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Preface

�Motivation of the Author
Throughout my career, I have mentored both students and fellow employees in 

programming, and many of them have suggested that I write my thoughts down in book 

form. However, I have typically responded with the rebuttal that I felt I had nothing novel 

to present. Being a largely self-taught programmer, I have always been able to rattle off 

a long list of books from which I have derived most of my knowledge. Therefore, what 

could I write about that has not already been said?

I came to realize, however, that the majority of books that I had encountered 

tended to focus only on pieces of design or implementation rather than taking a holistic 

approach. For example, if one wants to learn the C++ language, Stroustrup [30] or 

Lippman and Lajoie [19] are excellent references. For learning C++ best practices, one 

need only read the books by Sutter [31, 32, 33], Sutter and Alexandrescu [34], or Meyers 

[22, 21, 23]. Of course, learning to program extends well beyond C++. For data structures 

and algorithms, there are always the classics by Knuth [15, 16, 17] or the more accessible 

and concise book by Cormen et al. [10]. To learn object-oriented analysis and design, 

the book by Booch et al. [8] is an excellent reference. Of course, design patterns can be 

learned from Gamma et al. [11], and general programming practices can be learned from 

many books such as those by McConnell [20], Spinellis [29], or Kernighan and Pike [14].

Certainly, the deeper the specialty one seeks, the more esoteric the book one can 

find (and should eventually read). This book is not such a book. Rather, I have striven to 

write a book that operates from the premise that the reader already possesses a working 

knowledge of the information encased in works such as the aforementioned titles. In this 

book, I instead attempt to ground the reader’s theoretical knowledge of design through 

practice using a single case study.
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�Target Audience
As mentioned previously, the goal of this book is not to present any specific topic 

but rather to explore the interrelationship of often compartmentalized subjects. The 

successful combination of these components to form a cohesive, maintainable, elegant 

piece of software is, in essence, design. As such, this book is intended to target practicing 

professionals, in particular those who have several years of development experience but 

who do not yet possess sufficient experience to architect independently a large software 

project.

Because my intent is to emphasize utilization of one’s existing knowledge effectively 

to design software, I make little effort to explain individual topics in great depth. I believe 

too many books classified as intermediate to advanced fail because the author devotes 

too much content describing prerequisites. The result is a massive tome filled with 

unnecessary detail for the advanced reader, while the beginner is left with a long and 

complicated exposition that is still inaccessible because the beginner does not possess 

sufficient knowledge or experience to grasp the subject regardless of the amount of detail 

devoted to the description. I have, therefore, aimed for conciseness over completeness. 

Often, I simply refer the reader to relevant material rather than myself describe a 

background topic in great detail. While this strategy may indeed make this book difficult 

for beginners, I hope experienced professionals appreciate both the brevity of the book 

and its tone, which assumes the reader is competent at their craft.

�Structure of the Book
Learning most tasks in programming requires hands-on experience and repetition; 

design is no exception. My opinion is that design is best learned through a combination 

of self-exploration and mentoring from an expert. For this reason, I have chosen to 

organize this book as a study in design through the detailed working of a case study. 

Instead of discussing design elements in the abstract, we will instead examine the 

concrete application of design principles as they relate to the design and construction 

of a simplistic (but not too simplistic) software project. Importantly, we will not only 

examine successful results that led to the final implementation, but we will also spend 

time considering alternatives, some of which are viable and others which are not. Where 

multiple solutions may suffice, choosing one over the other is often either a matter of 

context or just taste. Regardless, experience is usually the arbiter of such decisions, and 
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hopefully this book will enable the reader to learn from the author’s experiences without 

having to repeat his mistakes. That is, I hope I have created a book that can serve as a 

self-contained master class in design.

�The Case Study
To this point, I have not yet mentioned the subject of the case study central to this 

book. In my opinion, an ideal problem would be one that is not too daunting and yet 

not so trivial that it needs no design. Additionally, the domain of the problem should 

be readily understandable to any reader. For this reason, I have chosen to implement a 

stack-based, Reverse Polish Notation (RPN) calculator that I named pdCalc, short for 

practical design calculator. Functionally, pdCalc was inspired by the HP48S calculator, 

an old favorite calculator of mine from high school and college (which still sits on my 

desk today). I cannot imagine any reader being unfamiliar with the basic operations of 

a calculator, and making the calculator use RPN adds a little twist that I hope will make 

the project interesting. If your sole objective were to code a simple calculator with basic 

functionality, admittedly, the design of pdCalc is overkill, and more code is written from 

scratch than is strictly necessary. Remember, pdCalc’s primary purpose is to serve as an 

instructional tool – a reduced-size representation of a real project. That pdCalc happens 

to be a functioning RPN calculator is a secondary objective.

�Language Selection
Design as an abstract concept can be taught in the absence of a particular programming 

language. However, once committed to a concrete example, a specific language must 

be chosen for the implementation. I decided to write the case study exclusively using 

C++. While every line of the program does not appear in the text, all of the source code 

is available for the reader to examine. Despite this book’s primary focus on design, 

reading the source code is a good way to learn how implementation details in a specific 

language enable or, at least, facilitate a chosen design. The source code also serves as 

a high-quality (I hope) exemplar of a modern C++ implementation of a complete user 

application. I highly recommend reading and modifying the source code in conjunction 

with reading the text.

The decision to use C++ does not imply that C++ is the best choice for all programs, 

and, in fact, it may not even be the best choice for the program examined in this book. 

However, to ground the abstraction, a concrete language had to be selected. I chose 
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C++ because it is standardized, widely deployed, and available at zero cost on many 

platforms. Selfishly, I also chose C++ because it is my most proficient language. While I 

could, perhaps, have chosen another language meeting the aforementioned objective 

criteria (e.g., Python), the resulting code would probably have been functional but 

nonidiomatic due to my relative lack of expertise.

During the writing of the first edition of this book, C++0x was ratified as C++11 

and then updated as C++14. C++11, with smart pointers, move semantics, lambdas, 

variadic templates, and a host of other new features, fundamentally changed how 

one could express a design in the C++ language. My objective at the time was to avoid 

incorporating modern C++ features where they were inappropriate just to demonstrate 

usage. Instead, I sought to highlight how these new language elements could be used 

effectively in the design of a large-scale program. Hopefully, I achieved my objective.

Design and architecture have not changed significantly since the publication of 

the first edition of this book, so why write a second edition? If this were an abstract 

design book, such an update would be unnecessary. However, since the publication 

of the first edition, C++17 and C++20 were both ratified. Because the book’s case study 

is accompanied by a complete implementation, expressing a concrete design using 

C++ has evolved with new language developments. While C++17 added several new 

implementation features, none of these features substantially impacted the ability to 

express designs in the language. C++20, on the other hand, is different.

C++20, maybe even more so than C++11, fundamentally changes how designs may 

be expressed in C++. In particular, four new major language features were added: ranges, 

coroutines, concepts, and modules, all of which make, at least, a brief appearance in 

the case study. The ranges library does not fundamentally alter program design. It does, 

however, fundamentally change the way algorithms can be implemented, especially 

with the better integration of the functional programming paradigm as enabled through 

views. Coroutines add cooperative multitasking to the C++ language. We will see that 

even in a single-threaded program such as the one described in this book, coroutines 

can be used to express an idea from the first edition differently. Concepts change the 

way generic programs are constructed. This book’s design does not make extensive 

use of templates; therefore, concepts make only the briefest of appearances. Lastly, 

C++20 finally brings modularization to C++ as a formal language construct. This change 

drastically impacts how code can be organized, including, in many instances, completely 

eliminating the need for header files. We will explore the usage of C++ modules, and 

their interaction with dynamically linked libraries, in some depth.
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In the second edition, I again endeavor to illustrate the interplay between 

implementation and design and hence aim to demonstrate how language features 

enable the more natural expression of design paradigms. Where the design usage of 

modern C++ language or library features are generalizable beyond the case study, I have 

chosen to highlight these points in a sidebar. Sidebars are inclusive of all new language 

features since C++11.

�GUI Framework, Tooling, External Dependencies, 
and Compilers
While graphical user interfaces (GUI) are not the primary focus of this book, our 

program will eventually acquire one; hence, selecting a particular GUI framework 

was necessary. I selected Qt for this purpose and successfully tested the code against 

Qt versions 5 and 6. As with C++, Qt is widely deployed, cross platform, and free. As 

with C++, again, selfishly, I chose Qt because I am experienced using desktop Qt and 

personally enjoy using it. A big advantage of using Qt is that it makes nearly all of the 

source code for the project platform independent. Where platform independence 

was not achievable, I encapsulated the platform-dependent code behind an abstract 

interface. We’ll explore this design pattern, in depth, in Chapter 7.

In the first edition of this book, pdCalc was mostly self-contained, from both a code 

and tooling standpoint; Qt was the only external dependency necessary to compile, 

build, and test the code. For the second edition, however, a few external dependencies 

were necessary. First, I changed the build system from using Qt’s own qmake to Kitware’s 

CMake [1]. CMake is cross platform, free of charge, easy to obtain, and practically 

a de facto standard for building C++ applications. For my purposes, CMake made 

experimentation with different C++20 compilers easier and more efficient. Of note, 

CMake’s C++20 tooling for modules was still immature at the time of writing, so some 

parts of the build scripts are more imperative than I expect will be necessary in the 

future. Second, while C++20 added coroutines as a new low-level language feature, the 

standard did not incorporate any high-level supporting libraries. In order to focus on 

the design aspects of using coroutines rather than their implementation mechanics, 

I increased the level of abstraction by using Lewis Baker’s cppcoro [7] library to 

implement a generator (see Chapter 5). For convenience, I included the single necessary 

file from cppcoro into a third-party directory included with pdCalc’s source code.
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In general, I always strive to write standards-conforming, platform-independent 

code. Since any known platform-specific code is compartmentalized and encapsulated, 

extension to other platforms should be straightforward if you can tolerate the pain of 

customizing the build system. Therefore, the source code in this book should compile 

with any C++20-compliant compiler and on any platform where Qt is supported. 

Unfortunately, over a year after finalization of the standard, only one compiler, 

Microsoft’s Visual C++ (MSVC), is sufficiently standards conforming to actually 

compile the full source code presented in this book. (To be fair, 2020 was a very strange 

year.) GCC is close, but it lacks two key features. First, GCC’s C++ standard library 

implementation is missing the C++20 formatting library. This problem can be easily 

remedied by substituting the MIT licensed fmt library [2] in its place. The bigger problem 

is the immaturity of C++ modules support in GCC. Specifically, pdCalc’s source code, at 

the time of writing, causes GCC to produce internal compiler errors; I have submitted 

multiple bug reports. Clang’s support of C++20, while laudable, is behind both GCC and 

MSVC. At the current pace of development, I expect GCC to reach sufficient standards 

conformance to compile this book’s source code ahead of clang.

�The Source Code
The source code (and supporting unit tests) for pdCalc is available, in its entirety, from 

Apress’s GitHub repository (https://github.com/Apress/practical-cplusplus-

design-2e). Appendix A describes, in detail, how to download and build the source 

code. Although most readers will likely prefer to download the source using a git client, 

the entire source code is also available from GitHub as a single zip file.

The source code itself is licensed under the GNU Public License (GPL) version 3. 

I hope you find the source code useful for learning about design and implementation. 

Beyond its use as an educational aid for this book, you are, of course, free to do anything 

you like with the source code within the rights granted to you by the GPL.

For the first edition of this book, I wrote the source code for pdCalc from scratch 

specifically targeting new language features of C++11; the source code was updated for 

C++14 shortly before publication. For the second edition of this book, I updated and 

refactored the source code to use C++17 and C++20 features instead of performing a 

complete rewrite. This strategy has two implications. First, not every line of code was 

touched, although more lines were touched than I originally anticipated. Nevertheless, 
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I likely missed places where newer features of the language could have been used but 

weren’t. In other instances, newer features were intentionally not used because of 

compiler or language support. For example, while most of pdCalc was upgraded to 

extensively use modules, the GUI was not because, at the time of writing, modules and 

Qt’s meta object compiler (MOC) did not interoperate well. Second, because I was 

literally refactoring the source code for the sole purpose of incorporating new language 

features, I was able to identify specifically where new language features enabled 

different design paradigms. Where these changes were significant, I contrasted the 

original version of the source code and its design to the updated version directly in the 

book’s text.

This book uses two distinct fonts: the standard font you are reading now and a fixed 

width font used for source code. The fixed width font is demonstrated in the following 

list of standard library containers: vector, list, and map. When clear from context, to 

save space, I often omit namespaces and template arguments. When the discussion 

requires a block of source code, it will be offset from the rest of the text as follows:

class ExampleClass

{

public:

  // your implementation here

};

In general, I tried to reproduce the code in the text identically to the code in the 

repository. However, in some cases, parts of the source were deliberately omitted in 

the text either for brevity or clarity. I tried to note instances where the differences are 

significant. Where the two differ, assume the code in the repository is the more correct 

and complete version.

�Contacting the Author
I suspect that as you read this book and explore the source code, you will invariably 

have questions. Please feel free to contact me with questions about the content of 

the book, questions about the source code, errors, or improvements to my design or 

implementation. I can be contacted at PracticalDesignBook@gmail.com. I will make 

my best effort to reply to all reasonable email related to pdCalc, but without knowing 

the volume of email I’ll receive, I can make no ironclad guarantee that I will be able to 
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respond to every request. With respect to the first edition of this book, I can proudly state 

that I responded to each and every email that I received in great detail. Unfortunately, 

the previous statement is true by vacuous argument as no one emailed me. Nonetheless, 

I reiterate that anyone should feel free to ask me questions, and I will make my best effort 

to respond in a timely manner.

�Parting Advice
Finally, in addition to learning something, I hope that you, the reader, have fun with 

the subject. My personal suggestion is to try to think about the design decisions 

yourself before reading my solutions. If you are truly industrious, you may even want 

to implement your own calculator using a completely different, possibly better design. 

After all, as I said before, design is ultimately about both experience and taste, and your 

experience and taste may differ significantly from mine. Enjoy!
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CHAPTER 1

Defining the Case Study

1.1  �A Brief Introduction
This book is about programming design. However, unlike many books on this topic, this 

book teaches design by exploration rather than design by instruction. Typically, most 

authors writing about some aspect of design establish principles they wish to convey, lay 

out these principles in the abstract, and then proceed to give examples supporting the 

current points. This is not such a book. Rather, this book defines a practical problem to 

be solved and proceeds to examine its solution in detail. That is, instead of deciding on a 

topic and creating trivial examples to support its teaching, I have defined a hard problem 

and then let the solution of this problem dictate what topics should be discussed.

Interestingly enough, the preceding approach is exactly how I would tell someone 

not to learn a subject. I always stress that people should learn broad fundamentals first 

and subsequently apply these principles to solving problems. However, this is not a 

book meant to teach the principles of design. Rather, this is a book meant for someone 

who already knows the fundamentals but wishes to deepen their knowledge of practice. 

This is a book meant to teach someone the craft of designing and implementing a 

realistic, albeit small, program from start to finish. This process involves more than 

knowing elements of design. It involves understanding when and how to use what 

you know, understanding how to decide between seemingly equivalent approaches, 

and understanding the long-term implications of various decisions. This book is 

not comprehensive in its coverage of data structures, algorithms, design patterns, or 

C++ best practices; volumes of books exist to cover these topics. This is a book about 

learning how to apply this knowledge to write code that is organized, cohesive, sensible, 

purposeful, and pragmatic. In other words, this book is about learning to write code that 

both gets the job done now (development) and allows others to continue to get the job 

done in the future (maintenance). This, I have termed practical design.

https://doi.org/10.1007/978-1-4842-7407-1_1#DOI
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In order to explore practical design, we need a case study. Ideally, the case study 

problem should be

•	 Large enough to be more than trivial

•	 Small enough to be tractable

•	 Familiar enough to not require domain-specific expertise

•	 Interesting enough to maintain the reader’s attention for the duration 

of the book

After taking the preceding criteria into consideration, I decided to select a stack-based, 

Reverse Polish Notation (RPN) calculator as the case study. The details of the calculator’s 

requirements will be defined in the following. I believe that the code for a fully functioning 

calculator is significant enough that the detailed study of its design provides sufficient 

material to cover a book. Yet the project is small enough that the book can be a reasonable 

length. Certainly, specialized domain expertise is not required. I suspect every reader of 

this book has used a calculator and is well versed in its basic functionality. Finally, I hope 

that making the calculator RPN provides a suitable twist to stave off boredom.

1.2  �A Few Words About Requirements
No matter how big or how small, all programs have requirements. Requirements are 

those features, whether explicit or implicit, functional or nonfunctional, to which the 

program must comply. Entire books have been written on gathering and managing 

software requirements (see, e.g., [36] or [28]). Typically, despite one’s best efforts, it is 

practically impossible to gather all of the requirements up front. Sometimes, the effort 

required is economically infeasible. Sometimes, domain experts overlook what seem like 

obvious requirements to them, and they simply neglect to relate all of their requirements 

to the development team. Sometimes, requirements only become apparent after the 

program begins to take shape. Sometimes, the customer does not understand their own 

requirements well enough to articulate them to the development team. While some of 

these dilemmas may be mitigated using agile development methods, the fact remains 

that many design decisions, some of which may have far-reaching implications, must 

occur before all of the requirements are known.

In this book, we will not study techniques for gathering requirements; rather, our 

requirements are simply given up front. Well, most of them will be given up front. A 
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few of the requirements have been explicitly reserved until a later chapter so that we 

can study how our design might change to accommodate unknown future expansion. 

Certainly, one could justly argue that since the author knows how the requirements will 

change, the initial design will correctly “predict” the unforeseen features. While this 

criticism is fair, I nonetheless argue that the thought process and discussion behind 

the design decisions are still relevant. As a software architect, part of your job will be to 

anticipate future requests. Although any request is possible, incorporating too much 

flexibility at the outset is not economical. Designing for future expansion must always 

be considered as a trade-off between the cost difference for expressly accommodating 

expandability up front vs. modifying the code later if a change is requested. Where a 

design should land in the spectrum between simplicity and flexibility must ultimately be 

measured against the likelihood of a feature request materializing and the feasibility of 

adding a new feature if its incorporation is not considered at the beginning.

1.3  �Reverse Polish Notation (RPN)
I presume that anyone reading this book is familiar with the typical operation of a 

calculator. However, unless you grew up using a Hewlett-Packard calculator, you may 

be unfamiliar with how a stack-based RPN calculator functions (see [10] if you are 

unfamiliar with how a stack works). Simply stated, input numbers are pushed onto a 

stack, and operations are performed on the numbers already on the stack. A binary 

operator, such as addition, pops the top two numbers from the stack, adds the two 

numbers, and then pushes the result onto the stack. A unary operator, such as the sine 

function, pops one number from the top of the stack, uses this number as the operand, 

and pushes the result onto the stack. For those familiar with basic compiler lingo, RPN 

functions as the postfix notation of the operation (see [4] for a detailed discussion of 

postfix notation). The following list describes my opinion of just a few of the advantages 

of Reverse Polish Notation over conventional syntax:

•	 All operations can be expressed parentheses-free.

•	 Multiple inputs and outputs can be visualized simultaneously.

•	 Large calculations can be trivially decomposed into multiple, simple 

operations.

•	 Intermediate results can be trivially retained and reused.
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While RPN will likely seem incredibly awkward at first, once you’ve become accustomed 

to it, you will curse every calculator that does not employ it when you are tasked with 

performing anything more complicated than simple arithmetic.

To ensure that the operation of an RPN calculator is clear, let’s examine a short 

example. Suppose we wish to evaluate the following expression:

	

4 7 3 2

7

�� �� �

	

On a typical, non-RPN calculator, we would type ((4 + 7) ∗ 3 + 2)/7 and then press  

the = key. On an RPN calculator, we would instead type 4 7 + 3 ∗ 2 + 7 /, where there is an 

enter command following each number in order to push the input onto the stack. Note 

that for many calculators, to reduce key entry, operations such as + may also function 

to implicitly enter the previous number on the stack. Figure 1-1 shows the preceding 

calculation performed step by step on an RPN calculator.

Figure 1-1.  An example calculation performed on an RPN calculator showing 
intermediate steps. Counterintuitively, the top of the stack is at the bottom of the 
screen
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1.4  �The Calculator’s Requirements
Once you understand the nature of Reverse Polish Notation, the rest of the calculator’s 

functionality should be straightforward from the requirements description. If RPN is still 

unclear, I recommend spending some time clarifying this concept before proceeding. 

Given that caveat, the requirements of the calculator are now defined as follows:

•	 The calculator will be stack based; the stack size should not be  

hard-coded.

•	 The calculator will use RPN to perform operations.

•	 The calculator will exclusively operate on floating-point numbers; a 

technique for entering input numbers (including scientific notation) 

should be implemented.

•	 The calculator will have the ability to undo and redo operations; the 

undo/redo stack sizes should be conceptually unlimited.

•	 The calculator will have the ability to swap the top two elements of 

the stack.

•	 The calculator will be able to drop (erase) an element from the top of 

the stack.

•	 The calculator will be able to clear the entire stack.

•	 The calculator will be able to duplicate the element from the top of 

the stack.

•	 The calculator will be able to negate the element from the top of the 

stack.

•	 The calculator will implement the four basic arithmetic operations: 

addition, subtraction, multiplication, and division. Division by 0 is 

impermissible.

•	 The calculator will implement the three basic trigonometric 

functions and their inverses: sin, cos, tan, arcsin, arccos, and arctan. 

Arguments to the trigonometric functions will be given in radians.

•	 The calculator will implement functions for yx and yx .
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•	 The calculator will implement a runtime plugin structure to expand 

the operations the calculator can perform.

•	 The calculator will implement both a command line interface (CLI) 

and a graphical user interface (GUI).

•	 The calculator will not support infinity or imaginary numbers.

•	 The calculator will be fault tolerant (i.e., it will not crash if the 

user gives bad input) but does not need to handle floating-point 

exceptions.

Now that the calculator has requirements, it deserves a name. I chose to call the 

calculator pdCalc, short for practical design calculator. Please accept my apologies to 

you for my lack of naming creativity.

The remainder of this book will examine, in detail, the complete design of a 

calculator that satisfies the preceding requirements. In addition to describing the 

decisions made for the final design, we will also discuss alternatives to understand why 

the final decisions were made and what could have been the consequences of different 

decisions. I’ll note that the final design presented in this book is not the only design 

that will meet the requirements, and it may not even be the best design that meets the 

requirements. I encourage the ambitious reader to experiment with alternate designs 

and extend the calculator to meet their own needs and interests.

1.5  �The Source Code
Throughout the text of this book, we will be examining a lot of code snippets as we 

design our calculator. Most of these code snippets are taken directly from pdCalc’s 

GitHub source repository (see Appendix A for instruction for downloading the source 

code). I will point out any significant differences between the code in the text and the 

code in the repository. Occasionally, code snippets are comprised of small, contrived 

examples. These code snippets are not part of pdCalc’s source repository. All of the code 

is made available under the GPL version 3 [12]. I highly encourage you to experiment 

with the source code and modify it in any way you see fit.
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In order to build pdCalc, you will need access to a C++20-compliant compiler, Qt 

(version 5 or 6), and CMake. In order to not introduce additional dependencies, the unit 

tests are performed with Qt’s QtTest. At the time this edition was written, Microsoft’s 

Visual C++ (MSVC) was the only compiler with sufficient C++20 conformance to build 

pdCalc. Hopefully, GCC and clang will reach C++20 maturity soon. However, due to the 

inability of GCC or clang to build pdCalc, I have only built and tested the program in 

Windows using MSVC. However, as additional compilers reach a sufficient level of C++20 

maturity, the code should also build and execute on additional systems with little or 

no source code modification. Some tweaks to the CMake project files will be necessary 

for porting to a different platform, although I have at least provided hooks to get one 

started with Linux using either GCC or clang. Because I expect that the audience for 

this book leans toward developers with years of experience, I suspect that building the 

code from source will be a fairly trivial task. However, for completeness, I have included 

build guidance in Appendix A. Additionally, I have included Appendix B to explain the 

organization of pdCalc’s source code, libraries, and executables. Although these two 

appendices appear at the end of the book, you may wish to read them first if you intend 

to build pdCalc and explore its full implementation while reading the text.
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CHAPTER 2

Decomposition
Software is complex, one of the most complex endeavors humankind has ever 

undertaken. When you first read the requirements document for a large-scale 

programming project, you may feel overwhelmed. That’s expected; the task is 

overwhelming! For this reason, large-scale programming projects typically begin with 

analysis.

The analysis phase of a project consists of the time spent exploring the problem 

domain in order to understand the problem completely, clarify the requirements, and 

resolve any ambiguities between the client’s and developer’s domains. Without fully 

understanding the problem, you, as the architect or developer, have absolutely no 

chance of developing a maintainable design. For the case study chosen for this book, 

however, the domain should be familiar (if not, you may wish to pause here and partake 

in an analysis exercise). Therefore, we skip a formal, separate analysis phase. That said, 

aspects of analysis can never be skipped entirely, and we will explore several analysis 

techniques during the construction of our design. This intentional coupling of analysis 

and design emphasizes the interplay between these two activities to demonstrate that 

even for the simplest of problem domains, producing a good design requires some 

formal techniques for analyzing the problem.

One of the most important techniques we have as software designers for addressing 

inherent problem complexity is hierarchical decomposition. Most people tend to 

decompose a problem in one of two ways: top-down or bottom-up. A top-down 

approach starts by looking at the whole picture and subsequently subdividing the 

problem until reaching the bottom-most level. In software design, the absolute bottom-

most level would be individual function implementations. However, a top-down design 

might stop short of implementation and conclude by designing objects and their public 

interfaces. A bottom-up approach would start at the individual function or object level 

and combine components repeatedly until eventually encompassing the entire design.

https://doi.org/10.1007/978-1-4842-7407-1_2#DOI


10

For our case study, both top-down and bottom-up approaches will be used at 

various stages of the design. I find it practical to begin decomposition in a top-down 

fashion until bulk modules and their interfaces are defined and then actually design 

these modules from the bottom-up. Before tackling the decomposition of our calculator, 

let’s first begin by examining the elements of a good decomposition.

2.1  �The Elements of a Good Decomposition
What makes a decomposition good? Obviously, we could just randomly split 

functionality into different modules and group completely unconnected components. 

Using the calculator as an example, we could place arithmetic operators and the GUI in 

one module while placing trigonometric functions with the stack and error handling in 

another module. This is a decomposition, just not a very useful one.

In general, a good design will display attributes of modularity, encapsulation, 

cohesion, and low coupling. Many developers will have already seen many of the 

principles of a good decomposition in the context of object-oriented design. After all, 

breaking code into objects is, itself, a decomposition process. Let’s first examine these 

principles in an abstract context. Subsequently, we’ll ground the discussion by applying 

these principles to pdCalc.

Modularity, or breaking components into independently interacting parts 

(modules), is important for several reasons. First, it immediately allows one to partition a 

large, complex problem into multiple, smaller, more tractable components. While trying 

to implement code for the entire calculator at once would be difficult, implementing 

an independently functioning stack is quite reasonable. Second, once components are 

split into distinct modules, tests can be defined that validate individual modules instead 

of requiring the entire program to be completed before integration testing commences. 

Third, for large projects, if modules with clear boundaries and interfaces are defined, 

the development effort can be divided between multiple programmers (or teams of 

programmers) preventing them from constantly interfering with one another’s progress 

by needing to modify the same source files.

The remaining principles of good design, encapsulation, cohesion, and low coupling 

all describe characteristics that modules should possess. Basically, they prevent 

spaghetti code. Encapsulation, or information hiding, refers to the idea that once a 

module is defined, its internal implementation (data structures and algorithms) remains 

hidden from other modules. Correspondingly, a module should not make use of the 
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private implementation of any other module. That is not to say that modules should not 

interact with one another. Rather, encapsulation insists that modules interact with one 

another only through clearly defined and, preferably, limited interfaces. This distinct 

separation ensures that internal module implementation can be independently modified 

without concern for breaking external, dependent code, provided the interfaces remain 

fixed and the contracts guaranteed by the interfaces are met.

Cohesion refers to the idea that the code inside a module should be self-consistent 

or, as the name implies, cohesive. That is, all of the code within a module should logically 

fit together. Returning to our example of a poor calculator design, a module mixing 

arithmetic code with user interface code would lack cohesion. No logical ties bind the 

two concepts together (other than that they are both components of a calculator). While 

a small code, like our calculator, would not be completely impenetrable if it lacked 

cohesion, in general, a large, noncohesive code base is very difficult to understand, 

maintain, and extend.

Poor cohesion can manifest in one of two ways: either code that should not be 

together is crammed together or code that should be together is split apart. In the 

first instance, code functionality is almost impossible to decompose into mentally 

manageable abstractions because no clear boundaries exist between logical 

subcomponents. In the latter situation, reading or debugging unfamiliar code (especially 

for the first time) can be very frustrating because a typical execution path through the 

code jumps from file to file in a seemingly random fashion. Either manifestation is 

counterproductive, and we thus prefer cohesive code.

Finally, we examine coupling. Coupling represents the interconnectedness of 

components, be it functional coupling or data coupling. Functional coupling occurs 

when the logical flow of one module requires calling another module to complete its 

action. Conversely, data coupling is when data is shared between individual modules 

either via direct sharing (e.g., one or more modules point to some set of shared data) or 

via passing of data (e.g., one module returning a pointer to an internal data structure to 

another module). To argue for zero coupling is clearly absurd because this state would 

imply that no module could communicate in any way with any other module. However, 

in good design, we do strive for low coupling. How low should low be? The glib answer 

is as low as possible while still maintaining the ability to function as necessary. The 

reality is that minimizing coupling without detrimentally complicating code is a skill 

acquired with experience. As with encapsulation, low coupling is enabled by ensuring 

that modules communicate with one another only through cleanly defined, limited 
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interfaces. Code that is highly coupled is difficult to maintain because small changes 

in one module’s design may lead to many unforeseen, cascading changes through 

seemingly unrelated modules. Note that whereas encapsulation protects module A from 

internal implementation changes to module B, low coupling protects module A from 

changes to the interface of module B.

2.2  �Selecting an Architecture
Although it is now tempting to follow our preceding guidelines and simply start 

decomposing our calculator into what seem like sensible constituent components, 

it’s best to first see if someone else has already solved our problem. Because similar 

problems tend to arise frequently in programming, software architects have created a 

catalog of templates for solving these problems; these archetypes are called patterns. 

Patterns typically come in multiple varieties. Two categories of patterns that will be 

examined in this book are design patterns [11] and architectural patterns.

Design patterns are conceptual templates used to solve similar problems that arise 

during software design; they are typically applied to local decisions. We will encounter 

design patterns repeatedly throughout this book during the detailed design of our 

calculator. Our first top level of decomposition, however, requires a pattern of global 

scope that will define the overarching design strategy, or software architecture. Such 

patterns are naturally referred to as architectural patterns.

Architectural patterns are conceptually similar to design patterns; the two differ 

primarily in their domains of applicability. Whereas design patterns are typically applied 

to particular classes or sets of related classes, architectural patterns typically outline the 

design for an entire software system. Note that I refer to a software system rather than a 

program because architectural patterns can extend beyond simple program boundaries 

to include interfaces to hardware, networking, security, databases, the coupling of 

multiple independent programs, etc. Complex architectural patterns for entire systems 

are prevalent in modern, cloud-deployed solutions.

Two architectural patterns of particular interest for our case study are the multitiered 

architecture and the model-view-controller (MVC) architecture. We’ll examine each 

of these two patterns in the abstract before applying them to pdCalc. The successful 

application of an architectural pattern to our case study will represent the first level of 

decomposition for the calculator.
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2.2.1  �Multitiered Architecture
In a multitiered, or n-tiered, architecture, components are arranged sequentially in 

tiers. Communication is bidirectional via adjacent tiers, but nonadjacent tiers are not 

permitted to communicate directly. An n-tiered architecture is depicted in Figure 2-1.

The most common form of the multitiered architecture is the three-tiered 

architecture. The first tier is the presentation layer, which consists of all of the user 

interface code. The second tier is the logic layer, which captures the so-called business 

logic of the application. The third tier is the data layer, which, as the name implies, 

encapsulates the data for the system. Very often, the three-tiered architecture is applied 

as a simplistic enterprise-level platform, where each tier could represent not only a 

different local process but also possibly a different process operating on a different 

machine. In such a system, the presentation layer would be the client interface, whether 

it be a traditional desktop application or a browser-based interface. The logic layer of  

the program could run on either the client or server side of the application or, possibly, 

Figure 2-1.  A multitiered architecture with arrows indicating 
communication
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on both. Finally, the data layer would be represented by a database that could be 

running locally or remotely. However, as we shall see with pdCalc, the three-tiered 

architecture can also be applied to a single desktop application.

Let’s examine how the three-tiered architecture obeys our general decomposition 

principles. First and foremost, at the highest level of decomposition, the architecture 

is modular. At least three modules, one for each tier, exist. However, the three-tiered 

architecture does not preclude multiple modules from existing at each tier. If the 

system were large enough, each of the primary modules would warrant subdivision. 

Second, this architecture encourages encapsulation, at least between tiers. While one 

could foolishly design a three-tiered architecture where adjacent tiers accessed private 

methods of neighboring tiers, such a design would be counterintuitive and very brittle. 

That said, in applications where the tiers coexist in the same process space, it is very easy 

to intertwine the layers, and care must be taken to ensure this situation does not arise. 

This separation is achieved by clearly delineating each layer via definitive interfaces. 

Third, the three-tiered architecture is cohesive. Each tier of the architecture has a distinct 

task, which is not commingled with the tasks of the other tiers. Finally, the three-tiered 

architecture truly shines as an example of limited coupling. By separating each of the 

tiers via clearly defined interfaces, each tier can change independently of the others. This 

feature is particularly important for applications that must execute on multiple platforms 

(only the presentation layer changes platform to platform) or applications that undergo 

unforeseen replacement of a given tier during their lifetimes (e.g., the database must be 

changed due to a scalability problem).

2.2.2  �Model-View-Controller (MVC) Architecture
In the model-view-controller (MVC) architecture, components are decomposed into 

three distinct elements aptly named the model, the view, and the controller. The model 

abstracts the domain data, the view abstracts the user interface, and the controller 

manages the interaction between the model and the view. Often, the MVC pattern is 

applied locally to individual GUI widgets at the framework level where the design goal 

is to separate the data from the user interface in situations where multiple distinct 

views may be associated with the same data. For example, consider a scheduling 

application with the requirement that the application must be able to store dates and 

times for appointments, but the user may view these appointments in a calendar that 

can be viewed by day, week, or month. Applying MVC, the appointment data would be 
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abstracted by a model module (likely, a class in an object-oriented framework), and 

each calendar style would be abstracted by a distinct view (likely, three separate classes). 

A controller would be introduced to handle user events generated by the views and to 

manipulate the data in the model.

At first glance, MVC seems no different than the three-tiered architecture with 

the model replacing the data layer, the view replacing the presentation layer, and 

the controller replacing the business logic layer. The two architectural patterns are 

different, however, in their interaction pattern. In the three-tiered architecture, the 

communication between layers is rigidly linear. That is, the presentation and data 

layers talk only bidirectionally to the logic layer, never to each other. In MVC, the 

communication is triangular. While different MVC implementations differ in their exact 

communication patterns, a typical implementation is depicted in Figure 2-2. In this 

figure, the view can both generate events to be handled by the controller and get the data 

to be displayed directly from the model. The controller handles events from the view, but 

it can also directly manipulate either the model or the controller. Finally, the model can 

be acted upon directly by either the view or the controller, but it can also generate events 

to be handled by the view. A typical such event would be a state change event that would 

cause the view to update its presentation to the user.

As we did with the three-tiered architecture, let’s now examine how MVC obeys our 

general decomposition principles. First, an MVC architecture will usually be broken 

into at least three modules: model, view, and controller. However, as with the three-

tiered architecture, a larger system will admit more modules because each of the model, 

view, and controller will require subdivision. Second, this architecture also encourages 

encapsulation. The model, view, and controller should only interact with one another 

through clearly defined interfaces, where events and event handling are defined as 

Figure 2-2.  An MVC architecture with arrows indicating communication. 
Solid lines indicate direct communication. Dashed lines indicate indirect 
communication (e.g., via eventing) [38]
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part of an interface. Third, the MVC architecture is cohesive. Each component has a 

distinct, well-defined task. Finally, we ask if the MVC architecture is loosely coupled. 

By inspection, this architectural pattern is more tightly coupled than the three-tiered 

architecture because the presentation layer and the data layer are permitted to have 

direct dependencies. In practice, these dependencies are often limited either through 

loosely coupled event handling or via polymorphism with abstract base classes. Typically, 

however, this added coupling does usually relegate the MVC pattern to applications in 

one memory space. This limitation directly contrasts with the flexibility of the three-tiered 

architecture, which may span applications over multiple memory spaces.

2.2.3  �Architectural Patterns Applied to the Calculator
Let’s now return to our case study and apply the two architectural patterns discussed 

previously to pdCalc. Ultimately we’ll select one as the architecture for our application. 

As previously described, a three-tiered architecture consists of a presentation layer, 

a logic layer, and a data layer. For the calculator, these tiers are clearly identified as 

entering commands and viewing results (via either a graphical or command line user 

interface), the execution of the commands, and the stack, respectively. For the MVC 

architecture, we have the stack as the model, the user interface as the view, and the 

command dispatcher as the controller. Both calculator architectures are depicted in 

Figure 2-3. Note that in both the three-tiered and MVC architectures, the input aspects 

of the presentation layer or view are responsible only for accepting the commands, not 

interpreting or executing them. Enforcing this distinction alleviates a common problem 

developers create for themselves, the mixing of the presentation layer with the logic 

layer.

Figure 2-3.  Calculator architecture options
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2.2.4  �Choosing the Calculator’s Architecture
From Figure 2-3, one quickly identifies that the two architectures partition the 

calculator into identical modules. In fact, at the architectural level, these two competing 

architectures differ only in their coupling. Therefore, in selecting between these 

two architectures, we only need to consider the design trade-offs between their two 

communication patterns.

Obviously, the main difference between the three-tiered architecture and the MVC 

architecture is the communication pattern between the user interface (UI) and the 

stack. In the three-tiered architecture, the UI and stack are only allowed to communicate 

indirectly through the command dispatcher. The biggest benefit of this separation is a 

decrease in coupling in the system. The UI and the stack need to know nothing about 

the interface of the other. The disadvantage, of course, is that if the program requires 

significant direct UI and stack communication, the command dispatcher will be 

required to broker this communication, which decreases the cohesion of the command 

dispatcher module. The MVC architecture has the exact opposite trade-off. That is, at the 

expense of additional coupling, the UI can directly exchange messages with the stack, 

avoiding the awkwardness of the command dispatcher performing added functionality 

unrelated to its primary purpose. Therefore, the architecture decision reduces to 

examining whether or not the UI frequently needs a direct connection to the stack.

In an RPN calculator, the stack acts as the repository for both the input and output for 

the program. Frequently, the user will wish to see both the input and output exactly as it 

appears on the stack. This situation favors the MVC architecture with its direct interaction 

between the view and the data. That is, the calculator’s view does not require the command 

dispatcher to translate the communication between the data and the user because no 

transformation of the data is required. Therefore, I selected the model-view-controller as 

the architecture for pdCalc. The advantages of the MVC architecture over the three-tiered 

architecture are, admittedly, small for our case study. Had I instead chosen to use the 

three-tiered architecture, pdCalc still would have had a perfectly valid design.

2.3  �Interfaces
Although it might be tempting to declare our first level of decomposition complete with 

the selection of the MVC architecture, we cannot yet declare victory. While we have 

defined our three highest-level modules, we must also define their public interfaces. 

However, without utilizing some formal method for capturing all the data flows in our 

Chapter 2  Decomposition



18

problem, we are very likely to miss key necessary elements of our interface. We therefore 

turn to an object-oriented analysis technique, the use case.

A use case is an analysis technique that generates a description of a specific action 

a user has with a system. Essentially, a use case defines a workflow. Importantly, a use 

case does not specify an implementation. The customer should be consulted during use 

case generation, particularly in instances where a use case uncovers an ambiguity in 

the requirements. Details concerning use cases and use case diagrams can be found in 

Booch et al. [9].

For the purpose of designing interfaces for pdCalc’s high-level modules, we will 

first define the use cases for an end user interacting with the calculator. Each use case 

should define a single workflow, and we should provide enough use cases to satisfy all 

of the technical requirements for the calculator. These use cases can then be studied to 

discover the minimal interactions required between the modules. These communication 

patterns will define the modules’ public interfaces. An added benefit of this use case 

analysis is that if our existing modules are insufficient to implement all of the workflows, 

we will have uncovered the need for additional modules in our top-level design.

2.3.1  �Calculator Use Cases
Let’s create the use cases for our requirements. For consistency, use cases are created in 

the order in which they appear in the requirements.

�Use Case: User enters a floating-point number onto the stack

Scenario: The user enters a floating-point number onto the stack. 

After entry, the user can see the number on the stack.

Exception: The user enters an invalid floating-point number. An 

error condition is displayed.

�Use Case: User undoes last operation

Scenario: The user enters the command to undo the last operation. 

The system undoes the last operation and displays the previous stack.

Exception: There is no command to undo. An error condition is 

displayed.
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�Use Case: User redoes last operation

Scenario: The user enters the command to redo the last operation. 

The system redoes the last operation and displays the new stack.

Exception: There is no command to redo. An error condition is 

displayed.

