

Problem	Solving	in
Data	Structures	&
Algorithms	Using
C++
First	Edition
	
	
	

By	Hemant	Jain

	
	
Problems	Solving	in	Data	Structures	&	Algorithms	Using	C++
HEMANT	JAIN

Copyright	©	2016	by	HEMANT	JAIN.	All	Right	Reserved.
	
No	part	of	this	publication	may	be	reproduced,	distributed,	or	transmitted	in	any	form	or	by	any
means,	including	photocopying,	recording,	or	other	electronic	or	mechanical	methods,	or	by	any
information	storage	and	retrieval	system	without	the	prior	written	permission	of	the	author,	except
in	the	case	of	very	brief	quotations	embodied	in	critical	reviews	and	certain	other	non-
commercial	uses	permitted	by	copyright	law.

	

ACKNOWLEDGEMENT
	
The	author	is	very	grateful	to	GOD	ALMIGHTY	for	his	grace	and	blessing.
	
Deepest	gratitude	for	the	help	and	support	of	my	brother	Dr.	Sumant	Jain.	This	book	would	not
have	been	possible	without	the	support	and	encouragement	he	provided.
	
I	would	like	to	express	profound	gratitude	to	my	guide/	my	friend	Naveen	Kaushik	for	his
invaluable	encouragement,	supervision	and	useful	suggestion	throughout	this	book	writing	work.
His	support	and	continuous	guidance	enable	me	to	complete	my	work	successfully.
	
Last	but	not	least,	I	am	thankful	to	Anil	Berry	and	Others	who	helped	me	directly	or	indirectly	in
completing	this	book.
	
Hemant	Jain

TABLE	OF	CONTENTS
TABLE	OF	CONTENTS
TABLE	OF	CONTENTS
CHAPTER	0:	HOW	TO	USE	THIS	BOOK
WHAT	THIS	BOOK	IS	ABOUT
PREPARATION	PLANS
SUMMARY

CHAPTER	1:	INTRODUCTION	-	PROGRAMMING	OVERVIEW
INTRODUCTION
FIRST	C++	PROGRAM
OBJECT
VARIABLE
PARAMETER	PASSING,	CALL	BY	VALUE
PARAMETER	PASSING,	CALL	BY	REFERENCE
PARAMETER	PASSING,	CALL	BY	POINTER
KINDS	OF	VARIABLES
METHODS
ACCESS	MODIFIERS
ABSTRACT	CLASS
RELATIONSHIP
GENERAL	PROTOTYPE	OF	A	CLASS
NESTED	CLASS
ENUMS
CONSTANTS
CONDITIONS	AND	LOOPS
ARRAY
VECTOR
ARRAY	INTERVIEW	QUESTIONS
CONCEPT	OF	STACK
SYSTEM	STACK	AND	METHOD	CALLS
RECURSIVE	FUNCTION
EXERCISES

CHAPTER	2:	ALGORITHMS	ANALYSIS
INTRODUCTION
ASYMPTOTIC	ANALYSIS
BIG-O	NOTATION
OMEGA-Ω	NOTATION

THETA-Θ	NOTATION
COMPLEXITY	ANALYSIS	OF	ALGORITHMS
TIME	COMPLEXITY	ORDER
DERIVING	THE	RUNTIME	FUNCTION	OF	AN	ALGORITHM
TIME	COMPLEXITY	EXAMPLES
MASTER	THEOREM
MODIFIED	MASTER	THEOREM
EXERCISE

CHAPTER	3:	APPROACH	TO	SOLVE	ALGORITHM	DESIGN	PROBLEMS
INTRODUCTION
CONSTRAINTS
IDEA	GENERATION
COMPLEXITIES
CODING
TESTING
EXAMPLE
SUMMARY

CHAPTER	4:	ABSTRACT	DATA	TYPE	&	C++	COLLECTIONS
ABSTRACT	DATA	TYPE	(ADT)
DATA-STRUCTURE
C++	COLLECTION	FRAMEWORK
ARRAY
LINKED	LIST
STACK
QUEUE
TREES
BINARY	TREE
BINARY	SEARCH	TREES	(BST)
PRIORITY	QUEUE	(HEAP)
HASH-TABLE
DICTIONARY	/	SYMBOL	TABLE
GRAPHS
GRAPH	ALGORITHMS
SORTING	ALGORITHMS
COUNTING	SORT
END	NOTE

CHAPTER	5:	SEARCHING
INTRODUCTION
WHY	SEARCHING?
DIFFERENT	SEARCHING	ALGORITHMS

LINEAR	SEARCH	–	UNSORTED	INPUT
LINEAR	SEARCH	–	SORTED
BINARY	SEARCH
STRING	SEARCHING	ALGORITHMS
HASHING	AND	SYMBOL	TABLES
HOW	SORTING	IS	USEFUL	IN	SELECTION	ALGORITHM?
PROBLEMS	IN	SEARCHING
EXERCISE

CHAPTER	6:	SORTING
INTRODUCTION
TYPE	OF	SORTING
BUBBLE-SORT
MODIFIED	(IMPROVED)	BUBBLE-SORT
INSERTION-SORT
SELECTION-SORT
MERGE-SORT
QUICK-SORT
QUICK	SELECT
BUCKET	SORT
GENERALIZED	BUCKET	SORT
HEAP-SORT
TREE	SORTING
EXTERNAL	SORT	(EXTERNAL	MERGE-SORT)
COMPARISONS	OF	THE	VARIOUS	SORTING	ALGORITHMS.
SELECTION	OF	BEST	SORTING	ALGORITHM
EXERCISE

CHAPTER	7:	LINKED	LIST
INTRODUCTION
LINKED	LIST
TYPES	OF	LINKED	LIST
SINGLY	LINKED	LIST
DOUBLY	LINKED	LIST
CIRCULAR	LINKED	LIST
DOUBLY	CIRCULAR	LIST
EXERCISE

CHAPTER	8:	STACK
INTRODUCTION
THE	STACK	ABSTRACT	DATA	TYPE
STACK	USING	ARRAY
STACK	USING	ARRAY	(GROWING-REDUCING	CAPACITY	IMPLEMENTATION)

STACK	USING	LINKED	LIST
PROBLEMS	IN	STACK
PROS	AND	CONS	OF	ARRAY	AND	LINKED	LIST	IMPLEMENTATION	OF	STACK.
USES	OF	STACK
EXERCISE

CHAPTER	9:	QUEUE
INTRODUCTION
THE	QUEUE	ABSTRACT	DATA	TYPE
QUEUE	USING	ARRAY
QUEUE	USING	LINKED	LIST
PROBLEMS	IN	QUEUE
EXERCISE

CHAPTER	10:	TREE
INTRODUCTION
TERMINOLOGY	IN	TREE
BINARY	TREE
TYPES	OF	BINARY	TREES
PROBLEMS	IN	BINARY	TREE
BINARY	SEARCH	TREE	(BST)
PROBLEMS	IN	BINARY	SEARCH	TREE	(BST)
EXERCISE

CHAPTER	11:	PRIORITY	QUEUE
INTRODUCTION
TYPES	OF	HEAP
HEAP	ADT	OPERATIONS
OPERATION	ON	HEAP
HEAP-SORT
USES	OF	HEAP
PROBLEMS	IN	HEAP
EXERCISE

CHAPTER	12:	HASH-TABLE
INTRODUCTION
HASH-TABLE
HASHING	WITH	OPEN	ADDRESSING
HASHING	WITH	SEPARATE	CHAINING
COUNT	MAP
PROBLEMS	IN	HASHING
EXERCISE

CHAPTER	13:	GRAPHS

INTRODUCTION
GRAPH	REPRESENTATION
ADJACENCY	MATRIX
ADJACENCY	LIST
GRAPH	TRAVERSALS
DEPTH	FIRST	TRAVERSAL
BREADTH	FIRST	TRAVERSAL
PROBLEMS	IN	GRAPH
DIRECTED	ACYCLIC	GRAPH
TOPOLOGICAL	SORT
MINIMUM	SPANNING	TREES	(MST)
SHORTEST	PATH	ALGORITHMS	IN	GRAPH
EXERCISE

CHAPTER	14:	STRING	ALGORITHMS
INTRODUCTION
STRING	MATCHING
DICTIONARY	/	SYMBOL	TABLE
PROBLEMS	IN	STRING
EXERCISE

CHAPTER	15:	ALGORITHM	DESIGN	TECHNIQUES
INTRODUCTION
BRUTE	FORCE	ALGORITHM
GREEDY	ALGORITHM
DIVIDE-AND-CONQUER,	DECREASE-AND-CONQUER
DYNAMIC	PROGRAMMING
REDUCTION	/	TRANSFORM-AND-CONQUER
BACKTRACKING
BRANCH-AND-BOUND
A*	ALGORITHM
CONCLUSION

CHAPTER	16:	BRUTE	FORCE	ALGORITHM
INTRODUCTION
PROBLEMS	IN	BRUTE	FORCE	ALGORITHM
CONCLUSION

CHAPTER	17:	GREEDY	ALGORITHM
INTRODUCTION
PROBLEMS	ON	GREEDY	ALGORITHM

CHAPTER	18:	DIVIDE-AND-CONQUER,	DECREASE-AND-CONQUER
INTRODUCTION

GENERAL	DIVIDE-AND-CONQUER	RECURRENCE
MASTER	THEOREM
PROBLEMS	ON	DIVIDE-AND-CONQUER	ALGORITHM

CHAPTER	19:	DYNAMIC	PROGRAMMING
INTRODUCTION
PROBLEMS	ON	DYNAMIC	PROGRAMMING	ALGORITHM

CHAPTER	20:	BACKTRACKING	AND	BRANCH-AND-BOUND
INTRODUCTION
PROBLEMS	ON	BACKTRACKING	ALGORITHM

CHAPTER	21:	COMPLEXITY	THEORY	AND	NP	COMPLETENESS
INTRODUCTION
DECISION	PROBLEM
COMPLEXITY	CLASSES
CLASS	P	PROBLEMS
CLASS	NP	PROBLEMS
CLASS	CO-NP
NP–HARD:
NP–COMPLETE	PROBLEMS
REDUCTION
END	NOTE

CHAPTER	22:	INTERVIEW	STRATEGY
INTRODUCTION
RESUME
NONTECHNICAL	QUESTIONS
TECHNICAL	QUESTIONS

CHAPTER	23:	SYSTEM	DESIGN
SYSTEM	DESIGN
SYSTEM	DESIGN	PROCESS
SCALABILITY	THEORY
DESIGN	SIMPLIFIED	FACEBOOK
DESIGN	A	SHORTENING	SERVICE	LIKE	BITLY
STOCK	QUERY	SERVER
DESIGN	A	BASIC	SEARCH	ENGINE	DATABASE
DUPLICATE	INTEGER	IN	MILLIONS	OF	DOCUMENTS
ZOMATO
YOUTUBE
DESIGN	IRCTC
ALARM	CLOCK
DESIGN	FOR	ELEVATOR	OF	A	BUILDING

VALET	PARKING	SYSTEM
OO	DESIGN	FOR	A	MCDONALDS	SHOP
OBJECT	ORIENTED	DESIGN	FOR	A	RESTAURANT
OBJECT	ORIENTED	DESIGN	FOR	A	LIBRARY	SYSTEM
SUGGEST	A	SHORTEST	PATH
EXERCISE

APPENDIX
APPENDIX	A

INDEX

	

CHAPTER	0:	HOW	TO	USE	THIS	BOOK

What	this	book	is	about

This	book	is	about	usage	of	data	structures	and	algorithms	in	computer	programming.	Data
structures	are	the	ways	in	which	data	is	arranged	in	computers	memory.	Algorithms	are	set	of
instructions	to	solve	some	problem	by	manipulating	these	data	structures.
	
Designing	an	efficient	algorithm	to	solve	a	computer	science	problem	is	a	skill	of	Computer
programmer.	This	is	the	skill	which	tech	companies	like	Google,	Amazon,	Microsoft,	Facebook
and	many	others	are	looking	for	in	an	interview.	Once	we	are	comfortable	with	a	programming
language,	the	next	step	is	to	learn	how	to	write	efficient	algorithms.
	
This	book	assumes	that	you	are	a	C++	language	developer.	You	are	not	an	expert	in	C++
language,	but	you	are	well	familiar	with	concepts	of	pointers,	references,	functions,	arrays	and
recursion.	At	the	start	of	this	book,	we	will	be	revising	the	C++	language	fundamentals	that	will
be	used	throughout	this	book.	In	the	chapter	1	we	will	be	looking	into	some	of	the	problems	in
arrays	and	recursion	too.
	
Then	in	the	coming	chapter	we	will	be	looking	into	Complexity	Analysis.	Followed	by	the
various	data	structures	and	their	algorithms.	Will	look	into	a	Linked-List,	Stack,	Queue,	Trees,
Heap,	Hash-Table	and	Graphs.	We	will	also	be	looking	into	Sorting,	Searching	techniques.
	
And	we	will	be	looking	into	algorithm	analysis	of	various	algorithm	techniques,	such	as	Brute-
Force	algorithms,	Greedy	algorithms,	Divide	and	Conquer	algorithms,	Dynamic	Programming,
Reduction	and	Back-Tracking.
	
In	the	end,	we	will	be	looking	into	System	Design	that	will	give	a	systematic	approach	to	solve
the	design	problems	in	an	Interview.
	

Preparation	Plans

Given	the	limited	time	you	have	before	your	next	interview,	it	is	important	to	have	a	solid
preparation	plan.	The	preparation	plan	depends	upon	the	time	and	which	companies	you	are
planning	to	target.	Below	are	the	three-preparation	plan	for	1	Month,	3	Month	and	5	Month
durations.
	

1	Month	Preparation	Plans

Below	is	a	list	of	topics	and	approximate	time	user	need	to	take	to	finish	these	topics.	These	are
the	most	important	chapters	that	must	to	be	prepared	before	appearing	for	an	interview.
	
This	plan	should	be	used	when	you	have	a	small	time	before	an	interview.	These	chapters	cover
90%	of	data	structures	and	algorithm	interview	questions.	In	this	plan	since	we	are	reading	about
the	various	ADT	and	C++	collections	in	chapter	4	so	we	can	use	these	datatype	easily	without
knowing	the	internal	details	how	they	are	implemented.
Chapter	24	is	for	system	design,	you	must	read	this	chapter	if	you	are	three	or	more	years	of
experienced.	Anyway,	reading	this	chapter	will	give	the	reader	a	broader	perspective	of	various
designs.
	
Time Chapters Explanation

Week	1

Chapter	1:	Introduction	-	Programming
Overview
Chapter	2:	Algorithms	Analysis			
Chapter	3:	Approach	To	Solve	Algorithm
Design	Problems
Chapter	4:	Abstract	Data	Type		&	C++
Collections	

You	will	get	a	basic	understanding	of	how	to	find
complexity	of	a	solution.	You	will	know	how	to
handle	new	problems.	You	will	read	about	a
variety	of	datatypes	and	their	uses.

Week	2
Chapter	5:	Searching
Chapter	6:	Sorting
Chapter	14:	String	Algorithms

Searching,	Sorting	and	String	algorithm	consists
of	a	major	portion	of	the	interviews.

Week	3
Chapter	7:	Linked	List
Chapter	8:	Stack									
Chapter	9:	Queue	

Linked	list,	Stack	and	Queue	are	one	of	the
favorites	in	an	interview.

Week	4
Chapter	10:	Tree
Chapter	23:	Interview	Strategy
Chapter	24:	System	Design

This	portion	you	will	read	about	Trees	and
System	Design.	You	are	good	to	go	for
interviews.	Best	of	luck.

	

3	Month	Preparation	Plan

This	plan	should	be	used	when	you	have	some	time	to	prepare	for	an	interview.	This	preparation
plan	includes	nearly	everything	in	this	book	except	various	algorithm	techniques.	Algorithm
problems	that	are	based	on	dynamic	programming	divide	&	conquer	etc.	Which	are	asked	in	vary

specific	companies	like	Google,	Facebook,	etc.	Therefore,	until	you	are	planning	to	face
interview	with	them	you	can	park	these	topics	for	some	time	and	focus	on	the	rest	of	the	topics.
	
Again,	same	thing	here	with	system	design	problems,	the	more	experience	you	are,	the	more
important	this	chapter	becomes.	However,	if	you	are	a	fresher	from	college,	then	also	you	should
read	this	chapter.
	
Time Chapters Explanation

Week	1

Chapter	1:	Introduction	-	Programming
Overview
Chapter	2:	Algorithms	Analysis							
Chapter	3:	Approach	To	Solve	Algorithm
Design	Problems
Chapter	4:	Abstract	Data	Type		&	C++
Collections				

You	will	get	a	basic	understanding	of	how	to
find	complexity	of	a	solution.	You	will	know
how	to	handle	new	problems.	You	will	read
about	a	variety	of	datatypes	and	their	uses.

Week	2	&
Week	3

Chapter	5:	Searching
Chapter	6:	Sorting
Chapter	14:	String	Algorithms

Searching,	sorting	and	string	algorithm	consists
of	a	major	portion	of	the	interviews.

Week	4	&
Week	5

Chapter	7:	Linked	List
Chapter	8:	Stack									
Chapter	9:	Queue	

Linked	list,	Stack	and	Queue	are	one	of	the
favorites	in	an	interview.

Week	6	&
Week	7

Chapter	10:	Tree
Chapter	11:	Heap				

This	portion	you	will	read	about	trees	and
heap	data	structures.

Week	8	&
Week	9

Chapter	12:	Hash-Table		
Chapter	13:	Graphs	

Hash-Table	is	used	throughout	this	book	in
various	places,	but	now	it’s	time	to	understand
how	Hash-Table	are	actually	implemented.
Graphs	are	used	to	propose	a	solution	many
real	life	problems.

Week	10 Chapter	23:	Interview	Strategy
Chapter	24:	System	Design

Interview	strategy	and	system	design	chapter
are	the	final	chapters	of	this	course.

Week	11	&
Week	12 Revision	of	the	chapters	listed	above.

At	this	time,	you	need	to	revise	all	the
chapters	that	we	have	seen	in	this	book.
Whatever	is	left	needs	to	be	completed	and
the	exercise	that	may	be	left	needing	to	be
solved	in	this	period	of	time.

	

5	Month	Preparation	Plan

In	this	preparation	plan	is	made	on	top	of	3-month	plan.	In	this	plan,	the	students	should	look	for
algorithm	design	chapters.	In	addition,	in	the	rest	of	the	time	they	need	to	practice	more	and	more
from	www.topcoder.com	and	other	resources.	If	you	are	targeting	google,	Facebook,	etc.,	Then	it
is	highly	recommended	to	join	topcoder	and	practice	as	much	as	possible.
	
Time Chapters Explanation

Chapter	1:	Introduction	-

http://www.topcoder.com

Week	1
Week	2

Programming	Overview
Chapter	2:	Algorithms	Analysis
Chapter	3:	Approach	To	Solve
Algorithm	Design	Problems
Chapter	4:	Abstract	Data	Type	&
C++	Collections

You	will	get	a	basic	understanding	of	how	to	find
complexity	of	a	solution.	You	will	know	how	to
handle	new	problems.	You	will	read	about	a	variety	of
datatypes	and	their	uses.

Week	3
Week	4
Week	5

Chapter	5:	Searching
Chapter	6:	Sorting
Chapter	14:	String	Algorithms

Searching,	sorting	and	string	algorithm	consists	of	a
major	portion	of	the	interviews

Week	6
Week	7
Week	8

Chapter	7:	Linked	List
Chapter	8:	Stack
Chapter	9:	Queue

Linked	list,	Stack	and	Queue	are	one	of	the	favorites
in	an	interview

Week	9
Week	10

Chapter	10:	Tree
Chapter	11:	Heap

This	portion	you	will	read	about	trees	and	priority
queue

Week	11
Week	12

Chapter	12:	Hash-Table
Chapter	13:	Graphs

Hash-Table	is	used	throughout	this	book	in	various
places,	but	now	it’s	time	to	understand	how	Hash-
Table	are	actually	implemented.
Graphs	are	used	to	propose	a	solution	many	real	life
problems

Week	13
Week	14
Week	15
Week	16

Chapter	15:	Algorithm	Design
Techniques
Chapter	16:	Brute	Force
Chapter	17:	Greedy	Algorithm
Chapter	18:	Divide-And-Conquer,
Decrease-And-Conquer
Chapter	19:	Dynamic
Programming
Chapter	20:	Backtracking	And
Branch-And-Bound
Chapter	21:	Complexity	Theory
And	Np	Completeness

These	chapters	contain	various	algorithms	types	and
their	usage.	Once	the	user	is	familiar	with	most	of	this
algorithm.	Then	the	next	step	is	to	start	solving
topcoder	problems	from	topcode

Week	17
Week	18

Chapter	22:	Interview	Strategy
Chapter	23:	System	Design

Interview	strategy	and	system	design	chapter	are	the
final	chapters	of	this	course

Week	19
Week	20

Revision	of	the	chapters	listed
above

At	this	time,	you	need	to	revise	all	the	chapters	that
we	have	seen	in	this	book.	Whatever	is	left	needs	to
be	completed	and	the	exercise	that	may	be	left
needing	to	be	solved	in	this	period

	

https://www.topcoder.com/

Summary

These	are	few	preparation	plans	that	can	be	followed	to	complete	this	book	there	by	preparing	for
the	interview.	It	is	highly	recommended	that	the	user	should	read	the	problem	statement	first,	then
he	should	try	to	solve	the	problems	by	himself	and	then	only	he	should	look	into	the	solution	to
find	the	approach	of	the	book.	Practicing	more	and	more	problems	will	increase	your	thinking
capacity	and	you	will	be	able	to	handle	new	problems	in	an	interview.	System	design	is	a	topic
that	is	not	asked	much	from	a	fresher	from	college,	but	as	you	gain	experience	its	importance
increase.	We	will	recommend	practicing	all	the	problems	given	in	this	book,	then	solve	more	and
more	problems	from	online	resources	like	www.topcoder.com,	www.careercup.com,
www.geekforgeek.com	etc.

CHAPTER	1:	INTRODUCTION	-
PROGRAMMING	OVERVIEW

Introduction

This	chapter	emphasizes	on	brush	up	of	the	fundamentals	of	the	C++	Programming	language.	It
will	talk	about	variables,	pointers,	references,	classes,	loops,	recursion,	arrays	etc.	We	assume
that	the	reader	is	familiar	with	the	syntax	of	the	C++	programming	language	and	knows	the	basics
of	Object-Orientation.
	

First	C++	Program

	
Example	1.1:
#include	<iostream>
	
int	main(int	argc,	char*	argv[])
{
										//Single	Line	comment.
	
										/*
										Multiple	line	comments.
										*/
	
										std::cout	<<	"Hello,	World!"	<<	std::endl;
										return	0;
}
	
It	is	tradition	to	discuss	a	HelloWorld	program	in	the	start	which	will	print	the	phrase	“Hello,
World!”	to	the	output	screen.	So	let	us	start	discussing	it.	This	is	a	small	program	but	it	contains
many	common	features	of	all	the	C++	programs.
	

1.				This	program	begins	with	“#include	<iostream>”:
a.				This	tells	the	compiler	that	we	are	going	to	use	the	functions	defined	in	iostream	file.

Cpp	language	provide	a	number	of	predefined	files,	which	contain	functions	that	are
commonly	used	by	programmer.	For	example	std::cout	is	defined	inside	iostream	file
which	will	be	used	to	print	“Hello,	World!”	to	the	output	screen.

2.				Next	comes	the	method	“int	main(int	argc,	char*	argv[])”:
a.				A	method	is	a	set	of	statements	that	are	executed	to	give	desire	result.
b.				main()	is	a	special	method	of	a	class	this	is	the	entry	point	of	the	application.
c.				The	int	keyword	means	that	this	method	is	going	to	return	an	integer	value	in	our	case

it	is	0.
3.				Next	are	the	comments,	which	are	for	readability	of	the	program	and	are	ignored	by	the

compiler.
a.				A	single	line	comment	begins	with	two	forward	slash	//
b.				A	multiline	comment	begins	with	/*	and	ends	with	*/.

4.				“std::cout	<<	"Hello,	World!"	<<	std::endl;”,	is	a	system	provided	operator(object)	which
will	print	“Hello,	World!	”	to	the	standard	output	and	will	print	next	line	char	in	the	end.

5.				In	the	end	there	is	a	“return	0;”	which	will	give	return	value	to	the	caller	of	the	main
function.	Return	statement	is	a	way	to	pass	the	return	value	to	the	caller	of	the	function.

Object

An	Object	is	an	entity	with	state	and	behavior.	A	cat,	a	dog,	a	bulb	etc	are	all	examples	of
objects.	For	example	a	bulb	have	two	states	(on,	off)	and	the	two	behaviors	(turn	on,	turn	off).
	
Software	objects	are	just	like	real	world	objects.	They	have	state	in	the	form	of	member
variables	called	fields	(isOn)	and	they	expose	behavior	in	the	form	of	member	functions	called
methods	(turn	on,	turn	off).
	
Hiding	internal	details	(state)	of	the	object	and	allowing	all	the	actions	to	be	performed	over	the
objects	using	methods	is	known	has	data-encapsulation.
	
A	Class	is	a	prototype	(blueprint)	of	objects.	An	object	is	an	instance	of	a	class.	Human	is	a	class
of	living	being	and	a	person	named	John	is	an	instance	of	human	class.
	
Example	1.2:
class	Bulb
{
private:
										//	Instance	Variables
										bool	isOn;
	
public:
										//	Constructor
										Bulb();
	
										//	Instance	Method
										virtual	void	turnOn();
	
										//	Instance	Method
										virtual	void	turnOff();
	
										//	Instance	Method
										virtual	bool	isOnFun();
};
	
In	this	example,	we	have	a	class	name	Bulb.	It	has	a	member	variable	isOn,	which	indicates	its
state	that	the	bulb	is	on	or	off.	It	has	two	methods	turnOn()	and	turnoff()	which	will	change	the
state	of	the	object	from	off	to	on	and	vice	versa.
	

Variable

"Variables"	are	simply	storage	locations	for	data.	For	every	variable,	some	memory	is	allocated.
The	size	of	this	memory	depends	on	the	type	of	the	variable.
	
Example	1.3:
void	variableExample()
{
										int	var1,	var2,	var3;
										var1	=	100;
										var2	=	200;
										var3	=	var1	+	var2;
										std::cout	<<	"Adding	"	<<	var1	<<	"	and	"	<<	var2	<<	"	will	give	"	<<	var3	<<	std::endl;
}
	
Analysis:

·									Memory	is	allocated	for	variables	var1,	var2	and	var3.	Whenever	we	declare	a	variable,
then	memory	is	allocated	for	storing	the	value	in	the	variable.	In	our	example,	4	bytes	are
allocated	for	each	of	the	variable.

·									Value	100	is	stored	in	variable	var1	and	value	200	is	stored	in	variable	var2.
·									Value	of	var1	and	var2	is	added	and	stored	in	var3.
·									Finally,	the	value	of	var1,	var2	and	var3	is	printed	to	screen	using	std::cout.

	

Parameter	passing,	Call	by	value	

Arguments	can	be	passed	from	one	method	to	other	using	parameters.	By	default	all,	the
variables,	which	are	passed	as	parameters,	are	passed-by-value.	That	means	a	separate	copy	is
created	inside	the	called	method	and	no	changes	done	inside	called	method	will	reflect	in	calling
method.
	
Example	1.4:
void	incrementPassByValue(int	var)
{
										var++;
}
	
int	main()
{
										int	i	=	10;
										std::cout	<<	"Value	of	i	before	increment	is	:		"	<<	i	<<	std::endl;
										incrementPassByValue(i);
										std::cout	<<	"Value	of	i	after	increment	is	:		"	<<	i	<<	std::endl;
}
	
Output:
Value	of	i	before	increment	is	:		10
Value	of	i	after	increment	is	:		10
	
Analysis:

·									Variable	”i”	is	declared	and	the	value	10	is	initialized	to	it.
·									Value	of	”i”	is	printed.
·									Increment	method	is	called.	When	a	method	is	called	the	value	of	the	parameter	is	copied

into	another	variable	of	the	called	method.	Flow	of	control	goes	to	increase()	function.
·									Value	of	var	is	incremented	by	1.	However,	remember,	it	is	just	a	copy	inside	the

increment	method.
·									When	the	method	exits,	the	value	of	”i”	is	still	10.

	
Points	to	remember:

1.				Pass	by	value	just	creates	a	copy	of	variable.
2.				Pass	by	value,	value	before	and	after	the	method	call	remain	same.

	

Parameter	passing,	Call	by	Reference

If	you	need	to	change	the	value	of	the	parameter	inside	the	method,	then	you	should	use	call	by
reference.	C++	language	by	default	passes	by	value.	Therefore,	to	make	it	happen,	you	need	to
pass	by	reference	by	using	“&”	operator.	The	variable	inside	the	called	function	also	refer	to	the
same	variable	inside	the	calling	function.	When	the	value	of	reference	variable	is	changed	then
the	original	variable	value	also	change.
	
Example	1.5:
void	incrementPassByReference(int&	var)
{
										var++;
}
	
int	main()
{
										int	i	=	10;
										std::cout	<<	"Value	of	i	before	increment	is	:		"	<<	i	<<	std::endl;
										incrementPassByReference(i);
										std::cout	<<	"Value	of	i	after	increment	is	:		"	<<	i	<<	std::endl;
}
	
Output:
Value	of	i	before	increment	is	:		10
Value	of	i	after	increment	is	:		11
	
Analysis:	Variable	“i”	is	passed	as	pass	by	reference,	so	variable	“i”	inside	calling	function	and
variable	“var”	inside	called	function	are	the	same.	So	value	of	var	changed	inside	called	function
will	also	be	reflected	into	the	variable	“i”	inside	calling	function.
	

Parameter	passing,	Call	by	Pointer

When	we	pass	address	of	variable	inside	calling	function	to	the	called	function	then	the	changes
done	inside	called	function	is	also	reflected	inside	calling	function.
	
Example	1.6:
void	incrementPassByPointer(int*	ptr)
{
										(*ptr)++;
}
	
int	main()
{
										int	i	=	10;
										std::cout	<<	"Value	of	i	before	increment	is	:		"	<<	i	<<	std::endl;
										incrementPassByPointer(&i);
										std::cout	<<	"Value	of	i	after	increment	is	:		"	<<	i	<<	std::endl;
}
	
Output:
Value	of	i	before	increment	is	:		10
Value	of	i	after	increment	is	:		11
	
Analysis:	We	are	passing	address	of	a	variable	inside	calling	function	to	the	called	function.
Moreover,	modifying	the	value	at	that	address	so	the	change	done	is	reflected	to	the	calling
function	variable	too.
	

Kinds	of	Variables

The	C++	programming	language	defines	three	kinds	of	variables:
1.				Instance	Variables	(Non-Static):	They	are	instance	variables	so	they	are	unique	to	each

instance/object	of	a	class.
2.				Class	Variables	(Static):	A	class	variable	is	any	field	with	the	static	modifier.	These

variables	are	linked	with	the	class	not	with	the	objects	of	the	class.	There	is	exactly	one	copy
of	these	variables	regardless	of	how	many	instances	of	the	class	are	created.

3.				Local	Variables:	the	temporary	variables	in	a	method	are	called	local	variables.	The	local
variables	are	only	visible	to	the	method	in	which	they	are	declared.	The	parameters	that	are
passed	to	the	methods	are	also	local	variables	of	the	called	method.

	
Example	1.7:
class	Bulb
{
private:
										//	Class	Variables
										static	int	TotalBulbCount;
	
										//	Instance	Variables
										bool	isOn;
	
public:
										//	Constructor
										Bulb();
	
										//	Class	Method
										static	int	getBulbCount();
	
										//	Instance	Method
										virtual	void	turnOn();
	
										//	Instance	Method
										virtual	void	turnOff();
	
										//	Instance	Method
										virtual	bool	isOnFun();
};
	
Bulb::Bulb()
{
										isOn	=	false;
										TotalBulbCount++;
}
	
int	Bulb::getBulbCount()
{
										return	TotalBulbCount;
}
	
void	Bulb::turnOn()
{
										isOn	=	true;

}
	
void	Bulb::turnOff()
{
										isOn	=	false;
}
bool	Bulb::isOnFun()
{
										return	isOn;
}
	
Analysis:	isOn	is	an	instance	variable	that	is	separate	for	each	object.	Each	bulb	has	its	state	of
on	or	off.	However,	the	total	number	of	bulb	is	property	of	the	whole	class,	which	is	the	total
number	of	objects	of	type	bulb	created.	The	TotalBulbCount	is	a	class	variable	and	getBulbCount
is	class	method.
	

Methods

There	are	four	types	of	methods.	Class	Methods,	Instance	Methods	and	Constructors.	By	default,
all	the	methods	are	instance	methods.
Class	Methods	(Static):	The	static	modifier	is	used	to	create	class	methods.	Class	methods	with
static	modifier	with	them	should	be	invoked	with	the	class	name	without	the	need	of	creating	even
a	single	instance	of	the	class
	
Instance	Methods	(Non-Static):	These	methods	can	only	be	invoked	over	an	instance	of	the
class.
	
Some	points	regarding	Instance	methods	and	Class	methods:
1.				Instance	methods	can	access	other	instance	methods	and	instance	variables	directly.
2.				Instance	methods	can	access	class	methods	and	variables	directly.
3.				Class	methods	can	access	other	class	methods	and	class	variables	directly.
4.				Class	methods	cannot	access	instance	methods	and	instance	variables	directly.	To	access

instance	variable	and	methods	they	need	to	create	and	instance	(object)	of	class.
5.				The	special	keyword	“this”	is	valid	only	inside	instance	methods	(and	invalid	inside	class

methods)	as	“this“	refers	to	the	current	instance.		
	
Constructor:	It	is	a	special	kind	of	method,	which	is	invoked	over	objects	when	they	are	created.
Constructor	methods	have	the	same	name	as	the	class.	Constructor	method	is	used	to	initialize	the
various	fields	of	the	object.	For	the	class	that	does	not	have	constructors,	C++	language	provides
default	constructors	for	them.
	
Distructor:	It	is	a	special	kind	of	method,	which	is	invoked	over	object	when	they	are	destroyed.
Distructor	method	are	named	“~”	added	by	the	name	of	the	class.	Distructor	method	is	used	to	do
the	clean-up	of	the	memory	contained	in	the	object.	For	the	class	that	does	not	have	Distructor
C++	language	provide	default	Distructor	for	it.
	

Access	Modifiers

Access	modifiers	are	used	to	set	the	visibility	level	to	the	class,	variables	and	methods.	C++
provide	four	types	access	modifiers:	default,	public,	protected,	private.
1.				Private	modifier	has	visibility	only	within	its	own	class.
2.				Public	modifier	has	visibility	to	all	the	classes	in	the	package.
3.				Protected	modifier	has	visibility	within	its	own	class	and	the	subclasses	its	own	class.
	

Abstract	class

Objects	define	their	interface	as	the	interaction	with	the	outside	world.	For	example,	in	the	bulb
case	switch	is	the	interface	between	you	and	the	bulb.	You	press	the	button	turn	on	and	the	bulb
start	glowing.	C++	does	not	have	any	interface	keyword,	it	just	define	some	functions	as	abstract
function	by	making	it	“=	0”	thereby	making	the	whole	class	abstract.
	
Example	1.8:
class	BulbInterface
{
public:
										virtual	void	turnOn()	=	0;
										virtual	void	turnOff()	=	0;
										virtual	bool	isOnFun()	=	0;
};
	
//	implements	BulbInterface
class	Bulb	:	public	BulbInterface
{
private:
										//	Instance	Variables
										bool	isOn;
	
public:
										//	Constructor
										Bulb();
	
										//	Instance	Method
										virtual	void	turnOn();
	
										//	Instance	Method
										virtual	void	turnOff();
	
										//	Instance	Method
										virtual	bool	isOnFun();
	
};
	
int	main()
{
										Bulb	b;
										std::cout	<<	"bulb	is	on	return	:	"	<<	b.isOnFun()	<<	std::endl;
										b.turnOn();
										std::cout	<<	"bulb	is	on	return	:	"	<<	b.isOnFun()	<<	std::endl;
										return	0;
}
	
Analysis:
In	this	example,	BulbInterface	is	the	interface	of	Bulb	class.	Bulb	class	needs	to	implement	all	the
methods	of	BulbInterface	to	make	itself	a	concrete	class.	A	concrete	class	is	a	class	whole	object
or	instance	can	be	created.
	

An	abstract	method	is	a	method	which	does	not	have	a	definition.	Such	methods	are	declared	with
abstract	keyword.
	
A	class	which	has	at	least	one	abstract	method	need	to	be	declared	as	abstract.	We	cannot	create
objects	of	an	abstract	class.	(A	class	which	does	not	have	any	abstract	method	can	also	be
declared	as	abstract	to	prevent	its	object	creation.).

Example	1.9:
//Abstract	Class
class	Shape
{
public:
										//	Abstract	Method
										virtual	double	area()	=	0;
	
										//	Abstract	Method
										virtual	double	perimeter()	=	0;
};
	
Shape	is	an	abstract	class.	And	its	instance	cannot	be	created.	Those	classes,	which	extend	it,
need	to	implement	these	two	functions	to	become	concrete	class	whose	instances	can	be	created.
	
class	Circle	:	public	Shape
{
private:
										double	radius	=	0;
	
public:
										Circle();
	
										Circle(double	r);
	
										virtual	void	setRadius(double	r);
	
										virtual	double	area()	override;
	
										virtual	double	perimeter()	override;
};
	
Circle::Circle()	:
										Circle(1)
{
}
	
Circle::Circle(double	r)

{
										radius	=	r;
}
	
void	Circle::setRadius(double	r)
{
										radius	=	r;
}
	
double	Circle::area()
{
										return	M_PI	*	std::pow(radius,	2);
}
	
double	Circle::perimeter()
{
										return	2	*	M_PI	*	radius;
}
	
Circle	is	a	class	which	extends	shape	class	and	implement	area()	and	perimeter()	methods.
	
class	Rectangle	:	public	Shape
{
	
private:
										double	width	=	0,	length	=	0;
	
public:
										Rectangle();
	
										Rectangle(double	w,	double	l);
	
										virtual	void	setWidth(double	w);
	
										virtual	void	setLength(double	l);
	
										virtual	double	area()	override;
	
										virtual	double	perimeter()	override;
};
	
Rectangle::Rectangle()	:
										Rectangle(1,	1)
{	}
	
Rectangle::Rectangle(double	w,	double	l)
{
										width	=	w;
										length	=	l;
}
	
void	Rectangle::setWidth(double	w)
{
										width	=	w;
}
	
void	Rectangle::setLength(double	l)
{
										length	=	l;

}
	
double	Rectangle::area()
{
										return	width	*	length;	//	Area	=	width	*	length
}
	
double	Rectangle::perimeter()
{
										return	2	*	(width	+	length);		//	Perimeter	=	2(width	+	length)
}
	
Same	as	Circle	class,	Rectangle	class	also	extends	Shape	class	and	implements	its	abstract
functions.
#include	"Shape.h"
#include	"Rectangle.h"
#include	"Circle.h"
	
int	main()
{
										double	width	=	2,	length	=	3;
										Shape	*rectangle	=	new	Rectangle(width,	length);
										std::cout	<<	"Rectangle	width:	"	<<	width	<<	"	and	length:	"	<<	length	<<	"	Area:	"	<<	rectangle->area()	<<	"	Perimeter:	"	<<
rectangle->perimeter()	<<	std::endl;
	
										double	radius	=	10;
										Shape	*circle	=	new	Circle(radius);
										std::cout	<<	"Circle	radius:	"	<<	radius	<<	"	Area:	"	<<	circle->area()	<<	"	Perimeter:	"	<<	circle->perimeter()	<<	std::endl;
										return	0;
}
	
Analysis:	Shape	demo	creates	an	instance	of	the	Rectangle	and	the	Circle	class	and	assign	it	to	a
pointer	of	type	Shape.	Finally	area()	and	perimeter()	functions	are	called	over	instances
	

Relationship

	
These	various	relationships	exist	between	two	classes:

1.				Dependency:	Objects	of	one-class	use	objects	of	another	class	temporarily.	When	a	class
creates	an	instance	of	another	class	inside	its	member	method	and	use	it	and	when	the
method	exits,	then	the	instance	of	the	other	class	is	deleted.

2.				Association:	Objects	of	one	class	work	with	objects	of	another	class	for	some	amount	of
time.	The	association	is	of	two	kinds	-	Aggregation	and	Composition.

3.				Aggregation:	One	class	object	share	a	pointer	to	objects	of	another	class.	When	a	class
stores	the	pointer	of	another	class	inside	it.	Just	a	pointer	is	kept	inside	the	class.

4.				Composition:	One	class	contains	objects	of	another	class.	In	Composition,	the	containing
object	is	responsible	for	the	creation	and	deletion	of	the	contained	object.

5.				Inheritance:	One	class	is	a	sub-type	of	another	class.	Inheritance	is	a	straightforward
relationship	to	explain	the	parent-child	relationship.

	
Example	1.10:	AdvanceBulb	is	sub-class	of	Bulb	class.	Demonstrating	Inheritance.
class	AdvanceBulb	:	public	Bulb
{
private:
										//	Instance	Variables
										int	intensity;
	
public:
										AdvanceBulb();
	
										//	Instance	Method
										virtual	void	setIntersity(int	i);
	
										//	Instance	Method
										virtual	int	getIntersity();
};
	
AdvanceBulb::AdvanceBulb()

{
										intensity	=	0;
}
void	AdvanceBulb::setIntersity(int	i)
{
										intensity	=	i;
}
int	AdvanceBulb::getIntersity()
{
										return	intensity;
}
	
Analysis:	In	our	example,	AdvanceBulb	is	a	sub-class	of	Bulb.	When	an	object	of	AdvanceBulb
is	created,	all	public	and	protected	methods	of	Bulb	class	are	also	accessible	to	it.
	

General	Prototype	of	a	Class

	
Example	1.11:
class	ChildClass	:	[public/protected/private]	ParentClass
{
private:
										//	private	fields	and	methods.
	
protected:
										//	private	fields	and	methods.
	
public:
										//	private	fields	and	methods.
};
	
A	ChildClass	inherited	from	ParentClass	and	implements	SomeInterface.
	

Nested	Class

A	class	within	another	class	is	called	a	nested	class.
	
Compelling	reasons	for	using	nested	classes	include	the	following:
1.				It	is	a	way	of	logically	grouping	classes	that	are	only	used	in	one	place:	If	a	class	is	useful

to	only	one	other	class,	then	it	is	logical	to	embed	it	in	that	class	and	keep	the	two	together.
Nesting	such	"helper	classes"	makes	their	package	more	streamlined.

2.				It	increases	encapsulation:	Consider	two	top-level	classes,	A	and	B,	where	B	needs	access
to	members	of	A	that	would	otherwise	be	declared	private.	By	hiding	class	B	within	class	A,
A's	members	can	be	declared	private	and	B	can	access	them.	In	addition,	B	itself	can	be
hidden	from	the	outside	world.

3.				It	can	lead	to	more	readable	and	maintainable	code:	Nesting	small	classes	within	top-level
classes	places	the	code	closer	to	where	it	is	used.

	
A	nested	class	has	an	independent	set	of	modifiers	from	the	outer	class.	Visibility	modifiers
(public,	private	and	protected)	effect	whether	the	nested	class	definition	is	accessible	beyond	the
outer	class	definition.	For	example,	a	private	nested	class	can	be	used	by	the	outer	class,	but	by
no	other	classes.
	
Example	1.12:	Demonstrating	Nested	Class
class	OuterClass
{
private:
										class	NestedClass
										{
																			//	NestedClass	fields	and	methods.
										};
										//	OuterClass	fields	and	methods.
};
	
Let	us	take	example	of	LinkedList	and	Tree	class.	Both	the	linked	list	and	tree	have	nodes	to	store
new	element.	Both	the	linked	list	and	tree	have	their	nodes	different,	so	it	is	best	to	declare	their
corresponding	nodes	class	inside	their	own	class	to	prevent	name	conflict	and	increase
encapsulation.
	
Example	1.13:
class	LinkedList
{
	
private:
										class	Node
										{
										private:
																			int	value;
																			Node	*next;
																			//	Nested	Class	Node	other	fields	and	methods.

	
										};
	
										Node	*head;
										int	size;
										//	LinkedList	Class	other	fields	and	methods.
};
	
class	Tree
{
private:
										class	Node
										{
										private:
																			int	value	=	0;
																			Node	*lChild;
																			Node	*rChild;
																			//	Nested	Class	Node	other	fields	and	methods.			
										};
	
										Node	*root;
										//	Tree	Class	other	fields	and	methods.
};
	

Enums

Enums	restrict	a	variable	to	have	one	of	the	few	predefined	values.
	
Example	1.14:
enum	class	BulbSize
{
										SMALL,
										MEDIUM,
										LARGE
};
	
class	Bulb
{
private:
										//	Instance	Variables
										BulbSize	size;
public:
										//	Instance	Method
										BulbSize	getBulfSize()
										{
																			return	size;
										}
										//	Instance	Method
										void	setBulbSize(BulbSize	s)
										{
																			size	=	s;
										}
										//Other	bulb	class	fields	and	methods.
};
	
int	main()
{
										Bulb	b;
										b.setBulbSize(BulbSize::MEDIUM);
										std::cout	<<	"Bulb	Size	:"	<<	(int)b.getBulfSize()	<<	std::endl;
										return	0;
}
	
Analysis:	In	the	above	code,	we	made	some	change	to	Bulb	class.	It	has	one	more	field	size	and
size	is	of	type	enum	BulbSize.	And	the	allowed	values	of	the	size	are	SMALL,	MEDIUM	and
LARGE.
	

Constants

Constants	are	defined	by	using	const	modifier.	The	const	modifier	indicates	that	the	value	of	this
field	cannot	be	changed.
	
For	example,	the	following	variable	declaration	defines	a	constant	named	PI,	whose	value
approximates	pi.
const	double	PI	=	3.141592653589793;
	
Another	example,	in	this	we	had	created	a	constant	of	string	type.
const	std::string	text	=	"Hello,	World!";
	

Conditions	and	Loops

IF	Condition

If	condition	consists	of	a	Boolean	condition	followed	by	one	or	more	statements.	It	allows	you	to
take	different	paths	of	logic,	depending	on	a	given	Boolean	condition.

if	(boolean_expression)
{
										//	statements
}
	
If	statement	can	be	followed	by	else	statements	and	an	optional	else	statement	which	is	executed
when	the	Boolean	condition	is	false.

if(boolean_expression)
{
										//	if	condition	statements	boolean	condition	true
}
else
{
										//	else	condition	statements,	boolean	condition	false

}
	

While	Loop

A	while-loop	is	used	to	repeatedly	execute	some	block	of	code	as	long	as	a	given	condition	is
true.

	
Example	1.15:
int	main()
{
										std::vector<int>	numbers	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10};
										int	sum	=	0;
										int	i	=	0;
										while	(i	<	numbers.size())
										{
																			sum	+=	numbers[i];
																			i++;
										}
										std::cout	<<	"Sum	is	::	"	<<	sum	<<	std::endl;
										return	0;
}
	
Analysis:
All	the	variables	stored	in	array	are	added	to	the	sum	variable	one	by	one	in	a	while	loop.
	

Do..While	Loop

A	do..while-loop	is	similar	to	while-loop,	but	the	only	difference	is	that	the	conditional	code	is
executed	before	the	test	condition.	do..while-loop	is	used	where	you	want	to	execute	some
conditional	code	at	least	once.

Example	1.16:
int	main()
{
										std::vector<int>	numbers	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
										int	sum	=	0;
										int	i	=	0;
										do	{
																			sum	+=	numbers[i];
																			i++;
										}	while	(i	<	numbers.size());
										std::cout	<<	"Sum	is	::	"	<<	sum	<<	std::endl;
										return	0;
}
	

For	Loop

For	loop	is	just	another	loop	in	which	initialization,	condition	check	and	increment	are	bundled
together.
for	(initialization;	condition;	increment)
{
statements
}
	
	

	
Example	1.17:
int	main()
{
										std::vector<int>	numbers	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10};
										int	sum	=	0;
										for	(int	i	=	0;	i	<	numbers.size();	i++)
										{
																			sum	+=	numbers[i];
										}
										std::cout	<<	"Sum	is	::	"	<<	sum	<<	std::endl;
										return	0;
}
	

ForEach	Loop

For	loop	works	well	with	basic	types,	but	it	does	not	handle	collections	objects	well.	For	this,	an
alternate	syntax	foreach	loop	is	provided.	C++	does	not	have	keyword	foreach	it	uses	for
keyword.
	
for	(declaration	:	collection	/	array)
{
statements
}
	
Example	1.18:
int	main()
{
										std::vector<int>	numbers	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10};
										int	sum	=	0;
										for	(auto	n	:	numbers)
										{
																			sum	+=	n;

										}
										std::cout	<<	"Sum	is	::	"	<<	sum	<<	std::endl;
										return	0;
}
	

Array

Arrays	are	the	most	basic	data	structures	used	to	store	information.	An	array	is	a	data	structure
used	to	store	multiple	data	elements	of	the	same	data	type.	All	the	data	is	stored	sequentially.	The
value	stored	at	any	index	can	be	accessed	in	constant	time.
	
Example	1.19:
void	arrayExample()
{
										int	arr[10];
										for	(int	i	=	0;	i	<	10;	i++)
										{
																			arr[i]	=	i;
										}
										printArray(arr,	10);
}
	
Analysis:	Defines	an	array	of	integer	arr.	The	array	is	of	size	10	-	which	means	that	it	can	store
10	integers	inside	it.	Array	elements	are	accessed	using	the	subscript	operator	[].	Lowest
subscript	is	0	and	highest	subscript	is	(size	of	array	–	1).	Value	0	to	9	is	stored	in	the	array	at
index	0	to	9.
Array	and	its	size	are	passed	to	printArray()	method.
	
Example	1.20:
void	printArray(int	arr[],	int	count)
{
										std::cout	<<	"Values	stored	in	vector	are	:	"	<<	std::endl;
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			std::cout	<<	"	"	<<	arr[i]	<<	std::endl;
										}
}
	
Analysis:

·									Array	variable	arr	and	its	variable	count	are	passed	as	arguments	to	printArray()	method.
·									Finally	array	values	are	printed	to	screen	using	std::cout	in	a	for	loop.

	
Point	to	Remember:

1.				Array	index	always	starts	from	0	index	and	highest	index	is	size	-1.
2.				The	subscript	operator	has	highest	precedence	if	you	write	arr[2]++.	Then	the	value	of

arr[2]	will	be	incremented.
	

Vector

Vectors	store	multiple	data	elements	of	same	data	types	in	contiguous	storage	location	just	like
arrays.	There	elements	can	also	be	accessed	using	offsets	and	are	as	efficient	as	arrays.	But
unlike	arrays	the	size	of	vectors	can	change	dynamically.	The	data	storage	is	handled
automatically	by	the	vector.
	
Example	1.21:
void	vectorExample()
{
										std::vector<int>	vec;
										for	(int	i	=	0;	i	<	10;	i++)
										{
																			vec.push_back(i);
										}
										printVector(vec);
}
	
Analysis:	Defines	a	vector	of	integer	vec.	Value	0	to	9	is	added	to	the	vector	by	calling
push_back()	method.	Vector	is	passed	to	printVector()	method.	No	need	to	pass	size	of	vector	it
keep	track	of	its	size	too.
	
Example	1.22:
void	printVector(std::vector<int>	&data)
{
										int	count	=	data.size();
										std::cout	<<	"Values	stored	are	:	";
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			std::cout	<<	"	"	<<	data[i];
										}
}
	
Analysis:

·									Size	of	the	vector	is	stored	inside	count	variable.
·									For	loop	is	executed	for	all	the	elements	of	the	vector.	.
·									Finally	vector	values	are	printed	to	screen	using	the	std::cout	in	a	for	loop.

	
Point	to	Remember:

1.				Vector	index	always	starts	from	0	index	and	highest	index	is	size	-1.
2.				The	subscript	operator	has	highest	precedence	if	you	write	vec[2]++.	Then	the	value	of

vec[2]	will	be	incremented.
	
Note:-	Vector	has	mental	model	same	as	array	so	we	will	use	vector	and	array	as	interchangeably.
We	will	prefer	vectors	over	array	in	most	of	the	cases.
	

Array	Interview	Questions

The	following	section	will	discuss	the	various	algorithms	that	are	applicable	to	arrays/vectors
and	will	follow	by	list	of	practice	problems	with	similar	approaches.
	

Sum	Array

Write	a	method	that	will	return	the	sum	of	all	the	elements	of	the	integer	array	given	array	and	its
size	as	an	argument.
	
Example	1.23:
int	SumArray(std::vector<int>	&arr)
{
										int	size	=	arr.size();
										int	total	=	0;
										int	index	=	0;
										for	(index	=	0;	index	<	size;	index++)
										{
																			total	=	total	+	arr[index];
										}
										return	total;
}
	
int	main()
{
										std::vector<int>	arr	=	{	1,2,3,4,5,6,7,8,9	};
										std::cout	<<	"sum	of	all	the	values	in	array:"	<<	SumArray(arr)	<<	std::endl;
										return	0;
}
	

Sequential	Search

Write	a	method,	which	will	search	an	array	for	some	given	value.
	
Example	1.24:
int	SequentialSearch(std::vector<int>	&arr,	int	value)
{
										int	size	=	arr.size();
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(value	==	arr[i])
																													return	i;
										}
										return	-1;
}
	
Analysis:

·									Since	we	have	no	idea	about	the	data	stored	in	the	array,	or	if	the	data	is	not	sorted	then
we	have	to	search	the	array	in	sequential	manner	one	by	one.

·									If	we	find	the	value,	we	are	looking	for	we	return	that	index.
·									Else,	we	return	-1	index,	as	we	did	not	found	the	value	we	are	looking	for.

In	the	above	example,	the	data	are	not	sorted.	If	the	data	is	sorted,	a	binary	search	may	be	done.
We	examine	the	middle	position	at	each	step.	Depending	upon	the	data	that	we	are	searching	is
greater	or	smaller	than	the	middle	value.	We	will	search	either	the	left	or	the	right	portion	of	the
array.	At	each	step,	we	are	eliminating	half	of	the	search	space	there	by	making	this	algorithm
very	efficient	the	linear	search.
	

Binary	Search

Binary	search	is	sued	to	search	in	a	sorted	array.	Each	iteration	search	space	is	divided	into	half.
	
Example	1.25:
int	BinarySearch(std::vector<int>	&arr,	int	value)
{
										int	size	=	arr.size();
										int	mid;
										int	low	=	0;
										int	high	=	size	-	1;
										while	(low	<=	high)
										{
																			mid	=	low	+	(high	-	low)	/	2;	//	To	avoid	the	overflow
																			if	(arr[mid]	==	value)
																			{
																													return	mid;
																			}
																			else
																			{
																													if	(arr[mid]	<	value)
																																						low	=	mid	+	1;
																													else
																																						high	=	mid	-	1;
																			}
										}
										return	-1;
}
	
Analysis:

·									Since	we	have	data	sorted	in	increasing	/	decreasing	order,	we	can	apply	more	efficient
binary	search.	At	each	step,	we	reduce	our	search	space	by	half.

·									At	each	step,	we	compare	the	middle	value	with	the	value	we	are	searching.	If	mid	value
is	equal	to	the	value	we	are	searching	for	then	we	return	the	middle	index.

·									If	the	value	is	smaller	than	the	middle	value,	we	search	the	left	half	of	the	array.
·									If	the	value	is	grater	then	the	middle	value	then	we	search	the	right	half	of	the	array.
·									If	we	find	the	value	we	are	looking	for	then	its	index	is	returned	or	-1	is	returned

otherwise.
	

Rotating	an	Array	by	K	positions.

For	example,	an	array	[10,20,30,40,50,60]	rotate	by	2	positions	to	[30,40,50,60,10,20]
	
Example	1.26:
void	rotateArray(std::vector<int>	&arr,	int	k)
{
										int	n	=	arr.size();
										reverseArray(arr,	0,	k	-	1);
										reverseArray(arr,	k,	n	-	1);
										reverseArray(arr,	0,	n	-	1);
}
	
void	rotateArray(std::vector<int>	&arr,	int	k)
{
										int	n	=	arr.size();
										reverseArray(arr,	0,	k	-	1);
										reverseArray(arr,	k,	n	-	1);
										reverseArray(arr,	0,	n	-	1);
}
	
void	reverseArray(std::vector<int>	&a,	int	start,	int	end)
{
										for	(int	i	=	start,	j	=	end;	i	<	j;	i++,	j--)
										{
																			int	temp	=	a[i];
																			a[i]	=	a[j];
																			a[j]	=	temp;
										}
}
	
1,2,3,4,5,6,7,8,9,10																=>																	5,6,7,8,9,10,1,2,3,4
1,2,3,4,5,6,7,8,9,10						=>						4,3,2,1,10,9,8,7,6,5									=>		5,6,7,8,9,10,1,2,3,4
Analysis:

·									Rotating	array	is	done	in	two	parts	trick.	In	the	first	part,	we	first	reverse	elements	of
array	first	half	and	then	second	half.

·									Then	we	reverse	the	whole	array	there	by	completing	the	whole	rotation.
	

Find	the	largest	sum	contiguous	subarray.

Given	an	array	of	positive	and	negative	integer	s,	find	a	contiguous	subarray	whose	sum	(sum	of
elements)	is	maximized.	

Example	1.27:
int	maxSubArraySum(std::vector<int>	&a)
{
										int	size	=	a.size();
										int	maxSoFar	=	0,	maxEndingHere	=	0;
	
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			maxEndingHere	=	maxEndingHere	+	a[i];
																			if	(maxEndingHere	<	0)
																													maxEndingHere	=	0;

																			if	(maxSoFar	<	maxEndingHere)
																													maxSoFar	=	maxEndingHere;
										}
										return	maxSoFar;
}
	
int	main()	{
										std::vector<int>	arr	=	{	1,-2,3,4,-4,6,-14,8,2	};
										std::cout	<<	"Max	sub	array	sum	:"	<<	maxSubArraySum(arr);
}
	
Analysis:

·									Maximum	subarray	in	an	array	is	found	in	a	single	scan.	We	keep	track	of	global	maximum
sum	so	far	and	the	maximum	sum,	which	include	the	current	element.

·									When	we	find	global	maximum	value	so	far	is	less	than	the	maximum	value	containing
current	value	we	update	the	global	maximum	value.

·									Finally	return	the	global	maximum	value.
	

Concept	of	Stack

A	stack	is	a	memory	in	which	values	are	stored	and	retrieved	in	“last	in	first	out”	manner.	Data	is
added	to	stack	using	push	operation	and	data	is	taken	out	of	stack	using	pop	operation.
	

1.				Initially	the	stack	was	empty.	Then	we	have	added	value	1	to	stack	using	push(1)	operator.
2.				Similarly,	push(2)	and	push(3)
3.				Pop	operation	take	the	top	of	the	stack.	In	Stack,	data	is	added	and	deleted	in	“last	in,	first

out”	manner.
4.				First	pop()	operation	will	take	3	out	of	the	stack.
5.				Similarly,	other	pop	operation	will	take	2	then	1	out	of	the	stack
6.				In	the	end,	the	stack	is	empty	when	all	the	elements	are	taken	out	of	the	stack.

	

System	stack	and	Method	Calls

When	the	method	is	called,	the	current	execution	is	stopped	and	the	control	goes	to	the	called
method.	After	the	called	method	exits	/	returns,	the	execution	resumes	from	the	point	at	which	the
execution	was	stopped.
	
To	get	the	exact	point	at	which	execution	should	be	resumed,	the	address	of	the	next	instruction	is
stored	in	the	stack.	When	the	method	call	completes,	the	address	at	the	top	of	the	stack	is	taken
out.
	
Example	1.28:
void	function2()
{
										std::cout	<<	"fun2	line	1"	<<	std::endl;
}
	
void	function1()
{
										std::cout	<<	"fun1	line	1"	<<	std::endl;
										function2();
										std::cout	<<	"fun1	line	2"	<<	std::endl;
}
	
void	main()
{
										std::cout	<<	"main	line	1"	<<	std::endl;
										function1();
										std::cout	<<	"main	line	2"	<<	std::endl;
}
	
Output:
main	line	1
fun1	line	1
fun2	line	1
fun1	line	2
main	line	2
	
Analysis:

·									Every	program	starts	with	main()	method.
·									The	first	statement	of	main()	will	be	executed.	And	we	will	print	“main	line	1”	as	output.
·									function1()	is	called.	Before	control	goes	to	function1()	then	next	instruction	that	is

address	of	next	line	is	stored	in	the	system	stack.
·									Control	goes	to	function1()	method.
·									The	first	statement	inside	function1()	is	executed,	this	will	print	“fun1	line	1”	to	output.
·									function2()	is	called	from	function1().	Before	control	goes	to	function2()	address	of	the

next	instruction	that	is	address	of	next	line	is	added	to	the	system	stack.

·									Control	goes	to	function2()	method.
·									“fun2	line	1”	is	printed	to	screen.
·									When	function2()	exits,	control	come	back	to	function1().	And	the	program	reads	the	next

instruction	from	the	stack,	and	the	next	line	is	executed.	And	print	“fun1	line	2”	to	screen.
·									When	fun1	exits,	control	comes	back	to	the	main	method.	And	program	reads	the	next

instruction	from	the	stack	and	executed	it	and	finally	“main	line	2”	is	printed	to	screen.
	
Points	to	remember:

1.				Methods	are	implemented	using	a	stack.
2.				When	a	method	is	called	the	address	of	the	next	instruction	is	pushed	into	the	stack.
3.				When	a	method	is	finished	the	address	of	the	execution	is	taken	out	of	the	stack.

	

Recursive	Function

A	recursive	function	is	a	function	that	calls	itself,	directly	or	indirectly.	A	recursive	method
consists	of	two	parts:	Termination	Condition	and	Body	(which	include	recursive	expansion).

1.				Termination	Condition:	A	recursive	method	always	contains	one	or	more	terminating
condition.	A	condition	in	which	recursive	method	is	processing	a	simple	case	and	will	not
call	itself.

2.				Body	(including	recursive	expansion):	The	main	logic	of	the	recursive	method	contained	in
the	body	of	the	method.	It	also	contains	the	recursion	expansion	statement	that	in	turn	calls
the	method	itself.

	
Three	important	properties	of	recursive	algorithm	are:

1)				A	recursive	algorithm	must	have	a	termination	condition.
2)				A	recursive	algorithm	must	change	its	state,	and	move	towards	the	termination	condition.
3)				A	recursive	algorithm	must	call	itself.

	
Note:	The	speed	of	a	recursive	program	is	slower	because	of	stack	overheads.	If	the	same	task
can	be	done	using	an	iterative	solution	(loops),	then	we	should	prefer	an	iterative	solution	(loops)
in	place	of	recursion	to	avoid	stack	overhead.
Note:	Without	termination	condition,	the	recursive	method	may	run	forever	and	will	finally
consume	all	the	stack	memory.
	

Factorial

Factorial	Calculation.	N!	=	N*	(N-1)….	2*1.	Find	the	factorial	of	the	given	value.
	
Example	1.29:
int	factorial(int	i)
{
										//	Termination	Condition
										if	(i	<=	1)
										{
																			return	1;
										}
										//	Body,	Recursive	Expansion
										return	i	*	factorial(i	-	1);
}
	
Analysis:	Each	time	method	fn	is	calling	fn-1.	Time	Complexity	is	O(N)
	

Print	Base	10	Integer	s

	
Example	1.30:

void	printInt1(int	number)
{
										char	digit	=	static_cast<char>(number	%	10	+	'0');
										number	=	number	/	10;
										if	(number	!=	0)
																			printInt1(number);
										std::cout	<<	digit;
}
	
Analysis:

·									Each	time	remainder	is	calculated	and	stored	its	char	equivalent	in	digit.
·									If	the	number	is	greater	than	10	then	the	number	divided	by	10	is	passed	to	printInt()

method.
·									Number	will	be	printed	with	higher	order	first	than	the	lower	order	digits.		

Time	Complexity	is	O(N)
	

Print	Base	16	Integer	s

	
Example	1.31:	Generic	print	to	some	specific	base	method.
void	printInt2(int	number,	int	const	base)
{
										std::string	conversion	=	"0123456789ABCDEF";
										char	digit	=	static_cast<char>(number	%	base);
										number	=	number	/	base;
										if	(number	!=	0)
										{
																			printInt2(number,	base);
										}
										std::cout	<<	"	"	<<	conversion[digit];
}
	
Analysis:

·									Base	value	is	provided	along	with	the	number	in	the	function	parameter.
·									Remainder	of	the	number	is	calculated	and	stored	in	digit.
·									If	the	number	is	greater	than	base	then,	number	divided	by	base	is	passed	as	an	argument

to	the	printInt()	method	recursively.
·									Number	will	be	printed	with	higher	order	first	than	the	lower	order	digits.		

Time	Complexity	is	O(N)
	

Tower	of	Hanoi

The	Tower	of	Hanoi	(also	called	the	Tower	of	Brahma)	We	are	given	three	rods	and	N	number
of	disks,	initially	all	the	disks	are	added	to	first	rod	(the	leftmost	one)	in	decreasing	size	order.
The	objective	is	to	transfer	the	entire	stack	of	disks	from	first	tower	to	third	tower	(the	rightmost
one),	moving	only	one	disk	at	a	time	and	never	a	larger	one	onto	a	smaller.

Example	1.32:
void	towerOfHanoi(int	num,	char	src,	char	dst,	char	temp)
{
										if	(num	<	1)
										{
																			return;
										}
	
										towerOfHanoi(num	-	1,	src,	temp,	dst);
										std::cout	<<	"Move	"	<<	num	<<	"	disk		from	peg	"	<<	src	<<	"	to	peg	"	<<	dst	<<	std::endl;
										towerOfHanoi(num	-	1,	temp,	dst,	src);
}
	
int	main()
{
										int	num	=	4;
										std::cout	<<	"The	sequence	of	moves	involved	in	the	Tower	of	Hanoi	are	:"	<<	std::endl;
										towerOfHanoi(num,	'A',	'C',	'B');
										return	0;
}
	
Analysis:	TowerOfHanoi	problem	if	we	want	to	move	N	disks	from	source	to	destination,	then
we	first	move	N-1	disks	from	source	to	temp,	then	move	the	lowest	Nth	disk	from	source	to
destination.	Then	will	move	N-1	disks	from	temp	to	destination.
	

Greatest	common	divisor	(GCD)

	
Example	1.33:
int	GCD(int	m,	int	n)
{
										if	(m	<	n)

										{
																			return	(GCD(n,	m));
										}
										if	(m	%	n	==	0)
										{
																			return	(n);
										}
										return	(GCD(n,	m	%	n));
}
	
Analysis:	Euclid’s	algorithm	is	used	to	find	gcd.	GCD(n,	m)	==	GCD(m,	n	mod	m)
	

Fibonacci	number

	
Example	1.34:
int	fibonacci(int	n)
{
										if	(n	<=	1)
										{
																			return	n;
										}
										return	fibonacci(n	-	1)	+	fibonacci(n	-	2);
}
	
Analysis:	Fibonacci	number	are	calculated	by	adding	sum	of	the	previous	two	number.
There	is	an	inefficiency	in	the	solution	we	will	look	better	solution	in	coming	chapters.
	

All	permutations	of	an	integer	array

	
Example	1.35:
void	permutation(std::vector<int>	&data,	int	i,	int	length)
{
										if	(length	==	i)
										{
																			printArray(data,	length);
																			return;
										}
										int	j	=	i;
										for	(j	=	i;	j	<	length;	j++)
										{
																			swap(data,	i,	j);
																			permutation(data,	i	+	1,	length);
																			swap(data,	i,	j);
										}
										return;
}
	
void	swap(std::vector<int>	&data,	int	x,	int	y)
{
										int	temp	=	data[x];
										data[x]	=	data[y];

										data[y]	=	temp;
										return;
}
	
void	printArray(std::vector<int>	&data,	int	count)
{
										std::cout	<<	"Values	stored	are	:	";
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			std::cout	<<	"	"	<<	data[i];
										}
}
	
void	main()
{
										std::vector<int>	data(5);
										for	(int	i	=	0;	i	<	5;	i++)
										{
																			data[i]	=	i;
										}
										permutation(data,	0,	5);
}
	
Analysis:	In	permutation	method	at	each	recursive	call	number	at	index,	“i”	is	swapped	with	all
the	numbers	that	are	right	of	it.	Since	the	number	is	swapped	with	all	the	numbers	in	its	right	one
by	one	it	will	produce	all	the	permutation	possible.
	

Binary	search	using	recursion

	
Example	1.36:
int	BinarySearchRecursive(std::vector<int>	&data,	int	low,	int	high,	int	value)
{
										int	mid	=	low	+	(high	-	low)	/	2;	//	To	avoid	the	overflow
										if	(data[mid]	==	value)
										{
																			return	mid;
										}
										else	if	(data[mid]	<	value)
										{
																			return	BinarySearchRecursive(data,	mid	+	1,	high,	value);
										}
										else
										{
																			return	BinarySearchRecursive(data,	low,	mid	-	1,	value);
										}
}
	
Analysis:	Similar	iterative	solution	we	had	already	seen.	Now	let	us	look	into	the	recursive
solution	of	the	same	problem	in	this	solution	also,	we	are	diving	the	search	space	into	half	and
doing	the	same	what	we	had	done	in	the	iterative	solution.
	

Exercises

1.				Find	average	of	all	the	elements	in	an	array.
2.				Find	the	sum	of	all	the	elements	of	a	two	dimensional	array.
3.				Find	the	largest	element	in	the	array.
4.				Find	the	smallest	element	in	the	array.
5.				Find	the	second	largest	number	in	the	array.
6.				Print	all	the	maxima’s	in	an	array.	(A	value	is	a	maximum	if	the	value	before	and	after	its

index	are	smaller	than	it	is	or	does	not	exist.)
Hint:	
a)	Start	traversing	array	from	the	end	and	keep	track	of	the	max	element.
b)	If	we	encounter	an	element	>	max,	print	the	element	and	update	max.

	
7.				Print	alternate	elements	in	an	array.

	
8.				Given	an	array	with	value	0	or	1,	write	a	program	to	segregate	0	on	the	left	side	and	1	on

the	right	side.
	
9.				Given	a	list	of	intervals,	merge	all	overlapping	intervals.

Input:	{[1,	4],	[3,	6],	[8,	10]}
Output:	{[1,	6],	[8,	10]}

	
10.		Write	a	method	that	will	take	intervals	as	input	and	takes	care	of	overlapping	intervals.
	
11.		Reverse	an	array	in-place.	(You	cannot	use	any	additional	array	in	other	wards	Space
Complexity	should	be	O(1).)
Hint:	Use	two	variable,	start	and	end.	Start	set	to	0	and	end	set	to	(n-1).	Increment	start
and	decrement	end.	Swap	the	values	stored	at	arr[start]	and	arr[end].	Stop	when	start	is
equal	to	end	or	start	is	greater	than	end.

	
12.		Given	an	array	of	0s	and	1s.	We	need	to	sort	it	so	that	all	the	0s	are	before	all	the	1s.
Hint:	Use	two	variable,	start	and	end.	Start	set	to	0	and	end	set	to	(n-1).	Increment	start
and	decrement	end.	Swap	the	values	stored	at	arr[start]	and	arr[end]	only	when	arr[start]
==	1	and	arr[end]==0.	Stop	when	start	is	equal	to	end	or	start	is	greater	than	end.

	
13.		Given	an	array	of	0s,	1s	and	2s.	We	need	to	sort	it	so	that	all	the	0s	are	before	all	the	1s.

And	all	the	1s	are	before	2s.
Hint:	Same	as	above	first	think	0s	and	1s	as	one	group	and	move	all	the	2s	on	the	right
side.	Then	do	a	second	pass	over	the	array	to	sort	0s	and	1s.

	

14.		Find	the	duplicate	elements	in	an	array	of	size	n	where	each	element	is	in	the
range	0	to	n-1
Hint:	
Approach	1:	Compare	each	element	with	all	the	elements	of	the	array	(using	two	loops)
O(n2)	solution
Approach	2:	Maintain	a	Hash-Table.	Set	the	hash	value	to	1	if	we	encounter	the	element
for	the	first	time.	When	we	same	value	again	we	can	see	that	the	hash	value	is	already	1
so	we	can	print	that	value.	O(n)	solution,	but	additional	space	is	required.	
Approach	3:	We	will	exploit	the	constraint	"every	element	is	in	the	range	0	to	n-1".	
We	can	take	an	array	arr[]	of	size	n	and	set	all	the	elements	to	0.	Whenever	we	get	a	value
say	val1.	We	will	increment	the	value	at	arr[var1]	index	by	1.	In	the	end,	we	can	traverse
the	array	arr	and	print	the	repeated	values.	Additional	Space	Complexity	will	be	O(n)
which	will	be	less	then	Hash-Table	approach.

	
15.		Find	the	maximum	element	in	a	sorted	and	rotated	array.	Complexity:	O(logn)	
Hint:	Use	binary	search	algorithm.

	
16.		Given	an	array	with	'n'	elements	&	a	value	'x',	find	two	elements	in	the	array	that	sums

to	'x'.	
Hint:	
Approach	1:	Sort	the	array.
Approach	2:	Using	a	Hash-Table.	

17.		Write	a	method	to	find	the	sum	of	every	number	in	an	int	number.	Example:	input=	1984,
output	should	be	32	(1+9+8+4).

	
18.		Write	a	method	to	compute	Sum(N)	=	1+2+3+…+N.

CHAPTER	2:	ALGORITHMS	ANALYSIS

Introduction

Computer	programmer	learn	by	experience.	We	learn	by	seeing	solved	problems	and	solving	new
problems	by	ourselves.	Studying	various	problem-solving	techniques	and	by	understanding	how
different	algorithms	are	designed	helps	us	to	solve	the	next	problem	that	is	given	to	us.	By
considering	a	number	of	different	algorithms,	we	can	begin	to	develop	pattern	so	that	the	next	time
a	similar	problem	arises,	we	are	better	able	to	solve	it.
	
When	an	interviewer	asks	to	develop	a	program	in	an	interviewer,	what	are	the	steps	that	an
interviewee	should	follow?	We	will	be	taking	a	systematic	approach	to	handle	the	problem	and
finally	reaching	to	the	solution.
	

Algorithm

An	algorithm	is	a	set	of	steps	to	accomplish	a	task.
An	algorithm	in	a	computer	program	is	a	set	of	steps	applied	over	a	set	of	input	to	produce	a	set
of	output.
	
Knowledge	of	algorithm	helps	us	to	get	our	desired	result	faster	by	applying	the	right	algorithm.
	
The	most	important	properties	of	an	algorithm	are:
1.				Correctness:	The	algorithm	should	be	correct.	It	should	be	able	to	process	all	the	given	inputs

and	provide	correct	output.
2.				Efficiency:	The	algorithm	should	be	efficient	in	solving	problems.
	
Algorithmic	complexity	is	defined	as	how	fast	a	particular	algorithm	performs.	Complexity	is
represented	by	function	T	(n)	-	time	versus	the	input	size	n.
	

Asymptotic	analysis

Asymptotic	analysis	is	used	to	compare	the	efficiency	of	algorithm	independently	of	any
particular	data	set	or	programming	language.
	
We	are	generally	interested	in	the	order	of	growth	of	some	algorithm	and	not	interested	in	the
exact	time	required	for	running	an	algorithm.	This	time	is	also	called	Asymptotic-running	time.
	

Big-O	Notation

Definition:	“f(n)	is	big-O	of	g(n)”	or	f(n)	=	O(g(n)),	if	there	are	two	+ve	constants	c	and	n0	such
that
f(n)	≤	c	g(n)	for	all	n	≥	n0,
In	other	words,	c	g(n)	is	an	upper	bound	for	f(n)	for	all	n	≥	n0
The	function	f(n)	growth	is	slower	than	c	g(n)
	

Example:	
	

Omega-Ω	Notation

Definition:	“f(n)	is	omega	of	g(n).”	or	f(n)	=	Ω(g(n))	if	there	are	two	+ve	constants	c	and	n0	such
that
c	g(n)	≤	f(n)	for	all	n	≥	n0
	
In	other	words,	c	g(n)	is	lower	bound	for	f(n)
Function	f(n)	growth	is	faster	than	c	g(n)
	

Find	relationship	of	 	and	

Theta-Θ	Notation

Definition:	“f(n)	is	theta	of	g(n).”	or	f(n)	=	Θ(g(n))	if	there	are	three	+ve	constants	c1,	c2	and	n0
such	that	c1	g(n)	≤	f(n)	≤	c2	g(n)	for	all	n	≥	n0
	
g(n)	is	an	asymptotically	tight	bound	on	f(n).
Function	f(n)	grows	at	the	same	rate	as	g(n).

Example:	 	
	
Example:	 	
Find	relationship	of	 and	

	
Note:-	Asymptotic	Analysis	is	not	perfect,	but	that	is	the	best	way	available	for	analyzing
algorithms.
	
For	example,	say	there	are	two	sorting	algorithms	first	take	 	and	 	time.
The	asymptotic	analysis	says	that	the	first	algorithm	is	better	(as	it	ignores	constants)	but	actually
for	a	small	set	of	data	when	n	is	small	then	10000,	the	second	algorithm	will	perform	better.	To
consider	this	drawback	of	asymptotic	analysis	case	analysis	of	the	algorithm	is	introduced.
	

Complexity	analysis	of	algorithms

1)	Worst	Case	complexity:	It	is	the	complexity	of	solving	the	problem	for	the	worst	input	of	size
n.	It	provides	the	upper	bound	for	the	algorithm.	This	is	the	most	common	analysis	done.
	
2)	Average	Case	complexity:	It	is	the	complexity	of	solving	the	problem	on	an	average.	We
calculate	the	time	for	all	the	possible	inputs	and	then	take	an	average	of	it.
	
3)	Best	Case	complexity:	It	is	the	complexity	of	solving	the	problem	for	the	best	input	of	size	n.
	

Time	Complexity	Order

A	list	of	commonly	occurring	algorithm	Time	Complexity	in	increasing	order:
Name Notation
Constant
Logarithmic
Linear
N-LogN
Quadratic
Polynomial 			c	is	a	constant	&	c>1
Exponential 				c	is	a	constant	&	c>1
Factorial	or	N-power-N 	or	
	

Constant	Time:	O(1)

An	algorithm	is	said	to	run	in	constant	time	regardless	of	the	input	size.
	
Examples:

1.				Accessing	 	element	of	an	array
2.				Push	and	pop	of	a	stack.
3.				Enqueue	and	remove	of	a	queue.
4.				Accessing	an	element	of	Hash-Table.
5.				Bucket	sort
	

Linear	Time:	O(n)

An	algorithm	is	said	to	run	in	linear	time	if	the	execution	time	of	the	algorithm	is	directly
proportional	to	the	input	size.
	
Examples:

1.				Array	operations	like	search	element,	find	min,	find	max	etc.
2.				Linked	list	operations	like	traversal,	find	min,	find	max	etc.

	
Note:	when	we	need	to	see/	traverse	all	the	nodes	of	a	data-structure	for	some	task	then
complexity	is	no	less	than	O(n)
	

Logarithmic	Time:	O(logn)

An	algorithm	is	said	to	run	in	logarithmic	time	if	the	execution	time	of	the	algorithm	is
proportional	to	the	logarithm	of	the	input	size.	Each	step	of	an	algorithm,	a	significant	portion	of
the	input	is	pruned	out	without	traversing	it.

	
Example:

1.				Binary	search
	
Note:	We	will	read	about	these	algorithms	in	this	book.
	

N-LogN	Time:	O(nlog(n))

An	algorithm	is	said	to	run	in	logarithmic	time	if	the	execution	time	of	an	algorithm	is
proportional	to	the	product	of	input	size	and	logarithm	of	the	input	size.
Example:

1.				Merge-Sort
2.				Quick-Sort	(Average	case)
3.				Heap-Sort

Note:	Quicksort	is	a	special	kind	of	algorithm	to	sort	a	list	of	numbers.	Its	worst-case	complexity
is	 	and	average	case	complexity	is .
	

Quadratic	Time:	O()

An	algorithm	is	said	to	run	in	logarithmic	time	if	the	execution	time	of	an	algorithm	is
proportional	to	the	square	of	the	input	size.
Examples:

1.				Bubble-Sort
2.				Selection-Sort
3.				Insertion-Sort

	

Deriving	the	Runtime	Function	of	an	Algorithm

Constants

Each	statement	takes	a	constant	time	to	run.	Time	Complexity	is	
	

Loops

The	running	time	of	a	loop	is	a	product	of	running	time	of	the	statement	inside	a	loop	and	number
of	iterations	in	the	loop.	Time	Complexity	is	
	

Nested	Loop

The	running	time	of	a	nested	loop	is	a	product	of	running	time	of	the	statements	inside	loop
multiplied	by	a	product	of	the	size	of	all	the	loops.	Time	Complexity	is	
Where	c	is	a	number	of	loops.	For	two	loops,	it	will	be	
	

Consecutive	Statements

Just	add	the	running	times	of	all	the	consecutive	statements
	

If-Else	Statement

Consider	the	running	time	of	the	larger	of	if	block	or	else	block.	And	ignore	the	other	one.
	

Logarithmic	statement

If	each	iteration	the	input	size	is	decreases	by	a	constant	factors.	 .
	

