

Practical C++ Game
Programming with Data
Structures and Algorithms

Write high-performance code and solve game development challenges
with expert-led C++ solutions

Zhenyu George Li
Charles Shih-I Yeh

Practical C++ Game Programming with
Data Structures and Algorithms
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Rohit Rajkumar

Relationship Lead: Neha Pande

Project Manager: Sandip Tadge

Content Engineer: Shreya Sarkar

Technical Editor: Kushal Sharma

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar

Proofreader: Shreya Sarkar

Production Designer: Vijay Kamble

Growth Lead: Namita Velgekar

First published: June 2025

Production reference: 1240625

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83588-986-2

www.packtpub.com

http://www.packtpub.com

Foreword

I have known and worked with George Li in various capacities for more than 20 years.

We first met as colleagues at a private college of interactive arts in downtown Vancouver, Can-

ada. I was a full professor of linguistics at a university in the area, with extensive experience in

developing a cognitive science program at the university. Establishing a curriculum for such a

program involved familiarizing myself with areas well beyond the area of my specific academic

position and collaborating closely with colleagues – particularly in computing science (cognitive),

psychology, and philosophy (particularly concerning socio-epistemological issues such as AI).

It was in this spirit that I was happy to associate myself with a private college, focusing on language

study and teaching, together with preparing students to handle 3D computer applications (e.g.,

3ds Max, 3D GameStudio, and Unreal) and showing them how to generate animation materials

for film, TV, and games.

George Li was in charge of all the technical requirements of the college. I very quickly realized

that he was not only extremely competent and forthcoming (he had already occupied high-level

computing-teaching/-application positions, software engineering for instance, in China prior to

emigrating to Canada) but also computationally competent and brilliantly innovative. He also had

a particular interest in the development of game engines and was already collaborating with his

colleague, Charles Yeh, on a practical reference book, XNA PC and Xbox360 C# Game Programming,

with proprietary-produced text and games to his credit.

As colleagues in the college, George and I found common, mutually-strengthening interests.

Eventually, he and I found ourselves in charge of creating a two-year interactive arts program

curriculum for the college.

My whole career (at universities in the UK and Canada, and as a member of the editorial boards

of a major academic journal and a very influential series) has closely involved the evaluation of

the intellectual quality of people’s capabilities and work, and in my opinion, George Li’s innate

talents shine out clearly throughout his work and will continue to do so in the future. His ability

to express his knowledge of the subject at hand is outstandingly demonstrated in all his work,

performance, expressions, and character.

This book, co-authored with Charles Yeh, is designed for independent developers, company

training, and post-secondary reference use. The knowledge presented herein is most intelligently,

clearly, and effectively presented so as to be as efficiently applicable and pedagogically effective

as possible on any device or platform, producing high-quality games, accessories, and edits.

This volume will certainly stand the test of time and fulfill the majority of the needs of those

working in the field of gaming. However, I am certain that George and Charles, working together,

will make further, very crucial contributions to this topic.

Until then, this volume will serve you excellently, helping you enjoy and prosper with your future

activities and products.

Dr. E. Wyn Roberts (M.A. Ph.D (Cantab.))

Emeritus Professor of Linguistics, Simon Fraser University, Burnaby, Canada

Contributors

About the authors
Zhenyu George Li is a passionate video game developer with over 20 years of experience in

the field. As a seasoned software engineer, George has contributed significantly to the develop-

ment of numerous games throughout his career and currently serves as a senior development

engineer at Unity.

George’s fascination with video games was sparked during his college studies, igniting a passion

that would shape his professional journey. During the early stages of his game development

endeavors, George immersed himself in technologies such as Visual Basic, C/C++, DirectX, Open-

GL, Windows GUI, SQL, and so on. These foundational experiences laid the groundwork for his

subsequent success in the industry.

Throughout his career, George has made substantial contributions to various commercial games.

Notable titles on his portfolio include Unity demo and starter kit games, Sandbox, Halo Infinite,

Magic Arena, Stela, Dead Rising 2, The Bigs 2, and others. His involvement in these projects has

allowed him to gain extensive knowledge and practical experience in a wide range of domains,

including programming, game engines, gameplay and AI, graphics, animation, multiplayer, game

physics, frontend, and multiplatform. In practical applications, George has used Unreal, Unity,

and some propriety game engines in the development of real game projects.

In addition to his achievements as a game developer, George has also honed his teaching abilities

during his eight years of college-level instruction. He has shared his knowledge and expertise

with aspiring developers, serving as a lecturer at the Vancouver Film School, College of Interac-

tive Arts, and Hefei Union University. While teaching at Vancouver Film School, George guided

students through the intricacies of Unreal Engine, helping them build a strong foundation in

professional game development.

I express my gratitude to my wife, Alison Guo, for her support in handling family responsibilities and for

enabling me to dedicate time to completing this book. I also extend my thanks to Mike Oakes and my other

colleagues for their encouragement and support throughout the writing process.

Charles Shih-I Yeh pursued his computer science studies at the University of Southern Cali-

fornia before embarking on a career in the video game industry in the early 2000s. He has held

various pivotal roles in game programming, including building proprietary game engines, crafting

Digital Content Creation (DCC) tools to streamline production pipelines, and designing engaging

gameplay mechanics alongside robust multiplayer and MMORPG tournament services.

Charles is also passionate and committed to sharing expertise and insights by delivering lectures

on game programming at several esteemed universities. He is also the author of two game design

books as well as the official translator of several famous game programming books, such as Game

Programming Gems 4, into his native language, Mandarin.

I would like to express my heartfelt gratitude to my wife, Min-hwa Lee, for her unwavering support, and to

my son, Phillip Yeh, whose encouragement means everything to me. My sincere thanks also go to my colleague,

Mike Oakes, for his tireless dedication, as well as to all the technical reviewers and editors whose valuable

feedback and commitment have been indispensable throughout this journey.

About the reviewers
Michael Oakes is a software development manager for Unity who has worked in the games

industry for 9 years, and in the IT industry for 27 years. Originating from Grimsby in the UK, he

now lives in Calgary, Canada, and holds a Master’s degree in computer science and is a Certified

Project Management Professional. He has worked with real-time 3D and games for over 9 years,

specializing in mixed reality design and development, shader programming, and AI and multi-

player systems. Michael has worked as a technical consultant on several other titles, including

Unity ML-Agents – Fundamentals of Unity Machine Learning, Practical AI on the Google Cloud Platform,

and Unreal Engine 5 Game Development with C++ Scripting: Become a professional game developer

and create fully functional, high-quality games.

First of all, I would like to thank my wife Camie for her support and patience for the time I spent locked away

in my office conducting this book review, and also my late mother Sally, for her unconditional love and support

in all my endeavors—my sister and I miss you dearly. Finally, I would like to thank Packt for providing the

opportunity, support, and their trust.

Akhilesh Tiwari is director of production engineering at InvestCloud and has over two decades

of software development experience. He obtained his MTech from BITS Pilani, India. Akhilesh

has developed software solutions for the world’s leading organizations such as Merck, Novartis,

BNY Mellon, Fujitsu, Cognizant, and Persistent Systems, to name a few. Akhilesh is a passionate

software engineer. Even in his free time, he is hacking Raspberry Pi with his kids. Akhilesh now

resides in New Jersey, USA, where he enjoys a fulfilling family life.

First of all, I would like to thank the Supreme Personality of Godhead, Krishna, for everything. I would like

to thank my loving parents for their unconditional love and support. I would not have been able to do this

book review without the support of my loving wife, Sanchita, and my two young ones, Osh and Radha. Last

but not least, I would like to thank Packt for this opportunity and their trust.

Table of Contents

Preface � xix

Part 1: Data Structure and Algorithm Fundamentals � 1

Chapter 1: Gearing Up: C++ for Game Development � 3

Technical requirements ��� 4

Why learn algorithms for game development? ��� 5

Why is C++ used in this book? �� 6

Understanding the structure for introducing algorithms in this book ��������������������������������� 7

Setting up your development environment ��� 8

Install Visual Studio 2022 • 8

Downloading the Knight solution from GitHub • 10

Utilizing the raylib graphics library �� 11

Introducing Knight �� 12

What’s new in Knight? • 12

Introducing the game flow structure • 13

Introducing Scene, SceneObject, and Components • 14

Investigating Demo1.cpp ��� 16

Implementing the main() function • 17

Overriding the Knight::Start() function • 18

Overriding the Knight::Update() function • 19

Summary ��� 23

Table of Contentsx

Chapter 2: Data Structures in Action: Building Game Functionality � 25

Technical requirements ��� 26

Data structures and algorithms in games �� 27

Deciphering the secrets of game screenshots ��� 27

Common entities found in video games • 29

Defining the Entity C++ class • 31

Evaluating data structure and algorithm ��� 34

Measuring the efficiency of data structures • 34

Measuring of complexity • 35

Measuring scalability • 35

Big O: Measuring the efficiency of data structures and algorithms • 36

Basic data structure for collections �� 37

Array • 37

Common operations on arrays • 38

Inserting/deleting versus enabling/disabling • 41

Standard C++ implementation of dynamic array • 44

Common operations on std::array • 45

List • 46

Accessing a specific element • 47

Enumerating elements in the list • 47

Inserting and deleting an element • 48

Sort • 48

The order matters – LIFO and FIFO �� 48

Stack • 49

Common operations on the stack • 54

Queue • 55

The sample project • 55

Summary ��� 61

Table of Contents xi

Chapter 3: Algorithms Commonly Utilized in Game Development � 63

Technical requirements ��� 64

Exploring randomization ��� 64

Understanding the algorithm • 65

Implementing the code in C++ • 66

Selection algorithms �� 68

Random selection • 68

Weighted random selection • 70

Demo3a: Random and weighted-random selections in action • 73

Exclusive selection • 74

Demo3b: Exclusive random selection • 77

Shuffling for randomization �� 78

Demo3c: Fisher-Yates shuffling • 80

Sorting algorithms ��� 84

Demo3d: Sorting cards • 84

Procedural generation ��� 86

Demo3e: Maze generation • 89

Object pooling ��� 90

Outlining the pooling algorithm • 91

Applying ObjectPool • 93

Summary ��� 94

Part 2: Graphics Algorithms in Practice � 97

Chapter 4: 2D Rendering and Effects � 99

Technical requirements ��� 100

Understanding 2D graphics operations behind the scenes ��� 100

Loading and rendering a texture as an image • 100

Choosing an appropriate texture format • 104

Table of Contentsxii

Using the cache to avoid loading the same texture repeatedly • 109

Implementing an LRU texture cache • 109

Working with 2D texture rendering �� 113

Rendering part of a region from the source texture • 114

Rotating the texture image • 114

Color blending • 115

Alpha blending • 118

Advanced color and/or alpha blending modes • 121

Combining both color and alpha blending • 122

N-patch texture • 126

Using screen scrolling �� 128

Parallax scrolling • 129

How parallax scrolling works • 130

Rendering isometric maps �� 132

How isometric projection works • 134

Summary �� 136

Chapter 5: The Camera and Camera Controls � 137

Technical requirements ��� 138

Camera – how players see the game world ��� 138

Common uses of cameras in video games • 140

First-person camera • 140

Third-person camera • 141

Top-down camera • 141

Rail camera • 142

Fly-through camera • 143

Other variations • 144

Table of Contents xiii

Defining the camera for rendering a scene �� 145

Basic properties of a camera system • 145

Projecting a 3D world onto a 2D screen • 147

Perspective projection • 148

Orthographic projection • 149

Working with the built-in camera system �� 150

Using the first-person-view camera • 150

Using the orthogonal camera • 151

Overriding the default control for built-in cameras • 153

Building a third-person follow-up camera �� 153

Building a rail camera system ��� 155

Building a top-down camera for RTS ��� 158

Rendering multiple split-screen cameras �� 161

Customizing the rendering operation • 162

Working with RenderTexture • 163

Summary ��� 168

Chapter 6: 3D Graphics Rendering � 169

Technical requirements ��� 170

Programming with modern GPUs ��� 171

Understanding different coordinated spaces • 171

Model space • 171

World space • 172

View space (camera space/eye space) • 173

Clip space • 174

Normalized device coordinates space (NDC) • 174

Screen space • 174

Introducing the 3D graphics rendering pipeline • 175

Stages of the graphics rendering pipeline • 175

Table of Contentsxiv

Working with vertex and fragment programs • 177

Vertex program (vertex shader) • 178

Fragment program (fragment/pixel shader) • 183

Passing data from CPU to GPU • 184

Lighting up the world �� 186

Understanding directional light • 187

Understanding point lights • 190

Rendering with multiple lights • 191

Achieving better realism ��� 195

Describing the surface properties • 195

Rendering with normal mapping • 196

Summary ��� 204

Chapter 7: Rendering a 3D Game World � 205

Technical requirements ��� 206

Rendering imposters (billboards) �� 206

Making 2D look like 3D • 207

Rendering visual effects with particle systems ��� 211

Implementing particle animation effects • 212

Multi-pass rendering effects ��� 216

Rendering shadows • 216

Shadow map creation (first pass) • 217

Shadow application (second pass) • 217

Softening the shadow edges • 227

Creating a large outdoor landscape �� 229

Height-mapping 3D terrain • 230

Rendering terrain with level of detail (LOD) • 235

Implementing level of detail with quadtree • 236

Building a quadtree for the terrain • 240

Traversing the quadtree for terrain rendering • 242

Rendering a skybox • 247

Table of Contents xv

Part 3: Breathing Life into Your Games � 251

Chapter 8: Animating Your Characters � 253

Technical requirements ��� 254

Understanding keyframe animation �� 254

Understanding motion techniques • 256

Linear interpolation • 256

Ease-in/ease-out interpolation • 257

Ease-in-out • 259

Learning about skeletal animation �� 260

Understanding 3D motion related to mathematics • 260

Vector • 260

Quaternion • 261

Matrix • 262

Skeletal animation keyframes • 262

Demo8a – playing animation with interpolation • 263

Frame-by-frame animation implementation • 264

Interpolation playback implementation • 264

Transiting between animations • 266

Demo8b – transitioning animations with two channels • 268

Using inverse kinematics ��� 273

Understanding the robotic arm scenario • 274

Learning the fundamental terms and mathematical concepts • 274

Understanding the algorithm • 276

Demo8c – using IK to simulate a robotic arm • 276

Summary ��� 281

Table of Contentsxvi

Chapter 9: Building AI Opponents � 283

Technical requirements ��� 284

Understanding Finite State Machines �� 284

Example of an FSM • 284

Implementing an FSM • 285

Demo9a: Controlling character animation with an FSM �� 289

Using a Behavior Tree to make decisions �� 292

Example of a BT • 293

Implementation of a BT • 294

Steering for movement �� 299

Demo9b: Using an FSM and BT to control the NPC �� 301

Understanding A* pathfinding ��� 305

How A* works • 305

Processing data with a priority queue • 305

Calculating path node priority values • 307

The versatility of A* • 307

Delving into an A* on a grid example • 308

Demo9c: Pathfinding in action with character movement ��� 309

Summary �� 314

Chapter 10: Machine Learning Algorithms for Game AI � 315

Technical requirements �� 316

Reviewing the evolution of AI ��� 316

Learning the basic concepts of a neural network �� 317

Understanding how neural networks predict ��� 321

Understanding how neural networks learn ��� 326

Step 1: Predicting outputs • 326

Step 2: Calculating the output errors • 326

Step 3: Propagating errors backward • 326

Step 4: Updating the weights • 328

Table of Contents xvii

Demo10: An AI-controlled turret defense game �� 331

Getting started with training and playing Demo10 • 332

Controlling the turret with the TurretController class • 333

Understanding learning rate, epochs, and training cost • 336

Understanding training cost and gradient descent • 337

Training the models • 338

Summary ��� 344

Part 4: Reflecting and Moving Forward � 347

Chapter 11: Continuing Your Learning Journey � 349

Recapping your journey ��� 349

Extending Knight for your game project �� 352

Extending the rendering feature through a component • 352

Separating gameplay logic and rendering • 353

Decoupling gameplay logic and rendering – the approaches • 355

Looking forward ��� 357

Expanding your knowledge: Becoming an expert • 357

Future learning suggestions • 359

Summary ��� 360

Cheers to your success! • 361

Other Books You May Enjoy � 365

Index � 369

Preface

Game development is a unique and fascinating field where creativity meets technical expertise.

At its core, every game is built upon a foundation of efficient data structures and algorithms,

enabling seamless gameplay, intelligent AI, and immersive worlds. Whether you’re designing

smooth character movement, optimizing rendering performance, or implementing complex

game AI, a strong understanding of these fundamental concepts is essential.

This book, Practical C++ Game Programming with Data Structures and Algorithms, is designed to

bridge the gap between theoretical knowledge and practical game programming. While many

books cover data structures and algorithms from a general perspective, this book focuses spe-

cifically on their applications in game development, providing real-world examples and C++

implementations tailored for interactive experiences.

This book is structured around practical applications rather than strict learning methodologies,

making it both an effective guide for learning and a valuable reference for game developers. To

reinforce key concepts, it provides sample projects that demonstrate the natural, real-world usage

of the introduced algorithms. These projects are built using raylib, a free and lightweight graphics

library, with a simple engine layer, Knight, designed on top of it to facilitate hands-on learning.

Practical C++ Game Programming with Data Structures and Algorithms focuses on C++ programming,

utilizing basic C and C++ syntax while intentionally avoiding complex data types and advanced

modern C++ features. This approach ensures that readers can concentrate on understanding

game algorithms without being overwhelmed by intricate language details, making the content

accessible to both beginners and experienced developers.

Reading this book offers several key benefits that will support your learning journey. First, it is

designed to streamline the learning process, making it easier to grasp complex concepts efficiently.

The structured organization of topics eliminates the need for scattered searches, allowing you to

focus on relevant information without wasting time on unrelated materials. Additionally, this

book serves as a reliable reference guide, providing a comprehensive resource that you can revisit

for deeper study and practical application.

As you start this journey, I encourage you to stay curious, take your time, and enjoy the process of

learning by doing. Game development can feel complex at times, but every step you take builds

your skills and brings you closer to creating something truly your own.

Prefacexx

This book is meant to be a helpful shortcut—a clear and practical path that can guide you toward

a more professional and advanced game development career. Whether you’re just starting out

or already have some experience, I hope this book gives you the tools and confidence to keep

growing and building. Let’s dive in and make something great!

Who this book is for
This book is intended for experienced game programmers, technical artists, and developers seeking

to sharpen their skills through practical, real-world C++ solutions. A foundational understanding

of C++, data structures, and core game development concepts is recommended. Whether you’re

aiming to deepen your expertise or looking for a trusted reference, this book will be your com-

panion in building better games.

Experienced game programmers

If you have a solid background in C++ and have worked on game projects, this book will help you

revisit, refine, and expand your knowledge of the essential algorithms and data structures used

in game systems. The examples and techniques presented will support better code structure,

optimization, and problem-solving in real development scenarios.

Technical artists and tool developers

For those working on the technical side of game production—such as game design, content cre-

ation, or pipelines—this book offers insight into how core algorithms and structures are applied

in gameplay mechanics, rendering, and animation systems. It provides the technical grounding

to bridge creative tools with efficient implementation.

Intermediate developers looking to advance

If you’re already familiar with the basics of game development and want to push your skills

further, this book offers a structured path toward practical performance-focused programming.

You’ll gain a deeper understanding of how to apply C++ techniques to real-time systems and

gameplay challenges.

Educators and students (with prior experience)

While this book is not aimed at complete beginners, it can be a valuable resource for students

and instructors in advanced game programming courses. Those with prior knowledge of C++,

object-oriented programming, and basic game development principles will find the examples

clear and applicable for hands-on learning and classroom use.

Preface xxi

Understanding the code samples in this book
The sample code snippets provided throughout this book are closely related to the code in the

Knight demo game projects available in the book’s GitHub repository, though there may be slight

variations in structure or implementation. These differences arise because the actual implemen-

tation code must account for several key factors:

•	 Supporting features: The demo game code is designed to accommodate multiple exam-

ples and use cases.

•	 Compatibility: The implementation considers various scenarios and requirements to

ensure flexibility.

•	 Error handling: Additional conditional checks are included to prevent errors and ensure

stability.

In contrast, the code snippets within the book focus primarily on explaining the core algorithms

and methodologies relevant to each topic. To enhance clarity, these examples are presented in a

simplified form, minimizing dependencies on unrelated code. This approach ensures that readers

can grasp the key concepts without unnecessary distractions, allowing for a deeper understanding

of the introduced techniques.

What this book covers
This book provides a comprehensive guide to practical game development with C++, focusing

on the data structures and algorithms that power modern games. It begins by setting up the

C++ development environment and introducing fundamental data structures for efficient game

functionality. Readers will explore essential game algorithms, including randomization, sort-

ing, procedural generation, and object pooling, followed by techniques for 2D and 3D rendering,

camera controls, and character animation.

The book delves into AI programming, covering Finite State Machines (FSMs), behavior trees,

steering behaviors, and A* pathfinding, and introduces modern AI techniques like neural networks

and deep learning. Each chapter combines theoretical insights with practical C++ implementa-

tions, providing hands-on experience in building efficient, scalable, and intelligent game systems.

Prefacexxii

Below is a list of chapters with brief descriptions to give you a quick overview of the book’s struc-

ture and the key topics covered:

Chapter 1, Gearing Up: C++ for Game Development, introduces the book’s practical approach to

learning game development algorithms with C++. It covers the importance of algorithms in

creating efficient games, explains why C++ is the preferred language, and guides you through

setting up your development environment. You’ll also get familiar with raylib and the Knight

demo project, which will serve as a learning tool throughout the book.

Chapter 2, Data Structures in Action: Building Game Functionality, explores fundamental data struc-

tures like arrays, linked lists, stacks, and queues, demonstrating how they manage game data effi-

ciently. You’ll learn how proper data organization affects game mechanics and performance. The

chapter also explains how game screenshots are captured and processed to enhance visual output.

Chapter 3, Algorithms Commonly Utilized in Game Development, introduces essential algorithms,

including randomization, selection, sorting, and procedural generation, and how they apply to

real-world game mechanics. The chapter introduces object pooling for memory optimization

and demonstrates how these algorithms improve task scheduling, animation processing, and

performance.

Chapter 4, 2D Rendering and Effects, covers 2D rendering techniques that enhance both 2D and

3D games, including animations, color blending, and parallax scrolling. You’ll learn how to use

N-patch textures for UI design and implement isometric map rendering to create visually en-

gaging games.

Chapter 5, The Camera and Camera Controls, guides you to explore how camera systems shape player

perception in 3D games, from first-person and third-person views to chase and rail cameras. The

chapter also covers object culling for performance optimization and techniques for managing

multiple split-screen cameras.

Chapter 6, 3D Graphics Rendering, dives into GPU programming and the graphics pipeline, covering

vertex transformations, shading, and rasterization. You’ll learn about lighting models, point light

attenuation, and normal mapping, which are essential for creating realistic 3D environments.

Chapter 7, Rendering a 3D Game World, introduces techniques for rendering large, immersive

3D worlds by combining billboard rendering, particle systems, and multi-pass rendering. The

chapter also covers lighting, shadows, and environmental design to enhance the visual appeal

of your game world.

Preface xxiii

Chapter 8, Animating Your Characters, explores keyframe animation, skeletal animation, and In-

verse Kinematics (IK) to create smooth, natural character movements. You’ll learn how to animate

characters dynamically using hierarchical bone structures and real-time joint calculations.

Chapter 9, Building AI Opponents, discovers AI techniques used to create intelligent game opponents,

starting with FSMs for simple decision-making. The chapter introduces behavior trees for complex

logic, steering algorithms for realistic movement, and A* pathfinding for strategic navigation.

Chapter 10, Machine Learning Algorithms for Game AI, introduces neural networks, deep learning,

and reinforcement learning in game AI. You’ll gain hands-on experience by building a neural

network-controlled turret defense system, showcasing the power of adaptive AI in games.

Chapter 11, Continuing Your Learning Journey, reflects on the key C++ game development concepts,

data structures, algorithms, graphics, animation, and AI covered in the book. It emphasizes the

importance of continuous learning and experimentation while offering guidance on what lies

ahead in your game development journey.

To get the most out of this book
To get the most out of this book, you should have a solid foundation in C++ programming, includ-

ing an understanding of Object-Oriented Programming (OOP) and data structures. Familiarity

with game-related concepts and knowledge, such as rendering, animation, physics, and frame

rate management, will also be beneficial in understanding the practical applications of the algo-

rithms introduced. While this book avoids overly complex modern C++ features, a basic grasp of

C++ syntax and programming logic is essential for following along with the examples.

The following table outlines the software and hardware requirements for this book:

 Software/hardware covered in the book Operating system requirements

Microsoft Visual Studio 2002 with the C++ compiler Microsoft Windows 10 and up

If you run the samples on systems other than Windows, such as macOS, you will need to manually

set up the project and copy the source code into the project.

If you are using the digital version of this book, we advise you to type the code yourself or

access the code from the book’s GitHub repository (a link is available in the next section).

Doing so will help you avoid any potential errors related to the copying and pasting of code.

Prefacexxiv

Note that the authors acknowledge the use of cutting-edge AI, such as ChatGPT, with the sole

aim of enhancing the language and clarity within the book, thereby ensuring a smooth reading

experience for readers. It’s important to note that the content itself has been crafted by the authors

and edited by a professional publishing team.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Practical-C-Game-Programming-with-Data-Structures-and-Algorithms. We also have oth-

er code bundles from our rich catalog of books and videos available at https://github.com/

PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781835889862.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “ However,

when we assign CameraMode as CAMERA_FIRST_PERSON and add it to the scene, Knight will activate

first-person mode and enable input control for first-person mode.”

A block of code is set as follows:

OrthogonalCamera* OrthCam = NULL;

OrthCam = _Scene->CreateSceneObject<OrthogonalCamera>("Orthogonal
Camera");

OrthCam->SetUp(Vector3{ 0.0f, 15.0f, 15.0f }, Vector3{ 0.0f, 0.0f, 0.0f },
20.0f);

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://packt.link/gbp/9781835889862

Preface xxv

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

//Push the sample data into the dataset

sampleData.clear();

sampleData.push_back(inputs[0]);

sampleData.push_back(inputs[1]);

sampleData.push_back(targets[0]);

sampleData.push_back(targets[1]);

dataset.push_back(sampleData);

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “ When installing VS2022,

make sure to enable the Desktop development with C++ module to install the C++ compiler

together with the IDE.”

Further, to maintain consistency and minimize confusion, the C++ sample code in this book

primarily follows the Visual Studio C++ coding preferences. For detailed guidelines, you can

refer to the official documentation at https://learn.microsoft.com/en-us/cpp/ide/how-to-

set-preferences?view=msvc-170.

Additionally, some special coding conventions used in the sample code are inspired by Open-

Stack’s C++ Coding Standards. You can find more details in their documentation at https://
wiki.openstack.org/wiki/CppCodingStandards#:~:text=Private%20member%20data%20

variables%20should,all%20lowercase%20with%20underscore%20separation.

In certain cases, exceptions may be made for compact expressions that enhance readability and

fit within the page layout constraints, ensuring clarity without compromising comprehension.

Warnings or important notes appear like this.

 Tips and tricks appear like this.

https://learn.microsoft.com/en-us/cpp/ide/how-to-set-preferences?view=msvc-170
https://learn.microsoft.com/en-us/cpp/ide/how-to-set-preferences?view=msvc-170
https://wiki.openstack.org/wiki/CppCodingStandards#:~:text=Private%20member%20data%20variables%20should,all%20lowercase%20with%20underscore%20separation
https://wiki.openstack.org/wiki/CppCodingStandards#:~:text=Private%20member%20data%20variables%20should,all%20lowercase%20with%20underscore%20separation
https://wiki.openstack.org/wiki/CppCodingStandards#:~:text=Private%20member%20data%20variables%20should,all%20lowercase%20with%20underscore%20separation

Prefacexxvi

Acknowledgment of art and content contributions
We would like to extend our heartfelt appreciation to those who generously contributed artwork

and content used in the examples throughout this book. Their creative support has added clarity,

style, and character to the projects and helped bring our demonstrations to life.

Special thanks to:

•	 Yi-Hong Chou

•	 Cheng-Yen Chou

•	 Cheng-Hsun Chou

•	 Cheng-Jung Chou of Play5 Studios

•	 I-Hong Chen of Agileen Inc.

Your contributions have greatly enhanced the visual quality and overall experience of this book.

We are sincerely grateful for your support.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

mailto:customercare@packt.com
http://www.packt.com/submit-errata
mailto:copyright@packt.com
http://authors.packt.com/

Preface xxvii

Share your thoughts
Once you’ve read Practical C++ Game Programming with Data Structures and Algorithms, we’d love
to hear your thoughts! Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-
ering excellent quality content.

https://packt.link/r/1835889875

Prefacexxviii

Download a Free PDF Copy of This Book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835889862

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835889862

Part 1
Data Structure and

Algorithm Fundamentals
In this part, the primary focus is on building a strong foundation in data structures and algorithms

specifically tailored for game development. While many traditional algorithm books emphasize

theory through pseudo-code, this part bridges the gap between theory and practice by offering

real-world C++ examples that demonstrate how these core concepts are applied in actual game

scenarios.

You’ll begin by exploring the essential role of algorithms in game design, and how they contribute

to creating adaptive, high-performance, and engaging gameplay. From there, you’ll learn how

data structures organize and manage game data efficiently, and how algorithms manipulate that

data to drive meaningful in-game behavior.

Finally, you’ll dive into a curated set of practical algorithms—ranging from randomization and

shuffling to procedural generation and object pooling—that are commonly used in game devel-

opment projects.

This part includes the following chapters:

•	 Chapter 1, Gearing Up: C++ for Game Development

•	 Chapter 2, Data Structures in Action: Building Game Functionality

•	 Chapter 3, Algorithms Commonly Utilized in Game Development

1
Gearing Up: C++ for
Game Development

Game algorithms are essential for creating high-performance, adaptive, and engaging games.

While many algorithm books focus on theory and concepts using pseudo-code, they often lack

practical examples relevant to game development. This book bridges this gap by offering re-

al-world game development examples that not only explain algorithms but also demonstrate

how to apply them effectively. This approach enables you to grasp both the theory and practical

implementation of algorithms within the context of game development, fostering a deeper un-

derstanding and facilitating their application in creating compelling games.

This chapter serves as the introduction to the book, outlining its purpose, organizational structure,

and the tools used to illustrate algorithms in practical game development scenarios. Key topics

covered in this chapter include:

•	 Why learn algorithms for game development?

•	 Why is C++ used in this book?

•	 Understanding the structure for introducing algorithms in this book

•	 Setting up your development environment

•	 Utilizing the raylib graphics library

•	 Introducing Knight

•	 Investigating Demo1.cpp

Gearing Up: C++ for Game Development4

Technical requirements
As a reader of this book, you are expected to have basic computer operational skills. You should also

be capable of installing the required applications and setting up your programming environment.

To follow this chapter, you are required to install MS Visual Studio 2022 or a later version along

with the C++ compiler. Additionally, download the sample code from this book’s GitHub repos-

itory.

Here is the link to the GitHub repository:

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-

Structures-and-Algorithms

Additionally, you can access the Demo1 project here: https://github.com/PacktPublishing/

Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight

The recommended minimum development environment for running the sample projects is as

follows:

•	 Operating System (OS): Windows 10

•	 Central Processing Unit (CPU): Intel 7th generation or equivalent

•	 Graphics Processing Unit (GPU): GTX1080 (or AMD equivalent)

•	 Random-Access Memory (RAM): 8GB

•	 Hard Drive Storage: 20GB of available space

•	 OpenGL API: 3.3

To check the OpenGL version supported by your system, you can download and install the free app,

GPU-Z, from the following link: https://www.techpowerup.com/download/techpowerup-gpu-z/.

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://www.techpowerup.com/download/techpowerup-gpu-z/

Chapter 1 5

Figure 1.1 – Using GPU-Z to check the OpenGL version on your system

Why learn algorithms for game development?
Algorithms play a crucial role in game development, serving as the backbone for many core

functionalities and features. Here are several key points highlighting their importance.

Algorithms can be used to define how game mechanics operate and even provide solutions for

solving problems in effective and performative ways, including player interactions, artificial

intelligence behavior, physics simulations, and so on. For example, pathfinding algorithms de-

termine how Non-Player Characters (NPCs) navigate through environments, enhancing realism

and player engagement.

Gearing Up: C++ for Game Development6

Efficient algorithms are essential for optimizing game performance, ensuring smooth gameplay

experiences. Performance is an important concern for game developers. Appropriate algorithms

applied for resource management, rendering, collision detection, and other game operations can

contribute significantly to achieving consistent frame rates and reducing latency.

They also deal with content generation, and procedural techniques enable dynamic generation

of game worlds, levels, textures, and even narrative elements. This approach not only saves de-

velopment time but also creates diverse and immersive gaming experiences that feel unique with

each playthrough.

Advanced algorithms power simulations within games, such as physics, weather, and complex

simulations. These algorithms enhance immersion by simulating real-world dynamics and in-

teractions.

Artificial Intelligence (AI) algorithms are fundamental to simulate smart behaviors, deci-

sion-making, and strategic responses in NPCs and opponents, making games challenging and

engaging for players.

Fundamentally, algorithms are pivotal in translating game concepts into interactive experiences.

Their efficient implementation and optimization are crucial for crafting engaging, enjoyable, and

technically sound games.

Why is C++ used in this book?
C++ is a versatile programming language renowned for its performance, compatibility, and adapt-

ability, making it an ideal choice for game development. Its efficiency in resource management

and speed of execution are critical for high-performance applications such as games. Additionally,

C++ is compatible with a wide range of platforms and libraries, providing developers with the

flexibility to create complex and interactive gaming experiences.

C++ is widely used in game development because of its performance, versatility, and precise con-

trol over system resources. It is supported by many leading game engines, such as Unreal Engine

and Unity, as well as proprietary SDKs developed and used by game studios.

This book explains algorithms directly in C++ instead of using pseudo-code, offering fully func-

tional and executable sample code. You can experiment with the code and observe the algorithms

in action. Each sample project is based on the covered algorithms, demonstrating their real-world

applications. This practical approach helps connect theoretical concepts with hands-on experience.

Chapter 1 7

We’ve chosen to use traditional C++ programming syntax to ensure that the code is easy to read

and understand. By avoiding modern C++ syntax, we maximize the compatibility and reusability

of the code, making it accessible to a broader audience. The primary goal of the sample code is to

simplify the learning process, allowing you to quickly grasp the essentials of implementing the

introduced algorithms. Therefore, comprehensibility takes the highest priority, while performance

and code structure rules are not strictly adhered to in the sample code (see Preface for more details).

The sample code provided in this book serves as a valuable resource for accelerating your game

development process. By reusing these samples, you can quickly develop high-quality, profes-

sional solutions for your projects. These examples are designed to be practical references, easily

integrated and adapted for real-world applications. Whether you are looking to understand the

basics of an algorithm or seeking a foundation to build upon, the sample code offers a robust

starting point.

Incorporating these code samples into your projects not only saves time but also ensures that

you are building upon proven, functional algorithms. The code can be modified and expanded to

suit the specific needs of your game, providing a flexible and reliable base for your development

efforts. By leveraging the provided examples, you can focus on enhancing your game’s features

and performance and be confident in the quality and reliability of your underlying code.

Understanding the structure for introducing
algorithms in this book
In this book, we will explore a wide range of algorithms that are essential for game development.

Each chapter is structured to provide a comprehensive understanding of an algorithm through

several key components. Each algorithm will be introduced and explained following this structure:

1.	 Use case and requirement analysis: Each algorithm will begin with some use case ex-

amples that address the challenges in game development.

2.	 Algorithm explanation: We will delve into the algorithm’s logic and thought process.

This section aims to break down the algorithm and introduce the idea and steps, which

explain the underlying principles.

Gearing Up: C++ for Game Development8

3.	 C++ implementation: Based on the algorithm’s theory, the book presents key blocks of

code of the C++ implementation to help you grasp the core idea of the algorithm. To better

understand the source code, you can read into the demo projects’ code, which contains

helpful comments.

4.	 Code explanation: After presenting the C++ code, when needed, we will explain the

important lines and blocks of code in detail.

Some chapters will include examples of the algorithm applied to real game scenarios, such as

collision detection or AI behavior. When specific problems aren’t relevant, generalized examples

will showcase the algorithm’s versatility. This approach ensures you gain both theoretical and

practical insights, making the book a valuable resource for developers at any level.

Now, let’s dive in and set up your work environment to start experimenting with the samples

and code provided in this book.

Setting up your development environment
By now, you are aware that we are using C++ and Knight to demonstrate algorithms in this book.

In the final section of this chapter, we will provide guidelines for setting up your work environment.

This will enable you to explore the sample code and experiment with your own implementations.

Now it’s time to get hands-on by following these steps to set up your working environment.

Install Visual Studio 2022
Microsoft Visual Studio (MSVS) is an Integrated Development Environment (IDE) that can

be used to create, edit, debug, and compile your C++ code. You should have a Microsoft account

before installation.

To install MSVS, you can visit the official website (http://visualstudio.microsoft.com/vs/)

and download the Visual Studio 2022 (VS2022) Community version installation package. This

is what the website should look like:

http://visualstudio.microsoft.com/vs/

Chapter 1 9

Figure 1.2 – Downloading VS2022 from Microsoft

When installing VS2022, make sure to enable the Desktop development with C++ module to

install the C++ compiler together with the IDE.

Figure 1.3 – Installing the VS2022 IDE with the C++ compiler

Next, let’s download Knight from GitHub.

Gearing Up: C++ for Game Development10

Downloading the Knight solution from GitHub
You can clone the Knight solution from the GitHub repository (https://github.com/

PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms)

into a folder on your local computer, such as C:\Knight.

The cloned root folder contains the following sub-folders and files:

•	 /.git: Contains Git version control information

•	 /Knight: Contains Knight and the demo projects

•	 /raylib: Contains the raylib library

•	 /resources: Contains the 3D models, images, audio resources, and so on that will be

used for the demos

•	 .gitignore: Specifies which files and directories should be ignored by the version control

system

•	 License: Includes the license information

•	 README.md: Includes README information about the repository

In Visual Studio, open <Install Folder>/Knight/Knight.sln, build the solution, and press the

play button to run Demo1. It should open the game windows and show the game scene.

Figure 1.4 – Demo1 screenshot

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms

Chapter 1 11

Use the left and right mouse buttons to switch between the character’s Walk and Run animations.

Next, we will delve into the graphics library and SDK used in this demo, along with its source

code. Let’s begin by explaining raylib, the graphics library utilized in this demo.

Utilizing the raylib graphics library
raylib is a straightforward and free-to-use open-source programming library written in C, primar-

ily for video game development. It supports the creation of both 2D and 3D games and graphical

applications, offering a wide range of functions and utilities for graphics handling, input man-

agement, audio integration, and physics simulations.

raylib is lightweight and cross-platform, compatible with Windows, macOS, Linux, and other

operating systems. Its simplicity makes it accessible to developers of all levels, supported by

clear API documentation and practical examples. While lacking fancy interfaces, visual helpers,

and GUI tools, raylib compensates with robust code examples and comprehensive functionality.

The game engine, Knight, and the samples provided in this book are developed based on raylib.

raylib is already integrated and well-configured with the downloaded package when you check

out the sample projects from this book’s GitHub repository.

Additional resource

If you want to explore raylib further, you can download it from its repository here:

https://github.com/raysan5/raylib. The official raylib examples can also be

accessed at https://www.raylib.com/examples.html.

https://github.com/raysan5/raylib
https://www.raylib.com/examples.html

Gearing Up: C++ for Game Development12

The following screenshot shows raylib’s homepage:

Figure 1.5 – Visiting the raylib.com homepage

With the understanding of raylib and its capabilities in graphics rendering, we are now poised

to explore the custom graphics SDK, Knight, developed specifically for the samples of this book.

Introducing Knight
Knight is an object-oriented programming (OOP) wrapper written in C++ that builds upon raylib.

Serving as a higher-level engine layer, Knight offers enhanced game development tools designed

to simplify the process for you by abstracting away raylib-specific rendering details. Let’s inspect

the new features included in Knight.

What’s new in Knight?
In addition to raylib’s fundamental rendering and low-level operations, Knight introduces high-

er-level concepts and tools. These include a streamlined game-flow structure centered around

Start, Update, DrawFrame, and EndGame functions. Knight also defines key concepts such as Scene,

SceneObject, and ObjectComponent to facilitate the creation of hierarchical scenes.

Chapter 1 13

Let’s start understanding the game flow structure next.

Introducing the game flow structure
Knight is designed with a very straightforward structure that encompasses only the most basic

game flow elements. Using Knight is simple: you just inherit from the Knight class and override

its four member functions: Start, Update, DrawFrame, and EndGame. The following flow chart

illustrates how these four strategies are interconnected within the game flow:

Figure 1.6 – Knight game flow structure

The nodes in the flow chart represent the member functions:

•	 The Start function is called to initialize the game, including spawning scene objects,

setting up the scene camera, configuring lighting effects, and so on.

•	 The Update function takes care of game logic, such as processing player inputs, Non-player

Character (NPC) behaviors, collision detections, interactions, networking communica-

tions, etc.

Gearing Up: C++ for Game Development14

•	 The DrawFrame function draws all 2D images and 3D meshes to visualize the frame of the

game based on the current scene state.

•	 The EndGame function is in charge of destructing scene objects, deallocating resources,

releasing memory, and restoring game states before the game is shut down.

The following code snippet demonstrates how the Demo1 class extends the Knight class and

overrides the four member functions:

#pragma once

#include “Knight.h”

class Demo1 : public Knight

{

public:

 void Start() override;

 void EndGame() override;

protected:

 void Update(float ElapsedSeconds) override;

 void DrawFrame() override;

};

Based on the declaration of the new class member functions, you can write code to implement

these functions. The primary task of the implementations is to construct the game scene. The

game scene is composed of scene objects arranged in a hierarchical tree structure.

Introducing Scene, SceneObject, and Components
Knight introduces the concept of a scene, representing a game world that contains various scene

objects. These objects are organized in a hierarchical tree structure, where each object can have

multiple child objects that move, scale, and rotate together with their parent object. This structure

allows for efficient management and transformation of objects within the game world.

In a game scene, all objects must be added to the hierarchy, starting from a single root object that

contains all other scene objects. This root object serves as the foundation, ensuring a clear and

organized structure for the game scene.

A scene actor extends a scene object and includes transformation information that handles its

scale, location, and rotation. Child actors calculate their relative transformations based on their

parent object, providing consistent world transformation data.

Chapter 1 15

Scene objects can also be enhanced with multiple components, such as cameras, models, primitive

shapes, sprites, effects, and more. These components add functionality and visual elements to

the scene objects, enabling the creation of complex and dynamic game scenes.

By using this hierarchical structure and component system, Knight offers a flexible and powerful

framework for game development. Refer to Figure 1.7 to see the scene structure of the Demo1 project:

Figure 1.7 – Demo1 scene structure

After constructing the scene, the game appears as shown in the screenshot (see Figure 1.4). As

the castle spins, together with it, the child objects—Cube, Cylinder, Sphere, and Cone—rotate

around the castle.

Now that you have seen what Demo1 looks like, let’s uncover the details and delve into the source

code of Demo1.

Gearing Up: C++ for Game Development16

Investigating Demo1.cpp
Demo1 is a project that demonstrates how to use the Knight engine to create a game scene and add

scene objects. In this project, eight scene objects are created and added to the scene:

Figure 1.8 – Demo1 scene and the scene objects

1.	 Main Camera is a perspective camera positioned at coordinates (60, 60, 60) and aimed

at the target coordinates (0, 10, 0). Figure 1.8 is a screenshot captured from the camera’s

perspective, so the camera itself is not visible in the image.

Note

Coordinates represent positions in 3D space, and each component (X, Y, Z)

represents a spatial axis. Here’s a breakdown:

•	 X-coordinate (60): Distance along the horizontal axis (left-right)

•	 Y-coordinate (60): Distance along the vertical axis (up-down)

•	 Z-coordinate (60): Distance along the depth axis (forward-back-

ward)

Coordinate units depend on the scene’s scale, such as meters, centimeters,

or pixels.

Chapter 1 17

2.	 Castle is a scene actor with a model component that loads the castle model.

3.	 Cube is a scene actor with a cube component.

4.	 Sphere is a scene actor with a sphere component.

5.	 Cylinder is a scene actor with a cylinder component.

6.	 Cone is a scene actor with a cone component.

7.	 Plane is a scene actor with a plane component.

8.	 Character is a scene actor with a model component that loads the robot model and the

character’s animations.

Here, the Cube, Sphere, Cylinder, and Cone objects are children of the Castle, causing them to

rotate around the castle as it spins.

While running the game, the player can use the mouse’s left and right buttons to toggle between

the character’s Walk and Run animations. The castle’s spinning speed adjusts to match the se-

lected animation.

Implementing the main() function
As we know, the main() function is the entry point of a C++ program. To get started, we need

to create an instance of the Demo1 class, named KnightDemo1. Then, we call the Start() and

GameLoop() methods of KnightDemo1. Finally, upon exiting the game, we use the delete

command to release the allocated memory for the KnightDemo1 instance.

The following code snippet shows how simple it is to write C++ game code based on the Knight

engine:

int main(int argc, char* argv[])

{

 Demo1* KnightDemo1 = new Demo1();

 KnightDemo1->Start();

 KnightDemo1->GameLoop();

 delete KnightDemo1;

 return 0;

}

Next, let’s examine the implementation of the Knight::Start() function.

Gearing Up: C++ for Game Development18

Overriding the Knight::Start() function
The subclass Demo1 of Knight should override the Start() function, and the primary task in

Start() is to initialize the game. This involves creating all the scene objects and adding them

to the scene.

Before adding scene objects, we want to introduce three useful engine variables:

•	 The _Scene variable represents the game’s current scene, which is instantiated by default

when Knight starts. You can create multiple scenes and designate any one of them as the

current scene.

•	 The ShowFPS flag displays the game’s frame rate in the top-left corner of the game screen

(see Figure 1.8).

To create and add a new scene object to the scene, you can call the template function

CreateSceneObject and specify the type of scene object you want to create. The following two

lines of code create a perspective camera and a scene actor:

_Scene->CreateSceneObject<PerspectiveCamera>(“Camera”);

_Scene->CreateSceneObject<SceneActor>(“Castle”);

The only parameter of CreateSceneObject is the name of the new object.

We can create and attach components to scene objects. For example, adding a model component

that loads the castle model will render the castle in the scene. Each scene object can contain

multiple components, but each type of component is exclusive.

Calling the SceneObject::CreateAndAddComponent() template function can attach a component

to a scene object. The following code snippet creates a modelActor object, and then creates a

modelComponent and adds the component to the modelActor object:

modelActor =

_Scene->CreateSceneObject<SceneActor>(“Castle”);

ModelComponent* modelComponent =

 modelActor->CreateAndAddComponent<ModelComponent>();

modelComponent->Load3DModel(

 “../../resources/models/obj/castle.obj”,

 “../../resources/models/obj/castle_diffuse.png”);

Chapter 1 19

Another option to add components to a scene object is by creating a component instance and

then calling SceneObject::AddComponent(). The following code snippet demonstrates how to

add a new cubeComponent to the cubeActor:

cubeActor = new SceneActor(Scene, “Cube”);

CubeComponent* cubeComponent = new CubeComponent();

cubeActor->AddComponent(cubeComponent);

Now it’s time to override the functions that will be called within the game loop.

Overriding the Knight::Update() function
Game logic is managed within the Update(float ElapsedSeconds) function where the

ElapsedSeconds parameter represents time in seconds elapsed between frames. In Demo1, it per-

forms two tasks: setting character animations based on mouse button presses and incrementing

the y angle to rotate the castle.

To get the pointer of the character’s model component, you can call the GetComponent template

function:

ModelComponent *characterModel =

 characterActor->GetComponent<ModelComponent>();

You can call the GetAnimationIndex and SetAnimation functions to get the current character

animation index (an animation index is a numerical identifier that references a specific animation

clip within a character’s animation system) and set the current character animation.

The following code demonstrates how to switch between the character’s Walk and Run anima-

tions, where the indices 6 and 10 represent the two animation states:

int animIndex = characterModel->GetAnimationIndex();

if (IsMouseButtonPressed(MOUSE_BUTTON_RIGHT) &&

 animIndex != 6)

{

 characterModel->SetAnimation(6);

 spinSpeed = 20.0f;

Note

Once a component is added to an object, it will be destroyed when the object is

destroyed. A scene object is destroyed when the scene itself is destroyed.

Gearing Up: C++ for Game Development20

}

if (IsMouseButtonPressed(MOUSE_BUTTON_LEFT) &&

 animIndex != 10)

{

 characterModel->SetAnimation(10);

 spinSpeed = 10.0f;

}

Changing a scene actor’s scale, position, or rotation values can resize, move, or rotate the scene

object. For example, reducing the modelActor’s y-axis angle every frame results in the spinning

of the model actor:

modelActor->Rotation.y -= ElapsedSeconds * spinSpeed;

Although Demo1 overrides Knight’s DrawFrame and EndGame functions, it doesn’t perform any

additional processes. Therefore, it’s not necessary to override parent functions if you don’t intend

to add extra processes.

You can now review the complete Demo1.cpp code to understand how Knight can be used to

develop further demos.

The full source code of Demo1.cpp code can be found here:

1.	 The main function instantiates the demo, calls the Start function and GameLoop func-

tion—which repeatedly invokes the demo’s Update function—and, eventually, destroys

the demo instance when the program ends:

#include “Knight.h”

#include “Demo1.h”

PerspectiveCamera* camera;

SceneActor*, cubeActor, sphereActor;

SceneActor* cylinderActor, coneActor;

SceneActor* modelActor, characterActor;

float spinSpeed = 10.0f;

int main(int argc, char* argv[])

{

 Demo1* KnightDemo1= new Demo1();

 KnightDemo1->Start();

 KnightDemo1->GameLoop();

 delete KnightDemo1;

Chapter 1 21

 return 0;

}

2.	 The Start function initializes the game by first adding the camera, the castle, and four

shapes – a cube, sphere, cylinder, and cone:

void Demo1::Start()

{

 __super::Start();

 ShowFPS = true;

 camera = _Scene->CreateSceneObject<PerspectiveCamera>(

 “Camera”);

 camera->Position = Vector3{ 60, 60, 60 };

 camera->CameraMode = CameraMode::CAMERA_FIRST_PERSON;

 camera->Target = Vector3{ 0, 10, 0 };

 modelActor = _Scene->CreateSceneObject<SceneActor>(

 “Castle”);

 ModelComponent* modelComponent =

 modelActor->CreateAndAddComponent<ModelComponent>();

 modelComponent->Load3DModel(

 “../../resources/models/obj/castle.obj”,

 “../../resources/models/obj/castle_diffuse.png”);

 CubeComponent* cubeComponent = new CubeComponent();

 cubeComponent->SetColor(RED);

 cubeActor = new SceneActor(_Scene, “Cube”);

 cubeActor->SetParent(modelActor);

 cubeActor->Position = Vector3{ 40, 0, 0 };

 cubeActor->AddComponent(cubeComponent);

 cubeComponent->Size = Vector3{ 10, 10, 5 };

 sphereActor = _Scene->CreateSceneObject<SceneActor>(

 “Sphere”, modelActor);

 sphereActor->Position = Vector3{ -40, 0, 0 };

 SphereComponent* sphereComponent =

 sphereActor->CreateAndAddComponent<SphereComponent>();

 sphereComponent->SetColor(BLUE);

 sphereComponent->Radius = 5.0f;

 cylinderActor = _Scene->CreateSceneObject<SceneActor>(

 “Cylinder”, modelActor);

Gearing Up: C++ for Game Development22

 cylinderActor->Position = Vector3{ 0, 0, 40 };

 CylinderComponent* cylinderComponent =

cylinderActor->CreateAndAddComponent<CylinderComponent>();

 cylinderComponent->SetColor(GREEN);

 cylinderComponent->Radius = 5.0f;

 cylinderComponent->Height = 5.0f;

 coneActor = _Scene->CreateSceneObject<SceneActor>(

 “Cone”, modelActor);

 coneActor->Position = Vector3{ 0, 0, -40 };

 ConeComponent* coneComponent =

 coneActor->CreateAndAddComponent<ConeComponent>();

 coneComponent->SetColor(BROWN);

 coneComponent->Radius = 5.0f;

 coneComponent->Height = 5.0f;

3.	 The second part of the Start function adds the ground plane and the character to the scene:

 SceneActor* plane =

 _Scene->CreateSceneObject<SceneActor>(“Plane”);

 plane->Position = Vector3{ 0, -5, 0 };

 plane->Scale = Vector3{ 100, 1, 100 };

 PlaneComponent* planeComponent =

 plane->CreateAndAddComponent<PlaneComponent>();

 planeComponent->SetColor(DARKGREEN);

 characterActor =

 _Scene->CreateSceneObject<SceneActor>(“Character”);

 characterActor->Scale = Vector3{ 3.0f, 3.0f, 3.0f };

 characterActor->Position.z = 30.0f;

 characterActor->Rotation.y = 90.0f;

 ModelComponent* animModelComponent =

characterActor->CreateAndAddComponent<ModelComponent>();

 animModelComponent->Load3DModel(

 “../../resources/models/gltf/robot.glb”);

 animModelComponent->SetAnimation(10);

 characterActor->AddComponent(animModelComponent);

}

Chapter 1 23

4.	 The Update function handles player inputs to change characters’ animations.

void Demo1::Update(float ElapsedSeconds)

{

 ModelComponent *characterModel =

 characterActor->GetComponent<ModelComponent>();

 int animIndex = characterModel->GetAnimationIndex();

 if (IsMouseButtonPressed(MOUSE_BUTTON_RIGHT) &&

 animIndex != 6)

 {

 characterModel->SetAnimation(6);

 spinSpeed = 20.0f;

 }

 if (IsMouseButtonPressed(MOUSE_BUTTON_LEFT) &&

 animIndex != 10)

 {

 characterModel->SetAnimation(10);

 spinSpeed = 10.0f;

 }

 modelActor->Rotation.y -= ElapsedSeconds * spinSpeed;

 super::Update(ElapsedSeconds);

}

Now, you should be prepared to delve deeper into the algorithms introduced in this book through

practical game development examples.

Summary
This first chapter of the book served as a foundational introduction, aimed at equipping you

with the necessary prerequisites for delving into subsequent chapters and mastering game de-

velopment. It began by elucidating the book’s objectives, outlining how it will empower you to

advance as a proficient game developer. Emphasizing the use of C++, the chapter underscored

its suitability for illustrating the concepts and implementations discussed throughout the book.

Gearing Up: C++ for Game Development24

Central to this chapter was the introduction of the format used to present algorithms throughout

the book. Following this, we introduced raylib, an open-source graphics library, and Knight, an

easy-to-use OOP game engine developed by the author. We discussed the structure and funda-

mentals of Knight, emphasizing its role in streamlining game development through practical,

hands-on examples. This included an in-depth exploration of Demo1, a demo project that show-

cases the engine’s capabilities and serves as a concrete example of its application.

A comprehensive guide on setting up the development environment was the last section of this

chapter, which ensured that you could seamlessly access and review the source code of demo

projects, thereby enhancing your understanding of algorithms and their real-world applications

in game development.

Overall, Chapter 1 laid a robust foundation, preparing you to navigate subsequent chapters with

confidence and clarity.

In the next chapter, you will get hands-on experience applying fundamental data structures and

related algorithms to game development scenarios.

2
Data Structures in Action:
Building Game Functionality

A data structure organizes data for efficient access and processing. By itself, data is just raw infor-

mation; to solve problems or reach goals, you apply a step-by-step procedure called an algorithm.

Much like any other computer program, a video game is composed of a set of data structures and

the algorithms that operate on them.

Imagine a typical video game battle scene where you control a player character fighting against

a group of NPC monsters. These monsters are essentially just data with attributes such as health

points (HP). However, it’s the algorithm that drives the monsters to search for the nearest play-

er-controlled hero and attack when they get close enough. In a video game, both data and al-

gorithms must work together to create a fun experience. The way we arrange and store these

data—through data structures—plays a crucial role in making algorithms work more efficiently.

This chapter will focus on the most common data structures needed to create a simple playable

game (yes, you can complete a playable game as early as in this chapter).

In this chapter, we’ll cover the following main topics:

•	 Data structures and algorithms in games

•	 Deciphering the secrets of game screenshots

•	 Evaluating data structure and algorithm

Data Structures in Action: Building Game Functionality26

•	 Basic data structure for collections

•	 The order matters – LIFO and FIFO

By the end of this chapter, you will be able to implement a simple game with one-on-one fighting

by using the data structures we have learned about.

Technical requirements
Before downloading/cloning the sample project, please refer to the technical requirements in

Chapter 1.

All demos for data structures introduced in this chapter can be accessed in the GitHub proj-

ect at https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-

Structures-and-Algorithms/tree/main/Knight, specifically under these project names:

Project Name Description

Demo2a This project implements several different Entity classes to represent the

player, enemy, and terrain.

Demo2b This project demonstrates how to prevent actual array insertion and

deletion when adding/removing entities.

Demo2c This project demonstrates how to use std::vector to implement an array.

Demo2d This project implements enemies as a list instead of an array.

Demo2e This project demonstrates how to implement a simple popup UI system

with std::stack.

Demo2f This project implements a simple fighting game with multiple data

structures introduced in this chapter.

Table 2.1 – Projects used in this chapter

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight

Chapter 2 27

Data structures and algorithms in games
To learn how data structures are applied in game development and which ones are suitable for

specific game development scenarios, one of the most intuitive approaches we found is to observe

the game’s visuals.

We want to approach our learning journey from a slightly different perspective. Instead of listing

each popular data structure one by one, as most textbooks do, imagine the stunning screenshot

of the game you want to create, or simply look at as many video game screenshots as possible.

Based on what you observe in those screenshots, consider the following questions:

•	 What kind of data structures do you need to make that screenshot work like a real game?

•	 What kinds of algorithms are required to manipulate the data behind the screenshot?

Let’s walk through the thought process of identifying the data structures needed for video game

development.

Deciphering the secrets of game screenshots
By simply looking at the example car racing game screenshot in Figure 2.1, let’s try to identify the

key visual elements within the image.

Figure 2.1 – Screenshot of a typical car racing game

Data Structures in Action: Building Game Functionality28

For those who play video games frequently, your brain will automatically start looking for things

such as the main player character and other NPCs; or if you’re familiar with digital painting

programs, you can easily decompose any video game screenshot into various visual elements,

as shown in Figure 2.2:

Figure 2.2 – Visual elements found in the screenshot

Now, how about another completely different 2D match-three hero card battle game?

Figure 2.3 – Visual elements found in the match-3 card battle puzzle game

Chapter 2 29

There are many other visual elements, such as in-game items and visual effects. It’s easy to reach

this conclusion:

A video game image is created by rendering a series of visual elements to produce the final result.

In the previous chapter, you saw how Knight assembles the game visuals using SceneActor. A

final screen image is composed by rendering a set of SceneActor. If we can identify and represent

those elements with SceneActor, we can render them in Knight.

However, a game is not just about its visuals; it also needs to be playable. It must react to user

input and respond to status changes from other visual elements. In game engine terminology,

these visual elements are often referred to as entities (or actors) because we not only manage

how to render them but also implement their behaviors designed for gameplay.

In conclusion, we organize entities into data structures and consider the algorithms needed to

work with these entities to orchestrate the actual gameplay. Next, let’s look at a screenshot from

any game you’ve played and identify these entities!

Common entities found in video games
What kinds of entities can we identify across different video game screenshots?

Figure 2.4 – Entities identified in a racing game screenshot

And how about an action role-playing MMO?

Data Structures in Action: Building Game Functionality30

Figure 2.5 – Entities identified in a 3D MMORPG

Now, let’s delve into these primary types of entities to understand them better:

•	 Player entity: This responds to the player’s inputs. Some games, such as strategy or

match-3 puzzle games, may not have a visible player entity. However, a player entity can

still exist to handle interactions.

•	 NPC entity: These are characters that are typically controlled by predefined behaviors,

ranging from scripted commands to state machines, or more sophisticated AI.

•	 Prop entity: These are objects in the scene that serve no major gameplay purpose or are

simply decorative. If there is a crowd cheering on the side of the race track, those spec-

tators are props entities.

•	 Stage/terrain entity: The stage is the physical environment that holds the player charac-

ter, NPCs, and props. In many 3D action games, the terrain or indoor building structure

serves as the stage. In a 2D match-3 puzzle game, the match-3 board acts as the stage. In

a card battle game, the table is the stage that holds the player’s and opponent’s decks.

You can spot these types of entities in practically any game screenshot found online. When we

develop our games in C++, we need to consider which data structures will make it easier for our

program to handle them.

Chapter 2 31

Defining the Entity C++ class
If we create a C++ class to implement an entity, the SceneActor of Knight will be part of this

Entity class, and the rest of the Entity class will implement the gameplay logic for that entity.

For example, an NPC entity would have a SceneActor to render it visually on the screen, but it

would also need to handle interactions, such as starting a dialog when the player clicks on the

NPC to provide the next quest.

Let’s start using C++ to represent the data structure of an Entity:

class Entity {

public:

 virtual void Create(Scene* pScene, Entity* pParent) = 0;

 virtual void Update(float elapsedTime);

 SceneActor* Actor;

};

In the preceding code, the basic base class for Entity contains an Actor, a SceneActor instance

responsible for rendering its graphical representation (such as a 3D model or a 2D sprite). It also

defines two key functions:

•	 Create(): An abstract virtual function that must be implemented by derived classes.

This function is responsible for creating and initializing the entity. It should handle the

creation/loading of the SceneActor and initialize data needed to perform the game logic

of this entity.

•	 Update(elapsedTime): A virtual function that can be overridden to implement the en-

tity’s behavior logic. The elapsedTime parameter indicates the time difference since the

last invocation of the Update() function. When overriding the default Update() method,

it’s important to call the base class version of Update() within your override to ensure

correct functionality:

void MyEntity::Update(float diff) {

 __super:: Update(diff);

 //the rest of your customized logic

}

Data Structures in Action: Building Game Functionality32

We can now extend the base Entity class to accommodate different needs of various types of

entities:

class PlayerEntity : public Entity {

public:

 void Create(Scene* pScene, Entity* pParent) override;

};

// class EnemyEntity : public Entity ... (too)

// class TerrainEntity : public Entity ...

// class PropEntity : public Entity ...

In the Demo2a project, we’ve also moved the SceneActor creation code into the Entity class’

Create() function. This allows each derived Entity class to perform its own specific initialization.

Here is an example of entity initialization in Entities.cpp:

void PlayerEntity::Create(Scene * pScene, Entity* pParent){

 Actor = pScene->CreateSceneObject<SceneActor>(“Player”);

 Actor->Scale = Vector3{ 3.0f, 3.0f, 3.0f };

 Actor->Position.z = 30.0f;

 Actor->Rotation.y = 180.0f;

 //...

}

void TerrainEntity::Create(Scene* pScene, Entity* pParent)

{

 Actor = pScene->CreateSceneObject<SceneActor>(“Terrain”);

 //...

}

In the preceding code snippet, PlayerEntity and TerrainEntity both inherit from the base

Entity class, but each has its own specialized Create() functions. The same approach is used

for the EnemyEntity and PropEntity classes.

With all these entities defined, we can now refactor the example project from Chapter 1 to start

using entities. The new Demo2a app class contains four different Entity classes:

class Demo2a : public Knight

{ // ...