�Use Case: User swaps top stack elements

Scenario: The user enters the command to swap the top two 

elements on the stack. The system swaps the top two elements on 

the stack and displays the new stack.

Exception: The stack does not have at least two numbers. An error 

condition is displayed.

�Use Case: User drops the top stack element

Scenario: The user enters the command to drop the top element 

from the stack. The system drops the top element from the stack 

and displays the new stack.

Exception: The stack is empty. An error condition is displayed.

�Use Case: User clears the stack

Scenario: The user enters the command to clear the stack. The 

system clears the stack and displays the empty stack.

Exception: None. Let clear succeed even for an empty stack (by 

doing nothing).

�Use Case: User duplicates the top stack element

Scenario: The user enters the command to duplicate the top 

element on the stack. The system duplicates the top element on 

the stack and displays the new stack.

Exception: The stack is empty. An error condition is displayed.
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�Use Case: User negates the top stack element

Scenario: The user enters the command to negate the top element 

on the stack. The system negates the top element on the stack and 

displays the new stack.

Exception: The stack is empty. An error condition is displayed.

�Use Case: User performs an arithmetic operation

Scenario: The user enters the command to add, subtract, multiply, 

or divide. The system performs the operation and displays the 

new stack.

Exception: The stack size is insufficient to support the operation. 

An error condition is displayed.

Exception: Division by zero is detected. An error condition is 

displayed.

�Use Case: User performs a trigonometric operation

Scenario: The user enters the command for sin, cos, tan, arcsin, 

arccos, or arctan. The system performs the operation and displays 

the new stack.

Exception: The stack size is insufficient to support the operation. 

An error condition is displayed.

Exception: The input for the operation is invalid (e.g., arcsin(−50) 

would produce an imaginary result). An error condition is displayed.

�Use Case: User performs y x

Scenario: The user enters the command for yx. The system 

performs the operation and displays the new stack.

Exception: The stack size is insufficient to support the operation. 

An error condition is displayed.

Exception: The input for the operation is invalid (e.g., −10.5 would 

produce an imaginary result). An error condition is displayed.
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�Use Case: User performs yx

Scenario: The user enters the command for yx . The system 

performs the operation and displays the new stack.

Exception: The stack size is insufficient to support the operation. 

An error condition is displayed.

Exception: The input for the operation is invalid (e.g., −14  would 

produce an imaginary result). An error condition is displayed.

�Use Case: User loads a plugin

Scenario: The user places a plugin into the plugin directory. 

The system loads the plugin on startup, making the plugin 

functionality available.

Exception: The plugin cannot be loaded. An error condition is 

displayed.

2.3.2  �Analysis of Use Cases
We will now analyze the use cases for the purpose of developing C++ interfaces for 

pdCalc’s modules. For the moment, we will simply consider these interfaces abstractly as 

the publicly facing function signatures to a collection of classes and functions grouped 

logically to define a module. We will translate these informal concepts into C++20 

modules in Section 2.5. For the sake of brevity, the std namespace prefix is omitted in 

the text.

Let’s examine the use cases in order. As the public interface is developed, it will be 

entered into Table 2-2. The exception will be for the first use case, whose interface will 

be described in Table 2-1. By using a separate table for the first use case, we’ll be able to 

preserve the errors we’ll make on the first pass for comparison to our final product. By 

the end of this section, the entire public interface for all of the MVC modules will have 

been developed and cataloged.

We begin with the first use case, entering a floating-point number. The 

implementation of the user interface will take care of getting the number from the user 

into the calculator. Here, we are concerned with the interface required to get the number 

from the UI onto the stack.
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Regardless of the path the number takes from the UI to the stack, we must eventually 

have a function call for pushing numbers onto the stack. Therefore, the first part of 

our interface is simply a function on the stack module, push(), for pushing a double-

precision number onto the stack. We enter this function into Table 2-1. Note that the 

table contains the complete function signature, while the return type and argument 

types are omitted in the text.

Now, we must explore our options for getting the number from the user interface 

module to the stack module. From Figure 2-3b, we see that the UI has a direct link to the 

stack. Therefore, the simplest option would be to push the floating-point number onto 

the stack directly from the UI using the push() function we just defined. Is this a good 

idea?

By definition, the command dispatcher module, or the controller, exists to process 

commands the user enters. Should entering a number be treated differently than, for 

example, the addition command? Having the UI bypass the command dispatcher and 

directly enter a number onto the stack module violates the principle of least surprise 

(also referred to as the principle of least astonishment). Essentially, this principle states 

that when a designer is presented with multiple valid design options, the correct choice 

is the one that conforms to the user’s intuition. In the context of interface design, the 

user is another programmer or designer. Here, any programmer working on our system 

would expect all commands to be handled identically, so a good design will obey this 

principle.

To avoid violating the principle of least surprise, we must build an interface that 

routes a newly entered number from the UI through the command dispatcher. We 

again refer to Figure 2-3b. Unfortunately, the UI does not have a direct connection to 

the command dispatcher, making direct communication impossible. It does, however, 

have an indirect pathway. Thus, our only option is for the UI to raise an event (we’ll 

study events in detail in Chapter 3). Specifically, the UI must raise an event indicating 

that a number has been entered, and the command dispatcher must be able to receive 

this event (eventually, via a function call in its public interface). Let’s add two more 

functions to Table 2-1, one for the numberEntered() event raised by the UI and one for 

the numberEntered() event handling function in the command dispatcher.

Once the number has been accepted, the UI must display the revised stack. This 

is accomplished by the stack signaling that it has changed and the view requesting n 

elements from the stack and displaying them to the user. We must use this pathway as 

the stack only has an indirect communication channel to the UI. We add three more 
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functions to Table 2-1, a stackChanged() event on the stack module, a stackChanged() 

event handler on the UI, and a getElements() function on the stack module (see the 

modern C++ sidebar on move semantics to see options for the getElements() function 

signature). Unlike the entering of the number itself, it is reasonable to have the UI 

directly call the stack’s function for getting elements in response to the stackChanged() 

event. This is, in fact, precisely how we want a view to interact with its data in the MVC 

pattern.

Of course, the aforementioned workflow assumes the user entered a valid number. 

For completeness, however, the use case also specifies that error checking must be 

performed on number entry. Therefore, the command dispatcher should actually check 

the validity of the number before pushing it onto the stack, and it should signal the user 

interface if an error has occurred. The UI should correspondingly be able to handle 

error events. That’s two more functions for Table 2-1, an error() event on the command 

dispatcher and a function, displayError(), on the UI, for handling the error event. Note 

that we could have selected an alternative error handling design by leaving the UI to 

perform its own error checking and only raise a number entered event for valid numbers. 

However, for improved cohesion, we prefer placing the “business logic” of error checking 

in the controller rather than in the interface.

Phew! That completes our analysis of the first use case. In case you got lost, 

remember that all of the functions and events just described are summarized in Table 2-1.  

Now just 12 more exciting use cases to go to complete our interface analysis! Don’t 

worry, the drudgery will end shortly. We will soon derive a design that can consolidate 

almost all of the use cases into a unified interface.

Before proceeding immediately to the next use case, let’s pause for a moment and 

discuss two decisions we just implicitly made about error handling. First, the user 

interface handles errors by catching events rather than by catching exceptions. Because 

the user interface cannot directly send messages to the command dispatcher, the UI 

can never wrap a call to the command dispatcher in a try block. This communication 

pattern immediately eliminates using C++ exceptions for intermodule error handling 

(note that it does not preclude using exceptions internally within a single module). In 

this case, since number entry errors are trapped in the command dispatcher, we could 

have notified the UI directly using a callback. However, this convention is not sufficiently 

general, for it would break down for errors detected in the stack since the stack has no 

direct communication with the UI. Second, we have decided that all errors, regardless 

of cause, will be handled by passing a string to the UI describing the error rather than 
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making a class hierarchy of error types. This decision is justified because the UI never 

tries to differentiate between errors. Instead, the UI simply serves as a conduit to display 

error messages verbatim from other modules.

MODERN C++ DESIGN NOTE: MOVE SEMANTICS

In Table 2-1, the stack has the function void getElements(size_t, vector<double>&), 

 which enables callers to fill a vector with the top n elements from the stack. However, the 

interface of the function tells us nothing about how the elements are actually added to the 

vector. Are they added at the front? Are they added at the back? Is it presumed that the 

vector is already sized correctly and the new elements are entered using operator[]? Are 

old elements erased from the vector before the new ones are added? Hopefully, this ambiguity 

would be resolved by developer documentation (good luck with that one). In the absence of 

further information, one would likely conclude that new elements were simply pushed to the 

back of the vector.

Beginning with C++11, however, the preceding interface ambiguity can be resolved semantically 

by the language itself. Rvalue references and move semantics allow us to make this interface 

decision very explicit. We can now efficiently (i.e., without copying the vector or relying on the 

compiler to implement the return value optimization) implement the function vector<double> 

getElements(size_t). A temporary vector is created internally in the function, and its 

contents are moved into the caller on function return. The interface contract is now explicit: a 

new vector of size n will be returned and filled with the top n elements on the stack.

To not bloat the interface in the text, both variants of the function do not explicitly appear in 

the tables defining the interface. However, both variants do appear in the source code. This 

convention will often be used in this book. Where multiple helper calls performing the same 

operation are useful in the implementation, both appear there, but only one variant appears in 

the text. This omission is acceptable for the illustrative purposes of this book, but this omission 

would not be acceptable for a detailed design specification for a real project.

The next two use cases, undo and redo of operations, are sufficiently similar that 

we can analyze them simultaneously. First, we must add two new events to the user 

interface: one for undo and one for redo. Correspondingly, we must add two event 

handling functions in the command dispatcher for undo and redo. Before simply adding 

these functions to Table 2-2, let’s take a step back and see if we can simplify.

Chapter 2  Decomposition



25

At this point, you should begin to see a pattern emerging from the user interface 

events being added to the table. Each use case adds a new event of the form 

xCommandEntered(), where x has thus far been replaced by number, undo, or redo. In 

subsequent use cases, x might be replaced with operations such as swap, add, sin, 

and exp. Rather than continue to bloat the interface by giving each command a new 

event in the UI and a corresponding event handler in the command dispatcher, we 

instead replace this family of commands with the rather generic sounding UI event 

commandEntered() and the partner event handler commandEntered() in the command 

dispatcher. The single argument for this event/handler pair is a string, which encodes 

the given command. By using the ASCII representation of a number as the string 

argument, commandEntered() additionally replaces numberEntered() in Table 2-1.

Combining all of the UI command events into one event with a string argument 

instead of issuing each command as an individual event serves several design purposes. 

First, and most immediately evident, this choice declutters the interface. Rather than 

needing individual pairs of functions in the UI and the command dispatcher for each 

individual command, we now need only one pair of functions for handling events 

from all commands. This includes the known commands from the requirements 

and any unknown commands that might derive from future extensions. The runtime 

flexibility needed to accommodate unknown commands drives using a string 

parameter instead of, say, using an enumerated type. However, more importantly, this 

design promotes cohesion because now the UI does not need to understand anything 

about any of the events it triggers. Instead, the deciphering of the command events 

is placed in the command dispatcher, where this logic naturally belongs. Creating 

Table 2-1.  Public interfaces derived from the analysis of the use case for entering a 

floating-point number onto the stack

Module Functions Events

User interface void displayError(const string&)

void stackChanged()

numberEntered(double)

Command dispatcher void numberEntered(double) error(string)

Stack void push(double)

void getElements(size_t, 

vector<double>&)

stackChanged()
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one commandEntered() event for commands even has direct implications on the 

implementations of commands, graphical user interface buttons, and plugins. We will 

reserve those discussions for when we encounter those topics in Chapters 4, 6, and 7.

We now return to our analysis of the undo and redo use cases. As described 

previously, we will forgo adding new command events in Table 2-2 for each new 

command we encounter. Instead, we add the commandEntered() event to the UI and the 

commandEntered() event handler to the command dispatcher. This event/handler pair 

will suffice for all commands in all use cases. The stack, however, does not yet possess 

all of the necessary functionality to implement every command. For example, in order to 

undo pushes onto the stack, we will need to be able to pop numbers from the stack. Let’s 

add a pop() function to the stack in Table 2-2. Finally, we note that a stack error could 

occur if we attempted to pop an empty stack. We, therefore, add a generic error() event 

to the stack to mirror the error event on the command dispatcher.

We move to our next use case, swapping the top of the stack. Obviously, this 

command will reuse the commandEntered() and error() patterns from the previous 

use cases, so we only need to determine if a new function needs to be added to the 

stack’s interface. Obviously, swapping the top two elements of the stack could either be 

implemented via a swapTop() function on the stack or via the existing push() and pop() 

functions. Somewhat arbitrarily, I chose to implement a separate swapTop() function, so 

I added it to Table 2-2. This decision was probably subconsciously rooted in my natural 

design tendency to maximize efficiency (the majority of my professional projects are 

high-performance numerical simulations) at the expense of reuse. In hindsight, that 

might not be the better design decision, but this example demonstrates that sometimes, 

design decisions are based on nothing more than the instincts of a designer as colored 

by their individual experiences.

At this point, a quick scan of the remaining use cases shows that, other than loading 

a plugin, the existing module interfaces defined by Table 2-2 are sufficient to handle all 

user interactions with the calculator. Each new command only adds new functionality 

internal to the command dispatcher, the logic of which will be detailed in Chapter 4. 

Therefore, the only remaining use case to examine concerns loading plugins for pdCalc. 

The loading of plugins, while complex, is minimally invasive to the other modules 

in the calculator. Other than command and user interface injection (we’ll encounter 

these topics in Chapter 7), the plugin loader is a stand-alone component. We therefore 

defer the design of its interface (and the necessary corresponding changes to the other 

interfaces) until we are ready to implement plugins.
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Deferring the design of a significant portion of the top-level interface is a somewhat 

risky proposition and one to which design purists might object. Pragmatically, however, 

I have found that when enough of the major elements have been designed, you need 

to start coding. The design will change as the implementation progresses anyway, so 

seeking perfection by overworking the initial design is mostly futile. Of course, neither 

should one completely abandon all upfront design in an agile frenzy!

This said, a few caveats exist for adopting a strategy of delaying the design of a 

major component. First, if the delayed portion of the design will materially impact the 

architecture, the delay may potentially cause significant rework later. Second, delaying 

parts of the design prolongs the stabilization of the interfaces. Such delays may or may 

not be problematic on large teams working independently on connected components. 

Knowing what can and what cannot be deferred comes only with experience. If you are 

uncertain as to whether the design of a component can be safely deferred or not, you 

are much better off erring on the side of caution and performing a little extra design and 

analysis work up front to minimize the impact on the overall architecture. Poor designs 

impacting the architecture of a program will impact development for the duration of a 

project. They cause much more significant rework than poor implementations, and in 

the worst-case scenario, poor design decisions become economically infeasible to fix. 

Sometimes, they can only be fixed in a major rewrite, which may never occur.

Table 2-2.  Public interfaces for the entire first-level decomposition

Module Functions Events

User interface void postMessage(const string&)

void stackChanged()

commandEntered(string)

Command dispatcher void commandEntered(const 

string&)

error(string)

Stack void push(double)

void getElements(size_t, 

vector<double>&)

double pop()

void swapTop()

stackChanged()

error(string)
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Before completing the analysis of the use cases, let’s compare the interface 

developed in Table 2-1 for the first use case with the interface developed in Table 2-2  

encompassing all of the use cases. Surprisingly, Table 2-2 is only marginally longer 

than Table 2-1. This is a testament to the design decision to abstract commanding 

into one generic function instead of individual functions for each command. Such 

simplifications in the communication patterns between modules is one of the many 

time-saving advantages of designing code instead of just hacking away. The only other 

differences between the first interface and the complete interface are the addition of a 

few stack functions and the modification of a few function names (e.g., renaming the 

displayError() function to postMessage() to increase the generality of the operation).

2.3.3  �A Quick Note on Actual Implementation
For the purposes of this text, the interfaces developed, as exemplified by Table 2-2, 

represent idealizations of the actual interfaces deployed in the code. The actual code 

may differ somewhat in the syntax, but the semantic intent of the interface will always 

be preserved. For example, in Table 2-2, we have defined the interface to get n elements 

as void getElements(size_t, vector<double>&), which is a perfectly serviceable 

interface. However, using new features of modern C++ (see the sidebar on move 

semantics), the implementation makes use of rvalue references and move construction 

by also providing vector<double> getElements(size_t) as a logically equivalent, 

overloaded interface.

Defining good C++ interfaces is a highly nontrivial task; I know of at least one 

excellent book dedicated entirely to this subject [27]. Here, in this book, I only provide 

a sufficient level of detail about the interfaces needed to clearly explain the design. The 

available source code demonstrates the intricacies necessary for developing efficient 

C++ interfaces. In a very small project, allowing developers some latitude in adapting 

the interface can usually be tolerated and is often beneficial as it allows implementation 

details to be delayed until they can be practically determined. However, in a large-scale 

development, in order to prevent absolute chaos between independent teams, it is wise 

to finalize the interfaces as soon as practical before implementation begins. Critically, 

external interfaces must be finalized before they are exposed to clients. Client facing 

interfaces should be treated like contracts.
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2.4  �Assessment of Our Current Design
Before beginning the detailed design of our three major components, let’s stop and 

assess our current design against the criteria we identified in the beginning of this 

chapter. First, having defined three distinct modules, our design is clearly modular. 

Second, each module acts as a cohesive unit, with each module dedicated to one 

specific task. User interface code belongs to one module, operational logic belongs to 

another, and data management belongs to yet another, separate module. Additionally, 

each module encapsulates all its own features. Finally, the modules are loosely coupled, 

and where coupling is necessary, it is through a set of clearly defined, concise, public 

interfaces. Not only does our top-level architecture meet our good design criteria, but 

it also conforms to a well-known and well-studied architectural design pattern that 

has been successfully used for decades. At this point, we have reaffirmed the quality of 

our design and should feel very comfortable when we proceed to the next step in our 

decomposition, the design of the individual components.

2.5  �Implementing Our Design Using C++20 Modules
Beginning with C++20, modules have become a formal part of the C++ language. In this 

section, we’ll discuss the general advantages of modules over header files, the source 

code and tooling changes required to support modules, and how we will implement 

pdCalc using modules. Despite the newness of this language feature, in keeping with 

the ethos of this book, I will refrain from introducing the syntax of modules and focus 

instead on using C++20 modules from a design perspective. I refer readers unfamiliar 

with modules to the excellent three-part blog post about modules on vector-of-bool [3]. 

We begin by describing the C++ problems that modules solve.

2.5.1  �Why Modules?
Much of the motivation for modules stems from the shortcomings of the header file 

inclusion model. Prior to C++20, the source file served as the sole input for a translation 

unit (TU). Essentially, a translation unit consists of all of the source code required to 

generate a single object file. Of course, as experienced C++ programmers, we know that 

most programs rely upon interacting components from multiple translation units that 

are ultimately combined by linking.
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Consider the compilation of TU A that is dependent on functions or classes from 

TU B. The pre-C++20 language model requires the dependent interfaces from B be 

textually visible during the translation of A. This textual inclusion and assembly of 

“foreign” source code into a currently compiling TU is conventionally performed by the 

preprocessor, as directed by programmers via the omnipresent #include statement.

Textually including header files has been causing C++ programmers problems 

for decades. Essentially, these problems derive from three primary sources: repeated 

compilation of identical code, preprocessor macros, and one-definition-rule 

violations. We’ll examine each problem in turn to understand why using modules is an 

improvement over using header files.

First, consider build times. Everyone has written the following first C++ program (or 

some variant):

#include <iostream>

int main(int argc, char* argv[])

{

  std::cout << "hello, world!" << std::endl;

  return 0;

}

Counting whitespace and lines containing only brackets, the source code listing for 

the preceding “hello world” program is seven lines long, or is it? After the preprocessor 

executes, the generated translation unit in GCC version 10.2.0 is 30,012 lines long, and 

that was from (directly) including only one standard header file used solely to emit 

command line output! Every time you include <vector> in a file, you’ve added another 

14,000 lines to your TU. Want a smart pointer (<memory>)? That will cost you a little more 

than 23,000 lines. Given that header files can be very large and reused across many TUs 

in any given program, wouldn’t it be nice if the language provided a mechanism to reuse 

them without textually including them everywhere? How much faster would “hello, 

world” compile if it truly were only seven lines long?

Modules indeed address the textual header inclusion problem (or will once they 

become pervasive). Modules introduce a new type of translation unit, the module unit, 

which, unlike traditional header files, can be used via the language import statement 

rather than preprocessor textual inclusion. Now, in addition to object files, compilers 

implement modules by producing compiled module interface (CMI) units, which carry 

the necessary symbolic information for other TUs to compile against interfaces when a 
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CMI is imported without the need to textually include source code. Therefore, modules 

can be compiled once and reused, thereby reducing overall compile time by removing 

the need to recompile module interfaces. Speedup is, at least, a theoretical promise. In 

practice, the textual inclusion model permits embarrassingly parallel compiles, while 

modules imply compile time source code dependencies that may partially eliminate 

parallel compiling. The severity of this problem will hopefully be lessened when tooling 

catches up to the new compilation model. Whether modules lead to faster build times 

than traditional header inclusion for complex builds remains to be seen. My bet is that 

modules will eventually decrease build times for most complex builds after compiler and 

tool writers obtain a few years of practical experience with the model.

The second problem with the header inclusion model derives from the hoisting of 

macros from header files into translation units. This problem manifests itself in one of 

two ways, either as an errant, unexpected symbol definition or the even more surprising 

behavior, that the order of header file inclusion may change the behavior of the code. 

Consider the following (very) contrived example:

// File A.h

#define FOO_IS_FOO

inline void foo() { cout << "foo" << endl; }

// File B.h

#ifdef FOO_IS_FOO

  #define FOO foo

#else

  #define FOO bar

#endif

inline void bar() { cout << "bar" << endl; }

// File exec1.cpp

#include "A.h"

#include "B.h"

void exec1()

{

  FOO(); // prints: foo - great, FOO is foo

}
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// File exec2.cpp

#include "B.h"

#include "A.h"

void exec2()

{

  FOO(); // prints: bar - what, FOO is bar?!

}

The preceding insidious error is rarely this straightforward to diagnose. Often, the error 

arises when another developer defines a temporary symbol in a header (say, while 

debugging) and accidentally checks the code in before removing the macro. When 

the macro is a commonly used symbol such as DEBUG or FLAG, your code may change 

behavior if you change the order of inclusion (maybe while refactoring).

Modules fix the problems caused by macro definitions because modules, in 

general, do not export preprocessor macros into importing translation units. Macros 

are implemented by the preprocessor via text replacement. Since modules are imported 

rather than textually included into consuming translation units, any macros defined in 

a module remain local to the module’s implementation. This behavior is unlike header 

files, which export macros merely by text visibility, implicitly, irrespective of intention.

The third problem caused by including header files derives from C++’s one definition 

rule (ODR). The ODR states that a noninline function may only be defined once in a 

given translation unit and once in a program. Inline functions with external linkage 

can be defined multiple times provided all definitions are identical. How does the ODR 

problem arise when using the header inclusion model? Consider a program that must be 

assembled by linking the separately compiled object code generated from foo.cpp and 

bar.cpp as defined in the following code listing:

// File A.h

#ifndef A_H

#define A_H

void baz() { /* cool stuff */ }

#endif

// File foo.cpp

#include "A.h"

// bunch of foo-y functions
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// File bar.cpp

#include "A.h"

// bunch of bar-y functions

At first glance, you might think that the include guard in A.h saves us from an ODR 

violation. However, the include guard only prevents the contents of A.h from being 

textually included twice into one translation unit (avoiding circular includes). Here, 

A.h is correctly included once in two distinct translation units, which each compile 

into separate object code. Of course, because baz() was not inlined, the inclusion of its 

definition in each of foo.o and bar.o, respectively, causes an ODR violation if foo.o and 

bar.o are linked together in one program.

Honestly, I find the preceding problem rarely occurring in practice. Experienced 

programmers know to either inline baz() or declare baz() in A.h and define it in a 

separate source file. Regardless, modules eliminate this type of ODR violation since 

function declarations are made visible to consumers by import statements rather than 

textual inclusion.

There you have it – modules are simply better header files. While the previous statement 

is true, I would be extremely disappointed if programmers used modules only as improved 

header files. While I suspect modules will indeed be used for this purpose, especially as 

programmers transition to using modules in legacy software, I believe the primary role of 

modules should be to provide a language mechanism to formally implement the design 

concept of modularity. We’ll see how C++20 modules support pdCalc’s modularity shortly, 

but first, we need to consider those times when legacy header files must still be used.

2.5.2  �Using Legacy Headers
Ideally, all code could be ported to modules, and the import statement could quickly 

replace header file inclusion. However, certainly during the transition, you will likely 

need to mix modules and header files. That said, realistically, because header files have 

been around for decades, you’ll likely be dealing with mixing modules and header files 

for a long time. Let’s examine how this is done.

First, in non-module code, nothing prevents you from using header files the 

way they’ve always been used. If that were not true, every bit of legacy code would 

immediately cease to work. Additionally, if you are not authoring a named module, you 

are free to mix and match imports and #includes. However, if you are writing a module, 

special syntactic rules exist for including header files.
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To be precise, all C++ code now exists in some module purview. A module purview 

is simply all of the code contained inside a module. When you author a named module, 

that is, your file begins with the declaration of a module name, such as

export module myMod;

the rest of the file is in myMod’s module purview. All code not in a named module 

resides in the global module. To include a header file, which resides in the global 

module, into a named module would inject all of the header file’s symbols into the 

named module’s purview. This action is not likely to have the desired effect. Instead, 

we have two options.

The first option for using a header file in a module is to import the header instead of to 

#include it. For a header file named MyCoolHeader.h, we would use the following code:

import <MyCoolHeader.h>;

Double quotes can also be used instead of the angle brackets. A header-unit import, to 

which it is more properly referred, basically treats the header file as if it were a module, 

and the header file’s code is imported like a module import rather than included 

textually like a traditional header #include statement. Unfortunately, there is an edge 

case where this does not work as expected, which is when the header file itself expects 

some preprocessor state to preexist before the include statement. Consider the following 

implementation outline for MyCoolheader.h:

// MyCoolHeader.h

#ifdef OPTION_A

// cool option A stuff...

#elif OPTION_B

// cool option B stuff...

#else

#error Must specify an option

// uh oh, not cool stuff...

#endif

MyCoolHeader.h cannot be imported and used because importing a module, even if 

it’s really a header file masquerading as a module, does not see any macros from the 

importing code’s purview. Additionally, while not required by the standard, many 

compilers require separate compilation of header units before use. To remedy these 

problems, enter the second option for using legacy headers in a module purview.
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The second option for using legacy header files in a named module is to simply 

include the header file in a specially defined region of the named module file that 

precedes the module’s purview. This special region is referred to as the global module 

fragment. It is accessed as follows:

module;

// The global module fragment

#define OPTION_A // or B, if you prefer

#include <MyCoolheader.h>

export module mod;

// mod's purview begins now...

The preceding syntax can be employed in module interfaces or module implementation 

files. For simplicity, in pdCalc, where it is necessary to use legacy header files  

(e.g., currently, the standard library), I have chosen to use the direct inclusion of legacy 

headers into the global module fragment rather than precompiling and importing 

header files.

We are almost ready to examine how pdCalc itself is modularized. However, because 

modules are such a new feature, we’ll first take a quick detour to examine how they 

impact source code organization.

2.5.3  �Source Code Organization Prior to C++20
The design concept of modularity is not new. Prior to C++20, however, no language 

mechanism existed to implement modules. Given the lack of direct language support, 

developers employed one of three mechanisms to “imitate” modules logically: source 

code hiding, dynamically linked library (DLL) hiding, or implicit hiding. We’ll briefly 

discuss each one.

Prior to C++20, modules could be constructed from a single source file and a single 

header file by exploiting the header inclusion model. The header file listed only the 

public interfaces for the module, and the implementation of the module would reside 

in a single source file; language visibility rules enforced privacy of the implementation. 

While this technique worked for small modules, source code management became 

unwieldy for large modules because many different functions and classes needed to be 

grouped into a single source file, creating a lack of source file level cohesion.
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I have personally seen the source code hiding strategy employed in at least one 

open source package. While this project did accomplish module interface hiding from 

a technical perspective, the result was an entire library distributed as a single header 

file and a single source file. The header file was over 3,000 lines long, and the source 

file was nearly 20,000 lines long. While some programmers may not object to this style, 

I do not believe this solution was optimally designed for readability or maintainability. 

This open source package, to the best of my knowledge, had a single author. Readability 

and maintainability for a team of developers were, therefore, unlikely to have been his 

primary objectives.

The second technique used prior to C++20 to create modules was to rely on the 

operating system and compiler’s ability to selectively export symbols from dynamically 

linked libraries. While DLL hiding is a true form of modularity, employing this option 

was, of course, outside the scope of the C++ language itself. DLL hiding was based on the 

operating system’s library format and implemented via compiler directives. Essentially, 

the programmer decorated classes or functions with special compiler directives to 

indicate whether a function was to be imported or exported from a DLL. The compiler 

then created a DLL that only publicly exported the appropriately marked symbols, and 

code linking to the DLL specified which symbols it intended to import. Since the same 

header had to be marked as an export while compiling the DLL and as an import while 

compiling code using the DLL, the implementation was typically accomplished by using 

compiler/OS-specific preprocessor directives.

While DLL hiding indeed created true module encapsulation, it suffered from 

three significant problems. First and foremost, because DLL hiding was derived from 

the operating system and compiler rather than the language itself, its implementation 

was not portable. In addition to requiring that code be augmented with preprocessor 

directives, system-specific nonportability always complicated build scripts, creating 

a maintenance problem for code needing to compile on distinct systems. The second 

problem with DLL hiding was that one was essentially forced to align modules along 

DLL boundaries. While more than one module could be placed in one shared library, 

DLL hiding only defined modules at the external DLL interface. Therefore, nothing 

prevented two modules sharing one shared library from seeing each other’s internal 

interfaces. Finally, DLL hiding required the construction of a DLL, which is obviously not 

applicable to, for example, a module defined in a header-only library.

Interestingly enough, because C++ modules are a language construct and 

dynamically linked libraries are an operating system construct, we now have the added 
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complication that C++ modules must coexist and interact with DLLs despite both being 

completely independent syntactically. For example, a DLL could contain one or more 

C++ modules, and programmers could be free to set each C++ module’s DLL visibility 

independently. That is, a DLL that contains three C++ modules might expose zero (albeit 

a somewhat useless DLL), one, two, or three separate C++ modules. Even stranger, 

although I have not verified it myself, one might be able to spread one module across 

multiple DLLs. Regardless, organization of modules across library boundaries is now 

yet another issue programmers must consider and a decision we will address when 

discussing pdCalc’s source code organization.

The final legacy modularity technique, which I have termed implicit hiding, was 

nothing more than hiding the interface by not documenting it. What did this mean 

in practice? Since the C++ language did not directly support modules, implicit hiding 

simply drew a logical construct around a group of classes and functions and declared 

those classes to compose a module. Often, code not intended to be used by a consumer 

would be placed in a separate namespace, frequently named detail. This style was 

seen frequently in header-only libraries. The language allowed any public function of 

any class to be called from code external to the module. Therefore, the module’s public 

interface was “declared” by only documenting those functions that should be called from 

the outside. From a purely technical perspective, implicit hiding was no hiding at all!

Why would anyone have chosen implicit hiding over either source code hiding or 

DLL hiding? Quite simply, the choice was made either for expedience or from necessity 

(header-only modules). Using implicit hiding allowed developers to organize classes and 

source code in a logical, readable, and maintainable style. Each class (or group of closely 

related classes) could be grouped into its own header and source file pair. This enabled 

minimal inclusion of only necessary code, which led to faster compile times. Implicit 

hiding also did not force the boundary definitions for inclusion into a particular shared 

library, which could be important if there were a design goal of minimizing the number 

of individual shared libraries shipped with a package. The problem with implicit hiding 

was, of course, that no language mechanism existed to prevent the misuse of functions 

and classes not intended by the designer to be used outside of a logical module.

Now that modules are a part of C++20, will you continue to see the three “imitation” 

module techniques described previously? Absolutely. First, C++20 modules are neither 

fully implemented nor robust. Attempting to adopt modules today for a cross platform, 

commercial code base would actually be an impediment. It was, by a wide margin, the 

biggest obstacle that I encountered trying to update pdCalc for the second version of this 
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book. Second, for the foreseeable future, legacy code will continue to dominate. While 

new projects may adopt C++20 modules from the outset, older projects will continue to 

use their existing techniques unless major refactoring efforts are undertaken. Generally, 

adopting new language features is an insufficiently compelling reason to warrant 

refactoring. Therefore, in practice, any refactoring to modules in legacy code will, at 

best, be piecemeal. Finally, old habits die hard. Never underestimate the unwillingness 

of people to learn new techniques or refuse to abandon entrenched positions. I have 

no doubt that you will even encounter programmers strongly advocating against using 

modules for a whole host of reasons.

2.5.4  �Source Code Organization Using C++20 Modules
Despite significant language evolution over the preceding decades, modules bring the 

first change that fundamentally impacts how source code is organized and compiled. 

Legacy code issues aside, beginning with C++20, we no longer need to rely on the 

“hacks” previously mentioned to organize our code into modules – the language now 

supports modularity directly. Where we formerly had only the organizational concept 

of a translation unit, C++20 adds the module unit, which, very loosely, is a source file 

that declares the source to be part of a module. We will now examine how module units 

change the way C++20 source code is organized.

First, we must understand how modules themselves are constructed. Module units 

are syntactically divided between module interface units and module implementation 

units. Module interface units are those module units that export the module and 

its interface. Only a module interface unit is required for a compiler to generate an 

importable CMI. Conversely, a module implementation unit is any module unit 

that does not export a module or its interface. As is obvious from its name, a module 

implementation unit implements a module’s functionality. A module’s interface and its 

implementation may appear in the same file or in separate files.

Where possible, I prefer to organize module units in a single file; I find the simplicity 

appealing. However, achieving this simple file structure is not always possible. First, 

CMIs are not distributable artifacts. Therefore, any binary module that is distributed 

is required to also provide the source code for its module interface for recompilation 

by the consumer (e.g., the interface for a plugin system). Assuming you do not want to 

provide implementation details to binary module consumers, you’ll want to place these 

module interfaces and implementations in different files and only distribute the former. 
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Second, because CMIs must exist before a module can be imported, modules with cyclic 

dependencies require splitting interfaces from implementations. The cyclic compilation 

dependency can then be broken by using incomplete types declared with forward 

declarations in the interfaces. These interfaces can then be independently compiled to 

CMIs, which can subsequently be imported during separate module implementation 

compilations.

Knowing we will encounter both module interface unit and implementation 

unit files, let’s briefly discuss file naming conventions. While not standardized, a few 

common conventions exist for C++ header and implementation file extensions (e.g., 

.cpp, .cxx, .h, .hpp, etc.). However, module interface unit files are neither header files nor 

implementation files (whereas implementation units very clearly are implementation 

files), so what file extension should we use for them? At present, compiler implementers 

have not adopted a uniform standard. MSVC and clang have adopted the file extensions 

.ixx and .cppm, respectively, for module interface units, while GCC’s primary module 

implementer has not adopted any different file extension for module interface units. 

Programmers are, of course, free to choose whatever file extension they want for 

module interface units, but MSVC and clang require setting a compiler flag to indicate 

translation of a module interface unit if deviating from the compiler’s specific expected 

file extensions. Fortunately, no one has adopted a new file extension for module 

implementation units. pdCalc uses the convention that any file exporting a module 

interface uses the .m.cpp file extension, implementation files (module or otherwise) 

use the .cpp file extension, and legacy header files use the .h file extension. Adopting a 

convention for pdCalc that does not introduce a new file extension ensures that source 

files will be recognized as C++ files by any existing code editor.

From the preceding explanation, one might conclude that modules, with their 

interface and implementation file pairs, seem organizationally no better than header 

files and their associated implementation files. Where we formerly used header files 

to define interfaces, we now use module interface files. Where we formerly used 

implementation files, we now use module implementation files. Of course, we gain 

all of the advantages of modules as better header files, but we are still stuck with 

modules being defined in a single interface/implementation file pair, which is only an 

incremental improvement over our legacy approach. Enter module partitions.

A module partition is exactly what you would expect it to be from its name, a 

mechanism for partitioning a module into separate components. Specifically, partitions 

provide a means to reduce a module’s complexity by dividing it into any number of 

Chapter 2  Decomposition



40

logical subunits of classes, functions, and source files while still maintaining  

module-level encapsulation. Syntactically, a module partition is defined by a parent 

module name and a partition name separated by a colon. For example, module A could 

be composed of partitions A:part1 and A:part2. As with a plain module, a module 

partition is divided between a module partition interface unit and a module partition 

implementation unit. These two pieces may appear in the same file or in different files. 

Each module partition behaves like its own module with the exception that it cannot 

be externally accessed as a separate unit. That is, only a component of a module, either 

the primary module or another partition, can import a module partition. If a module 

partition is intended to form part of a module’s interface, then the primary module 

interface must export import the partition. Note that while a module can contain any 

number of module partitions and their associated module partition interfaces, a module 

itself can have only one primary module interface, which is the single definition of its 

exportable interface.

Module partitions are significantly more relatable when explained through an 

example, so let’s examine one directly from pdCalc. Consider three classes: Publisher, 

Observer, and Tokenizer. We’ll discuss the function of each class in depth later in the 

book. For now, just note that each class provides utility functionality to pdCalc. We have 

several options for making these classes available. At one extreme, we could make each 

class into its own module. For example:

export module pdCalc.Publisher;

export class Publisher{...};

Note that the period separating pdCalc and Publisher bears no semantic meaning. 

The period is merely a syntactic convention for classifying modules to avoid module 

name conflicts. Unfortunately, due to a linker bug in MSVC, pdCalc’s source code uses 

underscores rather than periods to separate module names. However, the period is 

retained for the book’s text.

Any code needing to consume Publisher does so with the following command:

import pdCalc.Publisher;

// use Publisher like any other class:

Publisher p;
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Analogously, we would define modules pdCalc.Observer and pdCalc.Tokenizer, 

which would be imported by import pdCalc.Observer and import pdCalc.Tokenizer, 

respectively. Essentially, the preceding strategy is an adoption of modules as better 

header files. Recall, however, that we started this example by stating that Publisher, 

Observer, and Tokenizer together provided utility services to pdCalc. Logically, 

therefore, we might instead want to provide a Utilities module that, when imported, 

provided access to all three classes, Publisher, Observer, and Tokenizer at once. We 

can achieve this objective without having to mash all of the classes into a single module 

interface by using module partitions:

// Utilities.m.cpp (or .cppm or .ixx)

export module pdCalc.Utilities;

export import :Observer;

export import :Publisher;

export import :Tokenizer;

// Observer.m.cpp (or .cppm or .ixx)

export module pdCalc.Utilities:Observer;

export class Observer{...};

// Analogous implementations for Publisher and Tokenizer...

The export import syntax simply means that a module partition interface unit is being 

imported into the primary module interface unit and subsequently reexported by the 

module. Now, the three classes can be used:

import pdCalc.Utilities;

// use classes from any of the partitions:

Publisher p;

Tokenizer t;

For convenience, modules can export other modules using the same syntax even if those 

other modules are not partitions. We’ll see this alternative strategy shortly.

The primary advantage of using module partitions is that each partition can be 

written as a module, but the partitions cannot be accessed individually as separate 

modules. Instead, the partitions separate the module into cohesive, logical components, 

while the interface to the module is centralized and controlled through the single 
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primary module interface. The interface of any particular partition can optionally be 

reexported directly via an export import statement in the primary module interface.

A middle ground does exist between making each class its own separately 

importable module and making each class a module partition of a Utilities module. 

Specifically, each class can be written as its own module:

export module pdCalc.Observer;

export class Observer{...};

However, we can provide a convenience Utilities module interface that export 

imports each individual module:

// Utilities.m.cpp (or .cppm or .ixx)

export module pdCalc.Utilities;

export import pdCalc.Observer;

export import pdCalc.Publisher;

export import pdCalc.Tokenizer;

As with using module partitions, all of the classes can then be used by importing the 

Utilities class:

import pdCalc.Utilities;

// use classes from any of the partitions:

Publisher p;

Tokenizer t;

The preceding model is akin to creating a single header file that contains nothing but 

includes statements for other header files.

Given that we can essentially achieve the same functionality using any of the module 

techniques described previously, how do we choose the right design? Making each 

class its own module gives the end user the greatest amount of granularity because 

each class can be imported separately, as needed. However, this usage of C++ modules 

ignores the developer’s intent to provide a logically cohesive Utilities module. Again, 

it’s using C++ modules solely as better header files. Conversely, by using partitions, 

we provide a true, cohesive Utilities module, but we force end users to import all 

or nothing. Finally, we have the compromise solution, where end users can import 
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individual classes or import all of them together through a single module interface. The 

compromise design is less about modularity and more about convenience and flexibility.

Having described the trade-offs for several different module strategies, how do we 

choose the right one for any given design? In many respects, constructing a module is 

analogous to constructing a class, but at a different scale. Not coincidentally, we can 

use the exact same design criteria: encapsulation, high cohesion, and low coupling. 

However, as with designing classes, many of the choices reduce to granularity, intent, 

and personal opinion. As with many aspects of design, no single right answer exists. Trial 

and error, taste, and experience go a long way.

