — 71

41 Introduction — 71

4.2 Relational and equality operators — 72
4.3 Arithmetic operators — 72

4.4 Bitwise operators — 73

4.5 Assignment operators — 77

4.6 Increment and decrement operators — 78
4.7 Logical operators — 80

4.8 Conditional operator — 80

4.9 Operator precedence — 81

4.10 Review questions — 83

5 Selection Statements — 85

5.1 Introduction — 85

5.2 The if statement — 85

5.3 The if-else statement — 87
5.4 The if-else-if statement — 89
5.5 Nested if-else statement — 90
5.6 The switch statement — 93

5.7 The ternary operator — 97

5.8 Review questions — 99

6 Looping Statements — 101

6.1 Introduction — 101

6.2 The while loop — 101

6.3 The do-while loop — 104

6.4 The for loop — 107

6.5 Nesting of loops — 111

6.6 The break statement — 112

6.7 The continue statement — 116
6.8 Review questions — 117

7 Arrays — 121

7.1 Introduction — 121

7.2 One-dimensional arrays — 122
7.3 Multidimensional arrays — 125
7.4 Applications of two-dimensional arrays — 127

7.5 Review questions — 135

8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11

11

111
11.2
11.3
11.4
11.5

Strings and Pointers — 137

Introduction — 137

String library functions — 141
Array of strings — 143
Introduction to pointers — 144
Pointer to pointer — 148
Pointers and arrays — 150
Array of pointers — 152
Review questions — 153

Searching and Sorting — 155

Introduction — 155

Searching — 155

Linear search — 155

Binary search — 157

Sorting — 159

Insertion sort — 160

Selection sort — 162

Bubble sort — 164

Sorting characters and strings — 167
Review questions — 172

Functions — 173

Introduction — 173

Defining a function — 174
Arguments and parameters — 177
Scope of function variables — 180
Static variables — 183

Scope resolution operator — 185
Functions and pointers — 187
Recursive functions — 190

Inline functions — 197

Built-in functions — 198

Review questions — 200

Structures and Unions — 203

Introduction — 203

Defining structures — 204
Initializing structures — 205
Accessing structure members — 206
Using typedef keyword — 208

Contents =—

IX

X —— Contents

11.6
11.7
11.8
11.9
11.10
1111
11.12

12

12.1
12.2
12.3
12.4
12.5
12.6

13

131
13.2
13.3
13.4

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

15

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Nested structures — 209
Structures containing arrays — 211
Arrays of structures — 215
Structures and pointers — 218
Structures and functions — 220
Unions — 223

Review questions — 226

Exception Handling — 227

Introduction — 227

Handling exceptions — 230
Multiple catch statements — 231
Exceptions within functions — 234
C++ standard exceptions — 235
Review questions — 237

Basic 1/0 and File Handling — 239

Introduction — 239

Standard input and output — 239
File /0 — 242

Review questions — 251

Classes and Objects — 253

Introduction — 253

Object definition — 253
Class definition — 254
Overloaded methods — 259
Multiple objects — 260
Array of objects — 261
Access modifiers — 264
Review questions — 267

Constructors and Destructors — 269

Introduction — 269

Default constructors — 271
Constructors with parameters — 273
Multiple constructors — 277

Copy constructor — 278

Destructors — 280

Review questions — 281

16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

17

171
17.2
17.3
17.4
17.5

18

18.1
18.2
18.3
18.4
18.5

Inheritance — 283

Introduction — 283

Single inheritance — 283

Multiple inheritance — 288
Multilevel inheritance — 289

The protected keyword — 291
Overriding data and methods — 293
Constructors and inheritance — 294
Review questions — 298

Polymorphism — 299

Introduction — 299

Static polymorphism — 299

Dynamic polymorphism — 305

Pure virtual function and abstract classes — 312
Review questions — 313

Templates — 315

Introduction — 315

Function template — 317

Class template — 320

Standard template library — 322
Review questions — 325

Appendix A— 327

Appendix B— 335

Appendix C — 337

Appendix D — 343

Appendix E— 345

Index — 347

Contents =—— XI

About the Author

Laxmisha Rai received a bachelor’s degree in computer
engineering at Mangalore University and a master’s
degree in computer science and engineering at Manipal
Institute of Technology of India. He received a PhD in
electronics from Kyungpook National University, South
Korea. He was also a postdoctoral researcher at Soongsil
University, South Korea.
Since 2010, he has been working as a professor at
Shandong University of Science and Technology, China.
Dr. Rai has lectured at several conferences in the United
States, the United Kingdom, and several countries of
Asia. His research interests are software engineering, knowledge-based systems,
real-time systems, embedded systems, mobile robots, wireless sensor networks,
and massive open online courses. He is the author of two books including
Programming in Java with Object-Oriented Features, two patents, and over 50 research
papers in international journals and conferences. He is a senior member of IEEE. He is
also a member of ACM.
In his spare time, he enjoys studying Chinese, and solving Rubik's cubes. He can
be reached at 1229521415@qq.com.

https://doi.org/10.1515/9783110593846-202

https://doi.org/10.1515/9783110593846-202

1 Introduction to Computers and Programming

Opportunities multiply as they are seized.
—Sun Tzu

1.1 History of computers

Computers are used everywhere in the world these days. History of computers goes
back to Abacus, a simple calculating device, invented in China around second
century BC. We can see this device in China and other countries till date. Many
scientists agree that Abacus is the first computer of its kind. Later in 1614, John
Napier from Scotland invented the log method that reduces multiplication and
division to addition and subtraction, respectively. In 1642, Blaise Pascal, another
famous French mathematician, built a mechanical calculator that had the capacity
for eight digits. Later, Joseph-Marie Jacquard of France invented an automatic loom
controlled by punched cards.

In 1820s, Charles Babbage, the famous English mathematician, invented
Difference Engine, but he stopped his work and developed Analytical Engine later.
The Analytical Engine is a mechanical computer that can solve mathematical prob-
lems by using punched cards. This revolutionary invention of Babbage led to the
development of more advanced computers at that time. For his great contribution,
Charles Babbage is widely known as the Father of Computers. Many years later,
Konrad Zuse, a German engineer, developed the first general-purpose programmable
calculator in 1941. In 1945, University of Pennsylvania’s Moore School of Electrical
Engineering completed the work of Electronic Numerical Integrator Analyzer and
Computer (ENIAC). Later in 1947, Bell Telephone Laboratories developed the tran-
sistor. This facilitated a rapid development of computers with greater capability.

After the evolution of digital computing, the computer technology changed
rapidly. Many improvements were made in internal organization of computers and
computer programming languages. Later, many programming languages were devel-
oped to support various applications of computers.

1.2 Introduction to computer and computer science

Computer is a machine that is used to perform calculations. Computer can be
programmed to perform many tasks. It can do repetitive tasks quickly and efficiently.
It has a large capacity to store, retrieve, and manipulate data. The physical compo-
nents of a computer are known as hardware. The main components of a computer
are: Central Processing Unit (CPU), Input, Output, and Memory. The CPU acts as brain
of the computer and executes a program (or software) that instructs the computer

https://doi.org/10.1515/9783110593846-001

https://doi.org/10.1515/9783110593846-001

2 —— 1 Introduction to Computers and Programming

about what is to be done. Input and output (I/O) devices allow the computer to
communicate with the user and the outside world. Input device is used to receive data
and output device is used to display or produce the information. Memory is used to
store the data and information.

Sometimes, computer science is viewed as the study of algorithms. This study
encompasses four distinct areas:
1. Machines for executing algorithms
2. Languages for describing algorithms
3. Foundations of algorithms
4, Analysis of algorithms

An algorithm is a finite set of instructions that, if followed, accomplish a particular

task. Moreover, studying algorithms is fundamental to understand computing prin-

ciples. If you study computing for many years, you will study algorithms of frequently

used processes. A number of books have been written about the algorithms for

common activities, such as storing and ordering data. Although it is easy to find

standard algorithms for those parts of programs that do common activities, one may

develop own algorithms for unique problems. Two commonly used tools help to

document program logic (the algorithm): flowcharts and pseudocode. Generally,

flowcharts work well for small problems, but pseudocode is used for larger problems.

Algorithms are written in pseudocode that resembles programming languages such

as C or Pascal. Every algorithm must satisfy the following criteria:

1. Input: zero or more externally supplied quantities should be there;

2. Output: at least one quantity should be produced;

3. Definiteness: each instruction must be clear and unambiguous;

4, Finiteness: if we trace out the instructions of an algorithm, then for all cases the
algorithm will terminate after a finite number of steps; and

5. Effectiveness: every instruction must be sufficiently basic, so that it can, in
principle, be carried out by a person using only pencil and paper. It is not
necessary that each definite operation must also be feasible.

The term algorithm was originally derived from the phonetic pronunciation of the last
name of Abu Ja’far Mohammed ibn Musa al-Khowarizmi, who was an Arabic math-
ematician and had invented a set of rules for performing the four basic arithmetic
operations (addition, subtraction, multiplication, and division) on decimal numbers.
An algorithm is the representation of a solution to a problem. One of the obstacles to
overcome in using a computer to solve our problems is that of translating the idea of
the algorithm to computer code (or program). Usually people cannot understand the
actual machine code that the computer needs to run a program, so programs are
written in a programming language such as C or Pascal, which is then converted into
machine code for the computer to run. In the problem-solving phase of computer
programming, programmers usually spend much of their time on designing

1.3 Introduction to software = 3

algorithms. This means that students will have to be conscious of the strategies to

solve problems in order to apply them to programming problems. These algorithms

can be designed by the use of flowcharts or pseudocode.

A flowchart is a diagram made up of boxes, diamonds, and other shapes,
connected by arrows, where each shape represents a step in the process, and the
arrows show the order in which they occur. Flowcharting combines symbols and
flowlines, to show figuratively the operation of an algorithm. From this common
understanding, a number of interesting things may happen. For example, process-
improvement ideas will often arise spontaneously during a flowcharting session.
Moreover, after flowcharting, one may able to write a detailed procedure to solve a
problem, which is a good way of documenting a process. Process improvement starts
with an understanding of the process, and flowcharting is the first step toward
process understanding. Flowcharting uses symbols that have been in use for a
number of years to represent the type of operations and/or processes being per-
formed. The standardized format provides a common method for people to visualize
problems in the same manner. The use of standardized symbols makes the flowcharts
easier to interpret; however, the sequence of activities that make up the process is
more important. Note that the pseudocode also describes the essential steps to be
taken, but without graphical enhancements. In the recent years, a general-purpose,
developmental modeling language known as Unified Modeling Language (UML) was
popularly used to visualize the design of a system.

A program is a set of quite a number of commands. It goes through many steps
during its development. A typical program development may have the following
steps:

1. Requirement Analysis: In this step, a programmer tries to understand what the
program is supposed to do?

2. Program Design: After understanding the requirements, the programmer draws
conclusions about how to do it. In this step, the programmer creates a strategy to
achieve the goal. One of the techniques used during the design phase is drawing
a flowchart of the program. In the flowchart, different shapes represent different
kinds of steps, such as input and output, decisions, or calculations.

3. Coding: In this step, the programmer writes the program in a chosen language.
Testing: The programmer tests the program against the requirements of Step 1.

5. Documentation: An important part of any program development is documenta-
tion. It is a good practice to have documents for every program we write. The
documents explain other readers what we did, why we did it, and how we did it.

1.3 Introduction to software

The computer hardware includes physical devices such as keyboard, mouse, mon-
itor, etc. The software includes a set of programs. Software allows us to perform

4 —— 1 Introduction to Computers and Programming

various tasks by using computer. These tasks include word processing, database
computations, programming, etc. Two common software types are system software
and application software. System software is responsible for controlling, integrat-
ing, and managing the individual hardware components of a computer system. The
operating system is the most important system software that generally interacts with
the computer hardware. The application software is used to perform some specific
applications such as drawing software, imaging software, etc.

Software is developed by using programming languages. There are many types of
programming languages such as, interpreter or compiler-based languages.
Software can be developed by using any of these types of languages depending on
the application. In general, software is a collection of programs and routines that
work together to perform a specific operation. A program is simply a set of instruc-
tions written in a particular language.

Over the years, the development of software is becoming increasingly com-
plex. To guide the software development process, a number of software-based
tools are developed. In general, there are five main steps during the develop-
ment of software, which become major part of Software Development Life Cycle
(SDLC). The main goals of SDLC are to reduce and minimize the risks involved
in development. The software project planning, organizing, and maintenance
are based on SDLC models. Some of the important and popular SDLC models are
waterfall model, iterative model, spiral model, fountain model, V-model, and big
bang model.

The simplest, most straightforward, and oldest SDLC model is the waterfall model.
In this model, a number of activities are organized in a sequential manner. As shown in
Fig. 1.1, each activity is followed after completion of the previous activity:

1. Requirements gathering (or analysis)
Design

Coding (or implementation)

Testing

Delivery or maintenance

SRV

Requirements —;

Design _i

Implementation j

Testing j

Maintenance

Fig. 1.1: Waterfall Model.

1.3 Introduction to software = 5

In software testing, verification and validation (V&V) is the process of checking that a
software system meets the requirement specifications. The validation tests answer
the question: Are we building the right software? On the other hand, the verification
tests answer the following question: Are we building the software right?
Although waterfall model is simple, and easy to understand, it has a few dis-
advantages. For example:
1. Delays are highly probable in this model, because there is a little scope for
revision once a phase is completed.
2. Moreover, any problems in the intermediate phases cannot be fixed until we
reach the maintenance stage.

Logical improvement to the waterfall model resulted in the fountain model. In a
fountain, water rises up to the middle and then falls back, either to the pool below or
is re-entrained at an intermediate level. The same activities as those in the software
development of the waterfall model are used in fountain model in the same sequence.
However, there is an overlap and iteration of activities. The fountain model is a
graphical representation to remind us that although some life cycle activities cannot
start before others, there is a considerable overlap and merging of activities across
the full life cycle.

Another flexible model in SDLC is the spiral model that emphasizes the need to
revisit the earlier stages as many number of times as the project progresses. This
allows multiple rounds of refinement. This takes the cues from iterative model and
repetition of activities in the same. This model can also be viewed as a series of short
waterfall cycles, where each cycle is producing an early prototype representing a part
of the entire project. Main advantage of this model is that the customers are able to
grasp the idea of entire project in the early part of the cycle.

In the recent years, software prototyping concept has also been very popular. In
general, a prototype is a working model of software with some limited function-
ality. The software prototyping facilitates an understanding of the customer
requirements at an early stage of development. With prototyping, the users have
the chance to evaluate the software and try it before final implementation. This
helps get valuable feedback from the customers. It also helps software designers
and developers understand about what exactly is expected from the software under
development.

Percentage of costs incurred during the different phases of SDLC is quite different
from what software engineers can imagine. It can be observed that the maintenance
of software is 60%, whereas all the other costs are only 40%. Hence, maintenance is
an important factor to be considered in the software development process. Also,
earlier programming languages did not support reusability. An existing program
cannot be reused because of the dependence of the program on its environment.
Thus, these two major problems demanded a new programming approach, software
maintenance and software reuse.

6 = 1 Introduction to Computers and Programming

1.4 Programming languages

A program is a means of instructing computer what to do. As we know, computers
can understand only O and 1, that is, binary code, so there should be a means of
translating the program code into 1’s and 0’s. A program is usually written in high-
level language similar to English, instead of binary codes. A compiler is a program
that translates the language’s statements into 0’s and 1’s for the computer to
understand. FORTRAN is one of the major languages developed in 1957.
FORTRAN stands for FORmula TRANslation. This language was designed at IBM
for scientific computing. Basically this language is used in numerical computa-
tions. Later, COBOL was developed to perform many business applications. The
language makes it easy to handle large input and output applications. Its syntax is
similar to English, and it is easy to learn. In 1958, LISP or LISt Processing was
created for Artificial Intelligence (AI) applications. At the same time, ALGOL lan-
guage was also developed. A major contribution of this programming language is
that its features were used in the later generations of programming languages, such
as Pascal, C, C++, and Java. The programming language Pascal was developed in
1968. It has many additional features as compared with earlier programming
languages. It combined the best features of COBOL, FORTRAN, and ALGOL lan-
guages. The combination of features, input/output, and strong mathematical fea-
tures made it a highly successful and widely popular language. Although Pascal
has many good features, it has some shortcomings too. Later, Modula-2 was created
as a successor to Pascal, but the same time C language was gaining popularity
everywhere. The C language was developed in 1972 by Dennis Ritchie at Bell
Laboratories. It has gained more popularity than all previous programming lan-
guages and is considered one of the best languages used till date. It has lot of
similarities with Pascal. Table 1.1 provides an overview of the development of
programming languages.

Table 1.1: Development of programming languages.

Year(s) Programming Language Developer(s)
1954-1957 FORTRAN (FORmula TRANslation) John Backus and his team at IBM
1958-1960 LISP (LISt Processing) John McCarthy at MIT
1959-1960 COBOL (COmmon Business Orientated IBM
Language)
1960 ALGOL (ALGOrithmic Language) Committee of European and American
Scientists
1961 APL (A Programming Language) IBM
1964 PL/I (Programming Language I) IBM
1965 BASIC (Beginners All Purpose Symbolic Thomas E. Kurtz and John Kemeny,

Instruction Code) Dartmouth College, USA

1.5 Types of programming languages =—— 7

Table 1.1 (continued)

Year(s) Programming Language Developer(s)

1967-1971 PASCAL Niklaus Wirth

1972 C Dennis Ritche of Bell Laboratories, USA

1973 Prolog University of Luminy-Marseilles in France
by Alain Colmerauer.

1979 Ada Jean Ichbiah and team at Honeywell

1983 C++ Bjarne Stroustroup

1991 Java James Gosling and Team, Sun

Microsystems

In the early 1980s, a new programming method that was known as object-
oriented programming, or OOP, was being developed. OOP has a different
approach to programming than all previous programming languages. C++ lan-
guage was developed by Bjarne Stroustroup in 1983. It is an extension to C
known as “C with Classes.” C++ was designed to write programs with the
authority of C and additional OOP. Although C++ is an OOP language, it is
not purely object-oriented. The C++ is not a pure object-oriented language
because it does not obey all the rules of a typical object-oriented language.
For example, we can write a program without creating a class in C++. Later,
Sun-Microsystems developed Java programming language, which is purely an
object-oriented language. It gained high popularity around the world, due to its
simplicity and powerful GUI applications. Java has a rich set of libraries to
perform many different tasks; a Java program can run on a web browser. Today,
C++ is one of the most prominent and useful object-oriented programming
language. Programmers and students have been continuously enjoying it. The
language supports various features, such as classes, objects, inheritance, con-
structors, polymorphism, etc., which helps the learners understand the nuts
and bolts of an object-oriented language in general.

1.5 Types of programming languages

Today, programming languages are classified into different types. Most of these
types are based on their application and usage. However, programming lan-
guages are traditionally classified on the basis of programming paradigms, that
is, ways in which programming languages are classified on the basis of their
features. The common programming paradigms are imperative, functional,
declarative, object-oriented, procedural, logical, structured, and symbolic. We
will briefly summarize the features of procedural, structured, and object-oriented
programing paradigms.

8 =—— 1 Introduction to Computers and Programming

Procedural Programming Languages

Procedural programming specifies a list of operations that the program must complete
to reach the desired state. Each program has a starting state, a list of operations to
complete, and an ending point. This approach is also known as imperative program-
ming. Integral to the idea of procedural programming is the concept of a procedure call.

Procedures, also known as functions, subroutines, or methods, are small sec-
tions of code that perform a particular function. A procedure is a list of computations
to be carried out effectively. Procedural programming can be compared to unstruc-
tured programming, where the entire code resides in a single large block. By splitting
the programmatic tasks into small pieces, procedural programming allows a section
of code to be re-used in the program without making multiple copies. It also makes it
easier for programmers to understand and maintain program structure. Two of the
most popular procedural programming languages are FORTRAN and BASIC.

Structured Programming Languages

Structured programming is a special type of procedural programming. It provides
additional tools to manage the problems created by larger programs. Structured
programming requires that programmers break program structure into small pieces
of code that are easily understood. It also opposes the use of global variables and
instead uses variables local to each subroutine. One of the well-known features of
structural programming is that it does not allow the use of the GOTO statement. It is
often associated with a “top-down” approach to design. The top-down approach
begins with an initial overview of the system that contains minimal details about the
different parts. Subsequent design iterations then add detail to the components until
the design is complete. The most popular structured programming languages include
C, Ada, and Pascal.

Object-Oriented Programming Languages

Object-oriented programming is one the newest and most powerful paradigms. In
object-oriented programs, the designer specifies both the data structures and the
types of operations that can be applied to those data structures. This pairing of a
piece of data with the operations that can be performed on it is known as an object. A
program thus becomes a collection of cooperating objects, rather than a list of
instructions. Objects can store state information and interact with other objects,
but generally each object has a distinct and limited role.

There are several key concepts in object-oriented programming. A class is a
template or prototype from which objects are created, so it describes a collection of

1.6 Review questions = 9

variables and methods (methods are also called as functions). These methods can
either be accessible to all other classes (public methods) or can have restricted access
(private methods). New classes can be derived from a parent class. These derived
classes inherit the attributes and behavior of the parent (inheritance), but they can
also be extended with new data structures and methods. The list of available methods
of an object represents all the possible interactions it can have with external objects,
which means that it is a concise specification of what the object does. This makes
OOP a flexible system, because an object can be modified or extended with no
changes to its external interface. New classes can be added to a system that uses
the interfaces of the existing classes. Objects typically communicate with each other
by passing message. A message can send data to an object or request that it invoke a
method. The objects can both send and receive messages. Another key characteristic
of OOP is encapsulation, which refers to how the implementation details of a
particular class are hidden from all objects outside of the class. Programmers specify
what information in an object can be shared with other objects.

A final attribute of object-oriented programming languages is polymorphism,
which means that objects of different types can receive the same message and still
respond in different ways. The different objects need to have only the same interface
(i.e., method definition). The calling object (the client) does not need to know exactly
what type of object it is calling, only that is has a method of a specific name with
defined arguments. Polymorphism is often applied to derived classes, which replace
the methods of the parent class with different behaviors. Polymorphism and inher-
itance together make OOP flexible and easy to extend.

Object-oriented programming proponents claim several advantages. They main-
tain that OOP emphasizes modular code that is simple to develop and maintain. OOP
is popular in larger software projects, because objects or groups of objects can be
divided among teams and can be developed parallelly. It encourages careful upfront
design that facilitates a disciplined development process. Object-oriented program-
ming seems to provide a more manageable foundation for larger software projects.
The most popular object-oriented programming languages include Java, Visual
Basic, C#, C++, and Python.

1.6 Review questions

1. What is Abacus? How can calculations on numbers be performed by using
Abacus? Explain.

Write a brief note on the history of computers.

What is a computer? List the benefits of a computer in everyday life.

What is an algorithm? What are the minimum satisfying criteria for algorithms?
Define flowchart and pseudocode. How they are useful in writing programs?
Discuss.

va W

10

10.

11.
12.

13.

14.

15.

= 1 Introduction to Computers and Programming

Define the term software. What is difference between system software and appli-
cation software? Classify the different softwares available in your computer as
application and system software.

What is a programming Language? How it is different from languages such as
Chinese, English, Hindi, French, etc.?

Describe briefly the history of development of programming languages.

What are the basic five steps of writing effective programs? Explain.

List the software development activities in the waterfall model by using a
diagram.

List different SDLC models available today.

How is C language different from C++? Which features are unique to C++?
Discuss.

Define programming paradigms. What are the common programming
paradigms?

What is the meaning of the term object-oriented programming (OOP)? List some
examples for OOP languages.

Write the full forms of these programming languages: FORTRAN, LISP, COBOL,
ALGOL, APL, PL/I, BASIC.

2 Introduction to Object-Oriented Programming
and C++

Life is a series of natural and spontaneous changes.
Don’t resist them — that only creates sorrow.
Let reality be reality. Let things flow naturally forward in whatever way they like.

—Lao Tzu

2.1 Introduction

In Chapter 1, we have studied about the basic concepts of computers and programming
languages. There are many types of programming languages, such as procedural,
functional, and object oriented. Our main purpose in this chapter is to understand
the main features of OOP languages and the ways of compiling and running a C++
program successfully. In object-oriented programming, writing a program is easier and
more convenient than many other types of programming languages. Today, an OOP
language, such as C++, is popular and widely used to develop many software applica-
tions. However, the OOP is a new paradigm among programming languages. The basic
concepts of an OOP language revolve around topics such as objects, classes, data
abstraction, encapsulation, inheritance, polymorphism, and dynamic binding. In this
chapter, we will focus on some of the basic concepts of object-oriented programming
and how to write a simple C++ program. In addition, we will also present the steps to
compile a program using freely available online compilers, Visual Studio, VC++
compiler, and CodeBlocks.

2.2 Object-oriented concepts

Object-oriented programming has a number of advantages. It is simpler and easier to
read and write programs. It can reuse the code more efficiently, and provide a robust
and error-free code. In this section, we will try to understand various features of
object-oriented programming languages briefly.

Objects and classes

In OOP, programs are written by using objects and classes. OOP concepts are
different from other programming languages. All real-world objects are represented
by objects. Every object has certain state and behavior. The state of the object is
represented by variables and the behavior by methods. An object together with

https://doi.org/10.1515/9783110593846-002

https://doi.org/10.1515/9783110593846-002

12 —— 2 Introduction to Object-Oriented Programming and C++

variables and related methods is a software entity. Moreover, an object is an instance
of a class. The class is similar to a model or blueprint for creating objects. One class
may have multiple instances of objects. For example, Wang is a student. Here, Wang
is an object and student is a class.

Modularity and information hiding

In OOP, the source code of an object can be written and maintained independently of
the source code for other objects. This will greatly help us to use the object anywhere
in the program. This property is called modularity. Also, an object has private and
public interface. It will greatly help us to maintain the information and helps us to
communicate with other objects.

Inheritance

Object-oriented programming allows us to define classes from other classes, which is
called inheritance. It plays a major role in writing large programs. Inheritance
property is highly useful when we deal with many similar classes with minor
changes. Inheritance enables us to define a new class based on an existing class
definition. For example, if a book is a class then a notebook is a subclass. We will see
that many characteristics of a notebook are derived from the book class, such as size,
pages, and cover, etc. Here, we call the book class as a parent class (or super class or
base class) and the notebook class as a child class (or subclass or derived class).

Constructors

The constructors are one of the most powerful features of object-oriented languages.
They are used for initializing objects during its creation. Initialization of data mem-
bers is necessary when we deal with multiple objects of the same class. A constructor
is a special method that is executed when the object of that class is created. The name
of the constructor must be the same as that of the class name.

Polymorphism

Polymorphism is also important and one of the most essential features of an
object-oriented programming. Polymorphism increases the ability of writing the
programs simpler with reusability. The polymorphism means many forms (such as
many faces). For example, a person may be a father at home, an officer at office, ora

2.3 Introduction to C++ =— 13

customer at restaurant. Here, a father, an officer, and a customer all refer to the
same person. Earlier, we discussed about the book and the notebook. Here, the
notebook is a subclass derived from the book class. It is also clear that notebook is
also a book.

There are two types of polymorphism—(1) compile time and (2) runtime.
The operator and function overloading are compile time or static polymor-
phism types. However, a virtual function is of dynamic or runtime poly-
morphism type. The operator overloading is an advanced feature of C++,
where a programmer has the flexibility to overload the built-in operator for
different purposes. Similarly, it is possible to use functions with the same
name but with different arguments. This is called function overloading.
These functions might have different implementation. When we overload a
function or an operator, the compiler will select the most appropriate defini-
tion or implementation by comparing the arguments and their data types. This
process of selecting the most appropriate overloaded function or an operator is
called overload resolution.

2.3 Introduction to C++

History of C++

The widely known language C was developed at Bell Laboratories during 1970s. In the
same organization, in the early 1980s, researchers created C++ language. This lan-
guage was developed by Bjarne Stroustrup and named as C++. The special focus is to
create a programming language, “C with Classes,” with the objective of making the
programmer to write a good program easily and friendly. The C++ is generally
considered as a superset of C because a program written in C can also be executed
in C++. So, the object-oriented features of C++ added the extra characteristics to the C
component. However, over the years, there are significant changes added to the C++.
The first edition of C++ was released in 1985.

What is C++?

C++ is a high-level and an object-oriented language, such as C, Java, Perl, and
Smalltalk, etc. It can be used to write many computers’ applications. C++ has a lot of
similarity with languages, such as C and Java. To learn C++, one does not need to know
C or Java. It is quite easy to learn C++ without any other programming background. If
one has some knowledge of C language, it is easier to learn C++. C++ has a large set of
libraries to support many functions. It is easy to write and read C++ programs. C++is
also an excellent language for beginners to learn programming.

14 —— 2 Introduction to Object-Oriented Programming and C++

2.4 Versions of C++

So far, we can find four versions of C++ standardized by an ISO (International
Organization for Standardization) working group known as JTC1/SC22/WG21:

— ISO/IEC 14882:1998 (C++ 98, released in 1998)

— ISO/IEC 14882:2003 (C++ 03, released in 2003)

— ISO/IEC 14882:2011 (C++ 11, released in 2011)

— ISO/IEC 14882:2014 (C++ 14, released in 2014)

The latest version is C++ 14 that was released on 15 December 2014. It is a major update to
the previous versions of C++. Some of the unique features of this version are as follows:
— bug fixes and small features

— function return type deduction

— alternative type deduction on declaration

— relaxed constexpr restrictions

— variable template

— aggregate member initialization

— binary literals

- digit separators

— generic lambdas

— lambda capture expressions

Some of the new standard library functions in C++ version 2014 are as follows:
— shared mutexes and locking

— heterogeneous lookup in associative containers

- standard user-defined literals

- tuple addressing via type

2.5 Writing the first C++ program

Let us try to understand a simple C++ program. In this section, we will introduce a
“Hello! Ni Hao!” program to display “Hello! Nihao!” on the computer screen.

// Program 2.1
// Program to display "Hello! Ni Hao" on the computer screen

#include <iostream>
using namespace std;

int main()

{

cout << "Hello! Ni Hao";

2.5 Writing the first C++ program =— 15

cout << endl;

return 0;

}

As shown in Program 2.1, every C++ program contains the function main() and this is
the function where execution of the program begins. The main() function in the
example consists of the function header defining it as main() and everything from the
first opening curly brace ({) to the corresponding closing curly brace (3}). The braces
enclose the executable statements in the function, which are collectively referred to
as the body of the function.

The first two lines in the following program are comments. They are written along
with two forward slashes (//). They are not executable statements of C++ program. They
are used only for reader’s convenience and understanding. All comments are ignored
by the compiler. Comments can be used by two successive slashes (//) or we can also
use an alternative form of a comment bounded by /* and */. The comment using //
covers only the portion of the line following the two successive slashes, whereas the
/*...x/ form defines whatever is enclosed between the /* and the */ as a comment, and
this can span several lines. As a rule, one should always comment on your programs
comprehensively. The comments should be sufficient for another programmer or you,
on a later date, to understand the purpose of any particular piece of a code and how it
works. It is always a good practice to write more comments in C++ program. A good
program should have comments, including name of the program, purpose, input,
output, name of the programmer, and his contact information as shown here:

// Program 2.1

// Program to display "Hello! Ni Hao" on the computer screen
// Name of the program: HelloNiHao.cpp

// Input: No Parameters

// Output: Display "Hello! NiHao!" on Computer Screen

// Programmer: Liu Shan, Date: November 18, 2017

// Contact E-mail: 1229521415@qq.com

Following the comments, we have an #include directive:

#include <iostream>

This is called a directive because it directs the compiler to perform something; in this
case, the compiler is inserting the contents of file named iostream, identified
between the angled brackets <>, into the program source code before compilation.
The iostreamfile is called a header file because it gets invariably inserted in another
source file by using directive. The iostream header file is a part of the standard C++
library and it contains definitions that are necessary for us to be able to use C++ input
and output statements. So, without including the iostream in the program, the

16 = 2 Introduction to Object-Oriented Programming and C++

program would not be compiled. The name of the header file can also be written
between double quotes, thus

#include "iostream"
The statement after #include <iostream> is related to namespace.

using namespace std;

This statement is a using directive and the effect of this is to import all the names from
the std namespace into the source file so that we can refer to anything that is defined in
this namespace without qualifying the name in our program. A namespace is a
mechanism in C++ for avoiding problems that can arise when duplicate names are
used in a program for different things, and it does this by associating a given set of
names, such as those from the standard library, with a sort of family name, which is the
namespace name. All the standard library facilities are defined within a namespace
with the name std, so every item from this standard library that we can access in our
program has its own name, plus the namespace name, std, as a qualifier. The names
cout and endl are defined within the standard library so their full names are std: : cout
and std::endl. The using declaration tells the compiler that we intend to use the
names cout and end1 from the namespace std without specifying the namespace name.

The program statements making up the function body of main() are terminated
with a semicolon. It is the semicolon that marks the end of a statement, not the end of
a line. The first statement in the body of the main() function is

cout << "Hello! Ni Hao";

This is an output statement. In C++, a source of input or a destination for output is
referred to as a stream. The name cout specifies the standard output stream and the
operator << indicates that what appears on the right of the operator is to be sent to
the output stream, cout. The meaning of the name cout and the operator << is defined
in the standard library header file iostream. The second statement inside the main()
block is

cout << endl;

This is another output statement that sends a newline character denoted by the word
endl to the command line on the screen. The last statement in the program is

return 0; // Exit the program

This terminates the execution of the main() function, which stops the execution of
the program. The control returns to the operating system and the O is a return code
that tells the operating system that the application terminated successfully after

2.6 Compiling and running C++ Programs =— 17

completing its task. The statements in a program are executed in the sequence in
which they are written, unless a statement specifically causes the natural sequence to
be altered. Moreover, we can enclose several statements between a pair of braces, in
that case, they become a block or a compound statement. The body of a function is
an example of a block. After the successful execution of this program, the following
result (or output) is displayed on the computer screen.

Hello! Ni Hao

The standard output stream to the command line on the screen is referred to as cout.
The complementary input stream from the keyboard is referred to as cin. Of course,
both stream names are defined within the std namespace. To obtain input from the
keyboard through the standard input stream cin we use the extraction operator for a
stream >>. The extraction operator > “points” in the direction of data flow; in this
case, from cin to each of the two variables in turn. To read two integer values from the
keyboard into integer variables a and b, we can write this statement:

cin > a > b;

The standard output stream is called cout, which is used to send the output to the
command line (Program 1.1). It uses the insertion operator << to transfer data to the
output stream. This operator also “points” in the direction of data movement.

2.6 Compiling and running C++ Programs

After writing a C++ program in a file, we have to compile the program for errors. Once
the program is compiled successfully, the next step is to execute the program (or run)
to obtain the results. Here, we would like to summarize the meaning of compilation
and execution of a program.

The source code of a C++ program is written in a text file, which is called source
file. It is also possible that a large and complicated C++ program may include
multiple source files. Keeping the programs in multiple files helps the programmers
while debugging. As the code becomes bigger in a single source file, it becomes
difficult for the programmers to debug the code during removal of errors. The source
file of a C++ program has the extension .cpp. That means, if we write a C++ program
to add two numbers, the program file with source code may be named as myadd.cpp.
There are some header files that end with .h. However, the programs written by users
are non-header files that end generally with .cpp.

The programing languages, such as C, C++, and Java, are English-like program-
ming languages and are called high-level languages. In order for the computer to
understand the code, they must be compiled and executed. That means, the source

18 —— 2 Introduction to Object-Oriented Programming and C++

code written in English-like language needs to be translated into a language that
computer understands. Generally, most of the high-level languages are either inter-
preted or compiled into a machine code. The C++ source code is compiled to generate
the machine code. A compiler typically checks the source code for errors, usually for
syntax or grammatical errors. Each programming language defines its own rules and
regulations for writing the statements in a program. This is synonymous to writing a
letter in English following the grammar rules. The user has the chance to correct the
errors after the compilation and the program can be recompiled until it is error free. The
objective of the compiler is to translate the program into a machine code and create an
executable file to run on the host computer. The executable version of a source code is
created if there are no serious syntax errors in the source code. However, there are also
some warnings during compilation to guide the user to check for both syntactic and
semantic errors in the program. The executable version of a source file is called object
file, which includes the machine code translation of the source code. The object files
usually end with .0 and are binary files that are ready for execution. The complete
executable program is then produced by linking all the object code files together. A
Linker is another computer program similar to the compiler, where its main purpose is
to take one or more object files generated by a compiler and combine them into a single
executable file, a library file, or another object file.

There are several ways of compiling C++ programs. The easy available way is to
compile online. However, it is not recommended while learning a programming lan-
guage because the learner does not have the access to explore different tools or options
available to understand the full capabilities of a compiler while compiling a C++ source
code online. In this chapter, we would like to provide details of compiling C++
programs in multiple ways: online and offline. Initially, we will describe ways of
compiling C++ programs using online environment.

2.7 Running C++ programs online

There are several websites that provide options to run C++ programs online.
However, this option requires constant Internet connection. This option is preferred
in those cases where the user is unable to download or able to obtain the C++
compiler in their computer. There are several websites that provide this option and
most of them are able to execute the latest version C++14. Some of these websites
provide facilities to the users, such as downloading the projects they have created,
autosuggestion options, color coding, and screen settings. Table 2.1 lists some of the
commonly used websites for online C++ compilation. Some basic details of these
online compilers are also provided in this section.

Tutorialspoint: The www.tutorialspoint.com website provides online compiler for
executing C++ source code through link https://www.tutorialspoint.com/compile_
cpp_online.php/. As shown in Fig. 2.1, we can write the program in the window

www.tutorialspoint.com
https://www.tutorialspoint.com/compile_cpp_online.php/
https://www.tutorialspoint.com/compile_cpp_online.php/

2.7 Running C++ programs online =— 19

Table 2.1: List of popular online C++ compilers and their URLs.

Online Compiler URL

Tutorialspoint https://www.tutorialspoint.com/compile_cpp_online.php
Codechef.com https://www.codechef.com/ide/

C++ Shell http://cpp.sh/

Rextester.com http://rextester.com/l/cpp_online_compiler_clang
Codepad http://codepad.org/

OnlineGDB http://www.onlinegdb.com/

provided, and use the Execute option to check for errors and run the code. The screen
on the right to the source code window displays the results or a program output. The
source code executes successfully (Fig. 2.1). In Fig. 2.2, the source code is intentionally
written with an error (missing semicolon in line 7) to show the display of errors.

Fig. 2.1: Running a C++ program successfully in Tutorialspoint online compiler.

Codechef: The website, https://www.codechef.com/ide, supports all versions of C++
up to C++14 with various features such as color coding, error detection in source
code, downloading, and autosuggestion. Fig. 2.3 shows the source code window for
typing, and the results are shown in Fig. 2.4.

C++ Shell: C++ Shell is an online C++ compiler that supports all versions of C ++
up to C++14. It provides features such as color coding and error detection. This can be
accessed using website http://cpp.sh/. The compilation of a source code with an error
and the results after successful compilation are shown in Figs. 2.5 and 2.6, respectively.

Rextexter: This is an online C++ compiler that supports different versions of C++,
such as C++ (clang), C++ (gcc), and C++ (VC++). Rextexter C++ compilers perform fast
execution of the source code with features such as color coding, and pointing out the
error in the source code. An example of writing a program in Rextester.com is shown in
Fig. 2.7.

https://www.codechef.com/ide
http://cpp.sh/
https://www.tutorialspoint.com/compile_cpp_online.php
https://www.codechef.com/ide/
http://cpp.sh/
http://rextester.com/l/cpp_online_compiler_clang
http://codepad.org/
http://www.onlinegdb.com/

20 — 2 Introduction to Object-Oriented Programming and C++

Fig. 2.2: Running a C++ program with errors in Tutorialspoint online compiler.

Fig. 2.3: Writing a C++ in Codechef online compiler.

Fig. 2.4: Display of results in C++ in Codechef online compiler.

2.7 Running C++ programs online =— 21

Fig. 2.5: Compiling a C++ program with errors in C++ Shell online compiler.

Fig. 2.6: Display of results in C++ Shell online compiler.

Codepad: This online compiler supports all versions of C++ up to C++14. This
compiler provides a quick execution of C++ codes with the features such as error
detection, downloading the raw code, and login with an account. However, there is

22 —— 2 Introduction to Object-Oriented Programming and C++

Fig. 2.7: Writing a C++ in Rextester online compiler.

one limitation that the output is displayed in another window. An example window
with a program in Codepad is shown in Fig. 2.8.

Fig. 2.8: Writing a C++ in Codepad online C++ compiler.

Online GDB: This compiler supports all C++ versions up to C++14. It provides fast
execution with features such as color coding, error detection, the screen customization,
creating project, and login with the account. An example window with a C++ program in
Online GDB is shown in Fig. 2.9.

2.8 Running C++ programs in visual studio 2017 =— 23

Fig. 2.9: Writing a C++ program in Online GDB compiler.

2.8 Running C++ programs in visual studio 2017

In this section, we will describe the steps involved in running a C++ program using
Visual Studio. Today, it is a common practice to use Visual C++ to run C++ programs.
The Visual Studio products provide the best IDE (integrated development environ-
ment) to develop applications easily. The www.visualstudio.com website provides
free trial for users to download. The procedure from downloading to executing a
sample C++ program is as follows:
Step 1: Download the latest and stable version from https://www.visualstudio.com/
downloads/, click on Visual Studio Professional free trail. Currently, the
latest and stable version is Visual Studio Professional 2017.

www.visualstudio.com
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

24 — 2 Introduction to Object-Oriented Programming and C++

Step 2: Click the Visual Studio Professional 2017, Free trial button. Then, the website
jumps to next page with the information as shown in the given screenshot,
and it will allow us to download an exe file (vs_Professional.exe). Store the
file in your computer.

Step 3: After downloading the .exe file, identify the file in your computer and double
click to install with administrative permission.

Step 4: For running C++ programs in Visual Studio, install the Desktop Development
with C++ through the Visual Studio Installer, as shown in the following
screenshot:

2.8 Running C++ programs in visual studio 2017 =— 25

Step 5: Wait for complete installation, as shown in the following screenshot:

Step 6: Users may create an account or simply continue by pressing “Not now, may
be later” to get started. Creating a Microsoft account is optional.

Step 7: After the successful installation, the Visual Studio 2017 can be found in your
computer, and by clicking, one can see the following window:

26 = 2 Introduction to Object-Oriented Programming and C++

Step 8: From the top left, choose File, New, and then Project, select the highlighted
Windows Console Application as shown in the given screenshot. You can
also enter a new application name in the space provided. In this example, we
have named the application as Example Application, and now press OK
button.

Step 9: After pressing OK, the following window appears. Now, one can start writing
the program by keeping the statement, #include “stdafx.h”

2.8 Running C++ programs in visual studio 2017 =— 27

Step 10: In the following screen, a program to add two numbers and obtain their sum
is written. To compile the program, we can use the Compile option from
Build menu or press Ctrl+F7.

Step 11: Once the program compiles successfully, we can run the program by press-
ing a green triangle button (Local Windows Debugger) or press F5. Then a
pop-up window appears asking the user a question “Would you like to build
it?” Press Yes.

28 —— 2 Introduction to Object-Oriented Programming and C++

Step 12: The result is displayed as shown in the following screen. However, the
output screen quickly disappears, so use breakpoint to see the results for
longer periods of time.

2.9 Running C++ programs in Microsoft visual C++

In the previous section, we have described the ways of installing the latest and stable
version of Visual Studio 2017 and running a sample C++ program. However, it is a
common practice in many universities and research laboratories that the students are
advised to use Microsoft Visual C++. Here, we will briefly describe the ways of

2.9 Running C++ programs in Microsoft visual C++ == 29

running a simple program using Microsoft Visual C+ 6.0. If the VC++ is already
installed in a computer, the following window appears once we click it.

Step 1: Select File, New, and then under Projects tab, chose Win32 Console
Application as shown in the following screen, and then provide a project
name. In this case, it is myProject, and then click OK button.

30 —— 2 Introduction to Object-Oriented Programming and C++

Step 2: The following window appears after completing step 1, just click on Finish
button.

Step 3: The following window appears, in the top left, click on File and then New.

Step 4: Under the Files option, highlight the C++ Source File and provide a C++ file
name with .cpp extension. In this case, Example.cpp is provided.

2.9 Running C++ programs in Microsoft visual C++ =— 31

Step 5: Write the program in the space provided as shown in the following screen-
shot. To compile the program, select Build and then Compile option, or
press Ctrl+F7.

Step 6: To execute the program, select the Build and Execute or press Ctrl+F5. The
results are displayed in the given screenshot:

32 —— 2 Introduction to Object-Oriented Programming and C++

2.10 Running C++ programs in codeblocks IDE

Code::Blocks is a free, open-source, cross-platform C, C++, and Fortran IDE that supports
multiple compilers including GCC, Clang, and Visual C++, which is being developed for
Windows. This is a framework for working with source code and using compilers and
linkers. Here, we will describe the ways of obtaining Code::Blocks and the procedure to
compile C++ programs successfully. The details are described step by step.

Step 1: Visit the website of Code::Blocks, http://codeblocks.org/

http://codeblocks.org/

2.10 Running C++ programs in codeblocks IDE =—— 33

Step 2: Select the Downloads option from the left menu (http://www.codeblocks.
org/downloads), the details of downloading are shown in the following
screenshot. In the Downloads, select — Download the binary release.

Step 3: Select the operating system of the system platform; in this case, we have
selected Windows XP/Vista/7/8.x/10

Step 4: As shown in the screen, we can see a variety of download options for Code::
Blocks. For beginners, we recommend to download codeblocks-16.01mingw-
setup.exe because this is included with GNN/GCC compiler. As per the Code::
Blocks website, the codeblocks-16.01mingw-setup.exe file includes addi-
tional GCC/G++ compiler and GDB debugger.

http://www.codeblocks.org/downloads
http://www.codeblocks.org/downloads

34 —— 2 Introduction to Object-Oriented Programming and C++

Step 5: After selecting the right file to download, we can choose downloading it
either from Sourceforge.net or FossHub. In the current case, we have selected
Sourceforge.net. The downloading may take around 4—8 min depending on
the Internet speed. The downloaded file will be stored in a default location in
your computer.

Step 6: Double click on the downloaded file and install with administrative rights,
and then click Next button.

2.10 Running C++ programs in codeblocks IDE =—— 35

Step 7: After clicking Next button, we will get the window for the License
Agreement. After agreeing to the license agreement, we can follow the
default instructions, and press Next. The next step is to choose the compo-
nents and then we can continue with default options and choose the install
location afterwards. If we have followed the instructions properly, then we
will be prompted with Installation Complete and Completing CodeBlocks
Setup windows as shown in the following screenshots. Click Finish to
complete the installation.

36 = 2 Introduction to Object-Oriented Programming and C++

Step 8: If the CodeBlocks is installed properly in your computer, the next step is to
launch the CodeBlocks from the Windows start button by choosing the
option CodeBlocks as shown in the screenshot or CodeBlocks for desktop
(in some cases).

Step 9: While launching the CodeBlocks IDE, it may prompt you a window as shown
in the screenshot. Select the option, “Yes, associate Code::Blocks with C/C++
file types,” and then select OK.

Step 10: After we finish the step 9, we will arrive at CodeBlocks main interface
window as shown in the screenshot:

2.10 Running C++ programs in codeblocks IDE == 37

Step 11: To finalize the installation, we still have to check for the path of the compiler
so that the CodeBlocks automatically detects the path of the compiler. For
this, choose the Settings from the CodeBlocks Main menu, and select the
compiler; the window will appear as shown in the screenshot. In this win-
dow, select Global Compiler Settings and then click on Reset Defaults.

38 —— 2 Introduction to Object-Oriented Programming and C++

Step 12: Once we finish the step 11, we are prompted with pop-up windows asking
questions such as “Reset this Compiler’s settings to the defaults?” and “Are
you REALLY sure?”. Press OK for both the questions. If everything is
installed properly, the following window pops up:

2.11 Writing the first C++ program in CodeBlocks IDE

Here, we will describe the steps involved in writing a simple C++ program in

CodeBlocks and running it successfully.

Step 1: In the first step, we click on File from menu toolbar and take the cursor on
New as shown in the following window:

Step 2: Then, we have to name the file. By default, the file is named as *Untiltled1 as
shown in the screenshot, so we have to name this as a C++ file. If there is an
asterisk (*) before a file name in editor, it means the content in editor is not
saved. If an asterisk (*) is not preceding the file name, it means the content of
the file is saved. Now, we have to select a directory to save this program and

2.11 Writing the first C++ program in CodeBlocks IDE =—— 39

give it an appropriate name. It is recommended to use underscores for long
names than separating them using space. The file name should have an
extension.cpp. After selecting proper directory and name for the program,
click on the save button from the dialog box. It is important that the file name
must end with an extension .cpp.

Step 3: For example, in the following window, a simple C++program is written in the
CodeBlocks editor’s space in a file called hello.cpp. We can start writing the
program after naming the file. The file can be saved using the Save icon or by
pressing Ctrl+S.

Step 4: Now, we can build the program using Build icon in the IDE. If there are no
errors in the program as shown in the following screenshot, then at the
bottom of IDE in Build Log it will show, “Process terminated with status

40 — 2 Introduction to Object-Oriented Programming and C++

0,” that is, program is error free. This statement will be followed by a number
of errors and warning in the program, “O error(s), O warning(s).” It is
important to read the error message carefully to understand the error(s).

Step 5: If your program is error free then we can run it by clicking on Run icon as
shown in the screenshot. After clicking on Run, a new terminal window will
open, now we can provide an input to the program and then an output or the
results will be displayed on the same screen.

If there is an error (or errors) in the program, then it will be shown in Build log with
the line number. One such example is shown in the following screenshots, where a
semicolon is missing in the program, which is an error.

2.12 Comprehensive understanding of object-oriented concepts in C++ =—— 41

To open an existing file in CodeBlocks, we can go to File from menu toolbar, and
click Open. This will provide the options to locate the existing files. We can also use
the shortcut option by pressing Ctrl+O.

2.12 Comprehensive understanding of object-oriented concepts
in C++

Here, we will describe a program that features most of the OOP concepts. In the
subsequent chapters, we will understand most of the object-oriented concepts in
depth. Program 2.2 includes most of the prominent features of OOP, such as classes,
objects, access modifiers, constructors, information hiding, inheritance, and poly-
morphism. Usually, an object is called an instance of a class. An object has data and
methods or behavior. A class is used to define data and methods. For example, Liu,
Fang, and Yan all are students and they share many characteristics; these character-
istics are expressed as data and methods and are defined in the class. So, a class is
used to define data and methods, which are common to all of its objects. In
Program 2.2, there are three classes: (1) Student,(2) Freshmen, and (3) Sophomore.
Based on these classes, several objects can be created. For example, Fang, Yan, and
Liu are objects created from the classes Student, Freshmen, and Sophomore, respec-
tively. As described, each class may have many methods and variables. For example,
collegename, student_number, name, and marks are variables in this program. The
get_college_name(), get_name_number(), get_marks(), and class_grade() are
methods within classes.

The constructors are one of the most powerful features of the object-oriented
languages. Constructors are used for initializing objects during its creation.

42 —— 2 Introduction to Object-Oriented Programming and C++

Initialization of data members is necessary when we deal with multiple objects of
the same class. A constructor is a special method that is executed when the object of
that class is created. The name of the constructor must be the same as that of the
class. For example, in the Program 2.2, the public: Student(){} is a constructor and
it has the same name as its class Student. Constructors are useful to initialize the
values automatically when the object of that class is created.

In an object-oriented programming, inheritance plays a major role in writing
large programs. Inheritance property is highly required when we deal with many
similar classes with minor changes. Inheritance enables us to define a new class
based on an existing class definition. For example, in Program 2.2, Student is a base
class while Freshmen and Sophomore are derived classes. This implies that many
characteristics of Freshmen and Sophomore are derived from the class Student. In
this case, we call the class of Student as parent class (or super class or base class)
and the class of Freshmen and Sophomore as child class (or subclass or derived
class).

In inheritance, we create or derive a new class similar to the existing class but
will have some new characteristics. This is very useful when we are making mod-
ifications to the existing program. For example, a program A needs some modifica-
tions to make a new program B. In such cases, instead of developing program B from
the scratch, we derive the existing features from program A. This makes the pro-
gramming task easier. Thus, the main advantage of inheritance is code reuse.