Time	Complexity	Examples

	
Example	1
int	fun1(int	n)
{
										int	m	=	0;
										for	(int	i	=	0;	i<n;	i++)
																			m	+=	1;
										return	m;
}
	
Time	Complexity:	O(n)
	
Example	2
int	fun2(int	n)
{
										int	i=0,	j=0,	m	=	0;
										for	(i	=	0;	i<n;	i++)
																			for	(j	=	0;	j<n;	j++)
																													m	+=	1;
										return	m;
}
	
Time	Complexity:	
	
Example	3
int	fun3(int	n)
{
										int	i=0,	j=0,	m	=	0;
										for	(i	=	0;	i<n;	i++)
																			for	(j	=	0;	j<i;	j++)
																													m	+=	1;
										return	m;
}
	
Time	Complexity:	O(N+(N-1)+(N-2)+...)	==	O(N(N+1)/2)	==
	
Example	4
int	fun4(int	n)
{
										int	i	=	0,	m	=	0;
										i	=	1;
										while	(i	<	n)	{
																			m	+=	1;
																			i	=	i	*	2;
										}
										return	m;
}
	
Each	time	problem	space	is	divided	into	half.	Time	Complexity:	O(log(n))

	
Example	5
int	fun5(int	n)
{
										int	i	=	0,	m	=	0;
										i	=	n;
										while	(i	>	0)	{
																			m	+=	1;
																			i	=	i	/	2;
										}
										return	m;
}
	
Same	as	above	each	time	problem	space	is	divided	into	half.
Time	Complexity:	O(log(n))
	
Example	6
int	fun6(int	n)
{
										int	i	=	0,	j	=	0,	k	=	0,	m	=	0;
										i	=	n;
										for	(i	=	0;	i<n;	i++)
																			for	(j	=	0;	j<n;	j++)
																													for	(k	=	0;	k<n;	k++)
																																						m	+=	1;
										return	m;
}
	
Outer	loop	will	run	for	n	number	of	iterations.	In	each	iteration	of	the	outer	loop,	inner	loop	will
run	for	n	iterations	of	their	own.	Final	complexity	will	be	n*n*n.
Time	Complexity:	
	
Example	7
int	fun7(int	n)
{
										int	i	=	0,	j	=	0,	k	=	0,	m	=	0;
										i	=	n;
										for	(i	=	0;	i<n;	i++)
																			for	(j	=	0;	j<n;	j++)
																													m	+=	1;
										for	(i	=	0;	i<n;	i++)
																			for	(k	=	0;	k<n;	k++)
																													m	+=	1;
										return	m;
}
	
These	two	groups	of	for	loop	are	in	consecutive	so	their	complexity	will	add	up	to	form	the	final
complexity	of	the	program.
Time	Complexity:	T(n)	=	 	=	
	
Example	8
int	fun8(int	n)

{
										int	i	=	0,	j	=	0,	m	=	0;
										for	(i	=	0;	i<n;	i++)
																			for	(j	=	0;	j<			Math.sqrt(n);	j++)
																													m	+=	1;
										return	m;
}
	
Time	Complexity:	 	
	
Example	9
int	fun9(int	n)
{
										int	i	=	0,	j	=	0,	m	=	0;
										for	(i	=	n;	i	>	0;	i	/=	2)
																			for	(j	=	0;	j	<	i;	j++)
																													m	+=	1;
										return	m;
}
	
Each	time	problem	space	is	divided	into	half.
Time	Complexity:	O(log(n))
	
Example	10
int	fun10(int	n)
{
										int	i	=	0,	j	=	0,	m	=	0;
										for	(i	=	0;	i	<	n;	i++)
																			for	(j	=	i;	j	>	0;	j--)
																													m	+=	1;
										return	m;
}
	
O(N+(N-1)+(N-2)+...)	=	O(N(N+1)/2)	//	arithmetic	progression.
Time	Complexity:
	
Example	11
int	fun11(int	n)
{
										int	i	=	0,	j	=	0,	k	=	0,	m	=	0;
										for	(i	=	0;	i<n;	i++)
																			for	(j	=	i;	j<n;	j++)
																													for	(k	=	j+1;	k<n;	k++)
																																						m	+=	1;
										return	m;
}
	
Time	Complexity:	
	
Example	12
int	fun12(int	n)
{

										int	i	=	0,	j	=	0,	m	=	0;
										for	(i	=	0;	i<n;	i++)
																			for	(;	j<n;	j++)
																													m	+=	1;
										return	m;
}
	
Think	carefully	once	again	before	finding	a	solution,	j	value	is	not	reset	at	each	iteration.
Time	Complexity:	O(n)
	
Example	13
int	fun13(int	n)
{
										int	i	=	1,	j	=	0,	m	=	0;
										for	(i	=	1;	i<=n;	i	*=	2)
																			for	(j	=	0;	j<=i;	j++)
																													m	+=	1;
										return	m;
}
	
The	inner	loop	will	run	for	1,	2,	4,	8,…	n	times	in	successive	iteration	of	the	outer	loop.
Time	Complexity:	T(n)	=	O(1+	2+	4+	….+n/2+n)	=	O(n)
	
Example	14:	Calling	all	the	function	fun1()	to	fun13()	above	and	try	to	find	the	number	of
instructions.
int	main()
{
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n)::	"	<<	fun1(100);
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n^2)::	"	<<	fun2(100);
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n^2)::	"	<<	fun3(100)	;
										std::cout	<<	"N	=	100,	Number	of	instructions	O(log(n))::	"	<<	fun4(100;
										std::cout	<<	"N	=	100,	Number	of	instructions	O(log(n))::	"	<<	fun5(100;
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n^3)::	"	<<	fun6(100;
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n^2)::	"	<<	fun7(100;
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n (̂3/2))::	"	<<	fun8(100;
										std::cout	<<	"N	=	100,	Number	of	instructions	O(log(n))::	"	<<	fun9(100;
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n^2)::	"	<<	fun10(100);
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n^3)::	"	<<	fun11(100;
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n)::	"	<<	fun12(100);
										std::cout	<<	"N	=	100,	Number	of	instructions	O(n)::	"	<<	fun13(100);
										return	0;
}
	
Output:
N	=	100,	Number	of	instructions	O(n)::	100
N	=	100,	Number	of	instructions	O(n^2)::	10000
N	=	100,	Number	of	instructions	O(n^2)::	4950
N	=	100,	Number	of	instructions	O(log(n))::	7
N	=	100,	Number	of	instructions	O(log(n))::	7
N	=	100,	Number	of	instructions	O(n^3)::	1000000
N	=	100,	Number	of	instructions	O(n^2)::	20000
N	=	100,	Number	of	instructions	O(n (̂3/2))::	1000
N	=	100,	Number	of	instructions	O(log(n))::	197
N	=	100,	Number	of	instructions	O(n^2)::	4950

N	=	100,	Number	of	instructions	O(n^3)::	166650
N	=	100,	Number	of	instructions	O(n)::	100
N	=	100,	Number	of	instructions	O(n)::	134
	
Analysis:	The	total	number	of	instructions	in	the	various	functions	clearly	gives	us	the	idea	that
the	BigO	notation	is	not	perfect	and	does	not	given	us	the	exact	number	of	instructions.	Also	it
shows	that	it	gives	us	a	good	picture	of	the	approximate	overall	complexity.
	

Master	Theorem

The	master	theorem	solves	recurrence	relations	of	the	form:

	
Where	a	≥	1	and	b	>	1.
"n"	is	the	size	of	the	problem.
"a"	is	a	number	of	sub	problem	in	the	recursion.
“n/b”	is	the	size	of	each	sub-problem.
"f(n)"	is	the	cost	of	the	division	of	the	problem	into	sub	problem	or	merge	of	results	of	sub
problems	to	get	the	final	result.
	
It	is	possible	to	determine	an	asymptotic	tight	bound	in	these	three	cases:
Case	1:	when)	and	constant	 ,	than	the	final	Time	Complexity	will	be:

	
Case	2:	when)	and	constant	k	≥	0,	than	the	final	Time	Complexity	will	be:

)
	
Case	3:	when	 	and	constant	 ,	Then	the	final	Time	Complexity	will	be:

	

Example	15:	Take	an	example	of	Merge-Sort,	
Sol:-		 	=	 =	1

)
Case	2	applies	and)

	

Example	16:	Binary	Search	
Sol:-	 	=	 =	0

)
Case	2	applies	and)

	
Example	17:	Binary	tree	traversal	
Sol:-	 	=	 =	1

)
Case	1	applies	and	

	
Example	18:	Take	an	example	
Sol:-	 	=	 =	1

Case	3	applies	and)

	
Example	19:	Take	an	example	
Sol:-	 	=	 =	2

)
Case	2	applies	and)

	

Modified	Master	theorem

This	is	a	shortcut	to	solving	the	same	problem	easily	and	fast.	If	the	recurrence	relation	is	in	the
form	of	T(n)

Example	20:	
Sol:-
s	=	2
Case	3:	

	=	
	
Example	21:	T	(n)	=	T	(n/2)	+	2n
Sol:-	
s	=	1
Case	3
T(n)=	
	
Example	22:	T	(n)	=	16T	(n/4)	+	n
Sol:-	r	=	2
s	=	1
Case	1
T(n)=	
	
Example	23:	T	(n)	=	2T	(n/2)	+	n	log	n
Sol:-	There	is	logn	in	f(n)	so	use	master	theorem	shortcut	will	not	word.

)
)	=))

	
Example	24:	

Sol:-	 	0.5	=	s
Case	2:)	=)
	
Example	25:	
Sol:-	Case	1:

	=	
Example	26:	T	(n)	=	3T	(n/3)	+	√	n
Sol:-		
s	=	½
Case	1

	
Example	27:T	(n)	=	3T	(n/4)	+	n	log	n
Sol:-	There	is	logn	in	f(n)	so	see	if	master	theorem.
f(n)	=	n	log	n	=)
Case	3:

	
Example	28:	T	(n)	=	3T	(n/3)	+	n/2
Sol:-		r=1=s
Case	2:

	

Exercise

1.				True	or	false
a.				5	n	+	10	n2=	O(n2)
b.				n	log	n	+	4	n	=	O(n)
c.				log(n2)	+	4	log(log	n)	=	O(logn)
d.				12	n1/2+	3	=	O(n2)
e.				3n+	11	n2+	n20=	O(2n)

	
2.				What	is	the	best-case	runtime	complexity	of	searching	an	array?

	
3.				What	is	the	average-case	runtime	complexity	of	searching	an	array?

	
	

CHAPTER	3:	APPROACH	TO	SOLVE
ALGORITHM	DESIGN	PROBLEMS

Introduction

Know	the	theoretical	knowledge	of	the	algorithm	is	essential,	but	it	is	not	sufficient.	You	need	to
have	a	systematic	approach	to	solve	a	problem.	Our	approach	is	fundamentally	different	to	solve
any	algorithm	design	question.	We	will	follow	a	systematic	five-step	approach	to	reach	to	our
solution.	Master	this	approach	and	you	will	be	better	than	most	of	the	candidates	in	interviews.
	
Five	steps	for	solving	algorithm	design	questions	are:
1.				Constraints
2.				Ideas	Generation
3.				Complexities
4.				Coding
5.				Testing
	

Constraints

Solving	a	technical	question	is	not	just	about	knowing	the	algorithms	and	designing	a	good
software	system.	The	interviewer	wants	to	know	you	approach	towards	any	given	problem.	May
people	make	mistakes,	as	they	do	not	ask	clarifying	questions	about	a	given	problem?	They
assume	many	things	and	begin	working	with	that.	There	are	a	lot	of	data	that	is	missing	that	you
need	to	collect	from	your	interviewer	before	beginning	to	solve	a	problem.
	
In	this	step,	you	will	capture	all	the	constraints	about	the	problem.	We	should	never	try	to	solve	a
problem	that	is	not	completely	defined.	Interview	questions	are	not	like	exam	paper	where	all	the
details	about	a	problem	are	well	defined.	In	the	interview,	the	interviewer	actually	expects	you	to
ask	questions	and	clarify	the	problem.
	
For	example:	When	the	problem	statement	says	that	write	an	algorithm	to	sort	numbers.
	
The	first	information	you	need	to	capture	is	what	king	of	data.	Let	us	suppose	interviewer	respond
with	the	answer	Integer.
The	second	information	that	you	need	to	know	what	is	the	size	of	data.	Your	algorithm	differs	if
the	input	data	size	if	100	integers	or	1	billion	integers.
	
Basic	guideline	for	the	Constraints	for	an	array	of	numbers:
1.				How	many	numbers	of	elements	in	the	array?
2.				What	is	the	range	of	value	in	each	element?	What	is	the	min	and	max	value?
3.				What	is	the	kind	of	data	in	each	element	is	it	an	integer	or	a	floating	point?
4.				Does	the	array	contain	unique	data	or	not?
	
Basic	guideline	for	the	Constraints	for	an	array	of	string:
1.				How	many	numbers	of	elements	in	the	array?
2.				What	is	the	length	of	each	string?	What	is	the	min	and	max	length?
3.				Does	the	array	contain	unique	data	or	not?
	
Basic	guideline	for	the	Constraints	for	a	Graph
1.				How	many	nodes	are	there	in	the	graph?
2.				How	many	edges	are	there	in	the	graph?
3.				Is	it	a	weighted	graph?	What	is	the	range	of	weights?
4.				Is	the	graph	directed	or	undirected?
5.				Is	there	is	a	loop	in	the	graph?
6.				Is	there	negative	sum	loop	in	the	graph?
7.				Does	the	graph	have	self-loops?
	
We	have	already	seen	this	in	graph	chapter	that	depending	upon	the	constraints	the	algorithm

applied	changes	and	so	is	the	complexity	of	the	solution.
	

Idea	Generation

We	have	covered	a	lot	of	theoretical	knowledge	in	this	book.	It	is	impossible	to	cover	all	the
questions	as	new	ones	are	created	every	day.	Therefore,	we	should	know	how	to	handle	new
problems.	Even	if	you	know	the	solution	of	a	problem	asked	by	the	interviewer	then	also	you
need	to	have	a	discussion	with	the	interviewer	and	reach	to	the	solution.	You	need	to	analyze	the
problem	also	because	the	interviewer	may	modify	a	question	a	little	bit	and	the	approach	to	solve
it	will	vary.
	
Well,	how	to	solve	a	new	problem?	The	solution	to	this	problem	is	that	you	need	to	do	a	lot	of
practice	and	the	more	you	practice	the	more	you	will	be	able	to	solve	any	new	question,	which
come	in	front	of	you.	When	you	have	solved	enough	problems,	you	will	be	able	to	see	a	pattern	in
the	questions	and	able	to	solve	new	problems	easily.
	
Following	is	the	strategy	that	you	need	to	follow	to	solve	an	unknown	problem:
1.				Try	to	simplify	the	task	in	hand.
2.				Try	a	few	examples
3.				Think	of	a	suitable	data-structure.
4.				Think	about	similar	problems	you	have	already	solved.
	

Try	to	simplify	the	task	in	hand

Let	us	look	into	the	following	problem:	Husbands	and	their	wives	are	standing	in	random	in	a
line.	They	have	been	numbered	for	husbands	H1,	H2,	H3	and	so	on.	And	their	corresponding
wives	have	number	W1,	W2,	W3	and	so	on.	You	need	to	arrange	them	so	that	H1	will	stand	first,
followed	by	W1,	then	H2	followed	by	W2	and	so	on.
At	the	first	look,	it	looks	difficult,	but	it	is	a	simple	problem.	Try	to	find	a	relation	of	the	final
position.
P(Hi)	=	i*2	–	1,		P(Wi)	=	i*2
The	rest	of	the	algorithm	we	are	leaving	you	to	do	something	like	Insertion-Sort	and	you	are	done.
	

Try	a	few	examples

In	the	same	above	problem	if	you	have	tried	it	with	some	example	for	3	husband	and	wife	pair
then	you	may	have	reached	to	the	same	formula	that	we	have	shown	in	the	previous	section.	Some
time	thinking	some	more	examples	try	to	solve	the	problem	at	hand.
	

Think	of	a	suitable	data-structure

For	some	problems,	it	is	straight	forward	which	data	structure	will	be	most	suitable	for.	For
example,	if	we	have	a	problem	finding	min/max	of	some	given	value,	then	probably	heap	is	the

data	structure	we	are	looking	for.	We	have	seen	a	number	of	data	structure	throughout	this	book.
And	we	have	to	figure	out	which	data-structure	will	suite	our	need.
	
Let	us	look	into	a	problem:	We	are	given	a	stream	of	data	at	any	time	we	can	be	asked	to	tell	the
median	value	of	the	data	and	maybe	we	can	be	asked	to	pop	median	data.
	
We	can	think	about	some	sort	of	tree,	may	be	balanced	tree	where	the	root	is	the	median.	Wait	but
it	is	not	so	easy	to	make	sure	the	tree	root	to	be	a	median.
A	heap	can	give	us	minimum	or	maximum	so	we	cannot	get	the	desired	result	from	it	too.
However,	what	if	we	use	two	heap	one	max	heap	and	one	min	heap.	The	smaller	values	will	go	to
min	heap	and	the	bigger	values	will	go	to	max	heap.	In	addition,	we	can	keep	the	count	of	how
many	elements	are	there	in	the	heap.	The	rest	of	the	algorithm	you	can	think	yourself.
	
For	every	new	problem	think	about	the	data	structure,	you	know	and	may	be	one	of	them	or	some
combination	of	them	will	solve	your	problem.
	
Think	about	similar	problems	you	have	already	solved.	Let	us	suppose	you	are	given,	two	linked
list	head	pointers	and	they	meet	at	some	point	and	need	to	find	the	point	of	intersection.	However,
in	place	of	the	end	of	both	the	linked	list	to	be	a	null	pointer	there	is	a	loop.
	
You	know	how	to	find	intersection	point	of	two	intersecting	linked	list,	you	know	how	to	find	if	a
linked	list	have	a	loop	(three-pointer	solution).	Therefore,	you	can	apply	both	of	these	solutions
to	find	the	solution	of	the	problem	in	hand.
	

Complexities

Solving	a	problem	is	not	just	finding	a	correct	solution.	The	solution	should	be	fast	and	should
have	reasonable	memory	requirement.	You	have	already	read	about	Big-O	notation	in	the
previous	chapters.	You	should	be	able	to	do	Big-O	analysis.	In	case	you	think	the	solution	you
have	provided	is	not	that	optimal	and	there	is	some	more	efficient	solution,	then	think	again	and
try	to	figure	out	this	information.
	
Most	interviewers	expect	that	you	should	be	able	to	find	the	time	and	Space	Complexity	of	the
algorithms.	You	should	be	able	to	compute	the	time	and	Space	Complexity	instantly.	Whenever
you	are	solving	some	problem,	you	should	find	the	complexity	associated	with	it	from	this	you
would	be	able	to	choose	the	best	solutions.	In	some	problems	there	is	some	trade-offs	between
space	and	Time	Complexity,	so	you	should	know	these	trade-offs.	Sometime	taking	some	bit	more
space	saves	a	lot	of	time	and	make	your	algorithm	much	faster.
	

Coding

At	this	point,	you	have	already	captured	all	the	constraints	of	the	problem,	proposed	few
solutions,	evaluated	the	complexities	of	the	various	solutions	and	picked	the	one	solution	to	do
final	coding.	Never	ever,	jump	into	coding	before	discussing	constraints,	Idea	generation	and
complexity	with	the	interviewer.
	
We	are	accustomed	to	coding	in	an	IDE	like	visual	studio.	So	many	people	struggle	when	asked	to
write	code	on	a	whiteboard	or	some	blank	sheet.	Therefore,	we	should	have	a	little	practice	to
the	coding	on	a	sheet	of	paper.	You	should	think	before	coding	because	there	is	no	back	button	in
sheet	of	paper.	Always	try	to	write	modular	code.	Small	functions	need	to	be	created	so	that	the
code	is	clean	and	managed.	If	there	is	a	swap	function	so	just	use	this	function	and	tell	the
interviewer	that	you	will	write	it	later.	Everybody	knows	that	you	can	write	swap	code.
	

Testing

Once	the	code	is	written,	you	are	not	done.	It	is	most	important	that	you	test	your	code	with
several	small	test	cases.	It	shows	that	you	understand	the	importance	of	testing.	It	also	gives
confidence	to	your	interviewer	that	you	are	not	going	to	write	a	buggy	code.	Once	you	are	done
with,	your	coding	it	is	a	good	practice	that	you	go	through	your	code	line	by	line	with	some	small
test	case.	This	is	just	to	make	sure	your	code	is	working	as	it	is	supposed	to	work.
	
You	should	test	few	test	cases.
Normal	test	cases:	These	are	the	positive	test	cases,	which	contain	the	most	common	scenario,
and	focus	is	on	the	working	of	the	base	logic	of	the	code.	For	example,	if	we`	are	going	to	write
some	algorithm	for	linked	list,	then	this	may	contain	what	will	happen	when	a	linked	list	with	3	or
4	nodes	is	given	as	input.	These	test	cases	you	should	always	run	in	your	head	before	saying	the
code	is	done.
	
Edge	cases:	These	are	the	test	cases,	which	are	going	to	test	the	boundaries	of	the	code.	For	the
same	linked	list	algorithm,	edge	cases	may	be	how	the	code	behaves	when	an	empty	list	is	passed
or	just	one	node	is	passed.	These	test	cases	you	should	always	run	in	your	head	before	saying	the
code	is	done.	Edge	cases	may	help	to	make	your	code	more	robust.	Just	few	checks	need	to	be
added	to	the	code	to	take	care	of	the	condition.
	
Load	testing:	In	this	kind	of	test,	your	code	will	be	tested	with	a	huge	data.	This	will	allow	us	to
test	if	your	code	is	slow	or	too	much	memory	intensive.
Always	follow	these	five	steps	never	jump	to	coding	before	doing	constraint	analysis,	idea
generation,	and	Complexity	Analysis:	At	least	never,	miss	the	testing	phase.
	

Example

Let	us	suppose	the	interviewer	ask	you	to	give	a	best	sorting	algorithm.	
Some	interviewee	will	directly	jump	to	Quick-Sort	O(nlogn).	Oops,	mistake	you	need	to	ask
many	questions	before	beginning	to	solve	this	problem.
	
Questions	1:	What	kind	of	data	we	are	talking	about?	Are	they	integer	s?
Answer:	Yes,	they	are	integer	s.
	
Questions	2:	How	much	data	are	we	going	to	sort?
Answer:	May	be	thousands.
	
Questions	3:	What	exactly	is	this	data	about?
Answer:	They	store	a	person’s	age
	
Questions	4:	What	kind	of	data-structure	used	to	hold	this	data?
Answer:	Data	are	given	in	the	form	of	some	array
	
Questions	5:	Can	we	modify	the	given	data-structure?	In	addition,	many,	many	more…?
Answer:	No,	you	cannot	modify	the	data	structure	provided
	
Ok	from	the	first	answer,	we	will	deduce	that	the	data	is	integer.	The	data	is	not	so	big	it	just
contains	a	few	thousand	entries.	The	third	answer	is	interesting	from	this	we	deduce	that	the	range
of	data	is	1-150.	Data	is	provided	in	an	array.	From	fifths	answer	we	deduce	that	we	have	to
create	our	own	data	structure	and	we	cannot	modify	the	array	provided.	So	finally,	we	conclude,
we	can	just	use	bucket	sort	to	sort	the	data.	The	range	is	just	1-150	so	we	need	just	151-capacity
integral	array.	Data	is	under	thousands	so	we	do	not	have	to	worry	about	data	overflow	and	we
get	the	solution	in	linear	time	O(N).
	
Note:	We	will	read	sorting	in	the	coming	chapters.
	

Summary

At	this	point,	you	know	the	process	of	handling	new	problems	very	well.	In	the	coming	chapter
we	will	be	looking	into	a	lot	of	various	data	structure	and	the	problems	they	solve.	A	huge
number	of	problems	are	solved	in	this	book.	However,	it	is	recommended	to	first	try	to	solve
them	by	yourself,	and	then	look	for	the	solution.	Always	think	about	the	complexity	of	the
problem.	In	the	interview	interaction	is	the	key	to	get	problem	described	completely	and	discuss
your	approach	with	the	interviewer.
	

CHAPTER	4:	ABSTRACT	DATA	TYPE	&
C++	COLLECTIONS

Abstract	data	type	(ADT)

An	abstract	data	type	(ADT)	is	a	logical	description	of	how	we	view	the	data	and	the	operations
that	are	allowed	on	it.	ADT	is	defined	as	a	user	point	of	view	of	a	data	type.	ADT	concerns	about
the	possible	values	of	the	data	and	what	are	interface	exposed	by	it.
	
ADT	does	not	concern	about	the	actual	implementation	of	the	data	structure.
	
For	example,	a	user	wants	to	store	some	integers	and	find	a	mean	of	it.	Does	not	talk	about	how
exactly	it	will	be	implemented.

Data-Structure

Data	structures	are	concrete	representations	of	data	and	are	defined	as	a	programmer	point	of
view.	Data-structure	represents	how	data	will	be	stored	in	memory.	All	data-structures	have	their
own	pros	and	cons.	And	depending	upon	the	problem	at	hand,	we	pick	a	data-structure	that	is	best
suited	for	it.
For	example,	we	can	store	data	in	an	array,	a	linked-list,	stack,	queue,	tree,	etc.
	

C++	Collection	Framework

C++	programming	language	provides	a	C++	Collection	Framework,	which	is	a	set	of	high	quality,
high	performance	&	reusable	data-structures	and	algorithms.
	
The	following	advantages	of	using	a	C++	collection	framework:

1.				Programmers	do	not	have	to	implement	basic	data	structures	and	algorithms	repeatedly.
Thereby	it	prevents	the	reinvention	the	wheel.	Thus,	the	programmer	can	devote	more	effort
in	business	logic.

2.				The	C++	Collection	Framework	code	is	well-tested,	high	quality,	high	performance	code
there	by	increasing	the	quality	of	the	programs.

3.				Development	cost	is	reduced	as	basic	data	structures	and	algorithms	are	implemented	in
Collections	framework.

4.				Easy	for	the	review	and	understanding	others	programs	as	other	developers	also	use	the
Collection	framework.	In	addition,	collection	framework	is	well	documented.

	

Array

Array	represents	a	collection	of	multiple	elements	of	the	same	datatype.	Arrays	are	fixed	size
data	structure,	the	size	of	this	data	structure	is	fixed	at	the	time	of	its	creation.	Arrays	are	the	most
common	data	structure	used	to	store	data.
As	we	cannot	change	the	size	of	an	array,	we	generally	declare	a	large	size	array	to	handle	any
future	data	expansion.	This	ends	up	in	creating	a	large	size	array,	where	most	of	the	space	is
unused.
	
Note:	-	Arrays	can	store	a	fixed	number	of	elements,	whereas	a	collection	stores	object
dynamically	so	there	is	no	size	restrictions	it	grows	and	shrinks	automatically.
	

Array	ADT	Operations

Below	is	the	API	of	array:
1.				Adds	an	element	at	kth	position

Value	can	be	stored	in	array	at	Kth	position	in	O(1)	constant	time.	We	just	need	to	store
value	at	arr[k].

2.				Reading	the	value	stored	at	kth	position.
Accessing	value	stored	a	some	location	in	array	is	also	O(1)	constant	time.	We	just	need	to
read	value	stored	at	arr[k].

	
C++	standard	arrays	are	of	fixed	length.	Sometime	we	do	not	know	how	much	memory	we	need
so	we	create	a	bigger	size	array.	There	by	wasting	space	to	avoid	this	situation	C++	Collection
framework	had	implemented	ArrayList	to	solve	this	problem.
	

Vector	implementation	in	C++	Collections

Vector<E>	in	by	C++	Collections	is	a	collection	of	similar	type	of	variables.	Vector	is	an
implementation	as	dynamic	array	that	can	grow	or	shrink	as	needed.	(Internally	array	is	used
when	it	is	full	a	bigger	array	is	allocated	and	the	old	array	values	are	copied	to	it.)
	
Example	4.1:
void	vectorExample()
{
										std::vector<int>	vec;
										for	(int	i	=	0;	i	<	10;	i++)

										{
																			vec.push_back(i);
										}
										int	count	=	vec.size();
										std::cout	<<	"Values	stored	are	:	";
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			std::cout	<<	"	"	<<	vec[i];
										}
}
	
Output
Values	stored	are	:	0	1	2	3	4	5	6	7	8	9
	

Linked	List

Linked	lists	are	dynamic	data	structure	and	memory	is	allocated	at	run	time.	The	concept	of	linked
list	is	not	to	store	data	contiguously.	Uses	links	that	point	to	the	next	elements.
	
Performance	wise	linked	lists	are	slower	than	arrays	because	there	is	no	direct	access	to	linked
list	elements.
The	linked	list	is	a	useful	data	structure	when	we	do	not	know	the	number	of	elements	to	be	stored
ahead	of	time.
There	are	many	flavors	of	linked	list	that	you	will	see:	linear,	circular,	doubly,	and	doubly
circular.
	

Linked	List	ADT	Operations

Below	is	the	API	of	Linked	list.
	
Insert(k):	adds	k	to	the	start	of	the	list.
Insert	an	element	at	the	start	of	the	list.	Just	create	a	new	element	and	move	pointers.	So	that	this
new	element	becomes	the	head	element	of	the	list.	This	operation	will	take	O(1)	constant	time.
	
Delete():	delete	element	at	the	start	of	the	list
Delete	an	element	at	the	start	of	the	list.	We	just	need	to	move	one	pointer	and	free	the	old	head
node.	This	operation	will	also	take	O(1)	constant	time.
	
PrintList():	display	all	the	elements	of	the	list.
Start	with	the	first	element	and	then	follow	the	pointers.	This	operation	will	take	O(N)	time.
	
Find(k):	find	the	position	of	element	with	value	k
Start	with	the	first	element	and	follow	the	pointers	until	we	get	the	value	we	are	looking	for	or
reach	the	end	of	the	list.	This	operation	will	take	O(N)	time.
Note:	binary	search	does	not	work	on	linked	lists.
	
FindKth(k):	find	element	at	position	k
Start	from	the	first	element	and	follow	the	links	until	you	reach	the	kth	element.	This	operation
will	take	O(N)	time.

	
IsEmpty():	check	if	the	number	of	elements	in	the	list	are	zero.
Just	check	the	head	pointer	of	the	list	it	should	be	nullptr.	Which	means	list	is	empty.	This
operation	will	take	O(1)	time.
	

Linked	List	implementation	in	C++	Collections

list<E>	in	by	C++	Collections	is	a	data	structure	which	implements	linked	list.	When	we	have
insertion	and	deletion	from	both	the	front	and	back,	we	use	linked	list.
	
Example	4.2
#include	<list>
	
int	main()
{
										std::list<int>	ll;
	
										ll.push_front(1);
										ll.push_back(11);
										ll.push_front(2);
										ll.push_back(21);
										ll.push_front(3);
										ll.push_back(31);
										std::cout	<<	"Contents	of	Linked	List:	";
										for	(auto	var	:	ll)
																			std::cout	<<	var	<<	"	";
										std::cout	<<	std::endl;
										ll.pop_front();
										ll.pop_back();
std::cout	<<	"Contents	of	Linked	List:	“;
										for	(auto	var	:	ll)
																			std::cout	<<	var	<<	"	";
										return	0;
}
	
	
Output
Contents	of	Linked	List:	3	2	1	11	21	31
Contents	of	Linked	List:	2	1	11	21
	
Analysis:	Values	are	added	to	the	back	and	front	of	the	linked	list.	Then	the	value	stored	in	linked
list	are	printed.	Then	values	are	removed	from	linked	list	from	front	and	back	and	again	linked
list	content	is	printed	to	screen.
	

Stack

Stack	is	a	special	kind	of	data	structure	that	follows	Last-In-First-Out	(LIFO)	strategy.	This	means
that	the	element	that	is	added	to	stack	last	will	be	the	first	to	be	removed.
	
The	various	applications	of	stack	are:

1.				Recursion:	recursive	calls	are	preformed	using	system	stack.
2.				Postfix	evaluation	of	expression.
3.				Backtracking
4.				Depth-first	search	of	trees	and	graphs.
5.				Converting	a	decimal	number	into	a	binary	number	etc.

	

Stack	ADT	Operations

Push(k):	Adds	a	new	item	to	the	top	of	the	stack
Pop():	Remove	an	element	from	the	top	of	the	stack	and	return	its	value.
Top():	Returns	the	value	of	the	element	at	the	top	of	the	stack
Size():	Returns	the	number	of	elements	in	the	stack
IsEmpty():	determines	whether	the	stack	is	empty.	It	returns	1	if	the	stack	is	empty	or	return	0.
Note:	All	the	above	Stack	operations	are	implemented	in	O(1)	Time	Complexity.
	

Stack	implementation	in	C++	Collection

Stack	is	implemented	by	calling	push	and	pop	methods	of	ArrayDeque<T>	class.
JDK	also	provides	Stack<T>,	but	we	should	not	use	this	class	and	prefer	Deque	which	implement
collection	interface.

1.				First	reason	is	that	Stack<T>	does	not	drive	from	Collection	interface.
2.				Second	Stack<T>	drives	from	Vector<T>	so	random	access	is	possible	so	it	brakes

abstraction	of	a	stack.

3.				Third	ArrayDeque	is	more	efficient	as	compared	to	Stack<T>.
	
Example	4.3
#include	<stack>
	
int	main()
{
										std::stack<int>	stk;
										std::vector<int>	arr	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
	
										for	(auto	i	:	arr)
										{
																			stk.push(i);
										}
	
										for	(unsigned	int	i	=	0;	i	<	arr.size();	i++)
										{
																			std::cout	<<	stk.top()	<<	"	";
																			stk.pop();
										}
										std::cout	<<	std::endl;
	
										return	0;
}
	
Analysis:	Values	are	added	to	the	stack	and	are	taken	out	of	the	stack	since	stack	is	last-in-first-
out,	the	values	that	are	added	last	are	the	first	to	come	out	of	the	stack.
	

Queue

	
A	queue	is	a	First-In-First-Out	(FIFO)	kind	of	data	structure.	The	element	that	is	added	to	the
queue	first	will	be	the	first	to	be	removed	from	the	queue	and	so	on.
	
Queue	has	the	following	application	uses:

1.				Access	to	shared	resources	(e.g.,	printer)
2.				Multiprogramming
3.				Message	queue

	

Queue	ADT	Operations:

Add():	Add	a	new	element	to	the	back	of	the	queue.
Remove():	remove	an	element	from	the	front	of	the	queue	and	return	its	value.
Front():	return	the	value	of	the	element	at	the	front	of	the	queue.
Size():	returns	the	number	of	elements	inside	the	queue.
IsEmpty():	returns	1	if	the	queue	is	empty	otherwise	return	0
	
Note:-	All	the	above	Queue	operations	are	implemented	in	O(1)	Time	Complexity.
	

Queue	implementation	in	C++	Collection

Queue<T>	is	the	class	implementation	of	queue.
	
Example	4.4
#include	<queue>
int	main()
{
										std::queue<int>	que;
										std::vector<int>	arr	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};
	
										for	(auto	i	:	arr)
																			que.push(i);
	
										for	(unsigned	int	i	=	0;	i	<	arr.size();	i++)
										{

																			std::cout	<<	que.front()	<<	"	";
																			que.pop();
										}
										return	0;
}
	
Analysis:	Values	are	added	to	the	queue	and	are	taken	out	of	the	queue.	Since	stack	is	first-in-
first-out,	the	values	that	are	added	first	are	the	first	to	come	out	of	the	queue.
	

Trees

Tree	is	a	hierarchical	data	structure.	The	top	element	of	a	tree	is	called	the	root	of	the	tree.	Except
the	root	element,	every	element	in	a	tree	has	a	parent	element,	and	zero	or	more	child	elements.
The	tree	is	the	most	useful	data	structure	when	you	have	hierarchical	information	to	store.
	
There	are	many	types	of	trees,	for	example,	binary-tree,	Red-black	tree,	AVL	tree,	etc.
	

Binary	Tree

A	binary	tree	is	a	type	of	tree	in	which	each	node	has	at	most	two	children	(0,	1	or	2)	which	are
referred	as	left	child	and	right	child.
	

Binary	Search	Trees	(BST)

	
A	binary	search	tree	(BST)	is	a	binary	tree	on	which	nodes	are	ordered	in	the	following	way:

1.				The	key	in	the	left	subtree	is	less	than	the	key	in	its	parent	node.
2.				The	key	in	the	right	subtree	is	greater	or	equal	the	key	in	its	parent	node.

Binary	Search	Tree	ADT	Operations

Insert(k):	Insert	an	element	k	into	the	tree.
Delete(k):	Delete	an	element	k	from	the	tree.
Search(k):	Search	a	particular	value	k	into	the	tree	if	it	is	present	or	not.
FindMax():	Find	the	maximum	value	stored	in	the	tree.
FindMin():	Find	the	minimum	value	stored	in	the	tree.
	
The	average	Time	Complexity	of	all	the	above	operations	on	a	binary	search	tree	is	O(log	n),	the
case	when	the	tree	is	balanced.
The	worst-case	Time	Complexity	will	be	O(n)	when	the	tree	is	skewed.	A	binary	tree	is	skewed
when	tree	is	not	balanced.
There	are	two	types	of	skewed	tree.

1.				Right	Skewed	binary	tree:	A	binary	tree	in	which	each	node	is	having	either	only	a	right
child	or	no	child	at	all.

2.				Left	Skewed	binary	tree:	A	binary	tree	in	which	each	node	is	having	either	only	a	left	child
or	no	child	at	all.

	

Balanced	Binary	search	tree

There	are	few	binary	search	tree,	which	always	keeps	themselves	balanced.	Most	important
among	them	are	Red-Black	Tree	(RB-Tree)	and	AVL	tree.	The	standard	template	library	(STL)	is
implemented	using	this	Red-Black	Tree	(RB-Tree).

	

Set	implementation	in	C++	Collections

Set<>	is	a	class	which	implements	Set	which	means	that	it	store	only	unique	elements.	Set<>	is
implemented	using	a	red-black	balanced	binary	search	tree	in	C++	Collections.	Since	Set<>	is
implemented	using	a	binary	search	tree	its	elements	are	stored	in	sequential	order.
	
Example	4.5
#include	<set>
	
int	main()
{
										//	Create	a	hash	set.
										std::set<std::string>	ts;
	
										//	Add	elements	to	the	hash	set.
										ts.insert("India");
										ts.insert("USA");
										ts.insert("Brazile");
										ts.insert("Canada");
										ts.insert("UK");
										ts.insert("China");
										ts.insert("France");
										ts.insert("Spain");
										ts.insert("Italy");
	
										for	each	(auto	var	in	ts)
										{
																			std::cout	<<	var	<<	"	";
										}
										std::cout	<<	std::endl;
	
										std::cout	<<	"Hash	Table	contains	USA	:	"	<<	(std::find(ts.begin(),	ts.end(),	"USA")	!=	ts.end())	<<	std::endl;
										std::cout	<<	"Hash	Table	contains	Russia	:	"	<<	(std::find(ts.begin(),	ts.end(),	"Russia")	!=	ts.end())	<<	std::endl;
	
										ts.erase("USA");
										for	each	(auto	var	in	ts)
										{
																			std::cout	<<	var	<<	"	";
										}
										std::cout	<<	std::endl;
										std::cout	<<	"Hash	Table	contains	USA	:	"	<<	(std::find(ts.begin(),	ts.end(),	"USA")	!=	ts.end())	<<	std::endl;
										return	0;
}
	
Output
Brazile	Canada	China	France	India	Italy	Spain	UK	USA
Hash	Table	contains	USA	:	1
Hash	Table	contains	Russia	:	0
Brazile	Canada	China	France	India	Italy	Spain	UK
Hash	Table	contains	USA	:	0
	
Note:-	TreeSet	is	implemented	using	a	binary	search	tree	so	add,	remove,	and	contains	methods
have	logarithmic	time	complexity	O(log	(n)),	where	n	is	the	number	of	elements	in	the	set.

	

Map	implementation	in	C++	Collection

A	Map<>	is	an	interface	that	maps	keys	to	values.	Also	called	a	dictionary.	A	Map<>	is
implemented	using	red-black	balanced	binary	tree	so	the	key	value	pairs	are	stored	in	sorted
order.
	
Example	4.6
#include	<map>
	
int	main()
{
										//	Create	a	hash	map.
										std::map<std::string,	int>	tm;
	
										//	Put	elements	into	the	map
										tm["Mason"]	=	55;
										tm["Jacob"]	=	77;
										tm["Jacob"]	=	77;
										tm["William"]	=	99;
										tm["Alexander"]	=	80;
										tm["Michael"]	=	50;
										tm["Emma"]	=	65;
										tm["Olivia"]	=	77;
										tm["Sophia"]	=	88;
										tm["Emily"]	=	99;
										tm["Isabella"]	=	100;
										std::cout	<<	"Total	number	of	students	in	class	::	"	<<	tm.size()	<<	std::endl;
										for	(auto	key	:	tm)
										{
																			std::cout	<<	key.first	<<	"	score	marks	:"	<<	tm[key.first]	<<	std::endl;
										}
										auto	temp	=	tm.find("Emma")	!=	tm.end();
										std::cout	<<	"Emma	present	in	class	::	"	<<	temp	<<	std::endl;
										auto	result	=	tm.find("John")	!=	tm.end();
										std::cout	<<	"John	present	in	class	::	"	<<	result	<<	std::endl;
										return	0;
}
	
Output
Total	number	of	students	in	class	::	10
Alexander	score	marks	:80
Emily	score	marks	:99
Emma	score	marks	:65
Isabella	score	marks	:100
Jacob	score	marks	:77
Mason	score	marks	:55
Michael	score	marks	:50
Olivia	score	marks	:77
Sophia	score	marks	:88
William	score	marks	:99
Emma	present	in	class	::	1
John	present	in	class	::	0
	

Priority	Queue	(Heap)

Priority	queue	is	implemented	using	a	binary	heap	data	structure.	In	a	heap,	the	records	are	stored
in	an	array	so	that	each	key	is	larger	than	its	two	children	keys.	Each	node	in	the	heap	follows	the
same	rule	that	the	parent	value	is	greater	than	its	two	children.
	
There	are	two	types	of	the	heap	data	structure:

1.				Max	heap:	each	node	should	be	greater	than	or	equal	to	each	of	its	children.
2.				Min	heap:	each	node	should	be	smaller	than	or	equal	to	each	of	its	children.

	
A	heap	is	a	useful	data	structure	when	you	want	to	get	max/min	one	by	one	from	data.	Heap-Sort
uses	max	heap	to	sort	data	in	increasing/decreasing	order.
	

Heap	ADT	Operations

Insert()	-	Adding	a	new	element	to	the	heap.	The	Time	Complexity	of	this	operation	is	O(log(n))
remove()	-	Extracting	max	for	max	heap	case	(or	min	for	min	heap	case).	The	Time	Complexity
of	this	operation	is	O(log(n))
Heapify()	–	To	convert	a	list	of	numbers	in	an	array	into	a	heap.	This	operation	has	a	Time
Complexity	O(n)
	

PriorityQueue	implementation	in	C++	Collection

Min	heap	implementation	of	Priority	Queue
	
Example	4.7
#include	<queue>
	
void		minheapdemo()
{
										std::priority_queue<int,	std::vector<int>,	std::greater<int>>	minHeap;
										std::vector<int>	arr	=	{	1,	2,	10,	8,	7,	3,	4,	6,	5,	9	};
	
										for	(auto	i	:	arr)
																			minHeap.push(i);
	
										for	(unsigned	int	i	=	0;	i	<	arr.size();	i++)
										{
																			std::cout	<<	minHeap.top()	<<	"	";
																			minHeap.pop();
										}
}
	
Output
1	2	3	4	5	6	7	8	9	10
	
Max	heap	implementation	of	Priority	Queue
We	just	need	to	change	collection	order	to	make	max	heap	from	PriorityQueue<>	collection.
	
Example	4.9
std::priority_queue<int,	std::vector<int>,	std::less<int>>	maxHeap;
	
Output
10	9	8	7	6	5	4	3	2	1

	

Hash-Table

A	Hash-Table	is	a	data	structure	that	maps	keys	to	values.	Each	position	of	the	Hash-Table	is
called	a	slot.	The	Hash-Table	uses	a	hash	function	to	calculate	an	index	of	an	array	of	slots.	We
use	the	Hash-Table	when	the	number	of	keys	actually	stored	is	small	relatively	to	the	number	of
possible	keys.
	
The	process	of	storing	objects	using	a	hash	function	is	as	follows:
1.	Create	an	array	of	size	M	to	store	objects,	this	array	is	called	Hash-Table.
2.	Find	a	hash	code	of	an	object	by	passing	it	through	the	hash	function.
3.	Take	module	of	hash	code	by	the	size	of	Hash-Table	to	get	the	index	of	the	table	where	objects
will	be	stored.
4.	Finally	store	these	objects	in	the	designated	index.

	
The	process	of	searching	objects	in	Hash-Table	using	a	hash	function	is	as	follows:
1.	Find	a	hash	code	of	the	object	we	are	searching	for	by	passing	it	through	the	hash	function.
2.	Take	module	of	hash	code	by	the	size	of	Hash-Table	to	get	the	index	of	the	table	where	objects
are	stored.
3.	Finally,	retrieve	the	object	from	the	designated	index.
	

Hash-Table	Abstract	Data	Type	(ADT)

ADT	of	Hash-Table	contains	the	following	functions:
Insert(x):	Add	object	x	to	the	data	set.
Delete(x):	Delete	object	x	from	the	data	set.
Search(x):	Search	object	x	in	data	set.
The	Hash-Table	is	a	useful	data	structure	for	implementing	dictionary.	The	average	time	to	search
for	an	element	in	a	Hash-Table	is	O(1).	A	Hash	Table	generalizes	the	notion	of	an	array.

HashSet	implementation	of	C++	Collections

unordered_set<>	is	a	class	which	implements	set	which	means	that	it	store	only	unique	elements.
unordered_set<>	is	implemented	using	a	hash	table.	Since	unordered_set<>	is	implemented	using
a	hash	table	its	elements	are	not	stored	in	sequential	order.
	
Example	4.8
int	main()
{
										//	Create	a	hash	set.
										std::unordered_set<std::string>	hs;
	
										//	Add	elements	to	the	hash	set.
										hs.insert("India");
										hs.insert("USA");
										hs.insert("Brazile");
										hs.insert("Canada");
										hs.insert("UK");
										hs.insert("China");
										hs.insert("France");
										hs.insert("Spain");
										hs.insert("Italy");
									
										for	each	(auto	var	in	hs)
										{
																			std::cout	<<	var<<	"	";
										}
										std::cout	<<	std::endl;
										std::cout	<<	"Hash	Table	contains	USA	:	"	<<	(std::find(hs.begin(),	hs.end(),	"USA")	!=	hs.end())	<<	std::endl;
										std::cout	<<	"Hash	Table	contains	Russia	:	"<<	(std::find(hs.begin(),	hs.end(),	"Russia")	!=	hs.end())	<<	std::endl;
	
										hs.erase("USA");

	
										for	each	(auto	var	in	hs)
										{
																			std::cout	<<	var<<"	";
										}
										std::cout	<<	std::endl;
										std::cout	<<	"Hash	Table	contains	USA	:	"	<<	(std::find(hs.begin(),	hs.end(),	"USA")	!=	hs.end())<<	std::endl;
										return	0;
}
	
Output
Italy	India	China	USA	Spain	Brazile	Canada	UK	France
Hash	Table	contains	USA	:	1
Hash	Table	contains	Russia	:	0
Italy	India	China	Spain	Brazile	Canada	UK	France
Hash	Table	contains	USA	:	0
	
Comparison	of	various	Set	classes.
	 std::set std::unordered_set
Storage Red-Black	Tree Hash	Table

Performance Slower	than	unordered_set,
O(log(N)) Fastest,	constant	time

Order	of	Iteration Increasing	Order No	order	guarantee
	

Map	implementation	in	C++	Collection

A	Map<>	is	a	data	structure	that	maps	keys	to	values.	Also	called	a	dictionary.	A	Map<>	is
implemented	using	a	hash	table	so	the	key	value	pairs	are	not	stored	in	sorted	order.	Map<>	does
not	allow	duplicate	keys	buts	values	can	be	duplicate.
	
Example	4.9
#include	<unordered_map>
int	main()
{
										//	Create	a	hash	map.
										std::unordered_map<std::string,	int>	hm;
										//	Put	elements	into	the	map
										hm["Mason"]	=	55;
										hm["Jacob"]	=	77;
										hm["William"]	=	99;
										hm["Alexander"]	=	80;
										hm["Michael"]	=	50;
										hm["Emma"]	=	65;
										hm["Olivia"]	=	77;
										hm["Sophia"]	=	88;
										hm["Emily"]	=	99;
										hm["Isabella"]	=	100;
										std::cout	<<	"Total	number	of	students	in	class	::	"	<<	hm.size()	<<	std::endl;
										for	(auto	key	:	hm)
										{
																			std::cout	<<	key.first	<<	("	score	marks	:")	<<	hm[key.first]	<<	std::endl;
										}
										auto	temp	=	hm.find("Emma")	!=	hm.end();

										std::cout	<<	"Emma	present	in	class	::	"	<<	temp	<<	std::endl;
										auto	result	=	hm.find("John")	!=	hm.end();
										std::cout	<<"John	present	in	class	::	"	<<	result	<<	std::endl;
										return	0;
}
	
Output
Total	number	of	students	in	class	::	10
Mason	score	marks	:55
Sophia	score	marks	:88
Emily	score	marks	:99
Alexander	score	marks	:80
Jacob	score	marks	:77
William	score	marks	:99
Michael	score	marks	:50
Emma	score	marks	:65
Olivia	score	marks	:77
Isabella	score	marks	:100
Emma	present	in	class	::	1
John	present	in	class	::	0
	
Comparison	of	various	map	classes.
	 std::map std::unordered_map
Storage Red-Black	Tree Hash	Table

Performance Slower	than	unordered_map,
O(log(N)) Fastest,	constant	time

Order	of	Iteration Increasing	Order	of	keys No	order	guarantee
	

Dictionary	/	Symbol	Table

A	symbol	table	is	a	mapping	between	a	string	(key)	and	a	value,	which	can	be	of	any	data	type.	A
value	can	be	an	integer	such	as	occurrence	count,	dictionary	meaning	of	a	word	and	so	on.
	

Binary	Search	Tree	(BST)	for	Strings

Binary	Search	Tree	(BST)	is	the	simplest	way	to	implement	symbol	table.	Simple	string	compare
function	can	be	used	to	compare	two	strings.	If	all	the	keys	are	random,	and	the	tree	is	balanced.
Then	on	an	average	key	lookup	can	be	done	in	logarithmic	time.
	

	

Hash-Table

The	Hash-Table	is	another	data	structure,	which	can	be	used	for	symbol	table	implementation.
Below	Hash-Table	diagram,	we	can	see	the	name	of	that	person	is	taken	as	the	key,	and	their
meaning	is	the	value	of	the	search.	The	first	key	is	converted	into	a	hash	code	by	passing	it	to
appropriate	hash	function.	Inside	hash	function	the	size	of	Hash-Table	is	also	passed,	which	is
used	to	find	the	actual	index	where	values	will	be	stored.	Finally,	the	value	that	is	meaning	of
name	is	stored	in	the	Hash-Table,	or	you	can	store	a	pointer	to	the	string	which	store	meaning	can
be	stored	into	the	Hash-Table.

Hash-Table	has	an	excellent	lookup	of	constant	time.
	
Let	us	suppose	we	want	to	implement	autocomplete	the	box	feature	of	Google	search.	When	you
type	some	string	to	search	in	google	search,	it	proposes	some	complete	string	even	before	you
have	done	typing.	BST	cannot	solve	this	problem	as	related	strings	can	be	in	both	right	and	left
subtree.	

The	Hash-Table	is	also	not	suited	for	this	job.	One	cannot	perform	a	partial	match	or	range	query
on	a	Hash-Table.	Hash	function	transforms	string	to	a	number.	Moreover,	a	good	hash	function
will	give	a	distributed	hash	bode	even	for	partial	string	and	there	is	no	way	to	relate	two	strings
in	a	Hash-Table.
	
Trie	and	Ternary	Search	tree	are	a	special	kind	of	tree,	which	solves	partial	match,	and	range
query	problem	well.
	

Trie

Trie	is	a	tree,	in	which	we	store	only	one	character	at	each	node.	This	final	key	value	pair	is
stored	in	the	leaves.	Each	node	has	K	children,	one	for	each	possible	character.	For	simplicity
purpose,	let	us	consider	that	the	character	set	is	26,	corresponds	to	different	characters	of	English
alphabets.
	
Trie	is	an	efficient	data	structure.	Using	Trie,	we	can	search	the	key	in	O(M)	time.	Where	M	is	the
maximum	string	length.	Trie	is	also	suitable	for	solving	partial	match	and	range	query	problems.

	

Ternary	Search	Trie/	Ternary	Search	Tree

Tries	having	a	very	good	search	performance	of	O(M)	where	M	is	the	maximum	size	of	the	search
string.	However,	tries	having	very	high	space	requirement.	Every	node	Trie	contain	pointers	to
multiple	nodes,	each	pointer	corresponds	to	possible	characters	of	the	key.	To	avoid	this	high
space	requirement	Ternary	Search	Trie	(TST)	is	used.
	
A	TST	avoid	the	heavy	space	requirement	of	the	traditional	Trie	while	still	keeping	many	of	its
advantages.	In	a	TST,	each	node	contains	a	character,	an	end	of	key	indicator,	and	three	pointers.
The	three	pointers	are	corresponding	to	current	char	hold	by	the	node	(equal),	characters	less	than
and	character	greater	than.
	
The	Time	Complexity	of	ternary	search	tree	operation	is	proportional	to	the	height	of	the	ternary
search	tree.	In	the	worst	case,	we	need	to	traverse	up	to	3	times	that	many	links.	However,	this
case	is	rare.
	
Therefore,	TST	is	a	very	good	solution	for	implementing	Symbol	Table,	Partial	match	and	range
query.

Graphs

A	graph	is	a	data	structure	that	represents	a	network	that	connects	a	collection	of	nodes	called
vertices,	and	their	connections,	called	edges.	An	edge	can	be	seen	as	a	path	between	two	nodes.
These	edges	can	be	either	directed	or	undirected.	If	a	path	is	directed	then	you	can	move	only	in
one	direction,	while	in	an	undirected	path	you	can	move	in	both	the	directions.
	

Graph	Algorithms

Depth-First	Search	(DFS)

The	DFS	algorithm	we	start	from	starting	point	and	go	into	depth	of	graph	until	we	reach	a	dead
end	and	then	move	up	to	parent	node	(Backtrack).	In	DFS,	we	use	stack	to	get	the	next	vertex	to
start	a	search.	Alternatively,	we	can	use	recursion	(system	stack)	to	do	the	same.

	

Breadth-First	Search	(BFS)

In	BFS	algorithm,	a	graph	is	traversed	in	layer-by-layer	fashion.	The	graph	is	traversed	closer	to
the	starting	point.	The	queue	is	used	to	implement	BFS.

	

Sorting	Algorithms

Sorting	is	the	process	of	placing	elements	from	a	collection	into	ascending	or	descending	order.
Sorting	arranges	data	elements	in	order	so	that	searching	become	easier.
There	are	good	sorting	functions	available	which	does	sorting	in	O(nlogn)	time,	so	in	this	book
when	we	need	sorting	we	will	use	sort()	function	and	will	assume	that	the	sorting	is	done	in
O(nlogn)	time.

Counting	Sort

Counting	sort	is	the	simplest	and	most	efficient	type	of	sorting.	Counting	sort	has	a	strict
requirement	of	a	predefined	range	of	data.
	
Like,	sort	how	many	people	are	in	which	age	group.	We	know	that	the	age	of	people	can	vary
between	1	and	130.

If	we	know	the	range	of	input,	then	sorting	can	be	done	using	counting	in	O(n+k).
	

http://www.bogotobogo.com/Algorithms/countingsort.php

End	note

This	chapter	has	provided	a	brief	introduction	of	the	various	data	structures,	algorithms	and	their
complexities.	In	the	coming	chapters	we	will	look	into	all	these	data	structure	in	details.	If	you
know	the	interface	of	the	various	data	structures,	then	you	can	use	them	while	solving	other
problems	without	knowing	the	internal	details	how	they	are	implemented.

CHAPTER	5:	SEARCHING

Introduction

In	Computer	Science,	Searching	is	the	algorithmic	process	of	finding	a	particular	item	in	a
collection	of	items.	The	item	may	be	a	keyword	in	a	file,	a	record	in	a	database,	a	node	in	a	tree
or	a	value	in	an	array	etc.
	

Why	Searching?

Imagine	you	are	in	a	library	with	millions	of	books.	You	want	to	get	a	specific	book	with	specific
title.	How	will	you	find?	You	will	just	start	searching	by	initial	letter	of	the	book	title.	Then	you
continue	matching	with	a	whole	book	title	until	you	find	your	desired	book.	(By	doing	this	small
heuristic	you	have	reduced	the	search	space	by	a	factor	of	26,	consider	we	have	an	equal	number
of	books	whose	title	begin	with	particular	char.)
	
Similarly,	computer	stores	lots	of	information	and	to	retrieve	this	information	efficiently,	we	need
very	efficient	searching	algorithms.	To	make	searching	efficient,	we	keep	the	data	in	some	proper
order.	There	are	certain	ways	of	organizing	the	data.	If	you	keep	the	data	in	proper	order,	it	is
easy	to	search	required	element.	For	example,	Sorting	is	one	of	the	process	for	making	data
organized.
	

Different	Searching	Algorithms

·									Linear	Search	–	Unsorted	Input
·									Linear	Search	–	Sorted	Input
·									Binary	Search	(Sorted	Input)
·									String	Search:	Tries,	Suffix	Trees,	Ternary	Search.
·									Hashing	and	Symbol	Tables

	

Linear	Search	–	Unsorted	Input

When	elements	of	an	array	are	not	ordered	or	sorted	and	we	want	to	search	for	a	particular	value,
we	need	to	scan	the	full	array	unless	we	find	the	desired	value.	This	kind	of	algorithm	known	as
unordered	linear	search.	The	major	problem	with	this	algorithm	is	less	performance	or	high	Time
Complexity	in	worst	case.
	
Example	5.1
bool	linearSearchUnsorted(std::vector<int>	&data,	int	value)
{
										int	size	=	data.size();
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(value	==	data[i])
																			{
																													return	true;
																			}
										}
										return	false;
}
	
Time	Complexity:	O(n).	As	we	need	to	traverse	the	complete	array	in	worst	case.	Worst	case	is
when	your	desired	element	is	at	the	last	position	of	the	array.	Here,	‘n’	is	the	size	of	the	array.
Space	Complexity:	O(1).	No	extra	memory	is	used	to	allocate	the	array.
	

Linear	Search	–	Sorted

If	elements	of	the	array	are	sorted	either	in	increasing	order	or	in	decreasing	order,	searching	for
a	desired	element	will	be	much	more	efficient	than	unordered	linear	search.	In	many	cases,	we	do
not	need	to	traverse	the	complete	array.	Following	example	explains	when	you	encounter	a
greater	element	from	the	increasing	sorted	array,	you	stop	searching	further.	This	is	how	this
algorithm	saves	the	time	and	improves	the	performance.
	
Example	5.2
bool	linearSearchSorted(std::vector<int>	&data,	int	value)
{
										int	size	=	data.size();
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(value	==	data[i])
																			{
																													return	true;
																			}
																			else	if	(value	<	data[i])
																			{
																													return	false;
																			}
										}
										return	false;
}
	
Time	Complexity:	O(n).	As	we	need	to	traverse	the	complete	array	in	worst	case.	Worst	case	is
when	your	desired	element	is	at	the	last	position	of	the	sorted	array.	However,	in	the	average	case
this	algorithm	is	more	efficient	even	though	the	growth	rate	is	same	as	unsorted.
Space	Complexity:	O(1).	No	extra	memory	is	used	to	allocate	the	array.
	

Binary	Search

How	do	we	search	a	word	in	a	dictionary?	In	general,	we	go	to	some	approximate	page	(mostly
middle)	and	start	searching	from	that	point.	If	we	see	the	word	that	we	are	searching	is	same	then
we	are	done	with	the	search.	Else,	if	we	see	the	page	is	before	the	selected	pages,	then	apply	the
same	procedure	for	the	first	half	otherwise	to	the	second	half.	Binary	Search	also	works	in	the
same	way.	We	get	the	middle	point	from	the	sorted	array	and	start	comparing	with	the	desired
value.
	
Note:	Binary	search	requires	the	array	to	be	sorted	otherwise	binary	search	cannot	be	applied.
	
Example	5.3
bool	Binarysearch(std::vector<int>	&data,	int	value)
{
										int	size	=	data.size();
										int	low	=	0;			
										int	high	=	size	-	1;
										int	mid;
									
										while	(low	<=	high)
										{
																			mid	=	low	+	(high	-	low)	/	2;	//	To	avoid	the	overflow
																			if	(data[mid]	==	value)
																			{
																													return	true;
																			}
																			else	if	(data[mid]	<	value)
																			{
																													low	=	mid	+	1;
																			}
																			else
																			{
																													high	=	mid	-	1;
																			}
										}
										return	false;
}
	
Time	Complexity:	O(logn).	We	always	take	half	input	and	throwing	out	the	other	half.	So	the
recurrence	relation	for	binary	search	is	T(n)	=	T(n/2)	+	c.	Using	master	theorem	(divide	and
conquer),	we	get	T(n)	=	O(logn)
Space	Complexity:	O(1)
	
Example	5.4
bool	BinarySearchRecursive(std::vector<int>	&data,	int	low,	int	high,	int	value)
{
										if	(low	>	high)
										{
																			return	false;
										}

										int	mid	=	low	+	(high	-	low)	/	2;	//	To	avoid	the	overflow
										if	(data[mid]	==	value)
										{
																			return	true;
										}
										else	if	(data[mid]	<	value)
										{
																			return	BinarySearchRecursive(data,	mid	+	1,	high,	value);
										}
										else
										{
																			return	BinarySearchRecursive(data,	low,	mid	-	1,	value);
										}
}
	
Time	Complexity:	O(logn).	Space	Complexity:	O(logn)	For	system	stack	in	recursion
	

String	Searching	Algorithms

Refer	String	chapter.
	

Hashing	and	Symbol	Tables

Refer	Hash-Table	chapter.
	

How	sorting	is	useful	in	Selection	Algorithm?

Selection	problems	can	be	converted	to	sorting	problems.	Once	the	array	is	sorted,	it	is	easy	to
find	the	minimum/maximum	(or	desired	element)	from	the	sorted	array.	The	method	‘Sorting	and
then	Selecting’	is	inefficient	for	selecting	a	single	element,	but	it	is	efficient	when	many	selections
need	to	be	made	from	the	array.	It	is	because	only	one	initial	expensive	sort	is	needed,	followed
by	many	cheap	selection	operations.
	
For	example,	if	we	want	to	get	the	maximum	element	from	an	array.	After	sorting	the	array,	we
can	simply	return	the	last	element	from	the	array.	What	if	we	want	to	get	second	maximum.	Now,
we	do	not	have	to	sort	the	array	again	and	we	can	return	the	second	last	element	from	the	sorted
array.	Similarly,	we	can	return	the	kth	maximum	element	by	just	one	scan	of	the	sorted	list.
So	with	the	above	discussion,	sorting	is	used	to	improve	the	performance.	In	general	this	method
requires	O(nlogn)	(for	sorting)	time.	With	the	initial	sorting,	we	can	answer	any	query	in	one
scan,	O(n).
	

Problems	in	Searching

	

Print	Duplicates	in	Array

Given	an	array	of	n	numbers,	print	the	duplicate	elements	in	the	array.
	
First	approach:	Exhaustive	search	or	Brute	force,	for	each	element	in	array	find	if	there	is	some
other	element	with	the	same	value.	This	is	done	using	two	for	loop,	first	loop	to	select	the	element
and	second	loop	to	find	its	duplicate	entry.
	
Example	5.5
void	printRepeating(std::vector<int>	&data)
{
										int	size	=	data.size();
										std::cout	<<	"	Repeating	elements	are	";
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			for	(int	j	=	i	+	1;	j	<	size;	j++)
																			{
																													if	(data[i]	==	data[j])
																																						std::cout	<<	"	"	<<	data[i];
																			}
										}
}
	
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	array	and	after	this	in	a	single	scan,	we	can
find	the	duplicates.
	
Example	5.6
void	printRepeating2(std::vector<int>	&data)
{
										int	size	=	data.size();
										sort(data.begin(),	data.end());	//	Sort(data,size);
										std::cout	<<	"	Repeating	elements	are	:	"	;
	
										for	(int	i	=	1;	i	<	size;	i++)
										{
																			if	(data[i]	==	data[i	-	1])
																													std::cout	<<	"	"	<<	data[i]	;
										}
}
	
Sorting	algorithms	take	 	time	and	single	scan	take	 	time.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	

Third	approach:	Hash-Table,	using	Hash-Table,	we	can	keep	track	of	the	elements	we	have
already	seen	and	we	can	find	the	duplicates	in	just	one	scan.
	
Example	5.7
void	printRepeating3(std::vector<int>	&data)
{
										std::unordered_set<int>	hs;
										int	size	=	data.size();
										std::cout	<<	"	Repeating	elements	are	:	"	;
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(std::find(hs.begin(),	hs.end(),	data[i])	!=	hs.end())
																													std::cout	<<	"	"	<<	data[i];
																			else
																													hs.insert(data[i]);
										}
}
	
Hash-Table	insert	and	find	take	constant	time 	so	the	total	Time	Complexity	of	the	algorithm	is

	time.	Space	Complexity	is	also	
	
Forth	approach:	Counting,	this	approach	is	only	possible	if	we	know	the	range	of	the	input.	If	we
know	that,	the	elements	in	the	array	are	in	the	range	0	to	n-1.	We	can	reserve	and	array	of	length	n
and	when	we	see	an	element	we	can	increase	its	count.	In	just	one	single	scan,	we	know	the
duplicates.	If	we	know	the	range	of	the	elements,	then	this	is	the	fastest	way	to	find	the	duplicates.
	
Example	5.8
void	printRepeating4(std::vector<int>	&data)
{
										int	size	=	data.size();
										std::vector<int>	count(size);
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			count[i]	=	0;
										}
										std::cout	<<	"	Repeating	elements	are	:	";
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(count[data[i]]	==	1)
																													std::cout	<<	"	"	<<	data[i];
																			else
																													count[data[i]]++;
										}
}
	
Counting	approach	just	uses	an	array	so	insert	and	find	take	constant	time 	so	the	total	Time
Complexity	of	the	algorithm	is	 	time.	Space	Complexity	for	creating	count	array	is	also	
	

Find	max,	appearing	element	in	an	array

Given	an	array	of	n	numbers,	find	the	element,	which	appears	maximum	number	of	times.
	
First	approach:	Exhaustive	search	or	Brute	force,	for	each	element	in	array	find	how	many	times
this	particular	value	appears	in	array.	Keep	track	of	the	maxCount	and	when	some	element	count
is	greater	than	it	then	update	the	maxCount.	This	is	done	using	two	for	loop,	first	loop	to	select	the
element	and	second	loop	to	count	the	occurrence	of	that	element.
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Example	5.9
int	getMax(std::vector<int>	&data)
{
										int	size	=	data.size();
										int	max	=	data[0],	count	=	1,	maxCount	=	1;
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			count	=	1;
																			for	(int	j	=	i	+	1;	j	<	size;	j++)
																			{
																													if	(data[i]	==	data[j])
																																						count++;
																			}
																			if	(count	>	maxCount)
																			{
																													max	=	data[i];
																													maxCount	=	count;
																			}
										}
										return	max;
}
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	array	and	after	this	in	a	single	scan,	we	can
find	the	counts.	Sorting	algorithms	take	 	time	and	single	scan	take	 	time.	The	Time
Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Example	5.10
int	getMax2(std::vector<int>	&data)
{
										int	size	=	data.size();
										int	max	=	data[0],	maxCount	=	1;
										int	curr	=	data[0],	currCount	=	1;
										sort(data.begin(),	data.end());	//	Sort(data,size);
										for	(int	i	=	1;	i	<	size;	i++)
										{
																			if	(data[i]	==	data[i	-	1])
																													currCount++;
																			else
																			{
																													currCount	=	1;
																													curr	=	data[i];
																			}
																			if	(currCount	>	maxCount)
																			{
																													maxCount	=	currCount;

																													max	=	curr;
																			}
										}
										return	max;
}
	
Third	approach:	Counting,	This	approach	is	only	possible	if	we	know	the	range	of	the	input.	If
we	know	that,	the	elements	in	the	array	are	in	the	range	0	to	n-1.	We	can	reserve	and	array	of
length	n	and	when	we	see	an	element	we	can	increase	its	count.	In	just	one	single	scan,	we	know
the	duplicates.	If	we	know	the	range	of	the	elements,	then	this	is	the	fastest	way	to	find	the	max
count.
	
Counting	approach	just	uses	array	so	to	increase	count	take	constant	time 	so	the	total	Time
Complexity	of	the	algorithm	is	 	time.	Space	Complexity	for	creating	count	array	is	also	
	
Example	5.11
int	getMax3(std::vector<int>	&data,	int	range)
{
										int	max	=	data[0],	maxCount	=	1;
										int	size	=	data.size();
										std::vector<int>	count(range);
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			count[data[i]]++;
																			if	(count[data[i]]	>	maxCount)
																			{
																													maxCount	=	count[data[i]];
																													max	=	data[i];
																			}
										}
										return	max;
}
	

Majority	element	in	an	Array

Given	an	array	of	n	elements.	Find	the	majority	element,	which	appears	more	than	n/2	times.
Return	0	in	case	there	is	no	majority	element.
	
First	approach:	Exhaustive	search	or	Brute	force,	for	each	element	in	array	find	how	many	times
this	particular	value	appears	in	array.	Keep	track	of	the	maxCount	and	when	some	element	count
is	greater	than	it	then	update	the	maxCount.	This	is	done	using	two	for	loop,	first	loop	to	select	the
element	and	second	loop	to	count	the	occurrence	of	that	element.
	
Once	we	have	the	final,	maxCount	we	can	see	if	it	is	greater	than	n/2,	if	it	is	greater	than	we	have
a	majority	if	not	we	do	not	have	any	majority.
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Example	5.12

int	getMajority(std::vector<int>	&data)
{
										int	size	=	data.size();
										int	max	=	0,	count	=	0,	maxCount	=	0;
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			for	(int	j	=	i	+	1;	j	<	size;	j++)
																			{
																													if	(data[i]	==	data[j])
																																						count++;
																			}
																			if	(count	>	maxCount)
																			{
																													max	=	data[i];
																													maxCount	=	count;
																			}
										}
										if	(maxCount	>	size	/	2)
																			return	max;
										else
																			throw	std::exception("MajorityDoesNotExist");
}
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	array.	If	there	is	a	majority	than	the	middle
element	at	the	index	n/2	must	be	the	majority	number.	So	just	single	scan	can	be	used	to	find	its
count	and	see	if	the	majority	is	there	or	not.
	
Sorting	algorithms	take	 	time	and	single	scan	take	 	time.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Example	5.13
int	getMajority2(std::vector<int>	&data)
{
										int	size	=	data.size();
										int	majIndex	=	size	/	2,	count	=	1;
										int	candidate;
										sort(data.begin(),	data.end());	//	Sort(data,size);
										candidate	=	data[majIndex];
										count	=	0;
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(data[i]	==	candidate)
																													count++;
										}
	
										if	(count	>	size	/	2)
																			return	data[majIndex];
										else
																			throw	std::exception("MajorityDoesNotExist");
}
	
Third	approach:	This	is	a	cancelation	approach	(Moore’s	Voting	Algorithm),	if	all	the	elements
stand	against	the	majority	and	each	element	is	cancelled	with	one	element	of	majority	if	there	is
majority	then	majority	prevails.

·									Set	the	first	element	of	the	array	as	majority	candidate	and	initialize	the	count	to	be	1.
·									Start	scanning	the	array.

o			If	we	get	some	element	whose	value	same	as	a	majority	candidate,	then	we	increase	the
count.

o			If	we	get	an	element	whose	value	is	different	from	the	majority	candidate,	then	we
decrement	the	count.

o			If	count	become	0,	that	means	we	have	a	new	majority	candidate.	Make	the	current
candidate	as	majority	candidate	and	reset	count	to	1.

o			At	the	end,	we	will	have	the	only	probable	majority	candidate.
·									Now	scan	through	the	array	once	again	to	see	if	that	candidate	we	found	above	have	appeared

more	than	n/2	times.
	
Counting	approach	just	scans	throw	array	two	times.	The	Time	Complexity	of	the	algorithm	is	

	time.	Space	Complexity	for	creating	count	array	is	also	
	
Example	5.14
int	getMajority3(std::vector<int>	&data)
{
										int	majIndex	=	0,	count	=	1;
										int	candidate;
										int	size	=	data.size();
	
										for	(int	i	=	1;	i	<	size;	i++)
										{
																			if	(data[majIndex]	==	data[i])
																													count++;
																			else
																													count--;
	
																			if	(count	==	0)
																			{
																													majIndex	=	i;
																													count	=	1;
																			}
										}
										candidate	=	data[majIndex];
										count	=	0;
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(data[i]	==	candidate)
																			{
																													count++;
																			}
										}
										if	(count	>	size	/	2)
																			return	data[majIndex];
										else
																			throw	std::exception("MajorityDoesNotExist");
}
	

Find	the	missing	number	in	an	Array

Given	an	array	of	n-1	elements,	which	are	in	the	range	of	1	to	n.	There	are	no	duplicates	in	the
array.	One	of	the	integer	is	missing.	Find	the	missing	element.
	
First	approach:	Exhaustive	search	or	Brute	force,	for	each	value	in	the	range	1	to	n,	find	if	there
is	some	element	in	array	which	have	the	same	value.	This	is	done	using	two	for	loop,	first	loop	to
select	value	in	the	range	1	to	n	and	the	second	loop	to	find	if	this	element	is	in	the	array	or	not.
	
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Example	5.15
int	findMissingNumber(std::vector<int>	&data)
{
										int	found;
										int	size	=	data.size();
										for	(int	i	=	1;	i	<=	size;	i++)
										{
																			found	=	0;
																			for	(int	j	=	0;	j	<	size;	j++)
																			{
																													if	(data[j]	==	i)
																													{
																																						found	=	1;
																																						break;
																													}
																			}
																			if	(found	==	0)
																			{
																													return	i;
																			}
										}
										throw	std::exception("NoNumberMissing");
}
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	array	and	after	this	in	a	single	scan,	we	can
find	the	duplicates.
	
Sorting	algorithms	take	 	time	and	single	scan	take	 	time.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Third	approach:	Hash-Table,	using	Hash-Table,	we	can	keep	track	of	the	elements	we	have
already	seen	and	we	can	find	the	missing	element	in	just	one	scan.
	
Hash-Table	insert	and	find	take	constant	time 	so	the	total	Time	Complexity	of	the	algorithm	is

	time.	Space	Complexity	is	also	
	
Forth	approach:	Counting,	we	know	the	range	of	the	input	so	counting	will	work.	As	we	know
that,	the	elements	in	the	array	are	in	the	range	0	to	n-1.	We	can	reserve	and	array	of	length	n	and
when	we	see	an	element	we	can	increase	its	count.	In	just	one	single	scan,	we	know	the	missing

element.
	
Counting	approach	just	uses	an	array	so	insert	and	find	take	constant	time 	so	the	total	Time
Complexity	of	the	algorithm	is	 	time.	Space	Complexity	for	creating	count	array	is	also	
	
Fifth	approach:	You	are	allowed	to	modify	the	given	input	array.	Modify	the	given	input	array	in
such	a	way	that	in	the	next	scan	you	can	find	the	missing	element.
	
When	you	scan	through	the	array.	When	at	index	“index”,	the	value	stored	in	the	array	will	be
arr[index]	so	add	the	number	“n	+	1”	to	arr[arr[index]].	Always	read	the	value	from	the	array
using	a	reminder	operator	“%”.	When	you	scan	the	array	for	the	first	time	and	modified	all	the
values,	then	one	single	scan	you	can	see	if	there	is	some	value	in	the	array	which	is	smaller	than
“n+1”	that	index	is	the	missing	number.
In	this	approach,	the	array	is	scanned	two	times	and	the	Time	Complexity	of	this	algorithm	is .
Space	Complexity	is	
	
Sixth	approach:	Summation	formula	to	find	the	sum	of	n	numbers	from	1	to	n.	Subtract	the	values
stored	in	the	array	and	you	will	have	your	missing	number.
The	Time	Complexity	of	this	algorithm	is .	Space	Complexity	is	
	
Seventh	approach:	XOR	approach	to	find	the	sum	of	n	numbers	from	1	to	n.	XOR	the	values
stored	in	the	array	and	you	will	have	your	missing	number.
The	Time	Complexity	of	this	algorithm	is .	Space	Complexity	is	
	
Example	5.16
int	findMissingNumber(std::vector<int>	&data,	int	range)
{
										int	size	=	data.size();
										int	xorSum	=	0;
										//	get	the	XOR	of	all	the	numbers	from	1	to	range
										for	(int	i	=	1;	i	<=	range;	i++)
										{
																			xorSum	^=	i;
										}
										//	loop	through	the	array	and	get	the	XOR	of	elements
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			xorSum	^=	data[i];
										}
										return	xorSum;
}
	
Note:	Same	problem	can	be	asked	in	many	forms	(sometimes	you	have	to	do	the	xor	of	the	range
sometime	you	do	not):

1.				There	are	numbers	in	the	range	of	1-n	out	of	which	all	appears	single	time	but	one	that
appear	two	times.

2.				All	the	elements	in	the	range	1-n	are	appearing	16	times	and	one	element	appear	17	times.

Find	the	element	that	appears	17	times.
3.					

Find	Pair	in	an	Array

Given	an	array	of	n	numbers,	find	two	elements	such	that	their	sum	is	equal	to	“value”
	
First	approach:	Exhaustive	search	or	Brute	force,	for	each	element	in	array	find	if	there	is	some
other	element,	which	sum	up	to	the	desired	value.	This	is	done	using	two	for	loop,	first	loop	to
select	the	element	and	second	loop	to	find	another	element.
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Example	5.17
bool	FindPair(std::vector<int>	&data,	int	value)
{
										int	size	=	data.size();
										for	(int	i	=	0;	i	<	size;	i++)
										{
																				for	(int	j	=	i	+	1;	j	<	size;	j++)
																			{
																													if	((data[i]	+	data[j])	==	value)
																													{
																																						std::cout	<<	"The	pair	is	:	"	<<	data[i]	<<	","	<<	data[j]	<<	std::endl;
																																						return	true;
																													}
																			}
										}
										return	false;
}
	
Second	approach:	Sorting,	Steps	are	as	follows:

1.				Sort	all	the	elements	in	the	array.
2.				Take	two	variable	first	and	second.	Variable	first=	0	and	second	=	size	-1
3.				Compute	sum	=	arr[first]+arr[second]
4.				If	the	sum	is	equal	to	the	desired	value,	then	we	have	the	solution
5.				If	the	sum	is	less	than	the	desired	value,	then	we	will	increase	first
6.				If	the	sum	is	greater	than	the	desired	value,	then	we	will	decrease	the	second
7.				We	repeat	the	above	process	till	we	get	the	desired	pair	or	we	get	first	>=	second	(don’t

have	a	pair)
Sorting	algorithms	take	 	time	and	single	scan	take	 	time.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Example	5.18
bool	FindPair2(std::vector<int>	&data,	int	value)
{
										int	size	=	data.size();
										int	first	=	0,	second	=	size	-	1;
										int	curr;
										sort(data.begin(),	data.end());	//	Sort(data,	size);
										while	(first	<	second)

										{
																			curr	=	data[first]	+	data[second];
																			if	(curr	==	value)
																			{
																													std::cout	<<	"The	pair	is	"	<<	data[first]	<<	","	<<	data[second]	<<	std::endl;
																													return	true;
																			}
																			else	if	(curr	<	value)
																													first++;
																			else
																													second--;
										}
										return	false;
}
	
Third	approach:	Hash-Table,	using	Hash-Table,	we	can	keep	track	of	the	elements	we	have
already	seen	and	we	can	find	the	pair	in	just	one	scan.

1.				For	each	element,	insert	the	value	in	Hashtable.	Let	say	current	value	is	arr[index]
2.				And	see	if	the	value	-	arr[index]	is	already	in	a	Hashtable.
3.				If	value	-	arr[index]	is	in	the	Hashtable	then	we	have	the	desired	pair.
4.				Else,	proceed	to	the	next	entry	in	the	array.

	
Hash-Table	insert	and	find	take	constant	time 	so	the	total	Time	Complexity	of	the	algorithm	is

	time.	Space	Complexity	is	also	
	
Example	5.19
bool	FindPair3(std::vector<int>	&data,	int	value)
{
										std::unordered_set<int>	hs;
										int	i;
										int	size	=	data.size();
										for	(i	=	0;	i	<	size;	i++)
										{
																			if	(std::find(hs.begin(),	hs.end(),	value	-	data[i])	!=	hs.end())
																			{
																													std::cout	<<	"The	pair	is	:	"	<<	data[i]	<<	"	,	"	<<	(value	-	data[i])	<<	std::endl;
																													return	true;
																			}
																			hs.insert(data[i]);
										}
										return	false;
}
	
Forth	approach:	Counting,	This	approach	is	only	possible	if	we	know	the	range	of	the	input.	If
we	know	that,	the	elements	in	the	array	are	in	the	range	0	to	n-1.	We	can	reserve	and	array	of
length	n	and	when	we	see	an	element	we	can	increase	its	count.	In	place	of	the	Hashtable	in	the
above	approach,	we	will	use	this	array	and	will	find	out	the	pair.
	
Counting	approach	just	uses	an	array	so	insert	and	find	take	constant	time 	so	the	total	Time
Complexity	of	the	algorithm	is	 	time.	Space	Complexity	for	creating	count	array	is	also	
	

Find	the	Pair	in	two	Arrays

Given	two	array	X	and	Y.	Find	a	pair	of	elements	(xi,	yi)	such
that	xi∈X	and	yi∈Y	where	xi+yi=value.
	
First	approach:	Exhaustive	search	or	Brute	force,	loop	through	element	xi	of	X	and	see	if	you	can
find	(value	–	xi)	in	Y.	Two	for	loop.
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Second	approach:	Sorting,	Sort	all	the	elements	in	the	second	array	Y.	For	each	element	if	X	you
can	see	if	that	element	is	there	in	Y	by	using	binary	search.
	
Sorting	algorithms	take	 	and	searching	will	take	 time.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Third	approach:	Sorting,	Steps	are	as	follows:

1.				Sort	the	elements	of	both	X	and	Y	in	increasing	order.
2.				Take	the	sum	of	the	smallest	element	of	X	and	the	largest	element	of	Y.
3.				If	the	sum	is	equal	to	value,	we	got	our	pair.
4.				If	the	sum	is	smaller	than	value,	take	next	element	of	X
5.				If	the	sum	is	greater	than	value,	take	the	previous	element	of	Y

	
Sorting	algorithms	take	 for	sorting	and	searching	will	take	 time.
The	Time	Complexity	of	an	algorithm	is	 	Space	Complexity	is	
	
Forth	approach:	Hash-Table,	Steps	are	as	follows:

1.				Scan	through	all	the	elements	in	the	array	Y	and	insert	them	into	Hashtable.
2.				Now	scan	through	all	the	elements	of	array	X,	let	us	suppose	the	current	element	is	xi	see	if

you	can	find	(value	-	xi)	in	the	Hashtable.
3.				If	you	find	the	value,	you	got	your	pair.
4.				If	not,	then	go	to	the	next	value	in	the	array	X.

	
Hash-Table	insert	and	find	take	constant	time 	so	the	total	Time	Complexity	of	the	algorithm	is

	time.	Space	Complexity	is	also	
	
Fifth	approach:	Counting,	This	approach	is	only	possible	if	we	know	the	range	of	the	input.	Same
as	Hashtable	implementation	just	use	a	simple	array	in	place	of	Hashtable	and	you	are	done.
	
Counting	approach	just	uses	an	array	so	insert	and	find	take	constant	time 	so	the	total	Time
Complexity	of	the	algorithm	is	 	time.	Space	Complexity	for	creating	count	array	is	also	
	

Two	elements	whose	sum	is	closest	to	zero

Given	an		Array	of	integer	s,	both	+ve	and	-ve.	You	need	to	find	the	two	elements	such	that	their
sum	is	closest	to	zero.
	
First	approach:	Exhaustive	search	or	Brute	force,	for	each	element	in	array	find	the	other	element
whose	value	when	added	will	give	minimum	absolute	value.	This	is	done	using	two	for	loop,	first
loop	to	select	the	element	and	second	loop	to	find	the	element	that	should	be	added	to	it	so	that	the
absolute	of	the	sum	will	be	minimum	or	close	to	zero.
	