2.5.5  �Modules and pdCalc
We now return to the concrete modularization of pdCalc. In Section 2.2, we decomposed 

pdCalc according to the MVC architectural pattern into three high-level modules: a stack 

module, a user interface module, and a command dispatcher module. In Section 2.3, we 

employed use case analysis to assist in defining these modules’ interfaces, subsequently 

cataloging them in Table 2-2. We also indicated that at least one additional module 

would be needed for plugin management. We now ask, are any additional modules 

needed, how are these modules represented in code, and how should these C++ 

modules be distributed into dynamically linked libraries? We’ll answer these questions 

in sequence.

�Refining pdCalc’s Modules

As you might expect, the real-world implementation of pdCalc’s modules is not quite as 

straightforward as the design’s idealization. This discrepancy arises for several reasons. 

Let’s consider each of these reasons in detail.

First, the preceding analysis that defined pdCalc’s modules only considered the 

functional requirements of the calculator. We did not consider the infrastructure need 

for utility classes, as alluded to in Section 2.5.4, that might be reusable by multiple 

modules. As just a single example, consider the need for a generalized error handling 

class that could be used by both the stack and the command dispatcher modules. 

Programmatically, we could just implement these utility classes and functions in one 

of the existing modules. However, this strategy would decrease modular cohesion and 

potentially increase unnecessary coupling between modules. Instead, we’ll provide an 

independent, cohesive utilities module that can be used by multiple other modules.
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The second reason to provide additional modules is not about the conceptual design 

of pdCalc but is instead about the C++ language mechanics of modules. As previously 

mentioned, compiled module interfaces are not designed to be distributed artifacts. 

Calling into a distributed binary module requires access to the module interface’s source 

code. Therefore, when only a small part of a large module’s interface needs to be called 

externally, it is advantageous to factor this large module into independent modules to 

avoid unnecessary module interface distribution. This is particularly true for modules 

constructed from partitions. Consider a large module composed of six partitions with 

the following interface:

// BigModule.m.cpp

export module BigModule;

export import :PartOne;

export import :PartTwo;

export import :PartThree;

export import :PartFour;

export import :PartFive;

export import :PartSix;

Suppose all of BigModule is used by the main program, but only the classes defined 

in the PartFive partition are needed to construct plugins. Where the CMI can be 

reused within the main program, BigModule.m.cpp would need to be distributed to 

plugin writers. However, because BigModule.m.cpp exports its partitions’ interfaces, it 

cannot be compiled without the files containing these six partition interfaces. Rather 

than distributing all of these source files, it is preferred to factor PartFive into an 

independent module and distribute only its interface file to plugin writers. Of course, if 

desired for convenience, this new stand-alone module can still be added to BigModule’s 

interface via an export import while simultaneously maintaining its independence for 

distribution purposes. We’ll see this pattern in pdCalc when we encounter the Command 

interface in Chapter 4.

The third reason that pdCalc’s implemented modules do not exactly match the 

modules defined in Table 2-2 is that at present, not all legacy code can be modularized. 

This situation is expected and encountered frequently in real-world projects. Some 

existing projects will take time to adopt new features, and some existing projects will 

never adopt new features because the benefits of adoption are not justified relative to 
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their costs. With respect specifically to pdCalc, the graphical user interface cannot be 

modularized as a partition of the user interface module because at the time of writing, 

Qt’s meta object compiler (MOC) is incompatible with C++ modules. Therefore, while I 

originally intended pdCalc’s GUI to appear as a partition of the user interface module, 

instead, the GUI is designed using a legacy header file interface. Essentially, this design 

implies that the GUI is a stand-alone, legacy, “logical-only” module.

The final reason that pdCalc’s modularization deviates slightly from Table 2-2 is that 

Table 2-2 is not inclusive of the entire interface. Some minor functionality was omitted 

intentionally from the table (e.g., constructors, test harness code), and, of course, some 

necessary functionality cannot yet be anticipated at this stage of the design. The module 

interfaces defined in Table 2-2 will expand as we design pdCalc.

�Code Representation of Modules in pdCalc

We are now prepared to list the final modules for pdCalc and explain at a superficial level 

why each one exists. Chapters 3 through 7 will explore these modules in detail.

First, we defined three modules in Table 2-2 that derive from pdCalc’s 

implementation of the model-view-controller architecture. These modules are 

named stack (model, Chapter 3), userInterface (view, Chapters 5 and 6), and 

commandDispatcher (controller, Chapter 4). Each module is broken into numerous 

partitions comprising the internal classes and functionality to implement these modules, 

thereby allowing the logic of the module to be distributed into cohesive subunits while 

still preserving module-level encapsulation. As discussed previously, while pdCalc’s 

GUI cannot be formally modularized using C++20 syntax due to Qt incompatibilities, it 

logically belongs to the userInterface module. The GUI portion of the userInterface 

module is accessed via including the appropriate header files rather than through an 

import statement. Obviously, the GUI component of the userInterface module does 

not benefit from the new language support in C++20 for modules.

Second, as previously discussed, pdCalc requires a utilities module. The 

utilities module consists of an Exception class, a Publisher class, an Observer class, 

and a Tokenizer class. Each of these classes is contained within a module partition. The 

Publisher and Observer classes are described in detail in Chapter 3, where they are 

used as the foundational building blocks for implementing events. The Tokenizer class, 

which breaks streams of character input into distinct lexical tokens, is introduced in 

Chapter 5.
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The next family of modules is those modules that are required to be independently 

distributable artifacts. pdCalc contains three such modules: the command, plugin, and 

stackInterface modules. These modules need to be independently distributable 

because each module interface must be distributed to plugin implementers. The 

command module contains the abstract classes required for implementing commands 

(e.g., addition, subtraction, entering a number, undo, etc.). We’ll encounter these 

command classes when we discuss the command pattern in Chapter 4. The plugin 

module contains the abstract class required to define a pdCalc consumable plugin. 

Plugins are discussed in depth in Chapter 7. The stackInterface module transforms 

the C++ style interface of the Stack class into a plain C style interface. Why this step is 

necessary for plugins is also described in Chapter 7.

The next module to which we previously alluded is the module for managing 

plugins. Specifically, the pluginManagement module finds plugins, loads plugins, unloads 

plugins, and injects the functionality of plugins into pdCalc. The implementation of the 

pluginManagement module is discussed in Chapter 7.

�Modules and DLLs for pdCalc

In Section 2.5.5, we defined eight distinct C++ modules. However, eight modules do not 

immediately imply the need for eight DLLs. So what’s the right number?

Realistically, pdCalc is small enough that one could very easily justify bundling 

the entire code into a single library. Nevertheless, for instructive purposes, I chose to 

subdivide pdCalc into several distinct DLLs, some containing only one module and 

some containing multiple. Originally, I intended to create five DLLs, one each for the 

model, the view, the controller, the utilities, and the plugin management. These five 

modules represent the logical architecture of pdCalc’s highest-level decomposition. 

The remaining three modules only exist separately due to the syntactical rules required 

to create independently distributable artifacts; they do not warrant independent DLLs. 

However, the stack module is only a single module interface file. The overhead to create 

a DLL for this module felt more onerous than valuable. Once I realized lumping was 

necessary, I decided to combine the controller, plugin management, and stack modules 

into a unified backend DLL. The final result is that pdCalc is divided into three DLLs: 

a utilities DLL, a backend DLL, and a user interface DLL. Of course, by definition, any 

plugins themselves must be contained in separate DLLs. The main routine for the 

application is compiled into its own executable.
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Is three DLLs the right number of shared libraries for pdCalc? Not really. I think 

any number of DLLs between one and five is justifiable. As frequently occurs in design, 

there is often not a right or a wrong answer, only trade-offs. Here, we are weighing 

the pros and cons between simplicity and DLL cohesion. Sometimes, no compelling 

advantages or disadvantages distinguish alternatives. At these junctions, you just need 

to make a decision, document it, and move on to the next task. Architecture is not the 

science of choosing right from wrong, for the expert discards wrong immediately. Rather, 

architecture is the art of selecting, from the collection of good alternatives, the decisions 

that optimize the design for the given requirements. Good architecture isn’t always 

“right,” but it should always be intentional.

2.6  �Next Steps
Where do we go from here? We have now established the overall architecture of our 

calculator, but how do we tackle the task of choosing which component to design and 

implement first? In a corporate setting, with a large-scale project, the likelihood would 

be that many modules would be designed and coded simultaneously. After all, isn’t that 

one of the primary reasons for creating distinct modules separated cleanly by interfaces? 

Of course, for our project, the modules will be handled sequentially, with some level of 

iteration to make a posteriori improvements. Therefore, we must choose one module to 

design and build first.

Of the three main modules comprising the model-view-controller design, the 

most logical starting point is the module with the fewest dependencies on the other 

modules. From Figure 2-3, we see that, in fact, the stack is the only module that has 

no dependencies on the interfaces of the other modules. The only outward pointing 

arrow from the stack is dashed, which means that the communication is indirect via 

eventing. Although the figure makes this decision pictorially obvious, one would likely 

reach the same conclusion without the architecture diagram. The stack is essentially 

an independent data structure that is easy to implement and test in isolation. Once the 

stack has been completed and tested, it can be integrated into the design and testing of 

the remaining modules. We therefore begin our next level of decomposition by designing 

and implementing the stack.
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CHAPTER 3

The Stack
The stack is the first module of the calculator that we will design and implement. While 

we defined the module’s public interface in Chapter 2, we said very little about its 

implementation. We now need to decompose the stack into the functions and classes 

that provide the module’s functionality. Hence, this is where we begin. If you’re a little 

rusty on the mechanics of the stack data structure, now would be a great time to consult 

your favorite data structures and algorithms book. My personal favorite is the one by 

Cormen et al. [10].

3.1  �Decomposition of the Stack Module
The first question to ask in decomposing the stack module is, “Into how many pieces 

should the stack be divided?” In object-oriented parlance, we ask, “How many objects 

do we need, and what are they?” In this case, the answer is fairly obvious: one, the stack 

itself. Essentially, the entire stack module is the manifestation of a single data structure, 

which can easily be encapsulated by a single class. The public interface for this class was 

already described in Chapter 2.

The second question one might ask is, “Do I even need to build a class at all or can 

I just use the Standard Template Library (STL) stack class directly?” This is actually a 

very good question. All design books preach that you should never write your own data 

structure when you can use one from a library, especially when the data structure can 

be found in the STL, which is guaranteed to be a part of a standards-conforming C++ 

distribution. Indeed, this is sage advice, and we should not rewrite the mechanics of 

the stack data structure. However, neither should we use the STL stack directly as the 

stack in our system. Instead, we will write our own stack class that encapsulates an STL 

container as a private member.
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Suppose we chose to implement our stack module using an STL stack. Several 

reasons exist for preferring encapsulating an STL container (or a data structure from any 

vendor) vs. direct utilization. First, by wrapping the STL stack, we put in an interface 

guard for the rest of the calculator. That is, we are insulating the other calculator modules 

from potential changes to the underlying stack implementation by separating the stack’s 

interface from its implementation (remember encapsulation?). This precaution can 

be particularly important when using vendor software because this design decision 

localizes changes to the wrapper’s implementation rather than to the stack module’s 

interface. In the event that the vendor modifies its product’s interface (vendors are 

sneaky like that) or you decide to exchange one vendor’s product for another’s, these 

changes will only locally impact your stack module’s implementation and not affect 

the stack module’s callers. Even when the underlying implementation is standardized, 

such as the ISO standardized STL stack, the interface guard enables one to change the 

underlying implementation without impacting dependent modules. For example, what 

if you changed your mind and later decided to reimplement your stack class using, for 

example, a vector instead of a stack?

The second reason to wrap an STL container instead of using it directly is that this 

decision allows us to limit the interface to exactly match our requirements. In Chapter 2,  

we expended a significant amount of effort designing a limited, minimal interface for 

the stack module capable of satisfying all of pdCalc’s use cases. Often, an underlying 

implementation may provide more functionality than you actually wish to expose. If 

we were to choose the STL stack directly as our stack module, this problem would 

not be severe because the STL stack’s interface is, not surprisingly, very similar to the 

interface we have defined for the calculator’s stack. However, suppose we selected Acme 

Corporation’s RichStack class with its 67 public member functions to be used unwrapped 

as our stack module. A junior developer, who neglected to read the design spec, may 

unknowingly violate some implicit design contract of our stack module by calling a 

RichStack function that should not have been publicly exposed in the application’s 

context. While such abuse may be inconsistent with the module’s documented interface, 

one should never rely on other developers actually reading or obeying the documentation 

(sad, but true). If you can forcibly prevent a misuse from occurring via a language 

construct that the compiler can enforce (e.g., access limitation), do so.

The third reason to wrap an STL container is to expand or modify the functionality 

of an underlying data structure. For example, for pdCalc, we need to add two functions 

(getElements() and swapTop()) not present on the STL stack class and transform the 
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error handling from standard exceptions to our custom error events. Thus, the wrapper 

class enables us to modify the STL’s standard container interface so that we can conform 

to our own internally designed interface rather than being bound by the functionality 

provided to us by the STL.

As one might expect, the encapsulation scenario described previously occurs quite 

frequently and has therefore been codified as a design pattern, the adapter (wrapper) 

pattern [11]. As described by Gamma et al., the adapter pattern is used to convert the 

interface of a class into another interface that clients expect. Often, the adapter provides 

some form of transformational capabilities, thereby also serving as a broker between 

otherwise incompatible classes.

In their original description of the pattern, the adapter is abstracted to allow a single 

message to wrap multiple distinct adaptees via polymorphism using an adapter class 

hierarchy. For the needs of pdCalc’s stack module, one simple concrete adapter class 

suffices. Remember, design patterns exist to assist in design and communication. Try 

not to get caught in the trap of implementing patterns exactly as they are prescribed in 

texts. Use the literature as a guide to help clarify your design, but, ultimately, prefer to 

implement the simplest solution that fits your application rather than the solution that 

most closely resembles the academic ideal.

A final question we should ask is, “Should my stack be generic (i.e., templated)?” 

The answer here is a resounding maybe. In theory, designing an abstract data structure 

to encapsulate any data type is sound practice. If the end goal of the data structure is 

to appear in a library or to be shared by multiple projects, the data structure should be 

generalized. However, in the context of a single project, I do not recommend making 

data structures generic, at least not at first. Generic code is harder to write, more difficult 

to maintain, and more difficult to test. Unless multiple type usage scenarios exist up 

front, I find writing generic code to not be worth the bother. I’ve finished too many 

projects where I spent extra time designing, implementing, and testing a generic data 

structure only to use it for one type. Realistically, if you have a nongeneric data structure 

and suddenly discover you do need to use it for a different type, the refactoring necessary 

is not usually more difficult than had the class been designed to be generic from the 

outset. Furthermore, the existing tests will be easily adapted to the generic interface 

providing a baseline for correctness established by a single type. We will, therefore, 

design our stack to be double specific.
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3.2  �The Stack Class
Now that we have established that our module will consist of one class, an adapter for 

an underlying stack data structure, we set out to design it. One of the first questions to 

be asked when designing a class is, “How will this class be used?” For example, are you 

designing an abstract base class to be inherited and thus be used polymorphically? Are 

you designing a class primarily as a plain old data (POD) repository? Will many different 

instances of this class exist at any given time? What is the lifetime of any given instance? 

Who will typically own instances of these classes? Will instances be shared? Will this 

class be used concurrently? By asking these and other similar questions, we uncover the 

following list of functional requirements for our stack:

•	 Only one stack should exist in the system.

•	 The stack’s lifetime is the lifetime of the application.

•	 Both the UI and the command dispatcher need to access the stack; 

neither should own the stack.

•	 Stack access is not concurrent.

Anytime the first three criteria previously mentioned are met, the class is an excellent 

candidate for the singleton pattern [11].

3.2.1  �The Singleton Pattern
The singleton pattern is used to create a class where only one instance should ever exist 

in the system. The singleton class is not owned by any of its consumers, but neither is the 

single instance of the class a global variable (some do, however, argue that the singleton 

pattern is global data in disguise). In order to not rely on the honor system, language 

mechanics are employed to ensure only a single instantiation can ever exist.

Additionally, in the singleton pattern, the lifetime of the instance is often from the 

time of first instantiation until program termination. Depending on the implementation, 

singletons can be created either to be thread safe or suitable for single-threaded 

applications only. An excellent discussion concerning different C++ singleton 

implementations can be found in Alexandrescu [5]. For our calculator, we’ll prefer the 

simplest implementation that satisfies our goals.
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In order to derive a simple singleton implementation, we refer to our knowledge 

of the C++ language. First, as previously discussed, no other class owns a singleton 

instance nor is the singleton’s instance a global object. This implies that the singleton 

class needs to own its single instance, and the ownership access should be private. In 

order to prevent other classes from instantiating our singleton, we will also need to make 

its constructors and assignment operators either private or deleted. Second, knowing 

that only one instance of the singleton should exist in the system immediately implies 

that our class should hold its instance statically. Finally, other classes will need access 

to this single instance, which we can provide via a public static function. Combining the 

aforementioned points, we construct the following shell for the singleton class:

class Singleton

{

public:

  static Singleton& Instance

  {

    static Singleton instance;

    return instance;

  }

  void foo(){ /* does foo things */ }

private:

  // prevent public instantiation, copying, assignment, movement,

  // & destruction

  Singleton() { /* constructor */ }

  Singleton(const Singleton&) = delete;

  Singleton& operator=(const Singleton&) = delete;

  Singleton(Singleton&&) = delete;

  Singleton&& operator=(Singleton&&) = delete;

  ~Singleton() { /* destructor */ }

};

The static instance of the Singleton class is held at function scope instead of 

class scope to prevent uncontrollable instantiation order conflicts in the event that 

one singleton class’s constructor depends on another singleton. The details of C++’s 

instantiation ordering rules are beyond the scope of this book, but a detailed discussion 

in the context of singletons can be found in Alexandrescu [5].
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Note that due to the lack of locking surrounding the access to the one instance, 

our model singleton is currently only suitable for a single-threaded environment. In 

this age of multicore processors, is such a limitation wise? For pdCalc, absolutely! Our 

simple calculator has no need for multithreading. Programming is hard. Multithreaded 

programming is much harder. Never turn a simpler design problem into a harder one 

unless it’s absolutely necessary.

Now that we have the shell of a Singleton class, let’s see how to use it. In order to 

access the instance and call the foo() function, we simply use the following code:

Singleton::Instance().foo();

On the first function call to the Instance() function, the instance variable is statically 

instantiated, and a reference to this object is returned. Because objects statically 

allocated at function scope remain in memory until program termination, the instance 

object is not destructed at the end of the Instance() function’s scope. On future calls to 

Instance(), instantiation of the instance variable is skipped (it’s already constructed 

and in memory from the previous function call), and a reference to the instance variable 

is simply returned. Note that while the underlying singleton instance is held statically, 

the foo() function itself is not static.

The inquisitive reader may now question, “Why bother holding an instance of the 

class at all? Why not instead simply make all data and all functions of the Singleton 

class static?” The reason is because the singleton pattern allows us to use the Singleton 

class where instance semantics are required. One particular important usage of these 

semantics is in the implementation of callbacks. For example, take Qt’s signals and 

slots mechanism (we’ll encounter signals and slots in Chapter 6), which can be loosely 

interpreted as a powerful callback system. In order to connect a signal in one class to a 

slot in another, we must provide pointers to both class instances. If we had implemented 

our singleton without a private instantiation of the Singleton class (i.e., utilizing only 

static data and static functions), using our Singleton class with Qt’s signals and slots 

would be impossible.

3.2.2  �The Stack Module As a Singleton Class
We now possess the basic design for our stack module. We have decided that the entire 

module will be encapsulated in one class, which essentially acts as an adapter for an STL 

container. We have decided that our one class fits the model criteria for a singleton, and 
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this singleton class will have the public interface designed in Chapter 2. Combining each 

of these design elements gives us the initial declaration for our class.

Listing 3-1.  The stack as a singleton

// All module names in the repository source code are separated by

// underscores instead of periods due to a Visual Studio compiler bug.

// The book text uses the more conventional period as the module name

// separator (i.e., pdCalc_stack in source code).

export module pdCalc.stack;

export class Stack

{

public:

  static Stack& Instance();

  void push(double);

  double pop();

  void getElements(int, vector<double>&) const;

  void swapTop();

private:

  Stack();

  ~Stack();

  // appropriate blocking of copying, assigning, moving...

  deque<double> stack_;

};

Because the focus of this book is on design, the implementation for each member 

function is not provided in the text unless the details are particularly instructive or 

highlight a key element of the design. As a reminder, the complete implementation for 

pdCalc can be downloaded from the GitHub repository. Occasionally, the repository 

source code will be a more sophisticated variant of the idealized interfaces appearing in 

the text. This will be the general format for the remainder of this book.

You probably noticed that, despite the STL providing a stack container, our Stack 

class was implemented using a deque; that’s odd. Let’s take a brief detour to discuss this 

relevant implementation detail. We spent a lot of time reviewing the importance of using 

the adapter pattern in the Stack’s design to hide the underlying data structure. One of 

the justifications for this decision was that it enabled the ability to seamlessly alter the 
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underlying implementation without impacting classes dependent upon the Stack’s 

interface. The question is, “Why might the underlying implementation of the Stack 

change?”

In my first version of the Stack’s implementation, I selected the obvious choice 

for the underlying data structure, the STL stack. However, I quickly encountered 

an efficiency problem using the STL stack. Our Stack class’s interface provides a 

getElements() function that enables the user interface to view the contents of the 

calculator’s stack. Unfortunately, the STL stack’s interface provides no similar function. 

The only way to see an element other than the top element of an STL stack is to 

successively pop the stack until the element of interest is reached. Obviously, because 

we are only trying to see the elements of the stack and not alter the stack itself, we’ll 

need to immediately push all the entries back onto the stack. Interestingly enough, for 

our purposes, the STL stack turns out to be an unsuitable data structure to implement a 

stack! There must be a better solution.

Fortunately, the STL provides another data structure suitable for our task, the 

double-ended queue, or deque. The deque is an STL data structure that behaves similarly 

to a vector, except the deque permits pushing elements onto both its front and its back. 

Whereas the vector is optimized to grow while still providing a contiguity guarantee, the 

deque is optimized to grow and shrink rapidly by sacrificing contiguity. This feature is 

precisely the design trade-off necessary to implement a stack efficiently. In fact, the most 

common method to implement an STL stack is simply to wrap an STL deque (yes, just 

like our Stack, the STL’s stack is also an example of the adapter pattern). Fortuitously, 

the STL deque also admits nondestructive iteration, the additional missing requirement 

from the STL stack that we needed to implement our Stack’s getElements() method. 

It’s good that I used encapsulation to hide the Stack’s implementation from its interface. 

After realizing the limitations of visualizing an STL stack, I was able to change the Stack 

class’s implementation to use an STL deque with no impact on any of pdCalc’s other 

modules.

3.3  �Adding Events
The final element necessary to build a Stack conforming to the stack interface from 

Chapter 2 is the implementation of events. Eventing is a form of weak coupling that 

enables one object, the notifier or publisher, to signal any number of other objects, the 

listeners or subscribers, that something interesting has occurred. The coupling is weak 
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because neither the notifier nor the listener needs to know directly about the other’s 

interface. How events are implemented is both language and library dependent, and 

even within a given language, multiple options may exist. For example, in C#, events are 

part of the core language, and event handling is relatively easy. In C++, we are not so 

lucky and must implement our own eventing system or rely on a library providing this 

facility.

The C++ programmer has several published library options for handling events; 

prominent among these choices are boost and Qt. The boost library supports signals 

and slots, a statically typed mechanism for a publisher to signal events to subscribers 

via callbacks. Qt, on the other hand, provides both a full event system and a dynamically 

typed event callback mechanism, which, coincidentally, is also referred to as signals 

and slots. Both libraries are well documented, well tested, well respected, and available 

for open source and commercial use. Either library would be a viable option for 

implementing events in our calculator. However, for both instructive purposes and 

to minimize the dependency of our calculator’s backend on external libraries, we 

will instead implement our own eventing system. The appropriate decision to make 

when designing your own software is very situationally dependent, and you should 

examine the pros and cons of using a library vs. building custom event handling for your 

individual application. That said, the default position, unless you have a compelling 

reason to do otherwise, should be to use a library.

3.3.1  �The Observer Pattern
Because eventing is such a commonly implemented C++ feature, you can rest assured 

that a design pattern describing eventing exists; this pattern is the observer. The observer 

pattern is a standard method for the abstract implementation of publishers and listeners. 

As the name of the pattern implies, here, the listeners are referred to as observers.

In the pattern as described by Gamma et al. [11], a concrete publisher implements 

an abstract publisher interface, and concrete observers implement an abstract observer 

interface. Notionally, the implementation is via public inheritance. Each publisher 

owns a container of its observers, and the publisher’s interface permits attaching and 

detaching observers. When an event occurs (is raised), the publisher iterates over its 

collection of observers and notifies each one that an event has occurred. Via virtual 

dispatch, each concrete observer handles this notify message according to its own 

implementation.
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Observers can receive state information from publishers in one of two ways. First, a 

concrete observer can have a pointer to the concrete publisher it is observing. Through 

this pointer, the observer can query the publisher’s state at the time the event occurred. 

This mechanism is known as pull semantics. Alternatively, push semantics can be 

implemented, whereby the publisher pushes state information to the observer along 

with the event notification. A simplified class diagram for the observer pattern exhibiting 

push semantics is found in Figure 3-1.

�Enhancing the Observer Pattern Implementation

In the actual implementation for our calculator, several additional features have been 

added beyond the abstraction depicted in Figure 3-1. First, in the figure, each publisher 

owns a single list of observers that are all notified when an event occurs. However, this 

implementation implies either that publishers have only one event or that publishers 

have multiple events, but no way of disambiguating which observers get called for each 

event. A better publisher implementation instead holds an associative array to lists of 

observers. In this manner, each publisher can have multiple distinct events, each of 

which only notifies observers interested in watching that particular event. While the 

key in the associative array can technically be any suitable data type that the designer 

chooses, I chose to use strings for the calculator. That is, the publisher distinguishes 

individual events by a name. This choice enhances readability and enables runtime 

flexibility to add events (vs., say, choosing enumeration values as keys).

Figure 3-1.  A simplified version of the class diagram for the observer pattern as it 
is implemented for pdCalc. The diagram illustrates push semantics for event data

Chapter 3  The Stack



59

Once the publisher class can contain multiple events, the programmer needs the 

ability to specify the event by name when attach() or detach() is called. These method 

signatures must therefore be modified appropriately from how they appear in Figure 3-1  

to include an event name. For attachment, the method signature is completed by 

adding the name of the event. The caller simply calls the attach() method with the 

concrete observer instance and the name of the event to which this observer is attaching. 

Detaching an observer from a publisher, however, requires slightly more sophisticated 

mechanics. Since each event within a publisher can contain multiple observers, the 

programmer requires the ability to differentiate observers for detachment. Naturally, 

this requirement leads to naming observers as well, and the detach() function signature 

must be modified to accommodate both the observer’s and event’s names.

In order to facilitate detaching observers, observers on each event should be stored 

indirectly and referenced by their names. Thus, rather than storing an associative array 

of lists of observers, we instead choose to use an associative array of associative arrays of 

observers.

In modern C++, the programmer has a choice of using either a map or an unordered_

map for a standard library implementation of an associative array. The canonical 

implementation of these two data structures are the red-black tree and the hash table, 

respectively. Since the ordering of the elements in the associative array is not important, 

I selected the unordered_map for pdCalc’s Publisher class. However, for the likely small 

number of observers subscribing to each event, either data structure would have been 

an equally valid choice.

To this point, we have not specified precisely how observers are stored in the 

publisher, only that they are somehow stored in associative arrays. Because observers 

are used polymorphically, language rules require them to be held by either pointer or 

reference. The question then becomes, should publishers own the observers or simply 

refer to observers owned by some other class? If we choose the reference route (by either 

reference or raw pointer), a class other than the publisher would be required to own 

the memory for the observers. This situation is problematic because it is not clear who 

should own the observers in any particular instance. Therefore, every developer would 

probably choose a different option, and the maintenance of the observers over the long 

term would descend into chaos. Even worse, if the owner of an observer released the 

observer’s memory without also detaching the observer from the publisher, triggering 

the publisher’s event would cause a crash because the publisher would hold an invalid 

reference to the observer. For these reasons, I prefer having the publisher own the 

memory for its observers.

Chapter 3  The Stack



60

Having eschewed referencing, we must use owning semantics, and, because of 

the C++ mechanics of polymorphism, we must implement ownership via pointers. In 

modern C++, unique ownership of a pointer type is achieved via the unique_ptr (see 

the modern C++ sidebar on owning semantics to understand the design implications). 

Putting all of the preceding advice together, we are able to design the final public 

interface for the Publisher class:

// Publisher.m.cpp

export module pdCalc.utilities:Publisher;

import :Observer;

export class Publisher

{

  using ObserversList = unordered_map<string, unique_ptr<Observer>>;

  using Events = unordered_map<string, ObserversList>;

public:

  void attach(const string& eventName,

              unique_ptr<Observer> observer);

  unique_ptr<Observer> detach(const string& eventName,

                              const string& observerName);

  // ...

private:

  Events events_;

};

Notice that the Publisher is exported from the Publisher partition of the utilities 

module. The Observer partition of the utilities module is imported to provide the 

definition of the Observer class. At first glance, you might wonder why the Observer 

module partition is imported instead of simply forward declaring the Observer class. 

After all, only the incomplete Observer type is used in declaring Observer smart 

pointers in Publisher’s declaration. However, the Publisher.m.cpp file contains both 

the partition interface unit and its implementation. Therefore, the full definition of the 

Observer class is needed in this file for the Publisher’s definition. Had the Publisher 

partition been split into separate interface and implementation files, the interface would 

have only needed a forward declaration of Observer.
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The interface for the Observer class is quite a bit simpler than the interface for the 

Publisher class. However, because we have not yet described how to handle event data, 

we are not yet ready to design the Observer’s interface. We will address both event data 

and the Observer class’s interface in the “Handling Event Data” section.

MODERN C++ DESIGN NOTE: OWNING SEMANTICS AND UNIQUE_PTR

In C++, the notion of owning an object implies the responsibility for deleting its memory when 

the object is no longer required. Prior to C++11, although anyone could implement his own 

smart pointer (and many did), the language itself expressed no standard semantics for pointer 

ownership (excepting auto_ptr, which was deprecated in C++11 and fully removed in 

C++17). Passing memory by native pointers was more of a trust issue. That is, if you “newed” 

a pointer and passed it via raw pointer to a library, you hoped the library deleted the memory 

when it was finished with it. Alternatively, the documentation for the library might inform you 

to delete the memory after certain operations were performed. Without a standard smart 

pointer, in the worst-case scenario, your program leaked memory. In the best-case scenario, 

you had to interface to a library using a nonstandard smart pointer.

C++11 corrected the problem of unknown pointer ownership by standardizing a set of 

smart pointers largely borrowed from the boost libraries. The unique_ptr finally allows 

programmers to implement unique ownership correctly (hence the deprecation of auto_ptr). 

Essentially, the unique_ptr ensures that only one instance of a pointer exists at any one 

time. For the language to enforce these rules, copy and nonmoving assignment for unique_

ptrs are not implemented. Instead, move semantics are employed to ensure transfer of 

ownership (explicit function calls can also be used to manage the memory manually). Josuttis 

[13] provides an excellent detailed description of the mechanics of using the unique_ptr. 

An important point to remember is not to mix pointer types between unique_ptrs and raw 

pointers.

From a design perspective, the unique_ptr implies that we can write interfaces, using 

standard C++, that unequivocally express unique ownership semantics. As was seen in 

the discussion of the observer pattern, unique ownership semantics are important in any 

design where one class creates memory to be owned by another class. For example, in the 

calculator’s eventing system, while the publisher of an event should own its observers, a 

publisher will rarely have enough information to create its observers. It is therefore important 

to be able to create the memory for the observers in one location but be able to pass 
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ownership of that memory to another location, the publisher. The unique_ptr provides that 

service. Because the observers are passed to the publisher via a unique_ptr, ownership is 

transferred to the publisher, and the observer’s memory is deleted by the smart pointer when 

the publisher no longer needs the observer. Alternatively, any class may reclaim an observer 

from the publisher. Since the detach() method returns the observer in a unique_ptr, the 

publisher clearly relinquishes ownership of the observer’s memory by transferring it back to 

the caller.

The preceding implementation of the observer pattern explicitly enforces a 

design where the Publisher owns its Observers. The most natural way to use this 

implementation involves creating small, dedicated, intermediary Observer classes that 

themselves hold pointers or references to the actual classes that should respond to an 

event. For example, from Chapter 2, we know that pdCalc’s user interface is an observer 

of the Stack class. However, do we really want the user interface to be an (publicly 

inherit from) Observer that is owned by the Stack as depicted in Figure 3-2a? No. A 

better solution is depicted in Figure 3-2c. Here, the Stack owns a stack ChangeEvent 

observer, which in turn notifies the UserInterface when the stack changes. This pattern 

enables the Stack and the UserInterface to remain truly independent. More will be said 

about this topic when we study our first user interface in Chapter 5.

Modern C++ does admit yet another sensible alternative for the ownership 

semantics of the observer pattern: shared ownership. As we stated previously, it is 

unreasonable for the Stack to own the user interface. Some, however, might consider 

it equally unreasonable to create an extra ChangeEvent intermediary class instead of 

directly making the user interface an observer. The only middle ground option available 

seems to be for the Stack to refer to the user interface. Previously, though, we stated that 

having a publisher refer to its observers is unsafe because the observers could disappear 

Figure 3-2.  Different ownership strategies for the observer pattern
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from under the publisher leaving a dangling reference. What if we could solve this 

dangling reference problem?

Fortunately, modern C++ once again comes to the rescue with shared semantics  

(as depicted in Figure 3-2b). In this scenario, observers would be shared using a shared_

ptr (see the sidebar on shared_ptrs), while the publisher would retain a reference 

to observers with a weak_ptr (a relative of the shared_ptr). weak_ptrs are designed 

specifically to mitigate the problem of dangling references to shared objects. This design 

for shared observer ownership by publishers is described by Meyers [24] in Item 20. 

Personally, I prefer the design that uses owning semantics and a lightweight, dedicated 

observer class.

Handling Event Data

In describing the observer pattern, we mentioned that two distinct paradigms exist for 

handling event data: pull and push semantics. In pull semantics, the observer is simply 

notified that an event has occurred. The observer then has the additional responsibility 

of acquiring any additional data that might be required. The implementation is quite 

simple. The observer maintains a reference to any object from which it might need to 

acquire state information, and the observer calls member functions to acquire this state 

in response to the event.

Pull semantics have several advantages. First, the observer can choose at the time 

of handling the event exactly what state it wants to acquire. Second, no unnecessary 

resources are consumed in passing potentially unused arguments to observers. Third, 

pull semantics are easy to implement because events do not need to carry data. 

However, pull semantics also have disadvantages. First, pull semantics increase coupling 

because observers need to hold references to and understand the state acquisition 

interfaces of publishers. Second, observers only have access to the public interfaces of 

publishers. This access restriction precludes observers from obtaining private data from 

publishers.

In contrast to pull semantics, push semantics are implemented by having the 

publisher send state data relevant to an event when that event is raised. Observers then 

receive this state data as the arguments to the notify callback. The interface enforces 

push semantics by making the notify function pure virtual in the abstract Observer base 

class.
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Push semantics for event handling also have both advantages and disadvantages. 

The first advantage is that push semantics decrease coupling. Neither publishers 

nor observers need to know about one another’s interfaces. They need only obey the 

abstract eventing interface. Second, the publisher can send private information to the 

observers when it pushes state. Third, the publisher, as the object raising the event, can 

send precisely the data needed to handle the event. The main disadvantages of push 

semantics are that they are slightly more difficult to implement and potentially carry 

unnecessary overhead in situations where the observer does not require the state data 

that the publisher pushes. Finally, we note that a design that uses push semantics can 

always be trivially augmented with pull semantics for special cases by adding a callback 

reference to the pushed data. The reverse is not true since push semantics require 

dedicated infrastructure within the event handling mechanism.

Based on the trade-offs between push and pull semantics described previously, 

I chose to implement push semantics for the event handling for pdCalc. The main 

disadvantage of push semantics is the potential computational overhead of the 

implementation. However, since our application is not performance intensive, the 

decreased coupling this pattern exhibits and the argument control the publisher 

maintains outweigh the slight performance overhead. Our task now becomes designing 

an implementation for passing event data via push semantics.

In order to implement push semantics for event handling, one must standardize 

the interface for passing arguments from publisher to observer when an event is raised. 

Ideally, each publisher/observer pair would agree on the types of the arguments to be 

passed, and the publisher would call the appropriate member function on the observer 

when an event was raised. However, this ideal situation is effectively impossible within 

our publisher/observer class hierarchy because concrete publishers are not aware of the 

interfaces of concrete observers. Concrete publishers can only raise events generically by 

calling the raise() function in the Publisher base class. The raise() function, in turn, 

polymorphically notifies a concrete observer through the Observer base class’s virtual 

notify() function. We, therefore, seek a generic technique for passing customized data 

via the abstract raise/notify interface.

Essentially, our problem reduces to defining an interface to notify(T) such that T 

can contain any type of data, including the case where the data may be null. I present 

two similar techniques for accomplishing this task; only the second is implemented 

in pdCalc. The first technique is more of a “classical” solution based on a polymorphic 

design. It is the only design I presented in the first edition. The second solution is based 

on a more modern technique called type erasure. If you were willing to write a lot of 
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boiler plate code, type erasure was possible before C++17. However, the any class, 

introduced in C++17, makes applying this technique for objects trivial. The technique is 

called type erasure because an object’s type is “erased” when passing it into the any class 

and only “recreated” by an any_cast when the object is extracted. Let’s examine each 

solution sequentially.

To apply the polymorphic solution to the event data problem, we create a parallel 

object hierarchy for event data and pass the event data from publisher to observer via 

this abstract state interface. The base class in this hierarchy, EventData, is an empty 

class that contains only a virtual destructor. Each event that requires arguments then 

subclasses this base class and implements whatever data handling scheme is deemed 

appropriate. When an event is raised, the publisher passes the data to the observer 

through an EventData base class pointer. Upon receipt of the data, the concrete observer 

downcasts the state data to the concrete data class and subsequently extracts the 

necessary data via the derived class’s concrete interface. While the concrete publisher 

and concrete observer do have to agree on the interface for the data object, neither 

concrete publisher nor concrete observer is required to know the interface of the other. 

Thus, we maintain loose coupling.

The type erasure solution to the event data problem is conceptually similar to the 

polymorphic approach, except we do not need an EventData base class. Instead, the 

standard any class replaces the abstract base class in the interface (see the sidebar 

discussing any, variant, and optional). Provided the concrete publisher and concrete 

observer implicitly agree on what is contained within this class, any object, including 

built-in types, can be passed as data. The agreement is enforced by the publisher passing 

a concrete type through an any object and the observer recreating the appropriate 

concrete type by any_casting the event data payload. As before, while an implicit 

agreement about the data must exist between concrete publisher and concrete observer, 

neither is required to know the interface of the other.

MODERN C++ DESIGN NOTE: USING STD::ANY, STD::VARIANT, STD::OPTIONAL, 
AND STRUCTURED BINDINGS

The C++17 standard library introduced three new, useful types: std::any, std::variant, and 

std::optional. any is designed to hold any type – the logical equivalent to a type-safe void 

pointer. It is a generic embodiment of type erasure for objects. variant provides a type-safe 

union. optional implements nullable types. Let’s look at a quick example of how each is used.
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any is used exactly the way you might expect given its name. That is, any is an object that 

can hold any value without specifying the contained value’s type beforehand. For example:

any a = 7; // assign an int

a = "hello"; // now assign a const char*

cout << any_cast<int>(a); // a not an int; throws std::bad_any_cast

cout << any_cast<const char*>(a); // works as expected

A more practical example using any to pass arbitrary data between events is shown in the 

main text.

A union is used when you need a container capable of holding any one of a particular set 

of preknown types. unions are very memory efficient because they simply hold sufficient 

memory to hold the largest type. Consider the following language supported union:

union

{

  int i;

  double d;

} w;

w.i = 102; // ok, assign an int

cout << w.i; // no problem

cout << w.d; // oops, this "works" but results in nonsense

w.d = 107.3; // no problem

The standard library variant is a type-safe improvement upon the same concept. Using 

a variant, we can write the same code like the one described previously in a type-safe 

manner:

variant<int, double> v;

v = 102; // ok, assign an int

cout << std::get<int>(v); // no problem

cout << std::get<double>(v); // throws std::bad_variant_access

v = 107.3; // no problem

Personally, I use unions infrequently. However, when a union is needed, I strongly prefer the 

standard library variant over the native language union.
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Now let’s examine how optional is used. Have you ever seen code similar to the following:

pair<bool, double> maybeReturnsDouble(); // function declaration

// ok, but tedious:

auto [flag, val] = maybeReturnsDouble();

if(flag) { /* ok to use val */ }

// downright dreadful (and common in computational code!):

const double NullDouble = -999999999.0

double d = maybeReturnsDouble();

if(d != NullDouble) { /* ok to use d */ }

The preceding hacks are necessary because C++ built-in types (other than pointers) cannot 

express a null state, nor does the language support a facility for checking if d is uninitialized. 