Polymorphism is another most essential feature of an object-oriented program-
ming. The polymorphism increases the ability of writing the programs simpler and
with reusability. The polymorphism means many forms (such as many faces). For
example, a person may be a father at home, an officer at office, or a customer in a
restaurant. Here, a father, an officer, and a customer all refer to the same person.
For example, in the Program 2.2, Freshmen is a subclass derived from Student class.
It is also clear that, in general, freshmen or sophomore students are also students.
So in C++, it is possible to make an instance of subclass object as a type of
base class. Here, Sophomore object is a type of Student; it is possible since
Sophomore class is derived from Student. An object can be used either as its own
type or as an object of its base type. This is possible because of a property of C++
called dynamic binding. As in the program, a method call to get_college_name()
will automatically invoke the method of Sophomore rather than the method of
Student (Fig. 2.10).

// Program2.2
// Comprehensive Program to understand most of the object-oriented
// concepts in C++

#include <iostream>
#include <cstring>
using namespace std;

2.12 Comprehensive understanding of object-oriented concepts in C++ =—— 43

Classes Objects Constructor
Student Fang ?t”de”t()
Yan
gre;hmen Liu strcpy(collegename, "COMPUTER");
ophomore }

Access Modifiers Variables Methods
public collegename get_college_name()
private student_number get_name_number ()

nami void class_grade()
marks
Student
Inheritance,
/\"olymorphism
Freshmen Sophomore

Fig. 2.10: Major components of an object-oriented programming as described in Program 2.2.

class Student

{
public:
char collegename[30];

public:
Student()
{
strcpy(collegename, "COMPUTER");
3

int student_number;
char name[20];

private:
int marks;

public:
virtual void get_college_name()

{

cout << "College Name: "<< collegename << endl;

}

void get_name_number()

{

44 — 2 Introduction to Object-Oriented Programming and C++

cout << "Student Number: " << student_number << endl;
cout << "Student Name: " << name << endl;
3
void get_marks()
{
cout << "Student Marks: " << marks << endl;
3
};
class Freshmen: public Student
{
public:
void class_grade()
{
cout << "Student Status: Freshmen Student" << endl;
3
};
class Sophomore: public Student
{
public:
void get_college_name()
{
strcpy (collegename, "MECHANICAL");
cout << "College Name: " << collegename << endl;
3
3
int main()
{

//Fang is an instance of object Student
Student Fang;

//Assigning values to member variables
Fang.student_number = 2018189001,
strcpy (Fang.name,"Zhang Yunxia");

//Can’t assign values to marks, as it is private variable

//Values accessed through constructor
cout << "College Name: " << Fang.collegename << endl;

//Calling the method
Fang.get_name_number();

//Inheritance: subclass declaration
Freshmen Yan;

}

2.13 Review questions =—— 45

Yan.get_college_name();
Yan.class_grade();

//Polymorphism

Student *Liu;

Sophomore Zhang;

Liu = &Zhang;

Liu -> get_college_name();

return 0;

The results of Program 2.2 are as follows:

College Name: COMPUTER

Student Number: 2018189001
Student Name: Zhang Yunxia
College Name: COMPUTER

Student Status: Freshmen Student
College Name: MECHANICAL

2.13 Review questions

List the various features of the object-oriented languages.

Briefly explain these terms: Objects, Classes, Modularity, Information hiding,
Inheritance, Constructors, and Polymorphism.

Write a brief note on C++ programming language.

Define the following terms related to a C++ program: comments, header file,
namespace, compound statement, extraction operator, and insertion operator.
Write a C++program to display your name, university name, and address on the
computer screen.

Write a note on different versions of C++. How the later versions are different
from the old versions?

Briefly describe the terms: high-level language, source file, object file, compiler,
and linker.

Write the steps involved in running C++ program in the latest version of Visual
Studio.

List the different freely available online C++ compilers. Describe your favorite
online compiler and list the reasons for your choice.

3 Programming Basics

The scholar who cherishes the love of comfort is not fit to be deemed a scholar.
— Confucius

3.1 Introduction

It is important to understand simple C++ programs to study the basics of program-
ming. Almost all C++ programs are wrapped around identifiers, variables, keywords,
literals, data types, and methods. In this chapter, we will explain all of these
fundamental concepts that are significant to understand the nuts and bolts of a
programming language such as C++.

3.2 Variables and identifiers

Suppose, if we want to perform an operation, that is, calculate the sum of two
numbers a and b and store the result in ¢, then it is represented as:

c=a+hb

To perform this operation in a program, we must decide the kind of data types the
numbers are. Let us say that all of them are integers, then we first declare a, b, and c as
integers. Integers are natural and whole numbers that do not include decimals or
fractions. Then, the statements in a program must include the following:

int a,b,c;
c=a+b;

The previous two statements are responsible for allocating memory locations to store
data values a, b, and c, where a, b, and c are the names associated with respective
memory allocations. These names are called variables.

The general syntax for variable declaration is as follows:

<data type><variables>;
Example: int a,b,c;

Here a, b, and c are variables and int is the data type. The above declaration can also
be written as follows:

int a;

int b;
int c;

https://doi.org/10.1515/9783110593846-003

https://doi.org/10.1515/9783110593846-003

48 —— 3 Programming Basics

The names given to the variables are called identifiers that are also the names given
to methods or functions and classes. To declare a variable as an identifier, it must
satisfy the following conditions:

1. It must be composed of letters, numbers, and underscore (_).

It cannot contain blank spaces.

It can only begin with a letter or an underscore.

It cannot begin with a number.

All variable names are case-sensitive, for example, SMALL variable is not the same
as small variable.

There should be no limit to the length of a C++ variable name.

7. C++ does not allow punctuation characters such as @, $, and % within identifiers.

SIENNVIEN

o

Following are a few examples of valid variable names:

OneVariable
onevariable
ONEVARIABLE
One_Variable
o

n

_one

One_18

Onel8

_180ne

Following are a few examples of invalid variable names:

One Variable // Contains a blank space

90ne // Begins with a digit

One+Two // Plus sign is not an alphanumeric character
One-Variable // Hyphen (-) is not an alphanumeric character

3.3 C++ Keywords

The keywords are special words that can neither be used as identifiers nor as the
names of program variables. All the C++ keywords are in lower-case instead of
upper-case (or capitals). The following list shows some of the commonly used key-
words in C++. Many of these keywords are also common to both C and C++. Please
note that keywords are either added or deleted from time to time.

asm else new this
auto enum operator throw
bool explicit private true

break

case

catch

char

class
const
const_cast
continue
default
delete

do

double
dynamic_cast

3.4 Data types

export
extern
false
float
for
friend
goto

if
inline
int
long
mutable
namespace

protected
public
register
reinterpret_cast
return
short
signed
sizeof
static
static_cast
struct
switch
template

3.4 Data types

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

49

The variables in programming languages are used to store information such as integer,
character, floating point numbers, etc. The variables are reserved memory locations
that store values. The data types help to store information of different types such as
integer, character, etc. The representation of data type is machine specific. On the basis
of the data type of a variable, the operating system allocates memory and decides what
can be stored in the reserved memory. The basic data types in C++ are int, long, char,
float, and double. Some of the basic data types can be modified by using one or more
of these type modifiers such as signed, unsigned, short, and long. Table 3.1 shows the
variable type, number of bytes required to store the value in memory, and the max-
imum and minimum value that can be stored in such type of variables.

Table 3.1: Size and range of C++ basic data types.

Data Type Byte(s) Range

char 1 -128to 127

unsigned char 1 0 to 255

signed char 1 -128to 127

int 4 -2,147,483,648 to 2,147,483,647

unsigned int 4 0 to 4,294,967,295

signed int 4 -2,147,483,648 to 2,147,483,647

short int 2 -32,768 to 32,767

unsigned short int 2 0to 65,535

signed short int 2 -32,768 to 32,767

long int 4 -2,147,483,648 to 2,147,483,647

signed long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

float 4 +3.4x10*>® with approximately 7-digit accuracy
double 8 +1.7x10*3°8 with approximately 15-digit accuracy
long double 8 +1.7x10*3% with approximately 15-digit accuracy

50 —— 3 Programming Basics

Here is an example of declaring data types:

int One_Variavle;
long bigNumber;

It is also possible to initialize a value to a variable at the time of declaration. For
example:

int myAge = 26;

Program 3.1 explains data types in C++:

//Program 3.1
//Program to understand Data Types in C++

#include <iostream>

using namespace std;

int main(void)

{
short b = 45;
int ¢ = 100;
long d = 100000L;
char e 'c';
float f = 100.99F;
double g = 100E+4;
cout << "Short Value: "<< b << endl;
cout << "Integer Value: "<< ¢ << endl;
cout << "Long Value: "<< d << endl;
cout << "Character Value: "<< e << endl;
cout << "Float Value: "<<f << endl;
cout << "Double Value: "<< g << endl;
return 0;

3

The result of Program 3.1 is shown below:

Short Value: 45
Integer Value: 100
Long Value: 100000
Character Value: C
Float Value: 100.99
Double Value: 1e+006

As shown in Table 3.1, the sizes of variables are shown as bytes. However it is
important to note that they might be different from those shown in the table, depend-
ing on the compiler and the computer we are using. The sizeof() operator helps us to
display the correct size of various data types. Program 3.2 shows an example to obtain
the size of various data types in a particular computer.

// Progr
// Progr
#include
using na

int main

{
cout
cout
cout
cout
cout
cout
cout
cout
cout

cout

cout
cout

cout

cout
cout
cout
retu

3.4 Data types

am 3.2

am to check the size of data Types in C++

<iostream>

mespace std;

O

<< "Size of char : " << sizeof(char) << endl;

<< "Size of unsigned char : " << sizeof(unsigned char) << endl;
<< "Size of signed char : " << sizeof(signed char) << endl;
<< "Size of wchar_t : " << sizeof(wchar_t) << endl;

<< "Size of int : " << sizeof(int) << endl;

<< "Size of unsigned int : " << sizeof(unsigned int) << endl;
<< "Size of signed int : " << sizeof(signed int) << endl;

<< "Size of short int : " << sizeof(short int) << endl;

<< "Size of unsigned short int : "

<< sizeof(unsigned short int) << endl;
<< "Size of signed short int : "

<< sizeof(signed short int) << endl;

<< "Size of long int : " << sizeof(long int) << endl;
<< "Size of unsigned long int : "

<< sizeof(unsigned long int) << endl;

<< "Size of signed long int : "

<< sizeof(signed long int) << endl;

<< "Size of float : " << sizeof(float) << endl;

<< "Size of double : " << sizeof(double) << endl;

<< "Size of long double : " << sizeof(long double) << endl;
rn 0;

The result of Program 3.2 is shown below:

Size of char : 1

Size of unsigned char : 1
Size of signed char : 1

Size of wchar_t : 2

Size of int : 4

Size of unsigned int : 4

Size of signed int : 4

Size of short int : 2

Size of unsigned short int : 2
Size of signed short int : 2
Size of long int : 4

Size of unsigned long int : 4
Size of signed long int : 4
Size of float : 4

Size of double : 8

Size of long double : 8

51

52 —— 3 Programming Basics

3.5 C++ Literals and constants

The literals are used to denote constants. In programs, the literals directly represent a
value. Constants that refer to fixed values that the program may not alter are called
literals. For example, “Hello” is a literal constant. The commonly used literals are
characters, strings, and numbers. So, constants can be of any data type, and they are
divided into integer numerals, floating-point numerals, characters, strings, and
Boolean values.

Integer literals

In general, we use the decimal numbers, however, an integer literal in C++ can also
be octal or hexadecimal. For representing a hexadecimal number, the prefix 0x or 0X
is used. For representing an octal number, 0 is used as prefix. However, nothing is
used as prefix for representing a decimal number. An integer literal can also have a
suffix that is a combination of U and L, for unsigned and long, respectively. The suffix
can be uppercase or lowercase and can be in any order. Here are some examples of
integer literals.

42 // decimal literal

015 // octal literal

OxFF // hexadecimal literal
0X2ef // hexadecimal literal

18u // unsigned integer literal
781 // long literal

56ul // unsigned long literal
6555LU // unsigned long literal

Program 3.3 demonstrates the use of integer literals in C++. Also note that the results
are displayed in decimals equivalents of octal and hexadecimal numbers, however,
C++ also provides ways of displaying them in original form.

// Program 3.3

// Integer Literals
#include <iostream>
using namespace std;

int main()
{
int numl=42; // decimal literal
int num2=015; // octal literal
int num3 = 0xFF; // hexadecimal literal
int num4 =0X2ef; // hexadecimal literal

int num5=18u; // unsigned integer literal

3.5 C++ Literals and constants =—— 53

int numé =781; // long literal
int num7 =56ul; // unsigned long literal
int num8=6555LU; // unsigned long literal

cout << "Decimal literal :"<< numl<< endl;

cout << "Octal literal :"<< num2 << endl;

cout << "Hexadecimal literal 1 :"<< num3 << endl;
cout << "Hexadecimal literal 2 :"<< num4 << endl;
cout << "Unsigned integer literal :"<< num5 << endl;
cout << "Long literal :"<< num6 << endl;

cout << "Unsigned long literal 1 :"<< num7 << endl;
cout << "Unsigned long literal 2 :"<< num8 << endl;
return 0;

The result of Program 3.3 is shown below:

Decimal literal :42

Octal literal 013
Hexadecimal literal 1 :255
Hexadecimal literal 2 :751
Unsigned integer literal :18
Long literal 178

Unsigned long literal 1 :56
Unsigned long literal 2 :6555

Floating-point literal

Any number with a decimal point such as 8.18 is treated as floating-type literal.
A floating-point literal has an integer part, a decimal point, a fractional part,
and an exponent part. We can represent floating-point literals either in decimal
form or exponential form. To specify a number as float we have to add a suffix
“f> or “F,” for example, 8.18F or 3.12f. The signed exponent is introduced by
e or E.

In the decimal notation, nonempty sequence of decimal digits containing a
decimal point is used. The nonempty sequence of decimal digits signifies the sig-
nificant. The type specifier 1, f, L or F also can be used as optional suffix. If there is
no suffix, by default it is considered as double. The f or F suffix indicates the literal is
of type float, and 1 or L indicates the literal is of type long double.

In the second type of exponential form notation, a nonempty sequence of
decimal digits is used, which defines the significant along with e or E followed with
optional minus or plus sign and nonempty sequence of decimal digits that defines
exponent. The type specifier 1, f, L, or F also can be used as optional suffix. Note that
when we consider exponent, it is the power of 10 by which the significant is

54 — 3 Programming Basics

multiplied. For example, the mathematical meaning of 187e2 is 187x10%.Program 3.4
demonstrates the use of floating point literals.

//Program 3.4
//Floating-point literals
#include <iostream>
using namespace std;

int main()

{
float numl=3.14f;
float num2=18.89f;
float num3=897.12F;
long double num4=99877.8921;
long double num5=17877.67L;
double numé =893.46e-18;
float num7 =893.12E2;
float num8 = 8e4f;

cout << "numl=: " << numl << endl;
cout << "num2=: " << num2 << endl;
cout << "num3=: " << num3 << endl;
cout << "num4=: " << num4 << endl;
cout << "num5=: " << num5 << endl;
cout << "num6=: " << numb6 << endl;
cout << "num7=: " << num7 << endl;
cout << "num8=: " << num8 << endl;

return 0;

The result of Program 3.4 is shown below:

numl = : 3.14

num2 = : 18.89

num3 = : 897.12
num4 = : 99877.9
num5 = : 17877.7
numé = : 8.9346e-016
num7 = : 89312

num8 = : 80000

Boolean literal

There are two Boolean literals and they are true and false. They are also a part of
standard C++ keywords. A value of true represents true, and a value of false
represents false. Program 3.5 shows the demonstration of using Boolean literals
in C++.

3.5 C++ Literals and constants = 55

//Program 3.5
//Boolean literals
#include <iostream>
using namespace std;

int main()

{
bool a = true; // Boolean literal
bool b = false; //Boolean literal

cout << a << endl;
cout << b << endl;
return 0;

}
The result of Program 3.5 is shown below:

1
0

Character literal

A character literal is enclosed within single quotes, for example, ‘c’. A character literal
is composed of a constant character. It is represented by the character surrounded by
single quotation marks. A character literal can be a plain character (e.g., ‘x’), an
escape sequence (e.g., ‘\t’), or a universal character (e.g., \u@2C0"). There are certain
characters in C++ that will have special meaning when they are preceded by a back-
slash. They are used to represent characters such as newline (‘\n’) or tab (‘\t’). These
characters are called escape sequence characters. A backslash (*\’) character is used
to denote nonprinting character. These characters are very useful in programming, for
example, to insert a blank space, jump to next line, etc. Table 3.2 summarizes some of
the commonly used escape sequence characters.

Table 3.2: Commonly used escape sequence characters.

Escape Meaning Escape Meaning
Sequence Sequence

\n New line \t Horizontal tab
\a Sounds a beep \v Vertical tab

\ Single quote \r Carriage return
\\ Backslash \” Double quotes
\b Backspace \? Question mark
\f Form feed \0 Null character

Program 3.6 demonstrates the use and application of some of the escape sequence
characters.

56 =—— 3 Programming Basics

//Program 3.6

//Demons
#include

tration of escape sequence characters
<iostream>

using namespace std;

int main

{
char
char
char
char
char
char

cout

cout
cout

cout

cout

cout

retu

O

newline = '\n'; // Newline character:
tab = "\t'; // Tab character
backspace = '\b'; // Backspace character
backslash = '"\\'; // Backslash character
nullChar = '\0'; // Null character
alarmbeep = '"\a'; // Beep sound character
<< "Newline character: "

<< newline << "End of newline character" << endl;

<< "Tab character: " << tab <<"End of tab character"<< endl;
<< "Backspace character: "

<< backspace << "End of backspace character" << endl;

<< "Backslash character:
<< backslash <<"End of backslash character" << endl;

<< "Null character: "
<< nullChar << "End of null character" << endl;

<< "Making a beep sound: " << alarmbeep << "End of beep"
<< endl;

rn 0;

The result of Program 3.6 is shown below:

Newline character:

End of newline character

Tab character: End of tab character

Backspace character:End of backspace character
Backslash character: \End of backslash character
Null character: End of null character

Making a beep sound: End of beep

String literal

The string literal is always enclosed in double quotes, and it represents a sequence of
characters that together form a null-terminated string. A string contains characters
that are similar to character literals such as plain characters, escape sequences, and
universal characters, for example, “Hello! Ni Hao!” Remember that a single charac-
ter enclosed within double quotes is also a string lateral rather than character literal
itself. We can also break a long line into multiple lines using string literals and

separate them using whitespaces.

3.5 C++ Literals and constants == 57

Defining constants

In C++, we can define constants in two ways:(a) by using #define preprocessor, and
(b) by using the const keyword. The standard form of using #define preprocess or for
constants is as follows:

#define identifier value

For example, we can define an identifier PI with value 3.14 as follows:

#define PI 3.14

However, while using const keyword, the general form for defining constants is as
follows:

const type variable = value;

For example, we can define an identifier PHI with value 1.618 as follows:

const floatPHI = 1.618;

Program 3.7 demonstrates the ways of using constants in C++. It isa common practice
in programming to define constants in capital letters.

//Program 3.7
//Demonstration of constants
#include <iostream>

using namespace std;

#define PI 3.14
#define RAMANUJAN_NUM 1729

int main()
{
const float PHI=1.618;
cout << "The value of PI = :" << PI << endl;
cout << "The value of PHI = :" << PHI << endl;
cout << "The value of Ramanujan Number = :" << RAMANUJAN_NUM << endl;
return 0;

The result of Program 3.7 is shown below:

The value of PI = :3.14
The value of PHI = :1.618
The value of Ramanujan Number = :1729

58 —— 3 Programming Basics

Defining synonyms for data types

We can create a new name for an existing type by using keyword typedef. The syntax
to define a new type using typedef is as follows:

typedef type newname;

The typedef keyword enables us to define our own type name for an existing type.
For example, we can define a type name int_wholenum as the standard int type with
the declaration:

typedef int int_wholenum; // Defining int_wholenum as a type name

Now, the following declaration is perfectly legal and creates an integer variable
called width with initial value as 23.

int_wholenum width=23; // Defining a int variable
The previous declaration is the same as follows:
int width=23; // Defining a int variable

Defining our own type name such as int_wholenum enables us to use both type
specifiers within the same program for declaring different variables that will end
up having the same type.

Variables with specific set of values

Sometimes, there is need for variables that have a limited set of possible values that can
be usefully referred to by labels, such as the days of the week, colors in a rainbow,
months of the year, or the suits in a card deck. There is a specific facility in C++ to handle
this situation, it is called enumeration. Using enumerated data type is also another way
of using constants. The enumerated data type is initiated by the keyword enum. An
enumerated type declares an optional type name and a set of zero or more identifiers
that can be used as values of the type. Each enumerator is a constant whose type is the
enumeration. The general form of an enumeration type declaration is shown below.

enum enum-name { list of names } variable-list;
Here, the enum-name is the enumeration’s type name. The list of names is separated by

commas, and enclosed within flower brackets. For example, the following code defines
an enumeration of week days called Weekdays and the variable today of type Weekdays.

3.5 C++ Literals and constants = 59

enum Weekdays {Mon, Tues, Wed, Thurs, Fri, Sat, Sun} today;

The previous statement automatically defines a fixed integer value that will be type
int by default. The first name in the list, Mon, will have the value 0, Tues will be 1, and
so on. We can assign one of the enumeration constants as the value of the variable
today shown below:

today = Thurs;

The value of today will be 3 because the symbolic constants that an enumera-
tion defines are assigned values in sequence, starting with O by default. Each
successive enumerator is one larger than the value of the previous one, but if we
would prefer the implicit numbering to start at a different value, we can just
write the following:

enum Weekdays {Mon = 1, Tues, Wed, Thurs, Fri, Sat, Sun} today;

Now, the enumeration constants will be equivalent to 1 through 7. The enumerators
do not even need to have unique values. Let us consider another example shown
below. In this case, north gets the value of 0, south gets the value of 1, east is equal to
40, and the west is equal to 41.

enum direction {north, south, east = 40, west};

Program 3.8 shows an example to demonstrate the enumerated data type in C++.

//Program 3.8

//Demonstration of enumerated data types
#include <iostream>

using namespace std;

enum answer {FALSE, TRUE};
enum COLOR {RED, BLUE, GREEN, YELLOW};
enum direction {north, south, east = 40, west};

int main()

{
cout << "This is TRUE as an integer: " << TRUE << endl;
cout << "This is FALSE as an integer: " << FALSE << endl;
cout << "This is RED as an integer: " << RED << endl;
cout << "This is YELLOW as an integer: " << YELLOW << endl;

cout << "This is south : " << south << endl;
cout << "This is south : " << west << endl;
return 0;

60 — 3 Programming Basics

The result of Program 3.8 is shown below:

This is TRUE as an integer: 1
This is FALSE as an integer: 0
This is RED as an integer: 0
This is YELLOW as an integer: 3
This is south : 1

This is south : 41

3.6 Type casting

In Section 3.4, we studied about different data types in C++. Now, let us try to
understand with the help of Program 3.9 what happens if we mix two different data
types together.

// Program 3.9

// Program to understand Type Casting in C++
#include <iostream>

using namespace std;

int main()

{
int a = 100;
double b = 200;
a =b;
cout << "Value of a = :" << a << endl;
cout << "Value of b = :" << b << endl;
return 0;

In the previous statements, we are trying to assign value of b to a. This means that we
are trying to cast data type of b to a. When we run the above program, we will get the
following results.

Value of a = :200
Value of b = :200

This is an example for implicit conversions, which are automatically performed
when a value is copied to a compatible type. We can consider another example
shown below:

short a = 1800;
int b;
b = a;

3.6 Type casting = 61

Here, the value of a is promoted from short to int without the need of any explicit
operator. This is known as a standard conversion. Standard conversions affect
fundamental data types and allow the conversions between numerical types such as
short to int, int to float, double to int, etc. These types of conversions also happen
in bool and some pointer conversions. However, converting to int from some smaller
integer type, or to double from float is known as promotion, and it is guaranteed to
produce the exact same value in the destination type. Other conversions between
arithmetic types may not always be able to represent the same value exactly.

In some special cases, there is need for explicit conversion, which is widely
known as typecasting. Type casting involves casting one type of data to another
either implicitly or explicitly. There are two types of type casting, explicit casting
and implicit casting. Explicit casting that occurs when we deliberately change the
data type of value. Implicit conversions occur when two unequal types are repre-
sented in an equation, and they are adjusted to be of the same type. This happens
internally without our knowledge. In Program 3.10, it is evident that by assigning a
double to integer, the decimal portion is lost, however, this is the not the case if we
use b = a; instead of a = b;

// Program 3.10

// Program to understand Type Casting in C++
#include <iostream>

using namespace std;

int main()

{
int a=100;
double b=3.145;
a=b;
cout << "Value of a = :" << a << endl;
cout << "Value of b = :" << b << endl;
return 0;

The result of Program 3.10 is shown below:

Value of a = :3
Value of b :3.145

If we change the statement a = b; to statement b = a; then we will obtain the following
results. This will be so because float, being the higher data type, can easily accom-
modate the value stored in an int.

Value of a = :100
Value of b = :100

62 —— 3 Programming Basics

3.7 Input and output manipulators

A manipulator modifies the way in which data output to (or input from) a stream is
handled. In other words, they are helper functions that make it possible to control
input/output streams using operator << or operator >>. Manipulators are defined in
the standard library header file iomanip, so we need #include directive for it. Let us
consider a statement that is shown below:

cout << "Hello, world!" << endl;

This statement contains a manipulator endl. This is an object, which when supplied
to operator <<, causes a newline character to be put into the output stream, followed
by a call of cout’s flush function that causes the internal buffer to be immediately
emptied. This makes sure that all of the output is displayed before the program goes
on to the next statement. So manipulators are objects that cause the output stream
object to do something, either to its output, or to its member variables. The manip-
ulators with no arguments, such as endl, are included in <iostream>. The commonly
used manipulators are listed in Table 3.3.

Table 3.3: Commonly used manipulators in C++.

Manipulator Description

dec, hex, oct Changes the base used for integer I/0

endl Outputs “\n’ and flushes the output stream
fixed, scientific Changes formatting used for floating-point I/0
setfill Changes the fill character

setiosflags Sets the specified ios_base flags

setprecision Changes floating-point precision

setw Changes the width of the next input/output field

Program 3.11 shows an example that summarizes the application of manipulators.
The setw(n) causes the output value that follows to be right-justified in a field that is
n spaces wide, so setw(6) causes the next output value to be presented in a field with
a width of six spaces. The setw() manipulator works only for the single-output value,
and follows its insertion into the stream immediately. So, we have to insert the
manipulator into the stream immediately preceding each value that we want to
output within a given field width.

// Program 3.11

// Input and output manipulators
#include <iostream>

#include <iomanip>

3.8 Storage duration and scope = 63

using namespace std;

int main()
{
float numl = 0.1;
float num2 = 1.0;
float num3 = 1234567890.0;
int num4 = 1234, num5 = 5678,num6 = 428;

cout << "1. " << puml << " "
<< num2 << ", " << num3 << endl;
cout << "2. " << fixed << numl << ", "
<< num2 << ", " << num3 << endl;
cout << "3. " << scientific << numl << ", "
<< num2 << ", " << num3 << endl;
cout << "4, " << fixed << setprecision(3) << numl << ", "
<< numl << ", " << num3 << endl;
cout << "5. " << setprecision(20) << numl << endl;
cout << "6. " << setw(6) << num4 << setw(6) << num5 <<endl;

cout << "7. " << setw(8) << setfill('#') << 34 << 45 << endl;
cout << "8. " << setw(8) << 34 << setw(8) << 45 << endl;

cout << "9. " << dec << numé << endl; // decimal
cout << "10. " << hex << numé << endl; // hexidecimal
cout << "11. " << oct << numé << endl; // octal
return 0;

The result of Program 3.11 is shown below:

.1, 1, 1.23457e+009

.100000, 1.000000, 1234567936.000000
.000000e-001, 1.000000e+000, 1.234568e+009
.100, 0.100, 1234567936.000
.10000000149011612000

1234 5678

*kkkk%3445

(SRS RIS I)

0 N O U A w N =

*kkkkk34kkkk*k*45
428

10. lac

11. 654

w0

3.8 Storage duration and scope

The variables in a program has finite lifetime. They have two properties: storage
duration and scope. The first property, storage duration, is about how long a particular
variable lasts. There are basically three different kinds of storage durations that a

64 =— 3 Programming Basics

variable can have: automatic, static, and dynamic. The other property is called
scope. The lifetime and scope of a variable are two different things. The lifetime is
the period during execution from the time the variable was first created to the time
when it was destroyed and the memory it occupies was freed for other uses. The scope
of a variable is the region of a program code over which the variable can be declared
and may be accessed. The scope of a variable defines the validity of a variable within a
part of a program, that is, if the variable is outside the scope, it is not possible to use it.
The variables we have defined so far are called automatic variables, and they have
automatic storage duration.

The scope can be broadly classified into three categories: (a) inside a function or
a block, as local variables, (b) in the definition of function parameters, as formal
parameters, and (c) outside of all functions, as global variables. We will learn about
function and its parameters in Chapter 10.

Automatic storage duration and local variables

Variables that are declared inside a function or block are called local variables or
automatic variables. They can be used only by statements that are inside that
function or block of code. Local variables are not known to functions outside of
their own function. These variables are usually declared within a block and within a
pair of braces. They have local scope or block scope. The automatic variables are
created when they are defined. They are automatically destroyed at the end of the
block. In automatic storage duration, objects exist only at certain points during
execution. The objects are created and initialized (in case they are initialized) every
time the block in which they are declared is entered. They exist only while the block is
active, that is, its statements are being executed, and are destroyed when the block is
exited. Their value is lost when they are destroyed. Let us consider a simple example
of Program 3.12 to demonstrate the scope of automatic variables.

// Program 3.12

// Automatic variables
#include <iostream>
using namespace std;

int main()

{
//Function scope starts here
int varl = 11;
int var2 = 22;

cout << "Value of outer varl = " << varl << endl;
cout << "Value of outer var2 = " << var2 << endl;
{

// Beginning of new scope
int varl = 33; // Now, outer varl has no scope here

3.8 Storage duration and scope = 65

int var3 = 44;
cout <<"Value of inner varl = " << varl << endl;
var1l = varl+7;
var2 = var2+var3;
cout << "Value of inner varl = " << varl << endl;
cout << "Value of inner var2 = " << var2 << endl;
}
cout << "Value of outer varl = " << varl << endl;

cout << "Value of outer var2 = " << var2 << endl;
//cout << var3 << endl; // trying to print var3 will give error
return 0;

The result of Program 3.12 is shown below:

Value of outer varl = 11
Value of outer var2=22
Value of inner varl=33
Value of inner varl=40
Value of inner var2=66
Value of outer varl=11
Value of outer var2=66

The first two statements declare and define two integer variables, var1 and var2, with
initial values of 11 and 22, respectively. Both these variables exist from this point to
the closing brace at the end of the program. The scope of these variables also extends
to the closing brace at the end of main(). Following the variable definitions, the value
of var1 is written to cout to produce the first of the lines shown in the output. There is
then a second brace, which starts a new block. Two variables, var1 and var3, are
defined within this block, with values 33 and 44, respectively. The var1 declared here
is different from the first var1. The first var1 still exists, but its name is masked by the
second var1. Any use of the name var1 following the declaration within the inner
block refers to the var1 declared within that block.

Static storage duration and global variables

In static storage duration, the objects have the life duration of entire program, that is,
their value is maintained for the program duration. For static storage duration,
objects storage is allocated and initialized only once, that is, prior to the execution
of the first statement for these objects. This does not mean that these objects may be
used anywhere and at any time; scope is a separate issue.

Global variables are defined and declared outside of all the functions, blocks,
and classes, usually on top of the program, and are called globals. The global
variables will hold their value throughout the lifetime of the program. A global

66 =—— 3 Programming Basics

variable can be accessed by any function. That is, a global variable is available for use
throughout the entire program after its declaration. These variables have global
scope, which is also called global namespace scope or file scope. Global-scope
objects have static storage duration. This means that they are accessible throughout
all the functions in the file, following the point at which they are declared. If we
declare them at the very beginning of program, they will be accessible from anywhere
in the file. Global variables have static storage duration by default. Global variables
with static storage duration will exist from the start of execution of the program until
execution of the program ends. If we do not specify an initial value for a global
variable, it will be initialized with 0 by default. Initialization of global variables takes
place before the execution of main() begins, so they are always ready to be used
within any code that is within the variable’s scope.

Program 3.13 is an example to understand both global and local variables. The
variable var3, which appears at the beginning of the file, is declared at global scope,
which appears before the function main(). The scope of each global variable extends
from the point at which it is defined to the end of the file. A program can have same name
for local and global variables but the value of local variable inside a function will take
preference. For example, in Program 3.13, there is a local variable with name var3 inside
the block within main(). In this case, local variable inside the block takes the preference.

// Program 3.13

// Global Variables
#include <iostream>
using namespace std;

int var3 = 55; //global variable vari

int main()

{
//Function scope starts here
int varl = 11;
int var2 = 22;

cout << "Value of outer varl = " << varl << endl;
cout << "Value of outer var2 = " << var2 << endl;
cout << "Value of outer var3 = " << var3 << endl;
{

// Beginning of new scope

int varl = 33; // Now, outer varl has no scope here

int var3 = 44; //Now global variable var3, has no scope here
cout << "Value of inner varl = " << varl << endl;

varl = varl + 7;

var2 = var2 + var3;

cout << "Value of inner varl = " << varl << endl;

cout << "Value of inner var2 = " << var2 << endl;

cout << "Value of outer var3 = " << var3 << endl;

}

cout << "Value of outer
cout << "Value of outer
cout << "Value of outer

return 0;

varl
var2
var3

3.8 Storage duration and scope = 67

" << varl << endl;
" << var2 << endl;
" << var3 << endl;

The result of Program 3.13 is shown below:

Value
Value
Value
Value
Value
Value
Value
Value
Value
Value

of
of
of
of
of
of
of
of
of
of

outer
outer
outer
inner
inner
inner
outer
outer
outer
outer

varl
var2
var3
varl
varl
var2
var3
varl
var2
var3

= 11
=22
= 55
= 33
= 40
= 66
= 44
= 11
= 66
= 55

Scope resolution operator (::)

As we have seen in Program 3.13, it is possible to hide a global variable by using local
variable with the same name. But one may ask: What if the programmer also wants to
use the global variable in the same block, where local variable also share the same
name? This is possible using scope resolution operator (::). The scope resolution
operator is used when we want to use a global variable that also has a local variable
with same name. If the resolution operator is placed in front of the variable name then
the global variable is referenced. When no resolution operator is placed, then the local
variable is referenced. Now, we can modify Program 3.13, as shown in Program 3.14,
where we can access both local and global var1 variable inside the block.

// Program 3.14
// Global Variables and scope resolution operator

#include <iostream>

using namespace std;

int var3 = 55;

//global variable vari

//Function scope starts here

int main()

{
int vari
int var2

cout << "Value
cout << "Value
cout << "Value

=11;
= 22;

of outer varl
of outer var2
of outer var3

" << varl << endl;
" << var2 << endl;
" << var3 << endl;

68 =—— 3 Programming Basics

{
// Beginning of new scope
int varl = 33; // Now, outer varl has no scope here
int var3 = 44; //Now global variable var3, has no scope here
cout <<"Value of inner varl = " << varl << endl;
varl = varl + 7,
var2 = var2 + var3;
cout << "Value of inner varl = " << vari<< endl;
cout << "Value of inner var2 = " << var2<< endl;
cout << "Value of inner var3 = " << var3 << endl;
cout << "Value of global var3 = " << ::var3 << endl;

}

cout << "Value of outer varl = " << varl1<< endl;

cout << "Value of outer var2 = " << var2<< endl;

cout << "Value of outer var3 = " << var3 << endl;

return 0;

The result of Program 3.14 is shown below:

Value of outer varl = 11
Value of outer var2 = 22
Value of outer var3 = 55
Value of inner varl = 33
Value of inner varl = 40
Value of inner var2 = 66
Value of inner var3 = 44
Value of global var3 = 55
Value of outer varl = 11

Value of outer var2 = 66
Value of outer var3 = 55

The following statements describe the application of scope resolution operator. The
first statement prints the value of local variable var3, whereas the second statement
prints the value of global var3 by using scope resolution operator.

cout << "Value of inner var3 = " << var3 << endl;
cout << "Value of global var3 = " << ::var3 << endl;

Dynamic storage duration

Dynamic storage duration objects have a lifetime determined by the programmer. In
the dynamic storage duration objects are created by the programmer with the new
keyword, and they exist until they are destroyed by the programmer with the delete
keyword. It is the programmer’s responsibility to delete a dynamic storage duration
object when it is no longer needed. Failure to do so results in memory leaks whereby
memory consumed is not released and the supply eventually runs out.

3.9 Review questions =—— 69

3.9 Review questions

10.

11.

12.
13.

14.

15.
16.
17.
18.

What is a variable? Explain.

How are identifiers different from variables? List the rules to declare a variable as
an identifier.

What is a C++ keyword? List all the C++ keywords.

Briefly explain the following: (a) literal, (b) character literal, (c) string literal, (d)
floating-point literal, and (e) integer literal.

Explain different data types in C++.

What is an escape sequence character? Describe at least eight escape sequence
characters.

What are the common ways of declaring constants in C++? Explain with
examples.

List the use of these keywords: (a) enum, (b) const, (c) define, and (d) typedef.
What is an enumerated data type? List its applications.

How should the synonyms be defined for data types in C++? Describe with an
example program.

What is the meaning of variables with specific set of values? How are they useful
in real-life applications.

What is type-casting? What are the different types of type-casting? Discuss.
What is the meaning of a manipulator? List the commonly used manipulators
in C++.

Define storage duration and scope. What are the different kinds of storage
durations?

How is the lifetime of a variable different from the scope of a variable? Discuss.
Discuss local variables with an example program.

Discuss global variables with an example program.

What is scope resolution operator? What is the benefit of using it in a program?

4 Operators and Expressions

Integrity, wisdom, skill, intelligence — such things are forged in adversity.
— Mencius

4.1 Introduction

In Chapter 3, we have studied about data types and variables. In this chapter, we will
focus on various operators and expressions used in C++ programming. An operator is
used along with one, two, or more operands. For example, let us look at a simple
statement:

c=a+tb;

Here a and b are two operands and + (plus) is an operator and ¢ = a + b is an
arithmetic expression. Operators are broadly classified in three categories:

1. Unary operators

2. Binary operators

3. Ternary operators

Unary operator is an operator used along with only one operand. For
example,

c = -b;

In this statement — (minus) is used with only one operand b.
Binary operator is an operator used along with two operands.

For example: ¢ = a + b;

Ternary operator, also called conditional operator, is a special operator that will
be explained in later part of the chapter. In particular, the operators are broadly
categorized as follows:

Relational and equality operators

Assignment operators

Arithmetic operators

Bitwise operators

Increment and decrement operators

Logical operators

Conditional operator

NowaewN e

https://doi.org/10.1515/9783110593846-004

https://doi.org/10.1515/9783110593846-004

72 —— 4 Operators and Expressions

4.2 Relational and equality operators

These operators are used to compare or relate operands. Table 4.1 shows a list of
relational and equality operators.

Table 4.1: List of relational and equality operators.

Operator Meaning Example Statement

> Greater than if(a>b) b =small;

>= Greater than or equal to if(a>=b) b =small;

< Less than if(a<b)b=big;

<= Less than or equal to if(a<=b) b=big;

== Boolean equals if(a==b) a =same;

1= Not equal to if(a !=b) a=notSame;

Program 4.1illustrates relational equality operators. In Table 4.1, we have used if
statement. We will study about such decision-making statements in Chapter 5.

// Program 4.1

// Program to understand relational operators
#include <iostream>

using namespace std;

int main(void)

{
int a = 18, b = 6;
if (a > b)
cout << "a is greater than b" << endl;
if (a == b)
cout << "a is equal to b" << endl;
return 0;
}

The result of Program 4.1 is shown below:

a is greater than b

4.3 Arithmetic operators

The arithmetic operators are + (plus), — (minus), * (multiply), / (divide), and %
(modulo). Table 4.2 shows a list of arithmetic operators.

The modulo (%) operator is used to find the remainder after division, for example,
3% 2=1.Program 4.2 shows a simple example of applying arithmetic operators in C++.

Table 4.2: List of arithmetic operators.

4.4 Bitwise operators

Operator Meaning Example
statement

+ Addition c=a+b;

- Subtraction c=a-b;

* Multiplication c=ax*b;

/ Division c=a/b;

% Modulo c=a%b;

// Program 4.2

// Program to understand arithmetic operators

#include <iostream>

using namespace std;

int main()

{
int a = 88;
int b = 12;
cout << "Addition example: a + b =" << a + b << endl;
cout << "Subtraction example: a - b = " << a - b << endl;
cout << "Multiplication example: a * b = " << a * b << endl;
cout << "Division example: a / b =" << a / b << endl;
cout << "Modulo example: a % b =" << a % b << endl;
return 0;

3

The result of Program 4.2 is shown below:

Addition example: a + b = 100
Subtraction example: a - b = 76
Multiplication example: a * b = 1056
Division example: a / b =7

Modulo example: a % b = 4

73

As the result of Program 4.2 shows, after dividing 88 by 12, we get 7, because all the
variables are integers, and module (%) provides the remainder after this division, that

is, 4.

4.4 Bitwise operators

The computer can understand the binary number system. Binary numbers are base-two
numbers; and consist of 0 and 1. A byte represents 8 bits; each bit can be a 0 or 1. So a

74 —— 4 Operators and Expressions

byte is a string of zeros and ones. The rightmost bit of a byte is known as least significant
bit (LSB) and the leftmost bit is known as the most significant bit (MSB). A negative
number is represented in a slightly different manner. (remember that integer can be
signed or unsigned). If the leftmost bit is the sign bit and if it is 1, then the number is
negative; if it is O, then the number is positive. Bitwise operators provide the memory
access needed without any hassle to write in machine language code. However, in day-
to-day business usage, these operators are rarely used. These operators are used to
perform operations on bits of a variable value. Bit operators, as the name suggests, are
used to perform operations on binary digits. Table 4.3 lists various bitwise operators.

Table 4.3: List of bitwise operators.

Operator Meaning Example Statement
| Bitwise OR c=a|b;

A Bitwise XOR c=a’b;

& Bitwise AND c=a&hb;

>> Right shift c=a<<1;

>> Left shift c=a<<?2

~ Bitwise NOT c=~b;

Bitwise AND

The logical AND, represented by &(ampersand) symbol, evaluates as true (1) only if
both operands are 1 as shown in the following truth table.

0&0
0&1
1&0
1&1

= O O ©

If number ais equal to 25 and b is equal to 77, then the bitwise AND between these two
numbers, c = a & b, is evaluated, as shown below, resulting in number 9.

a 00011001 25
b 01001101 77
c=a&b 00001001 9

The bitwise AND operator is used for masking operations. This operator can be used to
set specific bits of a number to 0. We can also use bitwise AND to test whether an
integer is odd or even. In case of an odd integer, if we perform a bitwise AND operation
on an integer with 1, the result will be true if the rightmost bit of the integer is 1. On the
other hand, in case of an even integer, the rightmost bit of the integer will be 0.

4.4 Bitwise operators = 75

Bitwise Inclusive OR (or Bitwise OR)

Bitwise OR is represented by a | (pipe) symbol. The binary representation of the two
operands involved in bitwise OR is compared bit by bit. The bitwise inclusive OR
operation is used when we want to set some specified bits of a number to 1. Each bit
that is a 1 in the first operand or a 1 in the second operand will produce a 1 in the
corresponding bit of the result as shown below.

00
0]1
1]0
1)1

[N =]

For example:

int a =2, b =4;

Here, 010 represents variable a (in bitwise or binary) and 100 represents 4.
So, a | bis equal to 6
010 (bitwise OR) 100 =110 (all in binary)

Bitwise Exclusive OR (or Bitwise XOR)

The bitwise exclusive OR or XOR, which is represented by ” (caret) symbol gives 1 if
either bit is 1, but not for both. One important point to remember is that any value that
is XORed with itself results in 0, as shown below. This is used by assembly language
programmers to test the two values for equality.

(UEAN] 0
on1 1
170 1
1M1 0

It is possible to exchange two numbers without using a temporary location using
bitwise XOR operator. This seems an interesting use of bitwise XOR operator.
Program 4.3 shows one such example.

// Program 4.3

// Exchanging two numbers without using intermediate memory location
// Bitwise XOR

#include <iostream>

using namespace std;

76 =—— 4 Operators and Expressions

int main()
{
int a = 8;
int b = 2;
cout << "Value of numbers before exchange :"
<< "a="<<a<<", b=" << b <<endl;
a=a"b;
b=a"*b;
a=a"b;
cout<<"Value of numbers after exchange :"
<< "a="<ka<<", b=" << b <endl;
return 0;

}
The result of Program 4.3 is shown below:

Value of numbers before exchange: a = 8, b = 2
Value of numbers after exchange: a = 2, b =8

One’s complement operator

The one’s complement operator is represented as a tilde ~. This converts a value into
its one’s complement, in other words, all the zeros become ones and the ones become
zeros. This is a unary operator that operates on an integer constant or expression, for
example,~12.

Shift operators

Left shift and right shift operations are analogous to multiplication and division by
10. When we divide a number by 10, we shift the digits once to the right by retaining
the decimal point. When we multiply by ten we shift the number left and add 0 on the
right. When a left shift operation (<<) is performed on an operand, the bits of the
operand are shifted left. Bits that are shifted out of the high-order bit of the data item
are lost and Os are added through the low-order bit of the operand. If a is a variable
with the value of 2, then a left shifting twice results in value 8 as shown in Table 4.4.
Here, the number 2 represented using 8 bits. It is worth noting that bits that “fall off”
from either end of the variable are lost.

Table 4.4: Example of left shift (<<) operation.

Operation Bitwise Result
Representation

Initial bit position of number 2 00000010 a=2
Shifting to left once, bit 1 is moved to left 00000100 a=4
Shifting to left twice, bit 1 is moved to left 00001000 a=8

4.5 Assignment operators =—— 77

In a right shift operation (>>), the bit on the right, that is, the low-order bit is lost
and depending on the type of machine, either a 1 or 0 will be shifted into the leftmost
bit. The shift operation is also sometimes referred to as rotating left and right. As shown
in Table 4.5, the number b = 9 is shifted to right three times, resulting in value of 1.

Table 4.5: Example of right shift (>>) operation.

Operation Bitwise Result
Representation

Initial bit position of number 9 00001001 b=9
Shifting to right once, LSB bit 1 is lost 00000100 b=4
Shifting to right twice, LSB bit 0 is lost 00000010 b=2
Shifting to right thrice, LSB bit 0 is lost 00000001 b=1

Program 4.4 illustrates summary of all bitwise operators in C++.

// Program 4.4

// Program to understand bitwise operators
#include <iostream>

using namespace std;

int main(void)

{
inta=2, b=29;
cout << "Bitwise OR: " << (a | b) << endl;
cout << "Bitwise XOR: " << (a * b) << endl;
cout << "Bitwise AND: " << (a & b) << endl;
cout << "Right Shift: " << (b >> 3) << endl;
cout << "Left Shift: " << (a << 2) << endl;
cout << "Bitwise NOT: " << (~a) << endl;
return 0;

3

The result of Program 4.4 is shown below:

Bitwise OR: 11
Bitwise XOR: 11
Bitwise AND: @
Right Shift: 1
Left Shift: 8
Bitwise NOT: -3

4.5 Assignment operators

The assignment operators are used to assign the values to variables or to values. Let
us look at the following statement:

78 —— 4 Operators and Expressions

int a =1,b = 2;
a = b;

After the second statement, both a and b values will be equal to 2. The “ =" operator is
called as assignment operator. We can combine many other operators with assign-
ment operator. For example,

a=a+t2;
This can be written as follows:

a +=2;

)

A list of assignment operators is shown in Table 4.6:

Table 4.6: List of assignment operators.

Operators Meaning Example Statement
= Assignment a=b;
A= Bitwise XOR and assign a“*=b;
&= Bitwise AND and assign ad&=b;
%= Take remainder and assign a%=1;
+= Add and assign a+=2;
-= Subtract and assign a-=17;
*= Multiply and assign ax=10;
/= Divide and assign al/=4;
= Bitwise OR and assign al|=3;
>>= Shift bits right with sign extension and assign a>>=3;
<<= Shift bits left and assign a<<=2;

4.6 Increment and decrement operators

These kinds of operators are used very commonly in many programs. There are two
operators: ++ and —— . For example,

a =a+ 1; can be written as at++ or ++a
a=a-1; can be written as a-- or --a

Remember that a++ and ++a are different. Similarly a -- or --a are also different. The
a++; statement first assigns and then increments. However, ++a; statement first
increments and then assigns as shown in Table 4.7.

4.6 Increment and decrement operators

Table 4.7: Increment and decrement operators.

Operators Meaning Example Statement
++ Increment by one at+; or ++a;
-- Decrement by one a--;;or --a;

Program 4.5 illustrates increment and decrement operators:

// Program 4.5

// Program to understand increment and increment operators
#include <iostream>

using namespace std;

int main(void)

{
int b, a=2;
b = at+;
cout << "a =" <K< a<<", b="<<b <endl;
b = ++a;
cout << "a =" <K a<k", b="<<b<<endl;
b = --a;
cout << "a =" << a<<", b="<<b << endl;
b =a-;
cout<< "a =" << a<<", b="<<b<<endl;
b=a++ --a+b;
cout<< "a =" << a<<", b="<<b<<endl;
return 0;

3

The result of Program 4.5 is shown below:

VRN OREN OB ORI O]
U}
NN W oA W
o T T T T
I
oW w AN

79

Another interesting example of increment and decrement operators is shown in

Program 4.6.

// Program 4.6

// Example to understand increment and increment operators
#include <iostream>

using namespace std;

80 —— 4 Operators and Expressions

int main

{
int
cout
cout
cout
cout
cout
cout

O

X =
<<
<<
<<
<<
<<
<<

10;

"Value
"Value
"Value
"Value
"Value
"Value

return 0;

of
of
of
of
of
of

X X X X X X

after
after
after
after
after
after

pre-fixing ++ is " << ++x << endl;
post-fixing ++ is " << x++ << endl;
post-fixing ++ is " << x << endl;

pre-fixing -- is " << --x << endl;
post-fixing -- is " << x-- << endl;
post-fixing -- is " << x << endl;

The result of Program 4.6 is shown below:

Value of
Value of
Value of
Value of
Value of
Value of

X X X X X X

after
after
after
after
after
after

pre-fixing ++ is 11

post-
post-

fixing ++ is 11
fixing ++ is 12

pre-fixing -- is 11

post-
post-

4.7 Logical operators

fixing -- is 11
fixing -- is 10

The logical operators are used along with Boolean expressions. The commonly used
logical operators are Boolean AND, Boolean OR, and Boolean NOT. Table 4.8 illus-
trates the use of logical operators.

Table 4.8: List of logical operators.

Operators

Meaning

Example Statement

8&
I

Boolean AND
Boolean OR
Boolean NOT

if((@a==5)8& & (a<=10)) b=5;
if((@a==5)] (a<=10))b=5
if(!(a==5))b=5;

4.8 Conditional operator

The conditional operator (?:) is a special type of operator. It uses three operands and
is also called ternary operator, for example, (a>b)?a:b;. In this example, if a is
greater than b, then it returns the value of a else b. To understand more about
conditional operators, let us look at Program 4.7.

// Program 4.7

// Program to understand Conditional operators
#include <iostream>

using namespace std;

int main(void)

{
int a=1,b=8;
cout<<"Bigger Number: "<<((a>b)?a:b)<<endl;
return 0;

3

The result of Program 4.7 is shown below:

Bigger Number: 8

4.9 Operator precedence

4.9 Operator precedence =—— 81

Many operand and operators together make an expression. During evaluation of such
expressions, which operator is evaluated first? This is decided by operator prece-
dence in C++. Operator precedence decides how an expression is evaluated. Table 4.9
lists the precedence and associativity of C++ operators. Operators are listed from top

to bottom in descending precedence.

Table 4.9: Precedence and associativity of C++ operators.