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Example	5.20
void	minabsSumPair(std::vector<int>	&data)
{
										int	minSum,	sum,	minFirst,	minSecond;
										int	size	=	data.size();
										//	Array	should	have	at	least	two	elements
										if	(size	<	2)
										{
																			throw	std::exception("InvalidInput");
										}
										//	Initialization	of	values
										minFirst	=	0;
										minSecond	=	1;
										minSum	=	std::abs(data[0]	+	data[1]);
										for	(int	l	=	0;	l	<	size	-	1;	l++)
										{
																			for	(int	r	=	l	+	1;	r	<	size;	r++)
																			{
																													sum	=	std::abs(data[l]	+	data[r]);
																													if	(sum	<	minSum)
																													{
																																						minSum	=	sum;
																																						minFirst	=	l;
																																						minSecond	=	r;
																													}
																			}
										}
										std::cout	<<	"	The	two	elements	with	minimum	sum	are	:	"	<<	data[minFirst]	<<	"	,	"	<<	data[minSecond]	<<	std::endl;
}
	
Second	approach:	Sorting
Steps	are	as	follows:

1.				Sort	all	the	elements	in	the	array.
2.				Take	two	variable	firstIndex	=	0	and	secondIndex	=	size	-1
3.				Compute	sum	=	arr[firstIndex]+arr[secondIndex]
4.				If	the	sum	is	equal	to	the	0	then	we	have	the	solution
5.				If	the	sum	is	less	than	the	0	then	we	will	increase	first
6.				If	the	sum	is	greater	than	the	0	then	we	will	decrease	the	second

7.				We	repeat	the	above	process	3	to	6,	till	we	get	the	desired	pair	or	we	get	first	>=	second
	
Example	5.21
void	minabsSumPair2(std::vector<int>	&data)
{
										int	minSum,	sum,	minFirst,	minSecond;
										int	size	=	data.size();
										if	(size	<	2)								//	Array	should	have	at	least	two	elements
										{
																			throw	std::exception("InvalidInput");
										}
										sort(data.begin(),	data.end());	//	Sort(data,	size);
	
										//	Initialization	of	values
										minFirst	=	0;
										minSecond	=	size	-	1;
										minSum	=	std::abs(data[minFirst]	+	data[minSecond]);
										for	(int	l	=	0,	r	=	size	-	1;	l	<	r;)
										{
																			sum	=	(data[l]	+	data[r]);
																			if	(std::abs(sum)	<	minSum)
																			{
																													minSum	=	std::abs(sum);	///	just	corrected......hemant
																													minFirst	=	l;
																													minSecond	=	r;
																			}
	
																			if	(sum	<	0)
																													l++;
																			else	if	(sum	>	0)
																													r--;
																			else
																													break;
										}
										std::cout	<<	"	The	two	elements	with	minimum	sum	are	:	"	<<	data[minFirst]	<<	"	,	"	<<	data[minSecond]	<<	std::endl;
}
	

Find	maxima	in	a	bitonic	array

A	bitonic	array	comprises	of	an	increasing	sequence	of	integers	immediately	followed	by	a
decreasing	sequence	of	integer	s.	Since	the	elements	are	sorted	in	some	order,	we	should	go	for
algorithm	similar	to	binary	search.	The	steps	are	as	follows:

1.				Take	two	variable	for	storing	start	and	end	index.	Variable	start=0	and	end=size-1
2.				Find	the	middle	element	of	the	array.
3.				See	if	the	middle	element	is	the	maxima.	If	yes,	return	the	middle	element.
4.				Alternatively,	If	the	middle	element	in	increasing	part,	then	we	need	to	look	for	in	mid+1

and	end.
5.				Alternatively,	if	the	middle	element	is	in	the	decreasing	part,	then	we	need	to	look	in	the

start	and	mid-1.
6.				Repeat	step	2	to	5	until	we	get	the	maxima.

	
Example	5.22

int	SearchBotinicArrayMax(std::vector<int>	&data)
{
										int	size	=	data.size();
										int	start	=	0,	end	=	size	-	1;
										int	mid	=	(start	+	end)	/	2;
										int	maximaFound	=	0;
										if	(size	<	3)
										{
																			throw	std::exception("InvalidInput");
										}
										while	(start	<=	end)
										{
																			mid	=	(start	+	end)	/	2;
																			if	(data[mid	-	1]	<	data[mid]	&&	data[mid	+	1]	<	data[mid])	//	maxima
																			{
																													maximaFound	=	1;
																													break;
																			}
																			else	if	(data[mid	-	1]	<	data[mid]	&&	data[mid]	<	data[mid	+	1])	//	increasing
																													start	=	mid	+	1;
																			else	if	(data[mid	-	1]	>	data[mid]	&&	data[mid]	>	data[mid	+	1])	//	decreasing
																													end	=	mid	-	1;
																			else
																													break;
										}
										if	(maximaFound	==	0)
																			throw	std::exception("NoMaximaFound");
	
										return	data[mid];
}
	

Search	element	in	a	bitonic	array	

A	bitonic	array	comprises	of	an	increasing	sequence	of	integers	immediately	followed	by	a
decreasing	sequence	of	integer	s.	To	search	an	element	in	a	bitonic	array:

1.				Find	the	index	or	maximum	element	in	the	array.	By	finding	the	end	of	increasing	part	of	the
array,	using	modified	binary	search.

2.				Once	we	have	the	maximum	element,	search	the	given	value	in	increasing	part	of	the	array
using	binary	search.

3.				If	the	value	is	not	found	in	increasing	part,	search	the	same	value	in	decreasing	part	of	the
array	using	binary	search.

	
Example	5.23
int	SearchBitonicArray(std::vector<int>	&data,	int	key)
{
										int	size	=	data.size();
										int	max	=	FindMaxBitonicArray(data);
										int	k	=	BinarySearch(data,	0,	max,	key,	true);
										if	(k	!=	-1)
										{
																			return	k;
										}
										else
										{

																			return	BinarySearch(data,	max	+	1,	size	-	1,	key,	false);
										}
}
	
int	FindMaxBitonicArray(std::vector<int>	&data)
{
										int	size	=	data.size();
										int	start	=	0,	end	=	size	-	1,	mid;
										if	(size	<	3)
										{
																			throw	std::exception("InvalidInput");
										}
										while	(start	<=	end)
										{
																			mid	=	(start	+	end)	/	2;
																			if	(data[mid	-	1]	<	data[mid]	&&	data[mid	+	1]	<	data[mid])	//	maxima
																			{
																													return	mid;
																			}
																			else	if	(data[mid	-	1]	<	data[mid]	&&	data[mid]	<	data[mid	+	1])	//	increasing
																			{
																													start	=	mid	+	1;
																			}
																			else	if	(data[mid	-	1]	>	data[mid]	&&	data[mid]	>	data[mid	+	1])	//	decreasing
																			{
																													end	=	mid	-	1;
																			}
																			else
																			{
																													break;
																			}
										}
										std::cout	<<	"error"	<<	std::endl;
										return	-1;
}
	
int	BinarySearch(std::vector<int>	&data,	int	start,	int	end,	int	key,	bool	isInc)
{
										int	mid;
										if	(end	<	start)
																			return	-1;
	
										mid	=	(start	+	end)	/	2;
										if	(key	==	data[mid])
										{
																			return	mid;
										}
										if	(isInc	!=	false	&&	key	<	data[mid]	||	isInc	==	false	&&	key	>	data[mid])
										{
																			return	BinarySearch(data,	start,	mid	-	1,	key,	isInc);
										}
										else
										{
																			return	BinarySearch(data,	mid	+	1,	end,	key,	isInc);
										}
}
	

Occurrence	counts	in	sorted	Array

Given	a	sorted	array	arr[]	find	the	number	of	occurrences	of	a	number.
	
First	approach:	Brute	force,	Traverse	the	array	and	in	linear	time	we	will	get	the	occurrence
count	of	the	number.	This	is	done	using	one	loop.
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Example	5.24
int	findKeyCount(std::vector<int>	&data,	int	key)
{
										int	count	=	0;
										int	size	=	data.size();
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(data[i]	==	key)
																													count++;
										}
										return	count;
}
	
Second	approach:	Since	we	have	sorted	array,	we	should	think	about	some	binary	search.

1.				First,	we	should	find	the	first	occurrence	of	the	key.
2.				Then	we	should	find	the	last	occurrence	of	the	key.
3.				Take	the	difference	of	these	two	values	and	you	will	have	the	solution.

	
Example	5.25
int	findKeyCount2(std::vector<int>	&data,	int	key)
{
										int	firstIndex,	lastIndex;
										int	size	=	data.size();
										firstIndex	=	findFirstIndex(data,	0,	size	-	1,	key);
										lastIndex	=	findLastIndex(data,	0,	size	-	1,	key);
										return	(lastIndex	-	firstIndex	+	1);
}
	
int	findFirstIndex(std::vector<int>	&data,	int	start,	int	end,	int	key)
{
										int	mid;
										if	(end	<	start)
																			return	-1;
	
										mid	=	(start	+	end)	/	2;
										if	(key	==	data[mid]	&&	(mid	==	start	||	data[mid	-	1]	!=	key))
																			return	mid;
	
										if	(key	<=	data[mid])	//	<=	is	us	the	number.t	in	sorted	array.
																			return	findFirstIndex(data,	start,	mid	-	1,	key);
										else
																			return	findFirstIndex(data,	mid	+	1,	end,	key);
}
	

int	findLastIndex(std::vector<int>	&data,	int	start,	int	end,	int	key)
{
										int	mid;
										if	(end	<	start)
																			return	-1;
	
										mid	=	(start	+	end)	/	2;
										if	(key	==	data[mid]	&&	(mid	==	end	||	data[mid	+	1]	!=	key))
																			return	mid;
	
										if	(key	<	data[mid])	//	<
																			return	findLastIndex(data,	start,	mid	-	1,	key);
										else
																			return	findLastIndex(data,	mid	+	1,	end,	key);
}
	

Separate	even	and	odd	numbers	in	Array

Given	an	array	of	even	and	odd	numbers,	write	a	program	to	separate	even	numbers	from	the	odd
numbers.
	
First	approach:	allocate	a	separate	array,	then	scan	through	the	given	array,	and	fill	even	numbers
from	the	start	and	odd	numbers	from	the	end.
	
Second	approach:	Algorithm	is	as	follows.

1.				Initialize	the	two	variable	left	and	right.	Variable	left=0	and	right=	size-1.
2.				Keep	increasing	the	left	index	until	the	element	at	that	index	is	even.
3.				Keep	decreasing	the	right	index	until	the	element	at	that	index	is	odd.
4.				Swap	the	number	at	left	and	right	index.
5.				Repeat	steps	2	to	4	until	left	is	less	than	right.

	
Example	5.26
void	seperateEvenAndOdd(std::vector<int>	&data)
{
										int	size	=	data.size();
										int	left	=	0,	right	=	size	-	1;
										while	(left	<	right)
										{
																			if	(data[left]	%	2	==	0)
																													left++;
																			else	if	(data[right]	%	2	==	1)
																													right--;
																			else
																			{
																													swap(data,	left,	right);
																													left++;
																													right--;
																			}
										}
}
	
void	swap(std::vector<int>	&data,	int	first,	int	second)

{
										int	temp	=	data[first];
										data[first]	=	data[second];
										data[second]	=	temp;
}
	

Stock	purchase-sell	problem

Given	an	array,	whose	nth	element	is	the	price	of	the	stock	on	nth	day.	You	are	asked	to	buy	once
and	sell	once,	on	what	date	you	will	be	buying	and	at	what	date	you	will	be	selling	to	get
maximum	profit.

Or
Given	an	array	of	numbers,	you	need	to	maximize	the	difference	between	two	numbers,	such	that
you	can	subtract	the	number,	which	appear	before	form	the	number	that	appear	after	it.
	
First	approach:	Brute	force,	for	each	element	in	array	find	if	there	is	some	other	element	whose
difference	is	maximum.	This	is	done	using	two	for	loop,	first	loop	to	select,	buy	date	index	and
the	second	loop	to	find	its	selling	date	entry.
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Second	approach:	Another	clever	solution	is	to	keep	track	of	the	smallest	value	seen	so	far	from
the	start.	At	each	point,	we	can	find	the	difference	and	keep	track	of	the	maximum	profit.	This	is	a
linear	solution.
The	Time	Complexity	of	the	algorithm	is	 	time.	Space	Complexity	for	creating	count	array	is
also	
	
Example	5.27
void	maxProfit(std::vector<int>	&stocks)
{
										int	size	=	stocks.size();
										int	buy	=	0,	sell	=	0;
										int	curMin	=	0;
										int	currProfit	=	0;
										int	maxProfit	=	0;
	
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			if	(stocks[i]	<	stocks[curMin])
																													curMin	=	i;
	
																			currProfit	=	stocks[i]	-	stocks[curMin];
																			if	(currProfit	>	maxProfit)
																			{
																													buy	=	curMin;
																													sell	=	i;
																													maxProfit	=	currProfit;
																			}
										}
										std::cout	<<	"Purchase	day	is-	"	<<	buy	<<	"	at	price	"	<<	stocks[buy]	<<	std::endl;
										std::cout	<<	"Sell	day	is-	"	<<	sell	<<	"	at	price	"	<<	stocks[sell]	<<	std::endl;

}
	

Find	a	median	of	an	array

Given	an	array	of	numbers	of	size	n,	if	all	the	elements	of	the	array	are	sorted	then	find	the
element,	which	lie	at	the	index	n/2.
	
First	approach:	Sort	the	array	and	return	the	element	in	the	middle.
Sorting	algorithms	take .
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Example	5.28
int	getMedian(std::vector<int>	&data)
{
										int	size	=	data.size();
										sort(data.begin(),	data.end());	//	Sort(data,	size);
										return	data[size	/	2];
}
	
Second	approach:	Use	QuickSelect	algorithm.	This	algorithm	we	will	look	into	the	next	chapter.
In	QuickSort	algorithm	just	skip	the	recursive	call	that	we	do	not	need.
The	average	Time	Complexity	of	this	algorithm	will	be	
	

Find	median	of	two	sorted	arrays.

First	approach:	Keep	track	of	the	index	of	both	the	array,	say	the	index	are	i	and	j.	keep
increasing	the	index	of	the	array	which	ever	have	a	smaller	value.	Use	a	counter	to	keep	track	of
the	elements	that	we	have	already	traced.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Example	5.29
int	findMedian(std::vector<int>	&dataFirst,	int	sizeFirst,	std::vector<int>	&dataSecond,	int	sizeSecond)
{
										int	medianIndex	=	((sizeFirst	+	sizeSecond)	+	(sizeFirst	+	sizeSecond)	%	2)	/	2;
										int	i	=	0,	j	=	0;
										int	count	=	0;
										while	(count	<	medianIndex	-	1)
										{
																			if	(i	<	sizeFirst	-	1	&&	dataFirst[i]	<	dataSecond[j])
																													i++;
																			else
																													j++;
	
																			count++;
										}
										if	(dataFirst[i]	<	dataSecond[j])
										{
																			return	dataFirst[i];
										}

										else
										{
																			return	dataSecond[j];
										}
}
	

Search	01	Array

Given	an	array	of	0’s	and	1’s.	All	the	0’s	come	before	1’s.	Write	an	algorithm	to	find	the	index	of
the	first	1.
Or	You	are	given	an	array	which	contains	either	0	or	1,	and	they	are	in	sorted	order	Ex.	a	[]	=	{
1,1,1,1,0,0,0}	How	will	you	count	no	of	1`s	and	0's?
	
First	approach:	Binary	Search,	since	the	array	is	sorted	using	binary	search	to	find	the	desired
index.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Example	5.30
int	BinarySearch01(std::vector<int>	&data)
{
										int	size	=	data.size();
										if	(size	==	1	&&	data[0]	==	1)
										{
																			return	0;
										}
										return	BinarySearch01Util(data,	0,	size	-	1);
}
	
int	BinarySearch01Util(std::vector<int>	&data,	int	start,	int	end)
{
										int	mid;
										if	(end	<	start)
																			return	-1;
	
										mid	=	(start	+	end)	/	2;
										if	(1	==	data[mid]	&&	0	==	data[mid	-	1])
										{
																			return	mid;
										}
										if	(0	==	data[mid])
										{
																			return	BinarySearch01Util(data,	mid	+	1,	end);
										}
										else
										{
																			return	BinarySearch01Util(data,	start,	mid	-	1);
										}
}
	
	

Search	in	sorted	rotated	Array

Given	a	sorted	array	s	of	n	integer.	s	is	rotated	an	unknown	number	of	times.	Find	an	element	in
the	array.
	
First	approach:	Since	the	array	is	sorted,	we	can	use	modified	binary	search	to	find	the	element.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Example	5.31
int	BinarySearchRotateArray(std::vector<int>	&data,	int	key)
{
										int	size	=	data.size();
										return	BinarySearchRotateArrayUtil(data,	0,	size	-	1,	key);
}
	
int	BinarySearchRotateArrayUtil(std::vector<int>	&data,	int	start,	int	end,	int	key)
{
										int	mid;
										if	(end	<	start)
										{
																			return	-1;
										}
										mid	=	(start	+	end)	/	2;
										if	(key	==	data[mid])
										{
																			return	mid;
										}
										if	(data[mid]	>	data[start])
										{
																			if	(data[start]	<=	key	&&	key	<	data[mid])
																			{
																													return	BinarySearchRotateArrayUtil(data,	start,	mid	-	1,	key);
																			}
																			else
																			{
																													return	BinarySearchRotateArrayUtil(data,	mid	+	1,	end,	key);
																			}
										}
										else
										{
																			if	(data[mid]	<	key	&&	key	<=	data[end])
																			{
																													return	BinarySearchRotateArrayUtil(data,	mid	+	1,	end,	key);
																			}
																			else
																			{
																													return	BinarySearchRotateArrayUtil(data,	start,	mid	-	1,	key);
																			}
										}
}
	
	

First	Repeated	element	in	the	array

Given	an	unsorted	array	of	n	elements,	find	the	first	element,	which	is	repeated.
	

First	approach:	Exhaustive	search	or	Brute	force,	for	each	element	in	array	find	if	there	is	some
other	element	with	the	same	value.	This	is	done	using	two	for	loop,	first	loop	to	select	the	element
and	second	loop	to	find	its	duplicate	entry.
	
The	Time	Complexity	is	 and	Space	Complexity	is	
	
Example	5.32
int	FirstRepeated(std::vector<int>	&data)
{
										int	size	=	data.size();
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			for	(int	j	=	i	+	1;	j	<	size;	j++)
																			{
																													if	(data[i]	==	data[j])
																																						return	data[i];
																			}
										}
										return	0;
}
	
Second	approach:	Hash-Table,	using	Hash-Table,	we	can	keep	track	of	the	number	of	times	a
particular	element	came	in	the	array.	First	scan	just	populate	the	Hashtable.	In	the	second,	scan
just	look	the	occurrence	of	the	elements	in	the	Hashtable.	If	occurrence	is	more	for	some	element,
then	we	have	our	solution	and	the	first	repeated	element.
	
Hash-Table	insert	and	find	take	constant	time 	so	the	total	Time	Complexity	of	the	algorithm	is

	time.	Space	Complexity	is	also	 	for	maintaining	hash.
	

Transform	Array

How	would	you	swap	elements	of	an	array	like	[a1	a2	a3	a4	b1	b2	b3	b4]	to	convert	it	into	[a1
b1	a2	b2	a3	b3	a4	b4]?
Approach:
·									First	swap	elements	in	the	middle	pair
·									Next	swap	elements	in	the	middle	two	pairs
·									Next	swap	elements	in	the	middle	three	pairs	
·									Iterate	n-1	steps.	

Ex:	with	n	=	4.	
a1	a2	a3	a4	b1	b2	b3	b4	
a1	a2	a3	b1	a4	b2	b3	b4	
a1	a2	b1	a3	b2	a4	b3	b4	
a1	b1	a2	b2	a3	b3	a4	b4

Example	5.33
void	transformArrayAB1(std::vector<int>	&data)

{
										int	size	=	data.size();
										int	N	=	size	/	2;
										for	(int	i	=	1;	i	<	N;	i++)
										{
																			for	(int	j	=	0;	j	<	i;	j++)
																													swap(data,	N	-	i	+	2	*	j,	N	-	i	+	2	*	j	+	1);
										}
}
	

Find	2nd	largest	number	in	an	array	with	minimum	comparisons

Suppose	you	are	given	an	unsorted	array	of	n	distinct	elements.	How	will	you	identify	the	second
largest	element	with	minimum	number	of	comparisons?
	
First	approach:	Find	the	largest	element	in	the	array.	Then	replace	the	last	element	with	the
largest	element.	Then	search	the	second	largest	element	int	the	remaining	n-1	elements.
The	total	number	of	comparisons	is:	(n-1)	+	(n-2)
	
Second	approach:	Sort	the	array	and	then	give	the	(n-1)	element.	This	approach	is	still	more
inefficient.
	
Third	approach:	Using	priority	queue	/	Heap.	This	approach	we	will	look	into	heap	chapter.	Use
buildHeap()	function	to	build	heap	from	the	array.	This	is	done	in	n	comparisons.	Arr[0]	is	the
largest	number,	and	the	grater	among	arr[1]	and	arr[2]	is	the	second	largest.
The	total	number	of	comparisons	are:	(n-1)	+	1	=	n
	

Check	if	two	arrays	are	permutation	of	each	other	

Given	two	integer	arrays.	You	have	to	check	whether	they	are	permutation	of	each	other.
	
First	approach:	Sorting,	Sort	all	the	elements	of	both	the	arrays	and	Compare	each	element	of
both	the	arrays	from	beginning	to	end.	If	there	is	no	mismatch,	return	true.	Otherwise,	false.
Sorting	algorithms	take	 	time	and	comparison	take	 	time.
The	Time	Complexity	of	an	algorithm	is	 and	Space	Complexity	is	
	
Example	5.34
bool	checkPermutation(std::vector<int>	&data1,	std::vector<int>	&data2)
{
										int	size1	=	data1.size();
										int	size2	=	data2.size();
	
										if	(size1	!=	size2)
																			return	false;
	
										sort(data1.begin(),	data1.end());
										sort(data2.begin(),	data2.end());
										for	(int	i	=	0;	i	<	size1;	i++)

										{
																			if	(data1[i]	!=	data2[i])
																													return	false;
										}
										return	true;
}
	
Second	approach:	Hash-Table	(Assumption:	No	duplicates).
1.				Create	a	Hash-Table	for	all	the	elements	of	the	first	array.
2.				Traverse	the	other	array	from	beginning	to	the	end	and	search	for	each	element	in	the	Hash-

Table.
3.				If	all	the	elements	are	found	in,	the	Hash-Table	return	true,	otherwise	return	false.
Hash-Table	insert	and	find	take	constant	time 	so	the	total	Time	Complexity	of	the	algorithm	is

	time.	Space	Complexity	is	also	
Time	Complexity	=	O(n)	(For	creation	of	Hash-Table	and	look-up),	Space	Complexity	=	O(n)
(For	creation	of	Hash-Table).

Example	5.35
bool	checkPermutation2(std::vector<int>	&data1,	std::vector<int>	&data2)
{
										int	size1	=	data1.size();
										int	size2	=	data2.size();
	
										if	(size1	!=	size2)
																			return	false;
	
										std::vector<int>	al;
	
										for	(int	i	=	0;	i	<	size1;	i++)
																			al.push_back(data1[i]);
	
										for	(int	i	=	0;	i	<	size2;	i++)
										{
																			if	(std::find(al.begin(),	al.end(),	data2[i])	!=	al.end()	==	false)
																													return	false;
	
																			al.erase(al.begin()	+	data2[i]);
										}
										return	true;
}
	

Remove	duplicates	in	an	integer	array	

First	approach:	Sorting,	Steps	are	as	follows:
1.				Sort	the	array.
2.				Take	two	pointers.	A	subarray	will	be	created	with	all	unique	elements	starting	from	0	to

the	first	pointer	(The	first	pointer	points	to	the	last	index	of	the	subarray).	The	second
pointer	iterates	through	the	array	from	1	to	the	end.	Unique	numbers	will	be	copied	from	the
second	pointer	location	to	first	pointer	location	and	the	same	elements	are	ignored.

Time	Complexity	calculation:	

Time	to	sort	the	array	=	O(nlogn).	
Time	to	remove	duplicates	=	O(n).	Overall	Time	Complexity	=	O(nlogn).
No	additional	space	is	required	so	Space	Complexity	is	O(1).

Example	5.36
int	removeDuplicates(std::vector<int>	&data)
{
										int	j	=	0;
										int	size	=	data.size();
										if	(size	==	0)
																			return	0;
	
										sort(data.begin(),	data.end());//	Sort(array,size);
										for	(int	i	=	1;	i	<	size;	i++)
										{
																			if	(data[i]	!=	data[j])
																			{
																													j++;
																													data[j]	=	data[i];
																			}
										}
										return	j	+	1;
}
	

Searching	for	an	element	in	a	2-d	sorted	array	

Given	a	2	dimensional	array.	Each	row	and	column	are	sorted	in	ascending	order.	How	would
you	find	an	element	in	it?
	
The	algorithm	works	as:

1.				Start	with	element	at	last	column	and	first	row
2.				If	the	element	is	the	value	we	are	looking	for,	return	true.
3.				If	the	element	is	greater	than	the	value	we	are	looking	for,	go	to	the	element	at	previous

column	but	same	row.
4.				If	the	element	is	less	than	the	value	we	are	looking	for,	go	to	the	element	at	next	row	but

same	column.
5.				Return	false,	if	the	element	is	not	found	after	reaching	the	element	of	the	last	row	of	the	first

column.	Condition	(row	<	r	&&	column	>=	0)	is	false.
Running	time	=	O(N).
	
Example	5.37
bool	FindElementIn2DArray(int**	data,	int	r,	int	c,	int	value)
{
										int	row	=	0;
										int	column	=	c	-	1;
	
										while	(row	<	r	&&	column	>=	0)
										{
																			if	(data[row][column]	==	value)
																			{

																													return	true;
																			}
																			else	if	(data[row][column]	>	value)
																			{
																													column--;
																			}
																			else
																			{
																													row++;
																			}
										}
										return	false;
}
	

Exercise

1.				Given	an	array	of	n	elements,	find	the	first	repeated	element.	Which	of	the	following
methods	will	work	for	us.	And	which,	if	the	method	will	not	work	for	us.	If	a	method	work,
then	implements	it.
·									Brute	force	exhaustive	search.
·									Use	Hash-Table	to	keep	an	index	of	the	elements	and	use	the	second	scan	to	find	the

element.
·									Sorting	the	elements.
·									If	we	know	the	range	of	the	element	then	we	can	use	counting	technique.

	
Hint:	When	order	in	which	elements	appear	in	input	is	important,	we	cannot	use	sorting.

	
2.				Given	an	array	of	n	elements,	write	an	algorithm	to	find	three	elements	in	an	array	whose

sum	is	a	given	value.
Hint:	Try	to	do	this	problem	using	a	brute	force	approach.	Then	try	to	apply	the	sorting
approach	along	with	a	brute	force	approach.	The	Time	Complexity	will	be	

	
3.				Given	an	array	of	–ve	and	+ve	numbers,	write	a	program	to	separate	–ve	numbers	from	the

+ve	numbers.
	

4.				Given	an	array	of	1’s	and	0’s,	write	a	program	to	separate	0’s	from	1’s.
												Hint:	QuickSelect,	counting

	
5.				Given	an	array	of	0’s,	1’s	and	2’s,	write	a	program	to	separate	0’s	,	1’s	and	2’s.

	
6.				Given	an	array	whose	elements	is	monotonically	increasing	with	both	negative	and	positive

numbers.	Write	an	algorithm	to	find	the	point	at	which	list	becomes	positive.
	

7.				Given	a	sorted	array,	find	a	given	number.	If	found	return	the	index	if	not,	find	the	index	of
that	number	if	it	is	inserted	into	the	array.
	

8.				Find	max	in	sorted	rotated	array.
	

9.				Find	min	in	the	sorted	rotated	array.
	

10.		Find	kth	Smallest	Element	in	the	Union	of	Two	Sorted	Arrays
	

CHAPTER	6:	SORTING

Introduction

Sorting	is	the	process	of	placing	elements	from	a	collection	into	ascending	or	descending	order.
For	example,	when	we	play	cards,	sort	cards,	according	to	their	value	so	that	we	can	find	the
required	card	easily.
	
When	we	go	to	some	library,	the	books	are	arranged	according	to	streams	(Algorithm,	Operating
systems,	Networking	etc.).	Sorting	arranges	data	elements	in	order	so	that	searching	become
easier.	When	books	are	arranged	in	proper	indexing	order,	then	it	is	easy	to	find	a	book	we	are
looking	for.
	
This	chapter	discusses	algorithms	for	sorting	a	set	of	N	items.	Understanding	sorting	algorithms
are	the	first	step	towards	understanding	algorithm	analysis.	Many	sorting	algorithms	are
developed	and	analyzed.
	
A	sorting	algorithm	like	Bubble-Sort,	Insertion-Sort	and	Selection-Sort	are	easy	to	implement
and	are	suitable	for	the	small	input	set.	However,	for	large	dataset	they	are	slow.
	
A	sorting	algorithm	like	Merge-Sort,	Quick-Sort	and	Heap-Sort	are	some	of	the	algorithms	that
are	suitable	for	sorting	large	dataset.	However,	they	are	overkill	if	we	want	to	sort	the	small
dataset.
	
Some	algorithm,	which	is	suitable	when	we	have	some	range	information	on	input	data.
	
Some	other	algorithm	is	there	to	sort	a	huge	data	set	that	cannot	be	stored	in	memory	completely,
for	which	external	sorting	technique	is	developed.
	
Before	we	start	a	discussion	of	the	various	algorithms	one	by	one.	First,	we	should	look	at
comparison	function	that	is	used	to	compare	two	values.
	
Less	function	will	return	1	if	value1	is	less	than	value2	otherwise,	it	will	return	0.
bool	less(int	value1,	int	value2)
{
										return	value1	<	value2;
}
	
More	function	will	return	1	if	value1	is	more	than	value2	otherwise	it	will	return	0.
bool	more(int	value1,	int	value2)
{
										return	value1	>	value2;
}
	
The	value	in	various	sorting	algorithms	is	compared	using	one	of	the	above	functions	and	it	will

be	swapped	depending	upon	the	return	value	of	these	functions.	If	more()	comparison	function	is
used,	then	sorted	output	will	be	increasing	in	order	and	if	less()	is	used	than	resulting	output	will
be	in	descending	order.
	

Type	of	Sorting

Internal	Sorting:	All	the	elements	can	be	read	into	memory	at	the	same	time	and	sorting	is
performed	in	memory.

1.				Selection-Sort
2.				Insertion-Sort
3.				Bubble-Sort
4.				Quick-Sort

	
External	Sorting:	In	this,	the	dataset	is	so	big	that	it	is	impossible	to	load	the	whole	dataset	into
memory	so	sorting	is	done	in	chunks.

1.				Merge-Sort
	
Three	things	to	consider	in	choosing,	sorting	algorithms	for	application:

1.				Number	of	elements	in	list
2.				A	number	of	different	orders	of	list	required
3.				The	amount	of	time	required	to	move	the	data	or	not	move	the	data

	

Bubble-Sort

Bubble-Sort	is	the	slowest	algorithm	for	sorting,	but	it	is	heavily	used,	as	it	is	easy	to	implement.
	
In	Bubble-Sort,	we	compare	each	pair	of	adjacent	values.	We	want	to	sort	values	in	increasing
order	so	if	the	second	value	is	less	than	the	first	value	then	we	swap	these	two	values.	Otherwise,
we	will	go	to	the	next	pair.
Thus,	smaller	values	bubble	to	the	start	of	the	array.
	
We	will	have	N	number	of	passes	to	get	the	array	completely	sorted.
After	the	first	pass,	the	largest	value	will	be	in	the	rightmost	position.

Example	6.1
class	BubbleSort
{
private:
										std::vector<int>&	arr;
										bool	less(int	value1,	int	value2);
										bool	more(int	value1,	int	value2);
public:
										BubbleSort(std::vector<int>	&data);
										virtual	void	sort();
};
	
BubbleSort::BubbleSort(std::vector<int>	&data):
										arr(data)
{
}
	
bool	BubbleSort::less(int	value1,	int	value2)
{
										return	value1	<	value2;
}
	
bool	BubbleSort::more(int	value1,	int	value2)
{

										return	value1	>	value2;
}
	
void	BubbleSort::sort()
{
										int	size	=	arr.size();
	
										int	i,	j,	temp;
										for	(i	=	0;	i	<	(size	-	1);	i++)
										{
																			for	(j	=	0;	j	<	size	-	i	-	1;	j++)
																			{
																													if	(more(arr[j],	arr[j	+	1]))
																													{
																																						/*	Swapping	*/
																																						temp	=	arr[j];
																																						arr[j]	=	arr[j	+	1];
																																						arr[j	+	1]	=	temp;
																													}
																			}
										}
}
	
int	main()
{
										std::vector<int>	data	=	{	9,	1,	8,	2,	7,	3,	6,	4,	5	};
										BubbleSort	*bs	=	new	BubbleSort(data);
										bs->sort2();
										for	(int	i	=	0;	i	<	data.size();	i++)
																			std::cout	<<	data[i]	<<	"	";
										return	0;
}
	
Analysis:

·									The	outer	for	loops	represents	the	number	of	swaps	that	are	done	for	comparison	of	data.
·									The	inner	loop	is	actually	used	to	do	the	comparison	of	data.	At	the	end	of	each	inner	loop

iteration,	the	largest	value	is	moved	to	the	end	of	the	array.	In	the	first	iteration	the	largest
value,	in	the	second	iteration	the	second	largest	and	so	on.

·									more()	function	is	used	for	comparison	which	means	when	the	value	of	the	first	argument
is	greater	than	the	value	of	the	second	argument	then	perform	a	swap.	By	this	we	are	sorting
in	increasing	order	if	we	have,	the	less()	function	in	place	of	more()	than	we	will	get
decreasing	order	sorting.

	
Complexity	Analysis:
Each	time	the	inner	loop	execute	for	(n-1),	(n-2),	(n-3)…
(n-1)	+	(n-2)	+	(n-3)	+	+	3	+	2	+	1	=	n(n-1)/2
	
Worst	case	performance O()

Average	case	performance O()
Space	Complexity O(1)	as	we	need	only	one	temp	variable
Stable	Sorting Yes

	

Modified	(improved)	Bubble-Sort

When	there	is	no	more	swap	in	one	pass	of	the	outer	loop.	It	indicates	that	all	the	elements	are
already	in	order	so	we	should	stop	sorting.	This	sorting	improvement	in	Bubble-Sort	is	extremely
useful	when	we	know	that,	except	few	elements	rest	of	the	array	is	already	sorted.
	
Example	6.2
void	BubbleSort::sort()
{
										int	size	=	arr.size();
										int	i,	j,	temp,	swapped	=	1;
										for	(i	=	0;	i	<	(size	-	1)	&&	swapped	==	1;	i++)
										{
																			swapped	=	0;
																		
																			for	(j	=	0;	j	<	size	-	i	-	1;	j++)
																			{
																													if	(more(arr[j],	arr[j	+	1]))
																													{
																																						temp	=	arr[j];
																																						arr[j]	=	arr[j	+	1];
																																						arr[j	+	1]	=	temp;
																																						swapped	=	1;
																													}
																			}
										}
}
By	applying	this	improvement,	best	case	of	this	algorithm,	when	an	array	is	nearly	sorted,	is
improved.
Best	case	is	O(n)
	
Complexity	Analysis:
Worst	case	performance O()

Average	case	performance O()
Space	Complexity O(1)
Adaptive:	When	array	is	nearly	sorted O(n)
Stable	Sorting Yes
	

Insertion-Sort

Insertion-Sort	Time	Complexity	is	O()	which	is	same	as	Bubble-Sort	but	perform	a	bit	better
than	it.	It	is	the	way	we	arrange	our	playing	cards.	We	keep	a	sorted	subarray.	Each	value	is
inserted	into	its	proper	position	in	the	sorted	sub-array	in	the	left	of	it.

	

	
Example	6.3
class	InsertionSort
{
private:
										std::vector<int>&	arr;
										bool	more(int	value1,	int	value2);
public:
										InsertionSort(std::vector<int>	&data);
										virtual	void	sort();
};
	
InsertionSort::InsertionSort(std::vector<int>	&data):
										arr(data)
{		}
	

bool	InsertionSort::more(int	value1,	int	value2)
{
										return	value1	>	value2;
}
	
void	InsertionSort::sort()
{
										int	size	=	arr.size();
										int	temp,	j;
										for	(int	i	=	1;	i	<	size;	i++)
										{
																			temp	=	arr[i];
																			for	(j	=	i;	j	>	0	&&	more(arr[j	-	1],	temp);	j--)
																			{
																													arr[j]	=	arr[j	-	1];
																			}
																			arr[j]	=	temp;
										}
}
	
int	main()
{
										std::vector<int>	data	=	{	9,	1,	8,	2,	7,	3,	6,	4,	5	};
										InsertionSort	*bs	=	new	InsertionSort(data);
										bs->sort();
										for	(int	i	=	0;	i	<	data.size();	i++)
																			std::cout	<<	data[i]	<<	"	";
										return	0;
}
	
Analysis:

·									The	outer	loop	is	used	to	pick	the	value	we	want	to	insert	into	the	sorted	left	array.
·									The	value	we	want	to	insert	we	have	picked	and	saved	in	a	temp	variable.
·									The	inner	loop	is	doing	the	comparison	using	the	more()	function.	The	values	are	shifted	to

the	right	until	we	find	the	proper	position	of	the	temp	value	for	which	we	are	doing	this
iteration.

·									Finally,	the	value	is	placed	into	the	proper	position.	In	each	iteration	of	the	outer	loop,	the
length	of	the	sorted	array	increase	by	one.	When	we	exit	the	outer	loop,	the	whole	array	is
sorted.

	
Complexity	Analysis:
Worst	case	Time	Complexity O()
Best	case	Time	Complexity O(n)

Average	case	Time	Complexity O()
Space	Complexity O(1)
Stable	sorting Yes
	

Selection-Sort

Selection-Sort	searches	the	whole	unsorted	array	and	put	the	largest	value	at	the	end	of	it.	This
algorithm	is	having	the	same	Time	Complexity,	but	performs	better	than	both	bubble	and
Insertion-Sort	as	less	number	of	comparisons	required.	The	sorted	array	is	created	backward	in
Selection-Sort.

	
Example	6.4:
class	SelectionSort
{
private:
										std::vector<int>&	arr;
										bool	less(int	value1,	int	value2);
										bool	more(int	value1,	int	value2);
	
public:
										SelectionSort(std::vector<int>	&data);
										virtual	void	sort();	//	back	array
										virtual	void	sort2();	//	front	array
};
	
SelectionSort::SelectionSort(std::vector<int>	&data):
										arr(data)
{
}
	
bool	SelectionSort::less(int	value1,	int	value2)
{
										return	value1	<	value2;
}
	
bool	SelectionSort::more(int	value1,	int	value2)
{
										return	value1	>	value2;
}
	
void	SelectionSort::sort()
{
										int	size	=	arr.size();

										int	i,	j,	max,	temp;
										for	(i	=	0;	i	<	size	-	1;	i++)
										{
																			max	=	0;
																			for	(j	=	1;	j	<	size	-	1	-	i;	j++)
																			{
																													if	(arr[j]	>	arr[max])
																													{
																																						max	=	j;
																													}
																			}
																			temp	=	arr[size	-	1	-	i];
																			arr[size	-	1	-	i]	=	arr[max];
																			arr[max]	=	temp;
										}
}
	
Analysis:

·									The	outer	loop	decide	the	number	of	times	the	inner	loop	will	iterate.	For	a	input	of	N
elements	the	inner	loop	will	iterate	N	number	of	times.

·									In	each	iteration	of	the	inner	loop	the	largest	value	is	calculated	and	is	placed	at	the	end	of
the	array.

·									This	is	the	final	replacement	of	the	maximum	value	to	the	proper	location.	The	sorted
array	is	created	backward.

	
Complexity	Analysis:
Worst	Case	Time	Complexity O(n2)

Best	Case	Time	Complexity O(n2)

Average	case	Time	Complexity O(n2)
Space	Complexity O(1)
Stable	Sorting No
	
The	same	algorithm	can	be	implemented	by	creating	the	sorted	array	in	the	front	of	the	array.
	
Example	6.5:
void	SelectionSort::sort2()
{
										int	size	=	arr.size();
										int	i,	j,	min,	temp;
										for	(i	=	0;	i	<	size	-	1;	i++)
										{
																			min	=	i;
																				for	(j	=	i	+	1;	j	<	size;	j++)
																			{
																													if	(arr[j]	<	arr[min])
																													{
																																						min	=	j;
																													}
																			}
																			temp	=	arr[i];

																			arr[i]	=	arr[min];
																			arr[min]	=	temp;
										}
}
	

Merge-Sort

Merge	sort	divide	the	input	into	half	recursive	in	each	step.	It	sort	the	two	parts	separately
recursively	and	finally	combine	the	result	into	final	sorted	output.
	
Example	6.6:
class	MergeSort
{
private:
										std::vector<int>&	arr;
										void	merge(std::vector<int>	&arr,	std::vector<int>	&tempArray,	int	lowerIndex,	int	middleIndex,	int	upperIndex);
										void	mergeSrt(std::vector<int>	&arr,	std::vector<int>	&tempArray,	int	lowerIndex,	int	upperIndex);
	
public:
										MergeSort(std::vector<int>	&data);
										virtual	void	sort();
};
	
MergeSort::MergeSort(std::vector<int>	&data):
										arr(data)
{
}
	
void	MergeSort::sort()
{
										int	size	=	arr.size();
										std::vector<int>	tempArray(size);
										mergeSrt(arr,	tempArray,	0,	size	-	1);
}
	
void	MergeSort::mergeSrt(std::vector<int>	&arr,	std::vector<int>	&tempArray,	int	lowerIndex,	int	upperIndex)
{
										if	(lowerIndex	>=	upperIndex)
										{
																			return;
										}
										int	middleIndex	=	(lowerIndex	+	upperIndex)	/	2;
										mergeSrt(arr,	tempArray,	lowerIndex,	middleIndex);
										mergeSrt(arr,	tempArray,	middleIndex	+	1,	upperIndex);
										merge(arr,	tempArray,	lowerIndex,	middleIndex,	upperIndex);

}
	
void	MergeSort::merge(std::vector<int>	&arr,	std::vector<int>	&tempArray,	int	lowerIndex,	int	middleIndex,	int	upperIndex)
{
										int	lowerStart	=	lowerIndex;
										int	lowerStop	=	middleIndex;
										int	upperStart	=	middleIndex	+	1;
										int	upperStop	=	upperIndex;
										int	count	=	lowerIndex;
										while	(lowerStart	<=	lowerStop	&&	upperStart	<=	upperStop)
										{
																			if	(arr[lowerStart]	<	arr[upperStart])
																			{
																													tempArray[count++]	=	arr[lowerStart++];
																			}
																			else
																			{
																													tempArray[count++]	=	arr[upperStart++];
																			}
										}
										while	(lowerStart	<=	lowerStop)
										{
																			tempArray[count++]	=	arr[lowerStart++];
										}
										while	(upperStart	<=	upperStop)
										{
																			tempArray[count++]	=	arr[upperStart++];
										}
										for	(int	i	=	lowerIndex;	i	<=	upperIndex;	i++)
										{
																			arr[i]	=	tempArray[i];
										}
}

	
·									The	Time	Complexity	of	Merge-Sort	is	O(nlogn)	in	all	3	cases	(best,	average	and	worst)	as

Merge-Sort	always	divides	the	array	into	two	halves	and	take	linear	time	to	merge	two	halves.
·									It	requires	the	equal	amount	of	additional	space	as	the	unsorted	list.	Hence,	it	is	not	at	all

recommended	for	searching	large	unsorted	lists.
·									It	is	the	best	Sorting	technique	for	sorting	Linked	Lists.
	
Complexity	Analysis:
Worst	Case	Time	Complexity O(nlogn)
Best	Case	Time	Complexity O(nlogn)
Average	Time	Complexity O(nlogn)
Space	Complexity O(n)
Stable	Sorting Yes
	

Quick-Sort

	

Quick	sort	is	also	a	recursive	algorithm.
·									In	each	step	we	select	a	pivot	(let	us	say	first	element	of	array).
·	 	 	 	 	 	 	 	 	Then	we	 traverse	 the	 rest	 of	 the	 array	 and	 copy	all	 the	 elements	of	 the	 array	which	 are

smaller	than	the	pivot	to	the	left	side	of	array
·									We	copy	all	the	elements	of	the	array	that	are	grater	then	pivot	to	the	right	side	of	the	array.

Obviously,	the	pivot	is	at	its	sorted	position.
·									Then	we	sort	the	left	and	right	subarray	separately.
·									When	the	algorithm	returns	the	whole	array	is	sorted.
	
Example	6.7:
class	QuickSort
{
private:
										std::vector<int>&	arr;
										void	swap(std::vector<int>	&arr,	int	first,	int	second);

										void	quickSortUtil(std::vector<int>	&arr,	int	lower,	int	upper);
	
public:
										QuickSort(std::vector<int>	&data);
										virtual	void	sort();
};
	
QuickSort::QuickSort(std::vector<int>	&data):
										arr(data)
{
}
	
void	QuickSort::sort()
{
										int	size	=	arr.size();
										quickSortUtil(arr,	0,	size	-	1);
}
	
void	QuickSort::quickSortUtil(std::vector<int>	&arr,	int	lower,	int	upper)
{
										if	(upper	<=	lower)
										{
																			return;
										}
										int	pivot	=	arr[lower];
										int	start	=	lower;
										int	stop	=	upper;
	
										while	(lower	<	upper)
										{
																			while	(arr[lower]	<=	pivot	&&	lower	<	upper)
																			{
																													lower++;
																			}
																			while	(arr[upper]	>	pivot	&&	lower	<=	upper)
																			{
																													upper--;
																			}
																			if	(lower	<	upper)
																			{
																													swap(arr,	upper,	lower);
																			}
										}
										swap(arr,	upper,	start);	//	upper	is	the	pivot	position
	
										quickSortUtil(arr,	start,	upper	-	1);	//	pivot	-1	is	the	upper	for	left	sub	array.
										quickSortUtil(arr,	upper	+	1,	stop);	//	pivot	+	1	is	the	lower	for	right	sub	array.
}
	
void	QuickSort::swap(std::vector<int>	&arr,	int	first,	int	second)
{
										int	temp	=	arr[first];
										arr[first]	=	arr[second];
										arr[second]	=	temp;
}
	
int	main6()
{
										std::vector<int>	data	=	{	3,	4,	2,	1,	6,	5,	7,	8,	1,	1	};
										QuickSort	*qs	=	new	QuickSort(data);

										qs->sort();
	
										for	(int	i	=	0;	i	<	data.size();	i++)
										{
																			std::cout	<<	data[i]	<<	"	";
										}
	
										return	0;
}

	
·									The	space	required	by	Quick-Sort	is	very	less,	only	O(nlogn)	additional	space	is	required.
·									Quicksort	is	not	a	stable	sorting	technique,	so	it	might	change	the	occurrence	of	two	similar

elements	in	the	list	while	sorting.
	
Complexity	Analysis:
Worst	Case	Time	Complexity O(n2)
Best	Case	Time	Complexity O(nlogn)
Average	Time	Complexity O(nlogn)
Space	Complexity O(nlogn)
Stable	Sorting No

	

Quick	Select	

Quick	select	is	very	similar	to	Quick-Sort	in	place	of	sorting	the	whole	array	we	just	ignore	the
one-half	of	the	array	at	each	step	of	Quick-Sort	and	just	focus	on	the	region	of	array	on	which	we
are	interested.
	
Example	6.8:
class	QuickSelect
{
private:
										static	void	swap(std::vector<int>	&arr,	int	first,	int	second);
										static	void	quickSelect(std::vector<int>	&arr,	int	lower,	int	upper,	int	k);
public:
										static	void	quickSelect(std::vector<int>	&arr,	int	k);
};
	
void	QuickSelect::quickSelect(std::vector<int>	&arr,	int	lower,	int	upper,	int	k)
{
										if	(upper	<=	lower)
																			return
	
										int	pivot	=	arr[lower];
										int	start	=	lower;
										int	stop	=	upper;
	
										while	(lower	<	upper)
										{
																			while	(arr[lower]	<=	pivot	&&	lower	<	upper)
																													lower++;
	
																			while	(arr[upper]	>	pivot	&&	lower	<=	upper)
																													upper--;
	
																			if	(lower	<	upper)
																			{
																													swap(arr,	upper,	lower);
																			}
										}
										swap(arr,	upper,	start);	//	upper	is	the	pivot	position
	
										if	(k	<	upper)
										{
																			quickSelect(arr,	start,	upper	-	1,	k);	//	pivot	-1	is	the	upper	for	left	sub	array.
										}
																																																																																																																		
										if	(k	>	upper)
										{
																			quickSelect(arr,	upper	+	1,	stop,	k);	//	pivot	+	1	is	the	lower	for	right	sub	array.
										}																	
}
	
void	QuickSelect::quickSelect(std::vector<int>	&arr,	int	k)
{
										quickSelect(arr,	0,	arr.size()	-	1,	k);
}

	
int	main()
{
										std::vector<int>	data	=	{	3,	4,	2,	1,	6,	5,	7,	8,	10,	9	};
										QuickSelect::quickSelect(data,	5);
										std::cout	<<	"value	at	index	5	is	:	"	<<	data[4];
										return	0;
}
	
Complexity	Analysis:
Worst	Case	Time	Complexity O(n2)
Best	Case	Time	Complexity O(logn)
Average	Time	Complexity O(logn)
Space	Complexity O(nlogn)
	

Bucket	Sort

Bucket	sort	is	the	simplest	and	most	efficient	type	of	sorting.	Bucket	sort	has	a	strict	requirement
of	a	predefined	range	of	data.
	
Like,	sort	how	many	people	are	in	which	age	group.	We	know	that	the	age	of	people	can	vary
between	1	and	130.

Example	6.9:
class	BucketSort
{
private:
										std::vector<int>&	data;
										int	range	=	0;
										int	lowerRange	=	0;
public:
										BucketSort(std::vector<int>	&arr,	int	lowerRange,	int	upperRange);
										virtual	void	sort();
};
	
BucketSort::BucketSort(std::vector<int>	&arr,	int	lowerRange,	int	upperRange):
										data(arr)
{
										range	=	upperRange	-	lowerRange;
										this->lowerRange	=	lowerRange;
}
	
void	BucketSort::sort()
{
										int	i,	j;
										int	size	=	data.size();
										std::vector<int>	count(range);
	
										for	(i	=	0;	i	<	range;	i++)
																			count[i]	=	0;
	
										for	(i	=	0;	i	<	size;	i++)
																			count[data[i]	-	lowerRange]++;
	

										j	=	0;
										for	(i	=	0;	i	<	range;	i++)
										{
																			for	(;	count[i]	>	0;	count[i]--)
																													data[j++]	=	i	+	lowerRange;
										}
}
	
int	main()
{
										std::vector<int>	data	=	{	23,	24,	22,	21,	26,	25,	27,	28,	21,	21	};
	
										BucketSort	*m	=	new	BucketSort(data,	20,	30);
										m->sort();
										for	(int	i	=	0;	i	<	data.size();	i++)
										{
																			std::cout	<<	data[i]	<<	"	";
										}
										return	0;
}
	
Analysis:

·									We	have	created	a	count	array	to	store	counts.
·									Count	array	elements	are	initialized	to	zero.
·									Index	corresponding	to	input	array	is	incremented.
·									Finally,	the	information	stored	in	count	array	is	saved	in	the	array.

	
Complexity	Analysis:
Data	structure Array
Worst	case	performance O(n+k)
Average	case	performance O(n+k)
Worst	case	Space	Complexity O(k)
Where	k	-	is	number	of	distinct	elements.
n	–	is	the	total	number	of	elements	in	array.
	

Generalized	Bucket	Sort

	
There	are	cases	when	the	element	falling	into	a	bucket	are	not	unique	but	are	in	the	same	range.
When	we	want	to	sort	an	index	of	a	name,	we	can	use	the	pointer	bucket	to	store	names.
	

The	buckets	are	already	sorted	and	the	elements	inside	each	bucket	can	be	kept	sorted	by	using	an
Insertion-Sort	algorithm.	We	are	leaving	this	generalized	bucket	sort	implementation	to	the	reader
of	this	book.	The	similar	data	structure	will	be	defined	in	the	coming	chapter	of	Hash-Table	using
separate	chaining.
	

Heap-Sort

Heap-Sort	we	have	already	studied	in	the	Heap	chapter.
	
Complexity	Analysis:
Data	structure Array
Worst	case	performance O(nlogn)
Average	case	performance O(nlogn)
Worst	case	Space	Complexity O(1)
	

Tree	Sorting

In-order	traversal	of	the	binary	search	tree	can	also	be	seen	as	a	sorting	algorithm.	We	will	see
this	in	binary	search	tree	section	of	tree	chapter.
	
Complexity	Analysis:
Worst	Case	Time	Complexity O()
Best	Case	Time	Complexity O(nlogn)
Average	Time	Complexity O(nlogn)
Space	Complexity O(n)
Stable	Sorting Yes
	

External	Sort	(External	Merge-Sort)

When	data	need	to	be	sorted	is	huge.	Moreover,	it	is	not	possible	to	load	it	completely	in	memory
(RAM)	for	such	a	dataset	we	use	external	sorting.	Specific	data	is	sorted	using	external	Merge-
Sort	algorithm.	First	data	are	picked	in	chunks	and	it	is	sorted	in	memory.	Then	this	sorted	data	is
written	back	to	disk.	Whole	data	are	sorted	in	chunks	using	Merge-Sort.	Now	we	need	to
combine	these	sorted	chunks	into	final	sorted	data.
	
Then	we	create	queues	for	the	data,	which	will	read	from	the	sorted	chunks.	Each	chunk	will	have
its	own	queue.	We	will	pop	from	this	queue	and	these	queues	are	responsible	for	reading	from	the
sorted	chunks.	Let	us	suppose	we	have	K	different	chunks	of	sorted	data	each	of	length	M.
	
The	third	step	is	using	a	Min-Heap,	which	will	take	input	data	from	each	of	this	queue.	It	will
take	one	element	from	each	queue.	The	minimum	value	is	taken	from	the	Heap	and	added	to	the
final	sorted	element	output.	Then	queue	from	which	this	min	element	is	inserted	in	the	heap	will
again	popped	and	one	more	element	from	that	queue	is	added	to	the	Heap.	Finally,	when	the	data
is	exhausted	from	some	queue	that	queue	is	removed	from	the	input	list.	Finally,	we	will	get	a
sorted	data	came	out	from	the	heap.
	
We	can	optimize	this	process	further	by	adding	an	output	buffer,	which	will	store	data	coming	out
of	Heap	and	will	do	a	limited	number	of	the	write	operation	in	the	final	Disk	space.

	
Note:	No	one	will	be	asking	to	implement	external	sorting	in	an	interview,	but	it	is	good	to	know
about	it.
	

Comparisons	of	the	various	sorting	algorithms.

Sort Average	Time Best	Time Worst	Time Space Stable

Bubble-Sort O(n2) O(n2) O(n2) O(1) yes

Modified
Bubble-Sort O(n2) O(n) O(n2) O(1) yes

Selection-Sort O(n2) O(n2) O(n2) O(1) No

Insertion-Sort O(n2) O(n) O(n2) O(1) Yes

Heap-Sort O(n	*	log(n)) O(n	*	log(n)) O(n	*	log(n)) O(1) No

Merge-Sort O(n	*	log(n)) O(n	*	log(n)) O(n	*	log(n)) O(n) Yes

Quick-Sort O(n	*	log(n)) O(n	*	log(n)) O(n2)
O(n)	worst	case
O(log(n))	average
case

No

Bucket	Sort O(n	k) O(n	k) O(n	k) O(n	k) Yes
	

http://www.cprogramming.com/tutorial/computersciencetheory/sorting1.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting1.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
http://www.cprogramming.com/tutorial/computersciencetheory/sorting2.html
http://www.cprogramming.com/tutorial/computersciencetheory/heapsort.html
http://www.cprogramming.com/tutorial/computersciencetheory/mergesort.html
http://www.cprogramming.com/tutorial/computersciencetheory/quicksort.html

Selection	of	Best	Sorting	Algorithm

No	sorting	algorithm	is	perfect.	Each	of	them	has	their	own	pros	and	cons.	Let	us	read	one	by	one:
	
Quick-Sort:	When	you	do	not	need	a	stable	sort	and	average	case	performance	matters	more	than
worst-case	performance.	When	data	is	random,	we	prefer	the	Quick-Sort.	Average	case	Time
Complexity	of	Quick-Sort	is	O(nlogn)	and	worst-case	Time	Complexity	is	O(n2).	Space
Complexity	of	Quick-Sort	is	O(logn)	auxiliary	storage,	which	is	stack	space	used	in	recursion.
	
Merge-Sort:	When	you	need	a	stable	sort	and	Time	Complexity	of	O(nlogn),	Merge-Sort	is
used.	In	general,	Merge-Sort	is	slower	than	Quick-Sort	because	of	lot	of	copy	happening	in	the
merge	phase.	There	are	two	uses	of	Merge-Sort	when	we	want	to	merge	two	sorted	linked	lists
and	Merge-Sort	is	used	in	external	sorting.
	
Heap-Sort:	When	you	do	not	need	a	stable	sort	and	you	care	more	about	worst-case	performance
than	average	case	performance.	It	has	guaranteed	to	be	O(nlogn),	and	uses	O(1)	auxiliary	space,
meaning	that	you	will	not	unexpectedly	run	out	of	memory	on	very	large	inputs.
	
Insertion-Sort:	When	we	need	a	stable	sort,	When	N	is	guaranteed	to	be	small,	including	as	the
base	case	of	a	Quick-Sort	or	Merge-Sort.	Worst-case	Time	Complexity	is	O(n2),	it	has	a	very
small	constant,	so	for	smaller	input	size	it	performs	better	than	Merge-Sort	or	Quick-Sort.	It	is
also	useful	when	the	data	is	already	pre-sorted	in	this	case	its	best	case	running	time	is	O(N).
	
Bubble-Sort:	Where	we	know	the	data	is	very	nearly	sorted.	Say	only	two	elements	are	out	of
place.	Then	in	one	pass,	Bubble	Sort	will	make	the	data	sorted	and	in	the	second	pass,	it	will	see
everything	is	sorted	and	then	exit.	Only	takes	2	passes	of	the	array.
	
Selection-Sort:	Best	Worst	Average	Case	running	time	all	O(n2).	It	is	only	useful	when	you	want
to	do	something	quick.	They	can	be	used	when	you	are	just	doing	some	prototyping.
	
Counting-Sort:	When	you	are	sorting	data	within	a	limited	range.
	
Radix-Sort:	When	log(N)	is	significantly	larger	than	K,	where	K	is	the	number	of	radix	digits.
	
Bucket-Sort:	When	your	input	is	more	or	less	uniformly	distributed.
	
Note:	A	stable	sort	is	one	that	has	guaranteed	not	to	reorder	elements	with	identical	keys.
	

http://stackoverflow.com/questions/1933759/when-is-each-sorting-algorithm-used

Exercise

1.				Given	a	text	file,	print	the	words	with	their	frequency.	Now	print	the	kth	word	in	term	of
frequency.
Hint:
a.				First	approach	may	be	you	can	use	the	sorting	and	return	the	kth	element.
b.				Second	approach:	You	can	use	the	kth	element	quick	select	algorithm.
c.				Third	approach	You	can	use	Hashtable	or	Trie	to	keep	track	of	the	frequency.	Use	Heap

to	get	the	Kth	element.
	
2.				Given	K	input	streams	of	number	in	sorted	order.	You	need	to	make	a	single	output	stream,

which	contains	all	the	elements	of	the	K	streams	in	sorted	order.	The	input	streams	support
ReadNumber()	operation	and	output	stream	support	WriteNumber()	operation.
Hint:
a.				Read	the	first	number	from	all	the	K	input	streams	and	add	them	to	a	Priority	Queue.

(Nodes	should	keep	track	of	the	input	stream)
b.				Dequeue	one	element	at	a	time	from	PQ,	Put	this	element	value	to	the	output	stream,

Read	the	input	stream	number	and	from	the	same	input	stream	add	another	element	to	PQ.
c.				If	the	stream	is	empty,	just	continue
d.				Repeat	till	PQ	is	empty.

	
3.				Given	K	sorted	arrays	of	fixed	length	M.	Also,	given	a	final	output	array	of	length	M*K.

Give	an	efficient	algorithm	to	merge	all	the	arrays	into	the	final	array,	without	using	any	extra
space.
Hint:	you	can	use	the	end	of	the	final	array	to	make	PQ.
	

4.				How	will	you	sort	1	PB	numbers?	1	PB	=	1000	TB.
	

5.				What	will	be	the	complexity	of	the	above	solution?
	

6.				Any	other	improvement	on	question	3	solution	if	the	number	of	cores	is	eight.
	

7.				Given	an	integer	array	that	support	three	function	findMin,	findMax,	findMedian.	Sort	the
array.
	

8.				Given	a	pile	of	patient	files	of	High,	mid	and	low	priority.	Sort	these	files	such	that	higher
priority	comes	first,	then	mid	and	last	low	priority.
Hint:	Bucket	sort.
	

9.				Write	pros	and	cons	of	Heap-Sort,	Merge-Sort	and	Quick-Sort.
	

10.		Given	a	rotated	-	sorted	array	of	N	integer	s.	(The	array	was	sorted	then	it	was	rotated
some	arbitrary	number	of	times.)	If	all	the	elements	in	the	array	were	unique	the	find	the
index	of	some	value.
Hint:	Modified	binary	search
	

11.		In	the	problem	9,	what	if	there	are	repetitions	allowed	and	you	need	to	find	the	index	of	the
first	occurrence	of	the	element	in	the	rotated-sorted	array.
	

12.		Merge	two	sorted	arrays	into	a	single	sorted	array.
Hint:	Use	merge	method	of	Merge-Sort.
	

13.		Given	an	array	contain	0’s	and	1’s,	sort	the	array	such	that	all	the	0’s	come	before	1’s.
	

14.		Given	an	array	of	English	characters,	sort	the	array	in	linear	time.
	

15.		Write	a	method	to	sort	an	array	of	strings	so	that	all	the	anagrams	are	next	to	each	other.
Hint:
a.				Loop	through	the	array.
b.				For	each	word,	sort	the	characters	and	add	it	to	the	hash	map	with	keys	as	sorted	word

and	value	as	the	original	word.	At	the	end	of	the	loop,	you	will	get	all	anagrams	as	the
value	to	a	key	(which	is	sorted	by	its	constituent	chars).	

c.				Iterate	over	the	hashmap,	print	all	values	of	a	key	together	and	then	move	to	the	next
key.	
Space	Complexity:	O(n),	Time	Complexity:	O(n)

	

CHAPTER	7:	LINKED	LIST

Introduction

Let	us	suppose	we	have	an	array	that	contains	following	five	elements	1,	2,	4,	5,	6.	We	want	to
insert	a	new	element	with	value	“3”	in	between	“2”	and	“4”.	In	the	array,	we	cannot	do	so	easily.
We	need	to	create	another	array	that	is	long	enough	to	store	the	current	values	and	one	more	space
for	“3”.	Then	we	need	to	copy	these	elements	in	the	new	space.	This	copy	operation	is	inefficient.
To	remove	this	fixed	length	constraint	linked	list	is	used.
	

Linked	List

The	linked	list	is	a	list	of	items,	called	nodes.	Nodes	have	two	parts,	value	part	and	link	part.
Value	part	is	used	to	stores	the	data.	The	value	part	of	the	node	can	be	either	a	basic	data-type
like	an	integer	or	it	can	be	some	other	data-type	like	an	object	of	some	class.
The	link	part	is	a	pointer,	which	is	used	to	store	addresses	of	the	next	element	in	the	list.

	

Types	of	Linked	list

There	are	different	types	of	linked	lists.	The	main	difference	among	them	is	how	their	nodes	refer
to	each	other.
	

Singly	Linked	List

Each	node	(Except	the	last	node)	has	a	pointer	to	the	next	node	in	the	linked	list.	The	link	portion
of	node	contains	the	address	of	the	next	node.	The	link	portion	of	the	last	node	contains	the	value
null.

	

Doubly	Linked	list

The	node	in	this	type	of	linked	list	has	pointer	to	both	previous	and	the	next	node	in	the	list.

Circular	Linked	List

This	type	is	similar	to	the	singly	linked	list	except	that	the	last	element	have	pointer	to	the	first
node	of	the	list.	The	link	portion	of	the	last	node	contains	the	address	of	the	first	node.

	

The	various	parts	of	linked	list

1.				Head:	Head	is	a	pointer	that	holds	the	address	of	the	first	node	in	the	linked	list.
2.				Nodes:	Items	in	the	linked	list	are	called	nodes.
3.				Value:	The	data	that	is	stored	in	each	node	of	the	linked	list.
4.				Link:	Link	part	of	the	node	is	used	to	store	the	pointer	of	other	node.

a.				We	will	use	“next”	and	“prev”	to	store	address	of	next	or	previous	node.
	

Singly	Linked	List

	
Let	us	look	an	example	of	Node,	in	this	example,	the	value	is	of	type	int,	but	it	can	be	of	some
other	data-type.	The	link	is	named	as	next	in	the	below	class	definition.
	

Note:	For	a	singly	linked,	we	should	always	test	these	three	test	cases	before	saying	that	the	code
is	good	to	go.	This	one	node	and	zero	node	case	is	used	to	catch	boundary	cases.	It	is	always	to
take	care	of	these	cases	before	submitting	code	to	the	reviewer.

·									Zero	element	/	Empty	linked	list.
·									One	element	/	Just	single	node	case.
·									General	case.

	
The	various	basic	operations	that	we	can	perform	on	linked	lists,	many	of	these	operations
require	list	traversal:

·									Insert	an	element	in	the	list,	this	operation	is	used	to	create	a	linked	list.
·									Print	various	elements	of	the	list.
·									Search	an	element	in	the	list.
·									Delete	an	element	from	the	list.
·									Reverse	a	linked	list.

	
You	cannot	use	Head	to	traverse	a	linked	list	because	if	we	use	the	head,	then	we	lose	the	nodes
of	the	list.	We	have	to	use	another	pointer	variable	of	same	data-type	as	the	head.
	
Example	7.1
class	LinkedList
{
private:
										struct	Node
										{
																			int	value;
																			Node	*next;
																			Node(int	v,	Node	*n);
																			Node(int	v);
										};

	
										Node	*head;
										int	list_size;
	
public:
										virtual	int	size();
										virtual	bool	isEmpty();
										virtual	int	peek();
										virtual	void	addHead(int	value);
										virtual	int	removeHead();
										//	Other	linked	list	methods.
};
	
LinkedList::Node::Node(int	v,	Node	*n)
{
										value	=	v;
										next	=	n;
}
	
LinkedList::Node::Node(int	v)
{
										value	=	v;
										next	=	nullptr;
}
	

Size	of	List

Example	7.2
int	LinkedList::size()
{
										return	list_size;
}
	

IsEmpty	function

Example	7.3
bool	LinkedList::isEmpty()
{
										return	list_size	==	0;
}
	

Insert	element	in	linked	list

An	element	can	be	inserted	into	a	linked	list	in	various	orders.	Some	of	the	example	cases	are
mentioned	below:

1.				Insertion	of	an	element	at	the	start	of	linked	list
2.				Insertion	of	an	element	at	the	end	of	linked	list
3.				Insertion	of	an	element	at	the	Nth	position	in	linked	list
4.				Insert	element	in	sorted	order	in	linked	list

	

Insert	element	at	the	Head

Example	7.4
void	LinkedList::addHead(int	value)
{
										head	=	new	Node(value,	head);
										list_size++;
}
	
Analysis:							

·									We	need	to	create	a	new	node	with	the	value	passed	to	the	function	as	argument.
·									While	creating	the	new	node	the	pointer	stored	in	head	is	passed	as	argument	to	Node()

constructor	so	that	the	next	pointer	will	start	pointing	to	the	node	or	null	which	is	pointed	by
the	head	node.

·									The	newly	created	node	will	become	head	of	the	linked	list.
·									Size	of	the	list	is	increased	by	one.

	

Insertion	of	an	element	at	the	end

	

Example	7.5:	Insertion	of	an	element	at	the	end	of	linked	list
void	LinkedList::addTail(int	value)
{
										Node	*newNode	=	new	Node(value,	nullptr);
										Node	*curr	=	head;
	
										if	(head	==	nullptr)
																			head	=	newNode;
	
										while	(curr->next	!=	nullptr)
																			curr	=	curr->next;
	
										curr->next	=	newNode;
}
	
Analysis:

·									New	node	is	created	and	the	value	is	stored	inside	it.	If	the	list	is	empty.	Next	of	new	node
is	null.

·									If	list	is	empty	then	head	will	store	the	pointer	to	the	newly	created	node.
·									If	list	is	not	empty	then	we	will	traverse	until	the	end	of	the	list.
·									Finally,	new	node	is	added	to	the	end	of	the	list.

	
Note:	This	operation	is	un-efficient	as	each	time	you	want	to	insert	an	element	you	have	to
traverse	to	the	end	of	the	list.	Therefore,	the	complexity	of	creation	of	the	list	is	n2.	So	how	to
make	it	efficient	we	have	to	keep	track	of	the	last	element	by	keeping	a	tail	pointer.	Therefore,	if
it	is	required	to	always	insert	element	at	the	end	of	linked	list,	then	we	will	keep	track	of	the	tail
pointer	also.
	

Traversing	Linked	List

	
Example	7.6:	Print	various	elements	of	a	linked	list
void	LinkedList::print()
{
										Node	*temp	=	head;
										while	(temp	!=	nullptr)
										{
																			std::cout	<<	temp->value	<<	"	";
																			temp	=	temp->next;
										}
										std::cout	<<	std::endl;
}
	
Analysis:
We	will	store	the	pointer	of	head	in	a	temporary	variable	temp.
We	will	traverse	the	list	by	printing	the	content	of	list	and	always	incrementing	the	temp	by
pointing	to	its	next	node.
	

Complete	code	for	list	creation	and	printing	the	list.

	
Example	7.7:
int	main()
{
										LinkedList	ll	=	LinkedList();
										ll.addHead(1);
										ll.addHead(2);
										ll.addHead(3);
										ll.addHead(3);
										ll.print();
}
	
Analysis:
New	instance	of	linked	list	is	created.
Various	elements	are	added	to	list	by	calling	addHead()	method.
Finally	all	the	content	of	list	is	printed	to	screen	by	calling	print()	method.
	

Sorted	Insert

Insert	an	element	in	sorted	order	in	linked	list	given	Head	pointer

	
Example	7.8:
void	LinkedList::sortedInsert(int	value)

{
										Node	*newNode	=	new	Node(value,	nullptr);
										Node	*curr	=	head;
	
										if	(curr	==	nullptr	||	curr->value	>	value)
										{
																			newNode->next	=	head;
																			head	=	newNode;
																			return;
										}
										while	(curr->next	!=	nullptr	&&	curr->next->value	<	value)
										{
																			curr	=	curr->next;
										}
	
										newNode->next	=	curr->next;
										curr->next	=	newNode;
}
	
Analysis:

·									Head	of	the	list	is	stored	in	curr.
·									A	new	empty	node	of	the	linked	list	is	created.	And	initialized	by	storing	an	argument

value	into	its	value.	Next	of	the	node	will	point	to	null.
·									It	checks	if	the	list	was	empty	or	if	the	value	stored	in	the	first	node	is	greater	than	the

current	value.	Then	this	new	created	node	will	be	added	to	the	start	of	the	list.	And	head
need	to	be	modified.

·									We	iterate	through	the	list	to	find	the	proper	position	to	insert	the	node.
·									Finally,	the	node	will	be	added	to	the	list.

	

Search	Element	in	a	Linked-List

Search	element	in	linked	list.	Given	a	head	pointer	and	value.	Returns	true	if	value	found	in	list
else	returns	false.
	
Note:	Search	in	a	single	linked	list	can	be	only	done	in	one	direction.	Since	all	elements	in	the
list	have	pointer	to	the	next	item	in	the	list.	Therefore,	traversal	of	linked	list	is	linear	in	nature.
	
Example	7.9:
bool	LinkedList::isPresent(int	data)
{
										Node	*temp	=	head;
										while	(temp	!=	nullptr)
										{
																			if	(temp->value	==	data)
																			{
																													return	true;
																			}
																			temp	=	temp->next;
										}
										return	false;
}

	
Analysis:

·									We	create	a	temp	variable	which	will	point	to	head	of	the	list.
·									Using	a	while	loop	we	will	iterate	through	the	list.
·									Value	of	each	element	of	list	is	compared	with	the	given	value.	If	value	is	found,	then	the

function	will	return	true.
·									If	the	value	is	not	found,	then	false	will	be	returned	from	the	function	in	the	end.

	

Delete	element	from	the	linked	list

Delete	First	element	in	a	linked	list.

	
Example	7.10:
int	LinkedList::removeHead()
{
										if	(isEmpty())
										{
																			throw	std::exception("EmptyListException");
										}
										Node*	deleteMe	=	head;
										int	value	=	head->value;
										head	=	head->next;
										list_size--;
										delete	deleteMe;
										return	value;
}
	
Analysis:

·									First,	we	need	to	check	if	the	list	is	already	empty.	If	list	is	already	empty	then	throw
EmptyListException.

·									If	list	is	not	empty	then	store	the	value	of	head	node	in	a	temporary	variable	value.
·									Store	the	address	of	head	inside	deleteMe	variable.
·									We	need	to	find	the	second	element	of	the	list	and	assign	it	as	head	of	the	linked	list.
·									Since	the	first	node	is	no	longer	part	of	the	list	we	need	to	free	it.
·									Decrease	the	size	of	list.	And	return	the	value	stored	in	temporary	variable	value.

Delete	node	from	the	linked	list	given	its	value.

	

	
Example	7.11:
bool	LinkedList::deleteNode(int	delValue)
{
										Node	*temp	=	head;
										Node	*deleteMe;
										if	(isEmpty())
																			throw	std::exception("EmptyListException");
	
										if	(delValue	==	head->value)

										{
																			deleteMe	=	head;
																			head	=	head->next;
																			list_size--;
																			delete	deleteMe;
																			return	true;
										}
										while	(temp->next	!=	nullptr)
										{
																			if	(temp->next->value	==	delValue)
																			{
																													deleteMe	=	temp->next;
																													temp->next	=	temp->next->next;
																													list_size--;
																													delete	deleteMe;
																													return	true;
																			}
																			temp	=	temp->next;
										}
										return	false;
}
	
Analysis:

·									If	the	list	is	empty	then	we	will	return	false	from	the	function	which	indicate	that	the
deleteNode()	method	executed	with	error.

·									If	the	node	that	need	to	be	deleted	is	head	node	than	head	pointer	need	to	be	modified	and
point	to	the	next	node.

·									In	a	while	loop	we	will	traverse	the	link	list	and	try	to	find	the	node	that	need	to	be
deleted.	If	the	node	is	found	that	we	will	point	its	pointer	to	the	node	next	to	it.	And	return
true.

·									If	the	node	is	not	found	then	we	will	return	false.
	

Delete	all	the	occurrence	of	particular	value	in	linked	list.

	
Example	7.12:
void	LinkedList::deleteNodes(int	delValue)
{
										Node	*currNode	=	head;
										Node	*nextNode;
										Node	*deleteMe;
										while	(currNode	!=	nullptr	&&	currNode->value	==	delValue)	//	first	node
										{
																			deleteMe	=	head;
																			head	=	currNode->next;
																			currNode	=	head;
																			delete	deleteMe;
										}
										while	(currNode	!=	nullptr)
										{
																			nextNode	=	currNode->next;
																			if	(nextNode	!=	nullptr	&&	nextNode->value	==	delValue)
																			{

																													deleteMe	=	currNode->next;
																													currNode->next	=	nextNode->next;
																													delete	deleteMe;
																			}
																			else
																													currNode	=	nextNode;
										}
}
	
Analysis:

·									In	the	first	while	loop	will	delete	all	the	nodes	that	are	at	the	front	of	the	list,	which	have
valued	equal	to	delValue.	In	this,	we	need	to	update	head	of	the	list.

·									In	the	second	while	loop,	we	will	be	deleting	all	the	nodes	that	are	having	value	equal	to
the	delValue.	Remember	that	we	are	not	returning	even	though	we	have	the	node	that	we	are
looking	for.

	

Delete	a	single	linked	list

Delete	all	the	elements	of	a	linked	list.
	
Example	7.13:
void	LinkedList::freeList()
{
										Node*	curr	=	head;
										Node*	next;
										while	(curr	!=	nullptr)
										{
																			next	=	curr->next;
																			delete	curr;
																			curr	=	next;
										}
										head	=	nullptr;
										list_size	=	0;
}
	
	Analysis:
Traverse	the	list	and	delete	all	the	nodes	one	by	one.	Then	point	head	to	nullptr.
	

Reverse	a	linked	list.

Reverse	a	singly	linked	List	iteratively	using	three	Pointers
	
Example	7.14:
void	LinkedList::reverse()
{
										Node	*curr	=	head;
										Node	*prev	=	nullptr;
										Node	*next	=	nullptr;
										while	(curr	!=	nullptr)
										{

																			next	=	curr->next;
																			curr->next	=	prev;
																			prev	=	curr;
																			curr	=	next;
										}
										head	=	prev;
}
	
	Analysis:	The	list	is	iterated.	Make	next	equal	to	the	next	node	of	the	curr	node.	Make	curr
node’s	next	point	to	prev	node.	Then	iterate	the	list	by	making	prev	point	to	curr	and	curr	point	to
next.
	

Recursively	Reverse	a	singly	linked	List

	
Example	7.15:	Recursively	Reverse	a	singly	linked	list	arguments	are	current	node	and	its	next
value.
LinkedList::Node	*LinkedList::reverseRecurseUtil(Node	*currentNode,	Node	*nextNode)
{
										Node	*ret;
										if	(currentNode	==	nullptr)
																			return	nullptr;
									
										if	(currentNode->next	==	nullptr)
										{
																			currentNode->next	=	nextNode;
																			return	currentNode;
										}
										ret	=	reverseRecurseUtil(currentNode->next,	currentNode);
										currentNode->next	=	nextNode;
										return	ret;
}
	
void	LinkedList::reverseRecurse()
{
										head	=	reverseRecurseUtil(head,	nullptr);
}
	
	Analysis:

·									ReverseRecurse	function	will	call	a	reverseRecurseUtil	function	to	reverse	the	list	and	the
pointer	returned	by	the	reverseRecurseUtil	will	be	the	head	of	the	reversed	list.

·									The	current	node	will	point	to	the	nextNode	that	is	previous	node	of	the	old	list.
	
Note:	A	linked	list	can	be	reversed	using	two	approaches	the	one	approach	is	by	using	three
pointers.	The	Second	approach	is	using	recursion	both	are	linear	solution,	but	three-pointer
solution	is	more	efficient.
	

Remove	duplicates	from	the	linked	list

Remove	duplicate	values	from	the	linked	list.	The	linked	list	is	sorted	and	it	contains	some

duplicate	values,	you	need	to	remove	those	duplicate	values.	(You	can	create	the	required	linked
list	using	SortedInsert()	function)
	
Example	7.16:
void	LinkedList::removeDuplicate()
{
										Node	*curr	=	head;
										Node	*deleteMe;
										while	(curr	!=	nullptr)
										{
																			if	(curr->next	!=	nullptr	&&	curr->value	==	curr->next->value)
																			{
																													deleteMe	=	curr->next;
																													curr->next	=	curr->next->next;
																													delete	deleteMe;
																			}
																			else
																			{
																													curr	=	curr->next;
																			}
										}
}
	
Analysis:	While	loop	is	used	to	traverse	the	list.	Whenever	there	is	a	node	whose	value	is	equal
to	the	next	node’s	value,	that	current	node	next	will	point	to	the	next	of	next	node.	Which	will
remove	the	next	node	from	the	list.
	

Copy	List	Reversed

Copy	the	content	of	linked	list	in	another	linked	list	in	reverse	order.	If	the	original	linked	list
contains	elements	in	order	1,2,3,4,	the	new	list	should	contain	the	elements	in	order	4,3,2,1.
	
Example	7.17:
LinkedList*	LinkedList::CopyListReversed()
{
										Node	*tempNode	=	nullptr;
										Node	*tempNode2	=	nullptr;
										Node	*curr	=	head;
										while	(curr	!=	nullptr)
										{
																			tempNode2	=	new	Node(curr->value,	tempNode);
																			curr	=	curr->next;
																			tempNode	=	tempNode2;
										}
										LinkedList*	ll2	=	new	LinkedList();
										ll2->head	=	tempNode;
										return	ll2;
}
	
	Analysis:	Traverse	the	list	and	add	the	node’s	value	to	the	new	list.	Since	the	list	is	traversed	in
the	forward	direction	and	each	node’s	value	is	added	to	another	list	so	the	formed	list	is	reverse
of	the	given	list.

	

Copy	the	content	of	given	linked	list	into	another	linked	list

Copy	the	content	of	given	linked	list	into	another	linked	list.	If	the	original	linked	list	contains
elements	in	order	1,2,3,4,	the	new	list	should	contain	the	elements	in	order	1,2,3,4.
	
Example	7.18:
LinkedList*	LinkedList::CopyList()
{
										Node	*headNode	=	nullptr;
										Node	*tailNode	=	nullptr;
										Node	*tempNode	=	nullptr;
										Node	*curr	=	head;
										if	(curr	==	nullptr)
										{
																			LinkedList*	ll2	=	new	LinkedList();
																			ll2->head	=	nullptr;
																			return	ll2;
										}
	
										headNode	=	new	Node(curr->value,	nullptr);
										tailNode	=	headNode;
										curr	=	curr->next;
	
										while	(curr	!=	nullptr)
										{
																			tempNode	=	new	Node(curr->value,	nullptr);
																			tailNode->next	=	tempNode;
																			tailNode	=	tempNode;
																			curr	=	curr->next;
										}
										LinkedList*	ll2	=	new	LinkedList();
										ll2->head	=	headNode;
										return	ll2;
}
	
Analysis:	Traverse	the	list	and	add	the	node’s	value	to	new	list,	but	this	time	always	at	the	end	of
the	list.	Since	the	list	is	traversed	in	the	forward	direction	and	each	node’s	value	is	added	to	the
end	of	another	list.	Therefore,	the	formed	list	is	same	as	the	given	list.
	

Compare	List

Example	7.19:	Compare	two	list	given
bool	LinkedList::compareList(LinkedList*	ll)
{
										return	compareList(head,	ll->head);
}
	
bool	LinkedList::compareList(Node	*head1,	Node	*head2)
{
										if	(head1	==	nullptr	&&	head2	==	nullptr)
										{
																			return	true;

										}
										else	if	((head1	==	nullptr)	||	(head2	==	nullptr)	||	(head1->value	!=	head2->value))
										{
																			return	false;
										}
										else
										{
																			return	compareList(head1->next,	head2->next);
										}
}
	
Analysis:

·									List	is	compared	recursively.	Moreover,	if	we	reach	the	end	of	the	list	and	both	the	lists
are	null.	Then	both	the	lists	are	equal	and	so	return	true.

·									List	is	compared	recursively.	If	either	one	of	the	list	is	empty	or	the	value	of
corresponding	nodes	is	unequal,	then	this	function	will	return	false.

·									Recursively	calls	compare	list	function	for	the	next	node	of	the	current	nodes.
	

Find	Length

Example	7.20:	Find	the	length	of	given	linked	list.
int	LinkedList::findLength()
{
										Node	*curr	=	head;
										int	count	=	0;
										while	(curr	!=	nullptr)
										{
																			count++;
																			curr	=	curr->next;
										}
										return	count;
}
	
Analysis:	Length	of	linked	list	is	found	by	traversing	the	list	till	we	reach	the	end	of	list
	

Nth	Node	from	Beginning

Example	7.21:	:	Find	Nth	node	from	beginning
int	LinkedList::nthNodeFromBegining(int	index)
{
										if	(index	>	size()	||	index	<	1)
										{
																			throw	std::exception("TooFewNodes");
										}
										int	count	=	0;
										Node	*curr	=	head;
										while	(curr	!=	nullptr	&&	count	<	index	-	1)
										{
																			count++;
																			curr	=	curr->next;
										}
										return	curr->value;

}
	
Analysis:	Nth	node	can	be	found	by	traversing	the	list	N-1	number	of	time	and	then	return	the
node.	If	list	does	not	have	N	elements	method	return	null.
	

Nth	Node	from	End

Example	7.22:	Find	Nth	node	from	end
int	LinkedList::nthNodeFromEnd(int	index)
{
										int	size	=	findLength();
										int	startIndex;
										if	(size	!=	0	&&	size	<	index)
										{
																			throw	std::exception("TooFewNodes");
										}
										startIndex	=	size	-	index	+	1;
										return	nthNodeFromBegining(startIndex);
}
	
Analysis:	First	find	the	length	of	list,	then	nth	node	from	end	will	be	(length	–	nth	+1)	node	from
the	beginning.
	