 PlayerEntity* player;

 EnemyEntity* enemy;

Chapter 2 33

 TerrainEntity* terrain;

 PropEntity* prop;

 // ...

 void InitEntities();

The InitEntity() utility function is a private function called by the Start() function to create

and initialize the preceding entities:

void Demo2a::InitEntities()

{

 terrain = new TerrainEntity();

 terrain->Create(_Scene, NULL);

 player = new PlayerEntity();

 player->Create(_Scene, terrain);

 // ... continue initialize other entities

}

After all the initialization is complete, during the application’s runtime, we will call the Update()

method of all entities from the Update() function of Demo2a app class. This allows each entity

to process its own logic:

void Demo2a::Update(float ElapsedSeconds){

 player->Update(ElapsedSeconds);

 enemy->Update(ElapsedSeconds);

 prop->Update(ElapsedSeconds);

 terrain->Update(ElapsedSeconds);

 __super::Update(ElapsedSeconds);

}

Run the Demo2a project to see our player, terrain, enemy, and prop entities in action. In Figure

2.6, the player entity uses a robot model that continuously performs a running animation, the

terrain is a simple platform, the prop entity on the terrain is the well, and the enemy entity is

represented by a green ghost:

Data Structures in Action: Building Game Functionality34

Figure 2.6 – Rendering PlayerEntity, PropEntity and EnemyEntity

Now, there’s a problem in the code: games often have more than one NPC and more than one prop.

In fact, some games feature complex scenes with hundreds of props and enemies. To manage this,

we need a collection data structure to hold groups of entities. This is where different types of data

structures come into play.

Evaluating data structure and algorithm
Now, we need to find a way to manage our collections of entities. With so many different data

structures invented over the past decades, how do we evaluate whether a data structure is suit-

able for our needs?

Some basic data structures are designed for general-purpose use, while others are created to solve

specific scenarios and perform better in those intended situations. As you might guess, there is no

one-size-fits-all solution. The general rule of thumb is to choose the most efficient data structure

for your specific use case.

Measuring the efficiency of data structures
Complexity and scalability are two major factors to consider when determining which data

structure is most efficient for our use case.

Chapter 2 35

Measuring of complexity
How do we measure the complexity of a given data structure? We often need to weigh the optimal

balance between time, space, and implementation complexity:

•	 Time complexity: A good data structure should allow operations (such as insertion, dele-

tion, and search) to be performed quickly. The time complexity of these operations should

be suitable for the problem domain.

•	 Space complexity: The data structure should use memory or temporary storage efficient-

ly. Minimizing space complexity is particularly important in environments with limited

memory, such as phones or handheld gaming devices.

•	 Implementation complexity: The data structure should be easy to implement, under-

stand, and use. While complex data structures may offer powerful features, they can also

be difficult to maintain or debug.

Measuring scalability
In games such as massively multiplayer online games, scalability is a critical factor to consider:

•	 Performance with scale: A good data structure should maintain strong performance

even as the size of the data grows. It should be capable of handling large datasets without

significant degradation in performance.

•	 Adaptability: The data structure should be flexible enough to accommodate changes in

the size or structure of the data. For example, a virtual world should be able to handle

players frequently joining and leaving the game world.

Choosing the right data structure often involves balancing the factors mentioned above based on

the specific needs of the use case and the characteristics of the data. The execution environment

can also influence your final decision. For example:

•	 If the game is expected to run smoothly on a machine with a less powerful CPU, time

complexity becomes a more decisive factor in selecting the data structure, as efficient

processing is crucial.

•	 If the game is running on a device with lots of memory, space complexity may be less critical,

allowing greater flexibility in other areas.

Data Structures in Action: Building Game Functionality36

When designing data structures, there is no absolute best choice. All options are typically trade-

offs based on factors such as the game’s requirements, its execution environment, and the com-

plexity of development.

Next, let’s learn how to understand algorithm complexity from a mathematical perspective.

Big O: Measuring the efficiency of data structures and
algorithms
Understanding the performance of algorithms is crucial for highly interactive, real-time appli-

cations such as video games, especially those that require scalability. What we care about here

is how to categorize the performance of algorithms as they handle increasing amounts of data.

Big O notation is a mathematical concept used to describe the performance or complexity of an

algorithm. It provides an upper bound on the time or space required by an algorithm as a function

of the input size, typically denoted as n.

Big O notation helps us categorize the efficiency of different algorithms and understand how

they scale with larger data inputs. There are several common Big O notations used to describe

algorithmic efficiency:

•	 Constant time – O(1): The algorithm takes the same amount of time to execute, regardless

of the input size.

•	 Logarithmic time O(log n): The time complexity grows logarithmically as the input size

increases. Typically, this occurs in algorithms that repeatedly divide the problem in half

using divide and conquer.

•	 Leaner time O(n): The time complexity grows linearly with the size of the input. If the

input size doubles, the time taken also doubles.

•	 Linear logarithmic time O(n log n): The time complexity is a combination of linear and

logarithmic growth. This is common in efficient sorting algorithms.

•	 Quadratic time O(n^2): The time complexity grows quadratically with the size of the

input. If the input size doubles, the time taken increases fourfold.

•	 Exponential time O(2^n): The time complexity doubles with each additional element in

the input. This is common in algorithms that explore all possible combinations.

Figure 2.7 shows an idea of the performance difference of each category of the Big O notation:

Chapter 2 37

Figure 2.7 – Comparison of different Big O notations

The right chart doesn’t include O(n^2) and O(2^n) for easier comparison of the rest performance

categories. Later, when we begin introducing individual data structures, we will evaluate their

speed efficiency using Big O notation.

In the next section, we will start with the very basic data structure for collections to some more

advanced variations of them.

Basic data structure for collections
Continuing from our Demo2a app class in the previous section, we need some sort of data structure

to store a bunch of enemies and props. There are two kinds of basic data structures that may be

suitable for this purpose: array and list.

Array
An array is a linear data structure that holds a sequence of data elements arranged in adjacent

memory space. Each data element in an array can be accessed directly using an index, which

represents its position within the array.

Data Structures in Action: Building Game Functionality38

Arrays are typically used when you need to store multiple items of the same type together and

access them quickly by their index. The performance in Big O notation is O(1), meaning that the

size of the array, whether large or small, doesn’t affect the speed of accessing any element within it.

The size of an array is fixed once it is created, meaning it cannot be resized dynamically. Arrays

are commonly used due to their simplicity and efficiency in accessing elements.

Figure 2.8 – Data in an array is stored in contiguous memory locations

Now, assume we will always have a maximum of five enemies in the scene. We can use an array

for our enemy entities as follows:

#define MAX_NUM_ENEMIES 5

EnemyEntity enemies[MAX_NUM_ENEMIES];

After the declaration of the preceding data structure, the next step is learning how to use it.

Common operations on arrays
There are several common operations performed on arrays, including accessing particular data

elements, enumerating elements, and inserting or deleting specific elements.

Access a specific element
In the match-three card battle game screenshot, the player can always put a maximum of five

hero cards into the battle position at the bottom. It means the number and position of heroes

will always be pre-determined when the battle starts.

Chapter 2 39

Figure 2.9 – Store hero team characters as an array

The following code snippet demonstrates a possible implementation using Knight:

PlayerEntity PlayerHeroes[MAX_NUM_CARDS];

EnemyEntity Enemies[MAX_NUM_ENEMIES];

Now we can assign each element of the PlayerEntity array to each player hero position:

#define LEFT_MOST_HERO 0

#define MID_LEFT_HERO 1

#define CENTER_HERO 2

#define MID_RIGHT_HERO 3

#define RIGHT_MOST_HERO 4

We can access the PlayerEntity in the center position by simply using the index:

PlayerHeroes[CENTER_HERO].Actor->Scale = Vector3{ 3.0f, 5.0f, 3.0f };

The array’s rapid index-based access makes it ideal for applications requiring quick random data

access.

Enumerating elements in the array
Since elements in the array can be easily accessed through an index, we just need to enumerate

all indices with a loop to traverse the entire array in any direction we want. The following code

snippet enumerates all EnemyEntity in the array:

for(int i=0;i< MAX_NUM_ENEMIES; i++)

 enemies[i].DoSomething();

Data Structures in Action: Building Game Functionality40

The performance clearly scales along with the size of the array, so it’s an O(n) operation to tra-

verse an array. The same O(n) applies to search a particular element in the array – the worst case

is that you only find the element in the last element in the array.

Insertion and deletion of element
If we want to insert an element into an array, all subsequent elements must be shifted to accom-

modate the new element, as shown in Figure 2.10:

Figure 2.10 – Inserting a new element into an array

The same applies to deletion; all elements after the removed element need to be shifted to fill

the gap.

If an array contains hundreds or thousands of elements, insertion and deletion operations require

shifting many elements. This is a significant drawback of using arrays to store data that needs

frequent insertion or deletion.

However, arrays still have advantages over many other, more complex, and so-called more flexible

data structures:

•	 Direct access: You can directly access any element within the array.

•	 Data locality: Elements in an array are tightly packed in contiguous memory locations,

which provides a hardware benefit called data locality. Modern CPUs use cache mem-

ory to speed up data access by loading a chunk of memory when you first access it. This

makes access to nearby data much faster since it’s probably already loaded into the cache.

Chapter 2 41

Before we delve into other data structures, let’s spend a bit more time with arrays and explore

whether we can minimize the amount of data copying required during insertion and deletion

operations.

Inserting/deleting versus enabling/disabling
The Demo2b project has a workaround to prevent array insertion and deletion. It contains a player

hero intended to battle with a maximum of three enemies:

PlayerEntity* player;

EnemyEntity enemies[MAX_NUM_ENEMIES];

TerrainEntity* terrain;

However, the number of enemies can change during a battle session in the following ways:

•	 Enemy defeated: When a player defeats an enemy, the defeated enemy is removed from

both the data structure and the screen.

•	 Enemy respawn: If the player cannot defeat all the enemies within a predetermined du-

ration, the game may respawn new enemies to join the battle after a set period, we need

to add a new EnemyEntity to the enemies’ array.

To create a basic implementation of a battle session, we need to add an HP value to both

PlayerEntity and EnemyEntity. We can add that in the base class and initialize with a default

value of 100 for now:

class Entity { //...

 int HP;

 Entity();

};

Entity::Entity() { //...

 HP = 100;

}

Any entity whose HP value drops to zero is considered dead. When the player defeats an enemy,

we set the defeated enemy’s HP to 0. Additionally, we need to hide this defeated enemy, which

can be accomplished using the Knight’s API:

Actor->IsActive = false;

If a SceneActor’s IsActive is set to false, it will be disabled and ignored while rendering the frame.

Data Structures in Action: Building Game Functionality42

Now, let’s extend the EnemyEntity class to support the Die function:

void EnemyEntity::Die() {

 HP = 0;

 Actor->IsActive = false;

}

Now, we need a quick way to make an enemy die. For demo purposes, we just add hotkeys to

pretend we have issued an attack. Pressing the number key 1 will make the first enemy die by

calling the Die() function, while pressing key 2 will do the same for the second enemy. We’ll

add a CheckDefeatEnemy() function and call it every time the game’s Update() function of the

game is invoked:

void Demo2b::Update(float ElapsedSeconds) {

 CheckDefeatEnemy();

 player->Update(ElapsedSeconds);

 for(int i=0;i< MAX_NUM_ENEMIES; i++)

 enemies[i].Update(ElapsedSeconds);

 //… update terrain, etc.

}

bool Demo2b::CheckDefeatEnemy() {

 if (IsKeyPressed(KEY_ONE) && enemies[0].HP > 0)

 enemies[0].Die();

 else if (IsKeyPressed(KEY_TWO) && enemies[1].HP > 0)

 enemies[1].Die();

 else if (IsKeyPressed(KEY_THREE) && enemies[2].HP > 0)

 enemies[2].Die();

 else

 return false;

 return true;

}

The preceding code checks for key presses and calls the Die() function on any living enemies.

Since we only have three enemy entities in our case, this simple implementation is sufficient for

testing. In a real game, enemies typically aren’t defeated with a single blow; instead, you apply

damage to their HP and check whether it has been reduced to zero.

Chapter 2 43

Now, let’s run Demo2b to see how it functions. In this implementation, we disable an enemy entity

instead of deleting it, as shown in Figure 2.11:

Figure 2.11 – The defeated enemy entity is disabled

This method is especially useful in scenarios with many enemy units, like in real-time strategy

games, where copying many EnemyEntities in the enemies array for insertion or removal could

be time-inefficient.

In many action games, if you don’t defeat all the enemies in time, the defeated enemies might

just reappear. For testing purposes, we can set a 5-second countdown after an enemy is defeated

before it respawns (though in a real game, you wouldn’t want to frustrate players by bringing

enemies back too quickly!).

To implement this, we’ll need to add a Resurrect() function and a respawnInterval variable

for the countdown in the EnemyEntity class:

class EnemyEntity : public Entity {

public:

 void Resurrect();

private:

 float respawnInterval;

};

void EnemyEntity::Resurrect() {

 HP = 100;

 Actor->IsActive = true; //enable the SceneActor

}

Data Structures in Action: Building Game Functionality44

Since this countdown is calculated on a per-enemy basis, it needs to be implemented within

EnemyEntity’s Update() function, not Demo2b’s Update() function:

void EnemyEntity::Update(float elapsedTime) {

 if (respawnInterval > 0.0f) { // waiting respawn?

 respawnInterval -= elapsedTime;

 if (respawnInterval <= 0.0f) { // countdown end!

 Resurrect();

 }

 }

}

Run the code and try pressing 1, 2, or 3. After 5 seconds, you’ll see the defeated enemies reappear.

In this implementation, we reuse the element of the defeated enemy to spawn a new one, so there

is no actual insert or delete operation performed.

However, it’s not ideal to pre-create an array with a capacity for 5,000 props if only 80 to 120 props

are used in a single game level. In such cases, there are better data structure solutions available.

A dynamic array is one such solution.

Standard C++ implementation of dynamic array
The standard C++ library includes a robust dynamic array implementation that offers more fea-

tures than a regular array. One of its most powerful features is dynamic sizing, allowing the array

to grow and accommodate more elements as needed. This implementation is std::vector.

Demo2c project demonstrates how to use std::vector to implement an array for our previous

sample Demo2b:

#include <vector>

class Demo2c : public Knight {

 vector<EnemyEntity> enemies;

};

Here, vector provides several key benefits over plain arrays: it’s more flexible with dynamic re-

sizing of the capacity, safer with array boundary checking, and easier to use.

Chapter 2 45

Common operations on std::array
Let’s look are some common operations when using std::vector instead of a plain array.

Accessing a specific element
The standard library’s vector overloads the [] operator, allowing you to access elements in a

vector just as you would with a regular array:

if (IsKeyPressed(KEY_ONE) && enemies[0].HP > 0) enemies[0].Die();

Enumerating elements
Starting from C++ 11, the standard library provides a convenient way to iterate through containers:

void Demo2c::Update(float ElapsedSeconds) { //...

 for(EnemyEntity& enemy : enemies)

 enemy.Update(ElapsedSeconds);

}

One important detail is to use EnemyEntity& to retrieve the actual element instance inside the

enemies vector.

Insertion and deletion
Even though we don’t actually insert any elements in Demo2c, it’s very easy to do with an iterator:

vector<EnemyEntity>::iterator it = enemies.begin();

enemies.insert(it+2, val); //val is another EnemyEntity

In the preceding code, we first obtain an iterator for vector<EnemyEntity>. We then use it+2

to insert the val (another EnemyEntity instance) as the third element.

Deletion of an element is trivial too:

vector<EnemyEntity>::iterator it =enemies.begin()+2;

enemies.erase(it);

In the preceding snippet, we use an iterator to remove the third element from the enemies

collection.

Data Structures in Action: Building Game Functionality46

Sort
The vector implementation also provides a handy sort() function to sort the vector:

std::vector<int> numbers = {5, 2, 9, 1, 5, 6};

std::sort(numbers.begin(), numbers.end());

This example will sort the vector into {1 2 5 5 6 9}.

List
For our Demo2b project, if we want the flexibility to easily remove a bunch of enemies and spawn

several new ones, a linked list might be a better choice of data structure.

A linked list is a linear data structure in which elements are not stored in contiguous memory

locations. Instead, the elements are connected using pointers shown in Figure 2.12:

Figure 2.12 – Linked list uses the “Next” pointer to find the next element

A linked list can be initialized by creating a head element with a reference to the first element.

Each subsequent element contains its data and a pointer to the next node. A simple linked list

only has a pointer to the next element, and the last element’s pointer is set to NULL.

There are also other variations of the linked list. A double-linked list features two pointers con-

necting the elements: one pointing to the next element, and another pointing to the previous

element as shown in Figure 2.13. This allows fast traversal in either forward or backward order.

Figure 2.13 – Double linked list connect to both the previous and the next elements

Chapter 2 47

In the standard C++ library, we can use the pre-defined std::list to implement our collection

of enemies and props as a list. The Demo2d project shows how to implement enemies as a list

instead of an array:

list<EnemyEntity> enemies;

Now that we store our enemy entities in a list, let’s explore list operations.

Similar to vectors, common list operations include accessing individual data, inserting and de-

leting elements, and sorting.

Accessing a specific element
Since the only reference to an element in a linked list is the Next pointer from the previous el-

ement, random access to any element is not as straightforward as accessing an element in an

array through an index.

The standard library uses an iterator to traverse elements in a linked list. While it does not

inherently provide direct index-like access to a particular N-th element, you can use an iterator

to reach the desired position by advancing it step by step:

int N = 4;

std::list<int> numbers = {10, 20, 30, 40, 50, 60, 70};

auto it = numbers.begin();

std::advance(it, N); // Now *it contains value 50

As you can observe in this code, std::list doesn’t have direct access to Nth elements like an

array does.

Enumerating elements in the list
The elements in a linked list can be traversed by starting from the head element and following the

references to the next element until the end of the list is reached. This is clearly an O(n) operation

since the time it takes is directly related to the size of the list:

for (EnemyEntity& enemy : enemies)

 enemy.Update(ElapsedSeconds);

Data Structures in Action: Building Game Functionality48

Inserting and deleting an element
Inserting and deleting elements in a linked list are generally fast operations. The process involves

traversing to the desired position, which takes O(n), and then the actual actions of insertion or

deletion, which takes O(1). This is because we only need to update the adjacent elements, without

having to shift or move any other data following the inserted or removed element.

For instance, suppose we have a new EnemyEntity em. The following code snippet demonstrates

how to access the data element inside the list:

enemies.push_front(em); // push enemy at the beginning

enemies.push_back(em); // add enemy at the end

auto it = enemies.begin(); // get an iterator at beginning

std::advance(it, 2); // Move iterator to the 3rd element

enemies.insert(it, em); // insert enemy as the 3rd element

enemies.erase(it); // remove enemy

Sort
Sorting elements in a linked list is efficient because it only involves updating pointers, without

needing to swap or move actual data. Since std::list is a doubly linked list, sorting is performed

in O(n log n) time, which is still relatively fast:

Bool compare_hp(const EnemyEntity& first, const EnemyEntity & second) {

 return (first.HP > second.HP);

}

enemies.sort(compare_hp); //sort enemies list by HP value

Compared to arrays, lists perform better in scenarios in which data elements need to be inserted

and removed often.

The order matters – LIFO and FIFO
So far, both arrays and lists provide easy ways to traverse all elements. However, in some cases,

we don’t need to enumerate all elements or access them randomly; instead, we want to ensure

that elements are processed in a specific order.

Two types of order are particularly important in game development: LIFO and FIFO.

•	 Last In, First Out (LIFO): This principle is used in data structures where the last element

added is the first one to be removed. It’s analogous to a stack of plates: the last plate placed

on top is the first one to be taken off.

Chapter 2 49

•	 First In, First Out (FIFO): This principle is used in data structures where the first element

added is the first one to be removed. It’s similar to a real-life queue, such as a line of people

waiting to enter a concert hall.

While arrays and lists can be used for accessing data with specific order, there are other data

structures specifically designed to work with specific access orders. Both stack and queue are

most frequently used among these data structures.

Stack
A stack is a linear data structure that follows a specific order for operations: LIFO. Data can be

added and retrieved from only one end of the stack. These operations are commonly referred to as

push (for adding data) and pop (for retrieving data). Figure 2.14 demonstrates how the stack works:

Figure 2.14 – Stack in action

A stack is typically implemented using an array or a linked list, and the standard C++ library

provides an implementation through std::stack.

You’ve likely encountered stacks in action in almost every game you’ve played. Remember the

in-game menu (which you can bring up during gameplay by pressing a hotkey to pause or change

settings)? The user interface—especially those with popup dialog windows—is a perfect example

of a stack in use.

For instance, imagine you want to access the settings to mute the game sound from the in-game

menu. The UI navigation flow is a perfect fit for a stack: the first menu dialog opens the child

settings dialog, and the Settings dialog opens the child Sound settings dialog. When you finish

making changes and close the Sound settings dialog, it returns to the Settings dialog. Closing

the Settings dialog then returns you to the Main Menu dialog. This behavior of common popup

UIs can be implemented using a stack to keep track of which popup is currently active. Figure

2.15 illustrates the UX flow:

Data Structures in Action: Building Game Functionality50

Figure 2.15 – Navigating the in-game menu system

It’s time to check out the sample code – open and run project Demo2e. The in-game menu is by

default hidden. If the player presses the M key, it opens the top-level in-game menu. Once this

menu is displayed, pressing the S key will open the child Settings popup. Pressing the V key will

then open the child Sound popup. In each dialog, pressing the backspace key will return you to

the previous popup.

This code illustrates how to implement an in-game UI system like the one described previously

using std::stack. In our demo project, the UI system behaves very similarly to the entities we’ve

seen before: it consists of a collection of 2D graphic elements like window panels and buttons,

along with the logic to handle user interactions. As a result, it bears a strong resemblance to the

Entity class in the previous examples:

class UIPopupManager { //...

 virtual void Create() = 0;

 virtual void Update(float interval);

 virtual void Draw();

 std::stack<UIPopup*> history;

};

Chapter 2 51

We will continue to handle the creation of UI dialogs in the Create() function, manage the logic

in the Update() function, and render the dialogs on the screen in the Draw() function:

void UIPopupManager::Draw() {

 if (history.size()) history.top()->Draw();

}

void UIPopupManager::Update(float interval) {

 if (history.size()) history.top()->Update(interval);

}

Only the topmost active UIPopup in the history stack will have its Update() and Draw() functions

called. This means that when you open a child popup, the parent popup is effectively hidden.

However, when you close the child popup, the parent popup is displayed again as it becomes the

new topmost element in the stack.

We also define a class called UIPopup to represent all types of actual popup windows. This time,

we use std::stack to store a history of which dialogs have been opened.

For each dialog popup window, even if they are different, they are still created, updated, and

drawn in similar ways. So, we can define a parent class to represent the base version of all kinds

of different UI popup windows:

class UIPopup {

public:

 virtual void Create(UIPopupManager *);

 virtual void Update(float interval) = 0;

 virtual void Draw() = 0;

protected:

 static UIPopupManager* ui_manager;

};

You might notice that we have a static member variable, ui_manager, to store the instance of

UIPopupManager. This is because we need a convenient way to access the member functions of

UIPopupManager, which creates these popup windows. Typically, a game has only one UI manager

class to manage all UI-related behavior.

Data Structures in Action: Building Game Functionality52

We will also need some UI-specific features other than the usual Entity class:

class UIPopupManager {

public: //...

 void Show(UIPopup *);

 void Show(const char *popupName);

 void Close();

 bool IsAnyPopupShown();

 virtual UIPopup* GetPopup(const char *name) = 0;

};

First, we want to be able to show or close any UI popup. We provide two implementations of the

Show() function: one that takes a pointer to the UIPopup instance and another that retrieves it

by its given name:

void UIPopupManager::Show(UIPopup* pp){

 history.push(pp);

}

void UIPopupManager::Show(const char* popupName) {

 UIPopup* uip = GetPopup(popupName);

 if (uip != NULL) Show(uip);

}

The Show() function basically just pushes the popup window into the history stack and makes

it the top element inside the history stack. We will handle how to draw it in the inherited imple-

mentation of UIPopupManager class.

Since our implementation focuses on supporting popup window behavior, the Close() function

always closes the most recently opened popup window by removing it from the history stack:

void UIPopupManager::Close(){

 if (history.size() > 0) history.pop();

}

Chapter 2 53

We also have a handy function, IsAnyPopupShown(), which indicates whether a popup is currently

being displayed on the screen:

bool UIPopupManager::IsAnyPopupShown() {

 return (history.size() > 0);

}

The IsAnyPopupShown() function simply checks whether there is a popup instance in the history

stack.

Since UIPopupManager and UIPopup only define the basic behaviors of a popup window and its

manager, we now need to create actual implementations that generate these popup dialogs and

render them on the game screen. This is done in Demo2eUI.cpp and Demo2eUI.h:

void InGameDialogue::Draw() {

 Rectangle r;

 if (GuiWindowBox(CenterRectangle(r,800,600),”In Game Menu”) == 1){

 mgr->Close();

 return;

 }

 if (GuiButton(CenterRectangle(r, 300, 60), “Settings”))

 mgr->Show(mgr->GetPopup(“Settings”));

}

The preceding code uses GuiWindowBox() to draw a UI window panel and draw a Settings button

with GuiButton() in the center of the window panel.

All three popup windows: InGameDialogue, SettingsDialogue, and SoundDialogue are imple-

mented in a similar manner. Now, we can turn our attention to the UI manager class. We created

a new class, Demo2eUIManager, which inherits from the base UIPopupManager class to implement

our project-specific version of the popup UI manager.

The first thing is that we will have the above three popup windows in Demo2eUIManager:

class Demo2eUIManager : public UIPopupManager {

 InGameDialogue Menu;

 SettingsDialogue Settings;

 SoundDialogue Sound;

};

Data Structures in Action: Building Game Functionality54

So, we can also provide our implementation of GetPopup() function to retrieve popup windows

by their names:

UIPopup* Demo2eUIManager::GetPopup(const char* name){

 if (!_stricmp(name, “Menu”)) return &Menu;

 else if (!_stricmp(name, “Settings”)) return &Settings;

 else if (!_stricmp(name, “Volume”))return &Sound;

 return NULL;

}

Using a name to locate the object we want is a simple but not ideal approach; however, it will

suffice for now.

Next, we need to render the topmost (currently active) popup window. This is where UI elements

differ from the entities we’ve worked with before. In most video games, UI elements exist outside

the game world and are always rendered on top of the game screen, after everything in the game

world has been rendered:

void Demo2e::DrawGUI(){ Manager.Draw(); }

In the Demo2e project’s Update() function, we will check whether the player has pressed the M

key to open the first top-level menu, InGameDialogue. Once this menu is shown, its Update()

method will be called every frame. If you press the S key, it will then open the SettingsDialogue

child popup, and now, its Update() function is called every frame. If you press V, it will open

the SoundDialogue child popup. In each dialog, if you hit the backspace key, it will return to the

previous popup.

Common operations on the stack
Let’s explore the following operations on the stack: accessing data and searching the entire stack,

among others.

Accessing a specific element
Unlike an array or list, a stack has only one end access – pop data out from the top of the stack,

and push data onto the top of the stack. This is a fast O(1) operation.

Enumerating elements in the stack
The elements in a stack can be retrieved by continuously popping the topmost element until the

stack is empty. It’s an O(n) operation, with respect to the depth of the stack.

Chapter 2 55

Queue
A queue is a linear data structure that follows the FIFO principle. In a queue, data is entered from

one end and retrieved from the other. An example of a queue is a line of consumers waiting for

a resource, where the consumer who arrives first is served first. Figure 2.16 demonstrates how a

typical queue works:

Figure 2.16 – Inserting and popping actions

In video games, player inputs (such as keystrokes or mouse clicks) and system events (such as

collision detection or AI decisions) might be processed asynchronously. A queue can be used to

store these events as they occur and process them in order during the game’s update loop. This

ensures all important events get processed according to the order they received.

The standard C++ library has a std::queue implementation.

The sample project
Demo2f uses a queue to implement an action-event system with the entities to simulate a one-on-

one real-time battle system. This project is also the concluding sample project for this chapter. It

uses more than one kind of data structure to implement a real playable real-time action game: a

player character deathmatch with an enemy character. Figure 2.17 shows how Demo2f looks like:

Data Structures in Action: Building Game Functionality56

Figure 2.17 – Demonstrating a 1v1 battle session

The gameplay rules are simple: both the player and the enemy can attack each other in real time.

However, there’s a catch—after issuing an attack, there is a cooldown period (randomly between

1 to 3 seconds) before the next attack can be issued. Both the player and the enemy must wait

for the cooldown to finish before launching another attack. Each attack deals 10 to 20 points of

damage, so with an initial 100 HP, either side can be defeated in as few as five rounds of attacks.

Action event system implementation
Since attacks can occur at any time after cooling down, we will implement an event queue for

both the player and enemy entities. Each entity will have an associated event queue to store action

events, which will be processed during the entity’s usual Update() function.

The event is defined as an ActionEvent class:

typedef enum {

 ApplyDamage = 1,

 LostLife

} ActionId;

struct ActionEvent{

Chapter 2 57

 ActionId Id;

 int Value;

};

Each event contains a unique Id and a data value. You can extend the data carried by the event

to accommodate future needs.

Since both the player and enemy require an event queue but TerraEntity does not, we will create

a new class, AliveEntity, from which both PlayerEntity and EnemyEntity will inherit:

class AliveEntity : public Entity {

 int HP;

 queue<ActionEvent*> eventsQueue;

 AliveEntity* _target;

 void AddAction(ActionId id, int value);

};

In the preceding code, we move HP from the Entity class in the previous example to this one

and define a new queue, eventsQueue, to hold a sequence of ActionEvent objects added to this

entity. A new function, AddAction, is for the caller to add a new ActionEvent into this entity’s

eventsQueue. The queue is processed in the Update() function of this entity:

void AliveEntity::Update(float elapsedTime) {

 while (!eventsQueue.empty()) {

 ActionEvent* currentEvent = eventsQueue.front();

 eventsQueue.pop();

 switch (currentEvent->Id) {

 case ApplyDamage:

 DealDamage(currentEvent->Value); break;

 case LostLife:

 Die(); break;

 }

 }

 __super::Update(elapsedTime);

}

Next, let’s move on to the aspects of handling damage and defeat.

Data Structures in Action: Building Game Functionality58

Handling damage and defeat
When an ApplyDamage event is received, we call the entity’s DealDamage() function to calculate

the actual damage. If the damage causes the entity’s HP to drop to zero, the entity will add a new

LostLife event to its own queue and process it the next time Update() is called.

The following code snippet implements the DealDamage() function:

void AliveEntity::DealDamage(int originalValue){

 int dmgVal = originalValue;

 HP -= dmgVal;

 //...

 if (HP < 0)

 AddAction(ActionId::LostLife, 0);

}

You might wonder why we don’t handle the entity’s defeat immediately within the same Update()

call, instead of sending an event to itself and processing it in the next Update().

True, there is virtually no difference in this demo if you choose to do so. However, in real video

games, it’s common practice to minimize the tasks performed in a single Update() call to prevent

performance issues. Overloading an Update() function with too many tasks can delay rendering

the next frame.

Defeating an entity in a real game typically involves much more than this simple project illus-

trates—it might include setting up new animations, triggering visual effects, playing sound

effects, and more. Therefore, it’s good practice to do less in a single Update() call and spread the

workload across multiple updates.

The eventsQueue acts as a useful to-do list. Even if you don’t process every ActionEvent in one

Update() call, you can continue processing them in subsequent calls. If your event is processed

in the next Update()—typically within 1/30 of a second, depending on your frame rate—it’s

perceived as occurring instantaneously by players.

Cooldown implementation
Now, let’s explore another interesting feature: implementing the attack cooldown period. The

Knight’s Update() function includes an elapsedTime parameter, representing the time interval

since the last call. We can use this feature to calculate the cooldown time. The first thing to do is

to add the necessary variables:

class AliveEntity : public Entity { //...

 float attackCooldown;

Chapter 2 59

 float rechargeTime;

};

Each time an attack is issued, the system randomly generates a cooldown time, assigns it to

attackCooldown, and resets rechargeTime to zero. During each Update() call, we accumulate

rechargeTime with the elapsedTime since the last Update() was called. Once rechargeTime is

equal to or greater than attackCooldown:

•	 For PlayerEntity, we will check if the player presses the space bar to issue an attack.

•	 For EnemyEntity, the entity will automatically attack the player once the cooldown pe-

riod is over.

The following code snippet implements the Update() function of the PlayerEntity and

EnemyEntity classes:

void PlayerEntity::Update(float elapsedTime){

 if (rechargeTime >= attackCooldown) {

 if (IsKeyPressed(KEY_SPACE) && _target != NULL && _target->HP > 0)

 DoAttack();

 } else { //still in cool down period

 rechargeTime += elapsedTime;

 }

 __super::Update(elapsedTime);

}

void EnemyEntity::Update(float elapsedTime){

 //Still in gameplay?

 if (Demo2f::_gameOver == InProgress) {

 //Check if enemy can attack

 if (rechargeTime >= attackCooldown) {

 if (_target != NULL && _target->HP > 0) DoAttack();

 } else {

 rechargeTime += elapsedTime;

 }

 }

 __super::Update(elapsedTime); //process entity updates

}

If you try playing the demo, you’ll find that it’s very difficult to defeat the enemy. This is because

our AI opponent is too perfect—it always attacks immediately after the cooldown period ends,

Data Structures in Action: Building Game Functionality60

with no delay. However, human players need time to think and react, so I’ll leave it as an exercise

for you to adjust the game balance.

The EnemyEntity class also needs to check whether the current gameplay status already reaches a

victory or defeat in the Update() function. It will stop attacking the player if a victory is determined.

User interface and HUD updates
Demo2f also demonstrates how the entities update their user interface visuals. Both the player and

the enemy have two progress bars: the left bar is for the player, and the right bar is for the enemy.

The top bar represents HP, which decreases to zero when the entity is defeated. The bottom bar is

the attack recharge bar, which resets to zero after each attack and fills up again so the entity can

launch its next attack.

The PlayerEntity and EnemyEntity classes implement their own version of the DrawGUI() func-

tion and are invoked in the DrawGUI() function of the Demo2f game application class:

void Demo2f::DrawGUI(){

 player->DrawGUI();

 enemy->DrawGUI();

 switch (_gameOver) {

 case InProgress: {

 int line = 0;

 for (const auto& msg : messages) {

 DrawText(msg.c_str(), 150, 150 + 40 * line, 25, WHITE);

 ++line;

 }

 break;

 }

 //...

}

In this code, a new variable, _gameOver, is used to indicate that the game is still playing, or whether

our player has won or lost.

Game over logic and debug output
The last point of interest in Demo2f is how we implement an in-game debug output. We use a list

of strings to make a very simple version:

static std::list<std::string> messages;

Chapter 2 61

The Log() function is declared as a static function in Demo2f so we can conveniently access it

from anywhere in our code:

void Demo2f::Log(const std::string& message) {

 if (messages.size() >= 10)

 messages.pop_front(); // Remove the oldest message

 messages.push_back(message); // Add the new message

}

The preceding code snippet ensures there is always only a maximum of the 10 latest messages

in log data.

During a DrawGUI() call in the Demo2f class, we only keep and show the last 10 messages on the

screen:

for (const auto& msg : messages) {

 DrawText(msg.c_str(), 150, 150 + 40 * line, 25, WHITE);

 ++line;

}

With these foundational techniques in place, you are now ready to explore algorithms commonly

used in game development, which we’ll explore in the next chapter.

Summary
In this chapter, we introduced four basic types of data structures—array, list, stack, and queue.

With just these data structures, we can create a simple but playable game. We can always start

with simple and straightforward solutions. Use basic data structures where possible. Even the

basic data structures can handle many needs in game development.

Chapter 1 introduced the basic concepts of how the Knight works. In this chapter, we took a step

further by utilizing the power of the Knight to create a playable game sample. In this simple game

project, we’ve introduced how to use Entity and derived classes to encapsulate both gameplay log-

ic and rendering the player and enemy. In the PlayerEntity class, we demonstrate how to handle

user input, while in the EnemyEntity class, we need to handle combat logic and use elapsedTime

in the Update() function for time-related features such as calculating attack cool-down.

We also leverage the UI functions provided by raylib to show health and timer bars, as well as a

victory/defeat window. We also demonstrate how to use lists to handle console messages. The

final example explained how minimal gameplay is achieved with multiple Entity classes.

In the next chapter, we will delve deeper into the algorithms that work with these data structures.

3
Algorithms Commonly Utilized
in Game Development

Algorithms used in game development can range from simple to highly complex. However, effec-

tively and seamlessly integrating these algorithms into real-world game projects can be challeng-

ing for developers. Some algorithms, while theoretically sound, may not be practical or feasible in

certain situations. For example, the quicksort algorithm might not be the best choice for sorting

a small dataset or one that is nearly sorted. Therefore, selecting and applying the right algorithms

in actual game development is a crucial consideration for developers.

This chapter focuses on a selection of algorithms that are both widely adopted and frequently

employed in game development. These algorithms are designed to address common challenges,

enhance game performance, and improve code quality. By mastering these essential techniques,

you’ll be better equipped to tackle a variety of issues and optimize your projects. The topics cov-

ered in this chapter include:

•	 Exploring randomization

•	 Selection algorithms

•	 Shuffling for randomization

•	 Sorting algorithms

•	 Procedural generation

•	 Object pooling

Algorithms Commonly Utilized in Game Development64

Each section introduces one or more algorithms with illustrative examples. To cover more content

while conserving space, we have not provided all the source code in the text. For a better under-

standing of the algorithms and their actual C++ implementations, please refer to the source code

and comments provided in the demo projects (see the Technical requirements section). Engaging

in your own exercises with the code will also be highly beneficial for reinforcing your learning.

Technical requirements
Download the Knight Visual Studio solution from GitHub. Here is the link to the repository:

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-

Structures-and-Algorithms

The demo projects for this chapter are located within the Knight Visual Studio solution (https://
github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-

Algorithms/tree/main/Knight), specifically under these project names:

Project Name Description

Demo3a Random and weighted-random selections
Demo3b Exclusive random selection
Demo3c Fisher-Yates shuffling cards
Demo3d Sorting cards
Demo3e Maze generation
Demo3f Object pooling

Table 3.1 – Sample projects used in this chapter

These projects demonstrate the implementation of the concepts covered in this chapter and are

integral to understanding the practical application of the discussed algorithms.

Exploring randomization
Randomization plays a crucial role in game development, significantly enhancing the player

experience and ensuring the game’s longevity. It is often used to create dynamic and replayable

content, which keeps the game fresh and engaging each time it is played. By introducing ele-

ments of unpredictability, randomization enhances the challenge and excitement within a game,

making it more thrilling and immersive. Additionally, it is used to simulate real-life systems and

phenomena, adding a layer of realism and complexity that resonates with players. Overall, the

effective use of randomization can transform a game, making it more enjoyable and captivating.

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight

Chapter 3 65

Generating a random number is the fundamental technique of randomization. Understanding

how to generate a random number within a specific range is essential, as it forms the foundation

for all other randomization algorithms in game development. This fundamental knowledge

equips developers to effectively grasp and apply randomization techniques, enabling them to

incorporate randomness into their games more effectively.

While essential, making your game both unpredictable and enjoyable for players is one of the

biggest challenges in game development. In classic games like Prince of Persia (first released in

1989) and early “Space Arcade” games, such as Space Invaders (first released in 1978), the game-

play followed a pre-designed linear progression with a fixed storyboard. The number of enemies

and their movements, paths, and speeds were all pre-planned and remained the same with each

playthrough. This predictability allowed players to quickly learn the patterns, making it easier

to beat the game, which often led to lower player retention.

A better approach would be to utilize randomized elements, such as the number of enemies, their

movement speed, and their positions as they enter the scene. Introducing randomness in these

aspects can help overcome predictability, enhancing the game experience and keeping players

more engaged.

Let’s begin by introducing the fundamental algorithm for generating a random number.

Understanding the algorithm
A common and easy-to-understand random number generation algorithm is the Linear

Congruential Generator (LCG) method. It generates a sequence of pseudo-random numbers

using the recurrence relation (an equation that finds the subsequent number dependent upon

the previous number) based on the following formula:𝑅𝑅𝑛𝑛𝑛𝑛 = (𝑎𝑎 𝑎 𝑎𝑎𝑛𝑛 + 𝑐𝑐) % 𝑚𝑚

where:

•	 Rn+1 is the generated random number.

•	 Rn is the previously generated random number.

•	 a, c, and m are constants.

•	 R0 represents the initial number provided at the start.

The complexity of generating a random number is O(1).

Algorithms Commonly Utilized in Game Development66

Implementing the code in C++
The following code snippet illustrates how to implement the Random class to help gain a deeper

understanding of the process of generating random numbers. The first part defines variables that

are used to generate random numbers:

#pragma once

#include <ctime>

class Random {

private:

 const unsigned long _a = 1664525; //Multiplayer

 const unsigned long _c = 1013904223; //Increment

 unsigned long long _m = 0xffffffff;

 unsigned long _seed;

public:

 Random(long Seed = -1) : _seed(Seed) {

 if (Seed < 0) {

 _seed = (unsigned long)std::time(0);

 }

 else {

 _seed = Seed;

 }

 }

The second part of the code implements a set of Next functions that generate long and int types

of random numbers:

 /*Function: Next()

 Calculate the next random number within [0, m).

 Returns: The next random unsigned long number.

 */

 unsigned long Next() {

 _seed = (unsigned long)((_a * _seed + _c) % _m);

 return _seed;

 }

 /*Function: NextInt()

 Calculate the next random number within [Min, Max).

 Returns: The next random integer number.

Chapter 3 67

 */

 unsigned int NextInt(unsigned int Min, unsigned int Max) {

 If(Min >= Max) {

 Return Min;

 }

 return Min + Next() % (Max - Min);

 }

The last part includes implementations of the overloaded functions that return float-type numbers:

 /*Function: NextFloat()

 Calculate the next random float-point number within [0.0f, 1.0f].

 Returns: The next random float-point number.

 */

 float NextFloat() {

 return static_cast<float>(Next()) / _m;

 }

 /*Function: NextFLoat()

 Calculate the next random float-point number within [Min, Max].

 Returns: The next random float-point number.

 */

 float NextFloat(float Min, float Max) {

 return Min + NextFloat() * (Max - Min);

 }

};

The key part of the above code snippet is the Next() function, which uses the value of _Seed and

the formula to generate the next random number and store it back to _Seed.

The Random class contains three random number generation functions:

•	 NextInt(Min, Max) generates a random integer number within the specified range of

[Min, Max).

•	 NextFloat() generates a random float-point number within the range of [0.0f, 1.0f].

•	 NextFloat(Min, Max) generates a random float-point number within the specified range

of [Min, Max].

Algorithms Commonly Utilized in Game Development68

Now that you’ve learned how to generate random numbers, let’s explore the first application of

random number generation in the problem of selection.

Selection algorithms
Selection algorithms are used to optimize various in-game processes and enhance player experi-

ence. For instance, these algorithms can be applied to efficiently select the best moves or actions

in strategy games, helping AI opponents to make decisions that simulate human-like behavior. In

pathfinding and navigation, selection algorithms are also employed to determine the shortest or

most efficient route for a character or object to follow. Additionally, they are used in procedural

content generation, where elements such as terrain, dungeons, or loot are dynamically created,

requiring efficient selection from a pool of possible configurations.

Three selection algorithms will be introduced in this section: simple random selection, weighted

random selection, and the more advanced concept of reservoir sampling.

Random selection
Random selection enables the choice of one element from a list of candidates, adding unpredict-

ability to the gameplay experience. One use case of random selection is spawning a character at

a random location from several possible spawn points.

Figure 3.1 – Spawning the character at one of the spawn points with equal probabilities

Note

Brackets, [or], are used to indicate an inclusive endpoint value.

Parentheses, (or), are used to indicate an exclusive endpoint value.

Chapter 3 69

The simple random selection algorithm selects a random element from an array by using a ran-

dom index. Here’s how it works:

1.	 Generating a random index: The algorithm uses a randomizer to generate a random

integer within the range of valid indices, from 0 to the array’s size-1. This random index

represents the position of the element to be selected in the array.

2.	 Returning the selected element: The algorithm uses the random index to select and

return the element from the array.

By using this approach, each element in the array has an equal probability of being selected, en-

suring a fair and unbiased random choice.

The complexity of simple random selection is O(1).

To implement random selection, we first create a class named Selector, which contains

a private member, _random, of type Random, used for generating random numbers. The seed fed

to the _random variable using the current time value increases the result of randomization:

class Selector

{

private:

 Random _random;

};

Additionally, we add a new RandomSelect member function to the Selector class that takes two

parameters:

•	 Options — which is an array representing the available options for selection

•	 ArraySize — which indicates the length of the Options array

The RandomSelect function returns the selected item.

Here is the source code for the implementation of the Selector class and the simple RandomSelect

function:

#pragma once

#include "Random.h"

class Selector

{

Algorithms Commonly Utilized in Game Development70

private:

 static Random _random;

public:

 /* Function: RandomSelect

 Parameters:

 Options: array which contains the optional items

 ArraySize: size of the Options array

 Returns the selected item.

 */

 template<typename T>

 static T RandomSelect(T Options[], int ArraySize)

 {

 int selectedIndex = _random.NextInt(0, ArraySize);

 return Options[selectedIndex];

 }

};

// create the random instance for generating random numbers

Random Selector::_random = (unsigned long)std::time(0);

The algorithm chooses an item from the options array with equal probability. However, in some

situations, the options may need to have different weights, allowing certain options to have

higher probabilities while others have lower probabilities. This need gives rise to the weighted

random selection algorithm.

Weighted random selection
The weighted random selection algorithm selects an item from an array, where each item has

a different probability (or weight) of being chosen. This allows some items to be more likely to

be selected than others.

Let’s introduce an additional condition for the spawn point selection example: Spawn Point A

should have a 50% probability of being selected, while Spawn Point B and C each have a 25%

chance of being chosen.

Chapter 3 71

Figure 3.2 – Spawning the character at one of the spawn points with weighted probabilities

Here’s how the weighted random selection algorithm works:

1.	 Assigning weights to array items: Each item in the list is assigned a weight, which rep-

resents its likelihood of being selected. Weights with higher values indicate a greater

probability.

2.	 Calculating the total weight: The algorithm calculates the sum of all the weights. This

total weight represents the probability range for selection.

3.	 Generating a random number: A random number is generated between 0 and the total

weight. This number determines where within the probability range the selection will fall.

4.	 Selecting the item: The algorithm iterates through the list of items, accumulating their

weights. When the cumulative weight exceeds or matches the randomly generated number,

the corresponding item is selected.

The complexity of weighted random selection is O(n).

Algorithms Commonly Utilized in Game Development72

The new WeightedRandomSelect function is introduced as a member function of the Selector

class. The function takes three parameters:

•	 Options, which is an array representing the available options for selection

•	 Weights, which is an array representing the probabilities for each option

•	 ArraySize, which indicates the length of both Options and Weights

The WeightedRandomSelect function returns the selected item.

Here is the code implementation of the WeightedRandomSelect method in the Selector class:

#pragma once

#include "Random.h"

class Selector

{

private:

 static Random _random;

public:

 /* Function: WeightedRandomSelect

 Parameters:

 Options: array which contains the optional items

 Weights: array which contains weights for each item

 ArraySize: size of the Options array

 Returns the selected item.

 */

 template<typename T>

 static T WeightedRandomSelect(T Options[], float Weights[], int
ArraySize)

 {

 int i;

 float totalWeight = 0.0f;

 for (i = 0; i < ArraySize; ++i)

 {

 totalWeight += Weights[i];

 }

 float randomValue = _random.NextFloat() * totalWeight;

 for (i = 0; i < ArraySize - 1; ++i)

 {

 if (randomValue < Weights[i])

Chapter 3 73

 {

 break;

 }

 randomValue -= Weights[i];

 }

 return Options[i];

 }

};

// create the random instance for generating random numbers

Random Selector::_random = (unsigned long)std::time(0);

Following the introduction of the random and selector algorithms, we will demonstrate their

application using a real example project, Demo3a.

Demo3a: Random and weighted-random selections in action
Open and examine the source code of Demo3a.cpp. You will see how the Random and Selector

classes are utilized and how the WeightedRandomSelect function randomly spawns the character

at a selected spawn point (see Figure 3.2).

Demo3a uses the SpawnPoints array to store the potential candidates for spawn points A, B, and C.

It then stores the selection probabilities for these three points in the SpawnProbabilities array,

assigning a 50% chance for spawn point A to be selected, while spawn point B and spawn point

C each have a 25% probability of being chosen:

Vector3 SpawnPoints[3] = {

 {0, 0, 30}, {30, 0, 0}, {0, 0, -30}

};

float SpawnProbabilities[3] = { 0.5f, 0.25f, 0.25f };

To determine the spawn point for the character, the Selector::WeightedRandomSelect function

is called. This function returns a chosen spawn point position, which is then used to update the

character’s position:

Character->Position =

 Selector::WeightedRandomSelect<Vector3>(

 SpawnPoints, SpawnProbabilities, 3);

Algorithms Commonly Utilized in Game Development74

The Update function checks if the player has clicked the mouse’s left button. If a click is detected,

it selects a new spawn point and relocates the character accordingly:

void Demo3a::Update(float ElapsedSeconds)

{

 if (IsMouseButtonPressed(MOUSE_BUTTON_LEFT))

 {

Character->Position =

 Selector::WeightedRandomSelect<Vector3>(

 SpawnPoints, SpawnProbabilities, 3);

 }

 __super::Update(ElapsedSeconds);

}

We have already introduced the simple random selection and weighted random selection algo-

rithms. These two algorithms are versatile and can satisfy most requirements and use cases in

game development. However, both of them use a selection method with replacement, which

means there is a possibility of selecting the same option multiple times.

For instance, if we need to spawn two characters, there is a chance that both could appear at

the same location, causing them to overlap. This scenario highlights the need for a selection

method without replacement, where once an option is chosen, it should not be available for the

next selection.

Exclusive selection is the solution designed to solve this kind of problem.

Exclusive selection
Exclusive selection is an algorithm that chooses items from a collection where each selected item

is removed from the pool of available options and won’t be selected again for subsequent selections.

Use cases for exclusive selection in game development include choosing distinct spawn points

for multiple game actors, assigning unique roles to players, and generating unique rewards from

a loot table.

The exclusive selection algorithm includes four steps:

1.	 Randomly select one item from the collection:

•	 If the collection size is n, the selected item’s index is i, where 0 ≤ i < n.

Chapter 3 75

2.	 Remove the selected item from the collection:

•	 Swapping the selected item with the last item in the list, and then reducing the

size of the list by one. This operation ensures the removal is done in O(1) time.

•	 Alternatively, you can use a data structure, a linked list, for example, that supports

efficient removals.

3.	 Select the second item from the modified collection (which now has the size n-1).

Repeat steps 2 and 3 until the desired number of items has been selected.

The complexity of the weighted random selection algorithm is O(n).

We introduce a new member function, ExclusiveSelect, to the Selector class. This function

accepts four parameters:

•	 Options, which is an array representing the available options for selection.

•	 ArraySize, which indicates the length of both Options.

•	 Selected, which outputs an array. The selected items will be stored in this array once the

selection operation is done.

•	 SelectedCount, which specifies the number of items the function should select. It also

determines the length of the Selected array, which contains the selected items for output.

The ExclusiveSelect function returns true if it completes successfully; otherwise, it returns false.

The following code snippet, used in Demo3b, presents the C++ implementation of the

ExclusiveSelect function in the Selector class:

#pragma once

#include "Random.h"

class Selector

{

 …

public:

 …

 /* Function: ExclusiveRandomSelect

 Parameters:

 Options: array which contains the optional items

 ArraySize: size of the Options array

 Selected: array which contains the selected items

Algorithms Commonly Utilized in Game Development76

 SelectedCount: size of the Selected array

 Returns true if succeeded or false if failed.

 */

 template<typename T>

 static bool ExclusiveSelect(T Options[], int ArraySize, T Selected[],
int SelectedCount)

 {

 if (ArraySize <= 0 || SelectedCount > ArraySize)

 {

 return false;

}

//Clone the Options into a buffer

 T *optionsBuffer = new T[ArraySize];

 int size = sizeof(T) * ArraySize;

 memcpy_s(optionsBuffer, size, Options, size);

 //Loop to select the needed number of items

 for (int i = 0; i < SelectedCount; ++i)

 {

 int index = _random.NextInt(0, ArraySize);

 //Swap the selected item and the last item

T temp = optionsBuffer[index];

 optionsBuffer[index] = optionsBuffer[ArraySize - 1];

 optionsBuffer[ArraySize - 1] = temp;

 Selected[i] = temp;

 //Decrement the array size

 ArraySize--;

 }

 //Free memory of the buffer

 delete[] optionsBuffer;

 return true;

 }

};

Let’s look at the next demo project, Demo3b, which uses the new ExclusiveSelect function to

randomly select two spawn points out of three to spawn two characters.

Chapter 3 77

Demo3b: Exclusive random selection
Demo3b illustrates how the ExclusiveRandomSelect function is used to place two characters at

two distinct spawn points without overlapping. In other words, the ExclusiveRandomSelect

function ensures that the characters do not spawn at the same location.

Figure 3.3 – Spawning two characters with the ExclusiveRandomSelect function

At the core of Demo3b is the PlaceCharacter function, which calls the static member function

ExclusiveRandomSelection of the Selector class. Once the spawn point positions are success-

fully filled in the SelectedPositions array, they are assigned to the characters’ Position field

to relocate them.

Open the Demo3b.cs source code file and take a close look at the function’s implementation in

detail:

void Demo3b::PlaceCharacters()

{

 Vector3 selectedPositions[2];

 //Select two out of the three spawn points

 if(Selector::ExclusiveRandomSelect(SpawnPoints, 3, selectedPositions,
2))

 {

 //Relocate the two characters at positions of the two selected spawn
points

 Character1->Position = selectedPositions[0];

 Character2->Position = selectedPositions[1];

 }

}

Algorithms Commonly Utilized in Game Development78

By mastering the previously introduced randomization-related algorithms, you will be able to

apply dynamic gameplay development skills and enhance your game’s entertainment value for

players. Let’s now move on to the next exciting topic, shuffling, which still needs to utilize the

function of random number generation.

Shuffling for randomization
Shuffling is the process of rearranging elements in a collection, an array, for example, in a ran-

dom order. It must ensure that each possible ordering of the elements is equally likely. In game

development, shuffling is often used to introduce unpredictability and variety, enhancing the

gameplay experience. Here are a couple of use cases:

•	 Card games: In card games like Poker and Blackjack, shuffling is essential to randomize

the order of cards in a deck. It ensures fairness and unpredictability, providing a new

experience in each game session.

•	 Randomized loot or item drops: Many games, especially RPGs and action-adventure

games, use shuffling to randomize loot or item drops. When a player defeats an enemy

or opens a treasure chest, the game might shuffle a list of possible rewards to determine

which item the player receives.

•	 Randomized level design: In procedurally generated games, such as Hades (2019), Spe-

lunky (2008), or Enter the Gungeon (2016), shuffling is often used to randomize the order

or placement of rooms, enemies, and obstacles within levels. The game may have a set

of pre-designed rooms or sections that are shuffled to create a unique layout each time a

player starts a new game or enters a new level.

We are going to introduce a simple shuffling algorithm, the Fisher-Yates shuffle, which can ran-

domly and efficiently shuffle items of an array. The algorithm includes three main steps:

1.	 Initializing: Start with an array of n elements.

2.	 Shuffling:

1.	 Iterate through the list from the last element to the first.

2.	 For each item i, generate a random index j such that 0 ≤ j ≤ i.

3.	 Swap the items at indices i and j.

3.	 Output the first k items.

Chapter 3 79

The complexity of the Fisher-Yates shuffle algorithm is O(n).

We create a new class, Shuffler, which includes a static member function called FisherYateShuffle.

This function takes four parameters:

•	 Items, which is an array representing the collection of items.

•	 Size, which indicates the length of the Items array.

•	 SelectedItems, which is an output array. The picked items will be filled in this array

after shuffling.

•	 SelectedSize, which specifies the number of items the function should pick. It also de-

termines the length of the Selected array, which contains the picked items for output.

The FisherYateShuffle function returns true if it completes successfully; otherwise, it returns

false.

The following code snippet shows the C++ implementation of the Shuffler class and its member

function FisherYateShuffle:

#pragma once

#include "Random.h"

class Shuffler

{

private:

 static Random _random;

public:

 /* Function: FisherYateShuffle

 Parameters:

 Items: array which contains the items to be shuffled

 ArraySize: size of the items array

 PickedItems: array which stores the picked items when completion

 PickedSize: size of the pickedItems array

 Returns: true-succeeded, false-failed

 */

 template<typename T>

 static bool FisherYateShuffle(T Items[], int Size, T PickedItems[], int
PickedSize)

Algorithms Commonly Utilized in Game Development80

 {

 if (Size <= 0 || PickedSize > Size)

 {

 return false;

 }

 //Shuffle the items

 for (int i = Size - 1; i >= 0; --i)

 {

 int j = _random.NextInt(0, i);

 T temp = Items[j];

 Items[j] = Items[i];

 Items[i] = temp;

 }

 //Fill up the output array with the selected number of items

 for (int k = 0; k < PickedSize; ++k)

 {

 PickedItems[k] = Items[k];

 }

 return true;

 }

};

// create the random instance for generating random numbers

Random Shuffler::_random = (unsigned long)std::time(nullptr);

Now that we’ve introduced the Fisher-Yates shuffling algorithm and its implementation, let’s see

it in action. In the next section, we’ll explore the Demo3c project, which applies this algorithm to

shuffle cards efficiently.

Demo3c: Fisher-Yates shuffling
Demo3c illustrates the use of the Fisher-Yates shuffle algorithm to randomize a deck of poker

cards and display the top 13 cards on the screen (see Figure 3.4). Clicking the left mouse button

will reshuffle the deck.

Chapter 3 81

Figure 3.4 – Shuffling a deck of cards and displaying the first 13 cards

To get Demo3c working, first, make Demo3c a subclass of Knight. Add the Shuffle member function

to the Demo3c class, and override the Start, Update, DrawGUI, and EndGame functions. The code

can be found in Demo3c.h here:

#pragma once

#include "Knight.h"

class Demo3c : public Knight

{

public:

 void Start() override;

protected:

 void Update(float ElapsedSeconds) override;

 void DrawGUI() override;

 void EndGame() override;

private:

 void Shuffle();

};

We override the DrawGUI function because this demo renders 2D images without using a 3D

camera, making DrawGUI ideal for handling the drawing task.

Algorithms Commonly Utilized in Game Development82

Before we delve deeper into the code implementation in Demo3c.cpp, we need to define three

arrays to store card information:

•	 CardIDs: Stores numbers from 0 to 51, representing the 52 cards

•	 CardImages: Holds the 52 loaded card images

•	 PickedCardIDs: Will contain the 13 picked cards’ IDs after shuffling the deck

Here’s the code:

#define IMAGE_FILENAME_BUFFER_SIZE 64

#define DECK_CARD_COUNT 52

#define PICK_CARDS_COUNT 13

int CardIDs[DECK_CARD_COUNT];

Texture2D CardImages[DECK_CARD_COUNT];

int PickedCardIDs[PICK_CARDS_COUNT];

In the Start function, the primary task is to initialize the card IDs and load the card images. The

CardIDs array is initialized with sequential numbers representing card indices, which will later

be shuffled. The card images are then loaded into the CardImages array in the correct order. The

LoadTexture function loads card images from the provided path:

//Initialize card IDs and load card images

for (int i = 0; i < DECK_CARD_COUNT; ++i)

{

 //Initialize the card ID

 CardIDs[i] = i;

 if (i < PICK_CARDS_COUNT)

 {

 PickedCardIDs[i] = i;

 }

 //Load card image

 sprintf_s(imageFile, IMAGE_FILENAME_BUFFER_SIZE, "../../resources/
textures/PokerDeckCards/%d.png", i);

 if (FileExists(imageFile))

 {

 CardImages[i] = LoadTexture(imageFile);

 }

}

Chapter 3 83

At the end of the game, be sure to unload the card images. This can be done using the UnloadTexture

function:

void Demo3c::EndGame()

{

 for (int i = 0; i < DECK_CARD_COUNT; ++i)

 {

 UnloadTexture(CardImages[i]);

 }

 __super::EndGame();

}

The Shuffle function consists of a single line of code that calls the Shuffler class’s member

function, FisherYateShuffle, to shuffle the CardIDs array and output the picked card IDs:

void Demo3c::Shuffle()

{

 Shuffler::FisherYateShuffle(CardIDs, DECK_CARD_COUNT,

 PickedCardIDs, PICK_CARDS_COUNT);

}

In the DrawGUI function, use a loop to call DrawTexture and display the picked cards on the screen:

int x = 15;

for (int i = 0; i < PICK_CARDS_COUNT; ++i)

{

 DrawTexture(CardImages[PickedCardIDs[i]], x, 180, WHITE);

 x += 120;

}

For full details of the source code, please refer to Demo3c.cpp in the GitHub repository.

With the shuffling process complete, the deck is now randomized and ready for use. Let’s use a

sorting method to arrange the cards in hand.

Algorithms Commonly Utilized in Game Development84

Sorting algorithms
In game development, sorting algorithms play a crucial role in optimizing performance and

enhancing gameplay, whether managing lists of game objects, prioritizing tasks, or organizing

level data. Efficient sorting is the basic required optimization, which helps streamline efficient

and responsive responses, such as smoother game experiences, faster loading times, and more

effective data handling operations.

A well-sorted collection of data significantly enhances efficiency by enabling rapid data retriev-

al. It contributes to user-friendly list views, allowing for easy navigation and management of

information. Additionally, sorting helps in prioritizing tasks effectively, ensuring that critical

operations are handled promptly and improving overall system performance and user experience.

Several major sorting algorithms are commonly used in game development to efficiently manage

and organize data:

•	 QuickSort is favored for its speed and efficiency in handling large datasets. It is not suitable

for almost sorted datasets. The algorithm’s average complexity is O(nlogn).

•	 MergeSort is known for its stability and predictable performance. The algorithm’s average

complexity is O(nlogn).

•	 HeapSort is useful for scenarios where a priority queue is needed. The algorithm’s average

complexity is O(nlogn).

•	 InsertionSort and BubbleSort, while less efficient for large datasets, can be handy for

small or nearly sorted lists. The algorithm’s average complexity is O(n2).

Sorting algorithms are widely covered in many courses and learning materials on data structures

and algorithms, so we won’t explain them in detail here. However, we still mention them in this

book because they are essential and frequently used in game development.

The C and C++ Standard Libraries (STLs) provide built-in Quicksort functions that are ready for

use, though they differ slightly in naming. In the C STL, the function is called std::qsort, while

in the C++ STL, it is std::sort.

Demo3d: Sorting cards
Building on Demo3c, in Demo3d, we use the C STL function std::qsort to arrange the cards that

were dealt in hand. It is easier for players to view their hands in an organized manner.

Chapter 3 85

Figure 3.5 – Sorting to organize shuffled cards

The difference between Demo3d and Demo3c is the addition of the SortDealtCards function in the

Demo3d class, which organizes the cards in hand:

void Demo3d::SortDealtCards()

{

 std::qsort(PickedCardIDs, PICK_CARDS_COUNT, sizeof(int), [](const void*
x, const void* y)

 {

 int arg1 = *static_cast<const int*>(x);

Algorithms Commonly Utilized in Game Development86

 int arg2 = *static_cast<const int*>(y);

 if (arg1 < arg2)

 {

 return -1;

 }

 if (arg1 > arg2)

 {

 return 1;

 }

 return 0;

 });

}

After exploring sorting algorithms and their role in organizing data efficiently, let’s move on to

the next key concept: procedural generation. By leveraging procedural generation techniques,

we can create dynamic game elements, enhancing the variety and complexity of the experience.