Precedence Operator Description

Associativity

1 o8 Scope resolution Left to right
2 ++ Suffix/postfix increment and decrement,
-- e.g., at+,a--
type() Functional cast
type{}
O Function call, e.g., a()
[1] Subscript, e.g., al]
> Member access
3 ++a Prefix increment and decrement, e.g., ++a,--a Right to left
--a
+ Unary plus and minus, e.g., +a,-a

! Logical NOT and bitwise NOT

(type) C-style cast

(continued)

82 —— 4 Operators and Expressions

Table 4.9 (Continued)

Precedence Operator Description Associativity
* Indirection (dereference), e.g., *xa
& Address-of, e.g., &a
sizeof Size-of
new Dynamic memory allocation
new[]
delete Dynamic memory deallocation
delete[]
4 ox Pointer-to-member Left to right
%
5 * Multiplication, division, and remainder,
/ e.g., axb,a/b,a%b
%
6 + Addition and subtraction, e.g., a+b,a-b
7 < Bitwise left shift and right shift
>
8 < For relational operators < and <, respectively
<=
9 == For relational operators = and #, respectively
=
10 & Bitwise AND, e.g., a&b
11 a Bitwise XOR (exclusive OR)
12 | Bitwise OR (inclusive OR)
13 && Logical AND
14 | Logical OR
15 ?: Ternary conditional, e.g., a?b:c Right to left
throw Throw operator
= Direct assignment, provided by default for C++ classes
+= Compound assignment by sum and difference
*= Compound assignment by product, quotient, and
/= remainder
%=
&= Compound assignment by bitwise AND, XOR, and OR
|:
16 Comma Left to right

Let us look at this following expression.

c=a+b=*d;

4.10 Review questions =— 83

In this expression, bxd is evaluated first and then a is added to the multiplied result.
Table 4.9 decides and explains the complete operator precedence in C++.
Program 4.8 summarizes the importance of operator and precedence with example

statements.

// Program 4.8

// Program to understand operator precedence and associativity

#include <iostream>

using namespace std;

int main()

{

float a = 18, b = 28, c =12 ;

int d = 18;

float resultl, result2;
resultl =a+b/c;
result2 =a *b / c * a;

d =d +++ 6;

cout << "resultl = " << resultl << endl;
cout << "result2 = " << result2 << endl;
cout << "d= " << d << endl;

return 0;

The result of Program 4.8 is shown below:

resulti
result?2
d =25

20.3333
756

4.10 Review questions

1. What is an operator? What are the different types of operators in C++?
2. What are the commonly used arithmetic operators in C++? Describe with an
example program.
3. What is the difference between division (/) and modulo (%) operators?
What are the different types of bitwise operator? Describe them.
5. How to exchange two numbers using bitwise XOR operators? Describe with an

example.

84 —— 4 Operators and Expressions

6. What is a ternary operator? Explain with a program.

7. Explain the difference between post-increment (i++) and pre-increment (++i)
statements.

8. What are the different logical operators available in C++. Describe each of them.

9. What is operator precedence and associativity? Explain its role in evaluating
expressions.

5 Selection Statements

The person attempting to travel two roads at once will get nowhere
—Xun Zi

5.1 Introduction

As we have seen in previous chapters, almost all programs executed sequentially.
This means that all statements executed one after another. This is called sequen-
tial flow of execution. Actually, in real situations, we may not wish to execute
all the statements every time. We may choose to execute some statements instead
of all statements or we may execute different statements depending on the
context. This is called decision-making. Decision-making is important in our
everyday life. For example, if you have more money in your bank account, you
may either buy a car or go for a motorbike. These kinds of situations are quite
common in all programming problems. In such cases, we will make use of
selection statements. In this chapter, we will discuss about various selection
statements supported in C++. The various selection statements are: if, if-else,
and switch statements.

5.2 The if statement

The if statement is used to alter the sequential flow of execution of statements. This
is very useful when we want to execute some statements only after a particular
condition is met or satisfied. The general form of if statement is as follows:

if (Boolean-expression)
statement;

Here, Boolean-expression is an expression that returns the result as true or false. If
the expression evaluates to true, then the statements inside the if block are
executed otherwise statements following if block are executed. The Boolean-
expression may use relational operators, such as <,<=, ==,>, and >=, to make a
conditional expression that evaluates to true or false.

A if block may contain a single statement or multiple statements. The general
form of an if statement with multiple statements is as follows:

if (Boolean-expression)

{

statement-1;

https://doi.org/10.1515/9783110593846-005

https://doi.org/10.1515/9783110593846-005

86 —— 5 Selection Statements

statement-2;
statement-3;

statement-n;

Program 5.1 illustrates a simple if statement. Here, a statement inside the if block is
executed only if the yourMarks is equal to or above 60, else it would be skipped and
the statement following the if statement will be executed.

// Program 5.1

// Program to understand simple if statement
#include <iostream>

using namespace std;

int main ()

{
int yourMarks = 65;
if (yourMarks >= 60)
cout << " You Pass the Exam " << endl;
cout << " You Know your Result " << endl;
return 0;
}

The result of Program 5.1 is as follows:

You Pass the Exam
You Know your Result

Program 5.1 can be well understood by the diagram shown in Fig. 5.1.

Program 5.2 illustrates the use of multiple statements in an if block. Here, we
have to use the opening and closing braces ({}) to execute these multiple statements
as apart of if block.

// Program 5.2

// Program with multiple statements in a if block
#include <iostream>

using namespace std;

int main ()

{
int yourMarks = 65;
if (yourMarks >= 60)
{

cout << " You Pass the Exam " << endl;

5.3 The if-else statement = 87

cout << " Well Done! " << endl;
3
cout << " You Know your Result " << endl;
return 0;

if(yourMarks . .
>=60)? cout<<"You Pass the Exam"<<endl;

cout<<"You Know your Result"<<endl; | 4

:

Fig. 5.1: Control flow of if statement.

The result of Program 5.2 is as follows:

You Pass the Exam
Well Done!
You Know your Result

5.3 The if-else statement

In Section 5.2, we studied about if statement, where we have noticed that state-
ments inside the if block are executed only if the yourMarks value is equal to or
greater than 60. What if the yourMarks is less than 60? In such cases, we make use of
if-else statement. Here, the if branches into two blocks — (1) if block and (2) else
block. If the condition evaluates to true, the execution control branches to if
block; if it is false, it branches to else block. Program 5.3 shows implementation
of if-else statement:

88 =— 5 Selection Statements

// Program 5.3

// Program with if-else statements
#include <iostream>

using namespace std;

int main()
{
int yourMarks = 45;
if (yourMarks >= 60)
cout << " You Pass the Exam " << endl;
else
cout << " You are Failed " << endl;
cout << " You Know your Result " << endl;
return 0;

The result of Program 5.3 is as follows:

You are Failed
You know your result

Program 5.3 can be well understood by the diagram shown in Fig. 5.2.

if(yourMarks cout<<"You Pass the Exam"<<endl;
>=60)?

cout<<"You are Failed"<<endl;

h J

cout<<"You Know your Result"<<endl; |e———

l

Fig. 5.2: Control flow of if-else statement.

5.4 The if-else-if statement —— 89

5.4 The if-else-if statement
In Program 5.3, we have seen that the execution control branches into two. In C++, we
can again branch a block further by including else-if statements. The general form

of this statement is as follows:

if (Boolean-expression-1)

{
statement-1;
}
else if(Boolean-expression-2)
{
statement-2;
}
else if(Boolean-expression-3)
{
statement-3;
}
else

statement-n;

next statement;

Here, there are many Boolean expressions. If one of the Boolean expressions
evaluates to true, the statement associated with it is executed and the control is
moved to the next statement leaving rest of the statements in the if-else-if
blocks. Let us consider an example of grading marks scored in a subject by students
in a university. The grading of students is done on the basis of following rules
(Table 5.1):

Table 5.1: The grading of students on the basis of marks.

Marks Result Grade
<60 Fail No grade
2 60 and <70 Pass Grade C
> 70 and <80 Pass Grade B
>80 and < 100 Pass Grade A

To write a program to simulate aforementioned conditions, we will make use of
if-else-if statements. Program 5.4 demonstrates if-else-if statements.

90 —— 5 Selection Statements

// Program 5.4

// Program with if-else-if statements
#include <iostream>

using namespace std;

int main ()

{
int yourMarks = 85;
if (yourMarks < 60)
{
cout << " You are Failed " << endl;
cout << " Sorry! You have No Grade " << endl;
}
else if (yourMarks >= 60 && yourMarks < 70)
{
cout << " You Pass the Exam " << endl;
cout << " Your grade is C " << endl;
}
else if (yourMarks >= 70 && yourMarks < 80)
{
cout << " You Pass the Exam " << endl;
cout << " Your grade is B " << endl;
}
else if (yourMarks >= 80 && yourMarks <= 100)
{
cout << " You Pass the Exam " << endl;
cout << " Your grade is A " << endl;
3
else
cout << " No Results for you " << endl;
cout << " You know your result "<< endl;
return 0;
¥

The result of Program 5.4 is as follows:

You Pass the Exam
Your grade is A
You know your result

5.5 Nested if-else statement

A if statement may have another if statement as its statement. This is called nesting
of if statements. This is also true for else statement. The general form of nesting of
if-else statements is as follows:

5.5 Nested if-else statement = 91

if(Boolean-expression-1)

.
i zf(Boolean—expressmn—Z) ' Nested if-else statement
E Statement-1; E
0 =
' else !
: { :
; Statement-2; ;
' } '

}

else

{

Statement-3;
}

Next-statement;

Here, if the first Boolean-expression-1 evaluates to true, then the second Boolean-
expression-2 is evaluated and continues as another if statement, otherwise state-
ment-3 is executed. If the Boolean Expression-2 evaluates to true, then Statement-1
is executed otherwise Statement-2 is executed. Here, the if statement containing
Boolean-expression-2 is called a nested if statement as it is inside another if
statement.

Let us consider the following example, where we can develop a scenario of
application of nested if statement. In a university, there are two kinds of grading
systems, one for juniors and another for seniors (Tables 5.2 and 5.3).

Table 5.2: The grading system for juniors.

Marks Result Grade
<60 Fail No grade
>= 60 and <70 Pass Grade C
>=70 and <80 Pass Grade B
>80 and <= Pass Grade A
100

Table 5.3: The grading system for seniors.

Marks Result Grade
<60 Fail No grade
>= 60 and <80 Pass Grade B

>= 80 and <= 100 Pass Grade A

92 —— 5 Selection Statements

Here, we notice that the grading methods applied for the senior students are
different from that of juniors. This problem is solved by using nested if statements as
shown in Program 5.5.

// Program 5.5

// Program with nested if-else statements
#include <iostream>

using namespace std;

int main ()
{
int yourMarks = 85;
char yourStudentType = 'S'; // Code 'S' for senior
if (yourStudentType == 'J')
{
cout << "You are a Junior student" << endl;
if (yourMarks < 60)

{
cout << " You Fail the Exam " << endl;
cout << " Sorry! You have No Grade " << endl;
3
else if (yourMarks >= 60 && yourMarks < 70)
{
cout << " You Pass the Exam " << endl;
cout << " Your grade is C " << endl;
3
else if (yourMarks >= 70 && yourMarks < 80)
{
cout << " You Pass the Exam " << endl;
cout << " Your grade is B " << endl;
}
else if (yourMarks >= 80 && yourMarks <= 100)
{
cout << " You Pass the Exam " << endl;
cout << "Your grade is A " << endl;
3
3
else
{

cout << " You are a Senior student " <<endl;
if (yourMarks < 60)

{
cout << " You Fail the Exam " << endl;
cout << " Sorry! You have No Grade " <<endl;
}
else if (yourMarks >= 60 && yourMarks < 80)
{

cout << " You Pass the Exam " << endl;

5.6 The switch statement —— 93

cout << " Your grade is B " << endl;

}
else if (yourMarks >= 80 && yourMarks <= 100)
{
cout << " You Pass the Exam " << endl;
cout << " Your grade is A " << endl;
}

3

cout << " You know your result " << endl;
return 0;

The result of Program 5.5 is as follows:

You are a Senior student
You Pass the Exam

Your grade is A

You know your result

5.6 The switch statement

The switch statement is used to select a statement based on a condition among many
choices. Here, the expression of the switch statement generates an integer value; based
on this value a particular statement is selected. The switch statement is very much
useful when we deal with many if-else statements. Instead of writing long and time-
consuming if-else statements, we may use switch statement. The general form of the
switch statement is as follows:

switch(Expression)

{
case : Expression-Value-1: Statement-1; break;
case : Expression-Value-2: Statement-2; break;
case : Expression-Value-2: Statement-2; break;

default: Statement-n;

Remember that a statement in switch may be a simple statement with one statement
or a compound statement with many statements together as a block. In switch
statement, the Expression refers to any expression that produces an integer result.
Depending on the value of expression, the statement following each expression value

94 —— 5 Selection Statements

is executed. It means, if the expression produces Expression-Value-1 as a result, the
Statement-1 is executed and the break following the Statement-1 takes the control
to jump to the end of the switch body. It is important to remember that the break
statement is not compulsory in switch statement. The default statement is executed
only if Expression result is not matching with any of the expression values. Note that
default statement is not having break since it is the last statement of the switch

statement.

To understand switch statement, let us consider the students’ result table in a

university.

Table 5.4: The students’ result in a university.

Student Number Student Name Result Grade
23 Sally Pass A

45 Fang Pass B

67 Anil Fail No grade
88 Hong Pass C

To retrieve a student’s result from Table 5.4, we will make use of switch statement as

shown in Program 5.6.

// Program 5.6

// Program with switch statement

#include <iostream>
using namespace std;

int main ()

{
int yourNumber = 23;
switch(yourNumber)
{
case 23:
cout << " Name
cout << " Result
cout << " Grade
break;
case 45:
cout << " Name
cout << " Result
cout << " Grade
break;
case 67:
cout << " Name

cout << " Result

:Pass
:A " << endl;

:Sally " << endl;

" << endl;

:Fang " << endl;
:Pass " << endl;
:B " << endl;

:Anil " << endl;
:Fail " << endl;

5.6 The switch statement =—— 95

cout << " Grade :No Grade " << endl;
break;

case 88:
cout << " Name :Hong " << endl;
cout << " Result :pass " << endl;
cout << " Grade :C " << endl;

break;
default:
cout << " Sorry! No Results for you " << endl;
¥
return 0;

The result of Program 5.6 is as follows:

Name:Sally
Result:Pass
Grade:A

In the swi tch statement, the Expression must be an integer or a character expression.
Program 5.7 illustrates an example with character expression. In this example, each
game name is represented by a character code. If the code is “H,” it is Hockey game. If
itis “F, ” it is Football, etc. The program will display the name of the game according
to the character code (Table 5.5).

Table 5.5: Representation of the name of the game by a character code.

Name of the Game Character Code
Basketball B
Football F
Hockey H
Cricket C
Ping-pong P

In Table 5.5, each character code identifies a game. This can be written as a program
using switch statement as shown here:

// Program 5.7

// Program with switch statement
#include <iostream>

using namespace std;

int main ()

{

96 —— 5 Selection Statements

char getChar = 'C';
switch (getChar)
{
case 'B':
cout <<
break;
case 'C':
cout <<

Basketball " << endl;

Cricket " << endl;
break;

case 'F':
cout <<
break;

case 'H":
cout <<

Football " << endl;

Hockey " << endl;
break;

case 'P':
cout <<
break;

default:
cout <<

Ping-Pong " << endl;

No game for this code " << endl;

}

return 0;

The result of Program 5.7 is as follows:

Cricket

The Expression in switch statement can be any expression that produces an integral
result. Program 5.8 shows the use of the arithmetic expression to select among many
options.

// Program 5.8

// Program with switch statement
#include <iostream>

using namespace std;

int main ()
{
int a = 10, b = 20;
switch(a + b)
{
case 10:
cout << " Result is 10 " << endl;
break;
case 20:
cout << " Result is 20 " << endl;
break;

5.7 The ternary operator =—— 97

case 30:
cout << " Result is 30 " << endl;
break;
default:
cout << " No Result " << endl;
}
return 0;

The result of Program 5.8 is as follows:

Result is 30

5.7 The ternary operator

In the previous chapters, we have studied about unary and binary operators. In this
section, we will study about a special operator called ternary operator. This is also
called a conditional operator, which is briefly covered in Section 4.8. This is also
called ternary because it uses three operands. It is discussed here because its
operation has a lot of similarities to if-else statement. The ternary operator has
the following general form:

Operand-1 = Boolean Expression ? Operand-2 : Operand-3

For example:

big =a>b ?a: b;

In the aforementioned statement, if the number a is bigger than b, then big is
assigned to a else to b. Let us consider the example as given in Program 5.9 with
if-else statement.

// Program 5.9

// Program to find maximum of two numbers using if-else statement
#include <iostream>

using namespace std;

int main ()
{
int a = 67, b =99, big;
if(a > b)
big = a;

98 —— 5 Selection Statements

else

big = b;
cout << " The Biggest Number is : " << big << endl;
return 0;

The result of Program 5.9 is as follows:
The Biggest Number is :99

The same program can be written using a ternary operator as shown in Program 5.10.

// Program 5.10

// Program to find maximum of two numbers using ternary operator
#include <iostream>

using namespace std;

int main()

{
int a = 67, b =99, big;
big =a>b ?a: b;
cout << " The Biggest Number is : " << big << endl;
return 0;
}

The result of Program 5.10 is as follows:

The Biggest Number is :99

Also, remember that the ternary operator returns a value based on the expression and
does not execute a statement or a set of statements as in if-else statement. A ternary
operator may have an expression as an operand. Program 5.11 is written to find
maximum of three numbers using ternary operators.

// Program 5.11

// Program to find maximum of three numbers using ternary operator
#include <iostream>

using namespace std;

int main ()

{
int a = 167, b =991, c = 185, big;
big=c>((@>b) 2a:b)?c:((a>b)?a: b))
cout << " The Biggest Number is : " << big << endl;
return 0;

5.8 Review questions = 99

The result of Program 5.11 is as follows:

The Biggest Number is :991

5.8 Review questions

Describe these terms related to programming: sequential flow, decision-making,
selection statements, and Boolean expression.

Explain the following statements in C++: if, if-else, and if-else-if.

What is a nested if statement? What is the difference between nested if and a
compound (if block with many statements) if?

Write a program to find maximum of four integer numbers using if-else
statements.

What is the use of switch statement? Compare switch statement with if-else
statement.

What is a ternary operator? Write a program to find maximum of four numbers
using the ternary operator.

Write a program to find the roots of a quadratic equation Ax*+Bx+C=0 for non-
zero values of A, B, and C.

6 Looping Statements

To accomplish anything whatsoever one must have standards.
None have yet accomplished anything without them.
—Mo Zi

6.1 Introduction

The looping is necessary to execute many statements of similar behavior. There are
many different types of the looping statements. In this chapter, we will study about
the looping statements such as while, do-while, and for. In addition, we will also
describe the use of break and continue statements. These statements are used in
almost every program and are called as repetitive or iterative statements.

6.2 The while loop
The general form of while loop is as follows:

while(Boolean-expression)

{

Statements;

Next-statements;

Here, the Boolean-expression is evaluated first; if it is true, the statement inside the
while is executed else the next statements are executed. The statements inside the loop
are executed until the Boolean-expression evaluates to false. This means, the state-
ments inside the while loop are executed repeatedly as long as the Boolean-expression
is true. Program 6.1 illustrates the use of the while loop.

// Program 6.1

// Program to understand while loop
#include <iostream>

using namespace std;

int main ()

{
inti=1;
while(i <= 5)
{

https://doi.org/10.1515/9783110593846-006

https://doi.org/10.1515/9783110593846-006

102 — 6 Looping Statements

cout << " Statement : inside while loop " << endl;
i=1i+1;
3
cout << " Statement : outside while loop " << endl;
return 0;

The result of Program 6.1 is as follows:

Statement : inside while loop
Statement : inside while loop
Statement : inside while loop
Statement : inside while loop
Statement : inside while loop
Statement : outside while loop

The aforementioned program is represented pictorially in Fig. 6.1:

(i<=5)? m» cout<<"Statement: inside while loop"<<endl;

i=i+1;

False

A 4
cout<<"Statement: outside while loop"<<endl;

:

Fig. 6.1: Control flow of while statement.

In Program 6.1, we have noticed that the increment (or sometimes the decrement)
statement i++ is separated from the Boolean-expression. It is possible to combine
the increment or the decrement operators together along with the Boolean-
expression. Program 6.1 can be rewritten as shown in Program 6.2.

6.2 The while loop — 103

// Program 6.2

// Program to understand while loop
#include <iostream>

using namespace std;

int main ()

{
inti=1;
while(i++ <= 5)
{
cout << " Statement : inside while loop " << endl;
}
cout << " Statement : outside while loop " << endl;
return 0;
3

The result of Program 6.2 is as follows:

Statement : inside while loop
Statement : inside while loop
Statement : inside while loop
Statement : inside while loop
Statement : inside while loop
Statement : outside while loop

Infinite while Loop

In few cases, it may be necessary to execute some statements all the time. In such
cases, we use infinite looping statements. In this situation, the Boolean-expression
always evaluates to true.

// Program 6.3

// This program to execute the statements for infinite number of times
#include <iostream>

using namespace std;

int main ()
{
inti=1;
while(i == 1)
{
cout << " Infinite while loop " << endl;

3

return 0;

104 — 6 Looping Statements

Program 6.4 also runs infinite times by using the while loop.

// Program 6.4

// Program which runs infinitely
#include <iostream>

using namespace std;

int main ()

{
while(true);
return 0;

6.3 The do-while loop

In Section 6.2, we have studied about the while loop and noticed that the statements
inside the loop are executed only if the Boolean-expression evaluates to true. It means
that the statements are not executed even a single time if the Boolean-expression is
false. The difference between the do-while and the while statement is that the state-
ments inside the do-while are executed at least once, even if the Boolean-expression
evaluates to false. The general form of the do-while is as follows:

do
{

Statements

3

while (Boolean-expression);

Next-statements;

As we mentioned earlier, the Boolean-expression is evaluated after the execution of
statements inside the loop. The execution of statements continues until the Boolean-
expression evaluates to false. The following program illustrates the use of the do-
while loop:

// Program 6.5

// A program with do-while statement
#include <iostream>

using namespace std;

int main ()

{
int i = 1;
do
{

6.3 The do-while loop =— 105

cout << " Statement : inside do-while loop " << endl;
i=1+1;
¥
while(i <= 5);
cout << " Statement : outside do-while loop " << endl;
return 0;

The result of Program 6.5 is as follows:

Statement : inside do-while loop
Statement : 1inside do-while loop
Statement : 1inside do-while loop
Statement : 1inside do-while loop
Statement : 1inside do-while loop
Statement : outside do-while loop

Program 6.5 is shown in Fig. 6.2:

| inti=1; |
/
cout<<"Statement: inside while loop"<<endl;
i=i+1;
(<=5) True
False

cout<<"Statement: outside while loop"<<endl;

l

Fig. 6.2: Control flow of do-while statement.

106 — 6 Looping Statements

Program 6.5 can be rewritten by combining the increment statement along with the
Boolean-expression as shown in Program 6.6:

// Program 6.6

// A program with do-while statement
#include <iostream>

using namespace std;

int main ()
{
int i = 1;
do
{
cout << " Statement : inside do-while loop " << endl;
}
while(i++ <= 5);
cout << " Statement : outside do-while loop " << endl;
return 0;

Program 6.7 illustrates the difference between the do-while and the while. Here, the
statements inside the do-while are executed even if the Boolean-expression is false

@ir=1).

// Program 6.7

// Program to understand do-while statement
#include <iostream>

using namespace std;

int main ()
{
int i =1;
do
{
cout << " Statement : inside do-while loop " << endl;
}
while(i != 1);
cout << " Statement : outside do-while loop " << endl;
return 0;

The result of Program 6.7 is as follows:

Statement : inside do-while loop
Statement : outside do-while loop

6.4 The for loop = 107

Infinite do-while Loop

In few cases, it may be necessary to execute some statements all the time. In such
cases, we use infinite looping statements. In this situation, the Boolean-expression
always evaluates to true (Program 6.8):

// Program6.8

// This program to execute the statements for infinite number of times
#include <iostream>

using namespace std;

int main ()

{
inti=1;
do
{

cout << " Infinite do-while loop " << endl;

}
while(i == 1);
return 0;

The code shown in Program 6.9 also runs infinite times using the do-while loop.

// Program 6.9

// Program which runs infinitely
#include <iostream>

using namespace std;

int main ()

{
do{ }while(true);

return 0;

6.4 The for loop

In the previous sections, we have seen the while loop and the do-while loop and it is
possible only to evaluate the Boolean-expressions in the while and do-while state-
ments. The initialization of values is done before the loop. The for loop solves this
problem as it is a modified version of while loop and do-while loop where we can
include initialization statements, the Boolean-expression, and the increment and
decrement statements together as a part of the for loop.

108 —— 6 Looping Statements

The general form of the for loop is as follows:
for(initialization operation; Boolean-expression; increment or decrement)
{

Statements;

Next-statements;

Program 6.10 illustrates the use of the for loop:

// Program 6.10

// Program with for loop
#include <iostream>
using namespace std;

int main ()

{
for(int i = 1; i <= 5; i++)
{
cout << " Statement : inside for loop " << endl;
}
cout << " Statement : outside for loop " << endl;
return 0,
}

The result of Program 6.10 is as follows:

Statement : inside for loop
Statement : inside for loop
Statement : inside for loop
Statement : inside for loop
Statement : inside for loop
Statement : outside for loop

Here, i = 1is the initialization operation, i <=5 is the Boolean-expression, and i++is
an increment operation. Program 6.10 is pictorially represented in Fig. 6.3.

A for loop may include multiple initialization operations and increment or
decrement operations together in a single for statement. In Program 6.11, there are
two initialization operations, i =1 and j = 1, separated by a comma and an increment
operation i++ and a decrement operation j--.

// Program 6.11
// A program to understand a for loop with
// multiple initialization and increment and decrement operations

#include <iostream>
using namespace std;

int main ()

{
int i, j;
for(i =1, j =15; i <=5; i++, j--)
cout << " Hello " << i << " " << j << endl;
return 0;
3
| inti=1; |
False
True

cout<<"Statement: inside for loop"<<endl;

»| cout<<"Statement: outside for loop"<<endl;

:

Fig. 6.3: Control flow of the for statement.

The result of Program 6.11 is as follows:

Hello 1 15
Hello 2 14
Hello 3 13
Hello 4 12

Hello 5 11

6.4 The forloop = 109

110 —— 6 Looping Statements

A for statement can be written without increment or decrement operation. In
Program 6.12, the increment operation (i++) is separated from the for loop.

// Program 6.12

// The for statement without increment or decrement operator
#include <iostream>

using namespace std;

int main ()

{
int i = 1;
for(; i <=5;)
{
cout << " Hello "<< i << endl;
i++;
}
return 0;
}

The result of Program 6.12 is as follows:

Hello 1
Hello 2
Hello 3
Hello 4
Hello 5

A for statement can also be written with the Boolean-expression only. The initial-
ization and the increment or decrement operations are written in separate state-
ments. This is shown in Program 6.13:

// Program 6.13

// The for statement with only Boolean Expression
#include <iostream>

using namespace std;

int main ()

{
int i = 1;
for(;i <= 5;)
{
cout << " Hello " << i << endl;
i++;
}
return 0,
}

The result of Program 6.13 is same as that of Program 6.12.

6.5 Nesting of loops —— 111

Infinite for Loop

In few cases, it may be necessary to execute some statements all the time. In such
cases, we use infinite looping statements. In this situation, the Boolean-expression
always evaluates to true. Programs 6.14 and 6.15 are examples for infinite execution.

// Program 6.14

// This program to execute the statements for infinite number of times
#include <iostream>

using namespace std;

int main ()

{
for(s ;)
{
cout << " Infinite Loop " << endl;
}
return 0;
3

// Program 6.15

// A Program runs infinitely
#include <iostream>

using namespace std;

int main ()

{
for(s 5);
return 0;

6.5 Nesting of loops

Till now we have studied different types of looping statements in C++. It is also
possible to have looping statement inside another loop. This is called nesting of
looping statements. This is very useful in many cases. For example, a for loop may
contain another for loop as a statement or while statement. This is true for while and
do-while statements as well. Program 6.16 illustrates a simple nesting of for loops.
The program generates a right-angled triangle of numbers.

// Program 6.16

// A program to generate number triangle using nested for loops
// Value of n =6

#include <iostream>

using namespace std;

112 — 6 Looping Statements

int main ()

{
int sum = 0, n = 6;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= i; j++)
{
cout << j << " ";
¥
cout << endl;
}
return 0;
}

The result of Program 6.16 is as follows:

23

234
2345
23456

- a a4 A

6.6 The break statement

The break statement is used simply to exit a loop or switch statement. It is useful
when we need to exit a loop on some condition. It is frequently used with the switch
statement. It is generally used together with the while, for, do-while, and switch
statements. Program 6.17 illustrates the use of break statement. Here, the break
statement simply exits for loop after single iteration. Many times break statements
are used to terminate the loop unconditionally. The statements written after break
statement are meaningless and such a program generates an error during compila-
tion. Many programmers try to avoid break statement due its debugging problems.

// Program 6.17

// This is a program to understand break statement.
#include <iostream>

using namespace std;

int main ()
{
for(int i =1 ;i <10; i++)
{
cout << " Value of i = " << i << endl;
break;

6.6 The break statement = 113

}

return 0;

The result of Program 6.17 is as follows:

Value of i =1

Program 6.18 illustrates the break statement upon a condition. Here, if the value of
i is greater than 3, then the for loop exits from execution.

// Program 6.18

// The break statement used with a condition
#include <iostream>

using namespace std;

int main ()

{
for(int i = 1; i < 10; i++)
{
if(i > 3)
{
cout << " Break The Program " << endl;
break;
}
else
{
cout << " Value of i = " << i << endl;
}
}
return 0;
3

The result of Program 6.18 is as follows:

Value of i =1
Value of i =2
Value of i =3
Break The Program

The break statement can be used with while, do-while, and switch statements too.
The following sections of this chapter illustrate such examples.

// Program 6.19
// The break statement used with a while statement

#include <iostream>

114 — 6 Looping Statements

using namespace std;

int main ()

{

int i = 1;

while(i <= 10)
{
cout << " Value of i = " << i << endl;
if(i >= 5)
break;
i++;

3

return 0;

The result of Program 6.19 is as follows:

Value of i =1
Value of i =2
Value of i =3
Value of i = 4
Value of i =5

An example of a break statement used in do-while statement is presented in
Program 6.20.

// Program 6.20

// The break statement used with a do-while statement
#include <iostream>

using namespace std;

int main ()

{
int i = 1;
do
{
cout << " Value of i = " << i << endl;
if(i >= 5)
break;
i++;
}
while(i <= 10);
return 0;
}

The result of Program 6.20 is as follows:

6.6 The break statement = 115

Value of i =
Value of i =
Value of i =
Value of i =

g w N =

Value of i =

Program 6.21 illustrates the use of break statement in switch. The program will skip
rest of the case statements.

// Program 6.21

// The break statement used with a switch statement
#include <iostream>

using namespace std;

int main ()
{
inti=1;
switch(i)
{
case 1:
cout << " Value of i = " << i << endl;
break;
default:
cout << " Hello " << endl;

3

return 0;

The result of Program 6.21 is as follows:
Value of i =1

Remember that the break statement exits from the enclosing loop and not from the
outer loop. In Program 6.22, only innermost loop exits but outer loop continues its
execution until condition fails.

// Program 6.22

// The break statement used in nested for loops
#include <iostream>

using namespace std;

int main ()
{
for(int i = 1; i < 3; i++)
{
for(int j = 1; j < 3; j++)
{

116 —— 6 Looping Statements

cout << " Value of j =" << j << " break " << endl;
break;
¥
cout << " Value of i = " << i << endl;
}
return 0,

The result of Program 6.22 is as follows:

Value of j = 1 break
Value of i =1
Value of j = 1 break
Value of i =2

6.7 The continue statement

The continue statement return to the beginning of the enclosing loop. The rest of the
statements after the continue statement remain unexecuted. The continue statement
is quite opposite to break statement operation. The continue statement can be used
together with while, do-while, and for loops. Program 6.23 illustrates the basic
operation of continue statement.

// Program 6.23

// This program illustrates the use of continue statement.
#include <iostream>

using namespace std;

int main ()

{
for(int i = 1; i <= 10; i++)
{
if(i <= 5)
continue;
cout << " Value of i = " << i << endl;
}
return 0;
}

The result of Program 6.23 is as follows:

n
(2]

Value of i

|
)

Value of i =

Value of i = 8
Value of i =9
Value of i =

6.8 Review questions —— 117

Program 6.24 illustrates a continue statement in a nested for loops. The continue
statement returns the control to the beginning of the innermost loop.

// Program 6.24

// The continue statement used in nested for loops

#include <iostream>
using namespace std;

int main ()

{
for(int i = 1; i < 3; i++)
{
for(int j = 1; j < 3; j++)
{
if(j == 1)
continue;
cout << " Value of j =
}
cout << " Value of i =
}
return 0;
3

" << j << endl;

" << i << endl;

The result of Program 6.24 is as follows:

Value of j = 2
Value of i =1
Value of j = 2
Value of i =2

6.8 Review questions

1. Explain the following looping statements with an example program for each:

while, for, and do-while.

2. What is the difference between while and do-while? Explain with an example

program.

3. Explain break and continue statements with programs.
Compare while, do-while, and for loops. Which is better and why?

118 —— 6 Looping Statements

9.

Write a program to generate N Fibonacci numbers. The Fibonacci numbers are
the numbers where each number in the series is the sum of the two preceding
numbers.

0112358132134...

if N = 4 then the output should be

0112

Write a program to generate N prime numbers. For example, if N = 4, the result
will be

2357

Write a program to calculate the sum of the digits of a given integer number, for
example, if the number is 1234 the result is 10.

Write different programs to generate the following number triangles using for
loops, for the input N. For example, for N=6, the results are as follows:

1 1 1

12 12 11
123 123 121
1234 1234 12321
12345 12345 1234321
123456 123456 123454321

Repeat the Exercise 8 using while loop.

10. Write a program to generate the following series of output (where value of N = 4):

11.

a) 1+2%2+3*3* 3+ 4%4% 4 +. . .
b) 1+ 1%2+ 1%2*3 + 1*2*3*4 +.. ..
c) 1*1+2%2+3*3+4%4. ..

Find the difference between Programs 6.25 and 6.26:

// Program 6.25
#include <iostream>
using namespace std;
int main ()

{
while(true);
cout << " Hello " << endl;
return 0;

3

// Program 6.26
#include <iostream>

12.

13.

14.

6.8 Review questions

using namespace std;
int main ()

{
cout << " Hello " << endl;
while(true);
return 0;

}

Find the difference between Programs 6.27 and 6.28:

// Program 6.27
#include <iostream>
using namespace std;
int main ()

{
cout << " Infinite Loop " << endl;
for(; ;);
return 0;

}

// Program 6.28
#include <iostream>
using namespace std;
int main ()

{
for(; ;5);
cout << " Infinite Loop " << endl;
return 0;
}

Guess the result of Program 6.29 without executing it.

// Program 6.29
#include <iostream>
using namespace std;
int main ()
{
break;
return 0;

Check for the result of Program 6.30.

// Program 6.30
#include <iostream>
using namespace std;

— 119

120 —— 6 Looping Statements

int main ()

{
for(; ;){break;}
return 0;

15. Check for the result of Program 6.31

// Program 6.31
#include <iostream>
using namespace std;
int main ()

{

for(int i = 1; i < 3; i ++)

{
for(int j = 1; i < 3; j ++)
{

cout << i * j << endl;

}

}

return 0,

7 Arrays

Flow with whatever may happen and let your mind be free. Stay centered by accepting
whatever you are doing. This is the ultimate.
— Zhuangzi

7.1 Introduction

In this chapter we explore the concept of arrays. Before proceeding to understand this
concept, let us first look at an example — list of marks scored by 10 students in a class.
What should we do to find the average marks of students in a class? How do we write
a program to find average score of all the 10 students? One way to solve this problem
is by assigning all the 10 scores to distinct variables. Let the example marks scored by
10 students are as shown below.

67,89,90,68,78,91,87,56,77,66
So, average marks = (67+89+90+68+78+91+87+56+77+66)/10.0
This can be converted to a C++ code as shown below:

int m1=67,m2=89,m3=90,m4=68,m5=78,m6=91,m7=87,m8=56 ,m9=77,m10=66;
float Average = (m1+m2+m3+m4+m5+m6+m7+m8+m9+m10)/10.0;

As we can see from the above code, we have used 10 different variables to denote
different marks of students. This is the case where there are only 10 students. What if
there are 200 students in a college? How can we declare distinct variables for all 200
students? This is really a problem and a waste of time. By using arrays we can solve
these problems. An array is a set of values of same data type. It is used to store
collection of data, where series of elements of the same type placed in contiguous
memory locations can be individually referenced by adding an index to a unique
identifier. In the discussed example, all 10 variables m1-m10 are integers. Here, all 10
variables share same data type. The arrays in C++ can be declared as:

data type <variable name>[arraySizel;

For example: int marks[101];

This statement allocates memory for 10 values of data type integer. We can initialize
the array with predefined values as shown below:

int marks[10] = {67,89,90,68,78,91,87,56,77,66};

https://doi.org/10.1515/9783110593846-007

https://doi.org/10.1515/9783110593846-007

122 — 7 Arrays

The arrays are used in many applications. For example, to read and store the names
of students in a college, to store marks of students in a college, to sort the values in
ascending order, to solve matrix problems, and so on.

7.2 One-dimensional arrays

In Section 7.1, we studied the fundamentals of arrays. Let us look at the above
example again. To solve this problem using arrays, we will use one-dimensional
array. The one-dimensional array is simply a list of values stored in a row
or column, such as a row of trees and a row of students. As in a classroom, some
students sit in row-wise and others in column-wise. Here, each row or column is a
one-dimensional array. To understand the one-dimensional array, let us look
at Fig. 7.1.

1123
4516
71819

Fig. 7.1: Array of numbers.

Here, there are 9 numbers, out of which 1, 2, and 3 are in the first row; 4, 5, 6 in the
second row; and 7, 8, and 9 are in third row. In the same way, we notice that 1, 4, 7 are
in first column; 2, 5, and 6 in second column; and 3, 6, and 9 are in third column.
Here, each column or row is a one-dimensional array. So, in this array, there are three
one-dimensional rows of arrays or three one-dimensional columns of arrays. As we
see in the Section 7.3, the entire grid of rows and columns together makes a two-
dimensional array.

The scores of 10 students can be assigned to 10 elements in an array instead of
different variables as shown below:

int marks[10] = {67,89,90,68,78,91,87,56,77,66};

The above statement is same as:

int marks[1017;

marks[0] = 67;
marks[1] = 89;
marks[2] = 90;

7.2 One-dimensional arrays =—— 123

marks[3] = 68;
marks[4] = 78;
marks[5] = 91;
marks[6] = 87;
marks[7] = 56;
marks[8] = 77;
marks[9] = 66;

All 10 different marks are stored at 10 different locations in the array starting
from marks [@0] to marks [9]. A point worth remembering is, if the array size is
n, then the index of array ranges from O to n-1 and not 1 to n. All 10 marks are
stored in a consecutive order. This means that marks 67 is stored in marks[0]
and marks 89 is stored in marks[1], and so on. Fig. 7.2 shows the meaning of
terms array index, array element, and array value with an example. The
complete program to calculate average marks using arrays is shown in
Program 7.1.

Array index | Array element Value
0 marks [0] 67

Fig.7.2: Description of array terms.

// Program7.1

// A program to find average marks of 10 students using arrays
#include <iostream>

using namespace std;

int main ()

{
int marks []1 = {67,89,90,68,78,91,87,56,77,66};
int i;
float average = 0, sum = 0;
for(i = 0; i < 10 ; i++)
{
sum = sum + marks [i];
}
average = sum / 10;
cout << " The Average Marks of 10 Students = " << average << endl;
return 0;
3

The result of Program 7.1 is shown as follows:

The Average Marks of 10 Students = 76.9

124 — 7 Arrays

Arrays can be used in variety of applications. It can be used to solve many real-time
problems that we face in everyday life. Program 7.2 generates the following series of
output using one-dimensional arrays

Input Output

12 12 5
23 23 25
34 34 125
45 45 625
56 56 3125

To generate powers of 5, we will make use of pow() function. Moreover, as this is a
library function defined in the include file <math.h>, we have to include this in the
program. The following statement

m = pow(5,2); returns the value of m = 25 as the square of 5.

// Program7.2

// A program to display powers of 5 using arrays
#include <iostream>

using namespace std;

#include <math.h>

#define Array_Length 5

int main ()

{
int list[5] = {12,23,34,45,56};
int i;
for(i = 0; i < Array_Length; i++)
{
cout << list[i] << " " << pow(5,(i + 1)) << endl;
¥
return 0;
}

The result of Program 7.2 is shown as follows:

12 5
23 25
34 125
45 625
56 3125

In Program 7.2, the Array_Length is defined as 5, which is the size or length of the
array. One-dimensional arrays can be used in variety of applications, such as sorting
and searching, which will be discussed in Chapter 9.

7.3 Multidimensional arrays =— 125

7.3 Multidimensional arrays

In Section 7.2, we studied about one-dimensional arrays. As we have seen, one-
dimensional arrays are just a collection or list of items. In this section, we will discuss
about multidimensional arrays. The multidimensional arrays include two or more
one-dimensional arrays. Consider the following Table 7.1.

Table 7.1: Three one-dimensional arrays forming
a two-dimensional array.

1 2 3
5 6
7 8 9

In Table 7.1, there are three rows or three one-dimensional arrays that form a two-
dimensional array. In this case, numbers are arranged in rows and columns. A two-
dimensional array can be declared as

data type <variable name>[arraySizel][arraySize2];

For example:
int marks[][1;
or

int marks[101[10];

The statement int marks[10][10];allocates memory for 100 (10x10) values of data
type integer. We can also initialize two-dimensional array as shown:

int marks[21[3] =
{
{68,78,91},
{87,56,77}
3

The aforementioned statement is same as

int marks[2]1[31];

marks[@][0] = 68;
marks[@1[1] = 78;
marks[@]1[2] = 91;
marks[1][0] = 87;

126 — 7 Arrays

marks[11[1]
marks[1]1[2]

56;
77;

We can notice that the numbers are arranged in two rows and three columns. Using
two-dimensional array to find the average of six students is shown in Program 7.3 by
modifying Program 7.1

// Program7.3
// A program to find average marks of 6 students using two-dimensional
// arrays
#include <iostream>
using namespace std;
int main ()
{
int marks[2][3] =
{
{68,78,91%,
{87,56,77%}
3
int i, j;
float average = 0, sum = 0;
for(i = 0; i < 2; it++)
{
for(j = 0; j < 3; j++)
{

sum = sum + marks [i][j];

3

average = sum / 6;

cout << " The Average Marks of 6 Students = << average << endl;
return 0;

The result of Program 7.3 is as follows:

The Average Marks of 6 Students = 76.1667

Notice that we may use an array with more than two dimensions. For example,
Program 7.4 stores eight values in a three-dimensional array and displays
them:

// Program7.4

// A program to understand three-dimensional arrays
#include <iostream>

using namespace std;

7.4 Applications of two-dimensional arrays =—— 127

int main ()

{
int list [2][2][2] =
{
{
{1,23,
{3,4}
1,
{
{5,63,
{7,8}
}
3
int i, j, k;
for(i = 0; 1 < 2; i++)
{
for(j = 0; j <2; j++)
{
for(k = 0; k < 2; kt++)
cout << " list[" << i << " J["< <" J[" <k "]
= " <«<1list[i][jI[k] << endl;
}
}
return 0;
3

The result of Program 7.4 is as follows:

list[e][0]1[0] =
listfe][01[1] =
listfe][11[e] =
list[@][11[1] =
list[1][0][e] =
list[1][01[1] =
list[1][1]1[e] =
list[1101101] =

0 N O A W N =

7.4 Applications of two-dimensional arrays

The two-dimensional arrays are used in many mathematical applications to solve
problems. It is primarily used to solve matrix-related problems. In this section, we
will describe some of the widely used applications of two-dimensional arrays, for
example, the matrix problems such as matrix addition, subtraction, and multiplica-
tion can be solved using two-dimensional arrays.

128 — 7 Arrays

Let AL31[3] be a matrix with the following values:

456
776
857

Let B[31[3] be a matrix with the following values:

121
221
132

The result after adding two matrices will be, that is, A + B:

577
997
989

The result after subtracting two matrices will be, that is, A - B:

335
555
725

The result after multiplying two matrices will be, that is, A x B:

20 36 21
27 46 26
25 47 27

Program 7.5 illustrates matrix addition program. Remember to add and subtract
matrix A and matrix B, the number of rows and columns of first matrix should be
equal to number of rows and columns of second matrix, respectively.

// Program7.5

// Matrix addition program
#include <iostream>

using namespace std;

int main ()

{

int r_A =3, c_A =3; //Rows in Matrix A = 3 and Columns = 3
int r_.B =3, ¢c.B =3; //Rows in Matrix B = 3 and Columns = 3
int i, j;

int A[31[3] =

{ //Matrix A Values
{4,5,63},
{7,7,63},
{8,5,7},

3

int B[31[3] =

7.4 Applications of two-dimensional arrays

{ //Matrix B Values
{1,2,13,
{2,2,13,
{1,3,23},
};
int C[31[31; //Declaration of Matric C

//check for row and columns of two matrices

if(r_A == r_B && c_A == c_B)

{
//Initialize all elements of C matrix as zeroes
for(i = 0; i < r_A; i++)

{
for(j = 0; j < c_A; j++)
{
C[i1C3] = o;
3
b

//Matrix Addition
for(i = 0; i < r_A; i++)

{
for(j = 0; j < c_A; j++)
{
CLilCj] = ALilC3] + BLilL3T;
3
3

//Print Matrix A

cout << endl << " The Matrix A " << endl;
for(i = 0; 1 < r_A; i++)
{
for(j = 0; j < c_A; j++)
{
cout << A[iJ[j]l << "™ "
}

cout << endl;

//Print Matrix B
cout << endl << " The Matrix B " << endl;
for(i = 0; i < r_A; i++)

{
for(j = 0; j < c_A; j++)
{
cout << B[il[jl << " " ;
¥

cout << endl;

— 129

130 — 7 Arrays

//Print Result Matrix C
cout << endl << " The Matrix C = A+B " << endl;
for(i = 0; i <r_A; i ++)

{
for(j = 0; j < c_A; j++)
{
cout << C[iJ[j] << " "
3
cout << endl;
¥
}
else
{
cout << " Matrix Addition is Not Possible" << endl;
cout << " To add two matrices row and columns of two matrices must be same"
<< endl;
}
return 0;

The result of Program 7.5 is as follows:

The Matrix A

456
776
857

The Matrix B

121
221
132

The Matrix C = A+B

577
997
989

Program 7.5 can be modified for matrix subtraction by changing the following state-
ments after initialization of matrix C.

//Matrix Subtraction
for(i = 0; i < r_A; i++)
{
for(j = 0; j < c_A; j++)

7.4 Applications of two-dimensional arrays =— 131

CLilC3]1 = ALi103] - BLiIL]T;

Matrix multiplication is little complex method as compared with matrix addition and
subtraction. It is possible to multiply matrices, if and only if the columns of matrix A
are equal to rows of matrix B. The following piece of code illustrates matrix
multiplication.

//Matrix Multiplication
for(i = 0; i < r_A; i++)

{
for(j = 0; j < c_B; j++)
{
C [i1[3] = o;
for(k = 0; k < c_A; k++)
{
CLilCj] = CLilCj] + ALiICk] +* BLCkICjI;
}
3
3

Two-dimensional arrays can be used to solve n linear equations with n unknowns.
Look at the following list of linear equations.

2X + 3y + 62 =26
4x + 6y - 2z=10
8x -3y +62z=20

These equations can be represented as i.e. AxX =R

2 3 6 x=26
4 6 -2 y=10
8 -3 6 z=20

Here, matrix X comprises of unknown variables x, y, and z and can be obtained by

X = A7! (inverse) * R

Program 7.6 illustrates the above example of solving three linear equations.

//Program7.6

//Program to solve three linear equations
#include <iostream>

using namespace std;

132 — 7 Arrays

int main ()
{
float A [3]1[3] =
{
{2, 3, 63,
{4, 6, - 23,
{8, -3, 6}
};
//AX =R

float X [3][11];
float R [31[1] =
{

{263,

{103,

{203}
};

int n = 3;
int i, 3, k;

//Find the determinant of matrix A

float det = A[@I[0] * (ALTI[1] % A[2]1[2] - A[21[1] * A[1][2]) -
ALQI[1] * (AL1IC0] * A[21[2] - A[21[0] * A[11[21)+

A[Q1[2] * (AL1]1[0] * A[21[1] - A[21[0] * A[1I[11);

//B is the inverse matrix of A

float B[3][3];

BLoJ[0] = ALTI[1] % A[2]1[2] - A[2]01] = A[11[2];
B[@I[1] = - (ALQI[1] * A[2][2] - A[21[1] * A[01[2]);
B[O1[2] = A[QI[T] » A[11[2] - ALTI[1] = A[@I[2];
B[11[0] = - (A[T1[0] * A[21[2] - A[2][e] * A[11[2D);
B[11[1] = (ALe]C[0] » A[21[2] - A[2]1[0] * A[@I[2]);
B[11[2] = - (ALe][0] » A[11[2] - A[1][e] * A[eI[21);
B[2][0] = AL11[0] = A[21C1] - A[2]1[e] = A[1I[1];
B[21[1] = - (A[0I[@] * A[2][1] - A[2][@] * A[0I[11]);
B[21[2] = A[@I[0] * AL1I[1] - ALT1[0] * A[QI[1];

//To find inverse of A
for(i = 0;i < n; i++)
{
for(j = 0; j < n; j++)
{
B[iJ[j] = BLi1[j]1 / det;

// X = (inverse of A = B) * R

7.4 Applications of two-dimensional arrays =—— 133

for(i = 0;i < n; i++)

{
for(j = 0; j < 1; j++)
{
X[illjd = o;
for(k = 0;k < n ; k++)
{
X[iJ0jJ1 = XCil0j] + BLillk] * RCkICj1;
3
}
}
cout << " The Solutions to the equations are " << endl;
cout << " X =" << X[0][0] << endl;
cout << " Y =" << X[1][0] << endl;
cout << " Z =" << X[2][0] << endl;
return 0;

The result of Program 7.6 is as follows:

The Solutions to the equations are
1
2
Z=3

Another interesting program of generating magic square is presented further.
Consider Tables 7.2 and 7.3. They are magic squares. Magic square is a grid of nxn
cells with positive integers starting from 1, 2, 3, and 4. . .up to nxn. The grid is filled in
such a way that sum of numbers in each row, column, and diagonals are equal.
However, Program 7.7 works only for all magic squares, where n is odd. The magic
square, where n = 3 and sum of elements in a row or column is 15 is shown in Table 7.2.

Table 7.2: Magic square where n = 3 and the
elements in a row or column add upto 15.

~N
w

The magic square, where n = 5, with elements in a row or column adding to 65 is
shown in Table 7.3.

134 — 7 Arrays

Table 7.3: Magic square where n =5 and the elements in
a row or column add upto 65.