Example	7.23:
int	LinkedList::nthNodeFromEnd2(int	index)
{
										int	count	=	1;
										Node	*forward	=	head;
										Node	*curr	=	head;
										while	(forward	!=	nullptr	&&	count	<=	index)
										{
																			count++;
																			forward	=	forward->next;
										}
	
										if	(forward	==	nullptr)
										{
																			throw	std::exception("TooFewNodes");
										}
	
										while	(forward	!=	nullptr)
										{
																			forward	=	forward->next;
																			curr	=	curr->next;
										}
										return	curr->value;
}
	
Analysis:	Second	approach	is	to	use	two	pointers	one	is	N	steps	/	nodes	ahead	of	the	other	when
forward	pointer	reach	the	end	of	the	list	then	the	backward	pointer	will	point	to	the	desired	node.
	

Loop	Detect

Find	if	there	is	a	loop	in	a	linked	list.
Hash	table	solution:

1.				Traverse	through	the	list.
2.				If	the	current	node	is,	not	there	in	the	Hash-Table	then	insert	it	into	the	Hash-Table.
3.				If	the	current	node	is	already	in	the	Hashtable	then	we	have	a	loop.

	

Loop	Detect

We	have	to	find	if	there	is	a	loop	in	the	linked	list.	There	are	two	ways	to	find	if	there	is	a	loop	in
a	linked	list.	One	way	is	called	“Slow	pointer	and	fast	pointer	approach	(SPFP)”	the	other	is
called	“Reverse	list	approach”.	Both	approaches	are	linear	in	nature,	but	still	in	SPFP	approach,
we	do	not	require	to	modify	the	linked	list	so	it	is	preferred.

Find	if	there	is	a	loop	in	a	linked	list.	If	there	is	a	loop,	then	return	1	if	not,	then	return	0.	Use
slow	pointer	fast	pointer	approach.
	

Example	7.24:	Find	if	there	is	a	loop	in	a	linked	list.	If	there	is	a	loop,	then	return	true	if	not,	then
return	false.
bool	LinkedList::loopDetect()
{

										Node	*slowPtr;
										Node	*fastPtr;
										slowPtr	=	fastPtr	=	head;
	
										while	(fastPtr->next	!=	nullptr	&&	fastPtr->next->next	!=	nullptr)
										{
																			slowPtr	=	slowPtr->next;
																			fastPtr	=	fastPtr->next->next;
																			if	(slowPtr	==	fastPtr)
																			{
																													std::cout	<<	"loop	found"	<<	std::endl;
																													return	true;
																			}
										}
										std::cout	<<	"loop	not	found"	<<	std::endl;
										return	false;
}
	
	Analysis:

·									The	list	is	traversed	with	two	pointers,	one	is	slow	pointer	and	another	is	fast	pointer.
Slow	pointer	always	moves	one-step.	Fast	pointer	always	moves	two	steps.	If	there	is	no
loop,	then	control	will	come	out	of	while	loop.	So	return	false.

·									If	there	is	a	loop,	then	there	came	a	point	in	a	loop	where	the	fast	pointer	will	come	and
try	to	pass	slow	pointer	and	they	will	meet	at	a	point.	When	this	point	arrives,	we	come	to
know	that	there	is	a	loop	in	the	list.	So	return	true.

	

Reverse	List	Loop	Detect

Example	7.25:	Find	if	there	is	a	loop	in	a	linked	list.	Use	reverse	list	approach.
bool	LinkedList::reverseListLoopDetect()
{
										Node	*tempHead	=	head;
										reverse();
										if	(tempHead	==	head)
										{
																			reverse();
																			std::cout	<<	"loop	found"	<<	std::endl;
																			return	true;
										}
										else
										{
																			reverse();
																			std::cout	<<	"loop	not	found"	<<	std::endl;
																			return	false;
										}
}
	
	Analysis:

·									Store	pointer	of	the	head	of	list	in	a	temp	variable.
·									Reverse	the	list
·									Compare	the	reversed	list	head	pointer	to	the	current	list	head	pointer.
·									If	the	head	of	reversed	list	and	the	original	list	are	same	then	reverse	the	list	back	and

return	true.
·									If	the	head	of	the	reversed	list	and	the	original	list	are	not	same,	then	reverse	the	list	back

and	return	false.	Which	means	there	is	no	loop.
	

Loop	Type	Detect

Find	if	there	is	a	loop	in	a	linked	list.	If	there	is	no	loop,	then	return	0,	if	there	is	loop	return	1,	if
the	list	is	circular	then	2.	Use	slow	pointer	fast	pointer	approach.
	
Example	7.26:
int	LinkedList::loopTypeDetect()
{
										Node	*slowPtr;
										Node	*fastPtr;
										slowPtr	=	fastPtr	=	head;
	
										while	(fastPtr->next	!=	nullptr	&&	fastPtr->next->next	!=	nullptr)
										{
																			if	(head	==	fastPtr->next	||	head	==	fastPtr->next->next)
																			{
																													std::cout	<<	"circular	list	loop	found"	<<	std::endl;
																													return	2;
																			}
																			slowPtr	=	slowPtr->next;
																			fastPtr	=	fastPtr->next->next;
																			if	(slowPtr	==	fastPtr)
																			{
																													std::cout	<<	"loop	found"	<<	std::endl;
																													return	1;
																			}
										}
										std::cout	<<	"loop	not	found"	<<	std::endl;
										return	0;
}
	
Analysis:	This	program	is	same	as	the	loop	detect	program	only	if	it	is	a	circular	list	than	the	fast
pointer	reach	the	slow	pointer	at	the	head	of	the	list	this	means	that	there	is	a	loop	at	the	beginning
of	the	list.
	

Remove	Loop

Example	7.27:	Given	there	is	a	loop	in	linked	list	remove	the	loop.
void	LinkedList::removeLoop()
{
										Node	*loopPoint	=	loopPointDetect();
										if	(loopPoint	==	nullptr)
										{
																			return;
										}
	
										Node	*firstPtr	=	head;
										if	(loopPoint	==	head)

										{
																			while	(firstPtr->next	!=	head)
																			{
																													firstPtr	=	firstPtr->next;
																			}
																			firstPtr->next	=	nullptr;
																			return;
										}
	
										Node	*secondPtr	=	loopPoint;
										while	(firstPtr->next	!=	secondPtr->next)
										{
																			firstPtr	=	firstPtr->next;
																			secondPtr	=	secondPtr->next;
										}
										secondPtr->next	=	nullptr;
}
	
LinkedList::Node	*LinkedList::loopPointDetect()
{
										Node	*slowPtr;
										Node	*fastPtr;
										slowPtr	=	fastPtr	=	head;
	
										while	(fastPtr->next	!=	nullptr	&&	fastPtr->next->next	!=	nullptr)
										{
																			slowPtr	=	slowPtr->next;
																			fastPtr	=	fastPtr->next->next;
																			if	(slowPtr	==	fastPtr)
																			{
																													return	slowPtr;
																			}
										}
										return	nullptr;
}
	
Analysis:

·									Loop	through	the	list	by	two	pointer,	one	fast	pointer	and	one	slow	pointer.	Fast	pointer
jumps	two	nodes	at	a	time	and	slow	pointer	jump	one	node	at	a	time.	The	point	where	these
two	pointer	intersect	is	a	point	in	the	loop.

·									If	that	intersection	point	is	head	of	the	list,	this	is	a	circular	list	case	and	you	need	to	again
traverse	through	the	list	and	make	the	node	before	head	point	to	null.

·									In	the	other	case	you	need	to	use	two	pointer	variable	one	start	from	head	and	another	start
form	loop	point.	They	both	will	meet	at	the	point	of	loop.	(You	can	mathematically	prove	it
;))

	

Find	Intersection

Example	7.28:
LinkedList::Node	*LinkedList::findIntersection(Node	*head,	Node	*head2)
{
										int	l1	=	0;
										int	l2	=	0;
										Node	*tempHead	=	head;
										Node	*tempHead2	=	head2;
										while	(tempHead	!=	nullptr)
										{
																			l1++;
																			tempHead	=	tempHead->next;
										}
										while	(tempHead2	!=	nullptr)
										{
																			l2++;
																			tempHead2	=	tempHead2->next;
										}
	
										int	diff;
										if	(l1	<	12)
										{
																			Node	*temp	=	head;
																			head	=	head2;
																			head2	=	temp;
																			diff	=	l2	-	l1;
										}
										else
										{
																			diff	=	l1	-	l2;
										}
	
										for	(;	diff	>	0;	diff--)
										{
																			head	=	head->next;
										}
										while	(head	!=	head2)
										{
																			head	=	head->next;
																			head2	=	head2->next;
										}
	
										return	head;
}
	
Analysis:	Find	length	of	both	the	lists.	Find	the	difference	of	length	of	both	the	lists.	Increment	the
longer	list	by	diff	steps,	and	then	increment	both	the	lists	and	get	the	intersection	point.
	

Doubly	Linked	List

In	a	Doubly	Linked	list,	there	are	two	pointers	in	each	node.	These	pointers	are	called	prev	and
next.	The	prev	pointer	of	the	node	will	point	to	the	node	before	it	and	the	next	pointer	will	point
to	the	node	next	to	the	given	node.

Let	us	look	an	example	of	Node,	in	this	example,	the	value	is	of	type	int,	but	it	can	be	of	some
other	data-type.	The	two	link	pointers	are	prev	and	next.

Search	in	a	single	linked	list	can	be	only	done	in	one	direction.	Since	all	elements	in	the	list	has
pointer	to	the	next	item	in	the	list.	Therefore,	traversal	of	linked	list	is	linear	in	nature.
	
In	a	doubly	linked	list,	we	keep	track	of	both	head	of	the	linked	list	and	tail	of	linked	list.
	
For	a	doubly	linked	list	linked	list,	there	are	few	cases	that	we	need	to	keep	in	mind	while
coding:

·									Zero	element	case	(head	and	tail	both	can	be	modified)
·									Only	element	case	(head	and	tail	both	can	be	modified)
·									First	element	(head	can	be	modified)
·									General	case
·									The	last	element	(tail	can	be	modified)

	
Note:	Any	program	which	is	likely	to	change	head	pointer	or	tail	pointer	is	to	be	passed	as	a
double	pointer,	which	is	pointing	to	head	or	tail	pointer.
	

Basic	operations	of	Linked	List

Basic	operation	of	a	linked	list	requires	traversing	a	linked	list.	The	various	operations	that	we
can	perform	on	linked	lists,	many	of	these	operations	require	list	traversal:

·									Insert	an	element	in	the	list,	this	operation	is	used	to	create	a	linked	list.
·									Print	various	elements	of	the	list.
·									Search	an	element	in	the	list.

·									Delete	an	element	from	the	list.
·									Reverse	a	linked	list.

	
For	any	linked	list	there	are	only	three	cases	zero	element,	one	element,	and	generally
For	doubly	linked	list,	we	have	a	few	more	things
1.				null	values	(head	and	tail	both	can	be	modified)
2.				Only	element	(head	and	tail	both	can	be	modified)
3.				First	element	(head	can	be	modified)
4.				General	case
5.				Last	element	(tail	can	be	modified)
	
Example	7.29:
class	DoublyLinkedList
{
private:
										struct	Node
										{
																			int	value;
																			Node	*next;
																			Node	*prev;
																			Node(int	v,	Node	*nxt,	Node	*prv);
																			Node(int	v);
										};
	
										Node	*head;
										Node	*tail;
										int	list_size;
	
public:
										DoublyLinkedList();
										virtual	int	size();
										virtual	bool	isEmpty();
										virtual	int	peek();
										virtual	void	addHead(int	value);
										virtual	int	removeHead();
										//	Other	methods.
};
	
DoublyLinkedList::Node::Node(int	v,	Node	*nxt,	Node	*prv)
{
										value	=	v;
										next	=	nxt;
										prev	=	prv;
}
	
DoublyLinkedList::Node::Node(int	v)
{
										value	=	v;
										next	=	nullptr;
										prev	=	nullptr;
}
	
Example	7.30:
DoublyLinkedList::DoublyLinkedList()

{
										list_size	=	0;
}
	
Example	7.31:
int	DoublyLinkedList::size()
{
										return	list_size;
}
	
Example	7.32:
bool	DoublyLinkedList::isEmpty()
{
										return	list_size	==	0;
}
	
Example	7.33:
int	DoublyLinkedList::peek()
{
										if	(isEmpty())
																			throw	std::exception("EmptyListException");
	
										return	head->value;
}
	

Insert	at	Head

Example	7.34:
void	DoublyLinkedList::addHead(int	value)
{

										Node	*newNode	=	new	Node(value,	nullptr,	nullptr);
										if	(list_size	==	0)
										{
																			tail	=	head	=	newNode;
										}
										else
										{
																			head->prev	=	newNode;
																			newNode->next	=	head;
																			head	=	newNode;
										}
										list_size++;
}
	
Analysis:	Insert	in	double	linked	list	is	same	as	insert	in	a	singly	linked	list.

·									Create	a	node	assign	null	to	prev	pointer	of	the	node.
·									If	the	list	is	empty	then	tail	and	head	will	point	to	the	new	node.
·									If	the	list	is	not	empty	then	prev	of	head	will	point	to	newNode	and	next	of	newNode	will

point	to	head.	Then	head	will	be	modified	to	point	to	newNode.
	

Insert	at	Tail

Example	7.35:	Insert	an	element	at	the	end	of	the	list.
void	DoublyLinkedList::addTail(int	value)
{
										Node	*newNode	=	new	Node(value,	nullptr,	nullptr);
										if	(list_size	==	0)
										{
																			head	=	tail	=	newNode;
										}
										else
										{
																			newNode->prev	=	tail;
																			tail->next	=	newNode;
																			tail	=	newNode;
										}
										list_size++;
}
	
Analysis:	Find	the	proper	location	of	the	node	and	add	it	to	the	list.	Manage	next	and	prev	pointer
of	the	node	so	that	list	always	remain	double	linked	list.
	

Remove	Head	of	doubly	linked	list

Example	7.36:
int	DoublyLinkedList::removeHead()
{
										if	(isEmpty())
																			throw	std::exception("EmptyListException");
										Node*	deleteMe;
										int	value	=	head->value;
										deleteMe	=	head;

										head	=	head->next;
	
										if	(head	==	nullptr)
										{
																			tail	=	nullptr;
										}
										else
										{
																			head->prev	=	nullptr;
										}
										delete	deleteMe;
										list_size--;
										return	value;
}
	
Analysis:

·									If	the	list	is	empty	then	EmptyListException	will	be	raised.
·									Now	head	will	point	to	its	next.
·									If	head	is	null	then	this	was	single	node	list	case	tail	also	need	to	be	made	null.
·									In	all	the	general	case	head.	Prev	will	be	set	to	null.
·									Size	of	list	will	be	reduced	by	one	and	value	of	node	is	returned.

	

Delete	a	node	given	its	value

Example	7.37:	Delete	node	in	linked	list
bool	DoublyLinkedList::removeNode(int	key)
{
										Node	*curr	=	head;
										Node	*deleteMe;
										if	(curr	==	nullptr)	//	empty	list
																			return	false;
	
										if	(curr->value	==	key)	//	head	is	the	node	with	value	key.
										{
																			deleteMe	=	curr;
																			curr	=	curr->next;
																			delete	deleteMe;
																			list_size--;
																			if	(curr	!=	nullptr)
																			{
																													head	=	curr;
																													head->prev	=	nullptr;
																			}
																			else
																													tail	=	nullptr;	//	only	one	element	in	list.
																			return	true;
										}
	
										while	(curr->next	!=	nullptr)
										{
																			if	(curr->next->value	==	key)
																			{
																													deleteMe	=	curr->next;
																													curr->next	=	curr->next->next;
																													if	(curr->next	==	nullptr)	//	last	element	case.
																																						tail	=	curr;
																													else
																																						curr->next->prev	=	curr;
																													delete	deleteMe;
																													list_size--;
																													return	true;
																			}
																			curr	=	curr->next;
										}
										return	false;
}
	
Analysis:	Traverse	the	list	find	the	node	which	need	to	be	deleted.	Then	remove	it	and	adjust	next
pointer	of	the	node	previous	to	it	and	prev	pointer	of	the	node	next	to	it.
	

Search	list

Example	7.38:
bool	DoublyLinkedList::isPresent(int	key)
{
										Node	*temp	=	head;
										while	(temp	!=	nullptr)
										{
																			if	(temp->value	==	key)
																													return	true;
																			temp	=	temp->next;
										}
										return	false;
}
	
Analysis:	Traverse	the	list	and	find	if	some	value	is	resent	or	not.
	

Free	List

Example	7.39:
void	DoublyLinkedList::freeList()
{
										Node*	curr	=	head;
										Node*	next;
										while	(curr	!=	nullptr)
										{
																			next	=	curr->next;
																			delete	curr;
																			curr	=	next;
										}
										tail	=	head	=	nullptr;
										list_size	=	0;
}
	
Analysis:	We	need	to	traverse	the	list	and	free	each	node	one	by	one.	Finally	head	and	tail
pointers	point	to	nullptr.
	

Print	list

Example	7.40:
void	DoublyLinkedList::print()
{
										Node	*temp	=	head;
										while	(temp	!=	nullptr)
										{
																			std::cout	<<	temp->value	<<	std::string("	");
																			temp	=	temp->next;
										}
}
	
Analysis:	Traverse	the	list	and	print	the	value	of	each	node.
	

Reverse	a	doubly	linked	List	iteratively

	
Example	7.41:
void	DoublyLinkedList::reverseList()
{
										Node	*curr	=	head;
										Node	*tempNode;
										while	(curr	!=	nullptr)
										{
																			tempNode	=	curr->next;
																			curr->next	=	curr->prev;
																			curr->prev	=	tempNode;
																			if	(curr->prev	==	nullptr)
																			{
																													tail	=	head;
																													head	=	curr;
																													return;
																			}
																			curr	=	curr->prev;
										}
										return;
}
	
Analysis:	Traverse	the	list.	Swap	the	next	and	prev.	then	traverse	to	the	direction	curr->prev	that
was	next	before	swap.	If	you	reach	the	end	of	the	list	then	set	head	and	tail.
	

Copy	List	Reversed

	
Example	7.42:	Copy	the	content	of	the	list	into	another	list	in	reverse	order.
void	DoublyLinkedList::copyListReversed(DoublyLinkedList&	dll)
{
										Node	*curr	=	head;
										while	(curr	!=	nullptr)
										{
																			dll.addHead(curr->value);
																			curr	=	curr->next;
										}
}
	
Analysis:

·									Create	a	DoublyLinkedList	class	object	dll.
·									Traverse	through	the	list	and	copy	the	value	of	the	nodes	into	another	list	by	calling

addHead()	method.
·									Since	the	new	nodes	are	added	to	the	head	of	the	list,	the	new	list	formed	have	nodes

order	reverse	there	by	making	reverse	list.
	

Copy	List

Example	7.43:
void	DoublyLinkedList::copyList(DoublyLinkedList&	dll)

{
										Node	*curr	=	head;
										while	(curr	!=	nullptr)
										{
																			dll.addTail(curr->value);
																			curr	=	curr->next;
										}
}
	
Analysis:

·									Create	a	DoublyLinkedList	class	object	dll.
·									Traverse	through	the	list	and	copy	the	value	of	the	nodes	into	another	list	by	calling

addTail()	method.
·									Since	the	new	nodes	are	added	to	the	tail	of	the	list,	the	new	list	formed	have	nodes	order

same	as	the	original	list.
	

Sorted	Insert

	
Example	7.44:
void	DoublyLinkedList::sortedInsert(int	value)
{
										Node	*temp	=	new	Node(value);
										Node	*curr	=	head;
										if	(curr	==	nullptr)	//	first	element
										{
																			head	=	temp;
																			tail	=	temp;
										}
	
										if	(head->value	<=	value)	//	at	the	begining
										{
																			temp->next	=	head;
																			head->prev	=	temp;
																			head	=	temp;
										}
	
										while	(curr->next	!=	nullptr	&&	curr->next->value	>	value)	//	treversal

										{
																			curr	=	curr->next;
										}
	
										if	(curr->next	==	nullptr)	//	at	the	end
										{
																			tail	=	temp;
																			temp->prev	=	curr;
																			curr->next	=	temp;
										}
										else	///	all	other
										{
																			temp->next	=	curr->next;
																			temp->prev	=	curr;
																			curr->next	=	temp;
																			temp->next->prev	=	temp;
										}
}
	
Analysis:

·									We	need	to	consider	only	element	case	first.	In	this	case,	both	head	and	tail	will	modify.
·									Then	we	need	to	consider	the	case	when	head	will	be	modified	when	new	node	is	added

to	the	beginning	of	the	list.
·									Then	we	need	to	consider	general	cases
· 						Finally,	we	need	to	consider	the	case	when	tail	will	be	modified.

	

Remove	Duplicate

	
Example	7.45:	Consider	the	list	as	sorted	remove	the	repeated	value	nodes	of	the	list.
void	DoublyLinkedList::removeDuplicate()
{
										Node	*curr	=	head;
										Node	*deleteMe;
										while	(curr	!=	nullptr)
										{
																			if	((curr->next	!=	nullptr)	&&	curr->value	==	curr->next->value)
																			{
																													deleteMe	=	curr->next;
																													curr->next	=	deleteMe->next;
																													curr->next->prev	=	curr;
																													if	(deleteMe	==	tail)
																													{
																																						tail	=	curr;
																													}
																													delete	deleteMe;
																			}
																			else
																			{
																													curr	=	curr->next;
																			}
										}
}
	

Analysis:
·									Remove	duplicate	is	same	as	single	linked	list	case.
·									Head	can	never	modify	only	the	tail	can	modify	when	the	last	node	is	removed.

	

Circular	Linked	List

This	type	is	similar	to	the	singly	linked	list	except	that	the	last	element	points	to	the	first	node	of
the	list.	The	link	portion	of	the	last	node	contains	the	address	of	the	first	node.
	

Example	7.46:
class	CircularLinkedList
{
private:
										struct	Node
										{
																			int	value;
																			Node	*next;
																			Node(int	v,	Node	*n);
																			Node(int	v);
										};
	
private:
										Node	*tail;
										int	list_size;
	
public:
										CircularLinkedList();
										virtual	int	size();
										virtual	bool	isEmpty();
										virtual	int	peek();
										virtual	void	addHead(int	value);
										virtual	int	removeHead();
										//	Other	methods.
};
	
CircularLinkedList::Node::Node(int	v,	Node	*n)
{
										value	=	v;
										next	=	n;
}
	
CircularLinkedList::Node::Node(int	v)
{
										value	=	v;
										next	=	nullptr;
}
	
CircularLinkedList::CircularLinkedList()
{
										list_size	=	0;
}
	

int	CircularLinkedList::size()
{
										return	list_size;
}
	
bool	CircularLinkedList::isEmpty()
{
										return	list_size	==	0;
}
	
int	CircularLinkedList::peek()
{
										if	(isEmpty())
																			throw	std::exception("EmptyListException");
	
										return	tail->next->value;
}
	
Analysis:	In	the	circular	linked	list,	we	just	need	the	pointer	to	the	tail	node.	As	head	node	can	be
easily	reached	from	tail	node.	Size(),	isEmpty()	and	peek()	functions	remains	the	same.
	

Insert	element	in	front

Example	7.47:
`void	CircularLinkedList::addHead(int	value)
{
										Node	*temp	=	new	Node(value,	nullptr);
										if	(isEmpty())
										{
																			tail	=	temp;
																			temp->next	=	temp;
										}
										else
										{
																			temp->next	=	tail->next;
																			tail->next	=	temp;
										}
										list_size++;
}
	
int	main()
{
										CircularLinkedList	*ll	=	new	CircularLinkedList();
										ll->addHead(1);
										ll->addHead(2);
										ll->addHead(3);
										ll->addHead(1);
										ll->addHead(2);
										ll->addHead(3);
										ll->print();
										return	0;
}
	
Analysis:

·									First,	we	create	node	with	given	value	and	its	next	pointing	to	null.
·									If	the	list	is	empty	then	tail	of	the	list	will	point	to	it.	And	the	next	of	node	will	point	to

itself.
·									If	the	list	is	not	empty	then	the	next	of	the	new	node	will	be	next	of	the	tail.	And	tail	next

will	start	pointing	to	the	new	node.
·									Thus,	the	new	node	is	added	to	the	head	of	the	list.
·									The	demo	program	create	an	instance	of	CircularLinkedList	class.	Then	add	some	value	to

it	and	finally	print	the	content	of	the	list.
	

Insert	element	at	the	end

Example	7.48:
void	CircularLinkedList::addTail(int	value)
{
										Node	*temp	=	new	Node(value,	nullptr);
										if	(isEmpty())
										{
																			tail	=	temp;
																			temp->next	=	temp;
										}
										else
										{
																			temp->next	=	tail->next;
																			tail->next	=	temp;
																			tail	=	temp;
										}
										list_size++;
}
	
	
Analysis:	Adding	node	at	the	end	is	same	as	adding	at	the	beginning.	Just	need	to	modify	tail
pointer	in	place	of	the	head	pointer.
	

Remove	element	in	the	front

	
Example	7.49:
int	CircularLinkedList::removeHead()
{
										if	(isEmpty())
										{
																			throw	std::exception("EmptyListException");
										}
										int	value	=	tail->next->value;
										Node*	delMe	=	tail->next;
										if	(tail	==	tail->next)
										{
																			tail	=	nullptr;
										}
										else
										{
																			tail->next	=	tail->next->next;
										}
delete	delMe;
										list_size--;
										return	value;
}
	
Analysis:

·									If	the	list	is	empty	then	exception	will	be	thrown.	Then	the	value	stored	in	head	is	stored
in	local	variable	value.

·									If	tail	is	equal	to	its	next	node	that	means	there	is	only	one	node	in	the	list	so	the	tail	will
become	null.

·									In	all	the	other	cases,	the	next	of	tail	will	point	to	next	element	of	the	head.

·									Finally,	the	value	is	returned.
	

Search	element	in	the	list

Example	7.50:
bool	CircularLinkedList::isPresent(int	data)
{
										Node	*temp	=	tail;
										for	(int	i	=	0;	i	<	list_size;	i++)
										{
																			if	(temp->value	==	data)
																													return	true;
	
																			temp	=	temp->next;
										}
										return	false;
}
	
Analysis:	Iterate	through	the	list	to	find	if	particular	value	is	there	or	not.
	

Print	the	content	of	list

Example	7.51:
void	CircularLinkedList::print()
{
										if	(isEmpty())
																			return;
										Node	*temp	=	tail->next;
										while	(temp	!=	tail)
										{
																			std::cout	<<	temp->value	<<	"	";
																			temp	=	temp->next;
										}
										std::cout	<<	temp->value;
}
	
Analysis:	In	circular	list,	end	of	list	is	not	there	so	we	cannot	check	with	null.	In	place	of	null,
tail	is	used	to	check	end	of	the	list.
	

Delete	List

Example	7.52:
void	CircularLinkedList::freeList()
{
										if	(tail	==	nullptr)
																			return;
	
										Node*	curr	=	tail->next;
										Node*	next;
										while	(curr	!=	tail)
										{
																			next	=	curr->next;

																			delete	curr;
																			curr	=	next;
										}
										delete	tail;
										tail	=	nullptr;
										list_size	=	0;
}
	
Analysis:	The	pointer	to	the	list	is	tail.	By	making	tail	null,	the	whole	list	is	deleted.
	

Delete	a	node	given	its	value

	
Example	7.53:
bool	CircularLinkedList::removeNode(int	key)
{
										if	(isEmpty())

																			return	false;
	
										Node	*prev	=	tail;
										Node	*curr	=	tail->next;
										Node	*head	=	tail->next;
	
										if	(curr->value	==	key)	//	head	and	single	node	case.
										{
																			if	(curr	==	curr->next)	//	single	node	case
																			{
																													tail	=	nullptr;
																			}
																			else	//	head	case
																			{
																													tail->next	=	tail->next->next;
																			}
																			delete	curr;
																			return	true;
										}
	
										prev	=	curr;
										curr	=	curr->next;
	
										while	(curr	!=	head)
										{
																			if	(curr->value	==	key)
																			{
																													if	(curr	==	tail)
																													{
																																						tail	=	prev;
																													}
																													prev->next	=	curr->next;
																													delete	curr;
																													return	true;
																			}
																			prev	=	curr;
																			curr	=	curr->next;
										}
	
										return	false;
}
	
Analysis:	Find	the	node	that	need	to	free.	Only	difference	is	that	while	traversing	the	list	end	of
list	is	tracked	by	the	head	pointer	in	place	of	null.
	

Copy	List	Reversed

Example	7.54:
CircularLinkedList*	CircularLinkedList::copyListReversed()
{
										CircularLinkedList	*cl	=	new	CircularLinkedList();
										Node	*curr	=	tail->next;
										Node	*head	=	curr;
	
										if	(curr	!=	nullptr)
										{
																			cl->addHead(curr->value);

																			curr	=	curr->next;
										}
										while	(curr	!=	head)
										{
																			cl->addHead(curr->value);
																			curr	=	curr->next;
										}
										return	cl;
}
	
Analysis:	The	list	is	traversed	and	nodes	are	added	to	new	list	at	the	beginning.	There	by	making
the	new	list	reverse	of	the	given	list.
	

Copy	List

Example	7.55:
CircularLinkedList*	CircularLinkedList::copyList()
{
										CircularLinkedList	*cl	=	new	CircularLinkedList();
										Node	*curr	=	tail->next;
										Node	*head	=	curr;
	
										if	(curr	!=	nullptr)
										{
																			cl->addTail(curr->value);
																			curr	=	curr->next;
										}
										while	(curr	!=	head)
										{
																			cl->addTail(curr->value);
																			curr	=	curr->next;
										}
										return	cl;
}
	
Analysis:
List	is	traversed	and	nodes	are	added	to	the	new	list	at	the	end.	There	by	making	the	list	whose
value	are	same	as	the	input	list.
	

Doubly	Circular	list

1.				For	any	linked	list	there	are	only	three	cases	zero	element,	one	element,	general	case
2.				To	doubly	linked	list	we	have	a	few	more	things

a)					null	values
b)					Only	element	(it	generally	introduces	an	if	statement	with	null)
c)					Always	an	“if”	before	“while”.	Which	will	check	from	this	head.
d)					General	case	(check	with	the	initial	head	kept)
e)					Avoid	using	recursion	solutions	it	makes	life	harder

	

Example	7.56:
class	DoublyCircularLinkedList
{
private:
										struct	Node
										{
																			int	value;
																			Node	*next;
																			Node	*prev;
																			Node(int	v,	Node	*nxt,	Node	*prv);
																			Node(int	v);
										};
	
										Node	*head	=	nullptr;
										Node	*tail	=	nullptr;
										int	list_size	=	0;
	
public:
										DoublyCircularLinkedList();
										virtual	int	size();
										virtual	bool	isEmpty();
										virtual	int	peekHead();
										virtual	void	addHead(int	value);
										virtual	int	removeHead();
										//	Other	Methods.
};
	
DoublyCircularLinkedList::Node::Node(int	v,	Node	*nxt,	Node	*prv)
{
										value	=	v;
										next	=	nxt;
										prev	=	prv;
}
	
DoublyCircularLinkedList::Node::Node(int	v)

{
										value	=	v;
										next	=	this;
										prev	=	this;
}
	
DoublyCircularLinkedList::DoublyCircularLinkedList()
{
										list_size	=	0;
}
	
int	DoublyCircularLinkedList::size()
{
										return	list_size;
}
	
bool	DoublyCircularLinkedList::isEmpty()
{
										return	list_size	==	0;
}
	
int	DoublyCircularLinkedList::peekHead()
{
										if	(isEmpty())
										{
																			throw	std::exception("EmptyListException");
										}
										return	head->value;
}
	

Search	value

Example	7.57:
bool	DoublyCircularLinkedList::isPresent(int	key)
{
										Node	*temp	=	head;
										if	(head	==	nullptr)
																			return	false;
	
										do
										{
																			if	(temp->value	==	key)
																			{
																													return	true;
																			}
																			temp	=	temp->next;
										}	while	(temp	!=	head);
	
										return	false;
}
	
Analysis:	Traverse	through	the	list	and	see	if	given	key	is	present	or	not.	We	use	do..while	loop
as	initial	state	is	our	termination	state	too.
	

Delete	list

Example	7.58:
void	DoublyCircularLinkedList::freeList()
{
										if	(head	==	nullptr)
																			return;
										Node*	curr	=	head->next;
										Node*	next;
										while	(curr	!=	head)
										{
																			next	=	curr->next;
																			delete	curr;
																			curr	=	next;
										}
										delete	head;
										head	=	nullptr;
										tail	=	nullptr;
										list_size	=	0;
}
	
Analysis:	Traverse	through	the	list	and	free	each	node	one	by	one	and	finally	assign	the	head	and
tail	to	nullptr.
	

Print	List

Example	7.59:
void	DoublyCircularLinkedList::print()
{
										if	(isEmpty())
																			return;
										Node	*temp	=	head;
										do
										{
																			std::cout	<<	temp->value	<<	"	";
																			temp	=	temp->next;
										}	while	(temp	!=	nullptr);
}
	
Analysis:	Traverse	the	list	and	print	its	content.	Do..while	is	used	as	we	want	to	terminate	when
temp	is	head.	And	want	to	process	head	node	once.
	

Insert	Node	at	head

Example	7.60:	Insert	value	at	the	front	of	the	list.
void	DoublyCircularLinkedList::addHead(int	value)
{
										Node	*newNode	=	new	Node(value);
										if	(list_size	==	0)
										{
																			tail	=	head	=	newNode;
																			newNode->next	=	newNode;
																			newNode->prev	=	newNode;
										}
										else

										{
																			newNode->next	=	head;
																			newNode->prev	=	head->prev;
																			head->prev	=	newNode;
																			newNode->prev->next	=	newNode;
																			head	=	newNode;
										}
										list_size++;
}
	
Analysis:

·									A	new	node	is	created	and	if	the	list	is	empty	then	head	and	tail	will	point	to	it.	The	newly
created	newNode’s	next	and	prev	also	point	to	newNode.

·									If	the	list	is	not	empty	then	the	pointers	are	adjusted	and	a	new	node	is	added	to	the	front
of	the	list.	Only	head	need	to	be	changed	in	this	case.

·									Size	of	the	list	is	increased	by	one.
	

Insert	Node	at	tail

Example	7.61:
void	DoublyCircularLinkedList::addTail(int	value)
{
										Node	*newNode	=	new	Node(value,	nullptr,	nullptr);
										if	(list_size	==	0)
										{
																			head	=	tail	=	newNode;
																			newNode->next	=	newNode;
																			newNode->prev	=	newNode;
										}
										else
										{
																			newNode->next	=	tail->next;
																			newNode->prev	=	tail;
																			tail->next	=	newNode;
																			newNode->next->prev	=	newNode;
																			tail	=	newNode;
										}
										list_size++;
}
	
Analysis:

·									A	new	node	is	created	and	if	the	list	is	empty	then	head	and	tail	will	point	to	it.	The	newly
created	newNode’s	next	and	prev	also	point	to	newNode.

·									If	the	list	is	not	empty	then	the	pointers	are	adjusted	and	a	new	node	is	added	to	the	end	of
the	list.	Only	tail	need	to	be	changed	in	this	case.

·									Size	of	the	list	is	increased	by	one.
	

Delete	head	node

Example	7.62:

int	DoublyCircularLinkedList::removeHead()
{
										if	(list_size	==	0)
																			throw	std::exception("EmptyListException");
	
										int	value	=	head->value;
										list_size--;
	
										if	(list_size	==	0)
										{
																			delete	head;
																			head	=	nullptr;
																			tail	=	nullptr;
																			return	value;
										}
										Node	*next	=	head->next;
										next->prev	=	tail;
										tail->next	=	next;
										delete	head;
										head	=	next;
										return	value;
}
	
Analysis:	Delete	node	in	a	doubly	circular	linked	list	is	just	same	as	delete	node	in	a	circular
linked	list.	Just	few	extra	next	pointer	need	to	be	adjusted.
	

Delete	tail	node

Example	7.63:
int	DoublyCircularLinkedList::removeTail()
{
										if	(list_size	==	0)
																			throw	std::exception("EmptyListException");
	
										int	value	=	tail->value;
										list_size--;
										if	(list_size	==	0)
										{
																			delete	tail;
																			head	=	tail	=	nullptr;
																			return	value;
										}
	
										Node	*prev	=	tail->prev;
										prev->next	=	head;
										head->prev	=	prev;
										delete	tail;
										tail	=	prev;
										return	value;
}
	
Analysis:	Delete	node	in	a	doubly	circular	linked	list	is	just	same	as	delete	node	in	a	circular
linked	list.	Just	few	extra	prev	pointer	need	to	be	adjusted.
	

Exercise

1)				Insert	an	element	kth	position	from	the	start	of	linked	list.	Return	1	if	success	and	if	list	is
not	long	enough,	then	return	-1.
Hint:	Take	a	pointer	advance	it	K	steps	forward,	and	then	inserts	the	node.
	

2)				Insert	an	element	kth	position	from	the	end	of	linked	list.	Return	1	if	success	and	if	list	is
not	long	enough,	then	return	-1.
Hint:	Take	a	pointer	advance	it	K	steps	forward,	then	take	another	pointer	and	advance
both	of	them	simultaneously,	so	that	when	the	first	pointer	reach	the	end	of	a	linked	list	that
is	the	point	where	you	need	to	insert	the	node.
	

3)				Consider	there	is	a	loop	in	a	linked	list,	Write	a	program	to	remove	loop	if	there	is	a	loop
in	this	linked	list.

	
4)				In	the	above	SearchList	program	return,	the	count	of	how	many	instances	of	same	value

found	else	if	value	not	found	then	return	0.	For	example,	if	the	value	passed	is	“4”.	The
elements	in	the	list	are	1,2,4,3	&	4.	The	program	should	return	2.
Hint:	In	place	of	return	1	in	the	above	program	increment	a	counter	and	then	return	counter
at	the	end.
	

5)				If	linked	list	having	a	loop	is	given.	Count	the	number	of	nodes	in	the	linked	list
	
	

6)				We	were	supposed	to	write	the	complete	code	for	the	addition	of	polynomials	using	Linked
Lists.	This	takes	time	if	you	do	not	have	it	by	heart,	so	revise	it	well.
	

7)				Given	two	linked	lists.	We	have	to	find	that	whether	the	data	in	one	is	reverse	that	of	data
in	another.	No	extra	space	should	be	used	and	traverse	the	linked	lists	only	once.
	

8)				Find	the	middle	element	in	a	singly	linked	list.	Tell	the	complexity	of	your	solution.
Hint:-

·									Approach	1:	find	the	length	of	linked	list.	Then	find	the	middle	element	and	return	it.
·									Approach	2:	use	two	pointer	one	will	move	fast	and	one	will	move	slow	make	sure

you	handle	border	case	properly.	(Even	length	and	odd	length	linked	list	cases.)
	

9)				Print	list	in	reverse	order.

Hint:	Use	recursion.

CHAPTER	8:	STACK

Introduction

A	stack	is	a	basic	data	structure	that	organized	items	in	last-in-first-out	(LIFO)	manner.	Last
element	inserted	in	a	stack	will	be	the	first	to	be	removed	from	it.
	
The	real-life	analogy	of	the	stack	is	"chapattis	in	hotpot",	"stack	of	plates".	Imagine	a	stack	of
plates	in	a	dining	area	everybody	takes	a	plate	at	the	top	of	the	stack,	thereby	uncovering	the	next
plate	for	the	next	person.
	
Stack	allow	to	only	access	the	top	element.	The	elements	that	are	at	the	bottom	of	the	stack	are	the
one	that	is	going	to	stay	in	the	stack	for	the	longest	time.

Computer	science	also	has	the	common	example	of	a	stack.	Function	call	stack	is	a	good	example
of	a	stack.	Function	main()	calls	function	foo()	and	then	foo()	calls	bar().	These	function	calls	are
implemented	using	stack	first	bar()	exists,	then	go()	and	then	finally	main().
	
As	we	navigate	from	web	page	to	web	page,	the	URL	of	web	pages	are	kept	in	a	stack,	with	the
current	page	URL	at	the	top.	If	we	click	back	button,	then	each	URL	entry	is	popped	one	by	one.
	

The	Stack	Abstract	Data	Type

Stack	abstract	data	type	is	defined	as	a	class,	which	follows	LIFO	or	last-in-first-out	for	the
elements,	added	to	it.
The	stack	should	support	the	following	operation:

1.				Push():	which	add	a	single	element	at	the	top	of	the	stack
2.				Pop():	which	remove	a	single	element	from	the	top	of	a	stack.
3.				Top():	Reads	the	value	of	the	top	element	of	the	stack	(does	not	remove	it)
4.				isEmpty():	Returns	1	if	stack	is	empty
5.				Size():	returns	the	number	of	elements	in	a	stack.

	
Add	n	to	the	top	of	a	stack
void	push(int	value);.
Remove	the	top	element	of	the	stack	and	return	it	to	the	caller	function.
int	pop();
	
The	stack	can	be	implemented	using	an	array	or	a	linked	list.
In	array	case,	there	are	two	types	of	implementations

·									One	in	which	array	size	is	fixed,	so	it	the	capacity	of	the	stack.
·									Another	approach	is	variable	size	array	in	which	memory	of	the	array	is	allocated	using

malloc	and	when	the	array	is	filled	the	size	if	doubled	using	realloc	(when	the	stack	size
decreases	below	half	the	capacity	is	again	reduced).

In	case	of	a	linked	list,	there	is	no	such	limit	on	the	number	of	elements	it	can	contain.

	
When	a	stack	is	implemented,	using	an	array	top	of	the	stack	is	managed	using	an	index	variable
called	top.
	
When	a	stack	is	implemented	using	a	linked	list,	push()	and	pop()	is	implemented	using	insert	at
the	head	of	the	linked	list	and	remove	from	the	head	of	the	linked	list.
	

Stack	using	Array

Implement	a	stack	using	a	fixed	length	array.
	
Example	8.1:
class	Stack
{
private:
										static	const	int	MIN_CAPACITY	=	10;
										int*	data;
										int	stack_top	=	-1;
										int	capacity;
	
public:
										Stack();
										Stack(int	capacity);
										~Stack();
										virtual	int	size();
										virtual	bool	isEmpty();
										virtual	int	top();
										virtual	void	push(int	value);
										virtual	int	pop();
										virtual	void	print();
};
	
Stack::Stack()	:	Stack(MIN_CAPACITY)
{
}
	
Stack::Stack(int	MaxCapacity)
{
										data	=	new	int[MaxCapacity];
										capacity	=	MaxCapacity;
}
	
Stack::~Stack()
{
										delete[]	data;
}
	
If	user	does	not	provide	the	max	capacity	of	the	array.	Then	an	array	of	1000	elements	is	created.
The	top	is	the	index	to	the	top	of	the	stack.
Number	of	elements	in	the	stack	is	governed	by	the	“top”	index	and	top	is	initialized	to	-1	when	a
stack	is	initialized.	Top	index	value	of	-1	indicates	that	the	stack	is	empty	in	the	beginning.
	
bool	Stack::isEmpty()
{
										return	(stack_top	==	-1);
}
	
isEmpty()	function	returns	1	if	stack	is	empty	or	0	in	all	other	cases.	By	comparing	the	top	index
value	with	-1.

	
int	Stack::size()
{
										return	(stack_top	+	1);
}
	
size()	function	returns	the	number	of	elements	in	the	stack.	It	just	returns	"top+1".	As	the	top	is
referring	the	array	index	of	the	stack	top	variable	so	we	need	to	add	one	to	it.
	
void	Stack::print()
{
										for	(int	i	=	stack_top;	i	>	-1;	i--)
										{
																			std::cout	<<	"	"	<<	data[i];
										}
}
	
The	print	function	will	print	the	elements	of	the	array.
	
void	Stack::push(int	value)
{
										if	(size()	==	data.size())
										{
																			throw	std::exception("StackOvarflowException");
										}
										stack_top++;
										data[stack_top]	=	value;
}
	
push()	function	checks	whether	the	stack	has	enough	space	to	store	one	more	element,	then	it
increases	the	"top"	by	one.	Finally	sort	the	data	in	the	stack	"data"	array.	In	case,	stack	is	full	then
"stack	overflow"	message	is	printed	and	that	value	will	not	be	added	to	the	stack	and	will	be
ignored.
	
int	Stack::pop()
{
										if	(isEmpty())
										{
																			throw	std::exception("StackEmptyException");
										}
										int	topVal	=	data[stack_top];
										stack_top--;
										return	topVal;
}
	
The	pop()	function	is	implemented,	first	it	will	check	that	there	are	some	elements	in	the	stack	by
checking	its	top	index.	If	some	element	is	there	in	the	stack,	then	it	will	store	the	top	most	element
value	in	a	variable	"value".	The	top	index	is	reduced	by	one.	Finally,	that	value	is	returned.
	
int	Stack::top()
{
										if	(isEmpty())

																			throw	std::exception("StackEmptyException");
										return	data[stack_top];
}
	
top()function	returns	the	value	of	stored	in	the	top	element	of	stack	(does	not	remove	it)
int	main()
{
										Stack	s(1000);
										for	(int	i	=	1;	i	<=	100;	i++)
																			s.push(i);
	
										for	(int	i	=	1;	i	<=	50;	i++)
																			s.pop();
	
										s.print();
										return	0;
}
	
Analysis:

·									The	user	of	the	stack	will	create	a	stack	local	variable.
·									Use	push()	and	pop()	functions	to	add	/	remove	variables	to	the	stack.
·									Read	the	top	element	using	the	top()	function	call.
·									Query	regarding	size	of	the	stack	using	size()	function	call
·									Query	if	stack	is	empty	using	isEmpty()	function	call

	

Stack	using	Array	(Growing-Reducing	capacity	implementation)

In	the	above	dynamic	array	implementation	of	a	stack.	Make	the	capacity	of	stack	variable	so	that
when	it	is	nearly	filled,	then	double	the	capacity	of	the	stack.
Example	8.2:
void	Stack::Push(int	value)
{
										if	(size()	==	capacity)
										{
																			int	*delMe	=	data;
																			capacity	=	2	*	capacity;
																			data	=	new	int[capacity];
																			for	(int	i	=	stack_top;	i	>	-1;	i--)
																													data[i]	=	delMe[i];
																		
																			delete[]	delMe;
																			std::cout	<<	"stack	size	doubled"	<<	std::endl;
										}
										stack_top++;
										data[stack_top]	=	value;
}
	
int	Stack::Pop()
{
										if	(isEmpty())
										{
																			throw	std::exception("StackEmptyException");
										}
	
										int	topVal	=	data[stack_top];
										stack_top--;
										if	(stack_top	<	capacity	/	2	&&	stack_top	>	MIN_CAPACITY)
										{
																			capacity	=	capacity	/	2;
																			int	*delMe	=	data;
																			data	=	new	int[capacity];
																			for	(int	i	=	stack_top;	i	>	-1;	i--)
																			{
																													data[i]	=	delMe[i];
																			}
																			std::cout	<<	"stack	size	reduced"	<<	std::endl;
										}
										return	topVal;
}
	
Analysis:

·									In	the	push()	function	we	double	the	size	of	the	stack	when	stack	is	full.	First,	an	array	of
double	capacity	is	created.	All	the	data	of	the	old	array	is	copied	to	the	new	array.	Finally
the	pointer	to	the	array	of	the	stack	is	changed	to	the	newly	array.

·									In	the	pop()	function	when	size	of	the	stack	is	half	the	max	capacity	of	the	stack	and	is
grater	then	the	minimum	threshold	then	the	array	of	half	size	is	created	and	the	value	of	the
old	bigger	array	is	copied	to	the	newly	created	array.

·									Apart	from	push()	and	pop()	all	the	other	functions	are	same	as	the	before	fixed	size
implementation	of	stack.

	

Stack	using	linked	list

Example	8.3:	Implement	stack	using	a	linked	list.
class	Stack
{
private:
										struct	Node
										{
																			int	value	=	0;
																			Node	*next;
																			Node(int	v,	Node	*n);
										};
										Node	*head	=	nullptr;
										int	stack_size	=	0;
public:
										//	Stack	class	API-methods	.
};
	
Stack::Node::Node(int	v,	Node	*n)
{
										value	=	v;
										next	=	n;
}
	
int	Stack::size()	{
										return	stack_size;
}
	
bool	Stack::isEmpty()
{
										return	stack_size	==	0;
}
	
int	Stack::peek()
{
										if	(isEmpty())
																			throw		std::exception("StackEmptyException");
										return	head->value;
}
	
void	Stack::push(int	value)
{
										head	=	new	Node(value,	head);
										stack_size++;
}
	
int	Stack::pop()
{
										if	(isEmpty())
																			throw		std::exception("StackEmptyException");
										int	value	=	head->value;
										Node*	delMe	=	head;
										head	=	head->next;
										delete	delMe;
										stack_size--;
										return	value;
}

	
void	Stack::print()
{
										Node	*temp	=	head;
										while	(temp	!=	nullptr)
										{
																			std::cout	<<	temp->value	<<	"	";
																			temp	=	temp->next;
										}
}
	
int	main()
{
										Stack	s;
										for	(int	i	=	1;	i	<=	100;	i++)
																			s.push(i);
									
										for	(int	i	=	1;	i	<=	50;	i++)
																			s.pop();
									
										s.print();
}
	
Analysis:

·									Stack	implemented	using	a	linked	list	is	simply	insertion	and	deletion	at	the	head	of	a
singly	linked	list.

·									In	push()	function,	memory	is	created	for	one	node.	Then	the	value	is	stored	into	that	node.
Finally,	the	node	is	inserted	at	the	beginning	of	the	list.

·									In	pop()	function,	the	head	of	the	linked	list	starts	pointing	to	the	second	node	there	by
releasing	the	memory	allocated	to	the	first	node	(Garbage	collection.).

	

Problems	in	Stack

Balanced	Parenthesis

Example	8.4:	Stacks	can	be	used	to	check	a	program	for	balanced	symbols	(such	as	{},	(),	[]).
The	closing	symbol	should	be	matched	with	the	most	recently	seen	opening	symbol.
Example:	{()}	is	legal,	{()	({})}	is	legal,	but	{((}	and	{(})	are	not	legal
bool	isBalancedParenthesis(const	std::string	&expn)
{
										std::stack<char>	stk;
										char	val;
										for	(auto	ch	:	expn)
										{
																			switch	(ch)
																			{
																			case	'{':
																			case	'[':
																			case	'(':
																													stk.push(ch);
																													break;
																			case	'}':
																													val	=	stk.top();
																													stk.pop();
																													if	(val	!=	'{')
																													{
																																						return	false;
																													}
																													break;
	
																			case	']':
																													val	=	stk.top();
																													stk.pop();
																													if	(val	!=	'[')
																													{
																																						return	false;
																													}
																													break;
																			case	')':
																													val	=	stk.top();
																													stk.pop();
																													if	(val	!=	'(')
																													{
																																						return	false;
																													}
																													break;
																			}
										}
										return	stk.empty();
}
	
int	main()
{
										std::string	expn	=	"{()}[]";
										bool	value	=	isBalancedParenthesis(expn);
										std::cout	<<	"Given	Expn:"	<<	expn	<<	std::endl;

										std::cout	<<	"Result	aft1er	isParenthesisMatched:"	<<	value	<<	std::endl;
										return	0;
}
	
Analysis:

·									Traverse	the	input	string	when	we	get	an	opening	parenthesis	we	push	it	into	stack.	And
when	we	get	a	closing	parenthesis	then	we	pop	a	parenthesis	from	the	stack	and	compare	if
it	is	the	corresponding	to	the	one	on	the	closing	parenthesis.

·									We	return	false	if	there	is	a	mismatch	of	parenthesis.
·									If	at	the	end	of	the	whole	staring	traversal,	we	reached	to	the	end	of	the	string	and	the	stack

is	empty	then	we	have	balanced	parenthesis.
	

Infix,	Prefix	and	Postfix	Expressions

When	we	have	an	algebraic	expression	like	A	+	B	then	we	know	that	the	variable	is	being	added
to	variable	B.	This	type	of	expression	is	called	infix	expression	because	the	operator	“+”	is
between	operands	A	and	operand	B.
	
Now	consider	another	infix	expression	A	+	B	*	C.	In	the	expression	there	is	a	problem	that	in
which	order	+	and	*	works.	Does	A	and	B	are	added	first	and	then	the	result	is	multiplied.
Alternatively,	B	and	C	are	multiplied	first	and	then	the	result	is	added	to	A.	This	makes	the
expression	ambiguous.	To	deal	with	this	ambiguity	we	define	the	precedence	rule	or	use
parentheses	to	remove	ambiguity.
	
So	if	we	want	to	multiply	B	and	C	first	and	then	add	the	result	to	A.	Then	the	same	expression	can
be	written	unambiguously	using	parentheses	as	A	+	(B	*	C).	On	the	other	hand,	if	we	want	to	add
A	and	B	first	and	then	the	sum	will	be	multiplied	by	C	we	will	write	it	as	(A	+	B)	*	C.	Therefore,
in	the	infix	expression	to	make	the	expression	unambiguous,	we	need	parenthesis.
	
Infix	expression:	In	this	notation,	we	place	operator	in	the	middle	of	the	operands.
<	Operand	>	<	operator	>	<	operand	>
	
Prefix	expressions:	In	this	notation,	we	place	operator	at	the	beginning	of	the	operands.
<	Operator	>	<	operand	>	<	operand	>
	
Postfix	expression:	In	this	notation,	we	place	operator	at	the	end	of	the	operands.
<	Operand	>	<	operand	>	<	operator	>
	
Infix	Expression Prefix	Expression Postfix	Expression

A	+	B +	A	B A	B	+

A	+	(B	*	C) +	A	*	B	C A	B	C	*	+

(A	+	B)	*	C *	+	ABC A	B	+	C	*

	
Now	comes	the	most	obvious	question	why	we	need	so	unnatural	Prefix	or	Postfix	expressions
when	we	already	have	infix	expressions	which	words	just	fine	for	us.
	
The	answer	to	this	is	that	infix	expressions	are	ambiguous	and	they	need	parenthesis	to	make	them
unambiguous.	While	postfix	and	prefix	notations	do	not	need	any	parenthesis.
	

Infix-to-Postfix	Conversion

Example	8.5:
std::string	infixToPostfix(std::string	&expn)
{
										std::stack<char>	stk;
										std::string	output	=	"";
										char	out;
	
										for	(auto	ch	:	expn)
										{
																			if	(ch	<=	'9'	&&	ch	>=	'0')
																			{
																													output	=	output	+	ch;
																			}
																			else
																			{
																													switch	(ch)
																													{
																													case	'+':
																													case	'-':
																													case	'*':
																													case	'/':
																													case	'%':
																													case	' '̂:
																																						while	(stk.empty()	==	false	&&	precedence(ch)	<=	precedence(stk.top()))
																																						{
																																																out	=	stk.top();	stk.pop();
																																																output	=	output	+	"	"	+	out;
																																						}
																																						stk.push(ch);
																																						output	=	output	+	"	";
																																						break;
																													case	'(':
																																						stk.push(ch);
																																						break;
																													case	')':
																																						while	(stk.empty()	==	false	&&	(out	=	stk.top())	!=	'(')
																																						{
																																																stk.pop();
																																																output	=	output	+	"	"	+	out	+	"	";
																																						}
																																						if(stk.empty()	==	false	&&	(out	=	stk.top())	==	'(')
																																																stk.pop();
																																						break;
																													}
																			}

										}
	
										while	(stk.empty()	==	false)
										{
																			out	=	stk.top();	stk.pop();
																			output	=	output	+	out	+	"	";
										}
										return	output;
}
	
int	main()
{
										std::string	expn	=	"10+((3))*5/(16-4)";
										std::string	value	=	infixToPostfix(expn);
										std::cout	<<	"Infix	Expn:	"	<<	expn	<<	std::endl;
										std::cout	<<	"Postfix	Expn:	"	<<	value	<<	std::endl;
										return	0;
}
	
Analysis:
·									Print	operands	in	the	same	order	as	they	arrive.
·									If	the	stack	is	empty	or	contains	a	left	parenthesis	“(”	on	top,	we	should	push	the	incoming

operator	in	the	stack.
·									If	the	incoming	symbol	is	a	left	parenthesis	”(”,	push	left	parenthesis	in	the	stack.
·									If	the	incoming	symbol	is	a	right	parenthesis	“)”,	pop	from	the	stack	and	print	the	operators

till	you	see	a	left	parenthesis	“)”.	Discard	the	pair	of	parentheses.
·									If	the	precedence	of	incoming	symbol	is	higher	than	the	operator	at	the	top	of	the	stack,	then

push	it	to	the	stack.
·									If	the	incoming	symbol	has,	an	equal	precedence	compared	to	the	top	of	the	stack,	use

association.	If	the	association	is	left	to	right,	then	pop	and	print	the	symbol	at	the	top	of	the
stack	and	then	push	the	incoming	operator.	If	the	association	is	right	to	left,	then	push	the
incoming	operator.

·									If	the	precedence	of	incoming	symbol	is	lower	than	the	operator	on	the	top	of	the	stack,	then
pop	and	print	the	top	operator.	Then	compare	the	incoming	operator	against	the	new	operator
at	the	top	of	the	stack.

·									At	the	end	of	the	expression,	pop	and	print	all	operators	on	the	stack.
	

Infix-to-Prefix	Conversion

Example	8.6:
std::string	infixToPrefix(std::string	expn)
{
										reverseString(expn);
										replaceParanthesis(expn);
										expn	=	infixToPostfix(expn);
										reverseString(expn);
										return	expn;
}
	
void	replaceParanthesis(std::string	&a)

{
										int	lower	=	0;
										int	upper	=	a.size()	-	1;
										while	(lower	<=	upper)
										{
																			if	(a[lower]	==	'(')
																			{
																													a[lower]	=	')';
																			}
																			else	if	(a[lower]	==	')')
																			{
																													a[lower]	=	'(';
																			}
																			lower++;
										}
}
	
void	reverseString(std::string	&expn)
{
										int	lower	=	0;
										int	upper	=	expn.size()	-	1;
										char	tempChar;
										while	(lower	<	upper)
										{
																			tempChar	=	expn[lower];
																			expn[lower]	=	expn[upper];
																			expn[upper]	=	tempChar;
																			lower++;
																			upper--;
										}
}
	
int	main()
{
										std::string	expn	=	"10+((3))*5/(16-4)";
										std::string	value	=	infixToPrefix(expn);
										std::cout	<<	"Infix	Expn:	"	<<	expn	<<	std::endl;
										std::cout	<<	"Prefix	Expn:	"	<<	value	<<	std::endl;
										return	0;
}
	
Analysis:
1.	Reverse	the	given	infix	expression.
2.	Replace	'('	with	')'	and	')'	with	'('	in	the	reversed	expression.
3.	Now	apply	infix	to	postfix	subroutine	that	we	had	already	discussed.
4.	Reverse	the	generated	postfix	expression	and	this	will	give	required	prefix	expression.	
	

Postfix	Evaluate

Write	a	postfixEvaluate()	function	to	evaluate	a	postfix	expression.	Such	as:	1	2	+	3	4	+	*
Example	8.7:
int	postfixEvaluate(const	std::string	&expn)
{
										std::stack<int>	stk;	
										int	digit	=	0;

										int	value	=	0;
	
										for	(auto	ch	:	expn)
										{
																			if	(isdigit(ch))
																			{
																													digit	=	1;
																													value	=	value	*	10	+	(ch	-	'0');
																			}
																			else	if	(ch	==	'	')
																			{
																													if	(digit	==	1)
																													{
																																						stk.push(value);	/*	Push	the	operand	*/
																																						digit	=	0;
																																						value	=	0;
																													}
																			}
	
																			else
																			{
																													int	num1	=	stk.top();
																													stk.pop();
																													int	num2	=	stk.top();
																													stk.pop();
																												
																													switch	(ch)
																													{
																													case	'+':
																																						stk.push(num1	+	num2);
																																						break;
																													case	'-':
																																						stk.push(num1	-	num2);
																																						break;
																													case	'*':
																																						stk.push(num1	*	num2);
																																						break;
																													case	'/':
																																						stk.push(num1	/	num2);
																																						break;
																													}
																			}
										}
										int	val	=	stk.top();	stk.pop();
										return	val;
}
	
int	main2()
{
										std::string	expn	=	"6	5	2	3	+	8	*	+	3	+	*";
										int	value	=	postfixEvaluate(expn);
										std::cout	<<	"Given	Postfix	Expn:	"	<<	expn	<<	std::endl;
										std::cout	<<	"Result	after	Evaluation:	"	<<	value	<<	std::endl;
										return	0;
}
	
Analysis:
1)	Create	a	stack	to	store	values	or	operands.

2)	Scan	through	the	given	expression	and	do	following	for	each	element:
a)				If	the	element	is	a	number,	then	push	it	into	the	stack.
b)				If	the	element	is	an	operator,	then	pop	values	from	the	stack.	Evaluate	the	operator	over

the	values	and	push	the	result	into	the	stack.
3)	When	the	expression	is	scanned	completely,	the	number	in	the	stack	is	the	result.
	

Min	stack

Design	a	stack	in	which	get	minimum	value	in	stack	should	also	work	in	O(1)	Time	Complexity.
Hint:	Keep	two	stack	one	will	be	general	stack,	which	will	just	keep	the	elements.	The	second
will	keep	the	min	value.

1.				Push:	Push	an	element	to	the	top	of	stack1.	Compare	the	new	value	with	the	value	at	the	top
of	the	stack2.	If	the	new	value	is	smaller,	then	push	the	new	value	into	stack2.	Or	push	the
value	at	the	top	of	the	stack2	to	itself	once	more.

2.				Pop:	Pop	an	element	from	top	of	stack1	and	return.	Pop	an	element	from	top	of	stack2	too.
3.				Min:	Read	from	the	top	of	the	stack2	this	value	will	be	the	min.

	

Palindrome	string

Find	if	given	string	is	a	palindrome	or	not	using	a	stack.
Definition	of	palindrome:	A	palindrome	is	a	sequence	of	characters	that	is	same	backward	or
forward.
Eg.	“AAABBBCCCBBBAAA”,	“ABA”	&	“ABBA”
	
Hint:	Push	characters	to	the	stack	until	the	half-length	of	the	string.	Then	pop	these	characters	and
then	compare.	Make	sure	you	take	care	of	the	odd	length	and	even	length.
	

Reverse	Stack

Given	a	stack	how	to	reverse	the	elements	of	the	stack	without	using	any	other	data-structure.	You
cannot	use	another	stack	too.
Hint:	Use	recursion	(system	stack.)	When	you	go	inside	the	stack	pop	elements	from	stack	in	each
subsequent	call	until	stack	is	empty.	Then	push	these	elements	one	by	one	when	coming	out	of	the
recursion.	The	elements	will	be	reversed.
	
Example	8.8:
template<typename	T>
void	reverseStack(stack<T>&	stk)
{
										if	(stk.empty())
																			return;
										else
										{
																			T	value	=	stk.pop();

																			reverseStack(stk);
																			insertAtBottom(stk,	value);
										}
}
	

Insert	At	Bottom

Example	8.9:
template<typename	T>
void	insertAtBottom(stack<T>&	stk,	T	value)
{
										if	(stk.empty())
																			stk.push(value);
										else
										{
																			T	out	=	stk.pop();
																			insertAtBottom(stk,	value);
																			stk.push(out);
										}
}
	

Depth-First	Search	with	a	Stack

In	a	depth-first	search,	we	traverse	down	a	path	until	we	get	a	dead	end;	then	we	backtrack	by
popping	a	stack	to	get	an	alternative	path.

·									Create	a	stack
·									Create	a	start	point
·									Push	the	start	point	onto	the	stack
·									While	(value	searching	not	found	and	the	stack	is	not	empty)

o			Pop	the	stack
o			Find	all	possible	points	after	the	one	which	we	just	tried
o			Push	these	points	onto	the	stack

	

Stack	using	a	queue

How	to	implement	a	stack	using	a	queue.	Analyze	the	running	time	of	the	stack	operations.
See	queue	chapter	for	this.
	

Stock	Span	Problem

Given	a	list	of	daily	stock	price	in	an	array	A[i].	Find	the	span	of	the	stocks	for	each	day.	A	span
of	stock	is	the	maximum	number	of	days	for	which	the	price	of	stock	was	lower	than	that	day.

Example	8.10:	Approach	1
std::vector<int>	StockSpanRange(std::vector<int>	&arr)
{
										std::vector<int>	SR(arr.size());
										SR[0]	=	1;
										for	(int	i	=	1;	i	<	arr.size();	i++)
										{
																			SR[i]	=	1;
																			for	(int	j	=	i	-	1;	(j	>=	0)	&&	(arr[i]	>=	arr[j]);	j--)
																			{
																													SR[i]++;
																			}
										}
										return	SR;
}
	
Example	8.11:	Approach	2:
std::vector<int>	StockSpanRange2(std::vector<int>	&arr)
{
										std::stack<int>	stk;
	
										std::vector<int>	SR(arr.size());
										stk.push(0);
										SR[0]	=	1;
										for	(int	i	=	1;	i	<	arr.size();	i++)
										{
																			while	(!stk.empty()	&&	arr[stk.top()]	<=	arr[i])
																			{
																													stk.pop();
																			}
																			SR[i]	=	(stk.empty())	?	(i	+	1)	:	(i	-	stk.top());
																			stk.push(i);
										}
										return	SR;
}
	

Get	Max	Rectangular	Area	in	a	Histogram

Given	a	histogram	of	rectangle	bars	of	each	one	unit	wide.	Find	the	maximum	area	rectangle	in
the	histogram.

	
Example	8.12:	Approach	1
int	GetMaxArea(std::vector<int>	&arr)
{
										int	size	=	arr.size();
										int	maxArea	=	-1;
										int	currArea;
										int	minHeight	=	0;
										for	(int	i	=	1;	i	<	size;	i++)
										{
																			minHeight	=	arr[i];
																			for	(int	j	=	i	-	1;	j	>=	0;	j--)
																			{
																													if	(minHeight	>	arr[j])
																													{
																																						minHeight	=	arr[j];
																													}
																													currArea	=	minHeight	*	(i	-	j	+	1);
																													if	(maxArea	<	currArea)
																													{
																																						maxArea	=	currArea;
																													}
																			}
										}
										return	maxArea;
}
	
Approach	2:	Divide	and	conquer
	
Example	8.13:	Approach	3
int	GetMaxArea2(std::vector<int>	&arr)
{
										int	size	=	arr.size();
										std::stack<int>	stk;
										int	maxArea	=	0;
										int	top;
										int	topArea;
										int	i	=	0;
										while	(i	<	size)
										{

																			while	((i	<	size)	&&	(stk.empty()	||	arr[stk.top()]	<=	arr[i]))
																			{
																													stk.push(i);
																													i++;
																			}
																			while	(!stk.empty()	&&	(i	==	size	||	arr[stk.top()]	>	arr[i]))
																			{
																													top	=	stk.top();
																													stk.pop();
																													topArea	=	arr[top]	*	(stk.empty()	?	i	:	i	-	stk.top()	-	1);
																													if	(maxArea	<	topArea)
																													{
																																						maxArea	=	topArea;
																													}
																			}
										}
										return	maxArea;
}
	

Two	stacks	using	single	array

	
Example	8.14:	How	to	implement	two	stacks	using	one	single	array.
class	TwoStack
{
private:
										const	static	int	MAX_SIZE	=	5000;
										int	top1	=	0;
										int	top2	=	0;
										std::array<int,	MAX_SIZE>	data;//	We	can	also	use	c	stype	array	int	data[MAX_SIZE];
	
public:
										TwoStack();
										virtual	void	StackPush1(int	value);
										virtual	void	StackPush2(int	value);
										virtual	int	StackPop1();
										virtual	int	StackPop2();
};
	
TwoStack::TwoStack()
{
										top1	=	-1;
										top2	=	MAX_SIZE;
}
	
void	TwoStack::StackPush1(int	value)
{
										if	(top1	<	top2	-	1)
										{
																			data[++top1]	=	value;
										}
										else
										{
																			throw	std::exception("StackFullException");
										}
}
	

void	TwoStack::StackPush2(int	value)
{
										if	(top1	<	top2	-	1)
										{
																			data[--top2]	=	value;
										}
										else
										{
																			throw	std::exception("StackFullException");
										}
}
	
int	TwoStack::StackPop1()
{
										if	(top1	>=	0)
										{
																			int	value	=	data[top1--];
																			return	value;
										}
										else
										{
																			throw	std::exception("StackEmptyException");
										}
}
	
int	TwoStack::StackPop2()
{
										if	(top2	<	MAX_SIZE)
										{
																			int	value	=	data[top2++];
																			return	value;
										}
										else
										{
																			throw	std::exception("StackEmptyException");
										}
}
	
int	main()
{
										TwoStack	st;
										for	(int	i	=	0;	i	<	10;	i++)
																			st.StackPush1(i);
									
										for	(int	j	=	0;	j	<	10;	j++)
																			st.StackPush2(j	+	10);
									
										for	(int	i	=	0;	i	<	10;	i++)
										{
																			std::cout	<<	"stack	one	pop	value	is	:	"	<<	st.StackPop1()	<<	std::endl;
																			std::cout	<<	"stack	two	pop	value	is	:	"	<<	st.StackPop2()	<<	std::endl;
										}
										return	0;
}
	
Analysis:	Same	array	is	used	to	implement	two	stack.	First	stack	is	filled	from	the	beginning	of
the	array	and	second	stack	is	filled	from	the	end	of	the	array.	Overflow	and	underflow	conditions
need	to	be	taken	care	of	carefully.

	

Pros	and	cons	of	array	and	linked	list	implementation	of	stack.

Linked	lists:	List	implementation	uses	1	pointer	extra	memory	per	item.	There	is	no	size
restriction.
	
Arrays:	Allocated	a	constant	amount	of	space,	when	the	stack	is	nearly	empty,	then	lost	of	space
is	waste,	as	it	is	not	used.	Maximum	size	is	determined	when	the	stack	is	created.
	

Uses	of	Stack

·									Recursion	can	also	be	done	using	stack.	(In	place	of	the	system	stack)
·									The	function	call	is	implemented	using	stack.
·									Some	problems	when	we	want	to	reverse	a	sequence,	we	just	push	everything	in	stack	and

pop	from	it.
·									Grammar	checking,	balance	parenthesis,	infix	to	postfix	conversion,	postfix	evaluation	of

expression	etc.
	

Exercise

Ex	1:	Converting	Decimal	Numbers	to	Binary	Numbers	using	stack	data	structure.
	
Hint:	store	reminders	into	the	stack	and	then	print	the	stack.
	
Ex	2:	Convert	an	infix	expression	to	prefix	expression.
	
Hint:	Reverse	given	expression,	Apply	infix	to	postfix,	and	then	reverse	the	expression	again.
Step	1.	Reverse	the	infix	expression.
												5^E+D*)	C^B+A	(
Step	2.	Make	Every	'('	as	')'	and	every	')'	as	'('	
												5^E+D*(C^B+A)
Step	3.	Convert	an	expression	to	postfix	form.
	
Step	4.	Reverse	the	expression.
												+*+A^BCD^E5	
	
Ex	3:	Write	an	HTML	opening	tag	and	closing	tag-matching	program.
Hint:	parenthesis	matching.
	
Ex	4:	Write	a	function	that	will	do	Postfix	to	Infix	Conversion
	
Ex	5::	Write	a	function	that	will	do	Prefix	to	Infix	Conversion
	
Ex	6:	Write	a	palindrome	matching	function,	which	ignore	characters	other	than	English	alphabet
and	digits.	String	"Madam,	I'm	Adam."	should	return	true.
	
Ex	7:	In	the	Growing-Reducing	Stack	implementation	using	array.	Try	to	figure	out	a	better
algorithm	which	will	work	similar	to	Vector<>	or	ArrayDeque<>.

http://scanftree.com/Data_Structure/postfix-to-infix
http://scanftree.com/Data_Structure/prefix-to-infix

CHAPTER	9:	QUEUE

Introduction

A	queue	is	a	basic	data	structure	that	organized	items	in	first-in-first-out	(FIFO)	manner.	First
element	inserted	into	a	queue	will	be	the	first	to	be	removed.	It	is	also	known	as	"first-come-first-
served".
	
The	real	life	analogy	of	queue	is	typical	lines	in	which	we	all	participate	time	to	time.

·									We	wait	in	a	line	of	railway	reservation	counter.
·									We	wait	in	the	cafeteria	line	(to	pop	a	plate	from	“stack	of	plates”).
·									We	wait	in	a	queue	when	we	call	to	some	customer	case.

	
The	elements,	which	are	at	the	front	of	the	queue,	are	the	one	that	stayed	in	the	queue	for	the
longest	time.

Computer	science	also	has	common	examples	of	queues.	We	issue	a	print	command	from	our
office	to	a	single	printer	per	floor,	print	task	gets	lined	up	in	a	printer	queue.	The	print	command
that	was	issued	first	will	be	printed	before	the	next	commands	in	line.
	
In	addition	to	printing	queues,	operating	system	is	also	using	different	queues	to	control	process
scheduling.	Processes	are	added	to	processing	queue,	which	is	used	by	an	operating	system	for
various	scheduling	algorithms.	Soon	we	will	be	reading	about	graphs	and	will	come	to	know
about	breadth-first	traversal,	which	uses	a	queue.
	

The	Queue	Abstract	Data	Type

Queue	abstract	data	type	is	defined	as	a	class	whose	object	follows	FIFO	or	first-in-first-out	for
the	elements,	added	to	it.
Queue	should	support	the	following	operation:

1.				add():	Which	add	a	single	element	at	the	back	of	a	queue
2.				remove():	Which	remove	a	single	element	from	the	front	of	a	queue.
3.				isEmpty():	Returns	1	if	the	queue	is	empty

	

Queue	Using	Array

Example	9.1:
class	Queue
{
private:
										int	queue_size	=	0;
										int	Capacity	=	100;
										int*	data;
										int	front	=	0;
										int	back	=	0;
	
public:
										Queue();
										virtual	bool	add(int	value);
										virtual	int	remove();
										virtual	bool	isEmpty();
										virtual	int	size();
};
	
Queue::Queue()
{
										queue_size	=	0;
										data	=	new	int[100];
}
	
bool	Queue::isEmpty()
{
										return	queue_size	==	0;
}
	
int	Queue::size()
{
										return	queue_size;
}
	
bool	Queue::add(int	value)
{
										if	(queue_size	>=	Capacity)
										{
																			throw	std::exception("QueueFullException");
																			return	false;

										}
										else
										{
																			queue_size++;
																			data[back]	=	value;
																			back	=	(++back)	%	(Capacity	-	1);
										}
										return	true;
}
	
int	Queue::remove()
{
										int	value;
										if	(queue_size	<=	0)
										{
																			throw	std::exception("QueueEmptyException");
										}
										else
										{
																			queue_size--;
																			value	=	data[front];
																			front	=	(++front)	%	(Capacity	-	1);
										}
										return	value;
}
	
int	main()
{
										Queue	que;
	
										for	(int	i	=	0;	i	<	20;	i++)
																			que.add(i);
									
										for	(int	i	=	0;	i	<	20;	i++)
																			std::cout	<<	que.remove()	<<	std::endl;
									
										return	0;
}
	
Analysis:

1.				Hear	queue	is	created	from	an	array	of	size	100.
2.				The	number	of	element	in	queue	to	zero.	By	assigning	front,	back	and	size	of	queue	to	zero.
3.				Add()	insert	one	element	at	the	back	of	the	queue.
4.				Remove()	delete	one	element	from	the	front	of	the	queue.

	

Queue	Using	linked	list

	
Example	9.2:
class	Queue
{
private:
										struct	Node
										{
																			int	value	=	0;
																			Node	*next;
																			Node(int	v,	Node	*n);
										};
	
										Node	*head	=	nullptr;
										Node	*tail	=	nullptr;
										int	queue_size	=	0;
	
public:
										virtual	int	size();
										virtual	bool	isEmpty();
										virtual	int	peek();
										virtual	void	push(int	value);
										virtual	int	pop();
										virtual	void	print();
};
	
Queue::Node::Node(int	v,	Node	*n)
{
										value	=	v;
										next	=	n;
}
	
int	Queue::size()
{
										return	queue_size;
}
	
bool	Queue::isEmpty()
{
										return	queue_size	==	0;
}
	
int	Queue::peek()
{
										if	(isEmpty())
																			throw	std::exception("QueueEmptyException");
	
										return	head->value;
}
	
void	Queue::print()
{
										Node	*temp	=	head;
										while	(temp	!=	nullptr)
										{
																			std::wcout	<<	temp->value	<<	std::wstring(L"	");

																			temp	=	temp->next;
										}
}
	

Add

Enqueue	into	a	queue	using	linked	list.	Nodes	are	added	to	the	end	of	the	linked	list.	Below
diagram	indicates	how	a	new	node	is	added	to	the	list.	The	tail	is	modified	every	time	when	a
new	value	is	added	to	the	queue.	However,	the	head	is	also	updated	in	the	case	when	there	is	no
element	in	the	queue	and	when	that	first	element	is	added	to	the	queue	both	head	and	tail	will	be
pointing	to	it.

Example	9.3:
void	Queue::push(int	value)
{
										Node	*temp	=	new	Node(value,	nullptr);
	
										if	(head	==	nullptr)
										{
																			head	=	tail	=	temp;
										}
										else

										{
																			tail->next	=	temp;
																			tail	=	temp;
										}
										queue_size++;
}
	
Analysis:	add	operation	add	one	element	at	the	end	of	the	Queue	(linked	list).
	

Remove

	
In	this	we	need	the	tail	pointer	as	it	may	be	the	case	there	was	only	one	element	in	the	list	and	the
tail	pointer	will	also	be	modified	in	case	of	the	remove.
Example	9.4:
int	Queue::pop()
{
										if	(isEmpty())
																			throw	std::exception("QueueEmptyException");
									
										int	value	=	head->value;
										Node*	delMe	=	head;
										head	=	head->next;
										delete	delMe;
										queue_size--;
										return	value;
}
	

int	main()
{
										Queue	q;
										for	(int	i	=	1;	i	<=	100;	i++)
																			q.push(i);
	
										for	(int	i	=	1;	i	<=	50;	i++)
																			q.pop();
	
										q.print();
										return	0;
}
	
Analysis:	Remove	operation	removes	first	node	from	the	start	of	the	queue	(linked	list).
	

Problems	in	Queue

	

Queue	using	a	stack

How	to	implement	a	queue	using	a	stack.	You	can	use	more	than	one	stack.
	
Solution:	We	can	use	two	stack	to	implement	queue.	We	need	to	simulate	first	in	first	our	using
stack.

a)				Enqueue	Operation:	new	elements	are	added	to	the	top	of	first	stack.
b)				Dequeue	Operation:	elements	are	popped	from	the	second	stack	and	when	second	stack	is

empty	then	all	the	elements	of	first	stack	are	popped	one	by	one	and	pushed	to	second	stack.
	
Example	9.5:
class	QueueUsingStack
{
private:
										std::stack<int>	stk1;
										std::stack<int>	stk2;
	
public:
										virtual	void	add(int	value);
										virtual	int	remove();
};
	
void	QueueUsingStack::add(int	value)
{
										stk1.push(value);
}
	
int	QueueUsingStack::remove()
{
										int	value;
										if	(stk2.empty()	==	false)
										{
																			value	=	stk2.top();
																			stk2.pop();
																			return	value;
										}
	
										while	(stk1.empty()	==	false)
										{
																			value	=	stk1.top();
																			stk1.pop();
																			stk2.push(value);
										}
	
										value	=	stk2.top();
										stk2.pop();
										return	value;
}
	

Analysis:	All	add()	happens	to	stack	1.	When	remove()	is	called	remove	happens	from	stack	2.
When	the	stack	2	is	empty	then	stack	1	is	popped	and	pushed	into	stack	2.	This	popping	from
stack	1	and	pushing	into	stack	2	revert	the	order	of	retrieval	there	by	making	queue	behavior	out
of	two	stacks.
	

Stack	using	a	Queue

Implement	stack	using	a	queue.
	
Solution	1:	use	two	queue
Push:	add	new	elements	to	queue1.
Pop:	while	size	of	queue1	is	bigger	than	1.	Push	all	items	from	queue	1	to	queue	2	except	the	last
item.	Switch	the	name	of	queue	1	and	queue	2.	And	return	the	last	item.
Push	operation	is	O(1)	and	Pop	operation	is	O(n)
	
Solution	2:	This	same	can	be	done	using	just	one	queue.
Push:	add	the	element	to	queue.
Pop:	find	the	size	of	queue.	If	size	is	zero	then	return	error.	Else,	if	size	is	positive	then	remove
size-	1	elements	from	the	queue	and	again	add	to	the	same	queue.	At	last,	remove	the	next	element
and	return	it.
Push	operation	is	O(1)	and	Pop	operation	is	O(n)
	
Solution	3:	In	the	above	solutions	the	push	is	efficient	and	pop	is	un	efficient	can	we	make	pop
efficient	O(1)	and	push	inefficient	O(n)
Push:	add	new	elements	to	queue2.	Then	add	all	the	elements	of	queue	1	to	queue	2.	Then	switch
names	of	queue1	and	queue	2.
Pop:	remove	from	queue1
Push	operation	is	O(n)	and	Pop	operation	is	O(1)
	

Reverse	a	stack

Reverse	a	stack	using	queue
Solution:

a)				Pop	all	the	elements	of	stack	and	add	them	into	a	queue.
b)				Then	remove	all	the	elements	of	the	queue	into	stack
c)				We	have	the	elements	of	the	stack	reversed.

	

Reverse	a	queue

Reverse	a	queue	using	stack
Solution:

a)				Dequeue	all	the	elements	of	the	queue	into	stack

b)				Then	pop	all	the	elements	of	stack	and	add	them	into	a	queue.
c)				We	have	the	elements	of	the	queue	reversed.

	

Breadth-First	Search	with	a	Queue

In	breadth-first	search,	we	explore	all	the	nearest	nodes	first	by	finding	all	possible	successors
and	add	them	to	a	queue.

a)				Create	a	queue
b)				Create	a	start	point
c)				Enqueue	the	start	point	onto	the	queue
d)				while	(value	searching	not	found	and	the	queue	is	not	empty)

o			Dequeue	from	the	queue
o			Find	all	possible	points	after	the	last	one	tried
o			Enqueue	these	points	onto	the	queue

	

Josephus	problem

There	are	n	people	standing	in	a	queue	waiting	to	be	executed.	The	counting	begins	at	the	front	of
the	queue.	In	each	step,	k	number	of	people	are	removed	and	again	add	one	by	one	from	the
queue.	Then	the	next	person	is	executed.	The	execution	proceeds	around	the	circle	until	only	the
last	person	remains,	who	is	given	freedom.
	
Find	that	position	where	you	want	to	stand	and	gain	your	freedom.
Solution:

1)				Just	insert	integer	for	1	to	k	in	a	queue.	(corresponds	to	k	people)
2)				Define	a	Kpop()	function	such	that	it	will	remove	and	add	the	queue	k-1	times	and	then

remove	one	more	time.	(This	man	is	dead.)
3)				Repeat	second	step	until	size	of	queue	is	1.
4)				Print	the	value	in	the	last	element.	This	is	the	solution.

	

Exercise

1)				Implement	queue	using	dynamic	memory	allocation.	Such	that	the	implementation	should
follow	the	following	constraints.
a)				The	user	should	use	memory	allocation	from	the	heap	using	new	operator.	In	this,	you	need

to	take	care	of	the	max	value	in	the	queue.
	

b)				Once	you	are	done	with	the	above	exercise	and	you	are	able	to	test	your	queue.	Then	you
can	add	some	more	complexity	to	your	code.	In	add()	function	when	the	queue	is	full	in
place	of	printing	“Queue	is	full”	you	should	allocate	more	space	using	new	operator.

	
c)				Once	you	are	done	with	the	above	exercise.	Now	in	remove	function	once	you	are	below

half	of	the	capacity	of	the	queue,	you	need	to	decrease	the	size	of	the	queue	by	half.	You
should	add	one	more	variable	"min"	to	queue	so	that	you	can	track	what	is	the	original
value	capacity	passed	at	init()	function.	And	the	capacity	of	the	queue	will	not	go	below	the
value	passed	in	the	initialization.