Procedural generation
Procedural generation in game development refers to the creation of game content based on

algorithms or rules. For example, dynamically generating a game level in real time, rather than

pre-crafting each element in the level, can bring variation and unpredictability to the gameplay.

This approach enhances replayability and provides endless possibilities, as well as reducing

development time.

Procedural generation may be based on a wide range of algorithms and rules tailored to specific

needs and situations. Different methods are employed based on the desired outcome, whether it’s

creating randomized levels, generating unique characters, or building dynamic environments. The

choice of algorithm can vary depending on factors like complexity, performance, or aesthetic goals.

In this section, we introduce the random acyclic maze generator algorithm as an example of pro-

cedural generation. It generates mazes through randomization, ensuring the generated maze is

acyclic without loops while maintaining the connectivity and complexity of the maze.

The random acyclic maze generator algorithm accepts four parameters: the maze dimensions

(rows and columns), along with the entry and exit points. It then uses the following steps to

generate an acyclic maze:

1.	 Initialize the maze by blocking all grid cells with wall objects.

2.	 Set the entry and exit point cells based on the specified row and column numbers.

Chapter 3 87

3.	 Starting from the entry point, use the Depth-First Search (DFS) method to find the next

waypoint cell, marking it as visited (FlagEmpty).

4.	 Recursively call the DFS function to locate the next waypoint based on the current visited

cell. If a dead end is reached, backtrack to the previous cell.

5.	 Repeat step 4 until the maze is fully generated, then return the completed maze.

The complexity of the random acyclic maze generator algorithm is O(n * m), where n represents

the number of rows and m represents the number of columns of the maze.

We develop a new class, MazeGenerator, which utilizes the DFS algorithm internally to help find

a path from the entry cell to the exit cell, ensuring that there are no circular paths.

The definition of the MazeGenerator class can be found in the Demo3e project, which mainly

provides two overloaded functions that can be called to generate the maze:

•	 void GenerateMaze(int Entry[2], int Exit[2])

•	 void GenerateMaze()

The former takes two parameters to generate the maze with the specified entry and exit points,

while the latter uses the currently saved default entry and exit points to create a new maze.

The maze data is stored in a 2D array matrix that uses flags to indicate whether a cell is empty or

blocked, as well as to mark the entry and exit points. When generating a new maze, the Generate

function initializes all cells with the FlagWall flag at the start:

int** _maze;

…

//Initialize the maze with wall blocks

for (int row = 0; row < _rows; ++row)

{

 Depth-first search

DFS is an algorithm that explores a graph by systematically visiting each

vertex and its adjacent vertices, diving as deep as possible before backtrack-

ing. DSF is beyond the scope of this book. If you’re not familiar with DFS,

please consult online resources or other references for more information.

Visit https://www.geeksforgeeks.org/depth-first-search-or-dfs-

for-a-graph/ for more information.

https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/
https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph/

Algorithms Commonly Utilized in Game Development88

 for (int col = 0; col < _cols; ++col)

 {

 _maze[row][col] = FlagWall;

 }

}

Next, the cells for the entry and exit points are marked with the FlagEntry and FlagExit flags:

//Set maze entry and exit flags

_maze[_entry[1]][_entry[0]] = FlagEntry;

_maze[_exit[1]][_exit[0]] = FlagExit;

The DFS function is called to perform the recursive search for generating the maze:

//Find the path that starts at the entry point and leads to the exit.

DFS(_entry[0], _entry[1]);

The key to the maze generation process lies in the DFS function. This function first shuffles the

four movement directions in the directions array, then iterates through these directions to ex-

amine the adjacent cells around the current cell. If a neighboring cell has already been visited or

is out of bounds, it is ignored; otherwise, the neighboring cell is marked with the FlagEmpty flag.

For the newly marked neighbor cell, the DFS function is called recursively to find the next cell that

could be used to continue the path:

/* Function: DFS

 * Use Deep First Search method to visit the next cell

 * Parameters:

 * Rows: Count of rows of the maze

 * Columns: Count of columns of the maze

 */

 void DFS(int row, int col)

 {

 int directions[] = { UP, DOWN, RIGHT, LEFT };

 Shuffler::FisherYateShuffle(directions, 4);

 for (int dir = 0; dir < 4; ++dir)

 {

 int direction = directions[dir];

 int newRow = row + 2 * dirRow[direction];

 int newCol = col + 2 * dirCol[direction];

 //Check if the new cell is valid

Chapter 3 89

 if (newRow >= 0 && newRow < _rows &&

 newCol >= 0 && newCol < _cols &&

 _maze[newRow][newCol] == FlagWall)

 {

 //Cave the path by setting the cells connecting the two cells to
be empty

 _maze[row + dirRow[direction]][col + dirCol[direction]] =
FlagEmpty;

 _maze[newRow][newCol] = FlagEmpty;

 //Recursively find the next way point on the path to the exit
point

 DFS(newRow, newCol);

 }

 }

}

For a better understanding of the algorithm and its application in real maze generation scenarios,

please examine the source code in the Demo3e project.

Demo3e: Maze generation
To demonstrate the use of the newly created MazeGenerator class in a real visual game, Demo3D

generates mazes randomly and visualizes the results.

Figure 3.6 – A maze generated by the random acyclic maze generator algorithm

Algorithms Commonly Utilized in Game Development90

The Demo3e class instantiates the MazeGenerator when the Start function is called and destroys

it in the EndGame function. You can then call the GenerateMaze function to create the maze:

void Demo3e::Start()

{

 …

 _mazeGenerator = new MazeGenerator(MAZE_ROWS, MAZE_COLS);

 _mazeGenerator->GenerateMaze();

}

void Demo3d::EndGame()

{

 if (_mazeGenerator != nullptr)

 {

 delete _mazeGenerator;

 _mazeGenerator = nullptr;

 }

__super::EndGame();

Next, you can call the GetMaze method of the MazeGenerator class to retrieve the maze’s data

matrix. The Demo3e class uses this method before rendering the scene:

void Demo3e::DrawFrame()

{

 int** maze = _mazeGenerator->GetMaze();

 …

}

The best way we suggest to gain a deeper understanding of the algorithm is by exploring the

source code of the Demo3e project.

Having covered procedural maze generation, we will now turn to another essential optimization

technique in game development: object pooling. In the next section, we’ll dive into the pooling

method and its benefits in game development.

Object pooling
The strategy of object pooling is to reuse objects rather than frequently creating and destroying

them. Pooling helps reduce memory overhead and improve performance, especially in resource-in-

tensive games.

Chapter 3 91

In games, it’s common to dynamically spawn and destroy objects. This is especially important

when shooting bullets. Each time a bullet is fired, an object is created. When the bullet hits some-

thing or its lifespan ends, the object is destroyed. Over the course of a gameplay session, players

may fire thousands of bullets, leading to thousands of memory allocations and deallocations. This

can result in performance issues, memory fragmentation, overflow, and potentially even bugs.

Object pooling is an effective solution to avoid the issues mentioned above. An object pool con-

tains a predefined number of pre-created bullets, each with an IsActive flag indicating whether

the bullet is available or in use. When a new bullet needs to be spawned, the pool’s GetObject

function can be called to locate an inactive bullet in the pool, set its IsActive flag to true, and

return the bullet object to simulate the spawning process. When the bullet’s lifespan ends, it is

returned to the pool, and the bullet’s IsActive flag is reset to false.

Let’s explore the pooling algorithm in detail to understand how game objects are managed inside

the pool.

Outlining the pooling algorithm
The core of the ObjectPool class is the pool itself. To define the pool, we need three key elements:

•	 A base class, PoolableObject, which serves as a base for actual objects, such as Bullet.

•	 A template class, ObjectPool, which manages and contains the pool of objects.

•	 The _pool itself, represented as a pointer to allocated memory that holds a list of

PoolableObject instances.

The ObjectPool class does the following four jobs:

•	 GetObject: Simulates object creation by retrieving an inactive object from the pool.

•	 ExpandPool: If no inactive objects are available, the pool size is increased using an expo-

nential growth strategy—doubling the size and creating additional objects—and then

an inactive object is returned.

•	 ReturnObject: Simulates object destruction by returning an object to the pool when it

is no longer needed.

•	 Update and Draw: Manages the updating and rendering of active objects within the pool.

Algorithms Commonly Utilized in Game Development92

Let’s examine the actual C++ class declarations to gain a better understanding of object pooling:

//The base class which serves as a base for actual poolable objects

class PoolableObject

{

protected:

 bool _isActive;

 float _lifespan;

public:

 void Activate() { isActive = true; }

 void Deactivate() { _isActive = false; }

 void SetLifespan(float Seconds) { _lifespan = Seconds; }

 float GetLifespan() { return _lifespan; }

 float DecreaseLifeSpan(float Seconds) {

 _lifespan -= Seconds;

 }

 bool IsActive() { return _isActive; }

 virtual void Update(float ElapsedSeconds) = 0;

 virtual void Draw() = 0;

}

Below is the code implementation for the ObjectPool template class. To provide a clear overview

of its functionalities, we have listed only the method declarations here. For the complete imple-

mentation, please refer to the ObjectPool.h file:

//A template class which manages and contains the pool of objects

template<class T>

class ObjectPool

{

private:

 T** _pool;

 int _poolSize;

 int _activeCount;

 void ExpandPool();

 T* GetObject();

 void ReturnObject(T* objToReturn);

 void Update(float ElapsedSeconds);

 void Draw();

}

Chapter 3 93

To learn more about detailed implementation and the practical application of ObjectPool,

explore the source code in the Demo3f project.

Applying ObjectPool
In this demo, a character is present in the scene, and the player has a third-person view to observe

it. Click the left mouse button to fire a bullet. Each bullet has a lifespan of 3 seconds and will be

deactivated when this time expires.

Figure 3.7 – Firing pooled bullets

Demo3f defines a Bullet class that inherits from the PoolableObject class, allowing it to be

managed by _pool, which is an instance of ObjectPool. Consequently, the _bulletPool variable

is defined as a member of the Demo3f class in the Demo3f.h file:

ObjectPool<Bullet> _bulletPool;

Please refer to the following code implementation of the Bullet class for more details:

class Bullet : public PoolableObject

{

private:

 Vector3 _position;

 Vector3 _velocity;

 float _radius;

Algorithms Commonly Utilized in Game Development94

public:

 void SetPosition(Vector3 Position, Vector3 Velocity) {

 _position = Position;

 _veloicity = Velocity;

 }

 void Update() {

 if (_isActive) {

 _lifespan -= ElapsedSeconds;

 _position.x += _velocity.x * ElapsedSeconds;

 _position.y += _velocity.y * ElapsedSeconds;

 _position.z += _velocity.z * ElapsedSeconds;

 }

 }

 void Draw() override {

 if (_isActive) {

 DrawSphere(_position, _radius, RED);

 }

 }

 void Activate() override {

 __super::Activate();

 _lifespan = BULLET_LIFETIME;

 }

}

Congratulations on completing Chapter 3! You’ve now gained insights into some valuable algo-

rithms and learned how to apply them in your game development practice. We hope you’re excited

to put these new techniques into action and that they add a new layer of creativity and efficiency

to your work. Enjoy the journey and have fun as you bring your game development projects to life!

Summary
This chapter explored several key algorithms and techniques fundamental to game development,

starting with randomization. It introduced the concept of generating random numbers in C++.

Randomization forms the basis of many game mechanics, ensuring that experiences remain fresh

and dynamic with each playthrough.

Chapter 3 95

Building on this, the chapter moved on to selection algorithms. It covered random selection,

which is useful for picking elements from a dataset. Weighted random selection was also dis-

cussed, allowing developers to assign different probabilities to various outcomes, which is ideal

for games where certain items or events are rarer than others. Additionally, exclusive selection,

which ensures no repetitions, was explored for spawning characters. These concepts were brought

to life through C++ code examples in Demo3a and Demo3b, showcasing practical implementations.

Shuffling was introduced next, with a detailed explanation of the Fisher-Yates shuffle algorithm.

This technique was demonstrated by shuffling a deck of cards. Demo3c showed the step-by-step

process of how the Fisher-Yates algorithm is applied in C++ to randomize the order of cards in

a deck.

Following shuffling, some C++ STL sorting functions were introduced. The quicksort function

was used in Demo3d, demonstrating how to efficiently arrange cards in a hand, ensuring they are

sorted in proper order.

The chapter then shifted focus to procedural generation, a powerful method for dynamically

creating game content. In this section, the random acyclic maze generator algorithm was used

to build a maze with one entrance and one exit, providing a hands-on example of procedural

generation in action. Demo3e illustrated the step-by-step process of generating the maze.

Finally, the chapter concluded with a discussion on object pooling, a technique for managing

memory efficiently by reusing a fixed pool of objects rather than creating and destroying them

repeatedly. This section demonstrated how object pooling is applied to manage a limited number

of bullets in a game. By employing an exponential growth strategy, the object pool expands as

needed.

In the next chapter, the focus shifts to techniques for displaying 2D graphics and creating visual

effects, setting the stage for the visual aspects of game development.

Part 2
Graphics Algorithms

in Practice
In this part, the focus shifts to the visual foundation of game development: graphics rendering.

Whether you’re building a classic 2D side-scroller or a fully immersive 3D world, understand-

ing how to render and control visual elements is essential to delivering a compelling gameplay

experience.

You’ll begin by exploring 2D graphics rendering, learning how to efficiently load and manipulate

images, apply blending techniques, and create visual effects like parallax scrolling and isometric

projection. From there, the journey continues into camera systems, which are critical to how

players view and interact with the game world. You’ll gain hands-on experience building a variety

of camera types, including third-person, rail, and split-screen views.

Next, you’ll dive into the world of modern 3D graphics, covering topics such as shader program-

ming, lighting, and rendering pipelines from a GPU perspective. As you progress, you’ll learn how

to enhance the realism and performance of your scenes through advanced rendering strategies

and custom shaders.

Finally, you’ll bring all these elements together by constructing a complete 3D game world—fea-

turing terrain, skyboxes, animated characters, particle effects, and more—rendered efficiently

and convincingly.

﻿98

This part includes the following chapters:

•	 Chapter 4, 2D Rendering and Effects

•	 Chapter 5, The Camera and Camera Controls

•	 Chapter 6, 3D Graphics Rendering

•	 Chapter 7, Rendering a 3D Game World

4
2D Rendering and Effects

In this chapter, we will delve into the core principles and practical techniques of 2D graphics ren-

dering, gaining insights into how modern GPUs handle 2D operations. While often overshadowed

by 3D engines, 2D visuals remain essential for many gaming scenarios—whether it’s a standalone

side-scroller or the user interface of a fully 3D title. You’ll learn how to load and manage images

efficiently, apply color and alpha blending for striking visual effects, and integrate practical fea-

tures like N-patch textures to build flexible, resizable UI elements.

Moving beyond simple sprite drawing, the chapter also covers parallax scrolling, a popular method

for creating depth in side-scrolling backgrounds, and isometric projections, which let you convey

a pseudo-3D feel on a 2D grid. Through a dedicated sample project, you’ll discover how to animate

sprites, combine multiple layers for immersive scenes, and smoothly transition between images

using additive or subtractive blending modes. In this chapter, you will learn about:

•	 Understanding 2D graphics operations behind the scenes

•	 Working with 2D texture rendering

•	 Using screen scrolling

•	 Rendering isometric maps

By the end of the chapter, you’ll have a robust toolkit for 2D game development: from displaying

sprites and orchestrating beautiful particle-like effects to creating entire isometric worlds and

intuitive, high-quality user interfaces. This foundation will ensure your 2D or hybrid 2D/3D

projects are both visually appealing and efficiently rendered.

2D Rendering and Effects100

Technical requirements
Download and open the project via the GitHub URL to open the example project demonstrated in

this chapter: https://github.com/PacktPublishing/Practical-C-Game-Programming-with-

Data-Structures-and-Algorithms/tree/main

The following projects in the Knight Visual Studio solution (https://github.com/
PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/

tree/main/Knight) are used as samples for this chapter:

Project Name Description

Demo4texops This project contains multiple demo code snippets for various texture

drawing features in Knight. Use the enter key or left mouse button to go

through them.

Demo4ss This project demonstrates parallax side scrolling for a multi-layered

background.

Demo4iso This project demonstrates how to render an isometric map.

Table 4.1 – Sample 2D graphics projects for this chapter

Understanding 2D graphics operations behind the
scenes
In this section, before we start writing a line of code to work with a 2D graphic image, let’s first

find out how the modern generation of GPU hardware and display drivers handle graphics images

behind the scenes.

Loading and rendering a texture as an image
The GPU hardware renders and processes graphic image data in real time. Real-time rendering

is now predominantly managed by the modern generation of GPUs. As a result, understanding

key concepts related to graphics hardware is crucial for developing games with smooth visuals

and good runtime performance.

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight

Chapter 4 101

Figure 4.1 shows the process of how a static image is rendered on the screen from a graphic file

stored on a storage device.

Figure 4.1 – The process behind displaying an image on the screen

In Figure 4.1, the image is first loaded from secondary storage (e.g., a hard drive or the cloud) into

system memory by the CPU, then uploaded into the GPU’s video memory (VRAM) as a texture.

VRAM is split into display memory, which drives what appears on the screen, and offscreen mem-

ory for textures and other rendering data. To show the image, the GPU copies its pixel data from

the texture into display memory via a Bitblt (bit-block transfer), a fundamental operation for

moving pixel blocks between memory locations.

Consequently, rendering a 2D image relies on coordination between the CPU and GPU to move

image data efficiently.

The Demo4texops project features a set of 2D graphics-related sample code, with each feature

implemented and demonstrated in an inherited Entity class. The base class is relatively simple,

as we saw in Chapter 2:

class Entity {

 public:

 virtual void Create() = 0;

 virtual void Update(float elapsedTime) {};

 virtual void Draw2D() = 0;

 virtual void Release() = 0;

 bool isReady;

2D Rendering and Effects102

 string title;

 string description;

 Entity();

};

With each demo, we create and load the necessary resources by overriding the Create() function

in the above base class.

The main application class, Demo4TexOps, is responsible for creating an array of demo entities

and running from the first one to the last sequentially. You can press the enter key or the mouse’s

left button to switch to the next demo.

The first demo entity is the SimpleDrawTextureDemo class. This demo shows how to use Knight

to perform the above process to load and display an image. As we mentioned previously, we need

to first load the image into system memory and then upload it into video memory to store as a

texture. This part is handled in the Create() function in SimpleDrawTextureDemo:

void SimpleDrawTextureDemo::Create()

{

 Image art = LoadImage("resources/textures/demoart.png");

 texture = LoadTextureFromImage(art);

 UnloadImage(art);

 isReady = true;

}

In the above code, Image is a data structure provided by Knight to store graphic file data in the

system memory. The next step is to use LoadTextureFromImage() to decode and upload the image

data into VRAM as a Texture2D format resource.

You do not need to keep a copy of image data in system memory once you have a texture ready in

VRAM. Unless you foresee any special need to re-upload the same image data into VRAM soon,

it’s good practice to call UnloadImage() to release the system memory no longer needed.

Before we leave the Create() function, we set the isReady variable to true. This lets the main

application class know if it needs to call the Create() function to ensure the resources are all

ready to run the demo class.

Chapter 4 103

The counterpart of the Create() function is the Release() function. It ensures resources are

properly released and the status is updated:

void SimpleDrawTextureDemo::Release()

{

 UnloadTexture(texture);

 isReady = false;

}

The actual action to draw the texture onscreen is executed in the Draw2D() function:

void SimpleDrawTextureDemo::Draw2D()

{

 Vector2 position = {(float)(SCREEN_WIDTH - texture.width) / 2.0f,
(float)(SCREEN_HEIGHT - texture.height) / 2.0f };

 DrawTextureV(texture, position, WHITE);

}

Here, we use raylib’s texture drawing function, DrawTextureV(). It takes the texture that needs to

be drawn, the screen coordinate position (the top-left side of the texture), and the color to blend

with the texture to render the result on the screen.

Since DrawTextureV() uses the top-left corner of the texture as its drawing origin, we need to

calculate the appropriate position if we want to center the image on the screen. In Knight, two

constants, SCREEN_WIDTH and SCREEN_HEIGHT, define the dimensions of the application window.

The Texture2D structure in raylib includes width and height, which represent the dimensions of

the texture. To find the correct top-left position for centering the texture, we subtract the texture’s

width from SCREEN_WIDTH and divide by 2 to get the x-coordinate; the same calculation applies

to the y-coordinate using SCREEN_HEIGHT and the texture’s height.

2D Rendering and Effects104

The result is shown in Figure 4.2:

Figure 4.2 – Running SimpleDrawTextureDemo to draw a texture at the center of the screen

For optimal performance, pre-load as many required textures into GPU memory, minimizing the

need for repeated uploads. However, because GPU memory is limited, overusing it prompts the

driver to swap or discard textures, harming performance. Careful planning of memory usage—

particularly texture sizes and formats—ensures your scene stays within typical GPU limits while

still looking visually rich.

Choosing an appropriate texture format
When creating textures, we can specify their format. The format determines how individual pixels

are stored and whether compression is used. We know that a screen is composed of pixels, and

each pixel stores the values for the red, green, and blue channels, possibly including an additional

transparency value. Figure 4.3 shows the common pixel formats supported by Knight and the

memory they consume.

The most common highest-quality format is the 32-bit full-color R8G8B8A8 format, but often,

depending on the use case, we can use formats that are more memory-efficient.

Of course, this is entirely dependent on the source art. For cartoonish or anime/manga style

drawing, it might use a smaller number of colors than a photo-realistic image.

Chapter 4 105

For example, if an image is used as a graphics mask, each pixel might only need one bit to repre-

sent whether it should be drawn. For images with fewer or simpler colors, a format like R5G6B5

(five bits for red and blue/six bits for green) might be sufficient. It instantly reduces 50% of the

texture memory.

Figure 4.3 – Various uncompressed pixel formats

Modern GPUs also support various compressed texture formats to store more graphical data in

video memory. These are called lossy compression formats because they reduce the memory

required by sacrificing subtle details that are difficult for the human eye to perceive. In fast-paced

games, losing some visual details often isn’t a problem. Below are some common compressed

texture formats:

Format Description

DXT1 (*.dds) Offers the highest compression ratio but does not support alpha channels

(transparency), or it uses a 1-bit alpha (transparent or opaque). It compresses

images in roughly a 6:1 ratio.

DXT3 (*.dds) Supports explicit alpha, which means it stores transparency information

without additional interpolation, giving better control over alpha blending.

It’s useful for textures where the alpha channel doesn’t have smooth

transitions.

2D Rendering and Effects106

Format Description

DXT5 (*.dds) Similar to DXT3 but with interpolated alpha, allowing for more flexible and

nuanced transparency. This format is great for textures with gradients in

transparency (e.g., smoke, fog).

ETC1 Designed for RGB textures (no alpha channel), ETC1 provides good

compression for mobile platforms. It is often used where transparency isn’t

needed.

ETC2 Extends ETC1 by adding support for transparency (RGBA textures), offering

better image quality and compression efficiency for modern mobile

applications.

ASTC It allows for a variable bit rate (from 4 bits per pixel to 12 bits per pixel),

meaning developers can choose the best trade-off between image quality and

memory usage for each texture.

It also supports both RGB and RGBA textures and can efficiently compress

textures with fine details or complex color gradients. ASTC is also highly

scalable and can handle different levels of detail (LOD) in real-time rendering.

ATC_RGB

ATC_RGBA

ATC is used on Qualcomm’s Adreno GPUs, which are common in many

Android devices. It supports both RGB and RGBA textures.

Crunch Crunch is a format used in Unity and other game engines for compressing

textures, especially for WebGL or mobile games. It allows for higher

compression ratios while maintaining acceptable visual fidelity by combining

DXT and ETC formats with additional compression.

Table 4.2 – List of compressed texture formats supported by different graphics APIs

Chapter 4 107

Let’s look at the second demo class, CompressTextureDemo (in Demo4textOps.cpp). This time, we

loaded two textures. They are actually the same image, but one is in the original uncompressed

format and the other is in compressed DXT3 format. The original one is 3.03 MB, and the com-

pressed one is reduced to 896KB. In the Create() function, we load both textures:

void CompressTextureDemo::Create()

{

 Image art_org = LoadImage("../../resources/textures/demoart.png");

 original = LoadTextureFromImage(art_org);

 UnloadImage(art_org);

 Image art_cmp = LoadImage("../../resources/textures/demoart.dds");

 compressed = LoadTextureFromImage(art_cmp);

 UnloadImage(art_cmp);

 isReady = true;

}

In the above code snippet, Knight will determine the format of the file and create a texture ac-

cording to the format of the source file. In this demo class, we render both the non-compressed

texture and the compressed texture images side by side, so you can make a visual comparison in

the following code:

void CompressTextureDemo::Draw2D()

{

 Vector2 position = { 0, (float)(SCREEN_HEIGHT - original.height/2) /
2.0f };

 DrawTextureEx(original, position, 0, 0.5f, WHITE);

 position.x += original.width / 2+100;

 DrawTextureEx(compressed, position, 0, 0.5f, WHITE);

}

2D Rendering and Effects108

As you can see in Figure 4.4, there is not much of a visual difference between these two textures:

Figure 4.4 – Side-by-side visual quality comparison of original and compressed texture format

Choosing the right compressed texture format depends on the specific needs of the game or ap-

plication, including the platform, memory limitations, and the visual quality desired.

As for compression ratios, they can vary depending on the algorithm and the content of the original

image, ranging from 1/6 to 1/2. For very rough estimating purposes, we can assume an average

compression ratio of 1/3. This allows us to roughly estimate the amount of GPU memory needed.

Many visually stunning AAA games require far more graphic data than the memory available

on a typical graphics card. However, they carefully manage the memory usage for each frame,

ensuring that the amount of data used stays within the limits of the average gamer’s hardware.

Note

Keep in mind that some compressed formats of texture will have limitations for width

and height of the power of two. For example, size 512x1024 or 2048x64.

Chapter 4 109

In addition to choosing compressed texture formats whenever appropriate, we can also reduce

graphics memory usage by avoiding loading the same texture image multiple times. The next

section will demonstrate the concept of the cache – a high-speed data storage layer that stores

a subset of data, typically transient in nature, so that future requests for that data can be served

faster than by accessing the data’s primary storage location.

Using the cache to avoid loading the same texture
repeatedly
A game screen often uses hundreds of textures, with many duplicates (like 50 identical trees in a

forest). Without management, these textures might load multiple times unnecessarily. A texture

cache is a data storage layer with the following rules enforced:

•	 Prevents duplicates by tracking loaded textures in VRAM

•	 Provides existing textures when requested again

•	 Loads new textures only when needed

•	 Manages capacity limits—either by the maximum number of textures allowed or by avail-

able VRAM size.

When the texture cache reaches capacity, it must evict existing texture(s) to make room for the

new one. The most common eviction strategy is called Least Recently Used (LRU), which removes

the texture that hasn’t been accessed for the longest time.

Implementing an LRU texture cache
The next example project, LRUTextureCacheDemo (in LRUTextureCacheDemo.cpp of Demo4TexOps),

demonstrates how to implement an LRU-texture cache. The following code defines the C++ class

of TextureCache in LRUTextureCacheDemo.h:

class TextureCache {

private:

struct CacheEntry {

 Texture2D texture; //the actual loaded texture object

 list<string>::iterator lru_it; //the position iterator

};

2D Rendering and Effects110

The first part of the preceding code defines the data entry of the loaded texture in the CacheEntry

struct. CacheEntry is stored in a new collection type, unordered_map:

 unordered_map<string, CacheEntry> cache;

The unordered_map is a hash table-based associative container that stores key-value style data

pairs with unique keys, providing fast retrieval of values based on their associated keys. Here, we

use a sting – an image file name of texture – as a key to store the CacheEntry type data in cache.

The advantage of using unordered_map over an array or list is the performance. The time com-

plexity of finding a particular element inside unordered_map is O(1). This is better than O(N) for

array and list when we have hundreds of textures stored in the cache.

We also need to define a list of texture image file names to represent a list of recently used textures

in the variable lru_list. The front element of the list is the file name of the most recently used

texture, and the back element is the least recently used texture file name:

 list<string> lru_list; // Most recently used list

For simplicity, we will limit the maximum number of textures that can be stored in our

TextureCache implementation. We need two variables to track the maximum number and the

current number of loaded textures:

 size_t max_size; //maximum number of textures allowed

 size_t current_size = 0; //current number of textures

The constructor function of the class sets the maximum number of textures that can be stored

in this texture cache:

 TextureCache(size_t size) : max_size(size) {}

The most important function is GetTexture(). This function implements the core logic of the

cache mechanism:

Texture2D* GetTexture(const std::string& filePath)

{

This function first checks if the texture has been loaded and stored in the texture cache. If we find

it, we also need to update lru_list to make this texture the most recently used texture (the front

element of lru_list), and just return the previously loaded texture to the caller:

auto it = cache.find(filePath);

if (it != cache.end()) { //we find one!

Chapter 4 111

 // Move to front of LRU list (most recently used)

 lru_list.erase(it->second.lru_it);

 lru_list.push_front(filePath);

 it->second.lru_it = lru_list.begin();

 NumHit++;

 return &it->second.texture;

} else //nope, there is no such texture found

 NumMiss++;

The preceding code monitors cache performance through NumHit (cache successes – a texture is

found and returned) and NumMiss (cache failures – no such texture exists) counters.

The rest of this function uses LoadTexture() to load the texture and check if we still have available

room to store the texture. If we hit the maximum number of textures allowed, we just remove the

last element of lru_list to make room for this newly loaded texture:

 Texture2D texture = LoadTexture(filePath.c_str());

 //…

 if (current_size >= max_size && !lru_list.empty()) {

 string lru_key = lru_list.back();//get the last element

 UnloadTexture(cache[lru_key].texture);//unload texture

 cache.erase(lru_key); //remove data

 lru_list.pop_back(); //remove reference as well

 current_size--; //update current size

 }

The final piece of the code is to add the newly added texture into cache and make it the most

recently used texture (front of lru_list):

 lru_list.push_front(filePath);

 cache[filePath] = { texture, lru_list.begin() };

 current_size++;

 return &cache[filePath].texture;

}

2D Rendering and Effects112

The demo usage of the TextureCache() class is implemented in LRUTextureCacheDemo.cpp. Just

like other demos, it overrides the Create() and Draw2D() functions. Unlike other demo code, we

do not pre-load the textures we need here:

void LRUTextureCacheDemo::Create()

{

 isReady = true;

}

Instead, all required textures are loaded only when they’re needed. The textureCache will manage

the loading of new textures and avoid loading already existing textures:

void LRUTextureCacheDemo::Draw2D()

{

 int index = ((int)GetTime()/2) % texturePaths.size();

The preceding code calculates the index of the required texture by the time since the game appli-

cation started, passing the filename into the GetTexture() function of textureCache:

 Texture2D* texture=

 textureCache.GetTexture(texturePaths[index]);

Without caching, Draw2D() would reload the same textures every frame, rapidly exhausting VRAM.

Our textureCache implementation prevents this redundant loading by reusing existing textures.

The rest of the code shows the content of lru_list, so you can get an idea of how the list main-

tains the most recently used textures:

 // Draw the texture

 DrawTexture(*texture, SCREEN_WIDTH / 2 - texture->width / 2, SCREEN_
HEIGHT / 2 - texture->height / 2, WHITE);

 // Draw cache info

 DrawText(TextFormat("Cache Size: %d/%d Hit:%d, Miss:%d", textureCache.
Size(), textureCache.MaxSize(), textureCache.NumHit, textureCache.
NumMiss), 10, 30, 20, WHITE);

 for (int i = 0; i < textureCache.Size(); i++) {

 DrawText(TextFormat("Texture:%s", textureCache.GetTexturePath(i).c_
str()), 15, 75 + i * 30, 20, (i == index) ? GREEN : WHITE);

 }

}

Chapter 4 113

When running the demo, observe how the contents of lru_list change dynamically. Though we

display 4 textures, we intentionally limit the cache size to 3. This forces the cache to continuously

evict the least recently used texture once full. In Figure 4.5, the number of hits (successfully reuse

the existing texture without loading a new one) is 403 times, and the number of misses (need

to load a new texture) is 5.

Figure 4.5 – Using texture cache to effectively manage texture resources

In the next section, let’s continue to explore more 2D texture rendering features.

Working with 2D texture rendering
Until now, we have simply rendered the whole texture image to the screen. However, raylib also

provides more detailed control of how a texture is rendered. In this section, we will explore the

following:

•	 Only rendering part of a region from the source texture image

•	 Rotating the image with a specific angle

•	 Blending colors from the source and destination images

2D Rendering and Effects114

Rendering part of a region from the source texture
The next demo class, DrawPartialRotateDemo, demonstrates two more texture rendering features

provided by Knight.

The first one is the ability to render part of the rectangle region inside the source texture. As in the

Draw2D() function, we only render the dragon part of the original texture on the screen:

 Rectangle sr = {393, 6, 698-393, 431-6};

 Vector2 position = { (float)(SCREEN_WIDTH - sr.width) / 2.0f, (float)
(SCREEN_HEIGHT - sr.height) / 2.0f };

 Vector2 origin = { 0,0 };

 DrawTextureRec(texture, sr, position, WHITE);

The rectangle sr only includes a small region in the source texture. The position is the top-left

corner of the cropped texture. The interesting part is the origin vector. It serves as the position

of the pivot point inside the sub-texture.

Figure 4.6 – Rendering only a partial rectangle region from the source texture

Rotating the texture image
The second part is the ability to apply rotation to the texture:

 position = { 300, 300 };

 Rectangle dr = { position.x, position.y, fabs(sr.width), fabs(sr.height)
};

 currentAngle += 40 * timeDiff;

Chapter 4 115

 if (currentAngle > 360) currentAngle -= 360;

 DrawTexturePro(texture, sr, dr, origin, currentAngle, WHITE);

In the above code, we use the more advanced version of the texture drawing function

DrawTexturePro(). This allows us to control the rotation of the texture and specify which region

of the source texture needs to be used.

Since we want to keep the texture rotating, each frame’s currentAngle is increased by 40*

timeDiff. This is how we use the time difference between two consecutive frames to achieve a

smooth rotation animation.

Of course, when the value of currentAngle is over 360 degrees, we need to trim the value within

the valid range.

Color blending
Color blending is a technique used in computer graphics to combine two colors (a source color

and a destination color) to produce a final color, based on certain blending modes or operations.

It is primarily used in 2D and 3D rendering to simulate various visual effects such as transparency,

lighting, shadows, and more complex graphical styles like glowing, additive effects, or darkening.

In color blending, each pixel has a source color (usually from a texture or a graphic being drawn)

and a destination color (typically the color of the pixel already on the screen). The final output

color is determined by combining these two colors based on a specific blend operation. The basic

components for a color blending operation are:

•	 Source color (SRC): The color of the pixel that is being drawn.

•	 Destination color (DST): The color of the pixel already present on the screen.

•	 Source alpha (SRC_ALPHA): The alpha (opacity) value of the source pixel, ranging from

0 (fully transparent) to 1 (fully opaque).

•	 Destination alpha (DST_ALPHA): The alpha value of the destination pixel.

The demo class ColorBlendingDemo demonstrates how to use color blending to simulate the

different lighting cycles from dawn to dusk for a still image. The first thing is we will need a col-

or table in the following code snippet (defined as an array of Color dayToNightCycle), which

contains 32 colors to represent the different times in a full dawn to dusk cycle. For any moment

of the day, we can pick the color value from the array with the closest time to draw the image.

This makes the final color of each pixel on the screen modulated by the color specified in the

dayToNightCycle array.

2D Rendering and Effects116

To be able to make the color changes as smooth as possible, in the following code snippet of

class ColorBlendingDemo, we create a table with 32 colors to represent the color changes from

dawn to dusk:

static Color dayToNightCycle[32] = {

 // Morning (Dawn to Early Morning)

 {255, 240, 230, 255}, // Dawn (light yellow-pink)

 {250, 220, 200, 255}, // Soft sunrise

 {240, 200, 170, 255},//Early morning(warmer orange tones)

 //…

 {230, 240, 255, 255}//, // Soft blue sky (late morning)

 //{255, 255, 255} // Midday again (completes the cycle)

};

We would like to animate this cycle at a steady speed by reaching the next color value in the table

in 0.5-second intervals. So, we can loop through day and night in around sixteen seconds. This

is done in the Update() function:

void ColorBlendingDemo::Update(float elapsed)

{

 timeDiff += elapsed;

 if (timeDiff > 0.5f) {

 currentIdx++;

 timeDiff = 0.0f;

 }

 if (currentIdx >= 32)

 currentIdx -= 32; // loop back to first color

}

We use the variable timeDiff to determine if we need to increase the value of currentIdx. This

ensures the change of color isn’t affected by the frame rate.

The drawing function in Draw2D() will take the current color to blend with the texture image:

DrawTexture(texture, position.x, position.y, dayToNightCycle[currentIdx]);

In the Draw2D() call of each frame, we take the color indicated by the array index of currentIdx

to draw the scene. The scene will change its color every 0.5 seconds, as shown in Figure 4.7:

Chapter 4 117

Figure 4.7 – Transition from time of the day

Now, if you run this demo like the result shown in Figure 4.7, do you notice what’s wrong when

you run the sample on your computer?

Yes – although we have achieved the desired day-night cycle, the color transitions are not smooth.

The problem occurs because we simply pick one single color from the table. However, these col-

ors in the table don’t provide a smooth transition from one to the next. We now understand it’s

not enough to just pick a single color from the table. We need to interpolate between the color

of currentIdx and the color next to currentIdx to create a new color in between for a better

transition.

Now let’s inherit the class ColorBlendingDemo and create a new class SmoothColorBlendingDemo

in the following code snippet:

class SmoothColorBlendingDemo : public ColorBlendingDemo {

public:

 void Draw2D() override;

 SmoothColorBlendingDemo();

};

This new derived class in the above code will override the drawing function Draw2D() to imple-

ment a simple, smooth color transition:

void SmoothColorBlendingDemo::Draw2D()

{

 Vector2 position = { (float)(SCREEN_WIDTH - texture.width) / 2.0f,
(float)(SCREEN_HEIGHT - texture.height) / 2.0f };

 int nextIdx;

 Color c1 = dayToNightCycle[currentIdx];

 if (currentIdx < 31)

 nextIdx = currentIdx + 1;

 else

 nextIdx = 0;

 Color c2 = dayToNightCycle[nextIdx];

 float t = timeDiff / 0.5f;

2D Rendering and Effects118

 Color c = WHITE;

 c.r = (1 - t)* c1.r + t * c2.r;

 c.g = (1 - t) * c1.g + t * c2.g;

 c.b = (1 - t) * c1.b + t * c2.b;

 DrawTexture(texture, position.x, position.y, c);

}

In the code above, simple linear interpolation is used to calculate a transition color between the

current and next colors in the table. We select two consecutive colors and use the elapsed time

(stored in timeDiff) to determine the final color, which is then blended with the image in the

DrawTexture() call.

Alpha blending
Alpha blending is a technique used in computer graphics to combine (or blend) two images or

textures based on their alpha values, which represent the opacity or transparency of the pixels

in the image. The alpha value typically ranges from 0 to 1, where:

•	 0: The pixel is fully transparent (invisible).

•	 1: The pixel is fully opaque (completely visible).

•	 Values between 0 and 1 represent varying degrees of transparency.

•	 When applying alpha blending, the colors of the foreground texture (the source) are blend-

ed with the colors of the background texture (the destination), resulting in a final image

that shows a mixture of the two, depending on the transparency.

The general formula for alpha blending is:

FinalColor = (SourceColor * SourceAlpha) + (DestinationColor * (1 -
SourceAlpha))

where:

•	 SourceColor is the color of the pixel in the texture being drawn (foreground).

•	 SourceAlpha is the alpha value of the pixel in the foreground texture (determines trans-

parency).

•	 DestinationColor is the color of the pixel in the background (destination).

•	 FinalColor is the resulting color after the blending operation.

Chapter 4 119

Here’s how it works:

•	 Opaque pixels (Alpha = 1): If the source pixel is fully opaque (alpha = 1), the source color

completely overwrites the destination color.

•	 Transparent pixels (Alpha = 0): If the source pixel is fully transparent (alpha = 0), the

destination color remains unchanged.

•	 Semi-transparent pixels (0 < Alpha < 1): If the source pixel has a semi-transparent alpha

value, the final color will be a mix of the source and destination colors.

In many 2D and 3D games, alpha blending is used to render transparent or translucent textures,

such as:

•	 Glass surfaces

•	 Fog, smoke, or shadows

•	 User interface elements like windows or menus

•	 Particle effects, such as explosions or magic spells

Some of the common uses of alpha blending include:

•	 Transparent UI elements: Alpha blending is often used for creating transparent menus,

buttons, and windows in user interfaces.

•	 Particle effects: Effects like fire, smoke, or explosions often use alpha blending to create

realistic visuals.

•	 Shadows and glows: Alpha blending can be used to render soft shadows, lighting effects,

or glowing auras around objects.

•	 Transitions and fades: Alpha blending is commonly used for fading objects in and out of

view, creating smooth transitions.

Alpha blending is a fundamental technique in graphics programming that allows for the creation

of visually rich and immersive scenes. By controlling the opacity of textures and blending them

with the background, you can create effects such as transparency, semi-transparency, shadows,

and more. This technique is widely used in game development, UI design, and digital art to en-

hance visual quality and depth.

2D Rendering and Effects120

The demo class SceneTransitionDemo demonstrates how to use the default alpha blending feature

to create a smooth transition to switch the display of two images.

Figure 4.8 – Use alpha blending to render the transition of two images

Figure 4.8 shows five sequential screenshots illustrating the transition effect from left to right.

The alpha of the first image goes from 1.0 (fully opaque) to 0.0 (fully transparent), while the

alpha of the second image goes from 0.0 to 1.0. As a result, the first screenshot displays only the

first image, the last shows only the second, and the middle screenshots feature both images

overlapping with varying transparency.

Let’s walk through the code to implement such a scene transition animation with alpha blending

in SceneTransitionDemo.cpp. First, we will load the scene1 and scene2 Texture2D objects in

the Create() function:

 Image art1 = LoadImage("../../resources/textures/mga1.png");

 scene1 = LoadTextureFromImage(art1);

 Image art2 = LoadImage("../../resources/textures/mga2.png");

 scene2 = LoadTextureFromImage(art2);

In order to create a ping-pong-like smooth transition effect, we can use the sin() function to

produce the value. This is handled in the Update() function:

void SceneTransitionDemo::Update(float elapsed)

{

 elapsed_time += elapsed;

 currentProgress = (std::sin(2 * 3.14159f * 0.1f * elapsed_time) + 1) *
0.5f;

}

Chapter 4 121

The result of currentProgress is used to calculate the actual alpha value for both textures in the

Draw2D() function:

void SceneTransitionDemo::Draw2D()

{

 Vector2 position = { (float)(SCREEN_WIDTH - scene1.width) / 2.0f,
(float)(SCREEN_HEIGHT - scene1.height) / 2.0f };

 Color c1 = WHITE;

 c1.a = (int)(currentProgress * 255.9f);

 Color c2 = WHITE;

 c2.a = 255 - c1.a;

 DrawTexture(scene1, position.x, position.y, c1);

 DrawTexture(scene2, position.x, position.y, c2);

}

The final alpha component of the color value c1 and c2 of both images is computed from

currentProgress in the above code snippet.

Advanced color and/or alpha blending modes
In addition to the basic blending method we discussed earlier, there are several other commonly

used blending methods. Since the color usually contains the alpha channel, these methods are

not only applied to color channels, but the alpha channel as well.

The most common blending methods supported by all graphics hardware are additive blending,

multiplicative blending, and subtractive blending. Let’s check how they work in the subsequent

sections.

Additive blending
When you render a source image on the screen, the color value of each pixel from the source image

will be added to the color value of the pixel on the screen, instead of just overwriting the existing

color value of the destination pixel on the screen. Simply put, additive blending adds the source

and destination colors, creating a glowing or brightening effect.

If we write pseudo code to implement the above behavior, it will look like the following:

FinalColor = (SourceColor * 1) + (DestinationColor * 1)

2D Rendering and Effects122

In a typical 24-bit color system, each color channel (red, green, and blue) is stored in 8 bits, giving

each a range of 0 to 255. If the red component of FinalColor.r exceeds 255, it is clamped at 255.

Additive blending is often used for rendering light, fire, explosions, and particle effects where you

want the combined result to appear brighter.

Multiplicative blending
Unlike additive blending, which sums the values of the source and destination pixels, multipli-

cative blending treats the red/green/blue component of each source color as a factor of the full

bright value to modulate the value of the destination color to produce the final value.

Let’s use the example of an 8-bit red component for the source pixel; if the value is 127, then it’s

treated as a factor of 0.5 (127/255). If the red component in the destination pixel is 255, the final

value would be 255 * 0.5 = 127. As you can imagine, multiplicative blending results in a darker

effect. The pseudo-code to achieve this is very straightforward:

FinalColor = SourceColor * DestinationColor

This is used for shadow effects, lighting, or darkening textures.

Subtractive blending
The definition of subtractive blending is just the opposite of additive blending. It subtracts the

source color from the destination color, resulting in a darker output.

The pseudo code to achieve subtractive blending is relatively easy:

FinalColor = DestinationColor – SourceColor

If the component value of the source color is greater than the component value of the destination

color, the result is clamped to zero.

It is useful for simulating darkening or reducing the brightness of certain areas.

Combining both color and alpha blending
Color and alpha blending combine two colors to produce dynamic visual effects. Using modes

like alpha, additive, or multiplicative blending, you can achieve transparency, glowing particles,

shadows, and lighting. The mode you choose depends on the effect you want to create.

Chapter 4 123

The next demo class, GlowDemo, demonstrates how to use additive blending mode to render effects

on top of other images. This time, let’s add some shining magical spell effects to our goddess char-

acter. The glowing rays effect is made by this texture with white light rays, as shown in Figure 4.9:

Figure 4.9 – Using additive blending mode to render a ray light effect

By combining the features of rendering a partial region of a texture and color blending methods

we introduced earlier in this chapter, we can generate a sequence of continuous action images and

create an animation effect by rendering them in succession. To avoid loading multiple textures

and frequently switching between them, we can merge each frame of the animation into a single

large texture. For example, we can combine eleven frames of a 1024x128 lightning animation into

a single 1024x1408 texture, as shown in Figure 4.10:

2D Rendering and Effects124

Figure 4.10 – Merging 11 1024x128 lightning textures into a 1024x1408 texture sprite sheet

Chapter 4 125

The image in Figure 4.10 is actually a combination of 11 horizontal lightning strike image strips,

each with dimensions of 1024 pixels wide and 128 pixels high. It groups 11 strips into a single big

1024x1408 texture.

We sometimes refer to this kind of grouping texture as a sprite sheet. Depending on the nature of

each frame, you can arrange the images of animation frames either row by row or in a row-major

grid. For our lightning strike effect, since the dimension of each single strip is much longer in

width than height, it’s suitable to arrange all strips row by row.

AnimatedTexDemo.cpp in the sample project Demotexops demonstrates how we can use the group-

ing texture to achieve the animated lightning effect.

Let’s check the demo class AnimatedTexDemo. It demonstrates how to render animated textures.

The animation time is calculated in the Update() function:

void AnimatedTexDemo::Update(float elapsed){

 _anim_time += elapsed;

 if (_anim_time >= _anim_length)

 _anim_time -= _anim_length;

}

As shown in the above code, the value of _anim_time will loop back to the beginning when it

reaches the end of the animation. Since it’s a lightning effect, we choose to render it in additive

blending mode in the Draw2D() function:

void AnimatedTexDemo::Draw2D(){

 int idx = (int)(_anim_time / _anim_length * 11.0f);

 Rectangle src = {0, idx * 128, 1024, 128};

 Vector2 pos = { 300,300 };

 BeginBlendMode(BLEND_ADDITIVE);

 DrawTextureRec(_spritesSheet, src, pos, WHITE);

 EndBlendMode();

}

The local variable idx is used to keep track of which strip inside the big grouping texture is cur-

rently used. We use Rectangle src to specify the region of the source texture to be rendered. This

is a very simple yet effective way to achieve an animated effect.

2D Rendering and Effects126

N-patch texture
N-patch, also known as 9-patch (when specifically referring to a 3x3 grid), is a technique used in

graphics programming to scale images or textures in a way that preserves specific regions while

allowing other regions to stretch or repeat. This is commonly used in user interfaces (UIs), where

you might want buttons, panels, or other visual elements to resize dynamically based on their

content, while preserving the borders or corners without distortion.

Figure 4.11 – N-patch texture is divided into 9 slices of regions.

In an N-patch like the one shown in Figure 4.11, it is divided into a 3x3 grid (the red dotted lines

separate the whole image into a 3x3 grid):

•	 Corners: These regions are fixed in size and are not stretched. They are usually important

for maintaining the visual integrity of the image (e.g., rounded corners or decorative edges).

•	 Edges (top, bottom, left, right): These regions are stretched or tiled horizontally or ver-

tically as needed to accommodate resizing.

•	 Center: This region is often the most flexible part and can be stretched or tiled both hor-

izontally and vertically.

The N-patch texture provides the following benefits:

•	 Preserve detail: It allows you to stretch an image while preserving important visual details,

like rounded corners, shadows, or borders.

•	 Flexible UI elements: UI elements like buttons, panels, and dialogue boxes can resize

dynamically without losing their visual quality.

•	 Efficient memory use: You don’t need to create multiple versions of an image in different

sizes; instead, you create a single resizable image that adjusts as needed.

Chapter 4 127

The most common usage of N-patch textures is for graphic elements in in-game user interfaces:

•	 Buttons: A 9-patch button graphic can resize dynamically as text, or the button size

changes.

•	 Panels and boxes: UI panels or dialogue boxes can expand without distorting the deco-

rative borders or corners.

•	 Progress bars: The central part of a progress bar stretches, but the ends remain fixed.

Our demo class NPatchDemo demonstrates how to set up the necessary information to draw an

N-patch texture. In the Create() function:

void NPatchDemo::Create()

{

 Image art = LoadImage("../../resources/textures/uibkgd.png");

 _npatchTex = LoadTextureFromImage(art);

 UnloadImage(art);

 Rectangle r = { 0.0f, 0.0f, 721.0f, 289.0f };

 _ninePatchInfo = { r, 63, 54, (int)r.width - 665, (int)r.height - 239,
NPATCH_NINE_PATCH };

 //...

}

In the above code snippet, after we load an image as a texture and store it in _npatchTex, the

variable of the C structure NpatchInfo, _ninePatchInfo, specifies the region in the source texture

and the left/top/right/bottom offset of each side to create the slices.

Once we get the graphics image and N-patch settings ready, we can actually render it on the

screen. We call the N-patch rendering API in the Draw2D() function in the following code snippet:

Vector2 origin = { _npatchTex.width * 0.5f, _npatchTex.height * 0.5f };

DrawTextureNPatch(_npatchTex, _ninePatchInfo, _dest, origin, 0.0f, WHITE);

Here, the DrawTextureNPatch() function takes NPatchInfo and the source texture to render the

scaled result as specified in the _dest rectangle.

Let’s draw the same UI background texture with two different sizes to show how an N-patch

texture works in Figure 4.12:

2D Rendering and Effects128

Figure 4.12 – Maintaining the proper size of the frame of the border while scaling the UI
background N-patch texture up and down

Chapter 4 129

As shown in Figure 4.12, the demo class NPatchDemo automatically scales the UI up and down but

still maintains the correct size of the frames along the borders.

N-patch is a highly useful technique in game and UI development that allows images to scale

flexibly without distorting important details. It provides a clean, efficient way to create resizable

elements like buttons, panels, and progress bars while maintaining high-quality visuals.

This is also the last demo scene in the sample project Demo4texops. In the next section, we will

explore another common feature seen in many 2D games: screen scrolling.

Using screen scrolling
In this section, we will introduce a common full-screen scrolling technique widely used in mainly

side-scrolling 2D platform games like the one shown in Figure 4.13. This type of game usually

features multiple image layers as the background, with a different scrolling speed for each layer

to create a sense of depth.

Figure 4.13 – A typical side-scrolling platform game with multiple scrolled layers of background

2D Rendering and Effects130

The mouse-head main character runs in a horizontal direction, and the background graphics, like

the castle and far-away mountains, are scrolled in the opposite direction to create the illusion of

the character running ahead.

Parallax scrolling
Parallax scrolling is a technique used in 2D games and visual design to create an illusion of depth

and immersion by having background layers move at different speeds relative to the foreground.

This effect mimics how objects in the real world appear to move at different speeds depending

on their distance from the viewer.

In parallax scrolling:

•	 Objects or layers closer to the viewer (foreground) move faster.

•	 Objects or layers further from the viewer (background) move more slowly.

This creates a more dynamic and immersive experience, giving a 2D scene a sense of depth, even

though it is fundamentally flat.

There are certain advantages of using parallax scrolling:

•	 Enhanced visual depth: Parallax scrolling creates a more immersive experience by sim-

ulating depth, even in a 2D environment.

•	 Aesthetic appeal: It adds visual interest and dynamic movement, making static scenes

come alive with background motion.

•	 Versatility: It can be used in various genres, such as platformers, side-scrolling shooters,

or even adventure games, to create dynamic environments.

Parallax scrolling is widely used in 2D platformers, side-scrolling games, and even top-down

games to enhance visual appeal and immersion. Some examples are:

•	 2D platformers: Games like Super Mario Bros. (first released in 1985) and Rayman (first

released in 1995) use parallax scrolling to create multiple background layers (mountains,

clouds, distant hills) that move at different speeds, adding depth to the gameplay envi-

ronment.

•	 Side-scrolling shooters: In games like Metal Slug (first released in 1996), parallax scrolling

is used to create a sense of speed and immersion as the player moves through different

areas of the game.

•	 Endless runners: Games like Temple Run (first released in 2011) and Jetpack Joyride (2011)

use parallax scrolling to simulate forward motion while maintaining a dynamic back-

ground.

Chapter 4 131

How parallax scrolling works
The demo project Demo4ss demonstrates how to render three layers of parallax scrolling back-

grounds in Knight. In a typical parallax setup, a game scene might have multiple layers, as shown

in Figure 4.14.

Figure 4.14 – Use 3 layers of textures with different scrolling speeds to create a parallax effect

Here are the layers:

•	 Foreground layer: The player character, platforms, or interactive objects.

•	 Midground layer(s): Trees, buildings, or other objects closer to the player but not inter-

active.

•	 Background layer(s): Mountains, sky, or clouds that are very far away.

Each of these layers moves at different speeds. For example:

•	 The foreground moves at full speed.

•	 The midground moves at half the speed of the foreground.

•	 The background moves even more slowly, perhaps at 1/10th the speed of the foreground.

2D Rendering and Effects132

The scrolling calculation is done in the Update() function (in Demo4ss.cpp):

void Demo4ss::Update(float ElapsedSeconds)

{

 __super::Update(ElapsedSeconds);

 scrollingBack -= 0.1f;

 scrollingMid -= 0.5f;

 scrollingFore -= 1.2f;

 if (scrollingBack <= -background.width * 2)

 scrollingBack = 0;

 if (scrollingMid <= -midground.width * 2)

 scrollingMid = 0;

 if (scrollingFore <= -foreground.width * 2)

 scrollingFore = 0;

}

The code above aligns textures to the left while accounting for the texture being scaled to twice

its size, which affects scrolling. Varying scrolling speeds create an illusion of depth by making

distant objects appear to move more slowly.

This parallax scrolling effect adds depth and immersion, enhancing the visual appeal of 2D games.

But how can we push a 2D game to look more like a 3D experience? Let’s explore that in the next

section.

Rendering isometric maps
An isometric map is a type of 2D representation used in games and simulations to depict a 3D

environment from a fixed, tilted perspective. Isometric maps create an illusion of depth without

using real 3D rendering. The most common view in isometric projection is from a 30-degree

angle, where objects and characters appear to have volume and depth, even though they exist

on a 2D plane.

Our demo project Demo4iso demonstrates isometric map rendering. Figure 4.15 shows the running

of the demo. It randomly picks available tiles from the tile group texture (as shown in Figure 4.15)

to assemble an isometric tile map at runtime.

Chapter 4 133

Figure 4.15 – Rendering an isometric tile map

Here are the key features of isometric maps:

•	 Tilted view: Isometric maps show the environment from a diagonal view, usually at a

30- or 45-degree angle, making objects appear as if viewed from above and to the side.

•	 No perspective foreshortening: Unlike perspective projections, isometric projection

doesn’t shrink objects as they get farther from the viewer, keeping all objects the same

size regardless of distance.

•	 Grid representation: Although the visual effect is 3D-like, isometric maps are typically

implemented as 2D grids. This simplifies positioning, interaction, and collision detection.

Isometric maps are commonly used in 2D games to give the illusion of depth and a 3D world.

They have been popular in strategy games, role-playing games (RPGs), and city-building games.

2D Rendering and Effects134

There are certain advantages of using isometric maps:

•	 Depth perception: Isometric maps provide a sense of depth while remaining in a 2D

environment, making it visually appealing without the complexity of full 3D rendering.

•	 Simple implementation: While isometric projection gives a 3D-like view, the underlying

logic is still based on a 2D grid, which simplifies collision detection, pathfinding, and

tile-based movement.

•	 Consistency: Since isometric projection doesn’t involve perspective scaling, objects re-

main the same size regardless of their position on the map, leading to a consistent and

clean appearance.

How isometric projection works
In an isometric view, the world is usually represented on a diamond-shaped grid instead of the

typical square grid. Each tile represents a cell in the game’s world, and objects placed on those

tiles (e.g., characters, buildings) appear in 3D, even though they are drawn in 2D.

Here, the cells have been rotated and skewed to give the illusion of depth, making the tiled map

appear three-dimensional.

To render an isometric map from a 2D grid, you need to convert the grid coordinates (x, y) into

screen coordinates (screenX, screenY). The following formulas are typically used for this trans-

formation:

int screenX = (x - y) * TILE_WIDTH / 2;

int screenY = (x + y) * TILE_HEIGHT / 2;

Here’s what the components of the formulae represent:

•	 TILE_WIDTH and TILE_HEIGHT represent the size of each isometric tile on the screen.

•	 The formulas account for the skew and rotation needed to create the isometric perspective.

Usually, the size of the tile is relatively small, like 256x128 pixels, so we will group all tile variations

into a single texture, as seen in Figure 4.16:

Chapter 4 135

Figure 4.16 – Grouping all tile variations into a single texture

However, there are also some challenges of rendering isometric maps:

•	 Coordinate conversion: Converting between isometric screen coordinates and grid co-

ordinates requires additional math, especially for detecting mouse clicks or determining

which tile is being interacted with. This can be done in the following code snippet:

tileX = (screenY/TILE_HEIGHT+screenX/TILE_WIDTH)/2;

tileY = (screenY/TILE_HEIGHT-screenX/TILE_WIDTH)/2;

The calculated (tileX, tileY) is the coordinate of (row/column) of the tile.

•	 Rendering order: Overlapping tiles and objects may require careful rendering to ensure

proper depth order (e.g., making sure a character is drawn in front of or behind a tree,

depending on its position).

Isometric rendering in 2D games simplifies gameplay mechanics like collision detection while

providing a visually engaging, pseudo-3D experience. You can extend the Demo4iso sample project

to add characters and other props on top of the map.

2D Rendering and Effects136

Summary
In this chapter, we introduced 2D graphic techniques frequently used in game development. We

provided an in-depth exploration of 2D rendering and effects for game development. It explained

how 2D images are loaded from storage, transferred to the system and video memory, and then

efficiently rendered onscreen. The chapter covered essential techniques such as color and alpha

blending, which allow for dynamic visual effects like smooth transitions, transparency, and light-

ing adjustments. It also discussed various texture formats, compression methods, and memory

management strategies crucial for optimizing performance in graphics-intensive applications.

This chapter further delved into advanced 2D techniques, including parallax scrolling, N-patch

texture rendering for flexible UI design, and isometric map rendering to create a pseudo-3D

visual experience.

Through a series of practical examples and demo projects, we illustrated how to implement these

methods using Knight, emphasizing the importance of layering, scrolling speed differences, and

texture manipulation to achieve depth and immersion in 2D games.

It’s time for us to move on from 2D graphics into the world of 3D graphics, starting from how the

player sees the game world – the 3D camera system.

5
The Camera and
Camera Controls

The camera is a vital element in presenting the game world to players—it’s how they view and

interact with that world. Before diving into other aspects of 3D scene rendering, let’s first explore

the concept of cameras and their role in graphics rendering.

In Chapters 1 and 2, we saw examples of how the Knight uses cameras to render the game scene.

This chapter introduces the principles of cameras and explores different types used across game

genres, such as first-person shooters (FPS), third-person action RPGs, top-down views, and

cinematic storytelling. Most importantly, we’ll look at how to implement these camera types

using the Knight.

In this chapter, we will look at the following topics:

•	 Camera – how players see the game world through the 3D camera

•	 Defining the camera for rendering a scene

•	 Working with the built-in camera system

•	 Building a third-person follow-up camera, rail camera, and RTS camera system

•	 Rendering multiple split-screen cameras

By the end of this chapter, you will understand the principle of how 3D camera projection works

and will have learned how to build various types of 3D camera systems frequently used by different

types of 3D games, such as a first-person shooter camera, third-person follow-up camera, and a

railed camera, and be able to customize Knight for your own 3D camera needs, such as rendering

multiple types of camera on the screen.

The Camera and Camera Controls138

Technical requirements
Download and open the project via this GitHub URL to open the example projects demonstrated

in this chapter in the Knight solution: https://github.com/PacktPublishing/Practical-C-

Game-Programming-with-Data-Structures-and-Algorithms. The following projects in the Visual

Studio solution are used as samples for this chapter:

Project Name Description

Demo5FPC Sample code of raylib’s built-in first-person camera

Demo53PV Sample code of implementing a third-person follow-up camera

Demo5Ortho Sample code of a 3D orthogonal project camera

Demo5TrkCam Sample code of a railed camera (camera on a fixed path)

Demo5RTSCam Sample code of camera navigation in an RTS-style game

Demo5MultiCams Sample code to implement multiple camera viewports on a single

device screen

Table 5.1 – Sample projects used in the chapter

Camera – how players see the game world
For those new to 3D game development, the first essential step is deciding how players will view

the game world onscreen. Imagine an audience in a movie theater: the film uses various cinematic

techniques, such as changes in camera angle and distance, to tell its story.

Similarly, designing how scenes are presented in a game is like directing a movie. In 3D game

development, the game designer acts as the movie director, orchestrating different perspectives

to shape the player’s experience. In larger development teams, a dedicated visual director often

uses storyboards to design the camera angles for each scene, creating the desired visual narrative.

The following is an example storyboard of a fighting sequence.

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms

Chapter 5 139

Figure 5.1 – A typical video game storyboard for an in-game boss fight event

Some 3D games use a single fixed perspective. For instance, many popular FPS games are played

entirely from the player’s viewpoint because it’s ideal for focusing on aiming and targeting.

Other 3D games utilize multiple perspectives to enrich the story-driven gameplay. In Nier:

Automata (first published in 2017) players experience cinematic views while piloting a mech, in

a close third-person view with sword combat, and even a top-down perspective during hacking

mini-games. Each perspective provides a distinct experience and enhances the game’s various

gameplay mechanisms.