15 8 1 24 17
16 14 7 5 23
22 20 13 6 4
3 21 19 12 10
9 2 25 18 11

// Program7.7

// Magic Square Program
#include <iostream>
using namespace std;

int main ()

{
int square [100][100];
int n;
cout << " Enter the value of n (odd number only) : " << endl;
cin >> n;

int i, j, k=10,1 = 0,key = 2;

for(i = 0;i < n; i ++)
for(j =0; j <n; j++)
square[i][j] = 0;

i=0;
j=-1)7/ 2
square[il[j] = 1;

while(key <= n * n)
{
k=(@-1)%n;
if(k == - 1)
k=n-1;

1=(-1)%n;
if(l ==-1)
l=n-1;

if(square[k][1] == 0)

i=k;

7.5 Review questions = 135

i=@G+1)%n;

square[i1[j] = key;

key = key + 1;
}
cout << endl << " The Magic Square for n = " << n << endl;
for(i = 0; i < n; i++)
{

for(j = 0; j <n; j ++)

cout << square[i][jl << " " ;
cout << endl;

3

return 0;

The result of Program 7.7 is as follows:

Enter the value of n (odd number only):
3

The Magic Square for n = 3
618
753
294

7.5 Review questions

1. What is an array? How to declare an array?

2. What is a two-dimensional array? How it is different from one-dimensional
arrays.

3. List the advantages of arrays in programming.

4. Modify Program 7.3 to find the average of marks of six students using three-
dimensional arrays.

5. Write a program to multiply following two matrices.

2345 234
7892 764
3567 867
7897 123
(4x4) (4x3)

6. Write a program to copy elements from a two-dimensional array to one-dimen-
sional array.

136 —— 7 Arrays

7. Write a program to generate the following output from the given input using two-
dimensional arrays.

1234 1234
1204 1240
1034 1340
1004 1400
(Input) (Output)

8. Write a program to generate the following output from the given input.
Remember that the first row in the output matrix indicates total number of
rows and columns and non-zero elements in the input matrix

600010 566
0000038 006
900000 041
000004 158
003000 209
(Input Matrix 5x6) 354

423

(Output Matrix 7x3)

9. Write a program to find inverse of a matrix.

8 Strings and Pointers

No benefit is more constant than simplicity; no happiness more constant than peace.
— Han Feizi

8.1 Introduction

In this chapter, we will study about strings and pointers. Although the strings
and pointers are not closely related they are discussed together because in
many instances, we use pointers along with arrays, and strings are set of character
arrays. The C++ provides two types of string representations. The first one is C-style
character string, which originated from the C language and continues to be supported
within C++. The other type is the string supported from string class in C++. We will
cover these aspects in general in this chapter.

A string is a one-dimensional array of characters. The last element in a string is the
NULL terminator (‘\@’). So, a string is an array with one element more than the maximum
number of actual characters. Thus, a null-terminated string contains the characters that
comprise the string followed by a null. We do not have to place the null character at the
end of a string constant. The C++ compiler automatically places the ‘\@’ at the end of the
string when it initializes the array. In C++, a character is always represented within
single quotes. For example, char c = 'a', however, strings are represented using double
quotes, as in “Hello”. Even if a single character is enclosed within double quotes, it is
still considered as string, instead of character. The following declaration and initializa-
tion creates a string consisting of the word “Hello”.

char examplestr[6] = {'H','e','1"','1",'0"','\0"};

Let us understand a simple example of character array, as shown already. In this
statement, we declared the size of the string as 6. However, the actual size of the
string is 5, because there are only 5 characters excluding the null character. One
should remember that the array index starts from 0 and not 1. The size of the array or
the string cannot be changed or redefined by a programmer. In the aforementioned
statement, the characters of the string will be numbered from O to 5. Fig. 8.1 shows
memory presentation of the already defined string in C/C++.

The Program 8.1 shows an example to use the above string. In this program, three
different strings are initialized in three different ways. All these initializations are accept-
able, and a programmer can use the best method depending on the requirement. In the
first initialization statement: char examplel1[6] = {'H','e','1','1l"','0","'\0"'};, the
string is initialized character by character,; however, in the second (char example2[5] =
"Good";) initialization, the entire string is initialized directly. In this case, the string is

https://doi.org/10.1515/9783110593846-008

https://doi.org/10.1515/9783110593846-008

138 — 8 Strings and Pointers

Index 0|1 (2 (3|4]5
Value H{e|1l]|1l]|o]|\n

Fig. 8.1: Memory representation of a string.

enclosed within double quotes. The difference between the second and third initializa-
tion statement (char example3[] = "Morning";) is about the array index. In the third
initialization, the array index is unspecified. However, if we use an array of size less than
the number of character the compiler generates an error.

// Program 8.1

// String initialization program
#include <iostream>

using namespace std;

int main ()

{
char examplel[6] = {'H', ‘'e', '1l', '1', 'o', '"\0'};
char example2[5] = "Good";
char example3[] = "Morning";
cout << " Example string 1 = " << examplel << endl;
cout << " Example string 2 = " << example2 << endl;
cout << " Example string 3 = " << example3 << endl;
return 0;

}

The result of Program 8.1 is as follows:

Example string 1 = Hello
Example string 2 = Good
Example string 3 = Morning

An example where a string can be read from the keyboard and displayed back to
screen using cin and cout statements is presented in Program 8.2.

// Program 8.2

// String input and output
#include <iostream>

using namespace std;

int main ()

{
char str [10];
cout << " Enter a string : ";
cin >> str;

8.1 Introduction

cout << " The entered string is = " << str << endl;
return 0;

The sample result of Program 8.2 is as follows:

Enter a string : Qingdao
The entered string is = Qingdao

We can also write a program to copy one string to another.

// Program 8.3

// Program to copy one string to another
#include <iostream>

using namespace std;

int main ()

{
char str1 [10] , str2 [10];
int i = 0;
cout << " Enter a string , str1 . ",
cin >> stri;
cout << " The entered string is : " << str1 << endl;
while((str2 [i] = str1 [i])!="'\0")
it++;
cout << " String, str2 contains :" << str2 << endl;
return 0;
3

A sample result of Program 8.3 is as follows

Enter a string, str1 : gingdao
The entered string is :qingdao
String, str2 contains :qgingdao

— 139

In Program 8.3,two arrays are declared, str1 and str2, both with maximum capacity
of 10 characters, including a null character. This means, the maximum length of
strings (both str1 and str2) must be less than or equal to 9. The while statement
directly assigns the str1 characters one by one to str2 array in the respective
locations, starting from O, and this operation is performed including the null char-
acter. But once the null character is also copied from str1 to str2, the operation
stops because of the condition within the while statement. So, it is important to
remember that when character arrays or a string in a program is used a ‘\0" or NULL

140 — 8 Strings and Pointers

terminator is added at the end of the string. Programs 8.4 and 8.5 show examples to
understand the importance of null character while managing strings.

// Program 8.4

// Program to understand the role of null character
#include <iostream>

using namespace std;

int main ()

{
char str [10];
int i = 0;
cout << " Enter a string : ";
while((str [i++] = getchar()) != '"\n");
cout << " Entered string is : " << str << endl;
return 0;
}

A sample result of Program 8.4 is as follows:

Enter a string : Beijing
Entered string is : Beijing
e

In Program 8.4, the while loop is used to read the character one by one using the
getchar() library function until the user presses the enter key (so '\n' is supplied to
perform this). We will describe more about the string library or built-in functions in
Section 8.2 (to understand the meaning of functions, see Chapter 10). The getchar()
function gets characters from standard input (stdin). This function reads in a character
and returns the character as the ASCII value of that character. This function will wait
for a key to be pressed before continuing with the program. Once the enter key is
pressed, the reading of characters is stopped into string str. As shown in the sample
result of Program 8.4, it is evident that the results display unexpected characters in its
output. This is because the string str is unable to guess the end of the string as we have
not added the null ('\@') character at the end of the str. So, the modified version of
Program 8.4 is shown in Program 8.5. As shown in this program, a new statement str
[i]='\0';is added after reading the characters to delimit the end of the string str.

// Program8.5
// Program to understand the role of null character

#include <iostream>
using namespace std;

int main ()

{
char str [10];

8.2 String library functions

int i = 0;
cout << " Enter a string : ";
while((str [i++] = getchar()) !='\n'");

str [i] ='\0';
cout << " Entered string is : "<< str<< endl;
return 0;

A sample result of Program 8.5 is as follows:

Enter a string : Beijing
Entered string is : Beijing

8.2 String library functions

— 1

In this section, we will briefly describe some of the commonly used string library
functions in C++. The ‘cstring’ library defines various string functions that can
be used to perform various operations on strings. This section describes
some of the string functions that are mostly used in the programs. However, #include
<cstring> needs to be written in order to use any of the functions mentioned in

Table 8.1.

Program 8.6 shows an example to demonstrate some of the string functions in C++.

// Program 8.6

// Functions manipulating strings
#include <iostream>

#include <cstring>

using namespace std;

int main ()

{

char str1 [20] "Great";
char str2 [20] = "Wall";
char str3 [201];

//Finding the length of stri
cout << "strlen(str1) : " << strlen(strl) << endl;

// Copying str1 into str3
strepy(str3, stri1);
cout << "strcpy(str3, str1) : " << str3 << endl;

// Concatenation of stri1 and str2
strcat(stri, str2);

142 — 8 Strings and Pointers

cout << "strcat(stri1,

return 0;

}

str2) : " << str1 << endl;

Table 8.1: String functions and their descriptions

Function

Description

strlen (str);

This function returns the length of the string str. The length of the
string is the number of characters in the string without the
terminating character ‘\0’

strcpy (dest, src);

This is a string copy function. The first parameter is the destination
string and the second parameter is the source string. The function
strcpy will copy the contents of source string to the destination
string, including the terminating null character '\0'

strcat (dest, src);

This is a string concatenation function. The first parameter is the
destination string and the second parameter is the source string.
The function strcat() will concatenate/append the contents of
source array to the destination array. The terminating null character
of the destination array is overwritten by the first character of the
source array and a null character is introduced in the destination
string at the end of the new string

strcmp (stri1, str2);

This function compares two strings. The first parameter is str1 and the
second parameter is str2 which will be compared by this function.

It starts by comparing the first character of both the strings. It
compares till it finds a non-matching character or the terminating null
character.

This function returns an integral value. The 0 is returned when both the
strings are equal. A negative value is returned when the non-matching
character encountered has a lower value in str1 than str2. A positive
value is returned when the non-matching character encountered has a
greater value in str1 than str2

strchr(str, ch);

This function returns a pointer to the first occurrence of character ch
in string str. This function is used to locate the first occurrence of
character in the string. This can also be located in order to retrieve a
pointer to the end of a string.

strstr(stri1, str2);

This function is used to locate a substring, and returns a pointer to
the first occurrence of string str2 in string str1 or a null pointer if
str2is not part of str1.

The result of Program 8.6 is as follows:

strlen(stri)
strcpy(str3,
strcat(stri1,

: 5
str1) : Great
str2) : GreatWall

8.3 Array of strings = 143

8.3 Array of strings

As we have mentioned earlier, collection of characters is called string. For example,
place names, names of persons, and names of plants are strings. However, in several
applications, it is important to process several thousands of strings. For example, a
classroom management program needs to read all the students’ names, or in other
words it is required to read array of strings. The arrays of strings can be created by
declaring an array by using a method of a two-dimensional character array. String
arrays are multidimensional arrays, that is, an array of strings or an array of charac-
ters. Consider the following expression:

char names [10][4017;

The above variable is an array of strings with 10 names and up to 39 characters in
each. C++ allows arrays of any dimension to be defined, the first index of the array
refers to the row number, and the second index number refers the column number.
Two-dimensional arrays are initialized in the same manner as a one-dimensional
array. Program 8.7 shows an example of reading five names from keyboard and
displaying them onto the screen.

// Program 8.7

// Array of strings
#include <iostream>
#include <cstring>
using namespace std;

int main ()
{
char names [10][401;
int i = 0;
cout << " Enter five names one by one : " << endl;
for(i = 0; i<5; i ++)
cin >> names [i];
cout << endl<<"Entered names are :" << endl;
for(i = 0; i<5; it++)
cout << names [i] << endl;
return 0;

A sample result of Program 8.7 is as follows:

Enter five names one by one
Linda
Jessica

144 — 8 Strings and Pointers

Ashan
Cicely
Amila

Entered names are
Linda

Jessica

Ashan

Cicely

Amila

8.4 Introduction to pointers

A pointer is a variable in C++ (or C) that points to a memory location. It does not
directly contain a value such as int or float. One can access this value indirectly
through the pointer variable. A pointer is declared as follows:

int #*ptri;
int i;
ptr1 = &i;

Here, we have to understand the role played by characters ‘*’ and ‘&’ in front of
variables. The character ‘*’ in front of the variable is used to declare a pointer
variable and it is also used in front of a pointer variable to access and retrieve the
value contained by a pointer variable, not the address. However, the character ‘&’ is
used to access the address of an integer variable pointed by the pointer. In the above
example, we declare an integer pointer “ptr1” and an integer variable i. Then we
make the pointer ptr1 point to the address of the variable i. Consider Program 8.8 to
understand the concept of pointers.

// Program8.8

// Program to understand pointers
#include <iostream>

using namespace std;

int main ()

{
int *ptr;
int i = 18;
ptr = &i;

cout << " The value of i is " << i << endl;
cout << " The pointer ptr (*ptr) contains the value

8.4 Introduction to pointers = 145

<< #ptr << endl;
return 0;

The result of Program 8.8 is as follows:

The value of i is 18
The pointer ptr (*ptr) contains the value 18

Different from other normal variables that can store values, pointers are special
variables that can hold the address of a variable. Since they store memory address
of a variable, the pointers are very commonly said to “point to variables.” As
shown in Program 8.8, a normal variable i might have an address, for example,
5060, and holds the value 18. However, the pointer variable ptr1 has its own
address too, but stores 5060, which is address of variable i. Fig. 8.2 shows this
illustration.

i Value of i=18

T Address of i (or & i) =5060

*ptr=18 l

ptr | Value of ptr=5060

Fig. 8.2: Understanding pointers.

A pointer can be declared as:

< pointer-type > %< pointer-name >; or

< pointer-type >* < pointer-name >;

The pointer-type specifies the type of pointer. It can be int,char, float, etc. This
type specifies the type of variable whose address this pointer can store. The pointer-
name can be any variable name specified by the user. It is a common practice that
most of the pointer variables start with lowercase letter ‘p’, or end with ‘ptr’. In
Program 8.8, the int *ptr; is the pointer declaration. The int data type specifies the
pointer type and the *ptr is the name of the pointer. In other words, the ptr is a
variable that can store the address of an integer, and *ptr returns the value stored in
that address. Now, let us modify Program 8.8 to display the address of the pointer and
confirm our understanding.

146 =— 8 Strings and Pointers

// Program 8.9

// Program to understand pointers
#include <iostream>

using namespace std;

int main ()

{
int #*ptr;
int i = 18;
ptr = &i;
cout << " The value of i is " << i << endl;
cout << " The pointer ptr (*ptr) contains the value "

<< #ptr << endl;

cout << " The address of i = " << &i << endl;
cout << " The value of ptr = " << ptr << endl;
return 0;

}

A sample result of Program 8.9 is as follows:

The value of i is 18

The pointer ptr (*ptr) contains the value 18
The address of i = 0018FF40

The value of ptr = 0018FF40

As shown in the results, the ‘&’ operator is used to access the address of any variable
type. In Program 8.9, the values stored in variable ptr as well as the address of i are
same. However, the address of the variable may change from computer to computer.
So, it is wrong to expect the same address when a user tests Program 8.9. We can also
initialize a pointer in the following way:

<pointer declaration(except semicolon)> = <address of a variable>;

Or

<pointer declaration>;
<name-of-pointer> = <address of a variable>;

For example, the character pointers can be initialized as shown further. In the code
mentioned, we declared a character variable ch that stores the value ‘c’.Now, we
declared a character pointer ‘chptr’ and initialized it with the address of variable ‘ch’ .

char ch = 'c¢';
char *chptr = &ch;

8.4 Introduction to pointers =—— 147

or

char ch = 'c';
char xchptr;
chptr = &ch

Program 8.10 shows an example of pointers, which include all types of common
pointers in C++.

// Program8.10

// Common pointers
#include <iostream>
using namespace std;

int main ()

{
char ch ='c'" ;
char *chptr = &ch;
int i = 18;
int *intptr = &i;
float f = 3.14f;
float *fptr = &f;
char *sptr = "Hello World!";
cout << " Value of (char) *chptr = " << *chptr << endl;
cout << " Value of (int) *intptr = " << *intptr << endl;
cout << " Value of (float) *fptr = " << xfptr << endl;
cout << " Value of (char) *sptr = " << *sptr << endl;
cout << " Value of (string) = " << sptr << endl;
return 0;

3

The result of Program 8.10 is as follows:

Value of (char) *chptr c

Value of (int) xintptr = 18
Value of (float) xfptr = 3.14
Value of (char) *sptr = H

Value of (string) = Hello World!

Program 8.10 shows an example that covers all the common pointers. The int, char,
and float pointers are easy to understand, and they are straightforward. However,
string pointers are quite different. As shown in the statement:char *sptr = "Hello
World!";, the character pointer *sptr points to a string. As it can be seen, the state-
ment includes a string instead of a single character. This shows that character and
string pointers are used in the same way although their applications are different.

148 —— 8 Strings and Pointers

When we point a pointer to a string, by default it holds the address of the first character
of the string. So, when we try to print *sptr, it only displays the first character ‘H’. This
means that any character pointer pointing to a string stores the address of the first
character of the string. In the code above, ‘sptr’ holds the address of the character ‘H’.
So, when we apply the ‘value of operator ‘*’ to ‘sptr’, the ‘H’ is displayed as output.
However, if we try to display sptr, the compiler prints the entire string.

8.5 Pointer to pointer

So far, we have studied that the pointers are special variable that stores the address of
another variable. Here, a question might arise: Is it possible to store the address of the
pointer itself? The answer is Yes. In C and C++, it is perfectly legal for a pointer to
point to another pointer. Let us consider an interesting assumption here.

One day, while locating a street number in Beijing, you discover a person A, who agrees to
guide you. Unfortunately, the person A is unable to locate the street you are looking for;
instead he calls his friend B to guide him. Friend B also failed to locate the street, and
calls his friend C to locate it. Let us assume that C is finally able to guide B, and then B is
able to convey the message to A. In the end, you receive the required information to locate
the street from A.

Now, in this scenario, lets us assume that information you are looking for is just an
integer number (such as street number). Then, we can make you as the pointer to A
(because you point him for information), and A as pointer to B, and B as pointer to C;
finally C has the correct street number. Program 8.13 shows an example where we can
demonstrate the above scenario with pointers that point to other pointers.

// Program 8.11
// Pointers to pointers

#include <iostream>
using namespace std;
int main ()

{
int stNo = 1818; //street number
int *C; //pointer C to store the address of stNo
int **B; //pointer to pointer, to store the address of C
int *%*A; //pointer to pointer, to store the address of B
int *x%xmeptr; //pointer to pointer, to store the address of A
C = &stNo;
B = &C;

A = 8B;

8.5 Pointer to pointer —— 149

meptr = 8&A;

cout << " Value of meptr = : " << meptr << endl;

cout << " Value of xmeptr = : " << *meptr << endl;

cout << " Value of x*meptr = : " << x*meptr << endl;
cout << " Value of **meptr = : " << x*meptr << endl;
cout << " Value of x*xmeptr = : " << x**meptr << endl;
cout << " Value of #*x#meptr = : " << *x%xmeptr << endl << endl;
cout << " Value of A = : " << A << endl;

cout << " Value of *A = : " << *A << endl;

cout << " Value of **A = :" << #*A << endl;

cout << " Value of **xA = : " << x%xA << endl << endl;
cout << " Value of B = : " << B << endl;

cout << " Value of *B = : " << #B << endl;

cout << " Value of **B = : " << **B << endl << endl;
cout << " Value of C = : " << C << endl;

cout << " Value of *C = : " << *C << endl;

return 0;

The result of Program 8.11 is as follows:

Value of meptr = :0018FF38
Value of *meptr = :0018FF3C
Value of **meptr = :0018FF40
Value of **meptr = :0018FF40
Value of **xmeptr = :0018FF44
Value of **x*meptr = 11818
Value of A = :0018FF3C

Value of *A = :0018FF40
Value of **A = :0018FF44
Value of #*xA = :1818

Value of B = :0018FF40

Value of *B = :0018FF44
Value of **B = 11818

Value of C = :0018FF44

Value of *C = 11818

However, the address values may change from computer to computer. Fig. 8.3
shows such scenario and depicts how the addresses are stored in different
pointer variables. It is worth noting from the results that the values of
*x*xmeptr, x*xA, **xB, and *C are all equal to 1818, which is equal to stNo.

150 —— 8 Strings and Pointers

meptr A B C

0018FF38

Y

0018FF3C » 0018FF40 > 0018FF44

A &A=0018FF38 A &B=0018FF3C " &C=0018FF40

stNo 1818

&stNo=0018FF44 €

Fig. 8.3: Example for pointer to pointers.

8.6 Pointers and arrays

In C and C++, pointers and arrays are closely related. Pointers are very useful in array
manipulation. Declaration of a pointer to an array is just like an integer pointer or a
float pointer.

int *ptr;
int arr [51];
ptr = &arr [0];

Here, the pointer contains the address of the first element of the array. The other
alternative for pointing to the first element of an array is ptr = arr. It is important to
remember that the name of an array not followed by a subscript, is a pointer to the
first element in the array.

Once a pointer has been set to point at an element of an array, it is possible to use
the increment ++ and decrement —— operator to point to subsequent or previous
elements of the array, respectively. But incrementing or decrementing the pointer to
point beyond an array’s boundary produces a runtime error, and program may crash or
may overwrite other data or code sections of our program. So, it is the responsibility of
the programmer to use the pointer to an array wisely. One more factor to consider is the
size of the data type that the pointer points to. Suppose an integer pointer is pointing to
an integer array, when we increment the pointer, the pointer points to the next element
of the array. But in reality the pointer will contain an address that is typically 4 bytes
greater than the address of the first element of the array.

Another aspect to consider is the array transformation rule. If arr1 is an array,
then the expression arri+1 is the address of the second element of the array,
regardless of arr1’s data type. We can now use the indirection operator * in front
of the variable to retrieve the value stored at this location. Thus, *(arr1+1)gives the
value stored in the array’s second element. Parentheses are required because the
indirection operator * has a higher precedence over the addition operator. So, we can

8.6 Pointers and arrays —— 151

use this transformation rule to convert any array reference to its equivalent pointer
expression.

arr1[@] is equivalent to *x(arr1 + @)
arr1[1] isequivalent to x(arr1 +1)
arr1[2] isequivalent to x(arrl +2)

Without the parentheses the expression *arri1+1 evaluates to something totally
different, as this retrieves the value stored in the array’s first element and adds 1 to
it. However, there are some key differences between arrays and pointers. A
pointer’s value can be changed to point to some other memory location. But the
pointer represented by an array name cannot be changed. It is treated as a
constant.

float TotAmt[10];
TotAmt ++; // illegal statement
TotAmt - = 1; // illegal statement

One more point to remember is that array names are initialized to point to the first
element in the array whereas pointers are uninitialized when declared. They have
to be explicitly initialized before usage otherwise a run time error will occur.
Examples of using arrays and pointers together are presented in Programs 8.12
and 8.13.

// Program8.12

// Arrays and pointers
#include <iostream>
using namespace std;

int main ()

{
int arr[5] = {11, 8, 45, 47, 93};
int *ptr;
ptr = &arr [0];
cout << " Value of #*ptr is = " << #ptr << endl;
cout << " Value of #ptr+1 is = " << #ptr+1 << endl;
cout << " Value of arr [1] is = " << arr [1] << endl;
cout << " Value of xptr+1 is = " << *(ptr+1) << endl;
return 0;

3

The result of Program 8.12 is as follows:

152 — 8 Strings and Pointers

Value of #*ptr is = 11
Value of #*ptr+1 is = 12
Value of arr [1] is = 8
Value of *ptr+1 is = 8

Program 8.13 shows another challenging example of using arrays and pointers along
with increment operator.

// Program8.13

// Arrays and pointers
#include <iostream>
using namespace std;

int main ()

{
int al5] = {11, 8, 45, 47, 9};
*a = *(a + 2) + (*a)++;
cout << " The value of *a = " << a[@] << endl;
return 0;
}

The result of Program 8.13 is as follows:

The value of *a = 57

8.7 Array of pointers

In addition to the close relationship between arrays and pointers, we can also have
array of pointers similar to array of integers or characters. An array of pointers can be
declared as follows:

<type> *<name> [<number-of-elements];

For example: char *xptr[37;

The above line declares an array of three character pointers. Program 8.14 shows an
example of using array of character pointers. We have selected the array of character
pointers intentionally, as they have multiple benefits when using strings because as
the array holds addresses of strings, we can easily display the strings using the
pointer names. In this program, initially we created three character pointers and
then assigned them to an array of pointers. So, now the array holds the address of
strings.

// Program8.14
// Array of pointers example
#include <iostream>

using namespace std;

int main(void)

8.8 Review questions =—— 153

{
char *p1 = "Liu";
char #p2 = "Shan";
char *p3 "Jinan";
char *arr[31];
arr [0] = p1;
arr [1]1 = p2;
arr [2] = p3;
cout << " p1 = " << pl1 << endl;
cout << " p2 = " << p2 << endl;
cout << " p3 = " << p3 << endl;
cout << " arr[0] = " << arr[0] << endl;
cout << " arr[1] = " << arr[1] << endl;
cout << " arr[2] = " << arr[2] << endl;
return 0;
3

In Program 8.14, we took three pointers pointing to three strings. Then we declared
an array that can contain three pointers. We assigned the pointers 'p1', 'p2',and 'p3"'
to the 0, 1, and 2 index of array, respectively. The result of Program 8.14 is as follows:

p1
p2
p3
arr
arr
arr

Liu
Shan
Jinan

[e1 =

1]
[2]

Liu
Shan
Jinan

8.8 Review questions

1. Explain strings in C++ with an example.
2. Write a program to copy one string to another string using character arrays and
without using standard string library functions such as strcpy.

154 —— 8 Strings and Pointers

ok

© ® N o

11.
12.

What is the role of NULL terminator in strings? Explain with an example.

List at least five built-in string functions in C++.

Write a C++ program to understand the following string functions: strcmps,
strcpy, strcat, strtev,and strlen

Write a C++ program to convert a lowercase string to uppercase string.

What is a pointer? How to declare an integer pointer in C++?

Write a C++ program to understand pointers.

Write a C++ program to demonstrate functions using pointers.

. Describe the relationship between pointers and arrays using an example

program.
List the difference between arrays and pointers in C++ using examples.
Write a program to demonstrate a pointer pointing to another pointer.

9 Searching and Sorting

To know and not to act is not to know.
— Wang Yangming

9.1 Introduction

In this chapter, we will study about different sorting and searching methods. The
sorting and searching methods are very useful in today’s computing environment
and are used in almost all kinds of applications such as students’ database, telephone-
directory, employee database information, and travel database applications. Sorting is
useful to arrange the different kinds of data, for example, numbers, names, and pictures,
in a definite order, whereas searching is used to search an item in the given list.

9.2 Searching

There are different kinds of searching methods but we will be focusing on the most
common methods. In searching, the objective is to search an item from the set of
items in a given list. The list may be of numbers, values, or strings. Searching is very
useful in retrieving information from a large database. The database may have huge
amount of data and to retrieve the necessary data from such a database may take
time. To solve such problems, we use most commonly used searching algorithms
such as linear search and binary search methods.

9.3 Linear search

The linear searching is the simplest and easy searching method. It is also called
sequential search. It has a precondition (i.e., condition necessary before searching)
that there should not be any multiple or duplicate entries of the same data. To
understand this, let us consider the following list of numbers:

23,45,67,89,45,34,99

In the above list there are total seven numbers, but the number 45 is repeated twice.
So, linear search method will not apply to this list as there are multiple entries of
same data item. Let us consider following list of numbers:

1,34,67,18,11,78

https://doi.org/10.1515/9783110593846-009

https://doi.org/10.1515/9783110593846-009

156 = 9 Searching and Sorting

Here, there are together six numbers. Let us assume that we want to search the
number 18 in the list. How do we search manually? As we know, we start from first
element 1 and compare it with search value 18. If they are same, then we stop the
search, otherwise we will compare the next element in the list; we will continue this
operation until we reach end of the list. This is how the linear search method works.
Here, we search from the beginning to end until we find a successful match of the
search value. Program 9.1 illustrates the operation of linear search assuming that
there are no duplicate entries in the list.

Here,
list[] is an array of integer numbers
searchValue is the data item to be searched in the list
location returns the location of the data item

//Program 9.1

// Linear Search program
#include<iostream>

using namespace std;
#define Array_Length 6

int main()
{
int list[6] = {1,34,67,18,11,78};
int searchValue = 18;
int i=0,location = -1;
bool found = false;

for (i = 0; i < Array_Length && !found ; i++)
{
if (list[i] == searchValue)
{
found = true;
location = i;

}
if (found)
cout << "The number is Found at Location
<< location + 1 << endl;

else
cout << "The number is Not Found" << endl;

return 0;

The result of Program 9.1 is as follows:

The number is Found at Location 4

9.4 Binary search =— 157

The list of explanation to understand the complete execution flow of Program 9.1 is
as follows. 1ist[6] is the name of the array with 6 elements, 1, 34, 67, 18, 11, and 78.
The Array_Length is total number of elements in the array 1ist[6]. Table 9.1 shows the
sequence of execution of Program 9.1. Notice that the actual location of the
searchValue is location+1 as the array starts from O.

Table 9.1: Execution steps in linear search program.

searchValue i list[i] found location
Before 18 - false -1
Iteration1 18 0 1 false -1
Iteration2 18 1 34 false -1
Iteration3 18 2 67 false -1
Iteration4 18 3 18 true 3

9.4 Binary search

In Section 9.3, we studied linear search. In this section, we will study about an
improved method of linear search called binary search. This is also used to search an
item from a given list. The binary search is little faster than the linear search, but the
precondition for this method is that the list must be in sorted order. This means that
the members of the list must be arranged in ascending order (from smaller data item
to larger) or descending order (from larger data item to smaller).

In binary search method, we first compare the item to be searched with the item
in the middle position of the list. In this case the result may be of the following type:
1. Theitem to be searched is same as the item in the middle location of the array. This

means that the item is found and the location is one added to the middle location.
2. The item to be searched is smaller than the item in the middle location of the

array. This means that the item must be in the first half of the array.
3. The item to be searched is greater than the item in the middle location of the
array. This means that the item must be in the second half of the array.

We assume that there are no duplicate entries of the same items in the given list. Let
us consider the following list of numbers:

1,11,18,34,67,78,118,121
This can be declared as array 1ist[8]

int list[81={1,11,18,34,67,78,118,121};
The item to be searched is 118

i.e., int searchValue=118;

158 —— 9 Searching and Sorting

Low=0 Mid=3 High=7
0 1 2 3 4 5 6 7

Hsﬂ]| 1 | 1 | 18 | 34 | 67 | 78 | 118 |121 l

Iteration 1 Low=4| 67 | 78 | 118 |121 |

wz High=7

Iteration 2 118

Low=Mid=6 High=7
Fig. 9.1: Steps to illustrate binary search program.

Fig. 9.1: illustrates searching of item 118 in the above list.

Here,
list[8] is an array of integer numbers
searchValue is the data item to be searched in the list
location returns the location of the data item

// Program 9.2

// Binary search program
#include<iostream>

using namespace std;
#define Array_Length 8

int main()
{
int 1ist[81={1,11,18,34,67,78,118,121};
int searchvValue = 118;
int low = @, high = Array_Length-1,mid = (low + high)/2;

while(low <= high && list[mid] != searchValue)

{
if(list[mid] < searchValue)
{
low = mid + 1;
3
else
{
high = mid-1;
¥
mid = (low + high)/2;
}

if(low > high)
cout << "The number is Not Found" << endl;
else
cout<< "The number is Found at Location " << mid + 1 << endl;

9.5 Sorting =— 159

return 0;

The result of Program 9.2 is as follows:
The number is Found in location 7

The analysis of the result is as follows. The 1ist[8] is an array with values 1, 11, 18,
34, 67, 78, 118, and 121. All of them are in ascending order. The Array_Length is equal
to 8. The execution steps and values of variables are summarized in Table 9.2.

Table 9.2: Execution steps to understand binary search program.

searchValue low high mid list[mid]
Before 118 0 7 3 34
Iteration 1 118 4 7 5 78
Iteration 2 118 6 7 6 118

9.5 Sorting

In the previous sections, we have studied about the various searching methods. As
we have seen in Binary search method, the precondition to search an item in a list is
that the list must be in sorted order, that is, in ascending or descending. In this
section, we will study about commonly used sorting techniques such as insertion
sort, selection sort, and bubble sort. Sorting is arranging the numbers in an ordered
way. It may be ascending order, descending order, or ascending and descending
together. For example, if we want to know who is the tallest in a class of 20 students,
then we enter the heights of all 20 students in an array of numbers and sort them in
ascending order to find the tallest student in the class.

Let us look at the following unsorted list of heights of students (in centimeters)

156,190,163,145,178,167,155,176,154,191,169,175,187,173,165

The above list looks as following, if we sort it in ascending order

145 154 155 156 163 165 167 169 173 175 176 178 187 190 191

The above list looks as following, if we sort it in descending order

191 190 187 178 176 175 173 169 167 165 163 156 155 154 145

In the next sections, we will study about various commonly used sorting methods

160 —— 9 Searching and Sorting

9.6 Insertion sort

This section describes the insertion sort, where first an item or number in the list is
picked and compared with next and the previous items and inserted into its position
in the list. After the item is placed at its position, the algorithm tries to place the next
item. At the end of the procedure, we will see that all items are sorted in ascending
order. This is similar to arranging playing cards. We first pick a card and insert it in its
correct location. Then we try to insert the next item in the list. Insertion sort works in
the same way.

The following code illustrates the insertion sort algorithm to sort in ascending order.

for(i = 1; i < Array_Length; i++)

{
temp = list[i];
j=1i;
while (list[j-1] > temp)
{
list[j] = list[j-11;
j=3
if(j <= 0)break;
}
list[j] = temp;
3

Program 9.3 illustrates the insertion program. This program sorts seven integer
numbers in ascending order. Fig. 9.2 illustrates the execution steps to understand
insertion sorting method.

//Program 9.3
//Insertion Sort Program

#include<iostream>
using namespace std;
#define Array_Length 7

int main()
{
int list[71 = {62, 45, 38, 11, 27, 77, 593};
int i =0,j = 0,temp = 0;
for(i = 1; i < Array_Length; i++)
{
temp = list[i];
=1
while (list[j-1] > temp)
{
list[j] = list[j-11;

9.6 Insertion sort —— 161

j=31
if(j <= 0)break;
3
list[j] = temp;
}
cout << "The list of items in ascending order" << endl;
for(i = 0; i < Array_Length; i++)

{

cout << list[i]l << " ";
¥
return 0;

The result of Program 9.3 is as follows:

The list of items in ascending order
11 27 38 45 59 62 77

Here, the 1ist[] is an array of integer numbers 62, 45, 38, 11, 27, 77, and 59. The
Array_Length is the length of the array, which is equal to 7. The analysis of the
result is shown in Table 9.3 and Fig. 9.2. Table 9.3 shows the values of different
variables in different iterations and Fig. 9.2 shows the values of the array in differ-
ent iterations. As can be seen, all the elements of 1ist array have been sorted in
ascending order.

List before sorting:
[62 [45 [38 11 [27 [77 [59 |

Iteration 1
[45 [62 [38 [11 [27 [77 [59]

Iteration 2
[38 |45 [62 11 [27 [77 [59 |

Iteration 3
[11 [38 [45 [62 [27 [77 [59 |

Iteration 4
[11 J27 [38 [45 [62 [77 [59 |

Iteration 5
[10 J27 [38 [45 [62 [77 [59 |

Iteration 6
[11 [27 [38 |45 |59 [62 [77]

Fig.9.2: Execution steps to illustrate insertion sort program.

162 —— 9 Searching and Sorting

Table 9.3: Execution steps to understand insertion sort program.

i list[i]] temp
Before 0 0 0 0
Iteration 1 1 45 0 45
Iteration 2 2 38 0 38
Iteration 3 3 11 0 11
Iteration 4 4 27 1 27
Iteration 5 5 77 5 77
Iteration 6 6 59 4 59

9.7 Selection sort

In selection sort, the objective is to find the largest or the smallest element and move it
to the end of the array. In ascending order sorting, the method finds the smallest item
and moves it to the first index of the list. After smallest element being moved to the first
index of the array, the procedure is repeated to find the next smallest (bigger than the
earlier one) in the array leaving the first element, since it is already sorted. As we move
further, we will notice that the sorting continues with less number of elements in the
array. At the end of the sorting method, all elements are sorted in ascending order.

In the case of descending order sorting, the method finds the largest item and
moves it to the last index of the list. After the largest element is moved to the last
index of the array, the procedure is repeated to find the next largest (smaller than the
earlier one) in the array leaving the last element. Swapping the elements from one
index to another to the last or first does the movement of elements. This method is
called selection sort because it selects the smallest or largest elements and places at
its correct position. This is same for rest of the elements in the array too. The following
code illustrates the selection sort algorithm to sort in ascending order.

for(start = 0; start <= length-2; start++)
{

min = start;

for(i = start + 1; i <= length-1; i++)

{
if(list[i] < list[min])
//Select the location of the smallest element in the list
min = i;

3

//Swap the smallest element to its location
temp = list[start];

list[start] = list[min];

list[min] = temp;

9.7 Selection sort —— 163

Program 9.4 illustrates the sorting of seven numbers into ascending order using
selection sort procedure.

// Program 9.4
// Selection Sort Program

#include<iostream>
using namespace std;
#define Array_Length 7

int main()
{
int list[7]1 = {62, 45, 38, 11, 27, 77, 593};
int start, min, length, temp,i;
length = Array_Length;
for(start = 0; start <= length-2; start++)
{
min = start;
for(i = start+1; <= length-1; i++)
{
if(list[i] < list[min])
min = i;
}
temp = list[start];
list[start] = list[min];
list[min] = temp;
}
cout << "The list of items in ascending order" << endl;
for(i=0; i < Array_Length; i++)
{

cout << list[i] << " ";

return 0;

The result of Program 9.4 is as follows:

The list of items in ascending order
11 27 38 45 59 62 77

Here, the 1ist[7] is an array of integer numbers 62, 45, 38, 11, 27, 77, and 59. The
Array_Length is the length of the array, which is equal to 7. The analysis of the result
is shown in Table 9.4 and Fig. 9.3. Table 9.4 shows the values of different variables in
different iterations, and Fig. 9.3 shows the values of the array in different iterations.
As can be seen, all the elements of 1ist[] array have been sorted in ascending order.

164 =— 9 Searching and Sorting

Table 9.4: Execution steps to understand selection sort program.

min list[min] start temp
Before - - - -
Iteration 1 3 11 0 62
Iteration 2 4 27 1 45
Iteration 3 2 38 2 38
Iteration 4 4 45 3 62
Iteration 5 6 59 4 62
Iteration 6 6 62 5 77

List before sorting:
[62 45 [38 [11 [27 [77 |59 |

Iteration 1
[11 45 [38 [62 J27 [77 [59 |

Iteration 2
[11 [27 [38 [62 [45 [77 |59 |

Iteration 3
[11 J27 [38 [e62 [45 [77 [59 |

Iteration 4
[11 [27 [38 [45 [62 [77 [59 |

Iteration 5
[11 27 [38 [45 |59 [77 [62 |

Iteration 6
[11 [27 [38 [45 [59 [62 [77 |

Fig.9.3: Execution steps to illustrate selection sort program.

9.8 Bubble sort

The bubble sorting is the commonly used sorting algorithm and is easy and simple to

understand. This method can be explained in the following ways.

1. To start with the first and second elements in the array are compared; if they are
in order (may be ascending or descending), then the comparison continues to
second and third elements in the array until the last element is reached. If they
are in wrong order, then the two neighboring elements are swapped and
arranged in required order. This procedure is continued until the end of the
array.

2. After the first iteration, algorithmically the largest element is bubbled
(swapped) to the end of the array, in case of ascending order. In case of

9.8 Bubble sort —— 165

descending order, smallest element will be swapped to the first index of the
array.

3. The above methods are repeated until the end of the array, leaving the last
element as it is already sorted, in the case of ascending order sorting. In case of
descending order sorting, the steps 1 and 2 are repeated leaving the first element
in the array, as it is already in sorted order.

4. At the end of the sorting procedure, all elements are sorted in the desired order.

Unfortunately, this method takes more number of iterations than many other meth-
ods and thus executes very slowly. The following code illustrates bubble sort algo-
rithm to sort in ascending order.

for (i = 0; i < Array_Length-1; i++)

{
for (j = 0; j < Array_Length-1-i; j++)
{ //Compare two adjacent elements for desired order
if (list[j+1] < list[j1)
{
//If they are not in order, swap the elements
temp = list[j];
list[j] = list[j+11;
list[j+1] = temp;
b
3
}

Program 9.5 shows the implementation of Bubble sort algorithm.

// Program 9.5

// Bubble sort program
#include<iostream>
using namespace std;
#define Array_Length 7

int main()

{
int list[7]1 = {62, 45, 38, 11, 27, 77, 593};
int i,j,temp;
for (i = 0; i < Array_Length-1; i++)
{

for (j = 0; j < Array_Length-1-1; j++)
{
if (list[j+1] < list[jD)
{
temp = list[j1;

166 —— 9 Searching and Sorting

list[j] = list[j+1];
list[j+1] = temp;

}

cout<<"The list of items in ascending order"<<endl;

for(i = 0;i < Array_Length; i++)

{

cout << list[i] << " ";
}
return 0;

The result of Program 9.5 is as follows:

The list of items in ascending order
11 27 38 45 59 62 77

Here, the 1ist[]is an array of integer numbers, 62, 45, 38, 11, 27, 77, and 59. The
Array_Length is the length of the array, which is equal to 7. The analysis of the
result is shown in Table 9.5 and Fig. 9.4. Table 9.4 shows the values of different
variables in different iterations and Fig. 9.4 shows the values of the array in differ-
ent iterations. As can be seen, all the elements of 1ist[] array have been sorted in
ascending order.

List before sorting: Iteration 8

[62 [45 [38 [11 [27 |77 [59 | [38 [11 [45 [27 [62 |59 [77 |
Iteration 1 Iteration 9

[45 Te62 [38 [11 [27 [77 [59 | [38 J11 27 [45 [62 [59 [77 |
Iteration 2 Iteration 10

[45 [38 [62 [11 [27 [77 |59 | [38 [11 27 [45 [62 [59 [77 |
Iteration 3 Iteration 11

[45 138 J11 [62 [27 [77 [59 | [38 [11 [27 [45 [59 [62 [77]
Iteration 4 Iteration 12

[45 [38 [11 [27 [62 [77 [59 | (11 [38 [27 [45 [59 [62 [77]
Iteration 5 (same as iteration 4) Iteration 13

[45 [38 [11 [27 [62 [77 |59 | [11 [27 [38 [45 [59 [62 [77 |
Iteration 6

[45 [38 [11 [27 [62 |59 [77 |

Iteration 7 Iterations 14 to 21 (same as iteration 13)
[38 [45 |11 [27 [62 |59 [77 | [11 [27 [38 [45 [59 |62 [77 |

Fig. 9.4: Execution steps to illustrate Bubble sort program.

9.9 Sorting characters and strings = 167

Table 9.5: Execution steps to understand bubble sort program.

i j list[j] temp
Before 0 0 0 0
Iteration 1 0 0 45 62
Iteration 2 0 1 38 62
Iteration 3 0 2 11 62
Iteration 4 0 3 27 62
Iteration 5 0 4 62 62
Iteration 6 0 5 59 77
Iteration 7 1 0 38 45
Iteration 8 1 1 11 45
Iteration 9 1 2 27 45
Iteration 10 1 3 45 45
Iteration 11 1 4 59 62
Iteration 12 2 1 11 38
Iteration13 2 1 27 38
Iteration14 2 2 38 38
Iteration 15 2 3 45 38
Iteration 16 3 0 11 38
Iteration 17 3 1 27 38
Iteration 18 3 2 38 38
Iteration 19 4 0 11 38
Iteration 20 4 1 27 38
Iteration 21 5 0 11 38

9.9 Sorting characters and strings

In the previous sections, we have studied various sorting and searching methods
where many example programs dealt with numbers. In this section, we will focus
on sorting strings and characters. String sorting is useful in applications such as
sorting the names of students in class or university. If there are 1000 students in
a university, sorting all the names manually may take from several hours to days,
but a program in C++ may take few milliseconds or microseconds to perform
such a task. In this section, we will study some methods to sort characters and
strings.

Character sorting

As we know, each character is represented by an integer value internally. To under-
stand the various codes for characters, one can refer to ASCII character set. The

168 = 9 Searching and Sorting

>

lowercase letters are bigger than uppercase letters. This means that the character ‘a
is greater than character ‘A’. The character ‘B’ is greater than ‘A’, and so on. The
characters can be compared as we compare integers, since characters are internally
represented as numbers. Remember that each character in the array must enclose
within single quotes (¢ ¢). Program 9.6 illustrates various characters sorting using
bubble sort method.

Here, 1ist[9] is an array of characters. The Array_Length is the length of the
array, which is equal to 9.

// Program Number 9.6

// Bubble sort Program to sort characters
#include<iostream>

using namespace std;

#define Array_Length 9

int main()

{
char 1list[9] = {'a','B','A",'Z2",'f",'F"',"1",'-",'&"};
int i,j;
char temp;

for (i = 0; i < Array_Length-1; i++)

{
for (j = 0; j < Array_Length-1-1i; j++)
{
if (list[j+1] < list[jl1)
{
temp = list[j];
list[j] = list[j+17;
list[j+1] = temp;
3
3
3

cout << "The list of items in ascending order" << endl;
for(i = 0; i < Array_Length; i++)

{

cout<< list[i] <<" ";
3
return 0;

The result of Program 9.6 is as follows:

The list of characters in ascending order
&1 ABFZaf

9.9 Sorting characters and strings = 169

Sorting strings

In the previous section, we have studied about the sorting of characters.
Thecharacters can be compared in a similar manner as integers. The operators
like, >=, <,<=, and == can be applied to characters. In other way, these operators
cannot be applied to strings because strings are array of characters. Before proceed-
ing further to understand sorting strings, let us first understand the ways of
comparing two strings using the following example:

char a[] = "CHINA";
char b[] = "china";
if(strcmp(a, b) < 0)
cout<<"String "<<a<<" is smaller than String "<<b<<endl;
else
cout<<"String "<<b<<" is smaller than String "<<a<<endl;

An example to understand strcmp() method is illustrated in Program 9.7.

// Program 9.7

// Program to compare two strings
#include <iostream>

#include <cstring>

using namespace std;

int main()
{
char a[] = "CHINA";
char b[] = "china";
if(strcmp(a, b) < 0)
cout<< "String " << a <<" is smaller than String " << b <<endl;
else
cout<< "String " << b <<" is smaller than String " << a <<endl;

return 0;

The result of Program 9.7 is as follows:

String CHINA is smaller than String china

The strings are case sensitive, so string china is greater than string CHINA. The strcmp
() method returns a value of 0 if both the strings are equal. It returns a value less than
0 if string a is less than string b and returns a value greater than 0 if string a is greater
than string b. Program 9.8 illiterates the use of strcmp() method.

170 —— 9 Searching and Sorting

// Program 9.8

// Program understand strcmp() method
#include <iostream>

#include <cstring>

using namespace std;

int main()

{
char a[] = "hello";
char b[] = "Hello";
int code;
if(strcmp(a, b) < 0) // if string a is less than string b
code = 1;
else if(strcmp(a, b) == 0) //if string a is equal to string b
code = 2;
else
code = 3; //if string a is greater than string b
switch(code)
{
case 1: cout << "String a is less than string b" << endl;
break;
case 2: cout << "String a is equal to string b" << endl;
break;
case 3: cout << "String a is greater than string b" << endl;
break;
default: cout << "invalid string comparison" << endl;
3
return 0;
}

The result of Program 9.8 is as follows:

String a is greater than String b

Let us look at the following example to understand sorting of strings. In this
example, the names of the students in a class are listed for sorting.

Mary, Jack, Zhang, Rai, Ann, Lee, Liu, Bai, Devi, Shiela

Now to sort the above ten names, we will make use of an array of strings, that is,

char list[10][10] =
{"Mary","Jack","Zhang" , "Rai", "Ann" "Lee","Liu","Bai","Devi","Shiela"};

In this example, the 1ist[10][10] is a two-dimensional array of characters.
Program 9.9 illustrates the sorting of the above strings using bubble sort
technique.

9.9 Sorting characters and strings

// Program 9.9

// Program to sort array of strings
#include <iostream>

#include <cstring>

using namespace std;
#define Array_Length 10

int main()

{

char list[10][10] =

{"Mary" "Jack","Zhang","Rai", "Ann", "Lee","Liu","Bai", "Devi","Shiela"};
char temp[107;
int i,3;

for (i = 0; i < Array_Length-1; i++)

{

}

cout << "The Student's names in ascending order:

for (j = 0; j < Array_Length-1-i; j++)
{
if (stremp(list[j+11, list[j]) < @)
{
strcpy(temp,list[j1);
strepy(list[j]1,list[j+11]);
strepy(list[j+1], temp);

for(i = 0;i < Array_Length; i++)

{

cout << list[i] << endl;
3
return 0;

The result of Program 9.9 is as follows:

The Student's names in ascending order:
Ann
Bai
Devi
Jack
Lee
Liu
Mary
Rai
Shiela
Zhang

" << endl;

— 17

172 — 9 Searching and Sorting

9.10 Review questions

1. What is searching? Explain linear search and binary search methods.

2. Compare the advantages and disadvantages of linear search and binary search
methods.

3. What is sorting? Explain the selection, insertion, and bubble sorting algorithms.

4. How do you compare characters and strings? List the difference between char-
acter and strings.

5. Write a program to search number 189 in the following unsorted list using binary
search method. Hint: first sort the list using any sorting method and then apply
the binary search method.

67,90,34,2,56,78,189,45,788,69,99, 100

6. Enter the marks of ten students of your class and arrange the marks in descend-
ing order using insertion sort method and find the maximum marks and average
marks.

7. Write a program to generate the following output from the given input.

Input: 12345678910
Output: Eight, Five, Four, Nine, One, Seven, Six, Ten, Three, Two

8. Write a program to generate the following output from the given input using
multidimensional arrays

Input

56 67 89 99 78 57 80 76 75 88
Mary Jack Zhang Rai Ann Lee Liu Bai Devi Shiela
Output

78 76 75 67 57 80 56 99 88 89

Ann Bai Devi Jack Lee Liu Mary Rai Shiela Zhang

10 Functions

Though bitter, good medicine cures illness.
Though it may hurt, loyal criticism will have beneficial effects.
— Sima Qian

10.1 Introduction

In this chapter, we will study about importance of functions in C++. The general
advantage of using functions is to make the program modular and to avoid repetition
of code. Any piece of code that is used repeatedly in a program is likely to be a candidate
for being a function. It is a common practice to divide the program into manageable
pieces of code and make it as a function when the program size grows bigger. This is also
one of the major principles behind top-down and structured programming concepts.
The functions allow structuring programs in segments of code to perform individual
tasks. As we have seen in previous chapters, every C++ program has at least one
function, which is main(). In C++, a function is a group of statements that is given a
name, and which can be called from some point of the program. A programmer has the
flexibility to divide his code into separate functions. While using function, we have to
consider function declaration, function definition, and function call. The function is
called when necessary, and the control returns back after the execution of function to
main(). A function declaration tells the compiler about a function’s name, return type,
and parameters. A function definition provides the actual body of the function. The term
function is interpreted in different languages, for example, the terms such as subroutine
and procedure also carry the same meaning as functions.

Functions are the small modules of the program that perform specified oper-
ations, and they are executed when they are called. There are several benefits of
using functions. First, they are easier to code and understand. Second, the debug-
ging of a large program is easier, and this makes maintenance simple. Third, they
support reusability of code. Finally, by using functions a programmer can write a
program for complex programs by structuring them into different submodules.
There are two types of functions: user-defined functions and built-in functions
(Fig. 10.1). Built-in functions are also known as library functions. The user-defined
functions are designed by the user, and user has the flexibility to name and use
them as per the program requirement. However, built-in functions are already
defined in C++ language, and they provide flexibility to use them without under-
standing the code beneath. So, we need not to declare and define these functions as
they are already written in the C++ libraries such as iostream and cmath. To use
built-in functions, we must include the appropriate header file within the program.
Majority of sections in this chapter discuss about the user-defined functions,
whereas Section 10.10 provides an overview of built-in functions in C++.

https://doi.org/10.1515/9783110593846-010

https://doi.org/10.1515/9783110593846-010

174 =— 10 Functions

Functions

User-defined Built-in
functions functions

Fig. 10.1: Types of functions in C++.