	
(If	you	are	not	able	to	solve	the	above	exercise,	and	then	have	a	look	into	stack	chapter,	where	we
have	done	similar	for	stack)
	
2)				Implement	the	below	function	for	the	queue:

a.				IsEmpty:	This	is	left	as	an	exercise	for	the	user.	Take	a	variable,	which	will	take	care	of
the	size	of	a	queue	if	the	value	of	that	variable	is	zero,	isEmpty	should	return	1	(true).	If
the	queue	is	not	empty,	then	it	should	return	0	(false).

	
b.				Size:	Use	the	size	variable	to	be	used	under	size	function	call.	Size()	function	should

return	the	number	of	elements	in	the	queue.
	

3)				Implement	stack	using	a	queue.	Write	a	program	for	this	problem.	You	can	use	just	one	queue.
	

4)				Write	a	program	to	Reverse	a	stack	using	queue
	
5)				Write	a	program	to	Reverse	a	queue	using	stack
	
6)				Write	a	program	to	solve	Josephus	problem	(algo	already	discussed.).	There	are	n	people

standing	in	a	queue	waiting	to	be	executed.	The	counting	begins	at	the	front	of	the	queue.	In
each	step,	k	number	of	people	are	removed	and	again	added	one	by	one	from	the	queue.	Then
the	next	person	is	executed.	The	elimination	proceeds	around	the	circle	until	only	the	last
person	remains,	who	is	given	freedom.	Find	that	position	where	you	want	to	stand	and	gain
your	freedom.

	

7)				Write	a	CompStack()	function	which	takes	pointer	to	two	stack	as	an	argument	and	return	true
or	false	depending	upon	whether	all	the	elements	of	the	stack	are	equal	or	not.	You	are	given
isEqual(int,	int)	which	will	compare	and	return	1	if	both	values	are	equal	and	0	if	they	are
different.

CHAPTER	10:	TREE

Introduction

We	have	already	read	about	various	linear	data	structures	like	an	array,	linked	list,	stack,	queue
etc.
Both	array	and	linked	list	have	a	drawback	of	linear	time	required	for	searching	an	element.
	
A	tree	is	a	nonlinear	data	structure,	which	is	used	to	represent	hierarchical	relationships	(parent-
child	relationship).	Each	node	is	connected	by	another	node	by	directed	edges.
	
Example	1:	Tree	in	organization

Example	2:	Tree	in	a	file	system

Terminology	in	tree

	
	
Root:	The	root	of	the	tree	is	the	only	node	in	the	tree	that	has	no	incoming	edges.	It	is	the	top	node
of	a	tree.
	
Node:	It	is	a	fundamental	element	of	a	tree.	Each	node	has	data	and	two	pointers	that	may	point	to
null	or	its	child’s.
	
Edge:	It	is	also	a	fundamental	part	of	a	tree,	which	is	used	to	connect	two	nodes.
	
Path:	A	path	is	an	ordered	list	of	nodes	that	are	connected	by	edges.
	
Leaf:	A	leaf	node	is	a	node	that	has	no	children.
	
Height	of	the	tree:	The	height	of	a	tree	is	the	number	of	edges	on	the	longest	path	between	the
root	and	a	leaf.
	
The	level	of	node:	The	level	of	a	node	is	the	number	of	edges	on	the	path	from	the	root	node	to
that	node.

Children:	Nodes	that	have	incoming	edges	from	the	same	node	to	be	said	to	be	the	children	of	that
node.
	
Parent:	Node	is	a	parent	of	all	the	child	nodes	that	are	linked	by	outgoing	edges.
	
Sibling:	Nodes	in	the	tree	that	are	children	of	the	same	parent	are	said	to	be	siblings’
	
Ancestor:	A	node	reachable	by	repeated	moving	from	child	to	parent.
	

Binary	Tree

A	binary	tree	is	a	type	tree	in	which	each	node	has	at	most	two	children	(0,	1	or	2),	which	are
referred	to	as	the	left	child	and	the	right	child.
	
Below	is	a	node	of	the	binary	tree	with	"a"	stored	as	data	and	whose	left	child	(lChild)	and
whose	right	child	(rchild)	both	pointing	towards	null.
	

Below	is	a	class	definition	used	to	define	node.
	
Example	10.1:
class	Tree
{
private:
										struct	Node
										{
																			int	value;
																			Node	*lChild;
																			Node	*rChild;
																			Node(int	v,	Node	*l,	Node	*r);
																			Node(int	v);
										};
	
										Node	*root;
	
public:
										Tree();
										//	Other	Tree	methods.
};
	
Tree::Node::Node(int	v,	Node	*l,	Node	*r)
{
										value	=	v;
										lChild	=	l;
										rChild	=	r;
}
	
Tree::Node::Node(int	v)
{
										value	=	v;
										lChild	=	nullptr;
										rChild	=	nullptr;
}
	
Tree::Tree()
{

										root	=	nullptr;
}
	
Below	is	a	binary	tree	whose	nodes	contains	data	from	1	to	10
	

	
In	the	rest	of	the	book,	binary	tree	will	be	represented	as	below:

Properties	of	Binary	tree	are:
1.				The	maximum	number	of	nodes	on	level	i	of	a	binary	tree	is	 	,	where	i	>=	1
2.				The	maximum	number	of	nodes	in	a	binary	tree	of	depth	k	is	 ,	where	k	>=	1
3.				There	is	exactly	one	path	from	the	root	to	any	nodes	in	a	tree.
4.				A	tree	with	N	nodes	have	exactly	N-1	edges	connecting	these	nodes.
5.				The	height	of	a	complete	binary	tree	of	N	nodes	is .

	

Types	of	Binary	trees

	

Complete	binary	tree

In	a	complete	binary	tree,	every	level	except	the	last	one	is	completely	filled.	All	nodes	in	the	left
are	filled	first,	then	the	right	one.
A	binary	heap	is	an	example	of	a	complete	binary	tree.

Full/	Strictly	binary	tree

The	full	binary	tree	is	a	binary	tree	in	which	each	node	has	exactly	zero	or	two	children.

Perfect	binary	tree

The	perfect	binary	tree	is	a	type	of	full	binary	tree	in	which	each	non-leaf	node	has	exactly	two
child	nodes.	All	leaf	nodes	have	identical	path	length	and	all	possible	node	slots	are	occupied

Right	skewed	binary	tree

A	binary	tree	in	which	either	each	node	is	having	only	a	right	child	or	no	child	(leaf)	is	called	as
right	skewed	binary	tree

Left	skewed	binary	tree

A	binary	tree	in	which	either	each	node	is	having	only	a	left	child	or	no	child	(leaf)	is	called	as
Left	skewed	binary	tree

Height-balanced	Binary	Tree

A	height-balanced	binary	tree	is	a	binary	tree	such	that	the	left	&	right	subtrees	for	any	given	node

differ	in	height	by	max	one.
Note:	Each	complete	binary	tree	is	a	height-balanced	binary	tree

AVL	tree	and	RB	tree	are	an	example	of	height	balanced	tree	we	will	discuss	these	trees	in
advance	tree	topic.
	

Problems	in	Binary	Tree

	

Create	a	Complete	binary	tree

Create	a	binary	tree	given	a	list	of	values	in	an	array.
Solution:	Since	there	is	no	order	defined	in	a	binary	tree,	so	nodes	can	be	inserted	in	any	order	so
it	can	be	a	skewed	binary	tree.	But	it	is	inefficient	to	do	anything	in	a	skewed	binary	tree	so	we
will	create	a	Complete	binary	tree.	At	each	node,	the	middle	value	stored	in	the	array	is	assigned
to	node	and	left	of	array	is	passed	to	the	left	child	of	the	node	to	create	left	sub-tree.	And	right
portion	of	array	is	passed	to	right	child	of	the	node	to	crate	right	sub-tree.
	
Example	10.2:
void	Tree::levelOrderBinaryTree(int	arr[],int	size)
{
										root	=	levelOrderBinaryTree(arr,	0,size);
}
	
Tree::Node	*Tree::levelOrderBinaryTree(int	arr[],	int	start,	int	size)
{
										Node	*curr	=	new	Node(arr[start]);
										int	left	=	2	*	start	+	1;
										int	right	=	2	*	start	+	2;
	
										if	(left	<	size)
																			curr->lChild	=	levelOrderBinaryTree(arr,	left,	size);
									
										if	(right	<	size)
																			curr->rChild	=	levelOrderBinaryTree(arr,	right,	size);
									
										return	curr;
}
	
int	main()
{
										Tree	t;
										int	arr[]	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10};
										t.levelOrderBinaryTree(arr,10);
										t.	PrintInOrder();
										return	0;
}
	
Complexity	Analysis:
This	is	an	efficient	algorithm	for	creating	a	complete	binary	tree.
Time	Complexity:	 																					Space	Complexity:	
	

Pre-Order	Traversal

Traversal	is	a	process	of	visiting	each	node	of	a	tree.	In	Pre-Order	Traversal	parent	is

visited/traversed	first,	then	left	child	and	right	child.	Pre-Order	traversal	is	a	type	of	depth-first
traversal.

Solution:
Preorder	traversal	is	done	using	recursion.	At	each	node,	first	the	value	stored	in	it	is	printed	and
then	followed	by	the	value	of	left	child	and	right	child.	At	each	node	its	value	is	printed	followed
by	calling	printTree()	function	to	its	left	and	right	child	to	print	left	and	right	sub-tree.
	
Example	10.3:
void	Tree::PrintPreOrder()
{
										PrintPreOrder(root);
}
	
void	Tree::PrintPreOrder(Node	*node)
{
										if	(node	!=	nullptr)
										{
																			std::cout	<<	"	"	<<	node->value;
																			PrintPreOrder(node->lChild);
																			PrintPreOrder(node->rChild);
										}
}
	
Output:
6	4	2	1	3	5	8	7	9	10
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	
Note:	When	there	is	an	algorithm	in	which	all	nodes	are	traversed,	then	complexity	cannot	be	less
then	 .	When	there	is	a	large	portion	of	the	tree,	which	is	not	traversed,	then	complexity
reduces.
	

Post-Order	Traversal

In	Post-Order	Traversal	left	child	is	visited/traversed	first,	then	right	child	and	last	parent

Post-Order	traversal	is	a	type	of	depth-first	traversal.

Solution:	In	post	order	traversal,	first,	the	left	child	is	traversed	then	right	child	and	in	the	end,
current	node	value	is	printed	to	the	screen.
	
Example	10.4:
void	Tree::PrintPostOrder()
{
										PrintPostOrder(root);
}
	
void	Tree::PrintPostOrder(Node	*node)
{
										if	(node	!=	nullptr)
										{
																			PrintPostOrder(node->lChild);
																			PrintPostOrder(node->rChild);
																			std::cout	<<	"	"	<<	node->value;
										}
}
	
Output:
1	3	2	5	4	7	10	9	8	6
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

In-Order	Traversal

In	In-Order	Traversal	left	child	is	visited/traversed	first,	then	the	parent	and	last	right	child
In-Order	traversal	is	a	type	of	depth-first	traversal.	The	output	of	In-Order	traversal	of	BST	is	a
sorted	list.
Solution:
In	In-Order	traversal	first,	the	value	of	left	child	is	traversed,	then	the	value	of	node	is	printed	to
the	screen	and	then	the	value	of	right	child	is	traversed.

Example	10.5:
void	Tree::PrintInOrder()
{
										PrintInOrder(root);
}
	
void	Tree::PrintInOrder(Node	*node)
{
										if	(node	!=	nullptr)
										{
																			PrintInOrder(node->lChild);
																			std::cout	<<	"	"	<<	node->value;
																			PrintInOrder(node->rChild);
										}
}
	
Output:
1	2	3	4	5	6	7	8	9	10
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
Note:	Pre-Order,	Post-Order,	and	In-Order	traversal	are	for	all	binary	trees.	They	can	be	used	to
traverse	any	kind	of	a	binary	tree.
	

Level	order	traversal	/	Breadth	First	traversal

Write	code	to	implement	level	order	traversal	of	a	tree.	Such	that	nodes	at	depth	k	is	printed
before	nodes	at	depth	k+1.

Solution:
Level	order	traversal	or	Breadth	First	traversal	of	a	tree	is	done	using	a	queue.	At	the	start,	the
root	node	pointer	is	added	to	queue.	The	traversal	of	tree	happens	until	its	queue	is	empty.	When
we	traverse	the	tree,	we	first	remove	an	element	from	the	queue,	print	the	value	stored	in	that
node	and	then	its	left	child	and	right	child	will	be	added	to	the	queue.
	
Example	10.6:
void	Tree::PrintBredthFirst()
{
										std::queue<Node*>	que;
										Node	*temp;
	
										if	(root	!=	nullptr)
										{
																			que.push(root);
										}
	
										while	(que.empty()	==	false)
										{
																			temp	=	que.front();
																			que.pop();
																			std::cout	<<	temp->value	<<	std::endl;
	
																			if	(temp->lChild	!=	nullptr)
																			{
																													que.push(temp->lChild);
																			}
																			if	(temp->rChild	!=	nullptr)
																			{
																													que.push(temp->rChild);
																			}
										}
}
	
Complexity	Analysis:	Time	Complexity:	 								Space	Complexity:	
	

Print	Depth	First	without	using	the	recursion	/	system	stack.

Solution:	Depth	first	traversal	of	the	tree	is	done	using	recursion	by	using	system	stack.	The	same
can	be	done	using	stack.	In	the	start	root	node	pointer	is	added	to	the	stack.	The	whole	tree	is
traversed	until	the	stack	is	empty.	In	each	iteration,	an	element	is	popped	from	the	stack	its	value
is	printed	to	screen.	Then	right	child	and	then	left	child	of	the	node	is	added	to	stack.
	
Example	10.7:
void	Tree::PrintDepthFirst()
{
										std::stack<Node*>	stk;
										Node	*temp;
	
										if	(root	!=	nullptr)
										{
																			stk.push(root);
										}
	
										while	(stk.empty()	==	false)
										{
																			temp	=	stk.top();
																			stk.pop();
																			std::cout	<<	temp->value	<<	std::endl;
	
																			if	(temp->lChild	!=	nullptr)
																			{
																													stk.push(temp->lChild);
																			}
																			if	(temp->rChild	!=	nullptr)
																			{
																													stk.push(temp->rChild);
																			}
										}
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Tree	Depth

Solution:	Depth	is	tree	is	calculated	recursively	by	traversing	left	and	right	child	of	the	root.	At
each	level	of	traversal	depth	of	left	child	is	calculated	and	depth	of	right	child	is	calculated.	The
greater	depth	among	the	left	and	right	child	is	added	by	one	(which	is	the	depth	of	the	current
node)	and	this	value	is	returned.
	
Example	10.8:
int	Tree::TreeDepth(Node	*root)
{
										if	(root	==	nullptr)
																			return	0;
	
										int	lDepth	=	TreeDepth(root->lChild);
										int	rDepth	=	TreeDepth(root->rChild);
	
										if	(lDepth	>	rDepth)

																			return	lDepth	+	1;
										else
																			return	rDepth	+	1;
}
	
int	Tree::TreeDepth()
{
										return	TreeDepth(root);
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Nth	Pre-Order

Solution:	We	want	to	print	the	node	that	will	be	at	the	nth	index	when	we	print	the	tree	in
Preorder	traversal.	So	we	keep	a	counter	to	keep	track	of	the	index.	When	the	counter	is	equal	to
index,	then	we	print	the	value	and	return	the	Nth	preorder	index	node.
	
Example	10.9:
void	Tree::NthPreOrder(int	index)
{
										int	counter	=	0;
										NthPreOrder(root,	index,	counter);
}
	
void	Tree::NthPreOrder(Node	*node,	int	index,	int&	counter)
{
										if	(node	!=	nullptr)
										{
																			counter++;
																			if	(counter	==	index)
																			{
																													std::cout	<<	"	"	<<	node->value;
																			}
																			NthPreOrder(node->lChild,	index,	counter);
																			NthPreOrder(node->rChild,	index,	counter);
										}
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Nth	Post	Order

Solution:	We	want	to	print	the	node	that	will	be	at	the	nth	index	when	we	print	the	tree	in	post
order	traversal.	Therefore,	we	keep	a	counter	to	keep	track	of	the	index,	but	at	this	time,	we	will
increment	the	counter	after	left	child	and	right	child	traversal.	When	the	counter	is	equal	to	index,
then	we	print	the	value	and	return	the	nth	post	order	index	node.
	
Example	10.10
void	Tree::NthPostOrder(int	index)

{
										int	counter	=	0;
										NthPostOrder(root,	index,	counter);
}
	
void	Tree::NthPostOrder(Node	*node,	int	index,	int&	counter)
{
										if	(node	!=	nullptr)
										{
																			NthPostOrder(node->lChild,	index,	counter);
																			NthPostOrder(node->rChild,	index,	counter);
																			counter++;
																			if	(counter	==	index)
																			{
																													std::cout	<<	"	"	<<	node->value;
																			}
										}
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	
	

Nth	In	Order

Solution:
We	want	to	print	the	node	that	will	be	at	the	nth	index	when	we	print	the	tree	in	in-order	traversal.
Therefore,	we	keep	a	counter	to	keep	track	of	the	index,	but	at	this	time,	we	will	increment	the
counter	after	left	child	traversal	but	before	the	right	child	traversal.	When	the	counter	is	equal	to
index,	then	we	print	the	value	and	return	the	nth	in-order	index	node.
	
Example	10.11:
void	Tree::NthInOrder(int	index)
{
										int	counter	=	0;
										NthInOrder(root,	index,	counter);
}
	
void	Tree::NthInOrder(Node	*node,	int	index,	int&	counter)
{
										if	(node	!=	nullptr)
										{
																			NthInOrder(node->lChild,	index,	counter);
																			counter++;
																			if	(counter	==	index)
																			{
																													std::cout	<<	"	"	<<	node->value;
																			}
																			NthInOrder(node->rChild,	index,	counter);
										}
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	

	

Copy	Tree

Solution:	Copy	tree	is	done	by	copy	nodes	of	the	input	tree	at	each	level	of	the	traversal	of	the
tree.	At	each	level	of	the	traversal	of	nodes	of	tree,	a	new	node	is	created	and	the	value	of	the
input	tree	node	is	copied	to	it.	The	left	child	tree	is	copied	recursively	and	then	pointer	to	new
subtree	is	returned	will	be	assigned	to	the	left	child	of	the	current	new	node.	Similarly	for	the
right	child	too.	Finally,	the	tree	is	copied.
	
Example	10.12:
Tree::Node	*Tree::CopyTree(Node	*curr)
{
										Node	*temp;
										if	(curr	!=	nullptr)
										{
																			temp	=	new	Node(curr->value);
																			temp->lChild	=	CopyTree(curr->lChild);
																			temp->rChild	=	CopyTree(curr->rChild);
																			return	temp;
										}
										else
										{
																			return	nullptr;
										}
}
	
Tree	*Tree::CopyTree()
{
										Tree	*tree2	=	new	Tree();
										tree2->root	=	CopyTree(root);
										return	tree2;
}
	
Complexity	Analysis:	Time	Complexity:	 																			
Space	Complexity:	
	

Copy	Mirror	Tree

Solution:	Copy,	mirror	image	of	the	tree	is	done	same	as	copy	tree,	but	in	place	of	left	child
pointing	to	the	tree	formed	by	left	child	traversal	of	input	tree,	this	time	left	child	points	to	the	tree
formed	by	right	child	traversal.	Similarly	right	child	point	to	the	traversal	of	the	left	child	of	the
input	tree.
	
Example	10.13:
Tree	*Tree::CopyMirrorTree()
{
										Tree	*tree2	=	new	Tree();
										tree2->root	=	CopyMirrorTree(root);
										return	tree2;
}

	
Tree::Node	*Tree::CopyMirrorTree(Node	*curr)
{
										Node	*temp;
										if	(curr	!=	nullptr)
										{
																			temp	=	new	Node(curr->value);
																			temp->rChild	=	CopyMirrorTree(curr->lChild);
																			temp->lChild	=	CopyMirrorTree(curr->rChild);
																			return	temp;
										}
										else
										{
																			return	nullptr;
										}
}
	
Complexity	Analysis:	Time	Complexity:	 																			
Space	Complexity:	
	

Number	of	Element

Solution:	Number	of	nodes	at	the	right	child	and	the	number	of	nodes	at	the	left	child	is	added	by
one	and	we	get	the	total	number	of	nodes	in	any	tree/sub-tree.
	
Example	10.14:
int	Tree::numNodes()
{
										return	numNodes(root);
}
	
int	Tree::numNodes(Node	*curr)
{
										if	(curr	==	nullptr)
										{
																			return	0;
										}
										else
										{
																			return	(1	+	numNodes(curr->rChild)	+	numNodes(curr->lChild));
										}
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Number	of	Leaf	nodes

Solution:	If	we	add	the	number	of	leaf	node	in	the	right	child	with	the	number	of	leaf	nodes	in	the
left	child,	we	will	get	the	total	number	of	leaf	node	in	any	tree	or	subtree.
	
Example	10.15:

int	Tree::numLeafNodes()
{
										return	numLeafNodes(root);
}
	
int	Tree::numLeafNodes(Node	*curr)
{
										if	(curr	==	nullptr)
										{
																			return	0;
										}
										if	(curr->lChild	==	nullptr	&&	curr->rChild	==	nullptr)
										{
																			return	1;
										}
										else
										{
																			return	(numLeafNodes(curr->rChild)	+	numLeafNodes(curr->lChild));
										}
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Identical

Solution:	Two	trees	have	identical	values	if	at	each	level	the	value	is	equal.
	
Example	10.16:
bool	Tree::isEqual(Tree	*T2)
{
										return	Identical(root,	T2->root);
}
	
bool	Tree::Identical(Node	*node1,	Node	*node2)
{
										if	(node1	==	nullptr	&&	node2	==	nullptr)
										{
																			return	true;
										}
										else	if	(node1	==	nullptr	||	node2	==	nullptr)
										{
																			return	false;
										}
										else
										{
																			return	(Identical(node1->lChild,	node2->lChild)	&&	Identical(node1->rChild,	node2->rChild)	&&	(node1->value	==
node2->value));
										}
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Free	Tree

Solution:	The	tree	is	traversed	and	nodes	of	tree	are	freed	in	such	a	manner	such	that	all	child
nodes	are	freed	before	it.
	
Example	10.17:
void	Tree::Free()
{
										FreeTree(root);
										root	=	nullptr;
}
	
void	Tree::FreeTree(Node*	node)
{
										if	(node)
										{
																			FreeTree(node->lChild);
																			FreeTree(node->rChild);
																			delete(node);
										}
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
System	will	do	garbage	collection	so	for	user	action	the	time	complexity	is	0.
	

Tree	to	List	Rec

Solution:	Tree	to	the	list	is	done	recursively.	At	each	node	we	will	suppose	that	the	tree	to	list
function	will	do	its	job	for	the	left	child	and	right	child.	Then	we	will	combine	the	result	of	the
left	child	and	right	child	traversal.	We	need	a	head	and	tail	pointer	of	the	left	list	and	right	list	to
combine	them	with	the	current	node.	In	the	process	of	integration	the	current	node	will	be	added
to	the	tail	of	the	left	list	and	current	node	will	be	added	to	the	head	to	the	right	list.	Head	of	the
left	list	will	become	the	head	of	the	newly	formed	list	and	tail	of	the	right	list	will	become	the	tail
of	the	newly	created	list.
	
Example	10.18:
Tree::Node	*Tree::treeToListRec()
{
										Node	*head	=	treeToListRec(root);
										Node	*temp	=	head;
										return	temp;
}
	
Tree::Node	*Tree::treeToListRec(Node	*curr)
{
										Node	*Head	=	nullptr,	*Tail	=	nullptr;
										if	(curr	==	nullptr)
										{
																			return	nullptr;
										}
										if	(curr->lChild	==	nullptr	&&	curr->rChild	==	nullptr)
										{
																			curr->lChild	=	curr;
																			curr->rChild	=	curr;

																			return	curr;
										}
	
										if	(curr->lChild	!=	nullptr)
										{
																			Head	=	treeToListRec(curr->lChild);
																			Tail	=	Head->lChild;
	
																			curr->lChild	=	Tail;
																			Tail->rChild	=	curr;
										}
										else
										{
																			Head	=	curr;
										}
	
										if	(curr->rChild	!=	nullptr)
										{
																			Node	*tempHead	=	treeToListRec(curr->rChild);
																			Tail	=	tempHead->lChild;
	
																			curr->rChild	=	tempHead;
																			tempHead->lChild	=	curr;
										}
										else
																			Tail	=	curr;
	
										Head->lChild	=	Tail;
										Tail->rChild	=	Head;
										return	Head;
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Print	all	the	paths

Print	all	the	paths	from	the	roots	to	the	leaf
	
Solution:	Whenever	we	traverse	a	node	we	add	that	node	to	the	list.	When	we	reach	a	leaf	we
print	the	whole	list.	When	we	return	from	a	function,	then	we	remove	the	element	that	was	added
to	the	list	when	we	entered	this	function.
Example	10.19:									
void	Tree::printAllPath()
{
										std::vector<int>	stk;
										printAllPath(root,	stk);
}
	
void	Tree::printAllPath(Node	*curr,	std::vector<int>	&stk)
{
										if	(curr	==	nullptr)
										{
																			return;
										}
	

										stk.push_back(curr->value);
	
										if	(curr->lChild	==	nullptr	&&	curr->rChild	==	nullptr)
										{
																			for	(int	i	=	0;	i	<	stk.size();	i++)
																													std::cout	<<	stk[i]	<<	"	";
																			stk.pop_back();
																			std::cout	<<	std::endl;
																			return;
										}
	
										printAllPath(curr->rChild,	stk);
										printAllPath(curr->lChild,	stk);
										stk.pop_back();
}
	
Complexity	Analysis:
Time	Complexity:	 	,	Space	Complexity:	
	

Least	Common	Ancestor

Solution:	We	recursively	traverse	the	nodes	of	a	binary	tree.	And	we	find	any	one	of	the	node	we
are	searching	for	then	we	return	that	node.	And	when	we	get	both	the	left	and	right	as	some	valid
pointer	location	other	than	null	we	will	return	that	node	as	the	common	ancestor.
	
Example	10.20:
int	Tree::LCA(int	first,	int	second)
{
										Node	*ans	=	LCA(root,	first,	second);
										if	(ans	!=	nullptr)
										{
																			return	ans->value;
										}
										else
										{
																			throw	std::exception("NotFoundException");
										}
}
	
Tree::Node	*Tree::LCA(Node	*curr,	int	first,	int	second)
{
										Node	*left,	*right;
	
										if	(curr	==	nullptr)
										{
																			return	nullptr;
										}
	
										if	(curr->value	==	first	||	curr->value	==	second)
										{
																			return	curr;
										}
	
										left	=	LCA(curr->lChild,	first,	second);
										right	=	LCA(curr->rChild,	first,	second);

	
										if	(left	!=	nullptr	&&	right	!=	nullptr)
										{
																			return	curr;
										}
										else	if	(left	!=	nullptr)
										{
																			return	left;
										}
										else
										{
																			return	right;
										}
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	
	

Find	Max	in	Binary	Tree

Solution:	We	recursively	traverse	the	nodes	of	a	binary	tree.	We	will	find	the	maximum	value	in
the	left	and	right	subtree	of	any	node	then	will	compare	the	value	with	the	value	of	the	current
node	and	finally	return	the	largest	of	the	three	values.
	
Example	10.21:
int	Tree::findMaxBT()
{
										int	ans	=	findMaxBT(root);
										return	ans;
}
	
int	Tree::findMaxBT(Node	*curr)
{
										int	left,	right;
	
										if	(curr	==	nullptr)
										{
																			return	std::numeric_limits<int>::min();
										}
	
										int	max	=	curr->value;
										left	=	findMaxBT(curr->lChild);
										right	=	findMaxBT(curr->rChild);
	
										if	(left	>	max)
										{
																			max	=	left;
										}
										if	(right	>	max)
										{
																			max	=	right;
										}
										return	max;
}
	

Search	value	in	a	Binary	Tree

Solution:	To	find	if	some	value	is	there	in	a	binary	tree	or	not	is	done	using	exhaustive	search	of
the	binary	tree.	First,	the	value	of	current	node	is	compared	with	the	value	which	we	are	looking
for.	Then	it	is	compared	recursively	inside	the	left	child	and	right	child.
	
Example	10.22:
bool	Tree::searchBT(Node	*root,	int	value)
{
										bool	left,	right;
	
										if	(root	==	nullptr)
																			return	false;
	
										if	(root->value	==	value)
																			return	true;
	
										left	=	searchBT(root->lChild,	value);
										if	(left)
																			return	true;
	
										right	=	searchBT(root->rChild,	value);
										if	(right)
																			return	true;
	
										return	false;
}
	

Maximum	Depth	in	a	Binary	Tree

Solution:	To	find	the	maximum	depth	of	a	binary	tree	we	need	to	find	the	depth	of	the	left	tree	and
depth	of	right	tree	then	we	need	to	store	the	value	and	increment	it	by	one	so	that	we	get	depth	of
the	given	node.
	
Example	10.23:
int	Tree::TreeDepth()
{
										return	TreeDepth(root);
}
	
int	Tree::TreeDepth(Node	*root)
{
										if	(root	==	nullptr)
																			return	0;
	
										int	lDepth	=	TreeDepth(root->lChild);
										int	rDepth	=	TreeDepth(root->rChild);
	
										if	(lDepth	>	rDepth)
																			return	lDepth	+	1;
										else
																			return	rDepth	+	1;
}

	

Number	of	Full	Nodes	in	a	BT

Solution:	A	full	node	is	a	node	which	have	both	left	and	right	child.	We	will	recursively	travers
the	whole	tree	and	will	increase	the	count	of	full	node	as	we	find	them.
	
Example	10.24:
int	Tree::numFullNodesBT()
{
										return	numNodes(root);
}
	
int	Tree::numFullNodesBT(Node	*curr)
{
										int	count;
										if	(curr	==	nullptr)
																			return	0;
	
										count	=	numFullNodesBT(curr->rChild)	+	numFullNodesBT(curr->lChild);
										if	(curr->rChild	!=	nullptr	&&	curr->lChild	!=	nullptr)
																			count++;
	
										return	count;
}
	

Maximum	Length	Path	in	a	BT/	Diameter	of	BT

	
Solution:	To	find	the	diameter	of	BT	we	need	to	find	the	depth	of	left	child	and	right	child	then
will	add	these	two	values	and	increment	it	by	one	so	that	we	will	get	the	maximum	length	path
(diameter	candidate)	which	contains	the	current	node.	Then	we	will	find	max	length	path	in	the
left	child	sub-tree.	And	will	also	find	the	max	length	path	in	the	right	child	sub-tree.	Finally,	we
will	compare	the	three	values	and	return	the	maximum	value	out	of	these	this	will	be	the	diameter
of	the	Binary	tree.
	
Example	10.25:
int	Tree::maxLengthPathBT()
{
										return	maxLengthPathBT(root);
}
	
int	Tree::maxLengthPathBT(Node	*curr)
{
										int	max;
										int	leftPath,	rightPath;
										int	leftMax,	rightMax;
	
										if	(curr	==	nullptr)
																			return	0;
	
										leftPath	=	TreeDepth(curr->lChild);

										rightPath	=	TreeDepth(curr->rChild);
	
										max	=	leftPath	+	rightPath	+	1;
	
										leftMax	=	maxLengthPathBT(curr->lChild);
										rightMax	=	maxLengthPathBT(curr->rChild);
	
										if	(leftMax	>	max)
																			max	=	leftMax;
	
										if	(rightMax	>	max)
																			max	=	rightMax;
	
										return	max;
}
	

Sum	of	All	nodes	in	a	BT

Solution:	We	will	find	the	sum	of	all	the	nodes	recursively.	sumAllBT()	will	return	the	sum	of	all
the	node	of	left	and	right	subtree	then	will	add	the	value	of	current	node	and	will	return	the	final
sum.
	
Example	10.26:
int	Tree::sumAllBT()
{
										return	sumAllBT(root);
}
	
int	Tree::sumAllBT(Node	*curr)
{
										int	sum,	leftSum,	rightSum;
										if	(curr	==	nullptr)
																			return	0;
	
										rightSum	=	sumAllBT(curr->rChild);
										leftSum	=	sumAllBT(curr->lChild);
										sum	=	rightSum	+	leftSum	+	curr->value;
										return	sum;
}
	

Iterative	Pre-order

Solution:	In	place	of	using	system	stack	in	recursion,	we	can	traverse	the	tree	using	stack	data
structure.
	
Example	10.27:
void	Tree::iterativePreOrder()
{
										std::stack<Node*>	stk;
										Node	*curr;
	
										if	(root	!=	nullptr)
																			stk.push(root);

	
										while	(stk.empty()	==	false)
										{
																			curr	=	stk.top();
																			stk.pop();
																			std::cout	<<	curr->value	<<	"	";
	
																			if	(curr->rChild	!=	nullptr)
																													stk.push(curr->rChild);
	
																			if	(curr->lChild	!=	nullptr)
																													stk.push(curr->lChild);
										}
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	
	

Iterative	Post-order

Solution:	In	place	of	using	system	stack	in	recursion,	we	can	traverse	the	tree	using	stack	data
structure.
Example	10.28:
void	Tree::iterativePostOrder()
{
										std::stack<Node*>	stk;
										std::stack<int>	visited;
										Node	*curr;
										int	vtd;
	
										if	(root	!=	nullptr)
										{
																			stk.push(root);
																			visited.push(0);
										}
	
										while	(stk.empty()	==	false)
										{
																			curr	=	stk.top();
																			stk.pop();
																			vtd	=	visited.top();
																			visited.pop();
																			if	(vtd	==	1)
																			{
																													std::cout	<<	curr->value	<<	"	";
																			}
																			else
																			{
																													stk.push(curr);
																													visited.push(1);
																													if	(curr->rChild	!=	nullptr)
																													{
																																						stk.push(curr->rChild);
																																						visited.push(0);
																													}
																													if	(curr->lChild	!=	nullptr)

																													{
																																						stk.push(curr->lChild);
																																						visited.push(0);
																													}
																			}
										}
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Iterative	In-order

Solution:	In	place	of	using	system	stack	in	recursion,	we	can	traverse	the	tree	using	stack	data
structure.
	
Example	10.29:
void	Tree::iterativeInOrder()
{
										std::stack<Node*>	stk;
										std::stack<int>	visited;
										Node	*curr;
										int	vtd;
	
										if	(root	!=	nullptr)
										{
																			stk.push(root);
																			visited.push(0);
										}
	
										while	(stk.empty()	==	false)
										{
																			curr	=	stk.top();
																			stk.pop();
																			vtd	=	visited.top();
																			visited.pop();
																			if	(vtd	==	1)
																													std::cout	<<	curr->value;
																			else
																			{
																													if	(curr->rChild	!=	nullptr)
																													{
																																						stk.push(curr->rChild);
																																						visited.push(0);
																													}
																													stk.push(curr);
																													visited.push(1);
																													if	(curr->lChild	!=	nullptr)
																													{
																																						stk.push(curr->lChild);
																																						visited.push(0);
																													}
																			}
										}
}
	

Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Binary	Search	Tree	(BST)

A	binary	search	tree	(BST)	is	a	binary	tree	on	which	nodes	are	ordered	in	the	following	way:
·									The	key	in	the	left	subtree	is	less	than	the	key	in	its	parent	node.
·									The	key	in	the	right	subtree	is	greater	the	key	in	its	parent	node.
·									No	duplicate	key	allowed.

Note:	there	can	be	two	separate	key	and	value	fields	in	the	tree	node.	But	for	simplicity,	we	are
considering	value	as	the	key.	All	problems	in	the	binary	search	tree	are	solved	using	this
supposition	that	the	value	in	the	node	is	key	for	the	tree.
Note:	Since	binary	search	tree	is	a	binary	tree	to	all	the	above	algorithm	of	a	binary	tree	are
applicable	to	a	binary	search	tree.

Problems	in	Binary	Search	Tree	(BST)

All	binary	tree	algorithms	are	valid	for	binary	search	tree	too.
	

Create	a	binary	search	tree	from	sorted	array

Create	a	binary	tree	given	list	of	values	in	an	array	in	sorted	order.
Solution:
Since	the	elements	in	the	array	are	in	sorted	order	and	we	want	to	create	a	binary	search	tree	in
which	left	subtree	nodes	are	having	values	less	than	the	current	node	and	right	subtree	nodes	have
value	greater	than	the	value	of	the	current	node.
We	have	to	find	the	middle	node	to	create	a	current	node	and	send	the	rest	of	the	array	to	construct
left	and	right	subtree.
Example	10.30:
void	Tree::CreateBinaryTree(int	arr[],	int	size)
{
										root	=	CreateBinaryTree(arr,	0,	size	-	1);
}
	
Tree::Node	*Tree::CreateBinaryTree(int	arr[],	int	start,	int	end)
{
										Node	*curr	=	nullptr;
										if	(start	>	end)
																			return	nullptr;
	
										int	mid	=	(start	+	end)	/	2;
										curr	=	new	Node(arr[mid]);
										curr->lChild	=	CreateBinaryTree(arr,	start,	mid	-	1);
										curr->rChild	=	CreateBinaryTree(arr,	mid	+	1,	end);
										return	curr;
}
	
void	main()
{
										Tree	t	=	new	Tree();
										int	arr[]	=	{1,2,3,4,5,6,7,8,9,10};
										t.CreateBinaryTree(arr);
										t.PrintInOrder();						
}
	

Insertion

Nodes	with	key	6,4,2,5,1,3,8,7,9,10	are	inserted	in	a	tree.	Below	is	step	by	step	tree	after
inserting	nodes	in	the	order.
	

	

	
	
	

	
Solution:	Smaller	values	will	be	added	to	the	left	child	sub-tree	of	a	node	and	greater	value	will
be	added	to	the	right	child	sub-tree	of	the	current	node.
	
Example	10.31:
void	Tree::InsertNode(int	value)
{
										root	=	InsertNode(value,	root);
}
	
Tree::Node	*Tree::InsertNode(int	value,	Node	*node)
{
										if	(node	==	nullptr)
										{
																			node	=	new	Node(value,	nullptr,	nullptr);
										}
										else
										{
																			if	(node->value	>	value)
																			{
																													node->lChild	=	InsertNode(value,	node->lChild);
																			}
																			else
																			{
																													node->rChild	=	InsertNode(value,	node->rChild);
																			}
										}
										return	node;
}

	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Find	Node

Solution:	The	value	grater	then	the	current	node	value	will	be	in	the	right	child	sub-tree	and	the
value	smaller	than	the	current	node	is	in	the	left	child	sub-tree.	We	can	find	a	value	by	traversing
the	left	or	right	subtree	iteratively.
Example	10.32:	Find	the	node	with	the	value	given.
bool	Tree::Find(int	value)
{
										Node	*curr	=	root;
	
										while	(curr	!=	nullptr)
										{
																			if	(curr->value	==	value)
																			{
																													return	true;
																			}
																			else	if	(curr->value	>	value)
																			{
																													curr	=	curr->lChild;
																			}
																			else
																			{
																													curr	=	curr->rChild;
																			}
										}
										return	false;
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	
Example	10.33:	Operators	are	generally	read	from	left	to	right
bool	Tree::Find2(int	value)
{
										Node	*curr	=	root;
										while	(curr	!=	nullptr	&&	curr->value	!=	value)
										{
																			curr	=	(curr->value	>	value)	?	curr->lChild	:	curr->rChild;
										}
										return	curr	!=	nullptr;
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	
	

Find	Min

Find	the	node	with	the	minimum	value.

Solution:	left	most	child	of	the	tree	will	be	the	node	with	the	minimum	value.
	
Example	10.34:
int	Tree::FindMin()
{
										Node	*node	=	root;
										if	(node	==	nullptr)
										{
																			throw	std::exception("EmptyTreeException");
										}
	
										while	(node->lChild	!=	nullptr)
										{
																			node	=	node->lChild;
										}
										return	node->value;
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	
	

Find	Max

Find	the	node	in	the	tree	with	the	maximum	value.

Solution:	Right	most	node	of	the	tree	will	be	the	node	with	the	maximum	value.
Example	10.35:
int	Tree::FindMax()
{

										Node	*node	=	root;
										if	(node	==	nullptr)
										{
																			throw	std::exception("EmptyTreeException");
										}
	
										while	(node->rChild	!=	nullptr)
										{
																			node	=	node->rChild;
										}
										return	node->value;
}
	
Complexity	Analysis:	Time	Complexity:	 																				Space	Complexity:	
	

Is	tree	a	BST

Solution:	At	each	node	we	check,	max	value	of	left	subtree	is	smaller	than	the	value	of	current
node	and	min	value	of	right	subtree	is	grater	then	the	current	node.
	
Example	10.36:
bool	Tree::isBST3(Node	*root)
{
										if	(root	==	nullptr)
										{
																			return	true;
										}
										if	(root->lChild	!=	nullptr	&&	FindMax(root->lChild)->value	>	root->value)
										{
																			return	false;
										}
										if	(root->rChild	!=	nullptr	&&	FindMin(root->rChild)->value	<=	root->value)
										{
																			return	false;
										}
										return	(isBST3(root->lChild)	&&	isBST3(root->rChild));
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	
	
The	above	solution	is	correct	but	it	is	not	efficient	as	same	tree	nodes	are	traversed	many	times.
Solution:	A	better	solution	will	be	the	one	in	which	we	will	look	into	each	node	only	once.	This
is	done	by	narrowing	the	range.	We	will	be	using	a	isBSTUtil()	function	which	will	take	the	max
and	min	range	of	the	values	of	the	nodes.	The	initial	value	of	min	and	max	will	be	INT_MIN	and
INT_MAX.
	
Example	10.37:
bool	Tree::isBST()
{
										return	isBST(root,	std::numeric_limits<int>::min(),	std::numeric_limits<int>::max());

}
	
bool	Tree::isBST(Node	*curr,	int	min,	int	max)
{
										if	(curr	==	nullptr)
																			return	true;
	
										if	(curr->value	<	min	||	curr->value	>	max)
																			return	false;
	
										return	isBST(curr->lChild,	min,	curr->value)	&&	isBST(curr->rChild,	curr->value,	max);
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	 	for	stack
	
Solution:	Above	method	is	correct	and	efficient	but	there	is	an	easy	method	to	do	the	same.	We
can	do	in-order	traversal	of	nodes	and	see	if	we	are	getting	a	strictly	increasing	sequence
	
Example	10.38:
bool	Tree::isBST2()
{
										int	c;
										return	isBST2(root,	c);
}
	
bool	Tree::isBST2(Node	*root,	int&	count)
{
										bool	ret;
										if	(root	!=	nullptr)
										{
																			ret	=	isBST2(root->lChild,	count);
																			if	(!ret)
																													return	false;
	
																			if	(count	>	root->value)
																													return	false;
	
																			count	=	root->value;
																			ret	=	isBST2(root->rChild,	count);
																			if	(!ret)
																													return	false;
										}
										return	true;
}
	
Complexity	Analysis:
Time	Complexity:	 																						Space	Complexity:	 	for	stack
	

Delete	Node

Description:	Remove	the	node	x	from	the	binary	search	tree,	making	the	necessary,	reorganize
nodes	of	binary	search	tree	to	maintain	its	properties.

	
There	are	three	cases	in	delete	node,	let’s	call	the	node	that	need	to	be	deleted	as	x.
Case	1:	node	x	has	no	children.	Just	delete	it	(i.e.	Change	parent	node	so	that	it	does	not	point	to
x)
Case	2:	node	x	has	one	child.	Splice	out	x	by	linking	x’s	parent	to	x’s	child
Case	3:	node	x	has	two	children.	Splice	out	the	x’s	successor	and	replace	x	with	x’s	successor
	
When	the	node	to	be	deleted	have	no	children
This	is	a	trivial	case	in	this	case	we	directly	delete	the	node	and	return	null.
	
When	the	node	to	be	deleted	have	only	one	child.
In	this	case	we	save	the	child	in	a	temp	variable,	then	delete	current	node,	and	finally	return	the
child.
	

	
We	want	to	remove	node	with	value	9.	The
node	has	only	one	child.
	

	
Right	child	of	the	parent	of	node	with	value	9
that	is	node	with	value	8	will	point	to	the
node	with	value	10.

	
Finally,	node	with	value	9	is	removed	from
the	tree.

	
	
	
When	the	node	to	be	deleted	has	two	children.

	
We	want	to	delete	node	with	value	6.	Which
have	two	children.

	
We	had	found	minimum	value	node	of	the	right
child	of	node	with	value	6.
	

	
Minimum	value	node	value	is	copied	to	the
node	with	value	6.

	
Delete	node	with	minimum	value	7	is	called
over	the	right	child	tree	of	the	node.
	
Finally	the	tree	with	both	the	children	is
created.

	
Example	10.39:
void	Tree::DeleteNode(int	value)
{
										root	=	DeleteNode(root,	value);
}
	
Tree::Node	*Tree::DeleteNode(Node	*node,	int	value)
{
										Node	*temp	=	nullptr;
	
										if	(node	!=	nullptr)
										{
																			if	(node->value	==	value)
																			{
																													if	(node->lChild	==	nullptr	&&	node->rChild	==	nullptr)
																													{
																																						delete	node;
																																						return	nullptr;
																													}
																													else
																													{
																																						if	(node->lChild	==	nullptr)
																																						{
																																																temp	=	node->rChild;
																																																delete	node;
																																																return	temp;
																																						}
	
																																						if	(node->rChild	==	nullptr)
																																						{
																																																temp	=	node->lChild;
																																																delete	node;
																																																return	temp;
																																						}
	
																																						Node	*maxNode	=	FindMax(node->lChild);
																																						int	maxValue	=	maxNode->value;
																																						node->value	=	maxValue;
																																						node->lChild	=	DeleteNode(node->lChild,	maxValue);
																													}
																			}
																			else
																			{
																													if	(node->value	>	value)
																													{

																																						node->lChild	=	DeleteNode(node->lChild,	value);
																													}
																													else
																													{
																																						node->rChild	=	DeleteNode(node->rChild,	value);
																													}
																			}
										}
										return	node;
}
	
Analysis:	Time	Complexity:	 																	Space	Complexity:	
	

Least	Common	Ancestor

In	a	tree	T.	The	least	common	ancestor	between	two	nodes	n1	and	n2	is	defined	as	the	lowest
node	in	T	that	has	both	n1	and	n2	as	descendants.
	
Example	10.40:
int	Tree::LcaBST(int	first,	int	second)
{
										return	LcaBST(root,	first,	second);
}
	
int	Tree::LcaBST(Node	*curr,	int	first,	int	second)
{
										if	(curr	==	nullptr)
										{
																			throw	std::exception("NotFoundException");
										}
	
										if	(curr->value	>	first	&&	curr->value	>	second)
										{
																			return	LcaBST(curr->lChild,	first,	second);
										}
										if	(curr->value	<	first	&&	curr->value	<	second)
										{
																			return	LcaBST(curr->rChild,	first,	second);
										}
										return	curr->value;
}
	

Trim	the	Tree	nodes	which	are	Outside	Range

Given	a	range	as	min,	max.	We	need	to	delete	all	the	nodes	of	the	tree	that	are	out	of	this	range.
	
Solution:	Traverse	the	tree	and	each	node	that	is	having	value	outside	the	range	will	delete	itself.
All	the	deletion	will	happen	from	inside	out	so	we	do	not	have	to	care	about	the	children	of	a
node	as	if	they	are	out	of	range	then	they	already	had	deleted	themselves.
	
Example	10.41:

Tree::Node	*Tree::trimOutsideRange(Node	*curr,	int	min,	int	max)
{
										if	(curr	==	nullptr)
																			return	nullptr;
	
										curr->lChild	=	trimOutsideRange(curr->lChild,	min,	max);
										curr->rChild	=	trimOutsideRange(curr->rChild,	min,	max);
	
										if	(curr->value	<	min)
																			return	curr->rChild;
	
										if	(curr->value	>	max)
																			return	curr->lChild;
	
										return	curr;
}
	
void	Tree::trimOutsideRange(int	min,	int	max)
{
										trimOutsideRange(root,	min,	max);
}
	

Print	Tree	nodes	which	are	in	Range

Print	only	those	nodes	of	the	tree	whose	value	is	in	the	range	given.
	
Solution:	Just	normal	inorder	traversal	and	at	the	time	of	printing	we	will	check	if	the	value	is
inside	the	range	provided.
	
Example	10.42:
void	Tree::printInRange(int	min,	int	max)
{
										printInRange(root,	min,	max);
}
	
void	Tree::printInRange(Node	*root,	int	min,	int	max)
{
										if	(root	==	nullptr)
																			return;
	
										printInRange(root->lChild,	min,	max);
	
										if	(root->value	>=	min	&&	root->value	<=	max)
																			std::cout	<<	root->value	<<	"	";
	
										printInRange(root->rChild,	min,	max);
}
	

Find	Ceil	and	Floor	value	inside	BST	given	key

Given	a	tree	and	a	value	we	need	to	find	the	ceil	value	of	node	in	tree	which	is	smaller	than	the
given	value	and	need	to	find	the	floor	value	of	node	in	tree	which	is	bigger.	Our	aim	is	to	find	ceil
and	floor	value	as	close	as	possible	then	the	given	value.

	
Example	10.43:
int	Tree::FloorBST(int	val)
{
										Node	*curr	=	root;
										int	floor	=	std::numeric_limits<int>::max();
	
										while	(curr	!=	nullptr)
										{
																			if	(curr->value	==	val)
																			{
																													floor	=	curr->value;
																													break;
																			}
																			else	if	(curr->value	>	val)
																			{
																													curr	=	curr->lChild;
																			}
																			else
																			{
																													floor	=	curr->value;
																													curr	=	curr->rChild;
																			}
										}
										return	floor;
}
	
int	Tree::CeilBST(int	val)
{
										Node	*curr	=	root;
										int	ceil	=	std::numeric_limits<int>::min();
	
										while	(curr	!=	nullptr)
										{
																			if	(curr->value	==	val)
																			{
																													ceil	=	curr->value;
																													break;
																			}
																			else	if	(curr->value	>	val)
																			{
																													ceil	=	curr->value;
																													curr	=	curr->lChild;
																			}
																			else
																			{
																													curr	=	curr->rChild;
																			}
										}
										return	ceil;
}
	

Exercise

1.				Construct	a	tree	given	its	in-order	and	pre-order	traversal	strings.
o			inorder:	1	2	3	4	5	6	7	8	9	10
o			pre-order:	6	4	2	1	3	5	8	7	9	10

	
2.				Construct	a	tree	given	its	in-order	and	post-order	traversal	strings.

o			inorder:	1	2	3	4	5	6	7	8	9	10
o			post-order:	1	3	2	5	4	7	10	9	8	6

	
3.				Write	a	delete	node	function	in	Binary	tree.

	
4.				Write	a	function	print	depth	first	in	a	binary	tree	without	using	system	stack	(use	STL	queue

or	stack	etc.)
Hint:	you	may	want	to	keep	another	element	to	tree	node	like	visited	flag.

	
5.				Check	whether	a	given	Binary	Tree	is	Complete	or	not

o			In	a	complete	binary	tree,	every	level	except	the	last	one	is	completely	filled.	All
nodes	in	the	left	are	filled	first,	then	the	right	one.

6.				Check	whether	a	given	Binary	Tree	is	Full/	Strictly	binary	tree	or	not
o			The	full	binary	tree	is	a	binary	tree	in	which	each	node	has	zero	or	two	children.

7.				Check	whether	a	given	Binary	Tree	is	a	Perfect	binary	tree	or	not
o			The	perfect	binary	tree-	is	a	type	of	full	binary	trees	in	which	each	non-leaf	node	has

exactly	two	child	nodes.
	

8.				Check	whether	a	given	Binary	Tree	is	Height-balanced	Binary	Tree	or	not
o			A	height-balanced	binary	tree	is	a	binary	tree	such	that	the	left	&	right	subtrees	for	any

given	node	differ	in	height	by	no	more	than	one

9.				Isomorphic:	two	trees	are	isomorphic	if	they	have	the	same	shape,	it	does	not	matter	what
the	value	is.	Write	a	program	to	find	if	two	given	tree	are	isomorphic	or	not.

	
10.		The	worst-case	runtime	Complexity	of	building	a	BST	with	n	nodes

o			O(n2)
o			O(n	*	log	n)
o			O(n)
o			O(logn)

	
11.		The	worst-case	runtime	Complexity	of	insertion	into	a	BST	with	n	nodes	is

o			O(n2)
o			O(n	*	log	n)
o			O(n)
o			O(logn)

	
12.		The	worst-case	runtime	Complexity	of	a	search	of	a	value	in	a	BST	with	n	nodes.

o			O(n2)
o			O(n	*	log	n)
o			O(n)
o			O(logn)

	
13.		Which	of	the	following	traversals	always	gives	the	sorted	sequence	of	the	elements	in	a

BST?
o			Preorder

o			Ignored
o			Postorder
o			Undefined

	
14.		The	height	of	a	Binary	Search	Tree	with	n	nodes	in	the	worst	case?

o			O(n	*	log	n)
o			O(n)
o			O(logn)
o			O(1)

	
15.		Try	to	optimize	the	above	solution	to	give	a	DFS	traversal	without	using	recursion	use

some	stack	or	queue.
	

16.			This	is	an	open	exercise	for	the	readers.	Every	algorithm	that	is	solved	using	recursion
(system	stack)	can	also	be	solved	using	user	defined	or	library	defined	(STL)	stack.	So	try
to	figure	out	what	all	algorithms	that	are	using	recursion	and	try	to	figure	out	how	you	will
do	this	same	issue	using	user	layer	stack.

	
17.		In	a	binary	tree,	print	the	nodes	in	zigzag	order.	In	the	first	level,	nodes	are	printed	in	the

left	to	right	order.	In	the	second	level,	nodes	are	printed	in	right	to	left	and	in	the	third	level
again	in	the	order	left	to	right.

o			Hint:	Use	two	stacks.	Pop	from	first	stack	and	push	into	another	stack.	Swap	the
stacks	alternatively.

	
18.		Find	nth	smallest	element	in	a	binary	search	tree.

o			Hint:	Nth	inorder	in	a	binary	tree.
	

19.		Find	the	floor	value	of	key	that	is	inside	a	BST.
	

20.		Find	the	Ceil	value	of	key,	which	is	inside	a	BST.
	

21.		What	is	Time	Complexity	of	the	below	code:
	
void	DFS(Node	head)	{
										Node	curr	=	head,	prev;
										int	count	=	0;
										while	(curr	&&	!	curr.visited)	{
																			count++;
																			if	(curr.lChild	&&	!	curr.lChild.visited)	{
																													curr=	curr.lChild;
																			}
																			else	if	(curr.rChild	&&	!	curr.rChild.visited)	{
																													curr=	curr.rChild;
																			}
																			else	{
																													std::cout	<<	curr.value);

																													curr.visited	=	1;
																													curr	=	head;
																			}
										}
										std::cout<<	“count	is	:	"	<<	count;
}

CHAPTER	11:	PRIORITY	QUEUE

Introduction				

A	Priority-Queue	also	knows	as	Binary-Heap,	is	a	variant	of	queue.	Items	are	removed	from	the
start	of	the	queue.	However,	in	a	Priority-Queue	the	logical	ordering	of	objects	is	determined	by
their	priority.	The	highest	priority	item	are	at	the	front	of	the	Priority-Queue.	When	you	add	an
item	to	Priority-Queue	the	new	item	can	more	to	the	front	of	the	queue.	A	Priority-Queue	is	a	very
important	data	structure.	Priority-Queue	is	used	in	various	Graph	algorithms	like	Prim’s
Algorithm	and	Dijkstra’s	algorithm.	Priority-Queue	is	also	used	in	the	timer	implementation	etc.
	
A	Priority-Queue	is	implemented	using	a	Heap	(Binary	Heap).	A	Heap	data	structure	is	an	array
of	elements	that	can	be	observed	as	a	complete	binary	tree.	The	tree	is	completely	filled	on	all
levels	except	possibly	the	lowest.	And	heap	satisfies	the	heap	ordering	property.	A	heap	is	a
complete	binary	tree	so	the	height	of	tree	with	N	nodes	is	always	O(logn).

A	heap	is	not	a	sorted	data	structure	and	can	be	regarded	as	partially	ordered.	As	you	see	from
the	picture,	there	is	no	relationship	among	nodes	at	any	given	level,	even	among	the	siblings.
	
Heap	is	implemented	using	an	array.	And	because	heap	is	a	complete	binary	tree,	the	left	child	of
a	parent	(at	position	x)	is	the	node	that	is	found	in	position	2x	in	the	array.	Similarly,	the	right
child	of	the	parent	is	at	position	2x+1	in	the	array.	To	find	the	parent	of	any	node	in	the	heap,	we
can	simply	division.	Given	the	index	y	of	a	node,	the	parent	index	will	by	y/2.

http://en.wikipedia.org/wiki/Prim%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Types	of	Heap

There	are	two	types	of	heap	and	the	type	depends	on	the	ordering	of	the	elements.	The	ordering
can	be	done	in	two	ways:	Min-Heap	and	Max-Heap
	

Max	Heap

Max-Heap:	the	value	of	each	node	is	less	than	or	equal	to	the	value	of	its	parent,	with	the	largest-
value	element	at	the	root.

Max	Heap	Operations
Insert O(logn)
DeleteMax O(logn)
Remove O(logn)
FindMax O(1)
	

Min	Heap

Min-Heap:	the	value	of	each	node	is	greater	than	or	equal	to	the	value	of	its	parent,	with	the
minimum-value	element	at	the	root.

Use	it	whenever	you	need	quick	access	to	the	smallest	item,	because	that	item	will	always	be	at
the	root	of	the	tree	or	the	first	element	in	the	array.	However,	the	remainder	of	the	array	is	kept
partially	sorted.	Thus,	instant	access	is	only	possible	for	the	smallest	item.
	
Min	Heap	Operations
Insert O(logn)
DeleteMin O(logn)
Remove O(logn)
FindMin O(1)
	
Throughout	this	chapter,	the	word	"heap"	will	always	refer	to	a	max-heap.	The	implementation	of
min-heap	is	left	for	the	user	to	do	it	as	an	exercise.
	

Heap	ADT	Operations

The	basic	operations	of	binary	heap	are	as	follows:
Binary	Heap Create	a	new	empty	binary	heap O(1)
Insert Adding	a	new	element	to	the	heap O(logn)
DeleteMax Delete	the	maximum	element	form	the	heap. O(logn)
FindMax Find	the	maximum	element	in	the	heap. O(1)
isEmpty return	true	if	the	heap	is	empty	else	return	false O(1)
Size Return	the	number	of	elements	in	the	heap. O(1)
BuildHeap Build	a	new	heap	from	the	array	of	elements O(logn)
	

Operation	on	Heap

	

Create	Heap	from	an	array

1.					Starts	by	putting	the	elements	to	an	array.
2.					Starting	from	the	middle	of	the	array	move	downward	towards	the	start	of	the	array.	At

each	step,	compare	parent	value	with	its	left	child	and	right	child.	And	restore	the	heap
property	by	shifting	the	parent	value	with	its	greatest-value	child.	Such	that	the	parent	value
will	always	be	greater	than	or	equal	to	left	child	and	right	child.

3.					For	all	elements	from	middle	of	the	array	to	the	start	of	the	array.	We	are	doing
comparisons	and	shift	till	we	reach	the	leaf	nodes	of	the	heap.	The	Time	Complexity	of
build	heap	is	O(N).

	

	
Given	an	array	as	input	to	create	heap	function.
Value	of	index	i	is	compared	with	value	of	its
children	nodes	that	is	at	index	(i*2	+	1)	and	(i*2
+	2).	Middle	of	array	N/2	that	is	index	3	is
comapred	with	index	7.	If	the	children	node	value
is	grater	then	parent	node	then	the	value	will	be
swapped.
	

	
Similarly,	value	of	index	2	is	compared	with	index
5	and	6.	The	largest	of	the	value	is	7	which	will	be
swapped	with	the	value	at	the	index	2.
	

	
Similarly,	value	of	index	1	is	compared	with	index
3	and	4	The	largest	of	the	value	is	8	which	will	be
swapped	with	the	value	at	the	index	1.
	

	
Percolate	down	function	is	used	to	subsequently
adjest	the	value	replased	in	the	previous	step	by
comparing	it	with	its	children	nodes.
	

	
Now	value	at	index	0	is	comared	with	index	1	and
2.	8	is	the	largest	value	so	it	swapped	with	the
value	at	index	0.
	

	
Percolate	down	function	is	used	to	further
compare	the	value	at	index	1	with	its	children
nodes	at	index	3	and	4.

	

	
In	the	end	max	heap	is	created.
	

	
Example	11.1:
class	Heap
{
private:
										static	const	int	CAPACITY	=	16;
										int	size;	//	Number	of	elements	in	heap
										std::vector<int>	arr;	//	The	heap	array
										void	proclateDown(int	position);
										void	proclateUp(int	position);
	
public:
										Heap();
										Heap(std::vector<int>	&array_in);
										virtual	void	add(int	value);
										virtual	int	remove();
										virtual	bool	isEmpty();
										virtual	int	peek();
										static	void	heapSort(std::vector<int>	&array_in);
};
	
Heap::Heap(std::vector<int>	&array_in)
{
										size	=	array_in.size();
										arr	=	std::vector<int>(array_in.size()	+	1);
										auto	it	=	arr.begin();
	
										copy(array_in.begin(),	array_in.end(),	++it);	//	we	do	not	use	0	index

	
										//	Build	Heap	operation	over	array
										for	(int	i	=	(size	/	2);	i	>	0;	i--)
										{
																			proclateDown(i);
										}
}
	
void	Heap::proclateDown(int	position)
{
										int	lChild	=	2	*	position;
										int	rChild	=	lChild	+	1;
										int	small	=	-1;
										int	temp;
	
										if	(lChild	<=	size)
										{
																			small	=	lChild;
										}
	
										if	(rChild	<=	size	&&	(arr[rChild]	-	arr[lChild])	<	0)
										{
																			small	=	rChild;
										}
	
										if	(small	!=	-1	&&	(arr[small]	-	arr[position])	<	0)
										{
																			temp	=	arr[position];
																			arr[position]	=	arr[small];
																			arr[small]	=	temp;
																			proclateDown(small);
										}
}
	
bool	Heap::isEmpty()
{
										return	(size	==	0);
}
	
int	Heap::peek()
{
										if	(isEmpty())
																			throw	std::exception("Heap	empty	exception.");
	
										return	arr[1];
}
	
	

Initializing	an	empty	Heap

Example	11.2:
Heap::Heap()
{
										arr	=	std::vector<int>(CAPACITY);
										size	=	0;
}
	

Enqueue	/	Insert

1.				Add	the	new	element	at	the	end	of	the	array.	This	keeps	the	structure	as	a	complete	binary
tree,	but	it	might	no	longer	be	a	heap	since	the	new	element	might	have	a	value	greater	than
its	parent.

2.				Swap	the	new	element	with	its	parent	until	it	has	value	greater	than	its	parents.
3.				Step	2	will	terminate	when	the	new	element	reaches	the	root	or	when	the	new	element's

parent	have	a	value	greater	than	or	equal	to	the	new	element's	value.
	
Let’s	take	an	example	of	the	Max	heap	created	in	the	above	example.
	

Let’s	take	an	example	by	inserting	element	with	value	9	to	the	heap.	The	element	is	added	to	the
end	of	the	heap	array.	Now	the	value	will	be	percolate	up	by	comparing	it	with	the	parent.	The
value	is	added	to	index	8	and	its	parent	will	be	(N-1)/2	=	index	3.
	

	
Since	the	value	9	is	grater	then	4	it	will	be	swapped
with	it.
	

	
Percolate	up	is	used	and	the	value	is	moved	up	till	heap
property	is	satisfied.
	

	
Now	the	value	at	index	1	is	compared	with	index	0	and
to	satisfy	heap	property	it	is	further	swapped.
	

	
Now	finally	max	heap	is	created	by	inserting	new	node.
	

	
Example	11.3:
void	Heap::add(int	value)
{
										arr[++size]	=	value;
										proclateUp(size);
}
	
void	Heap::proclateUp(int	position)
{
										int	parent	=	position	/	2;

										int	temp;
										if	(parent	==	0)
																			return;
	
										if	((arr[parent]	-	arr[position])	<	0)
										{
																			temp	=	arr[position];
																			arr[position]	=	arr[parent];
																			arr[parent]	=	temp;
																			proclateUp(parent);
										}
}
	

Dequeue	/	Delete

1.				Copy	the	value	at	the	root	of	the	heap	to	the	variable	used	to	return	a	value.
2.				Copy	the	last	element	of	the	heap	to	the	root,	and	then	reduce	the	size	of	heap	by	1.	This

element	is	called	the	"out-of-place"	element.
3.				Restore	heap	property	by	swapping	the	out-of-place	element	with	its	greatest-value	child.

Repeat	this	process	until	the	out-of-place	element	reaches	a	leaf	or	it	has	a	value	that	is
greater	or	equal	to	all	its	children.

4.				Return	the	answer	that	was	saved	in	Step	1.
To	remove	an	element	from	heap	its	top	value	is	swapped	to	the	end	of	the	heap	array	and	size	fo
heap	is	reduced	by	1.

	
Since	end	of	the	heap	value	is	copied	to	head
of	heap.	Heap	property	is	disturbed	so	we
need	to	again	percolate	down	by	comparing
node	with	its	children	nodes	to	restore	heap
property.
	

	
Percolate	down	continued	by	comparing	with
its	children	nodes.
	

	
Percolate	down

	
Percolate	down	Complete

	
	

	
Example	11.4:
int	Heap::remove()
{
										if	(isEmpty())
																			throw	std::exception("HeapEmptyException.");
	
										int	value	=	arr[1];
										arr[1]	=	arr[size];
										size--;
										proclateDown(1);
										return	value;
}
	

Heap-Sort

1.				Use	create	heap	function	to	build	a	max	heap	from	the	given	array	of	elements.	This
operation	will	take	O(N)	time.

2.				Dequeue	the	max	value	from	the	heap	and	store	this	value	to	the	end	of	the	array	at	location
arr[size-1]

a)				Copy	the	value	at	the	root	of	the	heap	to	end	of	the	array.
b)				Copy	the	last	element	of	the	heap	to	the	root,	and	then	reduce	the	size	of	heap	by	1.

This	element	is	called	the	"out-of-place"	element.
c)				Restore	heap	property	by	swapping	the	out-of-place	element	with	its	greatest-value

child.	Repeat	this	process	until	the	out-of-place	element	reaches	a	leaf	or	it	has	a
value	that	is	greater	or	equal	to	all	its	children

3.				Repeat	this	operation	till	there	is	just	one	element	in	the	heap.
Let’s	take	example	of	the	heap	which	we	had	created	at	the	start	of	the	chapter.	Heap	sort	is
algorithm	starts	by	creating	a	heap	of	the	given	array	which	is	done	in	linear	time.	Then	at	each
step	head	of	the	heap	is	swapped	with	the	end	of	the	heap	and	the	heap	size	is	reduced	by	1.	Then
percolate	down	is	used	to	restore	the	heap	property.	And	this	same	is	done	multiple	times	till	the
heap	contain	just	one	element.
	

	
We	had	started	with	max	heap.	The	maximum
value	as	the	first	element	of	the	Heap	array	is
swapped	with	the	last	element	of	the	array.	Now
the	largest	value	is	at	the	end	of	the	array.	Then	we
will	reduce	the	size	of	the	heap	by	one.
	

	

Since	1	is	at	the	top	of	the	heap.	And	heap
property	is	lost	we	will	use	Percolate	down	method
to	regain	the	heap	property.

	
Percolate	down	cont.

	
Since	heap	property	is	regained.	Then	we	will	copy
the	first	element	of	the	heap	array	to	the	second
last	position.

	
Heap	size	is	further	reduced	and	percolate	down
cont.

	
Percolate	down	cont.

	
Again	swap.

	
Size	of	heap	reduced	and	percolate	down.

	
Again	swap.

	
Size	of	heap	reduced	and	percolate	down.

	
Again	swap.

	
Size	of	heap	reduced	and	percolate	down.

	
Again	swap.

	
Again	swap.

	
End.

	
Final	array	which	is	sorted	in	increasing	order.

	
Example	11.5:
void	Heap::heapSort(std::vector<int>	&array_in)
{
										Heap	*hp	=	new	Heap(array_in);
										for	(int	i	=	0;	i	<	array_in.size();	i++)
										{
																			array_in[i]	=	hp->remove();
										}
}
	
int	main()
{
										std::vector<int>	a	=	{	1,	9,	6,	7,	8,	-1,	2,	4,	5,	3	};
										Heap	*hp	=	new	Heap(a);
										hp->print();
										std::cout	<<	"value	pop	from	heap::"	<<	std::endl;
										for	(int	i	=	0;	i	<	a.size();	i++)	{
																			std::cout	<<	"pop	value	::	"	<<	hp->remove()	<<	std::endl;
										}
	
										Heap::heapSort(a);
										std::cout	<<	"value	after	heap	sort::"	<<	std::endl;
										for	(int	i	=	0;	i	<	a.size();	i++)	{
																			std::cout	<<	"	"	<<	a[i];
										}
										return	0;
}

	
Data	structure Array
Worst	Case	Time	Complexity O(nlogn)
Best	Case	Time	Complexity O(nlogn)
Average	Time	Complexity O(nlogn)
Space	Complexity O(1)
	
Note:	Heap-Sort	is	not	a	Stable	sort	and	do	not	require	any	extra	space	for	sorting	a	list.
	

Uses	of	Heap

	
1.				Heapsort:	One	of	the	best	sorting	methods	being	in-place	and	log(N)	time	complexity	in

all	scenarios.
	

2.				Selection	algorithms:	Finding	the	min,	max,	both	the	min	and	max,	median,	or	even	the	kth
largest	element	can	be	done	in	linear	time	(often	constant	time)	using	heaps.
	

3.				Priority	Queues:	Heap	Implemented	priority	queues	are	used	in	Graph	algorithms
like	Prim’s	Algorithm	and	Dijkstra’s	algorithm.	A	heap	is	a	useful	data	structure	when	you
need	to	remove	the	object	with	the	highest	(or	lowest)	priority.	Schedulers,	timers

	
4.				Graph	algorithms:	By	using	heaps	as	internal	traversal	data	structures,	run	time	will	be

reduced	by	polynomial	order.	Examples	of	such	problems	are	Prim's	minimal
	

5.				Because	of	the	lack	of	pointers,	the	operations	are	faster	than	a	binary	tree.	Also,	some
more	complicated	heaps	(such	as	binomial)	can	be	merged	efficiently,	which	isn't	easy	to
do	for	a	binary	tree.	

	

http://en.wikipedia.org/wiki/Prim%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Problems	in	Heap

	

Kth	Smallest	in	a	Min	Heap

Just	call	DeleteMin()	operation	K-1	times	and	then	again	call	DeleteMin()	this	last	operation	will
give	Kth	smallest	value.	Time	Complexity	O(KlogN)
	

Kth	Largest	in	a	Max	Heap

Just	call	DeleteMax()	operation	K-1	times	and	then	again	call	DeleteMax	()	this	last	operation
will	give	Kth	smallest	value.	Time	Complexity	O(KlogN)
	

100	Largest	in	a	Stream

There	are	billions	of	integers	coming	out	of	a	stream	some	getInt()	function	is	providing	integers
one	by	one.	How	would	you	determine	the	largest	100	numbers?
	
Solution:	Large	hundred	(or	smallest	hundred	etc.)	such	problems	are	solved	very	easily	using	a
Heap.	In	our	case,	we	will	create	a	min	heap.
1.				First	from	100	first	integers	builds	a	min	heap.
2.				Then	for	each	coming	integer	compare	if	it	is	greater	than	the	top	of	the	min	heap.
3.				If	not,	then	look	for	next	integer.	If	yes,	then	remove	the	top	min	value	from	the	min	heap,

insert	the	new	value	at	the	top	of	the	heap,	use	procolateDown,	and	move	it	to	its	proper
position	down	the	heap.

4.				Every	time	you	have	largest	100	values	stored	in	your	head
	

Merge	two	Heap

How	can	we	merge	two	heaps?
Solution:	There	is	no	single	solution	for	this.	Let	us	suppose	the	size	of	the	bigger	heap	is	N	and
the	size	of	the	smaller	heap	is	M.
1.				If	both	heaps	are	comparable	size,	then	put	both	heap	arrays	in	same	bigger	arrays.	Or	in	one

of	the	arrays	if	they	are	big	enough.	Then	apply	CreateHeap()	function	which	will	take
theta(N+M)	time.

2.				If	M	is	much	smaller	then	N	then	add()	each	element	of	M	array	one	by	one	to	N	heap.	This
will	take	O(MlogN)	the	worst	case	or	O(M)	best	case.

	

Get	Median	function

Give	a	data	structure	that	will	provide	median	of	given	values	in	constant	time.
Solution:	We	will	be	using	two	heap	one	min	heap	and	other	max	heap.	First,	there	will	be	a	max
heap	which	will	contain	the	first	half	of	data	and	there	will	be	an	min	heap	which	will	contain	the
second	half	of	the	data.	Max	heap	will	contain	the	smaller	half	of	the	data	and	its	max	value	that	is
at	the	top	of	the	heap	will	be	the	median	contender.	Similarly,	the	Min	heap	will	contain	the	larger
values	of	the	data	and	its	min	value	that	is	at	its	top	will	contain	the	median	contender.	We	will
keep	track	of	the	size	of	heaps.	Whenever	we	insert	a	value	to	heap,	we	will	make	sure	that	the
size	of	two	heaps	differs	by	max	one	element,	otherwise	we	will	pop	one	element	from	one	and
insert	into	another	to	keep	them	balanced.
	
Example	11.6:
class	MedianHeap
{
private:
										std::priority_queue<int,	std::vector<int>,	std::greater<int>>	minHeap;
										std::priority_queue<int,	std::vector<int>,	std::less<int>>	maxHeap;
	
public:
										virtual	void	insert(int	value);
										virtual	int	getMedian();
};
	
void	MedianHeap::insert(int	value)
{
										if	(maxHeap.size()	==	0	||	maxHeap.top()	>=	value)
																			maxHeap.push(value);
										else
																			minHeap.push(value);
	
										//	size	balancing
										if	(maxHeap.size()	>	minHeap.size()	+	1)
										{
																			value	=	maxHeap.top();
																			maxHeap.pop();
																			minHeap.push(value);
										}
	
										if	(minHeap.size()	>	maxHeap.size()	+	1)
										{
																			value	=	minHeap.top();
																			minHeap.pop();
																			maxHeap.push(value);
										}
}
	
int	MedianHeap::getMedian()
{
										if	(maxHeap.size()	==	0	&&	minHeap.size()	==	0)
																			throw	std::exception("HeapEmptyException");
	
										if	(maxHeap.size()	==	minHeap.size())
																			return	(maxHeap.top()	+	minHeap.top())	/	2;
										else	if	(maxHeap.size()	>	minHeap.size())
																			return	maxHeap.top();
										else

																			return	minHeap.top();
}
	
int		main()
{
										std::vector<int>	arr	=	{	1,9,2,8,3,7,4,6,5,1,9,2,8,3,7,4,6,5,10,10};
										MedianHeap	hp;
	
										for	(int	i	=	0;	i	<	20;	i++)
										{
																			hp.insert(arr[i]);
																			std::cout	<<	"Median	after	insertion	of	"	<<	arr[i]	<<	"	is	"	<<	hp.getMedian()	<<	std::endl;
										}
}
	

Is	Min	Heap

Example	11.7:	Given	an	array,	find	if	it	is	a	binary	Heap	is	Min	Heap
bool	IsMinHeap(std::vector<int>	&arr,	int	size)
{
										for	(int	i	=	0;	i	<=	(size	-	2)	/	2;	i++)
										{
																			if	(2	*	i	+	1	<	size)
																			{
																													if	(arr[i]	>	arr[2	*	i	+	1])
																													{
																																						return	false;
																													}
																			}
																			if	(2	*	i	+	2	<	size)
																			{
																													if	(arr[i]	>	arr[2	*	i	+	2])
																													{
																																						return	false;
																													}
																			}
										}
										return	true;
}

	

Is	Max	Heap

Example	11.8:	Given	an	array	find	if	it	is	a	binary	Heap	Max	heap
bool	IsMaxHeap(std::vector<int>	&arr,	int	size)
{
										for	(int	i	=	0;	i	<=	(size	-	2)	/	2;	i++)
										{
																			if	(2	*	i	+	1	<	size)
																			{
																													if	(arr[i]	<	arr[2	*	i	+	1])
																													{
																																						return	false;
																													}
																			}
																			if	(2	*	i	+	2	<	size)
																			{

																													if	(arr[i]	<	arr[2	*	i	+	2])
																													{
																																						return	false;
																													}
																			}
										}
										return	true;
}
	
Analysis:	If	each	parent	is	grater	then	its	children	then	heap	property	is	true.	We	will	start	from
half	of	the	array	and	will	reduce	the	size	one	by	one	thereby	comparing	the	value	of	index	node
with	its	left	child	and	right	child	node.
	

Traversal	in	Heap

Heaps	are	not	designed	to	traverse	to	find	some	element	they	are	made	to	get	min	or	max	element
fast.	Still	if	you	want	to	traverse	a	heap	just	traverse	the	array	sequentially.	This	traversal	will	be
level	order	traversal.	This	traversal	will	have	linear	Time	Complexity.
	

Deleting	Arbiter	element	from	Min	Heap

Again,	heap	is	not	designed	to	delete	an	arbitrary	element,	but	still	if	you	want	to	do	so.	Find	the
element	by	linear	search	in	the	heap	array.	Replace	it	with	the	value	stored	at	the	end	of	the	Heap
value.	Reduce	the	size	of	the	heap	by	one.	Compare	the	new	inserted	value	with	its	parent.	If	its
value	is	smaller	than	the	parent	value,	then	percolate	up.	Else	if	its	value	is	greater	than	its	left
and	right	child	then	percolate	down.	Time	Complexity	is	O(logn)
	

Deleting	Kth	element	from	Min	Heap

Again,	heap	is	not	designed	to	delete	an	arbitrary	element,	but	still	if	you	want	to	do	so.	Replace
the	kth	value	with	the	value	stored	at	the	end	of	the	Heap	value.	Reduce	the	size	of	the	heap	by
one.	Compare	the	new	inserted	value	with	its	parent.	If	its	value	is	smaller	than	the	parent	value,
then	percolate	up.	Else	if	its	value	is	greater	than	its	left	and	right	child	then	percolate	down.
Time	Complexity	is	O(logn)
	

Print	value	in	Range	in	Min	Heap

Linearly	traverse	through	the	heap	and	print	the	value	that	are	in	the	given	range.
	

Exercise

1.				What	is	the	worst-case	runtime	Complexity	of	finding	the	smallest	item	in	a	min-heap?
	

2.				Find	max	in	a	min	heap.
Hint:	normal	search	in	the	complete	array.	There	is	one	more	optimization	you	can	search	from
the	mid	of	the	array	at	index	N/2

	
3.				What	is	the	worst-case	time	Complexity	of	finding	the	largest	item	in	a	min-heap?
	
4.				What	is	the	worst-case	time	Complexity	of	deleteMin	in	a	min-heap?
	
5.				What	is	the	worst-case	time	Complexity	of	building	a	heap	by	insertion?
	
6.				Is	a	heap	full	or	complete	binary	tree?
	
7.				What	is	the	worst	time	runtime	Complexity	of	sorting	an	array	of	N	elements	using	heapsort?
	
8.				Given	a	sequence	of	numbers:	1,	2,	3,	4,	5,	6,	7,	8,	9

a.				Draw	a	binary	Min-heap	by	inserting	the	above	numbers	one	by	one
b.				Also	draw	the	tree	that	will	be	formed	after	calling	Dequeue()	on	this	heap

	
9.				Given	a	sequence	of	numbers:	1,	2,	3,	4,	5,	6,	7,	8,	9

a.				Draw	a	binary	Max-heap	by	inserting	the	above	numbers	one	by	one
b.				Also	draw	the	tree	that	will	be	formed	after	calling	Dequeue()	on	this	heap

	
10.		Given	a	sequence	of	numbers:	3,	9,	5,	4,	8,	1,	5,	2,	7,	6.	Construct	a	Min-heap	by	calling

CreateHeap	function.
	

11.		Show	an	array	that	would	be	the	result	after	the	call	to	deleteMin()	on	this	heap
	
12.		Given	an	array:	[3,	9,	5,	4,	8,	1,	5,	2,	7,	6].	Apply	heapify	over	this	to	make	a	min	heap	and

sort	the	elements	in	decreasing	order?
	

13.		In	Heap-Sort	once	a	root	element	has	been	put	in	its	final	position,	how	much	time,	does	it
take	to	re-heapify	the	structure	so	that	the	next	removal	can	take	place?	In	other	words,	what	is
the	Time	Complexity	of	a	single	element	removal	from	the	heap	of	size	N?

	
14.		What	do	you	think	the	overall	Time	Complexity	for	heapsort	is?	Why	do	you	feel	this	way?
	

CHAPTER	12:	HASH-TABLE

Introduction

In	the	previous	chapter,	we	have	looked	into	various	searching	techniques.	Consider	a	problem	of
searching	a	value	in	an	array.	If	the	array	is	not	sorted	then	we	have	no	other	option	but	to	look
into	each	and	every	element	one	by	one	so	the	searching	Time	Complexity	will	be	O(n).	If	the
array	is	sorted	then	we	can	search	the	value	we	are	looking	for	in	O(logn)	logarithmic	time	using
binary	search.
	
What	if	we	have	a	function	that	can	tell	us	the	location/index	of	the	value	we	are	looking	for	in	the
array?	We	can	directly	go	into	that	location	and	tell	whether	our	object	we	are	searching	for	is
present	or	not	in	just	O(1)	constant	time.	Such	a	function	is	called	a	Hash	function.
	

In	real	life	when	a	letter	is	handed	over	to	a	postman,	by	looking	at	the	address	on	the	letter,
postman	precisely	knows	to	which	house	this	letter	needs	to	be	delivered.	He	is	not	going	to	ask

for	a	person	door	to	door.	

The	process	of	storing	objects	using	a	hash	function	is	as	follows:
1.	Create	an	array	of	size	M	to	store	objects;	this	array	is	called	Hash-Table.
2.	Find	a	hash	code	of	an	object	by	passing	it	through	the	hash	function.
3.	Take	module	of	hash	code	by	the	size	of	Hashtable	to	get	the	index	of	the	table	where	objects
will	be	stored.
4.	Finally	store	these	objects	in	the	designated	index.
	
The	process	of	searching	objects	in	Hash-Table	using	a	hash	function	is	as	follows:
1.	Find	a	hash	code	of	the	object	we	are	searching	for	by	passing	it	through	the	hash	function.
2.	Take	module	of	hash	code	by	the	size	of	Hashtable	to	get	the	index	of	the	table	where	objects

are	stored.
3.	Finally,	retrieve	the	object	from	the	designated	index.
	

Hash-Table

A	Hash-Table	is	a	data	structure	that	maps	keys	to	values.	Each	position	of	the	Hash-Table	is
called	a	slot.	The	Hash-Table	uses	a	hash	function	to	calculate	an	index	of	an	array	of	slots.	We
use	the	Hash-Table	when	the	number	of	keys	actually	stored	is	small	relatively	to	the	number	of
possible	keys.
	

Hash-Table	Abstract	Data	Type	(ADT)

ADT	of	Hash-Table	contains	the	following	functions:
1.				Insert(x),	add	object	x	to	the	data	set.
2.				Delete(x),	delete	object	x	from	the	data	set.
3.				Search(x),	search	object	x	in	data	set.

	

Hash	Function

A	hash	function	is	a	function	that	generates	an	index	in	a	table	for	a	given	object.
An	ideal	hash	function	should	generate	a	unique	index	for	each	and	every	object	is	called	the
perfect	hash	function.
	