The Camera and Camera Controls140

Common uses of cameras in video games
In many 2D and 3D games, there are several common types of camera perspectives:

First-person camera
The first-person camera view simulates the player’s perspective from the character’s eyes, cre-

ating an immersive experience ideal for FPS games and simulations. Notable titles, such as Call

of Duty (first published in 2003), Halo (first published in 2001), and Half-Life (first published in

1998), use this view to heighten realism and support precision aiming. It dynamically rotates and

moves with the player’s actions, ensuring a lifelike and engaging gameplay experience.

The Demo5FPC project implements a first-person view camera, as shown in Figure 5.2:

Figure 5.2 – Knight’s built-in first-person view camera

Open and run the project. You can use WASD keys to move yourself inside the scene. Also, you

can use the up and down arrow keys or mouse to tilt and rotate the camera, just like players tilt

and rotate their heads.

Chapter 5 141

Third-person camera
The third-person camera positions the view behind and slightly above the player, offering a

broad perspective of both the character and their surroundings. It’s popular in action-adven-

ture, platformer, and RPG games—such as The Witcher 3 (2015), Assassin’s Creed (first released in

2007), and Uncharted (first published in 2007)—to enhance situational awareness and highlight

character animations. This camera typically follows and rotates around the player for optimal

viewing during exploration and interaction.

The Demo53PV project implements a third-person view camera with an automatic follow feature,

as shown in Figure 5.3:

Figure 5.3 – The third-person view with the support of camera tilt and rotation

Open and run the project. You can use the WASD keys to control the player character and observe

how the camera smoothly follows the player. You can also use the mouse to rotate the follow-up

angle to see the character from different view angles while holding the right mouse button down.

Top-down camera
The top-down camera provides a bird’s-eye view of the game world, allowing players to monitor

and control multiple units and structures at once. This fixed, high-angle perspective is crucial for

strategic gameplay in real-time strategy (RTS) games, simulation, and multiplayer RPGs, as seen

in games such as StarCraft and Age of Empires. It offers a comprehensive overview of the battlefield,

enabling effective management and precise control over large-scale operations.

The Camera and Camera Controls142

The Demo5RTSCam project implements a top-down camera system designed for real-time strategy

games, as shown in Figure 5.4:

Figure 5.4 – A top-down camera with a selectable battle unit

Open and run the project. You can use the left mouse button to select and deselect any battle unit

(represented as a red cube labeled with the team’s name and stats). You can also hold down the

right mouse button to rotate the camera and use arrow keys to move the camera around.

Rail camera
The rail camera follows a predetermined path, guiding the player’s view along a fixed “rail” to

enhance cinematic sequences and focus on key gameplay moments. Commonly used in on-rails

shooters, racing games, and similar titles, this camera moves alongside or around the player,

limiting control to ensure a controlled perspective. Its primary purpose is to direct attention

precisely, as seen in games such as Star Fox 64 (1997) and Uncharted, where it heightens the cin-

ematic intensity of action scenes.

Chapter 5 143

The Demo5TrkCam project demonstrates how to control camera movement along a predefined path

using waypoints, while keeping the player character in view, as shown in Figure 5.5:

Figure 5.5 – A rail camera moves along the predefined path

Open and run the project. The camera stops at each waypoint (shown as a red box in the scene),

allowing the game to set up challenges or trigger storytelling events.

Fly-through camera
The fly-through camera enables unrestricted movement through the game world, simulating

a free-floating perspective. It’s commonly used in level editors, and sandbox games (such as

Minecraft in spectator mode), allowing users to navigate and inspect environments in detail. Its

key advantage is that it isn’t tied to any specific character, so it can move and rotate freely, making

it ideal for exploration, debugging, and precise scene adjustments.

The Camera and Camera Controls144

Other variations
Besides all the popular camera systems mentioned in the previous subsections, there are several

variations of the discussed camera systems. Let’s look at them here:

•	 Cinematic camera: Camera angles and movements are carefully scripted to focus on key

events or characters, creating a cinematic feel to enhance immersion and storytelling.

•	 Usage: In-game cutscenes and narrative sequences – you can combine rail, top-

down, and first- or third-person views by carefully scripting them into a cohesive

sequence.

•	 Purpose: Designed to emulate real-world cinematography, it may use predefined

paths, angles, and zooms to enhance the storytelling experience.

•	 Orbiting camera: The player can control the camera’s angle and distance to view the

object or character from multiple perspectives.

•	 Usage: In games with detailed character or object interaction (such as The Sims;

first released in 2000), or games that require close inspection of objects or envi-

ronments.

•	 Purpose: The camera orbits around a fixed point, typically the player character or

an object of interest. It’s useful for creating dynamic views of a scene.

•	 Over-the-shoulder camera: This is a special first-person-view-like camera but is often

used to improve aiming or combat focus while still showing part of the character onscreen.

•	 Usage: Tactical shooters and narrative-driven games (such as Resident Evil 4; re-

leased in 2005).

•	 Purpose: A variation of the third-person camera where the camera is positioned

directly behind and slightly above the player’s shoulder. This camera provides a

more intimate and detailed view of the character’s surroundings.

Chapter 5 145

•	 Fixed camera: This type of camera gives developers more control over what the player

sees, creating a sense of tension, mystery, or surprise by limiting the player’s view of the

environment.

•	 Usage: Early survival horror games (such as Silent Hill; first released in 1999), puzzle

games, or platformers.

•	 Purpose: The camera is placed in fixed positions, and the player’s movement

triggers a camera change based on where they move.

•	 VR camera (for virtual reality): The camera view updates in real time to the player’s

head position and orientation, requiring precise tracking and rendering to avoid motion

sickness and maintain immersion.

•	 Usage: Virtual reality games and experiences (such as Beat Saber; released in 2019).

•	 Purpose: The camera simulates the player’s head movements in a 3D space, al-

lowing for a fully immersive VR experience.

After introducing the various cameras commonly used in 3D games, we will now delve into how

cameras are defined and implemented.

Defining the camera for rendering a scene
Before we start to implement any of the camera systems for our game, we should understand the

principles and mathematics of how a camera system works.

Basic properties of a camera system
The camera can be placed, moved, rotated, and zoomed to control the player’s view of the game

scene. Different types of 3D cameras serve various purposes, and they are implemented depending

on the gameplay style or specific needs of the game.

However, the following basic camera properties are common to the implementation of almost

any kind of camera system in video game programming:

•	 Position and orientation: The camera’s position and orientation (rotation) define where

the player is looking. Sometimes, the term “look-at” direction is used to represent the

camera’s orientation.

The Camera and Camera Controls146

•	 Field of View (FOV): This controls the amount of the game world the player can see at

once, simulating peripheral vision. It’s important for balancing gameplay immersion and

performance. Figure 5.6 compares the same view with different FOV angles.

Figure 5.6 – The same top-down camera with FoV=40 (left) and FoV=80 (right)

•	 The aspect ratio is the ratio of the width to the height of the viewing area, typically rep-

resented as width : height. In 3D graphics, the aspect ratio defines the proportions of the

camera’s view and affects how the game scene is projected onto the screen. It’s crucial for

ensuring that objects don’t appear stretched or squashed.

•	 Zoom: There is the ability to zoom in and out, adjusting how close or far away the camera

is from the target (usually used in strategy games or sniper modes in FPS games). Figure 5.7

shows the different zoom levels of the same camera:

Figure 5.7 – Comparing different zoom levels

•	 Clipping: Cameras often use near and far clipping planes to determine what is visible and

what is not. Anything outside the clipping planes isn’t rendered. Figure 5.8 shows how

near and far planes define the visible range of the depth:

Chapter 5 147

Figure 5.8 – The near and far clipping planes define the visible range of a camera

After understanding the basic properties related to cameras, in the next section, we will explore

in depth how cameras project a 3D world onto a 2D plane.

Projecting a 3D world onto a 2D screen
Camera projection in 3D graphics is the process of transforming 3D coordinates into 2D coor-

dinates, so they can be displayed on a flat screen. This transformation simulates how a camera

sees the 3D world, and it’s essential for creating a realistic or visually appropriate view of a scene.

Projecting a 3D world onto a 2D screen in Knight involves two major mathematic transformations

that convert object coordinates into pixel coordinates, as we will see in the subsequent paragraphs.

The first step of transformation involves a model-view matrix, which positions and orients the

entire scene as seen from the camera. The model-view matrix is the combination of the following:

•	 Model matrix: This transforms the object from its local coordinate space to the world

coordinate space. It includes translation, rotation, and scaling transformations for each

object in the scene. This process is done when the Update() function of the Knight app

class is called. It will call the _Scene object’s Update() function to traverse the entire scene

hierarchy. Knight handles this calculation for you.

•	 View matrix: This transforms world coordinates into the camera’s coordinate space. This

matrix is created based on the camera’s position, target, and up vector. Knight internally

calls raylib’s BeginCamera3D() to build the view matrix based on the camera’s position

and orientation, so you don’t need to create the view matrix manually.

The Camera and Camera Controls148

The second step of transformation continues from the result of the previous step. Using the

projection matrix takes the camera-space coordinates and maps them into clip space, applying

either perspective or orthographic projection.

In 3D graphics and video game development, perspective projection and orthogonal (or or-

thographic) projection are two common techniques used to project 3D objects onto a 2D screen.

Both methods have different characteristics and are used in different scenarios depending on

the desired visual effect.

Perspective projection
Perspective projection simulates how the human eye perceives the world, where objects appear

smaller as they get farther from the camera. This type of projection introduces depth, creating a

realistic sense of scale and distance. Figure 5.2 and Figure 5.4 are good examples of perspective

projection for both a first-person view and a third-person view.

In perspective projection, each point in 3D space is scaled based on its distance from the camera.

The further an object is, the more it is scaled down, resulting in a vanishing point effect.

The perspective projection can be represented by a matrix that includes the FOV, aspect ratio,

and near and far clipping planes to define how much of the 3D world is visible on the screen:

[

 1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹2) 0 0 0

0 1tan (𝐹𝐹𝐹𝐹𝐹𝐹2) 0 0
0 0 − 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 2 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓0 0 −1 0]

Sometimes, we may not want objects at varying distances from the camera to appear scaled

differently. In such cases, we use orthographic projection.

Chapter 5 149

Orthographic projection
Orthographic projection removes the effect of distance on an object’s size, meaning that all objects

appear the same size regardless of their distance from the camera. This projection is commonly

used in CAD, architectural visualization, and certain types of games, such as 2D platformers or

isometric views.

In orthographic projection, each point is mapped to the screen based on its coordinates without

any scaling for distance.

The orthographic projection matrix defines a viewing box (a cuboid) where only objects within

this box are visible:

Figure 5.9 – The orthogonal project will not have any scaling effect

In orthographic projection, each point is mapped to the screen based on its coordinates without

any scaling for distance.

The orthographic projection matrix defines a viewing box (a cuboid) where only objects within

this box are visible:

[

 2𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0 0 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟0 2𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 0 − 𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡0 0 − 2𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓0 0 0 1]

The Camera and Camera Controls150

For a quick summary of how these two projections are different from each other, see this table:

Perspective Projection Orthogonal Projection

Depth

Perception

Objects appear smaller as they get

farther away.

Objects remain the same size

regardless of distance.

Foreshortening Yes, closer objects appear larger. No, objects maintain their actual

size.

Realism Provides a realistic sense of depth and

scale.

Provides a flat, consistent view,

useful for 2D and technical views.

Applications First-/third-person games, 3D

simulations, realistic 3D environments.

2D games, isometric views, UI

elements, technical drawing.

Parallel Lines Parallel lines converge toward a

vanishing point.

Parallel lines remain parallel.

Projection

Matrix

Requires a field of view, aspect ratio,

and near and far planes.

Requires boundaries (left, right,

top, bottom, near, far).

Table 5.2 – Perspective projection versus orthographic projection

In the next section, we will put the mathematics into actual code to write our camera action.

Working with the built-in camera system
It’s time to see all sorts of cameras in action. Knight comes with several handy and ready-to-use

camera implementations. We will first introduce the built-in first-person-view camera and the

orthogonal-view camera. Then we will take one step further to create customized control of the

built-in camera.

Using the first-person-view camera
The demo project Demo5FPC demonstrates how to use Knight’s built-in first-person-view camera.

It’s simple to create a first-person-view camera with Knight:

FPSCamera = _Scene->CreateSceneObject<PerspectiveCamera>("Camera");

FPSCamera->SetPosition(Vector3{0.0f, 2.0f, 4.0f});

FPSCamera->SetLookAtPosition(Vector3{ 0.0f, 2.0f, 0.0f });

FPSCamera->SetFovY(60.0f);

FPSCamera->CameraMode = CAMERA_FIRST_PERSON;

Chapter 5 151

Most of the setup code is the same as usual. However, when we assign CameraMode as CAMERA_

FIRST_PERSON and add it to the scene, Knight will activate first-person mode and enable input

control for first-person mode.

The first-person mode will enable the control to move the camera in the scene. You can use WASD

to move the camera position or use the arrow key/mouse to make the camera look around.

Knight automatically calls raylib’s UpdateCamera() API in the base class of PerspectiveCamera.

There is no need to call UpdateCamera() in your Knight application as long as you create and add

a PerspectiveCamera object in the _Scene object.

Using the orthogonal camera
The Demo5Ortho demo project demonstrates the use of the built-in orthogonal camera of Knight

to display a scene:

OrthogonalCamera* OrthCam = NULL;

OrthCam = _Scene->CreateSceneObject<OrthogonalCamera>("Orthogonal
Camera");

OrthCam->SetUp(Vector3{ 0.0f, 15.0f, 15.0f }, Vector3{ 0.0f, 0.0f, 0.0f },
20.0f);

This time, we use the built-in OrthogonalCamera class instead of the PerspectiveCamera class

to create the orthogonal camera.

The Setup() function allows you to specify the initial position of the camera, the target position

it looks at, and a zoom factor.

The orthogonal camera enables mouse wheel input to adjust the zoom factor of the camera, as

well as mouse moves to change the viewing angle while holding down the right mouse button. If

you try to play around with the viewing angle, you will find the object in the scene will not distort

like the perspective camera does.

The Camera and Camera Controls152

The mouse and keyboard input is handled in the Update() function of the OrthogonalCamera class:

bool OrthogonalCamera::Update(float ElapsedSeconds){

//…

// Zoom control with mouse wheel

 cameraZoom -= GetMouseWheelMove() * 0.5f;

 if (cameraZoom < 2.0f) cameraZoom = 2.0f; // Minimum zoom

 if (cameraZoom > 50.0f) cameraZoom = 50.0f; // Maximum zoom

 _Camera.fovy = cameraZoom;

This part of the code implements the zoom feature by reading the movement of the mouse wheel.

It also has a minimum and maximum limits check of the zoom value. This keeps the zoom factor

within a reasonable range:

 //Calculate the camera's position

 _Camera.position.x = _Camera.target.x -
sin(cameraHorizontalAngleShift) * cameraZoom;

 _Camera.position.z = _Camera.target.z -
cos(cameraHorizontalAngleShift) * cameraZoom;

 _Camera.position.y = cameraZoom + cameraVerticalOffset;

 // Panning with arrow keys

 if (IsKeyDown(KEY_UP)) _Camera.target.z -= panSpeed;

 if (IsKeyDown(KEY_DOWN)) _Camera.target.z += panSpeed;

 if (IsKeyDown(KEY_LEFT)) _Camera.target.x -= panSpeed;

 if (IsKeyDown(KEY_RIGHT)) _Camera.target.x += panSpeed;

The previous part of the code implements the control of camera move and pan. The amount of

movement is controlled by the panSpeed member variable:

 // Rotate the camera around the player when right mouse button is held

 if (IsMouseButtonDown(MOUSE_BUTTON_RIGHT)) {

 cameraHorizontalAngleShift += GetMouseDelta().x * 0.01f;

 cameraVerticalOffset += GetMouseDelta().y * 0.01f;

 }

 return true;

}

Chapter 5 153

The rest of the code handles the camera tilt and rotation by reading mouse movement values. So,

the player can rotate and tilt the camera. This part of the code updates cameraVerticalOffset for

the amount of tilt angle change and cameraHorizontalAngleShift for the amount of horizontal

rotation changes. The results will be used to calculate the new camera position.

Overriding the default control for built-in cameras
Knight is built with ease of use in mind, so we provide a set of default camera controls. But what

if you only want to use the camera, but not the input control? To do so, you will need to inherit

from the built-in camera class and override the Update() function of the parent camera class. We

will demonstrate how to implement this in the next follow-up camera example.

You can also use the same way to make your own camera class for your game’s customized needs.

In the next couple of sections, we will explore how to write our own camera system with custom-

ized behavior that still works well with the whole scene hierarchy of Knight.

Building a third-person follow-up camera
It’s time for us to step forward to try implementing our own camera system for the needs of our

game. Knight itself has built-in support for a third-person camera. However, it’s very basic and

far from the usual third-person camera you will have seen in many games.

Let’s build a new third-person-view camera that supports the following behavior:

•	 It follows behind the main character (or any assigned SceneActor in Knight).

•	 When the main character moves, it will automatically follow the movement and change

of orientation of the main character.

•	 The player can have control over the camera angle both horizontally and vertically.

•	 The player can zoom the distance between the camera and the followed SceneActor.

All camera types in Knight, such as PerspectiveCamera and OrthogonalCamera, inherit from the

base SceneCamera class. This class encapsulates the Camera3D class provided by the underlying

raylib renderer.

The SceneCamera constructor initializes some basic properties of the camera and, if the

IsMainCamera parameter is set to true (default), assigns it as the “main camera” of the game scene.

In many of the example projects in Chapter 2, we create a camera and add it as a child SceneObject

of _Scene. This setup allows the camera’s Update() function to be automatically called when

_Scene's Update() function is invoked.

The Camera and Camera Controls154

As we observed in the OrthogonalCamera class, which handles player input to update the cam-

era’s position and rotation, we’ll also create a new FollowUpCamera class. This class inherits from

SceneCamera and overrides the Update() function to include custom input handling. The class

declaration can be found in FollowUpCamera.h in the Demo5MultiCams sample project:

class FollowUpCamera : public SceneCamera {

public:

 FollowUpCamera(Scene* Scene, const char* Name = nullptr, bool
IsMainCamera = true);

 virtual ~FollowUpCamera();

 void SetUp(SceneActor* pTarget, float fovY, float defaultDistance, int
projType);

 bool Update(float ElapsedSeconds) override;

 //target Actor to follow up

 SceneActor *TargetActor = NULL;

 // control the camera's distance from the player

 float cameraDistance = 5.0f;

private:

 float mCameraHorizontalAngleShift = 0.0f;

 float mCameraVerticalOffset = 0.0f;

};

This camera will always follow a specific target SceneActor (usually the one that represents the

main player character of the game).

The cameraDistance member variable is used to specify how far the camera is behind the target

SceneActor.

Both mCameraHorizontalAngleShift and mCameraVerticalOffset are only used for the cam-

era tilt and rotation calculation; they are not meant to be accessed outside the class, so they are

declared as private variables.

The most important part is the override Update() function. The first part of this function is to

calculate the distance changes from mouse wheel moves:

bool FollowUpCamera::Update(float ElapsedSeconds) {

 if (!IsActive)return false;

 // Adjust camera distance with mouse wheel

 if (processMouseInput)

 cameraDistance -= GetMouseWheelMove();

Chapter 5 155

 if (cameraDistance < 2.0f) cameraDistance = 2.0f; // Minimum distance

 if (cameraDistance > 10.0f) cameraDistance = 10.0f; // Maximum distance

Now we can calculate the new camera position based on the target SceneActor's position and

rotation. The camera always looks at the target SceneActor's position:

 //Calculate the camera's position

 _Camera.position.x = TargetActor->Position.x -
sin(mCameraHorizontalAngleShift + DegreesToRadians(TargetActor-
>Rotation.y)) * cameraDistance;

 _Camera.position.z = TargetActor->Position.z -
cos(mCameraHorizontalAngleShift + DegreesToRadians(TargetActor-
>Rotation.y)) * cameraDistance;

 _Camera.position.y = TargetActor->Position.y + 2.0f +
mCameraVerticalOffset; // Keep camera above the player

 _Camera.target = TargetActor->Position; // Always focus on the player

The final part of the code updates mCameraHorizontalAngleShift and mCameraVerticalOffset

based on the changes in mouse movement since the last frame:

 //Rotate the camera when right mouse button is held

 if (IsMouseButtonDown(MOUSE_BUTTON_RIGHT)) {

 mCameraHorizontalAngleShift += GetMouseDelta().x * 0.01f;

 mCameraVerticalOffset += GetMouseDelta().y * 0.01f;

 }

 return true;

}

Now let’s go back to the main application class, Demo53PV. In the application’s Update() function,

we will update the SceneActor's position and rotation based on player input. The change will

also make FollowUpCamera calculate the camera’s new position and view direction.

As you use the WASD keys to move the main character, the third-person-view camera will follow

the target SceneActor. Meanwhile, the player can use the mouse to adjust the follow distance

and angle.

Building a rail camera system
Now we want to create a different type of camera. Instead of allowing the player to control the

camera’s movement, a rail camera—also known as a waypoint camera—follows a predefined

path while keeping the player character in focus.

The Camera and Camera Controls156

This type of camera is commonly used in racing games, 3D side-scrollers, and platform games.

The Demo5TrkCam project implements the rail camera. We’ll create a new WaypointsCamera to

inherit the SceneCamera base class:

class WaypointsCamera : public SceneCamera {

public:

 WaypointsCamera(Scene* Scene, const char* Name = nullptr, bool
IsMainCamera = true);

 virtual ~WaypointsCamera();

 void SetUp(SceneActor* pTarget, float fovY, int projType);

 bool Update(float ElapsedSeconds) override;

 bool Draw() override;

 //target SceneActor to follow up

 SceneActor* TargetActor = NULL;

 int currentWaypoint = 0; // Current waypoint index

 float moveSpeed = 1.0f; // Speed of movement

 float waypointWaitTimer = 0.0f; // Timer to handle waiting at each
waypoint

private:

 // Define a set of waypoints for the camera to move along

 std::vector<Waypoint> waypoints = {

 {{ 0.0f, 4.0f, -10.0f }, 3.0f},

 //… //all the way points

 {{ -5.0f, 3.0f, 5.0f }, 3.0f}

 };

};

Similar to a third-person-view camera, this waypoint camera has the following features:

•	 It moves along a path defined by the positions of the waypoints

•	 Each waypoint can specify a stay duration, after which the camera will continue moving

to the next waypoint

The most important part is still the override Update() function:

bool WaypointsCamera::Update(float ElapsedSeconds)

{

 if (!IsActive) return false;

Chapter 5 157

The first part is to check if we are currently stopping at some waypoint and wait for the end of

the delay time to move to the next waypoint:

 // Check if we need to wait at the current waypoint

 if (waypointWaitTimer > 0.0f) {

 waypointWaitTimer -= GetFrameTime();

 } else {

If we are currently moving along the path, we need to calculate the direction and distance to the

next waypoint from the current position and direction.

 // Calculate direction/distance to the next waypoint

 Vector3 direction = Vector3Subtract(waypoints[currentWaypoint].
position, _Camera.position);

 float distance = Vector3Length(direction);

 // If we're close enough, move to the next one

If the camera is very close to the next waypoint, it should advance to the next one. If it reaches

the last waypoint, it should simply move back to the first one. However, this may create a jittery

effect if the last waypoint is positioned far from the first waypoint:

 if (distance < 0.1f) {

 currentWaypoint = (currentWaypoint + 1) % waypoints.size();

 waypointWaitTimer = waypoints[currentWaypoint].waitTime;

 } else {

Or, we need to calculate the camera’s direction based on its current position relative to the target

player character’s position. The camera position should also be updated based on the frame time:

 // Normalize direction and move the camera

 direction = Vector3Scale(Vector3Normalize(direction), moveSpeed *
GetFrameTime());

 _Camera.position = Vector3Add(_Camera.position, direction);

 }

 // Update camera target to follow the moving cube

 _Camera.target = Vector3Lerp(_Camera.target, TargetActor->Position,
0.1f);

 }

 return true;

}

The Camera and Camera Controls158

Currently, we just store waypoints as an array of the WayPoint structure:

struct Waypoint {

 Vector3 position;

 float waitTime; // Optional wait time at the waypoint

};

In the next section, we’ll learn how to build a top-down camera.

Building a top-down camera for RTS
In this section, we will build a top-down camera system, commonly used in real-time strategy and

multiplayer games where the camera needs to provide a wide view of the game terrain and track

the movements of multiple characters or units. This type of camera has different requirements

compared to a third-person-view camera:

•	 The camera can move forward/backward and pan left/right

•	 It can zoom in to focus on a specific region of the map or zoom out for a broader view of

the entire map

•	 The camera can tilt and rotate, allowing the player to view the map from different angles

Here is the newly created TopDownCamera camera class in TopDownCamera.h of the Demo5RTSCam

project:

class TopDownCamera : public SceneCamera {

public:

 TopDownCamera(Scene* Scene, const char* Name = nullptr, bool
IsMainCamera = true);

 virtual ~TopDownCamera();

 void SetUp(Vector3 pos, Vector3 target, float fovY, int projType);

 bool Update(float ElapsedSeconds) override;

 float cameraZoom = 15.0f; // Initial camera distance

 float cameraPanSpeed = 0.1f; // Camera panning speed

 float zoomSpeed = 1.0f; // Zoom speed

private:

 float mCameraHorizontalAngleShift = 0.0f;

 float mCameraVerticalOffset = 0.0f;

};

Chapter 5 159

Let’s check how our Update() function is handled. The first part also handles the camera zoom

factor:

bool TopDownCamera::Update(float ElapsedSeconds) {

 if (!IsActive) return false;

 // Zoom control with mouse wheel

 cameraZoom -= GetMouseWheelMove() * zoomSpeed;

 if (cameraZoom < 5.0f) cameraZoom = 5.0f;

 if (cameraZoom > 25.0f) cameraZoom = 25.0f;

The second part is to calculate the camera position and rotation:

 //Calculate the camera's position

 _Camera.position.x = _Camera.target.x -
sin(mCameraHorizontalAngleShift)* cameraZoom;

 _Camera.position.z = _Camera.target.z -
cos(mCameraHorizontalAngleShift)* cameraZoom;

 _Camera.position.y = cameraZoom + mCameraVerticalOffset ;

The last part handles the keyboard and mouse input of the camera movement and rotation:

 // Pan camera with arrow keys

 if (IsKeyDown(KEY_UP)) _Camera.target.z -= cameraPanSpeed;

 if (IsKeyDown(KEY_DOWN)) _Camera.target.z += cameraPanSpeed;

 if (IsKeyDown(KEY_LEFT)) _Camera.target.x -= cameraPanSpeed;

 if (IsKeyDown(KEY_RIGHT)) _Camera.target.x += cameraPanSpeed;

 // Rotate the camera around the player when right mouse button is held

 if (IsMouseButtonDown(MOUSE_BUTTON_RIGHT)) {

 mCameraHorizontalAngleShift += GetMouseDelta().x * 0.01f;

 mCameraVerticalOffset += GetMouseDelta().y * 0.01f;

 }

 return true;

}

Games using a top-down camera often need to allow players to select SceneActor objects visible

within the camera’s view. To achieve this, we implement object picking in the Update() function

of the main application class, Demo5RTSCam.

The Camera and Camera Controls160

Since we use cubes to represent our battle units, we can calculate each cube’s bounding box and

cast an imaginary ray from the camera to test if the player selects any units by clicking on them

with the mouse:

void Demo5RTSCam::Update(float ElapsedSeconds) {

 // Mouse picking: check if any unit is clicked

 if (IsMouseButtonPressed(MOUSE_LEFT_BUTTON)) {

 Ray ray = GetScreenToWorldRay(GetMousePosition(), *RTSCamera-
>GetCamera3D());

 for (auto& unit : units) {

 // Check if the ray hits the cube

 BoundingBox box = {Vector3 { unit.position.x - 0.5f, unit.position.y
- 0.5f, unit.position.z - 0.5f},Vector3 { unit.position.x + 0.5f, unit.
position.y + 0.5f, unit.position.z + 0.5f}

 };

 // Check collision between ray and cube's bounding

 RayCollision rc = GetRayCollisionBox(ray, box);

 if (rc.hit)

 unit.selected = !unit.selected;

 }

 __super::Update(ElapsedSeconds);

}

Sometimes it’s useful to know the 2D bounding box of a 3D object. This is especially useful when

we need to determine the 2D coordinate to draw the unit name of each battle unit. Knight comes

with a handy API to calculate a 2D screen coordinate bounding box from a 3D cube. This is done

in the DrawGUI() function of the Demo5RTSCam class (in Demo5RTSCam.cpp):

//draw all unit name on top edge of the 2D bounding box

for (auto& unit : units) {

 BoundingRect rect = Get2DBoundingRectOfCube(unit.position, 1.0f,
*RTSCamera->GetCamera3D());

 unit.LabelPos.x = rect.min.x;

 unit.LabelPos.y = rect.min.y-20;

 DrawText(unit.Name, unit.LabelPos.x, unit.LabelPos.y, 30, YELLOW);

}

Chapter 5 161

Figure 5.10 shows the result as follows:

Figure 5.10 – The bounding rectangle is calculated from the cube

Moving on, let’s explore rendering multiple split-screen cameras in the next section.

Rendering multiple split-screen cameras
We’ve seen many camera implementations. But what if we combine multiple views on one screen?

Some games use split screens, while others mix perspectives—such as a third-person main view

for surroundings paired with a picture-in-picture first-person view for aiming, or an FPS with a

top-down map alongside the main first-person view.

So how can we implement this in Knight? Before we look at that, it’s important to understand

that this setup presents a couple of immediate challenges:

•	 Knight comes with a simple-to-use camera system, but it just directly renders onto the

main display screen. If you try to render two cameras, the content rendered from the first

camera will always be overwritten by content rendered from the second camera.

•	 Built-in camera modes in raylib come with default mouse and keyboard support, which is

convenient for writing sample code. However, using two first-person cameras for different

players causes input conflicts since both receive the same controls.

The Camera and Camera Controls162

Before implementing multi-camera functionality, we must tackle two key issues in Knight. While

Knight is a simple, convenient framework for C++ with basic features, it lacks some advanced

functions. Fortunately, it also lets developers extend its capabilities. In the following sections,

we’ll address these challenges.

Customizing the rendering operation
Knight is designed to be simple and easy to use, so the Knight game application class includes

a default _Scene object that allows developers to add other objects as SceneActor and handles

basic input processing and rendering by default. This setup is useful for quickly displaying a scene

with a single camera and a few 3D SceneActor.

However, if we want to perform more complex rendering tasks—such as using multiple cameras

to render the same game scene from different perspectives—this basic setup is too limited.

Fortunately, Knight provides the flexibility to allow custom handling of the rendering process. Let’s

check how Knight manages the game’s render loop (in Knight.cpp within the Knight project):

void Knight::GameLoop(){

 Vector2 v;

 while (!WindowShouldClose() && (!_shouldExitGameLoop)){

 //…

 BeginDrawing(); //prepare for rendering tasks

 ClearBackground(DARKGRAY);

 DrawOffscreen();

 SceneCamera*cameraActor=_Scene->GetMainCameraActor();

 if (cameraActor){

 BeginMode3D(cameraActor->_Camera);

 DrawFrame();

 EndMode3D();

 } else

 DrawFrame();

 DrawGUI(); //draw 2D and UI

 //…

 EndDrawing(); //finish all rendering tasks

 }

 EndGame();

}

Chapter 5 163

In each frame, after the Update() function is called on all SceneObject, the actual rendering tasks

begin with BeginDrawing() and end with EndDrawing(). The code within these two functions

performs the core rendering tasks.

Knight first calls the DrawOffscreen() virtual function. This function is intended for any pre-ren-

dering setup and tasks before the _Scene is rendered to the screen framebuffer. You can override

this function to ensure it runs before DrawFrame() is called. We’ll make use of this in the next

section.

After DrawOffscreen() is called, Knight tries to retrieve the main camera within the _Scene object.

In previous examples, we created a camera like this:

_Scene->CreateSceneObject<PerspectiveCamera>("Camera")

This line not only creates the camera but also designates it as the “main camera” inside the _Scene

object. Once a camera is retrieved from _Scene, Knight follows the default single-camera setup

and renders the game scene in DrawFrame(). This is the typical execution path in our previous

examples with 3D objects, where BeginMode3D() and EndMode3D() are handled automatically.

However, if we don’t add a camera to the _Scene object, Knight assumes we want to handle all

rendering operations manually, so it calls DrawFrame() directly without setting up the scene

camera with BeginMode3D() and EndMode3D(). In this case, you’ll need to manage all rendering

tasks yourself.

This flexibility is exactly what we need to support multiple-camera rendering. If Knight doesn’t

find a camera in _Scene, it leaves per-frame rendering entirely up to us. So, we’ll create two

cameras, but we won’t add them to _Scene; instead, we’ll manage their rendering ourselves. The

Demo5MultiCams project demonstrates how to use Knight to support multiple camera rendering.

Working with RenderTexture
Let’s start by rendering multiple cameras without having their outputs overwrite each other.

Until now, we’ve rendered the camera’s view directly on the entire display screen. As discussed at

the start of Chapter 4, the screen essentially acts as a framebuffer that displays the rendered result.

Modern graphics hardware allows us to create additional off-screen framebuffers and render

content into them instead of directly to the screen framebuffer. These off-screen buffers can later

be used as textures.

The Camera and Camera Controls164

In modern graphics APIs, this type of texture is commonly referred to as a RenderTexture. It can

act as a destination framebuffer and can be used like any regular texture for display or within a

game scene as part of the environment or 3D models.

So how does this work with Knight? If we want a split-screen view with two different types of

cameras, each looking at the same game scene, we need to create a separate RenderTexture for

each camera. We can then render the game scene into these two RenderTexture separately and,

as a final step, use DrawTexture() to display both textures on the main screen.

Figure 5.11 – Combining two render textures into split-screen rendering

Chapter 5 165

The Demo5MultiCams project demonstrates how to work with RenderTexture in Knight. It creates

a RenderTexture for a third-person follow-up camera and another RenderTexture for a top-

down camera. Let’s add necessary objects into the Demo5MultiCams class (in Demo5MultiCams.h):

FollowUpCamera* pChaseCamera = nullptr;

TopDownCamera* pTopDownCamera = nullptr;

Rectangle splitScreenRect = { 0 };

RenderTexture ChaseCamRT = { 0 };

RenderTexture TopDownCamRT = { 0 };

We create and initialize the cameras and RenderTexture in the Start() function of Demo5MultiCams.

cpp:

 // Create camera for both render targets

 pChaseCamera= new FollowUpCamera(_Scene, "Chase", false);

 pTopDownCamera = new TopDownCamera(_Scene, "Map", false);

 Actor = _Scene->CreateSceneObject<SceneActor>("Player");

 //…

 // Setup player 1 camera and screen

 pChaseCamera->SetUp(Actor, 45.0f, 5.0f, CAMERA_PERSPECTIVE);

 pChaseCamera->processMouseInput = false;

 pTopDownCamera->SetUp(Vector3{ -3.0f, 3.0f, 0 }, Actor->Position, 45.0f,
CAMERA_PERSPECTIVE);

 ChaseCamRT=LoadRenderTexture(960, SCREEN_HEIGHT);

 TopDownCamRT = LoadRenderTexture(960, SCREEN_HEIGHT);

You might notice that this time we simply create both cameras, but don’t add them into _Scene

like the other examples you’ve seen. As we explained in the previous section, we want to handle

the whole rendering task on our own so will not add them to the _Scene object.

We also create a SceneActor to represent our main player character and add it into _Scene like

we’re used to. Both cameras will focus on this player SceneActor but rendered from a different

viewpoint.

The Camera and Camera Controls166

Before we jump into any rendering operation, since we didn’t add the two cameras into _Scene,

this means their Update() function will not be called when Knight calls the Update() function

in the main game application class, Demo5MultiCams. We will need to manually call Update() of

each camera in every frame:

void Demo5MultiCams::Update(float ElapsedSeconds){

 //handle input to control player move

 //…

 //manually call Update() of both cameras

 pChaseCamera->Update(ElapsedSeconds);

 pTopDownCamera->SetLookAtPosition(Actor->Position);

 pTopDownCamera->Update(ElapsedSeconds);

 __super::Update(ElapsedSeconds);

}

In the Update() function of the Demo5MultiCams class, we will now also call the Update() function

for both pChaseCamera and pTopDownCamera. Since the top-down camera doesn’t automatically

follow the target player SceneActor like the third-person camera, we need to set the latest “look-

at” position for pTopDownCamera in every frame.

Now we’re ready to perform off-screen rendering for both cameras. We’ll render both cameras

in the override of the DrawOffscreen() function:

void Demo5MultiCams::DrawOffscreen(){

 // Draw Player1 view to the render texture

 BeginTextureMode(ChaseCamRT);

 ClearBackground(DARKBLUE);

 BeginMode3D(*pChaseCamera->GetCamera3D());

 DrawGameWorld();

 //…

 EndMode3D();

 EndTextureMode();

 // Draw Player2 view to the render texture

 BeginTextureMode(TopDownCamRT);

 ClearBackground(DARKPURPLE);

 BeginMode3D(*pTopDownCamera->GetCamera3D());

 DrawGameWorld();

 //…

Chapter 5 167

 EndMode3D();

 EndTextureMode();

}

The BeginTextureMode() function will make the specified RenderTexture ready. Any ren-

dering operation after this call will render the result in RenderTexture instead of the screen.

EndTextureMode() will flush ongoing rendering tasks and make the RenderTexture ready to be

used as a usual texture.

You can now assign the texture to any 3D model, or simply use the handy DrawTexture() function

to draw it on the screen. In our example, we simply draw both RenderTexture on the screen as a

split view, so this is handled in DrawGUI(), where we perform all 2D drawing operations:

void Demo5MultiCams::DrawGUI(){

 //…

 DrawTextureRec(ChaseCamRT.texture, splitScreenRect, Vector2{ 0, 0 },
WHITE);

 DrawTextureRec(TopDownCamRT.texture, splitScreenRect, Vector2{ SCREEN_
WIDTH / 2.0f, 0 }, WHITE);

}

The final detail involves camera input. Since we implemented our own FollowUpCamera, we

added a Boolean to enable or disable mouse input, ensuring it won’t conflict with the mouse

inputs of other cameras:

bool FollowUpCamera::Update(float ElapsedSeconds){

 if (!IsActive) return false;

 // Adjust camera distance with mouse wheel

 if (processMouseInput)

 cameraDistance -= GetMouseWheelMove();

 //… (omit code not related to mouse input

 // Rotate the camera around the player

 if (processMouseInput && IsMouseButtonDown(MOUSE_BUTTON_RIGHT)) {

 mCameraHorizontalAngleShift += GetMouseDelta().x * 0.01f;

 mCameraVerticalOffset += GetMouseDelta().y * 0.01f;

 }

 return true;

}

The Camera and Camera Controls168

We can simply disable mouse input processing for one of the cameras to prevent both cameras

from responding to the same input. In the Start() function of the Demo5MultiCams class (in

Demo5MultiCams.cpp), we disable mouse input process for the chase camera. Only the top-down

camera reacts to mouse input:

pChaseCamera->processMouseInput = false;

This brings us to the end of this section.

Summary
In this chapter, we explored the core principles of camera systems in 3D game development using

Knight. It introduced various types of cameras, including first-person, third-person, top-down,

and others, outlining how to implement and configure each for different gameplay perspectives.

Alongside this, the chapter covered important camera parameters such as position, orientation,

and field of view, ensuring you understand how to manipulate and control your game’s viewpoint

effectively.

Additionally, the chapter demonstrated camera techniques such as following a target, panning,

zooming, and rotating, providing insight into creating dynamic, user-controlled perspectives.

It also touched on advanced topics, such as multi-camera rendering, using render textures for

split-screen setups.

With these concepts, you can develop versatile 3D camera systems that are customizable to suit

diverse gameplay mechanics and player preferences.

After understanding how to use cameras to present the game world, the next step is to explore how

to utilize the power of the GPU to render a 3D game world. We’ll delve into it in the next chapter.

6
3D Graphics Rendering

This chapter introduces fundamental 3D graphics rendering techniques from the modern GPU

perspective and demonstrates the use of shader programming to render objects with lighting

effects. Real-time 3D rendering is a broad subject, and this chapter will approach it from the view-

point that best reflects contemporary graphics technology, serving as our foundation for learning.

The development of modern graphics hardware plays a crucial role in which algorithms we need

to invest more of our time and efforts. For example, we know a graphic scene is composed of

thousands of triangles. Back in the early days (such as 2000–2005), we graphics engineers spent

major efforts on developing algorithms to reduce the count of triangles that actually get rendered

because graphics hardware performance is limited. This is still a factor we need to consider now-

adays after 20+ years, but we do not spend as much effort anymore because modern GPUs can

easily handle a much larger number of triangles to render on screen. We’d rather put more effort

into higher rendering quality.

The goal of this chapter is to learn how to build the main 3D graphics elements that appear in

a typical 3D game scene. In Chapter 1, we introduced how to display 3D models, so we already

know the basics of rendering the main character controlled by the player on the screen. Both in

this chapter and the next chapter, we will focus on enhancing the visual representation of these

objects with improved lighting effects and better realism.

In this chapter, we will cover the following topics:

•	 Programming with modern GPUs

•	 Lighting up the world

•	 Achieving better realism

3D Graphics Rendering170

By the end of this chapter, you will understand the detailed process stages of rendering on GPUs

and know how to write efficient shader programs. Additionally, you will be able to write your

own customized shader to achieve better lighting and other effects.

Technical requirements
The GitHub project for the book is located here: https://github.com/PacktPublishing/

Practical-C-Game-Programming-with-Data-Structures-and-Algorithms.

The repo contains demo projects in the Knight solution (https://github.com/PacktPublishing/

Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight):

Project Name Description

Demo6LightShader Sample code of implementing the point light with shader

Demo6Light Sample code of using a default lighting shader

Demo6NormalMap Sample code of implementing normal mapped lighting

Table 6.1 – Sample projects in this chapter

All the sample code in this chapter is built with Knight. However, some basic understanding of

the OpenGL graphics API, either from direct experience or from working with other graphics

libraries built on top of it (such as raylib) would be useful.

•	

Let’s get started!

Additional reading resources

Here are some great online learning resources about OpenGL:

•	 For general information: https://www.khronos.org/opengl/wiki/

Getting_Started

•	 For tutorial-related information: https://www.opengl-tutorial.org/

•	 The official raylib website: https://www.raylib.com/

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://www.khronos.org/opengl/wiki/Getting_Started
https://www.khronos.org/opengl/wiki/Getting_Started
https://www.opengl-tutorial.org/
https://www.raylib.com/

Chapter 6 171

Programming with modern GPUs
If we were to discuss the biggest difference between modern game graphics programming and

that of a decade or two ago, it would be the increasing reliance on the GPU to handle more and

more rendering tasks. This is achieved by writing code directly running on the GPU to handle

graphics rendering tasks. These programs that run on the GPU to execute graphic rendering tasks

are called shaders.

A shader is a small program written in a specialized C-like language (such as GLSL, HLSL, or

SPIR-V) that runs directly on the GPU to define how pixels, vertices, or other graphical elements

should be processed to create visual effects such as lighting, shadows, textures, and complex

animations.

In the process of projecting and drawing a 3D object onto the screen, one crucial part is the trans-

formation of the object from a 3D coordinate space into a 2D screen coordinate space.

Understanding different coordinated spaces
In Chapter 5, we learned the basic idea of how to project a 3D world into a 2D screen. Before diving

into writing your own shader, it’s crucial to understand the basic concept of coordinate spaces.

This is often the most confusing aspect of understanding how shaders work and can be a major

source of frustrating bugs in shader code.

From our experience, many shader bugs aren’t caused by flawed logic but rather by the misuse

or misunderstanding of coordinate spaces.

Understanding the different coordinate spaces is fundamental to 3D graphics operation. These

coordinates spaces are used at various stages of rendering to position and transform objects rel-

ative to one another, the camera, and the screen. Mastery of transformation between different

coordinate spaces will not only help you write effective shaders but also make it easier to debug

issues when things don’t work as expected.

Let’s dive into the coordinate spaces mostly used in shader programming.

Model space
The first is model space, or local space. When a graphics artist makes a 3D player character in

Blender or 3ds Max/Maya at the origin position and exports it into a model file format, the coor-

dinate used in the stored vertex data is in its model space.

3D Graphics Rendering172

In the following example OBJ format 3D model file, all vertex positions are in model space:

Blender v2.90.0 OBJ File: ''

www.blender.org

o BODY_Material_#24_0

v 2.545141 5.783802 -25.976692 //vertex position

v 3.235504 6.677957 -13.125248 //vertex position

...

Now, let’s summarize the usage of model space:

•	 Purpose: Model space represents the object in its own local context before any transfor-

mations are applied.

•	 Example: A player character might have its origin at the center between the two soles of

the feet. All other vertex positions are relative to this origin.

•	 Transformations applied: None at this stage. When you upload mesh data into the GPU,

the coordinate used in the mesh data is usually just in its original model space.

World space
World space is a global coordinate system that represents the positions of all objects in a scene

or a game world. Now, let’s load the player character mentioned previously into Knight as an

attached ModelComponent of a SceneActor, and set this SceneActor's Position (or world space

coordinate) value as (20,10,30). However, the actual mesh data still contains the coordinates of

original values related to the model space.

Let’s summarize the usage of world space:

•	 Purpose: It transforms the object from its local (model) space into the scene’s shared space.

•	 Example: The car model is placed in a parking lot. Its position and orientation in the

parking lot (scene) are described in the world space, and the car’s position in the parking

lot is specified relative to the origin point of the world space.

•	 Transformations applied: In 3D graphics, a model matrix (a matrix defines the scaling,

rotation, and translation; also referred to as world matrix) moves the object from model

space to world space.

Chapter 6 173

In Knight, we store not a single model matrix in each SceneActor; instead, we store the translation

matrix, rotation matrix, and scale matrix separately:

Matrix _MatTranslation;

Matrix _MatRotation;

Matrix _MatScale;

We calculate the final matrix to transform coordinates from model space to world space in the

Update() function:

_MatTranslation = MatrixTranslate(Position.x, Position.y, Position.z);

_MatRotation = MatrixRotateXYZ(Vector3{DEG2RAD * Rotation.x, DEG2RAD *
Rotation.y, DEG2RAD * Rotation.z });

_MatScale = MatrixScale(Scale.x, Scale.y, Scale.z);

_MatTransform = MatrixMultiply(MatrixMultiply(_MatScale, _MatRotation),
_MatTranslation);

The world space is calculated by multiplying the original value from model space with this

_MatTransform transformation matrix to get the world space coordinate (20,10,30).

View space (camera space/eye space)
Sometimes, we need to know the coordinates relatively from the camera’s viewpoint. View space

regards the camera as the original point at (0,0,0). We use the view matrix to represent the

transformation from the world coordinate to the coordinate of camera space.

Let’s summarize the usage of view space:

•	 Purpose: It positions all objects in the scene as if they are being observed from the cam-

era’s perspective.

•	 Example: The car and parking lot are transformed so the camera sees them from their

specific position and angle.

•	 Transformations applied: The view matrix moves objects from world space to view space

by transforming them relative to the camera’s position and orientation. The view matrix

is usually calculated inside the camera handling code from the camera’s position, look at

position (target position), and up vector. raylib has a handy function:

Matrix viewMat = MatrixLookAt(camera->position, camera->target,
camera->up);

3D Graphics Rendering174

Clip space
Clip space is a normalized coordinate system used for visibility determination and perspective

projection. This is where GPU drops anything that is outside the view frustum of the camera.

Let’s summarize the usage of clip space:

•	 Purpose: It projects the 3D scene into a 2D view suitable for rendering on the screen.

•	 Example: After transforming the car and parking lot into clip space, they are ready for

rasterization into pixels. Some areas of the parking lot may no longer be visible from the

camera view and get removed from the clip space.

•	 Transformations applied: The projection matrix converts coordinates from view space

to clip space. This involves perspective division, which maps 3D points to a 2D plane.

Normalized device coordinates space (NDC)
NDC space is almost like clip space, with a small difference in ranges of the coordinate values,

where all coordinates are normalized to the range [-1, 1].

Let’s summarize the usage of NDC space:

•	 Purpose: It prepares the scene for rendering by defining which parts of the scene are

visible on the screen.

•	 Example: Objects with x, y, or z values outside the range of [-1, 1] are outside the visible

area and get clipped.

•	 Transformations applied: Clip space coordinates are divided by their w component (per-

spective division) to produce NDCs.

Screen space
This coordinate system represents the actual screen position, measured in pixels.

Let’s summarize the usage of screen space:

•	 Purpose: It converts normalized device coordinates into actual pixel locations on the

screen.

•	 Example: A point with NDC coordinates of (0, 0) maps to the center of the screen, while

(-1, -1) maps to the bottom-left corner.

•	 Transformations applied: The viewport transformation scales and translates NDCs into

screen coordinates based on the screen resolution.

Chapter 6 175

Now, by connecting the various coordinate spaces introduced above, we form a continuous chain

of coordinate system transformations that projects and renders a 3D object from the 3D world onto

the 2D screen. Each transformation step involves applying a mathematical matrix or operation:

•	 From model space to world space: apply model matrix

•	 From world space to view space: apply view matrix

•	 From view space to clip space: apply projection matrix

•	 From clip space to NDC: perform perspective division

•	 From NDC to screen space: apply viewport transformation

The series of transformations of the above coordinate spaces are executed as part of a series of

tasks executed on modern graphics hardware. We refer to the entire series of these tasks as the

graphics rendering pipeline. Let’s investigate it in the next section.

Introducing the 3D graphics rendering pipeline
In modern 3D graphics programming, the graphics rendering pipeline is a series of steps that a

GPU follows to convert 3D models and scenes into a 2D image on the screen. The pipeline is highly

parallelized, allowing the GPU to process large amounts of data (vertices, textures, etc.) efficiently.

Stages of the graphics rendering pipeline
Let’s look at key stages in the pipeline, from the initial 3D models rendering API to the final image

display:

Figure 6.1 – Stages of the GPU rendering pipeline

3D Graphics Rendering176

First off, in Figure 6.1, you’ll observe that the entire rendering pipeline process involves both

the CPU and the GPU side tasks. As a software engineer, you might think that calling Knight’s

DrawFrame() function is all it takes to display the 3D game graphics. But in reality, a series of

stages occur internally, from your application to the low-level graphics driver, culminating in

the GPU being instructed to carry out the actual rendering:

•	 Vertex stream processing: This stage processes each vertex of the 3D models. Each vertex

contains information such as position, color, texture coordinates, and normals.

•	 Vertex program: The vertex program (or vertex shader) is a programmable step in this

stage, allowing you to apply transformations (e.g., translation, rotation, and scaling) to

each vertex and calculate other properties such as lighting per vertex.

•	 Primitives assembly: After vertices are processed, they are assembled into geometric

primitives, typically triangles, which are the basic building blocks of 3D models.

•	 Rasterization: Rasterization is the process of converting triangles into a 2D grid of frag-

ments (potential pixels) on the screen. Each triangle is mapped to a 2D area on the screen,

and each fragment within this area represents a sample point on the triangle. This stage

includes clipping (removing parts of triangles outside the camera’s view) and culling

(discarding triangles that face away from the camera).

•	 Fragment program: For each fragment generated by rasterization, the GPU runs a frag-

ment program (also known as the fragment shader or pixel shader). It determines the

color, lighting, and texture effects of each pixel, performing calculations such as texture

mapping, lighting, and color blending. This stage is where most visual effects are applied,

including shadows, reflections, bump mapping, and other surface details.

•	 Depth/stencil testing: After the fragment shader computes the color of each fragment,

depth testing checks whether the fragment is in front of or behind other fragments at the

same screen location. Fragments behind others are discarded. Stencil testing can also be

applied to create special effects such as mirrors or outlines. This stage ensures that only

the visible surfaces remain in the final image.

•	 Blending: Blending combines the color of each fragment with the color of the pixel already

in the framebuffer (the image being created). This is useful for effects such as transparency,

where the colors of overlapping objects need to be mixed.

•	 Output (to framebuffer): The final processed pixels are written to the framebuffer, which

is then displayed on the screen as a 2D image.

When a vertex program is executed, it operates in the model space at the input stage and trans-

forms the data through multiple coordinate spaces during its execution.

Chapter 6 177

When a fragment shader is invoked, it operates in screen space or NDC space, depending on the

context of the inputs it processes. The fragment program itself doesn’t perform transformations

but works with data passed from earlier pipeline stages.

In summary, the fragment shader typically receives interpolated world-space or view-space at-

tributes and screen-space information such as the built-in variable gl_FragCoord. It uses these

to compute the final color or other outputs for each pixel.

In graphics programming, the vertex program and the fragment program are essential stages in

the GPU’s rendering pipeline. These stages give you precise control over 3D rendering by defining

how vertices are transformed and how pixels are colored.

In the next section, we’ll dive into shader programming for writing vertex and fragment programs.

Working with vertex and fragment programs
As the name suggests, vertex and fragment programs function much like standard C programs.

They include an entry function, main(), to initiate the program, and allow you to declare local

variables, functions, and even simple structures to handle complex data types.

Here is a minimal example of a vertex program, which translates 3D vertex data into 2D screen

coordinates, preparing it for rendering on the screen:

#version 330

layout(location = 0) in vec3 vertexPosition;

layout(location = 1) in vec3 vertexColor;

out vec3 fragColor;

uniform mat4 mvp;

void main()

{

 gl_Position = mvp * vec4(vertexPosition, 1.0);

 fragColor = vertexColor;

}

Usually, we have both a vertex program and a fragment program, where the fragment program

takes output from the vertex program and then prepares the final pixel for rendering on the screen.

The fragment program accompanied by the above vertex program is here:

#version 330

in vec3 fragColor;

out vec4 finalColor;

3D Graphics Rendering178

void main() {

 finalColor = vec4(fragColor, 1.0);

}

Before exploring what vertex and fragment programs do, we first need to load them into the

graphics driver. These programs are then compiled and uploaded to the GPU, where they will

be executed.

You can store vertex and fragment programs as simple C strings in your C/C++ source code. The

following code snippet demonstrates how to compile and load these programs into the GPU:

// Load the vertex and fragment shaders

const char *vsCode = R"The vertex program code above";

const char *fsCode = R"The fragment program code above";

Shader shader = LoadShaderFromMemory(vsCode, fsCode);

Or you can put vertex program and fragment program code inside two text files and load the

shader from the file:

Shader shader = LoadShader("vertex.vs","fragment.fs");

The LoadShader() function will load and compile the shader at runtime, making it ready to use.

We will now take a closer look at writing vertex programs and how they access the vertex data

of 3D models.

Vertex program (vertex shader)
A vertex shader processes each vertex of a 3D model. It’s responsible for:

•	 Transforming vertex positions from model space to screen space and setting the output

position to the built-in variable gl_Position

•	 Calculating lighting values per vertex

•	 Passing data to the fragment shader, such as transformed positions, normals, and texture

coordinates

Now let’s go back to the previous minimum vertex program. In the beginning, we have:

#version 330

The first line, #version 330, indicates that this shader program is intended for OpenGL version

3.3 or later. If your shader is designed specifically for mobile versions of OpenGL, such as OpenGL

ES 3.0, you will need to specify the appropriate version with a directive like:

#version 300 es

Chapter 6 179

Typically, after the versioning statement, we declare the input and output data for the vertex

program. Since a vertex program is designed to process vertex data, its input consists of one or

more vertex attributes from the vertex data:

layout(location = 0) in vec3 vertexPosition;

layout(location = 1) in vec3 vertexColor;

Table 6.2 lists the vertex attributes that are commonly supported:

Attribute Data type Description

Vertex position vec3 or vec4 A 3-float or 4-float vector spatial position of the vertex

in 3D or 4D space.

Vertex normal vec3 A 3-float vector represents the direction perpendicular

to the surface at the vertex, used for lighting

calculations.

Vertex color vec3 or vec4 Per-vertex color data, often interpolated across surfaces

for gradient effects. Either vec3 for the (r,g,b) color

channel or vec4 for the (r,g,b,a) color channel.

Vertex texture

coordinate

vec2 2-float UV mapping coordinates for textures,

determining how textures are mapped to the vertex.

Vertex tangent vec3 Used in advanced lighting and normal mapping

techniques.

Vertex bitangent vec3 Also used in advanced lighting and normal mapping

techniques. Together with the normal, they form a

tangent space for transforming lighting data.

Bone weight vec4 Used in skeletal animation to define how much

influence each bone has on a vertex.

Bone index vec4 Index of bone with influence on the vertex. The

maximum number is usually 4.

Table 6.2 – Vertex attributes supported by shader

3D Graphics Rendering180

In fact, you can also define any purpose of data if the data type is supported by one of the following,

as categorized into groups by their dimensionality and shown in Table 6.3:

Categories Supported data types

Scalar float, int, uint

Vector vec2, vec3, vec4, ivec2, ivec3, ivec4

Matrix data mat2, mat3, mat4

Table 6.3 – All supported data types

The graphic API facilitates loading your vertex data into the GPU and making it accessible to

your vertex program, but it’s up to you to decide how to interpret and access the attributes in

the vertex data. To do this, let’s find out how we can access attributes in the vertex data from

the vertex program.

Since you can freely name variables in your vertex program, how does the program know which

input variable corresponds to which vertex attribute in the actual vertex buffer passed to the

shader?

The answer lies in the location specifier. The following figure demonstrates how to map input

variables in your vertex program to specific vertex attributes in the vertex buffer:

Figure 6.2 – The vertex program uses a location specifier to map vertex attributes inside the vertex buffer

This flexibility allows the vertex program to process only the attributes it needs, even if the actual

vertex format contains additional attributes. For example, a raylib vertex format typically includes

vertex normal. However, in this minimal vertex program example, since we are not using vertex

normal, we can simply ignore them in the shader.

Chapter 6 181

The output variable specifies the type of data that needs to be passed to the fragment program

when a pixel is ready to be drawn on the screen. Typically, at least two types of data are required

– color and coordinate (position) of the pixel:

out vec3 fragColor;

This is the color we want to pass to the fragment program to draw the pixel. It will become the

input variable of the same name in the fragment program.

Another critical piece of data is the coordinate used to draw the pixel. OpenGL provides several

built-in variables for vertex programs, and gl_Position is one of the most important. This vari-

able allows a vertex program to store the position of the current vertex projected into clip space.

Every vertex shader must write to gl_Position for OpenGL to render geometry correctly.

To calculate the value of gl_Position, additional information from the game code is required.

Specifically, you need details from the current SceneActor to compute the model transformation

matrix. You also need data from the 3D camera to calculate the view and projection matrices.

If you’re building your own 3D engine, you must provide this information from your game appli-

cation code. The method for passing such data from the CPU to the GPU is through uniform vari-

ables. When you define a uniform variable in a vertex or fragment program, it might look like this:

uniform mat4 mvp;

You can set the value of any uniform variable from your C/C++ code with such an API:

int loc = GetShaderLocation(shader, "mvp");

SetShaderValue(shader,loc,&matrix, SHADER_UNIFORM_MAT4);

On the main application side, we can use the handy function GetShaderLocation() to retrieve

an ID for any uniform variable by its name. Then we can use SetShaderValue() to pass data from

the CPU to vertex or fragment programs running on the GPU.

Even better, raylib also provides some ready-to-use uniform variables. Each time a vertex or frag-

ment program is loaded, raylib will scan the code and determine whether the shader needs to

use some common data from the engine. Then, raylib will automatically make these uniform

variables available to your vertex and fragment program without any of your efforts to call

GetShaderLocation() and pass the data through SetShaderValue() on your own.

3D Graphics Rendering182

Those “ready-to-use” uniform variables supported by raylib are listed in Table 6.4:

Attribute Data type Description

matModel mat4 Model matrix if you are currently rendering a vertex from a

raylib 3D Model class. (Knight uses raylib’s Model as well.)

However, if you define your own 3D model rendering and do not

use the Model class provided by raylib, this will not be available.

You need to supply your own model transformation matrix.

matView mat4 View matrix calculated from the Camera3D class of raylib. The

SceneCamera of Knight uses raylib’s Camera3D internally, so

you will have a view matrix ready to use if you work with

Knight’s SceneCamera or any camera inherited from the

SceneCamera class.

matProjection mat4 Projection matrix from the Camera3D class of raylib. Same

as matView, you will have this ready if you work with

SceneCamera.

mvp mat4 Another handy model-view-projection matrix, pre-calculated

and ready to use if you use Knight’s SceneCamera and

ModelComponent.

matNormal mat4 This is a handy version of

transpose(inverse(matModelView)), prepared by the CPU

side and ready to use in your vertex and fragment program.

colDiffuse vec3 When you specify a tint color in raylib’s API, this is the tint color

passed by raylib. Do not confuse it with the color assigned in

each vertex.

texture0

texture1

texture2

Sampler2D This is specifically for ready-to-use Sampler2D texture sampling

units for the fragment program. If you use it in the fragment

program, raylib will automatically enable it.

Table 6.4 – Handy uniform variables provided by raylib

Chapter 6 183

If you want to supply your own data with these predefined uniform variables, make sure the value

you set is not overwritten by raylib during rendering.

Finally, the last part is the main() function of the vertex program:

 gl_Position = mvp * vec4(vertexPosition, 1.0);

 fragColor = vertexColor;

It simply uses the model-view-projection matrix to calculate gl_Position and also just passes

the vertex color as the input to the fragment program.

Fragment program (fragment/pixel shader)
A fragment shader processes each fragment (essentially, a potential pixel on the screen) generated

by rasterizing the triangles that make up a model. It determines the final color and appearance

of each pixel by:

•	 Applying lighting calculations, colors, and textures

•	 Using data from the vertex shader, such as texture coordinates and normals, to color the

pixel

•	 Applying advanced effects such as normal mapping, shadow mapping, and reflections

Let’s go back to our minimum fragment shader:

#version 330

The first versioning statement is the same as the vertex program; choose the best for your target

platform.

in vec3 fragColor;

This time, we will receive the fragColor from the vertex program.

out vec4 finalColor;

Also, we define an output variable, finalColor. The fragment shader only has a single output –

the final color of the pixel (with alpha). The name doesn’t matter and it can only have a single

color output.

void main()

{

 finalColor = vec4(fragColor, 1.0);

}

3D Graphics Rendering184

The main body of the main() function in this fragment program only copies the color passed by

the vertex program and sends it to the output of the final color. Since the input color is vec3 but

the output is vec4, we need to convert the format with alpha component 1.0 in the final color.

The above demonstrates a minimal fragment program. Most fragment programs involve more

operations, such as sampling color from a texture map, blending, or calculating lighting. To

write more complex fragment shaders, we can pass more data from the vertex program to the

fragment program.

We can also pass more information from the CPU side to the vertex program of the GPU side,

which we will cover in the next section.

Passing data from CPU to GPU
In shader programming, uniform is the variable that is passed from the CPU (application code)

to the GPU (shader code) and remains constant for the duration of a single draw call. They are

commonly used to provide global data to shaders that multiple vertices or fragments need to

access, such as transformation matrices, lighting information, or texture samplers.

Figure 6.3 demonstrates how we can pass the color of a light to the variable lightColor, accessible

by the vertex program and fragment program.

Figure 6.3 – Uniform variables pass values from CPU to GPU

Chapter 6 185

The example illustrated in Figure 6.3 is that on the CPU side, within your C++ code, we use the

GetShaderLocation() function to obtain an integer ID representing the lightColor uniform

variable. This ID allows us to call SetShaderValue() and pass a Vector3 value to the lightColor

uniform variable in both the vertex and fragment shaders. However, since the CPU and GPU op-

erate as separate worlds, uniform variables come with a few limitations:

•	 Read-only: Uniform variables are read-only in shaders. They can be set by the CPU but

cannot be modified within the shader code.