10.2 Defining a function

Before understanding the functions in detail, let us understand the importance of
main() function. The main() function is the starting point for execution of a program.
In C++, the main() returns a value of type int to the operating system. Therefore, the
functions that have a return value should use return statement for termination. So,
the definition of main() function in C++ would look like as follows:

int main()

return 0;

}

The user-defined function in C++ has the following general structure:

<return-type> function-name (parameter-list)
{

// function body

// local variables

// return statement;

10.2 Defining a function =— 175

A function declaration informs the compiler about a function’s name, return type, and
parameters. A function definition provides the actual body of the function. As men-
tioned earlier, a function may return a value. The return-type is the data type of the
value the function returns. Some functions perform the desired operations without
returning a value. In this case, the return type is the void. The function-name is the
actual name of the function or the identifier by which the function can be called. The
function name and the parameter-1ist together constitute the function signature. A
parameter is similar to a placeholder. When a function is invoked, we pass a value to
the parameter. This value is referred to as actual parameter or argument. The
parameter list refers to the type, order, and number of the parameters of a function.
Parameters are optional, that is, a function may contain no parameters. The function
body contains a collection of statements that define the activity of the function.

As shown above, the return type statement is optional. However, if there is no
return type, we declare the return type as void. The void function indicates that the
function does something, but returns nothing to main() function. We will understand
the significance of return statement with the help of few examples. First, let us
consider Program 10.1 with void function. This is a simple program, where the main()
function calls a user-defined function names print_message(), and after printing the
statements on the screen, the control automatically returns to main(). Moreover, the
rules governing the function names are similar to any valid C++ variables.

// Program 10.1

// Demonstration of void function ()
#include <iostream>

using namespace std;

void print_message()

{

cout << " This is print_message function " << endl;

int main ()

{
cout << " This is main() function" << endl;
print_message();
cout << " Statement after function execution " << endl;
return 0;

}

The result of Program 10.1 is as follows:

This is main() function
This is print_message function
Statement after function execution

176 —— 10 Functions

The main() acts as an entry point of the program. Once the program execution begins,
the control is transferred to the print_message() function after the first cout state-
ment in the main(). Inside the print_message(), it prints the statement on the
terminal, and the control returns to the main() function. After the function call the
program execution will continue where the function call was executed. The state-
ments inside the function body are surrounded by braces {},which specify the
activity of the function.

As can be seen in Program 10.1, the function code is written before main(). Now,
just for a change, let us see what happens if we write the code after the main function
definition, as shown in Program 10.2.

// Program 10.2

// Demonstration of void function()
#include <iostream>

using namespace std;

int main ()

{
cout << " This is main() function" << endl;
print_message();
cout << " Statement after function execution " << endl;
return 0;

3

void print_message()
{

cout << " This is print_message function " << endl;

Surprisingly, this program generates errors while compiling as follows:

error C2065 : 'print_message' : undeclared identifier
error C2373 : 'print_message' : redefinition; different type modifiers

This clearly shows that there is a difference between placing the function code before
and after main(). This is because main() is not aware of the function code — if it is placed
after main() — because there is no exclusive statement to guide the main about function.
So, it is a usual practice to place the function code before main(), so that readers can look
for the main() statement. However, we can also compile and execute above program
successfully by adding a prototype statement as shown in Program 10.3.

// Program 10.3
// Demonstration of void function()
#include <iostream>

10.3 Arguments and parameters —— 177

using namespace std;

void print_message(); //function prototype

int main ()

{
cout << " This is main() function" << endl;
print_message();
cout << " Statement after function execution " << endl;
return 0;

3

void print_message()

{
cout << " This is print_message function " << endl;

3

Program 10.3 generates the same result as Program 10.1. As it is shown, the statement,
void print_message();called prototype statement, now guides the compiler about
the existence of function with same name, so that the program runs successfully.
Thus, in C++, a prototype has to be declared before a function is used. A function
prototype is information to the compiler about the return type of a function and the
parameter types that a function expects. Usually, all function prototypes are declared
at the start of a program.

A function declaration guides the compiler about a function name and how to
call the function. The actual body of the function can be defined separately. Function
declaration is required when we define a function in one source file and call that
function in another file. In such cases, we should declare the function at the top of the
file calling the function. While creating a C++ function, we provide a definition of
what the function has to perform. To use a function, we will have to call or invoke that
function. When a program calls a function, program control is transferred to the
called function. A called function performs defined task and when its return state-
ment is executed or when its function ending closing brace is reached, it returns
program control back to the main program. To call a function, we simply need to pass
the required parameters along with function name, and if function returns a value,
then we can store returned value.

10.3 Arguments and parameters

In the previous programs, we used only functions of type void. That means, these
functions do not return anything to main(), instead they perform the task required.
However, this is not the case while using functions in general. Usually, functions
return a value after performing some operations. Program 10.4 illustrates an example
function with parameters and return value.

178 =— 10 Functions

// Program 10.4

// Function with parameters
#include <iostream>

using namespace std;

int find_square(int temp)

{
return temp * temp;
3
int main()
{
int num, square_num;
cout << " Enter a number to be squared " << endl;
cin >>num;
square_num = find_square(num);
cout << " Square of " << num << " is equal to "
<< square_num << endl;
return 0;
3

The result of Program 10.4 is as follows:

Enter a number to be squared
18
Square of 18 is equal to 324

Program 10.4 is an example function where the function returns an integer to the
main(). In this program, the objective is to compute the square of number (num) using
a function with name find_square(), and returning the computed square to main().
In this case, the parameter used in the function code is temp, which is of integer type.
When a function is declared the number of arguments passed to the function and
their names must also be indicated. The name chosen for an argument is called its
formal parameter name. Formal parameters must be declared inside a function
before they are used in the function body. Always note that variables defined inside a
function are known as automatic variables since they are automatically created
each time the function is called and are destroyed once the function is executed.
Their values are local to the function; they can be accessed only inside the function in
which they are defined and not by other functions.

In Program 10.4, the num variable in the main() is called argument, and the
temp in find_square() is called as parameter. Some authors use parameters and
arguments interchangeably. However, the arguments are values passed into a
function call, and parameters are variables defined in the function to receive
them. In some sources, there are definitions for actual argument and formal
parameter. The formal parameter is what is in the function declaration/definition/

10.3 Arguments and parameters =—— 179

prototype; the actual argument is what is passed when calling the function, an
instance of a formal parameter. In program shown in Fig. 10.2, the num is the actual
argument, and the temp is the formal parameter. Each parameter consists of a type
followed by an identifier, with each parameter being separated from the next by a
comma. Each parameter looks very much like a regular variable declaration (for
example: int x), and in fact acts within the function as a regular variable that is
local to the function. The purpose of parameters is to allow passing arguments to
the function from the location where it is called from.

#include <iostream>
using namespace std; Function declaration |

int find_square(int temp);

int main () | Function call | |Function argument num

{

int num, square_num;
cout<<”Enter a numbér to be squa
cin>>num;
square_num=find_square(num);

cout<<”Square of "A<<num<<” is equal to "<<square_num<<endl;
return 0;

"<<endl;

Function definition | v

int find_square(int temp)

return tempxtemp;

} |Formal parameter temp

Fig. 10.2: Terminologies related to functions.

It is very important to remember that arguments and parameters must match
with the data type, and more than one argument or parameters can be separated
by commas. When functions return a value to the calling routine, a return()
statement needs to be used in the called function. Also, when the function is
declared we must declare the return type. In the above program, the value
returned by the find_square() is stored in the variable square_num in the calling
program. One can call a function from anywhere within a program. The best use
of functions is to organize a program into distinct parts. The function main() can
only contain calls to the various functions. The actual work of the program is
performed in the functions following main(). Moreover, the return type of the
function must be same as the data type of value returned, for example, in this
case, the int return type in function find_square(). This is similar to the data
type of tempxtemp.

180 — 10 Functions

10.4 Scope of function variables

In this section, we will consider some complex examples related to functions. One
of the main benefits of function is that they can be called number of times, if
necessary, and also a function can in turn call another function, and so on. If
there is more than one function, sometimes, it may be necessary to use the same
variable throughout the functions. So, we have to consider the scope of local and
global variables.

The variables related to the function can be declared in different regions of the
program. The scope in general is a region where a variable holds its value. In C++, a
variable can be declared in three places: (a) inside a function or a block, which is
called local variables; (b) in the definition of function parameters, which is called
formal parameters; and (c) outside of all functions, which is called global variables.
In this section, we will describe the importance of local and global variables.

Local variables

Local variables are local to a function, which are declared inside a function or block.
They are created every time a function is called and destroyed on returning from that
function. These variables cannot be accessed outside a function or block of code.
Program 10.5 demonstrates the application of local variables.

// Program10.5

// Demonstration of local variables
#include <iostream>

using namespace std;

void fun(int t1, int t2)

{
int a, b; //local variables within function
a=t1;
b = t2;
cout << " Inside function : a = " << a
<< ", b="<<b << endl;
}
int main()
{
int a, b;// local variables within main()
a=2;
b = 3;
fun(a, b);
cout << " Inside main : a = " << a<< ", b = " <<b << endl;

a = 4;

10.4 Scope of function variables =— 181

b =5;

fun(a, b);

cout << " Inside main : a = " << a<<", b = " << b << endl;
return 0;

The result of Program 10.5 is as follows:

Inside function : a = 2, b = 3
Inside main : a = 2, b = 3
Inside function : a = 4, b = 5
Inside main : a = 4, b = 5

In Program 10.5, there are local variables declared within main(), as well as inside the
function fun() as a, and b, which are integer variables. Although they share the same
name in main() and fun(), they are totally different variables because their scope is
limited to main() and fun(),respectively. So, this can be proved by calling the
function again, as shown in the Program 10.5. In this program, the integer variables
t1 and t2 are called formal parameters because they act as temporary locations to
copy the values supplied from main through fun(). In this case, t1 and t2 obtain
variables a and b, respectively, from main through fun(a, b).

As mentioned earlier, the variables defined inside a block are also called local
variables. One may wonder the meaning of block in this context. How they are different
from functions? Program 10.6 provides an example of local variables within a block,
where local variables have automatic duration, which means that they are created at the
point of definition and destroyed when the block they are defined in is exited. This is the
reason why local variables are also termed as variables having block scope. Variables
defined inside nested blocks are destroyed as soon as the inner block ends. Variables
defined inside a block can only be seen within that block. Because each function has its
own block, variables in one function cannot be seen from another function:

// Program 10.6

// Demonstration of local variables
#include <iostream>

using namespace std;

int main()
{
int a, b;//local variables within main()
a=2;
b = 3;
cout << " Inside main : a = " << a<<", b = " << b << endl;
{ //block begins

int a, b; //local variables within this block

182 — 10 Functions

a = 4,

b =5;

cout << " Inside block : a = " << a
<", b = " << b<<endl;

} //block ends
cout << " Inside main : a = " << a<< ", b = " << b << endl;
return 0;

The result of Program 10.6 is as follows:

Inside main : a = 2, b = 3
Inside block : a = 4, b =5
Inside main : a = 2, b = 3

As shown in Program 10.6, the variables a and b are declared twice; once within main()
and another within a block enclosed within braces. The variables declared within main
() and within the block have entirely different scope. As soon as new block begins, the
variables created gain a new scope, and their scope ends once the block ends.

Global variables

The purpose of global variables is to facilitate a mechanism, so that all functions and
blocks can use the same variable when necessary. They are defined outside of all
functions, usually on top of the program. In contrast to the local variables, the global
variables hold their values throughout the lifetime of program after they are declared.
They can be accessed by any function. Program 10.7 shows an example of using
global variables.

// Program10.7

// Demonstration of global variables
#include <iostream>

using namespace std;

int a , b; //global variables, a &b

void fun(int t1, int t2)

{
a=t1;
b = t2;
cout << " Inside function : a = " << a
<", b = " <<b<<endl;

10.5 Static variables = 183

int main()
{
a=2;
b = 3;
cout << " Inside main : a = " << a<<", b = " << b << endl;
{ a =4
b =5;
cout << " Inside block : a = " << a
<", b = " <<b<<endl;
}
fun(a, b); //calling to function fun()
cout << " Inside main : a = " << a<< ", b = " << b << endl;
return 0;

The result of Program 10.7 is as follows:

Inside main : a = 2, b = 3
Inside block : a = 4, b = 5
Inside function : a = 4, b =5
Inside main : a = 4, b = 5

As it is very clear from Program 10.7, the global variables hold value throughout the
program, including functions and blocks. That means, only the copy of variables a
and b is created in this program, and whenever the values of a and b change, they
acquire new values as the program progresses.

10.5 Static variables

So far, we have studied about the role of local and global variables. There is a
keyword in C++, static, which is used to give special characteristics to an element.
Only once in a program lifetime, static elements are allocated storage in static
storage area and they have a scope till the program lifetime. They can be used
with static variable in functions, static class objects, static member variable in
class, and static methods in class. However, as we have not covered the classes
and objects, we limit our discussion only to static variables in this chapter.

Static variables are declared by prefixing the keyword static to a variable
declaration. Unlike local variables these are not destroyed on return from a function,
however, they continue to exist and retain their value. These variables can be
accessed upon reentering a function. Program 10.8 demonstrates an example of the
static variables without static keyword.

184 —— 10 Functions

// Program10.8

// Demonstration of static variables
#include <iostream>

using namespace std;

void fun()
{
int temp = 0;
cout << temp << endl;
temp++;
}
int main()
{
int i;
for (i = 0; i <5; i++)
{
fun();
}
return 0;
}

The result of Program 10.8 is as follows:

o O O o

The results shown above serve no purpose, as it is clear that the variable temp is
initialized to zero each time when it is called from main(); it is natural to have all the
values as zeroes. This shows the variable temp is a local variable, and it is unable to
retain the incremented value through temp ++;. Now, lets us change the variable temp
as static, as shown in Program 10.9.

// Program10.9

// Demonstration of static variables
#include <iostream>

using namespace std;

void fun()

{
static int temp = 0;
cout << temp << endl;
tempt+;

10.6 Scope resolution operator —— 185

int main()
{ . .
int 1;
for (i = 0; i <5; i++)
{
fun();
}
return 0;
¥

The result of Program 10.9 is as follows:

AW N =

When used inside function, static variables are initialized only once, and from there
onward they hold the value even through function calls again. These static variables
are stored on static storage area and not in stack. If we do not use static keyword,
the variable count is reinitialized every time when fun() function is called and gets
destroyed each time when fun() functions ends. However, if we make it static, once
initialized, count will have a scope till the end of main() function and it will carry its
value through function calls too. Moreover, if we do not initialize a static variable, it
is by default initialized to zero.

10.6 Scope resolution operator

The scope resolution operator (::) is used when we want to use a global variable that
also has a local variable with same name. This is also used to define a function outside
of a class, which we will discuss in the next chapters. The scope resolution operator
helps to identify and specify the context to which an identifier refers. However, in many
cases it is used to access a global variable when there is a local variable with same
name. Program 10.10 shows a simple example of using scope resolution operator.

// Program10.10

// Demonstration of scope resolution operator
#include <iostream>

using namespace std;

int a = 2; //global variables, a&b

186 —— 10 Functions

int main()
{
int a = 1;
cout << " Inside main : local variable : a = " << a << endl;

cout << " Inside main : global variable : a =
<< ::a << endl;
return 0;

The result of Program 10.10 is as follows:

Inside main : local variable : a = 1
Inside main : global variable : a = 2

As shown in the program, the variable with same name a is declared both as global
and local variable. The global variable holds the value 2, and the local variable holds
the value 1. Now, using scope resolution operator (::), we can access the global
variable with same name. Program 10.11 is another example of using scope resolution
operator along with functions.

// Program10.11

// Demonstration of scope resolution operator
#include <iostream>

using namespace std;

int a = 6, b = 7; //global variables, a&b

void fun()
{
int a =4, b =5
cout << " Inside function, local variables : a =
<< a<<", b = " << b << endl;
cout << " Inside function : global variables : a =
<< :xa<<", b = "<< ::b<<endl;

int main ()
{
inta=1, b=2;
cout << " Inside main : local variables : a =

Ka<<", b = "< b<<endl
cout << " Inside main : global variables : a = "
<< :ra<< ", b = "< ::b<<endl;
fun(); // calling to function fun()
return 0;

The result of Program 10.11 is as follows:

Inside main : local variables : a

Inside main : global variables :

Inside function,

a
local variables : a

Inside function : global variables : a

10.7 Functions and pointers

10.7 Functions and pointers

— 187

It is important to remember that a function can return only one value. However, using
pointers we can change the value of more than one variable within a function. This
can be done by passing the pointers to the function, so that the function will not alter
the pointer but the contents of the pointer. Program 10.12 shows an example where
two integer pointers a and b are passed to a function called fun().Whenever we are
calling a function that expects a pointer as one of its arguments, we have to pass the
address of a variable to it. So, in the program address x(i. e. &x) and y(i. e. &y) are

passed as arguments to function fun().

// Program10.10

// Function using pointers
#include <iostream>

using namespace std;

void fun(int *a, int *b)

{
int temp;
temp = *b;
*b = *a;
*a = temp;

3

int main()

{
int x = 10, y = 20;
cout << " Value of x before function call
cout << " Value of y before function call
fun(&x, &y);
cout << " Value of x after function call
cout << " Value of y after function call
return 0;

3

The result of Program 10.12 is as follows:

" << x << endl;
" <<y << endl;

" << x << endl;
" <<y << endl;

188 — 10 Functions

Value of x before function call = 10
Value of y before function call = 20
Value of x after function call = 20
Value of y after function call = 10

However, when we send an array to a function as parameter, we do not have to
specify the address operator because the name of the array itself is the address of the
first element in the array. Consider Program 10. 13 as an example, where an entire
array with five integer elements is passed as an argument. However, in this case, we
have passed the array contents to another array with name temp.

// Program10.13

// Function using arrays
#include <iostream>
using namespace std;

void fun(int temp[1])

{
int i;
cout << " Values of array inside function " << endl;
for (i = 0; i <5; i++)
cout << temp [i] << " "}
cout << endl;
}
int main()
{
int arr[5] = {10, 15, 12, 11, 8};
int i;
cout << " Values of array inside main " << endl;
for (i = 0; i <5; i++)
cout << arrf[il<< " ";
cout << endl;
fun(arr);
return 0;
}

The result of Program 10.13 is as follows:

Values of array inside main

10 15 12 11 8

Values of array inside function
190 15 12 11 8

We can also use function fun() in alternative way to obtain the array elements as shown:

void fun(int *temp)

{

10.7 Functions and pointers =—— 189

int i;
cout << " Values of array inside function " << endl;
for (i1 =0; i <5; i++)
cout << temp[i] << " ";
cout << endl;

In the previous examples, we studied the functions using pointers. We can also create
function pointers in C++, just like normal data types such as int, float, or char. A
function pointer can be declared as:

<return-type-of-function> (*<name-of-pointer>)(type-of-function-arguments);

For example: int (xfptr)(int, int)

The above line declares a function pointer ‘fptr’ that can point to a function whose
return type is ‘int’ and takes two integers as arguments. Program 10.14 shows an
example of using function pointers.

// Program10.14

// Function pointers
#include <iostream>
using namespace std;

int fun (int a, int b)

{
cout << "a = " << a << endl;
cout << "b = " << b << endl;
return 0;
¥
int main()
{
int (xfptr) (int, int); // Function pointer
fptr = fun; // Assign address to function pointer
fun (6, 9);
fptr (7, 8);
return 0;
3

The result of Program 10.14 is as follows:

o v T o
]
0 N W o

In Program 10.14, function ‘fun’ is defined and takes two integers as input and
returns an integer. In the main() function, function pointer ‘fptr’ is declared and

190 — 10 Functions

then assigned a value. The name of the function can be treated as starting
address of the function so we can assign the address of function to function
pointer using function’s name. So from the output we can see that calling the
function through function pointer produces the same output as calling the func-
tion from its name.

10.8 Recursive functions

As already mentioned, a main() function can call a function and in turn that function
can call another function. This seems surprising as one might think is it possible to
make a function which can call to itself? In C++, a recursive function is such
function that can call itself. We can demonstrate the applications of recursive
functions, especially in carrying out operations, which follow the similar procedures
in their subsequent steps. This means, a recursive call can substitute iteration state-
ments (such as for, while, and do-while). Generally speaking, recursive solutions
are simpler than iterative solutions. However, recursive solutions are slightly less
efficient than the iterative ones.

Recursive functions are functions calling themselves repeatedly until a certain
condition is met. Recursion involves two conditions. First, the problem must be
written in a recursive form and second, the problem should have a terminating
statement. If the terminating statement is missing, then the function goes into an
endless loop. The most common example of a program demonstrating recursion is
calculation of factorial of an integer number. The definition for finding the factorial of
a number n is as follows:

n! = nx(n-1)x(n-2)x.....3x2x1

First, let us understand a program for finding a factorial of an integer number without
using recursion, using the above definition.

// Program10.15

// Factorial of a number using iteration
#include <iostream>

using namespace std;

int fact(int n)

{
inti=90, f=1;
while(i < n)
{

1++;

f = f*i;

10.8 Recursive functions = 191

}

return f;

int main()

{
int num = 0, result;
cout << " Enter a number ";
cin >> num;
result = fact(num);
cout << " Factorial of number " << num << " = " << result << endl;

return 0;

A sample result of Program 10.15 is as follows:

Enter a number 4
Factorial of number 4 = 24

In Program 10.15, the iterative statement while is used for calculating the factorial of a
number. We can easily compute the factorial of a number n. However, in this case the
fact() function is called only once from main(). Now, let us modify the definition of
factorial as follows:

n! = nx(n-1)x(n-2)x..... 3x2x1
n! = nx(n-1)!

n! = nx(n-1)x(n-2)!

n! = nx(n-1)x(n-2) x.....3!

n! = nx(n-1)x(n-2)x.....3x2!
n! = nx(n-1)x(n-2)x..... 3x2x7!

With this analysis, we can arrive at the following recursive definition:

n! = nx(n-1)!, for all values of n>0
n! =1, forn=20

If we represent n! as fact(n), then the above definition transforms as follows:

fact(n) = n x fact(n-1)!, for all values of n>0
fact(n) 1, forn =10

Now, let us rewrite the same program for performing the same task using recursive
function fact() as shown in Program 10.16. The only precondition to this program is
that the value of n must be either greater or equal to O.

192 — 10 Functions

// Program10.16

// Factorial of a number using recursion
#include <iostream>

using namespace std;

int fact(int n)

{
if(n == 0)
return 1;
else
return nxfact(n-1);
}
int main()
{
int num = 0, result;
cout << " Enter a number ";
cin >> num;
result = fact(num);
cout << " Factorial of number " << num << " = " << result << endl;
return 0;
3

A sample result of Program 10.16 is as follows:

Enter a number 5
Factorial of number 5 = 120

Now, let us understand how to design a recursive program in general. In the design of
arecursive program, we usually follow a sequence of steps. First, we need to identify
the basic cases and determine how they are solved. For example, in the case of
factorial, the only basic case used in the function is n = 0. Similarly, we could have
considered a more general basic case (i.e. n < 1). In both the cases, the function should
return 1. The second step is to determine how to resolve the nonbasic cases in terms of
the basic cases, which we assume can be solved. In the case of a factorial, we know
that the factorial of a number n greater than zero is n*fact(n-1). Finally, we must make
sure that the parameters of the call move closer to the basic cases at each recursive
call. This should guarantee a finite sequence of recursive calls that always termi-
nates. In the case of a factorial, n-1is closer to 0 than n. Therefore, we can guarantee
that this function will terminate.

Let us consider the sequence of program execution for num = 3. If we enter num = 3,
the statement result = fact(num), becomes result = fact(3), and the sequence of
program control jumps to fact() function, where the formal parameter n becomes 3.
After that the program continues its execution as shown in Fig. 10.3, where we can
see the successive fact() functions with parameters. In this diagram, the values of

10.8 Recursive functions = 193

N\Ct@)
int fact(int n) @
{

if(n==0) return 1;
returns 6 to else return nxfact(n-1);

man0 [y ST
i

int fact(int n)

t 2 {
returns if(n==0) return 1; @
else return pxfact(n-1);

retu& i

fact(2)

fact(1)

3

fact(0)

int fact(int n)
{
returns 1
if(n==0) return 1;@
else return nxfact(n-1);
3

Fig. 10.3: Diagram shows the sequence of execution of a recursive factorial function fact() with
parameter 3.

formal parameter n is shown within the circles, whereas the return values from each
factorial function is shown within ellipses. We can derive many conclusions with
this. First, each time a function is called, a new instance of the function is created,
as shown in the Fig. 10.3; each box indicates a new instance of factorial function
with different parameter. Moreover, as soon as the function returns a value, the
instance is destroyed. Second, the creation of a new instance only requires the
allocation of memory space for data, including parameters and local variables.
Finally, the instances of a function are destroyed in reverse order of their creation,
that is, the last in first out (LIFO) order, where instance created first will be
destroyed last and vice versa. The recursion can also be used for implementing
other programs such as generation of Fibonacci numbers and solving the Tower of
Hanoi program.

Generating Fibonacci numbers using recursion
The series of the form 1, 1, 2, 3, 5, 8, 13, 21,. . . and so on are called Fibonacci numbers.

as every number after the first two is the sum of the two preceding ones. In other
words, an arbitrary number F,, in the series is defined by

194 — 10 Functions

Fn = Fn-1+Fn-2

with F; =1 (or 0 sometimes) and F, = 1 as initial values. Program 10.17 shows the code
to generate Fibonacci series using recursion, where for a given number n, it returns
the Fibonacci number of order n. The precondition in this program is that the value of
n should be greater than or equal to 0. The basic case is when the value of n is either
equal to O or 1, the program returns 1.

// Program10.17

// Fibonacci series using recursion
#include <iostream>

using namespace std;

int fib(int n)

{
if(n <= 1)
return 1;
else
return fib (n -2) + fib(n -1);
}
int main()
{
int num = 0, 1i;
cout << " Enter a number ";
cin >> num;
cout << " Fibonacci series for num = " << num << endl;
for (i = 0; i < num; i++)
{
cout << fib(i)<< " ";
}
cout << endl;
return 0;
}

A sample result of Program 10.17 is as follows:

Enter a number 10
Fibonacci series for num = 10
1123581321 3455

We can analyze this program considering the number of calls made for sample input,
num = 5. In this case, the fib(5) is called once, fib(4) is called once, fib(3) called twice,
fib(2) called three times, fib(1) called five times, and fib(0) is called three times.
Figure 10.4 shows the sequence of calls.

10.8 Recursive functions = 195

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

’ fib(2) ‘ ’ fib() ‘ ’ fib() H fib(0) H fib() H fib(0) ‘

fib(1) fib(0)

Fig. 10.4: Diagram showing the sequence of execution of a recursive Fibonacci series function fib()
with parameter 5.

Tower of Hanoi program using recursion

The Tower of Hanoi is a mathematical puzzle widely popular among programmers. In
this puzzle, there are three posts (A, B, C), as shown in the Fig. 10.5. The objective is to
move the disks in the post A to C using the intermediate post B. The disks in the posts

[Disk1]
[Disk2]
[sk 3] Disk 3 Disk 1
A B C A B C
Disk 1
[Disk3] [Disk2] [Disk1] Disk 3 Disk 2
A B C A B C
Disk1
Disk 2 Disk 3 [Disk1] [Disk2 1] Disk 3 |
A B C A B C
[LBt %I]
is Dis
[Disk1] Disk 3 [Disk3]
A B C A B C

Fig. 10.5: Sequence of steps to move the disks from post A to post C in Tower of Hanoi program.

196 —— 10 Functions

are organized in ascending order, that is, the small disk is placed above the bigger
one. So, while moving these disks to C from A, one needs to follow few rules. First,
only one disk can be moved at a time. Second, during each movement only upper disk
from a stack can be removed, and placed on top of another post. Finally, no bigger
disk may be placed on top of a smaller disk.

If we have just three disks, the puzzle can be solved in seven moves. The minimal
number of moves required to solve a Tower of Hanoi puzzle is 2"-1, where n is the
number of disks. This puzzle dates back to an ancient story about an Indian temple
with large room consisting of 64 golden discs. This puzzle is also known as the Tower
of Brahma puzzle. As per this ancient puzzle, if the priests were able to move the disks
at a rate of one per second, using the smallest number of moves, it would take them
2%-1's or roughly 585 billion years or 18, 446, 744, 073, 709, 551, 615 turns to finish.
Figure 10.5 shows the sequence of moving three disks from one post to another.
Program 10.18 shows the implementation of Tower of Hanoi puzzle using recursion.

// Program10.18

// Tower of Hanoi program using recursion
#include <iostream>

using namespace std;

void towers(int n, char frompeg, char topeg, char auxpeg)
{
if(n == 1)
{
cout << endl << " Move Disk 1 from Post "
<< frompeg << " to Post " << topeg;
return;
}
towers(n-1, frompeg, auxpeg, topeg);
cout << endl << " Move Disk " << n << " from Post "
<< frompeg << " to Post " << topeg;
towers(n-1, auxpeg, topeg, frompeg);

int main()
{
int n;
cout << " Enter the number of disks : ";
cin >> n;
cout << " The Tower of Hanoi involves following moves
<< endl << endl;

towers(n, 'A', 'C', 'B");
cout << endl << endl << " End of the Program " << endl;
return 0;

10.9 Inline functions = 197

A sample result of Program 10.18 is as follows:

Enter the number of disks : 3
The Tower of Hanoi involves following moves

Move Disk 1 from Post A to Post C
Move Disk 2 from Post A to Post B
Move Disk 1 from Post C to Post B
Move Disk 3 from Post A to Post C
Move Disk 1 from Post B to Post A
Move Disk 2 from Post B to Post C
Move Disk 1 from Post A to Post C

End of the Program

10.9 Inline functions

When using functions, few questions might arise: It is worth using functions at all times?
Are they fast? When we use a function, we come across calling function and called
function. After the execution of function code is over, the control returns back to the
calling function. It is obvious to imagine that these procedures are time consuming. Is
there any way of making the programs run faster? Inline functions provide one simple
solution in this context. They replace the function calls with the code of the function
itself. However, one of the disadvantages is that this method greatly increases the size of
the program. So, the inline functions are introduced as an optimization technique used
by the compilers especially to reduce the execution time.

The inline functions are a C++ enhancement feature to increase the execution
time of a program. The inline functions are also used along with C++ classes (the
classes will be discussed in next chapters). This means, when the function is inline
the compiler places a copy of the code of that function at each point where the
function is called at compile time. Compiler replaces the definition of inline functions
at compile time instead of referring function definition at runtime. To make a
function inline, we have to use the inline keyword before the name of a function.
Program 10.19 shows a simple example of using inline function.

// Program10.19

// Inline function example
#include <iostream>

using namespace std;

inline void print_message()

{

cout << " This is inline function " << endl;

198 — 10 Functions

int main()

{
cout << " This is main() function " << endl;
print_message();
return 0;

}

The result of Program 10.19 is as follows:

This is main() function
This is inline function

10.10 Built-in functions

As mentioned in the Introduction section, the C++ standard library provides several
built-in stand-alone functions that can be used for various general purposes, such as I/
0, string and character handling, mathematical operations, time, date, localization,
and dynamic memory allocation. For example, function strcat() to concatenate two
strings, function memcpy () to copy one memory location to another location, and many
more functions. The function library in C++ is inherited from C and incorporates all the
Standard C libraries as well, with small additions. The C++ standard library provides a
large number of library functions under different header files for performing common
tasks. Some of the C++ header files and their descriptions are provided in Table 10.1
Built-in functions, however, are declared in header files using the #include directive

Table 10.1: C++ standard header files.

Header File Name Description

cmath Declares functions for mathematical operations

cstdlib For general purpose functions

iostream Functions for standard 1/0

cstring Functions to manipulate C-style string

cctype Functions to classify and transform individual characters
csignal To handle signals

clocate Internationalization support task such as date/time formatting
cwctype For classifying and transforming individual wide characters
cstdio C Standard Input and Output Library

cwchar To work with C wide string

cuchar Convert between multibyte characters and UTF-16 or UTF-32
csetjmp Bypass the normal function call and return discipline

cfenv Access floating point environment

ctime Functions to work with date and time

10.10 Built-in functions =— 199

on the top of the program file, for example, for common mathematical calculations, we
include the file cmath with the #include <cmath> directive that contains the function
prototypes for the mathematical functions in the cmath library. Appendix A provides
list of some of the commonly used built-in functions in C++.

For example, to write mathematical programs involving floating point calcula-
tions and so on, we will undoubtedly require access to the mathematics library. The
functions and associated macros are defined in the include file <cmath>. In Table 10.2,
x and y are of type double, n is an int, and all functions return double. Angles for
trigonometric functions are expressed in radians rather than degrees.

Table 10.2: Example math functions in C++.

Math Function Description

sin(x) Sine of x

cos(x) Cosine of x

tan(x) Tangent of x

exp(x) Exponential function e*

log(x) Natural logarithm In(x), x>0.

logl1o(x) Base 10 logarithm log;0(x), x>0

pow(x, y) x¥, a domain error occurs if x = 0 and y<= 0, or if x<0 and y is not an integer
sqrt(x) Square root of x, xz 0.

ceil(x) Smallest integer not less than x, as a double
floor(x) Largest integer not greater than x, as a double
fabs(x) Absolute value |x|

Program 10.20 shows an example of using mathematical built-in functions in C++.

// Program 10.20

// Built-in functions example
#include <iostream>

#include <cmath>

using namespace std;

int main()
{
double x = 1.0, y =2.0, z = -3.45;
cout << " Math-sin example : " << sin(22.0/42.0) << endl;
cout << " Math-cos example : " << co0s(0.0) << endl;
cout << " Math-tangent example : " << tan(22.0/28) << endl;
cout << " Math-exp example : " << exp(x) << endl;
cout << " Math-log(base e) example : " << log(2.718212) << endl;
cout << " Math-log(base 10) example : " << logl10(100.0) << endl;
cout << " Math-power example : " << pow(4,y) << endl;

cout << " math-square root example : " << sqrt(y) << endl;

200 = 10 Functions

cout << " Math-ceil example : " << ceil(z) << endl;

cout << " Math-floor example : " << floor(z) << endl;

cout << " Math-absolute value example : " << fabs(z)<< endl;
return 0;

The result of Program 10.20 is as follows:

Math-sin example : 0.500183
Math-cos example : 1

Math-tangent example : 1.00063
Math-exp example : 2.71828
Math-log(base e) example : 0.999974
Math-log(base 10) example : 2
Math-power example : 16
math-square root example :1.41421
Math-ceil example : -3

Math-floor example : -4
Math-absolute value example : 3.45

10.11 Review questions

o1

9.

Describe a function? How user-defined functions are different from main()
function?

How user-defined functions are different from built-in functions? Discuss.
Describe these terms related to functions: function name, function signature,
return type, function prototype, actual parameter, formal parameter, and func-
tion arguments.

Describe the general format of function in C++.

Write a program in C++ to demonstrate user-defined function.

Write an executable program to demonstrate passing arguments frommain() toa
function.

Explain the following keywords using an example with relation to functions:
(a) main, (b) return (c) void, and (d) inline.

What is the meaning of scope of function variables? Describe the role of global
and static variables in C++ functions.

What is recursion? Write a C++ program to demonstrate recursion.

10. Write a C++ program to find a factorial of a number using recursion.

11.
12.
13.
14.

10.11 Review questions =— 201

Write a C++ program to generate n Fibonacci numbers using recursion.

Write a C++ program to demonstrate Tower of Hanoi program using recursion.
Write a program in C++ to describe inline functions.

List at least five mathematical functions available in C++, and write a program to
demonstrate their application.

11 Structures and Unions

Only wisdom and virtue can truly win men’s devotion.

— Liu Bei

11.1 Introduction

A structure is a user-defined data type that defines a list of variables under one
name in a block of memory, allowing different variables to be accessed through a
single variable. A structure can be defined by using struct keyword in C++. So
far, we have understood how the variables are used to store information of
different data types. However, all these variables store a single type of informa-
tion, such as an integer, a floating-point number, or a character. On the other
hand, the arrays store more than one elements of same data type. However, in
reality, we deal with different data types, and hence cannot use same data type
for everything. For example, let us consider contact details of a person, which
includes:(a) his/her name that is an array of characters or a string; (b) the address
that is also an array of characters; (c) the phone number that is of integer type
rather than characters. Hence, to store the contact details of a person, we have to
consider the use of multiple data types under a single name, such as address. We
can consider another example of an item in a grocery store. Each item in the store
comprises of different types of information such as item name, price, manufac-
turer name, and item number. The item number is usually a unique number used
for billing information. All the information about an item does not belong to same
data type. The item name is an array of characters; the price is a floating-point
number; the dates include integers; and the item number is also an integer. The
following statements show how we can individually declare these details in C++
by using different data types.

char item_name[10]; // for example biscuit named "SweetBest"
float price; // for example 7.5 RMB

char manufacturer[40]; // for example Qingdao Biscuits Ltd.

int item_no; // for example 9341

Even though all this information is related to one specific item, we have still declared
the information in different statements. However, if we use structures, all these
statements can be declared under a single name. In C++, the arrays allow us to define
variables that combine several data items of the same kind, but structure is another
user-defined data type that allows us to combine data items of different kinds. In the
next section, we will understand the ways of defining structures in C++.

https://doi.org/10.1515/9783110593846-011

https://doi.org/10.1515/9783110593846-011

204 =— 11 Structures and Unions

11.2 Defining structures

A structure can be considered as a template used for defining a collection of variables
under a single name. Structures help a programmer in grouping elements of different
data types into a single logical unit. Unlike structures, arrays permit a programmer to
group the elements of same data type only. To define a structure, we must use the
struct keyword. The struct keyword defines a new data type that has more than one
member. The format to define a structure is as follows:

struct [structure-tag]

{

member definition;
member definition;

member definition;
} [one or more structure variables];

The structure tag is optional, and each member is defined as a normal variable is
defined, such as int i; or float f; or any other valid variable. At the end of the
structure’s definition and before the final semicolon, we can specify one or more
structure variables; but it is optional. Considering the previous example of an
item, we can define a structure called item with four elements item_name, price,
manufacturer, and item_no, as shown below:

struct item

{
char item_name[10];
float price;
char manufacturer[407;
int item_no;

3

The previous statement does not define any variables, but it does define a new type,
and the name of the type is i tem. This means that when we first define a structure ina
file, the statement simply tells the C++ compiler that a structure exists, but it does not
allocate any memory to it. Memory allocation takes place only when a structure
variable is declared. The struct keyword defines item as a structure, and the
elements making up an object of this type are defined within the braces. Note that
each line defining an element in the struct is terminated by a semicolon, and that a
semicolon also appears after the closing brace. The elements of a struct can be of
any type, except the same type as the struct being defined. A structure type is
usually defined at the beginning of a program, usually just after the main() statement

11.3 Initializing structures =—— 205

in a file. Thereafter, a variable of this structure type is declared and used in the
program. For example:

struct item Biscuit;
We can also define a variable of struct item as shown below:

struct item

{
char item_name[1017;
float price;
char manufacturer[407;
int item_no;

} Biscuit;

Similarly, to define more than one variables of struct item, we can use any of the
following statements.

struct item Biscuit, Candy;

Or,

struct item

{
char item_name[10];
float price;
char manufacturer[407;
int item_no;

} Biscuit, Candy;

11.3 Initializing structures

The first way to assign values to members of a struct object is to define their initial
values in the object definition. Suppose if we want to initialize an item to contain the
data for one of your favorite biscuit names “SweetBest,” with price tag 7.50 RMB,
item number 9341, and manufactured by “Qingdao Biscuits Ltd.” We can initialize
the structure as follows:

struct item Biscuit =
{
"SweetBest",
7.5,
"Qingdao Biscuits Ltd",
9341

206 —— 11 Structures and Unions

The initializing values appear in an initializer list in much the same way as for
elements of an array. However, the sequence of initial values in an array needs to
be the same as the sequence of the members of the struct in its definition. Each
member of the Biscuit structure has a corresponding initial value assigned to it, as
indicated in the comments. The syntax for initializing structure variables is different
from that of standard variables. Since item_name and manufacturer members are
character arrays or strings, simply using assignment statement will not work. The
structure elements are accessed by using the dot notation. The individual elements,
such as price and item_no are initialized as follows:

Biscuit.price = 7.5;
Biscuit.item_no = 9341;

One can initialize a structure either by initializing the individual elements as shown
previously or by simply listing the element’s value inside curly braces, with each
value separated by a comma in a single line as shown below.

struct item Biscuit = {"SweetBest",7.5,"Qingdao Biscuits Ltd",9341};

Similar to initialization of arrays, partial initialization of a structure can be done as
follows:

struct item Biscuit = {"SweetBest",7.5,"Qingdao Biscuits Ltd"};

In the previous case, the item_no element is initialized to 0.0. In the next section, we
will study more about dot notation and how to access member structures.

11.4 Accessing structure members

In Section 11.3, we have studied defining structures and initializing their members.
To access individual members of a struct, we use the member selection operator
that is a period (.). This operator is sometimes referred to as the member access
operator. To refer to a member, we write the variable name structure, followed by
a period, followed by the name of the member. The member access operator is coded
as a period between the structure variable name and the structure member that we
wish to access. For example, to change the item_no to 1818, we can write as shown
below:

Biscuit.item_no = 1818;

11.4 Accessing structure members =— 207

This sets the value of the item_no to 1818. In addition, we can use a member of a
structure in exactly the same way as any other variable. To increase the member year
by 4, for example, we can write:

Biscuit.item_no += 4;

Program 11.1 shows an example that summarizes previous descriptions. In the follow-
ing program two structures Biscuit and Candy of type struct item are declared for
structure Biscuit. We supply the value by initializing it. However, for structure Candy,
we read the values from keyboard. Finally, the information is displayed on the screen.

// Program11.1

// Understanding structures
#include <iostream>

using namespace std;

int main()
{
struct item
{
char item_name[101];
float price;
char manufacturer[401;
int item_no;

1
//Initialization of Biscuit structure variable

struct item Biscuit = {
"SweetBest",
7.5,
"Qingdao Biscuits Ltd",
9341

};

struct item Candy;

//Reading values for members of Candy

cout << "Enter the item_name for Candy " << endl;
cin >> Candy.item_name;

cout << "Enter the price of candy " << endl;

cin >> Candy.price;

cout << "Enter the Manufacturer name " << endl;
cin >> Candy.manufacturer;

cout << "Enter the item number "<< endl;

cin >> Candy.item_no;

208 =— 11 Structures and Unions

//Displaying Biscuit information to screen
cout << endl << "Biscuit Information " << endl;

cout << "Biscuit Name: " << Biscuit.item_name << endl;

cout << "Biscuit Price: " << Biscuit.price << endl;

cout << "Biscuit Manufacturer: " << Biscuit.manufacturer << endl;
cout << "Biscuit Item Number: " << Biscuit.item_no << endl;

//Displaying Candy information to screen
cout << endl << "Candy Information " << endl;

cout << "Candy Name: " << Candy.item_name << endl;

cout << "Candy Price: " << Candy.price << endl;

cout << "Candy Manufacturer: " << Candy.manufacturer << endl;
cout << "Candy Item Number: "<< Candy.item_no << endl;
return 0;

The result of Program 11.1 is shown below:

Enter the item_name for Candy
KidCandy

Enter the price of candy

18.6

Enter the Manufacturer name
HuangdaoSweets

Enter the item number

16321

Biscuit Information

Biscuit Name: SweetBest

Biscuit Price: 7.5

Biscuit Manufacturer: Qingdao Biscuits Ltd
Biscuit Item Number: 9341

Candy Information

Candy Name: KidCandy

Candy Price: 18.6

Candy Manufacturer: HuangdaoSweets
Candy Item Number: 16321

11.5 Using typedef keyword

As mentioned in Chapter 3, C++ allows a programmer to rename data types by using
the keyword typedef. For example:

typedef unsigned int Uint;
Uint price;

11.6 Nested structures = 209

Here we have type-defined an unsigned integer as Uint so that we can use Uint in our
program as any native data type and declare other variables with its data type. We
can apply this to typedef structure as shown below.

typedef struct item

{
char item_name[10];
float price;
char manufacturer[401;
int item_no;

} Food_item;

The newly defined data type, then, can be used as given in the following example:

Food_item Biscuit;
Food_item Candy;

Program 11.2 shows an example of a typedef statement.

11.6 Nested structures

In Program 11.1, there are only four members for structure item. Let us consider
another member of the item using the expiry_date variable. Usually a date includes a
day, a month, and a year, which includes three additional members. In such sit-
uations, we can define a structure that in turn can contain another structure as one of
its members. The example below describes an example for nested structures.

struct item

{
char item_name[107];
float price;
char manufacturer[40];
int item_no;
item_date expiry_date;
¥

The definition of expiry_date structure requires that an item_date structure be
previously defined to the compiler, otherwise a compiler error is generated. So, we
can define item_date structure as follows:

typedef struct date{
int day;

210 = 11 Structures and Unions

int month;
int year;
}item_date;

Program 11.2 shows an example of using nested structures with the previously
described structures.

// Program11.2

// Example of Nested Structures
#include <iostream>

#include <cstring>

using namespace std;

int main()
{
typedef struct date
{
int day;
int month;
int year;
}item_date;

struct item
{
char item_name[101];
float price;
char manufacturer[407;
int item_no;
item_date expiry_date;
} Biscuit;

// Initializing the first three members of structure Biscuit
strcpy(Biscuit.item_name, "SweetBest");

Biscuit.price = 7.5;

strcpy(Biscuit.manufacturer,"Qingdao Biscuits Ltd");
Biscuit.item_no = 9341;

// Initializing the nested structure expiry_date
Biscuit.expiry_date.day = 11;
Biscuit.expiry_date.month = 8;
Biscuit.expiry_date.year = 2019;

// Displaying Biscuit information to screen including expiry date
cout << endl << "Biscuit Information " << endl;

cout << "Biscuit Name: " << Biscuit.item_name << endl;

cout << "Biscuit Price: " << Biscuit.price << endl;

cout << "Biscuit Manufacturer: " << Biscuit.manufacturer << endl;
cout << "Biscuit Item Number: " << Biscuit.item_no << endl;

cout << "Biscuit Expiry Date:

11.7 Structures containing arrays =— 211

<< Biscuit.expiry_date.day << "/"

<< Biscuit.expiry_date.month << "/"

<< Biscuit.expiry_date.year << endl;
return 0;

The result of Program 11.2 is shown below:

Biscuit Information

Biscuit Name: SweetBest

Biscuit Price: 7.5

Biscuit Manufacturer: Qingdao Biscuits Ltd
Biscuit Item Number: 9341

Biscuit Expiry Date: 11/8/2019

This example demonstrates the application of typedef keyword along with struc-
tures. Initially, the first four members of structure Biscuit of type struct item
are initialized one by one by using membership operator or dot notation. As the
first member item_name and third member manufacturer are character arrays, we
have used the strcpy() function to assign the strings to them. The fourth member,
expiry date, is the nested structure of type item_date. As expiry_date structure is
inside the Biscuit structure, we should use periods, as shown in the following
statements.

Biscuit.expiry_date.day = 11;
Biscuit.expiry_date.month = 8;
Biscuit.expiry_date.year = 2019;

11.7 Structures containing arrays

In the structure item defined in Program 11.2, both members item_name and manu-
facturer are arrays of characters. Hence, it is quite possible that there can also be
structures containing arrays as its elements, however, extra care should be taken
while initializing them. Let us consider an example of a structure containing both
characters and integer arrays.

struct Science_Scores

{
char student_name[20];
int student_number;
char subject_name[4][15];
int student_score[4];

212 = 11 Structures and Unions

3

struct Science_Scores FirstYearStudent;
In the previous structure FirstYearStudent, there are four members, where three of
them are arrays. The arrays student_name and student_score are one dimensional,

and the array subject_name is two dimensional. Consider an example of score card of
a student “Dong Chao,” where her student number is 911212:

Table 11.1: Example score card of science student

Student Name Dong Chao
Student Number 911212

SCORE CARD

Subject Name Marks Obtained
Subject 1 Physics 86
Subject 2 Chemistry 97
Subject 3 Mathematics 81
Subject 4 Biology 91

The score card shown in Table 11.1 has four subjects, all of them are character
arrays. Hence, we have defined array of strings: char subject_name[41[15]. Since
there are four subjects, there is a need of an integer array with a minimum length of
four to display the scores of each subject. Program 11.3 demonstrates this example
of displaying the score-card information mentioned in Table 11.1, and shows how
the structures are useful in manipulating data that contains different types of
arrays.

// Program11.3

// Example of structures containing arrays
#include <iostream>

#include <cstring>

using namespace std;

int main()
{
struct Science_Scores
{
char student_name[201];
int student_number;
char subject_name[4][15];
int student_score[4];
3

11.7 Structures containing arrays =—— 213

struct Science_Scores FirstYearStudent;

strcpy(FirstYearStudent.student_name, "Dong Chao");
FirstYearStudent.student_number = 911212;

strcpy(FirstYearStudent.subject_name[0], "Physics");
strcpy(FirstYearStudent.subject_name[1], "Chemistry");
strcpy(FirstYearStudent.subject_name[2], "Mathematics");
strcpy(FirstYearStudent.subject_name[3], "Biology");

FirstYearStudent.student_score[0] = 86;
FirstYearStudent.student_score[1] = 97;
FirstYearStudent.student_score[2] = 81;
FirstYearStudent.student_score[3] = 91;

//Displaying Student information to screen
cout<<"Student Score Information " << endl << endl;
cout<<"Student Name: " << FirstYearStudent.student_name << endl;
cout<<"Student Number: " <<FirstYearStudent.student_number<< endl;
cout<< "Subject 1 :" <<FirstYearStudent.subject_name[0]

<<", Marks: " << FirstYearStudent.student_score[0] << endl;
cout<< "Subject 2 :" << FirstYearStudent.subject_name[1]

<<", Marks: " << FirstYearStudent.student_score[1] << endl;
cout<<"Subject 3 :" << FirstYearStudent.subject_name[2]

<< ", Marks: " << FirstYearStudent.student_score[2] << endl;
cout<< "Subject 4 :" << FirstYearStudent.subject_name[3]

<< ", Marks: " << FirstYearStudent.student_score[3] << endl;
return 0,

The result of Program 11.3 is shown below:

Student Score Information

Student Name: Dong Chao

Student Number: 911212

Subject 1 :Physics, Marks: 86
Subject 2 :Chemistry, Marks: 97
Subject 3 :Mathematics, Marks: 81
Subject 4 :Biology, Marks: 91

We can simplify the procedure of initializing all the members of FisrtYearStudent
structure as shown below. This is not only easy to understand but also provides
information about assigning structures containing arrays. Program 11.4 is same as
Program 11.3, the only exception is that Program 11.4 is easier to understand, and the
values to the FisrtYearStudent structure are initialized by initializing the whole
structure, rather than initializing it member by member.

214 =— 11 Structures and Unions

struct Science_Scores FirstYearStudent=

{
{'D','o",'n",'g"," ",'C",'"h","a", 0"},
911212,
{"Physics", "Chemistry","Mathematics","Biology"},
{86,97,81,91}
};

// Program11.4

// Example of structures containing arrays
#include <iostream>

using namespace std;

int main()

{
struct Science_Scores
{
char student_name[2017;
int student_number;
char subject_name[4]1[15];
int student_score[4];
3
// Whole structure initialization
struct Science_Scores FirstYearStudent=
{
{'D','o",'n",'g"," ",'C",'"h",'a",'0'},
911212,
{"Physics", "Chemistry","Mathematics","Biology"},
{86,97,81,91}
3
cout << "Student Score Information " << endl << endl;
cout << "Student Name: " << FirstYearStudent.student_name << endl;
cout << "Student Number: " << FirstYearStudent.student_number
<< endl;
cout << "Subject 1 :" << FirstYearStudent.subject_name[0]
<< ", Marks: " << FirstYearStudent.student_score[0] << endl;
cout << "Subject 2 :" << FirstYearStudent.subject_name[1]
<< ", Marks: " << FirstYearStudent.student_score[1] << endl;
cout << "Subject 3 :" << FirstYearStudent.subject_name[2]
<< ", Marks: " << FirstYearStudent.student_score[2] << endl;
cout << "Subject 4 :" << FirstYearStudent.subject_name[3]
<< ", Marks: " << FirstYearStudent.student_score[3] << endl;
return 0;
3

The result of Program 11.4 is shown below:

11.8 Arrays of structures =—— 215

Student Score Information

Student Name: Dong Chao

Student Number: 911212

Subject 1 :Physics, Marks: 86
Subject 2 :Chemistry, Marks: 97
Subject 3 :Mathematics, Marks: 81
Subject 4 :Biology, Marks: 91

11.8 Arrays of structures

Let us have a look on another kind of table that is much different from Table 11.1,
where information about only one student Dong Chao, and her scores in physics,
chemistry, mathematics, and biology are displayed. How about more than one
student? How to process their scores by using structures? Table 11.2 shows another
scenario, where four students’ information is displayed.