Example	12.1:	Most	simple	hash	function
int	HashTable::ComputeHash(int	key)
{
										return	key	%	tableSize;
}
	
There	are	many	hash	functions,	but	this	is	the	minimum	that	a	hash	function	should	do.	Various
hash	generation	logics	will	be	added	to	this	function	to	generate	a	better	hash.
	

Properties	of	good	hash	function:

1.				It	should	provide	a	uniform	distribution	of	hash	values.	A	non-uniform	distribution
increased	the	number	of	collisions	and	the	cost	of	resolving	them.

2.				Choose	a	hash	function	which	can	be	computed	quickly	and	returns	values	within	the	range
of	the	Hash-Table.

3.				Chose	a	hash	function	with	a	good	collision	resolution	algorithm	which	can	be	used	to
compute	alternative	index	if	the	collision	occurs.

4.				Choose	a	hash	function	which	uses	the	necessary	information	provided	in	the	key.
5.				It	should	have	high	load	factor	for	a	given	set	of	keys.

	

Load	Factor

Load	factor	=	Number	of	elements	in	Hash-Table	/	Hash-Table	size
	
Based	on	the	above	definition,	Load	factor	tells	whether	the	hash	function	is	distributing	the	keys
uniformly	or	not.	So	it	helps	in	determining	the	efficiency	of	the	hashing	function.	It	also	works	as
decision	parameter	when	we	want	to	expand	or	rehash	the	existing	Hash-Table	entries.
	

Collisions

When	a	hash	function	generates	the	same	index	for	the	two	or	more	different	objects,	the	problem
known	as	the	collision.	Ideally,	hash	function	should	return	a	unique	address	for	each	key,	but
practically	it	is	not	possible.
	

Collision	Resolution	Techniques

Hash	collisions	are	practically	unavoidable	when	hashing	large	number	of	objects.	Techniques
that	are	used	to	find	the	alternate	location	in	the	Hash-Table	is	called	collision	resolution.	There
are	a	number	of	collision	resolution	techniques	to	handle	the	collision	in	hashing.
	
Most	common	and	widely	used	techniques	are:

·									Open	addressing
·									Separate	chaining

	

Hashing	with	Open	Addressing

When	using	linear	open	addressing,	the	Hash-Table	is	represented	by	a	one-dimensional	array
with	indices	that	range	from	0	to	the	desired	table	size-1.
	
One	method	of	resolving	collision	is	the	look	into	a	Hash-Table	and	find	another	free	slot	the	hold
the	object	that	have	caused	the	collision.	A	simple	way	is	to	move	from	one	slot	to	another	in
some	sequential	order	until	we	find	a	free	space.	This	collision	resolution	process	is	called	Open
Addressing.
	

Linear	Probing

In	Linear	Probing,	we	try	to	resolve	the	collision	of	an	index	of	a	Hash-Table	by	sequentially
searching	the	Hash-Table	free	location.	Let	us	suppose,	if	k	is	the	index	retrieved	from	the	hash
function.	If	the	kth	index	is	already	filled	then	we	will	look	for	(k+1)	%M,	then	(k+2)	%M	and	so
on.	When	we	get	a	free	slot,	we	will	insert	the	object	into	that	free	slot.
	
Example	12.2:	The	resolver	function	of	linear	probing
int	HashTable::ResolverFun(int	index)
{
										return	index;
}
	

Quadratic	Probing

In	Quadratic	Probing,	we	try	to	resolve	the	collision	of	the	index	of	a	Hash-Table	by	quadratic
ally	increasing	the	search	index	free	location.	Let	us	suppose,	if	k	is	the	index	retrieved	from	the
hash	function.	If	the	kth	index	is	already	filled	then	we	will	look	for	(k+1^2)	%M,	then	(k+2^2)
%M	and	so	on.	When	we	get	a	free	slot,	we	will	insert	the	object	into	that	free	slot.
	
Example	12.3:	The	resolver	function	of	quadratic	probing
int	HashTable::ResolverFun(int	index)
{
										return	index*index;
}
	
Note:-	Table	size	should	be	a	prime	number	to	prevent	early	looping	should	not	be	too	close	to
2powN
	

Linear	Probing	implementation

Example	12.4:	Below	is	a	linear	probing	collision	resolution	Hash-Table	implementation.
class	HashTable
{

private:
										static	int	EMPTY_NODE;
										static	int	LAZY_DELETED;
										static	int	FILLED_NODE;
										std::vector<int>	Arr;
										std::vector<int>	Flag;
										int	tableSize	=	0;
										virtual	int	ComputeHash(int	key);
										virtual	int	ResolverFun(int	index);
	
public:
										HashTable(int	tSize);
										virtual	bool	Add(int	value);
										virtual	bool	Find(int	value);
										virtual	bool	Remove(int	value);
										virtual	void	Print();
};
	
Table	array	size	will	be	50	and	we	have	defined	two	constant	values	EMPTY_NODE	and
LAZY_DELETED.
int	HashTable::ComputeHash(int	key)
{
										return	key	%	tableSize;
}
	
This	is	the	most	simple	hash	generation	function	which	does	nothing	but	just	take	the	modulus	of
the	key.
int	HashTable::ResolverFun(int	index)
{
										return	index;
}
When	the	hash	index	is	already	occupied	by	some	element	the	value	will	be	placed	in	some	other
location	to	find	that	new	location	resolver	function	is	used.
	
Hash-Table	has	two	component	one	is	table	size	and	other	is	pointer	to	array.
	
Example	12.5:
bool	HashTable::Add(int	value)
{
										int	hashValue	=	ComputeHash(value);
										for	(int	i	=	0;	i	<	tableSize;	i++)
										{
																			if	(Flag[hashValue]	==	EMPTY_NODE	||	Flag[hashValue]	==	LAZY_DELETED)
																			{
																													Arr[hashValue]	=	value;
																													Flag[hashValue]	=	FILLED_NODE;
																													return	true;
																			}
																			hashValue	+=	ResolverFun(i);
																			hashValue	%=	tableSize;
										}
										return	false;
}
	

An	insert	node	function	is	used	to	add	values	to	the	array.	First	hash	is	calculated.	Then	we	try	to
place	that	value	in	the	Hash-Table.	We	look	for	empty	node	or	lazy	deleted	node	to	insert	value.
In	case	insert	did	not	success,	we	try	new	location	using	a	resolver	function.
	
Example	12.6:
bool	HashTable::Find(int	value)
{
										int	hashValue	=	ComputeHash(value);
										for	(int	i	=	0;	i	<	tableSize;	i++)
										{
																			if	(Flag[hashValue]	==	EMPTY_NODE)
																													return	false;
	
																			if	(Flag[hashValue]	==	FILLED_NODE	&&	Arr[hashValue]	==	value)
																													return	true;
	
																			hashValue	+=	ResolverFun(i);
																			hashValue	%=	tableSize;
										}
										return	false;
}
	
Find	node	function	is	used	to	search	values	in	the	array.	First	hash	is	calculated.	Then	we	try	to
find	that	value	in	the	Hash-Table.	We	look	for	over	desired	value	or	empty	node.	In	case	we	find
the	value	we	are	looking	for	then	we	return	that	value	or	in	case	we	don’t	we	return	-1.	We	use	a
resolver	function	to	find	the	next	probable	index	to	search.
	
Example	12.7:
bool	HashTable::Remove(int	value)
{
										int	hashValue	=	ComputeHash(value);
										for	(int	i	=	0;	i	<	tableSize;	i++)
										{
																			if	(Flag[hashValue]	==	EMPTY_NODE)
																													return	false;
	
																			if	(Flag[hashValue]	==	FILLED_NODE	&&	Arr[hashValue]	==	value)
																			{
																													Flag[hashValue]	=	LAZY_DELETED;
																													return	true;
																			}
																			hashValue	+=	ResolverFun(i);
																			hashValue	%=	tableSize;
										}
										return	false;
}
	
Delete	node	function	is	used	to	delete	values	from	a	Hashtable.	We	do	not	actually	delete	the
value	we	just	mark	that	value	as	LAZY_DELETED.	Same	as	the	insert	and	search	we	use
resolverFun	to	find	the	next	probable	location	of	the	key.
	
Example	12.8:

void	HashTable::Print()
{
										std::cout	<<	"\nValues	Stored	in	HashTable	are::"	<<	std::endl;
										for	(int	i	=	0;	i	<	tableSize;	i++)
										{
																			if	(Flag[i]	==	FILLED_NODE)
																													std::cout	<<	"Node	at	index	["	<<	i	<<	"]	::	"	<<	Arr[i]	<<	std::endl;
										}
}
	
Print	method	print	the	content	of	hash	table.
int	main()
{
										HashTable	*ht	=	new	HashTable(1000);
										ht->Add(89);	ht->Add(18);	ht->Add(49);	ht->Add(58);	ht->Add(69);
										ht->Add(89);	ht->Add(18);	ht->Add(49);	ht->Add(58);	ht->Add(69);
										ht->Print();
	
										ht->Remove(89);ht->Remove(18);ht->Remove(49);ht->Remove(58);
										ht->Remove(69);
										ht->Print();
										return	0;
}
	
Output:
Values	Stored	in	HashTable	are::
Node	at	index	[18]	::	18
Node	at	index	[19]	::	18
Node	at	index	[49]	::	49
Node	at	index	[50]	::	49
Node	at	index	[58]	::	58
Node	at	index	[59]	::	58
Node	at	index	[69]	::	69
Node	at	index	[70]	::	69
Node	at	index	[89]	::	89
Node	at	index	[90]	::	89
	
Values	Stored	in	HashTable	are::
Node	at	index	[19]	::	18
Node	at	index	[50]	::	49
Node	at	index	[59]	::	58
Node	at	index	[70]	::	69
Node	at	index	[90]	::	89
	
Main	function	demonstrating	how	to	use	hash	table.
	

Quadratic	Probing	implementation.

Everything	will	be	same	as	linear	probing	implementation	only	resolver	function	will	be	changed.
	
int	resolverFun(int	index)
{
										return	index	*	index;
}
	

Hashing	with	separate	chaining

Another	method	for	collision	resolution	is	based	on	an	idea	of	putting	the	keys	that	collide	in	a
linked	list.	This	method	is	called	separate	chaining.	To	speed	up	search	we	use	Insertion-Sort	or
keeping	the	linked	list	sorted.

Separate	Chaining	implementation

‘Example	12.9:	Below	is	separate	chaining	implementation	of	hash	tables.
class	HashTableSC
{
private:
										struct	Node
										{
																			int	value;
																			Node	*next;
																			Node(int	v,	Node	*n);
										};
	
										int	tableSize;
										std::vector<Node*>	listArray;
	
										int	ComputeHash(int	key);	//	division	method
	
public:
										HashTableSC();							
										virtual	void	Add(int	value);
										virtual	bool	Remove(int	value);
										virtual	void	Print();
										virtual	bool	Find(int	value);
};
	
HashTableSC::Node::Node(int	v,	Node	*n)
{
										value	=	v;
										next	=	n;

}
	
HashTableSC::HashTableSC()
{
										tableSize	=	PRIME_NUMBER;
										listArray	=	std::vector<Node*>(tableSize);
										for	(int	i	=	0;	i	<	tableSize;	i++)
										{
																			listArray[i]	=	nullptr;
										}
}
	
void	HashTableSC::Add(int	value)
{
										int	index	=	ComputeHash(value);
										listArray[index]	=	new	Node(value,	listArray[index]);
}
	
ool	HashTableSC::Remove(int	value)
{
										int	index	=	ComputeHash(value);
										Node	*nextNode,	*head	=	listArray[index];
										Node	*delMe;
										if	(head	!=	nullptr	&&	head->value	==	value)
										{
																			delMe	=	head;
																			listArray[index]	=	head->next;
																			delete(delMe);
																			return	true;
										}
										while	(head	!=	nullptr)
										{
																			nextNode	=	head->next;
																			if	(nextNode	!=	nullptr	&&	nextNode->value	==	value)
																			{
																													delMe	=	head->next;
																													head->next	=	nextNode->next;
																													delete(delMe);
																													return	true;
																			}
																			else
																			{
																													head	=	nextNode;
																			}
										}
										return	false;
}
	
void	HashTableSC::Print()
{
										for	(int	i	=	0;	i	<	tableSize;	i++)
										{
																			Node	*head	=	listArray[i];
																			if	(head)
																													std::cout	<<	"Index::	"	<<	i	<<	"Value	::	"	<<	std::endl;
	
																			while	(head	!=	nullptr)
																			{
																													std::cout	<<	head->value	<<	std::endl;
																													head	=	head->next;

																			}
										}
}
	
bool	HashTableSC::Find(int	value)
{
										int	index	=	ComputeHash(value);
										Node	*head	=	listArray[index];
										while	(head	!=	nullptr)
										{
																			if	(head->value	==	value)
																													return	true;
	
																			head	=	head->next;
										}
										return	false;
}
	
Note:	It	is	important	to	note	that	the	size	of	the	“skip”	must	be	such	that	all	the	slots	in	the	table
will	eventually	be	occupied.	Otherwise,	part	of	the	table	will	be	unused.	To	ensure	this,	it	is	often
suggested	that	the	table	size	being	a	prime	number.	This	is	the	reason	we	have	been	using	11	in
our	examples.
	

Count	Map

Below	is	CountMap<T>	implementation	over	C++	collection	HashMap<T>,	this	interface	is
important	if	you	have	repeted	values	can	come	and	you	want	to	keep	track	of	there	count.
CountMap<T>	is	our	implementation	that	we	will	use	to	solve	many	problems.
	
Example	12.10:
template<typename	T>
class	CountMap
{
public:
										std::unordered_map<T,	int>	hm;
										virtual	void	add(T	key)
										{
																			if	(hm.find(key)	!=	hm.end())
																													hm[key]	=	hm[key]+	1;
																			else
																													hm[key]	=	1;
										}
	
										virtual	void	remove(T	key)
										{
																			if	(hm.find(key)	!=	hm.end())
																			{
																													if	(hm[key]	==	1)
																																						hm.erase(key);
																													else
																																						hm[key]	=	hm[key]-	1;
																			}
										}
	
										virtual	int	get(T	key)
										{
																			if	(hm.find(key)	!=	hm.end())
																													return	hm[key];
																			return	0;
										}
	
										virtual	bool	containsKey(T	key)
										{
																			return	hm.find(key)	!=	hm.end();
										}
	
										virtual	int	size()
										{
																			return	hm.size();
										}
};
	
int	main()
{
										CountMap<int>	*cm	=	new	CountMap<int>();
										cm->add(2);
										cm->add(2);
										cm->remove(2);

										std::cout	<<	"count	is	:	"	<<	cm->get(2)	<<	std::endl;
										std::cout	<<	"count	is	:	"	<<	cm->get(3)	<<	std::endl;
										return	0;
}
	
Output:
count	is	:	1
count	is	:	0
	

Problems	in	Hashing

	

Anagram	solver

An	anagram	is	a	word	or	phrase	formed	by	reordering	the	letters	of	another	word	or	phrase.
	
Example	12.11:	Two	words	are	anagram	if	they	are	of	same	size	and	there	chracters	are	same.
bool	isAnagram(std::string	&str1,	std::string	&str2)
{
										int	size1	=	str1.size();
										int	size2	=	str2.size();
	
										if	(size1	!=	size2)
																			return	false;
	
										CountMap<char>	*cm	=	new	CountMap<char>();
	
										for	(auto	ch	:	str1)
																			cm->add(ch);
	
										for	(auto	ch	:	str2)
																			cm->remove(ch);
	
										return	(cm->size()	==	0);
}
	

Remove	Duplicate

Remove	duplicates	in	an	array	of	numbers.
Solution:	We	can	use	a	second	array	or	the	same	array,	as	the	output	array.	In	the	below	example
Hash-Table	is	used	to	solve	this	problem.
	
Example	12.12:
void	removeDuplicate(std::string	&str)
{
										int	index	=	0;
										std::unordered_set<char>	hs;
	
										for	(auto	ch	:	str)
										{
																			if	(hs.find(ch)	==	hs.end())
																			{
																													str[index++]	=	ch;
																													hs.insert(ch);
																			}
										}
										str[index]	=	'\0';
}
	

Find	Missing

	
Example	12.13:	There	is	a	list	of	integers	we	need	to	find	the	missing	number	in	the	list.
int	findMissing(std::vector<int>	&arr,	int	start,	int	end)
{
										std::unordered_set<int>	hs;
										for	(auto	i	:	arr)
										{
																			hs.insert(i);
										}
	
										for	(int	curr	=	start;	curr	<=	end;	curr++)
										{
																			if	(hs.find(curr)	==	hs.end())
																			{
																													return	curr;
																			}
										}
										return	std::numeric_limits<int>::max();
}
	
All	the	element	in	the	list	is	added	to	hashtable	and	then	the	missing	element	is	found	by	searching
into	hashtable	and	final	missing	value	is	returned.
	

Print	Repeating

	
Example	12.14:	Print	the	repeating	integer	in	a	list	of	integers.
void	printRepeating(std::vector<int>	&arr)
{
										std::unordered_set<int>	hs;
	
										std::cout	<<	"Repeating	elements	are:";
										for	(auto	val	:	arr)
										{
																			if	(hs.find(val)	!=	hs.end())
																			{
																													std::cout	<<	val	<<	"		";
																			}
																			else
																			{
																													hs.insert(val);
																			}
										}
}
	
All	the	values	to	the	hash	table	when	some	value	came	which	is	already	in	the	hash	table	then	that
is	the	repeted	value.
	

Print	First	Repeating

Same	as	the	above	problem	in	this	we	need	to	print	the	first	repeating	number.	Caution	should	be
taken	to	find	the	first	repeating	number.	It	should	be	the	one	number	that	is	repeating.	For	example,
1,	2,	3,	2,1.	The	answer	should	be	1	as	it	is	the	first	number	which	is	repeating.
	
Example	12.15:
void	printFirstRepeating(std::vector<int>	&arr)
{
										int	i;
										int	size	=	arr.size();
										CountMap<int>	*hs	=	new	CountMap<int>();
	
										for	(i	=	0;	i	<	size;	i++)
										{
																			hs->add(arr[i]);
										}
										for	(i	=	0;	i	<	size;	i++)
										{
																			hs->remove(arr[i]);
																			if	(hs->containsKey(arr[i]))
																			{
																													std::cout	<<	"First	Repeating	number	is	:	"	<<	arr[i]	<<	std::endl;
																													return;
																			}
										}
}
	
Add	values	to	the	count	map	the	one	that	is	repeting	will	have	multiple	count.	Now
traverse	the	array	again	and	see	if	the	count	is	more	then	one.	So	that	is	the	first
repeting.
	

Exercise

1.				Design	a	number	(ID)	generator	system	that	generate	numbers	between	0-99999999	(8-digits).
The	system	should	support	two	functions:
a.				int	getNumber();
b.				int	requestNumber();
	
getNumber()	function	should	find	out	a	number	that	is	not	assigned,	than	marks	it	as
assigned	and	return	that	number.
requestNumber()	function	checks	the	number	is	assigned	or	not.	If	it	is	assigned	returns	0,
else	marks	it	as	assigned	and	return	1.
	
Hint:	You	can	keep	a	counter	for	assigning	numbers.	Whenever	there	is	a	getNumber()	call
you	will	check	if	that	number	is	already	assigned	in	a	Hash-Table.	If	it	is	already	assigned,
then	increase	the	counter	and	check	again.	If	you	find	a	number	not	in	the	Hash-Table	then
add	it	to	Hashtable	and	increase	the	counter.
requestNumber()	will	look	in	the	Hash-Table	if	the	number	is	already	taken,	then	it	will
return	0	else	it	will	return	1	and	mark	that	number	as	taken	inside	the	Hash-Table.

	
2.				Given	a	large	string,	find	the	most	occurring	words	in	the	string.	What	is	the	Time	Complexity

of	the	above	solution?
Hint:-

a.				Create	a	Hashtable	which	will	keep	track	of	<word,	frequency>
b.				Iterate	through	the	string	and	keep	track	of	word	frequency	by	inserting	into	Hash-Table.
c.				When	we	have	a	new	word,	we	will	insert	it	into	the	Hashtable	with	frequency	1.	For

all	repetition	of	the	word,	we	will	increase	the	frequency.
d.				We	can	keep	track	of	the	most	occurring	words	whenever	we	are	increasing	the

frequency	we	can	see	if	this	is	the	most	occurring	word	or	not.
e.				The	Time	Complexity	is	O(n)	where	n	is	the	number	of	words	in	the	string	and	Space
Complexity	is	the	O(m)	where	m	is	the	unique	words	in	the	string.

	
3.				In	the	above	question,	What	if	you	are	given	whole	work	of	OSCAR	WILDE,	most	popular

playwrights	in	the	early	1890s.
Hint:-

a.				Who	knows	how	many	books	are	there,	let’s	assume	there	is	a	lot	and	we	can’t	put
everything	in	memory.	First,	we	need	a	Streaming	Library	so	that	we	can	read	section	by
section	in	each	document.	Then	we	need	a	tokenizer	that	will	give	words	to	our	program.
And	we	need	some	sort	of	dictionary	let’s	say	we	will	use	HashTable.

b.				What	you	need	is	-	1.	A	streaming	library	tokenizer,	2.	A	tokenizer	3.	A	hashmap
Method:
1.	Use	streamers	to	find	a	stream	of	the	given	words

2.	Tokenize	the	input	text
3.	If	the	stemmed	word	is	in	hash	map,	increment	its	frequency	count	else	adds	a	word	to	hash
map	with	frequency	1

c.				We	can	improve	the	performance	by	looking	into	parallel	computing.	We	can	use	the
map-reduce	to	solve	this	problem.	Multiple	nodes	will	read	and	process	multiple
documents.	Once	they	are	done	with	their	processing,	then	we	can	use	reduce	to	merge
them.

	
4.				In	the	above	question,	What	if	we	wanted	to	find	the	most	common	PHRASE	in	his	writings.
Hint:-	We	can	keep	<phrase,	frequency>	Hash-Table	and	do	the	same	process	of	the	2nd	and	3rd
problems.

	
5.				Write	a	hashing	algorithm	for	strings.
Hint:	Use	Horner's	method
int	hornerHash(std::vector<char>	&key,	int	tableSize)
{
										int	size	=	key.size();
										int	h	=	0;
										int	i;
										for	(i	=	0;	i	<	size;	i++)
										{
																			h	=	(32	*	h	+	key[i])	%	tableSize;
										}
										return	h;
}
	
6.				Pick	two	data	structures	to	use	in	implementing	a	Map.	Describe	lookup,	insert,	&	delete

operations.	Give	time	&	Space	Complexity	for	each.	Give	pros	&	cons	for	each.
Hint:-

a)				Linked	List
																																						I.								Insert	is	O(1)
																																				II.								Delete	is	O(1)
																																			III.								Lookup	is	O(1)	auxiliary	and	O(N)	worst	case.
																																		IV.								Pros:	Fast	inserts	and	deletes,	can	use	for	any	data	type.
																																				V.								Cons:	Slow	lookups.

b)				Balanced	Search	Tree	(RB	Tree)
																																						I.								Insert	is	O(logn)
																																				II.								Delete	is	O(logn)
																																			III.								Lookup	is	O(logn)
																																		IV.								Pros:	Reasonably	fast	inserts/deletes	and	lookups.
																																				V.								Cons:	Data	needs	to	have	order	defined	on	it.

CHAPTER	13:	GRAPHS

Introduction

In	this	chapter,	we	will	study	about	Graphs.	Graphs	can	be	used	to	represent	many	interesting
things	in	the	real	world.	Flights	from	cities	to	cities,	rods	connecting	various	town	and	cities.
Even	the	sequence	of	steps	that	we	take	to	become	ready	for	jobs	daily,	or	even	a	sequence	of
classes	that	we	take	to	become	a	graduate	in	computer	science.	Once	we	have	a	good
representation	of	the	map,	then	we	use	a	standard	graph	algorithms	to	solve	many	interesting
problems	of	real	life.
	
The	flight	connection	between	major	cities	of	India	can	also	be	represented	by	the	below	graph.
Each	node	is	a	city	and	each	edge	is	a	straight	flight	path	from	one	city	to	another.	You	may	want
to	go	from	Delhi	to	Chennai,	if	given	this	data	in	good	representation	to	a	computer,	through	graph
algorithms	the	computer	may	propose	shortest,	quickest	or	cheapest	path	from	soured	to
destination.

Google	map	that	we	use	is	also	a	big	graph	of	lots	of	nodes	and	edges.	And	suggest	shortest	and
quickest	path	to	the	user.
Graph	Definitions
A	Graph	is	represented	by	G	where	G	=	(V,	E),	where	V	is	a	finite	set	of	points	called	Vertices
and	E	is	a	finite	set	of	Edges.
	
Each	edge	is	a	tuple	(u,	v)	where	u,	v	∈	V.	There	can	be	a	third	component	weight	to	the	tuple.
Weight	is	cost	to	go	from	one	vertex	to	another.
	
Edge	in	a	graph	can	be	directed	or	undirected.	If	the	edges	of	graph	are	one	way,	it	is	called
Directed	graph	or	Digraph.	The	graph	whose	edges	are	two	ways	are	called	Undirected	graph
or	just	graph.
	

A	Path	is	a	sequence	of	edges	between	two	vertices.	The	length	of	a	path	is	defined	as	the	sum	of
the	weight	of	all	the	edges	in	the	path.
	
Two	vertices	u	and	v	are	adjacent	if	there	is	an	edge	whose	endpoints	are	u	and	v.
	
In	the	below	graph:
V	=	{	V1,	V2,	V3,	V4,	V5,	V6,	V7,	V8,	V9	}	,

E	=	

The	in-degree	of	a	vertex	v,	denoted	by	indeg(v)	is	the	number	of	incoming	edges	to	the	vertex	v.
The	out-degree	of	a	vertex	v,	denoted	by	outdeg(v)	is	the	number	of	outgoing	edges	of	a	vertex	v.
The	degree	of	a	vertex	v,	denoted	by	deg(v)	is	the	total	number	of	edges	whose	one	endpoint	is	v.
	
deg(v)	=	Indeg	(v)	+	outdeg	(v)
	
In	the	above	graph
deg(V4)=3,	indeg(V4)=2	and	outdeg(V4)=1
	
A	Cycle	is	a	path	that	starts	and	ends	at	the	same	vertex	and	include	at	least	one	vertex.
	
An	edge	is	a	Self-Loop	if	two	if	its	two	endpoints	coincide.	This	is	a	form	of	a	cycle.
	
A	vertex	v	is	Reachable	from	vertex	u	or	“u	reaches	v”	if	there	is	a	path	from	u	to	v.	In	an
undirected	graph	if	v	is	reachable	from	u	then	u	is	reachable	from	v.	But	in	a	directed	graph	it	is
possible	that	u	reaches	v	but	there	is	no	path	from	v	to	u.
	
A	graph	is	Connected	if	for	any	two	vertices	there	is	a	path	between	them.
	

A	Forest	is	a	graph	without	cycles.
	
A	Sub-Graph	of	a	graph	G	is	a	graph	whose	vertices	and	edges	are	a	subset	of	the	vertices	and
edges	of	G.
	
A	Spanning	Sub-Graph	of	G	is	a	graph	that	connects	all	the	vertices	of	G.
	
A	tree	is	an	acyclic	connected	graph.
	
A	Spanning	tree	of	a	graph	is	a	spanning	sub-graph	that	is	also	a	tree	that	means,	a	connected
graph	which	connects	all	the	vertices	of	graph	and	that	does	not	have	a	cycle.
	

Graph	Representation

In	this	section,	we	introduce	the	data	structure	for	representing	a	graph.	In	the	below
representations	we	maintain	a	collection	to	store	edges	and	vertices	of	the	graph.
	

Adjacency	Matrix

One	of	the	ways	to	represent	a	graph	is	to	use	two-dimensional	matrix.	Each	combination	of	row
and	column	represent	a	vertex	in	the	graph.	The	value	stored	at	the	location	row	v	and	column	w
is	the	edge	from	vertex	v	to	vertex	w.	The	nodes	that	are	connected	by	an	edge	are	called	adjacent
nodes.	This	matrix	is	used	to	store	adjacent	relation	so	it	is	called	the	Adjacency	Matrix.	In	the
below	diagram,	we	have	a	graph	and	its	Adjacency	matrix.

In	the	above	graph,	each	node	has	weight	1	so	the	adjacency	matrix	has	just	1s	or	0s.	If	the	edges
are	of	different,	weights	that	that	weight	will	be	filled	in	the	matrix.
	
Pros:	Adjacency	matrix	implementation	is	simple.	Adding/Removing	an	edge	between	two
vertices	is	just	O(1).	Query	if	there	is	an	edge	between	two	vertices	is	also	O(1)
	
Cons:	It	always	consumes	O(V^2)	space,	which	is	an	inefficient	way	to	store	when	a	graph	is	a
sparse.
Sparse	Matrix:	In	a	huge	graph,	each	node	is	connected	with	fewer	nodes.	So	most	of	the	places
in	adjacency	matrix	are	empty.	Such	matrix	is	called	sparse	matrix.	In	most	of	the	real	world
problems	adjacency	matrix	is	not	a	good	choice	for	sore	graph	data.
	

Adjacency	List

A	more	space	efficient	way	of	storing	graph	is	adjacency	list.	In	adjacency	list	of	pointers	to	a
linked	list	node.	Each	pointer	corresponds	to	vertices	in	a	graph.	Each	pointer	will	then	point	to
the	vertices	that	are	connected	to	it	and	store	this	as	a	list.
In	the	below	diagram	node	2	is	connected	to	1,	3	and	4.	So	the	pointer	at	location	2	is	pointing	to
a	list	which	contain	1,	3	and	4.

The	adjacency	list	helps	us	to	compactly	represent	a	sparse	graph.	An	adjacency	list
representation	also	allows	us	to	find	all	the	vertices	that	are	directly	connected	to	any	vertices	by
just	one	link	list	scan.	In	all	our	programs,	we	are	going	to	use	the	adjacency	list	to	store	the
graph.
	
Below	is	the	code	for	adjacency	list	representation	of	an	undirected	graph:
	
Example	13.1:
class	Graph
{
	
private:
										struct	Edge
										{
																			int	source;
																			int	destination;
																			int	cost;
																			Edge	*next;
	
																			Edge(int	src,	int	dst,	int	cst);
										};
	
										struct	AdjList
										{
																			Edge	*head;
										};
	
										int	count;
										std::vector<AdjList*>	ListVector;
	

										class	EdgeComparator
										{
										public:
																			bool	operator()(Edge	*x,	Edge	*y);
										};
	
public:
										Graph(int	cnt);
	
										virtual	void	AddEdge(int	source,	int	destination,	int	cost);
										virtual	void	AddEdge(int	source,	int	destination);
										virtual	void	AddBiEdge(int	source,	int	destination,	int	cost);	//	bi
										virtual	void	AddBiEdge(int	source,	int	destination);	//	bi	directional	edge
										virtual	void	Print();
	
										//	Other	Methods	of	graph.
};
	
Graph::Edge::Edge(int	src,	int	dst,	int	cst	=	1)
{
										source	=	src;
										destination	=	dst;
										cost	=	cst;
										next	=	nullptr;
}
	
Graph::Graph(int	cnt)
{
										count	=	cnt;
										ListVector	=	std::vector<AdjList*>(cnt);
										for	(int	i	=	0;	i	<	cnt;	i++)
										{
																			ListVector[i]	=	new	AdjList();
																			ListVector[i]->head	=	nullptr;
										}
}
	
void	Graph::AddEdge(int	source,	int	destination,	int	cost)
{
										Edge	*edge	=	new	Edge(source,	destination,	cost);
										edge->next	=	ListVector[source]->head;
										ListVector[source]->head	=	edge;
}
	
void	Graph::AddEdge(int	source,	int	destination)
{
										AddEdge(source,	destination,	1);
}
	
void	Graph::AddBiEdge(int	source,	int	destination,	int	cost)
{
										AddEdge(source,	destination,	cost);
										AddEdge(destination,	source,	cost);
}
	
void	Graph::AddBiEdge(int	source,	int	destination)
{
										AddBiEdge(source,	destination,	1);
}
	

void	Graph::Print()
{
										Edge	*ad;
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			ad	=	ListVector[i]->head;
																			if	(ad	!=	nullptr)
																			{
																													std::cout	<<	"Vertex	"	<<	i	<<	"	is	connected	to	:	";
																													while	(ad	!=	nullptr)
																													{
																																						std::cout	<<	ad->destination	<<	"	";
																																						ad	=	ad->next;
																													}
																													std::cout	<<	std::endl;
																			}
										}
}
	
bool	Graph::EdgeComparator::operator()(Edge	*x,	Edge	*y)
{
										if	(x->cost	<=	y->cost)
										{
																			return	false;
										}
										return	true;
}
	

Graph	traversals

The	Depth	first	search	(DFS)	and	Breadth	first	search	(BFS)	are	the	two	algorithms	used	to
traverse	a	graph.	These	same	algorithms	can	also	be	used	to	find	some	node	in	the	graph,	find	if	a
node	is	reachable	etc.
	
Traversal	is	the	process	of	exploring	a	graph	by	examining	all	its	edges	and	vertices.
	
A	list	of	some	of	the	problems	that	are	solved	using	graph	traversal	are:

1.				Determining	a	path	from	vertex	u	to	vertex	v,	or	report	an	error	if	there	is	no	such	path.
2.				Given	a	starting	vertex	s,	finding	the	minimum	number	of	edges	from	vertex	s	to	all	the

other	vertices	of	the	graph.
3.				Testing	of	a	graph	G	is	connected.
4.				Finding	a	spanning	tree	of	a	Graph.
5.				Finding	if	there	is	some	cycle	in	the	graph.

	

Depth	First	Traversal

The	DFS	algorithm	we	start	from	starting	point	and	go	into	depth	of	graph	until	we	reach	a	dead
end	and	then	move	up	to	parent	node	(Backtrack).	In	DFS	we	use	stack	to	get	the	next	vertex	to
start	a	search.	Or	we	can	use	recursion	(system	stack)	to	do	the	same.

	
Algorithm	steps	for	DFS

1.				Push	the	starting	node	in	the	stack.
2.				Loop	until	the	stack	is	empty.
3.				Pop	the	node	from	the	stack	inside	loop	call	this	node	current.
4.				Process	the	current	node.	//Print,	etc.
5.				Traverse	all	the	child	nodes	of	the	current	node	and	push	them	into	stack.
6.				Repeat	steps	3	to	5	until	the	stack	is	empty.

	

Stack	based	implementation	of	DFS

Example	13.2:
void	Graph::DFSStack()
{
										std::vector<int>	visited(count);
										int	curr;
										std::stack<int>	stk;
										for	(int	i	=	0;	i	<	count;	i++)
																			visited[i]	=	0;
									
										visited[0]	=	1;
										stk.push(0);
	
										while	(stk.empty()	==	false)
										{
																			curr	=	stk.top();

																			stk.pop();
																			Edge	*head	=	ListVector[curr]->head;
	
																			while	(head	!=	nullptr)
																			{
																													if	(visited[head->destination]	==	0)
																													{
																																						visited[head->destination]	=	1;
																																						stk.push(head->destination);
																													}
																													head	=	head->next;
																			}
										}
}
	

Recursion	based	implementation	of	DFS

	
Example	13.3:
void	Graph::DFS()
{
										std::vector<int>	visited(count);
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			visited[i]	=	0;
										}
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			if	(visited[i]	==	0)
																			{
																													visited[i]	=	1;
																													DFSRec(i,	visited);
																			}
										}
}
	
void	Graph::DFSRec(int	index,	std::vector<int>	&visited)
{
										Edge	*head	=	ListVector[index]->head;
										while	(head	!=	nullptr)
										{
																			if	(visited[head->destination]	==	0)
																			{
																													visited[head->destination]	=	1;
																													DFSRec(head->destination,	visited);
																			}
																			head	=	head->next;
										}
}
	

Breadth	First	Traversal

In	BFS	algorithm,	a	graph	is	traversed	in	layer-by-layer	fashion.	The	graph	is	traversed	closer	to
the	starting	point.	The	queue	is	used	to	implement	BFS.

Algorithm	steps	for	BFS
1.				Push	the	starting	node	into	the	Queue.
2.				Loop	until	the	Queue	is	empty.
3.				Remove	a	node	from	the	Queue	inside	loop,	call	this	node	current.
4.				Process	the	current	node.//print	etc.
5.				Traverse	all	the	child	nodes	of	the	current	node	and	push	them	into	Queue.
6.				Repeat	steps	3	to	5	until	Queue	is	empty.

	
Example	13.4:
void	Graph::BFS()
{
										std::vector<int>	visited(count);
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			visited[i]	=	0;
										}
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			if	(visited[i]	==	0)
																			{
																													BFSQueue(i,	visited);
																			}
										}
}
	
void	Graph::BFSQueue(int	index,	std::vector<int>	&visited)
{
										int	curr;

										std::queue<int>	que;
	
										visited[index]	=	1;
										que.push(index);
	
										while	(que.empty()	==	false)
										{
																			curr	=	que.front();
																			que.pop();
																			Edge	*head	=	ListVector[curr]->head;
																			while	(head	!=	nullptr)
																			{
																													if	(visited[head->destination]	==	0)
																													{
																																						visited[head->destination]	=	1;
																																						que.push(head->destination);
																													}
																													head	=	head->next;
																			}
										}
}
	
A	runtime	analysis	of	DFS	and	BFS	traversal	is	O(n+m)	time,	where	n	is	the	number	of	edges
reachable	from	source	node	and	m	is	the	number	of	edges	incident	on	s.
	
The	following	problems	have	O(m+n)	time	performance:

1.				Determining	a	path	from	vertex	u	to	vertex	v,	or	report	an	error	if	there	is	no	such	path.
2.				Given	a	starting	vertex	s,	finding	the	minimum	number	of	edges	from	vertex	s	to	all	the

other	vertices	of	the	graph.
3.				Testing	of	a	graph	G	is	connected.
4.				Finding	a	spanning	tree	of	a	Graph.
5.				Finding	if	there	is	some	cycle	in	the	graph.

	

Problems	in	Graph

Determining	a	path	from	vertex	u	to	vertex	v

IF	there	is	a	path	from	u	to	v	and	we	are	doing	DFS	from	u	then	v	must	be	visited.	And	if	there	is
no	path	them	report	an	error.
Example	13.5:
int	Graph::PathExist(int	source,	int	destination)
{
										std::vector<int>	visited(count);
										for	(int	i	=	0;	i	<	count;	i++)
																			visited[i]	=	0;
	
										visited[source]	=	1;
										DFSRec(source,	visited);
										return	visited[destination];
}
	

Given	a	starting	vertex	s,	finding	the	minimum	number	of	edges	from
vertex	s	to	all	the	other	vertices	of	the	graph

Look	for	single	source	shortest	path	algorithm	for	each	edge	cost	as	1	unit.
	

Testing	of	a	graph	G	is	connected.

We	simply	start	from	any	arbitrary	vertex	and	do	DFS	search	and	should	see	if	there	is	some
vertex	which	is	not	visited.	If	all	the	vertices	are	visited	then	it	is	a	connected	graph.
	
Example	13.6:
bool	Graph::isConnected()
{
										std::vector<int>	visited(count);
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			visited[i]	=	0;
										}
										visited[0]	=	1;
										DFSRec(0,	visited);
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			if	(visited[i]	==	0)
																			{
																													return	false;
																			}
										}
										return	true;
}
	

Finding	if	there	is	some	cycle	in	the	graph.

Modify	DFS	problem	and	get	this	done.
	

Directed	Acyclic	Graph

A	Directed	Acyclic	Graph	(DAG)	is	a	directed	graph	with	no	cycle.	A	DAG	represent
relationship	which	is	more	general	than	a	tree.	Below	is	an	example	of	DAG,	this	is	how
someone	becomes	ready	for	work.	There	are	N	other	real	life	examples	of	DAG	such	as	coerces
selection	to	being	graduated	from	college

Topological	Sort

A	topological	sort	is	a	method	of	ordering	the	nodes	of	a	directed	graph	in	which	nodes	represent
activities	and	the	edges	represent	dependency	among	those	tasks.	For	topological	sorting	to	work
it	is	required	that	the	graph	should	be	a	DAG	which	means	it	should	not	have	any	cycle.	Just	use
DFS	to	get	topological	sorting.
	
Example	13.7:
void	Graph::TopologicalSort()
{
										std::stack<int>	stk;
										std::vector<int>	visited(count);
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			visited[i]	=	0;
										}
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			if	(visited[i]	==	0)
																			{
																													visited[i]	=	1;
																													TopologicalSortDFS(i,	visited,	stk);
																			}
										}
										while	(stk.empty()	!=	true)
										{
																			std::cout	<<	stk.top()	<<	"	";
																			stk.pop();
										}
}
	
void	Graph::TopologicalSortDFS(int	index,	std::vector<int>	&visited,	std::stack<int>	&stk)
{
										Edge	*head	=	ListVector[index]->head;
										while	(head	!=	nullptr)
										{
																			if	(visited[head->destination]	==	0)
																			{
																													visited[head->destination]	=	1;
																													TopologicalSortDFS(head->destination,	visited,	stk);
																			}
																			head	=	head->next;
										}
										stk.push(index);
}
	
Topology	sort	is	DFS	traversal	of	topology	graph.	First	the	children	of	node	are	added	to	the
stack	then	only	the	current	node	is	added.	So	the	sorting	order	is	maintained.	Reader	is	requested
to	run	some	examples	to	fully	understand	this	algo.
	

Minimum	Spanning	Trees	(MST)

A	Spanning	Tree	of	a	graph	G	is	a	tree	which	contains	all	the	edges	of	the	Graph	G.
A	Minimum	Spanning	Tree	is	a	tree	whose	sum	of	length/weight	of	edges	is	minimum	as	possible.
For	example,	if	you	want	to	setup	communication	between	a	set	of	cities,	then	you	may	want	to
use	the	least	amount	of	wire	as	possible.	MST	can	be	used	to	find	the	network	path	and	wire	cost
estimate.

Prim’s	Algorithm	for	MST							

Prim’s	algorithm	grows	a	single	tree	T,	one	edge	at	a	time,	until	it	becomes	a	spanning	tree.
We	initialize	T	with	zero	edges.	And	U	with	single	node.	Where	T	is	spanning	tree	edges	set	and
U	is	spanning	tree	vertex	set.
At	each	step,	Prim’s	algorithm	adds	the	smallest	value	edge	with	one	endpoint	in	U	and	other	not
in	us.	Since	each	edge	adds	one	new	vertex	to	U,	after	n	−	1	additions,	U	contain	all	the	vertices
of	the	spanning	tree	and	T	becomes	a	spanning	tree.
	
Example	13.8:
//	Returns	the	MST	by	Prim’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	Output:	Set	of	edges	comprising	a	MST
	
Algorithm	Prim(G)
										T	=	{}
										Let	r	be	any	vertex	in	G
										U	=	{r}
										for	i	=	1	to	|V|	-	1	do
																			e	=	minimum-weight	edge	(u,	v)
																													With	u	in	U	and	v	in	V-U
																			U	=	U	+	{v}
																			T	=	T	+	{e}
										return	T
	
Prim’s	Algorithm	using	a	priority	queue	(min	heap)	to	get	the	closest	fringe	vertex
Time	Complexity	will	be	O(m	log	n)	where	n	vertices	and	m	edges	of	the	MST.

	
Example	13.9:
void	Graph::Prims()
{
										std::vector<int>	previous(count);
										std::vector<int>	dist(count);
										int	source	=	1;
	
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			previous[i]	=	-1;
																			dist[i]	=	std::numeric_limits<int>::max();
										}
	
										dist[source]	=	0;
										std::priority_queue<Edge*,	std::vector<Edge*>,	EdgeComparator>	que;
	
										Edge	*edge	=	new	Edge(source,	source,	0);
										que.push(edge);
	
										while	(que.empty()	!=	true)
										{
																			edge	=	que.top();
																			que.pop();
	
																			if	(dist[edge->destination]	<	edge->cost)
																													continue;
	
																			dist[edge->destination]	=	edge->cost;
																			previous[edge->destination]	=	edge->source;
	
																			AdjList	*adl	=	ListVector[edge->destination];
																			Edge	*adn	=	adl->head;
																			while	(adn	!=	nullptr)
																			{
																													if	(previous[adn->destination]	==	-1)
																													{
																																						edge	=	new	Edge(adn->source,	adn->destination,	adn->cost);
																																						que.push(edge);
																													}
																													adn	=	adn->next;
																			}
										}
	
										//	Printing	result.
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			if	(dist[i]	==	std::numeric_limits<int>::max())
																			{
																													std::cout	<<	"	edge	id	"	<<	i	<<	"		prev	"	<<	previous[i]	<<	"	distance	:	Unreachable"	<<	std::endl;
																			}
																			else
																			{
																													std::cout	<<	"	edge	id	"	<<	i	<<	"		prev	"	<<	previous[i]	<<	"	distance	:	"	<<	dist[i]	<<	std::endl;
	
																			}
										}
}
	

void	main()
{
										Graph*	g	=	new	Graph(9);
										g->AddBiEdge(0,	2,	1);
										g->AddBiEdge(1,	2,	5);
										g->AddBiEdge(1,	3,	7);
										g->AddBiEdge(1,	4,	9);
										g->AddBiEdge(3,	2,	2);
										g->AddBiEdge(3,	5,	4);
										g->AddBiEdge(4,	5,	6);
										g->AddBiEdge(4,	6,	3);
										g->AddBiEdge(5,	7,	1);
										g->AddBiEdge(6,	7,	7);
										g->AddBiEdge(7,	8,	17);
	
										g->Prims();
}
	
Output:
	edge	id	0		prev	2	distance	:	1
	edge	id	1		prev	1	distance	:	0
	edge	id	2		prev	1	distance	:	5
	edge	id	3		prev	2	distance	:	2
	edge	id	4		prev	5	distance	:	6
	edge	id	5		prev	3	distance	:	4
	edge	id	6		prev	4	distance	:	3
	edge	id	7		prev	5	distance	:	1
	edge	id	8		prev	7	distance	:	17
	

Kruskal’s	Algorithm

Kruskal’s	Algorithm	repeatedly	chooses	the	smallest-weight	edge	that	does	not	form	a	cycle.
Sort	the	edges	in	non-decreasing	order	of	cost:	c	(e1)	≤	c	(e2)	≤	·	·	·	≤	c	(em).
Set	T	to	be	the	empty	tree.	Add	edges	to	tree	one	by	one	if	it	does	not	create	a	cycle.
	
Example	13.10:
//	Returns	the	MST	by	Kruskal’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	Output:	Set	of	edges	comprising	a	MST
	
Algorithm	Kruskal(G)
										Sort	the	edges	E	by	their	weights
										T	=	{}
										while	|T	|	+	1	<	|V	|	do
																			e	=	next	edge	in	E
																			if	T	+	{e}	does	not	have	a	cycle	then
																													T	=	T	+	{e}
										return	T
	
Kruskal’s	Algorithm	is	O(E	log	V)	using	efficient	cycle	detection.
	

Shortest	Path	Algorithms	in	Graph

	

Single	Source	Shortest	Path

For	a	graph	G=	(V,	E),	the	single	source	shortest	path	problem	is	to	find	the	shortest	path	from	a
given	source	vertex	s	to	all	the	vertices	of	V.
	

Single	Source	Shortest	Path	for	unweighted	Graph.

Find	single	source	shortest	path	for	unweighted	graph	or	a	graph	whose	all	the	vertices	have	same
weight.
	
Example	13.11:
void	Graph::ShortestPath(int	source)
{
										int	curr;
										std::vector<int>	distance(count);
										std::vector<int>	path(count);
	
										std::list<int>	que;
	
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			distance[i]	=	-1;
										}
	
										que.push_back(source);
										distance[source]	=	0;
	
										while	(que.empty()	==	false)
										{
																			curr	=	que.front();
																			que.pop_front();
																			Edge	*head	=	ListVector[curr]->head;
																			while	(head	!=	nullptr)
																			{
																													if	(distance[head->destination]	==	-1)
																													{
																																						distance[head->destination]	=	distance[curr]	+	1;
																																						path[head->destination]	=	curr;
																																						que.push_back(head->destination);
																													}
																													head	=	head->next;
																			}
										}
	
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			std::cout	<<	path[i]	<<	"	to	"	<<	i	<<	"	weight	"	<<	distance[i]	<<	std::endl;
										}
}

	

Dijkstra’s	algorithm

Dijkstra’s	algorithm	for	single-source	shortest	path	problem	for	weighted	edges	with	no	negative
weight.	Given	a	weighted	connected	graph	G,	find	shortest	paths	from	the	source	vertex	s	to	each
of	the	other	vertices.	Dijkstra’s	algorithm	is	similar	to	prims	algorithm.	It	maintains	a	set	of	nodes
for	which	shortest	path	is	known.

The	algorithm	starts	by	keeping	track	of	the	distance	of	each	node	and	its	parents.	All	the	distance
is	set	to	infinite	in	the	beginning	as	we	don’t	know	the	actual	path	to	the	nodes	and	parents	of	all
the	vertices	are	set	to	null.	All	the	vertices	are	added	to	a	priority	queue	(min	heap
implementation)
At	each	step	algorithm	takes	one	vertex	from	the	priority	queue	(which	will	be	the	source	vertex
in	the	beginning).	Then	update	the	distance	array	corresponding	to	all	the	adjacent	vertices.	When
the	queue	is	empty,	then	we	will	have	the	distance	and	parent	array	fully	populated.
	
Example	13.12:
//	Solves	SSSP	by	Dijkstra’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	with	no	negative	weights,	and	source	vertex	v
//	Output:	The	length	and	path	from	s	to	every	v
	
Algorithm	Dijkstra(G,	s)
for	each	v	in	V	do
																				D[v]	=	infinite	//	Unknown	distance
																				P[v]	=	null					//unknown	previous	node
																				add	v	to	PQ				//adding	all	nodes	to	priority	queue
	
D[source]	=	0	//	Distance	from	source	to	source
	
while	(PQ	is	not	empty)
																				u	=	vertex	from	PQ	with	smallest	D[u]
																				remove	u	from	PQ
																			for	each	v	adjacent	from	u	do
																													alt	=	D[u]	+	length	(u	,	v)
if		alt	<	D[v]	then
																																						D[v]	=	alt
																																						P[v]	=	u

										Return	D[]	,	P[]
	
Time	Complexity	will	be	O(|E|log|V|)
	
Note:	Dijkstra’s	algorithm	does	not	work	for	graphs	with	negative	edges	weight.
Note:	Dijkstra’s	algorithm	is	applicable	to	both	undirected	and	directed	graphs.
	
Example	13.13:
void	Graph::Dijkstra(int	source)
{
										std::vector<int>	previous(count);
										std::vector<int>	dist(count);
	
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			previous[i]	=	-1;
																			dist[i]	=	std::numeric_limits<int>::max();	//	infinite
										}
	
										dist[source]	=	0;
										std::priority_queue<Edge*,	std::vector<Edge*>,	EdgeComparator>	que;
										Edge	*edge	=	new	Edge(source,	source,	0);
										que.push(edge);
	
										while	(que.empty()	!=	true)
										{
																			edge	=	que.top();
																			que.pop();
	
																			if	(dist[edge->destination]	<	edge->cost)
																													continue;
	
																			dist[edge->destination]	=	edge->cost;
																			previous[edge->destination]	=	edge->source;
	
																			AdjList	*adl	=	ListVector[edge->destination];
																			Edge	*adn	=	adl->head;
																			while	(adn	!=	nullptr)
																			{
																													if	(previous[adn->destination]	==	-1)
																													{
																																						edge	=	new	Edge(adn->source,	adn->destination,	adn->cost	+	dist[adn->source]);
																																						que.push(edge);
																													}
																													adn	=	adn->next;
																			}
										}
	
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			if	(dist[i]	==	std::numeric_limits<int>::max())
																			{
																													std::cout	<<	"	edge	id	"	<<	i	<<	"		prev	"	<<	previous[i]	<<	"	distance	:	Unreachable"	<<	std::endl;
																			}
																			else
																			{
																													std::cout	<<	"	edge	id	"	<<	i	<<	"		prev	"	<<	previous[i]	<<	"	distance	:	"	<<	dist[i]	<<	std::endl;

																			}
										}
}
	
Output:
	edge	id	0		prev	2	distance	:	6
	edge	id	1		prev	1	distance	:	0
	edge	id	2		prev	1	distance	:	5
	edge	id	3		prev	1	distance	:	7
	edge	id	4		prev	1	distance	:	9
	edge	id	5		prev	3	distance	:	11
	edge	id	6		prev	4	distance	:	12
	edge	id	7		prev	5	distance	:	12
	edge	id	8		prev	7	distance	:	29
	

Bellman	Ford	Shortest	Path

The	bellman	ford	algorithm	works	even	when	there	are	negative	weight	edges	in	the	graph.	It	does
not	work	if	there	is	some	cycle	in	the	graph	whose	total	weight	is	negative.
	
Example	13.14:
void	Graph::BellmanFordShortestPath(int	source)
{
										std::vector<int>	distance(count);
										std::vector<int>	path(count);
	
										for	(int	i	=	0;	i	<	count;	i++)
										{
																			distance[i]	=	std::numeric_limits<int>::max();
										}
										distance[source]	=	0;
										for	(int	i	=	0;	i	<	count	-	1;	i++)
										{
																			for	(int	j	=	0;	j	<	count;	j++)
																			{
																													Edge	*head	=	ListVector[j]->head;
																													while	(head	!=	nullptr)
																													{
																																						int	newDistance	=	distance[j]	+	head->cost;
																																						if	(distance[head->destination]	>	newDistance)
																																						{
																																																distance[head->destination]	=	newDistance;
																																																path[head->destination]	=	j;
																																						}
																																						head	=	head->next;
																													}
																			}
										}
										for	(int	i	=	0;	i	<	count;	i++)
										{
										std::cout	<<	path[i]	<<	"	to	"	<<	i	<<	"	weight	"	<<	distance[i]	<<	std::endl;
										}
}
	

All	Pairs	Shortest	Paths

Given	a	weighted	graph	G(V,	E),	the	all	pair	shortest	path	problem	is	to	find	the	shortest	path
between	all	pairs	of	vertices	u,	v	є	V.
	
Execute	n	instances	of	single	source	shortest	path	algorithm	for	each	vertex	of	the	graph.
The	complexity	of	this	algorithm	will	be	
	

Exercise

1.				In	all	the	path	finding	algorithm	we	have	created	a	path	array	which	just	store	immediate
parent	of	a	node,	print	the	complete	path	for	it.

	
2.				All	the	functions	are	implemented	considering	as	if	the	graph	is	represented	by	adjacency

list.	To	write	all	those	functions	for	graph	representation	as	adjacency	matrix.
	

3.				Given	a	start	string,	end	string	and	a	set	of	strings,	find	if	there	exists	a	path	between	the
start	string	and	end	string	via	the	set	of	strings.
	
A	path	exists	if	we	can	get	from	start	string	to	end	the	string	by	changing	(no
addition/removal)	only	one	character	at	a	time.	The	restriction	is	that	the	new	string
generated	after	changing	one	character	has	to	be	in	the	set.
	
start:	"cog"
end:	"bad"
set:	["bag",	"cag",	"cat",	"fag",	"con",	"rat",	"sat",	"fog"]
one	of	the	paths:	"cog"	->	"fog"	->	"fag"	->	"bag"	->	"bad"

CHAPTER	14:	STRING	ALGORITHMS

Introduction

String	in	C++	programming	is	a	sequence	of	character.	String	is	so	widely	used	in	C++	that	they
have	their	own	class,	which	contains	a	number	of	methods	to	create	and	manipulate	strings.	A
String	is	a	object	and	if	it	is	not	initialized	then	it	will	point	to	null.	We	can	initialize	string	by
using	a	string	literal,	which	is	a	text	inside	two	double	inverted	commas.	Or	we	can	initialize
string	using	one	of	many	constructors	provided	by	String	class.
	
In	this	chapter,	we	will	look	into	implementation	of	some	of	the	constructors	and	methods	of
String	class	that	are	most	frequently	used	and	which	are	used	in	this	chapter.
	
If	string	is	just	declared	and	not	initialized	then	it	will	point	to	null.	Just	like	any	other	object
variable	in	C++.
std::string	str;
	
The	most	easiest	way	to	create	a	String	is	by	string	literal	under	double	interted	commas.
std::string	text	=	"Hello,	World!";
	
Another	important	method	of	creating	String	is	by	using	String	constructor	that	takes	an	array	of
characters	as	argument.
char	arr[]	=	{	'H','e','l','l','o',	','	,'	','W','o','r','l','d','!','\0'	};
std::string	hello(arr);
	
A	length()	function	is	there	to	find	the	length	of	string.
int	len	=	hello.length();
	
Concatination	of	string	is	done	by	concat()	function	provided	in	String	class	or	just	using	‘+’
operator.
std::string	first	=	"Hello,	";
std::string	second	=	"World!";
std::string	helloworld	=	first	+	second;
	
Below	fragment	of	code	also	does	the	same	job.
first.append(second);
	
A	single	character	at	specific	index	in	string	can	be	extracted	by	calling	charAt()	method.
Below	code	will	print	‘W’	to	the	output	screen.
std::string	text	=	"Hello,	World!";
text[7];
	
std::cout	<<	first.compare(first);
std::cout	<<	(first	==	first);
	
Remember	that	string	is	a	object	so	if	we	call	“==”	to	compare	two	string	it	will	compare	the
memory	location	of	the	strings	and	if	both	the	string	objects	are	not	pointing	to	same	memory

location	/	same	string	then	it	will	fail.	But	many	time	we	want	to	compare	if	the	content	of	the	two
is	same	so	string	class	had	provided	equals()	method,	which	will	compare	if	the	given	string
content	is	same	as	the	string	object	on	whose	equals()	method	is	called.
	
Method	equals()	is	case	sensitive,	it	will	consider	upper	case	and	lower	case	characters
different.	The	below	code	will	give	true	when	str1	is	compared	with	str2.	But	at	the	same	time	it
will	return	false	when	str1	is	compared	with	str3.
void	main()
{
										std::string	str1	=	"hello";
										std::string	str2	=	"hello";
										std::string	str3	=	"Hello";
										std::cout	<<	"str1	equals	str2	:"	<<	(str1	==	str2)	<<	std::endl;
										std::cout	<<	"str1	equals	str3	:"	<<	(str1	==	str3)	<<	std::endl;
}
	
Output:
str1	equals	str2	:1
str1	equals	str3	:0
	

String	Matching

Every	word	processing	program	has	a	search	function	in	which	you	can	search	all	occurrences	of
any	particular	word	in	a	long	text	file.	For	this,	we	need	string-matching	algorithms.
	

Brute	Force	Search

We	have	a	pattern	that	we	want	to	search	in	the	text.	The	pattern	is	of	length	m	and	the	text	is	of
length	n.	Where	m	<	n.	The	brute	force	search	algorithm	will	check	the	pattern	at	all	possible
value	of	“i”	in	the	text	where	the	value	of	“i”	range	from	0	to	n-m.	The	pattern	is	compared	with
the	text,	character	by	character	from	left	to	right.	When	a	mismatch	is	detected,	then	pattern	is
compared	by	shifting	the	compare	window	by	one	character.
	
Example	14.1:
int	BruteForceSearch(const	std::string	&text,	const	std::string	&pattern)
{
										std::vector<char>	txt(text.begin(),	text.end());
										std::vector<char>	ptn(pattern.begin(),	pattern.end());
										return	BruteForceSearch(txt,	ptn);
}
	
int	BruteForceSearch(std::vector<char>	&text,	std::vector<char>	&pattern)
{
										int	i	=	0,	j	=	0;
										const	int	n	=	text.size();
										const	int	m	=	pattern.size();
										while	(i	<=	n	-	m)
										{
																			j	=	0;
																			while	(j	<	m	&&	pattern[j]	==	text[i	+	j])
																			{
																													j++;
																			}
																			if	(j	==	m)
																			{
																													return	(i);
																			}
																			i++;
										}
										return	-1;
}
	
Worst	case	Time	Complexity	of	the	algorithm	is	O(m*n),	we	got	the	pattern	at	the	end	of	the	text
or	we	didn’t	get	the	pattern	at	all.
Best	case	Time	Complexity	of	this	algorithm	is	O(m)
The	average	Time	Complexity	of	this	algorithm	is	O(n)
	

Robin-Karp	algorithm

Robin-Karp	algorithm	is	somewhat	similar	to	the	brute	force	algorithm.	Because	the	pattern	is
compared	to	each	textbox.	Instead	of	pattern	at	each	position	a	hash	code	is	compared,	only	one
comparison	is	performed.	The	hash	code	of	the	pattern	is	compared	with	the	hash	code	of	the	text
window.	We	try	to	keep	the	hash	code	as	unique	as	possible.
	
The	two	features	of	good	hash	code	are:

·									The	collision	should	be	excluded	as	much	as	possible.
·									The	hash	code	of	text	must	be	calculated	in	constant	time.

	
A	collision	occurs	when	hash	code	matches,	but	the	pattern	does	not.
Calculation	in	constant	time,	one	member	leaves	the	window	and	a	new	number	enters	a	window.
	
Multiplication	by	2	is	same	as	left	shift	operation.	Multiplication	by	 	is	same	as	left	shift	m-1
times.	We	want	this	multiple	times	so	just	store	it	in	variable	pow(m)	=	
We	do	not	want	to	do	big	multiplication	operations	so	modular	operation	with	a	prime	number	is
used.
	
Example	14.2:
int	RobinKarp(const	std::string	&text,	const	std::string	&pattern)
{
										std::vector<char>	txt(text.begin(),	text.end());
										std::vector<char>	ptn(pattern.begin(),	pattern.end());
										return	RobinKarp(txt,	ptn);
}
	
int	RobinKarp(std::vector<char>	&text,	std::vector<char>	&pattern)
{
										int	n	=	text.size();
										int	m	=	pattern.size();
										int	i,	j;
										int	prime	=	101;
										int	powm	=	1;
										int	TextHash	=	0,	PatternHash	=	0;
										if	(m	==	0	||	m	>	n)
																			return	-1;
	
										for	(i	=	0;	i	<	m	-	1;	i++)
										{
																			powm	=	(powm	<<	1)	%	prime;
										}
	
										for	(i	=	0;	i	<	m;	i++)
										{
																			PatternHash	=	((PatternHash	<<	1)	+	pattern[i])	%	prime;
																			TextHash	=	((TextHash	<<	1)	+	text[i])	%	prime;
										}
	
										for	(i	=	0;	i	<=	(n	-	m);	i++)
										{
																			if	(TextHash	==	PatternHash)
																			{
																													for	(j	=	0;	j	<	m;	j++)

																													{
																																						if	(text[i	+	j]	!=	pattern[j])
																																																break;
																																					
																													}
																													if	(j	==	m)
																													{
																																						return	i;
																													}
																			}
																			TextHash	=	(((TextHash	-	text[i]	*	powm)	<<	1)	+	text[i	+	m])	%	prime;
																			if	(TextHash	<	0)
																			{
																													TextHash	=	(TextHash	+	prime);
																			}
										}
										return	-1;
}
	

Knuth-Morris-Pratt	algorithm

After	a	shift	of	the	pattern,	the	brute	force	algorithm	forgotten	all	the	information	about	the
previous	matched	symbols.	This	is	because	of	which	its	worst	case	Time	Complexity	is	O(mn).
	
The	Knuth-Morris-Pratt	algorithm	make	use	of	this	information	that	is	computed	in	the	previous
comparison.	It	never	re	compares	the	whole	text.
	
It	uses	preprocessing	of	the	pattern.	The	preprocessing	takes	O(m)	time	and	whole	algorithm	is
O(n)
	
Preprocessing	step:	we	try	to	find	the	border	of	the	pattern	at	a	different	prefix	of	the	pattern.
	
A	prefix	is	a	string	that	comes	at	the	start	of	a	string.
A	proper	prefix	is	a	prefix	that	is	not	the	complete	string.	Its	length	is	less	than	the	length	of	the
string.
A	suffix	is	a	string	that	comes	at	the	end	of	a	string.
A	proper	suffix	is	a	suffix	that	is	not	the	complete	string.	Its	length	is	less	than	the	length	of	the
string.
A	border	is	a	string	that	is	both	proper	prefix	and	a	proper	suffix.

Example	14.3:
void	KMPPreprocess(std::vector<char>	&pattern,	std::vector<int>	&ShiftArr)
{

										const	int	m	=	pattern.size();
										int	i	=	0,	j	=	-1;
										ShiftArr[i]	=	-1;
										while	(i	<	m)
										{
																			while	(j	>=	0	&&	pattern[i]	!=	pattern[j])
																			{
																													j	=	ShiftArr[j];
																			}
																			i++;
																			j++;
																			ShiftArr[i]	=	j;
										}
}
	
We	have	to	loop	outer	loop	for	the	text	and	inner	loop	for	the	pattern	when	we	have	matched	the
text	and	pattern	mismatch,	we	shift	the	text	such	that	the	widest	border	is	considered	and	then	the
rest	of	the	pattern	matching	is	resumed	after	this	shift.	If	again	a	mismatch	happens	then	the	next
mismatch	is	taken.

Example	14.4:
int	KMP(const	std::string	&text,	const	std::string	&pattern)
{
										std::vector<char>	txt(text.begin(),	text.end());
										std::vector<char>	ptn(pattern.begin(),	pattern.end());
										return	KMP(txt,	ptn);
}
	
int	KMP(std::vector<char>	&text,	std::vector<char>	&pattern)
{
										int	i	=	0,	j	=	0;
										const	int	n	=	text.size();
										const	int	m	=	pattern.size();
										std::vector<int>	ShiftArr(m	+	1);
										KMPPreprocess(pattern,	ShiftArr);
										while	(i	<	n)
										{
																			while	(j	>=	0	&&	text[i]	!=	pattern[j])
																			{
																													j	=	ShiftArr[j];
																			}
																			i++;
																			j++;
																			if	(j	==	m)
																			{
																													return	(i	-	m);

																			}
										}
										return	-1;
}
	
	
Example	14.5:	Use	the	same	KMP	algorithm	to	find	the	number	of	occurrences	of	the	pattern	in	a
text.
int	KMPFindCount(std::vector<char>	&text,	std::vector<char>	&pattern)
{
										int	i	=	0,	j	=	0,	count	=	0;
										const	int	n	=	text.size();
										const	int	m	=	pattern.size();
										std::vector<int>	ShiftArr(m	+	1);
										KMPPreprocess(pattern,	ShiftArr);
										while	(i	<	n)
										{
																			while	(j	>=	0	&&	text[i]	!=	pattern[j])
																			{
																													j	=	ShiftArr[j];
																			}
																			i++;
																			j++;
																			if	(j	==	m)
																			{
																													count++;
																													j	=	ShiftArr[j];
																			}
										}
										return	count;
}
	

Dictionary	/	Symbol	Table

A	symbol	table	is	a	mapping	between	a	string	(key)	and	a	value	that	can	be	of	any	type.	A	value
can	be	an	integer	such	as	occurrence	count,	dictionary	meaning	of	a	word	and	so	on.
	

Binary	Search	Tree	(BST)	for	Strings

Binary	Search	Tree	(BST)	is	the	simplest	way	to	implement	symbol	table.	Simple	strcmp()
function	can	be	used	to	compare	two	strings.	If	all	the	keys	are	random,	and	the	tree	is	balanced.
Then	on	an	average	key	lookup	can	be	done	in	O(logn)	time.

Below	is	an	implementation	of	binary	search	tree	to	store	string	as	key.	This	will	keep	track	of	the
occurrence	count	of	words	in	a	text.
	
Example	14.6:
class	StringTree
{
private:
										struct	Node
										{
																			Node(std::string);
																			std::string	value;
																			int	count	=	0;
																			Node	*lChild;
																			Node	*rChild;
										};
	
										Node	*root	=	nullptr;
										virtual	void	print(Node	*curr);	//	pre	order
										virtual	Node	*insert(const	std::string	&value,	Node	*curr);
										virtual	void	freeTree(Node	*curr);
										virtual	bool	find(Node	*curr,	const	std::string	&value);
										virtual	int	frequency(Node	*curr,	const	std::string	&value);
public:
										virtual	void	print();
										virtual	void	insert(const	std::string	&value);
										virtual	void	freeTree();
										virtual	bool	find(const	std::string	&value);

										virtual	int	frequency(const	std::string	&value);
};
	
StringTree::Node::Node(std::string	val)
{
										value	=	val;
										lChild	=	rChild	=	nullptr;
										count	=	1;
}
	
void	StringTree::print()
{
										print(root);
}
	
void	StringTree::print(Node	*curr)
{
										if	(curr	!=	nullptr)
										{
																			std::cout	<<	"	value	is	::"	<<	curr->value;
																			std::cout	<<	"	count	is	::	"	<<	curr->count	<<	std::endl;
																			print(curr->lChild);
																			print(curr->rChild);
										}
}
	
void	StringTree::insert(const	std::string	&value)
{
										root	=	insert(value,	root);
}
	
StringTree::Node	*StringTree::insert(const	std::string	&value,	Node	*curr)
{
										int	compare;
										if	(curr	==	nullptr)
										{
																			curr	=	new	Node(value);
										}
										else
										{
																			compare	=	curr->value.compare(value);
																			if	(compare	==	0)
																			{
																													curr->count++;
																			}
																			else	if	(compare	==	1)
																			{
																													curr->lChild	=	insert(value,	curr->lChild);
																			}
																			else
																			{
																													curr->rChild	=	insert(value,	curr->rChild);
																			}
										}
										return	curr;
}
	
void	StringTree::freeTree()
{
										freeTree(root);

										root	=	nullptr;
}
	
void	StringTree::freeTree(Node*	node)
{
										if	(node)
										{
																			freeTree(node->lChild);
																			freeTree(node->rChild);
																			delete(node);
										}
}
	
bool	StringTree::find(const	std::string	&value)
{
										bool	ret	=	find(root,	value);
										std::cout	<<	"Find	"	<<	value	<<	"	Return	"	<<	ret	<<	std::endl;
										return	ret;
}
	
bool	StringTree::find(Node	*curr,	const	std::string	&value)
{
										int	compare;
										if	(curr	==	nullptr)
										{
																			return	false;
										}
										compare	=	curr->value.compare(value);
										if	(compare	==	0)
										{
																			return	true;
										}
										else
										{
																			if	(compare	==	1)
																			{
																													return	find(curr->lChild,	value);
																			}
																			else
																			{
																													return	find(curr->rChild,	value);
																			}
										}
}
	
int	StringTree::frequency(const	std::string	&value)
{
										return	frequency(root,	value);
	
}
	
int	StringTree::frequency(Node	*curr,	const	std::string	&value)
{
										int	compare;
										if	(curr	==	nullptr)
																			return	0;
	
										compare	=	curr->value.compare(value);
										if	(compare	==	0)
										{

																			return	curr->count;
										}
										else
										{
																			if	(compare	>	0)
																			{
																													return	frequency(curr->lChild,	value);
																			}
																			else
																			{
																													return	frequency(curr->rChild,	value);
																			}
										}
}
	
	
	

Hash-Table

The	Hash-Table	is	another	data	structure	that	can	be	used	for	symbol	table	implementation.
Below	Hash-Table	diagram,	we	can	see	the	name	of	that	person	is	taken	as	the	key,	and	their
meaning	is	the	value	of	the	search.	The	first	key	is	converted	into	a	hash	code	by	passing	it	to
appropriate	hash	function.	Inside	hash	function	the	size	of	Hash-Table	is	also	passed,	which	is
used	to	find	the	actual	index	where	values	will	be	stored.	Finally,	the	value	which	is	meaning	of
name	is	stored	in	the	Hash-Table,	or	you	can	store	a	pointer	to	the	string	which	store	meaning	can
be	stored	into	the	Hash-Table.

	
Hash-Table	has	an	excellent	lookup	of	O(1).
	
Let	us	suppose	we	want	to	implement	autocomplete	the	box	feature	of	Google	search.	When	you
type	some	string	to	search	in	google	search,	it	propose	some	complete	string	even	before	you
have	done	typing.	BST	cannot	solve	this	problem	as	related	strings	can	be	in	both	right	and	left

subtree.	

The	Hash-Table	is	also	not	suited	for	this	job.	One	cannot	perform	a	partial	match	or	range	query
on	a	Hash-Table.	Hash	function	transforms	string	to	a	number.	And	a	good	hash	function	will	give
a	fairly	distributed	hash	bode	even	for	partial	string	and	there	is	no	way	to	relate	two	strings	in	a
Hash-Table.
	
Trie	and	Ternary	Search	tree	are	a	special	kind	of	tree	that	solves	partial	match	and	range	query
problem	well.
	

Trie

Trie	is	a	tree,	in	which	we	store	only	one	character	at	each	node.	This	final	key	value	pair	is
stored	in	the	leaves.	Each	node	has	R	children,	one	for	each	possible	character.	For	simplicity
purpose,	let’s	consider	that	the	character	set	is	26,	corresponds	to	different	characters	of	English
alphabets.
	
Trie	is	an	efficient	data	structure.	Using	Trie	we	can	search	the	key	in	O(M)	time.	Where	M	is	the
maximum	string	length.	Trie	is	also	suitable	for	solving	partial	match	and	range	query	problems.
	

	
Example	14.7:
class	Trie
{
private:

										struct	Node
										{
																			bool	isLastChar	=	false;
																			std::vector<Node*>	child;
																			Node();
										};
	
										static	const	int	CharCount	=	26;
										Node	*root	=	nullptr;
										virtual	Node	*Insert(Node	*curr,	const	std::string	&str,	int	index);
										virtual	void	Remove(Node	*curr,	const	std::string	&str,	int	index);
										virtual	bool	Find(Node	*curr,	const	std::string	&str,	int	index);
	
public:
										Trie();
										virtual	void	Insert(const	std::string	&str);
										virtual	void	Remove(const	std::string	&str);
										virtual	bool	Find(const	std::string	&str);
};
	
Trie::Node::Node()
{
										for	(int	i	=	0;	i	<	CharCount;	i++)
																			child.push_back(nullptr);
										isLastChar	=	false;
}
	
Trie::Trie()
{
										root	=	new	Node();	//	first	node	with	dummy	value.
}
	
void	Trie::Insert(const	std::string	&s)
{
										if	(s	==	"")
																			return;
										std::string	str	=	s;
										transform(str.begin(),	str.end(),	str.begin(),	::tolower);
										Insert(root,	str,	0);
}
	
Trie::Node	*Trie::Insert(Node	*curr,	const	std::string	&str,	int	index)
{
										if	(curr	==	nullptr)
										{
																			curr	=	new	Node();
										}
	
										if	(str.length()	==	index)
										{
																			curr->isLastChar	=	true;
										}
										else
										{
																			curr->child[str[index]	-	'a']	=	Insert(curr->child[str[index]	-	'a'],	str,	index	+	1);
										}
	
										return	curr;
}
	

void	Trie::Remove(const	std::string	&s)
{
										if	(s	==	"")
																			return;
										std::string	str	=	s;
										transform(str.begin(),	str.end(),	str.begin(),	::tolower);
										Remove(root,	str,	0);
}
	
void	Trie::Remove(Node	*curr,	const	std::string	&str,	int	index)
{
										if	(curr	==	nullptr)
										{
																			return;
										}
	
										if	(str.length()	==	index)
										{
																			if	(curr->isLastChar)
																			{
																													curr->isLastChar	=	false;
																			}
																			return;
										}
	
										Remove(curr->child[str[index]	-	'a'],	str,	index	+	1);
}
	
bool	Trie::Find(const	std::string	&s)
{
										if	(s	==	"")
										{
																			return	false;
										}
										std::string	str	=	s;
										transform(str.begin(),	str.end(),	str.begin(),	::tolower);
										return	Find(root,	str,	0);
}
	
bool	Trie::Find(Node	*curr,	const	std::string	&str,	int	index)
{
										if	(curr	==	nullptr)
										{
																			return	false;
										}
	
										if	(str.length()	==	index)
										{
																			return	curr->isLastChar;
										}
	
										return	Find(curr->child[str[index]	-	'a'],	str,	index	+	1);
}
	
	

Ternary	Search	Trie/	Ternary	Search	Tree

Tries	have	a	very	good	search	performance	of	O(M)	where	M	is	the	maximum	size	of	the	search

string.	But	tries	have	a	very	high	space	requirement.	Every	node	Trie	contains	pointers	to	multiple
nodes,	each	pointer	corresponds	to	possible	characters	of	the	key.	To	avoid	this	high	space
requirement	Ternary	Search	Trie	(TST)	is	used.
	
A	TST	avoid	the	heavy	space	requirement	of	the	traditional	Trie	while	still	keeping	many	of	its
advantages.	In	a	TST	each	node	contains	a	character,	an	end	of	key	indicator,	and	three	pointers.
The	three	pointers	are	corresponding	to	current	char	hold	by	the	node	(equal),	characters	less	than
and	character	greater	than.
	
The	Time	Complexity	of	ternary	search	tree	operation	is	proportional	to	the	height	of	the	ternary
search	tree.	In	the	worst	case,	we	need	to	traverse	up	to	3	times	that	many	links.	However,	this
case	is	rare.	Therefore,	TST	is	a	very	good	solution	for	implementing	Symbol	Table,	Partial
match	and	range	query.

Example	14.8:
class	TST
{
private:
										struct		Node
										{
																			char	data	=	'\0';
																			bool	isLastChar	=	false;
																			Node	*left,	*equal,	*right;
																			Node(TST	*outerInstance,	char	d);
										};
										Node	*root;
										Node	*insert(Node	*curr,	const	std::string	&word,	int	wordIndex);
public:
										virtual	void	insert(const	std::string	&word);
										bool	find(Node	*curr,	const	std::string	&word,	int	wordIndex);
										virtual	bool	find(const	std::string	&word);

};
	
TST::Node::Node(TST	*outerInstance,	char	d)
{
										data	=	d;
										isLastChar	=	false;
										left	=	equal	=	right	=	nullptr;
}
	
void	TST::insert(const	std::string	&word)
{
										root	=	insert(root,	word,	0);
}
	
TST::Node	*TST::insert(Node	*curr,	const	std::string	&word,	int	wordIndex)
{
										if	(curr	==	nullptr)
										{
																			curr	=	new	Node(this,	word[wordIndex]);
										}
										if	(word[wordIndex]	<	curr->data)
										{
																			curr->left	=	insert(curr->left,	word,	wordIndex);
										}
										else	if	(word[wordIndex]	>	curr->data)
										{
																			curr->right	=	insert(curr->right,	word,	wordIndex);
										}
										else
										{
																			if	(wordIndex	<	word.length()	-	1)
																			{
																													curr->equal	=	insert(curr->equal,	word,	wordIndex	+	1);
																			}
																			else
																			{
																													curr->isLastChar	=	true;
																			}
										}
										return	curr;
}
	
bool	TST::find(Node	*curr,	const	std::string	&word,	int	wordIndex)
{
										if	(curr	==	nullptr)
										{
																			return	false;
										}
										if	(word[wordIndex]	<	curr->data)
										{
																			return	find(curr->left,	word,	wordIndex);
										}
										else	if	(word[wordIndex]	>	curr->data)
										{
																			return	find(curr->right,	word,	wordIndex);
										}
										else
										{
																			if	(wordIndex	==	word.length()	-	1)
																			{

																													return	curr->isLastChar;
																			}
																			return	find(curr->equal,	word,	wordIndex	+	1);
										}
}
	
bool	TST::find(const	std::string	&word)
{
										bool	ret	=	find(root,	word,	0);
										std::cout	<<	word	<<	"	::	";
										if	(ret)
										{
																			std::cout	<<	"	Found	"	<<	std::endl;
										}
										else
										{
																			std::cout	<<	"Not	Found	"	<<	std::endl;
										}
										return	ret;
}
	

Problems	in	String

	

Regular	Expression	Matching

Implement	regular	expression	matching	with	the	support	of	‘?’	and	‘*’	special	character.
‘?’	Matches	any	single	character.	
‘*’	Matches	zero	or	more	of	the	preceding	element.
	