If you choose not to initialize d, d is guaranteed to be a valid double, but there is no guarantee 

that its value will be anything other than whatever bit pattern happens to be sitting in the 

bytes assigned to d by the compiler. This behavior frequently leads to difficult-to-decipher 

bugs that manifest in release builds but not in debug builds since debug mode often initializes 

uninitialized numbers to 0, while release mode does not initialize uninitialized numbers. Thus, 

the following code behaves differently between release and debug mode:

int flag; // uh oh, forgot to initialize

// flag == 0 for debug but probably not 0 for release

if(flag) {/* will likely execute this path for release */}

else {/* will execute this path for debug */}

I have spent many hours explaining to junior programmers that no, they did not just find a 

compiler bug but rather the compiler found their bug.

The standard library optional class enables programmers to avoid the preceding problems. 

Consider the following code:

optional<double> maybeReturnsDouble(); // new function declaration

auto d = maybeReturnsDouble();

if(d) { /* ok to use d */ }
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Ah, much better! Clearly, d converts to a bool, which returns true if d is nonnull. If you prefer 

a more verbose syntax, you can instead call the has_value() member function. Accessing 

the value of d can be performed by either dereferencing (i.e., *d) or through the value() 

member function. An optional is considered null if it is not initialized, initialized with an 

empty constructor (i.e., {}), or explicitly initialized with nullopt.

Did you notice anything syntactically strange in the previous code? Let’s repeat a line that may 

have looked foreign:

auto [flag, val] = maybeReturnsDouble();

The preceding syntax is called a structured binding. Structured bindings, introduced in C++17, 

are a syntactic convenience to provide names to elements of an expression. Recall our original 

version of maybeReturnsDouble() that returned a pair<bool, double> indicating 

first if the double was defined and second the value of the double itself. Before structured 

bindings, we had a few options for using the return value: directly use pair’s first and 

second members (opaque and confusing), create new variables and assign them to pair’s 

first and second members (clear, but verbose), or use std::tie (now unnecessary). 

While the example shows a structured binding in the context of binding to accessible class 

members, structured bindings can also be used to bind to tuple-like objects and arrays. 

Additionally, structured bindings can be declared to be const or of reference type if the 

underlying element must be modifiable through the bound name. Although structured bindings 

do not fundamentally allow you to do anything you couldn’t before, they are really convenient 

and better express the programmer’s intent through a compact syntax. I find I use them a lot.

To solidify the aforementioned ideas, let’s examine how the calculator’s Stack 

implements state data. Recall from Chapter 2 that the Stack implements two events: 

the stackChanged() event and the error(string) event. The stackChanged() event is 

uninteresting in this context since the event carries no data. The error event, however, 

does carry data. Consider the following code that explains how to implement Stack’s 

error condition for either the polymorphic or type erasure technique:

// Polymorphic event data strategy:

// Publisher.m.cpp

export class EventData
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{

public:

    virtual ~EventData();

};

// Stack.m.cpp

// export to become part of the stack module's interface

export class StackErrorData : public EventData

{

public:

  enum class ErrorConditions { Empty, TooFewArguments };

  StackErrorData(ErrorConditions e) : err_(e) { }

  static const char* Message(ErrorConditions ec);

  const char* message() const;

  ErrorConditions error() const { return err_; }

private:

  ErrorConditions err_;

};

// Type erasure event data strategy:

// Publisher.m.cpp - no code necessary in this file

// Stack.m.cpp

export public StackErrorData

{

  // Same implementation as above, but no inheritance needed

};

The StackErrorData class defines how the Stack’s event data is packaged and sent 

to classes observing the Stack. When an error occurs within the stack module, the Stack 

class raises an event and pushes information about that event to its observers. In this 

instance, the Stack creates an instance of StackErrorData specifying the type of error in 

the constructor. This enumerated type comprising the finite set of error conditions can 

be converted to a string using the message() function. The observers are then free to use 

or ignore this information when they are notified about the event’s occurrence. If you 

were paying attention, yes, I subtly just changed the signature for the error() interface.
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As a concrete example, suppose an error is triggered because an empty stack is 

popped. In order to raise this event, the Stack calls the following code:

// Polymorphic strategy:

raise(Stack::StackError(), make_shared<StackErrorData>(

  StackErrorData::ErrorConditions::Empty));

// Type erasure strategy:

raise(Stack::StackError(),

  StackErrorData{StackErrorData::ErrorConditions::Empty});

For both strategies, the first argument to the raise() function is a static function that 

returns a string that resolves to "error". Recall that in order to handle multiple events, 

the publisher names each event. Here, the Stack::StackError() returns the name of 

this event. A function is used instead of directly using the string to prevent runtime errors 

caused by mistyping the event name in the source code. The second argument to the 

raise() function creates the StackErrorData instance and initializes it with the empty 

stack error condition. For the polymorphic strategy, the implementation clearly passes 

event data using a shared_ptr. This decision is discussed in the sidebar concerning 

sharing semantics. For the type erasure strategy, a StackErrorData class is constructed 

and implicitly passed as the constructor argument to the any class in the raise() 

function’s interface. Although the StackObserver class has not yet been introduced, we 

note for completeness that an event can be interpreted with code typified by the following:

// Polymorphic strategy:

void StackObserver::notify(shared_ptr<EventData> d)

{

  shared_ptr<StackErrorData> p = dynamic_pointer_cast<StackErrorData>(d);

  if(p)

  {

    // do something with the data

  }

  else

  {

    // uh oh, what event did we just catch?!

  }

}
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// Type erasure strategy:

void StackObserver::notify(const any& d)

{

  try

  {

    const auto& d = any_cast<StackErrorData>(data);

    // do something with the data

  }

  catch(const std::bad_any_cast&)

  {

    // uh oh, what event did we just catch?!

  }

}

Why choose one strategy over the other? Personally, I find the type erasure approach 

cleaner and simpler than the polymorphic approach; in many cases, it may also be 

more efficient. First, using the any class requires less code than requiring a polymorphic 

hierarchy. Second, using the any class is less restrictive. While the aforementioned 

example shows an instance using a StackErrorData class in both cases, any could be 

used to store a simple type like a double or string, completely obviating the need for a 

user-defined class. Finally, depending upon the implementation of any, the type erasure 

method may be more efficient than the polymorphic approach. Where the polymorphic 

approach always requires heap allocation using a shared_ptr, a high-quality 

implementation of any will avoid heap allocation for objects that fit in a small memory 

footprint. Of course, the polymorphic approach does have one distinct advantage. 

It should be used in cases where polymorphism is desired (e.g., in an interface that 

uses virtual functions instead of type casting) or where a forced, consistent interface is 

desired via an abstract interface. As previously stated, the polymorphic interface was 

implemented for the first edition of this book. Now that C++17 includes the any class in 

the standard library, the implementation of pdCalc in the second edition of this book 

implements the type erasure strategy.
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MODERN C++ DESIGN NOTE: SHARING SEMANTICS AND SHARED_PTR

Whereas unique_ptr enables the programmer to express, safely, unique ownership, 

shared_ptr enables the programmer to express, safely, shared ownership. Prior to the 

C++11 standard, C++ enabled data sharing by either raw pointer or reference. Because 

references for class data could only be initialized during construction, for late binding data, 

only raw pointers could be used. Therefore, often, two classes shared a single piece of data 

by each containing a raw pointer to a common object. The problem with that scenario is, of 

course, that it is unclear which object owns the shared object. In particular, this ambiguity 

implies uncertainty about when such a shared object can safely be deleted and which owning 

object ultimately should free the memory. shared_ptrs rectify this dilemma at the standard 

library level.

shared_ptr implements sharing semantics via reference counting. As new objects 

point to a shared_ptr, the internal reference count increases (enforced via constructors 

and assignment). When a shared_ptr goes out of scope, its destructor is called, which 

decrements the internal reference count. When the count goes to zero, the destruction of the 

final shared_ptr triggers reclamation of the underlying memory. As with unique_ptr, 

explicit member function calls can also be used to manage memory manually. Josuttis [13] 

provides an excellent detailed description of the mechanics of using shared_ptr. As with 

unique_ptr, one must be careful not to mix pointer types. The exception to this rule, of 

course, is mixed usage with weak_ptr. Additionally, reference counting carries both time 

and space overhead, so the reader should familiarize himself with these trade-offs before 

deploying shared pointers.

In terms of design considerations, the shared_ptr construct enables the programmer to 

share heap memory without directly tracking the ownership of the objects. Passing objects 

by value for polymorphic types is not an option, because for objects existing in a hierarchy, 

passing objects by value causes slicing. However, using raw pointers (or references) to pass 

event data is also problematic because the lifetime of these data objects cannot be known 

among the classes sharing them. Consider pdCalc’s need to use a shared_ptr when using 

the polymorphic event data strategy. Naturally, the publisher allocates the memory when 

it raises an event. Since an observer may wish to retain the memory after completion of 

event handling, the publisher cannot simply deallocate the memory after the event has been 

handled. Moreover, because multiple observers can be called for any given event, neither can 

the publisher transfer unique ownership of the data to any given observer. For event data in 
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pdCalc, we saw that C++17 admits an alternative design using std::any. However, type 

erasure cannot always be substituted for shared ownership. Where shared ownership is 

desired, the shared_ptr standardized in C++11 offers the ideal semantics.

Now that we understand event data, we are finally ready to write the abstract 

Observer interface. It is, unsurprisingly, exactly what you might have been expecting.

export module pdCalc.utilities:Observer;

export class Observer

{

public:

  explicit Observer(std::string_view name);

  virtual ~Observer();

  virtual void notify(const any& data) = 0;

};

Maybe the interface is not exactly what you might have expected, particularly because 

the constructor to the Observer class uses a new feature of the C++ standard library 

introduced in C++17, the string_view. We’ll pause momentarily to discuss the  

string_view in the following sidebar. After that brief diversion, we’ll conclude the design 

of the Stack class’s interface by demonstrating how the Stack publishes events.

MODERN C++ DESIGN NOTE: REFERRING TO STD::STRINGS WITH STD::STRING_VIEW

Before C++17, when referring to an immutable string (specifically, a sequence of characters), 

we typically used either a const char* or a const string&, depending on the underlying 

type. Why did we need a new container to refer to strings?

Using the aforementioned two types to refer to strings can be problematic. First, to use a 

const char*, we either need to know the underlying type is a char*, or we need to convert 

a string to a const char*. Additionally, const char*s do not store the length of the 

underlying string. Instead, it is assumed that the character sequence is null terminated (i.e., 

ends with '\0'). Conversely, if we instead use a const string&, this works well if the 

underlying type was already a string, but if the underlying type was a const char*, we need 

to construct a temporary string unnecessarily. The string_view class addresses these 

problems.
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The string_view class is essentially a container that holds a constant pointer to a character 

type and an integer specifying the length of the contiguous sequence of characters that 

comprise the string. The implications of its implementation lead to both its strengths and its 

caveats. Let’s start with the strengths.

The biggest strength of the string_view class is that it is very efficient and can point to 

most string types expressed in C++. Relative to a plain const char*, a string_view is 

safer because the string_view knows the length of the embedded string it represents. 

Being a class, a string_view also has a much richer interface (although one might argue 

const char*s have rich library support). Relative to a const string&, a string_view 

will never implicitly make a temporary copy of const char*, and because a string_view 

is nonowning, it has very efficient member functions for functionality like creating substrings. 

This efficiency arises because calls to string_view’s substr() function return a new 

string_view, which requires no construction of a new string, only the assignment of 

a character pointer (the new start) and an integer (the new length) to the same referenced 

original string.

string_views also have a few shortcomings. While it is beneficial that a string_view 

knows its own size, this is disadvantageous for library calls expecting a null terminated string. 

The easiest way to produce a null terminated string from a string_view is to construct a 

string and use its c_str() function. At this point, using a const string& would have 

been the better choice. Another two instances where a const string& is preferred over 

a string_view are where it is known that a string already exists and where an existing 

interface requires a string or const char*.

Finally, we must be careful in managing the lifetime of a string_view. Importantly, a 

string_view is nonowning and is hence only “viewing” a separately owned string. If a string 

is destroyed before a referring string_view, the string_view will be left in an invalid 

state (identically to a dangling pointer). Therefore, you must always ensure that the lifetime of 

a string is equal to or exceeds the lifetime of any string_views pointing to it.

In conclusion, string_view is a modern, nonowning improvement to passing strings by 

const char* and const string&. string_view should generally be preferred except in 

cases where we need a null terminated string, we need a string for a subsequent function 

call, or we already have a string. When using string_view, be careful about object 

lifetimes, ensuring that the underlying string storage outlives the string_view.
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3.3.2  �The Stack As an Event Publisher
The final step in constructing the Stack is simply to put all of the pieces together.  

Listing 3-1 shows the Stack as a singleton. In order to implement events, we simply 

modify this code to inherit from the Publisher base class. We now must ask ourselves, 

should this inheritance be public or private?

Typically, in object-oriented programming, one uses public inheritance to indicate 

the is-a relationship. That is, public inheritance expresses the relationship that a derived 

class is a type of or specialization of a base class. More precisely, the is-a relationship 

obeys the Liskov Substitution Principle (LSP) [37], which states that (via polymorphism) 

a function which takes a base class pointer (reference) as an argument must be able to 

accept a derived class pointer (reference) without knowing it. Succinctly, a derived class 

must be usable wherever a base class can be used, interchangeably. When people refer 

to inheritance, they are generally referring to public inheritance.

Private inheritance is used to express the implements-a relationship. Private 

inheritance, simply, is used to embed the implementation of one class into the private 

implementation of another. It does not obey the LSP, and in fact, the C++ language does 

not permit substitution of a derived class for a base class if the inheritance relationship 

is private. For completeness, the closely related protected inheritance is semantically 

the same as private inheritance. The only difference is that in private inheritance, the 

base class implementation becomes private in the derived class while in protected 

inheritance, the base class implementation becomes protected in the derived class.

Our question has now been refined to, “Is the Stack a Publisher or does the Stack 

implement a Publisher? The answer is yes and yes. That was unhelpful, so how do we 

choose?

In order to disambiguate whether we should use public or private inheritance in this 

instance, we must delve deeper into the usage of the Stack class. Public inheritance, 

or the is-a relationship, would indicate our intent to use the stack polymorphically as 

a publisher. However, this is not the case. While the Stack class is a publisher, it is not 

a publisher in the context that it could be substituted for a Publisher in an LSP sense. 

Therefore, we conclude that we should use private inheritance to indicate the intent 

to use the implementation of the Publisher within the Stack. Equivalently, we can 

state that the Stack provides the Publisher service. If you’ve been following along with 

the repository source code, you might have noticed a big hint that private inheritance 

was the answer. The Publisher class was implemented with a nonvirtual, protected 

destructor, making it unusable for public inheritance.
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Readers familiar with object-oriented design may wonder why we didn’t ask the 

ubiquitous has-a question, which indicates ownership or the aggregation relationship. 

That is, why shouldn’t the Stack simply own a Publisher and reuse its implementation 

instead of privately inheriting from it? Many designers prefer almost exclusively to use 

aggregation in place of private inheritance arguing that when given an equivalent choice 

between these two, one should always prefer the language feature leading to looser 

coupling (inheritance is a stronger relationship than aggregation). This opinion has 

merit. Personally, though, I simply prefer to accept the technique that trades off stronger 

coupling for greater clarity. I believe that private inheritance more clearly states the design 

intent of implementing the Publisher service than does aggregation. This decision has no 

right or wrong answer. In your code, you should prefer the style that suits your tastes.

An additional consequence of privately inheriting from the Publisher class is 

that the attach() and detach() methods of the Publisher become private. However, 

they need to be part of the public interface for the Stack if any other class intends to 

subscribe to the Stack’s events. Thus, the implementer must choose to utilize either 

using statements or forwarding member functions to hoist attach() and detach() into 

the public interface of the Stack. Either approach is acceptable in this context, and the 

implementer is free to use their personal preference.

3.3.3  �The Complete Stack Module Interface
We are finally ready to write the complete Stack public interface, inclusive of both the 

Stack and StackErrorData classes. In the following code listing, include statements, 

imports, namespace using declarations, and any private portions of the classes are all 

omitted for brevity. All of these implementation details are, of course, included in the 

accompanying source code from the GitHub repository.

export module pdCalc.stack;

export namespace pdCalc {

class StackErrorData

{

public:

  enum class ErrorConditions { Empty, TooFewArguments };

  explicit StackErrorData(ErrorConditions e);
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  static const char* Message(ErrorConditions ec);

  const char* message() const;

  ErrorConditions error() const;

};

class Stack : private Publisher

{

public:

  static Stack& Instance();

  void push(double, bool suppressChangeEvent = false);

  double pop(bool suppressChangeEvent = false);

  void swapTop();

  vector<double> getElements(size_t n) const;

  using Publisher::attach;

  using Publisher::detach;

  static string StackChanged();

  static string StackError();

};

} // namespace pdCalc

As described in this chapter, the Stack is a singleton class (note the Instance() method) 

that implements the Publisher service (note the private inheritance of the Publisher class 

and the hoisting of the attach() and detach() methods into the public interface). The 

Stack class’s public section, in conjunction with the StackErrorData class, encompasses 

the complete interface of the stack module introduced in Table 2-2 in Chapter 2. While we 

have not yet described any concrete observers for the Stack, we have fully defined our event 

system for pdCalc, which is based on the tried and true observer pattern. At this point, we 

are ready to design pdCalc’s next component, the command dispatcher module.

3.4  �A Quick Note on Testing
Before concluding our first chapter that introduced the source code for pdCalc, we 

should pause a moment and say a few words about testing. Testing is by no means a 

central exploratory topic of this book, and trying to cover both design and testing in 
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depth would certainly break the cohesion of this text. Instead, the reader interested in a 

thorough exploration of developer testing is referred to the excellent book by Tarlinder 

[35]. Nonetheless, testing is an integral part of any high-quality implementation.

Alongside the source code for the calculator found on GitHub, I have also included 

all of my automated unit testing code. Because I chose to use Qt for the graphical user 

interface framework for pdCalc (see Chapter 6), the QtTest framework was a natural 

choice on which to build pdCalc’s unit test suite. Primarily, this choice does not add any 

additional library dependencies on the project, and the test framework is guaranteed to 

work on all platforms to which Qt has been ported. That said, any one of the many  

high-quality C++ unit test frameworks would have sufficed equally well.

Personally, I find unit testing to be indispensable when programming even small 

projects. First and foremost, unit tests provide a means to ensure your code functions 

as expected (verification). Second, unit testing enables you to see a module working 

correctly long before a user interface is developed. Early testing enables early bug 

detection, and a well-known fact of software engineering is that earlier bug detection 

leads to exponentially cheaper bug fixing costs. I also find that seeing modules fully 

working early in the development cycle is oddly motivational. Finally, unit tests also 

enable you to know that your code functions the same before and after code changes 

(regression testing). As iteration is an essential element of design and implementation, 

your code will change numerous times, even after you think you’ve completed it. 

Running comprehensive unit tests automatically at every build will ensure that new 

changes have not unpredictably broken any existing functioning units.

Because I value testing very highly (it’s one of the first lessons I try to teach to new 

professional developers), I strove to ensure completeness in the testing of pdCalc’s code. 

While I hope that the test code is of high quality, I admit that my testing nomenclature 

sometimes gets a little sloppy and, in some instances, I probably severely blurred the 

lines between unit, integration, and system testing. Nevertheless, all of the tests run 

very quickly, and they assured me that my code was verified throughout the code 

development portion of writing this book. However, despite my best intentions to write 

error-free code, and even after an irrational number of reviews of the source code, I am 

certain that bugs still exist in the final product. Please feel free to email me any and all 

errors that you find. I will make my best effort to incorporate corrections to the code in 

the GitHub repository and any future editions of this book, giving proper attribution to 

the first reader who reports any of my bugs to me.
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CHAPTER 4

The Command Dispatcher
The command dispatcher is the centerpiece of the calculator. As the controller in the 

MVC framework, the command dispatcher is responsible for the entire business logic 

of the application. This chapter addresses not only the specific design of the command 

dispatcher module for the calculator but also, more broadly, the flexible design of a 

loosely coupled command infrastructure.

4.1  �Decomposition of the Command Dispatcher
The first question we asked when decomposing the stack was, “Into how many 

components should the stack be divided?” We ask the same question now for the 

command dispatcher. To answer this question, let’s consider the functionality that the 

command dispatcher must encapsulate. The function of the command dispatcher is to

	 1.	 Store a collection of known commands

	 2.	 Receive and interpret requests for these commands

	 3.	 Dispatch command requests (including the ability to undo  

and redo)

	 4.	 Perform the actual operation (including updating the  

calculator’s state)

In Chapter 2, we discussed the principle of cohesion. At the topmost decomposition 

level, the command dispatcher indeed does only one thing: it interprets commands, 

which is the appropriate abstraction level for the command dispatcher module. At the 

implementation level, however, from our list of functionality previously mentioned, the 

module clearly must execute multiple tasks. Therefore, we decompose the command 

dispatcher into several distinct classes, one for each major task it must perform, because, 
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at the class level, designing for cohesion implies that each class should only do one thing 

and, presumably, do it well. Hence, we define the following classes:

	 1.	 CommandFactory: Creates available commands

	 2.	 CommandInterpreter: Receives and interprets requests to execute 

commands

	 3.	 CommandManager: Dispatches commands and manages undo and 

redo

	 4.	 Command hierarchy: Executes commands

The CommandFactory, CommandInterpreter, and CommandManager classes are all 

components of the command dispatcher module. While the Command class hierarchy 

logically belongs to the command dispatcher module, as discussed in Chapter 2, the 

Command hierarchy of classes are contained in a separate command module because these 

classes must be independently exportable for plugin implementers. The remainder of 

this chapter is devoted to describing the design and salient implementation details for 

the aforementioned list of classes and class hierarchies.

4.2  �The Command Class
At this stage in the decomposition, I find it more useful to switch to a bottom-up 

approach to design. In a strictly top-down approach, we would probably start with the 

CommandInterpreter, the class that receives and interprets command requests, and work 

our way down to the commands. However, in this bottom-up approach, we will begin by 

studying the design of the commands themselves. We begin with the abstraction known 

as the command pattern.

4.2.1  �The Command Pattern
The command pattern is a simple, but very powerful, behavioral pattern that 

encapsulates a request in the form of an object. Structurally, the pattern is implemented 

as an abstract command base class that provides an interface for executing a request. 

Concrete commands simply implement the interface. In the most trivial case, the 

abstract interface consists solely of a command to execute the request that the command 

encapsulates. The class diagram for the trivial implementation is shown in Figure 4-1.
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Essentially, the pattern does two things. First, it decouples the requester of a 

command from the dispatcher of the command. Second, it encapsulates the request for 

an action, which might otherwise be implemented by a function call, into an object. This 

object can carry state and possess an extended lifetime beyond the immediate lifetime of 

the request itself.

Practically, what do these two features give us? First, because the requester is 

decoupled from the dispatcher, the logic for executing a command does not need to 

reside in the same class or even the same module as the class responsible for executing 

the command. This obviously decreases coupling, but it also increases cohesion since 

a unique class can be created for each unique command the system must implement. 

Second, because requests are now encapsulated in command objects with a lifetime 

distinct from the lifetime of the action, commands can be both delayed in time (e.g., 

queuing commands) and undone. The undo operation is made possible because already 

executed commands can be retained with sufficient data to restore the state to the 

instant before the command was executed. Of course, combining the queuing ability 

with the undo ability permits the creation of an unlimited undo/redo for all requests 

implementing the command pattern.

4.2.2  �More on Implementing Undo/Redo
One of the requirements for pdCalc is to implement unlimited undo and redo 

operations. Most books state that undo can be implemented via the command pattern by 

merely augmenting the abstract command interface with an undo command. However, 

this simplistic treatment glosses over the actual details necessary to properly implement 

the undo feature.

Figure 4-1.  The simplest hierarchy for the command pattern

Chapter 4  The Command Dispatcher



82

Implementing undo and redo involves two distinct steps. First (and obviously), undo 

and redo must be implemented correctly in the concrete command classes. Second, a 

data structure must be implemented to track and store the command objects as they are 

dispatched. Naturally, this data structure must preserve the order in which the commands 

were executed and be capable of dispatching a request to undo, redo, or execute a new 

command. This undo/redo data structure is described in detail in Section 4.4. The 

implementation of undo and redo is discussed presently.

Implementing undo and redo operations themselves is usually straightforward. The 

redo operation is the same as the command’s execute function. Provided that the state 

of the system is the same before the first time a command is executed and after undo has 

been called, then implementing the redo command is essentially free. This, of course, 

immediately implies that implementing undo is really about reverting the state of the 

system to immediately before the command was first executed.

Undo can be implemented by two similar but slightly distinct mechanisms, each 

responsible for restoring the system’s state in different ways. The first mechanism 

does exactly what the name undo implies: it takes the current state of the system 

and literally reverses the process of the forward command. Mathematically, that is, 

undo is implemented as the inverse operation to execute. For example, if the forward 

operation were to take the square root of the number on the top of the stack, then the 

undo operation would be to take the square of the number on the top of the stack. The 

advantage of this method is that no extra state information needs to be stored in order 

to be able to implement undo. The disadvantage is that the method does not work for 

all possible commands. Let’s examine the converse of our previous example. That is, 

consider taking the square of the number on the stop of the stack. The undo operation 

would be to take the square root of the result of the squaring operation. However, was 

the original number the positive or negative root of the square? Without retaining 

additional state information, the inversion method breaks down.

The alternative to implementing undo as an inverse operation is to preserve the state 

of the system before the command is first executed and then implement the undo as a 

reversion to this prior state. Returning to our example of squaring a number, the forward 

operation would both compute the square and save the top number on the stack. The 

undo operation would then be implemented by dropping the result from the stack 

and pushing the saved state from before the forward operation was performed. This 

procedure is enabled by the command pattern since all commands are implemented as 

instantiations of concrete command classes that are permitted to carry state.  
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An interesting feature of this method of implementing undo is that the operation itself 

need not have a mathematical inverse. Notice that in our example, the undo did not even 

need to know what the forward operation was. It simply needed to know how to replace 

the top element from the stack with the saved state.

Which mechanism to use in your application really depends on the distinct 

operations your application performs. When operations have no inverses, storing the 

state is the only option. When the inverse operation is overly expensive to compute, 

storing the state is usually the better implementation. When storage of the state is 

expensive, implementing undo via inversion is preferred, assuming an inverse operation 

exists. Of course, since each command is implemented as a separate class, a global 

decision for how undo is implemented need not be made for the entire system. The 

designer of a given command is free to choose the method most appropriate for that 

particular operation on a command-by-command basis. In some cases, even a hybrid 

approach (both storing and inverting separate parts of the operation) may be optimal. In 

the next section, we will examine the choices that I made for pdCalc.

4.2.3  �The Command Pattern Applied to the Calculator
In order to execute, undo, and redo all of the operations in the calculator, we will 

implement the command pattern, and each calculator operation will be encapsulated 

by its own concrete class deriving from an abstract Command class. From the previous 

discussion concerning the command pattern, we can see that two decisions must 

be made in order to apply the pattern to the calculator. First, we must decide what 

operations must be supported by every command. This collection of operations 

will define the abstract interface of the Command base class. Second, we must choose 

a strategy for how undo will be supported. To be precise, this decision is always 

deferred to the implementer of a particular concrete command. However, by choosing 

either state reconstruction or command inversion up front, we can implement some 

infrastructure to simplify undo for command implementers. We’ll tackle these two issues 

consecutively.

�The Command Interface

Choosing what public functions to include in the abstract Command class is identical to 

defining the interface for all commands in the calculator. Therefore, this decision must 

not be taken lightly. While each concrete command will perform a distinct function, all 
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concrete commands must be substitutable for each other (recall the LSP). Because we 

want interfaces to be minimal but complete, we must determine the fewest number of 

functions that can abstractly express the operations needed for all commands.

The first two commands to be included are the most obvious and easiest to define. 

They are execute() and undo(), the functions for performing the forward and inverse 

operations of the command, respectively. These two functions return void and require 

no arguments. No arguments are needed because all of the data for the calculator 

is handled via the Stack class, which is globally accessible via the singleton pattern. 

Additionally, the Command class will need a constructor and a destructor. Because the 

class is intended to be an interface class with virtual functions, the destructor should be 

virtual. The following code snippet illustrates our first attempt at an interface:

export module pdCalc.command;

export class Command

{

public:

  virtual ~Command();

  void execute();

  void undo();

protected:

  Command();

private:

  virtual void executeImpl() = 0;

  virtual void undoImpl() = 0;

};

Note the omission of the pdCalc namespace, as will generally be done throughout the 

text. Although explicitly listed earlier, I will also frequently omit from the text the module 

export line and the export keyword preceding a class name or namespace declaration if 

their presence can be implied from context.

In the preceding listing, the reader will immediately notice that the constructor 

is protected, both execute() and undo() are public and nonvirtual, and separate 

executeImpl() and undoImpl() virtual functions exist. The reason the constructor 

is protected is to signal to an implementer that the Command class cannot be directly 

instantiated. Of course, because the class contains pure virtual functions, the compiler 
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prevents direct instantiation of the Command class, anyway. Making the constructor 

protected is, somewhat, superfluous. Defining the public interface using a combination 

of virtual and nonvirtual functions, on the other hand, deserves a more detailed 

explanation.

Defining the public interface for a class via a mixture of public nonvirtual functions 

and private virtual functions is a design principle known as the nonvirtual interface (NVI) 

pattern. The NVI pattern states that polymorphic interfaces should always be defined 

using nonvirtual public functions that forward calls to private virtual functions. The 

reasoning behind this pattern is quite simple. Since a base class with virtual functions acts 

as an interface class, clients should be accessing derived class functionality only through 

the base class’s interface via polymorphism. By making the public interface nonvirtual, 

the base class implementer reserves the ability to intercept virtual function calls before 

dispatch in order to add preconditions or postconditions to the execution of all derived 

class implementations. Making the virtual functions private forces consumers to use 

the nonvirtual interface. In the trivial case where no precondition or postcondition is 

needed, the implementation of the nonvirtual function reduces to a forwarding call to 

the virtual function. The additional verbosity of insisting on the NVI pattern even in the 

trivial case is warranted because it preserves design flexibility for future expansion at zero 

computational overhead since the forwarding function call can be inlined. A more  

in-depth rationale behind the NVI pattern is discussed in detail in Sutter [34].

Let’s now consider if either execute() or undo() requires preconditions or 

postconditions; we start with execute(). From a quick scan of the use cases in Chapter 2,  

we can see that many of the actions pdCalc must complete can only be performed if 

a set of preconditions are first satisfied. For example, to add two numbers, we must 

have two numbers on the stack. Clearly, addition has a precondition. From a design 

perspective, if we trap this precondition before the command is executed, we can handle 

precondition errors before they cause execution problems. We’ll definitely want to 

check preconditions as part of our base class execute() implementation before calling 

executeImpl().

What precondition or preconditions must be checked for all commands? Maybe, 

as with addition, all commands must have at least two numbers on the stack? Let’s 

examine another use case. Consider taking the sine of a number. This command only 

requires one number to be on the stack. Ah, preconditions are command specific. The 

correct answer to our question concerning the general handling of preconditions is to 

ask derived classes to check their own preconditions by having execute() first call a 

checkPreconditionsImpl() virtual function.
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What about postconditions for execute()? It turns out that if the preconditions for 

each command are satisfied, then all of the commands are mathematically well defined. 

Great, no postcondition checks are necessary! Unfortunately, mathematical correctness 

is insufficient to ensure error-free computations with floating-point numbers. For 

example, floating-point addition can result in positive overflow when using the double-

precision numbers required by pdCalc even when the addition is mathematically 

defined. Fortunately, however, our requirements from Chapter 1 stated that floating-

point errors can be ignored. Therefore, we are technically excepted from needing to 

handle floating-point errors and do not need a postcondition check after all.

To keep the code relatively simple, I chose to adhere to the requirements and ignore 

floating-point exceptions in pdCalc. If I had instead wanted to be proactive in the design 

and trap floating-point errors, a checkPostconditions() function could have been used. 

Because floating-point errors are generic to all commands, the postcondition check 

could have been handled at the base class level.

Understanding our precondition and postcondition needs, using the NVI pattern, we 

are able to write the following simple implementation for execute():

void Command::execute()

{

  checkPreconditionsImpl();

  executeImpl();

  return;

}

Given that checkPreconditionsImpl() and executeImpl() must both be 

consecutively called and handled by the derived class, couldn’t we just lump both of 

these operations into one function call? We could, but that decision would lead to a 

suboptimal design. First, by lumping these two operations into one executeImpl() 

function call, we would lose cohesion by asking one function to perform two distinct 

operations. Second, by using a separate checkPreconditionsImpl() call, we could 

choose either to force derived class implementers to check for preconditions 

(by making checkPreconditionsImpl() pure virtual) or to provide, optionally, 

a default implementation for precondition checks. Finally, who is to say that 

checkPreconditionsImpl() and executeImpl() will dispatch to the same derived class? 

Remember, hierarchies can be multiple levels deep.
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Analogously to the execute() function, one might assume that precondition checks 

are needed for undoing commands. However, it turns out that we never actually have to 

check for undo preconditions because they will always be true by construction. That is, 

since an undo command can only be called after an execute command has successfully 

completed, the precondition for undo() is guaranteed to be satisfied (assuming, 

of course, a correct implementation of execute()). As with forward execution, no 

postcondition checks are necessary for undo().

The analysis of preconditions and postconditions for execute() and undo() resulted 

in the addition of only one function to the virtual interface, checkPreconditionsImpl(). 

However, in order for the implementation of this function to be complete, we must 

determine the correct signature of this function. First, what should be the return value 

for the function? Either we could choose to make the return value void and handle 

failure of the precondition via an exception or make the return value a type that 

could indicate that the precondition was not met (e.g., a boolean returning false on 

precondition failure or an enumeration indicating the type of failure that occurred). For 

pdCalc, I chose to handle precondition failures via exceptions. This strategy enables 

a greater degree of flexibility because the error does not need to be handled by the 

immediate caller, the execute() function. Additionally, the exception can be designed 

to carry a customized, descriptive error message that can be extended by a derived 

command. This contrasts with using an enumerated type, which would have to be 

completely defined by the base class implementer.

The second item we must address in specifying the signature of 

checkPreconditionsImpl() is to choose whether the function should be pure virtual 

or have a default implementation. While it is true that most commands will require 

some precondition to be satisfied, this is not true of every command. For example, 

entering a new number onto the stack does not require a precondition. Therefore, 

checkPreconditionsImpl() should not be a pure virtual function. Instead, it is 

given a default implementation of doing nothing, which is equivalent to stating that 

preconditions are satisfied.

Because errors in commands are checked via the checkPreconditionsImpl() 

function, a proper implementation of any command should not throw an exception 

except from checkPreconditionsImpl(). Therefore, for added interface protection, 

each pure virtual function in the Command class should be marked noexcept. For 

brevity, I often skip this keyword in the text; however, noexcept does appear in the 

implementation. This specifier is really only important in the implementation of plugin 

commands, which are discussed in Chapter 7.
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The next set of functions to be added to the Command class are functions for 

copying objects polymorphically. This set includes a protected copy constructor, 

a public nonvirtual clone() function, and a private cloneImpl() function. At this 

point in the design, the rationale for why commands must be copyable cannot be 

adequately justified. However, the reasoning will become clear when we examine the 

implementation of the CommandFactory. For continuity’s sake, however, we’ll discuss the 

implementation of the copy interface presently.

For class hierarchies designed for polymorphic usage, a simple copy constructor 

is insufficient, and copies of objects must be performed by a cloning virtual function. 

Consider the following abbreviated command hierarchy showing only the copy 

constructors:

class Command

{

protected:

  Command(const Command&);

};

class Add : public Command

{

public:

  Add(const Add&);

};

Our objective is to copy Commands that are used polymorphically. Let’s take the 

following example where we hold an Add object via a Command pointer:

Command* p = new Add;

By definition, a copy constructor takes a reference to its own class type as its argument. 

Because in a polymorphic setting we do not know the underlying type, we must attempt 

to call the copy constructor as follows:

auto p2 = new Command{*p};

The preceding construction is illegal and will not compile. Because the Command class is 

abstract (and its copy constructor is protected), the compiler will not allow the creation 

of a Command object. However, not all hierarchies have abstract base classes, so one  

might be tempted to try this construction in those cases where it is legal. Beware.  
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This construction would slice the hierarchy. That is, p2 would be constructed as a 

Command instance, not an Add instance, and any Add state from p would be lost in the copy.

Given that we cannot directly use a copy constructor, how do we copy classes in a 

polymorphic setting? The solution is to provide a virtual clone operation that can be 

used as follows:

Command* p2 = p->clone();

Here, the nonvirtual clone() function dispatches the cloning operation to the derived 

class’s cloneImpl() function, whose implementation is simply to call its own copy 

constructor with a dereferenced this pointer as its argument. For the preceding 

example, the expanded interface and implementation would be as follows:

class Command

{

public:

  Command* clone() const { return cloneImpl(); }

protected:

  Command(const Command&) = default;

private:

  virtual Command* cloneImpl() const = 0;

};

class Add : public Command

{

public:

  Add(const Add& rhs) : Command{rhs} { }

private:

  Add* cloneImpl() const { return new Add{*this}; }

};

The only interesting implementation feature here is the return type for the  

cloneImpl() function. Notice that the base class specifies the return type as Command*, 

while the derived class specifies the return type as Add*. This construction is called 

return type covariance, a rule which states that an overriding function in a derived 

class may return a type of greater specificity than the return type in the virtual interface. 
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Covariance allows a cloning function to always return the specific type appropriate 

to the hierarchy level from which cloning was called. This feature is important for 

implementations that have public cloning functions and allow cloning calls to be made 

from all levels in the hierarchy.

I chose to round out the command interface with a help message function and a 

corresponding virtual implementation function. The intent of this help function is to 

enforce that individual command implementers provide brief documentation for the 

commands that can be queried through a help command in the user interface. The help 

function is not essential to the functionality of the commands, and its inclusion as part of 

the design is optional. However, it’s always nice to provide some internal documentation 

for command usage, even in a program as simplistic as a calculator.

Combining all of the aforementioned information, we can finally write the complete 

abstract interface for our Command class:

class Command

{

public:

  virtual ~Command();

  void execute();

  void undo();

  Command* clone() const;

  const char* helpMessage() const;

protected:

  Command();

  Command(const Command&);

private:

  virtual void checkPreconditionsImpl() const;

  virtual void executeImpl() noexcept = 0;

  virtual void undoImpl() noexcept = 0;

  virtual Command* cloneImpl() const = 0;

  virtual const char* helpMessageImpl() const noexcept = 0;

};

If you look at the source code in Command.m.cpp, you will also see a virtual deallocate() 

function. This function is exclusively used for plugins, and its addition to the interface 

will be discussed in Chapter 7.
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MODERN C++ DESIGN NOTE: THE OVERRIDE KEYWORD

The override keyword was introduced in C++11. Functionally, it prevents a common error that 

is often surprising to new C++ programmers. Consider the following code snippet:

class Base

{

public:

  virtual void foo(int);

};

class Derived : public Base

{

public:

  void foo(double);

};

Base* p = new Derived;

p->foo(2.1);

Which function is called? Most novice C++ programmers assume that Derived::foo() 

is called because they expect that Derived’s foo() is overriding Base’s implementation. 

However, because the signature of the foo() function differs between the base and derived 

classes, Base’s foo() actually hides Derived’s implementation since overloading cannot 

occur across scope boundaries. Therefore, the call, p->foo(), will call Base’s foo() 

regardless of the argument’s type. Interestingly enough, for the same reason

Derived d;

d->foo(2);

can never call anything but Derived’s foo().

In C++03 and C++11, the preceding code behaves in exactly the same confusing, but 

technically correct, way. However, starting in C++11, a derived class may optionally mark 

overriding functions with the override keyword:

class Derived : public Base

{

public:

  void foo(double) override;

};
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Now, the compiler will flag the declaration as an error because the programmer explicitly 

declared that the derived function should override. Thus, the addition of the override keyword 

prevents a perplexing bug from occurring by allowing the programmer to disambiguate his 

intentions.

From a design perspective, the override keyword explicitly marks the function as being an 

override. While this may not seem important, it is quite useful when working on a large code 

base. When implementing a derived class whose base class is in another distinct part of the 

code, it is convenient to know which functions override base class functions and which do not 

without having to look at the base class’s declaration.

�The Undo Strategy

Having defined the abstract interface for our commands, we next move on to designing 

the undo strategy. Technically, because the undo() command in our interface is a pure 

virtual, we could simply waive our hands and claim that the implementation of undo 

is each concrete command’s problem. However, this would be both inelegant and 

inefficient. Instead, we seek some functional commonality for all commands (or at least 

groupings of commands) that might enable us to implement undo at a higher level than 

at each leaf node in the command hierarchy.

As was previously discussed, undo can be implemented either via command 

inversion or state reconstruction (or some combination of the two). Command 

inversion was already shown to be problematic because the inverse problem is ill-posed 

(specifically, it has multiple solutions) for some commands. Let’s therefore examine 

state reconstruction as a generalized undo strategy for pdCalc.

We begin our analysis by considering a use case, the addition operation. Addition 

removes two elements from the stack, adds them together, and returns the result. A 

simple undo could be implemented by dropping the result from the stack and restoring 

the original operands, provided these operands were stored by the execute() command. 

Now, consider subtraction, or multiplication, or division. These commands can also 

be undone by dropping their result and restoring their operands. Could it be so simple 

to implement undo for all commands that we would simply need to store the top 

two values from the stack during execute() and implement undo by dropping the 

command’s result and restoring the stored operands? No. Consider sine, cosine, and 

tangent. They each take one operand from the stack and return a single result. Consider 
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swap. It takes two operands from the stack and returns two results (the operands in the 

opposite order). A perfectly uniform strategy for undo cannot be implemented over all 

commands. That said, we shouldn’t just give up hope and return to implementing undo 

individually for every command.