Table 11.2: Example results of multiple science students

Student Name Student Number Physics Chemistry Mathematics Biology Average Score

Dong Chao 911212 86 97 81 91 88.75
Lianhua An 913418 81 90 82 85 84.5
Zhaopeng Deng 917890 85 82 90 82 84.5
Xieyu Yan 916745 89 80 82 78 82.25

Table 11.2 displays records of more than one student. To process these records, we
need to make use of more than one structure. In Program 11.3, we have used only
structure, because the program satisfies the requirements. To process more than one
structure, we make use of arrays of structures. Please note that arrays containing
structures are different from arrays of structures. An array of structures is highly
useful in processing information as shown in Table 11.2. For example, the following
statement defines an array called FirstYearStudent that has 10 elements. Each
element inside the array will be of type struct Science_Scores.

struct Science_Scores FirstYearStudent[10];

Referencing an element in an array is simple and straightforward. The following
statement assigns student number in the second element in the array (as the array
index starts from 0) FirstYearStudent.

216 —— 11 Structures and Unions

FirstYearStudent[1].student_number = 913418;

Similarly, initialization of structure arrays is similar to initialization of multidimen-
sional arrays. Program 11.5 demonstrates the use of array of structures to process the
information available in Table 11.2. In addition, the program also displays the average
score for each student.

// Program11.5

// Example of array of structures
#include <iostream>

using namespace std;

int main()
{
struct Science_Scores
{
char student_name[20];
int student_number;
char subject_name[4][15];
int student_score[4];
float average_score;
};

// Whole array of structure declaration and initialization
struct Science_Scores FirstYearStudent[4] =

{

"Dong Chao",

911212,

{"Physics", "Chemistry","Mathematics","Biology"},
(86,97,81,91}

"Lianhua An",

913418,

{"Physics", "Chemistry","Mathematics", "Biology"},
{81,90,82,85}

"Zhaopeng Deng",

917890,

{"Physics", "Chemistry","Mathematics", "Biology"},
{85,82,90,82}

"Xieyu Yan",
916745,
{"Physics", "Chemistry","Mathematics", "Biology"},

11.8 Arrays of structures

{89,80,82,78}}
s

int i;
cout << "Student Score Information " << endl << endl;
for(i = 0; i < 4; i++)
{
cout << "Student Name: "
<< FirstYearStudent[i].student_name << endl;
cout << "Student Number: "
<< FirstYearStudent[i].student_number << endl;
cout << "Subject 1 :" << FirstYearStudent[i].subject_name[0]
<< ", Marks: " << FirstYearStudent[i].student_score[0]
<<endl;
cout <<"Subject 2 :" << FirstYearStudent[i].subject_name[1]
<<", Marks: " << FirstYearStudent[i].student_score[1]
<<endl;
cout <<"Subject 3 :" << FirstYearStudent[i].subject_name[2]
<<", Marks: "<< FirstYearStudent[i].student_score[2]
<<endl;
cout << "Subject 4 :" << FirstYearStudent[i].subject_name[3]
<< ", Marks: " << FirstYearStudent[i].student_score[3]
<<endl;

//Calculating average score of four subjects for each student
FirstYearStudent[i].average_score=
(FirstYearStudent[i].student_score[0]+
FirstYearStudent[i].student_score[1]+
FirstYearStudent[i].student_score[2]+
FirstYearStudent[i].student_score[3]
)/4.0;
cout << "Average Score: "
<< FirstYearStudent[i].average_score << endl;
cout << endl;

3

return 0,

The result of Program 11.5 is shown below:

Student Score Information

Student Name: Dong Chao

Student Number: 911212

Subject 1 :Physics, Marks: 86
Subject 2 :Chemistry, Marks: 97
Subject 3 :Mathematics, Marks: 81

— 217

218 = 11 Structures and Unions

Subject 4 :Biology, Marks: 91
Average Score: 88.75

Student Name: Lianhua An

Student Number: 913418

Subject 1 :Physics, Marks: 81
Subject 2 :Chemistry, Marks: 90
Subject 3 :Mathematics, Marks: 82
Subject 4 :Biology, Marks: 85
Average Score: 84.5

Student Name: Zhaopeng Deng
Student Number: 917890

Subject 1 :Physics, Marks: 85
Subject 2 :Chemistry, Marks: 82
Subject 3 :Mathematics, Marks: 90
Subject 4 :Biology, Marks: 82
Average Score: 84.75

Student Name: Xieyu Yan

Student Number: 916745

Subject 1 :Physics, Marks: 89
Subject 2 :Chemistry, Marks: 80
Subject 3 :Mathematics, Marks: 82
Subject 4 :Biology, Marks: 78
Average Score: 82.25

Note that in Program 11.5, we have not supplied initial value for average_score,
because the program computes after processing scores of all four subjects.
However, if a variable is not initialized, it is initialized by O by default. We have
also made use of for loop to process the information of all four students, including
the statement that calculates their respective average scores. This shows that we
can write complex programs such as processing customer information, preparing
students score cards, and sorting names in particular order, and so on by using
arrays of structures.

11.9 Structures and pointers

As we have discussed in Chapter 8, a pointer is a variable that holds the address of
another variable. We can define pointers to a structure as we define pointers to
any other variable. We can declare a pointer to a structure and assign the
beginning address of a structure to it. The following piece of code explains this
concept.

11.9 Structures and pointers =—— 219

struct item

{
char item_name[10];
float price;
char manufacturer[401;
int item_no;

};

Then, a pointer can be defined as pointing to a variable as follows:

struct item *ptrBiscuit;

We can store the address of a structure variable in the previously defined pointer
variable as shown below.

ptrBiscuit=8Biscuit;

The character “*” is used in front of *ptrBiscuit to specify that ptrBiscuit is a
pointer, and the character “&” is used in front of Biscuit to pass its address to
ptrBiscuit rather than its value.

Another important concept one must learn is the usage of the -> operator in
conjunction with a pointer variable pointing to a structure. This operator is used
to access the member of a structure using pointer to that structure. This is shown
below.

ptrBiscuit->item_name

Program 11.6 demonstrates how to use pointers along with structures. In this example
program, we have displayed the results using membership (.) operator as well as ->
operator. While accessing the members by using period operator, we make use of the
structure variable, however while using -> operator, we make use of the pointer
variable. Program 11.6 displays the member values by using both ways.

// Program11.6

// Structures and pointers
#include <iostream>

using namespace std;

int main()
{
struct item
{
char item_name[10];
float price;

220 =— 11 Structures and Unions

char manufacturer[40];
int item_no;

3

//Declaration and initilization of the strucure
struct item Biscuit = {"SweetBest",7.5,"Qingdao Biscuits Ltd",9341};

//Pointer to structure
struct item *ptrBiscuit;
ptrBiscuit = &Biscuit;

//Displaying Biscuit information
cout << endl << "Biscuit Information "<< endl;

cout << "Biscuit Name: " << Biscuit.item_name << endl;

cout << "Biscuit Price: " << Biscuit.price << endl;

cout << "Biscuit Manufacturer: " << Biscuit.manufacturer<< endl;
cout << "Biscuit Item Number: " << Biscuit.item_no << endl;

//Displaying Biscuit information using pointer
cout << endl << "Biscuit Information (using pointer) " << endl;
cout << "Biscuit Name: " << ptrBiscuit->item_name << endl;
cout << "Biscuit Price: "<< ptrBiscuit->price << endl;
cout << "Biscuit Manufacturer: "<< ptrBiscuit->manufacturer
<< endl;
cout << "Biscuit Item Number: " << ptrBiscuit->item_no << endl;
return 0;

The result of Program 11.6 is shown below:

Biscuit Information

Biscuit Name: SweetBest

Biscuit Price: 7.5

Biscuit Manufacturer: Qingdao Biscuits Ltd
Biscuit Item Number: 9341

Biscuit Information (using pointer)
Biscuit Name: SweetBest

Biscuit Price: 7.5

Biscuit Manufacturer: Qingdao Biscuits Ltd
Biscuit Item Number: 9341

11.10 Structures and functions

Structures can be used along with functions just like other data types. Generally,
functions use structures as parameters, where structures can be sent to functions as

11.10 Structures and functions = 221

whole structure or address of structures. We can pass a structure as a function
argument in very similar way as you pass any other variable or pointer. We can
access structure variables in the similar way as we have accessed in previous
examples of this chapter. In Program 11.7,a structure is passed as an argument.

// Program11.7

// Functions using structures
#include <iostream>

using namespace std;

struct item

{
char item_name[10];
float price;
char manufacturer[407;
int item_no;

3

//The function accept structure as parameter
void printItem(struct item Temp)

{
cout << "Biscuit Name: " << Temp.item_name << endl;
cout << "Biscuit Price: " << Temp.price << endl;
cout << "Biscuit Manufacturer: " << Temp.manufacturer << endl;
cout << "Biscuit Item Number: " << Temp.item_no << endl;
3
int main()
{
//Declaration and initilization of the structure
struct item Biscuit = {"SweetBest",7.5,"Qingdao Biscuits Ltd",9341};
//Passing a structure as an argument
printItem(Biscuit);
return 0;
3

The result of Program 11.7 is shown below:

Biscuit Name: SweetBest

Biscuit Price: 7.5

Biscuit Manufacturer: Qingdao Biscuits Ltd
Biscuit Item Number: 9341

As shown in Program 11.7, the structure Biscuit is sent as an argument to function
printItem(). In function printItem(),temp is a formal parameter that has the match-
ing structure type struct item. It is important to note that struct item should be

222 =— 11 Structures and Unions

declared before referencing the same either in main or function. Program 11.8 shows
another similar example of using structures along with functions, with exception of
pointers. In this example, address of a structure is passed as an argument to function
printItem(). As the address of the structure is passed as an argument, the function
accepts the pointer to the structure as a formal parameter. As shown in Program 11.6,
we can make use of the -> operator to display the values of structure members.

// Program11.8

//Function accepting pointer to structure
#include <iostream>

using namespace std;

struct item

{
char item_name[101;
float price;
char manufacturer[40];
int item_no;

3

//The function accept pointer to structure as parameter
void printItem(struct item *ptrItem)

{
//Printing Biscuit information using pointer
cout << "Biscuit Name: " << ptrItem->item_name << endl;
cout << "Biscuit Price: " << ptrItem->price << endl;
cout << "Biscuit Manufacturer: " << ptrItem->manufacturer << endl;
cout << "Biscuit Item Number: " << ptrItem->item_no << endl;
}
int main()
{
//Declaration and initilization of the structure
struct item Biscuit = {"SweetBest",7.5,"Qingdao Biscuits Ltd",9341};
//Passing address of structure
printItem(&Biscuit);
return 0;
3

The result of Program 11.8 is shown below:

Biscuit Name: SweetBest

Biscuit Price: 7.5

Biscuit Manufacturer: Qingdao Biscuits Ltd
Biscuit Item Number: 9341

11.11 Unions = 223

11.11 Unions

Unions and structures are very similar, with an exception that a union uses a single

memory location to hold more than one variable. A union is a user-defined variable

that may hold members of different sizes and types. Let us consider some cases where
unions may be preferable over structures.

1. A program with two variables, for example, var1 and var2 of two different data
types, may use var1 for some time, and when its purpose is over, the same
memory location of var1 can be allocated to var2.

2. Sometimes, it is not possible to find what type of data should be passed
to a function. In such cases, we can pass union that contains all possible data

types.

So, a union is a user-defined type in which all members share the same memory
location, and at any given time a union can contain no more than one object from its
list of members. It also means that no matter how many members a union has, it
always uses only enough memory to store the largest member. Unions can be useful
for conserving memory when we have a lot of objects and/or limited memory.
However, it requires an extra care to ensure that we always access the last written
member. The syntax for declaring a union is similar to that of a structure; the only
exception is that the keyword union is used instead of struct. Union-tag is the name
given to a union and its member definitions, collectively. The general format of union
declaration is as follows:

union [union-tag]

{
member definition;
member definition;

member definition;
} [one or more union variables];

The following example defines a union called tempNum and a variable called
intDouble. Here, tempNum is the name of the variable, and it acts in the same way
as a tag for the structure. Members of a union can be accessed in same way as
members of a structure are accessed.

union tempNum
{

int number;

double floatnumber;
} intDouble;

224 =— 11 Structures and Unions

As unions allocate memory for single-member variable, the allocation is always done
according to the variable that needs largest memory. In the previous example, as the
floatnumber requires more memory than number, the memory allocation is done for the
space required to store double instead of int. Program 11.9 summarizes the difference
between unions and structures, and it also demonstrates the use of unions in C++.

// Program11.9

// Understanding unions and structures
#include <iostream>

using namespace std;

int main()
{
union tempNum1l
{
int numberi;
double floatnumberi;
};
struct tempNum2
{
int number2;
double floatnumber2;
};

union tempNuml TN1 = {3.00};
struct tempNum2 TN2 = {24,3.14};

cout<< "Size of union TN1 = " << sizeof (TN1) << endl;

cout<< "Size of structure TN2 = " << sizeof(TN2) << endl;

cout<< "Union member number1 = " << TN1.numberl << endl;

cout<< "Union member floatnumberl = " << TN1.floatnumberl << endl;
cout<< "Structure member number1l = " << TN2.number2 << endl;

cout<< "Structure member floatnumberl = "<< TN2.floatnumber2 << endl;
return 0;

The result of Program 11.9 is shown below:

Size of union TN1 = 8

Size of structure TN2 = 16

Union member numberl = 3

Union member floatnumberl = 1.4822e-323
Structure member number1 = 24

Structure member floatnumberl = 3.14

In Program 11.9, there is one structure and one union, both with same number and
type of data members. Initially, the program makes use of sizeof () operator to find

11.11 Unions = 225

the length of memory address allocated for both unions and structures. As shown in
the result, the union is allocated only 8 bytes, as compared to 16 bytes allocated to the
structure. Since unions can store only one value at a time, it is not possible to
initialize both of its members at the same time. Hence, only one member of union
is initialized. On the other hand, we can initialize all the members of structures at the
same time. A union is initialized with a floating-point number; because we are
displaying the integer member value first, the corresponding integer value of the
floating-point number is displayed successfully. However, if we try to print the value
stored in the same memory location as double, a strange value displayed. Unions can
also be used as members of structure. Program 11.10 shows an example of using a
two-member union as a member of a structure.

// Program11.10

// Union as member of a structure
#include <iostream>

#include <cstring>

using namespace std;

int main()
{
union id
{
char name[40];
int number;
3
struct {
float salary;
union id description;
} employee;

strcpy (employee.description.name,"Jessica");

cout<< "Employee Name :" << employee.description.name << endl;
employee.description.number = 1729;

cout<< "Employee Number :" << employee.description.number << endl;
employee.salary = 18700.25;

cout<< "Employee Salary :" << employee.salary << endl;

return 0;

The result of Program 11.10 is shown below:

Employee Name :Jessica
Employee Number :1729
Employee Salary :18700.3

226 —— 11 Structures and Unions

In the previous example, it is worth noting that 40 bytes of memory is allocated for
union, because the largest member is an array of characters. A character occupies 1
byte of memory, however, for 40 characters it would be 40 bytes. The second member
of union, which is an integer of size less than 40 bytes, the size of union is 40. The
program carefully uses both the member variables by assigning values at different
times and displaying them on the screen as required.

11.12 Review questions

1. What is a structure? How is a structure different from an array? Explain with an
example.

2. Write a program to explain structures in C++.

3. Define and initialize a structure? Describe with an example.

4. What is the meaning of dot notation? Explain two ways of initializing structure
members with examples.

5. What is the use of typedef keyword? Explain with an example in relation to

structures.

Write an executable C++ program to demonstrate nested structures.

Write a C++ program to demonstrate an array of structures.

Write a C++ program to demonstrate structures containing arrays.

What is a union? How are unions different from structures? Explain.

10 Write a program to demonstrate unions in C++.

© @ N o

12 Exception Handling

There is no greater weapon than a prepared mind.
— Zhuge Liang

12.1 Introduction

Exception handling is one of the most useful features of C++ programming language. A
program may encounter problems, such as runtime errors, when it executes. These
problems may occur without the knowledge of the programmer during coding, and
may stop the normal flow of execution. The program may be compiled without any
errors, but the execution may stop at some section of code, without executing further.
These problems are called exceptions. An exception is a problem or an error that
occurs when a program is running. These problems are not in control of the program. In
such circumstances, exceptions provide special functions called exception handlers as
away to respond to such exceptional situations. C++ provides powerful mechanisms to
handle these exceptions. This chapter focuses on exception-handling methods to
understand the importance of exceptions. For example, let us consider Program 12.1.

// Program12.1

// A program with no exception mechanism
#include<iostream>

using namespace std;

int main()

{
int a = 1,b = 0;
cout << a/b << endl;
return 0;

Even if we compile the program without any errors, the results remain unpredictable
while executing the program. In fact, the previous program may force you to stop the
execution as it tries to run indefinitely. This is because the value of a is non-zero and
value of b is zero. Theoretically, a/b is equal to infinity, however, it is not possible to
express infinity as a fixed value in this program. We will consider another simple
example through Program 12.2, where the user has a choice to select different values
for a and b.

// Program12.2
// A program with no exception mechanism

https://doi.org/10.1515/9783110593846-012

https://doi.org/10.1515/9783110593846-012

228 —— 12 Exception Handling

#include<iostream>
using namespace std;

int main()

{
int a, b;
cout << "Enter two integers for division" << endl;
cin >> a > b;
cout << a << " divided by "<< b << " = " << a/b << endl;
return 0,
}

In Program 12.2, if we enter non-zero integers as input, the program provides output
without any problems. For example, consider these results.

Case 1:
Enter two integers for division
42
4 divided by 2 = 2

Case 2:

Enter two integers for division
48
4 divided by 8 = 0

In both cases, the results are as expected for integer division. The result is 0 in case 2,
because both 4 and 8 are integers, and in integer division, the result truncates to 0O
instead of 0.5. However, in the same program, if we enter a as non-zero and b as zero, the
results will have same consequences as shown in Program 12.1. In these circumstances,
we use exception handling statements in C++ to avoid the values of b becoming zero
unexpectedly. Program 12.3 shows the ways of using exception mechanism in C++ to
deal with previously mentioned situations. Program 12.2 is modified here, so that the
“divide by zero” problem can be dealt with exception handling mechanisms.

// Program12.3

// A program with exception mechanism
#include<iostream>

using namespace std;

int main()
{
int a, b;
cout << "Enter two integers for division" << endl;

12.1 Introduction =—— 229

cin >> a >> b;

try
{
if(b == 0)
throw "There is an exception";
else
cout << a << " divided by " << b << " =" << a/b << endl;
}
catch (const char* msg)
{
cout << msg << endl;
3
return 0;

Sample results of Program 12.3 are as follows:

Case 1:

Enter two integers for division
18 2
18 divided by 2 = 9

Case 2:

Enter two integers for division
01
0 divided by 1 =0

Case 3:

Enter two integers for division
00
There is an exception

Case 4:

Enter two integers for division
20
There is an exception

Hence, it is clear from the previous example that the normal flow of execution may
stop, or it may generate exceptions. As shown in Program 12.3, several keywords,
such as try, catch, and throw are used to handle the “divide by zero” exception. In
the next section, we will study how to handle exceptions using exception handling
mechanism in C++.

230 —— 12 Exception Handling

12.2 Handling exceptions

The objective of exception handling mechanism is to provide ways to detect and
report an “exceptional circumstance,” so that appropriate action can be taken at the
right time. In general, the exception handling mechanism handles these tasks: (a)
find the problem with a possibility of exception, (b) inform that an error has occurred
or throw an exception, (c) receive the error information or catch the exception, and
finally (d) take the corrective actions or handle the exceptions. When an exceptional
circumstance arises within a block, an exception is thrown that transfers the control
to the exception handler. If no exception is thrown, the code continues normally and
all handlers are ignored. An exception is thrown by using the throw keyword from the
inside of the try block. Exception handlers are declared with the keyword catch that
must be placed immediately after the try block. Hence, in C++, the exception han-
dling mechanism is handled by using three keywords, namely try, catch, and throw.
The brief details of these three are described below.
try: In try block, the part of program or code that may generate exceptions is
included, and it is followed by catch block. The block is enclosed by braces
({}). When an exception is generated within this block, it is thrown and the
control is transferred to an exception handler. If no exception is thrown, the
program code continues its execution normally and all handlers are ignored.
catch: The purpose of catch keyword is to catch an exception where the data type of
the catch argument matches with exception type. The catch block must be
placed immediately after the try block. When an exception is caught, the
code in the catch block is executed. The catch block catches the exception
“thrown” by the throw statement in the try block.
throw: As mentioned earlier, a program throws an exception during exceptional
circumstances. The exceptions are thrown by using the throw keyword, and
they can be thrown anywhere within a code. The type of the exception is also
determined by the throw statement. The general format of handling excep-
tions in C++ is shown as follows:

try
{
//Statements that may throw an exception
}
catch (type argument)
{
//Statements to handle exception Type
}

Program 12.4 shows a simple example to use the try-catch block, where an integer
number is thrown and is processed by the catch block.

12.3 Multiple catch statements =— 231

// Program12.4

// Try-catch Example
#include<iostream>
using namespace std;

int main()

{
int a = 100;
try
{

throw a;

3
catch (int temp)

{

cout << "Exception Example :caught integer number
<< temp << endl;

return 0;

Sample results of Program 12.4 are as follows:

Exception Example: caught integer number 100

12.3 Multiple catch statements

In Program 12.4, the throw statement uses an integer number (in this case it is equal
to 100), which is declared with catch keyword, and passed as an argument to the
exception handler. It is clear from the example that the type of parameter thrown
(which is int here) should match with the data type in the catch block. We can also
have multiple catch statements during exception handling. This is important in
situations where a program segment has more than one conditions that throw an
exception. The general format is as follows:

try

// Statements that may throw an exception

catch (typel argument)

{
// Statements to handle exception Type 1

232 —— 12 Exception Handling

catch (type2 argument)

{
// Statements to handle exception Type 2

catch (typeN argument)

{
// Statements to handle exception Type N

Program 12.5 shows an example of multiple catch statements with two throw statements.

// Program12.5

// Multiple catch statements
#include<iostream>

using namespace std;

int main()

{
int a =100;
float b = 3.14f;

try

{
throw a;
throw b;

}

catch (int templ)

{
cout << "Exception Example :caught integer number "
<< templ << endl;

3

catch (float temp2)

{

cout << "Exception Example :caught floating point number
<< temp2 << endl;

return 0;

Result of Program 12.5 is as follows:

Exception Example: caught integer number 100

12.3 Multiple catch statements =— 233

In Program 12.5, the first throw is executed, and the second throw statement remains
unreachable. However, Program 12.6 shows a modified version of Program 12.5,
where multiple catch statements are effectively used.

// Program12.6
// Multiple catch statements
#include<iostream>

using namespace std;

int main()
{
int a;
float b;

cout << "Enter the values of a and b" << endl;
cin >> a >> b;

try
{
if (a == 100) throw a;
else if(b == 3.14f) throw b;
cout << "No exception is thrown!" <<endl;

}
catch (int templ)
{
cout << "Exception Example :caught integer number "
<< templ << endl;
}
catch (float temp2)
{
cout << "Exception Example :caught floating point number "
<< temp2 << endl;
}
return 0;

Sample results of Program 12.6 are as follows:

Case 1:

Enter the values of a and b
12
No exception is thrown!

Case 2:

Enter the values of a and b
100 200
Exception Example :caught integer number 100

234 —— 12 Exception Handling

Case 3:

Enter the values of a and b

13.14

Exception Example :caught floating point number 3.14
Case 4:

Enter the values of a and b
100 3.14

Exception Example :caught integer number 100

12.4 Exceptions within functions

In all the programming examples shown earlier, the exceptions are thrown within
function. However, this not the case when the program size becomes larger. Generally,
several functions are created to read programs with bigger code size. Hence, some
functions may throw an exception instead of main function. Program 12.7 shows that
whenever the function fun() throws an exception, the appropriate exception block is

executed within the main().

// Program12.7
// Functions invoking exceptions
#include<iostream>

using namespace std;

void fun()
{
int a;
float b;

cout << "Enter the values of a and b" << endl;
cin >> a >> b;

if (a == 100) throw a;

else if(b == 3.14f) throw b;

cout << "No exception is thrown!" << endl;

}
int main()
{
try
{
fun();
}

catch (int temp1)

cout << "Exception Example :caught floating point number

{
cout << "Exception Example :caught integer number
<< templ << endl;

}

catch (float temp2)

{
<< temp2 << endl;

}

return 0;

A typical result of Program 12.7 is shown below:

Enter the values of a and b
23 3.14

Exception Example :caught floating point number 3.14

12.5 C++ standard exceptions

12.5 C++ standard exceptions

— 235

The C++ standard library provides a list of standard exceptions that are defined in
<exception> header. These standard exceptions can be used in programs, and they
are arranged in base-class and derived-class hierarchy. The base class of the standard
library is designed to declare objects to be thrown as exceptions. The hierarchical
chart of C++ standard exceptions is shown in Fig. 12.1. Header <exception> defines
two generic exception types that can be inherited by custom exceptions to report
errors: logic_error and runtime_error. All exceptions thrown by the components of

bad_exception

logic_error

iso_base::failure

Fig. 12.1: Hierarchy in C++ standard exception.

underflow_error
overflow_error
rang_error

236 = 12 Exception Handling

C++ standard library belong to this exception class. The exceptions logic_error and
runtime_error are standard exception classes. We can use the base classes from
which we can derive our own types of exceptions. The exception classes derived from
logic_error are: domain_error, invalid_argument, length_error, out_of_range,
bad_cast, and bad_typeid, whereas those derived from runtime_error are: ran-

ge_error, overflow_error, and bad_alloc.
Table 12.1 lists some of the C++ standard exceptions and their brief descriptions.

Table 12.1: Standard C++ exceptions and their descriptions

exception

bad_alloc
bad_cast

bad_exception
bad_typeid

logic_error

domain_error

invalid_argument

length_error

out_of_range

runtime_error

overflow_error

range_error

underflow_error

Itis the parent class of all the standard C++ exceptions. This is the base class
for all the exceptions thrown by the C++ standard library. Function what() can
be used to retrieve the optional string with which the exception was
initialized.

Reports a failure to allocate storage.

This can be thrown by dynamic_cast for executing an invalid dynamic_cast
expression in runtime type identification.

This is useful device to handle unexpected exceptions in a C++ program.
This can be thrown by typeid. It reports a null pointer p in an expression
typeid(*p).

It is an exception that can theoretically be detected by reading a code. It is
derived from exception, and reports program logic errors that could
presumably be detected by inspection.

This exception is thrown when a mathematically invalid domain is used. It
reports violations of a precondition.

This exception is thrown due to invalid arguments, and indicates an invalid
argument to the function from which it is thrown.

This is thrown when a too big std: :stringis created, and indicates an attempt
to produce an object whose length is greater than or equal to npos (the largest
representable value of context’s size type, usually std: :size_t).

This can be thrown by the method, for example, a std: :vector and std: :
bitset<>::operator[](). It reports an out-of-range argument.

It is an exception that theoretically cannot be detected by reading the code. It
reports runtime errors that can presumably be detected only when the
program executes.

This exception is thrown if a mathematical overflow occurs. It reports an
arithmetic overflow.

This exception occurs when one tries to store a value which is out of range. It
reports violation of a postcondition.

This exception is thrown if a mathematical underflow occurs.

One of advantages of having the knowledge of standard C++ exceptions is that we can
define our own exceptions by inheriting and overriding exception class functionality.
Program 12.8 uses an exception class to implement the programmer’s own exception.
In this program, what() is a public method provided by exception class, which has
been overridden by all the child exception classes.

12.6 Review questions

// Program12.8

// Defining our own exceptions
#include <iostream>

using namespace std;

struct NewException : public exception

{
const char * what () const throw ()
{
return "C++ Exception";
}
3
int main()
{
try
{
throw NewException();
}
catch(NewException& EX)
{
cout << "New Exception caught" << endl;
cout<< EX.what() << endl;
}
return 0;
3

The result of Program 12.8 is shown below:

New Exception caught
C++ Exception

12.6 Review questions

What is the meaning of “divide-by-zero” problem? Discuss.
What is an exception? How it is different from errors?

Write a program in C++ with try, catch, and throw keywords.
What is the main role of exception handlers in C++?

Write a C++ program with multiple catch statements.
Write a program to demonstrate exceptions within functions.
Write a note on the hierarchy of C++ standard exceptions.

00NV AW

10 Write a program to define new exceptions.

— 237

Write a note on try, catch, and catch keywords in connection to exceptions.

What is the meaning of standard exceptions in C++? Describe them with an example.

13 Basic I/0 and File Handling

A virtuous man concentrates on his own work, not that of others.
— Zengzi

13.1 Introduction

This chapter describes basic input and output along with I/O streams in C++. It also
focuses on dealing with file handling operations and some stream classes. The input is
data going into a program and the output is data going out of a program as shown in
Fig. 13.1. A stream is a sequence of data moving from a source to a destination. An
input stream is a source and an output stream is a destination. These streams handle
the data moving from the source or to the destination. A buffer is a block of memory
that is used along with streams. The idea is that data flows from one part of the
computer to another and from one program to another. As shown in Fig 13.1, an
input from keyboard is read by a program, and the results will be displayed on
computer screen.

The input and output streams, cin and cout are actually C++ objects. For example,
istream is actually a type name for a class, and cin is the name of a variable of type
istream. Hence, we can say that it is an instance or an object of the class istream. A
stream provides a connection between the process that initializes it and an object, such
as a file, which may be viewed as a sequence of data. In the simplest view, a stream
object is simply a sequenced view of that object. We think of data as flowing in the
stream to the process, which can remove data from the stream as desired. The data in
the stream cannot be lost by "flowing past" before the program has a chance to remove
it. The stream object provides the process with an "interface" to the data.

The C++ standard libraries provide an extensive set of I/O capabilities, and in this
chapter we will discuss some basic and most common I/O operations required for C++
programming. As mentioned, C++ I/O occurs in streams that are sequences of bytes.
If bytes flow from a device such as a keyboard, a disk drive, a network connection, or
so forth to main memory, this process is called input operation and if bytes flow from
main memory to a device such as a display screen, a printer, a disk drive, a network
connection, or so forth, this process is called output operation.

13.2 Standard input and output
We have extensively used cin and cout in many earlier programs. To use cin and
cout, we have to include iostream. In C++, three library header files are important

to manage I/O operations: iostream, iomanip, and fstream. The iostream file

https://doi.org/10.1515/9783110593846-013

https://doi.org/10.1515/9783110593846-013

240 — 13 Basic /0 and File Handling

Input Output

Fig. 13.1: A program with input and output data as source and destination.

defines the cin, cout, cerr, and clog objects that correspond to the standard input
stream, the standard output stream, the unbuffered standard error stream, and the
buffered standard error stream, respectively. The iomanip file declares services
useful for performing formatted I/O or parameterized stream manipulators, such
as setwand setprecision. The fstreamfile declares services for user-controlled file
processing.

The standard output stream (cout)

The basic data type for I/O in C++ is streams. There are several stream types in C++,
and most common stream types are the standard I/O streams. The cin is a built-in
input stream variable that is by default connected to keyboard. Similarly, cout is
another built-in output stream variable that is by default connected to console. In
addition, C++ also supports all the I/O mechanisms that were included in C language.
In addition, C++ streams provide all the I/O capabilities of C, with substantial
improvements.

To get information out of a file or a program, we need to explicitly instruct the
computer to output the desired information. One way of accomplishing this in C++ is
by using of an output stream. In order to use the standard I/O streams, we must have
the pre-compiler directive #include <iostream> in our program. In order to output on
to the screen, we merely use a statement, such as:

cout << " Value = << value;

where, value is the name of a variable or constant that we want to write to the screen.
The << is called insertion operator that points in the direction of the data flow.

The predefined object cout is an instance of ostream class. The cout object is said
to be "connected to" the standard output device that is usually the display screen.
The cout is used in conjunction with the stream insertion operator that is written as
<< (two less than signs). The C++ compiler also determines the data type of the
variable to be output and selects the appropriate stream insertion operator to display
the value. The << operator is overloaded to output data items of built-in types integer,
float, double, strings, and pointer values. The insertion operator << may be used more
than once in a single statement as shown previously, and end1 is used to add a new-
line at the end of a line.

13.2 Standard input and output =—— 241

The standard input stream (cin)

To get information into a file or a program, we need to explicitly instruct the computer
to acquire the desired information. One way of accomplishing this in C++ is by using
an input stream. As with cout, the program must use the pre-compiler directive
#include <iostream> for cin as well. In order to input, we use a statement, such as:

cin >> value;

where, value is the name of a variable the value of which will be read from the keyboard.
The >> operator is called extraction operator; it points in the direction of data flow.
The predefined object cin is an instance of istream class. The cin object is said to
be attached to the standard input device, which usually is the keyboard. The cin is
used in conjunction with the stream extraction operator, which is written as >> (two
greater than signs), as shown in the following example. The C++ compiler also
determines the data type of the entered value and selects the appropriate stream
extraction operator to extract the value and store it in the given variables. The stream
extraction operator >> may be used more than once in a single statement.

The standard error stream (cerr)

The predefined object cerr is an instance of ostream class. It is said to be attached to
the standard error device, which is also a display screen, however, the object cerr is
unbuffered, and each stream insertion to cerr causes its output to appear immedi-
ately. It is also used in conjunction with the stream insertion operator.

The standard log stream (clog)

The predefined object clog is an instance of ostream class. It is said to be attached to
the standard error device, which is also a display screen, however, the object clog is
buffered. This means that each insertion to clog can cause its output to be held in a
buffer until the buffer is filled or flushed. The clog is also used in conjunction with
the stream insertion operator. In general, it is a good practice to display error
messages by using cerr stream, and to display other log messages by using clog.
Program 13.1 shows an example with cout, cin, err, and clog.

// Program 13.1

// Input and output
#include<iostream>
using namespace std;

242 — 13 Basic /0 and File Handling

int main()

{
char st_err[] = "Error in the Program!";
char st_log[] = "Log Details!";
char st_input[50];
cout << "Enter a String :" << endl;
cin >> st_input;
cout << "Entered String = :" << st_input<<endl;
cerr << "Displaying Error Message : " << st_err << endl;
clog << "Displaying Log Message : " << st_log << endl;
return 0;
}

The result of Program 13.1 is shown below:

Enter a String :

Qingdao

Entered String = :Qingdao

Displaying Error Message : Error in the Program!
Displaying Log Message : Log Details!

13.3 File 1/O

Reading from and writing into files are very useful during the development of
many applications related to manipulating text information. So far, we have
been using the iostream standard library that provides cin and cout methods
for reading from standard input and writing to standard output, respectively. In
this section, we will learn about how to read from and write into a file. This
requires another standard C++ library called fstream that defines three new
data types: ofstream, ifstream, and fstream. To perform file processing in C++,
header files <iostream> and <fstream> must be included in C++ source file. C++
provides the following classes to perform output and input of characters to/from
files:
ofstream: This is a stream class to write on files. This data type represents the
output file stream, and is used to create files and write information
into those files.
ifstream: This is a stream class to read from files. This data type represents the
input file stream, and is used to read information from files.
fstream: Thisisa stream classto both read from and write into files. This data type
generally represents the file stream, and has the capabilities of both
ofstream and ifstream. This means that it can create files, write infor-
mation into files, and read information from files.

13.3 Filel/0 =—— 243

These classes are derived directly or indirectly from the classes istream and
ostream. We have already used objects whose types were these classes: (a) cin is an
object of class istreamand (b) cout is an object of class ostream. Therefore, we have
already been using classes that are related to our file streams. We can use our file
streams in the same way by using cin and cout, with the only difference that we have
to associate these streams with physical files. Program 13.2 creates a file called
output.txt, and inserts a sentence "Hello!, This is how we use file in C++!" by
using the file stream myfile.

// Program13.2

// Basic file operations example
#include <iostream>

#include <fstream>

using namespace std;

int main ()
{
ofstream myfile;
myfile.open ("output.txt");
myfile << "Hello!, This is how we use file in C++!"<<endl;
myfile.close();
return 0;

Once the program is successfully compiled, the output.txt file can be found in the
same folder that of the program, and the contents of the file are as shown below:

Streams for file I/0

C++ provides stream types for reading from and writing into files stored on a disk. For
the most part, these operate in exactly the same way as the standard I/O streams cin
and cout. For basic file I/O operations, we must include the statement #include
<fstream>. There are no predefined file stream variables, so a programmer who needs
to use file streams must declare file stream variables:

244 — 13 Basic /0 and File Handling

ifstream inFile; // input file stream object
ofstream outFile; // output file stream object

The file stream objects ifstream and of stream are C++ stream classes designed to be
connected to input or output files. File stream objects have all the member functions
and manipulators possessed by the standard streams, cin and cout.

Connecting streams to files

A file stream is not connected to anything by default. In order to use a file stream, a
programmer must establish a connection between the file stream and a file. This can
be done in two ways.(1) using open() member function, (2) using ifstream, and
outsream classes. We may use the open() member function associated with each
stream object as follows:

inFile.open("input.data");
outFile.open("output.data");

This sets up the file streams to read data from a file called "input.data" and write
output to a file called "output.data." For an input stream, if the specified file does
not exist, it will not be created by the operating system, and the input stream variable
will contain an error flag. This can be checked by using the member function fail().
For an output stream, if the specified file does not exist, it will be created by the
operating system. We may also connect a file stream variable to a file when the stream
variable is declared as follows:

ifstream inFile("input.data");
ofstream outFile("output.data");

This also sets up the file streams to read data from a file called "input.data" and
write output to a file called "output.data." The only difference between this
approach and using the open() function is compactness. If we are to use a string
constant (or variable) to store the file name, we must add a special conversion when
connecting the stream:

string inputFileName = "input.data";
ifstream inFile(inputFileName.c_str());

Opening a file

An open file is represented within a program by a stream, that is, an object of one of
these classes. In Program 13.2, this was myfile, and any input or output operation

13.3 Filel/0 = 245

performed on this stream object will be applied to the physical file associated to it.
In order to open a file with a stream object, we use its member function open as
follows:

open (filename, mode);

Where filename is a string representing the name of the file to be opened, and mode is
an optional parameter with a combination of flags shown in Table 13.1. A file must be
opened before you can read from it or write into it. Either of stream or fstream object
may be used to open a file for writing, and ifstream object is used to open a file for
reading purpose only. Following is the standard syntax for open() function, which is
a member of fstream, ifstream, and ofstream objects.

void open(const char *filename, ios::openmode mode);
Here, the first argument specifies the name and location of the file to be opened; and

the second argument of the open() member function defines the mode in which the
file should be opened.

Table 13.1: File mode flags and their description.

Mode Flag Description

ios::app Itis called append mode. It means that all output to a file is to be appended to
the end. That is, all output operations are performed at the end of the file,
appending the content to the current content of the file.

ios::ate Open afile for output and move the read/write control to the end of the file. This
is used to set the initial position at the end of the file. If this flag is not set, the
initial position is the beginning of the file.

ios::in Open a file for reading or input operations.
ios::out Open a file for writing or output operations.
ios::trunc If the file already exists, its contents will be truncated before opening the file.

This means, if the file is opened for output operations and it already exists, its
previous content is deleted and replaced by the new one.

ios::binary Open in binary mode.

We can combine two or more of these values performing OR operation on them
together. For example, if we want to open a file in write mode and truncate it in
case it already exists, following will be the syntax:

246 =—— 13 Basic /0 and File Handling

ofstream outfile;
outfile.open("file.dat", ios::out | ios::trunc);

Similarly, we can open a file for reading and writing purpose as follows:

fstream afile;
afile.open("file.dat", ios::out | ios::in);

File streams opened in binary mode perform input and output operations independ-
ently of any format considerations. Non-binary files are known as text files, and
some translations may occur due to formatting of some special characters such as
newline and carriage return characters. Table 13.2 shows that each of the open
member functions of classes ofstream, ifstream, and fstream has a default mode
that is used if the file is opened without a second argument.

Table 13.2: Default mode parameters of ofstream,
ifstream, and fstream classes.

Class Default Mode Parameter
ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

For ifstreamand ofstreamclasses, ios::inand ios: :out are automatically assumed,
respectively, even if a mode that does not include them is passed as a second argument
to the open member function (the flags are combined). For fstream, the default value is
only applied if the function is called without specifying any value for the mode
parameter. If the function is called with any value in that parameter, the default
mode is overridden, not combined. To check if a file stream was successful opening
a file, we can do it by calling is_open member function that returns a bool value of true
in case the stream object is associated with an open file or returns false otherwise:

if (myfile.is_open()) { /* ok, proceed with output */ }

Closing a file

When a C++ program terminates, it automatically flushes all the streams, releases all
the allocated memory, and close all the opened files. But it is always a good practice
that a programmer should close all the opened files before terminating the program.

13.3 Filel/0 =—— 247

Following is the standard syntax for close() function that is a member of fstream,
ifstream, and ofstream objects.

void close();

As mentioned earlier, when a program does not need a file anymore, it must close the
file by using the close() member function that is associated with each file stream
variable:

inStream.close();
outStream.close();

Calling close() member function notifies the operating system that your program is
done with the file, and that the system should flush any related buffers, update file
security information, and so forth. It is always best to close files explicitly, even
though by the C++ standard, files are closed automatically whenever the associated
file stream variable goes out of scope.

When we have completed our input and output operations on a file, we should
close it so that the operating system is notified and its resources become available
again. For this purpose, we call the stream’s member function close (). This member
function flushes the associated buffers and closes the file. Once this member function
is called, the stream object can be reused to open another file, and the file becomes
available again to be opened by other processes. In case an object is destroyed while
still associated with an open file, the destructor automatically calls the member
function close ().

Text files

Text file streams are those that do not include ios::binary flag in their opening
mode. These files are designed to store text. Hence, all values that are input or output
from/to them can suffer some formatting transformations, which do not necessarily
correspond to their literal binary value. Writing operations on text files are performed
in the same way we operate with cout.

Writing to a file

In C++ programming, we write information into a file from a program by using the
stream insertion operator (<<) just as we use that operator to output information on
the screen. The only difference is that we use an of streamor fstream object instead of
the cout object.

248 — 13 Basic I/0 and File Handling

// Program13.3

// Writing on a text file
#include <iostream>
#include <fstream>

using namespace std;

int main ()

{
ofstream myFile("output.txt");
if (myFile.is_open())
{
myFile << "This is a first line."<< endl;
myFile << "This is second line line." << endl;
myFile << "This is the last line in this file " << endl;
myFile.close();
3
else
cout << "Unable to open file";
return 0;
}

Once the program is successfully compiled, the output.txt file can be found in the
same folder as that of the program. The contents of the output.txt file are shown below:

Reading from a file

We can read information from a file into our program by using the stream extraction
operator (>>) just as we use that operator to input information from the keyboard. The
only difference is that we use an ifstream or fstream object instead of the cin object.
Program 13.4 shows how the contents of text file input.txt are read and displayed to
screen, provided that the input.txt file exists in the same folder as the program file. We
have created a while loop that reads the file line by line by using function getline().
The value returned by getline() is a reference to the stream object itself, which when
evaluated as a Boolean expression in this while loop is (a) true if the stream is ready for
more operations, and (b) false if either the end of the file has been reached or if some
other error occurred.

13.3 Filel/0 —— 249

// Program13.4

// Reading a text file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main ()
{
string readline;
ifstream myFile ("input.txt");
if (myFile.is_open())
{
while (getline (myFile,readline))
{
cout << readline << endl;
}
myFile.close();
}

else
cout << "Unable to open file" << endl;
return 0;

The result of Program 13.4 is shown below:

Hello, this is input.txt file.

This is a text file.

The contents will be displayed to screen!
Happy Programming!

Checking state flags

Several member functions exist to check for specific states of a stream and all of them
return a bool value as shown in Table 13.3.

Table 13.3: Functions to check the states of streams and their description.

Functions Description

bad() Returns true if a reading or a writing operation fails. For example, in case we try to write
to afile thatis not open for writing or if the device where we try to write has no space left.

fail() Returns true not only in same cases as bad() but also in the case if a format error
occurs, for example, when an alphabetical character is extracted while we are trying
to read an integer number.

(continued)

250 —— 13 Basicl/0 and File Handling

Table 13.3 (Continued)

Functions Description
eof () Returns true if a file that is open for reading has reached the end.
good() It is the most generic state flag. It returns false in cases in which calling any of the

previous functions would return true.

clear() This can be used to reset the state flags.

Program 13.5 shows an example of a file that is opened for reading and writing mode.
During its execution, the program asks the user to input information that is stored in
input.txt. Then, the program reads the information from the file and outputs on the
screen.

// Program13.5

// Reading and writing to a file
#include <fstream>

#include <iostream>

using namespace std;

int main()

{
char indata[100];
// Open a file in write mode.
ofstream outfile;
outfile.open("input.dat");

cout << "Writing to the file:input.dat" << endl;

cout << "Enter the name of your city: ";
cin.getline(indata, 100);

// Write inputted data into the file.
outfile << indata << endl;

outfile.close();
// Open a file in read mode.
ifstream infile;

infile.open("input.dat");

cout << endl << "Reading from the file:input.dat" << endl;
infile >> indata;

// Write the data at the screen.
cout << indata << endl;

13.4 Review questions = 251

// Close the opened file.
infile.close();

return 0;

The result of Program 13.5 is shown below:

Writing to the file:input.dat

Enter the name of your city: Beijing
Reading from the file:input.dat
Beijing

13.4 Review questions

1. Explain the following: (a) input stream (b) output stream, and (c) buffer.

2. Write a brief note on (a) cin, (b) cout, (c) cerr, and (d) clog.

3. Describe the following classes that are related to files: (a) of stream, (b) ifstream,
and (c) fstream.
Discuss the difference between binary files and text files.

5. Write a program to read information from a file, input.txt, and write contents to
another file with name output.txt.

6. Write a program to input two text files and merge the contents to an output file.

inputi.txt

input2.txt

output.txt

14 Classes and Objects

If one extends knowledge to the utmost, one will have wisdom.
Having wisdom, one can then make choices.
— Cheng Yi

14.1 Introduction

In this chapter, we will study the most important part of object-oriented program-
ming, that is, classes and objects. The most common object-oriented programming
(OO0P) languages are C++ and Java. Languages such as C, PASCAL, FORTRAN, and so
forth are usually called procedure-oriented or structured programming languages. In
recent years, many programmers have found OOP to be a better approach than
procedure-oriented programming.

Software is basically a collection of many interrelated programs that in turn
consist of data and methods. In traditional programming languages, data and
methods are loosely tied together. Hence, it is difficult to find which data belong to
which function? In addition, traditional procedure-oriented languages are not able to
represent real-time entities or situations. A few examples of real-time entities are:
bank, customer, university, and student. OOP solves all these problems by providing
an effective way to represent real-time entities through objects and classes, two
most important concepts in object-oriented programming. Every reader or pro-
grammer must be aware of these concepts.

14.2 Object definition
What is an object?

Object is the key feature of OOP. If we see around us, we may notice many real-world
objects such as dog, bag, computer, pen, telephone, and so forth. These objects may
be both tangible and intangible. If we analyze all these objects, we notice that they
share two common characteristics such as data and behavior. Let us take an
example of a dog object. The data related to this object are name, age, height, and
weight. Other than these data, a dog may exhibit some behaviors, such as walking,
running, barking, biting (sometimes!), eating, and so forth.

In general, every object has two fundamental features called data and behavior.
The data of an object is basically represented by data type, and related behavior is
represented by a method in OOP. The object is a software entity with both data and
methods.

https://doi.org/10.1515/9783110593846-014

https://doi.org/10.1515/9783110593846-014

254 —— 14 Classes and Objects

How objects are useful in software development?

We may wonder about a question: How is the concept of an object useful in software
development? To answer this question, we must understand the applications of
software. Today, software is designed for various applications, such as student
data management, banking applications, customer transactions, railway reservation,
and so on. All these softwares use entities, such as customer, bank, transaction,
reservation, and so forth. All these real-time entities are represented as objects.
Hence, it is very easy to write a program with an easy understanding about both
programmers and customers.

14.3 Class definition
What is a class?

In Section 14.2, we have analyzed the meaning of an object. A class is a generic term
used to create objects. A class in OOP represents real-world entities through both
data and behavior under single name. For example Mr. Chen is a student, this
means that Mr. Chen belongs to class student. In this example, Mr. Chen is an object
and student is a class. A class may have many objects. Let us look at the following
sentence:
Mr. Chen, Ms. Fang, and Mr. Bruce are all students.

What do we infer from the previous statement? It indicates that Chen, Fang, and
Bruce belong to student class. This clearly shows that one class is responsible for
creating one or more objects. Now, let us compare the following statements:

int Chen_Weight, Fang_Weight, Bruce_weight;
Student Chen, Fang, Bruce;

If we compare the previous two statements, it looks similar. In the first statement, all
three variables are integers. In the second statement, all three objects belong to the
class Student. Hence, class is just like a template or model for creating many objects.
Usually an object is called an instance of a class. In Section 14.2, we have studied that
an object has data and methods or behavior. A class is used to define data and
methods. As we know that Chen, Fang, and Bruce all are students who share many
characteristics that are expressed as data and methods, and are defined in the class.
Hence, class is used to define data and methods that are common to all of its objects.
So, a C++ class is a collection of data and methods (functions) that creates a new data
type that is used for creating objects of this class. In general, the syntax of a class
definition is shown as follows:

14.3 Class definition = 255

classclass_name

{
public:
<variable declaration> // for data members
<method declaration> // member functions
private:
<variable declaration> // for data members
<method declaration> // member functions
protected:
<variable declaration> // for data members
<method declaration> // member functions
};

As shown in the syntax, there are three different keywords used as access specifiers
in C++: public, private, and protected. They guide the rules for accessing the
members of a class, such as functions (methods) or data within the class, outside
of a class, and within a program. The private access specifier supports to achieve the
data hiding feature of OOP. The private members of a class can only be accessed
within the class itself. On the other hand, public members can be accessible outside
of the class as well. These access specifiers are followed by a colon. If no access
specifier is mentioned, then by default all the member functions or data become
private. Further details about the same are provided in Section 14.7. A class definition
ends with a semicolon. To understand class and objects, let us define a Student class.

class Student

{
public:
int student_number;
char name[20];
int marks;
char university_name[401];

void get_name_number()

{

cout << "Student Number=" << student_number << endl;
cout << "Student Name=" << name << endl;

void get_marks()
{

cout << "Student Marks=" << marks << endl;

3

A class must be defined before its objects are created. This means that the class
definition acts as a template for creating objects later. For example, the following

256 —— 14 Classes and Objects

statement creates an object of type Student. As explained earlier, every object is an
instance of the class. This means that

Student Fang;

statement declares an object Fang of type Student. Here, Fang is an instance of class
Student. We can also create multiple objects of type Student as follows:

Student Fang, Wang;

Each object is allocated separate memory for their members. Hence, we can store
different values for members of each object.

How to access data and methods?

In the previous example, class Student student_number, name, marks are called data
members of the class, and get_name_number() and get_marks() are called method
members of the class. To use these data and method members, we make use of .(dot
or period) operator. The following statement assigns 18976587 to student_number
data of Fang object:

Fang.student_number = 18976587;

Similarly, we can call method member of the Fang object:

Fang.get_marks();

The previous statement calls the get_marks() method of Fang object.

Program 14.1 completely summarizes the previous description, class and objects,
and also uses both data and method members. The class definition is always written
before the definition of main() function. This is because, an object must be defined
before being used within the main. Definition of class is written after main leads to
errors.