Example	14.9:
bool	matchExp(std::string	&exp,	std::string	&str)
{
										return	matchExpUtil(exp,	str,	0,	0);
}
	
bool	matchExpUtil(std::string	&exp,	std::string	&str,	int	i,	int	j)
{
										if	(i	==	exp.size()	&&	j	==	str.size())
										{
																			return	true;
										}
										if	((i	==	exp.size()	&&	j	!=	str.size())	||	(i	!=	exp.size()	&&	j	==	str.size()))
										{
																			return	false;
										}
										if	(exp[i]	==	'?'	||	exp[i]	==	str[j])
										{
																			return	matchExpUtil(exp,	str,	i	+	1,	j	+	1);
										}
										if	(exp[i]	==	'*')
										{
																			return	matchExpUtil(exp,	str,	i	+	1,	j)	||	matchExpUtil(exp,	str,	i,	j	+	1)	||	matchExpUtil(exp,	str,	i	+	1,	j	+	1);
										}
										return	false;
}
	

Order	Matching

Given	a	long	text	string	and	a	pattern	string.	Find	if	the	characters	of	pattern	string	are	in	the	same
order	in	text	string.	Eg.	Text	String:	ABCDEFGHIJKLMNOPQRSTUVWXYZ
Pattern	string:	JOST
	
Example	14.10:
int	match(std::string	&source,	std::string	&pattern)
{
										int	iSource	=	0;
										int	iPattern	=	0;
										int	sourceLen	=	source.size();
										int	patternLen	=	pattern.size();
										for	(iSource	=	0;	iSource	<	sourceLen;	iSource++)

										{
																			if	(source[iSource]	==	pattern[iPattern])
																			{
																													iPattern++;
																			}
																			if	(iPattern	==	patternLen)
																			{
																													return	1;
																			}
										}
										return	0;
}
	

ASCII	to	Integer	Conversion

Write	a	function	that	take	integer	as	a	char	array	and	convert	it	into	an	int.
Example	14.11:
int	myAtoi(const	std::string	&str)
{
										int	value	=	0;
	
										int	size	=	str.length();
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			char	ch	=	str[i];
																			value	=	(value	<<	3)	+	(value	<<	1)	+	(ch	-	'0');
										}
										return	value;
}
	

To	Upper	Case

Write	a	function	that	will	convert	all	lower	case	letters	in	a	string	to	upper	case.
Example	14.12:	ToUpper
char	ToUpper(char	s)
{
										if	(s	>=	97	&&	s	<=	(97	+	25))
										{
																			s	=	static_cast<char>(s	-	32);
										}
										return	s;
}
	

To	Lower	Case

Write	a	function	that	will	convert	upper	case	letter	in	a	string	to	lower	case
Example	14.13:	ToLower
char	ToLower(char	s)
{
										if	(s	>=	65	&&	s	<=	(65	+	25))
										{
																			s	=	static_cast<char>(s	+	32);
										}

										return	s;
}
	

Unique	Characters

Write	a	function	that	will	take	a	string	as	input	and	return	1	if	it	contain	all	unique	characters	else
return	0.
Example	14.14:
bool	isUniqueChar(const	std::string	&str)
{
										std::vector<int>	bitarr(26);
										for	(int	i	=	0;	i	<	26;	i++)
										{
																			bitarr[i]	=	0;
										}
										int	size	=	str.length();
										for	(int	i	=	0;	i	<	size;	i++)
										{
																			char	c	=	str[i];
																			if	('A'	<=	c	&&	'Z'	>=	c)
																			{
																													c	=	static_cast<char>(c	-	'A');
																			}
																			else	if	('a'	<=	c	&&	'z'	>=	c)
																			{
																													c	=	static_cast<char>(c	-	'a');
																			}
																			else
																			{
																													std::cout	<<	"Unknown	Char!"	<<	std::endl;
																													return	false;
																			}
																			if	(bitarr[c]	!=	0)
																			{
																													std::cout	<<	"Duplicate	detected!"	<<	std::endl;
																													return	false;
																			}
										}
										std::cout	<<	"No	duplicate	detected!"	<<	std::endl;
										return	true;
}
	

Permutation	Check

Write	a	function	to	check	if	two	strings	are	permutation	of	each	other.
Example	14.15:
bool	isPermutation(const	std::string	&s1,	const	std::string	&s2)
{
										std::vector<int>	count(256);
										int	length	=	s1.length();
										if	(s2.length()	!=	length)
										{
																			std::cout	<<	"is	permutation	return	false"	<<	std::endl;
																			return	false;
										}

										for	(int	i	=	0;	i	<	256;	i++)
										{
																			count[i]	=	0;
										}
										for	(int	i	=	0;	i	<	length;	i++)
										{
																			char	ch	=	s1[i];
																			count[ch]++;
																			ch	=	s2[i];
																			count[ch]--;
										}
										for	(int	i	=	0;	i	<	length;	i++)
										{
																			if	(count[i]	!=	0)
																			{
																													std::cout	<<	"is	permutation	return	false"	<<	std::endl;
																													return	false;
																			}
										}
										std::cout	<<	"is	permutation	return	true"	<<	std::endl;
										return	true;
}
	

Palindrome	Check

Given	a	string	as	an	array	of	characters	find	if	the	string	is	a	palindrome	or	not?
Example	14.16:
bool	isPalindrome(const	std::string	&str)
{
										int	i	=	0,	j	=	str.length()	-	1;
										while	(i	<	j	&&	str[i]	==	str[j])
										{
																			i++;
																			j--;
										}
										if	(i	<	j)
										{
																			std::cout	<<	"String	is	not	a	Palindrome"	<<	std::endl;
																			return	false;
										}
										else
										{
																			std::cout	<<	"String	is	a	Palindrome"	<<	std::endl;
																			return	true;
										}
}
	
Time	Complexity	is	O(n)	and	Space	Complexity	is	O(1)
	

Reverse	Case	function

Write	a	function	that	will	convert	Lower	case	letter	in	a	string	to	upper	case	and	upper	case	letter
to	lower	case.
Example	14.17:

char	LowerUpper(char	s)
{
										if	(s	>=	97	&&	s	<=	(97	+	25))
										{
																			s	=	static_cast<char>(s	-	32);
										}
										else	if	(s	>=	65	&&	s	<=	(65	+	25))
										{
																			s	=	static_cast<char>(s	+	32);
										}
										return	s;
}
	

Power	function

Write	a	function	which	will	calculate ,	Taking	x	and	n	as	argument.
Example	14.18:	Power	function
int	pow(int	x,	int	n)
{
										int	value;
										if	(n	==	0)
										{
																			return	(1);
										}
										else	if	(n	%	2	==	0)
										{
																			value	=	pow(x,	n	/	2);
																			return	(value	*	value);
										}
										else
										{
																			value	=	pow(x,	n	/	2);
																			return	(x	*	value	*	value);
										}
}
	

String	Compare	function

Write	a	function	strcmp()	to	compare	two	strings.	The	function	return	values	should	be:
The	return	value	is	0	indicates	that	both	first	and	second	strings	are	equal.
The	return	value	is	negative	indicates	the	first	string	is	less	than	the	second	string.
The	return	value	is	positive	indicates	that	the	first	string	is	greater	than	the	second	string.
Example	14.19:
int	myStrcmp(const	std::string	&a,	const	std::string	&b)
{
										int	index	=	0;
										int	len1	=	a.length();
										int	len2	=	b.length();
										int	minlen	=	len1;
										if	(len1	>	len2)
										{
																			minlen	=	len2;
										}
	

										while	(index	<	minlen	&&	a[index]	==	b[index])
										{
																			index++;
										}
	
										if	(index	==	len1	&&	index	==	len2)
																			return	0;
										else	if	(len1	==	index)
																			return	-1;
										else	if	(len2	==	index)
																			return	1;
										else
																			return	a[index]	-	b[index];
}
	

Reverse	String

Example	14.20:	Reverse	all	the	characters	of	a	string.
void	reverseString(std::string	&a)
{
										int	lower	=	0;
										int	upper	=	a.size()	-	1;
										char	tempChar;
										while	(lower	<	upper)
										{
																			tempChar	=	a[lower];
																			a[lower]	=	a[upper];
																			a[upper]	=	tempChar;
																			lower++;
																			upper--;
										}
}
	
void	reverseString(std::string	&a,	int	lower,	int	upper)
{
										char	tempChar;
										while	(lower	<	upper)
										{
																			tempChar	=	a[lower];
																			a[lower]	=	a[upper];
																			a[upper]	=	tempChar;
																			lower++;
																			upper--;
										}
}
	

Reverse	Words

Example	14.21:	Reverse	order	of	words	in	a	string	sentence.
void	reverseWords(std::string	&a)
{
										int	length	=	a.size();
										int	lower,	upper	=	-1;
										lower	=	0;
										for	(int	i	=	0;	i	<=	length;	i++)
										{

																			if	(a[i]	==	'	'	||	a[i]	==	'\0')
																			{
																													reverseString(a,	lower,	upper);
																													lower	=	i	+	1;
																													upper	=	i;
																			}
																			else
																			{
																													upper++;
																			}
										}
										reverseString(a,	0,	length	-	1);
}
	

Print	Anagram

Example	14.22:	Given	a	string	as	character	array,	print	all	the	anagram	of	the	string.
void	printAnagram(std::string		&a)
{
										int	n	=	a.size();
										printAnagram(a,	n,	n);
}
	
void	printAnagram(std::string	&a,	int	max,	int	n)
{
										if	(max	==	1)
										{
																			for(auto	ch	:	a)
																													std::cout	<<	ch;
										}
										for	(int	i	=	-1;	i	<	max	-	1;	i++)
										{
																			if	(i	!=	-1)
																			{
																													a[i]	^=	a[max	-	1]	^=	a[i]	^=	a[max	-	1];
																			}
																			printAnagram(a,	max	-	1,	n);
																			if	(i	!=	-1)
																			{
																													a[i]	^=	a[max	-	1]	^=	a[i]	^=	a[max	-	1];
																			}
										}
}
	

Shuffle	String

Example	14.23:	Write	a	program	to	convert	array	ABCDE12345		to	A1B2C3D4E5
void	shuffle(std::string	&ar)
{
										int	n	=	ar.size()	/	2;
										int	count	=	0;
										int	k	=	1;
										char	temp	=	'\0';
										for	(int	i	=	1;	i	<	n;	i	=	i	+	2)
										{
																			temp	=	ar[i];

																			k	=	i;
																			do
																			{
																													k	=	(2	*	k)	%	(2	*	n	-	1);
																													temp	^=	ar[k]	^=	temp	^=	ar[k];
																													count++;
																			}	while	(i	!=	k);
																			if	(count	==	(2	*	n	-	2))
																			{
																													break;
																			}
										}
}
	

Binary	Addition

Example	14.24:	Given	two	binary	string,	find	the	sum	of	these	two	binary	strings.
std::string	addBinary(std::string	&first,	std::string	&second)
{
										int	size1	=	first.size();
										int	size2	=	second.size();
										int	totalIndex;
										std::string	total;
										if	(size1	>	size2)
										{
																			total	=	std::string('0',size1	+	2);
																			totalIndex	=	size1;
										}
										else
										{
																			total	=	std::string('0',	size2	+	2);
																			totalIndex	=	size2;
										}
										total[totalIndex	+	1]	=	'\0';
										int	carry	=	0;
										size1--;
										size2--;
										while	(size1	>=	0	||	size2	>=	0)
										{
																			int	firstValue	=	(size1	<	0)	?	0	:	first[size1]	-	'0';
																			int	secondValue	=	(size2	<	0)	?	0	:	second[size2]	-	'0';
																			int	sum	=	firstValue	+	secondValue	+	carry;
																			carry	=	sum	>>	1;
																			sum	=	sum	&	1;
																			total[totalIndex]	=	(sum	==	0)	?	'0'	:	'1';
																			totalIndex--;
																			size1--;
																			size2--;
										}
										total[totalIndex]	=	(carry	==	0)	?	'0'	:	'1';
										return	total;
}
	

Exercise

	
1.				Given	a	string,	find	the	longest	substring	without	reputed	characters.

	
2.				The	function	memset()	copies	ch	into	the	first	'n'	characters	of	the	string

	
3.				Serialize	a	collection	of	string	into	a	single	string	and	de	serializes	the	string	into	that

collection	of	strings.
	

4.				Write	a	smart	input	function,	which	take	20	characters	as	input	from	the	user.	Without
cutting	some	word.

																																				User	input:	“Harry	Potter	must	not	go”
																																				First	20	chars:	“Harry	Potter	must	no”
																																				Smart	input:	“Harry	Potter	must”
	

5.				Write	a	code	that	returns	if	a	string	is	palindrome	and	it	should	return	true	for	below	inputs
too.

																																				Stella	won	no	wallets.
																																				No,	it	is	open	on	one	position.
																																				Rise	to	vote,	Sir.
																																				Won't	lovers	revolt	now?
	

6.				Write	an	ASCII	to	integer	function	which	ignore	the	non-integral	character	and	give	the
integer	.	For	example,	if	the	input	is	“12AS5”	it	should	return	125.

	
7.				Write	code	that	would	parse	a	Bash	brace	expansion.

Example:	the	expression	"(a,	b,	c)	d,	e"	and	would	output	all	the	possible	strings:	ad,	bd,
cd,	e

	
8.				Given	a	string	write	a	function	to	return	the	length	of	the	longest	substring	with	only	unique

characters
	

9.				Replace	all	occurrences	of	"a"	with	"the"	
	

10.		Replace	all	occurrences	of	%20	with	'	'.
E.g.	Input:	www.Hello%20World.com
Output:	www.Hello	World.	com

	
11.		Write	an	expansion	function	that	will	take	an	input	string	like	"1..5,8,11..14,18,20,26..30"

and	will	print	"1,2,3,4,5,8,11,12,13,14,18,20,26,27,28,29,30"

http://www.careercup.com/question?id=6753840
http://www.Hello

	
12.		Suppose	you	have	a	string	like	"Thisisasentence".	Write	a	function	that	would	separate

these	words.	And	will	print	whole	sentence	with	spaces.
	

13.		Given	three	string	str1,	str2	and	str3.	Write	a	complement	function	to	find	the	smallest	sub-
sequence	in	str1	which	contains	all	the	characters	in	str2	and	but	not	those	in	str3.
	

14.		Given	two	strings	A	and	B,	find	whether	any	anagram	of	string	A	is	a	sub	string	of	string	B.
For	eg:	If	A	=	xyz	and	B	=	afdgzyxksldfm	then	the	program	should	return	true.
	

15.		Given	a	string,	find	whether	it	contains	any	permutation	of	another	string.	For	example,
given	"abcdefgh"	and	"ba",	the	function	should	return	true,	because	"abcdefgh"	has	substring
"ab",	which	is	a	permutation	of	the	given	string	"ba".
	

16.		Give	an	algorithm	which	removes	the	occurrence	of	“a”	by	“bc”	from	a	string?	The
algorithm	must	be	in-place.

	
17.		Given	a	string	"1010101010"	in	base2	convert	it	into	string	with	base4.	Do	not	use	an

extra	space.
	

18.		In	Binary	Search	tree	to	store	strings,	delete()	function	is	not	implemented	implement	the
same.
	

19.		If	you	implement	delete()	function,	then	you	need	to	make	changes	in	find()	function.	Do	the
needful.

CHAPTER	15:	ALGORITHM	DESIGN
TECHNIQUES

Introduction

In	real	life	when	we	are	asked	to	do	some	work,	we	try	to	correlate	it	with	our	experience	and
then	try	to	solve	it.	Similarly,	when	we	get	a	new	problem	to	solve.	We	first	try	to	find	the
similarity	of	the	current	problem	with	some	problems	for	which	we	already	know	the	solution.
Then	solve	the	current	problem	and	get	our	desired	result.
	
This	method	provides	following	benefits:

1)				It	provides	a	template	for	solving	a	wide	range	of	problems.
2)				It	provides	us	the	idea	of	the	suitable	data	structure	for	the	problem.
3)				It	helps	us	in	analyzing,	space	and	Time	Complexity	of	algorithms.

	
In	the	previous	chapters,	we	have	used	various	algorithms	to	solve	different	kind	of	problems.	In
this	chapter,	we	will	read	about	various	techniques	of	solving	algorithmic	problems.
	
Various	Algorithm	design	techniques	are:

1)				Brute	Force
2)				Greedy	Algorithms
3)				Divide-and-Conquer,	Decrease-and-Conquer
4)				Dynamic	Programming
5)				Reduction	/	Transform-and-Conquer
6)				Backtracking	and	Branch-and-Bound

	

Brute	Force	Algorithm

Brute	Force	is	a	straightforward	approach	of	solving	a	problem	based	on	the	problem	statement.
It	is	one	of	the	easiest	approaches	to	solve	a	particular	problem.	It	is	useful	for	solving	small	size
dataset	problem.
	
Some	examples	of	brute	force	algorithms	are:

·									Bubble-Sort
·									Selection-Sort
·									Sequential	search	in	an	array
·									Computing	pow(a,	n)	by	multiplying	a,	n	times.
·									Convex	hull	problem
·									String	matching
·									Exhaustive	search:	Traveling	salesman,	Knapsack,	and	Assignment	problems

	

Greedy	Algorithm

In	greedy	algorithm,	solution	is	constructed	through	a	sequence	of	steps.	At	each	step,	choice	is
made	which	is	locally	optimal.	Greedy	algorithms	are	generally	used	to	solve	optimization
problems.	We	always	take	the	next	data	to	be	processed	depending	upon	the	dataset	which	we
have	already	processed	and	then	choose	the	next	optimum	data	to	be	processed.	Greedy
algorithms	does	not	always	give	optimum	solution.
	
Some	examples	of	brute	force	algorithms	are:

·									Minimal	spanning	tree:	Prim’s	algorithm,	Kruskal’s	algorithm
·									Dijkstra’s	algorithm	for	single-source	shortest	path	problem
·									Greedy	algorithm	for	the	Knapsack	problem
·									The	coin	exchange	problem
·									Huffman	trees	for	optimal	encoding

	

Divide-and-Conquer,	Decrease-and-Conquer

	
Divide-and-Conquer	algorithms	involve	basic	three	steps,	first	split	the	problem	into	several
smaller	sub-problems,	second	solve	each	sub	problem	and	then	finally	combine	the	sub	problems
results	so	as	to	produce	the	final	result.
	
In	divide-and-conquer	the	size	of	the	problem	is	reduced	by	a	factor	(half,	one-third,	etc.),	While
in	decrease-and-conquer	the	size	of	the	problem	is	reduced	by	a	constant.
	
Examples	of	divide-and-conquer	algorithms:

·									Merge-Sort	algorithm	(using	recursion)
·									Quicksort	algorithm	(using	recursion)
·									Computing	the	length	of	the	longest	path	in	a	binary	tree	(using	recursion)
·									Computing	Fibonacci	numbers	(using	recursion)
·									Quick-hull

	
Examples	of	decrease-and-conquer	algorithms:

·									Computing	pow(a,	n)	by	calculating	pow(a,	n/2)	using	recursion.
·									Binary	search	in	a	sorted	array	(using	recursion)
·									Searching	in	BST
·									Insertion-Sort
·									Graph	traversal	algorithms	(DFS	and	BFS)
·									Topological	sort
·									Warshall’s	algorithm	(using	recursion)
·									Permutations	(Minimal	change	approach,	Johnson-Trotter	algorithm)
·									Computing	a	median,	Topological	sorting,	Fake-coin	problem	(Ternary	search)

	
Consider	the	problem	of	exponentiation	Compute	
Brute	Force: n-1	multiplications
Divide	and	conquer: T(n)	=	2*T(n/2)	+	1	=	n-1

Decrease	by	one: T	(n)	=	T	(n-1)	+	1	=	n-1
	

Decrease	by	constant	factor:
T	(n)	=	T	(n/a)	+	a-1
							=	(a-1)	n
							=	n			when	a	=	2

	

Dynamic	Programming

While	solving	problems	using	Divide-and-Conquer	method,	there	may	be	a	case	when	recursively
sub-problems	can	result	in	the	same	computation	being	performed	multiple	times.	This	problem
arises	when	there	are	identical	sub-problems	arise	repeatedly	in	a	recursion.
	
Dynamic	programming	is	used	to	avoid	the	requirement	of	repeated	calculation	of	same	sub-
problem.	In	this	method,	we	usually	store	the	result	of	sub	-	problems	in	a	table	and	refer	that
table	to	find	if	we	have	already	calculated	the	solution	of	sub	-	problems	before	calculating	it
again.
	
Dynamic	programming	is	a	bottom	up	technique	in	which	the	smaller	sub-problems	are	solved
first	and	the	result	of	these	are	sued	to	find	the	solution	of	the	larger	sub-problems.
	
Examples:

·									Fibonacci	numbers	computed	by	iteration.
·									Warshall’s	algorithm	for	transitive	closure	implemented	by	iterations
·									Floyd’s	algorithms	for	all-pairs	shortest	paths

	
int	fibonacci(int	n)
{
										if	(n	<=	1)
										{
																			return	n;
										}
										return	fibonacci(n	-	1)	+	fibonacci(n	-	2);
}

Using	divide	and	conquer	the	same	sub	problem	is	solved	again	and	again,	which	reduce	the
performance	of	the	algorithm.	This	algorithm	has	an	exponential	Time	Complexity.	And	linear
Space	Complexity.
	
int	fibo(int	n)
{

										int	first	=	0,	second	=	1;
										int	temp	=	0,	i;
	
										if	(n	==	0)
																			return	first;
										else	if	(n	==	1)
																			return	second;
	
										for	(i	=	2;	i	<=	n;	i++)
										{
																			temp	=	first	+	second;
																			first	=	second;
																			second	=	temp;
										}
										return	temp;
}
	
Using	this	algorithm,	we	will	get	Fibonacci	in	linear	Time	Complexity	and	constant	Space
Complexity.
	

Reduction	/	Transform-and-Conquer

These	methods	works	as	two-stage	procedure.	First,	the	problem	is	transformed	into	a	known
problem	for	which	we	know	optimal	solution.	In	the	second	stage,	the	problem	is	solved.	The
most	common	types	of	transformation	are	sort	of	an	array.
	
For	example:	Given	an	array	of	numbers	finds	the	two	closest	number.
	
The	brute	force	solution	for	this	problem	will	take	distance	between	each	element	in	the	array	and
will	try	to	keep	the	minimum	distance	pair;	this	approach	will	have	a	Time	Complexity	of	
	
Transform	and	conquer	solution,	will	be	first	sort	the	array	in	O(nlogn)	time	and	then	find	the
closest	number	by	scanning	the	array	in	another	O(n).	Which	will	give	the	total	Time	Complexity
of	O(nlogn).
	
Examples:

·									Gaussian	elimination
·									Heaps	and	Heapsort

	

Backtracking

In	real	life,	let	us	suppose	someone	gave	you	a	lock	with	a	number	(three	digit	lock,	number	range
from	1	to	9).	And	you	don’t	have	the	exact	password	key	for	the	lock.	You	need	to	test	each	and
every	combination	till	you	got	the	right	one.	Obviously,	you	need	to	test	starting	from	something
like	“111”,	then	“112”	and	so	on.	And	you	will	get	your	key	before	you	reach	“999”.	So	what	you
are	doing	is	backtracking.
	
Suppose	the	lock	produce	some	sound	“click”	correct	digit	is	selected	for	any	level.	If	we	can
listen	to	this	sound	such	intelligence/	heuristics	will	help	you	to	reach	your	goal	much	faster.
These	functions	are	called	Pruning	function	or	bounding	functions.
	
Backtracking	is	a	method	by	which	solution	is	found	by	exhaustively	searching	through	large	but
finite	number	of	states,	with	some	pruning	or	bounding	function	which	will	narrow	down	our
search.	For	all	the	problems	like	(NP	hard	problems)	for	which	there	does	not	exist	any	other
method	we	use	backtracking.
	
Backtracking	problems	have	the	following	components:

1.				Initial	state
2.				Target	/	Goal	state
3.				Intermediate	states
4.				Path	from	the	initial	state	to	the	target	/	goal	state
5.				Operators	to	get	from	one	state	to	another
6.				Pruning	function	(optional)

	
The	solving	process	of	backtracking	algorithm	starts	with	the	construction	of	state’s	tree,	whose
nodes	represents	the	states.	The	root	node	is	the	initial	state	and	one	or	more	leaf	node	will	be
our	target	state.	Each	edge	of	the	tree	represents	some	operation.	The	solution	is	obtained	by
searching	the	tree	until	a	Target	state	is	found.
	
Backtracking	uses	depth-first	search:
1)				Store	the	initial	state	in	a	stack
2)				While	the	stack	is	not	empty,	repeat:
3)				Read	a	node	from	the	stack.
4)				While	there	are	available	operators,	do:

a.				Apply	an	operator	to	generate	a	child
b.				If	the	child	is	a	goal	state	–	return	solution
c.				If	it	is	a	new	state,	and	pruning	function	does	not	discard	it	push	the	child	into	the	stack.

	
There	are	three	monks	and	three	demons	at	one	side	of	a	river.	We	want	to	move	all	of	them	to	the
other	side	using	a	small	boat.	The	boat	can	carry	only	two	persons	at	a	time.	Given	if	on	any

shore	the	number	of	demons	will	be	more	than	monks	then	they	will	eat	the	monks.	How	can	we
move	all	of	these	people	to	the	other	side	of	the	river	safely?
	
Same	as	the	above	problem	there	is	a	farmer	who	has	a	goat,	a	cabbage	and	a	wolf.	If	the	farmer
leaves,	goat	with	cabbage,	goat	will	eat	the	cabbage.	If	the	farmer	leaves	wolf	alone	with	goat,
wolf	will	kill	the	goat.	How	can	the	farmer	move	all	his	belongings	to	the	other	side	of	the	river?
	
You	are	given	two	jugs,	a	4-gallon	one	and	a	3-gallon	one.	There	are	no	measuring	markers	on
jugs.	There	is	a	tap	that	can	be	used	to	fill	the	jugs	with	water.	How	can	you	get	2	gallons	of
water	in	the	4-gallon	jug?
	

Branch-and-bound

Branch	and	bound	method	is	used	when	we	can	evaluate	cost	of	visiting	each	node	by	a	utility
functions.	At	each	step	we	choose	the	node	with	lowest	cost	to	proceed	further.	Branch-and	bound
algorithms	are	implemented	using	a	priority	queue.	In	branch	and	bound	we	traverse	the	nodes	in
breadth-first	manner.
	

A*	Algorithm

A*	is	sort	of	an	elaboration	on	branch-and-bound.	In	branch-and-bound,	at	each	iteration	we
expand	the	shortest	path	that	we	have	found	so	far.	In	A*,	instead	of	just	picking	the	path	with	the
shortest	length	so	far,	we	pick	the	path	with	the	shortest	estimated	total	length	from	start	to	goal,
where	the	total	length	is	estimated	as	length	traversed	so	far	plus	a	heuristic	estimate	of	the
remaining	distance	from	the	goal.	

Branch-and-bound	will	always	find	an	optimal	solution	which	is	shortest	path.	A*	will	always
find	an	optimal	solution	if	the	heuristic	is	correct.	Choosing	a	good	heuristic	is	the	the	most
important	part	of	A*	algorithm.
	

Conclusion

Usually	a	given	problem	can	be	solved	using	a	number	of	methods,	however	it	is	not	wise	to
settle	for	the	first	method	that	comes	to	our	mind.	Some	methods	result	in	a	much	more	efficient
solutions	than	others.
	
For	example,	the	Fibonacci	numbers	calculated	recursively	(decrease-and-conquer	approach),
and	computed	by	iterations	(dynamic	programming).	In	the	first	case	the	complexity	is	O(),	and
in	the	other	case	the	complexity	is	O(n).
	
Another	example,	consider	sorting	based	on	the	Insertion-Sort	and	basic	bubble	sort.	For	almost
sorted	files	Insertion-Sort	will	give	almost	linear	complexity,	while	bubble	sort	sorting
algorithms	have	quadratic	complexity.
	
So	the	most	important	question	is,	how	to	choose	the	best	method?
First,	you	should	understand	the	problem	statement.
Second	by	knowing	various	problems	and	there	solutions.

CHAPTER	16:	BRUTE	FORCE	ALGORITHM

Introduction

Brute	Force	is	a	straightforward	approach	of	solving	a	problem	based	on	the	problem	statement.
It	is	one	of	the	easiest	approaches	to	solve	a	particular	problem.	It	is	useful	for	solving	small	size
dataset	problem.
	
Many	times,	there	are	other	algorithm	techniques	that	can	be	used	to	get	a	better	solution	of	the
same	problem.
	
Some	examples	of	brute	force	algorithms	are:

·									Bubble-Sort
·									Selection-Sort
·									Sequential	search	in	an	array
·									Computing	pow	(a,	n)	by	multiplying	a,	n	times.
·									Convex	hull	problem
·									String	matching
·									Exhaustive	search
·									Traveling	salesman
·									Knapsack
·									Assignment	problems

	

Problems	in	Brute	Force	Algorithm

	

Bubble-Sort

In	Bubble-Sort,	adjacent	elements	of	the	list	are	compared	and	are	exchanged	if	they	are	out	of
order.
	
//	Sorts	a	given	array	by	Bubble	Sort
//	Input:	An	array	A	of	orderable	elements
//	Output:	Array	A[0..n	-	1]	sorted	in	ascending	order
	
Algorithm	BubbleSort(A[0..n	-	1])
sorted	=	false
while	!sorted	do
										sorted	=	true
										for	j	=	0	to	n	-	2	do
																			if	A[j]	>	A[j	+	1]	then
																													swap	A[j]	and	A[j	+	1]
																													sorted	=	false
	
The	Time	Complexity	of	the	algorithm	is	

Selection-Sort

The	entire	given	list	of	N	elements	is	traversed	to	find	its	smallest	element	and	exchange	it	with
the	first	element.	Then,	the	list	is	traversed	again	to	find	the	second	element	and	exchanged	it	with
the	second	element.	After	N-1	passes,	the	list	will	be	fully	sorted.
	
//Sorts	a	given	array	by	selection	sort
//Input:	An	array	A[0..n-1]	of	orderable	elements
//Output:	Array	A[0..n-1]	sorted	in	ascending	order
	
Algorithm	SelectionSort	(A[0..n-1])
for	i	=	0	to	n	-	2	do
										min	=	i
										for	j	=	i	+	1	to	n	-	1	do
																			if	A[j]	<	A[min]
																													min	=	j
										swap	A[i]	and	A[min]
	
The	Time	Complexity	of	the	algorithm	is	
	

Sequential	Search

The	algorithm	compares	consecutive	elements	of	a	given	list	with	a	given	search	keyword	until
either	a	match	is	found	or	the	list	is	exhausted.
	

Algorithm	SequentialSearch	(A[0..n],	K)
i	=	0
While	A	[i]	≠	K	do
										i	=	i	+	1
										if		i	<	n
return	i
										else	
return	-1
	
Worst	case	Time	Complexity	is	Θ	(n).
	

Computing	pow	(a,	n)

Computing	 	(a	>	0,	and	n	is	a	nonnegative	integer)	based	on	the	definition	of	exponentiation.
N-1	multiplications	are	required	in	brute	force	method.
	
//	Input:	A	real	number	a	and	an	integer	n	=	0
//	Output:	a	power	n
	
Algorithm	Power(a,	n)
result	=	1
for	i	=	1	to	n	do
										result	=	result	*	a
return	result
	
The	algorithm	requires	Θ	(n)
	

String	matching

A	brute	force	string	matching	algorithm	takes	two	inputs,	first	text	consists	of	n	characters	and	a
pattern	consist	of	m	character	(m<=n).	The	algorithm	starts	by	comparing	the	pattern	with	the
beginning	of	the	text.	Each	character	of	the	patters	is	compared	to	the	corresponding	character	of
the	text.	Comparison	starts	from	left	to	right	until	all	the	characters	are	matched	or	a	mismatch	is
found.	The	same	process	is	repeated	until	a	match	is	found.	Each	time	the	comparison	starts	one
position	to	the	right.
	
//Input:	An	array	T[0..n	-	1]	of	n	characters	representing	a	text
//	an	array	P[0..m	-	1]	of	m	characters	representing	a	pattern
//Output:	The	position	of	the	first	character	in	the	text	that	starts	the	first
//	matching	substring	if	the	search	is	successful	and	-1	otherwise.
	
Algorithm	BruteForceStringMatch	(T[0..n	-	1],	P[0..m	-	1])
for	i	=	0	to	n	-	m	do
j	=	0
while	j	<	m	and	P[j]	=	T[i	+	j]	do
j	=	j	+	1
if	j	=	m	then
																			return	i
return	-1
	

In	the	worst	case,	the	algorithm	is	O(mn).
	

Closest-Pair	Brute-Force	Algorithm

The	closest-pair	problem	is	to	find	the	two	closest	points	in	a	set	of	n	points	in	a	2-dimensional
space.
A	brute	force	implementation	of	this	problem	computes	the	distance	between	each	pair	of	distinct
points	and	find	the	smallest	distance	pair.
	
//	Finds	two	closest	points	by	brute	force
//	Input:	A	list	P	of	n	>=	2	points
//	Output:	The	closest	pair
Algorithm	BruteForceClosestPair(P)
dmin	=	infinite
for	i	=	1	to	n	-	1	do
										for	j	=	i	+	1	to	n	do
																			d	=	 	+	
																			if	d	<	dmin	then
																													dmin	=	d
																													imin	=	i
																													jmin	=	j
return	imin,	jmin
	
In	the	Time	Complexity	of	the	algorithm	is	
	

Convex-Hull	Problem

Convex-hull	of	a	set	of	points	is	the	smallest	convex	polygon	containing	all	the	points.	All	the
points	of	the	set	will	lie	on	the	convex	hull	or	inside	the	convex	hull.	Illustrate	the	rubber-band
interpretation	of	the	convex	hull.	The	convex-hull	of	a	set	of	points	is	a	subset	of	points	in	the
given	sets.
	
How	to	find	this	subset?
Answer:	The	rest	of	the	points	of	the	set	are	all	on	one	side.
	

Two	points	(x1,	y1),	(x2,	y2)	make	the	line	ax	+	by	=	c
Where	a	=	y2-y1,	b	=	x1-x2,	and	c	=	x1y2	-	y1x2
	
And	divides	the	plane	by	ax	+	by	-	c	<	0	and	ax	+	by	-	c	>	0
So	we	need	to	only	check	ax	+	by	-	c	for	the	rest	of	the	points
	
If	we	find	all	the	points	in	the	set	lies	one	side	of	the	line	with	either	all	have	ax	+	by	-	c	<	0	or
all	the	points	have	ax	+	by	-	c	>	0	then	we	will	add	these	points	to	the	desired	convex	hull	point
set.
	
For	each	of	n	(n	-1)	/2	pairs	of	distinct	points,	one	needs	to	find	the	sign	of	ax	+	by	-	c	in	each	of
the	other	n	-	2	points.
What	is	the	worst	case	cost	of	the	algorithm?	O(n3)
	
Algorithm	ConvexHull
for	i=0	to	n-1
			for	j=0	to	n-1
						if	(xi,yi)	!=(xj,yj)
											draw	a	line	from	(xi,yi)	to	(xj,yj)
												for	k=0	to	n-1
															if(i!=k	and	j!=k)
																				if	(all	other	points	lie	on	the	same	side	of	the	line	(xi,yi)	and	(xj,yj))
																						add		(xi,yi)	to	(xj,yj)	to	the	convex	hull	set

	

Exhaustive	Search

Exhaustive	search	is	a	brute	force	approach	applies	to	combinatorial	problems.
In	exhaustive	search	we	generate	all	the	possible	combinations.	See	if	the	combinations	satisfy
the	problem	constraints	and	then	finding	the	desired	solution.
Examples	of	exhaustive	search	are:

·									Traveling	salesman	problem
·									Knapsack	problem
·									Assignment	problem

	

Traveling	Salesman	Problem	(TSP)

In	the	traveling	salesman	problem	we	need	to	find	the	shortest	tour	through	a	given	set	of	N	cities
that	salesman	visits	each	city	exactly	once	before	returning	to	the	city	where	he	started.
	
Alternatively:	Finding	the	shortest	Hamiltonian	circuit	in	a	weighted	connected	graph.	A	cycle
that	passes	through	all	the	vertices	of	the	graph	exactly	once.
	

Tours	where	A	is	starting	city:
Tour																																									Cost

A→B→C→D→A																				1+3+6+5	=	15
A→B→D→C→A																				1+4+6+8	=	19
A→C→B→D→A																				8+3+4+5	=	20
A→C→D→B→A																				8+6+4+1	=	19
A→D→B→C→A																				5+4+3+8	=	20
A→D→C→B→A																				5+6+3+1	=	15

	
Algorithm	TSP
Select	a	city
MinTourCost	=	infinite
For	(All	permutations	of	cities)	do
										If(LengthOfPathSinglePermutation	<	MinTourCost)
																			MinTourCost	=	LengthOfPath
	
Total	number	of	possible	combinations	=	(n-1)!
Cost	for	calculating	the	path?	Θ(n)
So	the	total	cost	for	finding	the	shortest	path?	Θ(n!)
	

Knapsack	Problem

Given	an	item	with	cost	C1,	C2,...,	Cn,	and	volume	V1,	V2,...,	Vn	and	knapsack	of	capacity	Vmax,
find	the	most	valuable	(max	∑Cj)	that	fit	in	the	knapsack	(∑Vj	≤	Vmax).
	

The	solution	is	one	of	all	the	subset	of	the	set	of	object	taking	1	to	n	objects	at	a	time,	so	the	Time
Complexity	will	be	O()
	
Algorithm	KnapsackBruteForce
MaxProfit	=	0
For	(All	permutations	of	objects)	do
										CurrProfit	=	sum	of	objects	selected
										If(MaxProfit	<	CurrProfit)
																			MaxProfit	=	CurrProfit
																			Store	the	current	set	of	objects	selected
	

Conclusion

Brute	force	is	the	first	algorithm	that	comes	into	mind	when	we	see	some	problem.	They	are	the
simplest	algorithms	which	are	very	easy	to	understand.	But	these	algorithms	rarely	provide	an
optimum	solution.	Many	cases	we	will	find	other	effective	algorithm	which	is	more	efficient	than
the	brute	force	method.
This	is	the	most	simple	to	understand	the	kind	of	problem	solving	technique.
	
	

CHAPTER	17:	GREEDY	ALGORITHM	

Introduction

Greedy	algorithms	are	generally	used	to	solve	optimization	problems.	To	find	the	solution	that
minimizes	or	maximizes	some	value	(cost/profit/count	etc.).
	
In	greedy	algorithm	solution	is	constructed	through	a	sequence	of	steps.	At	each	step	choice	is
made	which	is	locally	optimal.	We	always	take	the	next	data	to	be	processed	depending	upon	the
dataset	which	we	have	already	processed	and	then	choose	the	next	optimum	data	to	be	processed.
	
Greedy	algorithms	does	not	always	give	optimum	solution.	For	some	problems,	greedy	algorithm
gives	an	optimal	solution.	For	most,	they	don’t,	but	can	be	useful	for	fast	approximations.
	
Greedy	is	a	strategy	that	works	well	on	optimization	problems	with	the	following	characteristics:
1.	Greedy	choice:	A	global	optimum	can	be	arrived	at	by	selecting	a	local	optimum.
2.	Optimal	substructure:	An	optimal	solution	to	the	problem	is	made	from	optimal	solutions	of	sub
problems.
	
Some	examples	of	brute	force	algorithms	are:
Optimal	solutions:

·									Minimal	spanning	tree:
o			Prim’s	algorithm,
o			Kruskal’s	algorithm

·									Dijkstra’s	algorithm	for	single-source	shortest	path
·									Huffman	trees	for	optimal	encoding
·									Scheduling	problems

	
Approximate	solutions:

·									Greedy	algorithm	for	the	Knapsack	problem
·									Coin	exchange	problem

	

Problems	on	Greedy	Algorithm

Coin	exchange	problem

How	can	a	given	amount	of	money	N	be	made	with	the	least	number	of	coins	of	given
denominations	D=	{d1…	dn}?
	
The	Indian	coin	system	{5,	10,	20,	25,	50,100}
	
Suppose	we	want	to	give	change	of	a	certain	amount	of	40	paisa.
	
We	can	make	a	solution	by	repeatedly	choosing	a	coin	≤	to	the	current	amount,	resulting	in	a	new
amount.	The	greedy	solution	is	to	always	choose	the	largest	coin	value	possible	without
exceeding	the	total	amount.
	
For	40	paisa:	{25,	10,	and	5}
The	optimal	solution	will	be	{20,	20}
The	greedy	algorithm	did	not	give	us	optimal	solution,	but	it	gave	a	fair	approximation.
	
Algorithm		MAKE-CHANGE	(N)
C	=	{5,	20,	25,	50,	100}					//	constant.
S	=	{}																				//	set	that	will	hold	the	solution	set.
Value	=	N
WHILE	Value	!=	0

x	=	largest	item	in	set	C	such	that	x	<	Value
IF	no	such	item	THEN

																				RETURN				"No	Solution"
S	=	S	+	x
Value	=	Value	-	x

RETURN	S
	

Minimum	Spanning	Tree

A	spanning	tree	of	a	connected	graph	is	a	tree	containing	all	the	vertices.
A	minimum	spanning	tree	of	a	weighted	graph	is	a	spanning	tree	with	the	smallest	sum	of	the	edge
weights.

Prim’s	Algorithm

Prim’s	algorithm	grows	a	single	tree	T,	one	edge	at	a	time,	until	it	becomes	a	spanning	tree.
We	initialize	T	with	zero	edges.	And	U	with	single	node.	Where	T	is	spanning	tree	edges	set	and
U	is	spanning	tree	vertex	set.
	
At	each	step,	Prim’s	algorithm	adds	the	smallest	value	edge	with	one	endpoint	in	U	and	other	not
in	us.
Since	each	edge	adds	one	new	vertex	to	U,	after	n	−	1	additions,	U	contain	all	the	vertices	of	the
spanning	tree	and	T	becomes	a	spanning	tree.
	
//	Returns	the	MST	by	Prim’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	Output:	Set	of	edges	comprising	a	MST
Algorithm	Prim(G)
T	=	{}
Let	r	be	any	vertex	in	G
U	=	{r}
for	i	=	1	to	|V|	-	1	do
										e	=	minimum-weight	edge	(u,	v)
																			With	u	in	U	and	v	in	V-U
										U	=	U	+	{v}
										T	=	T	+	{e}
return	T
	
Prim’s	Algorithm	using	a	priority	queue	(min	heap)	to	get	the	closest	fringe	vertex
Time	Complexity	will	be	O(m	log	n)	where	n	vertices	and	m	edges	of	the	MST.
	

Kruskal’s	Algorithm

Kruskal’s	Algorithm	is	used	to	create	minimum	spanning	tree.	Spanning	tree	is	created	by
choosing	smallest	weight	edge	that	does	not	form	a	cycle.	And	repeating	this	process	till	all	the
edges	from	the	original	set	is	exhausted.
	

Sort	the	edges	in	non-decreasing	order	of	cost:	c	(e1)	≤	c	(e2)	≤	·	·	·	≤	c	(em).
Set	T	to	be	the	empty	tree.	Add	edges	to	tree	one	by	one	if	it	does	not	create	a	cycle.	(If	the	new
edge	form	cycle	then	ignore	that	edge.)
	
//	Returns	the	MST	by	Kruskal’s	Algorithm
//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	Output:	Set	of	edges	comprising	a	MST
	
Algorithm	Kruskal(G)
Sort	the	edges	E	by	their	weights
T	=	{}
while	|T	|	+	1	<	|V	|	do
										e	=	next	edge	in	E
										if	T	+	{e}	does	not	have	a	cycle	then
																			T	=	T	+	{e}
return	T
	
Kruskal’s	Algorithm	is	O(E	log	V)	using	efficient	cycle	detection.
	

Dijkstra’s	algorithm	for	single-source	shortest	path	problem

Dijkstra’s	algorithm	for	single-source	shortest	path	problem	for	weighted	edges	with	no	negative
weight.	It
determine	the	length	of	the	shortest	path	from	the	source	to	each	of	the	other	nodes	of	the	graph.
Given	a	weighted	graph	G,	we	need	to	find	shortest	paths	from	the	source	vertex	s	to	each	of	the
other	vertices.

The	algorithm	starts	by	keeping	track	of	the	distance	of	each	node	and	its	parents.	All	the	distance
is	set	to	infinite	in	the	beginning	as	we	don’t	know	the	actual	path	to	the	nodes	and	parents	of	all
the	vertices	are	set	to	null.	All	the	vertices	are	added	to	a	priority	queue	(min	heap
implementation)
At	each	step	algorithm	takes	one	vertex	from	the	priority	queue	(which	will	be	the	source	vertex
in	the	beginning).	Then	update	the	distance	array	corresponding	to	all	the	adjacent	vertices.	When
the	queue	is	empty,	then	we	will	have	the	distance	and	parent	array	fully	populated.
	
//	Solves	SSSP	by	Dijkstra’s	Algorithm

//	Input:	A	weighted	connected	graph	G	=	(V,	E)
//	with	no	negative	weights,	and	source	vertex	v
//	Output:	The	length	and	path	from	s	to	every	v
	
Algorithm	Dijkstra(G,	s)
for	each	v	in	V	do
										D[v]	=	infinite	//	Unknown	distance
										P[v]	=	null					//unknown	previous	node
										add	v	to	PQ				//adding	all	nodes	to	priority	queue
	
D[source]	=	0	//	Distance	from	source	to	source
	
while	(Q	is	not	empty)
										u	=	vertex	from	PQ	with	smallest	D[u]
										remove	u	from	PQ
																			for	each	v	adjacent	from	u	do
																													alt	=	D[u]	+	length	(u	,	v)
if		alt	<	D[v]	then
																																						D[v]	=	alt
																																						P[v]	=	u
Return	D[]	,	P[]
	
Time	Complexity	will	be	O(|E|log|V|).
	
Note:	Dijkstra’s	algorithm	does	not	work	for	graphs	with	negative	edges	weight.
Note:	Dijkstra’s	algorithm	is	applicable	to	both	undirected	and	directed	graphs.
	

Huffman	trees	for	optimal	encoding

Coding	is	basically	an	assignment	of	bit	strings	of	alphabet	characters.
There	are	two	types	of	encoding:

·									Fixed-length	encoding	(eg.,	ASCII)
·									Variable-length	encoding	(eg.,	Huffman	code)

	
Variable	length	encoding	can	only	work	on	prefix	free	encoding.	Which	means	that	no	code	word
is	a	prefix	of	another	code	word.
	
Huffman	codes	are	the	best	prefix	free	code.	Any	binary	tree	with	edges	labeled	as	0	and	1	will
produce	a	prefix	free	code	of	characters	assigned	to	its	leaf	nodes.
	
Huffman’s	algorithm	is	used	to	construct	a	binary	tree	whose	leaf	value	is	assigned	a	code	which
is	optimal	for	the	compression	of	the	whole	text	need	to	be	processed.	For	example,	the	most
frequently	occurring	words	will	get	the	smallest	code	so	that	the	final	encoded	text	is
compressed.
	
Initialize	n	one-node	trees	with	words	and	the	tree	weights	with	their	frequencies.	Join	the	two
binary	tree	with	smallest	weight	into	one	and	the	weight	of	the	new	formed	tree	as	the	sum	of
weight	of	the	two	small	trees.	Repeat	the	above	process	N-1	times	and	when	there	is	just	one	big

tree	left	you	are	done.
	
Mark	edges	leading	to	left	and	right	subtrees	with	0’s	and	1’s,	respectively.
Word Frequency
Apple 30
Banana 25
Mango 21
Orange 14
Pineapple 10

Word Value Code
Apple 30 11
Banana 25 10
Mango 21 01
Orange 14 001
Pineapple 10 000
	
It	is	clear	that	more	frequency	words	gets	smaller	Huffman’s	code.
	
//	Computes	optimal	prefix	code.
//	Input:	Array	W	of	character	probabilities
//	Output:	The	Huffman	tree.
	
Algorithm	Huffman(C[0..n	-	1],	W[0..n	-	1])
PQ	=	{}	//	priority	queue
for	i	=	0	to	n	-	1	do
										T.char	=	C[i]
										T.weight	=	W[i]
										add	T	to	priority	queue	PQ
	
for	i	=	0	to	n	-	2	do
										L	=	remove	min	from	PQ
										R	=	remove	min	from	PQ
										T	=	node	with	children	L	and	R
										T.weight	=	L.weight	+	R.weight

										add	T	to	priority	queue	PQ
return	T
	
The	Time	Complexity	is	O(nlogn).
	

Activity	Selection	Problem

Suppose	that	activities	require	exclusive	use	of	common	resources,	and	you	want	to	schedule	as
many	activities	as	possible.
Let	S	=	{a1,...,	an}	be	a	set	of	n	activities.
	
Each	activity	ai	needs	the	resource	during	a	time	period	starting	at	si	and	finishing	before	fi,	i.e.,
during	[si,	fi).
The	optimization	problem	is	to	select	the	non-overlapping	largest	set	of	activities	from	S.
	
We	assume	that	activities	S	=	{a1,...,	an}	are	sorted	in	finish	time	f1	≤	f2	≤	...	fn-1	≤	fn	(this	can
be	done	in	Θ(n	lg	n)).
	
Example
Consider	these	activities:

i 1 2 3 4 5 6 7 8 9 10 11

S[i] 1 3 0 5 3 5 6 8 8 2 11

F[i] 4 5 6 7 8 9 10 11 12 13 14

Here	is	a	graphic	representation:

	
We	chose	an	activities	that	start	first,	and	then	look	for	the	next	activity	that	starts	after	it	is
finished.	This	could	result	in	{a4,	a7,	a8},	but	this	solution	is	not	optimal.
An	optimal	solution	is	{a1,	a3,	a6,	a8}.	(It	maximizes	the	objective	function	of	a	number	of
activities	scheduled.)
Another	one	is	{a2,	a5,	a7,	a9}.	(Optimal	solutions	are	not	necessarily	unique.)
How	do	we	find	(one	of)	these	optimal	solutions?	Let's	consider	it	as	a	dynamic	programming
problem...
	
We	are	trying	to	optimize	the	number	of	activities.	Let's	be	greedy!

·									The	more	time	left	after	running	an	activity,	the	more	subsequent	activities	we	can	fit	in.
·									If	we	choose	the	first	activity	to	finish,	the	more	time	will	be	left.
·									Since	activities	are	sorted	by	finish	time,	we	will	always	start	with	a1.
·									Then	we	can	solve	the	single	sub	problem	of	activity	scheduling	in	this	remaining	time.

	
Algorithm	ActivitySelection(S[],	F[],	N)
Sort	S[]	and	F	[]	in	increasing	order	of	finishing	time
A	=	{a1}
K	=	1
For	m	=	2	to	N	do
										If	S[m]	>=	F[k]
																			A	=	A	+	{am}
																			K	=	m
Return	A
	

Knapsack	Problem

A	thief	enters	a	store	and	sees	a	number	of	items	with	their	cost	and	weight	mentioned.	His
Knapsack	can	hold	a	max	weight.	What	should	he	steal	to	maximize	profit?

	

Fractional	Knapsack	problem

A	thief	can	take	a	fraction	of	an	item	(they	are	divisible	substances,	like	gold	powder).

	
The	fractional	knapsack	problem	has	a	greedy	solution	one	should	first	sort	the	items	in	term	of
cost	density	against	weight.	Then	fill	up	as	much	of	the	most	valuable	substance	by	weight	as	one
can	hold,	then	as	much	of	the	next	most	valuable	substance,	etc.	Until	W	is	reached.
	
Item A B C
Cost 300 190 180
Weight 3 2 2
Cost/weight 100 95 90
	
For	a	knapsack	of	capacity	of	4	kg.
The	optimum	solution	of	the	above	will	take	3kg	of	A	and	1	kg	of	B.
	
Algorithm	FractionalKnapsack(W[],	C[],	Wk)
For	i	=	1	to	n	do
										X[i]	=	0
Weight	=	0
//Use	Max	heap
H	=	BuildMaxHeap(C/W)
While	Weight	<	Wk	do
										i	=	H.GetMax()
										If(Weight	+	W[i]	<=	Wk)	do
																			X[i]	=	1
																			Weight	=	Weight	+	W[i]
										Else
																			X[i]	=	(Wk	–	Weight)/W[i]
																			Weight	=	Wk
Return	X
	

0/1	Knapsack	Problem

A	thief	can	only	take	or	leave	the	item.	He	can’t	take	a	fraction.

A	greedy	strategy	same	as	above	could	result	in	empty	space,	reducing	the	overall	cost	density	of
the	knapsack.
	
In	the	above	example,	after	choosing	object	A	there	is	no	place	for	B	or	C	so	there	leaves	empty
space	of	1kg.	And	the	result	of	the	greedy	solution	is	not	optimal.
The	optimal	solution	will	be	when	we	take	object	B	and	C.	This	problem	can	be	solved	by
dynamic	programming	which	we	will	see	in	the	coming	chapter.

CHAPTER	18:	DIVIDE-AND-CONQUER,
DECREASE-AND-CONQUER

Introduction

Divide-and-Conquer	algorithms	works	by	recursively	breaking	down	a	problem	into	two	or	more
sub-problems	(divide),	until	these	sub	problems	become	simple	enough	so	that	can	be	solved
directly	(conquer).	The	solution	of	these	sub	problems	is	then	combined	to	give	a	solution	of	the
original	problem.
	
Divide-and-Conquer	algorithms	involve	basic	three	steps
1.	Divide	the	problem	into	smaller	problems.
2.	Conquer	by	solving	these	problems.
3.	Combine	these	results	together.
	
In	divide-and-conquer	the	size	of	the	problem	is	reduced	by	a	factor	(half,	one-third	etc.),	While
in	decrease-and-conquer	the	size	of	the	problem	is	reduced	by	a	constant.
	

Examples	of	divide-and-conquer	algorithms:
·									Merge-Sort	algorithm	(recursion)
·									Quicksort	algorithm	(recursion)
·									Computing	the	length	of	the	longest	path	in	a	binary	tree	(recursion)
·									Computing	Fibonacci	numbers	(recursion)
·									Convex	Hull

	
Examples	of	decrease-and-conquer	algorithms:

·									Computing	POW	(a,	n)	by	calculating	POW	(a,	n/2)	using	recursion
·									Binary	search	in	a	sorted	array	(recursion)
·									Searching	in	BST

·									Insertion-Sort
·									Graph	traversal	algorithms	(DFS	and	BFS)
·									Topological	sort
·									Warshall’s	algorithm	(recursion)
·									Permutations	(Minimal	change	approach,	Johnson-Trotter	algorithm)
·									Fake-coin	problem	(Ternary	search)
·									Computing	a	median

General	Divide-and-Conquer	Recurrence

T(n)	=	aT(n/b)	+	f	(n)
·									Where	a	≥	1	and	b	>	1.
·									"n"	is	the	size	of	a	problem.
·									"a"	is	a	number	of	sub-problem	in	the	recursion.
·									“n/b”	is	the	size	of	each	sub-problem.
·									"f(n)"	is	the	cost	of	the	division	of	the	problem	into	sub	problem	or	merge	of	the	results	of

sub-problem	to	get	the	final	result.

Master	Theorem

The	master	theorem	solves	recurrence	relations	of	the	form:

	
It	is	possible	to	determine	an	asymptotic	tight	bound	in	these	three	cases:
Case	1:	when)	and	constant	 ,	than	the	final	Time	Complexity	will	be:

	
Case	2:	when)	and	constant	k	≥	0,	than	the	final	Time	Complexity	will	be:

)
	
Case	3:	when	 	and	constant	 ,	Then	the	final	Time	Complexity	will	be:

Modified	Master	theorem:	This	is	a	shortcut	to	solving	the	same	problem	easily	and	fast.	If	the
recurrence	relation	is	in	the	form	of	T(n)
	

	
Example	1:	Take	an	example	of	Merge-Sort,	
Sol:-
	 	=	 =	1

)
Case	2	applies	and)

	
Example	2:	Binary	Search	

	=	 =	0
)

Case	2	applies	and)

	
Example	3:	Binary	tree	traversal	

	=	 =	1
)

Case	1	applies	and	

	

Problems	on	Divide-and-Conquer	Algorithm

Merge-Sort	algorithm

	

//	Sorts	a	given	array	by	mergesort
//	Input:	An	array	A	of	orderable	elements
//	Output:	Array	A[0..n	−	1]	in	ascending	order

Algorithm	Mergesort(A[0..n	−	1])
if	n	≤	1	then

																			return;
copy	A[0..⌊n/2⌋	−	1]	to	B[0..⌊n/2⌋	−	1]
copy	A[⌊n/2⌋..n	−	1]	to	C[0..⌈n/2⌉	−	1]
Mergesort(B)
Mergesort(C)
Merge(B,	C,	A)
	

//	Merges	two	sorted	arrays	into	one	array
//	Input:	Sorted	arrays	B	and	C
//	Output:	Sorted	array	A
Algorithm	Merge(B[0..p	−	1],	C[0..q	−	1],	A[0..p	+	q	−	1])
i	=	0
j	=	0
for	k	=	0	to	p	+	q	−	1	do

if	i	<	p	and	(j	=	q	or	B[i]	≤	C[j])	then
																			A[k]	=	B[i]
																			i	=	i	+	1

else
																			A[k]	=	C[j]
																			j	=	j	+	1
	
Time	Complexity:	O(nlogn)
Space	Complexity:	O(n)
The	Time	Complexity	of	Merge-Sort	is	O(nlogn)	in	all	3	cases	(worst,	average	and	best)	as
Merge-Sort	always	divides	the	array	into	two	halves	and	take	linear	time	to	merge	two	halves.

	
It	requires	the	equal	amount	of	additional	space	as	the	unsorted	list.	Hence,	it's	not	at	all
recommended	for	searching	large	unsorted	lists.
	

Quick-Sort

	

	
//	Sorts	a	subarray	by	quicksort
//	Input:	An	subarray	of	A
//	Output:	Array	A[l..r]	in	ascending	order
	
Algorithm	Quicksort(A[l..r])
if	l	<	r	then
p	←	Partition(A[l..r])	//	p	is	index	of	pivot
Quicksort(A[l..p	−	1])
Quicksort(A[p	+	1..r])
	
//	Partitions	a	subarray	using	A[..]	as	pivot
//	Input:	Subarray	of	A
//	Output:	Final	position	of	pivot
	

Algorithm	Partition(A[],	left,	right)
pivot	=	A[left]
lower	=	left
upper=	right
while	lower	<	upper
while	A[lower]	<=	pivot
										lower	=	lower	+	1
while	A[upper]	>	pivot

upper	=	upper	–	1
if	lower	<	upper	then
swap	A[lower]	and	A[upper]
swap	A[lower]	and	A[upper]	//upper	is	the	pivot	position
return	upper
	
Worst	Case	Time	Complexity:	O(n2)
Best	Case	Time	Complexity:	O(nlogn)
Average	Time	Complexity:	O(nlogn)
Space	Complexity:	O(nlogn)
The	space	required	by	Quick-Sort	is	very	less,	only	O(nlogn)	additional	space	is	required.
	
Quicksort	is	not	a	stable	sorting	technique,	so	it	might	change	the	occurrence	of	two	similar
elements	in	the	list	while	sorting.
	

External	Sorting

External	sorting	is	also	done	using	divide	and	conquer	algorithm.
	

Binary	Search

We	get	the	middle	point	from	the	sorted	array	and	start	comparing	with	the	desired	value.
Note:	Binary	search	requires	the	array	to	be	sorted	otherwise	binary	search	cannot	be	applied.

	
//	Searches	a	value	in	a		sorted	array	using	binary	search
//	Input:	An	sorted	array	A	and	a	key	K
//	Output:	The	index	of	K	or	−1
	
Algorithm	BinarySearch(A[0..N	−	1],	N,	K)	//	iterative	solution
low	=	0
high	=	N-1
while	low	<=	high	do
										mid	=	⌊	(low	+	high)/2⌋
										if	K	=	A[mid]	then
																			return	mid
										else	if	A[mid]	<	K
																			low	=	mid	+	1

else
																			high	=	mid	-	1
return	−1
	
Time	//	Searches	a	value	in	a		sorted	array	using	binary	search
//	Input:	An	sorted	array	A	and	a	key	K
//	Output:	The	index	of	K	or	−1
	
Algorithm	BinarySearch(A[],	low,	high,	K)	//Recursive	solution
										If	low	>	high
																			return	-1

mid	=	⌊	(low	+	high)/2⌋
										if	K	=	A[mid]	then
																			return	mid

else	if	A[mid]	<	K
																			return	BinarySearch(A[],mid	+	1,	high,	K)

else
																			return	BinarySearch(A[],low,	mid	-	1,	K)
	
Complexity:	O(logn).	If	you	notice	the	above	programs,	you	see	that	we	always	take	half	input
and	throwing	out	the	other	half.	So	the	recurrence	relation	for	binary	search	is	T	(n)	=	T	(n/2)	+	c.
Using	a	divide	and	conquer	master	theorem,	we	get	T	(n)	=	O(logn).
Space	Complexity:	O(1)
	

Power	function
//	Compute	Nth	power	of	X	using	divode	and	conquer	using	recursion
//	Input:	Value	X	and	power	N
//	Output:	Power(X,	N)
	
Algorithm	Power(X,	N)
										If	N	=	0
																			Return	1
										Else	if	N	%	2	==	0
																			Value	=	Power(X,	N/2)
																			Return	Value	*	Value
										Else
																			Value	=	Power(X,	N/2)
																			Return	Value	*	Value	*	X
	

Convex	Hull

Sort	points	by	X-coordinates
Divide	points	into	equal	halves	A	and	B
Recursively	compute	HA	and	HB
Merge	HA	and	HB	to	obtain	CH

LowerTangent(HA,	HB)
A	=	rightmost	point	of	HA
B	=	leftmost	point	of	HB
While	ab	is	not	a	lower	tangent	for	HA	and	HB	do

While	ab	is	not	a	lower	tangent	to	HA	do
																			a	=	a	−	1	(move	a	clockwise)

While	ab	is	not	a	lower	tangent	to	HB	do
																			b	=	b	+	1	(move	b	counterclockwise)
Return	ab
	
Similarly	find	upper	tangent	and	combine	the	two	hulls.
	

	
Initial	sorting	takes	O(nlogn)	time
Recurrence	relation	T	(N)	=	2T	(N/2)	+	O(N)
Where,	O(N)	time	for	tangent	computation	inside	merging

Final	Time	Complexity	will	be	T	(N)	=	O(nlogn).
	

Closest	Pair

Given	N	points	in	2-dimensional	plane,	find	two	points	whose	mutual	distance	is	smallest.
	

	
A	brute	force	algorithm	takes	each	and	every	point	and	find	its	distance	with	all	the	other	points	in
the	plane.	And	keep	track	of	the	minimum	distance	points	and	minimum	distance.	The	closest	pair
will	be	found	in	O()	time.
	
Let	us	suppose	there	is	a	vertical	line	which	divide	the	graph	into	two	separate	parts	(let’s	call	it
left	and	right	part).	The	brute	force	algorithm,	we	will	notice	that	we	are	comparing	all	the	points
in	the	left	half	with	the	points	in	the	right	half.	This	is	the	point	where	we	are	doing	some	extra
work.
	

To	find	the	minimum	we	need	to	consider	only	three	cases:
1)				Closest	pair	in	the	right	half
2)				Closest	pair	in	the	left	half.
3)				Closest	pair	in	the	boundary	region	of	the	two	halves.	(Gray)

	
Every	time	we	will	divide	the	space	S	into	two	parts	S1	and	S2	by	a	vertical	line.	Recursively
we	will	compute	the	closest	pair	in	both	S1	and	S2.	Let's	call	minimum	distance	in	space	S1	as
δ1	and	minimum	distance	in	space	S2	as	δ2.
	
We	will	find	δ	=	min	(δ1,	δ2)
	
Now	we	will	find	the	closest	pair	in	the	boundary	region.	By	taking	one	point	each	from	S1	and
S2	in	the	boundary	range	of	δ	width	on	both	sides.
	
The	candidate	pair	of	point	(p,	q)	where	p	Є	S1	and	q	Є	S2.
	

We	can	find	the	points	which	lie	in	this	region	in	linear	time	O(N)	by	just	scanning	through	all	the
points	and	finding	which	all	points	lie	in	this	region.
	
Now	we	can	sort	them	in	increasing	order	in	Y	axis	in	just	O(nlogn)	time.	And	then	scan	through
them	and	get	the	minimum	in	just	one	more	linear	pass.	Closest	pair	can't	be	far	apart	from	each
other.
	
Let's	look	into	the	next	figure.

Then	the	question	is	how	many	points	we	need	to	compare.	We	need	to	compare	the	points	sorted
in	Y	axis	only	in	the	range	of	δ.	So	the	number	of	points	will	come	down	to	only	6	points.
	

By	doing	this	we	are	getting	equation.
T(N)	=	2T(N/2)	+	N	+	NlogN	+	6N	=	O(
	
Can	we	optimize	this	further?
Yes
	
Initially,	when	we	are	sorting	the	points	in	X	coordinate	we	are	sorting	them	in	Y	coordinate	too.
When	we	divide	the	problem,	then	we	traverse	through	the	Y	coordinate	list	too,	and	construct	the
corresponding	Y	coordinate	list	for	both	S1	and	S2.	And	pass	that	list	to	them.
	
Since	we	have	the	Y	coordinate	list	passed	to	a	function	the	δ	region	points	can	be	found	sorted	in
the	Y	coordinates	in	just	one	single	pass	in	just	O(N)	time.
	
T(N)	=	2T(N/2)	+	N	+	N	+	6N	=	O(nlogn)
	
//	Finds	closest	pair	of	points
//	Input:	A	set	of	n	points	sorted	by	coordinates
//	Output:	Distance	between	closest	pair
	
Algorithm	ClosestPair(P)
if	n	<	2	then

return	∞
else	if	n	=	2	then
										return	distance	between	pair
else

m	=	median	value	for	x	coordinate
δ	1	=	ClosestPair(points	with	x	<	m)
δ	2	=	ClosestPair(points	with	x	>	m)

δ	=	min(δ	1,	δ	2)
δ	3	=	process	points	with	m	−δ	<	x	<	m	+	δ
return	min(δ,	δ	3)

	
First	pre-process	the	points	by	sorting	them	in	X	and	Y	coordinates.	Use	two	separate	lists	to
keep	this	sorted	points.
	
Before	recursively	solving	sub-problem	pass	the	sorted	list	for	that	sub-problem.

CHAPTER	19:	DYNAMIC	PROGRAMMING	

Introduction

While	solving	problems	using	Divide-and-Conquer	method,	there	may	be	a	case	when	recursively
sub-problems	can	result	in	the	same	computation	being	performed	multiple	times.	This	problem
arises	when	there	are	identical	sub-problems	arise	repeatedly	in	a	recursion.
	
Dynamic	programming	is	used	to	avoid	the	requirement	of	repeated	calculation	of	same	sub-
problem.	In	this	method	we	usually	store	the	result	of	sub	-	problems	in	some	data	structure	(like
a	table)	and	refer	it	to	find	if	we	have	already	calculated	the	solution	of	sub	-	problems	before
calculating	it	again.
	
Dynamic	programming	is	applied	to	solve	problems	with	the	following	properties:
1.	Optimal	Substructure:	An	optimal	solution	constructed	from	the	optimal	solutions	of	its	sub-
problems.
2.	Overlapping	Sub	problems:	While	calculating	the	optimal	solution	of	sub	problems	same
computation	is	repeated	again	and	again.
	
Examples:

·									Fibonacci	numbers	computed	by	iteration.
·									Assembly-line	Scheduling
·									Matrix-chain	Multiplication
·									0/1	Knapsack	Problem
·									Longest	Common	Subsequence
·									Optimal	Binary	Tree
·									Warshall’s	algorithm	for	transitive	closure	implemented	by	iterations
·									Floyd’s	algorithms	for	all-pairs	shortest	paths
·									Optimal	Polygon	Triangulation
·									Floyd-Warshall’s	Algorithm

	
Steps	for	solving	/	recognizing	if	DP	applies.

1)				Optimal	Substructure:	Try	to	find	if	there	is	a	recursive	relation	between	problem	and	sub-
problem.

2)				Write	recursive	relation	of	the	problem.	(Observe	Overlapping	Sub	problems	at	this	step.)
3)				Compute	the	value	of	sub	problems	in	a	bottom	up	fashion	and	store	this	value	in	some

table.
4)				Construct	the	optimal	solution	from	the	value	stored	in	step	3.
5)				Repeat	step	3	and	4	till	you	get	your	solution.

	

Problems	on	Dynamic	programming	Algorithm

	

Fibonacci	numbers
int	fibonacci(int	n)
{
										if	(n	<=	1)
																			return	n;
										return	fibonacci(n	-	1)	+	fibonacci(n	-	2);
}
	

Using	divide	and	conquer	same	sub-problem	is	solved	again	and	again,	which	reduce	the
performance	of	the	algorithm.	This	algorithm	has	an	exponential	Time	Complexity.
	
Same	problem	of	Fibonacci	can	be	solved	in	linear	time	if	we	sort	the	results	of	sub	problems.
int	fibo(int	n)
{
										int	first	=	0,	second	=	1;
										int	temp	=	0,	i;
	
										if	(n	==	0)
																			return	first;
										else	if	(n	==	1)
																			return	second;
	
										for	(i	=	2;	i	<=	n;	i++)
										{
																			temp	=	first	+	second;
																			first	=	second;
																			second	=	temp;
										}
										return	temp;
}
	
Using	this	algorithm	we	will	get	Fibonacci	in	linear	Time	Complexity	and	constant	Space
Complexity.

	

Assembly-line	Scheduling

We	consider	the	problem	of	calculating	the	least	amount	of	time	necessary	to	build	a	car	when
using	a	manufacturing	chain	with	two	assembling	lines,	as	shown	in	the	figure
The	problem	variables:

·									e[i]:	entry	time	in	assembly	line	i
·									x[i]:	exit	time	from	assembly	line	i
·									a[i,j]:	Time	required	at	station	S[i,j]	(assembly	line	i,	stage	j)
·									t[i,j]:	Time	required	to	transit	from	station	S[i,j]	to	the	other	assembly	line

Your	program	must	calculate:
·									The	least	amount	of	time	needed	to	build	a	car
·									The	list	of	stations	to	traverse	in	order	to	assemble	a	car	as	fast	as	possible.

The	manufacturing	chain	will	have	no	more	than	50	stations.
	
If	we	want	to	solve	this	problem	in	the	brute	force	approach,	there	will	be	in	total	 	Different
combinations	so	the	Time	Complexity	will	be	O()
	
Step	1:	Characterizing	the	structure	of	the	optimal	solution
To	calculate	the	fastest	assembly	time,	we	only	need	to	know	the	fastest	time	to	S1;n	and	the
fastest	time	to	S2;n,	including	the	assembly	time	for	the	nth	part.	Then	we	choose	between	the	two
exiting	points	by	taking	into	consideration	the	extra	time	required,	x1	and	x2.	To	compute	the
fastest	time	to	S1;n	we	only	need	to	know	the	fastest	time	to	S1;n1	and	to	S2;n1.	Then	there	are
only	two	choices...
	
Step	2:	A	recursive	definition	of	the	values	to	be	computed
	

	

	
Step	3:	Computing	the	fastest	time	finally,	compute	f*	as
Step	4:	Computing	the	fastest	path	compute	as	li[j]	as	the	choice	made	for	fi[j]	(whether	the	first
or	the	second	term	gives	the	minimum).	Also,	compute	the	choice	for	f*	as	l*.
	
FASTEST-WAY(a,	t,	e,	x,	n)
f1[1]	←	e1	+	a1,1
f2[1]	←e2	+	a2,1
for	j	←	2	to	n
do	if	f1[j	-	1]	+	a1,j	≤	f2[j	-	1]	+	t2,j-1	+	a1,j
																													then	f1[j]	←	f1[j	-	1]	+	a1,	j
																													l1[j]	←	1
																			else	f1[j]	←	f2[j	-	1]	+	t2,j-1	+	a1,j
																													l1[j]	←	2
										if	f2[j	-	1]	+	a2,j	≤	f1[j	-	1]	+	t1,j-1	+	a2,j
																													then	f2[j]	←	f2[j	-	1]	+	a2,j
																													l2[j]	←	2
																													else	f2[j]	∞	f1[j	-	1]	+	t1,j-1	+	a2,j
																													l2[j]	←	1
if	f1[n]	+	x1	≤	f2[n]	+	x2
																			then	f*	=	f1[n]	+	x1
																													l*	=	1
																			else	f*	=	f2[n]	+	x2
																																							l*	=	2
	

Matrix	chain	multiplication

Same	problem	is	also	known	as	Matrix	Chain	Ordering	Problem	or	Optimal-parenthesization	of
matrix	problem.
	
Given	a	sequence	of	matrices,	M	=	M1,…,	Mn.	The	goal	of	this	problem	is	to	find	the	most
efficient	way	to	multiply	these	matrices.	The	guild	is	not	to	perform	the	actual	multiplication,	but
to	decide	the	sequence	of	the	matrix	multiplications,	so	that	the	result	will	be	calculated	in
minimal	operations.
	
To	compute	the	product	of	two	matrices	of	dimensions	pXq	and	qXr,	pqr	number	of	operations
will	be	required.	Matrix	multiplication	operations	are	associative	in	nature.	So	matrix
multiplication	can	be	done	in	many	ways.
For	example,	M1,	M2,	M3	and	M4,	can	be	fully	parenthesized	as:
(M1·	(M2·	(M3·M4)))
(M1·	((M2·M3)·	M4))
((M1·M2)·	(M3·M4))
(((M1·M2)·	M3)·	M4)
((M1·	(M2·M3))·	M4)
	
For	example,
Let	M1	dimensions	are	10	×	100,	M2	dimensions	are	100	×	10,	and	M3	dimensions	are	10	×	50.
((M1·M2)·	M3)	=	(10*100*10)	+	(10*10*50)	=	15000

(M1·	(M2·M3)	=	(100*10*50)	+	(10*100*50)	=	100000
	
So	in	this	problem	we	need	to	parenthesize	the	matrix	chain	so	that	total	multiplication	cost	is
minimized.
	
Given	a	sequence	of	n	matrices	M1,	M2,…	Mn.	And	their	dimensions	are	p0,	p1,	p2,…,	pn.
Where	matrix	Ai	has	dimension	pi	−	1	×	pi	for	1	≤	i	≤	n.	Determine	the	order	of	multiplication
that	minimizes	the	total	number	of	multiplications.
	
If	you	try	to	solve	this	problem	using	the	brute	-	force	method,	then	you	will	find	all	possible
parenthesization.	Then	will	compute	the	cost	of	multiplication.	Then	will	pick	the	best	solution.
This	approach	will	be	exponential	in	nature.
There	is	an	insufficiency	in	the	brute	force	approach.	Take	an	example	of	M1,	M2,…,	Mn.	When
you	have	calculated	that	((M1·M2)	·	M3)	is	better	than	(M1·	(M2·M3)	so	there	is	no	point	of
calculating	then	combinations	of	(M1·	(M2·M3)	with	(M4,	M5….	Mn).
	
Optimal	substructure:
Assume	that	M	(1,	N)	is	the	optimum	cost	of	production	of	the	M1,…,	Mn.
	
An	array	p	[]	to	record	the	dimensions	of	the	matrices.
P	[0]	=	row	of	the	M1
p[i]	=	col	of	Mi		1<=i<=N
	
For	some	k
M(1,N)	=	M(1,K)	+	M(K+1,N)	+	p0*pk*pn
	
If	M	(1,	N)	is	minimal	then	both	M	(1,	K)	&	M	(K+1,	N)	are	minimal.
	
Otherwise,	if	there	is	some	M’(1,	K)	is	there	whose	cost	is	less	than	M	(1..	K),	then	M	(1..	N)
can't	be	minimal	and	there	is	a	more	optimal	solution	possible.
	
For	some	general	i	and	j.
M(i,j)	=	M(i,K)	+	M(K+1,j)	+	pi-1*pk*pj
	
Recurrence	relation:
	

M(i,j)	=		
	
Overlapping	Sub	problems:
	

Directly	calling	recursive	function	will	lead	to	calculation	of	same	sub-problem	multiple	times.
This	will	lead	to	exponential	solution.
	
Algorithm	MatrixChainMultiplication(p[])
				for	i	:=	1	to	n
								M[i,	i]	:=	0;
								for	l	=	2	to	n	//	l	is	the	moving	line
												for	i	=	1	to	n	−	l	+1
																j	=	i	+	l	−	1;
																M[i,	j]	=	

	
Time	Complexity	will	O(
Constructing	optimal	parenthesis	Solution
	
Use	another	table	s[1..n,	1..n].	Each	entry	s[i,	j]	records	the	value	of	k	such	that	the	optimal
parenthesization	of	Mi	Mi+1...Mj	splits	the	product	between	Mk	and	Mk+1.
	
Algorithm	MatrixChainMultiplication(p[])
for	i	:=	1	to	n
M[i,	i]	:=	0;
for	l	=	2	to	n	//	l	is	the	moving	line
for	i	=	1	to	n	−	l	+1
j	=	i	+	l	−	1;
M[i,	j]	=	

S[i,	j]	=	

	
Algorithm	MatrixChainMultiplication(p[])
				for	i	:=	1	to	n
				M[i,	i]	:=	0;
				for	l	=	2	to	n	//	l	is	the	moving	line
								for	i	=	1	to	n	−	l	+1
												j	=	i	+	l	−	1;
												for	k	=	i	to	j

																if((
																				M[i,	j]	=		(
																				S[i,	j]	=		k
	
Algorithm	PrintOptimalParenthesis(s[],	i,	j)
				If	i	=	j
								Print	Ai
				Else
								Print	“(”
								PrintOptimalParenthesis(s[],	i,s[i,	j])
								PrintOptimalParenthesis(s[],	s[i,	j],j)
								Print	“)”
	

Longest	Common	Subsequence

Let	X	=	{x1,	x2,….,	xm}	is	a	sequence	of	characters.	And	Y	=	{y1,	y2,…,	yn}	is	another
sequence.
Z	is	a	subsequence	of	X	if	it	can	be	driven	by	deleting	some	elements	of	X.	Z	is	a	subsequence	of
Y	if	it	can	be	driven	by	deleting	some	elements	form	Y.	Z	is	LCS	of	it	is	subsequence	to	both	X
and	Y,	and	there	is	no	subsequence	whose	length	is	greater	than	Z.
	
Optimal	Substructure:
	
Let	X	=	<	x1,	x2,	...,	xm	>	and	Y	=	<	y1,	y2,	...,	yn	>	be	two	sequences,	and	let	Z	=	<	z1,	z2,	...,	zk
>	be	a	LCS	of	X	and	Y.
	

·									If	xm	=	yn,	then	zk	=	xm	=	yn	⇒	Zk−1	is	a	LCS	of	Xm−1	and	Yn−1
·									If	xm	!=	yn,	then:

o			zk	!=	xm	⇒	Z	is	an	LCS	of	Xm−1	and	Y.
o			zk	!=	yn	⇒	Z	is	an	LCS	of	X	and	Yn−1.

	
Recurrence	relation
Let	c[i,	j]	be	the	length	of	the	longest	common	subsequence	between	X	=	{x1,	x2,….,	xi}	and	Y	=
{y1,	y2,…,	yj}.
Then	c[n,	m]	contains	the	length	of	an	LCS	of	X	and	Y
	

	
Algorithm	LCS(X[],	m,	Y[],	n)
for	i	=	1	to	m
										c[i,0]	=	0
for	j	=	1	to	n
										c[0,j]	=	0;
for	i	=	1	to	m
										for	j	=	1	to	n
																			if	X[i]	==	Y[j]

																													c[i,j]	=	c[i-1,j-1]	+	1
																													b[i,j]	=	↖
																			else
																													if	c[i-1,j]	≥	c[i,j-1]
																																						c[i,j]	=	c[i-1,j]
																																						b[i,j]	=	↑
																													else
																																						c[i,j]	=	c[i,j-1]
																																						b[i,j]	=	←
	
Algorithm	PrintLCS(b[],X[],	i,	j)
if	i	=	0
										return
if	j	=	0
										return
if	b[i,	j]	=	↖
										PrintLCS	(b[],X[],	i	−	1,	j	−	1)
										print	X[i]
else	if	b[i,	j]	=	↑
										PrintLCS	(b[],X[],	i	−	1,	j)
else
										PrintLCS	(b[],X[],	i,	j	−	1)
	

Coin	Exchanging	problem

How	can	a	given	amount	of	money	N	be	made	with	the	least	number	of	coins	of	given
denominations	D=	{d1…	dn}?
	
For	example,	Indian	coin	system	{5,	10,	20,	25,	50,100}.	Suppose	we	want	to	give	change	of	a
certain	amount	of	40	paisa.
	
We	can	make	a	solution	by	repeatedly	choosing	a	coin	≤	to	the	current	amount,	resulting	in	a	new
amount.	The	greedy	solution	is	to	always	choose	the	largest	coin	value	possible.
For	40	paisa:	{25,	10,	and	5}
	
This	is	how	billions	of	people	around	the	globe	do	change	every	day.	That	is	an	approximate
solution	of	the	problem.	But	this	is	not	the	optimal	way,	the	optimal	solution	for	the	above
problem	is	{20,	20}
	
Step	(I):	Characterize	the	structure	of	a	coin-change	solution.
Define	C	[j]	to	be	the	minimum	number	of	coins	we	need	to	make	a	change	for	j	cents.
	
If	we	knew	that	an	optimal	solution	for	the	problem	of	making	change	for	j	cents	used	a	coin	of
denomination	di,	we	would	have:
C[j]	=	1+C[j	−	di]
	
Strep	(II):	Recursively	defines	the	value	of	an	optimal	solution.

	
	
Step	(III):	Compute	values	in	a	bottom-up	fashion.
Algorithm	CoinExchange(n,	d[],	k)
C[0]	=	0
for	j	=	1	to	n	do
C[j]	=	infinite
for	i	=	1	to	k	do
if	j	<	di	and	1+C[j	−	di]	<	C[j]	then
C[j]	=	1+C[j	−	di]
return	C
	
Complexity:	O(nk)
	
Step	(iv):	Construct	an	optimal	solution
We	use	an	additional	array	Deno[1..	n],	where	Deno[j]	is	the	denomination	of	a	coin	used	in	an
optimal	solution.
Algorithm	CoinExchange(n,	d[],	k)
C[0]	=	0
for	j	=	1	to	n	do
C[j]	=	infinite
for	i	=	1	to	k	do
if	j	<	di	and	1+C[j	−	di]	<	C[j]	then
C[j]	=	1+C[j	−	di]
Deno[j]	=	di
return	C
	
Algorithm	PrintCoins(Deno[],	j)
if	j	>	0
PrintCoins	(Deno,	j	−Deno[j])
print	Deno[j]

CHAPTER	20:	BACKTRACKING	AND
BRANCH-AND-BOUND

Introduction

Suppose	the	lock	produce	some	sound	“click”	correct	digit	is	selected	for	any	level.	You	just	will
find	the	first	digit,	then	find	the	second	digit,	then	find	the	third	digit	and	done.	This	will	be	a
greedy	algorithm	and	you	will	find	the	solution	very	quickly.
	
But	let	us	suppose	the	lock	is	some	old	one	and	it	creates	same	sound	not	only	at	the	correct	digit
but	at	some	other	digits	also.	So	when	you	are	trying	to	find	the	digit	of	the	first	ring,	then	it	may
product	sound	at	multiple	instances.	So	at	this	point	you	are	not	directly	going	straight	to	the
solution,	but	you	need	to	test	various	states	and	in	case	those	states	are	not	the	solution	you	are
looking	for,	then	you	need	to	backtrack	one	step	at	a	time	and	find	the	next	solution.	But	sure	this
intelligence/	heuristics	of	click	sound	will	help	you	to	reach	your	goal	much	faster.	These
functions	are	called	Pruning	function	or	bounding	functions.
	

Problems	on	Backtracking	Algorithm

N	Queens	Problem

There	are	N	queens	given,	you	need	to	arrange	them	in	a	chess	board	on	NxN	such	that	no	queen
should	attach	each	other.
void	NQueens(std::vector<int>	&Q,	int	k,	int	n)
{
										if	(k	==	n)
										{
																			print(Q,	n);
																			return;
										}
										for	(int	i	=	0;	i	<	n;	i++)
										{
																			Q[k]	=	i;
																			if	(Feasible(Q,	k))
																			{
																													NQueens(Q,	k	+	1,	n);
																			}
										}
}
	
bool	Feasible(std::vector<int>	&Q,	int	k)
{
										for	(int	i	=	0;	i	<	k;	i++)
										{
																			if	(Q[k]	==	Q[i]	||	std::abs(Q[i]	-	Q[k])	==	std::abs(i	-	k))
																			{
																													return	false;
																			}
										}
										return	true;
}
	
void	print(std::vector<int>	&Q,	int	n)
{
										for	(int	i	=	0;	i	<	n;	i++)
										{
																			std::cout	<<	"	"	<<	Q[i];
										}
										std::cout	<<	"	"	<<	std::endl;
}
	
int	main()
{
										std::vector<int>	Q(8);
NQueens(Q,0,8);
										return	0;
}
	

Tower	of	Hanoi

The	Tower	of	Hanoi	puzzle,	disks	need	to	be	moved	from	one	pillar	to	another	such	that	any	large
disk	cannot	rest	above	any	small	disk.
	
This	is	a	famous	puzzle	in	the	programming	world,	its	origins	can	be	tracked	back	to	India.	
"There	is	a	story	about	an	Indian	temple	in	Kashi	Viswanathan	which	contains	a	large	room	with
three	timeworn	posts	in	it	surrounded	by	64	golden	disks.	Brahmin	priests,	acting	out	the
command	of	an	ancient	Hindu	prophecy,	have	been	moving	these	disks,	in	accordance	with	the
immutable	rules	of	the	Brahma	the	creator	of	universe,	since	the	beginning	of	time.	The	puzzle	is
therefore	also	known	as	the	Tower	of	Brahma	puzzle.	According	to	the	prophecy,	when	the	last
move	of	the	puzzle	will	be	completed,	the	world	will	end."		;)	;)	;)

void	TowersOfHanoi(int	num)
{
										std::cout	<<	"The	sequence	of	moves	involved	in	the	Tower	of	Hanoi	are	:"	<<	std::endl;
										TOHUtil(num,	'A',	'C',	'B');
}
	
void	TOHUtil(int	num,	char	from,	char	to,	char	temp)
{
										if	(num	<	1)
																			return;
	
										TOHUtil(num	-	1,	from,	temp,	to);
										std::cout	<<	"Move	disk	"	<<	num	<<	"	from	peg	"	<<	from	<<	"	to	peg	"	<<	to	<<	std::endl;
										TOHUtil(num	-	1,	temp,	to,	from);
}
	
int	main()
{
										std::vector<int>	Q(8);
										TowersOfHanoi(3);
										return	0;

}

CHAPTER	21:	COMPLEXITY	THEORY	AND
NP	COMPLETENESS

Introduction

Computational	complexity	is	the	measurement	of	how	much	resources	are	required	to	solve	some
problem.
	
There	are	two	types	of	resources:

1.				Time:	how	many	steps	it	takes	to	solve	a	problem
2.				Space:	how	much	memory	it	takes	to	solve	a	problem.

	

Decision	problem

Much	of	Complexity	theory	deals	with	decision	problems.	A	decision	problem	always	has	a	yes
or	no	answer.
	
Many	problems	can	be	converted	to	a	decision	problem	which	have	answered	as	yes	or	no.	For
example:

1.				Searching:	The	problem	of	searching	element	can	be	a	decision	problem	if	we	ask	to	find	if
a	particular	number	is	there	in	the	list?

	
2.				Sorting	of	list	and	to	find	if	the	list	is	sorted	you	can	make	a	decision	problem	is	the	list	is

sorted	in	increasing	order	or	not?
	