•	 Constant per draw call: Uniform variables retain the same value for all vertices or frag-

ments processed during a single draw call. This makes them ideal for information that

applies to an entire object or scene, rather than data that varies per vertex or per fragment.

•	 Accessible by vertex and fragment shaders: Uniform variables can be used in both ver-

tex and fragment shaders, making them well suited for passing data that influences all

stages of rendering.

Uniform is used in daily shader programming for passing the following information:

•	 Transformation matrices: Uniform variables are often used to pass transformation ma-

trices (such as model, view, and projection matrices) to the vertex shader. This enables

each vertex to be transformed from model space to screen space:

SetShaderValueMatrix(shader, uniform_id, Matrix);

•	 Lighting information: Lighting properties, such as the direction and colors of light sourc-

es, material properties, and ambient light values, are passed as uniform variables. These

values remain constant for all vertices or fragments of a rendered object, making uniform

variables ideal for storing lighting data:

SetShaderValue(shader, uniform_id, (Vector3)light_dir, SHADER_
UNIFORM_VEC3);

•	 Camera parameters: Uniforms often carry camera-related data such as the camera’s

position, direction, or view matrix. This information can be used for calculations such as

distance-based effects or environment mapping:

SetShaderValue(shader, shader.locs[SHADER_LOC_VECTOR_VIEW],
&cameraPos, SHADER_UNIFORM_VEC3);

3D Graphics Rendering186

•	 Time and animation data: For time-based effects or animations, the elapsed time is often

passed as a uniform, enabling shaders to create animated effects such as waves or pulsing

lights without recalculating time for each vertex or fragment individually:

int elapsedTimeLoc = GetShaderLocation(shader, "elapsedTime");

SetShaderValue(shader, elapsedTimeLoc, 3.0f, SHADER_UNIFORM_VEC3);
//pass value 3.0 to shader

•	 Texture samplers: Textures are accessed in shaders through special type of uniform called

a sampler (e.g., sampler2D for 2D textures). This uniform variable tell the shader which

texture unit to use for fetching texture data:

int textureLoc = GetShaderLocation(shader, "mySampler2D");

SetShaderValueTexture(shader, textureLoc, texture);

•	 Material properties: Properties such as color, shininess, reflectivity, and other materi-

al-specific values can be passed as uniform to control the appearance of objects:

SetShaderValue(shader, shader.locs[SHADER_LOC_COLOR_DIFFUSE],
&diffuseColor, SHADER_UNIFORM_VEC4); //color as vec4 (r,g,b,a)

Uniform is a fundamental part of shader programming, providing a convenient way to pass con-

stant data from the CPU to the GPU for each draw call. They play an essential role in controlling

transformations, lighting, textures, and other parameters across the entire rendered object, al-

lowing for efficient and flexible shader effects.

Now you have learned the basics of shader programming, let’s start to harness its power by adding

lighting effects to the game world.

Lighting up the world
In computer graphics, directional lights and point lights are two fundamental types of light

sources used to simulate realistic lighting effects in 3D scenes. They each have distinct charac-

teristics and applications based on how they emit light and interact with objects in the scene.

Chapter 6 187

Understanding directional light
A directional light simulates a light source that is infinitely far away, such as the sun or moon.

As a result, all light rays from a directional light are parallel, and the light’s intensity remains

consistent throughout the scene, unaffected by distance.

The key characteristics of directional lights are:

•	 Parallel light rays: Since the light source is considered infinitely far away, all rays are

parallel to each other.

•	 Constant intensity: The light intensity does not decrease with distance, making it uniform

across the entire scene.

•	 Defined by direction: Directional lights are specified by a direction vector, indicating

where the light is coming from, rather than a specific position.

The lighting effect of a directional light on a surface is commonly calculated using the Lambertian

reflection model (diffuse shading). Here’s the basic calculation:

•	 Surface normal vector (N): The normal vector perpendicular to the surface at a particular

point.

•	 Light direction vector (L): The normalized direction from which the directional light is

coming, typically constant across the scene.

•	 Diffuse reflection: The diffuse component of the lighting is calculated using the dot

product between the surface normal and the light direction:

Diffuse Intensity = max(0,dot(N,−L));

This gives a value between 0 and 1, representing the brightness at that point.

•	 Final color: This intensity value is then multiplied by the light color and surface color to

get the final color at that point.

In video game graphics rendering, since the sun and moon are far away, their light can be modeled

as directional light in outdoor scenes.

3D Graphics Rendering188

Demo6LightShader demonstrates how to implement directional light in a shader:

Figure 6.4 – Directional light shader demo

The input vertex attributes required for calculating directional lighting are the vertex’s world-

space position, normal vector, and texture coordinates (for texture-mapped objects):

layout(location = 0) in vec3 vertexPosition;

layout(location = 2) in vec3 vertexNormal;

layout(location = 1) in vec2 vertexTexCoord;

Next, to calculate directional lighting, the required input vertex attributes are the vertex’s world-

space position, its normal vector, and texture coordinates (if the object uses a texture map):

uniform mat4 matModel;

uniform mat4 matView;

uniform mat4 matProjection;

However, we also need to know the color and direction of our directional light source:

uniform vec3 lightDirection; // Directional light direction (normalized)

uniform vec3 lightColor; // Color of the directional light

Chapter 6 189

The data we are going to pass to the fragment program is the world-space position, normal, and

directional light. We will calculate the final lighting intensity in the fragment program:

// Output to fragment shader

out vec3 fragPosition;

out vec3 fragNormal;

out vec3 directionalLight;

void main() {

 // Transform vertex position to world space

 fragPosition=vec3(matModel*vec4(vertexPosition, 1.0));

 // Transform the normal to world space and normalize
fragNormal=mat3(transpose(inverse(matModel)))*vertexNormal;

 // Calculate the diffuse of directional lighting

 float diff = max(dot(fragNormal, -lightDirection), 0.0);

 directionalLight = lightColor * diff;

 // Transform vertex position for final position in screen space

 gl_Position=matProjection*matView*vec4(fragPosition,1.0);

}

The preceding code computes the normal and directional light and passes the value to the frag-

ment program. In the fragment program, we calculate the final projected pixel color affected by

the directional light:

#version 330

in vec3 directionalLight; // Input from vertex shader

uniform vec4 colDiffuse; // The base color of the object

out vec4 fragColor; // Output color

void main() {

 // Apply lighting to the base color

 fragColor = vec4(colDiffuse.rgb * directionalLight, colDiffuse.a);

The last part of the fragment program calculates the gamma correction. It adjusts color values

to account for the non-linear way human eyes perceive light. It’s a power-law transformation

applied to color data, particularly in RGB, to map the values to how humans perceive them:

 //Calculate gamma correction

 fragColor = pow(fragColor, vec4(1.0/2.2));

}

3D Graphics Rendering190

Directional lighting works well for outdoor 3D scenes. However, it doesn’t work well for confined

spaces where light should fade. We will introduce another type of light source for those: point

lights.

Understanding point lights
A point light simulates a small, localized light source, such as a light bulb, candle, or torch. Light

from a point light radiates in all directions, and its intensity decreases with distance, simulating

how light behaves in real life.

The key characteristics of point light are:

•	 Omnidirectional: A point light emits light equally in all directions from a single point.

•	 Attenuation: Light intensity decreases with distance, typically following an inverse square

law. This effect, known as attenuation, makes nearby objects appear brighter than distant

ones.

•	 Defined by position: Unlike directional light, point lights are specified by a position in

3D space, affecting objects differently based on their distance from the light.

Point light calculations include both diffuse reflection and attenuation:

•	 Surface normal vector (N): The normal vector perpendicular to the surface at the illu-

minated point.

•	 Light direction vector (L): The vector from the point on the surface to the light source,

normalized to a unit vector.

•	 Distance: The distance between the surface point and the light source.

•	 Attenuation: Attenuation is often modeled using an inverse square law:

float attenuation = 1.0 / (distance * distance);

or with more customizable formulas, such as:

float att = 1.0 / (constant + 0.5 * distance + 0.25 * (distance *
distance));

•	 Diffuse reflection: The diffuse component is calculated using the Lambertian reflection

model as with directional light, but with the additional attenuation factor:

Diffuse Intensity=max(0,dot(N,L))×Attenuation

•	 Final color: The resulting intensity is multiplied by the light color and surface color.

Chapter 6 191

Let’s change Demo6LightShader a bit to support the point light. This time, we load a different

fragment shader program to calculate point lighting:

shader = LoadShader("../../resources/shaders/glsl330/light_point.vs",
"../../resources/shaders/glsl330/light_point.fs");

//…

SetShaderValue(shader, locLightPosition, &Position, SHADER_UNIFORM_VEC3);
// if light position move

The light is circular around the character and you can see the change of lighting effect.

Figure 6.5 – Point light demo

When the light moves around, you can see the difference. The intensity of light changes according

to the distance from the object to the light position.

Rendering with multiple lights
So far, our scene has only used a single light source. However, in real game scenes, it’s common

to have multiple light sources, including a combination of directional lights and point lights. In

such cases, all lighting calculations must take multiple sources into account.

3D Graphics Rendering192

raylib’s rlights module provides support for multiple light sources. It includes both a vertex

shader and a fragment shader specifically for lighting calculations. To use it, you need to include

the rlights.h header in your main program. The rlights.h header defines a Light structure,

which stores information such as the position, direction, type, and properties of each light. It sup-

ports both directional and point lights. It also supply its own vertex and fragment programs. The

vertex program is located at resources/shaders/glsl330/lighting.vs, while the correspond-

ing fragment program is at resources/shaders/glsl330/lighting.fs (https://github.com/
PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/

tree/main/resources/shaders/glsl330).

The demo project Demo6Light is ported from raylib’s lighting sample code to Knight. It shows how

to use the rlights module. In this example shown in Figure 6.6, four light sources are used in the

scene. By holding the right mouse button, you can rotate the camera and observe how the lighting

affects the surface of the robot model from different angles. Pressing Y, R, G, and B toggles each

individual light source on or off, letting you see how each one contributes to the final lighting effect.

Figure 6.6 – Rendering with multiple light sources

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/resources/shaders/glsl330
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/resources/shaders/glsl330
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/resources/shaders/glsl330

Chapter 6 193

Just like in our previous sample project, the main program Demo6Light.cpp first loads the lighting

shaders, then creates four light sources:

void Demo6Light::Start()

{

 //…

 //load light shaders

 shader = LoadShader(TextFormat("../../resources/shaders/glsl%i/lighting.
vs", GLSL_VERSION), TextFormat ("../../resources/shaders/glsl%i/lighting.
fs", 330));

 //…

 //create lights

 lights[0]=CreateLight(LIGHT_POINT, Vector3 { -2, 1, -2 }, Vector3Zero(),
YELLOW, shader);

 lights[1]=CreateLight(LIGHT_POINT, Vector3 { 2, 1, 2 }, Vector3Zero(),
RED, shader);

 lights[2]=CreateLight(LIGHT_POINT, Vector3 { -2, 1, 2 }, Vector3Zero(),
GREEN, shader);

 lights[3]=CreateLight(LIGHT_POINT, Vector3 { 2, 1, -2 }, Vector3Zero(),
BLUE, shader);

 //…

}

The raylib API CreateLight() initializes and returns the Light structure. In the Update() function,

we will pass the current camera position to the shader:

float cameraPos[3]={pMainCamera->GetPosition().x, pMainCamera-
>GetPosition().y,pMainCamera->GetPosition(). z};

SetShaderValue(shader, shader.locs[SHADER_LOC_VECTOR_VIEW], cameraPos,
SHADER_UNIFORM_VEC3);

The vertex program is very similar to our own lighting vertex program. The magic of calculating

multiple light sources happened in the program. First, we need light and camera information

from the main program:

// Input lighting values

uniform Light lights[MAX_LIGHTS];

uniform vec3 viewPos; //position of camera

struct Light {

 int enabled; //non-zero means enabled

3D Graphics Rendering194

 int type; //directional or point light

 vec3 position; //world space position

 vec3 target;

 vec4 color;

};

The shader above also defines a simple data structure Light – a simplified version contains mini-

mum information needed for lighting calculation. Do not confuse the C++ Light structure defined

in rlight.h!

In the main() function of fragment shader, we use a loop to calculate the influence of each light

and sum them up:

void main()

{

 // …

 vec3 lightDot = vec3(0.0);

 vec3 normal = normalize(fragNormal);

 vec3 viewD = normalize(viewPos - fragPosition);

 for (int i = 0; i < MAX_LIGHTS; i++) {

 if (lights[i].enabled == 1){

 vec3 light = vec3(0.0);

 if (lights[i].type == LIGHT_DIRECTIONAL){

 light=-normalize(lights[i].target- lights[i].position);

 }

 if (lights[i].type == LIGHT_POINT){

 light = normalize(lights[i].position - fragPosition);

 }

 float NdotL = max(dot(normal, light), 0.0);

 lightDot += lights[i].color.rgb*NdotL;

 //…

 }

 }

 finalColor = (texelColor*((colDiffuse+vec4(specular,
1.0))*vec4(lightDot, 1.0)));

}

Chapter 6 195

The above code snippet uses a loop to go through every light and sum up the result. It’s very

similar to our own lighting implementation but with additional support to ambient light and

specular lighting.

In the next section, we will push the lighting effect with better realism.

Achieving better realism
In the previous section, we covered the basics of lighting. Now, let’s dive deeper and explore how

to extend lighting techniques to achieve greater realism.

In 3D graphics, we enhance the realism of lighting by incorporating two key properties:

•	 Material: Defines the surface’s appearance by describing how it interacts with light

•	 Shadow: Adds visual depth and spatial context, helping to establish the relationships

between objects in the scene

We will cover shadows, a more extensive subject, in the next chapter. For now, let’s explore in

more detail how materials define the properties of a surface’s interaction with light.

Describing the surface properties
Materials determine properties such as color, shininess, roughness, and texture, which give objects

their realistic look. A material can include various types of maps (or textures), which define specific

surface characteristics at each point, allowing detailed control over how light affects the surface.

The following properties of materials are common to many 3D graphics engines:

•	 Diffuse color: This is the base color of the material, often controlled by a texture. It rep-

resents the color the material reflects under direct light.

•	 Specular highlight: This determines how shiny or reflective a surface appears. The spec-

ular intensity and shininess (glossiness) of a material affect the size and brightness of

highlights on the surface.

•	 Roughness or glossiness: Roughness affects the spread of reflected light. A rough surface

scatters light, creating a soft, matt appearance, while a glossy surface produces sharp

reflections.

•	 Normal map: This is a texture that simulates fine surface details such as bumps and

grooves without increasing the polygon count. The normal map affects how light interacts

with the surface, creating the illusion of depth and texture on flat surfaces.

3D Graphics Rendering196

•	 Bump map: This is like a normal map but simpler. Bump maps create the illusion of

depth using grayscale values to modify surface normals. They are often less detailed than

normal maps.

•	 Height/displacement map: Used to adjust the actual geometry of the surface, height maps

provide true depth by modifying the vertices of the mesh. They are more computationally

expensive than normal maps.

•	 Ambient occlusion (AO): This defines areas on the surface where light is less likely to

reach, often used to add subtle shadows in cracks or crevices, enhancing realism.

We’ve already explored how diffuse color influences the lighting outcome. Now, let’s take a look

at a common technique for enhancing surface detail: normal mapping.

Rendering with normal mapping
A normal map is a specialized texture map used to simulate fine surface details, such as bumps

or grooves, without modifying the actual geometry of a 3D model. Unlike a typical texture map

that stores color information for each pixel, a normal map stores the offset of the surface normal

for each pixel.

During per-pixel lighting calculations in the fragment program, instead of relying solely on the

normal calculated in the vertex program, we also incorporate the normal offset from the normal

map. This combination creates the illusion of a bumpy or uneven surface, enhancing visual real-

ism without increasing geometric complexity.

By altering the direction of the surface normal on each pixel, normal maps trick the lighting

calculations into thinking the surface is more complex than it actually is. In the normal map:

•	 Red channel (X-axis) shifts the surface normal in the left/right direction.

•	 Green channel (Y-axis) shifts the surface normal in the up/down direction.

•	 Blue channel (Z-axis) is usually close to 1, keeping the normal vector pointing outward.

Chapter 6 197

Figure 6.7 shows an example of a normal map:

Figure 6.7 – A typical normal map

The offset normal coordinates stored in the normal map are usually the tangent space coordi-

nates. Imagine you’re standing on a sphere. The tangent space at your feet is like a perfectly flat

plane that touches the sphere at that exact point (see Figure 6.8).

Figure 6.8 – Tangent space

This flat blue plane in Figure 6.8 represents all the possible directions you could move on the

surface of the sphere at that moment, without immediately going up or down relative to the

surface at that point.

3D Graphics Rendering198

The most important reason we store the offset of normal offset in tangent space is to decouple

the normal map from the specific geometry of a model. The offset information within the nor-

mal map describes the surface detail relative to the local orientation of each point on the surface

(defined by the tangent, bitangent, and normal vectors at that point). This means the same tangent

space normal map can be applied to different models, even if they have different overall shapes,

orientations, or polygon counts.

For example, a brick texture normal map created in tangent space can be applied to a flat wall,

a curved arch, or even part of a 3D model with varying surface normal, as shown in Figure 6.9:

Figure 6.9 – Normal map on different surfaces

The Demo6NormalMap project implements normal mapping. During the program’s initialization

phase (the Create() function in Demo6NormalMap.cpp), we load both the diffuse and normal map

textures and assign them to the raylib model structure:

model = LoadModel("cylinder.obj");

diffuse = LoadTexture("wall_diffuse.png");

normalMap = LoadTexture("wall_normal.png");

model.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture = diffuse;

model.materials[0].maps[MATERIAL_MAP_NORMAL].texture = normalMap;

In the demo project, the original model does not include a normal map, so we provide one for

you. You can also use tools, such as ShaderMap or other online normal map generators, to create

your own normal map.

Additionally, most free models typically lack the necessary tangent data for each vertex. Fortu-

nately, raylib offers a convenient function to calculate this data for us:

for(int i=0;i<model.meshCount;i++)

 GenMeshTangents(&model.meshes[i]);

Chapter 6 199

Once the calculations are complete, the vertex tangent array is enabled and uploaded, allowing

our vertex shader to access it at vertex attribute location 4 (as predefined by raylib):

#define RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT 4

We will also provide a default light source with its world position to our shader program. To

better demonstrate the effect of normal mapping, we will make one of the cylinder models rotate

all the time. Run the demo and rotate the camera to see how light reflection changes when the

surface rotates, as in Figure 6.10:

Figure 6.10 – Normal mapping rendering

Now, let’s dive into the details of the magic happening inside our vertex program (normalmap.

vs). The vertex program utilizes four input attributes:

layout(location = 0) in vec3 vertexPosition_modelspace;

layout(location = 2) in vec3 vertexNormal_modelspace;

layout(location = 1) in vec2 vertexUV;

layout(location = 4) in vec3 vertexTangent_modelspace;

3D Graphics Rendering200

Since a lot of final calculations are done at the pixel level, we will pass a lot more information

than usual to the fragment program this time:

// Output data ; will be interpolated for each fragment.

out vec4 vcolor;

out vec2 UV;

out vec3 Position_worldspace;

out vec3 EyeDirection_cameraspace;

out vec3 LightDirection_cameraspace;

out vec3 LightDirection_tangentspace;

out vec3 EyeDirection_tangentspace;

We also need to leverage many uniforms provided by raylib:

// Values that stay constant for the whole mesh.

uniform mat4 matView;

uniform mat4 matModel;

uniform mat4 matProjection;

uniform vec3 LightPosition_worldspace;

uniform vec4 colDiffuse;

The first is to calculate the world-space and camera-space positions of the vertex, then compute

the final gl_Position:

Position_worldspace=(matModel * vec4 (vertexPosition_modelspace,1)).xyz;

vec3 vertexPosition_cameraspace=(matView* vec4 (Position_worldspace,1)).
xyz;

gl_Position= matProjection*vec4(vertexPosition_cameraspace ,1);

So far, we have only performed standard 3D projection calculations. Next, we need to compute a

few key elements in camera space – the direction of the eye and the light direction in camera space:

EyeDirection_cameraspace = vertexPosition_cameraspace;

vec3 LightPosition_cameraspace = (matView * vec4 (LightPosition_
worldspace,1)).xyz;

LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_
cameraspace;

Chapter 6 201

Now, we can calculate the bitangent value of the vertex. While some implementations prefer

to pre-calculate this value alongside the tangent during the creation of model vertices, we take

advantage of the GPU’s power and compute it directly in the vertex program:

vec3 vertexBitangent_modelspace = cross(vertexNormal_modelspace,
vertexTangent_modelspace);

mat3 MV3x3 = mat3(matView*matModel);

vec3 vertexTangent_cameraspace = MV3x3 * vertexTangent_modelspace;

vec3 vertexBitangent_cameraspace = MV3x3 * vertexBitangent_modelspace;

vec3 vertexNormal_cameraspace = MV3x3 * vertexNormal_modelspace;

mat3 TBN = transpose(mat3(vertexTangent_cameraspace,

vertexBitangent_cameraspace, vertexNormal_cameraspace));

The last line of the code above calculates the Tangent-Bitangent-Normal (TBN) matrix. The

TBN matrix is a transformation 3x3 matrix used to convert vectors from tangent space to world

space, or vice versa.

In Figure 6.11, the tangent (T) is aligned with the normal map texture’s U direction; the bitangent

(B) is aligned with the normal map texture’s V direction; and normal (N) is perpendicular to the

surface.

Figure 6.11 – Normal map texture and tangent/bitangent/normal axis

The normal map’s RGB values (ranging from [0, 1] to [-1, 1]) tilt the default normal ([0, 0, 1]) along

these axes to create the effect of a bumpy surface.

3D Graphics Rendering202

Once we have the TBN matrix, we can calculate both eye and light directions in tangent space.

The benefit of calculating in tangent space is the lighting calculations stay consistent under the

rotation of the object;

LightDirection_tangentspace = TBN * LightDirection_cameraspace;

EyeDirection_tangentspace = TBN * EyeDirection_cameraspace;

Wow! That’s a lot of calculations! Fortunately, modern GPUs are powerful enough to handle

these operations in real time.

Now, let’s move on to the fragment program (normalmap.fs) to see how it handles the final

calculations. This time, we have more data than usual being passed from the vertex program:

in vec4 vcolor;

in vec2 UV;

in vec3 Position_worldspace;

in vec3 EyeDirection_cameraspace;

in vec3 LightDirection_cameraspace;

in vec3 LightDirection_tangentspace;

in vec3 EyeDirection_tangentspace;

And we also need many uniforms passed by the CPU side:

uniform sampler2D texture0;

uniform sampler2D texture1;

//uniform sampler2D texture2;

uniform mat4 matView;

uniform mat4 matModel;

uniform vec3 LightPosition_worldspace;

uniform vec3 LightColor;

uniform float LightPower;

The first step is calculating material diffuse and ambient color. Here, we use the texture coordinate

UV to locate the material diffuse RGB color:

vec3 MaterialDiffuseColor = texture(texture0, UV).rgb;

vec3 MaterialAmbientColor=vec3(0.1,0.1,0.1)* MaterialDiffuseColor;

Chapter 6 203

Now we need to calculate the angle between the normal and the light direction:

vec3 TextureNormal_tangentspace = normalize(texture(texture1, vec2(UV.x,
UV.y)).rgb*2.0 - 1.0);

float distance = length(LightPosition_worldspace - Position_worldspace);

vec3 n = TextureNormal_tangentspace;

vec3 l = normalize(LightDirection_tangentspace);

float cosTheta = clamp(dot(n,l), 0,1);

The cosine of the angle between the normal and the light direction is calculated and clamped to

a minimum value of 0. This result determines the following:

•	 cosTheta = 1: The light is directly above the triangle (at a vertical angle).

•	 cosTheta = 0: The light is perpendicular to the triangle or positioned behind it.

The final color is then calculated using the formula shown in the last step:

color = vec4(MaterialAmbientColor,1) + vcolor * vec4(MaterialDiffuseColor
* LightColor * LightPower * cosTheta / (distance*distance),1);

For simplicity, we omit the calculation of specular. Many implementations also allow us to use

another specular map (another texture map used to control the reflectivity and shininess of a

surface at a per-pixel level). This demo project gives you a barebone implementation of normal

mapping, showcasing GPU’s powerful computing ability while maintaining a decent real-time

rendering efficiency.

The benefits of using normal mapping instead of rendering highly detailed models with millions

of triangles are obvious:

•	 Realistic detail without extra geometry: Normal maps allow detailed surface features

(such as bumps and grooves) without increasing the polygon count. This improves per-

formance while maintaining realism.

•	 Versatility: Normal maps can be applied to a wide range of surfaces, from walls and floors

to characters and organic shapes, enhancing realism in games and simulations.

•	 Efficient lighting: Since normal maps modify only the lighting calculations, they’re an

efficient way to simulate complex textures without adding complexity to the geometry.

3D Graphics Rendering204

To sum up, a material in 3D graphics defines how surfaces interact with light, encompassing

properties such as color, reflectivity, roughness, and texture. Normal mapping is a critical tool

for enhancing materials by simulating surface details without additional geometry, allowing for

realistic lighting and shadow effects on otherwise flat surfaces. Through shaders, normal maps

alter the perceived shape and depth of surfaces, making them invaluable for achieving detailed

and efficient graphics in 3D applications.

Summary
This chapter introduced the fundamentals of 3D graphics rendering, explaining how modern

GPUs power real-time visuals. It detailed Knight’s transformation pipeline—from model to screen

space—and how vertices are processed, assembled, and rasterized. We covered vertex and frag-

ment programs for geometry manipulation, texturing, and lighting. The chapter also gave an

overview of GLSL shader programming, including data flow via uniforms, lighting models, and

techniques like normal mapping. With this foundation, the next chapter will focus on rendering

larger numbers of objects and full 3D scenes.

Having understood the detailed process of drawing individual 3D objects, the next chapter will

explore how to render a larger number of objects and more extensive 3D game scenes on the screen.

7
Rendering a 3D Game World

Building a visually convincing 3D game world involves more than just displaying a single 3D mod-

el. It incorporates the player character, multiple NPCs, a terrain or level map, lighting, shadows,

effects such as particle systems, and immersive backgrounds like the sky or distant landscapes.

The challenge comes not just from making these elements look good but from rendering them

efficiently, so the game remains smooth, even in large or complex scenes.

This chapter explores several crucial 3D rendering techniques and shows how to integrate them

into a coherent game scene.

In this chapter, we’ll cover the following main topics:

•	 Rendering imposters (billboards)

•	 Rendering visual effects with particle systems

•	 Multi-pass rendering effects

•	 Creating a large outdoor landscape

By the end of the chapter, you will be able to render a complete game world with terrain, sky-

box, player and NPCs, and scene props (like trees and buildings) with visual effects animated by

particle systems.

Rendering a 3D Game World206

Technical requirements
Download the Knight Visual Studio solution from GitHub. Here is the link to the repository:

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-

Structures-and-Algorithms/tree/main

The demo projects for this chapter are located within the Knight Visual Studio solution (https://
github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-

Algorithms/tree/main/Knight), specifically under these project names, for rendering features

introduced in this chapter:

Project Name Description

Demo7Billboard This project implements a billboard Component in Knight.

Demo7Particle This sample project implements a particle system.

Demo7PCFShadow This sample project implements a real-time shadow with a soft edge.

Demo7HMap This project implements a terrain created from a height map.

Demo7QuadTreeTerrain This sample demonstrates how to render large-scale terrain with

level of detail.

Demo7SkyBox This project implements the rendering of a skybox.

Table 7.1 – Sample projects used in this chapter

Rendering imposters (billboards)
Many mobile survival games render thousands of zombies, and real-time strategy games render lots

of armies smoothly by not using full 3D models for each one. Instead, they rely on billboards—flat,

camera-facing quads with textures. A billboard’s surface normally always aligns with the camera,

creating a 3D illusion while keeping geometry simple and performance high.

Billboards are commonly used in the following scenarios:

•	 Particles: Each particle (smoke, fire, explosions, dust) is a small, camera-facing quad,

providing a volumetric look without heavy geometry.

•	 Foliage/trees: Distant plants are rendered as quads to reduce rendering costs; from afar,

the difference is barely noticeable.

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight

Chapter 7 207

•	 Light flares/glows: Sun glare or headlight glow can be a simple billboard with an additive

texture, delivering realistic effects inexpensively.

•	 Crowds: Large, distant groups are easily represented by billboards when great detail isn’t

essential.

•	 UI overlays in 3D: Health bars and icons remain readable at any angle by always facing

the camera.

Figure 7.1 – Rendering a large number of objects with billboards to achieve high performance

Billboarding is a simple and effective optimization for rendering a large amount of object instances.

In the next section, we will learn how to implement it in Knight.

Making 2D look like 3D
When using billboards, the object’s orientation is constantly updated to ensure it faces the camera.

This can be achieved either:

•	 On the CPU, by directly adjusting the orientation of the billboard in each frame based on

the camera’s position.

•	 Through shader calculations on the GPU, where the rotation is handled in the vertex or

geometry shader.

Rendering a 3D Game World208

The billboarding technique can be implemented in different ways depending on the application:

•	 Axis-aligned billboard: Only rotates around a specific axis (e.g., vertical) to face the cam-

era, making it useful for objects that should stay upright even when the camera tilt angle

changes, like trees or grass in open-world environments.

•	 Screen-aligned billboard: Always faces the camera and ignores world orientation.

Demo7Billboard demonstrates the basic use of the billboard technique. Run the demo and hold

the right mouse button to rotate the camera around. The demo defaults to an axis-aligned billboard,

like the left side of Figure 7.2.

Open Demo7Billboard.cpp and uncomment line 74:

 //billboard->AlignType = SCREEN_ALIGNED;

This will change the alignment mode to the screen-aligned billboard. Now run the demo and

rotate around the camera. The billboard will always face the camera and align with the screen

like a 2D image, like the right side of the screenshot shown in Figure 7.2:

Figure 7.2 – Screen-aligned billboard (left) versus axis-aligned billboard (right)

Now it’s time to learn how to implement billboard rendering in Knight. Do you remember in

Chapter 1 we introduced the Component class – the foundational graphical unit in Knight?

In this example, we will demonstrate how to extend the Component base class to render bill-

boards. This serves as an excellent opportunity to get hands-on experience with expanding the

functionality of Knight. By the end of this example, you’ll have a clearer understanding of how

to customize and enhance Knight to meet your specific needs.

Chapter 7 209

We define our BillboardComponent class by extending the Component base class (in

BillboardComponent.h):

class BillboardComponent : public Component {

public:

 BillboardComponent();

 ~BillboardComponent();

 void Update(float ElapsedSeconds) override;

 void Draw() override;

 Texture2D texture = { 0 }; //billboard texture

 Rectangle source = { 0 }; //source rectangle

 Vector2 size = { 0 }; //size of billboard

 Vector2 origin = { 0 }; //the "pivot" point

 Color tint = WHITE; //tint color

 BillboardAlignType AlignType = UPWARD_ALIGNED;

 friend SceneActor; //for quick access related class

};

The workflow of Component is consistent with the main program structure used in all our previous

demo projects. The Component class includes its own Update() function, which allows the CPU

to handle tasks such as updating logic or managing state changes.

Component also includes a Draw() function, which is invoked when the SceneObject or SceneActor

that owns this Component calls its own Draw() function as part of Knight’s rendering process.

The code implementation is in BillboardComponent.cpp. In the following code snippet, we use

billUp vector {0,1,0} as the default to render the Y-axis-aligned billboard. However, if it is

set to SCREEN_ALIGNED, we will get the up vector from the view matrix. We need to use raylib’s

DrawBillboardPro() function to draw billboards, so we can control how alignment is properly

specified:

void BillboardComponent::Draw()

{

 Vector3 billUp = { 0, 1, 0 };

 SceneCamera* pSC = this->_SceneActor->GetMainCamera();

 if (pSC != NULL) {

 if (AlignType == SCREEN_ALIGNED) {

 Matrix matView = rlGetMatrixModelview();

 billUp = { matView.m1, matView.m5, matView.m9 };

Rendering a 3D Game World210

 }

 DrawBillboardPro(*pSC->GetCamera3D(), texture, source, this->_
SceneActor->Position, billUp, size, origin, 0, tint);

 }

}

The billboard cannot function without knowing where the current camera is facing. So, we will

get it from the SceneActor this billboard component is attached to. Knight uses raylib’s handy

API DrawBillboardPro() to draw a billboard. We need to supply camera information, position,

scale, and a tint color.

Since Knight automatically handles the rendering of all components in the scene, there’s no

need for us to explicitly call its Draw() function in the main application class like other demo

projects we did before. We only need to handle the creation of the billboard SceneActor and

BillboardComponent and set up the initial values in the Start() function of Demo7Billboard.cpp.

In this example, we want to create 100 billboards at random positions. We can use the standard

library’s random generator uniform_real_distribution for this purpose, as follows:

std::random_device rd;

std::mt19937 gen(rd());

std::uniform_real_distribution<float> dist(-5.0f, 5.0f);

The preceding code will prepare us a random number distributor, dist, which generates random

values between [-5,5). Let’s look at the code implementation:

for (int i = 0; i < 100; i++) {

 SceneActor* imposter = _Scene->CreateSceneObject <SceneActor>("Billboard
Object");

 imposter->Scale = Vector3{ 1, 1, 1 };

 imposter->Position = Vector3{ dist(gen),0.5f, dist(gen)};

 imposter->Rotation = Vector3{ 0,0,0 };

 BillboardComponent* billboard = imposter->
CreateAndAddComponent<BillboardComponent>();

 //initialize billboard

 billboard->texture = billboardImage;

 // Entire billboard texture, source is used to take a segment from a
larger texture.

 billboard->source = { 0.0f, 0.0f, (float)billboard->texture.width,
(float)billboard->texture.height };

Chapter 7 211

 billboard->size = { billboard->source.width / billboard->source.height,
1.0f };

 billboard->origin = Vector2Scale(billboard->size, 0.5f);

 billboard->blendingMode = BLEND_ADDITIVE;

 billboard->renderQueue= Component::eRenderQueueType::AlphaBlend;

 imposters.push_back(imposter);

}

In the above example, we created an empty SceneActor called imposter first, and then we created

and added a BillboardComponent to the SceneActor. Now it’s part of the scene. The Scene class

handles the update and rendering of all SceneActor automatically.

One important setting is the blendingMode from the above code example. This is a good time

to refresh the various blending modes we learned about in Chapter 4. For brighter and shinier

effects, we use the additive blending mode. For other effects, such as raindrops or floating dust, we

can use multiplicative blending.

Despite the heavy use of billboards in many 3D games, they’re not without some drawbacks:

•	 Lack of depth: Since they are flat, billboards do not convey depth accurately from all

angles, which can be noticeable when viewed closely or from the side.

•	 Limited detail: Billboards work best for distant objects or effects; up close, the illusion

of 3D may break.

•	 Overdraw: Using many overlapping billboards (such as in dense particle effects) can lead

to overdrawing, which can impact performance.

However, billboard rendering is still an effective technique and is widely used in 3D game scenes.

One particularly popular use case of billboards is to render particle effects. We will explore the

implementation in the next section.

Rendering visual effects with particle systems
In many gameplay scenes, we render and manage large numbers of billboards to create effects

such as explosions (assembled from multiple firelight quads), raindrops, or water splashes—of-

ten involving hundreds or thousands of small images. These effects typically rely on a particle

system, a manager class that generates, animates, and recycles individual particles over time.

Rendering a 3D Game World212

The basic concept to achieve visually stunning effects is all about how to animate key properties

mathematically and procedurally. The common key properties of these particles include, but are

not limited to, the following:

Property Description

position Each particle’s position can change due to physics (wind, gravity, etc.),

mathematical formulas (explosions, magic attacks), or manually authored

paths—often combining all these methods.

velocity A 3D vector (x, y, z) defining the particle’s path. For example, (1,0,0) moves it

along X while (0,1,0) moves it upward.

initialColor This is the particle’s tint at creation. Additional properties (e.g., a dimSpeed

float property) often control how this color fades over time.

initialSpeed This sets the particle’s movement rate along its velocity, influenced by

factors like wind or water resistance.

lifetime The lifetime is the duration the particle remains active. Once it expires, the

particle disappears, and new ones may spawn to maintain the effect.

Table 7.2 – Common example properties to animate a particle

Modern game engines provide a large set of properties available for tweaking the most complex

effects. They even allow particles to interact with other physical objects in the scene – like allow-

ing particles to bounce on the ground, or be affected by the gravity of the game world, and so on.

Implementing particle animation effects
Demo7Particle demonstrates the use of rendering thousands of billboards as a fountain-like

particle effect (see Figure 7.3). Again, we will implement a particle system as a component so we

can reuse it later.

Chapter 7 213

Figure 7.3 – Using billboards to render particles

Let’s start with the definition of a single particle (in ParticleComponent.h):

struct Particle { // Struct to represent a particle

 Vector3 position; //position in 3D world

 Vector3 velocity; //the moving velocity

 float life; // Remaining life of the particle

 float maxLife; // Total life duration of the particle

 Color color; // Particle color

};

In this code snippet, each particle is defined as a C++ struct Particle, which contains the nec-

essary properties to animate it.

Here is the new Component as the management class for each particle effect:

class ParticleComponent : public Component {

public:

 bool CreateFromFile(const char* path, int maxp, Vector3 v, Color ic =
WHITE, Vector3 isp = {0,0,0});

 void Update(float deltaTime) override;

 void Draw(void) override;

Rendering a 3D Game World214

protected:

 int maxParticles = 500;

 Vector3 offset = Vector3{ 0,0,0 };

 Color initialColor = Color{255,255,255,255};

 Vector3 initialSpeed = Vector3{0,0,0};

 Texture2D texture = { 0 };

 std::vector<Particle> particles;

 virtual void EmitParticles(float deltaTime);

};

Each particle stream has a particles array (declared as vector) to store all active particles. The

default value of maxParticles is set to 500 to control how many particles can be generated per

particle system.

The virtual function EmitParticles() in ParticleComponent.cpp is the controller for how to

generate new particles if needed:

void ParticleComponent::EmitParticles(float deltaTime) {

 int particlesToEmit = 5; // Emit rate

 Vector3 origin = Vector3Add(_SceneActor->Position, offset);

 for (int i = 0; i < particlesToEmit && particles.size() <
maxParticles; i++) {

 Particle particle;

 particle.position = origin;

 // Random velocity with some upward direction

 particle.velocity.x = (float(rand()) / RAND_MAX - 0.5f) * 2.0f;

 particle.velocity.y = (float(rand()) / RAND_MAX) * 2.0f + 2.0f; //
Upward velocity

 particle.velocity.z = (float(rand()) / RAND_MAX - 0.5f) * 2.0f;

 Vector3Add(particle.velocity, initialSpeed);

 particle.life = particle.maxLife = 2.0f + float(rand()) / RAND_MAX
* 2.0f; // Life in seconds

 particle.color = initialColor; // Initial color

 particles.push_back(particle);

 }

}

Chapter 7 215

In the above code snippet, new particle creation is limited to a maximum of 5 new particles in

each frame and new particles will not be created if the maximum number of particles is reached.

The spawn position of all particles is based on the original variable. It’s the position of SceneActor

plus an offset variable. This gives flexibility to spawn particles in some particular position spec-

ified by caller code.

This is very useful when you need to spawn particles at some specified position relative to the

position of SceneActor and the offset variable may change over time. For example, if you have

a player character, a mage represented by a 3D character model of SceneActor, you can calculate

the offset position of the mage’s right hand in every frame and add a fireball particle effect, which

will be attached to the mage character’s right hand all the time.

Next, we animate the particles in the Update() function:

void ParticleComponent::Update(float deltaTime)

{

 for (auto& particle : particles) {

 // Update particle position based on velocity

 particle.position.x += particle.velocity.x * deltaTime;

 particle.position.y += particle.velocity.y * deltaTime;

 particle.position.z += particle.velocity.z * deltaTime;

 // Apply gravity

 particle.velocity.y -= 9.8f * deltaTime;

 // Decrease particle life

 particle.life -= deltaTime;

 float lifeRatio = particle.life / particle.maxLife;

 // Fade out as life decreases

 particle.color.a = static_cast<unsigned char>(255 * lifeRatio);

 }

Note

In the preceding code, you could also make the variable particlesToEmit a con-

figurable property of the particle system.

Rendering a 3D Game World216

The Update() function is responsible for calculating all particles’ new positions based on their

velocity, applying gravity to the vertical velocity, and updating life by the deltaTime. Particles

gradually fade out towards the end of their lifetime by calculating the alpha component of the

particle color.

For particles reaching the duration limit of their lifetime, they are recycled here:

 // Remove dead particles

 particles.erase(remove_if(

 particles.begin(), particles.end(),

 [](const Particle& p){return p.life<=0;}),

 particles.end());

When some particles get removed, we might need to spawn some new ones:

 // Emit new particles

 EmitParticles(deltaTime);

}

In the preceding code snippet, some particles reach the end of their lifetime and get removed, but

we will continue to emit new particles so the total number of particles will not reduce to zero.

Multi-pass rendering effects
In Chapter 6, we learned how to use material for better realism of lighting results and techniques

like normal mapping. Now, let’s dive deeper and explore how to use shadow to achieve greater

realism. However, we will need to learn a new rendering technique for rendering the same object

multiple times but with different settings for each rendering pass. Shadow is one of the graphic

effects that need to use multi-pass rendering.

Rendering shadows
Shadows add depth, realism, and spatial awareness but are computationally expensive. A common

approach is shadow mapping, which uses a depth texture to check if each point on a surface is

lit or blocked by an object from the light source. This method requires understanding the rela-

tionships between light, shadow-casting objects, and shadow-receiving surfaces.

Unlike single-pass rendering, which produces the final image in one go for all our previous proj-

ects, casting real-time shadows generally demands multiple passes in each frame—one from

the light’s perspective to build a shadow map, then another from the camera’s viewpoint. Such

multi-pass rendering also underpins effects like bloom or motion blur.

Chapter 7 217

Shadow mapping is one such technique, typically performed in two main rendering passes, as

we will examine in the following sections.

Shadow map creation (first pass)
The first pass is sometimes referred to as the light pass, which involves rendering the scene from

the light source(s) into a depth texture called a shadow map:

•	 Render the scene from the light’s perspective and store the depth of each fragment relative

to the light in a shadow map (a depth texture).

•	 This shadow map records the closest distance from the light to any object in the scene

at each point, essentially capturing a snapshot of the scene from the light’s perspective.

Shadow application (second pass)
This is the actual pass to render shadow based on depth information produced from the first

rendering pass. It includes the following steps:

1.	 Render the scene from the camera’s perspective as we did before.

2.	 For each fragment (pixel), transform its position into the light’s coordinate space: com-

pare the fragment’s depth from the light’s perspective to the corresponding value in the

shadow map. If the fragment’s depth is greater than the depth stored in the shadow map,

it means the fragment is behind another object and is therefore in shadow. If the frag-

ment’s depth is equal to or less than the depth in the shadow map, it is visible to the light

and is therefore illuminated.

The Demo7PCFShadow project implements a shadow mapping algorithm in Knight. Since this

process requires rendering the scene twice—with different cameras, shaders, and settings—we

handle this type of multi-pass rendering using the SceneRenderPass class in Knight.

Using Knight’s SceneRenderPass class
The SceneRenderPass class is responsible for managing all the detailed tasks involved in rendering

a scene with specific settings—such as the camera, light, shaders, textures, and more. It ensures

that all necessary settings and resources are prepared for a particular rendering pass. The base

class is structured as follows:

class SceneRenderPass{

 public:

 virtual bool Create(Scene *sc) = 0;

 virtual void Release() = 0;

Rendering a 3D Game World218

 virtual void BeginScene(SceneCamera *cam = NULL) = 0;

 virtual void Render();

 virtual void EndScene() = 0;

 virtual void BuildRenderQueue(SceneObject *pR, Shader* pShaderOverride
= nullptr);

 virtual void ClearRenderQueue();

 protected:

 RenderQueues renderQueue;

 Scene* pScene = NULL;

 SceneCamera* pActiveCamera = NULL;

};

For any specific rendering pass, you should initialize and load the required resources (such as

shaders, textures, and other settings) by overriding the default Create() function. Similarly, make

sure to delete and release these resources by overriding the Release() function.

The BeginScene() function is where you prepare all the necessary settings and resources for a

rendering pass. It also allows you to pass an optional SceneCamera if you need to override the

default main camera for the scene.

The true magic lies in the BuildRenderQueue() function. This function, invoked by BeginScene()

by default, builds the lists of components that need to be rendered during this pass. It provides

the flexibility to:

•	 Separate different types of components: For instance, transparent objects are typically

rendered in sorted order based on their distance from the camera, starting with the most

distant object to ensure proper transparency rendering.

•	 Select only the components needed: Instead of rendering all components, you can include

only those required for the current pass.

The default implementation of the Render() function loops through all the lists of components

and renders them sequentially.

The SceneRenderPass class is an ideal solution for managing the need to render the same scene

multiple times with different settings for each pass. By encapsulating the details of a single

rendering pass, it prevents your Knight application class from becoming cluttered with various

camera, texture, and shader settings all mixed together.

Chapter 7 219

Implementing the depth rendering pass of shadow mapping
The first step of rendering a shadow effect is defining the light data structure that will project

the shadows:

class ShadowSceneLight : public SceneActor

{

 public:

ShadowSceneLight(Scene* Scene, const char* Name = nullptr);

 bool Update(float ElapsedSeconds) override;

 virtual void SetLight(Vector3 dir, Color col);

 // Record the light matrices for future use!

 Matrix lightView = { 0 };

 Matrix lightProj = { 0 };

 Matrix lightViewProj = { 0 };

 Vector3 lightDir = { 0 };

 Color lightColor = WHITE;

 float ambient[4] = {0.1f,0.1f,0.1f,1.0f};

};

In the preceding code snippet, we declare a new class, ShadowSceneLight, inherited from the

common SceneActor base class. So, it acts like all other SceneActor classes in the game scene

and also holds extra lighting information.

In the main Knight application class, we need to create two derived SceneRenderPass classes to

handle the two rendering passes described earlier. This is implemented in Demo7PCFShadow.cpp:

ShadowMapRenderPass* pShadowMapRenderer = nullptr;

DepthRenderPass* pDepthRenderer = nullptr;

//…

 sceneLight = _Scene->CreateSceneObject<ShadowSceneLight> ("Light");

 pDepthRenderer = new DepthRenderPass(sceneLight);

 pDepthRenderer->Create(_Scene);

 pShadowMapRenderer = new ShadowMapRenderPass(sceneLight, pDepthRenderer-
>shadowMap.depth.id);

 pShadowMapRenderer->Create(_Scene);

In this code snippet, both DepthRenderPass and ShadowMapRenderPass access the sceneLight

class.

Rendering a 3D Game World220

The first rendering pass, the depth rendering pass, is implemented in the DepthRenderPass class.

This pass renders the scene from the light’s viewpoint to produce a depth texture map (repre-

senting the relative distance between the light and each pixel), utilizing the render-to-texture

feature introduced in Chapter 5. For this rendering pass, we are only concerned with the depth

information of each pixel, not the color components (RGB). Therefore, the render target texture

is created as a depth texture, rather than a full texture map with color components (such as the

RGBA texture introduced in Chapter 4).

A customized fragment shader, shadow_depth.fs, is used that renders only depth information

and nothing else:

#version 330

void main() {

 gl_FragDepth = gl_FragCoord.z; //Save depth value

}

This depth rendering pass is implemented in DepthRenderPass.cpp. Here is the overridden

Create() function:

bool DepthRenderPass::Create(Scene* sc)

{

 __super::Create(sc);

 depthShader = LoadShader(NULL, "shadow_depth.fs");

 shadowMap = LoadShadowmapRenderTexture

(SHADOWMAP_RESOLUTION, SHADOWMAP_RESOLUTION);

 lightCam.position = Vector3Scale(pLight->lightDir, -15.0f);

 lightCam.target = Vector3Zero();

 lightCam.projection = CAMERA_ORTHOGRAPHIC;

 lightCam.up = Vector3{ 0.0f, 1.0f, 0.0f };

 lightCam.fovy = 20.0f;

 return true;

}

For this depth rendering pass, the first parameter of the LoadShader()function is NULL because

we will use raylib’s default vertex program. We also create a camera for rendering purposes. The

position of the light camera will be set as the position of light later in every frame, so we don’t

assign a position for the lightCam here.

Chapter 7 221

We also need an offscreen rendering buffer to store the rendered depth information. The code to

create RenderTexture2D object as the render buffer is implemented in DepthRenderPass::Load

ShadowmapRenderTexture():

RenderTexture2D DepthRenderPass::LoadShadowmapRenderTexture(int width, int
height)

{

 RenderTexture2D target = { 0 };

 target.id=rlLoadFramebuffer();//Load an empty framebuffer

 target.texture.width = width;

 target.texture.height = height;

 if (target.id > 0){

 rlEnableFramebuffer(target.id);

 //Create depth texture. Don't need a color texture

 target.depth.id = rlLoadTextureDepth(width, height, false);

 target.depth.width = width;

 target.depth.height = height;

 target.depth.format = 19;

 target.depth.mipmaps = 1;

 // Attach depth texture to FBO

 rlFramebufferAttach(target.id, target.depth.id, RL_ATTACHMENT_DEPTH,
RL_ATTACHMENT_TEXTURE2D, 0);

 // Check if fbo is complete with attachments (valid)

 if (rlFramebufferComplete(target.id)) TRACELOG(LOG_INFO, "FBO: [ID %i]
Framebuffer object created successfully", target.id);

 rlDisableFramebuffer();

 } else

 return { 0 };

 return target;

}

Rendering a 3D Game World222

The preceding code snippet uses some low-level raylib APIs to create a customized RenderTexture2D

object, which only contains a depth texture. Unfortunately, raylib doesn’t have a convenient

wrapper for creating a depth-only RenderTexture2D object, so we need to manually create one

for our purpose with the following steps:

1.	 The low-level API rlLoadFramebuffer() allocates an empty framebuffer from the OpenGL

graphics driver.

2.	 The rlLoadTextureDepth() API allocates a GPU texture that stores depth values.

3.	 Use rlFramebufferAttach() to attach the just-created depth buffer with the frame buffer

object.

Now we have a customized RenderTexture2D object that only contains a depth buffer. We are

ready to do some rendering!

The depth rendering pass is performed in DrawOffscreen() in Demo7PCFShadow.cpp:

void Demo7PCFShadow::DrawOffscreen()

{

 pDepthRenderer->BeginShadowMap(_Scene);

 pDepthRenderer->BeginScene();

 pDepthRenderer->Render();

 pDepthRenderer->EndScene();

 pDepthRenderer->EndShadowMap();

}

The BeginShadowMap() function in DepthRenderPass.cpp prepares the render buffer texture

and uses another Camera3D object lightCam, which looks at the scene from the direction of light.

Let’s look at what it does:

void DepthRenderPass::BeginShadowMap(Scene* sc, SceneCamera*
pOverrideCamera)

{

 BeginTextureMode(shadowMap);

 ClearBackground(WHITE);

 BeginMode3D(lightCam);

 pLight->lightView = rlGetMatrixModelview();

 pLight->lightProj = rlGetMatrixProjection();

}

Chapter 7 223

After the first rendering pass completes, we obtain a depth map that stores the “depth” values

from the light’s perspective. Now it’s ready to proceed to the next rendering pass.

Implementing the shadow rendering pass of shadow mapping
Once the depth rendering pass is complete, the second pass requires the offscreen depth buffer

produced by the previous pass. This is handled in the overridden BeginScene() function of the sec-

ond scene render pass class, ShadowMapRenderPass, implemented in ShadowMapRenderPass.cpp:

void ShadowMapRenderPass::BeginScene(SceneCamera* pOverrideCamera)

{

 pLight->lightViewProj = MatrixMultiply(pLight->lightView, pLight-
>lightProj);

 SetShaderValueMatrix(shadowShader, lightVPLoc, pLight->lightViewProj);

 //Make shadow map referenced texture as 5th texture, the first four
textures are commonly used by other effects

 int slot = 4;

 rlActiveTextureSlot(slot);

 rlEnableTexture(depthTextureId);

 rlSetUniform(shadowMapLoc, &slot, SHADER_UNIFORM_INT, 1);

 pScene->_CurrentRenderPass = this;

 pActiveCamera = pScene->GetMainCameraActor();

 if (pOverrideCamera!= nullptr)

 pActiveCamera = pOverrideCamera;

 BuildRenderQueue(pScene->SceneRoot, &shadowShader);

}

In the preceding code snippet, we enable the depth texture in the 5th texture slot (value = 4).

Since most graphics applications typically use the first four slots, assigning it to the fifth slot is

generally safe.

This time, we perform rendering using the usual active main camera but with a new shadow

mapping vertex program (in shadowmap.vs).

The vertex program is straightforward. It calculates the gl_Position and passes the following

attributes to the fragment shader:

out vec3 fragPosition; //world position of the vertex

out vec2 fragTexCoord; //texture uv coordinates

out vec4 fragColor; //vertex color (if any)

out vec3 fragNormal; //normal in world space

Rendering a 3D Game World224

The actual heavy-lifting part is in the fragment program (in shadowmap.fs). The fragment program

relies on the following information passed as uniform from the main application class:

uniform vec3 lightDir; //light direction

uniform vec4 lightColor; //color

uniform vec4 ambient; //the ambient light

uniform vec3 viewPos; //the camera position

uniform mat4 lightVP; //Light source view-projection matrix

uniform sampler2D shadowMap;//the depth texture in 1st pass

uniform int shadowMapResolution; //size of depth texture

Since there is still a directional light in the scene, the first task is still calculating the lighting:

vec3 lightDot = vec3(0.0);

vec3 viewD = normalize(viewPos - fragPosition);

vec3 specular = vec3(0.0);

vec3 normal = normalize(fragNormal);

vec3 l = -lightDir;

float NdotL = max(dot(normal, l), 0.0);

lightDot += lightColor.rgb*NdotL;

float specCo = 0.0;

if (NdotL > 0.0) specCo = pow(max(0.0, dot(viewD, reflect(-(l), normal))),
16.0);

specular += specCo;

finalColor = (texelColor*((colDiffuse + vec4(specular,
1.0))*vec4(lightDot, 1.0)));

In the shader, we determine whether each pixel is visible to the light by comparing its depth value.

If another object obstructs the light, we know that the pixel is within the shadow.

The following code transforms the world-space position into the light camera’s clip space. This

allows us to determine where the vertex is visible from the light source’s perspective:

// Find out the position in lighting camera space

vec4 fragPosLightSpace = lightVP * vec4(fragPosition, 1);

// Perform the perspective division

fragPosLightSpace.xyz /= fragPosLightSpace.w;

Chapter 7 225

Since the light camera’s clip space ranges from -1 to 1, it differs from the texture map’s UV co-

ordinate range of 0 to 1. To address this, we need to shift and scale the value range, enabling the

texture map sampler to locate the depth value at the corresponding position:

// Transform from [-1, 1] range to [0, 1] range

fragPosLightSpace.xyz = (fragPosLightSpace.xyz + 1.0f) / 2.0f;

vec2 sampleCoords = fragPosLightSpace.xy;

Now we can use a texture map sampler to get the depth value:

float sampleDepth = texture(shadowMap, sampleCoords).r;

float curDepth = fragPosLightSpace.z;

if (curDepth > sampleDepth)

 finalColor = vec4(0, 0, 0, 1);

By comparing the current pixel’s depth with the stored depth, we can determine if the pixel is in

shadow. If the current depth is greater than the stored depth, it means the vertex is blocked by

another object and cannot be seen by the light source:

if (curDepth > sampleDepth)

 finalColor = vec4(0,0,0,1); //under shadow

Before you run the Demo7PCFShadow project, we want to make a small temporary change to one

line of the code. We want to show you how we refine the same shadow mapping fragment pro-

gram and fix some issues along the way.

Now let’s open ShadowMapRenderPass.cpp. In the function Create(), we use LoadShader() to

load the fragment program shadowmap-pcf.fs by default.

We have 3 different versions of the same fragment programs:

•	 shadowmap.fs: First try rendering shadow, but with unwanted visual defects.

•	 shadowmap-bias.fs: Improved version to fix shadow acne effects.

•	 shadowmap-pcf.fs: Final version with soft shadow rendering.

Let’s change to the first version of the fragment program shadowmap.fs, as follows:

shadowShader = LoadShader("../../resources/shaders/glsl330/shadowmap.vs",
"../../resources/shaders/glsl330/shadowmap.fs");

Rendering a 3D Game World226

Now we get the first working shadow map demo:

Figure 7.4 – The shadow mapping with acne effect

Yes! We see shadow now but with very strange black triangle strips appearing on the surface of

all objects.

However, this strange artifact, known as shadow acne, is caused by precision errors in depth

calculations. A common technique to mitigate this issue is to apply a bias value.

The Shadowmap-bias.fs is our second implementation to apply a bias for mitigating the precision

error. There are several ways to determine this bias, the most common one of which is the slope-

scaled bias—a bias proportional to the angle between the surface normal and the light direction:

float bias = max(0.0002 * (1.0 - dot(normal, l)), 0.00002) + 0.00001;

Then, compare the depth value with bias:

if (curDepth - bias > sampleDepth)

 finalColor = vec4(0, 0, 0, 1);

Now please open ShadowMapRenderPass.cpp and replace the fragment program shadowmap.fs

with shadowmap-bias.fs in line 17:

shadowShader = LoadShader("../../resources/shaders/glsl330/shadowmap.vs",
"../../resources/shaders/glsl330/shadowmap-bias.fs");

Save the changes and run the project again. Now it looks a lot better:

Chapter 7 227

Figure 7.5 – The shadow edge is too sharp

The edges of the shadow currently appear too sharp, which can make them look unnatural. To

enhance the visual quality, we can soften the shadow edges.

Softening the shadow edges
A commonly used technique in real-time applications is Percentage-Closer Filtering (PCF) shad-

ow mapping to soften the edges of shadows. This approach averages the shadow value of the

current pixel with those of its neighboring pixels.

For this implementation, we average the surrounding 8 pixels along with the center pixel, resulting

in a total of 9 pixels. The code needs to be refined using a double loop:

vec2 texelSize = vec2(1.0f / float(shadowMapResolution));

for (int x = -1; x <= 1; x++)

 for (int y = -1; y <= 1; y++) {

 float sampleDepth = texture(shadowMap, sampleCoords + texelSize *
vec2(x, y)).r;

 if (curDepth - bias > sampleDepth) shadowCounter++;

 }

finalColor = mix(finalColor, vec4(0,0,0,1), float(shadowCounter) /
float(numSamples));

Rendering a 3D Game World228

Here, we use the built-in mix() function to interpolate the final color to produce a smoothed

shadow edge.

Now open ShadowMapRenderPass.cpp and replace the fragment program shadowmap-bias.fs

with shadowmap-pcf.fs in line 17:

shadowShader = LoadShader("../../resources/shaders/glsl330/shadowmap.vs",
"../../resources/shaders/glsl330/shadowmap-pcf.fs");

Save the changes and run the project again, you can now see the edge of the shadow improves a

lot – with the cost of sampling an additional 8 pixels and averaging them.

Figure 7.6 – Using the Percentage-Closer Filtering algorithm to soften the shadow

In the demo project Demo7PCFShadow, we also render a debug view of the depth texture on the

right side of the screen. You can also use the I, J, K, and L keys to move the light source around

and see the different shadow effects.

Chapter 7 229

The PCF shadow mapping algorithm has some immediate benefits:

•	 Flexible: PCF works with various types of light sources (directional, point, and spotlights).

•	 Real-time performance: It’s relatively fast and efficient, making it suitable for real-time

applications like video games.

However, shadow mapping isn’t flawless:

•	 Aliasing: Low-resolution maps or large shadowed areas can introduce jagged edges; tech-

niques like PCF help soften them.

•	 Perspective artifacts: Objects near the camera but far from the light can show distortions

due to non-uniform depth sampling. Cascaded Shadow Maps (CSMs) alleviate this by

splitting the shadow map into segments for more precise detail.

Shadow mapping is widely used due to its flexibility and compatibility with various types of lights,

though it has limitations like aliasing and precision issues that require additional techniques

to mitigate. Despite these challenges, shadow mapping remains one of the most popular and

practical shadow techniques in real-time 3D rendering.

Thus far, we have explored rendering techniques applicable to individual elements within the

scene, like player characters, props, and buildings. Now, we will broaden our scope to learn the

rendering techniques necessary for handling terrain.

Creating a large outdoor landscape
In 3D game development, several common methods are used to create 3D landscapes. For relatively

small terrains, the terrain can be modeled directly as a 3D object. The rendering of small terrain

is no different than rendering other objects in the game. This section will focus on creating and

rendering larger outdoor terrain.

Let’s start with something simple: instead of manually constructing the 3D terrain model, a flat

image can be used to generate uneven and rolling 3D terrain. This technique is known as height

mapping.

Rendering a 3D Game World230

Height-mapping 3D terrain
A height-mapped 3D terrain uses a 2D grayscale image to set surface elevations: each pixel’s

brightness defines the height of a corresponding grid vertex, as shown in Figure 7.7:

Figure 7.7 – The height map uses the grayscale value to represent height

In Figure 7.7, lighter pixels represent higher elevations, darker ones lower. By scaling these values,

you can adjust vertical exaggeration. This method is both efficient and popular for realistic terrain

since it generates complex shapes from simple data structures.

The sample project Demo7HMap implements the height-mapped terrain.

The following code in HMapTerrainModelComponent.h makes the terrain a Component so we can

reuse it later:

class HMapTerrainModelComponent : public Component

{

public:

 HMapTerrainModelComponent();

 ~HMapTerrainModelComponent();

 bool CreateFromFile(Vector3 terrainDimension, Vector2 texTileSize, const
char* pHeightmapFilePath, const char* pTerrainTexurePath);

 void Update(float ElapsedSeconds) override;

 void Draw() override;

 Image heightMapImage;

 Model model;

Chapter 7 231

 Mesh mesh;

 Color tint = WHITE;

 friend SceneActor;

protected:

 Mesh GenMeshHeightmapEx(Image heightmap, Vector3 size, Vector2
texPatchSize);

};

The component is implemented in HMapTerrainModelComponent.cpp. The CreateFromFile()

function loads the height map from the image file into the Image object heightMapImage. We

will use this height map to create the actual 3D Mesh object to build our 3D terrain Model object.

In this project, we will build a terrain feature partially supported by raylib, so we will try to cus-

tomize it to our needs but still make the best use of raylib. The first thing is to create the terrain.

It’s implemented in CreateFromFile() and here is a simplified version (with some error-checking

code removed):

bool HMapTerrainModelComponent::CreateFromFile(Vector3 terrainDimension,
Vector2 texTileSize, const char* pHeightmapFilePath, const char*
pTerrainTexurePath)

{

 heightMapImage = LoadImage(pHeightmapFilePath);

 Texture2D texture = LoadTextureFromImage(heightMapImage);

 mesh = GenMeshHeightmapEx(heightMapImage, terrainDimension,
texTileSize);

 model = LoadModelFromMesh(mesh);

 model.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture =
LoadTexture(pTerrainTexurePath);

 return true;

}

In the above snippet, the most important part of the code lies in our custom function,

GenMeshHeightmapEx(). raylib already provides a convenient function, GenMeshHeightmap(),

which we initially used for the first implementation of this project. However, there’s a limitation:

the texture coordinates generated by GenMeshHeightmap() are designed for a single large texture

that covers the entire terrain.