// Program 14.1

// Program to understand class and object
#include <iostream>

#include <cstring>

using namespace std;

class Student

{

14.3 Class definition = 257

public:
int student_number;
char name[20];
int marks;
char university_name[40];

void get_name_number()

{
cout << "Student Number=" << student_number << endl;
cout << "Student Name=" << name << endl;

}

void get_marks()

{

cout << "Student Marks=" << marks << endl;

3

3

int main()

{
Student Fang;
Fang.student_number = 18976587;
strcpy(Fang.name, "Xiaong Dong Fang");
Fang.marks = 87;
Fang.get_name_number();
Fang.get_marks();
return 0;

The result of Program 14.1 is shown below:

Student Number=18976587
Student Name=Xiaong Dong Fang
Student Marks=87

Comparing a OOP program to non-OOP program in C++

Programs 14.2 and 14.3 demonstrate the ways of writing a program without using
objects (or classes) and with using objects (or classes). It is useful to understand the
difference between an OOP program and a non-OOP program. Program 14.2 is a
simple program that is written to add two numbers without objects.

// Program 14.2

// Program to add two numbers without using object
#include<iostream>

using namespace std;

258 —— 14 Classes and Objects

int main()
{
int a = 99,b = 88;
int ¢ = a + b;
cout << "Result=" << ¢ << endl;
return 0;

The result of Program 14.2 is shown below:

Result=187

Now, we will rewrite Program 14.2 as Program 14.3 by using objects and classes in C++.
Here we need to write a class, and later we need to create an object of that class.
Program 14.3 looks as follows:

// Program 14.3

// Program to add two numbers using classes and objects
#include<iostream>

using namespace std;

class Add_Two

{
public:
int a,b,c;
void Result()
{
c=a+tb;
cout << "Result=" << ¢ <<endl;
}
3
int main()
{
Add_Two TWOADD;
//set the fields
TWOADD.a = 99;
TWOADD.b = 88;
TWOADD.Result();
return 0;
}

The result of Program 14.3 is shown below:

Result=187

14.4 Overloaded methods = 259

14.4 Overloaded methods

A class may have many methods, and each method has zero or more parameters. Is it
possible to write more than one method with same name? The answer is Yes. A class
may have multiple methods with same name. This concept is called method over-
loading. To overload a method, the following conditions must be satisfied:

1. The name of the method should be the same.

2. The method should have different parameter list or signature.

3. The method can be in the same class or sub class.

The signature of a method is determined by the method name and the number of data
type parameters. The following three methods have three different signatures:

void oneMethod(int a, int b);
void oneMethod(int a, float b);
void oneMethod(int a, float b,long c);

If multiple methods have the same name but different signatures, we say that the
method is overloaded, and call these methods overloaded methods. Program 14.4
illustrates an example of this.

// Program 14.4

// Program to understand Overloaded Methods
#include<iostream>

using namespace std;

class Overload
{
public:
int add(int a,int b)
{
return (atb);
}
float add(float a,float b)
{
return (atb);
}
double add(double a,double b)
{

return (a+b);

3

int main()

{

260 —— 14 Classes and Objects

Overload SAME;

int a = 10;

int b = 20;

float ¢ = 23.75F;

float d = 78.987F;
double e = 23456.879;
double f = 33445.789645;

cout << "Integer Addition : a + b = " << SAME.add(a,b) << endl;
cout << "Float Addition :a+b =" << SAME.add(c,d) << endl;
cout << "Double Addition : a + b = " << SAME.add(e,f) << endl;
return 0;

The result of Program 14.4 is shown below:

Integer Addition: a + b = 30
Float Addition: a+b=102.737
Double Addition: a + b = 56902.7

14.5 Multiple objects

So far we studied about creating one object and using it. Usually an object-oriented
program may have many objects and classes. Program 14.5 illustrates how to write a

program with multiple objects.

// Program 14.5
// Program with multiple objects

#include<iostream>
using namespace std;

class Student
{
public:
int rollNumber;
int marks;
char grade;
void printRollNo()
{
cout << "rollNumber = " << rollNumber

3
void printMarks()
{

cout << "Marks = " << marks << endl;

<< endl;

IS

void printGrade()

{

cout << "Grade

int main()

{

Student s1,s2;

s1
s1
s1

sl.

s1
s1

.rollNumber = 9;
.marks = 90;
.grade = 'A';

printRollNo();

.printMarks();
.printGrade();
s2.
s2.
s2.
s2.
s2.
s2.

rollNumber = 10;
marks = 99;
grade = 'A';
printRollNo();
printMarks();
printGrade();

return 0;

<< grade << endl;

The result of Program 14.5 is shown below:

rollNumber = 9

Marks = 90
Grade = A
rollNumber = 10
Marks = 99
Grade = A

14.6 Array of objects

14.6 Array of objects = 261

In many software applications, we may have to create a program with many objects of
the same type. In such cases, we will use array of objects, that is, only one class and
an array, which is used to create many similar objects. In this section, we will explore
further arrays of objects. To illustrate the processing of an array of objects, we will use
Person class in the following example.

class Person

{

public:

int Age;
char Gender;

262 =—— 14 Classes and Objects

char Name[201];
void setName(char *name)

{
strcpy(Name,name);
}
void setAge(int age)
{
Age = age;
¥
void setGender(char gender)
{
Gender = gender;
3
void getName()
{
cout << "Name=" << Name << endl;
}
void getAge()
{
cout << "Age=" << Age << endl;
¥
void getGender()
{
cout << "Gender=" << Gender << endl;
3

3

Now let us study how we can create and manipulate an array of Person objects. An
array of objects is declared and created just like an array of primitive data types. The
following is the declaration and creation of an array of Person objects.

Person person[20];

Program 14.6 creates two objects as members of an array, initializes the members of
these objects, and displays the initialized values to screen.

// Program14.6

// Program to understand array of objects
#include <iostream>

#include <cstring>

using namespace std;

class Person
{
public:
int Age;
char Gender;
char Name[20];

3

14.6 Array of objects

void setName(char *name)

{
strcpy(Name, name);
}
void setAge(int age)
{
Age = age;
}
void setGender(char gender)
{
Gender = gender;
}
void getName()
{
cout << "Name= " << Name << endl;
}
void getAge()
{
cout << "Age= " << Age << endl;
}
void getGender()
{
cout << "Gender= " << Gender <<endl;
}

int main()

{

Person person[201;

// Initializing the data members of the first object in the array
person[0].setName("Jackie");

person[0].setAge(40);

person[0].setGender('M");

// Initializing the data members of the second object in the array
person[1].setName("Suchi");

person[1].setAge(28);

person[1].setGender('F');

// Calling the method members of the first object in the array
person[0].getName();

person[0].getAge();

person[0].getGender();

// Calling the method members of the second object in the array
person[1].getName();

person[1].getAge();

person[1].getGender();

— 263

264 = 14 Classes and Objects

return 0;

The result of Program 14.6 is shown below:

Name= Jackie
Age= 40
Gender= M
Name= Suchi
Age= 28
Gender= F

14.7 Access modifiers

As we have discussed earlier, OOP is useful to represent real-time applications by using
several objects and classes. For example, in a school data-management application,
there are several classes, such as school, management, teachers, students, account,
grading, and so forth. Sometimes many of these classes may share common data and
methods. Moreover, data belonging to one class may be used by some other class. In
such situations, access modifiers are used to effectively solve this problem in C++ by
providing various keywords such as public, private, protected, and default
(no modifier). They use data effectively and provide more security to C++ applications.

The most commonly used modifiers are public and private. If data member is
declared as public, then any outside method can access it using the dot (.)
notation. The data members and member methods that are declared public become
available everywhere and can be accessed by other classes too. But if the data
member is declared private, then any outside method cannot access it. Declaring
the data members as private ensures the integrity of the class. This means that no
one can access those class members outside that class. An access modifier can be
used along with class, data, and methods. For example:

public class test
{
public int student_number;
public String name;
private int marks;
public String university_name;

public void get_name_number()

{
cout<< "Student Number = " + student_number);
cout<< "Student Name= " + name);

14.7 Access modifiers =—— 265

private void get_marks()

{

cout << "Student Marks = " + marks);

IS

In this example, the class test is defined as public class; student_number, name, and
university_name are public data members of the class; and marks is a private data
member. Similarly, get_name_number() is a public method and get_marks() is a
private method. If data or method is declared private, it is accessible only inside the
class. The public data can be accessed everywhere. The protected keyword is further
explained in Chapter 16. Program 14.7 illustrates the use of private as well as public
data and method members in a class.

// Program14.7

// Program to understand private and public members
#include<iostream>

using namespace std;

class Student

{
public:
int rollNumber;
private:
int marks;
public:
char grade;
private:
void printRollNo()
{
cout << "rollNumber = " << rollNumber << endl;
3
public:
void printMarks()
{ marks = 90;
cout << "Marks = " << marks << endl;
}
void printGrade()
{
cout << "Grade = " << grade << endl;
}
};
int main()
{

Student s1;

266 = 14 Classes and Objects

sl
//
sl
//
s1
s1

.rollNumber = 9;

s1.marks = 90; Not possible because private

.grade = 'A';

s1.printRollNo(); Not possible because private

.printMarks();
.printGrade();

return 0;

The result of Program 14.7 is shown below:

Marks = 90
Grade = A

Program 14.8 illustrates the use of only public method data members in a class.

// Program14.8
// Program with only public data and methods
#include<iostream>

using namespace std;

class Student

{

public:

3

int rollNumber;
int marks;
char grade;
void printRollNo()
{
cout << "rollNumber = " << rollNumber << endl;
3
void printMarks()
{
cout << "Marks = " << marks << endl;
3
void printGrade()
{

cout << "Grade = " << grade << endl;

int main()

{

Student s1;

sl
sl
s1

.marks

.rollNumber = 9;

90;

.grade = 'A';

14.8 Review questions = 267

s1.printRollNo();
sl.printMarks();
sl.printGrade();
return 0;

The result of Program 14.8 is shown below:

rollNumber = 9
Marks = 90
Grade = A

14.8 Review questions

1. Why is object-oriented programming relevant in software development? Justify
your answer.

Explain the following in relation with OOP: (a) object, (b) class, (c) method, and
(d) data.

Write a program to add three numbers by using objects and classes.

What is method overloading? Explain with an example.

Explain with an example how to declare an array of objects.

What is access modifier? What are the different types of access modifiers?
Explain the difference between private and public access modifiers with an
example.

N

Now s w

15 Constructors and Destructors

If you stop and confine yourself to one place, you will develop prejudices.
— Guo Xiang

15.1 Introduction

The constructors are one of the most powerful features of object-oriented languages.
They are used for initializing objects during their creation. Initialization of data
members is necessary when we deal with multiple objects of same class. A constructor
is a special method that is executed when an object of that class is created. The name of
the constructor must be the same as the class. To understand constructors, we will first
write a program without a constructor, and later convert the same program with
constructor. Program 15.1 illustrates a class without constructor.

// Program 15.1

// Program to initialize and print values without constructor
#include<iostream>

using namespace std;

class day
{
public:
int date,month,year;
void setValues()

{
date = 1;
month = 1;
year = 2018;
}
1
int main()
{
day TODAY;
TODAY.setValues();
cout << "Date is ;" << TODAY.date << endl;
cout << "Month is :" << TODAY.month << endl;
cout << "Year is :" << TODAY.year << endl;
return 0;
3

https://doi.org/10.1515/9783110593846-015

https://doi.org/10.1515/9783110593846-015

270 = 15 Constructors and Destructors

The result of Program 15.1 is shown below:

Date is 1
Month is :1
Year is 12018

In Program 15.1, the call to setValues() method is explicitly made with TODAY.
setValues() statement. The setValues() method is used here to initialize or set
some values of the data members of the class. There may be cases where we need to
create many instances of class day, such as,

day TODAY;
day TOMM;

day YESTERDAY;
day SUNDAY;

In such situations, we also need to call setValues() method along with the associ-
ated objects.

TODAY .setValues();
TOMM. setValues();
YESTERDAY.setValues();
SUNDAY . setValues();

This seems to be a time-consuming and repetitive process. We use constructors to avoid
these problems. A constructor will initialize the objects when they are created. Hence, an
explicit call to the initializing method (here setValues()) is avoided. The initial settings
of all objects are easily done along with their creation without calling any other methods.
The main purpose of a constructer is to initialize the objects of a particular class with

supplied initial values. Sometimes, this is also called automatic initialization of objects.
The general syntax of a constructor is as follows:

<class-name> (<parameters>)

{

<statements>

In the previous example, class-name is the name of the class to which this con-
structor belongs. The constructors are declared in the public section, and are invoked
automatically when the object is created. They do not have any return types including
void. Moreover, they cannot be inherited; however, a derived-class constructor can
call the base class constructor. Program 15.1 is rewritten as Program 15.2 to illustrate
the use of constructors.

15.2 Default constructors = 271

// Program 15.2

// A program to demonstrate constructors
#include<iostream>

using namespace std;

class day
{
public:
int date,month,year;
day()
{
date = 1;
month = 1;
year = 2018;
3
3
int main()
{
day TODAY;
cout << "Date is ;" << TODAY.date << endl;
cout << "Month is :" << TODAY.month << endl;
cout << "Year is ;" << TODAY.year << endl;
return 0;
3

The result of Program 15.2 is shown below:

Date is:1
Month is:1
Year is:2018

Here the day() is a constructor in day class. Whenever TODAY object is created, the
constructor is automatically called and data members are initialized.

15.2 Default constructors

In C++, a constructor with no parameters is called a default constructor. Moreover, if no
constructor is defined, the C++ compiler will include a default constructor. Program 15.3
illustrates this, as it makes no difference whether we include student(){} constructor
within the program or not.

// Program 15.3
// Default constructor, Example 1
#include<iostream>

272 =— 15 Constructors and Destructors

using namespace std;

class student

{
public:
int marks;
student()
{
3
};
int main()
{
student JACK;
return 0;
}

Program 15.4 illustrates another default constructor; however, there are two state-
ments inside the constructor’s body in this program.

// Program 15.4
// Default constructor, Example 2

#include<iostream>
using namespace std;

class student

{
public:
int marks;
student()
{
marks = 90;
cout << "Default Constructor :" << marks << endl;
}
¥
int main()
{
student JACK, JILL;
return 0;
}

The result of Program 15.4 is shown below:

Default Constructor :90
Default Constructor :90

15.3 Constructors with parameters =— 273

Notice that a default constructor has no parameters. In the previous example,
student() is a default constructor without any parameters. A default constructor is
called immediately after memory allocation and initialization of objects.

15.3 Constructors with parameters

In Program 15.4, we have noticed that a default constructor initializes the data
members. It is the same for multiple objects of same class. Here, both JACK and JILL
objects use the marks variable with value equals to 90. In practice, it may be
necessary to initialize different objects of same class with different values. In
such applications, we make use of constructors with parameters when it is possible
to pass different values to members of different objects of same class. Program 15.5
illustrates the use of constructors with parameters. JACK and JILL are two objects of
class student. JACK object is created with 89 as an argument to constructor student
(int m), whereas JILL object is created with value 90. Different objects in the
program are created with different arguments to constructor.

// Program 15.5

// Constructor with Parameters
#include<iostream>

using namespace std;

class student

{
public:
int marks;
student(int m)
{
marks = m;
cout << "Constructor :" << marks << endl;
}
3
int main()
{
student JACK(89),JILL(90);
return 0;
3

The result of Program 15.5 is shown below:

Constructor: 89
Constructor: 90

274 =— 15 Constructors and Destructors

In Program 15.5, the constructor is as follows:

student(int m)
{

marks = m;
cout << "Constructor :" << marks << endl;

Notice that once the previous constructor is defined, we will not be allowed to create a
student object as follows:

student JACK;

It is not possible to do so because no matching constructor is defined for the class.
However, it is possible to define multiple constructors for a class, so that the pro-
grammer can create a new instance of the class in different ways. In the next section,
we will study about multiple constructors of same class. Similarly, we can rewrite the
code for parameterized constructor (Program 15.5) as shown in Program 15.6:

// Program 15.6

// Constructor with Parameters

// Constructor definition is outside of the class definition
#include<iostream>

using namespace std;

class student

{
public:
int marks;
student(int m);
};
student::student(int m)
{
marks = m;
cout << "Constructor :" << marks << endl;
}
int main()
{
student JACK(89),JILL(90);
return 0;
}

Program 15.6 also generates the same result as Program 15.5. Please note that the
parameterized constructor also provides a new mechanism to initialize the fields.
Program 15.7 also generates the same result.

15.3 Constructors with parameters =— 275

// Program15.7

// Constructor with Parameters

// Constructor definition with initialization
#include<iostream>

using namespace std;

class student

{
public:
int marks;
student(int m);
};
student::student(int m): marks(m)
{
cout << "Constructor :" << marks << endl;
3
int main()
{
student JACK(89),JILL(90);
return 0;
3

In this program, the following constructor of Program 15.6:

student: :student(int m)
{

marks = m;
cout << "Constructor :" << marks << endl;

is modified as follows, where colon (:) is used for initializing the marks variable
with m.

student::student(int m): marks(m)

{

cout << "Constructor :" << marks << endl;

Program 15.8 shows the initialization of multiple members along with constructor
definition. In this program, the traditional way of initializing multiple members,
that is,

student::student(int a,int m, char g)

{

276 —— 15 Constructors and Destructors

age = a;
marks = m;

grade = g;

cout << "Age:" << age << endl;
cout << "Marks:" << marks << endl;
cout << "Grade:" << grade << endl;

is changed as follows:

student: :student(int a,int m, char g):age(a),marks(m),grade(g)
{

cout << "Age:" << age << endl;
cout << "Marks:" << marks << endl;
cout << "Grade:" << grade << endl;

The complete Program 15.8 is as follows:

// Program 15.8

// Constructor with Parameters

// Constructor definition with multiple initializations
#include<iostream>

using namespace std;

class student

{
public:
int age;
int marks;
char grade;
student(int a,int m, char g);
3

student::student(int a, int m, char g):age(a),marks(m),grade(g)
{

cout << "Age:" << age << endl;
cout << "Marks:" << marks << endl;
cout << "Grade:" << grade << endl;

}

int main()

{

student JACK(20,70,'B'),JILL(19,90,'A");
return 0;

15.4 Multiple constructors =— 277

The result of Program 15.8 is shown below:

Age:20
Marks:70
Grade:B
Age:19
Marks:90
Grade:A

15.4 Multiple constructors

In Program 15.5, we have seen that the two objects JACK and JILL created with integer
form an argument to the constructor. In practice, it may be necessary to use many
constructors in same class with different data types as arguments to constructor. C++
supports declaration of multiple constructors in the same class. This is quite useful
while dealing with several members of different data types. For example, if we want
the programmers to create a new instance either as:

student JACK;
or
student JACK(89);

Hence, we can simply define two constructors for the same class. There will be no
problems in defining multiple constructors, as shown in Program 15.9, as long as the
constructors defined for a class have either of the two: different number of parameters
or different data types for the parameters, in case the number of parameters is the same.

// Program 15.9

// Multiple Constructors
#include<iostream>

using namespace std;

class student
{
public:
int marks;
char grade;

student()
{
marks = 0;
cout << "Default Constructor :" << marks << endl;

278 =— 15 Constructors and Destructors

student(int m)

{
marks = m;
cout << "Constructor with One Parameter :"
<< marks << endl;
3
student(int m,char g)
{
marks = m;
grade = g;
cout << "Constructor with Two Parameters :"
<< marks << " " << grade << endl;
3
3
int main()
{
student JACK,JILL(89),JOHN(90,'A");
return 0;
3

The result of Program 15.9 is shown below:

Default Constructor :0
Constructor with One Parameter :89
Constructor with Two Parameters :90 A

The main purpose of a constructor is to initialize an object. To achieve this, we have to
define a constructor in a class and initialize the data members in the method body of
the constructor.

15.5 Copy constructor

In C++, there is special kind of constructor that is called copy constructor. It is used
where a constructor can accept a reference to its own class as a parameter. In other
words, a copy constructor is one that initializes an object by using the values of
another object passed to it as a parameter. The main purpose of a copy constructor is
to declare and initialize an object from another object. Program 15.10 shows an
example of the copy constructor.

// Program15.10

// Program to demonstrate Copy Constructor
#include<iostream>

using namespace std;

class student

15.5 Copy constructor = 279

public:
int marks; char grade;

student(int m, char g)
{

marks = m;
grade = g;

student (student &x)
{

marks = x.marks;

grade = x.grade;

3
void displayResults(void)

{

cout << "Marks= " << marks << endl;
cout << "Grade= " << grade << endl;

3

int main()

{
student JACK(90,'A'); // Object creation and initialization
student JILL(JACK); // Calling copy constructor
JACK.displayResults();
JILL.displayResults();
return 0;

In this example, initially an object named JACK is created with values 90 and ‘A’.
These values are initialized to marks and grade, respectively, through parameterized
constructor of object JACK. The statement student JILL (JACK); makes a copy of these
values and assigns to another object named JILL through copy constructor. After the
program is executed, values of marks and grade in both the objects are same. This can
be verified by calling displayResults() of JACK and JILL objects.

The result of Program 15.10 is shown below:

Marks= 90
Grade= A
Marks= 90
Grade= A

We can also call the copy constructor by using assignment operator instead of
student JILL(JACK); as follows:

student JILL = JACK;

280 —— 15 Constructors and Destructors

15.6 Destructors

A destructor is a special member function that is used to destroy the objects that
have been created by a constructor. A destructor will have the exact same name as the
class prefixed with a tilde (~) and it can neither return a value nor take any param-
eters. For example, the destructor for class student can be defined as shown below:

~student () {3}

Destructors are useful for releasing resources such as memory by the compiler upon
exit from the program to clean up the storage that is no longer accessible. This makes
the released memory available so that it can be used by other programs in future. A
destructor is invoked when an object’s scope is over. Program 15.11 shows an example
of a destructor with a constructor and other member functions, all of which are
defined inside class definitions.

// Program15.11

// Program to demonstrate Destructors
#include<iostream>

using namespace std;

class student
{
public:
int marks;
char grade;

// Parameterized Constructor
student(int m, char g)

{
cout << "The Constructor is called " << endl;
cout << "The Object is being created" << endl;
marks = m;
grade = g;
cout << endl;

3

// Member Function
void displayResults(void)

{
cout << "The Member Function is called " << endl;
cout << "Marks= " << marks << endl;
cout << "Grade= " << grade << endl;

cout << endl;

15.7 Review questions =— 281

// Destructor declaration and definition

~student()
{
cout << "The Destructor is called " << endl;
cout << "The Object is being deleted" << endl;
}
3
int main()
{
student JACK(90,'A'); // Object creation and initialization
JACK.displayResults();
return 0;
3

The result of Program 15.11 is shown below:

The Constructor is called
The Object is being created

The Member Function is called
Marks= 90

Grade= A
The Destructor is called
The Object is being deleted

15.7 Review questions

1. What is a constructor? Explain with the help of a program.

Describe the special features of constructors.

What is a default constructor? How it is different from constructors with
parameters.

Describe the meaning of parameterized constructors with an example program.
Describe the meaning of a copy constructor with an example program.

Describe the meaning of a destructor with an example program.

Can constructors be public or private? Discuss with an example.

bl

N ou s

16 Inheritance

A finger points at the moon, but the moon is not at the tip of the finger.
Words points at the truth, but the truth is not in words.
— Huineng

16.1 Introduction

Inheritance is a very important feature in object-oriented programming. It plays a
major role in writing large programs. Inheritance property is highly required when we
deal with many similar classes with minor changes. It enables us to define a new class
based on an existing class definition, for example, if book is a class, then notebook is a
subclass. This means that many characteristics of notebook are derived from book,
such as size, pages, cover, and so forth. With inheritance we can implement an is-a
relationship. For example, notebook is a book, textbook is a book, and so forth. Here,
we call the class book as a parent class (or super class or base class) and the class
notebook as child class (or subclass or derived class).

Fig. 16.1 shows the concept of inheritance. Here, we create or derive a new class
similar to that of the existing class, but it will have some new characteristics. This is
very useful when we are making modifications to an existing program. For example,
Program A needs some modifications to be changed to Program B, a new program. In
such cases, instead of developing Program B from scratch, we can derive the existing
features from Program A. This makes the programming task very easier. The main
advantage of inheritance is code reuse. In this chapter, we will study the use of
inheritance and its importance in programming.

16.2 Single inheritance

As discussed in the Section 16.1, the class that is used to create a new class is called a
parent class (or super class or base class), and the class that is derived from a base
class is called child class (or subclass or derived class). In single inheritance, a
derived class is inherited from a single base class, as shown in Fig. 16.1. C++ also
allows a subclass to inherit from multiple base classes. This is called multiple
inheritance. This means that a derived class can inherit data and functions from
multiple classes. However, Java, another popular OOP language, does not support
multiple inheritance.

A child class is almost like a parent class with some added features. To create a
child class, we should first create a parent class. Remember that the inheritance is
between classes and not between objects. It is not possible to inherit features from
one object to another. Hence, we apply all the inheritance principles only to classes,

https://doi.org/10.1515/9783110593846-016

https://doi.org/10.1515/9783110593846-016

284 =— 16 Inheritance

Book Parent class
(super class or base class)

A 4

Notebook

Child class
(subclass or derived class)

Fig. 16.1: Inheritance in book object.

and not to objects. Please note that in this Chapter we will make use of terms base
class and subclass for our convenience.

To create a subclass from an existing base class, we make use of colon (:) in the
definition of subclass as follows:

class subclass-name: access-specifier baseclass-name

{
// members of child class
// new features of child class

3

As shown previously, the access specifier is public, private, or protected. The base-
class-name is the name of the previously defined class, and subclass-name is the new
class derived from base class or base classes. If the access specifier is omitted, it is
private by default. The access specifier decides whether the features of the class are
derived privately or publicly. To derive features from more than one class, we can use
comma in between base classes. For example, the following format shows the ways of
deriving a subclass from two base classes, baseclass-name1 and baseclass-name2.

class subclass-name: access-specifier baseclass-namel, access-specifier baseclass-
name2

{
// members of child class
// new features of child class

1

Program 16.1 illustrates the concept of inheritance. It shows two classes: baseclass
and subclass. The baseclass has one method, and subclass is derived from base-
class. When we derive a baseclass, the subclass inherits all the methods and
variables. Note that private variables and data are not inherited to subclass.
Hence, it is possible to call the base method of baseclass by using an object of
type subclass, since the subclass is derived from baseclass.

16.2 Single inheritance

// Program 16.1

// A program to understand single inheritance
// Example for public inheritance
#include<iostream>

using namespace std;

class baseclass

{
public:
void basemethod()
{
cout << "Base class " << endl;
}
3
class subclass: public baseclass
{
public:
void submethod()
{
cout << "Sub Class " << endl ;
3
3
int main()
{
baseclass base ;
base.basemethod();
subclass sub ;
sub.basemethod();
sub. submethod();
return 0;
3

The result of Program 16.1 is shown below:

Base class
Base class
Sub Class

— 285

This is also an example of public inheritance, because the definition of subclass
includes public access modifier preceding the baseclass. In public inheritance, public
members of the base class become public members of the derived class. However, in
case of private inheritance, public members of the base class become private members
of the derived class. In such cases, these members are only accessed by the member
functions of the derived class. Program 16.2 is an example for private inheritance. In
this case, it is not possible to use sub.basemethod(); statement in main(), because the
basemethod() becomes private in subclass, so it cannot be in objects of type subclass.

286 —— 16 Inheritance

// Program 16.2

// A program to understand single inheritance
// Example for private inheritance
#include<iostream>

using namespace std;

class baseclass

{
public:
void basemethod()
{
cout << "Base class " << endl;
3
3
class subclass: private baseclass
{
public:
void submethod()
{
cout << "Sub Class " << endl ;
¥
};
int main()
{
baseclass base ;
base.basemethod();
subclass sub ;
// sub.basemethod(); is not possible because it is private
sub. submethod();
return 0;
3

The result of Program 16.2 is shown below:

Base class
Sub Class

In addition, it is possible to derive many subclasses from a single base class. As we
explained in Fig 16.1, notebook is a subclass of book. In the similar way, textbook is
also a subclass of book. Hence, many subclasses can be derived from a base class as
shown in Fig. 16.2.

Program 16.3 demonstrates the use of multiple subclasses.

// Program 16.3
// A program with multiple derived classes
#include<iostream>

using namespace std;

class baseclass

{
public:
void basemethod()
{
cout << "Base Class "
3
3

class subclassl1: public baseclass
{
public:
void submethod()
{

cout << "Sub Class 1"

};
class subclass2: public baseclass
{
public:
void submethod()
{
cout << "Sub Class 2"

3

int main()

{
baseclass base;
base.basemethod();
subclass1 subi;
sub1.basemethod();
sub1.submethod();
subclass2 sub2;
sub2.basemethod();
sub2. submethod();
return 0;

Book

<< endl;

<< endl;

<< endl ;

Notebook Textbook

Fig. 16.2: Multiple subclasses.

16.2 Single inheritance

— 287

288 =—— 16 Inheritance

The result of Program 16.3 is shown below:

Base Class
Base Class
Sub Class 1
Base Class
Sub Class 2

16.3 Multiple inheritance

In this section, we will study another kind of inheritance called multiple inheritance. In
multiple inheritance, a subclass can be derived from multiple base classes. For exam-
ple, a student may use his notebook that he has written during class, and read a
textbook from library. After some studying, he may write a study book only for exam
preparation, as shown in Fig. 16.3. In this example, the study book is derived from note
book as well as textbook. Program 16.4 shows one such example of multiple inher-
itance. In the recent years, the idea of multiple inheritance is a very controversial topic,
but it is still widely used in C++ programming. The main advantage of multiple
inheritance is that the derived class has the benefits of inheriting different methods
from different classes and combining these features to make it as an interesting class.

Notebook Textbook
Studybook

Fig. 16.3: Multiple inheritance example.

// Program 16.4

// Multiple Inheritance Example
#include<iostream>

using namespace std;

class notebook

{
public:
void notebookmethod()
{
cout << "Base Class: Note Book " << endl;
3

16.4 Multilevel inheritance =—— 289

class textbook
{
public:
void textbookmethod()
{

cout << "Base Class: Text Book " <<endl;

3
class studybook: public notebook,public textbook
{
public:
void submethod()
{
cout << "Sub Class: Study Book" << endl ;

¥

int main()

{
notebook NB;
textbook TB;
studybook SB;
NB.notebookmethod();
TB. textbookmethod();
SB.notebookmethod();
SB. textbookmethod();
SB. submethod();
return 0;

}

The result of Program 16.4 is shown below:

Base Class: Note Book
Base Class: Text Book
Base Class: Note Book
Base Class: Text Book
Sub Class: Study Book

As the inheritance is public, the subclass studybook can access the methods of base
classes notebook and textbook.

16.4 Multilevel inheritance

In Fig. 16.1, we have seen that notebook is derived from book. Here notebook is
subclass and book is base class. In the similar way, science notebook is a class that
may be derived from notebook (not from book!). Here science notebook is a derived
class of notebook, and in this case notebook is the base class and science notebook is
the subclass; Fig. 16.4 shows this.

290 = 16 Inheritance

Book

!

Notebook

v
Science
notebook

Fig. 16.4: Inheritance extended to more than one level.

Program 16.5 illustrates the previous explanation. In this program, there are
three classes, namely, baseclass, subclass, and lastclass. The subclass is derived
from the baseclass and the lastclass is derived from the baseclass. Here we will
see that lastclass includes all the two methods of its ancestors along with lastme-
thod(). Notice that subclass includes all methods and variables of its ancestor
classes (except private members).

// Program 16.5

// Example of Multilevel Inheritance
#include<iostream>

using namespace std;

class baseclass

{
public:
void basemethod()
{
cout << "Base Class " << endl;
3
3
class subclass:public baseclass
{
public:
void submethod()
{
cout << "Sub Class of Base Class" << endl ;
3
3
class lastclass:public subclass{
public:
void lastmethod()
{
cout << "Derived Class from Sub Class" << endl ;
3
3

int main()

16.5 The protected keyword = 291

baseclass base;
base.basemethod();
subclass sub;
sub.basemethod();
sub. submethod();
lastclass last;
last.basemethod();
last.submethod();
last.lastmethod();
return 0;

The result of Program 16.5 is shown below:

Base Class

Base Class

Sub Class of Base Class

Base Class

Sub Class of Base Class
Derived Class from Sub Class

A subclass inherits variables and methods from its superclass and all of its ances-
tors, as Program 16.5 shows. Subclasses inherit those base class members declared as
public or protected. (We will see protected keyword in next section.)

16.5 The protected keyword

As we studied in earlier sections, the private data or method cannot be inherited to
subclasses, as it is accessible in the same class only. But, if we make the data or
methods public, then they can be accessible everywhere. This is a typical problem we
face when we deal with inheritance. In practice, a base class may want to inherit only
some of its data and members to its subclasses, and not to other classes. In such cases,
we make use of protected keyword. This keyword is an access specifier for data and
members of a class. If we make a data or method protected, then it is visible only inside
the same class, and in any subclass. In summary, when we derive from a protected
base class, public and protected members of the base class become protected
members of the derived class.

The example to understand protected data members is presented in Program 16.6.
The subclass is derived from baseclass. The baseclass has three data and one base-
method(). The subclass is derived from baseclass and only data member a (int a), b
(int b), and basemethod() can be derived to subclass. Remember that we cannot make
use of ¢ (int c) outside of baseclass, since it has a private access. In the main()
method, we can access only a (int a) because it is declared public.

292 — 16 Inheritance

// Program 16.6

// Program with protected data members
#include<iostream>

using namespace std;

class baseclass

{
public:
int a;
protected:
int b;
private:
int c;
public:
void basemethod()
{
a=20,b=30,c=40;
cout << "Base Class" << endl;
cout << a << endl;
cout << b << endl;
cout << ¢ << endl;
3
¥
class subclass: public baseclass
{
public:
void submethod()
{
cout << "Sub Class" << endl;
cout << a << endl;
cout << b << endl;
// cout<< c << endl; //Not possible, c is private
3
3
int main()
{

baseclass base;

subclass sub;

base.basemethod();

sub.basemethod();

sub. submethod();

cout<< "MAIN FUNCTION" << endl;

cout<< base.a <<endl;

// cout<< base.b << endl; // Not possible, b is protected
// cout<< base.c << endl; // Not possible, c is private
cout << sub.a << endl;

// cout<< sub.b << endl; // Not possible, b is protected
// cout<< sub.c << endl; // Not possible, c is private

16.6 Overriding data and methods =— 293

return 0;

The result of Program 16.6 is shown below:

Base Class
20

30

40

Base Class
20

30

40

Sub Class
20

30

MAIN FUNCTION
20

20

In summary, a derived class can access all the members of a base class except those
that are private. Hence, any private member of a class is not accessible outside of that
class. Table 16.1 summarizes the visibility of access modifiers in C++.

Table 16.1: Inheritance and access control

Access Default private protected public
(No Access Specifier)

Accessible inside the class Yes Yes Yes Yes

Accessible in derived classes No No Yes Yes

Accessible outside of classes No No No Yes

16.6 Overriding data and methods

As we have discussed earlier, a subclass can inherit methods and variables from base
class and add its own code to it. What if the name of base class variables and methods
is same as subclass variables and methods? In such cases subclasses do not inherit
the member variables and methods of the base class. The member variables and
methods in subclass override (hides) member variables and methods of base class.
This is called overriding. A subclass method can completely rewrite the inherited
base methods or add a new code to it. Remember that overridden methods must have
the same name, argument list, and return type.

Program 16.7 illustrates overriding. The value is a member variable in baseclass,
and fun() is a member method. In the same way, we have similar method and

294 =— 16 Inheritance

variable with same name in subclass. The fun() and value of baseclass are over-
ridden by the fun() and value of the subclass.

// Program 16.7

// Program to Demonstrate Overriding
#include<iostream>

using namespace std;

class baseclass

{
public:
int value;
void fun()
{
value = 10;
cout << "Base Class :" << value << endl;
3
35
class subclass:public baseclass
{
public:
int value;
void fun()
{
value = 100;
cout << "Sub Class :" << value << endl;
}
};
int main()
{
baseclass base;
subclass sub;
base.fun();
sub.fun();
return 0;
}

The result of Program 16.7 is shown below:

Base Class:10
Sub Class:100

16.7 Constructors and inheritance

We are aware that subclass methods and variables can be inherited from base class.
What about constructors? In this section, we will understand the relationship

16.7 Constructors and inheritance = 295

between constructors and inheritance case by case. Initially, we will consider a case
where the base classes include a constructor, but derived class does not.
Program 16.8 shows this kind of example.

// Program 16.8

// Constructor and Inheritance
// Examplel

#include<iostream>

using namespace std;

class baseclass

{
public:
baseclass()
{
cout << "Base Class Constructor" << endl;
}
};
class subclass: public baseclass
{
3
int main()
{
baseclass base;
subclass sub;
return 0;
3

The result of Program 16.8 is shown below:

Base Class Constructor
Base Class Constructor

This shows that base class constructor is inherited to subclass, and is invoked during
the creation of objects of both base class and subclass. Program 16.9 shows another
scenario, where both base class and subclass include constructors.

// Program 16.9

// Constructor and Inheritance
// Example2

#include<iostream>

using namespace std;

class baseclass

{
public:
baseclass()

296 —— 16 Inheritance

{
cout << "Base Class Constructor" << endl;
3
3
class subclass:public baseclass
{
public:
subclass()
{
cout<< "Sub Class Constructor" << endl;
}
3
int main()
{
baseclass base;
subclass sub;
return 0;
}

The result of Program 16.9 is shown below:

Base Class Constructor
Base Class Constructor
Sub Class Constructor

This is because the subclass also inherits the base class constructor, and the base
class constructor is executed first as compared to the subclass constructor during the
creation of subclass object. This means, the order of execution is hierarchical.
Program 16.10 shows an example, where two base classes include constructor, and
one subclass is derived from these two base classes.

// Program 16.10

// Constructor and Inheritance
// Example3

#include<iostream>

using namespace std;

class baseclass_1

{
public:
baseclass_1()
{
cout << "Base Class 1: Constructor" << endl;
3
3

class baseclass_2

{

16.7 Constructors and inheritance

public:
baseclass_2()
{
cout << "Base Class 2: Constructor" << endl;
}
};
class subclass: public baseclass_1, public baseclass_2
{
public:
subclass()
{
cout << "Sub Class Constructor" << endl;
3
3
int main()
{
subclass sub;
return 0;
3

The result of Program 16.10 is shown below:

Base Class 1: Constructor
Base Class 2: Constructor
Sub Class Constructor

— 297

The results clearly show the order of execution. Similarly, Program 16.11 shows

another example of multilevel inheritance and constructor.

// Number 16.11

// Constructor and Inheritance
// Example4
#include<iostream>

using namespace std;

class baseclass

{
public:
baseclass()
{
cout << "Base Class: Constructor" << endl;
}
};
class subclass:public baseclass
{
public:
subclass()

{

298 =— 16 Inheritance

cout << "Sub Class: Constructor" << endl;

3
3
class lastclass:public subclass
{
public:
lastclass()
{
cout << "Last Class: Constructor" << endl;
¥
¥
int main()
{
baseclass base;
subclass sub;
lastclass last;
return 0;
}

The result of Program 16.11 is shown below:

Base Class: Constructor
Base Class: Constructor
Sub Class: Constructor
Base Class: Constructor
Sub Class: Constructor
Last Class: Constructor

16.8 Review questions

What is inheritance? List the advantages of inheritance in software development.

What is single inheritance? How it is different from multiple inheritance?

What is multiple inheritance? Describe with an example program.

What is multilevel inheritance? Describe with an example program.

What is use of protected keyword in C++? Compare its advantages and disadvan-

tages over public and private access modifiers.

6. Explain overriding with an example. How is overriding different from overloading
(see Chapter 14)?

7. Write a note on constructors and inheritance with an example program.

8. Summarize of role of access modifiers in inheritance.

S S

17 Polymorphism

The world is like a great empty dream. Why should one toil away one’s life?
— Li Bai

17.1 Introduction

Polymorphism is one of the most essential features of an object-oriented program-
ming. It makes writing programs simpler and reusable. Polymorphism means many
forms (or many faces). For example, a person may be a father at home, an officer in
the office, or a customer in a restaurant. Here, father, officer, and customer all refer to
the same person. There are two kinds of polymorphism: compile-time polymor-
phism (or static polymorphism) and run-time polymorphism (or dynamic poly-
morphism). Typically, polymorphism occurs when there is a hierarchy of classes
and they are related by inheritance. C++ polymorphism means that a call to a member
function will cause a different function to be executed depending on the type of
object that invokes the function. Fig. 17.1 shows the types of polymorphism. In this
chapter, we will cover all these types with at least one example each.

17.2 Static polymorphism

Static polymorphism is also called compile-time polymorphism. There are two catego-
ries of static polymorphism: function overloading and operator overloading, as shown
in Fig. 17.1. It is an early binding polymorphism, where memory will be allocated
during compile time. The binding of functions is based on the number of arguments,
data type, and sequence of arguments. During the program execution, the calls are
already fixed to suitable functions. For example, let us consider these two statements.

void add(float , float);
void add(int , float);

When the add() function is invoked, the types of parameters already decide during
compile time that which version of the function code will be executed.
Function overloading

In C++, an overloaded function is a function with same function name, but with different
signature in the same scope. A function signature includes the number of arguments,

https://doi.org/10.1515/9783110593846-017

https://doi.org/10.1515/9783110593846-017

300 —— 17 Polymorphism

Polymorphism

T

Compile time Run time
(static) (dynamic)
Methoq Operat(.)r Virtual functions
overloading overloading

Fig. 17.1: Types of polymorphism.

type of arguments, and sequence of arguments. This means that the function definitions
are different from each other by the data types and number of arguments in the argument
list. When we call an overloaded function, the compiler will automatically determine
most suitable function for execution. Program 17.1 shows an example of function over-
loading. In this program, the function add() is overloaded with different parameters for
five times.

// Program 17.1

// Example Program of Function Overloading
#include<iostream>

using namespace std;

class addNumbers

{
public:
void add(int a, int b)
{
cout << "Adding two integers, Result = " << at+b << endl;

}

void add(int a, int b, int c)

{

cout << "Adding three integers, Result =
<< atb+c << endl;

3

void add(float a, float b)

{

cout << "Adding two floating point numbers, Result ="

<< atb << endl;

3

void add(int a, float b)

{

cout << "Adding one integer and a floating point number, Result =
<< atb << endl;

17.2 Static polymorphism =— 301

void add(float a, float b, float c)
{
cout << "Adding three floating point numbers, Result ="
<< atb+c << endl;

1

int main()

{
addNumbers ADDTEST;
ADDTEST.add(1,2);
ADDTEST.add(1,2,3);
ADDTEST.add(2.2f,3.1f);
ADDTEST.add(2,3.14f);
ADDTEST.add(1.5f,2.5f,6.4f);
return 0;

The result of Program 17.1 is shown below:

Adding two integers, Result = 3

Adding three integers, Result = 6

Adding two floating point numbers, Result = 5.3

Adding one integer and a floating point number, Result = 5.14
Adding three floating point numbers, Result = 10.4

Function overriding

Function overriding is another feature where functions share the same name during
inheritance. In function overriding, a subclass function overrides the base class
function, because they both have the function with same name and signature. This
means that the base class function and subclass function have the same name, same
parameter list, and same return type. Program 17.2 shows an example of function
overriding.

// Program 17.2

// Example Program of Function Overriding
#include<iostream>

using namespace std;

class baseclass
{
public:
void fname()

{

302 — 17 Polymorphism

cout << "Base Class Function" << endl;

3
3
class subclass: public baseclass
{
public:
void fname()
{
cout << "Sub Class Function" << endl;
¥
¥
int main ()
{
subclass SUB;
SUB. fname();
return 0;
}

Program 17.3 shows another example for function overriding, where the subclass
overrides the base class function, but it uses the data member from base class (in this
case it is variable y).

// Program 17.3

// Example Program of Function Overriding
#include<iostream>

using namespace std;

class baseclass
{
public:
int x,y;
void getxy()
{
x = 10;
y = 20;

void add()
{

cout << "Base Class, Result = " << x+y << endl;
3

class subclass: public baseclass
{
public:
void setx()

17.2 Static polymorphism =— 303

{
x = 30;
3

void add()
{

cout << "Subclass, Result = " << x+y << endl;
}
i

int main()

{
baseclass BASE;
subclass SUB;
BASE.getxy();
BASE.add();
SUB.getxy();
SUB.setx();
SUB.add();
return 0;

The result of Program 17.3 is shown below:

Base Class, Result = 30
Subclass, Result = 50

Operator overloading

Operator overloading is another interesting feature of C++, which provide extending
features for unary and binary operators. This means, various operators such as +, *,
<=, +=, and so forth can be used not just with numbers but also with additional
features. For example, if we want to write a program to find the sum of two linear
equations (for example, EqA = 6x+ 7y, and EqB = 2x+ 5y), and to produce another
linear equation (EqC = 8x+ 12y), then it is possible by using operator overloading to
write a program, which looks like, EqC =EqA + EqB, by overloading operator “+.”
Similarly, by overloading “~” operator, we can also calculate EqD = EqA — EqB. Hence,
the concept of providing additional meaning to C++ operators is called operator over-
loading. The keyword operator is used for the symbol of the operator while writing
overloaded operator functions. These overloaded functions are similar to normal func-
tions, and also include return type and parameter list. Program 17.4 shows an example of
operator overloading, where both addition (+) and subtraction (-) binary operators are
overloaded to add two simple linear equations. In this case, Equation A = 6x+ 7y, and
Equation B = 2x+ 5y. The Equations C and D represent the results after addition and
subtraction, respectively.

304 —— 17 Polymorphism

// Program 17.4

// Example Program of Operator Overriding
#include<iostream>

using namespace std;

class Equation
{
int coefx; // coefficient of x
int coefy; // coefficient of Y
public:
Equation(){} // constructor 1
Equation(int cx, int cy) // constructor 2
{
coefx = cx;
coefy = cy;

Equation operator+(Equation);
Equation operator-(Equation);
void printResult(void);

3

// overloading + operator
Equation Equation :: operator+(Equation B)
{
Equation temp;
temp.coefx = coefx + B.coefx;
temp.coefy = coefy + B.coefy;
return (temp);

}

// overloading - operator

Equation Equation :: operator-(Equation B)
{

Equation temp;
temp.coefx = coefx - B.coefx;
temp.coefy = coefy - B.coefy;
return (temp);

}

void Equation::printResult(void)

{

cout<< coefx << "x + " << coefy << "y" << endl;

}

// main function for the program

int main()

{

Equation EqA(6,7); // A=6x+T7y

17.3 Dynamic polymorphism =— 305

Equation EgB(2,5); // B=2x+5y
Equation EqC,EqD;

cout << "Equation A = ";
EgA.printResult();

cout << "Equation B H
EgB.printResult();

EqC = EgA + EgB; //Adding two equations
cout << "Equation C = ";

EqC.printResult();

EqD = EgA - EQB; //Subtracting two equations
cout << "Equation D = ";
EqD.printResult();

return 0;

The result of Program 17.4 is shown below:

Equation A = 6x + 7y
Equation B = 2x + 5y
Equation C = 8x + 12y
Equation D = 4x + 2y

17.3 Dynamic polymorphism

As we mentioned earlier, another type of polymorphism is called dynamic polymor-
phism or run-time polymorphism. As the name suggests, the dynamic aspect of reso-
lution makes it different from static polymorphism. For example, in dynamic
polymorphism, a function that exists in multiple forms is executed dynamically by
calling appropriate calls during runtime. That means, the resolution that which function
call is going to execute a particular instance is decided during program execution. That is
why the dynamic polymorphism is called late-binding polymorphism, because function
resolution happens at runtime, rather than compile time, as in static polymorphism. This
interesting feature provides a flexibility of executing a function depending on the
context. Dynamic polymorphism is implemented by using virtual functions.

For example, in Chapter 16, we have discussed about book and notebook. Here
notebook is a subclass derived from base class book. It is also clear that notebook is
also a book. So in C++, it is possible to make instance of subclass object as a type of
base class. Here is an example:

class book

{

306 = 17 Polymorphism

public:
void printName()
{
cout << "This is a Book" << endl;
}
};
class notebook:public book
{
public:
void printName()
{
cout << "This is a NoteBook" << endl;
3
3

We have already studied that the following statements are true

book myBook ;
notebook myNoteBook;

However, consider the following statements.

book *mybook; // base class pointer
notebook NTBK; // derived class object
mybook = &NTBK; // making base class pointer to hold

// derived class object
mybook->printName(); // early binding

In the previous statements, we are making the base class pointer (mybook) hold the
address of derived class object (NTBK) of notebook class. This is possible because
notebook object is a type of book, moreover notebook class is derived from book. In
summary, an object can be used as its own type or as an object of its base type. In
Program 17.5, both superclass book and subclass notebook contain the same function
printName() with same signature. So, when subclass object is used to call printName
() function in subclass notebook, this leads to the execution of overriding the
function in super class book.

// Program 17.5

// A program to understand polymorphism
#include<iostream>

using namespace std;

class book

{

17.3 Dynamic polymorphism =— 307

public:
void printName()
{
cout << "This is a Book" << endl;
}
3
class notebook: public book
{
public:
void printName()
{
cout << "This is a NoteBook" << endl;
}
3
int main()
{
book *mybook;
notebook NTBK;
mybook = &NTBK;
mybook->printName();
return 0;
3

However, when we run the program, the result is as shown below.

This is a Book

We expected the result "This is a NoteBook" rather than the one shown previously.
This is because the previous program still runs in the mode of early binding, rather
than late binding. To make the program generate the expected output, we should
make use of virtual functions. We can also test early binding in Program 17.6, another
modified example.

// Program 17.6

// A program to understand polymorphism
#include<iostream>

using namespace std;

class book

{
public:
void printName()

308 —— 17 Polymorphism

cout << "This is a Book" << endl;
3

class notebook: public book

{
public:
void printName()
{
cout << "This is a NoteBook" << endl;
3
};
class textbook: public book
{
public:
void printName()
{
cout << "This is a TextBook" << endl;
3
3
int main()
{
book #*mybook;
notebook NTBK;
mybook = &NTBK;
mybook->printName();
textbook TBK;
mybook = &TBK;
mybook->printName();
return 0;
3

The result of Program 17.6 is shown below:

This is a Book
This is a Book

The user does not expect these results, because of early binding in both cases. The
reason for the incorrect output is that the call of the function printName() is set once
by the compiler as the version defined in the base class. This is called static resolution
of the function call, or static linkage, that is, the function call is fixed before the
program is executed. This is called early binding because the printName() function
is set during the compilation of the program.

17.3 Dynamic polymorphism =— 309

To solve this, we will make slight modification to Program 17.6, by adding
virtual keyword preceding the declaration of printName() in the base class(book),
as shown in Program 17.7.

// Program 17.7

// A program to understand polymorphism
#include<iostream>

using namespace std;

class book
{
public:
virtual void printName()
{
cout << "This is a Book" << endl;
}
35
class notebook:public book
{
public:
void printName()
{
cout << "This is a NoteBook" << endl;
}
b

class textbook:public book

{
public:
void printName()
{
cout << "This is a TextBook" << endl;
}
};

int main()

{
book #*mybook;
notebook NTBK;
mybook = &NTBK;
mybook->printName();
textbook TBK;
mybook = &TBK;
mybook->printName();
return 0;

310 —— 17 Polymorphism

The result of Program 17.7 is shown below:

This is a NoteBook
This is a TextBook

Now, the results are as expected, because this time, the compiler looks at the contents
of the pointer instead of its type. Hence, since addresses of objects of NTBK and TBK
classes are stored in *book the respective printName () function is called. As we have
seen in these examples, each of the child classes (notebook and textbook) has a
separate implementation for the function printName (). This is how polymorphism is
generally used. We have different classes with a function of the same name, and even
the same parameters, but with different implementations.

A function in a base class becomes virtual function, if that is declared using the
keyword virtual. If a base class function is defined as virtual, having similar
implementation in derived class, then it guides the compiler that, we do not need
static binding for this function. This dynamic linkage makes the selection of the
function to be called at any given point in the program to be based on the kind of
object for which it is called. This is also called late binding. A class which contains
one or more virtual functions is known as a polymorphic class. This is also helpful to
access the extra features of the derived class by making the base class pointer referring
to a derived class object. The syntax for creating a virtual function is as follows:

virtual return-type function- name(params-list)

{
//Body of function

}

Program 17.8 demonstrates the ways of accessing derived class features by using
virtual function.