Just because all commands in our calculator must descend from the Command class, 

no rule requires this inheritance to be the direct inheritance depicted in Figure 4-1.  

Consider, instead, the command hierarchy depicted in Figure 4-2. While some 

commands still directly inherit from the Command base class, we have created two new 

subclasses, UnaryCommand and BinaryCommand, from which more specialized commands 

can be inherited. In fact, as will be seen shortly, these two new base classes are 

themselves abstract.

Our preceding use case analysis identified two significant subcategories of 

operations that implement undo uniformly for their respective members: binary 

commands (commands that take two operands and return one result) and unary 

commands (commands that take one operand and return one result). Thus, we can 

simplify our implementation significantly by generically handling undo for these two 

classes of commands. While commands not fitting into either the unary or binary 

command family will still be required to implement undo() individually, these two 

subcategories account for about 75% of the core commands of the calculator. Creating 

these two abstractions will save a significant amount of work.

Let’s examine the UnaryCommand class. By definition, all unary commands require 

one argument and return one value. For example, f (x) = sin(x) takes one number x from 

the stack and returns the result, f (x), onto the stack. As previously stated, the reason for 

Figure 4-2.  A multilevel hierarchy for the calculator’s command pattern
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considering all unary functions together as a family is because regardless of the function, 

all unary commands implement both forward execution and undo identically, differing 

only in the functional form of f. Additionally, they also all must minimally meet the same 

precondition. Namely, there must be at least one element on the stack.

In code, the aforementioned common traits of unary commands are enforced 

by overriding executeImpl(), undoImpl(), and checkPreconditionsImpl() in the 

UnaryCommand base class and creating a new unaryOperation() pure virtual that 

delegates the precise implementation of each command to a further derived class. The 

result is a UnaryCommand class with the following declaration:

class UnaryCommand : public Command

 {

 public:

   virtual ~UnaryCommand() = default;

 protected:

   void checkPreconditionsImpl() const override;

   UnaryCommand() = default;

   UnaryCommand(const UnaryCommand&);

 private:

   void executeImpl() override final;

   void undoImpl() override final;

   virtual double unaryOperation(double top) const = 0;

   double top_;

};

Note that both the executeImpl() and undoImpl() functions are marked final, 

but the checkPreconditionsImpl() function is not. The entire reason for the 

UnaryCommand class to exist is to optimize the undo operation for all its descendants. 

Therefore, in order to be classified as a unary command, a derived class must accept 

UnaryCommand’s handling of undo and execute. We enforce this constraint by disabling 

the ability of derived classes to override undoImpl() and executeImpl() by using 

the final keyword. We’ll see a more detailed explanation of the final keyword in a 

sidebar later in this chapter. The checkPreconditionsImpl() function is different. 

While all unary commands share the common precondition that at least one element 

must be present on the stack, individual functions may require further preconditions. 
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For example, consider the unary function arcsine, which requires its operand to be 

in the range [−1, 1]. The Arcsine class must be allowed to implement its own version 

of the checkPreconditionsImpl() function, which should call UnaryCommand’s 

checkPreconditionsImpl() before performing its own precondition check.

For completeness, let’s examine the implementation of the three overridden 

functions from Command. Checking the precondition is trivial; we ensure at least one 

element is on the stack. If not, an exception is thrown:

void UnaryCommand::checkPreconditionsImpl() const

{

  if( Stack::Instance().size() < 1 )

    throw Exception{"Stack must have at least one element"};

}

The executeImpl() command is also quite straightforward:

void UnaryCommand::executeImpl()

 {

   top_ = Stack::Instance().pop(true);

   Stack::Instance().push( unaryOperation(top_) );

 }

The top element is popped from the stack and stored in the UnaryCommand’s state  

for the purpose of undo. Remember, because we have already checked the  

precondition, we can be assured that unaryOperation() will complete without an error. 

As previously stated, commands with special preconditions will still need to implement 

checkPreconditionsImpl(), but they can at least delegate the unary precondition check 

upward to UnaryCommand’s checkPreconditionsImpl() function. In one fell swoop, we 

then dispatch the unary function operation to a further derived class and push its result 

back onto the stack.

The only peculiarity in UnaryCommand’s executeImpl() function is the boolean 

argument to the stack’s pop command. This boolean optionally suppresses the emission 

of a stack changed event. Because we know that the following push command to the 

stack will immediately alter the stack again, there is no need to issue two subsequent 

stack changed events. The suppression of this event permits the command implementer 

to lump the action of the command into one user apparent event. Although this boolean 

argument to Stack’s pop() was not part of the original design, this functionality can be 

added to the Stack class now as a convenience. Remember, design is iterative.

Chapter 4  The Command Dispatcher



96

The final member function to examine is undoImpl():

void UnaryCommand::undoImpl()

{

    Stack::Instance().pop(true);

    Stack::Instance().push(top_);

}

This function also has the expected obvious implementation. The result of the unary 

operation is dropped from the stack, and the previous top element, which was stored in 

the top_ member of the class during the execution of executeImpl(), is restored to the 

stack.

As an example of using the UnaryCommand class, we present a partial implementation 

of the sine command:

class Sine : public UnaryCommand

{

private:

  double unaryOperation(double t) const override { return std::sin(t); }

};

Clearly, the advantage of using the UnaryCommand as a base class instead of the highest-

level Command class is that we have removed the need to implement undoImpl() and 

checkPreconditionsImpl(), and we replaced the implementation of executeImpl() 

with the slightly simpler unaryOperation(). Not only do we need less code overall, but 

because the implementations of undoImpl() and checkPreconditionsImpl() would be 

identical over all unary commands, we reduce code repetition as well, which is always a 

positive.

Binary commands are implemented in an analogous manner to unary commands. 

The only difference is that the function for executing the operation takes two commands 

as operands and correspondingly must store both of these values for undo. The 

complete definition for the BinaryCommand class can be found alongside the Command 

and UnaryCommand classes in the Command.m.cpp file found in the GitHub source code 

repository.
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�Concrete Commands

Defining the aforementioned Command, UnaryCommand, and BinaryCommand classes 

completed the abstract interface for using the command pattern in the calculator. 

Getting these interfaces correct encompasses the lion’s share of the design for 

commands. However, at this point, our calculator is yet to have a single concrete 

command (other than the partial Sine class implementation). This section will finally 

rectify that problem, and the core functionality of our calculator will begin to take shape.

The core commands of the calculator are all defined in the CoreCommands.m.cpp file. 

What are core commands? I have defined the core commands to be the set of commands 

that encompass the functionality distilled from the requirements listed in Chapter 1. A 

unique core command exists for each distinct action the calculator must perform. Why 

did I term these the core commands? They are the core commands because they are 

compiled and linked alongside the calculator and are therefore available immediately 

when the calculator loads. They are, in fact, an intrinsic part of the calculator. This is 

in contrast to plugin commands, which may be optionally loaded by the calculator 

dynamically during runtime. Plugin commands are discussed in detail in Chapter 7.

Interestingly enough, although the Command, UnaryCommand, and BinaryCommand 

classes were defined and exported from the command module, the core commands are 

all contained in the CoreCommands partition of the command dispatcher module. The 

CoreCommands are not exported from the command dispatcher module, except for 

testing. This design is justified because unlike the abstract command classes, the core 

commands, by definition, are those commands directly built into pdCalc, and the usage 

of these classes is entirely within the command dispatcher module itself.

While one might suspect that we now need to perform an analysis to determine the 

core commands, it turns out that this analysis has already been done. Specifically, the 

core commands were defined by the actions described in the use cases from Chapter 2. 

The astute reader will even recall that the exception listings in the use cases define each 

command’s precondition. Therefore, with reference to the use cases as necessary, one 

can trivially derive the core commands. For convenience, they are all listed in Table 4-1.

Chapter 4  The Command Dispatcher



98

In comparing the aforementioned list of core commands to the use cases from 

Chapter 2, one notes the conspicuous absence of undo and redo as commands even 

though they are both actions the user can request the calculator to perform. These two 

commands are special because they act on other commands in the system. For this 

reason, they are not implemented as commands in the command pattern sense. Instead, 

they are handled intrinsically by the yet-to-be-discussed CommandManager, which is 

the class responsible for requesting commands, executing commands, and requesting 

undo and redo actions. The undo and redo actions (as opposed to the undo and redo 

operations defined by each command) will be discussed in detail in Section 4.4.

The implementation of each core command, including the checking of 

preconditions, the forward operation, and the undo implementation, is relatively 

straightforward. Most of the command classes can be implemented in about 20 lines 

of code. The interested reader is referred to the repository source code if they wish to 

examine the details.

�An Alternative to Deep Command Hierarchies

Creating a separate Command class for each operation is a very classical way of 

implementing the command pattern. Modern C++, however, gives us a very compelling 

alternative that enables us to flatten the hierarchy. Specifically, we can use lambda 

expressions (see sidebar) to encapsulate operations instead of creating additional 

derived classes and then use the standard function class (see sidebar) to store 

Table 4-1.  The core commands listed by their immediate abstract base class

Command UnaryCommand BinaryCommand

EnterCommand Sine Add

SwapTopOfStack Cosine Subtract

DropTopOfStack Tangent Multiply

Duplicate Arcsine Divide

ClearStack Arccosine Power

Arctangent Root

Negate
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these operations in a class at the UnaryCommand or BinaryCommand level. To make the 

discussion concrete, let’s consider an alternative partial design to the BinaryCommand 

class:

class BinaryCommandAlternative final : public Command

{

  using BinaryCommandOp = double(double, double);

public:

  BinaryCommandAlternative(string_view help,

    function<BinaryCommandOp> f);

private:

  void checkPreconditionsImpl() const override;

  const char* helpMessageImpl() const override;

  void executeImpl() override;

  void undoImpl() override;

  double top_;

  double next_;

  string helpMsg_;

  function<BinaryCommandOp> command_;

};

Now, instead of an abstract BinaryCommand that implements executeImpl() by 

deferral to a binaryOperation() virtual function, we declare a concrete and final 

(see sidebar) class that accepts a callable target and implements executeImpl() by 

invoking this target. In fact, the only material difference between BinaryCommand 

and BinaryCommandAlternative is a subtle difference in the implementation of the 

executeImpl() command:

void BinaryCommandAlternative::executeImpl()

{

  top_ = Stack::Instance().pop(true);

  next_ = Stack::Instance().pop(true);

  // invoke callable target instead of virtual dispatch:

  Stack::Instance().push( command_(next_, top_) );

}
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Now, as an example, instead of declaring a Multiply class and instantiating a Multiply 

object:

auto mult = new Multiply;

we create a BinaryCommandAlternative capable of multiplication:

auto mult = new BinaryCommandAlternative{ "help msg",

  [](double d, double f){ return d * f; } };

For completeness, we mention that because no classes further derive from 

BinaryCommandAlternative, we must handle help messages directly in the constructor 

rather than in a derived class. Additionally, as implemented, BinaryCommandAlternative 

only handles the binary precondition. However, additional preconditions could be 

handled in an analogous fashion to the handling of the binary operation. That is, the 

constructor could accept and store a lambda to execute the precondition test after the 

test for two stack arguments in checkPreconditionsImpl().

Obviously, unary commands could be handled similarly to binary commands 

through the creation of a UnaryCommandAlternative class. With enough templates, 

I’m quite certain you could even unify binary and unary commands into one class. Be 

forewarned, though. Too much cleverness, while impressive at the water cooler, does not 

usually lead to maintainable code. Keeping separate classes for binary commands and 

unary commands in this flattened command hierarchy probably strikes an appropriate 

balance between terseness and understandability.

The implementation difference between BinaryCommand’s executeImpl() and 

BinaryCommandAlternative’s executeImpl() is fairly small. However, we should not 

understate the magnitude of this change. The end result is a significant design difference 

in the implementation of the command pattern. Is one better than the other in the general 

case? I do not think such a statement can be made unequivocally; each design has trade-

offs. The BinaryCommand strategy is the classic implementation of the command pattern, 

and most experienced developers will recognize it as such. The source code is very easy 

to read, maintain, and test. For every command, exactly one class is created that performs 

exactly one operation. The BinaryCommandAlternative, on the other hand, is very concise. 

Rather than having n classes for n operations, only one class exists, and each operation is 

defined by a lambda in the constructor. If paucity of code is your objective, this alternative 

style is hard to beat. However, because lambdas are, by definition, anonymous objects, 

some clarity is lost by not naming each binary operation in the system.
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Which strategy is better for pdCalc, the deep command hierarchy or the shallow 

command hierarchy? Personally, I prefer the deep command hierarchy because of 

the clarity that naming each object brings. However, for such simple operations, like 

addition and subtraction, I think one could make a good argument that the reduced 

line count improves clarity more than what is lost through anonymity. Because of my 

personal preference, I implemented most of the commands using the deep hierarchy 

and the BinaryCommand class. Nonetheless, I did implement multiplication via the 

BinaryCommandAlternative to illustrate the implementation in practice. In a production 

system, I would highly recommend choosing one strategy or the other. Implementing 

both patterns in the same system is certainly more confusing than adopting one, even if 

the one chosen is deemed suboptimal.

MODERN C++ DESIGN NOTE: LAMBDAS, STANDARD FUNCTION, AND THE FINAL 
KEYWORD

Lambdas, standard function, and the final keyword are actually three independent 

modern C++ concepts. We’ll therefore address them separately.

Lambdas:

Lambdas (more formally, lambda expressions) can be thought of as anonymous function 

objects. The easiest way to reason about lambdas is to consider their function object 

equivalent. The syntax for defining a lambda is given by the following:

[capture-list](argument-list){function-body}

The preceding lambda syntax identically equates to a function object that stores the  

capture-list as member variables via a constructor and provides an operator() const 

member function with arguments provided by argument-list and a function body provided by 

function-body. The return type of the operator() is generally deduced from the function 

body, but it can be manually specified using the alternative function return type syntax  

(i.e., -> ret between the argument list and the function body), if desired. The type of the 

parameters to argument-list can either be specified or automatically deduced using auto. 

When the argument-list is automatically deduced, the function object equivalent to this  

generic lambda has a templated operator().
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Given the equivalence between a lambda expression and a function object, lambdas do 

not actually provide new functionality to C++. Anything that can be done in C++11 with a 

lambda can be done in C++03 with a different syntax. What lambdas do provide, however, 

is a compelling, concise syntax for the declaration of inline, anonymous functions. Two 

very common use cases for lambdas are as predicates for STL algorithms and targets for 

asynchronous tasks. Some have even argued that the lambda syntax is so compelling that 

there is no longer a need to write for loops in high-level code since they can be replaced with 

a lambda and an algorithm. Personally, I find this point of view too extreme.

In the alternative design to binary commands, we saw yet another use for lambdas. They can 

be stored in objects and then called on demand to provide different options for implementing 

algorithms. In some respects, this paradigm encodes a microapplication of the strategy pattern. 

To avoid confusion with the command pattern, I specifically did not introduce the strategy 

pattern in the main text. The interested reader is referred to Gamma et al. [11] for details.

Standard function:

The function class is part of the C++ standard library. This class provides a generic wrapper 

around any callable target, converting this callable target into a function object. Essentially, any 

C++ construct that can be called like a function is a callable target. This includes functions, 

lambdas, and member functions.

Standard function provides two very useful features. First, it provides a generic facility 

for interfacing with any callable target. That is, in template programming, storing a callable 

target in a function object unifies the calling semantics on the target independent of the 

underlying type. Second, function enables the storage of otherwise difficult-to-store types, 

like lambda expressions. In the design of the BinaryCommandAlternative, we made use 

of the function class to store lambdas to implement small algorithms to overlay the strategy 

pattern onto the command pattern. Although not actually utilized in pdCalc, the generic nature 

of the function class actually enables the BinaryCommandAlternative constructor to 

accept callable targets other than lambdas.

The final keyword:

The final keyword, introduced in C++11, enables a class designer to declare either that a 

class cannot be inherited from or a virtual function may not be further overridden. For those 

programmers coming from either C# or Java, you’ll know that C++ is late to the game in 

finally (pun intended) adding this facility.
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Before C++11, nasty hacks needed to be used to prevent further derivation of a class. Beginning 

with C++11, the final keyword enables the compiler to enforce this constraint. Prior to 

C++11, many C++ designers argued that the final keyword was unnecessary. A designer 

wanting a class to be noninheritable could just make the destructor nonvirtual, thereby implying 

that deriving from this class was outside the designer’s intent. Anyone who has seen code 

inheriting from STL containers will know how well developers tend to follow intent not enforced 

by the compiler. How often have you heard a fellow developer say, “Sure, that’s a bad idea, 

in general, but, don’t worry, it’s fine in my special case.” This oft uttered comment is almost 

inevitably followed by a week-long debugging session to track down obscure bugs.

Why might you want to prevent inheriting from a class or overriding a previously declared virtual 

function? Likely, because you have a situation where inheritance, while being well defined 

by the language, simply makes no sense, logically. A concrete example of this is pdCalc’s 

BinaryCommandAlternative class. While you could attempt to derive from it and override the 

executeImpl() member function (i.e., without the final keyword in place), the intent of the 

class is to terminate the hierarchy and provide the binary operation via a callable target. Inheriting 

from BinaryCommandAlternative is outside the scope of its design. Preventing derivation 

is therefore likely to prevent subtle semantic errors. Earlier in this chapter, when introducing the 

UnaryCommand class, we saw a situation where deriving from a class while simultaneously 

prohibiting the overriding of a subset of its virtual functions enforced the designer’s intended usage.

4.3  �The Command Factory
Our calculator now has all of the commands required to meet its requirements. However, 

we have not yet defined the infrastructure necessary for storing commands and 

subsequently accessing them on demand. In this section, we’ll explore several design 

strategies for storing and retrieving commands.

4.3.1  �The CommandFactory Class
At first glance, instantiating a new command seems like a trivial problem to solve. For 

example, if a user requests the addition of two numbers, the following code will perform 

this function:

Command* cmd = new Add;

cmd->execute();
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Great, problem solved, right? Not really. How is this code called? Where does this code 

appear? What happens if new core commands are added (i.e., requirements change)? 

What if new commands are added dynamically (as in plugins)? What seems like an easy 

problem to solve is actually more complex than initially expected. Let’s explore possible 

design alternatives by answering the preceding questions.

First, we ask the question of how the code is called. Part of the calculator’s 

requirements is to have both a command line interface (CLI) and a graphical user 

interface (GUI). Clearly, the request to initialize a command will derive somewhere in 

the user interface in response to a user’s action. Let’s consider how the user interface 

would handle subtraction. Suppose that the GUI has a subtraction button, and when this 

button is clicked, a function is called to initialize and execute the subtraction command 

(we’ll ignore undo, momentarily). Now consider the CLI. When the subtraction token 

is recognized, a similar function is called. At first, one might expect that we could call 

the same function, provided it existed in the business logic layer instead of in the user 

interface layer. However, the mechanism for GUI callbacks makes this impossible 

because it would force an undesired dependency in the business logic layer on the 

GUI’s widget library (e.g., in Qt, a button callback is a slot in a class, which requires the 

callback’s class to be a Q_OBJECT). Alternatively, the GUI could deploy double indirection 

to dispatch each command (each button click would call a function which would call a 

function in the business logic layer). This scenario seems both inelegant and inefficient.

While the preceding strategy appears rather cumbersome, this initialization scheme 

has a structural deficit much deeper than inconvenience. In the model-view-controller 

architecture we have adopted for pdCalc, the views are not permitted direct access to the 

controller. Since the commands rightly belong to the controller, direct initialization of 

commands by the UI violates our foundational architecture.

How do we solve this new problem? Recall from Table 2-2 that the command 

dispatcher’s only public interface is the event handling function commandEntered(const 

string&). This realization actually answers the first two questions we originally posed: 

How is the initialization and execution code called and where does it reside? This code 

must be triggered indirectly via an event from the UI to the command dispatcher with 

the specific command encoded via a string. The code itself must reside in the command 

dispatcher. Note that this interface has the additional benefit of removing duplication 

between the CLI and the GUI in creating new commands. Now, both user interfaces 

can simply create commands by raising the commandEntered event and specifying the 

command by string. We’ll see how each user interface implements raising this event in 

Chapters 5 and 6, respectively.
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From the aforementioned analysis, we are motivated to add a new class to the 

command dispatcher with the responsibility of owning and allocating commands. We’ll 

call this class the CommandFactory. For the moment, we’ll assume that another part of the 

command dispatcher (the CommandInterpreter class) receives the commandEntered() 

event and requests the appropriate command from the CommandFactory (via 

commandEntered()’s string argument), and yet another component of the command 

dispatcher (the CommandManager class) subsequently executes the command 

(and handles undo and redo). That is, we have decoupled the initialization and 

storage of commands from their dispatch and execution. The CommandManager and 

CommandInterpreter classes are the subjects of upcoming sections. For now, we’ll focus 

on command storage, initialization, and retrieval.

Our task now is to implement a function capable of instantiating any class derived 

from the Command class given only a string argument indicating its specific type. As one 

might expect, dissociating object creation from type is a common occurrence in design. 

Any such construct that provides this abstraction is generally known as a factory. Here, 

we introduce a particular embodiment, the factory function design pattern.

Before progressing, I should point out the semantic difference between a factory 

function and the factory method pattern, as defined by the Gang of Four [11]. As 

previously mentioned, a factory, generically, is a mechanism for separating the selection 

of the specific derived class in a hierarchy from the point of logical instantiation. 

Whereas the factory method pattern implements a factory via a separate class hierarchy, 

a factory function is simply a single function interface that implements the factory 

concept without a class hierarchy.

Typically, a factory function is implemented by calling a function that takes a flag 

(an integer, an enumeration, a string, etc.) to delimit the specialization of a hierarchy 

and returns a base class pointer. Let’s examine an artificial example. Suppose we 

have a hierarchy of Shapes with the derived classes Circle, Triangle, and Rectangle. 

Furthermore, suppose we have defined the following enumerated class:

enum class ShapeType {Circle, Triangle, Rectangle};

The following factory function could be used to create shapes:

unique_ptr<Shape> shapeFactory(ShapeType t)

{

  switch(t)
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  {

  case ShapeType::Circle:

    return make_unique<Circle>();

  case ShapeType::Triangle:

    return make_unique<Triangle>();

  case ShapeType::Rectangle:

    return make_unique<Rectangle>();

  }

}

A Circle could be created by the following function call:

auto s = shapeFactory(ShapeType::Circle);

Why is the preceding construction anymore useful than typing

auto s = make_unique<Circle>();

Truthfully, given the similar compile time dependency, it’s not. Instead, however, 

consider a factory function that accepts a string argument instead of an enumerated 

type (replacing the switch statement with a series of if statements). We can now 

construct a Circle with the following code:

string t = "circle";

auto s = shapeFactory(t);

The aforementioned is a much more useful construct than direct instantiation using a 

class name or enumerated type because discovery of the value of t can be deferred to 

runtime. For example, typical usages of the factory function are for instantiating specific 

derived classes whose types are discovered from configuration files, input files, or 

dynamic user interactions (i.e., via a UI).

Returning to pdCalc, we wish to design a class, the CommandFactory, that instantiates 

a specific Command given its string identifier as obtained from the event data generated 

from a user interaction. We therefore begin the interface for our CommandFactory class 

with a single factory function that returns a Command given a string argument:

class CommandFactory

{

public:
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  unique_ptr<Command> allocateCommand(const string&) const;

};

The interface employs a smart pointer return type to make explicit that the caller owns 

the memory for the newly constructed command.

Let’s now consider what an implementation for allocateCommand() might look like. 

This exercise will assist us in modifying the design for more flexibility.

unique_ptr<Command> CommandFactory::allocateCommand(const string& c)

const

{

  if(c == "+") return make_unique<Add>();

  else if(c == "-") return make_unique<Subtract>();

  // ...all known commands...

  else return nullptr;

}

The preceding interface is simple and effective, but it is limited by requiring a priori 

knowledge of every command in the system. In general, such a design would be 

highly undesirable and inconvenient for several reasons. First, adding a new core 

command to the system would require modifying the factory’s initialization function. 

Second, deploying runtime plugin commands would require a completely different 

implementation. Third, this strategy creates unwanted coupling between the 

instantiation of specific commands and their storage. Instead, we would prefer a design 

where the CommandFactory relies only on the abstract interface defined by the Command 

base class.

The preceding problem is solved by application of a simple pattern known as the 

prototype pattern [11]. The prototype pattern is a creational pattern where a prototype 

object is stored, and new objects of this type are created simply by copying the 

prototype. Now, consider a design that treats our CommandFactory as merely a container 

of command prototypes. Furthermore, let the prototypes all be stored by Command 

pointer, say, in a hash table, using a string as the key (maybe the same string raised in 

the commandEntered() event). Then, new commands could be added (or removed) 
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dynamically by adding (or removing) a new prototype command. To implement this 

strategy, we make the following additions to our CommandFactory class:

class CommandFactory

{

public:

  unique_ptr<Command> allocateCommand(const string&) const;

  void registerCommand(const string& name, unique_ptr<Command> c);

private:

  using Factory = unordered_map<string, unique_ptr<Command>>;

  Factory factory_;

};

The implementation for registering a command is quite simple:

void CommandFactory::registerCommand(const string& name,

unique_ptr<Command> c)

{

  if( factory_.contains(name) )

    // handle duplicate command error

  else

    factory_.emplace( name, std::move(c) );

}

Here, we check whether or not the command is already in the factory. If it is, then 

we handle the error. If not, then we move the command argument into the factory, 

where the command becomes the prototype for the command name. Note that the 

use of unique_ptr indicates that registering a command transfers ownership of this 

prototype to the command factory. In practice, the core commands are all registered via 

a function in the CommandFactory.m.cpp file, and a similar function exists inside each 

plugin to register the plugin commands (we’ll see this interface when we examine the 

construction of plugins in Chapter 7). These function are called during initialization of 

the calculator and during plugin initialization, respectively. Optionally, the command 

factory can be augmented with a deregister command with the obvious implementation.
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Using our new design, we can rewrite the allocateCommand() function as follows:

unique_ptr<Command> CommandFactory::allocateCommand(const string& name)

const

{

  if( factory_.contains(name) )

  {

    const auto& command = factory_.find(name)->second;

    return unique_ptr<Command>( command->clone() );

  }

  else return nullptr;

}

Now, if the command is found in the factory, a copy of the prototype is returned.  

If the command is not found, a nullptr is returned (alternatively, an exception could 

be thrown). The copy of the prototype is returned in a unique_ptr indicating that the 

caller now owns this copy of the command. Note the use of the clone() function from 

the Command class. The clone function was originally added to the Command class with 

the promise of future justification. As is now evident, we require the clone() function 

in order to copy Commands polymorphically for our implementation of the prototype 

pattern. Of course, had we not had the foresight to implement a cloning function for all 

commands at the time that the Command class was designed, it could easily be added now. 

Remember, you won’t get the design perfect on the first pass, so get used to the idea of 

iterative design.

Essentially, registerCommand() and allocateCommand() embody the minimally 

complete interface for the CommandFactory class. However, if you examine the included 

source code for this class, you will see some differences. First, additional functions 

were added to the interface. The additional functions are mostly convenience and 

syntactic sugar. Second, I used an alias, CommandPtr, instead of directly using unique_

ptr<Command>. For the purposes of this chapter, just think of CommandPtr as being 

defined by the following using statement:

using CommandPtr = std::unique_ptr<Command>;

The real alias, which can be found in Command.m.cpp, is slightly more complicated. 

Additionally, I used a function MakeCommandPtr() rather than the unique_ptr’s 

constructor to create CommandPtrs. The reasons for these differences will be explained in 

detail in Chapter 7.
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Finally, the only other part of the interface from the repository code not already 

discussed that impacts the design is the choice to make the CommandFactory a singleton. 

The reason for this decision is simple. Regardless of how many different command 

interpreters exist in the system (interestingly enough, we’ll eventually see a case for 

having multiple command interpreters), the prototypes for functions never change. 

Therefore, making the CommandFactory a singleton centralizes the storage, allocation, 

and retrieval of all commands for the calculator.

MODERN C++ DESIGN NOTE: UNIFORM INITIALIZATION

You might have noticed that I routinely use curly braces for initialization. For developers who have 

been programming in C++ for a long time, the use of curly braces to initialize a class (i.e., call its 

constructor) may appear odd. While we are accustomed to a list syntax for initializing arrays:

  int a[] = { 1, 2, 3 };

using curly braces to initialize classes is a new feature in C++11. While parentheses may 

still be used for calling constructors, the new syntax using curly braces, called uniform 

initialization, is the preferred syntax for modern C++. While the two initialization mechanisms 

functionally perform the same task, the new syntax has three advantages:

	1.	 Uniform initialization is nonnarrowing:

class A { A(int a); };

A a(7.8); // ok, truncates

A a{7.8}; // error, narrows

	2.	 Uniform initialization (combined with initializer lists) permits initializing user-

defined types with lists:

vector<double> v{ 1.1, 1.2, 1.3 };  

// valid since C++11; initializes vector with 3 doubles

	3.	 Uniform initialization is never mistakenly parsed as a function:

struct B { B(); void foo(); };

B b(); // Are you declaring a function that returns a B?

b.foo(); // error, requesting foo() in non-class type b

B b2{}; // ok, default construction

b2.foo(); // ok, call B::foo()
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There is only one big caveat when using uniform initialization: a list constructor is always 

called before any other constructor. The canonical example comes from the STL vector 

class, which has an initializer list constructor and a separate constructor accepting an integer 

to define the vector’s size. Because initializer list constructors are called before any other 

constructor if curly braces are used, we have the following different behaviors:

  vector<int> v(3); // vector, size 3, all elements initialized to 0

  vector<int> v{3}; // vector with 1 element initialized to 3

Fortunately, the preceding situation does not arise often. However, when it does, you must 

understand the difference between uniform initialization and function style initialization.

From a design perspective, the main advantage of uniform initialization is that user-defined 

types may be designed to accept lists of identically typed values for construction. Therefore, 

containers, such as vectors, may be statically initialized with a list of values rather than 

default initialized followed by successive assignment. This modern C++ feature enables 

initialization of derived types to use the same syntax for initialization as built in array types, a 

syntactical feature missing in C++03.

4.3.2  �Registering Core Commands
We have now defined the core commands of the calculator and a class for loading and 

serving the commands on demand. However, we have not discussed a method for 

loading the core commands into the CommandFactory. In order to function properly, 

the loading of all the core commands must only be performed once, and it must be 

performed before the calculator is used. Essentially, this defines an initialization 

requirement for the command dispatcher module. A finalization function is not needed 

since deregistering the core commands when exiting the program is unnecessary.

The best place to call an initialization operation for the command dispatcher 

is in the main() function of the calculator. Therefore, we simply create a global 

RegisterCoreCommands() function, implement it in the CommandFactory.m.cpp 

file, ensure the function is exported from the module, and call it from main(). The 

reason to create a global function instead of registering the core commands in the 

CommandFactory’s constructor is to avoid coupling the CommandFactory class with the 

derived classes of the command hierarchy. An alternative would have been to define the 

RegisterCoreCommands() in the CoreCommands.m.cpp file, but this would have required 

additional interface files, implementation files, and module exports. The registration 
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function, of course, could have been called something like InitCommandDispatcher(), 

but I prefer a name that more specifically describes the functionality.

Implicitly, we have just extended the interface to the command dispatcher module 

(originally defined in Table 2-2), albeit fairly trivially. Should we have been able to 

anticipate this part of the interface in advance? Probably not. This interface update 

was necessitated by a design decision at a level significantly more detailed than the 

high-level decomposition of Chapter 2. I find slightly modifying a key interface during 

development to be an acceptable way of designing a program. A design strategy 

requiring immutability is simply too rigid to be practical. However, note that easy 

acceptance of a key interface modification during development is in contrast with the 

acceptance of a key interface modification after release, a decision that should only be 

made after significant consideration for how the change will affect clients already using 

your code.

4.4  �The Command Manager
Having designed the command infrastructure and created a factory for the storage, 

initialization, and retrieval of commands in the system, we are now ready to design 

a class with responsibility for executing commands on demand and managing undo 

and redo. This class is called the CommandManager. Essentially, it manages the lifetime 

of commands by calling the execute() function on each command and subsequently 

retaining each command in a manner appropriate for implementing unlimited undo 

and redo. We’ll start by defining the interface for the CommandManager and conclude the 

section by discussing the strategy for implementing unlimited undo and redo.

4.4.1  �The Interface
The interface for the CommandManager is remarkably simple and straightforward. The 

CommandManager needs an interface for accepting commands to be executed, for 

undoing commands, and for redoing commands. Optionally, one could also include an 

interface for querying the available number of undo and redo operations, which might 

be important for the implementation of a GUI (e.g., for redo size equals zero, gray out the 
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redo button). Once a command is passed to the CommandManager, the CommandManager 

owns the lifetime of the command. Therefore, the interface for the CommandManager 

should enforce owning semantics. Combining, we have the following complete interface 

for the CommandManager:

class CommandManager

{

public:

  size_t getUndoSize() const;

  size_t getRedoSize() const;

  void executeCommand(unique_ptr<Command> c);

  void undo();

  void redo();

};

In the actual code listed in CommandManager.m.cpp, the interface additionally defines an 

enum class for selecting the undo/redo implementation strategy during construction. 

These strategies are discussed in the following section. I’ve included this option for 

illustrative purposes only. A production code would simply implement one undo/redo 

strategy and not make the underlying data structure customizable at construction.

4.4.2  �Implementing Undo and Redo
To implement unlimited undo and redo, we must have a dynamically growable data 

structure capable of storing and revisiting commands in the order they were executed. 

Although one could contrive many different data structures to satisfy this requirement, 

we’ll examine two equally good strategies. Both strategies have been implemented for 

the calculator and can be seen in the CommandManager.m.cpp file.

Chapter 4  The Command Dispatcher



114

Consider the data structure in Figure 4-3, which I have termed the list strategy. After 

a command is executed, it is added to a list (the implementation could be a list, vector, 

or other suitable ordered container), and a pointer (or index) is updated to point to the 

last command executed. Whenever undo is called, the command currently pointed to is 

undone, and the pointer moves to the left (the direction of earlier commands). When redo 

is called, the command pointer moves to the right (the direction of later commands), and 

the newly pointed to command is executed. Boundary conditions exist when the current 

command pointer reaches either the far left (no more commands exist to be undone) or far 

right (no more commands exist to be redone). These boundary conditions can be handled 

either by disabling the mechanism that enables the user to call the command (e.g., gray 

out the undo or redo button) or by simply ignoring an undo or redo command that would 

cause the pointer to overrun the boundary. Of course, every time a new command is 

executed, the entire list to the right of the current command pointer must be flushed before 

the new command is added to the undo/redo list. This flushing of the list is necessary to 

prevent the undo/redo list from becoming a tree with multiple redo branches.

As an alternative, consider the data structure in Figure 4-4, which I have termed 

the stack strategy. Instead of maintaining a list of commands in the order in which they 

were executed, we maintain two stacks: one for the undo commands and one for the 

redo commands. After a new command is executed, it is pushed onto the undo stack. 

Commands are undone by popping the top entry from the undo stack, undoing the 

command, and pushing the command onto the redo stack. Commands are redone by 

popping the top entry from the redo stack, executing the command, and pushing the 

command onto the undo stack. Boundary conditions exist and are trivially identified by 

the sizes of the stacks. Executing a new command requires flushing the redo stack.

Figure 4-3.  The undo/redo list strategy
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Practically, choosing between implementing undo and redo via either the stack 

or list strategy is largely a personal preference. The list strategy requires only one data 

container and less data movement. However, the stack strategy is slightly easier to 

implement because it requires no indexing or pointer shifting. That said, both strategies 

are fairly easy to implement and require very little code. Once you have implemented 

and tested either strategy, the CommandManager can easily be reused in future projects 

requiring undo and redo functionality, provided commands are implemented via the 

command pattern. For even more generality, the CommandManager could be templated 

on the abstract command class. For simplicity, I chose to implement the included 

CommandManager specifically for the abstract Command class previously discussed.

4.5  �The Command Interpreter
The final component of the command dispatcher module is the CommandInterpreter 

class. As was previously stated, the CommandInterpreter class serves two primary roles. 

The first role is to serve as the primary interface to the command dispatcher module. 

The second role is to interpret each command, request the appropriate command from 

the CommandFactory, and pass each command to the CommandManager for execution. We 

address these two roles sequentially.

Figure 4-4.  The undo/redo stack strategy
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4.5.1  �The Interface
For all the complications in the implementation of the command dispatcher module, 

the interface to the CommandInterpreter class is remarkably simple (as are most good 

interfaces). As was discussed in Chapter 2, the command dispatcher module’s interface 

consists entirely of a single function used to execute a command; the command itself is 

specified by a string argument. This function is, naturally, the executeCommand() event 

handler previously discussed. Thus, the CommandInterpreter class’s interface is given by 

the following:

class CommandInterpreter

{

  class CommandInterpreterImpl;

public:

  CommandInterpreter(UserInterface& ui);

  void executeCommand(const string& command);

private:

  unique_ptr<CommandInterpreterImpl> pimpl_;

};

Recall that the fundamental architecture of the calculator is based on the model-

view-controller pattern and that the CommandInterpreter, as a component of the 

controller, is permitted to have direct access to both the model (stack) and view (user 

interface). Thus, the CommandInterpreter’s constructor takes a reference to an abstract 

UserInterface class, the details of which are discussed in Chapter 5. A direct reference 

to the stack is unneeded since the stack was implemented as a singleton. The actual 

implementation of the CommandInterpreter is deferred to a private implementation 

class, CommandInterpreterImpl. We’ll discuss this pattern of using a pointer to an 

implementation class, known as the pimpl idiom, in the next subsection.

An alternative design to the one previously mentioned would be to make the 

CommandInterpreter class an observer, directly. As discussed in Chapter 3, I prefer 

designs that use intermediary event observers. In Chapter 5, we’ll discuss the design and 

implementation of a CommandIssuedObserver proxy class to broker events between user 

interfaces and the CommandInterpreter class. Although the CommandIssuedObserver is 

described alongside the user interface, it actually belongs to the command dispatcher 

module.
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�The Pimpl Idiom

In the first version of this book, I extensively used the pimpl pattern in pdCalc’s 

implementation. However, when declaring classes in C++ module interfaces instead of 

in header files, I find that I use the pimpl pattern significantly less frequently. Despite my 

decreased usage of the pattern, because of its prominence in C++ code, the pimpl idiom 

is still worth discussing. Therefore, we’ll describe the pimpl pattern itself, why it was 

historically important, and where the pimpl pattern still makes sense in the presence of 

modules.

If you look at enough C++ code, you will eventually find many classes with a 

curious single member variable often named pimpl_ (or something similar) abstracting 

implementation details (a C++ specialization of the bridge pattern). For those unfamiliar 

with the term pimpl, it is shorthand notation for pointer to implementation. In practice, 

instead of declaring all of a class’s implementation in that class’s declaration, you instead 

forward declare a pointer to a “hidden” implementation class and fully declare and define 

this “hidden” class in a separate implementation file. Containing and using an incomplete 

type (the pimpl variable) is permissible provided the pimpl variable is only dereferenced 

in the source file containing its complete declaration. For example, consider class A 

in the following with a public interface consisting of functions f() and g(); a private 

implementation with functions u(), v(), and w(); and private data v_ and m_:

class A

{

public:

  void f();

  void g();

private:

  void u();

  void v();

  void w();

  vector<double> v_;

  map<string, int> m_;

};

Chapter 4  The Command Dispatcher



118

Instead of visually exposing the private interface of A to consumers of this class (in a 

header file or module interface unit), using the pimpl idiom, we write

class A

{

  class AImpl;

public:

  void f();

  void g();

private:

  unique_ptr<AImpl> pimpl_;

};

where u, v, w, v_, and m_ are now all be a part of class AImpl, which would be both 

declared and defined only in the implementation file associated with class A. To ensure 

AImpl cannot be accessed by any other classes, we declare this implementation class 

to be a private class wholly defined within A. Sutter and Alexandrescu [34] give a brief 

explanation of the advantages of the pimpl idiom. Assuming the use of a header/

implementation file pair (as opposed to a module), one of the main advantages is that by 

moving the private interface of class A from A.h to A.cpp, we no longer need to recompile 

any code consuming class A when only A’s private interface changes. For large-scale 

software projects, the time savings during compilation can be significant.

For code that has even a moderately complex private interface, I tend to use the 

pimpl idiom regardless of its implications on compile times. The exception to my 

general rule is for code that is computationally intensive (i.e., code where the indirection 

overhead of the pimpl is significant). Assuming a legacy header implementation, in 

addition to the compilation benefits of not having to recompile files including A.h 

when only class AImpl changes, I find that the pimpl idiom adds significant clarity to 

the code. This clarity derives from the ability to hide helper functions and classes in 

implementation files rather than listing them in interface files. In this manner, interface 

files truly reflect only the bare essentials of the interface and thus prevent class bloat, 

at least at the visible interface level. For any other programmer simply consuming your 

class, the implementation details are visually hidden and therefore do not distract from 

your hopefully well-documented, limited, public interface. The pimpl idiom truly is the 

epitome of encapsulation.
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�Do Modules Obviate the Pimpl Idiom?

C++20 modules bring several design and implementation benefits to interfaces. Do 

these benefits obviate the need for the pimpl idiom? To answer this question, we need 

to enumerate the reasons the pimpl pattern is used and determine if modules deprecate 

the need for this idiom.