3.				Graph	coloring	algorithms:	this	is	also	can	be	converted	to	a	decision	problem.	Can	we	do
the	graph	coloring	by	using	X	number	of	colors?

	
4.				Hamiltonian	cycle:	Is	there	is	a	path	from	all	the	nodes,	each	node	is	visited	exactly	once

and	come	back	to	the	starting	node	without	breaking?
	

Complexity	Classes

Problems	are	divided	into	many	classes	such	that	how	difficult	to	solve	them	or	how	difficult	to
find	if	the	given	solution	is	correct	or	not.
	

Class	P	problems

The	class	P	consists	of	a	set	of	problems	that	can	be	solved	in	polynomial	time.	The	complexity
of	a	P	problem	is	O(Where	n	is	input	size	and	k	is	some	constant	(it	can’t	depend	on	n).
	
Class	P	Definition:	The	class	P	contains	all	decision	problems	for	which	there	exists	a	Turing
machine	algorithm	that	leads	to	the	“yes/no”	answer	in	a	definite	number	of	steps	bounded	by	a
polynomial	function.
	
For	example:
Given	a	sequence	a1,	a2,	a3….	an.	Find	if	a	number	X	is	in	this	array.
We	can	search,	the	number	X	in	this	array	in	linear	time	(polynomial	time)
	
Another	example:
Given	a	sequence	a1,	a2,	a3….	an.	If	we	are	asked	to	sort	the	sequence.
We	can	sort	and	array	in	polynomial	time	using	Bubble-Sort,	this	is	also	linear	time.
	
Note:	O(logn)	is	also	polynomial.	Any	algorithm	which	has	complexity	less	than	some	O(is
also	polynomial.
	
Some	problem	of	P	class	is:

1.				Shortest	path
2.				Minimum	spanning	tree
3.				Maximum	problem.
4.				Max	flow	graph	problem.
5.				Convex	hull

	

Class	NP	problems

Set	of	problems	for	which	there	is	a	polynomial	time	checking	algorithm.	Given	a	solution	if	we
can	check	in	a	polynomial	time	if	that	solution	is	correct	or	not	then,	the	problem	is	NP	problem.
	
Class	NP	Definition:	The	class	NP	contains	all	decision	problems	for	which,	given	a	solution,
there	exists	a	polynomial	time	“proof”	or	“certificate”	that	can	verify	if	the	solution	is	the	right
“yes/no”	answer

Note:	There	is	no	guarantee	that	you	will	be	able	to	solve	this	problem	in	polynomial	time.	But	if
a	problem	is	an	NP	problem,	then	you	can	verify	an	answer	in	polynomial	time.
	
NP	does	not	mean	non	polynomial.	Actually,	it	is	Non-Deterministic	polynomial	type	of	problem.
They	are	the	kind	of	problems	which	can	be	solved	in	polynomial	time	by	a	Non-Deterministic
Turing	machine.	At	each	point	all	the	possibilities	are	executed	in	parallel.	If	there	are	n	possible
choices,	then	all	n	cases	will	be	executed	in	parallel.	We	don’t	have	non	deterministic	computers.
Don’t	confuse	it	with	parallel	computing	because	the	number	of	CPU	is	limited	in	parallel
computing	it	may	be	16	core	or	32	core	but	it	can’t	be	N-Core.
	
In	short	NP	problems	are	those	problems	for	which,	if	a	solution	is	given.	We	can	verify	that
solution	(if	it	is	correct	or	not)	in	polynomial	time.
	

Boolean	Satisfiability	problem

A	Boolean	formula	is	satisfied	if	there	exist	some	assignment	of	the	values	0	and	1	to	its	variables
that	causes	it	to	evaluate	to	1.
	

	
There	are	in	total	N	Different	Boolean	Variables	A1,	A2…	AN.	There	are	an	M	number	of
brackets.	Each	bracket	has	K	variables.
	
There	is	N	variable	so	the	number	of	solutions	will	be	

And	to	verify	if	the	solutions	really	evaluate	the	equation	to	1	will	take	total	 	steps
Given	solution	of	this	problem	you	can	find	if	the	formula	satisfies	or	not	in	KM	steps.
	

Hamiltonian	cycle

Hamiltonian	cycle	is	a	path	from	all	the	nodes	of	a	graph,	each	node	is	visited	exactly	once	and
come	back	to	the	starting	node	without	breaking.
Is	an	NP	problem,	if	you	have	a	solution	to	it,	then	you	just	need	to	see	if	all	the	nodes	are	there	in
the	path	and	you	came	back	to	where	you	started	and	you	are	done?	The	checking	is	done	in	linear
time	and	you	are	done.
	
Determining	whether	a	directed	graph	has	a	Hamiltonian	cycle	doesn’t	have	a	polynomial	time
algorithm.	O(n!)
	
However,	if	someone	have	given	you	a	sequence	of	vertices,	determining	whether	or	not	that
sequence	forms	a	Hamiltonian	cycle	can	be	done	in	polynomial	time	(Linear	time).
Hamiltonian	cycles	are	in	NP
	

Clique	Problem

In	a	graph	given	is	there	is	a	clique	of	size	K	or	more.	A	clique	is	a	subset	of	nodes	which	are
fully	connected	to	each	other.
This	problem	is	NP	problem.	Given	a	set	of	nodes	you	can	very	easily	find	out	whether	it	is	a
clique	or	not.
For	example:

Prime	Number

Finding	Prime	number	is	NP.	Given	a	solution,	it	is	easy	to	find	if	it	is	a	Prime	or	not	in
polynomial	time.	Finding	prime	numbers	is	important	as	cryptography	heavily	uses	prime
numbers.
	
boolean	isPrime(int	n){
										boolean	answer	=	(n>1)?	true:	false;
	
										for(int	i	=	2;	i*i	<=	n;	++i)
										{
																			if(n%i	==	0)
																			{
																													answer	=	true;
																													break;
																			}
										}
										return	answer;					
}
	
Checking	will	happen	till	the	square	root	of	number	so	the	Time	Complexity	will	be	O().	Hence
prime	number	finding	is	an	NP	problem	as	we	can	verify	the	solution	in	polynomial	time.
	
Graph	theory	have	wonderful	set	of	problems

•							Shortest	path	algorithms?
•							Longest	path	is	NP	complete.
•							Eulerian	tours	is	a	polynomial	time	problem.
•							Hamiltonian	tours	is	a	NP	complete

	

Class	co-NP

Set	of	problems	for	which	there	is	a	polynomial	time	checking	algorithm.	Given	a	solution	if	we
can	check	in	a	polynomial	time	if	that	solution	is	incorrect	the	problem	is	co-NP	problem.
	
Class	co-NP	Definition:	The	class	co-NP	contains	all	decision	problems	such	that	there	exists	a
polynomial	time	proof	that	can	verify	if	the	problem	does	not	have	the	right	“yes/no”	answer.

Class	P	is	Subset	of	Class	NP

All	problems	which	are	P	also	are	NP	().	Problem	set	P	is	a	subset	of	problem	set	NP.
Searching
If	we	have	some	number	sequence	a1,	a2,	a3….	an.	We	already	know	that	searching	a	number	X
inside	this	array	is	of	type	P.
If	it	is	given	that	number	X	is	inside	this	sequence,	then	we	can	verify	by	looking	into	each	and
every	entry	again	and	find	if	the	answer	is	correct	in	polynomial	time	(linear	time.)
Sorting
Another	example	of	sorting	a	number	sequence,	if	it	is	given	that	the	array	b1,	b2,	b3..	bn	is	a
sorted	then	we	can	loop	through	this	given	array	and	find	if	the	list	is	really	sorted	in	polynomial
time	(linear	time	again.)
	

NP–Hard:

A	problem	is	NP-Hard	if	all	the	problems	in	NP	can	be	reduced	to	it	in	polynomial	time.

NP–Complete	Problems

Set	of	problem	is	NP-Complete	if	it	is	an	NP	problem	and	also	an	NP-Hard	problem.
It	should	follow	both	the	properties:

1)				Its	solutions	can	be	verified	in	a	polynomial	time.
2)				All	problems	of	NP	are	reduced	to	NP	complete	problems	in	polynomial	time.

You	can	always	reduce	any	NP	problem	into	an	NP-Complete	in	polynomial	time.	And	when	you
get	the	answer	to	the	problem,	then	you	can	verify	this	solution	in	polynomial	time.

Any	NP	problem	is	polynomial	reduced	to	NP-Complete	problem,	if	we	can	find	a	solution	to	a
single	NP-Complete	problem	in	polynomial	time,	then	we	can	solve	all	the	NP	problems	in
polynomial	time.	But	so	far	no	one	is	able	to	find	any	solution	of	NP-Complete	problem	in
polynomial	time.

P	≠	NP
	

Reduction

It	is	a	process	of	transformation	of	one	problem	into	another	problem.	The	transformation	time
should	be	polynomial.	If	a	problem	A	is	transformed	into	B	and	we	know	the	solution	of	B	in
polynomial	time,	then	A	can	also	be	solved	in	polynomial	time.
For	example,
Quadratic	Equation	Solver:	We	have	a	Quadratic	Equation	Solver,	which	solves	equation	of	the

form	a bx+c	=	0.	It	takes	Input	a,	b,	c	and	generate	output	r1,	r2.
Now	try	to	solve	a	linear	equation	2x+4=0.	Using	reduction	second	equation	can	be	transformed
to	the	first	equation.

2x+4	=	0 2x+4	=	0
	
ATLAS:	We	have	an	atlas	and	we	need	to	color	maps	so	that	no	two	countries	have	the	same
color.	Let	us	suppose	below	is	the	various	countries.	And	different	pattern	represents	different
color.

We	can	see	that	same	problem	of	atlas	coloring	can	be	reduced	to	graph	coloring	and	if	we	know
the	solution	of	graph	coloring	then	same	solution	can	work	for	atlas	coloring	too.	Where	each
node	of	the	graph	represents	one	country	and	the	adjacent	country	relation	is	represented	by	the
edges	between	nodes.

The	sorting	problem	reduces	(≤)	to	Convex	Hull	problem.
SAT	reduces	(≤)	to	3SAT
	

Traveling	Salesman	Problem	(TSP)

	
The	traveling	salesman	problem	tries	to	find	the	shortest	tour	through	a	given	set	of	n	cities	that
visits	each	city	exactly	once	before	returning	to	the	city	where	it	started.
Alternatively:	Finding	the	shortest	Hamiltonian	circuit	in	a	weighted	connected	graph.	A	cycle
that	passes	through	all	the	vertices	of	the	graph	exactly	once.
	
Algorithm	TSP
Select	a	city
MinTourCost	=	infinite
For	(All	permutations	of	cities)	do
										If(LengthOfPathSinglePermutation	<	MinTourCost)
																			MinTourCost	=	LengthOfPath
	
Total	number	of	possible	combinations	=	(n-1)!
Cost	for	calculating	the	path?	Θ(n)
So	the	total	cost	for	finding	the	shortest	path?	Θ(n!)
	
It	is	an	NP-Hard	problem	there	is	no	efficient	algorithm	to	find	its	solution.	Even	if	some	solution
is	given,	it	is	equally	hard	to	verify	that	this	is	a	correct	solution	or	not.	But	there	are	some
approximate	algorithms	which	can	be	used	to	find	a	fairly	good	solution.	We	will	not	always	get
the	best	solution	but	will	get	a	fairly	good	solution.
	
Our	approximate	algorithm	is	based	on	the	minimum	spanning	tree	problem.	In	which	we	have	to
construct	a	tree	from	a	graph	such	that	every	node	is	connected	by	edges	of	the	graph	and	the	total
sum	of	the	cost	of	all	the	edges	it	minimum.

	

In	the	above	diagram,	we	have	a	group	of	cities	(each	city	is	represented	by	a	circle.)	Which	are
located	in	the	grid	and	the	distance	between	the	cities	is	same	as	per	the	actual	distance.	And
there	is	a	path	from	each	city	to	another	city	which	is	a	straight	path	from	one	to	another.
	

	
We	have	made	a	minimum	spanning	tree	for	the	above	city	graph.
	
What	we	want	to	prove	that	the	shortest	path	in	a	TSP	will	always	be	greater	than	the	length	of
MST.	Since	all	nodes	are	connected	to	the	next	node	which	is	the	minimum	distance	from	the
group	of	node	so	some	node	is	removed	and	new	nodes	will	be	added	to	make	it	a	path	so	TSP
path	will	always	be	greater	than	MST.

Now	let’s	take	a	path	from	starting	node	and	traverse	each	node	on	the	way	given	above	and	then
come	back	to	the	starting	node.	The	total	cost	of	the	path	is	2MST.	The	only	difference	is	that	we
are	visiting	many	nodes	multiple	times.

Now	let’s	change	our	traversal	algorithm	so	that	it	will	become	TSP	in	our	traversal,	we	didn’t
visit	an	already	visited	node	we	will	skip	them	and	will	visit	the	next	unvisited	node.	In	this	way
we	will	reach	the	next	node	by	as	shorter	path.	(The	sum	of	the	length	of	all	the	edges	of	a
polygon	is	always	greater	than	a	single	edge.)	Ultimately	we	will	get	the	TSP	and	its	path	length
is	no	more	than	twice	the	optimal	solution.	So	the	proposed	algorithm	gives	fairly	good	results.
	

End	Note

Nobody	has	come	up	with	such	a	polynomial-time	algorithm	to	solve	a	NP-Complete	problem.
Many	important	algorithms	depends	upon	it.	But	at	the	same	time	nobody	has	proven	that	no
polynomial	time	algorithm	is	possible.	There's	a	million	US	dollars	for	anyone	who	can	do	either
solve	any	NP	Complete	problem	in	polynomial	time.	The	whole	economy	of	the	world	will	fall	as
most	of	the	banks	depends	on	public	key	encryption	will	be	easy	to	break	if	P=NP	solution	is
found.

CHAPTER	22:	INTERVIEW	STRATEGY

Introduction

Success	in	tech	interview	depends	on	so	many	factors,	your	non-technical	skills,	your	technical
skills,	etc.	But	above	all	the	interviewers	should	be	convinced	that	they	would	enjoy	working
with	you.
	

Resume

The	best	resumes	are	those	that	communicate	your	skills	and	accomplishments	in	a	clear	and
effective	way.
	
A	good	resume	format	has	the	following	attributes:
1.				Multiple	Columns:	Multiple	columns	make	it	easier	for	someone	to	quickly	skim	your

company	name,	positions,	collage,	and	other	key	facts.
2.				Short	and	Sweet:	Interviewer	is	going	to	spend	about	30	Sec	reading	your	resume.	You	should

just	focus	on	the	highlights.	One	page	is	all	you	need,	but	if	you	are	10+	years	of	experience,
then	you	can	justify	two	pages.

3.				No	Junk:	No	objective,	No	oath,	Summary	section/Key	skills	section	may	be	fine,	if	your
resume	is	short	and	concise	then	you	don’t	need	a	summary	section.

4.				Use	Tables:	You	can	use	tables,	but	it	should	not	waste	space.
5.				Highlights:	highlights	should	be	short.	Keep	your	highlights	to	one	liner.
6.				Neat:	Keep	your	resume	neat	and	clean.	Use	appropriate	Fonts	and	Formatting.	Bold	to

represent	highlights	and	maybe	italics	in	some	places.
	

Nontechnical	questions

Prepare	for	various	non-technical	questions.	The	first	thing	to	do	is	to	prepare	answers	of	any
question	that	is	related	to	your	resume.	The	interviewer	is	going	to	look	into	it	and	ask	a	few
questions	to	get	an	idea	about	you.	So	go	through	all	the	past/current	job	and	projects	and	make
sure	you	know	what	they	were	about	and	your	role.
	
These	questions	may	be	like:
1.	What	was	the	most	challenging	activity	you	have	done	in	project	ABC?
2.	What	did	you	learn	from	project	ABC?
3.	What	are	your	responsibilities	in	the	current	job?
4.	What	was	the	most	interesting	thing	you	have	done	in	your	current	job?
5.	Which	course	in	university	did	you	like	most	and	why?
	

Technical	questions

Solving	a	technical	question	is	not	just	about	knowing	the	algorithms	and	designing	a	good
software	system.	The	interviewer	wants	to	know	you	approach	towards	any	given	problem.
	
Many	people	make	mistakes	like	they	don’t	ask	clarifying	questions	about	a	given	problem?	They
assume	a	lot	of	things	and	begin	working	with	that.	Well	the	truth	is	the	interviewer	to	actually
expect	you	to	ask	constraints	questions.	There	are	a	lot	of	data	that	is	missing	that	you	need	to
collect	from	your	interviewer	before	beginning	to	solve	a	problem.
	
For	example:	Let	us	suppose	the	interviewer	ask	you	to	give	a	best	sorting	algorithm.
Some	interviewee	will	directly	jump	to	Quick-Sort	O(nlogn).	Oops,	mistake	you	need	to	ask
many	questions	before	beginning	to	solve	this	problem.
	
Questions:
1.				What	kind	of	data	we	are	talking	about?	Are	they	integer	s?
2.				How	much	data	are	we	going	to	sort?
3.				What	exactly	is	this	data	about?
4.				What	kind	of	data-structure	used	to	hold	this	data?
5.				Can	we	modify	the	given	data-structure?	And	many,	many	more…?
	
Answer:
1.	Yes,	they	are	integer	s.
2.	May	be	thousands.
3.	They	store	a	person’s	age.
4.	Data	are	given	in	the	form	of	some	array.
5.	No	you	can’t	modify	the	data	structure	provided.
	
Ok	from	the	first	answer	we	will	deduce	that	the	data	is	integer	.	The	data	is	not	so	big	it	just
contains	a	few	thousand	entries.	The	third	answer	is	interesting	from	this	we	deduce	that	the	range
of	data	is	1-150.	Data	is	provided	in	an	array.	From	fifths	answer	we	deduce	that	we	have	to
create	our	own	data	structure	and	we	cannot	modify	the	array	provided.	So	finally	we	conclude,
we	can	just	use	bucket	sort	to	sort	the	data.	The	range	is	just	1-150	so	we	need	just	151	capacity
integral	array.	Data	is	under	thousands	so	we	don’t	have	to	worry	about	data	overflow	and	we	get
the	solution	in	linear	time	O(N).

CHAPTER	23:	SYSTEM	DESIGN

System	Design		

The	section	we	will	look	into	questions	in	which	interviewer	asks	to	design	a	high-level
architecture	of	any	software	system.
	
Note:	-	This	is	an	advance	chapter	It	may	be	that	the	user	is	not	able	to	understand	it	completely.	I
would	suggest	that	give	it	some	time	read	the	chapter	and	try	to	read	online.	The	more	time	you
give	to	this	chapter	the	better	understanding	you	will	get.	It	may	also	help	if	you	give	multiple
rounds	of	reading.
	
There	are	two	kinds	of	questions	in	this	and	which	will	be	asked	depends	on	the	type	of
companies.	The	first	kind	of	questions	is	to	design	some	kind	of	elevator	system,	valet	parking
system,	etc.	In	this,	the	interviewer	just	wants	to	test	how	well	you	are	able	to	design	a	system,
especially	how	well	your	classes	are	interacting.
	
The	Second	kind	of	system	design	problems	is	more	interesting,	in	which	the	interviewer	asks	you
to	design	some	kind	of	website	or	some	kind	of	service	or	some	API	interface.	For	example,
design	google	search	engine	or	design	some	feature	of	Facebook	like	how	friends	mapping	is
done	on	Facebook,	design	a	web-based	game	that	allows	4	people	play	poker	etc.	They	are
interesting	one	and	in	this,	the	interviewer	can	ask	about	scalability	aspect.
	
Now	comes	a	question	to	our	mind,	how	would	you	design	google	search	engine	in	10-15
minutes?	Well,	the	answer	is	you	can’t.	It	took	many	days	if	not	years	by	a	group	of	a	smart
engineer	to	design	google	search	engine.	The	interviewer	is	expecting	a	Higher-level	architecture
of	the	system	that	can	address	the	given	Use-Cases	and	Constraints	of	the	problem	in	hand.	There
is	no	single	right	solution.	The	same	problem	can	be	solved	in	a	number	of	ways.	The	most
important	thing	is	that	you	should	be	able	to	justify	your	solution.
	

System	Design	Process

Let’s	look	into	a	5	Steps	approach	for	solving	system	design	problems:
1.				Use	Cases	Generation
2.				Constraints	and	Analysis
3.				Basic	Design
4.				Bottlenecks
5.				Scalability

	

Use	Cases

Just	like	algorithm	design	problems,	the	system	design	questions	are	also	most	likely	weakly
defined.	There	is	so	much	information	that	is	missing	and	without	them	the	design	is	impossible.
So	first	thing	in	the	design	process	is	that	you	should	gather	all	the	possible	use	cases.	You	should
ask	questions	to	the	interviewer	to	find	the	use	case	of	the	system.	The	interviewer	wants	to	see
your	requirement	gathering	capability.	Same	as	algorithm	questions	never	assume	things,	which
are	not	stated.
	

Constraints	and	Analysis

This	is	the	step	in	which	you	will	define	various	constraints	of	the	system	and	then	analyse	them.
Your	system	design	will	depend	on	the	analysis	that	you	do	in	this	step.	In	this	step,	you	need	to
find	answers	to	questions	like.	How	many	users	will	be	using	the	system?	What	kind	of	data	that
we	are	going	to	store?	Etc.
	

Basic	Design

In	this	step,	you	will	design	the	most	basic	design	of	the	system.	Draw	your	main	components	and
make	connections	between	them.	In	this	step,	you	need	to	design	a	system	with	the	supposition	that
there	is	no	memory	limitation	and	all	data	can	fit	in	one	single	machine.	You	should	be	able	to
justify	your	idea.	In	this	step,	you	need	to	handle	all	the	use-cases.
	

Bottlenecks	Analysis

In	this	step,	you	will	find	the	one	or	more	bottlenecks	on	the	basic	design	you	had	proposed.	The
“Scalability	Theory”	given	below	will	help	to	identify	the	bottlenecks.	You	need	to	know	the
below	theory	which	experts	had	developed	over	time.	In	this	step,	you	will	consider	how	much
data	your	proposed	system	can	handle,	memory	limitations	etc.
	

Scalability

In	this	step,	you	will	remove	all	the	bottlenecks	of	the	system	and	you	are	done.	There	may	be
multiple	iterations	between	“Bottlenecks	analysis”	and	“Scalability”	until	we	reach	our	final
solution.	We	will	be	reading	various	concepts	like	Vertical	scaling,	Horizontal	scaling,	Load-
Balancer,	Redundancy	and	Caching	in	this	chapter.	“Scalability	Theory”	given	below	will	help
you	to	understand	these	concepts.
	

Scalability	Theory

In	this	section,	we	will	be	designing	a	generic	web	server,	which	will	be	handling	a	large	number
of	requests.	You	can	imagine	it	as	some	sort	of	website	like	Facebook	in	which	large	number	of
users	are	accessing	it.
	

Vertical	scaling

Vertical	scaling	means	that	you	scale	by	adding	more	resources	(Higher	speed	CPU,	More	RAM
etc.)	To	your	existing	machine.
	
Vertical	scaling	has	its	own	limit	it	can	help	you	to	handle	more	load,	but	until	its	limit	is	reached,
then	we	have	to	go	for	horizontal	scaling.
	

Horizontal	scaling

Horizontal	scaling	means	that	you	scale	by	adding	more	machines	to	your	pool	of	resources.
	
Distribute	the	request	by	distributing	the	request	among	more	than	one	web	server.	In	doing	this
we	need	to	have	a	load	balancer,	which	will	distribute	the	request	among	the	servers.
	

Load	Balancer	(Application	layer)

Load	balancer	has	to	decide	which	server	should	serve	the	next	request.	So	distributing	the	load
can	be	made	using	different	strategies:
1)	Round	Robbin:	Round	robin	is	the	way	of	distributing	requests	in	a	sequential	fashion.	The
request	is	sent	to	the	server	1	then	the	next	request	is	sent	to	server	2	and	so	on	till	we	reach	the
end	of	the	server	list.	Then	when	we	reach	the	end,	it	is	sent	again	to	server	1.	Round	robin	has	a
problem	that	a	server,	which	is	already	busy,	may	get	another	request.	Round	robin	also	has	a

problem	with	sticky	sessions.	We	want	that	a	request	to	be	sent	to	the	same	server	the	next	time.
2)	Another	approach	is	to	select	server	corresponds	to	the	hash	value	of	the	data.	Find	the	hash
value	of	the	data,	mod	the	hash	value	by	the	number	of	servers.	Assign	the	job	to	a	machine	whose
value	we	got	after	mod.	Stick	session	problem	is	already	solved	in	hash	value	approach.
However,	the	problem	of	uneven	load	distribution	is	there,	there	is	possible	to	have	a	more	load
sent	to	a	server,	which	is	already	busy.
3)	May	be	the	load	balancer	know,	how	much	load	each	server	has	or	how	busy	each	the	server
is.	Moreover,	will	send	the	next	request	to	the	least	busy	server.
4)	The	server	can	be	a	specialized	one	serving	image	some	serving	video	and	some	serving	other
data.

Problems	of	load	Balancing

Consider	a	customer	who	had	selected	some	items	in	his	buy	cart	on	Amazon.	When	he	selects
another	item	then	it	should	be	added	to	the	same	cart	so	it	should	be	sent	to	the	same	server.	Also,
the	user	profile	which	is	saved	to	one	server	and	if	the	user	request	reaches	the	other	server	his
profile	will	be	empty	this	is	also	not	a	good	idea.
	
This	problem	can	be	solved	by	making	the	load	balancer	decide	that	a	particular	user	request
would	always	go	to	the	same	server.	The	user	profile	and	cart	details	should	be	saved	in	some
database.
	
Stick	session:	same	sessions	should	lend	to	the	same	server.	How	to	get	this	done.	The	first
approach	is	that	we	store	the	IP	address	returned	by	load	balancing	into	a	cookie	and	then	use	this
IP	address	in	the	subsequent	requests.	However,	this	reveals	the	IP	address	of	the	server	to	the
world	that	we	do	not	want.	Therefore,	another	solution	is	that	we	use	some	session	id	that	is	a
number	that	the	load	balancer	knows	that	belongs	to	which	server.	By	this,	we	are	preventing	our
servers	being	exposed	to	the	outer	world	and	prevent	it	from	being	attacked.
	

Load	Balancer	(Database	layer)

1.				The	most	basic	approach	is	Round	Robin.	Data	is	distributed	in	a	circular	fashion.	First,
data	go	to	the	first	database,	the	second	will	go	to	the	second	database	and	so	one.	Each
database	server	had	an	equal	load.	However,	it	has	a	disadvantage	that	the	data	lookup	is
complex.	And	need	a	large	lookup	table.

	
2.				Another	approach	is	to	divide	the	data	in	such	a	way	that	all	the	data	will	go	to	the	first

machine	until	it	reaches	its	maximum	capacity.	When	maximum	capacity	is	reached,	then
data	goes	to	the	second	machine	and	so	on.	This	approach	has	an	advantage	that	only	the
required	number	of	machines	is	used.	However,	it	has	a	disadvantage	that	the	data	lookup	is
complex.	And	need	a	large	lookup	table.

	
3.				Another	approach	is	to	select	database	corresponds	to	the	hash	value	of	the	data.	Find	the

hash	value	of	the	data.	Mod	the	hash	value	by	the	number	of	databases.	The	data	are	then
stored	in	the	database	value	we	got	after	modulus.	For	has	a	value	approach	we	do	not
require	any	lookup	table.	We	can	find	the	database,	which	is	storing	the	data,	by	finding	the
hash	value.	However,	the	problem	of	uneven	distribution	of	data	is	there,	there	is	possible
to	have	a	more	data	sent	to	a	database,	which	has	already	reached	its	maximum	capacity.	In
this	case,	we	need	to	find	a	better	load-balancing	key	or	split	the	data	from	the	database
into	a	number	of	databases.

	
4.				In	the	hash	value,	based	distribution	of	data	there	is	no	relation	between	the	data	that	is

stored	in	a	particular	database.	Information	about	the	data	can	be	used	to	make	the	database
accessible	faster.	For	example,	in	social	networking	like	Facebook,	if	someone	who	lives
in	India	is	more	likely	to	have	friends	from	India.	And	someone	who	lives	in	the	USA	is
more	likely	to	have	friends	in	the	USA.

	
5.				Perhaps	location	aware	(approach	4)	and	the	hash	value	based	(approach	3)	distribution	of

data	may	be	the	best	approach	to	keep	the	data	so	that	it	can	take	advantage	of	both	the
approaches.	Country	code	and	user	ID	can	be	used	to	get	the	location	of	the	database.

	

Redundancy

There	is	one	problem	in	our	system,	there	is	a	redundancy	in	the	servers	but	our	load	balancer	is
now	our	single	point	of	failure.	We	add	a	secondary	load	balancer	in	case	the	primary	load
balancer	dies,	then	secondary	load	balancer	becomes	primary	and	then	all	the	requests	will	be
handled	by	it.

	
Raid	(Redundant	Array	of	Inexpensive	Disk):	Raid	is	a	technology	to	create	redundancy	in	the
databases.	Multiple	hard	drives	are	used	to	replicate	data,	thereby	proving	redundancy.
	

Caching

A	cache	is	a	simple	key-value	store	and	it	should	reside	as	a	buffering	layer	between	your
application	and	your	data	storage.	Whenever	your	application	wants	to	read,	it	first	tries	to
retrieve	the	data	from	your	cache.	Only	if	data	is	not	present	in	the	cache,	then	only	it	tries	to	get
the	data	from	the	main	database.
	
Caching	improves	application	performance	by	storing	portion	of	data	in	memory	for	low-latency
access.	We	need	databases	and	access	to	the	database	is	slow,	so	we	use	multiple	types	of
caching	to	make	our	system	faster.	Database	servers	itself	does	caching	so	do	the	other	entities	in
between	the	user	and	the	database.
	
Memcached:	It	is	a	server	software,	what	it	does	is	it	kept	whatever	you	access	in	memory.	It	can
run	on	the	same	server	as	the	webserver	or	it	can	run	on	a	separate	machine	all	together.
	
Redis:	It	is	a	data	structure	server	based	on	"NoSQL"	which	is	a	key-value	data	store.	Data	is
stored	as	the	value	with	respect	to	corresponding	key.	This	data	is	later	retrieved	by	the	use	of	the
key.	Redis	is	used	for	caching	it	is	best	to	store	the	whole	object	as	one	instance	so	that	the	data
can	be	accessed	in	parallel	and	data	expiration	will	flush	out	the	whole	object.
	
There	is	a	problem	since	ram	is	finite,	then	the	cache	will	get	full.	The	expired	object	will	be
removed	so	everything	that	is	accessed	then	its	expiry	will	be	reset	and	if	there	is	an	object	that	is
not	used	for	some	time	then	it	was	deleted.	Cache	is	more	important	when	the	website	that	we	are
designing	is	more	read	heavier	than	a	write.

A	complete	web	server	implementation

The	summary	of	the	above	system.
1.		The	Web-Servers	of	scalable	web	service	is	hidden	behind	a	load	balancer.	The	load	balancer
evenly	distributes	load	across	all	the	servers.
2.		The	user	should	get	the	same	result	from	web-server	regardless	which	server	is	actually
serving	the	request.	Therefore,	every	server	should	be	identical	to	each	other.	Servers	should	not
contain	any	data	like	session	information	or	user	profile.
3.		Session	need	to	be	stored	in	a	centralized	data	store	(DB)	which	is	accessible	to	all	the
servers.	Data	can	be	stored	in	some	external	database.	Redundancy	in	the	database	is	provided	by
raid	technology.
4.		The	database	is	slow,	so	we	need	a	cache.	In-memory	based	cache	like	Redis	or	Memcached.
5.		However,	the	cache	has	a	problem	of	expiring.	When	a	table	changes,	then	the	cache	is
outdated.
6.		For	Memcached	there	are	two	options:
a.		We	can	save	queries	to	the	DB
b.		We	can	save	the	whole	object	that	will	keep	us	close	to	web-server.
7.		CDN	(Content	delivery	networks)	can	be	used	to	provide	a	pre-processed	web	page.
Below	diagram	will	give	you	a	complete	picture	of	the	whole	system.
	

Design	simplified	Facebook

Design	simplified	Facebook	where	people	can	add	other	people	as	friends.	In	addition,	where
people	can	post	messages	and	that	messages	are	visible	on	their	friend’s	page.	The	design	should
be	such	that	it	can	handle	10	million	of	people.	There	may	be,	on	an	average	100	friends	each
person	has.	Every	day	each	person	posts	some	10	messages	on	an	average.
	

Use	Case

1.				A	user	can	create	their	own	profile.
2.				A	user	can	add	other	users	to	his	friend	list.
3.				Users	can	post	messages	to	their	timeline.
4.				The	system	should	display	posts	of	friends	to	the	display	board/timeline.
5.				People	can	like	a	post.
6.				People	can	share	their	friends	post	to	their	own	display	board/timeline.

	

Constraints

1.				Consider	a	whole	network	of	people	as	represented	by	a	graph.	Each	person	is	a	node	and
each	friend	relationship	is	an	edge	of	the	graph.

2.				Total	number	of	distinct	users	/	nodes:	10	million
3.				Total	number	of	distinct	friend’s	relationship	/	edges	in	the	graph:	100	*	10	million
4.				Number	of	messages	posted	by	a	single	user	per	day:	10
5.				Total	number	of	messages	posted	by	the	whole	network	per	day:	10	*	10	million

	

Basic	Design

Our	system	architecture	is	divided	into	two	parts:
1.		First,	the	web	server	which	will	handle	all	the	incoming	requests.
2.		The	second	database,	which	will	store	the	entire	person's	profile,	their	friend	relations	and
posts.

First,	three	requirements	creating	a	profile,	adding	friends,	posting	messages	are	written	some
information	to	the	database.	While	the	last	operation	is	reading	data	from	the	database.
	
The	system	will	look	like	this:
1.		Each	user	will	have	a	profile.
2.		There	will	be	a	list	of	friends	in	each	user	profile.
3.		Each	user	will	have	their	own	homepage	where	his	posts	will	be	visible.
	
A	user	can	like	any	post	of	their	friend	and	that	likes	will	reflect	on	the	actual	message	shared	by
his	friend.
If	a	user	shares	some	post,	then	this	post	will	be	added	to	the	user	home	page	and	all	the	other
friends	of	the	user	will	see	this	post	as	a	new	post.
	

Bottleneck

A	number	of	requests	posted	per	day	is	100	million.	Approximate	some	1000	request	are	posted
per	second.	There	will	be	an	uneven	distribution	of	load	so	the	system	that	we	will	design	should
be	able	to	handle	a	few	thousand	requests	per	seconds.
	

Scalability

Since	there	is,	a	heavy	load	we	need	horizontal	scaling	many	web	servers	will	be	handling	the
requests.	In	doing	this	we	need	to	have	a	load	balancer,	which	will	distribute	the	request	among
the	servers.

This	approach	gives	us	a	flexibility	that	when	the	load	increases,	we	can	add	more	web	servers
to	handle	the	increased	load.
	
These	web	servers	are	responsible	for	handling	new	post	added	by	the	user.	They	are	responsible
for	generating	various	user	homepage	and	timeline	pages.	In	our	diagram,	the	client	is	the	web

browser,	which	is	rendering	the	page	for	the	user.
	
We	need	to	store	data	about	user	profile,	Users	friend	list,	User-generated	posts,	User	like	statues
to	the	posts.
	
Let	us	find	out	how	much	storage	we	need	to	store	all	this	data.	The	total	number	of	users	10
million.	Let	us	suppose	each	user	is	using	Facebook	for	5	to	6	years,	so	the	total	number	of	posts
that	a	user	had	produced	in	this	whole	time	is	approximately	20,000	million	or	20	billion.	Let	us
suppose	each	message	consists	of	100	words	or	500	characters.	Let	us	assume	each	character
take	2	bytes.
	
Total	memory	required			=			20	*	500	*	2	billion	bytes.
																															=					20,000	billion	bytes
																																=				20,	000	GB
																																=				20	TB
	
1	gigabyte	(GB)	=	1	billion	bytes
1000	gigabytes	(GB)	=	1	Terabytes
	
Most	of	the	memory	is	taken	from	the	posts	and	the	user	profile	and	friend	list	will	take	nominal
as	compared	with	the	posts.	We	can	use	a	relational	database	like	SQL	to	store	this	data.
Facebook	and	twitter	are	using	a	relational	database	to	store	their	data.

Responsiveness	is	key	for	social	networking	site.	Databases	have	their	own	cache	to	increase
their	performance.	Still	database	access	is	slow	as	databases	are	stored	on	hard	drives	and	they
are	slower	than	RAM.	Database	performance	can	be	increased	by	replication	of	the	database.
Requests	can	be	distributed	between	the	various	copies	of	the	databases.
	
Also,	there	will	be	more	reads	then	writes	in	the	database	so	there	can	be	multiple	slave	DB
which	are	used	for	reading	and	there	can	be	few	master	DB	for	writing.	Still	database	access	is
slow	to	we	will	use	some	caching	mechanism	like	Memcached	in	between	application	server	and

database.	Highly	popular	users	and	their	home	page	will	always	remain	in	the	cache.
	
There	may	be	the	case	when	the	replication	no	longer	solves	the	performance	problem.	In
addition,	we	need	to	do	some	Geo-location	based	optimization	in	our	solution.
	
Again,	look	for	a	complete	diagram	in	the	scalability	theory	section.
	
If	it	were	asked	in	the	interview	how	you	would	store	the	data	in	the	database.	The	schema	of	the
database	can	look	like:
Table	Users

·									User	Id
·									First	Name
·									Last	Name
·									Email
·									Password
·									Gender
·									Birthday
·									Relationship

Table	Posts
·									Post	Id
·									Author	Id
·									Date	of	Creation
·									Content

	

Table	Friends
·									Relation	Id
·									First	Friend	Id
·									Second	Friend	Id

Table	Likes
·									Id
·									Post	Id
·									User	Id

	

Design	Facebook	Friends	suggestion	function

Design	a	system	to	implement	a	friend	suggestion	functionality	of	Facebook,	with	millions	of
users.	The	algorithm	should	suggest	all	the	friends	of	the	immediate	friends	as	a	proposed	list	to
add	as	friends.

	

Use	Case

The	system	should	suggest	friends	of	the	friends	as	suggested	new	friends.
	

Constraint

Millions	of	user’s	lot	of	data	with	billions	of	relations.
	

Basic	Design

Forget	about	millions	of	users.	Just	consider	there	are	only	a	few	persons	and	they	are	connected
with	each	other	as	friends.
	
Consider	that	people	are	represented	by	vertices	of	graphs	and	their	friendship	relation	is
represented	by	edges.
	
Since	there	are	only	a	few	people,	then	we	can	keep	everything	in	memory	and	find	the	friend
suggestion	using	Breadth	First	Traversal.
We	just	need	to	find	the	nodes,	which	are	just	2	degrees	apart	from	the	starting	node.
	

Bottleneck

Since	there	are	millions	of	users,	we	cannot	have	everything	in	memory.	Since	there	are	millions
of	users,	we	cannot	keep	the	data	on	one	machine.	One	friends’	profiles	may	lie	on	many	different
machines.
	

Scalability

Since	there	are	millions	of	users,	their	user	profile	is	distributed	among	many	different	database
servers.	User	profiles	can	be	distributed	depending	upon	Geo-Location.	The	Indian	users	profile
will	lie	in	a	server	located	in	India	and	US	citizen's	profile	lie	in	the	server	located	in	the	US.
	
Each	user	will	have	corresponding	User	Id	associated	with	them.	Some	portion	of	ID	can	be	used
to	get	Geo	location	of	the	user.	Another	portion	of	user	id	can	find	the	user	profile	on	that	server.
	
The	user	profile	is	not	that	frequently	updated	so	there	is	more	read	than	write.	So	single	master
writer	-	multiple	slave	reader	architecture	is	most	suitable	for	this	application.
	
The	application	server	can	process	the	data;	it	can	do	the	optimization	to	query	less	from	the
database	by	accumulating	user	list	to	be	processed.

	
class	system
{
private:
										map<int,	int>	*personIdToMachineIdMap;
										map<int,	Machine*>	*machineIdToMachineMap;
	
										Machine	getMachine(int	machineId);
	
public:
										virtual	Person	*getPerson(int	personId);
};
	
Person	*system::getPerson(int	personId)
{
										int	machienId	=	personIdToMachienIdMap[personId];
										Machine	*m	=	machineIdToMachineMap[machienId];
										return	m->getPersonWithId(personId);
}
	
Optimization:	Reduced	the	number	of	jumps	by	first	finding	the	list	of	friends	whose	profile	is	on
the	same	machine.	Then	send	the	find	next	degree	friends	query	which	will	return	the	list	of	next
level	friends.	By	doing,	this	work	is	distributed	among	various	machines.	Finally,	the	result	of	the
various	queries	will	be	merged	and	then	suggested	the	friends	list.
	
Better	result:	You	can	calculate	the	degree	of	the	friends	with	the	friend	list.	The	person	who	is	a
friend	of	many	of	my	friends	is	more	likely	to	be	my	friend	than	the	person	who	is	just	a	friend	of
one	of	my	friends.	We	need	to	keep	track	of	the	friend	reference	counts	by	keeping	Hash-Table	for
the	friend	list	and	make	the	count	1	whenever	we	find	a	new	person	otherwise	increase	the	count
by	1.
	
If	we	want	to	take	advantage	of	caching,	then	we	need	to	add	some	database	cache	in	between.

There	can	be	multiple	web	servers,	which	will	be	querying	the	databases,	and	there	will	be
multiple	users	who	are	accessing	their	Facebook	profile	and	each	one	of	them	is	proposed	with

new	friends	list	so	the	final	architecture	is	again	same	as	the	one	proposed	in	the	complete	web
server	implemented	in	scalability	theory.
	

Design	a	shortening	service	like	Bitly

Use	Case

Basic	use	case:
1.		Shortening	takes	a	URL	and	returns	a	short	URL.
2.		Redirection	takes	a	short	URL	and	redirects	to	the	original	URL.
3.		Custom	URL.
4.		High	availability	of	the	system.
	
Additional	use	cases:
1.		Analytics
2.		Automatic	link	expiration.
3.		Manual	link	removal.
4.		Specific	company	URL.
5.		UI	or	just	API
	
Requirement	Analysis/	Math
Firs	we	need	to	find	the	usage	pattern.
You	can	directly	ask	this	data	from	the	interviewer	or	you	can	derive	it	using	some	data	that	the
interviewer	provides.	Let	us	suppose	that	the	interviewer	tells	that	there	will	be	1	billion	requests
per	month.	In	addition,	out	of	these	10%	times,	it	is	a	new	request	and	90%	of	the	time,	it	is	a
redirection	of	the	already	shortened	URL.	Let	us	write	down	the	data	that	we	get.
1.		1BN	requests	per	month
2.		10%	are	for	new	URL/shortening	and	90%	are	for	redirection.
3.		New	URLs	per	month	is	100MLN
4.		Requests	per	second	1BN/	(30*24*3600)	=	385.	Roughly,	you	can	assume	it	400	requests	per
seconds.
5.		Total	number	of	URLs	stored	in	5	years.
5*	12*	100	MLN	=	6BN	URLs	in	5	years.
6.		Let	us	suppose	the	space	required	by	each	URL	is	500bytes.
7.		Let	us	suppose	the	space	required	by	each	Hash	code	for	corresponding	URLs	is	6byte	long.
8.		Total	data	we	need	to	store	in	five	years.	3TBs	for	all	the	URLs	and	36gb	for	hashes

6,000,000,000	*	500	bytes	=	3	terabytes
6,000,000,000	*	6	bytes	=	36	gigabytes

	9.		New	data	write	requests	per	second:	40	*	(500+6):	20k
	

Basic	design

Web	server:	provide	the	website	for	the	Bitly	service	where	users	can	generate	the	short	URL.
Application	Server:	provides	the	following	services:

1.				Shortening	service
2.				Redirection	service
3.				Key	=	Hash	Function	(URL)

Database	Server:
1.				Keep	track	of	hash	to	URL	mapping.
2.				Works	like	a	huge	Hash-Table	stores	the	new	mapping	and	retrieves	old	mapping	given

key.
Bottleneck

1.				Traffic	is	not	much
2.				Data	storage	can	be	a	problem.

	

Scalability

Application	Server:
1.		Start	with	the	single	machine.
2.		Test	how	far	it	takes	up.
3.		Do	a	vertical	scaling	for	some	time?
4.		Add	load	balancer	and	a	cluster	of	machines	to	handle	spikes	and	to	increase	availability.
	
Data	Storage:
1.		Billions	of	objects
2.		Each	object	is	fairly	small
3.		There	is	no	relationship	between	objects
4.		Reads	are	more	than	write.
5.		3TBs	of	URLs	and	36GB	of	hash.
	
MySQL:
1.		Widely	used
2.		A	mature	technology
3.		Clean	scaling	paradigms	(master/slave,	master/	master)
4.		Used	by	Facebook,	google,	twitter	etc.
5.		Index	lookup	is	very	fast.
	
Mappings:	<Hash,	URL>
1.		Use	only	MySQL	table	with	two	fields.
2.		Create	a	unique	index	on	the	hash	we	want	to	hold	it	in	memory	to	speed	up	lookups.
3.		Vertical	scaling	of	MySQL	for	a	while
4.		Partition	of	data	into	many	partitions
5.		Master-slave	(read	from	slave	and	write	to	master.)
6.		Eventually,	partition	the	data	by	taking	the	first	character	of	the	hash	mod	the	number	of
partitions.
	

Stock	Query	Server

Implement	a	stock	query	service	that	can	provide	an	interface	to	get	stock	price	information	like
open	price,	close	price,	highest	price,	lowest	price	etc.	You	should	provide	an	interface	that	will
be	used	to	enter	these	data	and	interface	to	read	this	data.
	

Use	Case

There	will	be	two	interfaces	to	this	system.
1)				First	interface	to	add	daily	stock	price	information	to	the	system.
2)				Second	interface	to	read	stock	price	information	giving	the	date	and	stock	id	as	input.

	

Constraints

Let	us	suppose	the	system	will	be	used	by	thousands	of	users.
For	each	stock,	there	will	be	only	one	write	operation	per	day.	However,	there	will	be	any
number	of	read	operations	that	can	happen	per	stock	so	the	application	is	more	read	heavy	then
write	heavy.
The	solution	should	be	flexible	enough	so	that	if	new	data	fields	need	to	be	added	to	the	stock
they	can	easily	be	added	to	the	system.
The	solution	provided	should	be	secure.
	

Basic	Design

We	can	use	a	database	like	SQL	to	store	stock	data.	Client	can	access	the	database	using	the	web
server	interface.	Below	diagram	will	show	the	basic	architecture.

In	the	above	architecture,	the	user	can	access	the	database	using	web	service.	Any	number	of
flexibility	can	be	provided	for	the	use.	For	example,	what	is	the	max	price	of	some	stock	in	6
months	etc.	At	the	same	time,	the	user	does	not	have	access	to	the	data	they	should	not	have.	We
can	provide	different	access	of	read	and	write	depending	on	the	normal	users	or	administrator.
Well-defined	rolling	back,	backing	up	data	and	security	features	are	provided	by	the	SQL

database.	The	above	architecture	is	easily	extendable	to	use	with	a	website	or	some	mobile
application.
	

Scalability

Since	we	have	1000’s	of	users,	then	having	a	single	web	server	and	a	single	database	is	not
extendable.	We	need	to	distribute	data	among	N	number	of	Databases,	which	sit	behind	some	load
balancer.	In	addition,	multiple	N	number	of	web	server	which	will	sit	behind	some	load	balancer.
Each	of	the	load	balancers	needs	to	be	provided	with	some	redundancy	as	they	will	be	a	single
point	of	failure.	Finally,	the	solution	will	look	like	below	diagram.	(For	details,	see	scalability
theory	explained	earlier	in	this	chapter)

	

Design	a	basic	search	engine	Database

You	are	given	millions	of	URLs;	how	would	you	create	your	database.	So	that	given	a	query
string	of	words,	how	to	find	the	URLs,	which	contain	all	the	words	of	the	query	string.	The	words
can	come	in	any	order.
	

Use	Case

1)				We	are	given	a	list	of	millions	of	URLs.
2)				The	user	of	the	system	will	provide	query	string.	And	we	need	to	return	the	URLs,	which

contain	all	the	words	of	the	query	string.
3)				It	is	some	kind	of	search	engine	so	we	can	pre-process	the	data	and	make	our	database.

	

Requirement	Analysis

In	the	requirement	step,	you	need	to	find	out	how	many	users	are	going	to	use	this	search	engine.
In	our	case,	let	us	suppose	there	are	not	many	users	who	are	going	to	use	our	system	so	the	sour
main	concern	is	a	database.
Maybe	we	have	N	number	of	machines	that	can	be	used	to	fast	our	data	pre-processing.
	

Basic	Design

In	this	step,	we	will	make	the	basic	design	so	let	us	make	a	working	system	with	just	a	few	URLs.
How	would	you	find	the	required	URL	from	the	given	URLs,	which	contains	all	the	words	of	the
input	query	string?
We	can	make	a	Hash-Table	in	which	words	are	the	keys	and	document	ids	are	values.
“Hello”	->	{url1,	url2,	url3}
“World”	->	{url2,	url4,	url5}
To	search	the	document,	which	contains	“hello	world”,	we	can	find	the	intersection	of	the	two
lists.	In	addition,	url2	is	the	result.
	

Bottleneck

In	this	step,	we	will	look	back	to	our	original	problem	in	which	there	are	millions	of	URLs	that
we	need	to	pre-process.	There	may	be	a	number	of	different	words	so	it	may	not	be	possible	to
keep	the	whole	Hash-Table	on	a	single	machine.	Therefore,	we	need	to	divide	the	Hash-Table
and	keep	it	on	a	separate	machine.
We	need	to	retrieve	the	URLs	that	match	a	given	word	efficiently.	So	that	we	can	find	the
intersection.
Pre-processing	all	the	millions,	URLs	by	single	machine	will	be	slow.	We	need	to	find	a	way	to

parallel	process	pre-processing	step.
	

Scalability

Let	us	look	into	the	problem	of	keeping	the	Hash-Table	in	different	databases.	One	solution	is	to
divide	the	words	alphabetically.	We	can	make	tables	corresponding	to	each	word.	Each	database
contains	tables	of	words	under	some	range.	For	example,	DB1	contains	all	the	words,	which	start
with	alphabet	“a”,	and	DB2	contains	all	the	words,	which	starts	with	the	alphabets	“b”	and	so	on.
Data	is	stored	in	the	database	and	when	a	database	reaches	its	maximum	capacity,	then	the	data	is
stored	to	next	machine	and	a	tree	kind	of	structure	can	be	made.	Finding	the	list	of	URLs
corresponding	to	some	word	is	easy,	we	can	go	to	the	corresponding	database	and	find	the	table
and	get	all	the	data	of	that	table.	Finally,	we	can	take	the	intersection	of	the	result	of	various
words.	In	addition,	the	result	will	be	given	as	output.
	
Processing	of	the	millions	of	URLs	with	a	single	machine	is	slow.	Therefore,	we	can	divide	a
bunch	of	URL	processing	among	an	N	number	of	machines,	each	URL	processing	is	independent
of	each	other	and	the	final	Hash-Table	of	the	URLs	can	be	finally	combined.	This	approach	of
processing	independent	data	and	finally	combining	their	result	is	used	in	MapReduce.
	
MapReduce:	A	MapReduce	divides	the	input	dataset	into	independent	chunks,	which	are
processed	in	parallel.	Then	their	output	is	combined	to	get	the	result.

	

Duplicate	integer	in	millions	of	documents

Given	millions	of	documents	with	all	distinct	numbers,	find	the	number,	which	occurs	multiple
times.
	

Basic	Design

Consider	there	are	just	a	few	numbers,	and	we	want	to	find	the	duplicate	numbers.
	
The	first	approach	is	to	find	keep	a	sorted	list	of	the	numbers	and	see	if	the	next	read	number
matches	with	some	number	in	the	list.
	
Another	better	approach	is	to	find	a	hash	value	corresponding	to	number	and	add	that	the	number
to	a	Hash-Table.
	

Constraint

Millions	of	documents	and	there	is	no	range	of	number	so	we	cannot	keep	everything	in	memory.
	

Scalability

We	can	find	the	hash	value	for	all	the	integers	and	then	add	that	integer	to	its	corresponding	hash
value	file	or	database.	If	there	is	some	duplicate,	then	they	will	fall	in	the	same	file.	In	the	first
pass,	various	files	are	created	and	integers	are	distributed.
	
In	the	second	pass	all,	the	data	of	the	individual	files	can	be	loaded	into	memory	and	sorted	to
find	if	there	is	some	duplicate	value.
	
We	can	use	the	same	technique	explained	above	to	process	the	various	documents	of	integer	in
parallel	by	different	machines	and	then	combine	their	output	to	get	our	result	faster.
	

Design	a	basic	search	engine	Caching

Given	a	search	engine	database	implementation	which	supports	QuerySearch()	function	which
will	return	the	best	list	of	URLs	based	on	the	words	of	the	query.	This	time	you	need	to	design	the
web	server	implementation	of	this	such	that	there	are	N	number	of	the	web	servers	which	are
responding	to	the	user	queries.	Any	web	server	can	be	picked	at	random.	QuerySearch()	is	a
heavy	operation	so	you	need	to	design,	caching	for	this	system	so	that	database	access	is	reduced.
	

Use	Case

1)		The	user	of	the	system	will	provide	query	string	and	system	will	respond	with	the	proper	list
of	URLs	corresponding	to	his	request.
2)		Given	that,	the	database	operations	are	very	heavy	we	need	to	minimize	them	by	caching	the
queries	at	the	web	server.
3)		We	need	to	keep	the	frequent	queries	in	the	cache	and	stale	queries	need	to	be	removed	from
the	cache.
4)		We	need	to	have	some	proper	refresh	mechanism	for	each	query.
	

Basic	Design

Let	us	lust	forget	about	an	N	number	of	machines	and	assume	that	QuerySearch()	operation
happens	on	a	single	machine.	Now	we	would	like	to	cache	queries.	Each	query	will	consist	of
some	string.	And	the	result	of	a	query	is	a	list	of	URLs.
	
We	need	to	have	a	quick	cache	lookup	so	that	we	can	get	the	result	of	the	Query	from	the	cache	if
it	is	present	there.	Also,	need	to	have	some	proper	refresh	mechanism	for	each	query.
The	Hash-Table	is	most	effective	to	keep	the	cache.	By	using	a	hash,	a	table	lookup	is	fast.
However,	if	the	cache	is	filled	how	you	would	remove	the	least	used	data	from	the	cache.
	
A	linked	list	can	be	used	to	remove	the	old	data.	You	can	keep	a	double	linked	list	to	manage	the
old	data	removal.	Whenever	a	data	is	accessed,	it	can	be	moved	to	the	front	of	the	linked	list	and
the	removal	can	happen	from	the	end	of	the	linked	list.
	
Taking	advantage	of	both	the	solutions,	we	can	keep	the	cache	in	a	linked	list	and	add	its
reference	to	the	Hash-Table.
	
Now	the	last	problem	of	how	to	remove	the	data	upon	the	expiry	of	it.	For	example,	most
frequently	accessed	query	result	will	always	remain	in	the	linked	list	even	though	that	result	is
changed	and	if	it	is	accessed	again	from	the	database	then	it	will	give	some	updated	result.	For
this,	we	need	to	have	some	TTL	(time	to	live)	associated	with	each	query	depending	upon	the
result	of	URLs	we	get	from	each	query.	For	example,	some	weather	or	current	news	related
queries	should	have	a	TTL	of	days,	on	the	other	hand,	some	historic	data	should	have	a	long	TTL.
The	TTL	can	be	derived	from	how	frequently	the	URLs	are	changing	in	the	query	result.
	

Bottleneck

There	are	N	different	web	servers.	And	any	particular	query	can	be	served	by	any	server.
Data	access	should	be	fast.
	

Scalability

The	various	solutions	that	we	can	think	about	are:
	
Approach	1:
Servers	can	have	their	own	cache.	If	some	query	is	sent	to	Machine1	it	will	catch	it	in	its	cache
when	the	same	query	is	sent	to	it	again	it	will	return	it	from	its	cache.	However,	if	some	query	is
sent	to	Machine1	first,	it	will	cache	it	and	if	the	same	query	is	sent	to	Machine2,	it	will	again	do	a
database	lookup	and	cache	it	to	its	own	cache.	This	implementation	is	suboptimal	as	it	is	doing
more	number	of	database	lookups	than	what	is	actually	required.
	
Approach	2:
Another	approach	is	that	each	machine	stores	identical	cache.	Whenever	some	database	access
happened	then	the	same	cache	is	updated	by	all	the	web	server.	This	approach	has	a	drawback
that	whenever	a	data	is	updated	in	cache	same	cache	update	is	fired	to	all	the	N	web	servers.
Another	disadvantage	is	that	all	the	cache	stores	the	same	data	so	we	are	wasting	precious	cache
space.
	
Approach	3:
In	this	approach,	we	will	divide	our	cache	such	that	each	web	server	holds	a	different	part	of	the
cache.	When	a	query	reach	to	some	web	server	it	knows	which	webserver	actually	holds	the
cache	for	this	query	or	at	least	knows	that	which	server	is	supposed	to	keep	a	cache	of	the
particular	query.
To	do	this	we	need	a	hash-based	approach.	We	find	the	server,	which	serves	the	query,	by	just
finding	the	hash	(query)	percentage	N.
	
When	a	query	request	come	to	some	web	server,	it	will	find	the	webserver	corresponding	to	this
query	by	applying	the	formula.	It	will	ask	the	QuerySearch()	function	to	that	particular	server.
That	server	will	in	turn	will	query	the	database	if	required	or	provide	the	result	from	its	own
cache.
Now,	regarding	the	cache	expiration	and	old	cache	removal.	We	are	keeping	the	TTL
corresponding	to	each	query	so	there	can	be	a	thread	running	which	looks	for	the	expired	data	and
remove	it	from	the	cache.
In	addition,	combination	of	linked	list	and	Hash-Table	is	used	to	keep	the	cache	to	get	rid	of	less
accessed	data	when	the	cache	is	almost	full.
	
As	a	further	improvement,	we	can	think	of	some	sort	of	Geo	location	aware	webserver	selection
and	cache	policy	so	that	query	related	to	India	is	more	supposed	to	be	done	in	India	and	query
related	to	china	is	supposed	to	come	more	from	china.
	

Zomato

Use	Case

1.		Given	a	location,	the	list	of	hotels	in	that	locality	needs	to	be	displayed.
2.		Given	a	hotel	name	that	hotel’s	rating,	review,	and	menu	need	to	be	displayed
3.		There	should	be	some	option	to	find	if	a	delivery	option	is	there	in	the	hotel.
4.		There	should	be	some	option	to	select	a	hotel	on	veg/non-veg	category.
5.		There	should	be	some	option	to	select	hotels,	which	serve	alcohol.
6.		The	user	should	be	able	to	add	reviews,	add	personal	ratings	to	the	hotels.
7.		The	user	has	some	account	or	can	access	as	guest.
8.		Users/Admin	should	be	able	to	add	a	new	hotel	to	the	system.
	

Constraints

1.		A	number	of	queries	per	second,	suppose	100	queries	per	second.
2.		There	are	more	reads	than	writes.
3.		90%	of	the	time	there	is	read	operation	and	only	10%	of	the	time	there	is	a	write	operation.
4.		100	*	60	*	60	*	24	=	8,640,000
	

Basic	Design

The	scalability	will	be	same	as	that	of	the	examples	explained	above	in	the	case	of	basic
Facebook.	Same	concept	of	redundancy,	load	balancing,	scalability	etc.
	

Abstract	Design

Each	hotel	has	some	hotel	id	associated	with	it.
1.				Data	of	the	hotel	can	be	Name,	Address,	Rating,	Review	List,	Veg-Nonveg,	and	Alcohol

etc.

2.				The	region	is	a	field	in	the	address.
3.				Search:	When	a	user	does	a	region	based	query	all	the	entries	of	the	hotels	in	that	region

need	to	be	displayed	to	the	user.
4.				Search:	User	should	be	able	to	search	specific	hotel.
5.				Add	Review/	Rating:	When	users	assess	a	hotel,	then	he	should	be	able	to	add	reviews	and

rating	for	the	hotel.
6.				Obviously	the	images	are	stored	in	CDN

	
Application	Service	layer

1.				Start	with	fewer	machines
2.				All	load	balancer	+	a	cluster	of	machines	over	time.
3.				Traffic	spike	handling.
4.				High	availability.

	
Data	Storage	Layer:

1.				Thousands	of	hotels.
2.				There	are	no	relationships	between	the	object.
3.				Reads	are	more	than	writing.
4.				Relational	database	option	is	MySQL
5.				Widely	used.
6.				Clear	scaling	paradigms.	(Master-Master	replication,	Master-Slave	replication)
7.				Index	lookups	are	very	fast.

	
One	optimization	that	we	can	assign	an	id	to	hotels	the	id	can	be	derived	from	the	locality	so	that
it	would	be	easy	to	find	hotels	in	that	locality.
	

YouTube

Scenarios

1.		Users	have	some	profile	according	to	which	content	is	shown.
2.		Content	thumbnails	are	shown	when	the	user	opens	the	YouTube	web	page.
3.		When	the	user	clicks	on	some	thumbnail,	then	that	video	is	played	on	flash	player.
	

Constraints

1.				Millions	of	users	are	going	to	use	this	service.
2.				200	million	video	requests	served	per	day.
3.				More	reads	than	writes.
	

Design

1.		YouTube	is	supposed	to	serve	huge	number	of	videos	for	which	it	has	video	serving	clusters.
A	single	video	can	be	served	from	multiple	servers	in	clusters	and	from	multiple	clusters	thereby
distributing	the	disk	read	which	increases	the	performance	of	the	system.
2.		The	most	popular	videos	are	served	from	CDN,	CDN	is	more	close	to	the	user	which	reduce
the	response	time.	And	reduce	the	load	to	the	video	serving	clusters.
3.		The	rest	of	the	metadata	of	the	video	is	served	from	other	servers	as	the	user	is	not	much
interested	in	the	metadata.
4.		The	rest	of	the	application	will	be	same	as	it	will	have	an	application	server,	database
servers,	load	balancer,	caching	etc.
5.		There	is	more	read	than	write	so	the	master	server	topology	will	be	used.	Therefore,	there	can
be	a	single	master	for	writing	and	multiple	slaves	for	reading.
6.			Master	data	is	replicated	to	slaves.	Since	slaves	are	same	as	master	then	the	master	is	down,
then	slaves	can	be	promoted	to	make	as	master.		
7.		Page	to	be	displayed	to	the	user	depends	on	his	subscribed	pages,	History	etc.
8.		Information	can	be	cached	in	the	Memcached	implemented	near	the	database	load	balancer.
	

	

Design	IRCTC

Scenario

1.		The	user	should	be	able	to	query	trains	between	two	stations.
2.		The	query	should	be	based	on	the	date,	quota,	from	and	to	the	station.
3.		The	user	should	be	able	to	see	the	availability	in	the	train	list	retrieved	from	the	above	query.
4.		The	user	should	be	able	to	book	tickets	for	the	available	seats.
	

Constraints

1.		There	will	be	a	huge	number	of	people	requesting	the	service.	Let	us	suppose	0.01	percent	of
the	population	use	the	service	daily	once.
2.		Geo-Redundancy	should	be	provided.
3.		More	read	query/	request	then	writes	requests.
	

Design

1.		The	basic	architecture	from	the	scalability	theory	topic	can	be	used	here	too.
2.		There	should	be	a	huge	number	of	servers	which	are	serving	the	users.
3.		There	should	be	multiple	servers	at	multiple	geo	locations	to	provide	geo-redundancy.	The
database	should	be	replicated	at	these	multiple	geo	locations.	There	may	be	multiple	servers	in
one	particular	zone	too.
4.		There	is	a	huge	number	of	read	query,	the	user	generally	does	a	large	number	of	query	to	find
the	seat	he	wants	to	book.	There	will	be	more	reads	then	write	so	master-slave.
5.		Queries	can	be	cached;	little	old	data	is	ok.
6.		All	the	search	will	be	served	by	slave	servers.
7.		When	we	book	a	ticket	then	transaction	goes	directly	to	the	master	server.	Locks	on	train
number	can	be	taken	to	prevent	race	conditions.	Once	a	lock	is	acquired	then	only	you	can	book	a
ticket.	Some	counts	can	be	used	to	avoid	unnecessary	locking	and	some	counter	can	be	used	for
this.
8.		Each	station	has	a	quota	in	train	and	seats	are	allocated	from	that	quota.
9.		Each	physical	train	will	have	two	train	ids	one	when	trans	go	from	source	to	destination
station	and	one	when	it	comes	back.	So	in	the	system,	there	will	be	two	train	ids.	Keeping	these
two	separate	ids	will	make	the	query	easier	to	implement.
10.		When	final	charting	is	done	then	each	seat	is	swapped	for	the	empty	slots	and	we	try	to	find
the	request	from	source	station	whose	destination	is	also	in	that	slot.	The	first	fit	is	allotted	that
seat.
11.		A	load	balancer	is	used	to	distribute	traffic.
12.		There	may	be	multiple	booking	servers	which	ask	for	a	booking	token	to	the	master	server.
Master	server	allocate	a	token	for	that	server	and	reserve	it	for	some	time.	When	all	the	user

information	is	filled	and	payment	is	done	then	only	it	allocates	real	seat	depending	upon	user
preference.
13.		Slave	server	will	handle	user	request	till	the	end.	Final	booking	request	with	the	user
payment	and	his	complete	information	will	go	to	the	master	server	and	the	corresponding	ticket
will	be	booked.
	

Alarm	Clock

How	would	you	design	an	alarm	clock?
	

Use	Case

Alarm	clock	should	have	all	the	functions	of	clock.	Should	be	able	to	show	time.
The	User	can	set	the	alarm	time
The	User	can	reset	the	alarm.
The	User	can	set	the	alarm.
	

Constrains

The	Granularity	of	alarm	can	be	15	min.
	

Test	Case

Set	the	alarm	at	some	time	6:00AM	and	set	it.
The	Alarm	should	work	at	6:00AM
Stop	the	alarm,	then	alarm	should	stop	ringing.
	

Design

There	can	be	a	clock	class,	which	manages	time	and	shoe	time	to	the	screen.
It	has	functions	getTime()	and	setTime()
Alarm	Clock	extends	Clock,	and	have	some	more	function	like	startAlarm(),	stopAlarm(),
setAlarmTime(),	ring()
	

Implementation

A	timer	entry	will	run	for	granularity	of	15	min.	Or	one	min	depends	on	customer	requirement.
It	will	check	if	current	time	==	alarm	time	if	true	then	ring.	And	the	alarm	is	on,
If	start	Alarm	is	called,	it	will	set	alarm	on
If	stop	alarm	is	called,	it	will	set	alarm	off.
	

Design	for	Elevator	of	a	building

Scenarios

A	typical	lift	has	buttons	(Elevator	buttons)	inside	the	cabin	to	let	the	user	who	got	the	lift	to
select	his/her	desired	floor.	Similarly,	each	floor	has	buttons	(Floor	buttons)	to	call	the	lift	to	go
floors	above	and	a	floor	below	respectively.	The	buttons	illuminate	indicating	the	request	is
accepted.	In	addition,	the	button	stops	illuminating	when	the	lift	reaches	the	requested	floor.
	
Use	cases:
User

•		Presses	the	floor	button	to	call	the	lift
•		Presses	the	elevator	button	to	move	to	the	desired	floor

Floor	Button	&	Elevator	Button
•		Illuminates	when	pressed	by	user
•		Places	an	elevator	request	when	pressed

Elevator
•		Moves	up/down	as	per	instruction
•		Opens/closes	the	door

	

Design

Each	button	press	results	in	an	elevator	request	which	has	to	be	served.	Each	of	these	requests	is
tracked	at	a	centralized	place.	Elevator	Requests,	the	class	that	stores,	elevator	requests	can	use
different	algo	to	schedule	the	elevator	requests.	The	elevator	is	managed	by	a	controller	class,
which	we	call	Elevator	Controller.	Elevator	controller	class	provide	instructions	to	the	elevator.

Elevator	controller	reads	the	next	elevator	request	to	be	processed	and	served.

The	button	is	an	abstract	class	defining	common	behavior	like	illuminate,	doNotIlluminate.
FloorButton,	Elevator	Button	extends	Button	type	and	define	placeRequest	()	method	which	is
invoked	when	a	button	is	pressed.	When	a	floor	button	or	elevator	button	is	presses	a	requests	is
added	to	a	common	queue.
ElevatorController	reads	the	next	request	and	instruct	next	action	to	the	elevator.
	
How	can	we	extend	this	to	multiple	elevators?
	
In	the	single	elevator	scenario,	there	is	a	single	elevator	and	an	elevator	controller	and	a	common
server	where	the	floor	requests	and	the	elevator	button	request	are	stored.	Which	are	processed
as	per	the	scheduling	algorithm.
	
To	extend	this	to	multiple	elevator	scenarios	there	will	still	be	single	elevator	controller.	Floor
based	requests	can	be	served	by	any	elevator	whereas	elevator	button	requests	will	be	served
only	by	the	elevator	to	whom	the	button	belongs.
	
FloorButton's	placeRequest()	adds	a	request	to	the	common	queue,	which	is	accessed	by	the
elevator	controller	thereby	assigning	the	request	to	one	of	the	elevators.	ElevatorButton's
placeRequest	adds	a	request	to	the	elevator	directly	as	it	is	supposed	to	serve	it.	Elevator
controller	will	be	running	various	algorithms	like	shortest	seek	etc.	to	decide	which	lift	is
supposed	to	handle	which	request.	

Valet	parking	system

Design	a	valet	parking	system.
	

Use	Case

The	requirements	of	the	valet	parking	system	should	be:
1.		Given	a	Parking	lot	having	a	fixed	number	of	slots
2.		Where	a	car	can	enter	the	slot	if	there	is	a	free	slot	and	then	it	will	be	given	the	direction
of	the	free	slot.
3.		When	exiting	the	car	has	to	pay	the	fees	for	the	duration	of	the	time	the	car	is	in	the	slot.
	

Constraints

1.				Parking	slots	come	in	multiple	sizes-	small,	mid	and	large
2.				Three	types	of	vehicles,	small,	mid,	large	
3.				A	small	vehicle	can	park	in	a	small,	medium,	or	large	spot	
4.				A	medium	vehicle	can	park	in	a	medium	or	large	spot	
5.				A	large	vehicle	can	park	only	in	a	large	spot
	

Design	&	Implementation

The	parking	lot	will	have	the	following	interface
class	parkingLot
{
private:
										std::unordered_map<int,	Space*>	unreservedMap;
										std::unordered_map<int,	Space*>	reservedMap;
	
public:
										//It	will	find	if	there	is	space	in	the
										//unreserved	map
										//If	yes,	then	we	will	pick	that	element	and
										//put	into	the	reserved	map	with	the	current	time	value.
										virtual	bool	reserveSpace(Space);
	
										//	It	will	find	the	entry	in	reserve	map
										//	if	yes	then	we	will	pick	that
										//	Element	and	put	into	the	unreserved	map.
										//	And	return	the	charge	units	with	the	current	time	value.
										virtual	int	unreserveSpace(Space);
};
	

OO	design	for	a	McDonalds	shop

Let’s	start	with	the	description	of	how	the	McDonalds	shop	works.
1.		In	a	McDonalds	shop,	the	Customer	selects	the	burger	and	directly	places	the	order	with
the	cashier.
2.		In	a	McDonalds	shop,	the	Customer	waits	for	the	order	ready	notification.	Customer
upon	being	notified	that	the	order	is	ready	collects	the	burger	himself.

	
There	are	three	different	actors	in	our	scenario	and	below	is	the	list	of	actions	they	do.
Customer

1.		Pays	the	cash	to	the	cashier	and	places	his	order,	get	a	token	number	and	receipt
2.		Waits	for	the	intimation	that	order	for	his	token	is	ready
3.		Upon	intimation/	notification,	he	collects	the	burger	and	enjoys	his	drink

	
Cashier

1.		Takes	an	order	and	payment	from	the	customer
2.		Upon	payment,	creates	an	order	and	places	it	into	the	order	queue
3.		Provide	token	and	receipt	to	the	customer

	
Cook

1.		Gets	the	next	order	from	the	queue
2.		Prepares	the	burger
3.		Places	the	burger	in	the	completed	order	queue
4.		Places	a	notification	that	order	for	token	is	ready

	

	

Object	oriented	design	for	a	Restaurant

Let’s	describe	how	the	restaurant	works.
1.		In	a	restaurant,	the	waiter	takes	order	from	the	customer.
2.		The	waiter	waits	for	the	order	to	be	ready	and	once	ready	serves	the	dishes	to	the
customer.

	
These	are	the	different	actors	in	the	model	and	I	have	listed	the	different	actions	against	each
actor
Customer

1.		Selects	the	dish	from	the	menu	and	call	upon	a	waiter
2.		Places	the	order
3.		Enjoys	his	meal	once	the	dish	is	served	on	his	plate
4.		Ask	for	the	bill
5.		Pays	for	the	services

	
Waiter

1.		Responds	to	the	customers	call	on	the	tables	he	is	waiting
2.		Takes	the	customer's	order
3.		Places	the	order	in	the	pending	order	queue
4.		Waits	for	the	order	ready	notifications
5.		Once	notification	is	received,	collects	the	dish	and	serves	the	dish	to	the	corresponding
customer
6.		Receives	the	bill	request	from	customer
7.		Asks	the	Cashier	to	prepare	the	bill
8.		Gives	the	bill	to	the	customer	and	accepts	the	payment

	
Cashier

1.		Accepts	the	prepared	bill	request	from	the	waiter	for	the	given	order	details
2.		Prepares	the	bills	and	hands	it	over	to	the	waiter
3.		Accepts	the	cash	from	the	waiter	towards	the	order

	
Cook

1.		Gets	the	next	order	from	the	pending	order	queue
2.		Prepares	the	dish	and	push	the	order	to	finished	order	queue
3.		Sends	a	notification	that	the	order	is	ready

	

Class	diagram	for	the	Restaurant.
	

Object	oriented	design	for	a	Library	system

A	library	has	a	set	of	books,	which	the	users	can	borrow	for	a	certain	period	of	time	and	return
back.	Users	may	choose	to	renew	the	return	date	if	they	feel	they	need	more	time	to	read	the	book.

The	typical	user	actions	with	this	online	library	would	be
·									Sign	in/register
·									Search	books
·									Borrow	books
·									Renew	books
·									Return	books
·									View	his	profile

	
The	online	library	must	keep	track	of	the	different	books	in	the	library	currently	available	for
users	to	borrow	and	the	books	already	borrowed	by	users.	Put	it	simply	the	inventory	should	be
managed.
	
The	various	components	of	the	system:

1.					User
2.					Librarian
3.					Library
4.					Book
5.					Transection
6.					Event	Manager

	
The	below	class	diagram,	which	depicts	how	these	components	inter-operates.	
	

	
The	User	interacts	with	the	Librarian,	the	user	either	request,	return	or	renews	a	book.	The
Librarian	will	search	for	the	book	if	the	book	is	available	in	the	Library	then	issue	it	to	the	user.
A	Transection	will	be	created	and	added	to	the	Event	Manager.	Event	Manager	will	support	add
transaction	and	send	return	request	interface.	Once	the	book	is	overdue	then	the	event	manager
will	send	an	indication	to	the	student	that	the	book	needs	to	be	returned.	When	the	book	is
renewed	then	the	library	state	is	not	changed	but	the	Transection	detail	is	renewed	at	the	Event
Manager.
	

Suggest	a	shortest	path

Use	Case

The	user	had	some	coordinate	by	searching	the	coordinate	from	the	name.
Show	the	whole	map	considering	the	coordinate	as	its	centre.
Suggest	the	shortest	path	between	two	points.
	

Constraints

All	paths	are	positive	in	cost.
For	simplicity,	I	am	considering	all	paths	are	for	vehicle	only,	no	pedestrian	(pedestrian	can	walk
in	either	direction	even	in	one-way	road.)
	

Design

The	whole	city	map	is	stored	as	a	graph	in	google.
We	need	to	find	the	map	by	looking	into	the	objects,	which	are	in	the	distance	shown	by	the
browser.
The	same	path	is	stored	as	directed	graph.	And	the	graph	that	needs	to	be	rendered	depends	on	the
zoom	level.	The	preferred	algorithm	is	a*	for	this	application	to	get	the	shortest	path.
Weight	=	h(x,	y)	+	g(x,	y)
	

Exercise

1.		Design	a	system	to	implement	social	networking	like	Facebook,	with	millions	of	users?	How
would	you	find	the	connection	between	two	people?
	
2.		Autocomplete	in	www.booking.com.	Design	autocomplete	feature	for	www.booking.com.
	
3.		Instagram,	Instagram	is	an	online	mobile-based	photo	sharing,	video	sharing	service,	which
enables	users	to	take	pictures,	and	video	upload	them	to	the	server	and	share	them	on	social
networking	sites	like	Facebook	or	Twitter.
Note:	-	CDN	is	used	to	store	active	images.
	
4.		Monolithic	Website,	assume	you	have	a	monolithic	website	and	you	are	asked	to	rearchitect
the	website
Hint:	-	Discuss	whole	scalability	theory	section	here.
	
5.		Trip	Advisor
URL's	are	parsed;	content	is	collected	from	various	services,	and	then	applied	to	a	template.
	
6.		Cinchcast
Live	audio	streaming	for	business	to	do	conferences.
	
7.		BlogTalkRadio
Audio	social	network
	
8.		Client	based	recommendation	feature
How	would	you	design	a	client	based	recommendation	feature	(based	on	customer	history)	on	the
product	detail	page?	Design	Customers	who	viewed	item	A	also	view	item	B	and	item	C	in	an
online	shopping	portal.
	
9.		Car	renting	system
Design	a	car	renting	system,	including	reserving	a	car,	checking	in	and	checking	out.	Consider	all
the	cases:	reserve	a	car,	then	check	out	successfully;	reserve	a	car,	but	the	car	is	sold	out	before
you	check	out...
Test	Cases:

1.	Try	to	reserve	a	car	for	more	than	one	person
2.	Try	to	reserve	a	car	that	is	sold	out
3.	Verify	the	checkout	process.	After	checking	out	a	particular,	you	should	be	able	to
reserve	it	for	another	customer.
4.	Try	to	reserve	the	same	car	for	different	customers	in	different	dates

	

10.		Online	cab	booking	system	(like	Uber)
Admin	Module

1.		Admin	should	be	able	to	add	new	driver	/	taxi	details.
2.		Should	be	able	to	calculate	the	amount	that	needs	to	be	paid	to	the	drivers.
Monthly,	weekly	or	daily.

	
User	Module

1.		Should	be	able	to	choose	from	and	to	location.
2.		Available	Taxies	type,	along	with	fare	details.
3.		Select	a	Taxi	type
4.		Book	the	taxi.
5.		A	confirmation	message	for	the	booking.

	
Driver	Module

1.		A	driver	should	be	able	to	register	as	a	driver	to	Uber.
2.		When	a	job	is	displayed	to	the	driver	he	should	be	able	to	accept	the	job.
3.		When	the	driver	reaches	to	the	customer	then	he	should	be	able	to	start	a	trip.
4.		When	the	driver	had	taken	the	customer	to	the	desired	location	then	he	should	stop
the	trip.
5.		The	driver	should	collect	the	fare	based	on	the	amount	displayed	in	the	app.
6.		The	driver	should	be	able	to	give	customer	feedback.

Note:	Just	assume	2	minutes	is	equal	to	1	KM.
	
11.		Online	teaching	system

·									In	an	online	teaching	system,	there	are	n	number	of	teachers	and	each	one	teaches	only	one
subject	to	any	number	of	students.

·									And	a	student	can	join	to	any	number	of	teachers	to	learn	those	subjects.
·									And	each	student	can	give	one	preference	through	which	he	can	get	updates	about	the

subject	or	class	timings	etc.
·									Those	preferences	can	be	through	SMS	or	Twitter/Facebook	or	Email	etc.
·									Design	above	system	and	draw	the	diagram	for	above.

	
12.		Customer	Order	Booking	System

Admin	Module
1.	Should	be	able	to	add/edit/delete	item,	along	with	quantity,	price,	and	unit.
2.	Should	be	able	to	see	all	orders.

Customer	Module
1.	Should	be	able	to	enter	his/her	details	for	shipping,	along	will	basic	information
like	name,	email,	contact	etc.
2.	Can	choose	item,	quantity
3.	automatically	payable	price	should	be	generated	as	per	selected	item	and	quantity.
4.	Should	be	able	to	confirm	the	order.

5.	After	confirmation	can	see	order	confirmation	report	along	with	order	number,
which	will	be,	system	generated.

	
13.		Online	Movie	Booking	System

Admin	Module
1.	Should	be	able	to	enter	all	movies,	which	have	been	released,	and	about	to	release
in	next	week	with	all	possible	details	like	theatre	location,	price,	show	timings	and
seats.
2.	Should	be	able	to	delete	movies,	which	are	no	longer	in	the	theatre.
3.	Can	see	a	number	of	booked	tickets	and	remaining	tickets	for	single	theatre	or	for
all	theatre.

User	Module
1.	User	should	be	able	to	check	all	ongoing	movies	in	theatre	along	with	locations,
availability	of	seats,	price,	and	show	timings
2.	The	user	should	be	able	to	check	all	upcoming	movies	for	next	week	too.
3.	All	movies	those	are	running	on	theatre	should	be	available	for	booking	(one	ticket
or	more	than	one	ticket	can	be	booked).
4.	After	booking	user	should	see	the	confirmation	message	of	booking. 

	
14.		Design	an	online	Auction	system	(similar	to	e-bay)
Functionalities	include	enlisting	a	product	for	auction	by	bid	owner,	placing	the	bid	for	a	product
by	bidders,	Bid	winner	selection,	Notification	of	bid	winner	etc.).

APPENDIX

Appendix	A

	
Algorithms Time	Complexity
Binary	Search	in	a	sorted	array	of	N	elements ᭨(log᭧)
Reversing	a	string	of	N	elements ᭨(᭧)
Linear	search	in	an	unsorted	array	of	N	elements ᭨(᭧)
Compare	two	strings	with	lengths	L1	and	L2 ᭨(᭿᭻ᮀ(᭥1,	᭥2))
Computing	the	Nth	Fibonacci	number	using	dynamic	programming ᭨(᭧)
Checking	if	a	string	of	N	characters	is	a	palindrome ᭨(᭧)
Finding	a	string	in	another	string	using	the	Aho-Corasick	algorithm ᭨(᭧)
Sorting	an	array	of	N	elements	using	Merge-Sort/Quick-Sort/Heap-Sort ᭨(᭧	∗	log᭧)
Sorting	an	array	of	N	elements	using	Bubble-Sort ᭨(᭧!)
Two	nested	loops	from	1	to	N ᭨(᭧!)
The	Knapsack	problem	of	N	elements	with	capacity	M ᭨(᭧	∗	᭦)
Finding	a	string	in	another	string	–	the	naive	approach ᭨(᭥1	∗	᭥2)
Three	nested	loops	from	1	to	N ᭨()
Twenty-eight	nested	loops	…	you	get	the	idea ᭨()
Stack 	
Adding	a	value	to	the	top	of	a	stack ᭨(1)
Removing	the	value	at	the	top	of	a	stack ᭨(1)
Reversing	a	stack ᭨(᭧)
Queue 	
Adding	a	value	to	end	of	the	queue ᭨(1)
Removing	the	value	at	the	front	of	the	queue ᭨(1)
Reversing	a	queue ᭨(᭧)
Heap 	
Adding	a	value	to	the	heap ᭨	log᭧
Removing	the	value	at	the	top	of	the	heap ᭨(log᭧)
Hash 	
Adding	a	value	to	a	hash ᭨(1)
Checking	if	a	value	is	in	a	hash ᭨(1)
	