Rendering a 3D Game World232

This approach works fine for a quick height map terrain demo, but it introduces a significant

drawback when scaling the terrain bigger. As the terrain size increases, the single texture becomes

stretched and blurred, reducing visual quality, as shown in Figure 7.8:

Figure 7.8 – The terrain texture gets blurry if we scale the size of the terrain up

To address this limitation, a more flexible implementation was needed—one that provides control

over texture tiling. To achieve this, we develop our own implementation, GenMeshHeightmapEx(),

which overcomes this limitation and offers finer control over texture mapping for larger terrains.

The key difference from the original function provided by raylib is the addition of a parameter to

control the texture patch size for tiling. This allows for tiling repeatable textures on the terrain

surface, rather than using a single large texture for the entire terrain. As a result, the texture

quality is much less affected by changes to the terrain’s scale.

Below is a highlight of the changes made to the original function in HMapTerrainModelComponent.

cpp of the Demo7HMap project:

Mesh HMapTerrainModelComponent::GenMeshHeightmapEx(Image heightmap,
Vector3 size, Vector2 texPatchSize)

{

#define GRAY_VALUE(c) ((float)(c.r + c.g + c.b)/3.0f)

Chapter 7 233

 Mesh mesh = { 0 };

 int mapX = heightmap.width;

 int mapZ = heightmap.height;

 //…

 int px = mapX / (int)texPatchSize.x;

 int pz = mapZ / (int)texPatchSize.y;

 for (int z = 0; z < mapZ - 1; z++)

 for (int x = 0; x < mapX - 1; x++){

 // Fill vertices array with data

 // …

 mesh.texcoords[tcCounter] = (float)x / (px - 1);

 mesh.texcoords[tcCounter + 1] = (float)z / (pz - 1);

 mesh.texcoords[tcCounter + 2] = (float)x / (px - 1);

 mesh.texcoords[tcCounter+3]=(float)(z+1)/(pz - 1);

 mesh.texcoords[tcCounter + 4]=(float)(x+1)/(px - 1);

 mesh.texcoords[tcCounter + 5] = (float)z / (pz - 1);

 mesh.texcoords[tcCounter+6]=mesh.texcoords[tcCounter+4];

 mesh.texcoords[tcCounter+7]=mesh.texcoords[tcCounter+5];

 mesh.texcoords[tcCounter+8]=mesh.texcoords[tcCounter+2];

 mesh.texcoords[tcCounter+9]=mesh.texcoords[tcCounter+3];

 mesh.texcoords[tcCounter+10]=(float)(x + 1) / (px - 1);

 mesh.texcoords[tcCounter+11]=(float)(z + 1) / (pz - 1);

 tcCounter += 12; // 6 texcoords, 12 floats

 //…

 }

 UnloadImageColors(pixels); // Unload pixels color data

 UploadMesh(&mesh, false);

 return mesh;

}

The patch size is specified as a Vector2 with X-axis patch size and Z-axis patch size. Each patch

has 6 vertices (2 triangles). We manually build the mesh data in the double for loop of the pre-

ceding code snippet.

You can adjust the texture patch size to make it look good in your game:

HMapTerrainModelComponent* heightMap = pTerrain->CreateAndAddComponent<HMa
pTerrainModelComponent>();

Vector3 terrainDimension = Vector3{32,8,32};

Rendering a 3D Game World234

bool success = heightMap->CreateFromFile(terrainDimension, Vector2{ 4,4
}, "../../resources/textures/heightmap.png", "../../resources/textures/
terrain_map.png");

We set the terrain size as 32x32 and used a repeatable grass texture with a tile size of 4x4:

Figure 7.9 – Improving texture quality by introducing tiling

A good exercise for you is to extend this to allow more than a single type of texture used for terrain

tiling. You can have repeatable tiles of sand, river, grass textures, etc.

Since we made the terrain a standard Model, we can use the handy DrawModel function to render

the terrain:

void HMapTerrainModelComponent::Draw()

{ DrawModel(model,this->_SceneActor->Position,1.0f, tint);}

This is the simplest way to create a bigger terrain with a single Model. In the next section, we will

discuss various ways to build bigger terrain.

Chapter 7 235

Rendering terrain with level of detail (LOD)
Imagine exploring a vast, breathtaking 3D terrain stretching as far as the eye can see in an open-

world MMORPG. Rolling hills, towering mountains, and deep valleys – all rendered in stunning

detail. Now imagine your computer trying to draw every single tiny rock, blade of grass, and

pebble across that entire landscape all the time. The result? A sluggish, unresponsive mess, even

with very powerful modern hardware.

Well, the secret is you do not even need to draw them all. This is where Level of Detail (LOD)

comes to the rescue.

Figure 7.10 – Even in a large open-world game, only scenery near the main characters matters
(created with ChatGPT by the author)

Rendering a 3D Game World236

Look at the imaginary open-world game with your player character facing vast scenery in Figure

7.10. Only those trees near the player character need to be real 3D objects. For those trees far

away, and even the mountain, rather than a real 3D model, billboards can be used, which were

introduced at the beginning of the chapter. This significantly reduces the number of triangles to

be rendered by the GPU. The same also goes for the terrain. We only need to render the terrain

near the player character the greatest detail. Distant terrain can be rendered with less detail.

LOD is a technique used to dynamically adjust the complexity of a 3D model based on its distance

from the viewer. This approach is essential when scaling up to render larger terrains and more

complex scenes with numerous objects and effects. LOD allows distant terrain patches to be

rendered with fewer triangles and reduced detail, depending on their distance from the camera.

In many open-world games, LOD also helps manage memory efficiently by loading and keeping

in memory only the necessary level of detail for the currently visible terrain, thereby reducing

the memory footprint.

In the previous height map terrain sample, we loaded the entire terrain as a single 3D model into

the GPU. While this method works for small environments, it is not suitable for games that require

rendering expansive open-world terrains. In the next section, we will introduce the quadtree — a

data structure specifically designed to implement LOD efficiently.

Implementing level of detail with quadtree
Quadtree is a tree data structure used to partition a 2D space by recursively subdividing it into

four quadrants or regions. This structure is especially useful for efficiently managing spatial data

and is well-suited for 3D terrain represented as a 2D height map.

Figure 7.11 shows an example of a quadtree data structure. Each element in the tree is called a

node, and each node can be subdivided into a maximum of four child nodes. The topmost node

serves as the single entry point, known as the root node of the entire quadtree. Traversal always

starts from the root node and proceeds down to each child node. A node without any child nodes

is considered a leaf node.

The depth of a node indicates the number of parent nodes that must be traversed to reach that

node. For instance, the depth of nodes E, F, and G is 2, meaning two levels of traversal are required

from the root to these nodes.

Chapter 7 237

Figure 7.11 – Using the depth of quadtree to represent level of detail

However, when we mention LOD, it usually works in the opposite way. LOD 0 means the highest

detail level or full detail level. LOD 1 is less detailed, followed by level 2, level 3, etc. Now look

back to Figure 7.10. Suppose the player character (shown as the camera icon) is standing at the

bottom-right of the terrain and looking diagonally at the top-left corner of the game terrain, like

Figure 7.12:

Figure 7.12 – The relationship between LOD and quadtree

Rendering a 3D Game World238

We can observe nodes A, B, C, and D are the four nodes closest to the player camera. They should

be rendered with the maximum detail, so the LOD of these four nodes is level 0. Nodes E, F, and

G are behind nodes A-D in the camera view, so they can be rendered with less detail (level 1 LOD).

Nodes H and J are even further from the camera view, so their LOD is 2. The blue cone shape area

means the range (frustum) the player can see through a perspective camera; we don’t even need

to render node I since it’s invisible from the player’s location. We can drop at least one-quarter

of the terrain to save the GPU’s rendering power.

As we get the basic idea of how to use a quadtree to implement LOD, let’s apply the theory above

to the implementation of LOD terrain rendering.

The Demo7QuadTreeTerrain sample project implements a quadtree to render the entire terrain

with a different LOD. It reuses the same height map from the previous demo. However, unlike

the previous approach where the entire terrain was treated as a single 3D model, this time the

terrain’s triangle structure is dynamically generated on the fly during the rendering process. This

approach enables more efficient rendering, particularly for large terrains, by adjusting the level

of detail based on the camera’s distance from different terrain patches.

The first part is the main Knight application class in Demo7QuadTreeTerrain.cpp. We override

the Create() function to initialize a camera and a quadtree terrain model SceneActor in the

following code snippet:

void Demo7QuadTreeTerrain::Start(){

//… other initialization code

pTerrain =_Scene->CreateSceneObject<SceneActor>("Terrain");

pTerrain->Position = Vector3{ 0.0f, 0.0f, 0.0f };

pTerrain->Scale = Vector3{ 1,1,1 };

pQuadTreeTerrain = pTerrain->

 CreateAndAddComponent<QuadTreeTerrainModelComponent>();

pQuadTreeTerrain->CreateFromFile(Vector3{ 64, 13, 64 },

 Vector2{ 8.0f, 8.0f }, HEIGHTMAP_FILENAME,

 TERRAIN_TEXTURE_FILENAME);

pMainCamera=_Scene->CreateSceneObject<FlyThroughCamera>(

 "Main Camera");

pMainCamera->SetUp(pTerrain->Position, 30, 20, 20, 45, CAMERA_
PERSPECTIVE);

}

Chapter 7 239

Let’s create our own QuadTreeTerrainModelComponent, just like we did for

HMapTerrainModelComponent in the previous example. The code is organized into three parts in

QuadTreeTerrainModelComponent.cpp. The first part is easy: loading the grayscale image and

converting it to the height map:

bool LoadHeightmapFromImage(const char* fileName)

{

//file name checking …

Image image = LoadImage(fileName);

// Store actual dimensions from the loaded image

HeightMapWidth = image.width;

HeightMapDepth = image.height;

heightmap.resize(HeightMapWidth * HeightMapDepth);

for (int z = 0; z < HeightMapDepth; ++z) {

 for (int x = 0; x < HeightMapWidth; ++x) {

 Color pixelColor = GetImageColor(image, x, z);

 heightmap[z * HeightMapWidth + x] = (float)pixelColor.r / 255.0f;

 }

}

UnloadImage(image); // Free image data from RAM

return true;

}

Like the previous example, the main difference here is that the height map is stored as a normal-

ized float value ranging from 0.0 to 1.0. This representation ensures that the height data is both

compact and easily scalable, making it more efficient for terrain rendering calculations.

The most significant difference from the previous example is that we no longer create a model

with fixed vertices and triangles. Instead, the triangles to be rendered are dynamically selected

by each frame. This means that the set of triangles may vary from frame to frame, depending on

the traversal results of the quadtree that we will build in the next steps. This approach allows for

more adaptive and efficient rendering, especially in large, complex terrains.

Rendering a 3D Game World240

Building a quadtree for the terrain
The second part of QuadTreeTerrainModelComponent.cpp is focused on building the quadtree

data structure for the height map terrain we just created. First is the class definition in

QuadTreeTerrainModelComponent.h:

struct QuadTreeNode {

 BoundingBox bounds;

 QuadTreeNode* children[4];

 Vector2 center;

 float size;

 int depth; // Depth in the tree (0 = root)

 bool isLeaf; // Is this node a leaf?

 QuadTreeNode(BoundingBox b, int d) : bounds(b), depth(d), isLeaf(true)

 {

 for (int i = 0; i < 4; ++i) children[i] = nullptr;

 // Calculate center and size from bounds

 center.x=bounds.min.x+(bounds.max.x-bounds.min.x)/2.0;

 center.y=bounds.min.z+(bounds.max.z-bounds.min.z)/2.0f;

 size = bounds.max.x - bounds.min.x;

 }

 // Recursive destructor

 ~QuadTreeNode() {

 for (int i = 0; i < 4; ++i) {

 delete children[i]; // recursively delete children

 children[i] = nullptr;

 }

 }

};

In the above class definition, each node records its own depth and a bool isLeaf for quickly

identifying a leaf node. Let’s take a look at how we build the quadtree:

void BuildQuadtreeNode(QuadTreeNode* node)

{

 // Stop subdividing if max depth is reached

 if (node->depth >= MaxQuadTreeDepth) {

 node->isLeaf = true;

 return;

Chapter 7 241

 }

 // Calculate the size of potential children

 float halfSize = node->size / 2.0f;

 // Stop subdividing if the node's area is very small

 if (halfSize < terrainScale.x || halfSize < terrainScale.z)

 {

 node->isLeaf = true;

 return;

 }

 //If we are here, the node is not a leaf yet and can be subdivided

 node->isLeaf = false;

 // Get parent bounds

 Vector3 min = node->bounds.min;

 Vector3 max = node->bounds.max; // Y component of max is max terrain
height

 // Define bounds for the four children

 // Child 0: Top-Left (NW)

 BoundingBox childBounds0 = { {min.x, min.y, min.z}, {min.x + halfSize,
max.y, min.z + halfSize} };

 // Child 1: Top-Right (NE)

 BoundingBox childBounds1 = { {min.x + halfSize, min.y, min.z}, {max.x,
max.y, min.z + halfSize} };

 // Child 2: Bottom-Left (SW)

 BoundingBox childBounds2 = { {min.x, min.y, min.z + halfSize}, {min.x +
halfSize, max.y, max.z} };

 // Child 3: Bottom-Right (SE)

 BoundingBox childBounds3 = { {min.x + halfSize, min.y, min.z +
halfSize}, {max.x, max.y, max.z} };

 node->children[0] = new QuadTreeNode(childBounds0, node->depth + 1);

 node->children[1] = new QuadTreeNode(childBounds1, node->depth + 1);

 node->children[2] = new QuadTreeNode(childBounds2, node->depth + 1);

 node->children[3] = new QuadTreeNode(childBounds3, node->depth + 1);

 // Recursively build children

 for (int i = 0; i < 4; ++i) {

 BuildQuadtreeNode(node->children[i]);

 }

}

Rendering a 3D Game World242

The most crucial part of the above code is determining whether the current node is a leaf node

(reaching the maximum depth) and correctly calculating each child’s bounding box. It is import-

ant to note that the quadtree is built only once during the terrain initialization process, not in

every frame. Once the quadtree structure is established, it remains static, and we can proceed to

render the terrain efficiently.

Traversing the quadtree for terrain rendering
The third part is rendering a quadtree terrain. The Draw() function of QuadTreeTerrainModelComponent

is the starting point:

void QuadTreeTerrainModelComponent::Draw()

{

 __super::Draw(); // Call base class draw

 FrustumPlane frustumPlanes[6]; // Array to hold the frustum planes

 NumTriangles = 0;

 _SceneActor->GetMainCamera()-> ExtractFrustumPlanes(frustumPlanes);

 DrawQuadtreeNode(rootNode, _SceneActor->GetMainCamera(),
DebugShowBounds, frustumPlanes);

}

One important part is we retrieve the frustum of the current main camera by calling Knight’s

function SceneCamera::ExtractFrustumPlanes(). We then pass this camera frustum data into

the recursive function DrawQuadtreeNode():

void DrawQuadtreeNode(QuadTreeNode* node, SceneCamera *pCamera, bool
drawBounds, const FrustumPlane frustumPlanes[6])

{

 if (!node) return;

 if (!pCamera->IsBoundingBoxInFrustum(node->bounds, frustumPlanes)) {

 return; // Node is outside the frustum, so skip

 }

The above code calls Knight’s SceneCamera:: IsBoundingBoxInFrustum() function to determine

if the bounding box of the current node is visible from the camera. Let’s go back to Figure 7.12.

Remember we mentioned node I is completely falling outside the frustum (light blue region) of

the main camera and can be excluded from rendering? This SceneCamera function tests if the

bounding box of the current node is visible. If it’s completely invisible, we simply skip rendering it.

Chapter 7 243

The next part of the code is also essential as it calculates the distance between the main cam-

era and the current node. This distance is used to determine whether the current node’s depth

matches the required LOD. If the depth is not sufficient, the function recursively calls itself with

the four possible child nodes. If the depth is appropriate, it directly calls DrawTerrainChunk(),

which performs the actual rendering task:

 Camera3D camera=*pCamera->GetCamera3D(); //Get the camera

 float dx = camera.position.x - node->center.x;

 float dz = camera.position.z - node->center.y; // node->center.y stores
the Z-coordinate of the node's center

 float distanceToNode = sqrtf(dx * dx + dz * dz);

 //LOD Threshold: if distance is greater than node_size * factor, or if
it's a leaf, or max depth draw it.

 //Otherwise, recurse into children.

 float lodThreshold = node->size * LevelOfDetailDistance;

 if (node->isLeaf || distanceToNode > lodThreshold || node->depth >=
MaxQuadTreeDepth - 1) { // -1 to ensure leaves at max depth are drawn

 DrawTerrainChunk(node);

 // Optionally draw the bounding box for debugging …

 } else {

 //Recursively draw children

 for (int i = 0; i < 4; ++i) {

 if (node->children[i]) { // Check if child exists

 DrawQuadtreeNode(node->children[i], pCamera, drawBounds,
frustumPlanes);

 }

 }

 // Optionally draw bounds of the parent node …

 }

}

Finally, the below code snippet pushes triangles into the GPU to render a single node:

void DrawTerrainChunk(QuadTreeNode* node)

{

 //Some check …

 //Calculate the dimensions of the terrain in world space

 float worldTotalWidth = HeightMapWidth * terrainScale.x;

 float worldTotalDepth = HeightMapDepth * terrainScale.z;

Rendering a 3D Game World244

 float worldOriginX = -worldTotalWidth / 2.0f;

 float worldOriginZ = -worldTotalDepth / 2.0f;

 //Convert node's bounds to heightmap grid coordinates

 int mapStartX = Clamp((int)roundf((node->bounds.min.x - worldOriginX) /
terrainScale.x), 0, HeightMapWidth - 1);

 int mapStartZ = Clamp((int)roundf((node->bounds.min.z - worldOriginZ) /
terrainScale.z), 0, HeightMapDepth - 1);

 int mapEndX = Clamp((int)roundf((node->bounds.max.x - worldOriginX) /
terrainScale.x), 0, HeightMapWidth) +1;

 int mapEndZ = Clamp((int)roundf((node->bounds.max.z - worldOriginZ) /
terrainScale.z), 0, HeightMapDepth) +1;

 //Ensure there's at least one quad to draw

 if (mapEndX <= mapStartX || mapEndZ <= mapStartZ)

 return;

 //Step determines the resolution of this chunk.

 int step = 2;

Unlike the previous Demo7HMap example, we simply call raylib’s DrawModel() to render a whole

terrain mesh in the 3D model. In the following code, we will use raylib’s immediate-mode low-level

API to stream raw triangle data to the GPU. The reason we do so is because, each frame, we only

pick a few subsets of nodes to render, so the triangle data is dynamically assembled frame by frame:

 rlEnableTexture(terrainTexture.id); // Enable texturing

 rlBegin(RL_TRIANGLES); // Start drawing triangles

 rlColor4ub(255, 255, 255, 255); // Set vertex color to white to show
original texture colors

 rlSetTexture(terrainTexture.id); // Bind the texture

 for(int z = mapStartZ; z < mapEndZ - step; z += step){

 for (int x = mapStartX; x < mapEndX - step; x += step){

 //Get normalized height values for the four corners

 float h1 = GetHeightmapValue(x, z); // Top-left

 float h2 = GetHeightmapValue(x + step, z);//Top-right

 float h3 = GetHeightmapValue(x,z+step);//Bottom-left

 float h4 =GetHeightmapValue(x+step,z+step);// Bottom-right

 // Calculate world coordinates for the four corners

 Vector3 p1 = { worldOriginX + x * terrainScale.x , h1 *
terrainScale.y, worldOriginZ + z * terrainScale.z };

 Vector3 p2 = { worldOriginX + (x + step) * terrainScale.x, h2 *
terrainScale.y, worldOriginZ + z * terrainScale.z };

Chapter 7 245

 Vector3 p3 = { worldOriginX + x * terrainScale.x , h3 *
terrainScale.y, worldOriginZ + (z + step) * terrainScale.z };

 Vector3 p4 = { worldOriginX + (x + step) * terrainScale.x, h4 *
terrainScale.y, worldOriginZ + (z + step) * terrainScale.z };

 //Calculate UV coordinates for each vertex

 //These map the texture across the entire terrain, tiled by
tilingFactor

 float u1 = (float)x / (HeightMapWidth - 1.0f) * tilingFactor.x;

 float v1 = (float)z / (HeightMapDepth - 1.0f) * tilingFactor.y;

 float u2 = (float)(x + step) / (HeightMapWidth - 1.0f) *
tilingFactor.x;

 float v2 = v1;

 float u3 = u1;

 float v3 = (float)(z + step) / (HeightMapWidth - 1.0f) *
tilingFactor.y;

 float u4 = u2;

 float v4 = v3;

 // Triangle 1: p1, p3, p4

 Vector3 n1 = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(p3,
p1), Vector3Subtract(p4, p1)));

 rlNormal3f(n1.x, n1.y, n1.z);

 rlTexCoord2f(u1, v1);

 rlVertex3f(p1.x, p1.y, p1.z); // p1

 rlTexCoord2f(u3, v3);

 rlVertex3f(p3.x, p3.y, p3.z); // p3

 rlTexCoord2f(u4, v4);

 rlVertex3f(p4.x, p4.y, p4.z); // p4

 // Triangle 2: p1, p4, p2

 Vector3 n2 = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(p4,
p1), Vector3Subtract(p2, p1)));

 rlNormal3f(n2.x, n2.y, n2.z);

 rlTexCoord2f(u1, v1);

 rlVertex3f(p1.x, p1.y, p1.z); // p1

 rlTexCoord2f(u4, v4);

 rlVertex3f(p4.x, p4.y, p4.z); // p4

 rlTexCoord2f(u2, v2);

 rlVertex3f(p2.x, p2.y, p2.z); // p2

 NumTriangles += 2;

Rendering a 3D Game World246

 }

 }

 rlEnd(); // Finish drawing triangles

 rlDisableTexture(); // Disable texturing

}

The preceding code is long but easy to understand. It builds the terrain’s triangle data based on

the current depth of the node and streams it into GPU.

We have introduced the primary part of the QuadTreeTerrainModelComponent class. For the rest

of the class, there are two important member variables:

 int MaxQuadTreeDepth = 7;

This value represents the maximum depth allowed for the quadtree. You can adjust it based on

the map size and terrain complexity. However, it is not recommended to set the quadtree depth

too deep, as this can significantly increase the traversal cost, leading to reduced performance:

 float LevelOfDetailDistance = 4.5f;

This value acts as a threshold that determines how quickly the quadtree needs to traverse to

deeper levels. A lower threshold value means the tree will descend more quickly, resulting in the

entire terrain being rendered with the highest detail.

Important note

If you are not familiar with how raylib’s low-level graphics APIs work, here are some

additional internet resources:

•	 Quick reference document: https://www.raylib.com/cheatsheet/

cheatsheet.html

•	 Architecture overview: https://github.com/raysan5/raylib/wiki/
raylib-architecture

https://www.raylib.com/cheatsheet/cheatsheet.html
https://www.raylib.com/cheatsheet/cheatsheet.html
https://github.com/raysan5/raylib/wiki/raylib-architecture
https://github.com/raysan5/raylib/wiki/raylib-architecture

Chapter 7 247

The best way to understand how to choose LevelOfDetailDistance is to run the sample project

and see the different visual results. To be able to see the quadtree and LOD in action, toggle the

B key to turn on the drawing of each node’s bounding box, like in Figure 7.13:

Figure 7.13 – Bounding boxes show a different LOD based on the distance of the camera from
each node

By scrolling the mouse wheel and using arrow keys to move the camera, you can observe how

different LOD are used to render the terrain dynamically. The quadtree technique is highly effec-

tive for rendering large terrains and is widely used in many games.

In addition to terrain rendering, the next section will cover how to render the sky, completing

your game environment for a more immersive experience.

Rendering a skybox
A skybox is a large, cube-shaped enclosure that creates the illusion of a distant background for

skies, landscapes, or space scenes. It typically uses a cubemap—six images mapped to the cube’s

faces—forming a seamless panorama, or six 2D texture maps. Rendered as if infinitely far away,

the skybox rotates with the camera but never appears closer or farther.

Demo7SkyBox demonstrates a simple use case to use shaders to render a skybox cubemap, as

shown in Figure 7.14. Use your mouse to rotate the camera:

Rendering a 3D Game World248

Figure 7.14 – Using a cubemap for a skybox

The vertex program is mostly identical to the default one, except, for the skybox, it will always

keep the same distance from the camera view. So, we need to remove the translation part of the

view matrix:

// Remove translation from the view matrix

mat4 rotV = mat4(mat3(matView));

gl_Position = matProjection*rotV*vec4(vertexPosition,1.0);

The fragment program uses a cube mapping sampler instead of our usual sampler2D to sample

the pixel from a cubic texture map:

uniform samplerCube environmentMap;

color = texture(environmentMap, fragPosition).rgb;

By adding the skybox with the terrain introduced in this chapter, we can create a complete out-

door game scene environment.

Chapter 7 249

Summary
This chapter tackled several core techniques for constructing a full, performant 3D game world.

It started by explaining billboards—flat, camera-facing quads that reduce geometry complexi-

ty, making it possible to render large crowds, distant foliage, or effects with minimal overhead.

Particle systems build on billboards by simulating hundreds or thousands of small, short-lived

elements (e.g., sparks, smoke) under a simple physics model, showcasing how multiple, light-

weight billboards can create lively visual effects.

Next, we introduced multi-pass rendering, focusing on shadow mapping. Rather than drawing

everything in a single pass, modern engines generate a shadow map from the light’s perspective,

which captures object depth. Each pixel in the main pass is then tested against the shadow map to

determine whether it is lit or occluded. Common issues like shadow acne are addressed through

biasing, and PCF helps soften hard shadow edges.

For large outdoor scenes, we demonstrated how to generate height-mapped terrain from a gray-

scale image, where each pixel’s brightness corresponds to vertex elevation. This method efficiently

produces realistic landscape shapes with minimal data. The skybox was also introduced, which

involves wrapping the scene in a large textured cube that simulates an infinitely distant horizon.

While each feature—billboards, particles, shadows, terrain, and the skybox—can be demonstrated

individually, a real-world 3D game must combine them. You are encouraged to understand the

trade-offs of each method and choose those that best match your project requirements.

Moving into the next chapter, we will focus on character animation. Just as the particle effects

introduced in this chapter contribute to a lively game scene, animation plays a crucial role in

making characters feel real and dynamic.

Part 3
Breathing Life into

Your Games
In this part, the focus shifts to two essential pillars of modern game development—character

animation and artificial intelligence (AI). Together, these systems bring game worlds to life,

transforming static models and scripted behaviors into immersive, responsive, and intelligent

experiences.

You’ll begin by exploring core animation techniques, including keyframe animation, skeletal

hierarchies, and interpolation methods that create smooth, natural transitions between move-

ments. The chapter also introduces inverse kinematics (IK), a real-time technique that allows

characters to adapt their animations dynamically to the environment—essential for realism and

player immersion.

From animation, you’ll move into the field of game AI, starting with foundational systems such as

finite state machines (FSMs), behavior trees, and steering behaviors. These techniques provide

the logic behind NPC decisions, movement, and interactions. You’ll also learn about A* path-

finding—one of the most widely used algorithms in games—for enabling intelligent navigation

through game worlds.

Finally, the journey leads to modern AI approaches, including neural networks, shadow learning,

and deep learning. You’ll explore how these advanced techniques can be used to build adaptable

and intelligent agents capable of learning from data. With hands-on C++ examples, you’ll train a

neural network and integrate it into an AI-controlled turret defense game, providing a complete,

real-world application of machine learning in games.

﻿252

This part includes the following chapters:

•	 Chapter 8, Animating Your Characters

•	 Chapter 9, Building AI Opponents

•	 Chapter 10, Machine Learning Algorithms for Game AI

8
Animating Your Characters

This chapter delves into key methods for enhancing the animation process, offering insights

into techniques that can significantly elevate the quality and immersive experience of character

animations in games. It explores three main topics, each essential to creating smooth, responsive,

and realistic animations.

The first section introduces fundamental animation transition methods, focusing on interpola-

tion and extrapolation. These techniques help smoothly transition between different animations,

ensuring a seamless flow that enhances gameplay. We discuss various types of interpolation,

such as linear, ease in/out, and exponential transitions. These approaches allow developers to

maintain smooth animations, even when the rendering frame rate fluctuates.

The second section moves on to the skeletal hierarchy, explaining how character models are

structured and animated. A solid skeletal foundation is crucial for smoothly transitioning between

animations, especially when using the previously discussed interpolation methods. The section

addresses common challenges, such as jittering or misalignments during transitions, and offers

techniques to avoid these issues.

The final section covers a powerful real-time animation technique: Inverse Kinematics (IK). This

method allows characters to adapt their movements to the environment dynamically, adding

another layer of realism to the game. This adaptability creates a more engaging and immersive

experience for the player.

Animating Your Characters254

The topics covered in this chapter are:

•	 Understanding keyframe animation

•	 Learning about skeletal animation

•	 Using inverse kinematics

Let’s get into it!

Technical requirements
Download the Knight Visual Studio solution from GitHub. Here is the link to the repository:

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-

Structures-and-Algorithms/tree/main

The demo projects for this chapter are located within the Knight Visual Studio solution (https://
github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-

Algorithms/tree/main/Knight), specifically under the project names:

Project Name Description

Demo8a Playing animation with interpolations

Demo8b Transitioning animations with two channels

Demo8c Using IK to simulate a robotic arm

Table 8.1 – Sample projects used in this chapter

These projects demonstrate the implementation of concepts covered in this chapter and are

integral to understanding the practical application of the discussed algorithms.

Understanding keyframe animation
Animations are crucial to creating lifelike and immersive experiences in games. These animations

bring characters, objects, and environments to life, making interactions dynamic and visually

engaging. Implementing animation in game development typically involves the manipulation

of an object’s position, rotation, scale, or other properties over time. By continuously updating

these properties in real time, characters can walk, jump, attack, or perform any number of complex

actions, and objects can respond to player interactions or environmental forces.

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight

Chapter 8 255

We’ll begin by introducing keyframe animation, one of the most commonly used methods for

animating characters and objects.

Keyframe animation is a technique used to animate objects by moving, rotating, or resizing them.

Animations are defined by crucial frames known as keyframes. An object’s movement typically

includes a starting point (P1) and an ending point (P2).

For example, to move a box from P1 (-1, 0.5, 0) to P2 (1, 0.5, 0) over two seconds (see Figure 8.1)

with a rendering frame rate of 100 frames per second, we have two possible approaches:

•	 Frame-by-frame animation: Create an array of positions that specifies the box’s location

at each frame, ensuring it is drawn in the correct position throughout the animation. The

positions of the box’s motion for the 100 frames are (-1, 0.5, 0), (-0.09, 0.5, 0), (-0.08, 0.5,

0), …, (0.08, .0.5, 0), (0.09, 0.5, 0), and (1, 0.5, 0).

•	 Keyframe animation: Define just two keyframes, one for the starting point and one for

the ending point. The positions between these points are then calculated based on the

time the box has traveled. The positions of the box’s motion are only two keyframes: (-1,

0, 0) and (1, 0, 0).

Figure 8.1 – Moving a box from P1 to P2 in a 3D space

Animating Your Characters256

In comparison with frame-by-frame animation, keyframe animation needs less data storage and

reduces the workload involved in creating and adjusting animations. It also enables the generation

of intermediate frames, resulting in smoother and more consistent animations.

Now, the question arises: how do we determine the positions between frames? The next topic

will introduce the motion techniques that can be used to achieve this.

Understanding motion techniques
In animation, two primary motion techniques are frequently used: interpolation and extrapo-

lation. Interpolation is used to create smooth transitions between keyframes over time, making

it ideal for blending animations and calculating gradual changes. Integration, a fundamental

concept in both mathematics and computer science, involves computing an object’s position

over time using its velocity. It is particularly suitable for speed-based movements and physics

simulations. In this chapter, we will focus on the interpolation method, as it is primarily used in

skeletal character animations.

Different interpolation methods can influence how an object moves or how values change over

time. Let’s explore the two most common interpolation techniques in animation: linear interpo-

lation and ease-in/ease-out interpolation.

Linear interpolation
Linear interpolation produces a consistent rate of change between two keyframes, resulting in

a transition without any acceleration or deceleration. Here is the formula:𝑃𝑃 𝑃 𝑃𝑃𝑃 𝑃 𝑃(1 − 𝑡𝑡) + 𝑃𝑃𝑃 𝑃 𝑃𝑃

where:

•	 t is the interpolated value of time. The value of t falls within the range of [0, 1].

•	 P0 is the starting position when t=0.

•	 P1 is the end position when t=1.

•	 P represents the in-between position at time t.

Chapter 8 257

Figure 8.2 – Linear interpolation

The object travels at a constant speed from the starting point P0 to the midpoint Pi, and then to

the endpoint P1.

Ease-in/ease-out interpolation
Ease-in/ease-out (or exponential) interpolation adds a gradual acceleration or deceleration to

the movement. The transition starts or ends more slowly compared to the middle of the anima-

tion. Here are the formulas.

Here’s the ease-in formula: 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃 𝑃 𝑃𝑃𝑛𝑛

And the ease-out formula: 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃𝑃𝑛𝑛

Animating Your Characters258

where:

•	 t is the interpolated value of time. The value of t falls within the range of [0, 1].

•	 P0 is the starting position when t=0.

•	 P1 is the end position when t=1.

•	 𝑃𝑃𝑖𝑖𝑖𝑖 and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 represent the in-between ease-in and ease-out positions at time t.

When n=2, the formula follows a quadratic easing pattern: 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑃 𝑃 𝑃𝑃2 and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃𝑃2 .

When n=3, the formula represents a cubic easing pattern: 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑃 𝑃 𝑃𝑃 𝑃 𝑃𝑃𝑃3 and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑃 𝑃 (1 − 𝑡𝑡)3.
In ease-in interpolation, the cubic version starts even slower and accelerates more rapidly than

the quadratic version. Conversely, in ease-out, the cubic version begins faster and decelerates

more smoothly than the quadratic version.

Figure 8.3 – Ease-in and ease-out interpolation curves

While ease-in and ease-out provide smooth acceleration and deceleration separately, some an-

imations and movements require a combination of both. This leads us to ease-in-out, which

blends the two to create a more natural transition.

Chapter 8 259

Ease-in-out
This is a combined process that integrates both ease-in and ease-out effects. It can be used in

character transitions from one animation (such as idle) to another (like running). During this

transition, two animation timeline channels can be used: one for the previous animation with

ease-out interpolation and another for the new animation with ease-in interpolation. Eventually,

these two channels’ animation data are blended to achieve a smooth transition.

In the earlier discussion of interpolation methods, we used examples of moving objects from an

initial position P1 to a destination position P2. However, these methods can also be applied to

rotation and scaling animations. For instance, an object can be rotated along one or more axes from

an initial angle R1 to a target angle R2 or scaled from an original size S1 to a target size S2. When

an operation involves the combined processes of scaling, rotating, and translating (or moving)

objects, it is referred to as a transformation. Figure 8.4 provides an example of a transformation

that scales the character from size S1 to S2, rotates its facing angle along the Y axis from R1 to R2,

and moves the character from position P1 to P2.

Figure 8.4 – Transforming a character

While keyframe animation is effective for simple transformations, more complex and dynamic

character movements require a more advanced approach. This brings us to skeletal animation, a

technique that allows for greater flexibility and realism in character animation.

Animating Your Characters260

Learning about skeletal animation
In 3D skeletal animation, several key concepts form the foundation of how characters move and

deform realistically. These concepts include bones, skeletons, and skin. Let’s look at them in depth

here before we move on to the more practical aspects of skeletal animation:

•	 Bone is a transformable object that acts as the primary control structure for character

movement. Bones are not visible in the final rendered model but are essential in defining

the movement of specific parts of a character, such as the head, arms, legs, etc. Each bone

controls a portion of the character’s mesh, and they are often arranged in a hierarchical

manner. When a bone moves, it influences the mesh linked to it.

•	 Skeleton is the complete system of interconnected bones that defines the overall struc-

ture of a 3D model. Each bone in the skeleton is connected in a parent-child relationship,

where movement in one bone affects the bones connected to it. For example, rotating

the upper arm affects the lower arm and hand bones. The skeleton determines how the

model behaves when animated.

•	 Skin refers to the outer mesh or surface of the character model that is visible to the view-

er. It is the appearance of the character, including meshes, materials, and textures. The

process of attaching the skin to the skeleton is known as skinning. Skinning ensures that

when the skeleton moves, the skin follows the same motion. Proper skinning is crucial for

maintaining the natural look of the character as it bends or stretches.

Now that we’ve covered the basic concepts of skeletal animation, let’s dive into some fundamental

mathematics essential for a deeper understanding of how skeletal animation works.

Understanding 3D motion related to mathematics
The mathematical foundations essential for animations include concepts like vectors, quaternions,

and matrices. These tools are crucial for understanding motion, rotation, and transformations

in animation. Before diving into the details of key animation techniques, we provide a clear in-

troduction to these fundamentals to ensure a solid understanding of the underlying principles.

Vector
In 3D space, a 3D vector is a mathematical entity defined by three components (x, y, z), which

can represent a point, direction, scale, or Euler angles in three-dimensional space. Vectors can be

used to mathematically represent an object’s scale, rotation, and position relative to the axes of a

coordinate system, where x represents the horizontal axis, y the vertical axis, and z the depth axis.

Chapter 8 261

Quaternion
A more advanced way to represent rotation is through a quaternion, which can express a com-

bination of multiple rotations, including those around any axis, not just the x, y, or z axes. To

compute a combined rotation, we simply multiply the individual rotation quaternions together.

An example of a complex rotational and orbital relationship is the sun, Earth, and moon system.

The Earth rotates on its axis while orbiting the sun, and at the same time, the moon orbits the Earth.

Figure 8.5 – The relationship between the sun, Earth, and moon in the solar system

The quaternion of the moon can be calculated with the following expression:𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

where:

•	 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 : Represents the sun’s rotation.

•	 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 : Represents the Earth’s rotation relative to the sun.

•	 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 : Represents the moon’s rotation relative to the Earth.

Animating Your Characters262

Matrix
A matrix is commonly used to represent a transformation that combines translation, rotation, and

scaling into a single mathematical entity in 3D space. Transformations can be linked up, so the

next transformation based on the previous transformation can be stacked up like a joint linking

up two objects. Any motion on the first transformation affects the next transformation, and the

next transformation is based on the first transformation. This creates a parent-child movement

relationship and ultimately forms a complex hierarchical structure that can represent a charac-

ter’s skeletal system.

In game development, 4x4 matrices are widely used to perform transformations. They provide

a compact mathematical representation that combines multiple transformations into a single

operation:

𝑀𝑀 𝑀 𝑀 [𝑠𝑠𝑥𝑥 ∗ cos(𝜃𝜃𝜃 𝜃𝜃𝜃𝑦𝑦 ∗ sin(𝜃𝜃𝜃 𝜃 𝜃𝜃𝑠𝑠𝑥𝑥 ∗ sin(𝜃𝜃𝜃 𝜃𝜃𝑦𝑦 ∗ cos(𝜃𝜃𝜃 𝜃 𝜃𝜃00 𝑠𝑠𝑧𝑧 𝑧𝑧000 1]
where:

•	 sx, sy, sz represents scales along the X, Y, and Z axes.

•	  θ represents rotation around the Z axis.

•	 (x, y, z) represents position offsets along the X, Y, and Z axes.

Now that we’ve covered the fundamentals of 3D mathematics, we can apply these concepts to

skeletal character animation.

Skeletal animation keyframes
In skeletal animation, a keyframe holds the transformation data for each bone in the character’s

skeleton. An animation clip consists of a sequence of these keyframes, capturing different poses

over time. When animating a character using a specific clip, two main techniques can be employed:

frame-by-frame animation, where the character moves exactly according to the keyframes, and

interpolation animation, where the transitions between keyframes are smoothed by calculating

intermediate positions. Since interpolation allows for fluid and natural movement, it makes it a

common technique in modern game development.

Let’s dive into the C++ project Demo8a to explore and compare the differences between the two

animation techniques: frame-by-frame and interpolated animation. This hands-on example will

help illustrate how each method affects character movement and animation quality in real time.

Chapter 8 263

Demo8a – playing animation with interpolation
When you compile and run Demo8, you can see a character walking in the middle of the screen.

Here is the screenshot of what that should look like:

Figure 8.6 – Using frame-by-frame and interpolated methods to animate the character

Demo8a showcases a character walking animation using two playback techniques: frame-by-

frame and interpolation. You can toggle between these two techniques by pressing the A key,

allowing you to observe the differences in animation speed and smoothness. Press the 1, 3, and

6 keys to switch between different frame rates (5, 30, 60, respectively), and use the up and down

arrow keys to adjust the time scale for faster or slower motion. The following matrix compares

two playback techniques and shows the difference in animation speed and smoothness.

Frame-by-Frame

(Default)

Interpolation

(Linear)

Interpolation

(Exponential)

Framerate-Dependent
Animation Speed

Yes No No

Animation smoothness Slightly jerky all the time Smooth Smooth

Table 8.2 – Comparison of animation playback techniques

Let’s take a closer look at how the frame-by-frame playback is implemented in Demo8a.

Animating Your Characters264

Frame-by-frame animation implementation
The raylib library provides a function called UpdateModelAnimation, which calculates bone trans-

formations based on the current keyframe information and updates the skin meshes. While the

inner workings of UpdateModelAnimation are beyond the scope of this chapter, you can explore

the details in the models.c source code file of the raylib project.

To see how the animation is updated, open the ModelComponent.cpp file within the Knight proj-

ect. In the Update function, it gets the next keyframe’s index and calls UpdateModelAnimation

to refresh the skin meshes:

void ModelComponent::Update(float ElapsedSeconds) {

 __super::Update(ElapsedSeconds);

 ……

 _CurrentFrame = GetNextFrame();

 UpdateModelAnimation(_Model,

 _Animations[_AnimationIndex], _CurrentFrame);

}

From this code, you can see that with each frame update, one keyframe is advanced. This applies

the frame-by-frame playback strategy.

Interpolation playback implementation
To interpolate animation keyframes, we introduced a new member function,

UpdateModelAnimationWithInterpolation, to the ModelComponent class. This function in-

terpolates between the current frame and the next frame as time progresses from 0 to the

designated frame duration. This new function is a modified and enhanced version of raylib’s

UpdateModelAnimation function.

The main difference between the UpdateModelAnimationWithInterpolation function and the

original UpdateModelAnimation function is that the former does not merely advance the keyframe

and apply the bone transformations to the skin meshes. Instead, it interpolates the bone transfor-

mations of the current and next keyframes using weights calculated by dividing the interpolation

time of the frame by its duration, thereby generating an in-between frame, so two variables are

used to indicate the frame’s interpolation time and duration in seconds: _InterpolationTime

and _FrameDuration.

Chapter 8 265

_InterpolationTime is initialized to 0 at the start of transitioning from one keyframe to the next.

Meanwhile, it accumulates the elapsed time from frame updates. When its value reaches the

frame’s duration, it resets to 0, and the current keyframe index is updated to the next keyframe

index.

In this case, we make a slight modification to the Update function of the ModelComponent class to

call UpdateModelAnimation when the current animation playback mode is set to Default (frame-

by-frame) and to call UpdateModelAnimationWithInterpolation when the current animation

mode is either linear or exponential:

void ModelComponent::Update(float ElapsedSeconds) {

 __super::Update(ElapsedSeconds);

 ……

 if (_AnimationMode == eAnimMode::Default) {

 _CurrentFrame[0] = GetNextFrame();

 UpdateModelAnimation(_Model,

 _Animations[_AnimationIndex], _CurrentFrame[0]);

 }

 else {//Linear_interpolation or_Exponential_interpolation

 UpdateModelAnimationWithInterpolation(ElapsedSeconds);

 _InterpolationTime += ElapsedTime;

 If(_InterpolationTime > _FrameDuration) {

 _CurrentFrame = GetNextFrame();

 _InterpolationTime = 0.0f;

}

 }

}

Important note

The code block above differs slightly from the actual source code, as the full

implementation includes additional logic to support multi-channel interpola-

tion. For clarity, this example highlights only the initial stage, where the system

transitions to the next frame once the transition timeout is reached.

Animating Your Characters266

Now, let’s explore the core of the interpolation technique in the above code snippet. First, we need

to calculate the value of t. Then, it checks whether the animation mode is set to use exponential

interpolation. If so, t is squared to facilitate an ease-in interpolation process. Finally, the function

utilizes the t value along with the Vector3Lerp and QuaternionLerp functions to compute and

output the translation, rotation, and scale data components for the in-between frame:

t = (float)_InterpolationTime / _FrameDuration;

if (_AnimationMode == eAnimMode:: Exponential_interpolation)

{

 t *= t; //Square of t for exponential interpolation

}

Transform* preFrameTransform =

 &(anim.framePoses[_PrevFrame][boneId]);

Transform* currentFrameTransform =

 &(anim.framePoses[_CurrentFrame][boneId]);

outTranslation = Vector3Lerp(

 preFrameTransform->translation,

 currentFrameTransform->translation, t);

outRotation = QuaternionLerp(

 preFrameTransform->rotation,

 currentFrameTransform->rotation, t);

outScale = Vector3Lerp(

 preFrameTransform->scale,

 currentFrameTransform->scale, t);

This code snippet ultimately stores the interpolated translation, rotation, and scale data in

outTranslation, outRotation, and outScale, which will be used to transform the mesh verti-

ces for rendering.

Having discussed the techniques for interpolating between two animation keyframes to create

smoother and consistent speed animations, we will now explore how to apply interpolation

techniques to transition from one animation state to another.

Transiting between animations
An animated character is typically controlled by a Finite State Machine (FSM), a computational

model that controls the character’s behavior by transitioning between predefined states, such as

idle, walking, attacking, or jumping. FSM will be introduced in detail in the next chapter.

Chapter 8 267

To transition a character’s animation from one state to another, such as from Idle to Walking,

you can simply pass the currently playing animation ID as a parameter when calling the

UpdateModelAnimation function in raylib. The following code snippet demonstrates an imme-

diate animation transition from Idle (animationIndex = 4) to Walking (animationIndex = 6):

Model model = Loadmodel(…);

ModelAnimation *_Animations = LoadModelAnimations(…);

animationIndex = 6;

 //current value 4 which indicates the Idle animation

 //6 is the Id that indicates the Walking animation

ModelAnimation animation = _Animations[animationIndex];

frameIndex = 0;

UpdateModelAnimation(model, animation, frameIndex);

The transition method in this code has two key shortcomings. First, the transition occurs abruptly,

without any smooth blending between animations, leading to a choppy visual effect. Second, the

transition can happen at any point during the Idle animation, potentially cutting it off mid-action,

resulting in a disjointed and unnatural player experience.

To achieve smoother transitions between animations, a two-channel strategy is utilized. In this

approach, the current animation clip continues to play on channel one. Simultaneously, when

a transition is initiated, the next animation clip begins playing on channel two. This method

ensures that the transition from one animation to the next is seamless.

The transition itself has a specified duration, during which both animations overlap. On channel

one, the current animation gradually fades out over this transition time. At the same time, the

new animation on channel two fades in. The two channels are used to generate the final blended

animation. The fading process can be controlled using either linear interpolation or an ease-in/

ease-out interpolation, depending on the desired effect for smoothness and pacing. This tech-

nique provides a flexible and visually appealing way to handle animation blending in various

applications, particularly in game development.

Animating Your Characters268

Figure 8.7 – Transitioning from Idle to Walking animations with two channels

Figure 8.7 demonstrates an example of transitioning the character from the Idle animation to

the Walking animation. The transition employs the ease-out method on channel one for the Idle

animation and the ease-in method on channel two for the Walking animation. As shown, the

green curve representing the weight of the Idle animation decreases from 1 to 0, while the blue

curve representing the weight of the Walking animation increases from 0 to 1. Demo8b provides

an in-depth view of the actual implementation.

Demo8b – transitioning animations with two channels
Demo8b demonstrates three different modes for transitioning the character from the Idle anima-

tion to the Walking animation: immediate, linear interpolation, and ease-in/ease-out interpolation.

Chapter 8 269

Figure 8.8 – Demo8b character animation

In Demo8b, you can press the A key to initiate the transition between the Idle and Walking ani-

mations. Use left and right arrow keys to rotate. Pressing +/- increases or decreases the time scale.

Use the T key to toggle between the different transition modes: immediate, linear, and ease-in/

ease-out. The smooth animation transition using two channels is only applied for the Linear

and Exponential interpolation modes. The following steps outline the implementation of the

two-channel transition mechanism:

1.	 In the ModelComponent.h header file, the states of each channel are represented using

two-element arrays. The first element contains the current animation state, and the sec-

ond element holds the next animation state:

int _CurrentFrame[2]; //Current frame indices for the current and
next animations

int _PrevFrame[2]; //Previous frame indices for the current and
next animations

float _InterpolationTime[2]; //Interpolation times for the current
and next animations

Animating Your Characters270

In the ModelComponent.h header file, define the enum type eAnimTransitionMode and the

variable _AnimTransitionMode to indicate the currently active transition mode:

enum eAnimTransitionMode {

 Immediate = 0,

 Linear,

 EaseInEaseOut

};

eAnimTransitionMode _AnimTransitionMode;

2.	 Declare the member functions, SetTransitionMode and TransitionAnimation, in the

ModelComponent.h header file for the ModelComponent class, and implement them in the

ModelComponent.cpp source file:

•	 The SetTransitionMode function sets the current active animation transition

mode

•	 The TransitionAnimation function starts transitioning the current animation to

a new animation with the current transition mode:

//ModelComponent.h

void SetTransitionMode(eAnimTransitionMode TransitionMode);

bool TransiteAnimation(int AnimationIndex, float
TransitionSeconds = 0.1f);

//ModelComponent.cpp

void ModelComponent::SetTransitionMode(eAnimTransitionMode
TransitionMode) {

 _AnimTransitionMode = TransitionMode;

}

bool ModelComponent::TransitionAnimation(int AnimationIndex,
float TransitionSeconds) {

 if (_AnimTransitionMode == Immediate) {

 SetAnimation(AnimationIndex); //Transition immediately

 return true;

 }

 if (AnimationIndex >= 0 && AnimationIndex < _
AnimationsCount) {

 //Initialize transition variables

 _TransiteToAnimationIndex = AnimationIndex;

Chapter 8 271

 _TransitionDuration = TransitionSeconds;

_TransitionTime = 0.0f;

//Start playing the next animation on channel 1

 _PrevFrame[1] = 0;

 _CurrentFrame[1] = _Animations[_TransiteToAnimationIndex].
frameCount > 1 ? 1 : 0;

 _InterpolationTime[1] = 0.0f;

 return true;

 }

 return false;

}

3.	 Modify the InterpolateAnimation function to support two-channel animation transi-

tions. The changes primarily involve the following tasks:

1.	 During the animation transition, interpolate animations for both channels.

2.	 Calculate the normalized transition time t.

3.	 Blend the animations of the two channels. Use either the linear or ease-in/ease-

out formula to calculate the weights for each channel, and then combine their

animations.

The process is divided into two parts: animation channel interpolation and animation

blending between two channels. The code snippet below illustrates animation interpo-

lation for the first and second channels when they are in use:

//Interpolate animations for the effective channels

for(int channel = 0; channel < ChannelCount; ++channel) {

 anim = channel == 0 ? _Animations[_AnimationIndex] : _Animations[_
TransiteToAnimationIndex];

 t = (float)_InterpolationTime[channel] / _FrameDuration;

 if (_AnimationMode == Exponential_interpolation) {

 t *= t; //Square of t for exponential interpolation

 }

 Transform* preFrameTransform = &(anim.framePoses[_
PrevFrame[channel]][boneId]);

 Transform* currentFrameTransform = &(anim.framePoses[_
CurrentFrame[channel]][boneId]);

Animating Your Characters272

 channelOutTranslation[channel] = Vector3Lerp(preFrameTransform-
>translation, currentFrameTransform->translation, t);

 channelOutRotation[channel] = QuaternionLerp(preFrameTransform-
>rotation, currentFrameTransform->rotation, t);

 channelOutScale[channel] = Vector3Lerp(preFrameTransform->scale,
currentFrameTransform->scale, t);

}

The second part of the code utilizes the interpolated animation when only one channel is

active. Otherwise, it blends the animations from both channels using a weight calculated

with either the linear or ease-in-ease-out strategy:

if (ChannelCount == 1) { //No animation transition

 outTranslation = channelOutTranslation[0];

 outRotation = channelOutRotation[0];

 outScale = channelOutScale[0];

}

else {//ChannelCount == 2. Process the animation transition

 //Calculate the normalized transitioning time

 t = Clamp(_TransitionTime / _TransitionDuration, 0.0f, 1.0f);

 //Blend the two channels' animations with t

 if (_AnimTransitionMode == Linear) { //Linear transition
animation blending

 outTranslation = Vector3Lerp(channelOutTranslation[0],
channelOutTranslation[1], t);

 outRotation = QuaternionLerp(channelOutRotation[0],
channelOutRotation[1], t);

 outScale = Vector3Lerp(channelOutScale[0], channelOutScale[1],
t);

 }

 else {//Easy-in/Easy-out tranisiton animation blending

 float n = 2.0f;

 float easeInOut = t < 0.5 ? (float)(pow(2.0 * t, n) / 2.0) :
(float)(1.0 - pow(-2.0 * t + 2.0, n) / 2.0);

 outTranslation = Vector3Add(channelOutTranslation[0],
Vector3Scale(Vector3Subtract(channelOutTranslation[1],
channelOutTranslation[0]),easeInOut));

 outRotation = QuaternionAdd(channelOutRotation[0],
QuaternionScale(QuaternionSubtract(channelOutRotation[1],

Chapter 8 273

channelOutRotation[0]), easeInOut));

 outScale = Vector3Add(channelOutScale[0],
Vector3Scale(Vector3Subtract(channelOutScale[1],
channelOutScale[0]), easeInOut));

 }

}

To ensure Demo8b functions properly, we made some minor adjustments to other function

implementations within the ModelComponent class. Please refer to the project source code

(see the Technical requirements section) for further details on the implementation.

Congratulations! You’ve grasped the concept of how keyframe animations are implemented and

transitioned. Now, let’s shift our focus to a new topic: inverse kinematics. This technique allows

us to adapt animations dynamically in response to the environment, ensuring that movements

are realistic and responsive. By exploring inverse kinematics, we can enhance our animations

further, enabling characters to interact more naturally with their surroundings.

Using inverse kinematics
A character skeleton can be visualized as a tree structure, where each bone represents a node

connected to its parent and child bones. To calculate bone transformations, the process begins

at the root and traverses through all child bones, determining their transformations based on

the parent bone’s transform. This hierarchical approach is known as Forward Kinematics (FK),

which computes the position of the end effector by considering the current joint angles and the

lengths of the links. By applying FK, we can effectively build the skeleton’s poses for animations.

In real life, there are instances where we have a clear endpoint that a character’s limb should

reach, such as when an animated character stretches out its arm to grab a box on a table. In this

scenario, it’s essential that the grab animation precisely aligns the character’s hand with the

position of the box, rather than relying on a fixed offset. This level of adaptability enhances the

realism of the player’s experience, making interactions feel more intuitive and believable. Similar

cases can be observed in various animations, like ensuring a character’s footsteps align with the

contours of stairs or positioning a fighter’s punches accurately against an opponent’s body. These

dynamic adjustments highlight the significance of using IK, a technique that is used in robotics

and animation to calculate the necessary joint angles to achieve a specific position or orientation

of a connected object and improve overall immersion.

Animating Your Characters274

A typical use case of IK is in robotic arms, where the end effector needs to reach a specific target.

In this section, we will introduce a commonly employed method, Jacobian transpose. Before

delving into the algorithm, it’s essential to present a robotic arm scenario and introduce funda-

mental terms and mathematical concepts.

Understanding the robotic arm scenario
To facilitate a better understanding of the application of the IK algorithm, we will narrow the

focus to a concrete example—a robotic arm scenario (see Figure 8.9):

•	 We have a 2-joint robotic arm.

•	 Each joint is capable of rotating in 3D space (around the X, Y, and Z axes), providing a

total of 6 degrees of freedom (2 joints × 3 angles per joint).

•	 Joint 1 is located at the base of the robot and has a link length of 5 units.

•	 Joint 2 is situated at the end of the first link and has a link length of 4 units.

•	 We want the end effector to move toward the target position.

Let’s look at some important terms now.

Learning the fundamental terms and mathematical concepts
The following are the fundamental terms and mathematical representations related to the

Jacobian transform algorithm.

•	 End effector refers to the component at the tip of the arm that interacts with the

environment.

•	 Target position is the position in 3D space the the end effector is trying to reach.

•	 Error (error vector) represents the difference on each axis (X, Y, Z) between the target

position and the current end effector position:

Error = (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧)

•	 Jacobian transpose algorithm is a method that iteratively adjusts a robotic arm’s joint

angles to make the end effector reach a desired position in space, minimizing the error

between the current end effector position and the target.

Chapter 8 275

•	 Jacobian matrix describes the relationship between joint angles and the position of the

end effector. It consists of 3 rows—corresponding to each spatial dimension (x, y, z)—and

6 columns, representing the two joints, each of which has 3 rotational degrees of freedom.

The values within the matrix indicate how much the end effector’s position changes in

the x, y, and z directions in response to small adjustments in one of the joint angles:

𝐽𝐽 𝐽 𝐽𝐽𝐽𝐽11 𝐽𝐽12 𝐽𝐽13 𝐽𝐽14 𝐽𝐽15 𝐽𝐽16𝐽𝐽21 𝐽𝐽22 𝐽𝐽23 𝐽𝐽24 𝐽𝐽25 𝐽𝐽26𝐽𝐽31 𝐽𝐽32 𝐽𝐽33 𝐽𝐽34 𝐽𝐽35 𝐽𝐽36) = (

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑥 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑥 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑥 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑥 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑥 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧𝑧 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥𝑥 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦𝑦 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑧𝑧𝑧)

•	 Each row corresponds to a different spatial coordinate (x, y, z) of the end effector.

•	 Each column corresponds to how a specific joint angle affects those coordinates.

Since each joint has 3 rotational axes (around X, Y, and Z), the columns are grouped

into sets of 3 for each joint.

•	 Jacobian transpose is the transpose of the original Jacobian matrix for solving the joint

angles in inverse kinematics problems. It turns a mapping from joint velocities to end

effector velocities into a mapping from end effector velocity to joint velocity changes:

𝐽𝐽𝑇𝑇 =
(

𝐽𝐽11 𝐽𝐽21 𝐽𝐽31𝐽𝐽12 𝐽𝐽22 𝐽𝐽32𝐽𝐽13 𝐽𝐽23 𝐽𝐽33𝐽𝐽14 𝐽𝐽24 𝐽𝐽34𝐽𝐽15 𝐽𝐽25 𝐽𝐽35𝐽𝐽16 𝐽𝐽26 𝐽𝐽36)

•	 Delta angles indicate how much each joint’s angles (in X, Y, Z) should change to reduce

the error: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷 𝐷 𝐷𝐷𝑇𝑇 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

Now that we have covered the IK essential terms and mathematical foundations, we can move

on to understanding how the algorithm works in practice.

Animating Your Characters276

Understanding the algorithm
The key process of the algorithm is to adjust joint angles based on the current error and the

relationship described by the Jacobian transpose iteratively and refine the position of the end

effector step by step:

1.	 Compute the current position of the end effector using the forward kinematics function.

2.	 Calculate the errors.

3.	 Compute the Jacobian matrix for the current joint angles.

4.	 Transpose the Jacobian matrix and multiply by the error to compute the delta angles.

5.	 Update the joint angles using delta angles to reduce the error.

Now that we’ve introduced the Jacobian transpose method and its underlying principles, we can

see how this algorithm is applied in practice. To better illustrate how the method works, let’s

turn to Demo8c, a project that simulates a robotic arm with two joints.

Demo8c – using IK to simulate a robotic arm
The Demo8c project showcases a straightforward two-joint arm that attempts to reach a red tar-

get ball (see Figure 8.9). The robotic arm uses the Jacobian transpose algorithm to move its end

effector toward a target. By adjusting the joint angles iteratively, the arm demonstrates how the

method efficiently minimizes the error between its current position and the target.

While running the demo, you can use the arrow keys to move the ball left and right, as well as up

and down, and the W and S keys to move the ball forward and backward. You’ll notice that the

arm’s end point (or end effector) adjusts its joint angles to reach the ball.

Chapter 8 277

Figure 8.9 – Using IK to simulate a robotic arm

Let’s begin by exploring the Demo8c header file to understand the key variable definitions and

function declarations:

•	 _JointAngles: An array that stores the two joint angles

•	 _JointLength: An array that represents the length vectors for the two joints

•	 _JacobianMatrix: An array representing the Jacobian matrix. The array has a fixed length,

determined by the matrix’s 3 rows (corresponding to the X, Y, and Z axes) and 3 columns

(representing rotations around these axes) for each of the 2 joints.

•	 _TargetPosition: The position of the red ball, which represents the target position.

•	 _DeltaAngles: An array that stores the delta angles for the two joints.

•	 InverseKinematics: The function that applies the Jacobian transpose method to compute

and adjust the two joint angles.

•	 ForwardKinematics: The function that computes the end effector position based on cur-

rent joint angles.

•	 ComputeJacobinaMatrix: The function that computes and fills up the Jacobian matrix.

Animating Your Characters278

Let’s look at the code now!

#pragma once

#include "Knight.h"

#define IK_NUMBER_OF_JOINTS 2

#define IK_MAX_ITERATIONS 5000

#define IK_TOLERANCE 0.01f

#define IK_LEARNING_RATE 0.1f

#define IK_MIN_ERROR 1.0f

class Demo8c : public Knight {

private:

 Vector3 _JointAngles[IK_NUMBER_OF_JOINTS] = {

 Vector3{ 0.0f, 0.0f, 0.0f }, Vector3{ 0.0f, 0.0f, 0.0f }

 };

 Vector3 _JointLengths[IK_NUMBER_OF_JOINTS] = {

 Vector3{ 5.0f, 0.0f, 0.0f }, Vector3{ 4.0f, 0.0f, 0.0f }

 };

 float _JacobianMatrix[18]; //3 rows * (3 angles * 2 joints)

 Vector3 _TargetPosition;

private:

 float _MinErrorLength;

 Vector3 _DeltaAngles[2];

 Vector3 _BestJointAngles[2];

protected:

 void InverseKinematics();

 Vector3 ForwardKinematics(Vector3 *Angles = nullptr);

 void ComputeJacobianMatrix();

 void DrawRoboticArm();

 ……

};

Chapter 8 279

The implementation of the InverseKinematics function iterates up to MAX_ITERATIONS. In each it-

eration, it calls the ForwardKinematics function to compute and retrieve the end effector’s position,

then calculates the error vector using vector subtraction. Next, it calls the ComputeJacobianMatrix

function to generate the Jacobian matrix and uses it to compute the DeltaAngles. Throughout the

iterations, the function keeps track of the best DeltaAngles found and applies these adjustments

to the JointAngles once the loop is complete:

void Demo8c::InverseKinematics() {

 for (int i = 0; i < IK_MAX_ITERATIONS; ++i) {

 Vector3 endEffector = ForwardKinematics();

 Vector3 error = Vector3Subtract(_TargetPosition, endEffector);

 float errorLength = Vector3Length(error);

 if (errorLength <= IK_MIN_ERROR) {

 break;

 }

 if (i == 0 || _MinErrorLength > errorLength) {

 _MinErrorLength = errorLength;

 _BestJointAngles[0] = _JointAngles[0];

 _BestJointAngles[1] = _JointAngles[1];

 }

 ComputeJacobianMatrix();

 _DeltaAngles[0] = Vector3 {

 error.x * _JacobianMatrix[0] + error.y * _JacobianMatrix[1] +
error.z * _JacobianMatrix[2],

 error.y * _JacobianMatrix[3] + error.y * _JacobianMatrix[4] +
error.z * _JacobianMatrix[5],

 error.z * _JacobianMatrix[6] + error.y * _JacobianMatrix[7] +
error.z * _JacobianMatrix[8]

 };

 _DeltaAngles[1] = Vector3 {

 error.x * _JacobianMatrix[9] + error.y * _JacobianMatrix[10] +
error.z * _JacobianMatrix[11],

 error.y * _JacobianMatrix[12] + error.y * _JacobianMatrix[13] +
error.z * _JacobianMatrix[14],

 error.z * _JacobianMatrix[15] + error.y * _JacobianMatrix[16] +
error.z * _JacobianMatrix[17]

 };

Animating Your Characters280

 for (int i = 0; i < IK_NUMBER_OF_JOINTS; ++i) {

 _JointAngles[i] = Vector3Add(_JointAngles[i], Vector3Scale(_
DeltaAngles[i], IK_LEARNING_RATE));

 }

 }

 _JointAngles[0] = _BestJointAngles[0];

 _JointAngles[1] = _BestJointAngles[1];

}

In the sample code for the InverseKinematics function, we didn’t explicitly transpose the matrix.