The first reason the pimpl pattern is used is to speed up compilations. In the classical 

header file inclusion model, the pimpl pattern decouples the dependency between 

a class’s private implementation and its public declaration. This decoupling implies 

that translation units dependent on a pimpl-ed class’s header file do not need to be 

recompiled when changes are only made to the private implementation class since those 

changes would appear in a separately compiled source file rather than in the pimpl-ed 

class’s header file. Modules partially solve this problem. To understand why, we’ll need 

to delve briefly into the module compilation model.

Suppose we have a function foo defined in foo.cpp that consumes class A. In the 

header inclusion model, A would be declared in A.h and defined in A.cpp; A.h would 

be included in foo.cpp. The header inclusion model essentially pastes the contents of 

A.h into foo.cpp when foo.cpp is compiled. Therefore, any changes in A.h force the 

recompiling of foo.cpp, which includes the recompilation of the entire contents of A.h 

since it was textually included into foo.cpp. This situation is problematic when A.h is 

large, and this situation is doubly problematic since this recompilation of the contents of 

A.h occurs for every consumer of this class. Of course, any changes in A.cpp do not cause 

the recompilation of its consumers because the consumers of A depend only on A.h, 

not on A.cpp. This compilation dependency is exactly why the pimpl-ing benefits us by 

moving implementation details of A from A.h to A.cpp.

The compilation model for modules is different than the header inclusion model. 

Modules are not textually included into their consumers; instead, they are imported. 

Modules do not require separate header and implementation files, and imports do 

not directly require visibility of declarations. Instead, importing modules relies on 

the compiler creating compiled module interfaces (CMIs), which is, unfortunately, 

a compiler-dependent process. For example, gcc caches CMIs automatically when 

modules are compiled, while clang relies on the build system manually defining a CMI 

precompilation step. Regardless, the module import mechanism provides a distinct 

advantage over the header inclusion model because the CMI is compiled once when 

the module is built, eliminating the need to recompile the definitions in a header file 

each time the header is included. Of course, the preceding explanation of the module’s 
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compilation is slightly simplified, as modules can be split into module definition and 

module implementation files, and CMIs are both compiler version specific and even 

compilation option specific. Nonetheless, modules partially solve the first reason we 

use the pimpl idiom. If class A were defined in a module, ModuleA, instead of in A.h, any 

change to A’s definition would still require recompilation of A’s consumers. However, the 

recompilation of the former content of A.h would be precompiled once into a CMI rather 

than being textually included and recompiled with each consumer. Yes, each consumer 

would still need to be recompiled, but these compiles should be faster. Given ample 

tooling support, it is even possible that recompilation of consumers would be unnecessary 

if the build tool could detect the differences between public and private changes in a CMI.

The second reason the pimpl pattern is used is that the pimpl pattern hides 

implementation names and additional types from consuming compilation units. Why 

does this matter given that implementation details would appear in the private section 

of a class and be inaccessible to consumers? Oddly enough, even though private names 

are restricted from use, they participate in overload resolution. Consider the following 

example:

Listing 4-1.  Visibility versus accessibility

// A.h

class A

{

public:

  void bar(double);

private:

  void bar(int);

};

// foo.cpp

#include "A.h"

void foo()

{

  A a;

  a.bar(7.0); // OK, calls A::bar(double)

  a.bar(7); // error, tries calling inaccessible A::bar(int)

}
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If A::bar(int) had instead been hidden in a private implementation class, the 

erroneous line in the preceding function foo() would have compiled with an implicit 

conversion of the number 7 from an int to a double.

Do modules solve the preceding problem? Again, the answer is only partially. For the 

analogous example given in Listing 4-1 where class A would be refactored into an export 

from a module, the same error would result. However, let’s consider the following even 

simpler example:

// AMod.cpp

export module AMod;

export void bar(double);

void bar(int);

// implementations of bar

// foo.cpp

import AMod;

void foo()

{

  bar(7);

  bar(7.0);

}

The preceding compiles, but only bar(double) is called. That is, while bar(int) is 

human visible, it is not compiler visible. Interestingly enough, bar(int) does remain 

reachable even though it is not visible. Let’s return to our class example and modify the 

pimpl pattern for modules. We can now write

// AMod.cpp

export module AMod;

struct AImpl

{

  void bar(int){}

};
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export class A

{

public:

  void bar(double);

  void baz(int i){impl_.bar(i);}

private:

  AImpl impl_;

};

// foo.cpp

import AMod;

void foo()

{

  A a;

  a.bar(7);

  a.bar(7.0);

  a.baz(7);

}

The preceding example shows that we still must use the pimpl pattern to remove the 

name ambiguity for bar(). However, because modules can hide visibility without 

blocking reachability, we can construct our pimpl without a pointer indirection while 

still leaving AImpl hidden from consumers from an instantiation standpoint. This last 

fact brings us to our next dilemma.

Assuming the client does not have full source code access, the pimpl pattern enables 

us to hide implementation details from human eyes by moving these details from the 

human-readable interface, the header file, into the implementation file delivered to the 

client only as compiled binary code. Do modules permit hiding class implementation 

details from human eyes without resorting to the pimpl idiom? Unfortunately, no. 

Modules provide a language feature for enabling the compiler to hide visibility from 

consuming code, not from humans. While modules can be decomposed into separate 

module interface and module implementation units, the module interface unit must 

be human readable as the CMI cannot be used across compiler versions or settings 

reliably. That is, if a module’s interface must be exportable, the source code for its 

implementation must be distributable. This previous statement extends to the case 
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where we define the implementation details of class A in its own module, AMod.Impl, 

and import AMod.Impl into AMod (without reexporting AMod.Impl). The lack of binary 

portability of the CMI implies that any module interface units imported by AMod must 

also be shipped with the module interface unit of AMod, just like nested header files. 

Additionally, analogous to a header file class declaration, a module interface unit–

exported class declaration must contain sufficient information to instantiate an object. 

Therefore, types must be fully visible (even if not accessible), meaning that to hide code 

from human eyes, we must resort to the implementation of the pimpl pattern that uses 

pointer indirection rather than the more efficient method previously mentioned that 

utilizes class composition. Modules do not solve the human visibility problem solved by 

pimpl-ing private class implementation details.

Finally, my opinion is that the pimpl pattern stylistically simplifies interface code by 

minimizing the overall number of lines of code appearing in the visual representation of 

a class’s client interface. Many may not care about, or even acknowledge, this advantage 

of the pimpl idiom. This stylistic advantage applies to both header files and module 

interface units.

In summary, if you were using the pimpl pattern solely for its compilation efficiency 

benefits, modules, once matured, will likely obviate this usage of the pimpl idiom. 

If you were using the pimpl pattern to avoid collisions, modules may partially solve 

your problem. Finally, if you were using the pimpl idiom to remove implementation 

details from distributed interface source to avoid human visibility or just to clean up 

the interface, then modules do not help at all. The conclusion reached at the end of this 

section is that modules may partially obviate the pimpl idiom depending on your usage. 

While I still use the pimpl pattern, I do find I use it less frequently with modules than I do 

with header files.

4.5.2  �Implementation Details
Typically in this book, we have not focused on the implementation details of classes. 

In this case, though, the implementation of the CommandInterpreterImpl class is 

particularly instructive. The main function of the CommandInterpreterImpl class is 

to implement the function executeCommand(). This function must receive command 

requests, interpret these requests, retrieve commands, request execution of commands, 

and gracefully handle unknown commands. Had we started our decomposition of the 

command dispatcher module from the top-down, trying to implement this function 
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cleanly would have been exceedingly difficult. However, due to our bottom-up approach, 

the implementation of executeCommand() is largely an exercise in gluing together 

existing components. Consider the following implementation, where the manager_ 

object is an instance of the CommandManager class:

 1  void CommandInterpreter::CommandInterpreterImpl::executeCommand(const

 2  string command&)

 3  {

 4    if(double d; isNum(command, d) )

 5      manager_.executeCommand(MakeCommandPtr<EnterNumber>(d));

 6    else if(command == "undo")

 7      manager_.undo();

 8    else if(command == "redo")

 9      manager_.redo();

10    else

11    {

12      if( auto c = CommandFactory::Instance().allocateCommand(command) )

13      {

14        try

15        {

16          manager_.executeCommand( std::move(c) );

17        }

18        catch(Exception& e)

19        {

20          ui_.postMessage( e.what() );

21        }

22      }

23      else

24      {

25        auto t = std::format("Command {} is not a known command", command);

26        ui_.postMessage(t);

27      }

28    }

29

30    return;

31  }
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Lines 4–9 handle special commands. A special command is any command that is 

not entered in the command factory. In the preceding code, this includes entering a new 

number, undo, and redo. If a special command is not encountered, then it is assumed 

that the command can be found in the command factory; command factory requests are 

made on line 12. If nullptr is returned from the command factory, the error is handled 

in lines 25–26. Otherwise, the command is executed by the command manager. Note 

that the execution of commands is handled in a try/catch block. In this manner, we are 

able to trap errors caused by command precondition failures and report these errors 

in the user interface. The CommandManager’s implementation ensures that commands 

failing a precondition are not entered onto the undo stack.

The actual implementation of executeCommand() found in CommandInterpreter.cpp  

differs slightly from the preceding code. First, the actual implementation includes two 

additional special commands. The first of these additional special commands is help. 

The help command can be issued to print a brief explanatory message for all of the 

commands currently in the command factory. While the implementation generically 

prints the help information to the user interface, I only exposed the help command 

in the CLI (i.e., my GUI’s implementation does not have a help button). The second 

special command deals with the handling of stored procedures. Stored procedures are 

explained in Chapter 8. Additionally, I placed the try/catch block in its own function. 

This was done simply to shorten the executeCommand() function and separate the logic 

of command interpretation from command execution.

Depending on your familiarity with the evolution of the language’s syntax since 

C++17, two code statements in the implementation of executeCommand() may or may 

not have been new to you: an initializer in an if statement and the std::format() 

function. We’ll examine these two new features in the following sidebar.

MODERN C++ DESIGN NOTE: IF STATEMENT INITIALIZERS AND STD::FORMAT()

Initialization in if statements was introduced in C++17, and the std::format() function was 

introduced in C++20. Let’s examine both of these new features.

If statement initializers:

Prior to C++17, how often did you find yourself in the following (or similar) situation?

auto i = getAnInt();

if(i % 2 == 0 ) { /* do even things with i */ }

else { /* do odd things with i */}
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How often did you wish you could scope i to the if statement similarly to how you might scope 

a variable to a for loop? In C++17, this dilemma was remedied with the extension of the if 

statement to include an optional clause for initialization. Now, instead, we can write

if(auto i = getAnInt(); i % 2 == 0 ) { /* do even things with i */ }

else { /* do odd things with i */}

Does this feature radically change what you can do with C++? No, but it is convenient, and 

it brings consistency to the scoping and initialization rules for if statements and for loops. An 

analogous feature added initialization to switch statements. What about while loops? No, no 

new syntax was added for while loops. Why not? No new syntax was needed. We’ve always 

been able to express this construct with for loops. That is, we have the following equivalence:

while(auto keepGoing = foo(); keepGoing) //not C++

{ /* do something that updates keepGoing */ }

is the same as

for(auto keepGoing = foo(); keepGoing;)

{ /* do something that updates keepGoing */ }

std::format():

Are you one of the people who never liked the overly verbose syntax of iostream string 

formatting and longed for a type-safe analog to sprintf() for C++? If you were, then 

std::format() will really excite you!

C++20 added a formatting library with several different formatting functions, two of which 

are used in pdCalc: format() and format_to(). The format() function has the following 

logical signature:

template<class... Args>

string format(string_view fmtStr, const Args&... args);

where fmtStr is a formatted string that accepts any number of typed arguments. The 

formatted string is an ordinary string that, by default, replaces any occurrences of {}s with the 

arguments, in order. {}s can either be empty (default formatting) or can contain user-specified 

formatting arguments. The return value of the function is the formatted string with all of the 

{}s replaced by the formatted arguments. As an example:

cout << format("{0} to {1} decimal places: {2:.{1}f}", "pi", 4, 3.1415927);
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produces

pi to four decimal places: 3.1416

In the preceding example, I used numbered arguments to the format specifiers to enable reuse 

of the second argument, the precision value. Additionally, the example demonstrates how an 

argument can either be printed or used as a variable to a format specifier. Trust me when I say 

that the aforementioned only scratches the surface of the standard formatting.

Using format() allows you to format a single string. If you instead need a string builder, you 

can use format_to(). format_to() formats strings using the same syntax as format() 

except, instead of returning a formatted string, format_to() accepts an output iterator as its 

first argument and returns this same output iterator advanced by the formatted string. When 

the output iterator is a back_inserter<string>, then format_to() essentially replaces 

an ostringstream.

I must admit, I am not one of those people who were bothered by the overly verbose syntax 

of the iostream library. However, I have not used an ostream to format text since I started 

using the C++20 formatting library. I guess I actually was bothered by the previous syntax but 

didn’t even know it!

4.6  �Revisiting Earlier Decisions
At this point, we have finished two of the main modules of our calculator: the stack and 

the command dispatcher. Let’s revisit our original design to discuss a significant subtle 

deviation that has arisen.

Recall from Chapter 2 that our original design handled errors by raising events 

in the stack and command dispatcher, and these events were to be handled by the 

user interface. The reason for this decision was for consistency. While the command 

dispatcher has a reference to the user interface, the stack does not. Therefore, we 

decided to simply let both modules notify the user interface of errors via events. The 

astute reader will notice, however, that the command dispatcher, as previously designed, 

never raises error events. Instead, it directly calls the user interface when errors occur. 

Have we not then broken the consistency that was intentionally designed into the 

system? No. Actually, we implicitly redesigned the error handling mechanism of the 

system during the design of the command dispatcher so that no error events are ever 

raised by either the stack or the command dispatcher. Let’s examine why.
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As we just stated, it is obvious from its implementation that the command dispatcher 

does not raise error events, but what happened to stack events? We didn’t change the 

Stack class’s source code, so how did error events get eliminated? In the original design, 

the stack indirectly notified the user interface when errors occurred by raising events. 

The two possible stack error conditions were popping an empty stack and swapping 

the top two elements of an insufficiently sized stack. While designing the commands, I 

realized that if a command triggered either of these error conditions, the user interface 

would be notified, but the command dispatcher would not be (it is not an observer 

of stack events). In either error scenario, a command would have completed, albeit 

unsuccessfully, and been placed erroneously on the undo stack. I then realized that 

either the command dispatcher would have to trap stack errors and prevent erroneous 

placement onto the undo stack, or commands should not be permitted to make stack 

errors. As the final design demonstrates, I chose the easier and cleaner implementation 

of using preconditions before executing commands to prevent stack errors from 

occurring, thus implicitly suppressing stack errors.

The big question is, why didn’t I change the text describing the original design and 

the corresponding code to reflect the change in the error reporting? Simply stated, I 

wanted the reader to see that mistakes do occur. Design is an iterative process, and 

a book trying to teach design by example should embrace that fact rather than hide 

it. Designs should be somewhat fluid (but maybe with a high viscosity). It is much 

better to change a bad design decision early than to stick with it despite encountering 

evidence demonstrating flaws in the original design. The later a bad design is changed, 

the higher the cost will be to fix it, and the more pain the developers will incur while 

trying to implement a mistake. As for changing the code itself, I would have removed 

the superfluous code from the Stack class in a production system when I performed 

the refactor unless the Stack class was being designed for reuse in another program 

that handled errors via events. After all, as a generic design, the mechanism of reporting 

errors by raising events is not flawed. In hindsight, this mechanism was simply not right 

for pdCalc.
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CHAPTER 5

The Command Line 
Interface
This is a very exciting chapter. While command line interfaces (CLI) may not have the 

cachet of modern graphical user interfaces (GUI), especially those of phones, tablets, 

or the Web, the CLI is still a remarkably useful and effective user interface. This chapter 

details the design and implementation of the command line interface for pdCalc. By 

the end of this chapter, we will, for the first time, have a functioning, albeit feature 

incomplete, calculator, a significant milestone in our development.

5.1  �The User Interface Abstraction
While we could design a fully functioning CLI in isolation, we know from our 

requirements that the feature complete calculator must have both a CLI and a 

GUI. Therefore, our overall design will be better served by first considering the 

commonality between these two interfaces and factoring this functionality into a 

common abstraction. Let’s consider two design alternatives to constructing a user 

interface abstraction: a top-down approach and a bottom-up approach.

Designing an abstract interface before considering the concrete types is akin to top-

down design. In terms of a user interface, you first consider the barest essentials to which 

any UI must conform and create an abstract interface based on this minimalist concept. 

Refinement to the interface becomes necessary when the abstract concept misses 

something required to implement a concrete type. Designing an abstract interface after 

considering the concrete types is akin to bottom-up design. Again, in terms of a user 

interface, you first consider the needs of all the concrete types (CLI and GUI, in this 

case), look for the commonality between all types, and then distill the common features 
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into an abstraction. Refinement to the interface becomes necessary when you add a new 

concrete type that requires additional features not considered when the abstraction was 

originally distilled.

Which strategy is better, in general, for creating an abstract interface, top-down 

or bottom-up? As is typical, the answer depends on the particular situation, personal 

comfort, and style. In this particular scenario, we are better served starting from the 

abstraction and working downward toward the concrete types (the top-down approach).

Why? In this instance, the top-down approach is essentially free. The user interface is 

one of pdCalc’s high-level modules, and we already defined the abstract interface for the 

UI module in Chapter 2 when we performed our initial decomposition. Let’s now turn 

the abstract module interface into a practical object-oriented design.

5.1.1  �The Abstract Interface
The point of having an abstract interface for the UI is to enable the rest of the program 

to interact with the user interface without regard to whether the current interface is 

graphical, command line, or something else entirely. Ideally, we will be able to factor the 

abstract interface to the minimum number of functions required to use each concrete 

interface. Any functions sharing an implementation can be defined in the base class, 

while any functions requiring unique implementations based on the concrete type can 

be declared as virtual in the abstract base class and defined in the derived classes.  

The concept is fairly straightforward, but, as usual, the devil is in the details.

Consider the hierarchy depicted in Figure 5-1. Our goal is to design a minimal 

but complete interface, consistent with the Liskov Substitution Principle, for pdCalc’s 

UserInterface class that will work for both the CLI and the GUI. As was previously 

discussed, we already defined a high-level interface for this UI in Chapter 2. Let’s start 

from this predefined interface and refactor as necessary.

Figure 5-1.  A minimal interface hierarchy
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Referring to Table 2-2, we see that the complete interface for the UserInterface class 

consists of two event handling functions, postMessage() and stackChanged(), and one 

UserInterface raised event, commandEntered(). Interestingly, the UserInterface class 

is a publisher, an observer, an abstract user interface class, and the primary component 

of a module interface.

The two event handling functions, postMessage() and stackChanged(), are 

straightforward at the interface level. As we have done with previous observers, we will 

simply add these two functions to the public interface of the UserInterface class and 

create proxy observer classes to broker the communication by the publisher and the 

actual observer. These proxies are discussed in detail in the “User Interface Observers” 

section. Concrete user interfaces must handle the implementations for event handling 

uniquely based on how the individual UI interacts with the user. Hence, postMessage() 

and stackChanged() must both be pure virtual. Because there is no need for the 

UserInterface class to interject during event handling, I chose, for simplicity, to forgo 

the NVI pattern. However, as was discussed in Chapter 4, one could instead use the NVI 

pattern with trivial forwarding nonvirtual interface functions.

The UserInterface class’s role as a publisher is slightly more complicated than 

its role as an observer. As we saw in Chapter 3 when designing the Stack class, the 

Stack implemented the publisher interface rather than substituted as a publisher. We 

therefore concluded that inheritance from the Publisher class should be private. For 

the UserInterface class, the relationship to the Publisher class is similar except the 

UserInterface class itself is not the publisher. The UserInterface class is an abstract 

interface for user interfaces in the system and is inheriting from the Publisher class 

only to enforce the notion that user interfaces must implement the publisher interface 

themselves. Both the CLI and the GUI classes will need to access public functions from 

Publisher (e.g., to raise events). Thus, the protected mode of inheritance is appropriate 

in this instance.

Further, recall from Chapter 3 that in order for the Stack class to implement the 

publisher interface, once we used private inheritance, we needed to hoist the Publisher 

class’s attach() and detach() functions into the Stack’s public interface. The same is 

true here using protected inheritance. The question, however, is, should the hoisting 

occur in the UserInterface class or in its derived classes? To answer this question, we 

need to ask how particular user interfaces will be used by pdCalc. Clearly, either a CLI 

or a GUI is-a UserInterface. Therefore, concrete user interfaces will publicly inherit 

from UserInterface and be expected to obey the LSP. Attaching or detaching events to 
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or from a particular user interface must therefore be able to be accomplished without 

knowing the underlying UI type. Thus, the attach() and detach() functions must be 

visible as part of UserInterface’s public interface. Interestingly, in a rather unique 

implementation of the observer pattern, part of the publisher interface is implemented 

at the UserInterface level, while another part of the publisher interface is implemented 

at the derived class level.

Combining all of the preceding points, we can finally define the UserInterface class:

export module pdCalc.userInterface;

export class UserInterface : protected Publisher

{

public:

  UserInterface();

  virtual ~UserInterface();

  virtual void postMessage(string_view m) = 0;

  virtual void stackChanged() = 0;

  using Publisher::attach;

  using Publisher::detach;

  static string CommandEntered();

};

The CommandEntered() function returns a string that is the name of the command 

entered event. It is needed for attaching or detaching this event and can be given any 

name unique to events in the UserInterface class.

For completeness, we show the final user interface hierarchy in Figure 5-2. The 

class diagram illustrates the relationship between the CLI, the GUI, the abstract 

UserInterface class, and the publisher interface. Remember that the inheritance 

between the UserInterface class and the Publisher class is protected, so a 

UserInterface (or subsequent derived class) cannot be used as a Publisher. As was 

previously stated, however, the intent for the inheritances between the concrete CLI and 

GUI classes and the abstract UserInterface class are public, allowing an instantiation of 

either concrete type to be substituted as a UserInterface.
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5.1.2  �User Interface Events
Defining the UserInterface class does not complete the interface for the UI. Because 

the UserInterface class is an event publisher, we must also define the event data 

class that corresponds to the commandEntered() event. Additionally, defining the 

UserInterface class finally completes a publisher/observer pair, so we are finally ready 

to design and implement event proxy classes to broker events between the user interface 

and both the command dispatcher and the stack.

In Chapter 4, we saw that all commands are delivered to the command dispatcher 

via events. Specifically, the UI raises an event containing a specific command encoded 

as a string argument, the CommandInterpreter receives this event, and the string 

argument is passed to the CommandFactory, where a concrete command is retrieved for 

processing. As far as the command dispatcher is concerned, handling commandEntered() 

events is the same, irrespective of whether the encoded command string derives from 

the CLI or the GUI. Likewise, when the Stack class raises a stackChanged() event, the 

Stack is indifferent to the particular UserInterface that handles this event. We are 

therefore motivated to treat the issuing of commandEntered() events and the handling of 

stackChanged() events uniformly at the UserInterface class level in the user interface 

hierarchy.

We begin by examining the common infrastructure for raising commandEntered() 

events. The commandEntered() event is registered for all user interfaces in the 

constructor of the UserInterface class. Therefore, any derived user interface class 

can simply raise this event by calling the raise() function defined by the Publisher 

interface, which, by protected inheritance, is part of any concrete UI’s implementation. 

The signature of the raise() function requires the name of the event and the event’s 

Figure 5-2.  The user interface hierarchy
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data. Because the event’s name is predefined in the UserInterface’s constructor, the 

only additional functionality required to raise a command entered event is a uniform 

object for handling event data. Let’s now look at its design.

�Command Data

In Chapter 3, we designed our event system to use push semantics for passing event 

data. Recall that push semantics simply means that the publisher creates an object 

containing the necessary information to handle an event and pushes that object to the 

observers when an event is raised. We also examined two techniques for handling event 

data. In the polymorphic technique, an event data object must publicly inherit from an 

abstract EventData class. Observers receive the event data through the abstract interface 

when the event is raised, and they retrieve the data by downcasting the event data to the 

appropriate derived class. In the type erasure technique, the event data does not need 

to derive from a common base class, provided a concrete observer understands how to 

any_cast the data to the appropriate type. The implementation of pdCalc implements 

events using the type erasure method. Since both techniques were described in  

Chapter 3, only the type erasure technique actually used in pdCalc will be discussed in 

the following.

For command entered events, the event data is trivially a string containing either a 

number to be entered on the stack or the name of a command to be issued. While we 

could create a distinct CommandEnteredData class that would accept this string in its 

constructor, the type erasure method actually admits a much simpler solution: the event 

data can simply be the string itself. When the event is caught by an observer, event data d 

is recovered by any_cast<string>(d) instead of any_cast<CommandEnteredData>(d).

Neither design for commandEntered() event data can be considered superior to the 

other – they just make opposing trade-offs. Using a CommandEnteredData class gives extra 

type specificity through abstraction at the expense of additional code and an additional 

function call to retrieve the abstracted string. Using a plain string as the event’s data is 

simple, lightweight, and efficient, but lacks the clarity enforced by the class abstraction. 

For a complex code base, introducing a new class to abstract the event data would 

probably be preferred. However, since we already described the class abstraction event 

data strategy in Chapter 3, for illustrative purposes, the commandEntered() event’s data 

was implemented using a plain string.
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While the mechanics for determining how and when to raise a commandEntered() 

event is somewhat different between the CLI and the GUI, both raise events by ultimately 

calling Publisher’s raise() function with a string that encodes the particular 

command being issued. That is, for some command string, cmd, the following code raises 

a commandEntered() event in the CLI, the GUI, or any other user interface that might 

inherit from UserInterface:

raise(UserInterface::CommandEntered(), cmd);

Now that we can raise UI events, let’s see how they’re handled.

�User Interface Observers

The goal for this subsection is to construct the mechanics to enable classes to listen to 

events. Because the abstract user interface is both a source and sink for events, the UI 

serves as an ideal candidate to demonstrate how publishers and observers interact with 

each other.

In Chapter 3, we saw that observers are classes that register for and listen to events 

raised by publishers. Thus far, we have encountered both the CommandInterpreter and 

UserInterface classes that both need to observe events. While it is possible to make 

the CommandInterpreter or UserInterface an observer directly, I prefer constructing 

a dedicated observer intermediary between the publisher and the class that needs to 

observe an event. I have often nebulously referred to this intermediary as a proxy. We are 

now ready to give a more concrete meaning to this term.

The proxy pattern [11] is a design pattern that uses a class, the proxy, to serve 

as the interface for something else. The something else, let’s call it the target, is not 

strictly defined. It could be a network connection, a file, an object in memory, or, as in 

our case, simply another class. Often, the proxy pattern is used when the underlying 

target is impossible, inconvenient, or expensive to replicate. The proxy pattern uses a 

class buffer to allow the system to perceive the target as an object independent of its 

underlying composition. In our context, we are using the proxy pattern simply to buffer 

communication between publishers and observers.

Why are we bothering with the proxy pattern here? This strategy has several distinct 

advantages. First, it increases clarity in the target class’s public interface by replacing 

a generically named notify() function with a descriptively named event handling 

function. Second, an otherwise unnecessary inheritance from the Observer class is 

removed. Eliminating this dependency reduces coupling, increases cohesion, and 
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facilitates reuse of the target in a setting where it is not an observer. Third, using a proxy 

class eliminates the ambiguity that arises for a target class that needs to listen to multiple 

events. Without using proxy classes, an observer would be required to disambiguate 

events in its single notify() function. Using an individual proxy for each event enables 

each event to call a unique handler function in the target object. The main disadvantage 

of implementing the observer pattern using a proxy is the slight cost of one extra 

indirection for handling each event. However, in situations where using the observer 

pattern is appropriate, the cost of an extra indirection is negligible.

Using the proxy pattern for implementing the observer pattern leads to the 

following two classes for handling commandEntered() and stackChanged() 

events: CommandIssuedObserver and StackUpdatedObserver, respectively. The 

CommandIssuedObserver mediates between commandEntered() events raised by the 

UI and observation in the command dispatcher. The StackUpdatedObserver mediates 

between stackChanged() events raised by the stack and observation in the UI. The 

implementation for both of these classes is relatively straightforward and very similar. By 

way of example, let’s examine the implementation for CommandIssuedObserver.

The declaration for CommandIssuedObserver is given by the following:

class CommandIssuedObserver : public Observer

{

public:

  explicit CommandIssuedObserver(CommandInterpreter& ci);

private:

  void notifyImpl(const any&) override;

  CommandInterpreter& ci_;

};

Because it mediates events between the UI as a publisher and the CommandInterpreter 

as the target of the observer, the CommandIssuedObserver’s constructor takes a 

reference to a CommandInterpreter instance, which it retains to callback to the 

command dispatcher when the UI raises a commandEntered() event. Recall that the 

CommandIssuedObserver will be stored by the UI in the Publisher’s event symbol table 

when the observer is attached to the event. The implementation of notifyImpl() 

is simply an any cast of the function’s parameter to a string followed by a call to 

CommandInterpreter’s commandEntered() function.
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Of course, before an event is triggered, the CommandIssuedObserver must be 

registered with the UI. For completeness, the following code illustrates how to 

accomplish this task:

ui.attach( UserInterface::CommandEntered(),

  make_unique<CommandIssuedObserver>(ci) );

where ui is a UserInterface reference and ci is a CommandInterpreter instance. 

Note that since the attach() function was intentionally hoisted into the abstract 

UserInterface scope, attaching through a reference allows us to reuse the same call 

for both the CLI and the GUI. That is, registering events is accomplished through the 

abstract UI interface, which greatly simplifies user interface setup in pdCalc’s main() 

routine. The declaration and registration of StackUpdatedObserver are analogous.

The complete implementation of the observer proxy classes can be found in 

AppObservers.m.cpp. While the usage of the observer proxies is intertwined with the 

event observing classes, the proxies are not part of the interface for the target classes.

Hence, they are included in their own file. The attachment of the proxies to events 

is performed in main.cpp. This code structure preserves the loose binding between 

publishers and observers. Specifically, publishers know which events they can raise, but 

not who will observe them, while observers know which events they will watch, but not 

who raises them. Code external to both publishers and their observers binds the two 

together.

5.2  �The Concrete CLI Class
The remainder of this chapter is devoted to detailing the CLI concrete class, a member of 

the user interface module. Let’s start by reexamining the CLI’s requirements.

5.2.1  �Requirements
The requirements for pdCalc indicate that the calculator must have a command line 

interface, but what, precisely, is a CLI? My definition for a command line interface is any 

user interface to a program that responds to user commands interactively through text. 

Even if your definition for a command line interface is somewhat different, I believe we 

can certainly agree that a broad requirement simply indicating a program should have a 

CLI is woefully insufficient.
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In a production development situation, when you encounter a requirement too 

vague to design a component, you should immediately seek clarification from your 

client. Notice I said when and not if. Regardless of how much effort you place up front 

trying to refine requirements, you always have incomplete, inconsistent, or changing 

requirements. This usually arises for a few reasons. Sometimes, it is due to a conscious 

effort not to spend the upfront time refining requirements. Sometimes, it arises from an 

inexperienced team member not understanding how to gather requirements properly. 

Often, however, it simply arises because the end user doesn’t know what they truly want 

or need until the product starts to take shape. I find this true even for small development 

projects for which I am my own customer! While you as the implementer always retain 

the expedient option of refining a requirement without engaging your customer, my 

experience indicates that this path invariably leads to rewriting the code repeatedly: 

once for what you thought the user wanted, once for what the user thought they wanted, 

and once for what the user actually wanted.

Obviously, for our case study, we only have a hypothetical end user, so we’ll simply 

do the refinement ourselves. We specify the following:

	 1.	 The CLI should accept a text command for any command defined 

for the calculator (those that exists in the command factory plus 

undo, redo, help, and exit).

	 2.	 The help command should display a list of all available 

commands and a short explanatory message.

	 3.	 The CLI should accept space-separated commands in the 

order in which they should be processed. Recall that this order 

corresponds to Reverse Polish Notation. All commands on a line 

are processed after return is pressed.

	 4.	 After commands are processed, the interface should display at 

most the top four elements of the stack plus the stack’s current 

size.

Surprisingly, the minimal requirements previously listed are sufficient to build 

a simple CLI. While these requirements are somewhat arbitrary, something specific 

needed to be chosen in order to describe a design and implementation. If you don’t like 

the resulting CLI, I highly encourage you to specify your own requirements and modify 

the design and implementation accordingly.
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5.2.2  �The CLI Design
The design of the CLI is remarkably simple. Because our overall architectural design 

placed the entire “business logic” of the calculator in the backend, the frontend is merely 

a thin layer that does nothing more than accept and tokenize input from the user, pass 

that input to the controller sequentially, and display the results. Let’s begin by describing 

the interface.

�The Interface

From the analysis we performed earlier in the chapter, we know that the concrete CLI 

class will inherit from the abstract UserInterface class. This inheritance is public 

because the CLI is-a UserInterface and must substitute as one. Hence, the CLI must 

implement the UserInterface’s two abstract pure virtual functions: postMessage() 

and stackChanged(). These two methods are only called polymorphically through a 

UserInterface reference; therefore, both methods become part of the private interface 

of the CLI. Other than construction and destruction, the only functionality that the CLI 

needs to expose publicly is a command that starts its execution. This function drives 

the entire CLI and only returns (normally) when the user requests to quit the program. 

Combining the aforementioned, the entire interface for the CLI can be given by the 

following:

export module pdCalc.userInterface;

export class Cli : public UserInterface

{

public:

  Cli(istream& in, ostream& out);

  ~Cli();

  void execute(bool suppressStartupMessage = false, bool echo = false);

private:

  void postMessage(string_view m) override;

  void stackChanged() override;

};
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While the interface is mostly self-explanatory, the arguments to both the constructor 

and the execute() function are worth explaining. To meet the requirements previously 

described, the execute() function could be written with no arguments. The two 

arguments included in the interface are simply optional features that can be turned on. 

The first argument dictates whether or not a banner is displayed when the CLI starts. The 

second argument controls command echoing. If echo is set to true, then each command 

is repeated before displaying the result. Both of these features could be hard-coded 

in the CLI, but I chose to add them as arguments to the execute() method for added 

flexibility.

The arguments to the constructor are slightly less obvious than the arguments to 

the execute() command. Almost by definition, a CLI takes input from cin and outputs 

results to cout or maybe cerr. However, hard-coding these standard I/O streams 

arbitrarily limits the usage of this class to that of a traditional CLI. Usually, I advocate 

limiting functionality to exactly what you need instead of anticipating more general 

usage. However, using C++ stream I/O is one of my few exceptions to my rule of thumb.

Let’s discuss why using references to base class C++ I/O streams is generally a 

good design practice. First, the desire to use different I/O modes is quite common. 

Specifically, redirection to or from files is a frequently requested modification to a 

CLI. In fact, we’ll see this request in Chapter 8! Second, implementing the generic vs. 

specific interface adds virtually no complexity. For example, instead of directly writing 

to cout, one simply keeps a reference to an output stream and writes to that instead. In 

the base case, this reference simply points to cout. Finally, using arbitrary stream input 

and output greatly simplifies testing. While the program may instantiate the Cli class 

using cin and cout, tests can instantiate the Cli class with either a file stream or a string 

stream. In this manner, interactive stream inputs and outputs can be simulated using 

strings or files. This strategy simplifies testing of the Cli class since inputs can be easily 

passed in and outputs easily captured as strings rather than through standard input and 

output.

Finally, note that the Cli class is declared as a part of the userInterface module in 

the UserInterface.m.cpp file, while it is defined in the partition userInterface:Cli in 

the file Cli.m.cpp. This somewhat strange construction is required due to an otherwise 

circular reference that would be created between UserInterface.m.cpp and Cli.m.cpp. 

Another alternative would have been to simply define the Cli class in the userInterface 

module instead of a partition, likely renaming Cli.m.cpp to UserInterface.cpp. This 

implementation detail has no bearing on the design of pdCalc – it is only a curiosity of 

file organization.
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�The Implementation

The implementation of the Cli class is worth examining to observe the simplicity 

enabled by the modularity of pdCalc’s design. The entire implementation of the Cli class 

is effectively contained in the execute() and postMessage() member functions. The 

execute() function drives the CLI. It presents a startup message to the end user, waits 

for commands to be entered, tokenizes these commands, and raises events to signal to 

the command dispatcher that a new command has been entered. The stackChanged() 

function is an observer proxy callback target that writes the top of the stack to the 

command line after the stackChanged() event is raised. Essentially, the CLI reduces to 

two I/O routines where execute() handles input and stackChanged() handles output. 

Let’s look at the implementations for these two functions starting with the execute() 

function:

void Cli::execute(bool suppressStartupMessage, bool echo)

{

  if(!suppressStartupMessage) startupMessage();

  for(string line; std::getline(in_, line, '\n'); )

  {

    istringstream iss{line};

    // Tokenizer must be one of LazyTokenizer or GreedyTokenizer.

    // See discussion below.

    Tokenizer tokenizer{iss};

    for(auto i : tokenizer)

    {

      if(echo) out_ << i << endl;

      if(i == "exit" || i == "quit")

        return;

      else

        raise(UserInterface::CommandEntered(), i);

    }

  }

  return;

}
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The main algorithm for the CLI is fairly simple. First, the CLI waits for the user to 

input a line. Second, this input line is tokenized by the Tokenizer class. The CLI then 

loops over each token in the input line and raises an event with the token string as the 

event’s data. The CLI terminates when it encounters either a quit or an exit token.

The only piece of the execute() function not previously explained is the Tokenizer 

class. Simply, the Tokenizer class is responsible for taking a string of text and splitting 

this string into individual space-separated tokens. Neither the CLI nor the Tokenizer 

determines the validity of tokens. Tokens are simply raised as events for the command 

dispatcher module to process. Note that as an alternative to writing your own, many 

libraries (e.g., boost) provide simple tokenizers.

The tokenization algorithm is relatively straightforward; we’ll see two separate 

implementations momentarily. First, however, why choose a class design for the 

Tokenizer instead of, say, a design employing a function returning a vector of strings? 

Realistically, both designs functionally work, and both designs are equally easy to test 

and maintain. However, I prefer the class design because it provides a distinct type for 

the Tokenizer. Let’s examine the advantages of creating a distinct type for tokenization.

Suppose we wanted to tokenize input in function foo() but process tokens in a 

separate function, bar(). Consider the following two possible pairs of functions to 

achieve this goal:

// use a Tokenizer class

Tokenizer foo(string_view);

void bar(const Tokenizer&);

// use a vector of strings

vector<string> foo(string_view);

void bar(const vector<string>&);

First, using a Tokenizer class, the signatures for both foo() and bar() immediately 

inform the programmer the intent of the functions. We know these functions involve 

tokenization. Using a vector of strings leaves ambiguity without further documentation 

(I intentionally did not provide names for the arguments). More importantly, however, 

typing the tokenizer enables the compiler to ensure that bar() can only be called with 

a Tokenizer class as an argument, thus preventing a programmer from accidentally 

calling bar() with an unrelated collection of strings. Another benefit of the class design 

is that a Tokenizer class encapsulates the data structure that represents a collection of 

tokens. This encapsulation shields the interface to bar() from a decision to change the 
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underlying data structure from, for example, a vector of strings to a list of strings  

(or, a generator, as we’ll see shortly). Finally, a Tokenizer class can encapsulate additional 

state information about tokenization (e.g., the original, pretokenized input), if desired.  

A collection of strings is obviously limited to carrying only the tokens themselves.

We now turn to the implementation of the Tokenizer class. I chose to present two 

separate implementations: a greedy tokenization and a lazy tokenization. The first 

approach, greedy tokenization, was the approach I took in the first edition of this book. 

The second approach, lazy tokenization, was only made trivial with the introduction of 

coroutines in C++20.

In order to demonstrate the interchangeability of the two algorithms, I implemented 

both behind an identical conceptual interface. However, because the two classes are not 

intended to be used polymorphically, the interface is not enforced via inheritance. Let’s 

examine this hypothetical interface:

class TokenizerInterface

{

public:

  explicit TokenizerInterface(istream&);

  ~TokenizerInterface();

  size_t nTokens() const;

  // not a "real" interface class - just using auto conceptually

  auto begin();

  auto end();

};

A tokenizer can be constructed from an input stream, it can state how many tokens it has 

parsed, and it can return an iterator to the beginning and ending of the token stream. 

Of course, more functionality can be added, but these member functions comprise 

the minimal set required for parsing tokens in pdCalc. Let’s now look at the individual 

implementations.

What makes a tokenization algorithm greedy, and what makes one lazy? Both 

implementations initialize tokenization in the constructor. However, the greedy 

algorithm parses all of the tokens in the stream immediately and stores them in a 

container for future use. The iterator interface in TokenizerInterface simply resolves 

to a forwarding request to the underlying container, for example, a vector<string>, 

Chapter 5  The Command Line Interface



144

in the GreedyTokenizer. No tokenization occurs when a user iterates over the tokens; 

tokenization already greedily occurred during construction. The following is a simple 

implementation of the greedy tokenization algorithm (which also pops all entries to 

lowercase):

void GreedyTokenizer::tokenize(istream& is)

{

  for(istream_iterator<string> i{is}; i != istream_iterator<string>{};

  ++i)

  {

    string t;

    ranges::transform(*i, back_inserter<string>(t), ::tolower);

    tokens_.push_back( std::move(t) );

  }

  

  return;

}

In contrast, let’s look at the lazy tokenization algorithm. Lazy tokenization only 

parses each token as the next one is requested. This lazy algorithm is made trivially 

possible by C++20 coroutines, which are discussed in the sidebar. First, however, let’s 

examine the LazyTokenizer’s implementation:

Listing 5-1.  Lazy tokenizer

cppcoro::generator<string> LazyTokenizer::tokenize(std::istream& is)

{

  for(istream_iterator<string> i{is}; i != istream_iterator<string>{};

  ++i)

  {

    string t;

    ranges::transform(*i, back_inserter<string>(t), ::tolower);

    ++nTokens_;

    co_yield t;

  }

  co_return;

}

Chapter 5  The Command Line Interface



145

Two differences exist between the greedy and lazy implementations. First, trivially, the 

lazy routine needs to count and store the number of tokens (nTokens_) that are parsed. 