// Program 17.8

// A program with Virtual Function
#include <iostream>

using namespace std;

class book
{
protected:
int Serial_No;
public:
virtual void Display()
{

cout << "Serial Number = " << Serial_No << endl;

17.3 Dynamic polymorphism =— 311

3

class textbook : public book

{
protected:
int Year;
public:
textbook(int Serial_No, int Year)
{
this->Serial_No = Serial_No;
this->Year = Year;
}
void Display()
{
cout<< "Book Serial Number = " << Serial_No << endl;
cout << "Book Year = " << Year << endl;
}
};
int main()
{
book *bptr;
textbook objBook(30, 2016);
bptr = &objBook;
bptr->Display();
return 0;
¥

The result of Program 17.8 is shown below:

Book Serial Number = 30
Book Year = 2016

Although the programmers must be careful while using the virtual functions,
there are several rules that must be remembered while working with virtual
functions. Some of them are as follows: (a) virtual functions must be members
of a class, (b) virtual functions must be created in public section so that
objects can access them, (c) when a virtual function is defined outside the
class, virtual keyword is required only in the function declaration, and not
necessarily in the function definition, (d) virtual functions cannot be static
members, (e) virtual functions must be accessed using a pointer to the object,
(f) a virtual function cannot be declared as a friend of another class, (g) virtual
functions must be defined in the base class even if they do not have any
significance, (h) the signature of virtual function in base class and derived
class must be the same, and (i) if a function is declared as virtual in the base
class, it will be virtual in all its derived classes.

312 — 17 Polymorphism

17.4 Pure virtual function and abstract classes

In Section 17.3, we have studied the role of virtual functions in polymorphism. As
shown in Program 17.8, a virtual function Display() is defined in base class, but it is
not actually used. This means that it is possible to include a virtual function in a base
class, and redefine it in derived class to suit the objects of that class. It also means
that we can make the virtual function that has no body or no meaningful definition in
the base class. Such a virtual function is called pure virtual function.

A function can be made virtual by replacing the definition by =0 (an equal sign
and a zero). For example, the following code shows a virtual function.

virtual void Display()
{

cout << "Serial Number = " << Serial_No << endl;

}

The previous virtual function can be made pure by replacing its definition by =0, as
shown below:

virtual void Display () = 0;

The =0 tells the compiler that the function has no body and the virtual function will be
called pure virtual function. A class that contains at least one pure virtual function is
considered an abstract class. Classes derived from an abstract class must implement
the pure virtual function and too become abstract classes. Program 17.9 shows an
example of implementation of a pure virtual function and abstract class.

// Program 17.9

// A Program with Pure Virtual Function
#include<iostream>

using namespace std;

class book
{
protected:
int Serial_No;
public:
virtual void Display() = 0;
3

class textbook : public book
{
protected:
int Year;
public:
textbook(int Serial_No, int Year)

17.5 Review questions =— 313

{
this->Serial_No = Serial_No;
this->Year = Year;
3
void Display()
{
cout<< "Book Serial Number = "<< Serial_No<< endl;
cout<< "Book Year = "<< Year<< endl;
3
3
int main()
{
book *bptr;
textbook objBook(30, 2016);
bptr = &objBook;
bptr->Display();
return 0;
3

The result of Program 17.9 is shown below:

Book Serial Number = 30
Book Year = 2016

The idea of abstract classes is to tell the users that all classes do not necessarily
represent objects, because sometimes a class is insufficient to completely represent
an object. Such classes are called as abstract classes. The abstract class does not fully
represent an object, but it provides a partial description of objects. As these classes do
not represent an object fully, they cannot be instantiated. This means that a state-
ment shown below, in Program 17.9, can create an error.

book BK;

To understand the reasons behind why abstract classes are not instantiated, we can
take an example of a flower class. There are so many kinds of flower such as rose,
jasmine, chrysanthemum, so on. We can create an instance of rose, however, we
cannot create an instance of a flower! Because the term flower does not fully represent
any flower. This shows that with abstract classes we can express general terms from
which more specific classes are derived. As shown in Program 17.9, we cannot create an
abstract class type, but we can use pointers and references to abstract class type.

17.5 Review questions

1. What is polymorphism? Explain with a program.
2. List the advantages of polymorphism in C++.

314 — 17 Polymorphism

3. What is function overloading? Explain with an example program.

4. What is function overriding? Explain with an example program.

5. What is operator overloading? Explain with an example program.

6. List the differences between function overloading and function overriding.

7. List the difference between static polymorphism and dynamic polymorphism.
8. Which rules must be remembered while using virtual functions?

9. What is the difference between virtual function and pure virtual function?

10. Write a program to demonstrate pure virtual function.

11. Write a note on abstract classes in C++.

18 Templates

Success is not worth rejoicing over;
Failure is not worth grieving over.
— Luo Guanzhong

18.1 Introduction

Templates are one of the most interesting features of C++, which enable the pro-
grammers to apply the concept of generic programming. Templates are a fundamental
idea of generic programming, where one can write the code that is independent of any
particular data type. In general, templates are a blueprint for creating a generic class or
a function. In other words, we can use templates to define functions as well as classes.
Basically there are two types of templates: class templates and function templates.
Templates can be parameterized by types, compile-time constants, and other templates.
In C++, the templates are implemented by instantiation at compile time.

To describe the use of templates, let us consider a situation where we want to
define two functions with same name AddTwo() that can add two integers and
double numbers. Their function definitions look as follows:

int AddTwo(int p, int q)

{
return p+q;
}
double AddTwo(double x, double y)
{
return x+y;
}

As we can see in previous two function codes, the only change is the data type.
AddTwo() function uses integers as parameters, and returns an integer after adding
two numbers. AddTwo() function uses double as parameters, and returns a double
after adding two double numbers. Program 18.1 shows the entire code of using these
functions effectively.

// Program18.1

// A program without templates
#include<iostream>

using namespace std;

int AddTwo(int p, int q)
{

https://doi.org/10.1515/9783110593846-018

https://doi.org/10.1515/9783110593846-018

316 —— 18 Templates

return p+q;
}
double AddTwo(double x, double y)
{
return x+y;
¥
int main()
{
int a = 10;
int b = 20;
cout << "AddTwo(a, b): " << AddTwo(a, b) << endl;
double ¢ = 10.5;
double d = 20.6;
cout << "AddTwo(c, d): " << AddTwo(c, d) << endl;
return 0;
3

The result of Program 18.1 is as follows:

AddTwo(a, b): 30
AddTwo(c, d): 31.1

However, the kinds of programs such as Program 18.1 have their own shortcomings.
We have to repeat the function code for different data types, that is, if we have to add
numbers of different data types, such as long, short, float, and so forth, we have to
repeat the code again and again. Templates play an important role to deal with these
problems. Now, let us consider Program 18.2, showing an example of using templates
in C++, accomplishing the same task as shown in Program 18.1.

// Program18.2

// A program with templates
#include<iostream>

using namespace std;

template<typename T>

T AddTwo(T x, T y)

{
return x+y;
3
int main()
{

int a = 10;

18.2 Function template =— 317

int b = 20;

cout << "AddTwo(a, b): " << AddTwo(a, b) << endl;
double ¢ = 10.5;

double d = 20.6;

cout << "AddTwo(c, d): " << AddTwo(c, d) << endl;
return 0;

The result of Program 18.2 is as follows:

AddTwo(a, b): 30
AddTwo(c, d): 31.1

Program 18.1 shows a simple example, where AddTwo() function is defined as a
template, and is used to add both integers and double numbers. It is clear from the
program that there is only one function definition for AddTwo(), which makes it a
generic function in this case, that is, it uses a generic data type as parameters,
rather than specific data types. In order use a template, we first need to build a
template definition. This can be done as follows:

template<typename T>

T AddTwo(T x, T y)
{

return x+y;

}

Through the statement template<typename T> the template header tells the com-
piler that we are going to use templates in this program. In other words, the
“template” keyword specifies a function as a template function. Writing <class
T> or <typename T> after keyword “template” specifies that the function takes a
generic type argument T. The uppercase letter T, could be any letter, however, it is a
usual practice to use T. In this case, the symbol T is called type parameter. It is
simply a place holder that is replaced by an actual type or class when a function is
invoked.

18.2 Function template

In Section 18.1, we have introduced templates. There are two basic types of templates
in C++: function templates and class templates. A function template is declared in
the same way as an ordinary function is declared, except that it is preceded by the
specification:

318 — 18 Templates

template<class T>

The general form of a template function definition is shown as follows:

template <class type> return-type function-name(parameter list)

{
// body of function

Here, “type” is a placeholder name for a data type used by the function. The “type”
parameter T may be used in place of ordinary types within the function definition.
The word “class” is used to mean a class or primitive type. Program 18.2 shows an
example of a function template. Template functions are addressed like ordinary
functions. A template may have several type parameters as follows:

Template<class T, class X, class Y, class Z>

Function templates provide a generic solution for overloaded functions. Instead of
writing many functions that share the same task, we can write one generic function
by using templates. Program 18.3 shows another example of function template,
where template functions is used to swap two integers, floating-point numbers,
and two strings. As shown in Program 18.2, we have used typename keyword.
Although it is a common practice to use “class” instead, both keywords carry the
same meaning. Originally, the developers used class to specify types in templates to
avoid introducing a new keyword. Some worried that this overloading of the keyword
can lead to confusion. Hence, a new keyword typename to resolve syntactic ambi-
guity is introduced later, and decided to let it also be used to specify template types to
reduce confusion; however, class kept its overloaded meaning for backward
compatibility.

// Program18.3

// A program with function template
#include<iostream>

using namespace std;

template<class T>

void swapTwo(T& x, T& y)
{

T temp;

temp = x;

X =Y,

y = temp;

18.2 Function template =— 319

int main ()

{
int a = 10, b = 20;
float p = 30.5f,q = 40.8f;
char *r = "Hello", *s = "world";
// swapping integers
cout << "Swapping Integers" << endl;
cout << "a= " << a << " and b =" << b << endl;
swapTwo(a,b);
cout << "a= " << a << " and b =" << b << endl << endl;
cout << "Swapping Floating Point Numbers" << endl;
cout << "p= " << p << " and q =" << g << endl;
swapTwo(p,q);
cout << "p= " << p << " and q =" << g << endl <<endl;
cout << "Swapping Strings" << endl;
cout << "r= " << r << " and s =" << s << endl;
swapTwo(r,s);
cout << "r= " << r << " and s =" << s << endl;
return 0;

3

The result of Program 18.3 is as follows:

Swapping Integers
a= 10 and b =20
a= 20 and b =10

Swapping Floating Point Numbers
p= 30.5 and q =40.8
p= 40.8 and q =30.5

Swapping Strings
r= Hello and s =world
r= world and s =Hello

A template function is used to construct a family of functions working in the same
fashion. They are also known as “parameterized” or “generic” functions. Each
template is a skeleton for a set of similar functions working on different types of data.
A template becomes a real function when it is invoked or instantiated with a specified
data type. We can replace many overloaded functions with a single template.

320 — 18 Templates

A template function may be preceded by any of the normal modifiers such as inline,
extern, static, and so forth.

18.3 Class template

Class templates work in the same way as function templates, except that they
generate classes instead of functions. They provide the users a good way to define
a generic pattern for class definitions. A class template must contain at least one
generic type field. The general form of a generic class declaration is shown here:

template <class type> class class-name

{

Here, type is the placeholder type name that must be specified when a class is
instantiated. We can define more than one generic data types by using a comma-
separated list. A class template, like a function template, may have several template
parameters. Moreover, some of them can be of primitive types of parameters:

template <class T, int x, class Y> class A

{

Sometimes, class templates are also called parameterized types. The parameters of
the primitive types must be constant. Program 18.4 shows an example of a class
template.

// Program18.4

// Example for Class Template
#include <iostream>

using namespace std;

template <class T>

class addTwo
{
TX,Y;
public:
addTwo (T a, T b)
{

X =a;y=b;

18.3 Class template =— 321

3
T getSum ()
{
T sum;
sum = x+y;
return sum;
¥
};
int main ()
{
addTwo <int> ADD (10, 55);
cout << "Sum = " << ADD.getSum() << endl;
return 0;
3

The result of Program 18.4 is as follows:
Sum = 65

It is important to note that the member functions of a class template themselves
function templates with the same template header as their class. Hence, we can
rewrite Program 18.4, as Program 18.5 that also produces the same result.

// Program18.5

// Example for class template
#include <iostream>

using namespace std;

template <class T>

class addTwo

{
T X, Y¥;
public:
addTwo (T a, T b)
{
x =a; y=b;
3
T getSum ();
3

template <class T>
T addTwo<T>::getSum()
{

T sum;

sum = x+y;

return sum;

322 — 18 Templates

}

int main ()

{
addTwo <int> ADD (10, 55);
cout << "Sum = " << ADD.getSum() << endl;
return 0;

}

Now, let us consider following statements in Program 18.5.

template <class T>
T addTwo<T>::getsSum()

{
T sum;
sum = x+y;
return sum;
}

In this part of code, T is used four times: (a) first one is the template parameter; (b)
second T refers to the type returned by the function; (c) third T (the one between angle
brackets) specifies that this function’s template parameter is also the class template
parameter; and (d) fourth T represents generic type of sum variable.

18.4 Standard template library

In C++, standard template library or STL provides a set of well-structured generic C++
components that work together in seamless ways. They contain a collection of classes
and function templates. This includes helper class and function templates, container
and iterator class templates, generic algorithms that operate over iterators, function
objects, and adaptors. The C++ STL is a powerful set of C++ template classes that
provides general-purpose classes and function templates that implement many pop-
ular and commonly used algorithms and data structures, such as vectors, lists,
queues, and stacks. The C++ STL includes three well-structured core components:
containers, algorithms, and iterators. Containers are used to manage collections of
objects of a certain kind. There are several different types of containers, such as
deque, list, vector, map, and so forth. Algorithms act on containers by providing the
means by which initialization, sorting, searching, and transforming of the contents of
containers are performed. Iterators are used to step through the elements of collec-
tions of objects. These collections may be containers or subsets of containers. Some of
the standard templates in C++ are shown in Table 18.1.

In this chapter, we will elaborate on vector STL. Vectors are useful when we have
an unknown sequence of items to store but we want to access them by their sequence

18.4 Standard template library

Table 18.1: Some of the standard templates in C++ and their details.

Library Name Description

<vector> A dynamic array

<list> A randomly changing sequence of items

<stack> A sequence of items with pop and push at one end only
<queue> A Sequence of items with pop and push at opposite ends
<deque> Double-ended queue with pop and push at both ends
<bitset> A subset of a fixed and small set of items

<set> An unordered collection of items

<map> An collection of pairs of items indexed by the first one

— 323

numbers. To use STL vectors in a program, we have to include the statement:
#include <vector>. Suppose that T is any type or class, say an int, a float, a struct,
or a class, then vector<T> v; declares a new and empty vector called v. Vector STL
provides many functions so that a programmer can use them when necessary.
Table 18.2 shows some of vector functions and their details.

Table 18.2: Details of functions available in vector STL in C++.

Function Name

Description

~empty ()
.size()
.push_back(t)
.pop_back()
.front()
front() =
expression
v.back()
v.back() =
expression
v[i]

v.at(i)

v =Vl

< < < < < <

Test to see if v is empty.

Find the number of items in v.
Push a t:T onto the end of v.
Pop the front of v off v.

To get the front item of v.

To change the front item.

To get the back item of v.
To change the back item.

To access the i item (9<i<size()) without checking to see if it exists.

To access the i item safely.
To assign a copy of v1 to v.

Program 18.6

shows an example of understanding vector STL in C++.

// Program18.6
// A program with vector STL

#include <iost

ream>

324 — 18 Templates

#include <vector>

using namespace std;

int main()

{
// Creating a vector V to store integers
vector<int> V;
int i;

// Printing the initial size of V
cout << "Vector size = " << V.size() << endl << endl;

// Pushing 10 values into the vector V
for(i = 0; i < 10; i++)
{

V.push_back(i);

// Displaying the extended size of vector V
cout << "Extended vector size = " << V.size() << endl << endl;

//Accessing 10 values from the vector

for(i = 0; i < 10; i++)

{

cout << "Value of V [" << i << "] =" << V[i] << endl;

}

cout <<endl;

// Use iterator to access the values
vector<int>::iterator v = V.begin();
while(v != V.end())

{

cout << "value of v = " << #v << endl;

v++;

}

cout << endl << "Accessing the 5th item = " << V.at(4) << endl;
cout << "Accessing the front item = " << V.front() << endl;
cout << "Accessing the back item = " << V.back() << endl;
return 0;

The result of Program 18.6 is as follows:

Vector size = 0

Extended vector size = 10
Value of V [0] = 0
Value of V [1] =1
Value of V [2] = 2

Value
Value
Value
Value
Value
Value
Value

value
value
value
value
value
value
value
value
value
value

Accessing the 5th item
Accessing the front item
Accessing the back item

18.5 Review questions

ovE W

of
of
of
of
of
of
of

of
of
of
of
of
of
of
of
of
of

< < < < < < <

< < € < < < < < < <

[31
[4]
[5]
(6]
[71
[81
[91

]
W 0 N O U1l h W N = O

O 00 N O U b W

18.5 Review questions =—— 325

What is a template? What are the common types of templates?
Discuss function template with an example program.

Discuss class template with an example program.

List the advantages of templates in C++.

Write a note on standard template library in C++.

Write a program to demonstrate vector STL in C++.

Appendix A

List of C++ header files and library functions

Header files

Title Description

cmath Declares functions for mathematical operations

cstdlib Defines general-purpose functions

iostream Defines standard input and output stream objects

cstring Defines functions to manipulate C-style strings and arrays

cctype Declares functions to classify (and transform) individual characters

csignal Handles signals

clocale Supports localization-specific settings, such as date/time formatting

cwctype Declares functions for classifying and transforming individual wide
characters

cstdio Includes C Standard input and output library

cwchar Defines several functions to work with C wide string

cuchar Performs conversion between multibyte characters and UTF-16 or UTF-32

csetjmp Bypasses the normal function call and return discipline

cfenv Accesses floating-point environment

ctime Contains function definitions to work with date and time

<cmath>

Title Description

pow() Computes power of a number

1lrint() Rounds an argument by using current rounding mode

remainder() Returns remainder of x/y

nan() Returns a quiet NaN value

cosh() Returns hyperbolic cosine of an angle

copysign() Takes two arguments and returns a number with value of first and sign of second

fma() Takes three arguments such as x, y and z, and returns x*y+z without losing
precision

abs() Returns an absolute value of an int/long argument

fabs() Returns an absolute value of an float/double argument

fdim() Returns positive difference between arguments

fmin() Returns smallest between two given arguments

fmax() Returns largest between two arguments passed

hypot () Returns square root of sum of square of arguments

nexttoward() Returns next value after xin direction of y, where y is always of type long double

nextafter() Returns next value after x in direction of y

cbrt() Computes cube root of a number

sqrt() Computes square root of a number

remquo() Returns remainder and stores quotient of x/y

https://doi.org/10.1515/9783110593846-019

https://doi.org/10.1515/9783110593846-019

328 —— AppendixA

logh() Returns logarithm of |x]|

loglp() Returns natural logarithm of x+1

scalbln() Scales x by FLT_RADIX to the power n

log2() Returns base2 logarithm of a number

scalbn() Scales x by FLT_RADIX to the power n

ilogh() Returns integral part of logarithm of |x|

nearbyint() Rounds an argument to an integral value by using current rounding mode
expm1() Returns the exponential e raised to the power minus 1
ldexp() Returns product of x and 2 raised to the power e
frexp() Breaks float to its binary significant

exp2() Returns base-2 exponential function of a number
exp() Returns exponential () raised to a number

modf () Breaks a number into an integral and a fractional part
log10() Returns base-10 logarithm of a number

lrint() Rounds an argument by using current rounding mode
rint() Rounds an argument by using current rounding mode
11round() Rounds an argument to its nearest long long integer value
lround() Returns a long integer value nearest to an argument
round() Returns an integral value nearest to an argument
trunc() Truncates the decimal part of a number

log() Returns natural logarithm of a number

atanh() Returns arc hyperbolic tangent of a number

asinh() Returns arc hyperbolic sine of a number

acosh() Returns hyperbolic cosine of a number

fmod() Computes floating point remainder of division

tanh() Returns hyperbolic tangent of an angle

floor() Returns floor value of a decimal number

ceil() Return ceiling value of a number

sinh() Returns hyperbolic sine of an angle

acos() Returns inverse cosine of a number

atan2() Returns inverse tangent of a coordinate

tan() Returns tangent of an argument

atan() Returns inverse tangent of a number

asin() Returns inverse sine of a number

sin() Returns sine of an argument

cos() Returns cosine of an argument

<cstdlib>

Title Description

calloc() Allocates a block of memory and initializes it to zero
wcstombs () Converts a wide character string to a multibyte sequence
mbstowcs () Converts a multibyte character string to a wide character sequence
wctomb() Converts a wide character to a multibyte character
mbtowc () Converts a multibyte character to a wide character
mblen() Determines the size of a multibyte character

11div() Computes integral division of two long long integers

Appendix A

— 329

1labs() Returns an absolute value of a long long integer data
1div() Computes integral division of long integer numbers
labs() Returns an absolute value of a long or a long integer number
abs() Returns an absolute value of an integer

div() Computes integral quotient and remainder of a number
gsort() Sorts an array by using quick-sort algorithm
bsearch() Performs binary search on a sorted array

_Exit() Causes termination without cleanup tasks
quick_exit() Causes termination without cleaning resources
getenv() Returns a pointer to environment variable passed
at_quick_exit() Registers a function and calls on quick termination
atexit() Registers a function to be called on termination
realloc() Reallocates a block of previously allocated memory
malloc() Allocates a block of uninitialized memory

free() Deallocates a block of memory

srand() Seeds pseudo random number for rand()
strtoull() Converts a string to an unsigned long long integer
strtoll() Converts a string to a long long integer

atol() Converts a string to an integer

strtol() Converts a string to a number

atof() Converts a string to a double

strtod() Returns a string float to a double

<iostream>

Title Description

wclog Writes to log stream with wide character

weerr Prints to error stream as wide character type

wcout Displays wide characters (Unicode) to screen

wcin Accepts input in wide character type

clog Used for streaming logs

cerr Writes to error stream

cout Displays output to output device, that is, monitor
cin Accepts input from a user

<cstring>

Title Description

strxfrm() Transform a byte string into an implementation defined form
strcoll() Compares two null terminated strings

strlen() Returns the length of a given string

strerror() Gives the description of a system error code
memset() Copies a character to beginning of a string n times
strtok() Splits a string based on a delimiter

strstr() Finds the first occurrence of a substring in a string
strspn() Gives the length of a maximum initial segment

330 —— AppendixA

strrchr() Searches the last occurrence of a character in a string
strpbrk() Searches the characters of one string in another string
strespn() Searches a string for characters in another string
strchr() Searches the first occurrence of a character

memchr () Searches an array for the first occurrence of a character
strncmp() Compares two strings lexographically

stremp() Compares two strings

memcmp () Compares two pointer objects

strncat() Appends a string to the end of another string
strcat() Appends a copy of string to the end of another string
strncpy () Copies a character string from source to destination
strepy () Copies a character string from source to destination
memmove () Copies a memory, even if there is overlapping blocks
memcpy () Copies a block of memory from source to destination
strxfrm() Transforms a byte string into an implementation defined form
<cctype>

Title Description

toupper() Converts a given character to uppercase

tolower() Converts a given character to lowercase

isxdigit() Checks if a given character is a hexadecimal character
isupper() Check if a given character is uppercase or not
isspace() Check if a given character is a whitespace character
ispunct() Check if a given character is a punctuation character
isprint() Check if a given character is printable or not
islower() Checks if a given character is lowercase

isgraph() Checks if a given character is graphic or not
isdigit() Checks if a given character is a digit or not

isentrl() Checks if a given character is a control character
isblank() Checks if a given character is a blank character
isalpha() Checks if a given character is analphabet or not
<csignal>

Title Description

raise() Sends a signal to the program

signal() Sets an error handler for a specified signal
<clocale>

Title Description

localeconv() Returns current locale formatting rules

setlocale() Sets locale information for the current program

AppendixA — 331

<cwctype>

Title Description

iswdigit() Checks if a given wide character is a digit or not
wctype() Returns a wide character classification

wctrans() Returns current transformation for a wide character
towctrans() Transforms a given wide character

iswctype() Checks if a given wide character has a certain property
towupper() Converts a given wide character to uppercase
towlower() Converts a given wide character to lowercase
iswxdigit() Checks if a given wide character is a hexadecimal number
iswupper() Checks if a given wide character is uppercase
iswspace() Checks if a given wide character is a wide whitespace
iswpunct() Checks if a given wide character is a punctuation
iswprint() Checks if a given wide character can be printed
iswlower() Checks if a given wide character is lowercase
iswgraph() Checks if a wide character has a graphical representation
iswentrl() Checks if a given wide character is a control character
iswblank() Checks if a given wide character is a blank character
iswalpha() Checks if a given wide character is an alphabet
iswalnum() Checks if a given wide character is an alphanumeric
<cstdio>

Title Description

getc() Reads next character from an input stream

fseek() Sets a file position indicator for a given file stream

ungetc() Pushes a previously read character back to the stream
vsscanf() Reads data from a string buffer

vscanf() Reads data from a stdin

vfscanf() Reads data from a file stream

freopen() Opens a new file with a stream associated to another

fflush() Flushes any buffered data to the respective device

setvbuf () Changes or specifies buffering mode and buffer size

perror() Prints an error to stderr

ferror() Checks for errors in a given stream

feof () Checks if a file stream EOF has been reached or not
clearerr() Resets error flags and EOF indicator for a stream

rewind() Sets a file position to the beginning of a stream

ftell() Returns the current position of a file pointer

fsetpos() Sets a stream file pointer to a given position

fgetpos() Gets a current file position

fwrite() Writes a specified number of characters to a stream

fread() Reads a specified number of characters from a stream

puts() Writes a string to stdout

putchar() Writes a character to stdout

putc() Writes a character to a given output stream

332 — AppendixA

gets() Reads a line from stdin

getchar() Reads the next character from stdin

fputs() Writes a string to a file stream

fputc() Writes a character to a given output stream

fgets() Reads n number of characters from a file stream
fgetc() Reads the next character from a given input stream
vsprintf() Writes a formatted string to a string buffer
vsnprintf() Writes a formatted string to a string buffer

vprintf() Write formatted data from variable argument list to stdout
vfprintf() Writes a formatted string to a file stream

sscanf () Reads data from a string buffer

sprintf() Writes a formatted string to a buffer

snprintf() Writes a formatted string to a character string buffer
scanf Reads data from stdin

printf() Writes a formatted string to stdout

fscanf() Reads data from a file stream

fprintf() Writes a formatted string to a file stream

setbuf () Sets the internal buffer to be used for an input or output operation
fopen() Opens a specified file

fclose() Closes a given file stream

tmpnam() Generates a unique filename

tmpfile() Creates a temporary file with an auto-generated name
rename() Renames or moves a specified file

remove() Deletes a specified file

<cwchar>

Title Description

wcscoll() Compares two null terminated wide strings

wcstoull() Converts a wide string number to an unsigned long long
westoul() Converts a wide string of a given base to an unsigned long
westoll() Converts a wide string of a specified base to an integer
wesftime() Converts a given date and time to a wide character string
wmemset () Copies a single wide character for a certain number of time
wmemmove () Moves wide chars from source to destination

wmemcpy () Copies a specified number of wide chars from source to destination
wmememp () Compares wide chars of two wide strings

wmemchr () Searches for the first occurrence of a wide character
wesxfrm() Transforms a wide string to a defined implementation
wesstr() Finds the first occurrence of a wide substring in a string
wesspn() Returns the length of a maximum initial segment

wesrchr() Searches the last occurrence of a wide character in a string
wespbrk() Searches for a set of wide character in a given wide string
wesnepy () Copies a specified number of wide characters

wesnemp () Compares a specified number of wide character of strings
wesncat() Appends a specified number of wide character to another string
wcslen() Returns the length of a given wide string

wcscspn()

Returns a number of wide character before its first occurrence

AppendixA — 333

wesepy () Copies a wide character string from a source to destination
wesemp() Compares two wide strings lexicographically

weschr() Searches for a wide character in a wide string

wescat() Appends a copy of a wide string to the end of another
wesrtombs () Converts a wide character sequence to a narrow multibyte character sequence
wctob() Converts a wide character to a single-byte character
wertomb () Converts a wide character to its narrow multibyte rep
mbsrtowcs() Converts a narrow multibyte character sequence to a wide character sequence
mbsinit() Describes an initial conversion state of mbstate_t obj
mbrtowc() Converts a narrow multibyte character to a wide character
mbrlen() Determines in bytes the size of a multibyte character
btowc() Converts a character to its wide character

westok() Returns the next token in a null terminated wide string
westold() Converts a wide string float number to a long double
westol() Converts a wide string float number to a long integer
westof () Converts a wide string float number to a float

westod() Converts a wide string float number to a double

wscanf () Reads a wide character from stdin

wprintf() Writes a formatted wide string to stdout

vwscanf () Reads a wide character from stdin

vwprintf() Writes a formatted wide string to stdout

vswscanf () Reads a wide character string from wide string buffer
vswprintf() Writes a formatted wide string to a wide string buffer
vfwscanf() Reads a wide character string from a file stream

vfwprintf () Writes a formatted wide string to a file stream

ungetwe() Pushes a previously read wide character back to the stream
swscanf () Reads a wide character from a wide string buffer
swprintf() Writes a formatted wide string to a wide string buffer
putwchar() Writes a wide character to stdout

putwc() Writes a wide character to a given output stream
getwchar() Reads the next wide character from stdin

getwe() Reads the next wide character from input stream

fwscanf () Reads a wide character from a file stream

fwprintf() Writes a formatted wide string to a file stream

fwide() Sets or queries the orientation of a given file stream
fputws () Writes a wide string except a null wide character to output
fputwe () Writes a wide character to a given output stream

fgetws() Reads a specified number of wide characters from a stream
fgetwc() Reads the next wide character from a given input stream
<cuchar>

Title Description

mbrtoc32() Converts a narrow multibyte character to a 32-bit character
mbrtoc16() Converts a narrow multibyte character to a 16-bit character
c32rtomb() Converts a 32-bit character to a narrow multibyte character
cl6rtomb() Converts a 16-bit character to a narrow multibyte character

334 —— AppendixA

<csetjmp>

Title

Description

longjmp() and setjmp()

Restores a previously saved environment

<cfenv>

Title Description

fetestexcept() Tests a floating-point exception

feupdateenv() Updates a floating-point environment

feholdexcept() Saves and clears floating-point status flags

fesetenv() Sets a floating-point environment

fesetround() Set a rounding direction

fegetenv() Stores the status of a floating-point environment in an object
fegetround() Gets a round direction mode

fesetexceptflag() Sets a given floating-point exceptions to the environment
fegetexceptflag() Gets floating-point exception flags

feraiseexcept() Raises specified floating-point exceptions
feclearexcept() Attempts to clear floating-point exception flags
<ctime>

Title Description

strftime() Converts a calendar time to a multibyte character string
mktime() Converts a local calendar time to a time since epoch
localtime() Converts a given time since epoch to local time
gmtime() Converts a given time since epoch to UTC time

ctime() Converts a time since epoch to character representation
asctime() Converts a calendar time to a character representation
time() Returns a current calendar time

difftime() Computes the difference between two times in seconds
clock() Returns time consumed by a processor to run a program

Appendix B

List of non-OOP C++ programming exercises

1.

10.

11.

12.

Input two numbers and work out their sum; average and sum of the squares of
the numbers.

Write a program to read a number of degrees Celsius of “float” type, and print
the equivalent temperature in degrees Fahrenheit as a “float.” Print your results
in the following form:

100.0 degrees Celsius converts to 212.0 degrees Fahrenheit.

If an input is given as an integer number of seconds, print the equivalent time in
hours, minutes, and seconds as output. Recommended output format should be
as follows:

7322 seconds is equivalent to 2 hours 2 minutes 2 seconds.

Write a program to print several lines (e.g., your name and address). You may use
either several cout instructions, each with a newline character in it, or one cout
with several newlines in the string.

Write a program to find a maximum of three numbers by using ternary operator.
Declare (globally) an enumerated-type rainbow that consists of the hues of red,
blue, green, and purple colors. In the main function, declare a variable “color” to be
of enumerated-type rainbow. Initialize the color variable to the constant blue. Then,
assign the color variable the constant purple.

Design, develop, and execute a program in C++ to find and output all the roots of
a given quadratic equation, for non-zero coefficients.

Write a C++ program to generate n Fibonacci numbers by using for loop.

Write a program that outputs a right-side triangle of height n and width 2n-1; the

output for n = 6 would be:
*

skoksk
seokskskok
skeskoskoskokskosk
skesteskeoskokoskokskosk
stesk sk sk sk skokok sk

Design, develop, and execute a program in C++ to implement Euclid’s algorithm
to find the GCD and LCM of two integers and to output the results along with the
given integers.

Design, develop, and execute a program in C++ to reverse a given four-digit
integer number and check whether it is a palindrome or not. Output the given
number with a suitable message.

Design, develop, and execute a program in C++ to evaluate the given polynomial
F(x) = asx* + a;x3 + a,x’ + a;x + a, for a given value of x and the coefficients by
using Horner’s method.

336 —— Appendix B

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Write a program that prompts the user for a string, and prints its reverse without
using library function(s).

Write a program that prompts the user for a sentence, and prints each word on its
own line.

Write a function to calculate whether a number is a prime. Return 1 if it is prime,
and O if it is not a prime.

Write a function to determine the number of prime numbers below n.

Write a function to find the square root of a number by using Newton’s method.
Write a Program to find out the number of even and odd numbers in a given data
series.

Design, develop, and execute a program in C++ to copy its input to its output,
replacing each string of one or more blanks by a single blank.

Design, develop, and execute a program in C++ to input N integer numbers in
ascending order into a single-dimensional array and perform a binary search for
a given key integer number and report success or failure in the form of a suitable
message.

Design, develop, and execute a program in C++ to input N integer numbers into a
single-dimensional array, sort them in ascending order by using the bubble sort
technique, and print both the given array and the sorted array with suitable
headings.

Design, develop, and execute a program in C++ to read two matrices A (M x N)
and B (P x Q), and compute the product of A and B, if the matrices are compatible
for multiplication. The program must print the input matrices and the resultant
matrix with suitable headings and formats, if the matrices are compatible for
multiplication; otherwise, the program must print a suitable message. (For the
purpose of demonstration, the array sizes M, N, P, and Q can all be less than or
equal to 3.)

Define an anonymous union consisting of the variables a (int), b (float), and c
(char). Assign this union the value 224.

Write a program with a function that calls function a that, in turn, calls function
b that, in turn, calls function c.

Write a C++ program to demonstrate the Tower of Hanoi program by using
recursion.

Write a C++ program to generate n Fibonacci numbers by using recursion.

Appendix C

List of C++ OOP programming exercises

1.

Define a class student, with two data members (age and number) and two method
members [readValues() and printValues()]. The readValues() method reads
the data values from the keyboard, and printValues() method prints the values
to the screen. Create an object (TOM) of type student, and understand the use of
both class and objects in a program. (The complete program is written here for
this purpose.)

//Program by Liu Shan
//Date: January 20,2018
//C++ Programming@ SDUST
#include<iostream>

using namespace std;

class student
{
public:

int age;
int number;

void readValues()

{
cout << "Enter age of student " << endl;
cin >> age;
cout << "Enter student number " << endl;
cin >> number;
}
void printValues()
{
cout << "Student Age :" << age << endl;
cout << "Student Number :" << number << endl;
}
};
int main()
{

student TOM;

TOM. readValues();
TOM.printValues();

return 0;

338 — Appendix C

2. Repeat the previous Programming Exercise 1, and make data members
public, private, and protected. See the changes, and note down the errors
during compilation, if any. Try for all combinations of access modifiers as
follows: (a) make all data and method members public, (b) make all data
and method members private, (c) make all data and method members
protected, (d) make some members private and some public, (e) make
some members private and some protected, and (f) make some members
public and some protected.

3. Repeat Programming Exercise 1, and create two objects (TOM and JACK) of type
student class, and test the code for readValues() and printValues()for both
objects.

4. Use the scope resolution operator (::), and place the two methods (of
Programming Exercise 1) outside of the class body. Then repeat the exercise as
described in Programming Exercise 1.

5. Define a student class as in Programming Exercise 1, and define a subclass (of
student) freshmen without any data members, as shown below. Create one object
of type student and another object of type freshmen; test the program to under-
stand single (public) inheritance.

class freshmen: public student

{

1

6. Repeat Programming Exercise 5, and test for single, protected inheritance, and
single private inheritance. Note down the errors, if any.

7. Define a student class as in Programming Exercise 1, and define subclasses (of
student) freshmen and sophomore without any data members. Create an object
each of type student, freshmen, and sophomore to test the program to understand
multiple subclasses.

class freshmen: public student

{
3

class sophomore: public student

{

3

8. Define one student class, as in Programming Exercise 1, and another teacher
class. Define a subclass instructor derived from both student and teacher

AppendixC —— 339

classes without any data members. Create an object each of type student,
teacher, and instructor to test the program and understand multiple inheri-
tance. (Hint: See the following code.)

class teacher

{
public:
int courseno;
int classno;
void readCourse()
{
cout << "Enter Course Number " << endl;
cin >> courseno;
cout << "Enter Class Number " << endl;
cin >> classno;
}
void printCourse()
{
cout << "Course Number :" << courseno << endl;
cout << "Class Number :" << classno << endl;
}
3
class instructor: public student , public teacher
{
};

Define a student class, as in Programming Exercise 1, and define a subclass (of
student) freshmen, without any data members. Then define another subclass
sdustfresh derived from freshmen, without any data members. Create an object
of type student, freshmen, and sdustfresh to test the program to understand
multilevel inheritance.

class freshmen: public student

{
3

class sdustfresh: public freshmen

{

3

340 —— Appendix C

10.

11.

12.

13.

14.

Define a student class, as in Programming Exercise 1, and define subclasses
(of student) freshmen and sophomore without any data members. Create a new
class geniusstudent derived from both freshmen and sophomore and create
objects of type student, freshmen, sophomore, and geniusstudent to test the
program to understand diamond inheritance. Note down the problem of dia-
mond inheritance.

class freshmen: public student

{
IS

class sophomore: public student

{
3

class geniusstudent: public freshmen, public sophomore

{
3

Repeat Programming Exercise 10 and use virtual keyword to solve the problem
with diamond inheritance.

class freshmen: public virtual student

{
3

class sophomore: public virtual student

{
3

class geniusstudent: public freshmen, public sophomore

{

3

Repeat Programming Exercise 5 by adding some data and method members to
subclass freshmen to understand single inheritance.

Repeat Programming Exercise 7 by adding some data and method members to
subclasses freshmen and sophomore to understand multiple subclasses.

Repeat Programming Exercise 8 by adding some data and method members to
class instructor to understand multiple inheritance.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Appendix C = 341

Repeat Programming Exercise 9 by adding some data and method members to
subclasses freshmen and sdustfresh multilevel inheritance.

Repeat Programming Exercises 10 and 11 by adding some data and method
members to classes freshmen, sophomore, and geniusstudent to understand
diamond inheritance.

Repeat Programming Exercise 1 by adding a default constructor, as follows, and
test the program.

student()
{

cout << "I am student constructor " << endl;

}

Repeat Programming Exercise 1 by adding a parameterized constructor, as fol-
lows, and test the program.

student(int value)

{

cout << "I am student constructor Value
<< value << endl;

Repeat Programming Exercise 1 by adding one default constructor and few
parameterized constructors, and test the program.

Repeat Programming Exercise 1 by adding a destructor, as follows, and test the
program.

~student()
{

cout << "I am student destructor " << endl;

}

Repeat Programming Exercise 1 by adding a constructor and a destructor, and
test the program.

Repeat Programming Exercise 5 by adding a default constructor to base class as
well as to derived class, and test the program.

Repeat Programming Exercise 5 by adding a destructor to base class as well as to
derived class, and test the program.

Repeat Programming Exercise 5 by adding a constructor and a destructor to base
class as well as to derived class, and test the program.

Appendix D

13a

E c 000w e 3> X > No — 2

—_—— X

© O o T O« b

i
EVA
asz
2L
a4/
V.
6/
8/
1L
9L
SL
Y7
€L
[
1
0/
19
39
as
J9
49
V9
69
89
9
99
99
%79
€9
a9
19
09

11DSY X3H

/T TITITITO
9/1 OTITITTO
/1 TOTITITO
%#/1 0OTIITIO0
€/1 TIOTIITO
¢/T OTOTIITO0
1T T1OOTITI0
01 000TIITO
/91 TIIOTTIO0
991 OTI0TI10
S9T TOTOTITO
%791 00T0TIT0
€91 T100TITO
Z91 O0T00TTI0
191 T1000TTI0
09T 000071110
/ST TIT1I0TI0
99T OTTI0TIO
GST TOTTOTIO
79T 00TI0TTO
€91 TI0TOTIO
¢ST 0TOTO0TIO0
16T T00TOTIO0
0ST 00010TTO0
/%1 11100110
9%1 0T100T10
s7T 10100110
%1 00100110
€71 T1000TTO
<yl 01000TTO
7T 10000110
0%7T 00000110
1eo Areulg

px4s
91
114"
g4
€l
(441
1741
(74}
611
81T
11
9Tl
ST
it
€1
(441
1141
()%
601
801
/01
901
S0T
701
€01
(40
101
001
66
86
16
96

lewidaq

BcomuvuowuL VI o . 1SzZz0a0xx0nkFD>2X>N— .~ —<

1DSY

49

EM

as
]9
9
Vs
69
84
A
94
9SS

79
€9
[44
15

0s
ELs
El
arv
oY
av
v
6%
8%
yA/
oY
14
7
£y
[44
114
of

XaH

pAS
9¢€t
GET
el
€el
[439
1€T
o€t
px4"
9l
41
g4
[X49
(441
174"
oct
11
9Tl
a1t
71l
€1l
(441
1141
[0)4%
/0T
901
S0T
701
€01
[40s
101
001

1810

TIITI0T0
OTITTI0T0
TOTII0T0
00TTI0T0
TT0TI0T0
0TOTI0TO
10011010

00011010

TT10T010
01101010
10101010

00101010
11001010
01001010
10001010
00001010

TT110010
0TT10010
10110010

00110010
11010010
010T00TO
10010010
00010010
11100010
01100010
10100010
00100010
11000010
01000010
10000010
00000010

Aeurg

HBYD UOISIBAUO)

96
%76
€6
6
16
06
68
88
/8
98
S8
78
€8
8
18
08
6/
8/
1L
9L
(74
Y7L
€L
(24
1
0z
69
89
9
99
9
79

lewdaq

A e~

v

e~ O H NN T N0 N 0O

ds

i€
e
ac
J€
de
ve
6€
8¢
VAS
9¢
113
7€
€€
[43
1€
0€
4C
3¢
ac
T
gac¢
\/4
6T
8¢
LT
9T
SC
¢
€C
[44
1c
0¢

IDSY X3H

120
920
S0
%720
€20
/0
120
040
/90
990
990
%90
€90
90
190
090
250
950
550
750
€50
S0
150
050
/%70
9170
S70
7%0
€70
0
170
o070

183120

IIDSY — X3H - 12120 - Areulg - jewdag

TITITT00
OTIITI00
TOTTTII00
00TTIT00
T10TT100
0T0TIT00
T00TTT00
00011100
11101100
0T10T100
T0T0TT00
00TOTT00
11001100
0T00TT00
10001100
00001100
11110100
0TT10T00
T0TT0T00
00TT0T00
T10T0T00
0T0T0T00
10010100
00010100
11100100
01100100
10100100
00100100
11000100
01000100
10000100
00000100

Areuig

€9
9
19
09
69
89
A
94
99
79
€9
4]
19
0s
6%
8%
YA/
of
sh
7%
£y
[44
11
oY
6¢
8¢
VAS
9¢€
19
7€
€€
[43

lewidaq

sn
Sd
S9
S4
oS3
ans
W3
NVD
413
NAS
VN
¥1da
€1d
a
13a
31a
IS
0s
<]
44
1A
41
1H
sd
139
AV
ON3
103
X13
X1S
HOS
1NN

1DSY

4T
it
at
ot
dar
vi
61
1
1
91
st
i
€1
a
1l
()9
10
10
ao
20
a0
Vo
60
80
20
90
S0
70
€0
[4Y]
10
00

X3H

€0
9€0
S€0
7€0
€€0
[431]
1€0
0€0
120
920
SC0
%720
€20
o
120
0¢0
/10
910
STO
710
€10
[410)
110
010
200
900
S00
700
€00
00
100
000

183120

TTTI11000
OTITT000
TOTT1000
00TT1000
T10T1000
0T0TT000
10011000

00011000

11101000
01101000
10101000

00101000
11001000
01001000
10001000
00001000

TI110000
01110000
10110000

00110000
11010000
01010000
10010000
00010000
11100000
01100000
10100000
00100000
11000000
01000000
10000000
00000000

Aieuig

NN T N O N0

o

lewdaq

Appendix E

Bibliography

(1

(2]

3]

(4]
(5]

6]

(71
(8]

Bjarne Stroustrup, The C++ Programming Language, 4th Edition, Addison-Wesley, Pearson
Education, 2013.

Bruce Eckel, Thinking in C++, Introduction to Standard C++ (Vol. 1), 2nd Edition, New Jersey,
Prentice Hall, March, 2000.

C++ Library Functions, available from: https://www.programiz.com/cpp-programming/library-
function/.

Code::Blocks, available from: http://codeblocks.org.

Donald Weiman, Decimal-Binary-Octal-Hex-ASCII Conversion Chart,2012, available from:
http://web.alfredstate.edu/faculty/weimandn/miscellaneous/ascii/ascii_index.html.

E. Balaguruswamy, Object Oriented Programming with C++, 4th Edition, Tata McGraw-Hill,
2008.

Ivor Horton, Beginning C++, 4th Edition, Apress, November 2014.

Visual Studio 2017, available from: www.visualstudio.com.

https://www.programiz.com/cpp-programming/library-function/
https://www.programiz.com/cpp-programming/library-function/
http://codeblocks.org
http://web.alfredstate.edu/faculty/weimandn/miscellaneous/ascii/ascii_index.html
http://www.visualstudio.com

Index

Abacus 1

Abstract class 312
Access modifiers 264
Access specifiers 255
Actual parameter 175
Addition 2

Al 6

ALGOL 6

Algorithm 2

Analysis 2

Analytical Engine 1
Application software 4
Argument 175
Arithmetic expression 71
Array of characters 168, 211
Array of pointers 152
Arrays of objects 261
Arrays of strings 143
Arrays of structures 215
Arrays 121

Assigned 49
Assignment operators 71
Associativity 81
Attribute 9

Automatic 64

Babbage, Charles 1
Backus, John 6
Base class 283

Bell laboratories 6
Binary code 6
Binary files 18
Binary operators 71
Binary search 155
Bitwise operators 71
Block scope 64
Bool 61

Boolean 52

Break 114

Bubble sort 159
Buffer 62, 239
Built-in functions 140
Built-in operator 13

C 13
Catch 229

https://doi.org/10.1515/9783110593846-020

char 49

Child Class 283

cin 17

Class 41

Class templates 315
Class variables 293
COBOL 6

Coding 3

Comments 15
Compiler 18
Compile-time 299
Compound assignment 82
Compound statement 93
Conditional operator 71
Const 57

Constants 57
Constructors 269
Continue 116

Copy constructor 278
cout 16

CPU 1

Data abstraction 11
Data hiding 255

Data members 256
Data types 47
Decision-making 85
Declarative 7
Decrement operations 110
Decrement operators 71
Default constructor 271
default 94

#define 57
Definiteness 2

Derived class 283
Destructor 280
Difference engine 1
Directive 15

Divide by zero 228
Documentation 3

Dot notation 206
double 49

do-while 101, 104
Dynamic binding 11
Dynamic polymorphism 299

https://doi.org/10.1515/9783110593846-020

348 =— Index

Early binding 307
Effectiveness 2
Encapsulation 9

endl 16

ENIAC 1

Enum 58

Enumerated data type 58
Equality operators 71
Escape sequence 55
Exception handling 227
Exceptions 227
Explicit 61

Explicit casting 61
Expressions 71

extern 320

Extraction operator 17

Fibonacci numbers 193
File handling 239

File mode 245

File scope 66

Finiteness 2

float 49

Floating point numbers 49
Flowchart 3

for statement 108

for 101

Formal parameter 178
FORTRAN 6

Fountain Model 4
fstream 239

Function declaration 173
Function name 175
Function overloading 299
Function overriding 301
Function signature 175
Function templates 315
Functional 7

Functions 8

Generic class 315
Generic function 317
Generic programming 315
getline () 248

Gosling, James 7

Hardware 1
Header file 15

Hierarchical 235
High-level languages 17

1/0 239

IBM 6

Identifiers 47

If statement 85

If-else statement 87
Imperative 7
Implementation 9

Implicit casting 61
Implicit conversions 61
Increment operator 71, 152
Indirection (dereference) 82
Indirection operator 150
Infinity 227

Information hiding 12
Inheritance 12

Initialization of data members 42

Inline functions 197
Inline 197

Input stream 239
Input 15

Insertion operator 17
Insertion sort 159
int 47

Integers 47
Interpreter 4
iostream 15

ISO 14

Iterative model 4
Iterative 101

Jacquard, Joseph-Marie 1
Java 7

Kemeny, John 6
keywords 48

Late binding 307
Left shift 76

Library functions 141
Lifetime 64

Linear search 155
Linker 18

Literals 52

Local scope 64
Local variables 64

Log 241

Logarithm 199
Logic 2

Logical operators 71
Long 49

Looping 101

main () 15

Manipulators 244
Mathematical functions 199
<math.h> 124

McCarthy, John 6

Member access operator 206
Member function 244
Member variables 293
Memory 47

Method overloading 259
Microsoft Visual C++ 28
MIT 6

Modularity 12

Modulo 72
Multidimensional Arrays 125
Multilevel inheritance 289
Multiple inheritance 283
Multiple Objects 256

Namespace 16
Napier, John 1
Nesting of loops 111
Nesting 90

Object 41

Object file 18

Object-oriented concepts 41-45
Object-oriented languages 41
Object-oriented programming 7
One’s complement 76
One-dimensional array 122
Online compilers 11

open () 244

Operator functions 303
Operator overloading 303
Operator precedence 81
Operators 81

Output stream 239

Output 15

Overload resolution 13
Overloaded methods 259
Overriding 293

Index —— 349

Parameterized constructor 274
Parameterized stream manipulators 240
Parameterized types 320
Parent class 283

Pascal 2

Pascal, Blaise 1

Period operator 219
Pointer to pointer 148
Pointer 144
Polymorphism 299
Precedence 83

Private methods 9
Private 255

Procedural 7
Procedure-oriented 253
Program design 3
Program lifetime 183
Program 3

Protected 255

Prototype statement 176
Prototype 5

Prototyping 5
Pseudocode 2

Public members 255
Public methods 9

Public 255

Punched cards 1

Pure virtual function 312

Recursive function 190
Relational operators 85
Repetitive 101

Requirement Analysis 3
return statement 174
Reusability 5

Right shift 76

Ritchie, Dennis 6

Run-time polymorphism 299

Scope resolution operator 67
Searching 155

Selection sort 159

Selection statements 85
Sequential flow of execution 85
Sequential search 155

Setfill 62

Setiosflags 62

Setprecision 240

setw () 62

350 = Index

Shift operators 76

Short 49

signed 49

Single inheritance 283
Software Development Life Cycle (SDLC) 4
Software maintenance 5
Software reuse 5

Software 1

Sorting 155

Source file 177

Spiral model 4

Standard template library 322
Static polymorphism 299
Static storage duration 66
Static variables 183

Static 183

Storage durations 63

String class 137

Strings 137

struct 203

Structure 203

Structured programming 173
Subclass 283
Sun-Microsystems 7

Super class 283

Swapping 162

Switch statements 112
switch 93

Symbolic 7

System software 4

Templates 315
Ternary 71

Testing 4

Throw 229
“Top-down” 8
Tower of Hanoi 193
Transistor 1

try 229

Type casting 60-61
Type modifiers 49
typedef 208

Unary operators 71

Unified Modeling Language (UML) 3
Unions 223

unsigned 49

User-defined functions 173

Validation 5
Variables 47
Vectors 322
Verification 5
Virtual functions 305
Virtual 309

Visual C++ 23
Visual studio 23-28
Void 175

Waterfall model 4
While statement 104
while 101

Wirth, Niklaus 7

Zuse, Konrad 1