Instead, we directly calculated the delta angles from the array, as we already know the formula

to obtain the result without needing to perform the transpose operation.

Refer to the following formulas for a clearer understanding of the calculation details for the

rotation angles of each joint:

•	 First joint: ∆𝜃𝜃𝑥𝑥𝑥 = 𝐽𝐽11 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥 + 𝐽𝐽21 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦 + 𝐽𝐽31 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧 ∆𝜃𝜃𝑦𝑦𝑦 = 𝐽𝐽12 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥 + 𝐽𝐽22 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦 + 𝐽𝐽32 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧 ∆𝜃𝜃𝑧𝑧𝑧 = 𝐽𝐽13 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥 + 𝐽𝐽23 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦 + 𝐽𝐽33 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧

•	 Second joint: ∆𝜃𝜃𝑥𝑥𝑥 = 𝐽𝐽14 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥 + 𝐽𝐽24 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦 + 𝐽𝐽34 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧 ∆𝜃𝜃𝑦𝑦𝑦 = 𝐽𝐽15 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥 + 𝐽𝐽25 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦 + 𝐽𝐽35 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧 ∆𝜃𝜃𝑧𝑧𝑧 = 𝐽𝐽16 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑥𝑥 + 𝐽𝐽26 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦 + 𝐽𝐽36 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑧𝑧

For the remaining implementation details, please refer to the source code in Demo8c.cpp. It pri-

marily consists of the mathematical computations and logic needed to control the robotic arm

and the visualization. This demo code can easily be adapted for more complex 3D configurations

by adjusting the number of joints, joint limits, or constraints.

Chapter 8 281

Summary
This chapter covered essential topics and techniques related to character animations, providing

a comprehensive understanding of how to create engaging and fluid animations for games.

In the first section, we explored keyframe animation, beginning with the foundational concept of

simple frame-by-frame animation. We learned about keyframes and how various interpolation

methods, such as linear and ease-in/ease-out, are employed to smooth out animations and main-

tain consistent animation speeds. These techniques are crucial for achieving a polished look in your

character movements, ensuring they flow seamlessly and enhance the overall visual experience.

The second part delved into the structural aspects of character animation, focusing on how a

character’s skeleton is constructed and animated using bone transformations and keyframes. Two

demos, Demo8a and Demo8b, showcased the implementation of the interpolation techniques to

smooth animations and facilitate transitions between them. Additionally, a two-channel mech-

anism was introduced for blending animations, enabling more complex and realistic animation

transitions.

In the final section, we examined the application of inverse kinematics for adapting animations to

the environment. The Jacobian transpose method was introduced and applied in Demo8c, which

demonstrated the functionality of a two-joint robotic arm. This technique allows for dynamic

adjustments in character movements, enhancing realism and interaction with the game world.

By mastering these animation techniques, you can significantly elevate the quality and immersion

of your game’s character animations, creating smoother transitions, realistic movements, and

dynamic interactions with the environment.

In the next chapter, we will explore useful and widely utilized AI algorithms that can further

enhance gameplay and character behaviors.

9
Building AI Opponents

Artificial Intelligence (AI) plays a pivotal role in shaping the player’s experience in modern games.

From enemies that react to player actions to NPCs with lifelike behaviors, AI is the cornerstone

of making game worlds feel alive and dynamic. At its core, AI in games involves creating systems

that simulate decision-making, movement, and problem-solving, enabling virtual agents to

perform tasks intelligently and efficiently.

Unlike AI in other domains, such as autonomous vehicles or robotics, game AI emphasizes creat-

ing engaging and entertaining behavior rather than achieving perfect solutions. For example, an

enemy in a stealth game might deliberately miss spotting the player to build suspense, whereas

in real-world AI, avoiding mistakes would be the priority. This unique requirement calls for al-

gorithms tailored to gaming scenarios.

This chapter will delve into some of the most widely used AI techniques in games, including:

•	 Understanding Finite State Machines

•	 Demo9a: Controlling character animation with an FSM

•	 Using a behavior tree to make decisions

•	 Steering for movement

•	 Demo9b: Using an FSM and BT to control the NPC

•	 Understanding A* pathfinding

•	 Demo9c: Pathfinding in action with character movement

Each technique has its strengths, and understanding their implementation and use cases will

empower you to design intelligent, adaptable AI systems for your games. Through detailed ex-

planations and C++ code examples, this chapter aims to provide a solid foundation in game AI

programming.

Building AI Opponents284

Technical requirements
The book’s GitHub repo at https://github.com/PacktPublishing/Practical-C-Game-

Programming-with-Data-Structures-and-Algorithms contains demo projects in the Knight

solution (https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-

Structures-and-Algorithms/tree/main/Knight):

Project Name Description

Demo9a Controls character animation using a Finite State Machine

Demo9b Implements a Behavior Tree to manage decision-making for the NPC

Demo9c Utilizes the A* pathfinding algorithm to enable the NPC to navigate

through the maze

Table 9.1 – Sample projects used in this chapter

Understanding Finite State Machines
A Finite State Machine (FSM) is one of the most fundamental tools for implementing deci-

sion-making logic in game AI. FSMs are widely used in game development. They provide a clear,

organized structure for managing an agent’s behavior, making them ideal for straightforward

AI systems.

An FSM provides a computational model that represents and controls the behavior of a system.

It consists of a finite number of states, transitions, and actions, where:

•	 State represents the current condition or behavior of an AI agent.

•	 Transition defines the conditions for switching from one state to another.

•	 Action is the task performed while in a particular state or during a transition.

Example of an FSM
Let’s explore an FSM example that manages animation transitions for a player character (see

Figure 9.1). In this example, the FSM controls the character’s transitions among three animations:

Idle (state = 0), Walk (state = 1), and Attack (state = 2). A state variable serves as the

condition that triggers transitions between these states.

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight

Chapter 9 285

For instance, when the value of state is changed from 0 to 1, the FSM transitions from the Idle

state to the Walk state. Similarly, if the state variable changes, the FSM switches from the pres-

ent state to a new state. This simple structure demonstrates how an FSM can effectively manage

animation states in a clear and logical manner.

Figure 9.1 – A simple character animation control FSM

Each state in an FSM can have specific actions associated with it, either when entering the state

or while remaining in it. For example, consider the Idle state: if the player presses and holds the

W key, the FSM changes the state value from 0 (Idle) to 1 (Walk) and transitions to the Walk

state. During this transition, an action is performed to switch the character’s animation from

Idle to Walk.

Implementing an FSM
Based on the concept of an FSM, we can design an FSM class that manages multiple predefined

states and handles transitions between them. In this case, we need three states that represent

the Idle, Walk, and Attack states. The FSM transitions from one state to another when certain

conditions are met.

Let’s write code to implement an FSM along with its three states. To begin with, we can define

an FSMState class to serve as the base class for individual states and an FSM class to represent

the finite-state machine:

//FSM.h

class FSMState

{

public:

virtual void Enter(FSM* FiniteStateMachine) = 0;

		 //is called when entering this state

Building AI Opponents286

virtual void Update(FSM* FiniteStateMachine, float DeltaTime) = 0;

		 //is called every frame

 virtual ~FSMState() = default;

};

class FSM

{

public:

 typedef enum

{

 UNKNOWN = 0,

 IDLE= 2,

 ATTACK = 5,

 WALK = 10,

 } ECharacterState; 	 //The enum of animation states

public:

 FSM(SceneActor* Character, ModelComponent* AnimController);

 virtual ~FSM();

 void SetState(ECharacterState NewState);

 void Update(float DeltaTime);

 ECharacterState GetPrevState() { return _PrevState; }

 ECharacterState GetCurrentState() { return _CurrentState; }

 SceneActor* GetCharacter() { return _Character; }

 ModelComponent* GetAnimController() { return _AnimController; }

protected:

 FSMState* _States[15];	//Stores the 15 animation states

 ECharacterState _PrevState = UNKNOWN;

 ECharacterState _CurrentState = UNKNOWN;

 SceneActor* _Character;//The controlled character

 ModelComponent* _AnimController;

};

Since the FSM in this demo only handles transitions between three states—Idle, Walk, and At-

tack—only these three values from the ECharacterState enum are used, even though the character

model includes more animations.

Chapter 9 287

The two key functions are SetState and Update. The SetState function handles transitioning to

a new state, replacing the current one, while the Update function simply calls the Update function

of the current state:

void FSM::SetState(ECharacterState NewState)

{

 _PrevState = _CurrentState;

 _CurrentState = NewState;

 _States[_CurrentState]->Enter(this);

}

void FSM::Update(float DeltaTime)

{

 _States[_CurrentState]->Update(this, DeltaTime);

}

Next, we can define three states—PlayerIdleState, PlayerWalkState, and PlayerAttackState—

that inherit from the FSMState class to represent the Idle, Walk, and Attack states. Additionally,

we’ll create a dedicated state machine for the player character, named PlayerFSM, which will be

a subclass of the FSM class:

class PlayerFSM : public FSM

{

public:

 PlayerFSM(SceneActor* Character, ModelComponent* AnimController);

};

class PlayerIdleState : public FSMState

{

public:

 void Enter(FSM* FiniteStateMachine) override;

 void Update(FSM* FiniteStateMachine, float DeltaTime) override;

};

class PlayerWalkState : public FSMState

{

public:

 void Enter(FSM* FiniteStateMachine) override;

 void Update(FSM* FiniteStateMachine, float DeltaTime) override;

Building AI Opponents288

};

class PlayerAttackState : public FSMState

{

private:

 float _Timer = 0.0f;

public:

 void Enter(FSM* FiniteStateMachine) override;

 void Update(FSM* FiniteStateMachine, float DeltaTime) override;

};

The constructor of the PlayerFSM class performs three initial tasks:

•	 It sets the character and its animation controller to the _Character and _AnimController

variables.

•	 It instantiates the animation states for the IDLE, WALK, and ATTACK states.

•	 It sets the current state to IDLE.

Let’s look at the implementation, as follows:

PlayerFSM::PlayerFSM(SceneActor* Character, ModelComponent*
AnimController)

 : FSM(Character, AnimController)

{

 _Character = Character;

 _AnimController = AnimController;

 _States[IDLE] = new PlayerIdleState();

 _States[WALK] = new PlayerWalkState();

 _States[ATTACK] = new PlayerAttackState();

 SetState(IDLE);

}

Based on the code above, each state’s Enter function is responsible for transitioning the character

to the corresponding animation. In the Update functions, we can define conditions that trigger

transitions from the current state to the next based on specific actions.

To see how actions and conditions are implemented within these state functions, let’s delve into

the example project, Demo9a, in the next section.

Chapter 9 289

Demo9a: Controlling character animation with an
FSM
Demo9a showcases a player-controlled character. The player can navigate the character around

the terrain using the WASD keys. Pressing the spacebar triggers an attack.

The screenshot below shows an animated character that the player can control to move and

perform attacks. The control keys are indicated in green text in the top-left corner of the screen.

Figure 9.2 – The player-controlled character based on an FSM

Building on PlayerFSM and the PlayerIdle, PlayerWalk, and PlayerAttack states defined in the

earlier section, we can now implement the state functions. For the Enter functions, as mentioned

previously, we simply invoke the character’s animation controller’s TransitionAnimation func-

tion. This ensures that the appropriate animation is played when entering each state:

void PlayerIdleState::Enter(FSM* FiniteStateMachine)

{

 if (FiniteStateMachine->GetPrevState() == PlayerFSM::UNKNOWN)

 {

 FiniteStateMachine->GetAnimController()-
>SetAnimation(PlayerFSM::IDLE);

 }

 else

Building AI Opponents290

 {

 FiniteStateMachine->GetAnimController()->TransitionAnimation(Playe
rFSM::IDLE);

 }

}

……

void PlayerWalkState::Enter(FSM* FiniteStateMachine)

{

 FiniteStateMachine->GetAnimController()->TransitionAnimation(PlayerFSM
::WALK);

}

……

void PlayerAttackState::Enter(FSM* FiniteStateMachine)

{

 _Timer = 0.5f;

 FiniteStateMachine->GetAnimController()->TransitionAnimation(FSM::ATTA
CK);

}

Here, notice that the implementation of the Enter function in the PlayerIdleState class differs

slightly from the others. This is because the IDLE state is initially set from the UNKNOWN state at

the beginning, requiring a special process to handle this initial transition.

The final and crucial step is implementing the Update functions for each state. These functions

handle the conditions for state transitions, which are structured based on the following matrix:

Current State Condition Enter State

IDLE Pressed the spacebar ATTACK

IDLE Pressed A, W, D, or S WALK

WALK Pressed the spacebar ATTACK

WALK Released A, W, D, or S IDLE

ATTACK Timeout (_Timer <= 0.0f) IDLE

Table 9.2 – Demo9a: State transition matrix

Chapter 9 291

To change from the current state to another, we can call the SetState function of the FSM in-

stance. To transition the character to a specific animation, we retrieve the character’s animation

controller from the FSM instance and invoke its TransitionAnimation function.

Here’s an example of the Update function for the PlayerIdleState class:

void PlayerIdleState::Update(FSM* FiniteStateMachine, float DeltaTime)

{

 if (IsKeyPressed(KEY_SPACE))

 {

 FiniteStateMachine->SetState(PlayerFSM::ATTACK);

 return;

 }

 SceneActor* character = FiniteStateMachine->GetCharacter();

 if (IsKeyDown(KEY_A))

 {

 character->Rotation.y = 90.0f;

 FiniteStateMachine->SetState(PlayerFSM::WALK);

 }

 else if (IsKeyDown(KEY_W))

 {

 character->Rotation.y = 0.0f;

 FiniteStateMachine->SetState(PlayerFSM::WALK);

 }

 else if (IsKeyDown(KEY_D))

 {

 character->Rotation.y = -90.0f;

 FiniteStateMachine->SetState(PlayerFSM::WALK);

 }

 else if (IsKeyDown(KEY_S))

 {

 character->Rotation.y = 180.0f;

 FiniteStateMachine->SetState(PlayerFSM::WALK);

 }

}

Building AI Opponents292

The Demo9a project includes the complete source code for reference. You can compile and run the

demo to explore the full implementation.

Now, you have a solid understanding of the core concepts of an FSM, demonstrated through the

player character animation control example. It’s important to note that the FSM method is not

limited to player animation systems; it can also be applied to a variety of AI behavior simulations.

These include enemy AI, game mechanics, dialog systems, game state management, and flow

control, among others. FSMs are a versatile option to consider whenever you need to design a

new AI control system, offering a clear and structured approach to managing state transitions.

After learning how FSMs are used to control character animations, we can now move on to ex-

ploring Behavior Trees, which offer a more flexible and scalable solution for handling complex

decision-making processes in game AI.

Using a Behavior Tree to make decisions
In the previous section, we introduced an FSM to control the player’s character animation, where

decisions on movement and attack were made by the player. But how does an NPC make deci-

sions? In this section, we will explore Behavior Trees, a powerful tool for handling NPC AI deci-

sion-making.

A Behavior Tree (BT) is a hierarchical structure decision-making model used primarily in AI

systems. The basic structure consists of nodes that can be of different types: composite (e.g., se-

lectors and sequences), decorators, and leaf nodes (e.g., tasks and conditions). These nodes are

organized in a tree-like structure, where each node represents a specific action or condition in

the decision-making process.

Here is a breakdown of the key components that make up a BT:

•	 Action nodes perform tasks such as moving, attacking, or interacting with objects.

•	 Condition nodes check whether certain conditions are met, such as whether an NPC can

see the player or an object is within range.

•	 Composite nodes control the flow of the tree by managing the execution of child nodes.

The most common types of composite nodes are Sequence and Selector.

•	 A Sequence node runs its child nodes in order, one after another, and only suc-

ceeds if all child nodes succeed. If any child node fails, the entire sequence fails.

•	 A Selector node runs its child nodes in order but succeeds as soon as one of the

child nodes succeeds.

Chapter 9 293

•	 Decorator nodes modify the behavior of other nodes, often by adding conditions or al-

tering the flow of execution.

•	 Blackboard is an important concept in BTs. It acts as a shared memory storage system that

holds information relevant to the BT’s decision-making process. The blackboard stores

variables, such as the NPC’s position, target, health, or the state of the environment, which

can be accessed and modified by nodes throughout the tree. This allows the tree to make

decisions based on dynamic conditions, enabling more flexible and adaptive behaviors.

BTs combine different types of nodes along with a shared blackboard and enable NPCs to make

complex decisions according to changing conditions in the game world.

Example of a BT
Let’s use a simple BT example (see Figure 9.3) to illustrate how an NPC leverages the BT to make

decisions:

Figure 9.3 – A BT used for the NPC decision-making

Now, let’s understand the working of the BT in Figure 9.3.

The root node of the BT is a Selector node. During game updates, the evaluation begins at the

root node and proceeds from the leftmost child node (Guard) to the rightmost child node (Se-

quence). If the Guard node succeeds, the Selector node also succeeds; otherwise, the Sequence

node is evaluated.

The Guard node calculates the distance between itself and the player. It succeeds if the player is

within a specified range; otherwise, it fails.

Building AI Opponents294

If the Guard node fails, the next child (which, in this case, is the Sequence node) begins its evalu-

ation. The Sequence node also processes its children sequentially, starting with the leftmost node

(GotoHero) and proceeding to the rightmost node (Attack). The sequence evaluation terminates

and returns a failure as soon as any child node fails.

The GotoHero node controls the character’s movement toward the player and checks whether

the player is within attack range. If the player is outside the attack range, the node fails. However,

when the player enters the attack range, the node succeeds.

When the GotoHero node succeeds, the sequence proceeds to the next node, the Attack node,

which directs the NPC to execute an attack.

This process repeats with each frame update, continuously refreshing the NPC’s state.

Implementation of a BT
Now that you should have some idea about how the BT works, let’s explore the code implemen-

tations for more details.

First, we need to create a TreeNode class to serve as the base for other node types:

typedef enum

{

	 BT_SUCCESS,

	 BT_FAILURE,

	 BT_RUNNING

} ETreeStatus;

class TreeNode

{

public:

	 TreeNode() : _BT(nullptr) {}

	 TreeNode(BehaviourTree* BT);

	 virtual ~TreeNode();

	 virtual ETreeStatus Update(float DeltaTime);

	 BehaviourTree* GetBehaviourTree() { return _BT; }

protected:

	 BehaviourTree* _BT;

};

Chapter 9 295

Next, we can define the subclasses, starting with the composite class and its child classes, Sequence

and Selector, as shown in Figure 9.4. Following that, we can implement the task classes, as shown

in the following class diagram:

Figure 9.4 – BT nodes class diagram

For the declarations of the TreeNode subclasses, refer to the following C++ code:

class CompositeNode : public TreeNode

{

protected:

 vector<std::shared_ptr<TreeNode>> _children;

public:

 void AddChild(shared_ptr<TreeNode> childNode);

};

class Sequence : public CompositeNode

{

public:

 ETreeStatus Update(float DeltaTime) override;

};

class Selector : public CompositeNode

{

public:

 ETreeStatus Update(float DeltaTime) override;

};

Building AI Opponents296

In the above class declaration code, the CompositeNode class contains a vector variable, _children,

which holds its child nodes. It also includes an AddChild function for adding child nodes. The im-

plementations of the AddChild function and the Update functions for the two subclasses, Sequence

and Selector, are provided as follows:

void CompositeNode::AddChild(std::shared_ptr<TreeNode> childNode)

{

 _children.push_back(childNode);

}

ETreeStatus Sequence::Update(float DeltaTime)

{

 for (const auto& child : _children)

 {

 ETreeStatus status = child->Update(DeltaTime);

 if (status == BT_FAILURE || status == BT_RUNNING)

 {

 return status;

 }

 }

 return BT_SUCCESS;

}

ETreeStatus Selector::Update(float DeltaTime)

{

 for (const auto& child : _children)

 {

 ETreeStatus status = child->Update(DeltaTime);

 if (status == BT_SUCCESS || status == BT_RUNNING)

 {

 return status;

 }

 }

 return BT_FAILURE;

}

The implementations of the task functions will be covered in the Demo9b: Using FSM and BT to

control the NPC section.

Chapter 9 297

Now, let’s move on to the final step—defining the BehaviourTree class and the Blackboard class:

class Blackboard

{

public:

 float DistanceFromPlayer;

 SceneActor* NPC;

 EnemyFSM* FSM;

 SceneActor* Player;

 Vector3 Velocity;

 float WalkSpeed;

 float MaxSpeed;

};

……

class BehaviourTree

{

private:

 Blackboard _blackboard;

 shared_ptr<Selector> _root;

private:

 void Steering(float DeltaTime);

public:

 BehaviourTree(SceneActor* NPC, EnemyFSM* NPC_FSM, SceneActor* Player);

 void Update(float DeltaTime);

 Blackboard& GetBlackboard() { return _blackboard; }

};

The BehaviourTree class holds the instance of Blackboard, which serves as a container for shared

data and the root node of the tree. The GetBlackboard function provides an interface for nodes

to access the blackboard.

Now, let’s take a closer look at the function implementations of the BehaviourTree class:

BehaviourTree::BehaviourTree(SceneActor* NPC, EnemyFSM* NPC_FSM,
SceneActor* Player)

{

 //Initialize the blackboard

 _blackboard.NPC = NPC;

 _blackboard.FSM = NPC_FSM;

Building AI Opponents298

 _blackboard.Player = Player;

 _blackboard.Velocity = Vector3Zero();

 _blackboard.WalkSpeed = 1.5f;

 _blackboard.MaxSpeed = 3.0f;

 //Build up the behaviour tree

 _root = make_shared<Selector>();

 _root->AddChild(make_shared<GuardTask>(this));

 auto sequence = make_shared<Sequence>();

 sequence->AddChild(make_shared<GotoHeroTask>(this));

 sequence->AddChild(make_shared<AttackTask>(this));

 _root->AddChild(sequence);

}

void BehaviourTree::Update(float DeltaTime)

{

 //Calculate the distance from the player and the emnemy

 _blackboard.DistanceFromPlayer = Vector3Distance(_blackboard.NPC-
>Position, _blackboard.Player->Position);

 //Update the tree

 _root->Update(DeltaTime);

 //Update the finite state machine for animation control

 _blackboard.FSM->Update(DeltaTime);

 //Steering process

 Steering(DeltaTime);

}

The BehaviourTree constructor is responsible for initializing the blackboard and constructing

the tree by adding child nodes. This setup ensures that the tree structure is ready for evaluation

during game updates.

The Update function performs the following tasks:

1.	 It calculates the current distance between the player and the NPC and stores this value

in the blackboard. This distance information helps the enemy NPC determine whether

to chase the player or execute an attack.

2.	 It updates both the BT and the FSM, ensuring smooth transitions between animations

for the NPC.

3.	 The final step is performing the steering process.

Chapter 9 299

The steering process is used to control and adjust the NPC’s movement. One apparent outcome

is that it prevents characters from overlapping with one another. Let’s explore how this process

works in the next section.

Steering for movement
Steering behaviors are widely used in games to manage the dynamic and smooth movement

of characters, such as NPCs or vehicles. Typical steering behaviors include tasks such as seeking,

fleeing, arriving, and wandering, where an AI character adapts its movement based on environ-

mental factors or specific objectives.

To better understand how steering controls an NPC’s movement and maneuvering, we use Figure

9.5 to illustrate an example of an NPC avoiding overlapping with the player character:

Figure 9.5 – An NPC steering move example

Let’s understand what’s going on in Figure 9.5, as follows:

1.	 a: Both the player and the NPC are moving at speeds Vp and Vn, respectively, and their

paths intersect, leading to a potential collision.

2.	 b: When the player and NPC come close enough to block each other’s movement, a push-

away velocity (Vpush) is applied to the NPC to resolve the obstruction.

3.	 c: The player continues moving along its path, while the NPC is pushed to the right to

clear the way for the player. The push-away velocity (Vpush) remains applied to the NPC

until it has completely moved away from the player.

Building AI Opponents300

Refer to the following code snippet for a detailed implementation of the Steering function, which

demonstrates how to calculate and apply steering behaviors to control NPC movement effectively:

void BehaviourTree::Steering(float DeltaTime)

{

 auto modelComponent = _blackboard.NPC->GetComponent<ModelComponent>();

 FSM::ECharacterState animState = (FSM::ECharacterState)modelComponent-
>GetAnimation();

 //Get the vector from Player to NPC

 Vector3 dir = Vector3Subtract(

 _blackboard.Player->Position,

 _blackboard.NPC->Position);

 _blackboard.Velocity = Vector3Zero();

 if (Vector3Equals(dir, Vector3Zero())) {

 dir = Vector3{ 0.0f, 0.0f, 1.0f };

 }

 //Calculate the movement velocity

 if (animState == FSM::WALK)

 {

 dir = Vector3Normalize(dir);

 _blackboard.Velocity = Vector3Scale(

 dir, _blackboard.WalkSpeed * DeltaTime);

 }

 //Add Vpush when NPC and Player are close

 if (_blackboard.DistanceFromPlayer < 2.6f)

 {

 Auto Vpush = Vector3Scale(Vector3Negate(dir),

 _blackboard.MaxSpeed * DeltaTime);

 _blackboard.Velocity = Vector3Add(_blackboard.Velocity,

 Vpush);

 }

 //Move NPC to the new location

 _blackboard.NPC->Position = Vector3Add(_blackboard.NPC->Position, _
blackboard.Velocity);

 //Rotate NPC to face Player

 _blackboard.NPC->Rotation.y = RAD2DEG * atan2f(dir.x, dir.z);

}

Chapter 9 301

The preceding code snippet illustrates the five steps involved in applying the steering process to

character movement. It begins by calculating the movement velocity using the vector from the

player to the enemy. If the enemy is close enough, a push-back velocity (Vpush) is applied to create

distance. The enemy is then moved and rotated to achieve the correct position and orientation.

With a clear understanding of BTs and steering and how they guide NPC movement, we can now

move on to the practical application of these concepts. In the next section, Demo9b presents a

demo project that brings these ideas to life.

Demo9b: Using an FSM and BT to control the NPC
Demo9b builds upon the foundation of Demo9a adding new elements to enhance the gameplay. In

this demo, the player can control the protagonist to move around and attack. Additionally, an

NPC is introduced on the battlefield. The NPC leverages a BT to determine its actions, such as

remaining in the guard state, going to the player, or attacking the player. Its animation transitions

are seamlessly managed using an FSM.

Let’s explore a typical gameplay scenario to understand the NPC’s behavior. Initially, the NPC

remains stationary, observing its surroundings. When the player character enters the NPC’s vision

range, the NPC transitions into pursuit mode, running toward the player to close the distance

and move within attack range to launch an attack. However, if the player character successfully

leaves the NPC’s vision range, the NPC halts its pursuit and returns to its guard state. This sce-

nario highlights the seamless interaction between the NPC’s BT and FSM, creating dynamic and

engaging gameplay.

Figure 9.6 illustrates this gameplay scenario, as follows:

Figure 9.6 – NPC decision-making with a BT

Building AI Opponents302

Here:

1.	 a: The player moves closer to the NPC.

2.	 b: The NPC sees the player.

3.	 c: The NPC goes toward the player.

4.	 d: The NPC and the player attack.

In the previous sections, we covered most of the essential code implementations for the BT. To

get Demo9b to work, the final step is to define the three task nodes: GuardTask, GotoHeroTask, and

AttackTask. The class declarations for these task nodes are provided in the code snippet as follows:

class GuardTask : public TreeNode

{

public:

 GuardTask(BehaviourTree* BT) : TreeNode(BT) {};

 ETreeStatus Update(float DeltaTime) override;

};

class GotoHeroTask : public TreeNode

{

public:

 GotoHeroTask(BehaviourTree* BT) : TreeNode(BT) {};

 ETreeStatus Update(float DeltaTime) override;

};

class AttackTask : public TreeNode

{

private:

 float _Interval = 0.0f;

public:

 AttackTask(BehaviourTree* BT) : TreeNode(BT) {};

 ETreeStatus Update(float DeltaTime) override;

};

Next, the Update function of the GuardTask class performs a simple distance check between the

player and the NPC. If the distance is less than or equal to 15 (the vision range), the node returns

BT_FAILURE, prompting the BT to evaluate the next sibling node (the Sequence node). Otherwise,

Chapter 9 303

it returns BT_RUNNING to stop the tree evaluation. The implementation of the Update function is

shown here:

ETreeStatus GuardTask::Update(float DeltaTime)

{

 auto modelComponent = _BT->GetBlackboard().NPC->GetComponent<ModelCompon
ent>();

 FSM::ECharacterState animState = (FSM::ECharacterState)modelComponent-
>GetAnimation();

 if (_BT->GetBlackboard().DistanceFromPlayer <= 15.0f)

 {

 return BT_FAILURE;

 }

 else if (animState != EnemyFSM::ECharacterState::IDLE)

 {

 auto bt = _BT->GetBlackboard().FSM;

 bt->SetState(EnemyFSM::ECharacterState::IDLE);

 }

 return BT_RUNNING;

}

Then, the Update function of the GotoHeroTask class evaluates the distance between the player

and the NPC. If the distance is less than or equal to 3 (the attack range), it returns BT_SUCCESS,

allowing the BT to proceed to the next sibling node (the AttackTask node). Otherwise, it returns

BT_RUNNING, halting further tree evaluation:

ETreeStatus GotoHeroTask::Update(float DeltaTime)

{

 auto blackboard = _BT->GetBlackboard();

 auto player = blackboard.Player;

 auto npc = blackboard.NPC;

 auto modelComponent = npc->GetComponent<ModelComponent>();

 FSM::ECharacterState animState = (FSM::ECharacterState)modelComponent-
>GetAnimation();

 auto fsm = blackboard.FSM;

 if (blackboard.DistanceFromPlayer <= 3.0f)

 {

 return BT_SUCCESS;

 }

Building AI Opponents304

 else

 {

 if (animState != EnemyFSM::ECharacterState::WALK)

 {

 fsm->SetState(EnemyFSM::ECharacterState::WALK);

 }

 return BT_RUNNING;

 }

}

Finally, the Update function of the AttackTask class utilizes the _Interval variable as a timer

to track the duration of the attack animation. While the timer is counting down, the function

returns BT_RUNNING. Once _Interval reaches 0, indicating the attack animation has finished, the

function returns BT_SUCCESS:

ETreeStatus AttackTask::Update(float DeltaTime)

{

 auto blackboard = _BT->GetBlackboard();

 auto modelComponent = blackboard.NPC->GetComponent<ModelComponent>();

 FSM::ECharacterState animState = (FSM::ECharacterState)modelComponent-
>GetAnimation();

 auto fsm = blackboard.FSM;

 if (animState != FSM::ECharacterState::ATTACK)

 {

 if (_Interval <= 0.0f)

 {

 fsm->SetState(FSM::ECharacterState::ATTACK);

 _Interval = 1.5f;

 }

 else

 {

 _Interval -= DeltaTime;

 if (_Interval <= 0.0f)

 {

 return BT_SUCCESS;

 }

 }

Chapter 9 305

 }

 return BT_RUNNING;

}

Now that you understand how to control character animations and how an NPC makes decisions,

a new challenge arises: navigation. When the NPC moves toward the player, it naturally takes the

shortest straight path. However, in most games, obstacles often block the direct route. How can

the NPC navigate around these obstacles, follow accessible paths, and determine the best route

to the target position?

This challenge introduces the concept of pathfinding, a fundamental aspect of game AI. Among

the various pathfinding algorithms, the widely used A* (A-star) algorithm will be our next focus.

Understanding A* pathfinding
A* (A-star) is a widely used algorithm in game development for pathfinding and decision-mak-

ing. It helps characters, such as NPCs, navigate around obstacles to reach a target efficiently. The

algorithm combines two essential strategies: graph traversal and heuristic search, enabling it to

find the shortest and most cost-effective path to a destination.

How A* works
At its core, A* explores a search space, such as a grid, graph, or navigation mesh, to find the best

path from a starting point to a target. It evaluates paths by considering both the cost to reach a

given node and an estimate of the cost to get from that node to the target.

In the next section, we’ll start by introducing the concept of a priority queue (also known as the

open list) and its function, which is a basic data structure used by the A* algorithm.

Processing data with a priority queue
Before diving into the details of the A* algorithm, it’s essential to understand the concept of a

priority queue.

A priority queue is a specialized data structure where elements are arranged based on their pri-

ority values. Unlike a standard queue, where elements are processed with the First-In, First-Out

(FIFO) strategy, a priority queue retrieves or removes elements with the highest priority first.

Each element in a priority queue is associated with a priority value that determines its order in

the queue. When a new item is added to the queue, it is positioned according to its priority value.

Building AI Opponents306

To better understand how data items are added to and retrieved from a priority queue, let’s con-

sider an example. Imagine we have three paths from point A to point B, each with a distance that

serves as its priority value, as shown in Figure 9.7:

Figure 9.7 – Three paths from point A to point B

Here, P1, P2, and P3 are the three paths, with distances of 20, 12, and 18, respectively. Figure 9.8

illustrates how each path is discovered and enqueued, followed by the dequeuing of the paths

in ascending order of P2, P3, P1 based on their distances:

Figure 9.8 – Processing P1, P2, and P3 paths with a priority queue

A priority queue is used to sort the found paths in ascending order based on their distances. This

means that when dequeuing the first path from the queue, it will always be the shortest among

the found paths.

Chapter 9 307

Calculating path node priority values
The A* algorithm maintains a priority queue of path nodes, with each assigned a score calculated

as: 𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛𝑛
where:

•	 g(n) is the cost of reaching the node, n, from the starting point.

•	 h(n) is the heuristic estimate of the cost to reach the target from n.

•	 f(n) is the total estimated cost of the path through n.

A* prioritizes nodes with the lowest f(n), ensuring it explores the most promising paths first.

The question now is, how do we sample and calculate node values in different environments?

This leads us to discuss the versatility of the A* algorithm.

The versatility of A*
The A* algorithm is highly adaptable to various types of environments and applications, show-

casing its versatility. This adaptability stems from its ability to customize the heuristic function

and cost metrics to fit specific scenarios. There are three common types of navigation maps that

serve as the foundation for pathfinding:

•	 Grids: These are ideal for tile-based games where characters navigate a 2D plane.

•	 Graphs: These are suitable for scenarios involving connections and edges—transportation

networks, for example.

•	 Nav meshes: These are perfect for 3D worlds, allowing characters to navigate on surfaces,

avoid obstacles, and adhere to terrain constraints.

A* is not limited to physical navigation. It can also be applied to decision-making scenarios based

on graph models. For instance, in a strategy game, A* can help an AI determine the best sequence

of actions to achieve a goal (e.g., gathering resources or building units).

Building on the above explanation, we will now explore an example to better understand how A*

identifies the best path on a navigation map, delving deeper into the process details.

Building AI Opponents308

Delving into an A* on a grid example
Imagine an NPC navigating a grid-based game world filled with obstacles such as walls that block

direct paths. The NPC must travel from point A to point B (see Figure 9.9). Each grid cell has an

associated movement cost; for instance, moving from one cell to an adjacent cell incurs a cost of 1:

1.	 The algorithm begins at point A, calculates f(n) for all reachable cells (e.g., cells (2, 1) and

(2, 2)), and adds these cells to the priority queue.

2.	 It then selects the node with the lowest f(n), calculates g(n) and h(n) for its neighbors,

and updates the path.

3.	 The process repeats until the target (point B) is reached, and the path is reconstructed by

tracing back through the nodes.

Figure 9.9 – An NPC walks from point A to point B on a grid map

Chapter 9 309

There are often multiple possible paths to reach the target position, but A* ensures that the

optimal path is selected. In Figure 9.9, the green path is shorter than the red path, making it the

optimal choice.

We have covered the essential concepts and core mechanics of the A* algorithm. To gain a com-

prehensive understanding and effectively apply this pathfinding method, it is best to explore its

actual implementation and source code in the Demo9c project, which is the focus of the next section.

Demo9c: Pathfinding in action with character
movement
The best way to learn about A* pathfinding is by applying it to a real project. Demo9c illustrates

this with a scenario where a character must navigate from a starting point in the top-left corner

to a target point in the bottom-right corner. The environment is a grid-based navigation map

featuring randomly placed wall blockers that act as obstacles, preventing direct paths.

Pressing the spacebar triggers the maze generation, randomly placing blockers on the map. The

pathfinding function then calculates the shortest path from the starting point to the target point.

Once the path is determined, the character follows the path, moving from the start to the target

point. Figure 9.10 shows a screenshot illustrating the path found for the character to follow while

navigating through the maze.

Figure 9.10 – Moving the character on the maze with A-star pathfinding

Building AI Opponents310

The foundational class we need to define first is the Node struct in the A-Star.h header file. A

node represents a waypoint in the navigation grid and stores the needed information required

for pathfinding. Each node serves as a potential candidate for constructing the optimal path:

struct Node

{

 Vector3 Position; //Position of a grid cell

 int GridPos[2]; //Grid position on the grids

 float GCost, HCost; //stores G and H values

 Node* Parent; //The previous waypoint node

 Node(Vector3 pos, Node* parent = nullptr)

 : Position(pos)

 , GridPos{0, 0}

 , GCost(0)

 , HCost(0)

 , Parent(parent) {}

 //The function which calculates the F value

 float FCost() const

 {

 return GCost + HCost;

 }

};

Second, we need two helper functions. The ManhattanDistance function calculates the heuristic

metric, representing the shortest path between two points in a grid-based system by summing

only vertical and horizontal movements. The ReconstructPath function constructs the final path

by backtracking from the target node to the start node using parent pointers once the target is

reached. Let’s implement these as follows:

float ManhattanDistance(Node* p1, Node* p2)

{

 return (float)(abs(p1->GridPos[0] - p2->GridPos[0]) +

 abs(p1->GridPos[1] - p2->GridPos[1]));

}

vector<Vector3> ReconstructPath(Node* node)

{

 vector<Vector3> path;

Chapter 9 311

 while (node != nullptr)

 {

 path.push_back(node->Position);

 node = node->Parent;

 }

 reverse(path.begin(), path.end());

 return path;

}

The third step is to define the NodeComparer structure for the priority queue, which will compare

the FCost() values of two nodes to establish their order, determining which has the lower or

higher priority:

struct NodeComparer

{

 bool operator()(Node* a, Node* b)

 {

 return a->FCost() > b->FCost();

 }

};

The final step is to implement the FindPath function, which is the core of the A* algorithm. This

function iteratively explores nodes, calculates their costs, and maintains priority-based traversal

using a priority queue. The FindPath function starts at the start node, evaluates potential paths

by computing g-cost (actual cost), h-cost (heuristic estimate), and f-cost (f=g + h), and dynamically

updates the open and closed lists. Once the target node is reached, the function reconstructs and

returns the optimal path.

We’ll implement this as follows:

vector<Vector3> AStarPathFinder::FindPath(Vector3& Start, Vector3& Target)

{

 //A priority queue containing all travelled nodes

 priority_queue<Node*, vector<Node*>, NodeComparer> OpenList;

 //A matrix indicating if a grid node has been visited

 vector<vector<bool>> ClosedList(GridsSize,

 vector<bool>(GridsSize, false));

 Node* startNode = new Node(Start);

 Node* targetNode = new Node(Target);

Building AI Opponents312

 Maze::GetMazeCellRowCol(Start, startNode->GridPos[0], startNode-
>GridPos[1]);

 Maze::GetMazeCellRowCol(Target, targetNode->GridPos[0], targetNode-
>GridPos[1]);

The code above initializes the necessary data structures, including OpenList (a priority queue),

ClosedList (a two-dimensional Boolean matrix to track whether each grid cell has been accessed),

and StartNode and TargetNode used for path generation.

Before pathfinding begins, the following code initializes the start node’s GCost and HCost, then

adds the StartNode to the OpenList, which is implemented as a priority queue:

 //Set the start node's G value to be 0

 startNode->GCost = 0;

 //Calculate the H value

 startNode->HCost = ManhattanDistance(startNode, targetNode);

 OpenList.push(startNode);	 //Enqueue the start node

 int directions[4][2] = {

 {-1, 0}, {1, 0}, {0, -1}, {0, 1} };

 //These four vectors help lead to the left,

 //right, down, and up adjacent neighbours

Here, the directions array defines vectors used to locate the eight neighboring cells around the

current node.

With these initial steps complete, the pathfinding process can begin in the following code:

 while (!OpenList.empty())

 {

 //Get the shortest found neighbour node

 Node* currentNode = OpenList.top();

 OpenList.pop();

 int row = currentNode->GridPos[0];

 int col = currentNode->GridPos[1];

 ClosedList[row][col] = true;	 //Mark as a visited node

 //If it reaches the target node, return the found path

if (currentNode->GridPos[0] == targetNode->GridPos[0]

Chapter 9 313

 && currentNode->GridPos[1] == targetNode->GridPos[1])

 {

 return ReconstructPath(currentNode);

 }

 //Visit the four neighboure nodes

 for (const auto& dir : directions)

 {

 int row = currentNode->GridPos[0] + dir[0];

 int col = currentNode->GridPos[1] + dir[1];

 //If the neighbour node is valid and has not been visited

 if (Maze::IsValidNode(row, col)

 && !ClosedList[row][col])

 {

 float newGCost = currentNode->GCost + 1;

 Vector3 pos = Maze::GetCellPosition(row, col);

 Node* neighborNode = new Node(pos, currentNode);

 neighborNode->GridPos[0] = row;

 neighborNode->GridPos[1] = col;

 neighborNode->GCost = newGCost;

 neighborNode->HCost =

 ManhattanDistance(neighborNode, targetNode);

 //Add the new visited node to the priority queue

 OpenList.push(neighborNode);

 }

 }

 }

 return {};

}

The code block above performs the pathfinding process. The FindPath function marks the current

node as accessed, and then iterates through its neighboring nodes. For each neighbor, it calcu-

lates the GCost and HCost and adds the node to the OpenList. The node with the lowest total

cost is then popped from the OpenList and set as the new current node. This process continues

until the target node becomes the current node. Finally, the ReconstructPath function is called

to return the found path.

Building AI Opponents314

You have now explored the core principles of the A* pathfinding algorithm, including how it

operates and how it applies to navigation in grid-based environments. These concepts lay a

strong foundation for understanding pathfinding in games. As a next step, you are encouraged to

download and explore the Demo9c project to examine and trace through the source code, which

will further solidify your understanding and provide practical insights into how the algorithm

is implemented in a real scenario.

Summary
This chapter provided an in-depth exploration of traditional AI algorithms and their applications

in game development. It began by introducing FSMs to control player character animations,

enabling seamless transitions for walking and attacking actions, as demonstrated in the Demo9a

project.

The second section focused on BTs, which were used to guide NPC decision-making. NPCs could

guard areas, chase the player, or attack when the player entered specific ranges. Demo9b showcased

the integration of a BT with an FSM and steering movement techniques, combining these tools

to manage decision-making, animation transitions, and movement.

Finally, the chapter covered the A* pathfinding algorithm. Using Demo9c, you learned how to

generate a grid-based maze, apply the A* algorithm to find the optimal path, and utilize a priority

queue as the open list to explore neighboring nodes. The demo also illustrated how to move the

character along the determined path from the start to the target point.

In the next chapter, we will delve into modern AI technologies, exploring how machine learning

and deep learning are transforming game development.

10
Machine Learning Algorithms
for Game AI

The rapid evolution of AI has unlocked immense potential and opened new possibilities across

various industries, and the game industry is no exception. AI technology has advanced from basic

rule-based systems to more sophisticated methods such as machine learning and deep learning,

allowing developers to create more dynamic, responsive, and intelligent game environments. The

application of AI in games has shifted from traditional NPC behaviors to more complex systems

that can adapt to player actions, predict strategies, and even generate content. This evolution

has not only enhanced the realism and immersion of games but also introduced new gameplay

mechanics that were previously unthinkable.

Neural networks can be trained to simulate intricate decision-making processes, while deep

learning algorithms can process vast amounts of data to improve gameplay and character inter-

action. The trend in the game industry is increasingly shifting toward using these AI models to

power NPCs, procedural content generation, and even game design elements. As a result, players

can now experience games that feel alive and reactive, constantly adapting to their strategies

and actions.

This chapter delves into modern AI technologies, focusing on introducing neural networks, shadow

learning, and deep learning. Through an actual C++ implementation code of a neural network,

the chapter provides a real-world application of these technologies covering the topics of:

•	 Reviewing the evolution of AI

•	 Learning the basic concepts of a neural network

Machine Learning Algorithms for Game AI316

•	 Understanding how neural networks predict

•	 Understanding how neural networks learn

•	 Demo10: An AI-controlled turret defense game

By the end of this chapter, you will have a solid understanding of how to apply neural networks

in your games. This includes constructing network models, generating training data, training AI

models, and utilizing the trained models in games to control NPCs.

Technical requirements
Download the Knight Visual Studio solution from GitHub. Here is the link to the repository:

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-

Structures-and-Algorithms

The demo projects for this chapter are located within the Knight Visual Studio solution (https://
github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-

Algorithms/tree/main/Knight), specifically under this project name:

Project Name Description

Demo10 AI-controlled turret

Table 10.1 – Sample project used in this chapter

This project demonstrates the implementation of concepts covered in this chapter and is integral

to understanding the practical application of the discussed algorithms.

Reviewing the evolution of AI
Artificial intelligence (AI) has evolved from early rule-based systems into powerful technolo-

gies that shape today’s world. In the mid-20th century, AI began with symbolic reasoning and

expert systems—machines that followed human-defined rules to simulate decision-making in

limited contexts.

However, these early systems were constrained by limited computing power and data, making

them suitable only for narrow, specialized tasks. A major shift occurred in the 1980s and 1990s,

as faster processors, increased storage, and the rise of GPUs enabled AI to handle complex com-

putations and large datasets.

https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight
https://github.com/PacktPublishing/Practical-C-Game-Programming-with-Data-Structures-and-Algorithms/tree/main/Knight

Chapter 10 317

This progress laid the groundwork for the machine learning techniques you’re about to explore in

this chapter—systems that learn from data rather than relying solely on pre-programmed rules.

Advancements in computing power and access to data opened the door to a new era of AI: Machine

learning (ML). A major breakthrough came when Geoffrey Hinton introduced the idea of designing

AI systems inspired by the mechanism of the human brain. This idea led to the development of

neural networks, which simulate how neurons in the brain process information. Unlike traditional

rule-based AI, ML systems learn from data to recognize patterns and make predictions. This ability

to learn and improve over time means ML systems don’t need to be manually programmed for

every situation, making them much more flexible and powerful.

Deep learning (DL), a subset of ML, uses multi-layered neural networks to handle large amounts

of unstructured data, including images, audio, and text. These advanced networks can identify

complex patterns and make highly accurate predictions. This capability has enabled innovative

applications, such as generative models like ChatGPT and DALL·E, which can produce creative

outputs such as written content and visual art.

The upcoming section will explore how neural networks are applied in gaming. By examining

their foundational concepts and implementation, this section seeks to offer insights into how

neural networks enhance AI systems in games, driving smarter behaviors and more immersive

interactions.

Before learning how a neural network functions, it’s essential to understand its fundamental

building blocks, including neurons, layers, and the way they interact to process data.

Learning the basic concepts of a neural network
A neural network, also known as an artificial neural network (ANN), is an AI model designed to

process information in a way similar to the human brain. It transmits signals between intercon-

nected neurons, enabling the network to learn patterns and make decisions based on input data.

A neural network is made up of layers of interconnected nodes, called neurons. A neuron connec-

tion can also be called a synapse. Each connection between neurons has a weight, which adjusts

as the network learns from data. Signals are transmitted between neurons, enabling the network

to learn patterns and make decisions based on input data.

Machine Learning Algorithms for Game AI318

A neural network basically has three layers:

•	 Input layer: This layer receives the raw data or inputs, such as images, text, or numbers.

•	 Hidden layers: These layers process the input data through mathematical operations and

extract patterns or features. A network can have multiple hidden layers, and the term deep

learning refers to networks with many such layers.

•	 Output layer: This layer outputs the final result based on the input data, such as an image,

a text, or a set of values.

Let’s explore an example to dissect a simple shadow learning neural network—a neural network

that contains only one hidden layer—with two input values, a single output value, and the hidden

layer containing just one neuron:

Figure 10.1 – A simple neural network

Based on the concept shown in Figure 10.1, we can define the Neuron class in C++ as follows:

class Neuron {

private:

 vector<float> _Weights; //Weights for the inputs

 float _Error; //Error

 float _Activation; //Activation

 float _Output; //Output

 float _Bias; //Bias

public:

 Neuron(size_t InputSize);

 void Activate(vector<float> inputs);

public:

 vector<float>& GetWeights() { return _Weights; }

Chapter 10 319

 float GetActivation() { return _Activation; }

 float GetOutput() { return _Output; }

 float GetError() { return _Error; }

 void SetError(float Error) { _Error = Error; }

 float GetBias() { return _Bias; }

 void SetBias(float Bias) { _Bias = Bias; }

};

Within the class definition, the private section here declares the key variables required for a

neuron, including _Weights, _Error, _Activation, _Output, and _Bias. You can refer to the im-

plementation of the Activate function in the next paragraph to understand how these variables

are used to adjust the network during prediction. The second public section primarily consists

of the class’s setter and getter methods, which provide access to and control over these internal

variables.

The following is the code for the implementation of the class constructor and the Activate func-

tion:

Neuron::Neuron(size_t InputSize) {

 //Using random values to initialize the weights and bias.

 for (int i = 0; i < InputSize; ++i) {

 _Weights.push_back((float)((double)rand()) / RAND_MAX);

 }

 _Bias = (float)((double)rand() / RAND_MAX);

}

void Neuron::Activate(vector<float> Inputs) {

 //The number of inputs must match the weights' size

 assert(Inputs.size() == _Weights.size());

 //Calculate the activation value

 _Activation = _Bias;

 for (int i = 0; i < _Weights.size(); ++i) {

 _Activation += _Weights[i] * Inputs[i];

 }

 //Apply the activation function

 _Output = NeuralNetwork::Sigmoid(_Activation);

}

Machine Learning Algorithms for Game AI320

The class constructor simply initializes the _Weights array and the _Bias variable with random

numbers. The Activate method calculates the output based on the inputs, the weights, and the

bias values.

Since a neural network consists of layers, including an input layer, an output layer, and one or

more hidden layers, we can define the Layer class as follows:

class Layer

{

private:

 vector<Neuron> _Neurons; //Neurons on this layer

public:

 Layer(size_t NeuronSize, size_t InputSize);

 vector<Neuron>& GetNeurons() { return _Neurons; }

};

Lastly, we define the NeuralNetwork class. The number of layers and the number of neurons in each

layer can be customized based on specific requirements. Additionally, we can declare the Sigmoid

and SigmoidDerivative functions as public static members of the class for convenient access:

class NeuralNetwork

{

public:

 static float Sigmoid(float x);

 static float SigmoidDerivative(float x);

private:

 vector<Layer> _Layers; //The hidden and output layers

 float _LearningRate = 0.5f;

 vector<float> ForwardPropagate(vector<float>& Inputs);

 void BackPropagate(vector<float>& Targets);

 void UpdateWeights(vector<float>& Inputs);

public:

 NeuralNetwork(vector<size_t>& LayerSizes, float LearningRate = 0.5f);

 void Train(vector<float>& Inputs, vector<float>& Targets);

 vector<float> Predict(vector<float>& Inputs);

};

Chapter 10 321

Let’s clarify a few points from the preceding code snippet:

•	 The Sigmoid and SigmoidDerivative activation functions will be explained and imple-

mented in the next section.

•	 The _LearningRate variable is a hyperparameter that determines the extent of weight

adjustments in response to the error during each update. Its value ranges from 0 to 1 and

influences the model’s adaptation speed. Smaller learning rates lead to slower but more

precise updates, requiring more training epochs (a single pass of the training process with

an entire dataset), while larger learning rates result in faster updates with fewer epochs. More

details on this will be covered in the Training the models section, along with the concept

of gradient descent.

•	 The ForwardPropagate, BackPropagate, and UpdateWeights functions represent the three

key steps of training a neural network. These steps are executed within the Train function,

and their detailed implementation will be discussed in the next section.

•	 The Predict function calls the BackPropagate function to generate outputs based on

the given inputs.

Now that you understand the basic components and structure of a neural network, we’ll move

on to explaining how a neural network processes input values to predict and generate outputs.

Understanding how neural networks predict
The prediction process used to generate the output value in a neural network is known as forward

propagation. During this process, input values are passed through the network’s layers, where

each neuron applies a mathematical operation to the data, such as multiplication by weights and

the addition of biases. The result of each operation is passed to the next layer until the output

is produced.

This process is essential for making predictions or decisions based on the given inputs and is a

key mechanism in neural networks. Therefore, the weights of each neuron play a crucial role in

the prediction process.

Imagine a turret on a battlefield tasked to defend the gate of a base from the player. The turret’s

system takes two inputs:

•	 Distance of the player from the turret

•	 Angular difference required for the turret to aim at the player

Machine Learning Algorithms for Game AI322

Based on these inputs, the system produces an output value between 0 and 1, indicating the

likelihood of the turret firing:

Figure 10.2 – The screenshot of the turret defense game

Inputs fed into a neural network are typically normalized to improve convergence and training

stability. Normalization ensures a consistent scale and reduces the impact of varying feature

magnitudes.

Let’s define the equations used to calculate the two inputs:

1.	 The equation for Input X1 normalizes the player’s distance to the turret into a range be-

tween 0 and 1. Here’s how it works:𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼𝐼𝐼 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 , 0, 1)

where:

•	 Distance is the current distance between the player and the turret.

•	 Input X1 is calculated by dividing Distance by Vision Range and clamping the nor-

malized distance to a range of [0, 1], where 0 means the player is at the turret’s

position, and 1 means the player is at or out of the maximum vision range.

Chapter 10 323

2.	 The equation for Input X2 normalizes the angular difference required for the turret to aim

at the player into a range between 0 and 1. Here’s how it works:𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴180 ,−1, 1)
where:

•	 Angular Error is the angle between the turret’s forward direction and the vector

pointing from the turret toward the player character.

•	 Input X2 is calculated by dividing the Angular Error by the 180-degree scales and

clamping the normalized angular error to a range of [-1, 1].

A neuron’s Activate function uses the two inputs to calculate the activation value using the

following formula:

𝑦𝑦𝑦 𝑦 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖𝑖𝑖)

where:

•	 y is the Output Y value, which is the sum of all the input values multiplied by their con-

nection weights.

•	 b is the bias.

•	 wi is the weights for each connection.

•	 xi is the input values.

•	 𝜎𝜎 indicates the Sigmoid function used as the rate of change with respect to its input. The

Sigmoid function is defined with the following formula:𝜎𝜎𝜎𝜎𝜎𝜎 𝜎 11 + 𝑒𝑒−𝑥𝑥

Refer to the graph shown in Figure 10.3, which illustrates the curve of the Sigmoid function. The

function compresses input values into a range between 0 and 1. As input values move further

away from 0 (either positively or negatively), the output values approach 1 or 0, respectively,

creating an S-shaped curve. This behavior makes the Sigmoid function useful for transforming

inputs into probabilities or bounded activations.

Machine Learning Algorithms for Game AI324

Figure 10.3 – Sigmoid function graph

The following code implements the Predict, ForwardPropagation, Activate, and Sigmoid func-

tions:

vector<float> Predict(vector<float>& Inputs) {

 return ForwardPropagate(Inputs);

}

vector<float> ForwardPropagate(vector<float>& Inputs){

 vector<float> outputs;

 vector<float> inputs = Inputs;

 for (size_t layer = 0; layer < _Layers.size(); ++layer) {

 outputs.clear();

 vector<Neuron>& neurons = _Layers[layer].GetNeurons();

 for (size_t i = 0; i < neurons.size(); ++i) {

 neurons[i].Activate(inputs);

 outputs.push_back(neurons[i].GetOutput());

Additional reading

For more details about activation functions, refer to this article on Geeks for Geeks:

 https://www.geeksforgeeks.org/activation-functions-neural-networks/

https://www.geeksforgeeks.org/activation-functions-neural-networks/

Chapter 10 325

 }

 inputs = outputs;

 }

 return outputs;

}

void Neuron::Activate(vector<float> Inputs) {

 _Activation = _Bias;

 for (int i = 0; i < _Weights.size(); ++i) {

 _Activation += _Weights[i] * Inputs[i];

 }

 _Output = Sigmoid(_Activation);

}

float Sigmoid(float x) {

 return (float)(1.0 / (1.0 + exp(-x)));

}

This code snippet implements four key functions used in the prediction process:

•	 The Predict function simply calls the ForwardPropagate function to process the input

values and generate the corresponding output.

•	 The ForwardPropagate function takes the input values and processes them layer by lay-

er—starting from the first layer and continuing through to the final layer. At each layer,

it calls the Activate function to compute the value of each neuron based on the outputs

from the previous layer. This process continues until the final output values are produced

by the last layer of neurons.

•	 The Activate function multiplies the input values by their corresponding weights, sums

the results, and then applies the Sigmoid function to produce the neuron’s output.

•	 The Sigmoid function applies to the sigmoid formula to regulate the activation strength

of the neuron.

In the example shown in Figure 10.2, the single predicted output is used to control the turret’s

firing mechanism. For instance, we can specify that if the output value falls between 0.6 and 1.0,

the turret will be triggered to fire.

Machine Learning Algorithms for Game AI326

A neural network can generate outputs from given inputs, but these outputs may not always meet

real-world requirements due to errors. How can we improve its accuracy to better align with

actual needs? The solution lies in using training data to train the neural network, which actually

adjusts the neurons’ weights and enhances the network’s ability to make more precise predictions.

Understanding how neural networks learn
The prediction process shows that a neural network’s outputs are determined by the weights of its

input connections. Adjusting these weights to better align with different input values improves

the network’s accuracy and performance. This adjustment forms the core of the learning process,

where the network iteratively updates its weights to minimize prediction errors. This iterative

refinement of weights is known as training.

To train a neural network, the backpropagation algorithm is used to adjust the weights effectively.

The process involves four key steps, which we’ll examine in the subsequent sections.

Step 1: Predicting outputs
In this step, a set of training data inputs is used by the neural network to predict the corresponding

outputs. For instance, with reference to Figure 10.2, if the training data consists of the distance

from the turret to the player and the firing angle error, the normalized inputs are processed by

the network to predict whether the turret should fire or not.

Step 2: Calculating the output errors
For each predicted output value, use the target value in the training data to calculate the errors.

The errors can be evaluated with the following formula:𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑦𝑦𝑦 𝑦 𝑦𝑦

where:

•	 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the error of an output

•	 𝑦𝑦𝑦𝑦 is the actual target value

•	 𝑦𝑦 is the predicted output value

Step 3: Propagating errors backward
The backpropagation process starts with the output error(s) and propagates the error(s) backward,

layer by layer, through all the neurons, ultimately reaching the input layer.

Chapter 10 327

The formula below illustrates the process for hidden layer neurons j, where the error is propagated

backward from the output layer. The error for each neuron in the hidden layer is computed as

the sum of the errors in the subsequent layer, weighted by the corresponding weights, and then

multiplied by the derivative of the sigmoid function:

𝛿𝛿𝑗𝑗 = 𝜎𝜎′(∑(𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖)

where:

•	 𝛿𝛿𝑗𝑗 is the error of neuron j in the current layer, which could be the input layer or a hidden

layer.

•	 (𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖) is the error of neuron i in the subsequent layer, which could be a hidden layer

or the output layer.

•	 𝑤𝑤𝑖𝑖 is the weight between neuron j in the current layer and neuron k in the next layer.

•	 𝜎𝜎′ is the SigmoidDerivative function defined as:𝜎𝜎′(𝑥𝑥) = 𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥𝑥
The Backpropagation and SigmoidDerivative functions can be implemented using the follow-

ing code:

void BackPropagate(vector<float>& Targets) {

 size_t i;

 float error, output;

 vector<Neuron>& outputs = _Layers.back().GetNeurons();

 assert(Targets.size() == outputs.size());

 //Calculate the errors for the outputs

 for (i = 0; i < outputs.size(); ++i) {

 output = outputs[i].GetOutput();

 float derivative = SigmoidDerivative(output);

 error = Targets[i] - output;

 outputs[i].SetError(error * derivative);

 }

 //Calculate errors for hidden layers' neurons

 for (int layer = (int)_Layers.size() - 2; layer >= 0; --layer) {

 vector<Neuron>& neurons = _Layers[layer].GetNeurons();

Machine Learning Algorithms for Game AI328

 for (size_t i = 0; i < neurons.size(); ++i) {

 error = 0.0f;

 vector<Neuron>& nextLayerNeurons = _Layers[layer + 1].GetNeurons();

 for (size_t j = 0; j < nextLayerNeurons.size(); ++j){

 error += nextLayerNeurons[j].GetWeights()[i] *
nextLayerNeurons[j].GetError();

 }

 output = neurons[i].GetOutput();

 float derivative = SigmoidDerivative(output);

 neurons[i].SetError(error * derivative);

 }

 }

}

float SigmoidDerivative(float x) {

 return (float)(x * (1.0 - x));

}

The preceding code snippet primarily implements the BackPropagate function, which starts

from the neurons in the last layer and works backward to the first hidden layer. It uses the known

output values to calculate the error for each neuron during this process.

The SigmoidDerivative function computes the derivative by multiplying the sigmoid value by

one minus the sigmoid value, following the standard formula.

Step 4: Updating the weights
The process of updating weights in a neural network involves adjusting the weights based on the

errors propagated backward through the network during backpropagation. Figure 10.4 illustrates

how the backpropagation process updates neuron weights for two neural networks – the upper

one has only one hidden layer and the lower one has two hidden layers:

Chapter 10 329

Figure 10.4 – Updating neuron weights through backpropagation

What the process does is update each weight wij, which connects neuron i in layer l - 1 to neuron

j in layer l, according to a formula derived from the gradient of the loss function with respect to

that weight: 𝑤𝑤𝑖𝑖𝑖𝑖′ = 𝑤𝑤𝑖𝑖𝑖𝑖 + 𝜂𝜂 𝜂 𝜂𝜂𝜂𝑗𝑗 ∗ 𝑦𝑦𝑖𝑖
where:

•	 𝑤𝑤𝑖𝑖𝑖𝑖′ is the new weight for the connection between neuron i and neuron j.