This step is unnecessary for the greedy algorithm because it retains all the tokens in a 

vector, which knows its own size. The second difference is that the lazy algorithm uses 

the co_yield operator and returns a generator (part of the cppcoro library [7]), which 

is discussed in detail in the sidebar. Essentially, the co_yield operator signals to the 

compiler that this function is a coroutine, which can be preempted and subsequently 

restarted at the point it yielded, in this case, resuming the for loop to parse the next 

token. co_yield permits returning a value, in this case, our lazily evaluated token.

It should be noted that while the two tokenizers have the same interface, their 

behavior is slightly different. First, the greedy tokenizer parses the stream once, but the 

tokens can be iterated over as many times as desired. The nTokens() function always 

returns the total number of tokens in the stream because the stream is completely parsed 

before nTokens() can be called. In contrast, the lazy tokenizer can only be iterated over 

once because the iteration causes the tokenization. The nTokens() function therefore 

returns the number of tokens parsed up to that point, which may be smaller than the 

total number of tokens in the input stream. Of course, if multiple iterations over the 

LazyTokenizer are desired, tokens could always be stored in a container as the stream 

was lazily parsed. The two tokenizers would then behave the same once the parse was 

completed.

Implementations of both the greedy tokenizer and the lazy tokenizer are provided 

in the Tokenizer.m.cpp source file. By default, pdCalc is configured to only use the 

lazy tokenizer. However, the two tokenizers are completely interchangeable. If you wish 

to try the greedy tokenizer, just change the tokenizer instantiated in CLI’s execute() 

function. Obviously, switching between the two tokenizers could be made compile time 

configurable using static polymorphism.

MODERN C++ DESIGN NOTE: COROUTINES AND GENERATORS

Coroutines are an old idea finally made standard in C++20. In my opinion, coroutines are a 

mix in terms of usability. Writing a coroutine itself is fairly straightforward, provided you don’t 

need to write the support code for managing the lifetime of the coroutine. In concrete terms, 

relative to Listing 5-1, implementing tokenize() is easy, but implementing generator<>  

is hard.
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Unfortunately, a common library for coroutine utilization was not adopted as part of the C++20 

standard (maybe C++23?). Fortunately, however, the high-quality cppcoro coroutines library 

exists [7], and you can rest assured knowing that its author has already implemented the hard 

parts of using coroutines for you. In my initial implementation of Listing 5-1, I wrote my own 

generator class. My implementation was not generic and was quite sloppy, but it did work as 

expected. However, understanding the implementation was not instructive to understanding 

pdCalc’s design. Ultimately, I decided that describing the detailed implementation of coroutines 

was beyond the scope of this book. Instead, I decided to use cppcoro’s generator class directly. 

The MIT licensed generator.hpp is included with pdCalc and is located in 3rdparty/

cppcoro. Those readers interested in understanding the details of coroutines are referred to 

the excellent blog posts [6] by Lewis Baker, the creator of cppcoro. Our discussion will instead 

focus on the higher-level design goals of what coroutines are conceptually and how we are 

able to use them to better pdCalc’s design.

Coroutines are a generalization of subroutines that allow suspension of control by programatically 

ceding execution from within. Coroutines maintain their state and can be resumed later from the 

point at which they relinquished control. Effectively, coroutines provide a language mechanism to 

support cooperative multitasking (vs. the preemptive multitasking of threads).

One of the types that coroutines enable is generators. Generators are objects that generate a 

sequence as they are iterated upon. They are particularly useful when the sequence is infinite. 

The canonical implementation of a generator seems to be the generation of the Fibonacci 

numbers. The Fibonacci numbers, Fn, are defined by the following recursion:

F0 = 0,	 F1 = 1,	 Fn = Fn−1 + Fn−2, n > 1

Without using coroutines, the sequence can be trivially generated to the nth number with the 

following function:

auto fibLoop(unsigned int n)

{

  vector<long long> v(n+1);

  v[0] = 0;

  if(n > 0) v[1] = 1;

  for(auto i = 2u; i < v.size(); ++i)

    v[i] = v[i-1] + v[i-2];

  return v;

}
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Unfortunately, we must perform a greedy evaluation of all numbers up to the nth number. 

fibLoop() does not allow a lazy, sequential evaluation of the Fibonacci numbers by calling 

the function repeatedly.

Let’s try to create a function that can generate the next number in the Fibonacci sequence 

each time it’s called. The following code is our first attempt:

long long fibStatic()

{

  static long long cur = 0;

  static long long prev = 1;

  auto t = cur;

  cur += prev;

  prev = t;

  return prev;

}

The code works as long as we only want to generate the Fibonacci sequence once per 

program execution in a single-threaded environment. To fix the problem that the code can 

only be called once, we could add a reset flag as a parameter. However, now we’re just adding 

hacks, and we still haven’t fixed our inability to run in a multithreaded environment. Let’s try 

again.

Our next attempt leads to a rather complicated solution involving a Fibonacci class and an 

iterator:

class Fibonacci

{

  class fibonacci_iterator

  {

  public:

    using iterator_category = std::input_iterator_tag;

    using difference_type = std::ptrdiff_t;

    using value_type = long long;

    using reference = long long&;

    using pointer = long long*;

    fibonacci_iterator(){}

    fibonacci_iterator(Fibonacci* f): f_{f}{}

Chapter 5  The Command Line Interface



148

    long long operator*() const { return f_->cur_; }

    fibonacci_iterator& operator++(){f_->next(); return *this;}

    void operator++(int){ operator++(); }

    auto operator<=>(const fibonacci_iterator&) const = default;

  private:

    Fibonacci* f_ = nullptr;

  };

public:

  using iterator = fibonacci_iterator;

  iterator begin() { return fibonacci_iterator{this}; }

  iterator end() { return fibonacci_iterator{}; }

private:

  void next()

  {

    long long t = cur_;

    cur_ += prev_;

    prev_ = t;

  }

  long long cur_ = 0l;

  long long prev_ = 1l;

};

Ouch! The preceding code is sloppy, incomplete, and really quite horrendous to perform 

what seemed like an easy task. Making use of the ranges library (see next sidebar), it does, 

however, enable us to generate and use Fibonacci numbers in a beautifully succinct fashion:

Fibonacci fib;

// grab the first 10 Fibonacci numbers and use them one at a time

ranges::for_each(fib | views::take(10), [](auto fn){useFib(fn);});

If you are unfamiliar with the preceding syntax, especially the functional style of piping a range 

to a view, don’t fret. The ranges library is another new feature of C++20, which I’ll very briefly 

introduce in the next sidebar.
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Simple things should be easy, and here is where coroutines and generators shine. What if 

we could provide the simplicity of fibLoop(), the one-by-one semantics of fibStatic(), 

and the expressiveness and safety of class Fibonacci. This would be possible if there 

were a language mechanism that would essentially allow us to write a function that could be 

interrupted and resumed, yielding a value each time the function were suspended. Of course, 

this feature is precisely what coroutines provide. We can now simply write

cppcoro::generator<long long> fibonacci()

{

  long long prev = 1;

  long long cur = 0;

  while(true)

  {

    co_yield cur;

    long long t = cur;

    cur += prev;

    prev = t;

  }

}

The preceding coroutine is an infinite but interruptible loop. The co_yield expression causes 

the coroutine to suspend and yield the current Fibonacci number. cppcoro’s generator 

class hides the complicated mechanics of suspending and resuming fibonacci() behind a 

simple-to-use iterator interface. When the generator iterator is dereferenced, the value of the 

current Fibonacci number is returned. When the forward iterator is advanced, fibonacci() 

is resumed, continuing the infinite loop until co_yield is encountered again. In this manner, 

we can use and access an infinite loop in a finite fashion, which provides a very clean 

implementation for computing Fibonacci numbers to a finite but not predetermined depth. As 

before, the coroutine can be used trivially:

auto fib = fibonacci();

// grab the first 10 Fibonacci numbers and use them one at a time

ranges::for_each(fib | views::take(10), [](auto fn){useFib(fn);});

At this point, hopefully Listing 5-1 makes sense. Our lazy tokenizer is simply a generator 

of string tokens that are produced by looping over a stream, extracting each whitespace-

separated string, and suspending execution until the next token is requested. It’s a beautiful 

design made easy by new C++20 language features.
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Before departing this sidebar, I want to share one quick tip that I learned the hard way: 

Carefully watch the lifetime of any values passed to a coroutine by reference. In fact, I would 

go so far as to say avoid passing values by reference to coroutines. Consider my failed first 

attempt at writing a string constructor for LazyTokenizer:

LazyTokenizer::LazyTokenizer(const std::string& s)

: nTokens_{0}

{

  istringstream t{s};

  generator_ = tokenize(t);

}

The preceding seemingly correct code will compile, but the tokenizer will cause a segmentation 

fault when it is used. The reason is that while the tokenize() function appears to be a 

regular function call that simply returns, it is not. tokenize() is a resumable coroutine 

that is accessed via its returned generator, which, in this case, is stored in generator_. 

Here, generator_, a member variable, has a lifetime longer than the local variable t. When 

tokenize() is first called, everything works fine. The generator is initialized and in a ready 

state. However, since tokenize() captures its stream argument by reference, when the 

coroutine is advanced via iteration over generator_, t has gone out of scope and has been 

destroyed. Inside tokenize(), we are left advancing an istream_iterator<string> 

that is iterating over a destroyed istringstream. Obviously, this code will fail. Once you’ve 

reasoned this failure out, it makes perfect sense. However, to me, it was nonobvious the first 

time I encountered this error because my experience has trained me to interpret tokenize() 

as a single pass through function that only exists until control is returned to the caller. Of 

course, coroutine call semantics are different as coroutines exist until destroyed. The return of 

control to the caller does not destroy the local context inside the coroutine, which could contain 

references to function arguments. Instead, that state is stored for later resumption. Any referred 

to objects that have since gone out of scope become invalid. Programmer beware.

As a final part of the CLI’s implementation, we examine a simplified version of the 

stackChanged() function:

void Cli::stackChanged()

{

  unsigned int nElements{4};

  auto v = Stack::Instance().getElements(nElements);
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  string s{"\n"};

  auto bi = std::back_inserter(s);

  for( auto j = v.size(); auto i : views::reverse(v) )

    std::format_to(bi, "{}:\t{:.12g}\n", j--, i);

  postMessage(s);

}

The implementation in Cli.m.cpp differs only in the fanciness of the printing. Note 

that whenever the stack changes, the CLI simply picks the top four (as specified in our 

requirements) entries of the stack (getElements() returns the minimum of nElements 

and the size of the stack), formats them in a string, and passes this string to the 

postMessage() function. For the CLI, postMessage() simply writes the string to the 

output stream.

Before we move on, let’s pause and reflect on how clean and brief the 

implementation for the CLI is. This simplicity is a direct result of pdCalc’s overall 

design. Whereas many user interfaces intermix the “business logic” with the display 

code, we meticulously designed these two layers to be independent. Interpretation 

and processing of commands, the “business logic,” resides entirely in the command 

dispatcher. Therefore, the CLI is only responsible for accepting commands, tokenizing 

commands, and reporting results. Furthermore, based on the design of our event system, 

the CLI has no direct coupling to the command dispatcher, a decision consistent with 

our MVC architecture. The command dispatcher does have a direct link to the user 

interface, but because of our abstraction, the command dispatcher binds to an abstract 

UserInterface rather than a specific user interface implementation. In this way, the 

Cli perfectly substitutes as a UserInterface (application of the LSP) and can trivially 

be swapped in or out as any one of many unique views to the calculator. While this 

flexibility may seem like overkill for the design of a calculator, the modularity of all of 

the components is beneficial from both a testing and separation of concerns standpoint 

even if the calculator were not slated to have another user interface.
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MODERN C++ DESIGN NOTE: THE RANGES LIBRARY

The ranges library is one of the big four features of C++20, and a simple sidebar in no way 

does this library justice. However, we’ll take a very quick detour to get a cursory introduction.

The ranges library introduces, among a few other features, three major new constructs: the 

ranges concept, the range algorithms, and views. Ignoring the detailed C++ mechanics of 

how ranges are implemented with C++ concepts, logically, a range is an iterable collection 

demarcated by a beginning and an ending. While you may choose to implement your own 

ranges, beginning in C++20, the STL containers are ranges, so ranges are immediately 

accessible to everyone.

Great, vectors are ranges, so now what? The first immediate benefit you will see from 

ranges is the improved syntax of their accompanying algorithms. Suppose you need to sort a 

vector of strings, v (we’ll assume by the default sorting criteria). Prior to ranges, using the 

standard library, you would have written the following code:

std::sort( begin(v), end(v) );

The preceding syntax isn’t terrible, but given we wanted to sort the entire vector, why 

couldn’t we just call sort(v)? Well, now you can. Because a vector is a range, we can call 

the range-based equivalent algorithm:

std::ranges::sort(v);

That’s much cleaner. Most, if not all, of the standard algorithms now come with range-based 

equivalents.

If range-based algorithmic syntax is all we would have gotten with the ranges library, I would 

have been underwhelmed. However, we get much more because ranges come with views. 

Loosely, a view is a lazily evaluated range adapter. Let’s consider an example. Suppose you 

have a vector, v, of 20 integers and want to store the square of the last five even numbers 

you encounter in vector, t (yes, an admittedly contrived example). The following single 

executable line of code will accomplish this feat:

// note, code assumes

// namespace ranges = std::ranges;

// namespace views = std::ranges::views;
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ranges::copy( v | views::filter([](int i){return i % 2 == 0;})

                | views::reverse

                | views::take(5)

                | views::transform([](int i){return i * i;})

                , back_inserter(t) );

Three important things are occurring in the single line of code shown previously. First, and 

most obvious, all of the views are chained together. Second, the chaining of the views enables 

us to perform all of these operations in one loop over v. Third, because views are lazily 

evaluated, only the necessary actions are taken. For example, we’re not reversing all of v, only 

the even numbers. Additionally, we’re not squaring all of the even numbers, only the last five 

(or fewer if there are less than five even numbers in v).

While the preceding code is both compact and efficient, I’m willing to concede it may not be 

the most readable. Sure, the views reverse and take clearly state what they’re doing, but 

understanding what filter and transform do require also understanding their embedded 

lambda expressions. Fortunately, we can store views in variables and apply them as follows:

auto takeEven = views::filter([](int i){ return i % 2 == 0; });

auto square = views::transform([](int i){return i * i;});

ranges:�:copy(v | takeEven | views::reverse | views::take(5) | square,  

back_inserter(t));

That’s clearer. The ability to trivially create new named views from existing views both 

increases readability and enables reusability.

I’ll conclude this sidebar the same way I began it, by stating that this small sidebar in no way 

does ranges justice. If, however, this sidebar piqued your interest, I encourage you to read Eric 

Niebler’s article introducing ranges [26] and the Range-v3 User Manual [25]. Eric Niebler’s 

Range-v3 library formed the basis on which the C++ standard ranges library was built.

5.3  �Tying It Together: A Working Program
Before we conclude our chapter on the CLI, it is worthwhile to write a simple main 

program that ties all of the components together to demonstrate a working calculator. 

pdCalc’s actual implementation in main.cpp is significantly more complicated 

because it handles multiple user interfaces and plugins. Eventually, we will build up to 

understanding the full implementation in main.cpp, but for now, the following code 
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will enable us to execute a working calculator with a command line interface (of course, 

including the appropriate header files and module imports):

int main()

{

  Cli cli{std::cin, std::cout};

  CommandInterpreter ci{cli};

  RegisterCoreCommands(cli);

  �cli.attach(UserInterface::CommandEntered(),  

  make_unique<CommandIssuedObserver>(ci) );

  �Stack::Instance().attach(Stack::StackChanged(),  

  make_unique<StackUpdatedObserver>(cli) );

  cli.execute();

  return 0;

}

Due to the modularity of the design, the entire calculator can be set up, assembled, 

and executed in just six executable statements! The logic within the main() function is 

easy to follow. From a maintenance perspective, any new programmer to the project 

would easily be able to trace the calculator’s logic and see that the functionality for each 

module is clearly divided into distinct abstractions. As will be seen in future chapters, the 

abstraction is even more powerful as more modules are added.

To get you started quickly, a project is included in the repository source code that 

builds an executable, pdCalc-simple-cli, using the preceding main() function as the 

application’s driver. The executable is a stand-alone CLI that includes all of the features 

discussed up to this point in the book.

In the next chapter, we’ll consider the design of the graphical user interface for our 

calculator. As soon as the GUI is complete, many users will quickly dismiss the CLI as 

simply an exercise or a relic from a previous era. Before doing so, I’d like to encourage 

the reader not to be so quick to judge the humble CLI. CLIs are very efficient interfaces, 

and they are typically much easier to script for tasks requiring large deployments or 

automation. As for pdCalc, personally, I prefer the CLI to the GUI due to its ease of use. 

Of course, maybe that is just an indication that I, too, am a relic from a previous era.
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CHAPTER 6

The Graphical User 
Interface
In this chapter, we will explore the design of the graphical user interface (GUI) for 

pdCalc. Anytime one designs a GUI, a widget platform needs to be selected. As 

previously noted, I chose to use Qt for the creation of the GUI. That said, this is not a 

how-to chapter on using Qt to design an interface. Rather, I assume that the reader has a 

working knowledge of Qt, and the chapter itself focuses on design aspects of the GUI. In 

fact, as much as possible, I will defer the reader to the source code to see detailed aspects 

of the widget implementations. Any discussion of the Qt implementation is either merely 

incidental or worthy of particular emphasis. If you have no interest in GUI design, this 

chapter can be skipped entirely with virtually no loss in continuity.

6.1  �Requirements
In Chapter 5, we began our analysis of the command line interface (CLI) by deriving an 

interface abstraction that would be used by both the CLI and the GUI. Obviously, we will 

reuse this interface here, and we therefore already know the abstract interface to which 

our overall user interface must conform. We thus begin this chapter by defining the 

requirements for the GUI specialization.

As with the CLI, we quickly discover that the requirements from Chapter 1 are 

woefully inadequate for specifying a graphical user interface. The given requirements 

are only functional. That is, we know what buttons and operations the calculator should 

support, but we know nothing about the expected appearance.

https://doi.org/10.1007/978-1-4842-7407-1_6#DOI
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In a commercial project, one would (hopefully) engage the client, a graphic artist, 

and a user experience expert to assist in designing the GUI. For our case study, it suffices 

to fully specify our own requirements:

	 1.	 The GUI should have a window that displays both input and 

output. The output is the top six entries of the current stack.

	 2.	 The GUI should have clickable buttons for entering numbers and 

all supported commands.

	 3.	 The GUI should have a status display area for displaying error 

messages.

The preceding requirements still do not explain what the calculator should actually 

look like. For that, we need a picture. Figure 6-1 shows the working calculator as it 

appears on my Windows desktop (Windows 10 using Qt 5.15.2). To show the finished 

GUI as a prototype for designing the GUI is most certainly “cheating.” Hopefully, this 

shortcut does not detract from the realism of the case study too much. Obviously, one 

would not have a finished product at this stage in the development. In a production 

setting, one might have mock-ups drawn either by hand or with a program such as 

Microsoft PowerPoint, Adobe Illustrator, or Inkscape. Alternatively, maybe the GUI is 

being modeled from a physical object, and the designer either has photographs or direct 

access to that object. For example, one might be designing a GUI to replace a physical 

control system, and the requirements specify that the interface must display identical 

dials and gauges (to reduce operator retraining costs).
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The GUI for pdCalc was inspired by my HP48S calculator. For those familiar with 

any of the Hewlett-Packard calculators in this series, the interface will feel somewhat 

familiar. For those not familiar with this series of calculators (likely, the majority of 

readers), the following description explains the basic behavior of the GUI.

The top third of the GUI is a dedicated input/output (I/O) window. The I/O window 

displays labels for the top six stack levels on the left, with the top of the stack being at 

the bottom of the window. Values on the stack appear on the right side of the window 

on the line corresponding to the number’s location on the stack. As the user enters a 

number, the stack reduces to showing only the top five stack elements, while the number 

being entered is displayed left justified on the bottom line. A number is terminated and 

entered onto the stack by pressing the enter button.

Figure 6-1.  The GUI on Windows with no plugins
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Assuming sufficient input, an operation takes place as soon as the button is pressed. 

If insufficient input is present, an error message is displayed above the I/O window. With 

respect to commands, a valid number in the input area is treated as the top number 

on the stack. That is, applying an operation while entering a number is equivalent to 

pressing enter and then applying the operation.

To economize on space, some buttons have a shifted operation above and to the left 

of the button itself. These shifted operations can be activated by first pressing the shift 

button and then pressing the button below the shifted text. Pressing the shift button 

places the calculator in shift mode until a button with a shifted operation is pressed or 

until the shift button is pressed again. For clarity, a shifted operation is often the inverse 

of the operation on the button.

To ease input, many buttons are bound to keyboard shortcuts. That is, in addition to 

pressing the GUI button, one can alternatively press a keyboard key instead. For example, 

number buttons can be clicked by pressing the corresponding number key, the Enter 

button can be clicked by pressing the Enter key, the Shift button can be clicked by pressing 

the S key, the Bksp button can be clicked by pressing the Backspace key, the exponentiation 

operation (eex) can be clicked by pressing the E key, and the four basic arithmetic 

operations (+, -, *, /) can be clicked by pressing the corresponding keyboard keys.

Finally, a few operations are semihidden. When not entering numbers, the backspace 

button drops the top entry from the stack, while the enter button duplicates the top 

entry on the stack. Some of these combinations are not intuitive and therefore might not 

represent very good GUI design. However, they do mimic the input used on the HP48S. If 

you have never used an HP48 series calculator before, I highly suggest building and 

familiarizing yourself with the GUI from the GitHub repository before continuing.

If you’re wondering what a proc key does, it executes stored procedures. It is one of 

the “new” requirements we’ll encounter in Chapter 8.

One’s first critique about the GUI might be that it is not very pretty. I would agree. 

The purpose of the GUI in this chapter is not to demonstrate advanced Qt features. 

Rather, the purpose is to illustrate how to design a code base to be modular, robust, 

reliable, and extensible. Adding code to make the GUI more attractive rather than 

functional would distract from this message. Of course, the design permits a prettier 

GUI, so feel free to make your own pretty GUI on top of the provided infrastructure.

We now have sufficient detail to design and implement the calculator’s 

GUI. However, before we begin, a short discussion on alternatives for building GUIs is 

warranted.

Chapter 6  The Graphical User Interface



159

6.2  �Building GUIs
Essentially, two distinct paths exist for building a GUI: construct the GUI in an Integrated 

Development Environment (IDE) or construct the GUI in code. Here, I loosely use the term 

code to indicate building the GUI by text, whether it be by using a traditional programming 

language like C++ or a declarative markup syntax like XML. Of course, between the two 

extremes is the hybrid approach, which utilizes elements from both IDEs and code.

6.2.1  �Building GUIs in IDEs
If all you need is a simple GUI, then, certainly, designing and building your GUI in 

an IDE is the easier route. Most IDEs have a graphical interface for laying out visual 

elements onto a canvas, which, for example, might represent a dialog box or a widget. 

Once a new canvas is set up, the user visually builds the GUI by dragging and dropping 

existing widgets onto the canvas. Existing widgets consist of the built-in graphical 

elements of the GUI toolkit (e.g., a push button) as well as custom widgets that have been 

enabled for drag-and-drop in the IDE framework. Once the layout is complete, actions 

can be tied together either graphically or with a little bit of code. Ultimately, the IDE 

creates code corresponding to the graphically laid out GUI, and this IDE-created code is 

compiled with the rest of your source code.

Building a GUI using an IDE has both advantages and disadvantages. Some of the 

advantages are as follows. First, because the process is visual, you can easily see the 

GUI’s appearance as you perform the layout. This is in direct contrast with writing code 

for the GUI, where you only see the look of the GUI after compiling and executing the 

code. The difference is very much akin to the difference between using a WYSIWYG 

text editor like Microsoft Word and a markup language like LaTeX for writing a paper. 

Second, the IDE works by automatically generating code behind the scenes, so the 

graphical approach can significantly reduce the amount of coding required to write 

a GUI. Third, IDEs typically list the properties of a GUI element in a property sheet, 

making it trivial to stylize a GUI without constantly consulting the API documentation. 

This is especially useful for rarely used features.

Some of the disadvantages to using an IDE to build a GUI are as follows. First, you are 

limited to the subset of the API that the IDE chooses to expose. Sometimes, the full API 

is exposed, and sometimes, it is not. If you need functionality that the IDE’s author chose 

not to grant you, you’ll be forced into writing your own code. That is, the IDE may limit 

fine-tuned control of GUI elements. Second, for repetitive GUI elements, you may have 
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to perform the same operation many times (e.g., clicking to make text red in all push 

buttons), while in code, it’s easy to encapsulate any repeated task in a class or function 

call. Third, using the IDE to design a GUI limits the GUI to decisions that can be made 

at compile time. If you need to dynamically change the structure of a GUI, you’ll need to 

write code for that. Fourth, designing a GUI in an IDE ties your code to a specific vendor 

product. In a corporate environment, this may not be a significant concern because the 

development environment may be uniform throughout the company. However, for an 

open source, distributed project, not every developer who might want to contribute to 

your code base will want to be restricted to the same IDE you chose.

6.2.2  �Building GUIs in Code
Building a GUI in code is exactly what the name implies. Rather than graphically placing 

widgets on a canvas, you instead write code to interact with the GUI toolkit. Several 

different options exist for how the code can be written, and often, more than one option 

is available to you for any given GUI toolkit. First, you can almost always write source 

code in the language of the toolkit. For example, in Qt, you can build your GUI entirely 

by writing C++ in a very imperative style (i.e., you direct the GUI’s behavior explicitly). 

Second, some GUI toolkits permit a declarative style (i.e., you write markup code 

describing the style of GUI elements, but the toolkit defines the elements’ behaviors). 

Finally, some toolkits use a script-based interface for constructing a GUI (often 

JavaScript or a JavaScript derivative syntax) perhaps in conjunction with a declarative 

markup. In the context of this chapter, building a GUI in code refers exclusively to coding 

in C++ against Qt’s desktop widget set.

As you might expect, building a GUI in code has nearly the opposite trade-offs 

as building a GUI with an IDE. The advantages are as follows. First, the full API to 

the widgets is completely exposed. Therefore, the programmer has as much fine-

tuned control as desired. If the widget library designer wanted a user to be able to do 

something, you can do it in code. Second, repetitive GUI elements are easily managed 

through the use of abstraction. For example, in designing a calculator, instead of having 

to customize every button manually, we can create a button class and simply instantiate 

it. Third, adding widgets dynamically at runtime is easy. For pdCalc, this advantage will 

be important in fulfilling the requirement to support dynamic plugins. Fourth, designing 

a GUI in code grants complete IDE independence, provided that the build system is 

independent of the IDE.

Chapter 6  The Graphical User Interface



161

While building a GUI in code has many advantages, disadvantages exist as well. 

First, the layout is not visual. In order to see the GUI take shape, you must compile and 

execute the code. If it looks wrong, you have to tweak the code, try again, and repeat 

this process until you get it right. This can be exceedingly tedious and time consuming. 

Second, you must author all of the code yourself. Whereas an IDE will autogenerate a 

significant portion of the GUI code, particularly the parts related to the layout, when 

you are writing code, you must do all the work manually. Finally, when writing a GUI 

in code, you will not have access to all of a widget’s properties succinctly on a property 

sheet. Typically, you’ll need to consult the documentation more frequently. That said, 

good IDE code completion can help significantly with this task. Someone may cry foul 

to my last remark claiming, “It’s unfair to indicate that using an IDE can mitigate a 

disadvantage of not using an IDE.” Remember, unless you’re writing your source code 

in a pure text editor (unlikely), the code editor is still likely a sophisticated IDE. My 

comparison is between building a GUI using an IDE’s graphical GUI layout tool and 

writing the code manually using a modern code editor, likely itself an IDE.

6.2.3  �Which GUI Building Method Is Better?
The answer to the overly general question in the section header is, of course, neither. 

Which technique is better for building a GUI is entirely context dependent. When you 

encounter this question in your own coding pursuits, consult the preceding trade-offs, 

and make the choice most sensible for your situation. Often, the best solution is a hybrid 

strategy where some parts of the GUI will be laid out graphically while other parts of the 

GUI will be built entirely from code.

A more specific question in our context is, “Which GUI building method is better 

for pdCalc?” For this application, the trade-offs heavily favor a code-based approach. 

First, the visual layout for the calculator is fairly trivial (a status window, a display widget, 

and a grid of buttons) and easily accomplished in code. This fact immediately removes 

the most significant advantage of the IDE approach, handling complex layout visually. 

Second, the creation and layout of the buttons are repetitive but easily encapsulated, 

one of the advantages of a code-based approach. Finally, because the calculator must 

support runtime plugins, the code approach works better for dynamically adding widget 

elements (runtime discovered buttons).
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In the remainder of this chapter, we’ll explore the design of pdCalc’s GUI in code. In 

particular, the main emphasis will be on the design of components and their interfaces. 

Because our focus is not on widget construction, many implementation details will be 

glossed over. Never fear, however. If you are interested in the details, all of the code is 

available for your perusal in the GitHub repository.

6.3  �Modularization
From the outset of this book, we have discussed decomposition strategies for the 

calculator. Using the MVC architectural pattern, we split our design into a model, a view, 

and a controller. In Chapter 4, we saw that one of the main modules, the command 

dispatcher, was split into subcomponents. Whereas the CLI module was simple enough 

to be implemented with a single class, the GUI module is sufficiently complex that 

decomposition is useful. Recall from Chapter 2 that when we refer to the GUI module, 

we are referring only to a module as a logical construct since Qt, at the time of writing, 

does not yet support C++20 modules.

In Chapter 5, we determined that any user interface for our system must inherit 

from the UserInterface abstract class. Essentially, the UserInterface class defines the 

abstract interface of the view in the MVC pattern. While the GUI module must inherit 

from UserInterface and hence present the same abstract interface to the controller, we 

are free to decompose the internals of the GUI however we see fit. We’ll again use our 

guiding principles of loose coupling and strong cohesion to modularize the GUI.

When I decompose a module, I first think in terms of strong cohesion. That is, I 

attempt to break the module into small components that each do one thing (and do it 

well). Let’s try that with the GUI. First, any Qt GUI must have a main window, defined by 

inheriting QMainWindow. The main window is also the entry point to the MVC view, so our 

main window must also inherit from UserInterface. The MainWindow is our first class. 

Next, visually inspecting Figure 6-1, the calculator is obviously divided into a component 

used for input (a collection of buttons) and a component used for display. We therefore 

add two more classes: the InputWidget and the Display. We’ve already discussed that 

an advantage of using the code approach to building a GUI is to abstract the repeated 

creation of buttons, so we’ll make a CommandButton class as well. Finally, I added a 

component responsible for managing the look-and-feel of the calculator (e.g., fonts, 

margins, spacing, etc.) that I aptly named the LookAndFeel class. A component for stored 
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procedure entry also exists, but we will delay the discussion of that component until 

Chapter 8. Let’s now look at the design of each class, starting with the CommandButton. 

We’ll discuss any necessary refinements to this initial decomposition if and when they 

arise.

6.3.1  �The CommandButton Abstraction
We begin our discussion by describing how buttons are abstracted. This is a sensible 

place to begin since buttons underlie the input mechanism for both numbers and 

commands to the calculator.

Qt provides a push button widget class that displays a clickable button that emits 

a signal when the button is clicked. This QPushButton class provides the basis for 

the functionality that we require for number and command input. One prospective 

design we could employ would be to use QPushButtons as is. This design would require 

explicitly writing code to connect each QPushButton manually to its own customized 

slot. However, this approach is repetitive, tedious, and highly error prone. Moreover, 

some buttons need additional functionality not provided by the QPushButton API (e.g., 

shifted input). Therefore, we instead seek a button abstraction for our program that 

builds upon the QPushButton, supplements this Qt class with additional functionality, 

but also simultaneously restricts the QPushButton’s interface to meet exactly our 

requirements. We’ll call this class the CommandButton.

In pattern parlance, we are proposing something that acts as both an adapter 

and a facade. We saw the adapter pattern in Chapter 3. The facade pattern is a close 

cousin. Whereas the adapter pattern is responsible for converting one interface 

into another (possibly with some adaptation), the facade pattern is responsible 

for providing a unified interface to a set of interfaces in a subsystem (often as a 

simplification). Our CommandButton is tasked with doing both. We are both simplifying 

the QPushButton interface to a restricted subset that pdCalc needs but simultaneously 

adapting QPushButton’s functionality to match the requirements of our problem. 

So, is CommandButton a facade or an adapter? The difference is irrelevant; it shares 

characteristics of each. Remember, it is important to understand the objectives of 

different patterns and adapt them according to your needs. Try not to get lost in rote 

implementations from the Gang of Four [11] for the sake of pattern purity.
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�The CommandButton Design

Introductory remarks aside, we still must determine what exactly our CommandButton 

needs to do and how it will interact with the rest of the GUI. In many ways, a 

CommandButton looks and acts similarly to a QPushButton. For example, a CommandButton 

must present a visual button that can be clicked, and after the button is clicked, it should 

emit some kind of signal to let other GUI components know a click action has occurred. 

Unlike a standard QPushButton, however, our CommandButton must support both a 

standard and shifted state (e.g., a button that supports both sin and arcsin). This support 

should be both visual (both states should be shown by our CommandButton widget) and 

functional (click signals must describe both a standard click and a shifted click). We 

therefore have two design questions to answer. First, how do we design and implement 

the widget to appear correctly on the screen? Second, how will the calculator, in general, 

handle shifted operations?

Let’s first address the CommandButton appearance problem. Sure, we could 

implement our button from scratch, paint the screen manually, and use mouse events to 

trap button clicks, but that’s overkill for CommandButton. Instead, we seek a solution that 

reuses Qt’s QPushButton class. We essentially have two options for reuse: inheritance and 

encapsulation.

First, let’s consider reusing the QPushButton class in the CommandButton class’s 

design via inheritance. This approach is reasonable since one could logically adopt the 

viewpoint that a CommandButton is-a QPushButton. This approach, however, suffers from 

an immediate deficiency. An is-a relationship implies public inheritance, which means 

that the entire public interface of QPushButton would become part of the public interface 

for CommandButton. However, we already determined that for simplicity within pdCalc, 

we want CommandButton to have a restricted interface (the facade pattern). OK, let’s try 

private inheritance and modify our viewpoint to an implements-a relationship between 

CommandButton and QPushButton. Now we encounter a second deficiency. Without 

public inheritance from QPushButton, CommandButton loses its indirect inheritance of the 

QWidget class, a prerequisite in Qt for a class to be a user interface object. Therefore, any 

implementation inheriting QPushButton privately would also require public inheritance 

from QWidget. However, because QPushButton also inherits from QWidget, the multiple 

inheritance of both of these classes by CommandButton would lead to ambiguities and is 

thus disallowed. We must seek an alternative design.

Now, consider encapsulating a QPushButton within a CommandButton (i.e., 

CommandButton has-a QPushButton). We probably should have started with this 
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option since general practice indicates we should prefer encapsulation to inheritance 

whenever possible. However, many developers tend to start with inheritance, and I 

wanted to discuss the drawbacks of that approach without resorting merely to C++ best 

practices canon. Aside from breaking the strong inheritance relationship, choosing an 

encapsulation approach overcomes the two drawbacks of using inheritance previously 

discussed. First, since the QPushButton will be encapsulated within a CommandButton, 

we are free to expose only those parts of the QPushButton interface (or none at all) 

that make sense for our application. Second, by using encapsulation, we’ll avoid the 

multiple inheritance mess of inheriting from both the QWidget and QPushButton classes, 

simultaneously. Note that I do not object, in principle, to designs that use multiple 

inheritance. Multiple inheritance is simply ambiguous in this instance.

Encapsulating relationships can either take the form of composition or aggregation. 

Which is right for the CommandButton class? Consider two classes, A and B, where A 

is encapsulating B. In a composite relationship, B is an integral part of A. In code, the 

relationship is expressed as follows:

class A

{

  // ...

private:

  B b_;

};

In contrast, aggregation implies that A is merely using a B object internally. In code, 

aggregation is expressed as follows:

class A

{

  // ...

private:

  B* b_; // or some suitable smart pointer or reference

};

For our application, I think aggregation makes more sense. That is, our CommandButton 

uses a QPushButton rather than is composed from a QPushButton. The difference is 

subtle, and an equally logical argument could be made for declaring the relationship to 

be composition. That said, both designs work mechanically within Qt, so your compiler 

really won’t care how you choose to express the relationship.
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Now that we have decided to aggregate the QPushButton within the CommandButton, 

we can proceed with the overall design of the CommandButton class. Our CommandButton 

must support both a primary and a secondary command. Visually, I chose to display the 

primary command on the button and the secondary command in blue above and to the 

left of the button (we’ll discuss how the shifted state operates momentarily). Therefore, 

the CommandButton merely instantiates a QPushButton and a QLabel and places them both 

in a QVBoxLayout. The QPushButton displays the text for the primary command, and the 

QLabel displays the text for the shifted command. The layout is depicted in Figure 6-2. 

To complete the design, as previously stated, in order to interact graphically with the rest 

of the GUI, the CommandButton must publicly inherit from the QWidget class. The design 

results in a reusable CommandButton widget class for a generic push button declaring both a 

primary and secondary command. Because the push button action is achieved by using a 

QPushButton, the overall implementation of the CommandButton class is remarkably simple.

One final small detail for reusing the QPushButton remains. Obviously, because the 

QPushButton is encapsulated privately in the CommandButton, clients cannot externally 

connect to the QPushButton’s clicked() signal, rendering it impossible for client code 

to know when a CommandButton is clicked. This design is actually intentional. The 

CommandButton will internally trap the QPushButton’s clicked() signal and subsequently 

reemit its own signal. The design of this public CommandButton signal is intricately linked 

to the handling of the shifted state.

We now return to modeling the shifted state within the calculator. We have two 

practical options. The first option is to have CommandButtons understand when 

the calculator is in the shifted state and only signal the correct shifted or unshifted 

command. Alternatively, the second option is to have CommandButtons signal with 

both the shifted and unshifted commands and let the receiver of the signal sort out the 

calculator’s current state. Let’s examine both options.

Figure 6-2.  The layout of the CommandButton
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The first option, having CommandButtons know if the calculator is in a shifted or 

unshifted state, is fairly easy to implement. In one implementation, the shift button 

notifies every button (via Qt signals and slots) when it is pressed, and the buttons 

toggle between the shifted and unshifted state. If desired, one could even swap the text 

in the shift position with the text on the button every time the shifted state is toggled. 

Alternatively, the shift button can be connected to one slot that sets a global shift 

state flag that buttons can query when they signal that a click has occurred. In either 

implementation scenario, when the button is clicked, only the command for the current 

state is signaled, and the receiver of this command eventually forwards the single 

command out of the GUI via a commandEntered() event.

In the second option, the CommandButtons are not required to know anything about 

the calculator’s state. Instead, when a button is clicked, it signals the click with both 

the shifted and unshifted states. Essentially, a button just informs its listeners when it 

is clicked and provides both possible commands. The receiver is then responsible for 

determining which of the possible commands to raise in the commandEntered() event. 

The receiver presumably must be responsible for tracking the shifted state (or be able to 

poll another class or variable holding that state).

For the CommandButton, both designs for handling the calculator’s state work fairly 

well. However, personally, I prefer the design that does not require CommandButtons 

to know anything about the shifted state. In my opinion, this design promotes better 

cohesion and looser coupling. The design is more cohesive because a CommandButton 

should be responsible for displaying a clickable widget and notifying the system 

when the button is clicked. Requiring CommandButtons to understand calculator states 

encroaches on the independence of their abstraction. Instead of just being generic 

clickable buttons with two commands, the buttons become integrally tied to the concept 

of the calculator’s global state. Additionally, by forcing CommandButtons to understand 

the calculator’s state, the coupling in the system is increased by forcing CommandButtons 

to be unnecessarily interconnected to either the shift button or to the class they must 

poll. The only advantage gained by notifying every CommandButton when the shift button 

is pressed is the ability to swap the labels for the primary and secondary commands. Of 

course, label swapping could be implemented independently of the CommandButton’s 

signal arguments.
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�The CommandButton Interface

Getting the design right is the hard part. With the design in hand, the interface practically 

writes itself. Let’s examine a simplified version of the CommandButton class’s definition:

class CommandButton : public QWidget

{

  Q_OBJECT // needed by all Qt objects with signals and slots

public:

  CommandButton(const string& dispPrimaryCmd, const string& primaryCmd,

    const string& dispShftCmd, const string& shftCmd,

    QWidget* parent = nullptr);

  CommandButton(const string& dispPrimaryCmd, const string& primaryCmd,

    QWidget* parent = nullptr);

private slots:

  void onClicked();

signals:

  void clicked(string primCmd, string shftCmd);

};

The CommandButton class has two constructors: the four-argument overload and 

the two-argument overload. The four-argument overload permits specification of both 

a primary command and a secondary command, while the two-argument overload 

permits the specification of only a primary command. Each command requires two 

strings for full specification. The first string equates to the text the label will present in 

the GUI, either on the button or in the shifted command location. The second string 

equates to the text command to be raised by the commandEntered() event. One could 

simplify the interface by requiring these two strings to be identical. However, I chose 

to add the flexibility of displaying a different text than that required by the command 

dispatcher. Note that we require overloads instead of default arguments due to the 

trailing parent pointer.