•	 𝑤𝑤𝑖𝑖𝑖𝑖 is the old weight for the connection between neuron i and neuron j.

Machine Learning Algorithms for Game AI330

•	 𝜂𝜂 is the learning rate.

•	 𝛿𝛿𝑗𝑗 is the error in the subsequent layer, which could be a hidden layer or the output layer.

•	 𝑦𝑦𝑗𝑗 is the output of neuron j in the subsequent layer, which could be a hidden layer or the

output layer.

•	 𝑦𝑦𝑖𝑖 is the output from neuron i in the previous layer, which could be a hidden layer or the

input layer. This process is repeated for multiple iterations (epochs) to minimize the error

and improve the model’s accuracy.

Based on the weight calculation formula above, the UpdateWeights function can be implemented

as follows:

void NeuralNetwork::UpdateWeights(vector<float>& Inputs) {

 vector<float> inputs;

 for (size_t layer = 0; layer < _Layers.size(); ++layer) {

 if (layer == 0) {

 inputs = Inputs;

 }

 Else {

 inputs.clear();

 vector<Neuron>& prevLayerNeurons = _Layers[layer - 1].GetNeurons();

 for (size_t i = 0; i < prevLayerNeurons.size(); ++i){

 inputs.push_back(prevLayerNeurons[i].GetOutput());

 }

 }

 vector<Neuron>& neurons = _Layers[layer].GetNeurons();

 for (size_t i = 0; i < neurons.size(); ++i) {

 vector<float>& weights = neurons[i].GetWeights();

 for (size_t j = 0; j < inputs.size(); ++j) {

 weights[j] += _LearningRate * neurons[i].GetError() * inputs[j];

 }

 neurons[i].SetBias(neurons[i].GetBias() +_LearningRate * neurons[i].
GetError());

 }

 }

}

The UpdateWeight function iterates through all the neurons in each layer, using the errors calcu-

lated during the backpropagation process to update the input weights for each neuron.

Chapter 10 331

We have examined the details of implementing a neural network, including the theory behind

how it learns and predicts outcomes. To gain a deeper understanding of how a neural network is

applied in game development, we’ll explore Demo10, which will be presented in the next section.

Demo10: An AI-controlled turret defense game
Demo10 demonstrates how to use a neural network model to control a turret within a game scene.

This demo provides a foundation for exploring not only the shadow learning model but also a

more advanced DL model, which leverages multiple hidden layers and can manage multiple

outputs to predict and control more complex systems.

In this demo, the turret can rotate and aim at the player when the player enters its vision range.

If the player comes within the turret’s attack range, it begins firing.

To meet these requirements, a new neural network model (see Figure 10.5) is designed with two

inputs: the distance to the player and the aiming angle error. The model also includes two outputs:

one to determine whether the turret should fire and another to control the turret’s rotation.

To adapt to the more complex controls required for this scenario, the model is enhanced with two

hidden layers (Neuron1x and Neuron2x). Each of the two hidden layers contains three neurons, pro-

viding the neural network with a suitable capacity to process and respond to the inputs effectively.

Figure 10.5 – The DL neural network for turret control

Machine Learning Algorithms for Game AI332

In the network model shown in Figure 10.5, the neurons in the first layer can be analyzed as follows:

•	 Neuron11 This neuron considers both the Distance and Angle Error factors, reflecting its

interest in the combined influence of these inputs.

•	 Neuron12: This neuron is focused solely on the Distance factor and disregards the Angle

Error factor. To achieve this, the weight of the connection between X2 (representing Angle

Error) and Neuron12 is set to a very low value or even zero.

•	 Neuron13: Conversely, this neuron is exclusively interested in the Angle Error factor and

ignores the Distance factor. To reflect this, the weight of the connection between X1

(representing Distance) and Neuron13 is set to a very small value or zero.

The purpose of analyzing these connection weights is to provide insight into how the neurons in

the first layer function and the rationale behind including three neurons in this layer. This un-

derstanding serves as a foundation for designing your own neural network models in the future.

Getting started with training and playing Demo10
Demo10 offers two options upon launch, accessible by pressing F1 or F2. These options allow you

to choose between using the shadow learning model or the DL model. The shadow learning model

enables the turret to fire only when the player is within its attack range and firing arc. Besides

the control of firing, the DL model adds functionality for the turret to rotate and aim at the player.

 Important note

There is no fixed standard or rule to determine the number of layers and neurons

in a neural network. The architecture depends on the specific problem and data

characteristics. The general idea is to begin with a shadow network, do experiments,

test, and iteratively improve the network structure.

Chapter 10 333

While playing the game, use the WASD keys to navigate the player character across the game map:

Figure 10.6 – AI-controlled turret defense

Let’s start by writing the code to define the TurretController class.

Controlling the turret with the TurretController class
To process the training and control over the turret, the core class added to Demo10 is the

TurretController class. Here is the code snippet that declares the TurretController class:

class TurretController {

private:

 NeuralNetwork* _ANN; //Artificial Neural Network

 Scene* _Scene; //The game scene	

 SceneActor* _Cannon; //The turret cannon	

 Vector3 _CannonDir = Vector3{ 0.0f, 0.0f, -1.0f }; //The cannon's aiming
direction

 float _CannonRotAngle = 0.0f; //The cannon's rotation angle

 float _AttackRange = 15.0f; //The turret's attack range

 float _FiringArc = 20.0f;	 //The turret's firing arc in degrees

 float _TurnSpeed = 8.0f; //The turret's turning speed

 float _VisionRange; //The turret's vision range

 Vector3 _FiringDir; //The firing direction

private:

Machine Learning Algorithms for Game AI334

 float _IsLoaded; //The cannon is loaded or not

 SceneActor* _Fireball; //The Fireball actor

 float _FireballDuration = 1.5f; //The fireball's lifetime

 float _FireballSpeed = 15.0f; //The fireball's speed

public:

 int Trained = 0; //Indicates whether the ANN is trined

public:

 TurretController(Scene* Scene, SceneActor* Cannon);

 ~TurretController();

 void InitANN(int Method);	 //1-shadow learning, 2-deep learning

 void Train(int Method, int SampleCount = 100000, int epochs = 1);

 void Update(float DeltaTime);

};

The code snippet above defines the TurretController class, including its variables and member

functions such as the constructor, destructor, and the InitANN and Train methods.

Now, let’s examine the InitANN function to understand how it initializes the network models for

both the shadow learning and DL approaches:

void TurretController::InitANN(int Method) {

 srand(time(NULL));

 if (Method == 1) {

 vector<size_t> layerSizes;

 layerSizes.push_back(2);	 //Input layers: 2 inputs

 layerSizes.push_back(1);	 //Hidden layer: 1 neural

 layerSizes.push_back(1);	 //Output layer: 1 neural

 _ANN = new NeuralNetwork(layerSizes, 0.3f, false);

 }

 else if (Method == 2) {

 vector<size_t> layerSizes;

 layerSizes.push_back(2);	 //Input layers: 2 inputs

 layerSizes.push_back(3);	 //Hidden layer 1: 3 neurals

 layerSizes.push_back(3);	 //Hidden layer 2: 3 neurals

 layerSizes.push_back(2);	 //Output layers: 2 outputs

 _ANN = new NeuralNetwork(layerSizes, 0.1f, true);

 }

}

Chapter 10 335

The InitANN function initializes the network model based on the selected method:

•	 Method == 1: This creates a shadow learning model with 2 inputs, 1 output, and a single

hidden layer containing just 1 neuron.

•	 Method == 2: This generates a deep learning model with 2 inputs, 2 outputs, and two

hidden layers, each containing 3 neurons.

Further, the constructor of the NeuralNetwork class accepts the following three parameters:

•	 LayerSizes: Specifies the size of each layer and the number of neurons in each layer, which

is used to define the network architecture.

•	 LearningRate: Controls how quickly the model is adapted to the problem. We will discuss

it further in the next section.

•	 MinusActivation: Refers to the activation function applied to the network. It determines

whether the input and output range should be [0, 1] (if set to false) or [-1, 1] (if set to true).

While the Sigmoid activation function is well-suited for outputs ranging from 0 to 1, certain

scenarios require outputs in the range of [-1 to 1]. In such cases, activation functions such as TanH

and its derivative, TanHDerivative, are used in this case:

 static float TanH(float x) {

 return tanh(x);

 }

 static float TanHDerivative(float x) {

 return 1.0f - x * x;

 }

Figure 10.7 displays the curve of the TanH activation function. As shown in the figure, when the

input value (x) is less than -0.25, the output approaches -1. Conversely, when x exceeds 0.25, the

output approaches +1. This function transforms the linear input signal into a non-linear output

ranging between -1 and +1. It shows the curve of the TanH activation function.

Machine Learning Algorithms for Game AI336

Figure 10.7 – TanH activation function graph

After completing the implementation of all the TurretController member functions, we are

ready to begin training the AI model. However, before starting the training process, it’s important

to discuss how to control the training and evaluate the results using an appropriate learning rate.

We’ll explore this topic next.

Understanding learning rate, epochs, and training cost
DL neural networks are trained using the gradient descent approach, an iterative learning algorithm

that updates the model using a training dataset.

The learning rate is a crucial hyperparameter in neural network training, typically ranging be-

tween 0.0 and 1.0. It determines how quickly the model adapts to the problem. Selecting the

appropriate learning rate is one of the most critical challenges in training DL models, as it sig-

nificantly impacts the model’s performance.

When choosing the learning rate, it is also important to learn and understand a little bit more

about the two related concepts – batches and epochs:

•	 Batch size: This is a hyperparameter that represents the number of training samples

walked through before updating weights.

•	 Number of epochs: This is a hyperparameter that represents the total number that the

learning process will walk through the entire training dataset.

A smaller learning rate results in smaller updates to the weights during each step, requiring more

epochs for training. In contrast, a larger learning rate leads to rapid weight updates, which may

cause the model to converge too quickly or even miss the optimal solution, though it typically

requires fewer training epochs.

Chapter 10 337

Now that you understand the concepts of adjusting the learning rate, batch size, and epochs to

train a model, the next step is to learn how to assess and evaluate your training process effec-

tively. Therefore, it is essential to understand how to achieve your goals with optimal cost. This

introduces the concepts of training cost and gradient descent.

Understanding training cost and gradient descent
During backpropagation in the training of a neural network model, the process of learning in-

volves a technique called gradient descent. This method optimizes the weights and biases by

minimizing the cost, which measures the difference between the actual and predicted outputs.

The following formula is commonly used to calculate the cost for one training iteration of weight

updates, guiding the model toward achieving the goal of minimized cost:

𝐶𝐶 𝐶 𝐶 𝐶 (𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)22𝑛𝑛
𝑖𝑖𝑖𝑖

where:

•	 𝐶𝐶 is the overall cost

•	 𝑦𝑦𝑦𝑦 is the actual target value

•	 𝑦𝑦 is the predicted output value

Figure 10.8 illustrates how training iterations progressively descend (repeatedly following the

slope or tangent at each point to move toward a lower point) to reach the desired goal:

Figure 10.8 – Gradient descent approach

Machine Learning Algorithms for Game AI338

With a solid understanding of training models, let’s now explore how the TurretController

generates training datasets and utilizes them to train the models.

Training the models
To train a model, the first step is to obtain training data. Since the turret’s control logic can be

defined programmatically, we can write code to randomly generate two sample training datasets

that cover various scenarios, ensuring the turret adheres to the following rules:

•	 For both Method 1 and Method 2, the turret fires at the player only when the player is

within its attack range and firing arc.

•	 For Method 2, the turret also turns to aim at the player when the player is within its

vision range.

First, let’s take a closer look at the arguments passed to the Train function of the TurretController

class:

Void Train(int Method, int SampleCount, int epochs);

Let’s break down the elements as follows:

•	 Method: A flag set to either 1 or 2, indicating whether the shadow learning model or the

DL model will be trained and utilized

•	 SampleCount: Specifies the number of sample data points to be generated for training

•	 Epochs: Defines the number of epochs to be used for training the model

For training the shadow learning model, each training data sample consists of two inputs and

one output:

•	 The Distance input is the normalized distance value, ranging from 0 to 1:

•	 For instance, if the turret’s vision range is 30 and the attack range is 15, then a

randomly generated distance between 0 and 15 will be normalized to a value

between 0 and 0.5.

•	 If the distance falls between 15 and 30 (or beyond), the normalized value will

range from 0.5 to 1.

Chapter 10 339

•	 The Angle Error input is the normalized angle error:

•	 For example, if the turret’s firing arc is 20 degrees, a randomly generated angle

between 0 and 20 will have a normalized value between 0 and 0.11 (calculated

as 20/180).

•	 Any angle outside this range will have a normalized value greater than 0.11, up to 1.

•	 The Output has two possible values: 1 or 0:

•	 A value of 1 indicates the turret should fire, while 0 indicates it should not fire.

•	 This output is determined by evaluating whether the randomly generated distance

and angle error meet the firing conditions.

First, let’s look at the overall structure of the implementation of the Train function:

Void Train(int Method, int SampleCount, int epochs) {

 vector<float> inputs;

 vector<float> targets;

 vector<float> sampleData;

 vector<vector<float>> dataset;

 InitANN(Method);

 if (Method == 1) {

 //Methods 1 process

 }

 else if (Method == 2) {

 //Method 2 process

 }

 Trained = Method;

}

The Train function performs three main tasks:

1.	 It first defines four vector datasets used to build the neural network and initializes the

network by calling the InitANN function.

2.	 It then checks the value of Method to determine whether to use Shadow Learning (when

Method == 1) or DL (when Method == 2) for training the model.

3.	 Finally, it sets the Trained flag to the value of the training method, indicating that the

model has been successfully trained.

Machine Learning Algorithms for Game AI340

Now, let’s dive into the actual code implementation for generating the test data that will be used

for Method 1:

for (int i = 0; i < SampleCount; ++i) {

 inputs.clear();

 targets.clear();

 sampleData.clear();

 //Generate the distance input

 int distance = rand() % (int)_VisionRange;

 float distanceInput = Clamp((float)distance / _VisionRange, 0.0f, 1.0f);

 //Generate the angle error input

 int angleError;

 if (i % 3 == 0) {

 angleError = rand() % 181;

 }

 else {

 int firingArc = (int)_FiringArc;

 angleError = rand() % ((int)firingArc / 2 + 1);

 }

 float angleErrorInput = Clamp((float)angleError / 180.0f, 0.0f, 1.0f);

 inputs.push_back(distanceInput);

 inputs.push_back(angleErrorInput);

 //Determine the output value for firing

 if (distance >= 0 && distance <= _AttackRange && angleError <= _
FiringArc * 0.5f) {

 targets.push_back(1.0);

 }

 else {

 targets.push_back(0.0);

 }

 //Push the sample data into the dataset

 sampleData.clear();

 sampleData.push_back(inputs[0]);

 sampleData.push_back(inputs[1]);

 sampleData.push_back(targets[0]);

 dataset.push_back(sampleData);

}

Chapter 10 341

The code snippet above generates training data for training the network using the shadow learn-

ing model. It uses a loop to iterate through all sample data and includes the following four steps

within the loop body:

1.	 It randomly generates values for distanceInput and angleErrorInput and pushes them

into the inputs datasets.

2.	 It randomly generates the corresponding targets output values.

3.	 It pushes the generated inputs and target pairs into sampleData.

4.	 It pushes all the sampleData rows into the dataset matrix preparing them for use in

training the model.

Generating training data for Method 2 is similar to Method 1, with a few key differences:

•	 An angle error input ranges from -180 to 180 degrees, so the normalized input will range

from -1 to 1.

•	 The second output controls the turret’s aim towards the player using three values: -1 for

turning counter-clockwise, 1 for turning clockwise, and 0 for no movement.

Here is the code illustrating this difference:

//Generate the distance input

int distance = rand() % (int)_VisionRange;

float distanceInput = Clamp((float)distance / _VisionRange, 0.0f, 1.0f);

//Generate the angle error input

int angleError;

if (i % 2 == 0) {

 angleError = 180 - rand() % 361;

}

else {

 int firingArc = (int)_FiringArc;

 angleError = firingArc / 2 - (rand() % ((int)firingArc + 1));

}

float angleErrorInput = Clamp((float)angleError / 180.0f, -1.0f, 1.0f);

inputs.push_back(distanceInput);

inputs.push_back(angleErrorInput);

//Determine the first output value for firing

float halfFiringArc = _FiringArc * 0.5f;

Machine Learning Algorithms for Game AI342

if (distance >= 0 && distance <= _AttackRange &&

 angleError >= -halfFiringArc && angleError <= halfFiringArc) {

 targets.push_back(1.0);

}

Else {

 targets.push_back(0.0);

}

//Determine the second output value for turning the turret

targets.push_back((float)sign(angleError));

//Push the sample data into the dataset

sampleData.clear();

sampleData.push_back(inputs[0]);

sampleData.push_back(inputs[1]);

sampleData.push_back(targets[0]);

sampleData.push_back(targets[1]);

dataset.push_back(sampleData);

The code snippet above demonstrates the training data generation for Method 2. Lines that differ

from Method 1 are highlighted in bold to emphasize the changes.

By running the preceding code, we can get the training data. Now, all that is left to do is use loops

to feed the training data into the model, train it, and then evaluate the cost values for each epoch:

for (int epoch = 0; epoch < epochs; ++epoch) {

 //Train the model

 for (int i = 0; i < dataset.size(); ++i) {

 inputs.clear();

 targets.clear();

 inputs.push_back(dataset[i][0]);

 inputs.push_back(dataset[i][1]);

 targets.push_back(dataset[i][2]);

 Note

There are many different ways to collect training data beyond simply writing code to

generate it. Depending on the project, data can be gathered through manual labeling,

user interaction logs, simulation environments, or even real-world sensors. The

method chosen often depends on the type of model being trained and the context

in which it will be used.

Chapter 10 343

 if (Method == 2) {

 targets.push_back(dataset[i][3]);

 }

 _ANN->Train(inputs, targets);

 }

 //Evaluate the cost

 double overallCost = 0.0;

 for (int i = 0; i < dataset.size(); ++i) {

 inputs.clear();

 inputs.push_back(dataset[i][0]);

 inputs.push_back(dataset[i][1]);

 targets.clear();

 targets.push_back(dataset[i][2]);

 if (Method == 2) {

 targets.push_back(dataset[i][3]);

 }

 vector<float> outputs = _ANN->Predict(inputs);

 float cost = (targets[0] - outputs[0]) * (targets[0] - outputs[0]) *
0.5f;

 if (Method == 1) {

 overallCost += cost;

 }

 else if (Method == 2) {

 float cost1 = (targets[1] - outputs[1]) * (targets[1] - outputs[1])
* 0.5f;

 targets.push_back(dataset[i][3]);

 overallCost += cost + cost1;

 }

 }

}

The preceding code snippet uses the generated training data to train the AI model. It runs for a

specified number of epochs, iterating through each row in the dataset. For each training sample,

it performs the following steps:

1.	 Calls the ANN’s Train function to update the model.

2.	 Calls the Predict function to obtain the model’s prediction.

3.	 Compares the predicted output with the target value to calculate the cost.

Machine Learning Algorithms for Game AI344

Launch the game and give it a try. When you press F1, Method 1 will be selected to train the

shadow learning model, and when you press F2, Method 2 will be chosen to train the DL model.

The models are initialized and trained differently, so refer to the following matrix to compare

the differences:

Method # 1 2

Learning Type Shadow learning Deep learning

Inputs 2 2

Outputs 1 2

Hidden Layers 1 (Neurons: 1) 2 (Neurons: 3, 3)

Learning Rate 0.3 0.1

Training Samples 10000 10000

Epochs 1 3

Table 10.2 – Comparison matrix for the two different training methods

For more implementation details of Demo10, please refer to the downloaded Knight solution and

review the source code of the Demo10 project.

The trained model in Demo10 effectively controls the turret as intended. To further optimize per-

formance, it is recommended to adjust the learning rate, epochs, number of layers, and neurons,

as well as analyze the costs to enhance training accuracy, improve prediction performance, and

minimize the cost.

Summary
This chapter explored one of the most prominent AI technologies, deep learning, and introduced

essential concepts such as neural networks, shadow learning, training evaluation, and gradient

descent.

We began by reviewing the history and evolution of modern AI, providing context for the current

state of AI technology and its vast potential. Next, we covered the basic elements and structure of

a neural network and implemented a NeuralNetwork class in C++ to demonstrate these concepts.

Chapter 10 345

We then examined how a network makes predictions based on input data. Detailed explanations

of forward propagation and the activation function were provided to illustrate how the neural

network calculates outputs for each neuron.

A critical aspect of AI model development is training the neural network. We introduced the

backpropagation process and the derivative Sigmoid function to explain how errors are computed

and used to update the weights during training.

Finally, we explored the Demo10 project, showing how training data can be generated for this

demo and how learning rate, batch size, and epochs impact the training process. We also intro-

duced the cost calculation formula and the application of gradient descent in training AI models.

Although this chapter covered foundational aspects of modern AI, many advanced topics worth

exploring are outside the scope of this book. We encourage you to continue learning and exploring

online resources to delve deeper into the field of AI.

With the completion of all the technical chapters, you’ve now built a comprehensive toolkit of

practical skills and theoretical knowledge essential for modern game development. Next chapter

will reflect on everything you’ve accomplished and explore how you can continue growing as a

game developer in the future.

Part 4
Reflecting and

Moving Forward
In this final part of the book, it’s time to step back and reflect on the journey you’ve taken—from

building a strong foundation in data structures and algorithms to mastering graphics, animation,

and artificial intelligence in game development. This part serves as both a recap of what you’ve

learned and a roadmap for your continued growth as a developer.

You’ll revisit key milestones from each chapter, gaining a broader perspective on how the indi-

vidual topics connect to form a complete, practical skillset. More importantly, this chapter looks

ahead, offering strategies to deepen your expertise, explore advanced concepts, and remain en-

gaged in the ever-evolving world of game development.

Whether you aim to specialize in AI, become an expert in real-time rendering, or lead a devel-

opment team, the lessons in this part are designed to inspire your next steps and encourage a

mindset of continuous learning.

This part includes the following chapter:

•	 Chapter 11, Continuing Your Learning Journey

11
Continuing Your Learning
Journey

As we reach the final chapter of Practical C++ Game Programming with Data Structures and Algo-

rithms, it’s time to reflect on the journey we have taken together, review the wealth of knowledge

and skills you have acquired, and look ahead toward the future of your game development career.

This chapter serves not only as a summary of what you have learned but also as a guide for ex-

panding your expertise, exploring new horizons in game development, and staying motivated

in your continuous learning journey.

In this chapter, we’ll cover the following key aspects:

•	 Recapping your journey

•	 Extending Knight for your game project

•	 Looking forward

Recapping your journey
We have just gone through a comprehensive journey of modern game development using C++,

raylib, and the Knight framework. Chapter 1 set the stage by guiding you through the essential

setup of a C++ game development environment. By introducing the raylib graphics library and

Knight—a custom, object-oriented C++ game framework —the opening chapter ensured that you

were equipped with both the technical context and hands-on tools necessary to engage deeply

with the chapters that follow.

Continuing Your Learning Journey350

The adventure continued with an exploration of core data structures in Chapter 2. We discovered

how arrays, lists, stacks, and queues form the backbone of gameplay logic, even in the most basic

playable prototype. Through sample projects, the book demonstrated how these data structures

integrate with the Entity system, enabling the creation of responsive gameplay, real-time input

handling, and simple pop-up-style UI navigation.

Building upon these foundations, Chapter 3 delved into essential algorithms that breathe life into

games. Randomization, selection, shuffling, sorting, and procedural generation were covered in

detail, each accompanied by C++ examples projects. Here, we learned how the unpredictability

and variety that make games engaging are underpinned by robust algorithmic thinking and

implementation.

As you delved into the realms of graphics and rendering, you gained an understanding of both

2D and 3D techniques (see Chapters 4–7).

Visual storytelling is at the heart of game development, and the transition into 2D graphics tech-

niques underscored this. Chapter 4 offered an in-depth look at how images are loaded, processed,

and rendered efficiently using modern GPUs. It explained the critical importance of texture formats

and memory management, equipping you with the knowledge to optimize both performance

and quality. Techniques such as color and alpha blending, parallax scrolling, isometric rendering,

and dynamic UI elements were brought to life, giving you the power to craft vibrant, visually

compelling 2D worlds.

With a firm grasp of 2D graphics, you were then introduced to the immersive realm of 3D graphics.

Chapter 5 explained the mathematics and implementation of camera systems, from the first-person

perspective to cinematic rail and top-down strategy cameras. Each camera system was explored

both conceptually and practically, showing how thoughtful viewpoint design shapes the player’s

experience and navigational possibilities within the game world.

At the core of 3D rendering, Chapter 6 offered a thorough examination of the graphics pipeline,

from vertex transformations to fragment shading. You learned how data flows from the CPU to

the GPU, how shaders are written and utilized, and how lighting and surface details are calcu-

lated and displayed. Special attention was given to shader programming, teaching you how to

write both vertex and fragment shaders, manage coordinate spaces, and implement effects such

as normal mapping for added realism.

Chapter 11 351

As the complexity of rendered scenes grows, so do the technical challenges. Chapter 7 guided you

through building complete 3D game worlds, teaching how to efficiently render large scenes with

multiple objects, terrain generated from height maps, atmospheric effects via skyboxes, and real-

istic lighting and shadow techniques using multi-pass rendering. Techniques such as billboards

and particle systems were integrated seamlessly to create worlds that are both performant and

visually rich.

Characters, of course, are the heart of any interactive story. Chapter 8 introduced the principles

and implementation of character animation, from basic keyframe systems to advanced skeletal

animation and inverse kinematics. By mastering animation blending and smooth transitions,

you gained the ability to create lifelike, expressive characters whose movements are both natural

and dynamic.

No game is complete without intelligent behavior. In Chapter 9, we introduced several classic

game AI implementations: FSMs, behavior trees, and A* pathfinding. They provide robust frame-

works for developing believable NPCs and challenging game scenarios. By building AI systems

that control character behaviors, transitions, and navigation, you acquired the skills to create

engaging and responsive gameplay experiences.

Finally, Chapter 10 opened the door to the world of modern AI. By introducing the fundamentals

of neural networks, training processes, and gradient descent—all implemented in C++—the

chapter laid the groundwork for incorporating machine learning into games. We saw firsthand

how to implement, train, and evaluate simple neural networks, understanding the impact of

parameters such as learning rate, batch size, and epochs.

By the end of Chapter 10, you had developed not only a theoretical understanding but also a

practical command of every major discipline in game development:

•	 Setting up and using a C++ game development environment with raylib and Knight

•	 Applying core data structures and algorithms to real game scenarios

•	 Implementing both 2D and 3D rendering pipelines, optimizing performance and visual

quality

•	 Developing complex camera systems for immersive gameplay

•	 Writing and debugging shaders for advanced graphics effects

•	 Constructing complete 3D scenes, including terrain, lighting, shadows, particles, and

skyboxes

Continuing Your Learning Journey352

•	 Animating characters with skeletal and procedural techniques

•	 Building AI with both traditional and modern approaches

•	 Applying deep learning principles and neural network programming in games

Taken together, these key learnings form the foundation of a well-rounded skill set for interme-

diate as well as advanced game developers.

From the low-level handling of graphics hardware and memory to the high-level orchestration

of AI-driven gameplay, this book offers a holistic education in building modern, interactive, and

visually stunning games. Whether crafting 2D or 3D worlds, animating characters, or integrating

both traditional and deep learning AI, you will emerge with the confidence and expertise to tackle

any contemporary game development challenge.

However, this is far from the end of the journey. There is still a lot for us to explore further.

Extending Knight for your game project
The best way to continue your learning journey is to extend Knight for your game project. Let’s

now bring all your learning together to build your game project.

Extending the rendering feature through a component
In Chapter 1, we introduced the purpose of Knight’s Component class, and in Chapter 7, we demon-

strated how to extend the Component class to implement various rendering techniques.

The Component class serves as the foundation for creating visual elements that appear on the

screen. Both Knight’s built-in components and those we created in the aforementioned chapters

provide support for a range of rendering features, including the following:

Component Name Description

PlaneComponent

CubeComponent

SphereComponent

CylinderComponent

These are primitive components

ModelComponent Supports rendering of the raylib Model class

BillboardComponent Supports billboard and particle effect rendering

ParticleComponent Supports particle effect rendering and simulation

Chapter 11 353

Component Name Description

HMapTerrainModelComponent Supports height map terrain rendering

QuadTreeTerrainComponent Supports quadtree rendering

Table 11.1 – Summary of available components

These components cover the most common rendering needs, and by leveraging the hierarchical

structure of the scene, you can combine them to create even more complex effects.

Want your game’s wizard to hold a magical fireball in their hand? Or have your main character

stand on a flying magic carpet? These effects can be achieved by attaching a fireball particle com-

ponent to a specific hand Mesh of the wizard’s ModelComponent, or by parenting the character’s

ModelComponent to the magic carpet’s ModelComponent.

Of course, your own game project may also require importing FBX 3D models (a popular 3D model

format supported by Maya and Motion Builder). In such a case, you’ll need to use a third-party

library such as Assimp and write your own code to support FBX file loading – either by creat-

ing a new FBXModelComponent to support FBX loading or by inheriting a new child class from

ModelComponent.

Separating gameplay logic and rendering
Games are not just about rendering visual elements on the screen—they must also handle input

and the logic that drives these visual elements during gameplay. Many of the demo projects in

this book focus on particular rendering features and therefore do not include full gameplay logic

handling.

In these demos, we often place user input handling and the corresponding logic directly within

each Component or SceneActor's Update() function. This approach is fine for small, focused

sample projects throughout this book.

However, when you begin adding more and more visual elements to your dream game world,

separating gameplay logic from the rendering part of the code (handled in the various Component

objects) offers key benefits:

•	 Improving the readability of your code base: Games are complex systems, often involving

hundreds of classes interacting to bring gameplay and visuals to life. Mixing gameplay

logic and rendering code makes it easy to lose track of where things are handled.

Continuing Your Learning Journey354

For example, when a character takes damage from an enemy, you need to update the

health points (logic) and trigger the damage animation (visuals). Initially, it might

seem convenient to handle both in the same place where you first wrote them, but

as the project grows, you may soon forget whether the health point is updated in the

character’s SceneActor::Update() function? the Draw() function, or the enemy’s

SceneActor::Update() function? or even a UI class where a health bar is rendered?

By separating gameplay logic and visual reactions, the code structure becomes clear and

easy to understand. Instead of trying to remember where every piece of logic resides,

you can rely on simple, consistent rules, making the code base much more readable and

maintainable.

This is especially important for one-man developers who need to keep track of where

to locate code pieces from the entire code base. It’s okay to mix everything when you

write gameplay logic and render code together for quick experiments or proofs of concept.

However, at some point, you should start to refactor your code to separate gameplay logic

and rendering code for better clarity. Some code design patterns such as MVC or MVVM

can also help.

•	 Greater independence within a team: Sometimes, you’ll work on a game as part of a

small team, such as a school coding club or simply your best video game buddy. Maybe

your collaborator is skilled in graphics programming, while you prefer to handle game-

play mechanics. With this structure, you can focus on implementing Entity (gameplay

logic), while your teammate concentrates on SceneActor and Component (graphics and

rendering). As long as you both agree on how logic and visuals interact, the code overlaps

and conflicts are minimized, enabling greater independence and smoother collaboration.

•	 Better multi-threading adaptability: Modern hardware—whether desktop, mobile, or

console—offers increasingly powerful parallel processing capabilities. This means your

logic and rendering code may run on different threads or even separate CPU cores. Just as

Chapter 6 describes how the CPU and GPU cooperate, your C++ code may be executing on

different cores simultaneously. By clearly separating gameplay logic from rendering code,

it becomes much easier to implement multi-threaded processing and take full advantage

of modern hardware.

For real game development, we strongly recommend separating gameplay logic from rendering

code.

Chapter 11 355

Decoupling gameplay logic and rendering – the approaches
There are two simple ways to clearly separate gameplay logic from rendering code. As you saw

in all the sample projects in Chapter 2, one approach is to define a dedicated Entity class to

handle the gameplay logic for each character or object in the game. When each Entity is creat-

ed, a corresponding SceneActor is also created to represent the entity visually in the game. The

Entity handles user input and gameplay logic, while its corresponding SceneActor takes care

of rendering and visual updates, as shown in Figure 11.1:

Figure 11.1 – Decoupling gameplay logic from rendering code

Another approach does not require creating a separate Entity data structure. Instead, you can

reuse the Component class by creating a specialized Component dedicated to handling user input

and gameplay logic. This gameplay logic Component class is then added to each SceneActor. As

long as you ensure that the gameplay logic component is the first one added, it will always execute

first in the component update sequence. This is illustrated in Figure 11.2, as follows:

Continuing Your Learning Journey356

Figure 11.2 – Implementing gameplay logic as a component

This naturally raises the question: what are the pros and cons of these two approaches?

Using a separate Entity list data structure gives you greater flexibility in managing the rela-

tionships between Entity and SceneActor. For example, sometimes Entity and SceneActor

are not strictly in a one-to-one relationship. Consider the case of terrain in a 3D MMORPG:

a terrain Entity in Knight might manage three separate SceneActor objects: one with a

QuadTreeTerrainComponent for rendering the terrain, another with a SkyboxComponent for the

sky, and a third with a ParticleComponent to create falling snow for a winter scene. As shown

in Figure 11.1, a single terrain-managing Entity must coordinate the state of all three SceneActor

objects, updating them based on world time to simulate seasonal changes and activating the

ParticleComponent snow particle system during the winter season.

As discussed in Chapter 1, all SceneActor objects in a scene are updated in the order determined

by the scene’s hierarchical structure: siblings are updated before their children. If your game de-

sign requires precise control over the order in which gameplay logic is processed, separating the

gameplay logic into an independent Entity list lets you update Entity in any order you choose,

rather than being limited to the update order of SceneActor objects in the scene graph.

On the other hand, handling gameplay logic through Component is more common in game engines

that use a scene graph as the primary data structure to build the game world. Such a game engine

usually has an editor to allow you to build the game scene from SceneActor objects representing

visual elements, with both gameplay logic and rendering handled by attaching different Component

objects to the same SceneActor.

Chapter 11 357

For example, in the Unity game engine, the user creates and edits GameObject instances, which are

analogous to Knight’s SceneActor. Both gameplay logic components and rendering components

can be attached to the same GameObject. To handle the earlier terrain example with this approach,

you could implement a TerrainLogicComponent to manage gameplay logic for the terrain and

attach it alongside a QuadTreeTerrainComponent, SkyboxComponent, and ParticleComponent to

the same SceneActor representing the terrain (see Figure 11.2).

As for which approach is better, it ultimately depends on the specific needs of your game design.

In the demo game from Chapter 2, we used the independent Entity list approach. However, you

are encouraged to experiment by modifying the Chapter 2 sample projects to implement game

logic using Component instead, so you can compare the differences for yourself.

Use the Entity list or a separate Component object to expand gameplay functionality and avoid

mixing gameplay logic into your rendering components. This will better prepare you for the

increasing complexities of advanced game development.

Looking forward
Now that you have a solid foundation, what do you envision for yourself in the next step of your

journey? In this section, we’ll discuss resources that you can use to sharpen your expertise in

what you’ve learned so far. We’ll also delve into strategies to bolster continuous learning in your

game development journey.

Expanding your knowledge: Becoming an expert
Expertise is built on continuous learning and practical experience. Consider revisiting key topics

with a deeper focus—experiment with optimizing data structures further, and explore advanced

algorithms that can push the boundaries of performance in your games. Here are a few sugges-

tions for how to further your expertise:

•	 Deep dive into advanced algorithms: While you have learned all sorts of building blocks

of video game programming, challenge yourself with more complex algorithms, such as

advanced search techniques, optimization methods, and real-time procedural generation.

Engage with academic papers, open source projects, and community forums to see how

these concepts are evolving in the industry. The following resources offer solid starting

points for deepening your knowledge of advanced data structures and algorithms in C++:

•	 W3 Schools (https://www.w3schools.com/cpp/cpp_data_structures.asp): This

site provides a quick tutorial of frequently used data structures supported by the

C++ standard template library.

https://www.w3schools.com/cpp/cpp_data_structures.asp

Continuing Your Learning Journey358

•	 GeeksforGeeks (https://www.geeksforgeeks.org/learn-dsa-in-cpp/): This

site covers many advanced algorithms for future learning and serves as a good

reference.

•	 Master modern GPU programming: As graphics continue to advance, becoming profi-

cient in modern GPU programming and shader development is invaluable. Experiment

with advanced lighting models, post-processing effects, and even real-time ray tracing.

Consider learning additional graphics APIs or frameworks to complement your knowledge

of raylib. Here are some useful resources:

•	 Khronos (https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)):

This site provides complete references to the GLSL shader language

•	 GPU Shader Tutorial (https://shader-tutorial.dev/): This site has compre-

hensive graphics shader programming tutorials

•	 Explore machine learning in gaming: With the introduction to neural networks, you

have seen just the tip of the iceberg. Consider taking courses or participating in workshops

focused on deep learning and reinforcement learning. Experiment with training models

on more complex game scenarios, such as adaptive AI opponents or dynamic content

generation. The Machine learning in video games Wikipedia page (https://en.wikipedia.

org/wiki/Machine_learning_in_video_games) is a good starting point to explore how

various machine learning algorithms are used in game development.

•	 Extend your animation skills: As character animation becomes more central to immer-

sive game experiences, learning advanced techniques such as motion capture integration,

procedural animation, and physics-based character movement can set your games apart.

To enhance realism and interactivity in your games, check out the following links:

•	 Animation Programming (https://www.packtpub.com/en-us/product/hands-

on-c-game-animation-programming-9781800207967): This is another good Packt

book that focuses on game animation with C++ and OpenGL. Here are the details:

Gabor Szauer. Hands-on C++ Game Animation Programming. Packt Publishing Ltd,

12 June 2020.

•	 AI4Animation by Sebastian Starke (https://github.com/sebastianstarke/

AI4Animation): This repository explores how to apply deep learning for character

animation. Even though it’s developed with Unity 3D/PyTorch, the concept can

also be applied to your C++ game project.

https://www.geeksforgeeks.org/learn-dsa-in-cpp/
https://www.khronos.org/opengl/wiki/Core_Language_(GLSL)
https://shader-tutorial.dev/
https://en.wikipedia.org/wiki/Machine_learning_in_video_games
https://en.wikipedia.org/wiki/Machine_learning_in_video_games
https://www.packtpub.com/en-us/product/hands-on-c-game-animation-programming-9781800207967
https://www.packtpub.com/en-us/product/hands-on-c-game-animation-programming-9781800207967
https://github.com/sebastianstarke/AI4Animation
https://github.com/sebastianstarke/AI4Animation

Chapter 11 359

•	 Engage with the community: The game development community is rich in resourc-

es, tutorials, and collaborative projects. Join online forums, attend game development

conferences, or contribute to open source projects. Engaging with other developers will

expose you to new ideas and practices that can refine your skills further. However, each

community has its own rules; make sure you check them out first. The following platforms

offer opportunities to connect with fellow developers, seek guidance, and stay updated

on the latest news in game development practices:

•	 Gamedev.net (https://gamedev.net/): One of the oldest yet most vibrant devel-

oper-focused portals, offering active forums and a wealth of learning resources.

•	 raylib’s Discord channel (https://discord.com/channels/426912293134270465):

This is the official raylib Discord channel. This is the place to hang out with other

developers using raylib, or for asking raylib-related technical questions.

Future learning suggestions
The world of game development is ever-changing, with new tools, techniques, and paradigms

emerging constantly. To stay ahead of the curve, consider the following strategies for continuous

learning:

•	 Stay up to date with industry trends: Follow industry news, subscribe to newsletters, and

participate in webinars hosted by experts in game development and AI. Staying current

with trends will ensure you are aware of emerging technologies and methodologies. The

following websites provide insights into current trends, technologies, and discussions

shaping the game development landscape:

•	 Game Developer (https://www.gamedeveloper.com/): This portal features not

only general game industry news but also many game development learning re-

sources

•	 Gamedev.net (https://gamedev.net/): One of the oldest yet most vibrant devel-

oper-focused portals, offering active forums and a wealth of learning resources

•	 Pursue advanced courses and certifications: Consider enrolling in specialized courses in

advanced C++ programming, real-time graphics, or AI applications in gaming. Many online

platforms and universities offer courses that can help you deepen your understanding

and gain certifications that bolster your resume. MIT OpenCourseWare (https://ocw.

mit.edu/) offers several undergraduate and graduate-level courses on a wide range of

topics, from game design and animations to AI.

https://gamedev.net/
https://discord.com/channels/426912293134270465
https://www.gamedeveloper.com/
https://gamedev.net/
https://ocw.mit.edu/
https://ocw.mit.edu/

Continuing Your Learning Journey360

•	 Build personal projects: The best way to learn is by doing. Create personal projects that

challenge you to apply what you have learned in new and creative ways. Whether it’s a

small indie game, a sophisticated simulation, or an experimental project, practical ap-

plication is key to mastery.

•	 Collaborate with peers: Collaborate with fellow developers to work on projects or par-

ticipate in game jams. The exchange of ideas and teamwork often leads to innovative

solutions and provides new perspectives that you might not discover on your own.

Game Jams and hackathons, which are held in many regions, offer exactly these kinds of

opportunities. DevPost (https://devpost.com/) is a useful resource for finding infor-

mation about upcoming hackathons. If there aren’t any hackathons happening near you,

a local user group or dev club can also be a good place to start or the online community

we introduced in the previous section.

•	 Read widely and diversely: Expand your learning by reading books, research papers, and

case studies on game development, computer graphics, and AI. Each new perspective can

offer insights that enrich your understanding and inspire creative problem-solving. These

sources offer in-depth reading on graphics, game design, and academic perspectives:

•	 Real-Time Rendering (https://www.realtimerendering.com/): This site has

curated many free e-books about graphics rendering available to read

•	 Game Studies (https://gamestudies.org/2501): Game Studies is a non-profit,

open-access, cross-disciplinary journal dedicated to games research

Summary
Before you close this book, take a moment to appreciate the journey you have taken. You started

by learning the fundamentals of C++ and game development, progressed through intricate data

structures and rendering techniques, and tackled the challenging domains of character animation

and AI. With every chapter, you have built a robust foundation that not only makes you a better

developer but also positions you to explore and innovate within the gaming industry.

https://devpost.com/
https://www.realtimerendering.com/
https://gamestudies.org/2501

Chapter 11 361

Cheers to your success!
Although this book marks the final chapter of our journey together, it is by no means the end of

your path in game development. In fact, as you turn the last page, your adventure is just begin-

ning—one filled with boundless possibilities.

Fortunately, you’re not sailing into uncharted waters alone. Beyond the additional resources

we’ve included here, Packt Publishing offers a wide range of books on game development to

support your growth too.

We hope that someday soon, our paths will cross again on the road to learning how to create

great games!

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C++ Game Animation Programming, Second Edition

Michael Dunsky, Gabor Szauer

ISBN: 978-1-80324-652-9

•	 Create simple OpenGL and Vulkan applications and work with shaders

•	 Explore the glTF file format, including its design and data structures

•	 Design an animation system with poses, clips, and skinned meshes

•	 Find out how vectors, matrices, quaternions, and splines are used in game development

•	 Discover and implement ways to seamlessly blend character animations

•	 Implement inverse kinematics for your characters using CCD and FABRIK solvers

•	 Understand how to render large, animated crowds efficiently

•	 Identify and resolve performance issues

Other Books You May Enjoy366

Mastering C++ Game Animation Programming

Michael Dunsky

ISBN: 978-1-83588-192-7

•	 Master the basics of the Open Asset Import Library

•	 Animate thousands of game characters

•	 Extend ImGui with more advanced control types

•	 Implement simple configuration file handling

•	 Explore collision detection between 3D models and world objects

•	 Combine inverse kinematics and collision detection

•	 Work with state machines, behavior trees, and interactive NPC behaviors

•	 Implement navigation for NPC movement in unknown terrains

Other Books You May Enjoy 367

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packt.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You can make a general applica-

tion, apply for a specific hot topic that we are recruiting an author for, or submit your own idea..

Share your thoughts
Now you’ve finished Practical C++ Game Programming with Data Structures and Algorithms, we’d
love to hear your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave a review on
the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-
ering excellent quality content.

https://packt.link/r/1835889875
https://packt.link/r/1835889875

Index

Symbols
2D graphics operations 100

cache, using 109
texture format, selecting 104-108
texture, loading as image 100-104

2D texture rendering
alpha blending 118-121
color blending 115-118
N-patch texture 126-128
part, rendering from source texture 114
texture image, rotating 114
working with 113

3D game development, camera angle
and distance 138, 139

first-person camera 140
fly-through camera 143
rail camera 142, 143
third-person camera 141
top-down camera 141, 142
variations 144

3D graphics projection
onto 2D screen 147
orthographic projection 149
perspective projection 148

3D graphics rendering
programming, with modern GPUs 171

3D graphics rendering pipeline 175
blending 176
depth testing 176
fragment program 176
output 176
primitives assembly 176
rasterization 176
stages 175
stencil testing 176
vertex program 176
vertex stream processing 176

3D motion, skeletal animation
matrix 262
quaternion 261
vector 260

3D skeletal animation 260
3D terrain model

creating 229
height mapping 3D terrain 230-234
rendering, with Level of Detail

(LOD) 235, 236
skybox, rendering 247, 248

9-patch (N-patch) 126

Index370

A
A* (A-star) 305

grid example 308, 309
versatility 307
working 305

action nodes 292
activation functions

reference link 324
additive blending 121, 122
algorithm 5, 25

efficiency, measuring 36
evaluating 34
in game development 27
learning, for game development 5, 6
structure 7, 8

alpha blending 118-121
additive blending 121, 122
advanced color 121
combining, with color blending 122-125
modes 121
multiplicative blending 122
subtractive blending 122
uses 119

A* pathfinding 305
in action, with character movement 309-314

array 37, 38
insertion/deletion, versus

enable/disable 41-44
array, common operations 38

element, accessing 38, 39
element, deleting 40
element, enumerating 39
element, inserting 40

artificial intelligence (AI) 6, 283
evolution, reviewing 316

artificial neural network (ANN) 317
Assimp library 353

B
backpropagation algorithm 326

batches 336
BeginScene() function 218
BeginShadowMap() function 222
BeginTextureMode() function 167
Behavior Tree (BT)

action nodes 292
Blackboard 293
composite nodes 292
condition nodes 292
decorator nodes 293
example 293, 294
implementing 294-298
NPC decision-making 301-304
using, to make decisions 292

Big O notation 36
constant time - O(1) 36
exponential time O(2^n) 36
leaner time O(n) 36
linear logarithmic time O(n log n) 36
logarithmic time O(log n) 36
quadratic time O(n^2) 36

billboards
2D view, making 207-211
rendering 206, 207
scenarios 206
technique 208

bit-block transfer (Bitblt) 101
Blackboard 293
BubbleSort 84
BuildRenderQueue() function 218

Index 371

built-in camera system
default control, overriding 153
first-person-view camera, using 150, 151
orthogonal camera, using 151, 152
working with 150

C
C++

need for 6, 7
cache 109
camera system

3D graphics projection, onto 2D screen 147
basic properties 145, 146
defining 145

Cascaded Shadow Maps (CSMs) 229
character animation

controlling, with Finite State Machine
(FSM) 289-292

cinematic camera 144
clip space 174
color blending 115-118

components 115
complexity 34

implementation complexity 35
space complexity 35
time complexity 35

Component class 352
features 352, 353

composite nodes 292
Selector node 292
Sequence node 292

condition nodes 292
continuous learning

advanced algorithms 357
animation skills, extending 358

building 357
game development community 359
machine learning, exploring 358
modern GPU programming, mastering 358
strategies 359, 360

coordinated spaces 171
clip space 174
model space 171
NDC space 174
screen space 174
view space 173
world space 172, 173

cubemap 247

D
data locality 40
data structure 25

complexity, measuring 35
efficiency, measuring 36
evaluating 34
in game development 27
scalability, measuring 35

data structure collections
array 37, 38
list 46, 47
standard C++ dynamic

array, implementing 44
decorator nodes 292, 293
deep learning (DL) 317
Demo1.cpp

investigating 16, 17
Knight::Start() function, overriding 18
Knight::Update() function, overriding 19-23
main() function, implementing 17

Index372

Demo10 project 331, 332
model training 338-344
playing 332, 333
training 332
turret, controlling with TurretController

class 333-336
Depth-First Search (DFS) 87

reference link 87
depth node 236
DevPost

reference link 360
directional light 187

characteristics 187
implementing 188, 189
lighting effect 187

E
ease-in/ease-out interpolation

technique 257-259
epochs 336
exclusive selection algorithm 74-76

in action 77
exponential growth strategy 91

F
Finite State Machine (FSM) 266, 284

action 284
character animation, controlling 289-292
example 284, 285
implementing 285-288
NPC decision-making 301-304
state 284
transition 284

First In, First Out (FIFO) 49, 305
first-person camera 140

first-person shooters (FPS) 137
Fisher-Yates shuffle 78, 79

in action 80-83
fixed camera 145
fly-through camera 143
Forward Kinematics (FK) 273
fragment program 183

working with 183, 184
frame-by-frame animation 255

G
game algorithms 3
gradient descent 321, 337, 338
gradient descent approach 336
graphics rendering pipeline 175
graph traversal 305

H
health points (HP) 25
HeapSort 84
height mapping 229
height mapping 3D terrain 230-234
heuristic search 305

I
InitEntity() utility function 33
InsertionSort 84
Integrated Development

Environment (IDE) 8
integration 256
interpolation 256

Index 373

interpolation techniques
ease-in/ease-out interpolation

technique 257, 258
ease-in-out interpolation technique 259
linear interpolation technique 256, 257

Inverse Kinematics (IK) 253
algorithm, working 276
fundamental terms and mathematical

concepts 274, 275
robotic arm scenario 274
using 273
using, to simulate robotic arm 276-280

IsAnyPopupShown() function 53
isometric maps

advantages 134
rendering 132-135

isometric projection
working 134, 135

J
Jacobian transpose 274

K
keyframe animation 254, 255
Knight 12

game flow structure 13, 14
Knight framework

Component class 352, 353
extending, for game project 352
gameplay logic and rendering,

decoupling 355, 356
gameplay logic and rendering,

separating 353, 354

L
Lambertian reflection model 187
larger learning rate 336
Last In, First Out (LIFO) 48
leaf node 236, 292
learning process, neural network 326

errors, propagating backward 326-328
output errors, calculating 326
outputs, predicting 326
weights, updating 328-330

learning rate 336
Least Recently Used (LRU) 109
Level of Detail (LOD) 235

3D terrain model, rendering 235, 236
implementing, with quadtree 236-239
quadtree data structure, building 240, 242
quadtree terrain, traversing 242-247

Linear Congruential Generator (LCG)
method 65

linear interpolation technique 256, 257
linked list 46
list 46, 47

element, accessing 47
element, deleting 48
element, enumerating 47
element, inserting 48
element, sorting 48

local space 171
lossy compression formats 105
LRU texture cache

implementing 109-113

Index374

M
machine learning (ML) 317
material 195

properties 195, 196
matrix 262
maze generation

in action 89, 90
MergeSort 84
Microsoft Visual Studio (MSVS) 8
MIT OpenCourseWare

reference link 359
model matrix 147, 172
model space 171
model-view matrix 147
motion techniques 256

integration techniques 256
interpolation techniques 256

multi-pass rendering effects 216
shadows, rendering 216

multiple lights
rendering with 191-194

multiple split-screen cameras
rendering 161
rendering operation, customizing 162, 163
RenderTexture, working with 163-168

multiplicative blending 122

N
navigation maps, pathfinding

graphs 307
grids 307
nav meshes 307

neural network 317
example 318-321
hidden layer 318
input layer 318
learning process 326
output layer 318
prediction process 321-325

neurons 317
node 236
non-player character (NPC) 25
normalization 322
normalized device coordinates

space (NDC) 174
normal mapping 196

example 197
rendering with 196-204

N-patch texture 126
benefits 126
uses 127

O
ObjectPool

applying 93, 94
object pooling 90, 91
orbiting camera 144
orthographic projection 149

versus perspective projection 150
over-the-shoulder camera 144

P
parallax scrolling 129

advantages 130
examples 130
working 130-132

Index 375

particle system 211
animation effects, implementing 212-216
used, for rendering visual effects 212

path node priority values
calculating 307

Percentage-Closer Filtering (PCF)
shadow mapping 227

benefits 229
limitations 229

perspective projection 148
versus orthographic projection 150

point light 190
calculations 190, 191
characteristics 190

pooling algorithm 91, 92
pop 49
priority queue 305

data, processing 306
procedural generation 86-89
programming, with modern GPUs 171

3D graphics rendering pipeline 175
coordinated spaces 171
data passing, from CPU to GPU 184-186
fragment program, working with 177, 178,

183, 184
vertex program, working with 177-183

projection matrix 148
push 49

Q
quadtree 236

used, for implementing Level of Detail
(LOD) 236-239

quadtree data structure
building 240, 242

quadtree terrain
traversing 242-247

quaternion 261
queue 55
queue, project 55, 56

action event system, implementing 56, 57
cooldown time, implementing 58, 59
damage and defeat, handling 58
HUD updates 60
logic and debug output 60, 61
user interface 60

QuickSort 84

R
racing game

entities 29, 30
Entity class, defining 31-33
visual elements, identifying 27-29

rail camera system 142, 143
building 155-157

randomization 64, 65
random number generation algorithm 65

code, implementing in C++ 66, 67
random selection algorithm 68-70

in action 73, 74
raylib 11
raylib graphics library

utilizing 11, 12
real-time strategy (RTS) 141
rendering operation

customizing 162, 163
RenderTexture 164

working with 163-168
role-playing games (RPGs) 133
root node 236

Index376

S
scalability 34

adaptability 35
performance scale 35

scene 14
scene actor 14
scene object 14, 15
SceneRenderPass class 218
screen scrolling

using 128, 129
screen space 174
selection algorithms 68

exclusive selection 74-76
random selection 68-70
weighted random selection 70-73

Selector node 292
Sequence node 292
shader 171
ShaderMap 198
shadow acne 226
shadow application 217

depth rendering pass,
implementing 219-222

SceneRenderPass class, using 217, 218
shadow rendering pass,

implementing 223-227
shadow learning neural network 318
shadow map creation 217
shadow mapping 216

shadow application 217
shadow edges, softening 227, 228
shadow map creation 217

shuffling 78
Fisher-Yates shuffle 78-83
for randomization 78
use cases 78

Sigmoid function 323
skeletal animation

3D motion 260
aspects 260
learning 260
transitioning, with channels 268-273

skeletal animation keyframes 262
animation, transiting 266, 267
frame-by-frame animation,

implementing 264
playback interpolation,

implementing 264-266
playing, with interpolation 263

skybox 247
rendering 247, 248

slope-scaled bias 226
smaller learning rate 336
sorting algorithms 84

BubbleSort 84
HeapSort 84
InsertionSort 84
MergeSort 84
QuickSort 84

sorting cards
in action 84, 85

specular map 203
sprite sheet 125
stack 49-54
stack, operations 54

element, accessing 54
element, enumerating 54

Index 377

standard C++ dynamic array
implementing 44
std::array operations 45

Standard Libraries (STLs) 84
std::array operations 45

element, accessing 45
element, deleting 45
element, enumerating 45
element, inserting 45
element, sorting 46

steering behaviors 299, 301
sting 110
subtractive blending 122
surface properties 195
synapse 317

T
Tangent-Bitangent-Normal (TBN) matrix 201
tangent space coordinates 197
texture cache 109
third-person camera 141
third-person follow-up camera

building 153-155
top-down camera 141, 142
top-down camera for RTS

building 158-160
training 326
training cost 337
TurretController class

turret, controlling with 333-336

U
uniform 184

using 185, 186
UpdateModelAnimation 264
user interfaces (UIs) 126

V
vector 260
vertex program (vertex shader) 178

working with 178-183
video memory (VRAM) 101
view matrix 147, 173
view space 173
virtual reality (VR) camera 145
visual effects

rendering, with particle system 211, 212

W
waypoint camera 155
weighted random selection algorithm 70-73

in action 73, 74
work environment

Knight solution, downloading
from GitHub 10

setting up 8
Visual Studio 2022, installing 8, 9

world space 172

Download a Free PDF Copy of This Book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781835889862

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781835889862

	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1: Data Structure and Algorithm Fundamentals
	Chapter 1: Gearing Up: C++ for Game Development
	Technical requirements
	Why learn algorithms for game development?
	Why is C++ used in this book?
	Understanding the structure for introducing algorithms in this book
	Setting up your development environment
	Install Visual Studio 2022
	Downloading the Knight solution from GitHub

	Utilizing the raylib graphics library
	Introducing Knight
	What’s new in Knight?
	Introducing the game flow structure
	Introducing Scene, SceneObject, and Components

	Investigating Demo1.cpp
	Implementing the main() function
	Overriding the Knight::Start() function
	Overriding the Knight::Update() function

	Summary

	Chapter 2: Data Structures in Action: Building Game Functionality
	Technical requirements
	Data structures and algorithms in games
	Deciphering the secrets of game screenshots
	Common entities found in video games
	Defining the Entity C++ class

	Evaluating data structure and algorithm
	Measuring the efficiency of data structures
	Measuring of complexity
	Measuring scalability

	Big O: Measuring the efficiency of data structures and algorithms

	Basic data structure for collections
	Array
	Common operations on arrays
	Inserting/deleting versus enabling/disabling

	Standard C++ implementation of dynamic array
	Common operations on std::array

	List
	Accessing a specific element
	Enumerating elements in the list
	Inserting and deleting an element
	Sort

	The order matters – LIFO and FIFO
	Stack
	Common operations on the stack

	Queue
	The sample project

	Summary

	Chapter 3: Algorithms Commonly Utilized in Game Development
	Technical requirements
	Exploring randomization
	Understanding the algorithm
	Implementing the code in C++

	Selection algorithms
	Random selection
	Weighted random selection
	Demo3a: Random and weighted-random selections in action

	Exclusive selection
	Demo3b: Exclusive random selection

	Shuffling for randomization
	Demo3c: Fisher-Yates shuffling

	Sorting algorithms
	Demo3d: Sorting cards

	Procedural generation
	Demo3e: Maze generation

	Object pooling
	Outlining the pooling algorithm
	Applying ObjectPool

	Summary

	Part 2: Graphics Algorithms in Practice
	Chapter 4: 2D Rendering and Effects
	Technical requirements
	Understanding 2D graphics operations behind the scenes
	Loading and rendering a texture as an image
	Choosing an appropriate texture format
	Using the cache to avoid loading the same texture repeatedly
	Implementing an LRU texture cache

	Working with 2D texture rendering
	Rendering part of a region from the source texture
	Rotating the texture image
	Color blending
	Alpha blending
	Advanced color and/or alpha blending modes
	Combining both color and alpha blending

	N-patch texture

	Using screen scrolling
	Parallax scrolling
	How parallax scrolling works

	Rendering isometric maps
	How isometric projection works

	Summary

	Chapter 5: The Camera and Camera Controls
	Technical requirements
	Camera – how players see the game world
	Common uses of cameras in video games
	First-person camera
	Third-person camera
	Top-down camera
	Rail camera
	Fly-through camera
	Other variations

	Defining the camera for rendering a scene
	Basic properties of a camera system
	Projecting a 3D world onto a 2D screen
	Perspective projection
	Orthographic projection

	Working with the built-in camera system
	Using the first-person-view camera
	Using the orthogonal camera
	Overriding the default control for built-in cameras

	Building a third-person follow-up camera
	Building a rail camera system
	Building a top-down camera for RTS
	Rendering multiple split-screen cameras
	Customizing the rendering operation
	Working with RenderTexture

	Summary

	Chapter 6: 3D Graphics Rendering
	Technical requirements
	Programming with modern GPUs
	Understanding different coordinated spaces
	Model space
	World space
	View space (camera space/eye space)
	Clip space
	Normalized device coordinates space (NDC)
	Screen space

	Introducing the 3D graphics rendering pipeline
	Stages of the graphics rendering pipeline

	Working with vertex and fragment programs
	Vertex program (vertex shader)
	Fragment program (fragment/pixel shader)

	Passing data from CPU to GPU

	Lighting up the world
	Understanding directional light
	Understanding point lights
	Rendering with multiple lights

	Achieving better realism
	Describing the surface properties
	Rendering with normal mapping

	Summary

	Chapter 7: Rendering a 3D Game World
	Technical requirements
	Rendering imposters (billboards)
	Making 2D look like 3D

	Rendering visual effects with particle systems
	Implementing particle animation effects

	Multi-pass rendering effects
	Rendering shadows
	Shadow map creation (first pass)
	Shadow application (second pass)
	Softening the shadow edges

	Creating a large outdoor landscape
	Height-mapping 3D terrain
	Rendering terrain with level of detail (LOD)
	Implementing level of detail with quadtree
	Building a quadtree for the terrain
	Traversing the quadtree for terrain rendering

	Rendering a skybox

	Part 3: Breathing Life into Your Games
	Chapter 8: Animating Your Characters
	Technical requirements
	Understanding keyframe animation
	Understanding motion techniques
	Linear interpolation
	Ease-in/ease-out interpolation
	Ease-in-out

	Learning about skeletal animation
	Understanding 3D motion related to mathematics
	Vector
	Quaternion
	Matrix

	Skeletal animation keyframes
	Demo8a – playing animation with interpolation
	Frame-by-frame animation implementation
	Interpolation playback implementation

	Transiting between animations
	Demo8b – transitioning animations with two channels

	Using inverse kinematics
	Understanding the robotic arm scenario
	Learning the fundamental terms and mathematical concepts
	Understanding the algorithm
	Demo8c – using IK to simulate a robotic arm

	Summary

	Chapter 9: Building AI Opponents
	Technical requirements
	Understanding Finite State Machines
	Example of an FSM
	Implementing an FSM

	Demo9a: Controlling character animation with an FSM
	Using a Behavior Tree to make decisions
	Example of a BT
	Implementation of a BT

	Steering for movement
	Demo9b: Using an FSM and BT to control the NPC
	Understanding A* pathfinding
	How A* works
	Processing data with a priority queue
	Calculating path node priority values
	The versatility of A*
	Delving into an A* on a grid example

	Demo9c: Pathfinding in action with character movement
	Summary

	Chapter 10: Machine Learning Algorithms for Game AI
	Technical requirements
	Reviewing the evolution of AI
	Learning the basic concepts of a neural network
	Understanding how neural networks predict
	Understanding how neural networks learn
	Step 1: Predicting outputs
	Step 2: Calculating the output errors
	Step 3: Propagating errors backward
	Step 4: Updating the weights

	Demo10: An AI-controlled turret defense game
	Getting started with training and playing Demo10
	Controlling the turret with the TurretController class
	Understanding learning rate, epochs, and training cost
	Understanding training cost and gradient descent

	Training the models

	Summary

	Part 4: Reflecting and Moving Forward
	Chapter 11: Continuing Your Learning Journey
	Recapping your journey
	Extending Knight for your game project
	Extending the rendering feature through a component
	Separating gameplay logic and rendering
	Decoupling gameplay logic and rendering – the approaches

	Looking forward
	Expanding your knowledge: Becoming an expert
	Future learning suggestions

	Summary
	Cheers to your success!

	Other Books You May Enjoy
	Index
	Blank Page