The only other public part of the interface is the clicked() signal that is emitted 

with both the primary and shifted commands for the button. The rationale behind a two 

argument vs. one argument signal was previously discussed. Despite being private, I also 

listed the onClicked() slot in CommandButton’s interface to highlight the private slot that 
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must be created to catch the internal QPushButton’s clicked() signal. The onClicked() 

function’s sole purpose is to trap the QPushButton’s clicked() signal and instead emit 

the CommandButton’s clicked() signal with the two function arguments.

If you look at the actual declaration of the CommandButton class in CommandButton.h, 

you will see a few additional functions as part of CommandButton’s public interface. These 

are simply forwarding functions that either change the appearance (e.g., text color) 

or add visual elements (e.g., a tool tip) to the underlying QPushButton. While these 

functions are part of CommandButton’s interface, they are functionally optional and are 

independent of CommandButton’s underlying design.

6.3.2  �Getting Input
The GUI is required to take two distinct types of inputs from the user: numbers 

and commands. Both input types are entered by the user via CommandButtons (or 

keyboard shortcuts mapped to these buttons) arranged in a grid. This collection of 

CommandButtons, their layout, and their associated signals to the rest of the GUI compose 

the InputWidget class.

Command entry is conceptually straightforward. A CommandButton is clicked, and a 

signal is emitted reflecting the command for that particular button. Ultimately, another 

part of the GUI will receive this signal and raise a commandEntered() event to be handled 

by the command dispatcher.

Entering numbers is a bit more complicated than entering commands. In the CLI, 

we had the luxury of simply allowing the user to type numbers and press enter when 

the input was complete. In the GUI, however, we have no such built-in mechanism 

(assuming we want a GUI more sophisticated than a CLI in a Qt window). While the 

calculator does have a Command for entering numbers, remember that it assumes 

complete numbers, not individual digits. Therefore, the GUI must have a mechanism for 

constructing numbers.

Building a number consists of entering digits as well as special symbols such as the 

decimal point, the plus/minus operator, or the exponentiation operator. Additionally, 

as the user types, they might make errors, so we’ll want to enable basic editing (e.g., 

backspace) as well. The assembly of numbers is a two-step process. The InputWidget 

is only responsible for emitting the button clicks required for composing and editing 

numbers. Another part of the GUI will receive these signals and assemble complete 

number input.
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�The Design of the InputWidget

Conceptually, the design of the InputWidget class is straightforward. The widget must 

display the buttons needed for generating and editing input, bind these buttons to 

keys (if desired), and signal when these buttons are clicked. As previously mentioned, 

the InputWidget contains buttons for both digit entry and command entry. Therefore, 

it is responsible for the digits 0–9, the plus/minus button, the decimal button, the 

exponentiation button, the enter button, the backspace button, the shift button, and a 

button for each command. Recall that as an economization, the CommandButton class 

permits two distinct commands per visual button.

For consistency throughout the GUI, we’ll use the CommandButton exclusively as the 

representation for all of the input buttons, even for buttons that neither issue commands 

nor have secondary operations (e.g., the 0 button). How convenient that our design 

for the CommandButton is so flexible! However, that decision still leaves us with two 

outstanding design issues, which are how do we lay out the buttons visually and what do 

we do when a button is clicked.

Two options exist for placing buttons in the InputWidget. First, the InputWidget 

itself owns a layout, it places all the buttons in this internal layout, and then the 

InputWidget itself can be placed somewhere on the main window. The alternative is for 

the InputWidget to accept an externally owned layout during construction and place 

its CommandButtons on that layout. In general, having the InputWidget own its own 

layout is the superior design. It has improved cohesion and decreased coupling over 

the alternative approach. The only exception where having the InputWidget accept an 

external layout would be preferred would be if the design called for other classes to share 

the same layout for the placement of additional widgets. In that special case, using a 

shared layout owned externally to both classes would be cleaner.

Let’s now turn our attention to what happens when a button is clicked within 

the InputWidget. Because the InputWidget encapsulates the CommandButtons, the 

clicked() signal for each CommandButton is not directly accessible to consumers of the 

InputWidget class. Therefore, the InputWidget must catch all of its CommandButtons’ 

clicks and reemit them. For calculator commands like sine or tangent, reemitting 

the click is a trivial forwarding command. In fact, Qt enables a shorthand notation 

for connecting a CommandButton’s clicked() signal directly to an InputWidget 

commandEntered() signal, forgoing the need to pass through a private slot in the 

InputWidget. Digits, number editing buttons (e.g., plus/minus, backspace), and 
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calculator state buttons (e.g., shift) are better handled by catching the particular 

clicked() signal from the CommandButton in a private slot in the InputWidget and 

subsequently emitting an InputWidget signal for each of these actions.

As just described, as each input button is pressed, the InputWidget must emit its 

own signal. At one extreme, the InputWidget could have individual signals for each 

internal CommandButton. At the other extreme, the InputWidget could emit only one 

signal regardless of the button pressed and differentiate the action via an argument. As 

expected, for our design, we’ll seek some middle ground that shares elements from each 

extreme.

Essentially, the InputWidget accepts three distinct types of input: a modifier (e.g., 

enter, backspace, plus/minus, shift), a scientific notation character (e.g., 0–9, decimal, 

exponentiation), or a command (e.g., sine, cosine, etc.). Each modifier requires a unique 

response; therefore, each modifier binds to its own separate signal. Scientific notation 

characters, on the other hand, can be handled uniformly simply by displaying the 

input character on the screen (the role of the Display class). Thus, scientific notation 

characters are all handled by emitting a single signal that encodes the specific character 

as an argument. Finally, commands are handled by emitting a single signal that simply 

forwards the primary and secondary commands, verbatim, as function arguments to the 

signal.

In constructing the signal handling, it is import to maintain the InputWidget as a 

class for signaling raw user input to the rest of the GUI. Having the InputWidget interpret 

button presses leads to problems. For example, suppose we designed the InputWidget 

to aggregate characters and only emit complete, valid numbers. Since this strategy 

implies that no signal would be emitted per character entry, characters could neither 

be displayed nor edited until the number was completed. This situation is obviously 

unacceptable, as a user would definitely expect to see each character on the screen as 

they entered it.

Let’s now turn our attention to translating our design into a minimal interface for the 

InputWidget.

�The Interface of the InputWidget

We begin the discussion of the InputWidget’s interface by presenting the class 

declaration. As expected, our clear design leads to a straightforward interface.
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class InputWidget : public QWidget

{

  Q_OBJECT

public:

  explicit InputWidget(QWidget* parent = nullptr);

signals:

  void characterEntered(char c);

  void enterPressed();

  void backspacePressed();

  void plusMinusPressed();

  void shiftPressed();

  void commandEntered(string, string);

};

Essentially, the entire class interface is defined by the signals corresponding to 

user input events. Specifically, we have one signal indicating entry of any scientific 

notation character, one signal to forward command button clicks, and individual signals 

indicating clicking of the backspace, enter, plus/minus, or shift buttons, respectively.

If you look in the GitHub repository source code in the InputWidget.cpp file, 

you will find a few additional public functions and signals. These extra functions are 

necessary to implement two features introduced in subsequent chapters. First, an 

addCommandButton() function and a setupFinalButtons() function are needed to 

accommodate the dynamic addition of plugin buttons, a feature introduced in Chapter 7.  

Second, a procedurePressed() signal is needed to indicate a user request to use a stored 

procedure. Stored procedures are introduced in Chapter 8.

6.3.3  �The Display
Conceptually, the calculator has two displays: one for input and one for output. This 

abstraction can be implemented visually either as two separate displays or as one 

merged input/output display. Both designs are perfectly valid; each is illustrated in 

Figure 6-3.
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Choosing one style of I/O vs. the other ultimately reduces to the customer’s 

preference. Having no particular affinity for either style, I chose a merged display 

because it looks more like the display of my HP48S calculator. With a display style 

chosen, let’s now focus on the design implications this choice implies.

With a separate on-screen widget for input and output, as seen in Figure 6-3a, the 

choice to have separate input and output display classes would be obvious. The input 

display would have slots to receive the InputWidget’s signals, and the output display 

would have slots to receive completed numbers (from the input display) and stack 

updates. The cohesion would be strong, and the separation of components would be 

appropriate.

Our design, however, calls for a commingled input/output display, as seen in 

Figure 6-3b. The commingled design significantly alters the sensibility of using 

independent input and output display classes. While lumping input and output display 

concerns into one class does decrease the cohesion of the display, trying to maintain 

two independent classes both pointing to the same on-screen widget would lead to 

an awkward implementation. For example, choosing which class should own the 

underlying Qt widget is arbitrary likely resulting in a shared widget design (using a 

shared_ptr, perhaps?). However, in this scenario, should the input or the output display 

class initialize the on-screen widget? Would it make sense for the input display to signal 

the output display if the input display shared a pointer to the single display widget? The 

answer is simply that a two class design is not tenable for a merged I/O display widget 

even though we might prefer to separate input and output display concerns.

The aforementioned discussion identifies a few interesting points. First, the 

visual presentation of the design on screen can legitimately alter the design and 

implementation of the underlying components. While this may seem obvious once 

presented with a concrete GUI example, the indirect implication is that GUI class design 

Figure 6-3.  Input and output display options
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may need to change significantly if the on-screen widgets are changed only slightly. 

Second, situations exist where the result is cleaner when the design directly contradicts 

the elements of good design postulated in Chapter 2. Obviously, the guidelines in 

Chapter 2 are meant to aid the design process, not to serve as inviolable rules. That said, 

my general advice is to aim to preserve clarity over adherence to guidelines but only 

violate best practices judiciously.

Now that we’ve decided to pursue a single I/O display with a single underlying 

Display class, let’s look at its design.

�The Design of the Display Class

I confess. My original design and implementation for the Display class was inept. 

Instead of using proper analysis techniques and upfront design, I grew the design 

organically (i.e., alongside the implementation). However, as soon as my design 

forced the Display class to emit commandEntered() signals for the GUI to function 

properly, I knew the design had a “bad smell” to it. The class responsible for painting 

numbers on the screen should probably not be interpreting commands. That said, 

the implementation worked properly, so I left the code as it was and completed the 

calculator. However, when I finally started writing about the design, I had so much 

difficulty trying to formulate a rationale for my design that I finally had to admit to myself 

that the design was fatally flawed and desperately needed a rewrite.

Obviously, after redesigning the display, I could have simply chosen to describe 

only the improved product. However, I think it is instructive to study my first misguided 

attempt, to discuss the telltale signs that the design had some serious problems, and 

finally to see the design that eventually emerged after a night of refactoring. Possibly, 

the most interesting lesson here is that bad designs can certainly lead to working code, 

so never assume that working code is an indicator of a good design. Additionally, bad 

designs, if localized, can be refactored, and sometimes, refactoring should be undertaken 

solely to increase clarity. Refactoring, of course, assumes your project schedule contains 

enough contingency time to pause periodically just to pay down technical debt. We now 

begin by briefly studying my mistake before returning to a better design.

�A Poor Design

From the preceding analysis, we determined that the calculator should have one unified 

Display class handling both input and output. The fundamental mistake in my design 

for the display derived from incorrectly interpreting that one Display class implied no 
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additional classes for orthogonal concerns. Hence, I proceeded to lump all functionality 

not handled by the InputWidget class into a single Display class. Let’s start along 

that path. However, rather than completing the design and implementation as I had 

previously done, we’ll stop and redesign the class as soon as we see the first fatal flaw 

emerges (which is what I should have done originally).

With a single Display class design, the Display is responsible for showing input 

from the user and output from the calculation engine. Showing the output is trivial. 

The Display class observes the stackChanged() event (indirectly, since it is not part 

of the GUI’s external interface) and updates the screen display widget (a QLabel, in 

this case) with the new stack values. Conceptually, showing the input is trivial as 

well. The Display directly receives the signals emitted by the InputWidget class (e.g., 

characterEntered()) and updates the screen display widget with the current input. The 

simplicity of this interaction belies the fundamental problem with this design, which is 

that the input is not entered atomically for display. Instead, it is assembled over multiple 

signals by entering several characters independently and finalizing the input by pressing 

the enter button. This sequential construction of the input implies that the calculator 

must maintain an active input state, and input state has no business existing in a display 

widget.

At this point, you may inquire what, aside from ideological aversion, is wrong with 

the Display class maintaining an input state. Can’t we just view the state as simply 

a display input buffer? Let’s follow through with this design to see why it is flawed. 

Consider, for example, the backspace button, whose operation is overloaded based on 

the input state. If the current input buffer is nonempty, the backspace button erases one 

character from this buffer. However, if the current input buffer is empty, pressing the 

backspace button causes the issuance of the command to drop the top number from the 

stack. Since, under this design, the Display owns the input state and is the sink for the 

backspacePressed() signal, the Display must be the source of the drop number from 

stack command. Once the Display starts issuing commands, we’ve completely given up 

on cohesion, and it’s time to find the pasta sauce because spaghetti code ensues. From 

here, instead of just abandoning the design, I doubled down, and my original design 

actually got worse. However, instead of proceeding further along this misguided path, 

let’s simply move on to examining a better approach.
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�An Improved Display Design

Early in the discussion of the poor display design, I pointed out that the fatal mistake 

came from assuming that a unified display necessitated a single class design. However, 

as we’ve seen, this assumption was invalid. The emergence of state in the calculator 

implies the need for at least two classes: one for the visual display and one for the state.

Does this remind you of a pattern we’ve already seen? The GUI needs to maintain 

an internal state (a model). We’re currently in the midst of designing a display (a view). 

We have already designed a class, the InputWidget, for accepting input and issuing 

commands (a controller). Obviously, the GUI itself is nothing more than an embodiment 

of a familiar pattern, the model-view-controller (MVC). Note that relative to the MVC 

archetype seen in Figure 2-2, the GUI can replace direct communication between the 

controller and the model with indirect communication. This minor change, which 

promotes decreased coupling, is facilitated by Qt’s signals and slots mechanism.

We now focus our attention on the design of the newly introduced model class. 

Upon completion of the model, we’ll return to the Display class to finish its now simpler 

design and interface.

6.3.4  �The Model
The model class, which I aptly called the GuiModel, is responsible for the state of the 

GUI. In order to achieve this goal properly, the model must be the sink for all signals that 

cause the state of the system to change, and it must be the source of all signals indicating 

that the state of the system has changed. Naturally, the model is also the repository for 

the state of the system, and it should provide facilities for other components of the GUI 

to query the model’s state. Let’s look at GuiModel’s interface:

class GuiModel : public QObject

{

  Q_OBJECT

public:

  enum class ShiftState { Unshifted, Shifted };

  struct State { /* discussed below */ };

  GuiModel(QObject* parent = nullptr);

  ~GuiModel();
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  void stackChanged(const vector<double>& v);

  const State& getState() const;

public slots:

  // called to toggle the calculator's shift state

  void onShift();

  // paired to InputWidget's signals

  void onCharacterEntered(char c);

  void onEnter();

  void onBackspace();

  void onPlusMinus();

  void onCommandEntered(string primaryCmd, string secondaryCmd);

signals:

  void modelChanged();

  void commandEntered(string s);

  void errorDetected(string s);

};

The six slots in the GuiModel class all correspond to signals emitted by the InputWidget 

class. The GuiModel interprets these requests, changes the internal state as appropriate, 

and emits one or more of its own signals. Of particular note is the commandEntered() 

signal. Whereas the GuiModel’s onCommandEntered() slot accepts two arguments, the 

raw primary and secondary commands corresponding to the CommandButton that was 

pressed, the GuiModel is responsible for interpreting the shifted state of the GUI and only 

reemitting a commandEntered() signal with the active command.

The remainder of the GuiModel interface involves the GUI’s state. We begin by 

discussing the rationale behind the nested State struct. Rather than declaring each 

piece of the model’s state as a separate member within GuiModel, I find it much cleaner 

to lump all of the state parameters into one struct. This design facilitates the querying of 

the model’s state by permitting the entire system state to be returned by const reference 

with one function call as opposed to requiring piecemeal access to individual state 

members. I chose to nest the State struct because it is an intrinsic part of GuiModel 

that serves no stand-alone purpose. Therefore, the State struct naturally belongs 

in GuiModel’s scope, but its declaration must be publicly declared in order for other 

components of the GUI to be able to query the state.
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The constituents of the State struct define the entire state of the GUI. In particular, 

this State struct comprises a data structure holding a copy of the maximum number of 

visible numbers on the stack, the current input buffer, an enumeration defining the shift 

state of the system, and a Qt enumeration defining the validity of the input buffer. The 

declaration is given as follows:

struct State

{

  vector<double> curStack;

  string curInput;

  ShiftState shiftState;

  QValidator::State curInputValidity;

};

An interesting question to ask is, why does the GuiModel’s State buffer the visible 

numbers from the top of the stack? Given that the Stack class is a singleton, the Display 

could access the Stack directly. However, the Display only observes changes in the 

GuiModel (via the modelChanged() slot). Because state changes unrelated to stack 

changes occur frequently in the GUI (e.g., character entry), the Display would be forced 

to wastefully query the Stack on every modelChanged() event since the Display is not 

a direct observer of the stackChanged() event. On the other hand, the GuiModel is an 

observer of the stackChanged() event (indirectly via function call from the MainWindow). 

Therefore, the efficient solution is to have the GuiModel update a stack buffer only when 

the calculator’s stack actually changes and give the Display class access to this buffer, 

which is guaranteed by construction to be current, for updating the screen.

6.3.5  �The Display Redux
We are now ready to return our attention to the Display class. Having placed all of the 

state and state interactions in the GuiModel class, the Display class can be reduced 

simply to an object that watches for model changes and displays the current state of 

the calculator on the screen. Other than the constructor, the interface for the Display 

class consists of only two functions: the slot to be called when the model changes 

and a member function to be called to show messages in the status area. The latter 

function call is used to display errors detected within the GUI (e.g., invalid input) as 
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well as errors detected in the command dispatcher (as transmitted via UserInterface’s 

postMessage()). The entire interface for the Display class is given by the following:

class Display : public QWidget

{

    Q_OBJECT

public:

  explicit Display(const GuiModel& g, QWidget* parent = nullptr,

    int nLinesStack = 6, int minCharWide = 25);

  void showMessage(const string& m);

public slots:

  void onModelChanged();

};

The optional arguments to the Display class’s constructor simply dictate visual 

appearance of the stack on the screen. Specifically, a client of the Display class has 

flexibility over the number of stack lines to display and the minimum width (in units of 

fixed width font characters) of the on-screen display.

6.3.6  �Tying It Together: The Main Window
The main window is a fairly small class that serves a big purpose. To be precise, it serves 

three purposes in our application. First, as in most Qt-based GUIs, we need to provide 

a class that publicly inherits from QMainWindow that acts, naturally, as the main GUI 

window for the application. In particular, this is the class that is instantiated and shown 

in the function that launches the GUI. Following my typical creative naming style, I 

called this class the MainWindow. Second, the MainWindow serves as the interface class for 

the view module of the calculator. That is, the MainWindow also must publicly inherit from 

our abstract UserInterface class. Finally, the MainWindow class owns all of the previously 

discussed GUI components and glues these components together as necessary. For all 

practical purposes, gluing components together simply entails connecting signals to 

their corresponding slots. These straightforward implementation details can be found 

in the MainWindow.cpp source code file. We’ll spend the remainder of this section 

discussing the MainWindow’s design and interface.
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We’ve written a Qt application; it’s obvious that we’ll have a descendant of 

QMainWindow somewhere. That, in and of itself, is not terribly interesting. What is 

interesting, however, is the decision to use multiple inheritance to make the same 

class also serve as the UserInterface to the rest of pdCalc. That said, is that truly an 

interesting decision, or does it just seem provocative because some developers have a 

strong aversion to multiple inheritance?

Indeed, I could have separated the QMainWindow and the UserInterface into two 

separate classes. In a GUI where the main window were decorated with menus, toolbars, 

and multiple underlying widgets, I, perhaps, would have separated the two. However, in 

our GUI, the QMainWindow base serves no purpose other than to provide an entry point 

for our Qt application. The MainWindow literally does nothing else in its QMainWindow role. 

To therefore create a separate MainWindow class with the sole purpose of containing a 

concrete specialization of a UserInterface class serves no purpose other than to avoid 

multiple inheritance. While some may disagree, I think a lack of multiple inheritance, in 

this instance, would actually complicate the design.

The situation described previously is actually an archetypal example of where 

multiple inheritance is an excellent choice. In particular, multiple inheritance excels in 

derived classes whose multiple base classes exhibit orthogonal functionality. In our case, 

one base class serves as the GUI entry point to Qt, while the other base class serves as 

the UserInterface specialization for pdCalc’s GUI view. Notice that neither base class 

shares functionality, state, methods, or ancestors. Multiple inheritance is especially 

sensible in situations where at least one of the base classes is purely abstract (a class with 

no state and only pure virtual functions). The scenario of using multiple inheritance of 

purely abstract bases is so useful that it is permitted in programming languages that do 

not otherwise allow multiple inheritance (e.g., interfaces in both C# and Java).

The interface for the MainWindow consists simply of a constructor, the overrides 

for the two pure virtual functions in the UserInterface class, and a few functions for 

dynamically adding commands (we’ll encounter these functions in Chapter 7 when we 

design plugins). For completeness, the interface for MainWindow is listed as follows:

class MainWindow : public QMainWindow, public UserInterface

{

  class MainWindowImpl;

public:

  MainWindow(int argc, char* argv[], QWidget* parent = nullptr);
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  void postMessage(string_view m) override;

  void stackChanged() override;

  // plugin functions...

};

6.3.7  �Look-and-Feel
Before we conclude this chapter with some sample code to execute the GUI, we must 

return briefly to the final component of the GUI, the LookAndFeel class. The LookAndFeel 

class simply manages the dynamically customizable appearance of the GUI, such as font 

sizes and text colors. The interface is simple. For each point of customization, a function 

exists to return the requested setting. For example, to get the font for the display, we 

provide a function:

class LookAndFeel

{

public:

  // one function per customizable setting, e.g.,

  const QFont& getDisplayFont() const;

  // ...

}

Because we only need one LookAndFeel object in the calculator, the class is 

implemented as a singleton.

A great question to ask is, “Why do we need this class at all?” The answer is that it 

gives us the opportunity to dynamically modify the appearance of the calculator based 

on the current environment, and it centralizes in memory access to the look-and-feel of 

pdCalc. For example, suppose we had wanted to make our GUI DPI aware and choose 

font sizes accordingly (I didn’t in the source code, but you might want to). With a static 

configuration file (or the conceptual equivalent, registry settings), we would have to 

customize the settings for each platform during the installation process. Either we would 

have to build customization within the installer for each platform, or we would have to 

write code to execute during the installation to create the appropriate static configuration 

file dynamically. If we have to write code, why not just put it in the source where it 

belongs? As an implementation decision, the LookAndFeel class could be designed 

simply to read a configuration file and buffer the appearance attributes in memory  
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(a look-and-feel proxy object). That’s the real power of the LookAndFeel class. It centralizes 

the location of appearance attributes so that only one class needs to be changed to 

effect global appearance changes. Maybe even more importantly, a LookAndFeel class 

insulates individual GUI components from the implementation details defining how the 

GUI discovers (and possibly adapts to) the settings on a particular platform.

The full implementation for the LookAndFeel class can be found in the 

LookAndFeel.cpp file. The current implementation is very simple. The LookAndFeel 

class provides a mechanism for standardizing the GUI’s look-and-feel, but no 

implementation exists to allow user customization of the application. Chapter 8 briefly 

suggests some possible extensions one could make to the LookAndFeel class to make 

pdCalc user customizable.

6.4  �A Working Program
We conclude this chapter with a working main() function for launching the GUI. Due 

to additional requirements we’ll encounter in Chapter 7, the actual main() function for 

pdCalc is more complicated than the one listed below. However, the simplified version is 

worth listing to illustrate how to tie pdCalc’s components together with the GUI to create 

a functioning, stand-alone executable.

int main(int argc, char* argv[])

{

  QApplication app{argc, argv};

  MainWindow gui{argc, argv};

  CommandInterpreter ci{gui};

  RegisterCoreCommands(gui);

  gui.attach(UserInterface::CommandEntered(),

    make_unique<CommandIssuedObserver>(ci) );

  Stack::Instance().attach(Stack::StackChanged(),

    make_unique<StackUpdatedObserver>( gui ) );

  gui.execute();

  return app.exec();

}
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Note the similarities between the main() function for executing the GUI mentioned 

previously and the main() function for executing the CLI listed at the conclusion of 

Chapter 5. The likenesses are not accidental and are the result of pdCalc’s modular 

design.

As with the CLI, to get you started quickly, a project is included in the repository 

source code that builds an executable, pdCalc-simple-gui, using the preceding main() 

function as the application’s driver. The executable is a stand-alone GUI that includes all 

of the features discussed up to this point in the book.

6.5  �A Microsoft Windows Build Note
pdCalc is designed to be both a GUI and a CLI. In Linux, no compile time distinction 

exists between a console application (CLI) and a windowed application (GUI). A unified 

application can be compiled with the same build flags for both styles. In Microsoft 

Windows, however, creating an application that behaves as both a CLI and a GUI is not 

quite as trivial because the operating system requires an application to declare during 

compilation the usage of either the console or the windows subsystem.

Why does the declaration of the subsystem matter on Windows? If an application is 

declared to be a windowed application, if it is launched from a command prompt, the 

application will simply return with no output (i.e., the application will appear as if it 

never executed). However, when the application’s icon is double-clicked, the application 

launches without a background console. On the other hand, if an application is declared 

to be a console application, the GUI will appear when launched from a command 

prompt, but the GUI will launch with a background console if opened by double-clicking 

the application’s icon.

Conventionally, Microsoft Windows applications are designed for one subsystem or 

the other. In the few instances where applications are developed with both a GUI and 

a CLI, developers have created techniques to avoid the preceding problem. One such 

technique creates two applications: a .com and a .exe that the operating system can 

appropriately call depending on the option selected via command line arguments.

In order to keep pdCalc’s code simple and cross platform, I ignored this problem 

and simply built the GUI using the console subsystem (pdCalc-simple-gui, however, 

having no CLI, is built in windowed mode). Indeed, this means that if the application is 

launched by double-clicking pdCalc’s icon, an extra console window will appear in the 

background. If you intend to use the application exclusively as a GUI, the problem can 
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be remedied by building the program using the windows subsystem. If you make this 

change, remember that pdCalc’s CLI will essentially be disabled. Building a windowed 

application can be accomplished by adding the WIN32 option to the add_executable() 

command of the CMakeLists.txt file responsible for building pdCalc’s executable file 

(see the CMakeLists.txt file for pdCalc-simple-gui). If you need access to both the CLI 

and the GUI and the extraneous console drives you crazy, you have two realistic options. 

First, search the Internet for one of the techniques discussed previously and give it a try. 

Personally, I’ve never gone that route. Second, build two separate executables (maybe 

called pdCalc and pdCalc-cli) instead of one executable capable of switching modes 

based on command line arguments. The application’s flexible architecture trivially 

supports either decision.
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CHAPTER 7

Plugins
You’ve probably read the chapter title, so you already know that this chapter is about 

plugins, specifically their design and implementation. Additionally, plugins will afford us 

the opportunity to explore design techniques to isolate platform specific features. Before 

we dive into the details, however, let’s begin by defining what a plugin is.

7.1  �What Is a Plugin?
A plugin is a software component that enables new functionality to be added to a 

program after the program’s initial compile. In this chapter, we’ll concentrate exclusively 

on runtime plugins, that is, plugins built as shared libraries (e.g., a POSIX .so or Windows 

.dll file) that are discoverable and loadable at runtime.

Plugins are useful in applications for a myriad of different reasons. Here are just a few 

examples. First, plugins are useful for allowing end users to add features to an existing 

program without the need to recompile. Often, these are new features that were completely 

unanticipated by the original application developers. Second, architecturally, plugins enable 

separation of a program into multiple optional pieces that can be individually shipped with 

a program. For example, consider a program (e.g., a web browser) that ships with some 

base functionality but allows users to add specialty features (e.g., an ad blocker). Third, 

plugins can be used for designing an application that can be customized to a specific client. 

For example, consider an electronic health record system that needs different functionality 

depending on whether the software is deployed at a hospital or a physician’s individual 

practice. The necessary customizations could be captured by different modules that plug into 

a core system. Certainly, one can think of many additional applications for plugins.

In the context of pdCalc, plugins are shared libraries that provide new calculator 

commands and, optionally, new GUI buttons. How difficult could that task be? In 

Chapter 4, we created numerous commands and saw that adding new ones was fairly 

trivial. We simply inherited from the Command class (or one of its derived classes, such 
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as UnaryCommand or BinaryCommand), instantiated the command, and registered it 

with the CommandFactory. For example, take the sine command, which is declared in 

CoreCommands.m.cpp as follows:

class Sine : public UnaryCommand

{

  // implement Command virtual members

};

and registered in CommandFactory.m.cpp by the line

cf.registerCommand( "sin", MakeCommandPtr<Sine>() );

where cf is a CommandFactory reference. It turns out that this recipe can be followed 

almost exactly by a plugin command except for one crucial step. Since the plugin 

command’s class name is unknown to pdCalc at compile time, we cannot use the plugin 

class’s name for allocation.

This seemingly simple dilemma of not knowing the class names of plugin commands 

leads to the first problem we need to solve for plugins. Specifically, we’ll need to 

establish an abstract interface by which plugin commands become discoverable to 

and registered within pdCalc. Once we’ve agreed upon a plugin interface, we’ll quickly 

encounter the second fundamental plugin problem, which is how do you dynamically 

load a plugin to even make the names in the shared library available to pdCalc. To make 

our lives more complicated, the solution to this second problem is platform dependent, 

so we’ll seek a design strategy that minimizes the platform dependency pain. The final 

problem we’ll encounter is updating our existing code to add new commands and 

buttons dynamically. Maybe surprisingly, this last problem is the easiest to solve. Before 

we get started tackling our three problems, however, we need to consider a few rules for 

C++ plugins.

7.1.1  �Rules For C++ Plugins
Plugins are not conceptually part of the C++ language. Rather, plugins are a 

manifestation of how the operating system dynamically loads and links shared libraries 

(hence the platform-specific nature of plugins). For any nontrivially sized project, 

the application is typically divided into an executable and several shared libraries 

(traditionally, .so files in Unix, .dylib files in Mac OS X, and .dll files in MS Windows).
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Ordinarily, as C++ programmers, we remain blissfully unaware of the subtleties 

this structure entails because the executable and libraries are built in a homogeneous 

build environment (i.e., same compiler and standard libraries). For a practical plugin 

interface, however, we have no such guarantee. Instead, we must program defensively 

and assume the worst-case scenario, which is that plugins are built in a different but 

compatible environment to the main application. Here, we’ll make the relatively weak 

assumption that the two environments, at minimum, share the same object model. 

Specifically, we require that the two environments use the same layout for handling 

the virtual function pointer (vptr). If you are unfamiliar with the concept of a virtual 

function pointer, all the gory details can be found in [18]. While in principle, C++ 

compiler writers may choose different vptr layouts, in practice, compilers typically use 

compatible layouts, especially different versions of the same compiler. Without this 

shared object model assumption, we would be forced to develop a C language–only 

plugin structure. Note that we must also assume that sizeof(T) is the same size for all 

types T in the main application and plugins. This eliminates, for example, having a 32-bit 

application and a 64-bit plugin because these two platforms have different pointer sizes.

How does programming in a heterogeneous environment affect the available 

programming techniques we can use? In the worst-case scenario, the main application 

might be built with both a different compiler and a different standard library. This 

fact has several serious implications. First, we cannot assume that allocation and 

deallocation of memory between plugins and the application are compatible. This 

means any memory new-ed in a plugin must be delete-ed in the same plugin. Second, 

we cannot assume that code from the standard library is compatible between any 

plugin and the main application. Therefore, our plugin interface cannot contain any 

standard containers. While standard library incompatibility might seem odd (it’s the 

standard library, right?), remember that the standard specifies the interface, not the 

implementation (subject to some restrictions, such as vectors occupying contiguous 

memory). For example, different standard library implementations frequently have 

different string implementations. Some prefer the small string optimization, while 

others prefer using copy-on-write. Third, while we have assumed a compatible layout for 

the vptr in our objects, we cannot assume identical alignment. Therefore, plugin classes 

should not inherit from main application classes that have member variables defined in 

the base classes if these member variables are used in the main application. This follows 

since the main application’s compiler may use a different memory offset to a member 
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variable than what was defined by the plugin’s compiler if each compiler uses different 

alignment. Fourth, due to name mangling variances across different compilers, exported 

interfaces must specify extern "C" linkage. The linkage requirement is bidirectional. 

Plugins should not call application functions without extern "C" linkage nor should 

the application call plugin functions without extern "C" linkage. Note that because 

noninline, nonvirtual member functions require linkage across compilation units (as 

opposed to virtual functions, which are called via the vptr through an offset in the 

virtual function table), the application should only call into plugin code through virtual 

functions, and plugin code should not call base class noninline, nonvirtual functions 

compiled in the main application. Fifth, exceptions are rarely portable across the binary 

interface between the main program and plugins, so we cannot throw exceptions in 

a plugin and try to catch them in the main application. Finally, C++20 modules are 

portable across plugin boundaries, but their compiled module interfaces (CMIs) are not. 

Any main application code encapsulated by a C++20 module that is required by a plugin 

must supply its module interface file to that plugin. This is essentially no different than 

supplying a header file to a plugin except, depending on the build system, the module 

interface file may need to be separately compiled or precompiled vs. simply included.

That was a mouthful. Let’s recap by enumerating the rules for C++ plugins:

	 1.	 Memory allocated in a plugin must be deallocated in the same 

plugin.

	 2.	 Standard library components cannot be used in plugin interfaces.

	 3.	 Assume incompatible alignment. Avoid plugins inheriting from 

main application classes with member variables if the variables 

are used in the main application.

	 4.	 Functions exported from a plugin (to be called by the main 

application) must specify extern "C" linkage. Functions exported 

from the main application (to be called by plugins) must specify 

extern "C" linkage.

	 5.	 The main application should communicate with plugin-derived 

classes exclusively via virtual functions. Plugin-derived classes 

should not call noninline, nonvirtual main application base class 

functions.
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	 6.	 Do not let exceptions thrown in plugins propagate to the main 

application.

	 7.	 Module CMIs are not distributable artifacts; distribute module 

interface files.

With these rules in mind, let’s return to the three fundamental problems we must 

solve in order to design plugins.

7.2  �Problem 1: The Plugin Interface
The plugin interface is responsible for several items. First, it must enable the discovery 

of both new commands and new GUI buttons. We’ll see that this functionality is most 

effectively accomplished through a class interface. Second, the plugin must support 

a C linkage interface for allocating and deallocating the aforementioned plugin class. 

Third, pdCalc should provide a PluginCommand class derived from Command to assist in 

correctly writing plugin commands. Technically, a PluginCommand class is optional, but 

providing such an interface helps users conform to plugin rules three and six. Fourth, it 

is worthwhile for the plugin interface to provide a function for querying the API version 

that a plugin supports. Finally, pdCalc must provide C linkage for any of the functions 

it must make available for plugins to call. Specifically, plugin commands must be able 

to access the stack. We’ll address these issues in sequence starting with the interface for 

discovering commands.

7.2.1  �The Interface for Discovering Commands
The first problem we face is how to allocate commands from plugins where we know 

neither what commands the plugin provides nor the names of the classes we’ll need to 

instantiate. We’ll solve this problem by creating an abstract interface to which all plugins 

must conform that exports both commands and their names. First, let’s address what 

functionality we’ll need.

Recall from Chapter 4 that in order to load a new command into the calculator, we 

must register it with the CommandFactory. By design, the CommandFactory was specifically 

constructed to admit dynamic allocation of commands, precisely the functionality we 

need for plugin commands. For now, we’ll assume that the plugin management system 

has access to the register command (we’ll address this deficiency in Section 7.4).  
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The CommandFactory’s registration function requires a string name for the command 

and a unique_ptr that serves as a prototype for the command. Since pdCalc knows 

nothing a priori about the command names in a plugin, the plugin interface must first 

make the names discoverable. Second, since C++ lacks reflection as a language feature, 

the plugin interface must provide a way to create a prototype command to be associated 

with each of the discovered names. Again, by design, the abstract Command interface 

supports the prototype pattern via the clone() virtual member function. Let’s see how 

these two prior design decisions effectively enable plugins.

Based on our C++ plugin rules mentioned previously, the only means we have to 

effect command discovery is to encapsulate it as a pure virtual interface to which all 

plugins must adhere. Ideally, our virtual function would return an associative container 

of unique_ptr<CommandPtr> values keyed by strings. However, our C++ plugin rules 

also stipulate that we cannot use standard containers, thus excluding string, map, 

unordered_map, and unique_ptr. Rather than (poorly) reimplementing custom versions 

of any of these containers, we’ll just use a typically avoided, low-level facilities available 

to us, arrays of pointers.

The preceding design is enforced by creating a Plugin class to which all plugins must 

conform. The purpose of this abstract class is to standardize plugin command discovery. 

The class declaration is given by the following:

// module code will be omitted from additional plugin listings

export class pdCalc.plugins;

export class Plugin

{

public:

  Plugin();

  virtual ~Plugin();

  struct PluginDescriptor

  {

    int nCommands;

    char** commandNames;

    Command** commands;

  };

  virtual const PluginDescriptor& getPluginDescriptor() const = 0;

};
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We now have an abstract plugin interface that, when specialized, requires a derived class 

to return a descriptor that provides the number of commands available, the names of 

these commands, and prototypes of the commands themselves. Obviously, the ordering 

of the command names must match the ordering of the command prototypes.  

An alternative design would be to define a CommandDescriptor as follows:

struct CommandDescriptor

{

  char* commandName;

  Command* command;

};

and have the PluginDescriptor hold an array of CommandDescriptors instead of 

separate arrays for names and commands. This choice is the classic struct of arrays 

or array of structs conundrum. Either choice is valid in this context, and somewhat 

arbitrarily, I chose the former for pdCalc’s implementation.

Unfortunately, with raw pointers and raw arrays, the ambiguity of who owns the 

memory for the command names and command prototypes arises. Our inability to 

use standard containers forces us into an unfortunate design: contract via comment. 

Since our rules dictate that memory allocated in a plugin must be freed by the same 

plugin, the best strategy is to decree that plugins are responsible for deallocation of 

the PluginDescriptor and its constituents. As stated before, the memory contract is 

“enforced” by comment.

Great, our problem is solved. We create a plugin; let’s call it MyPlugin, which inherits 

from Plugin. We’ll see how to allocate and deallocate the plugin in Section 7.3.  

Inside of MyPlugin, we create new commands by inheriting from Command as usual. 

Since the plugin knows its own command names, unlike the main program, the 

plugin can allocate its command prototypes with the new operator. Then, in order to 

register all the plugin’s commands, we simply allocate a plugin descriptor with both 

command names and command prototypes, return the descriptor by overriding 

the getPluginDescriptor() function, and let pdCalc register the commands. Since 

Commands must each implement a clone() function, pdCalc can copy the plugin 

command prototypes via this virtual function to register them with the CommandFactory. 

Trivially, string names for registration can be created from the commandNames array.  

Chapter 7  Plugins



192

For an already allocated Plugin* p, the following code within pdCalc could implement 

registration:

const auto& d = p->getPluginDesciptor();

for(int i = 0; i < d.nCommands; ++i)

  CommandFactory::Instance().registerCommand( d.commandNames[i],

    MakeCommandPtr(d.commands[i]->clone()) );

At this point, you might recognize a dilemma we face with our plugins. Commands 

are allocated in a plugin, copied in the main program upon registration with the 

CommandRegistry via an allocation by the plugin’s clone() function, and then ultimately 

deleted by the main program when CommandRegistry’s destructor executes. Even 

worse, every time a command is executed, the CommandRegistry clones its prototype, 

triggering a new statement in the plugin via Command’s clone() function. The lifetime 

of this executed command is managed by the CommandManager through its undo and 

redo stacks. Specifically, when a command is cleared from one of these stacks, delete 

is called in the main program when the unique_ptr holding the command is destroyed. 

At least, that’s how it works without some tweaking. As was alluded to in Chapter 4, 

CommandPtr is more than a simple alias for unique_ptr<Command>. Let’s now finally 

describe the mechanics behind the CommandPtr alias and the MakeCommandPtr() 

function that allow correct plugin command memory management.

Fundamentally, we first need a function to call delete in the appropriate 

compilation unit. The easiest solution to this problem is to add a deallocate() virtual 

function to the Command class. The responsibility of this function is to invoke delete 

in the correct compilation unit when Commands are destroyed. For all core commands, 

the correct behavior is simply to delete the class in the main program. Hence, we do 

not make the deallocate() function pure virtual, and we give it the following default 

implementation:

void Command::deallocate()

{

  delete this;

}

For plugin commands, the override for the deallocate() has the same definition, 

only the definition appears in the plugin’s compiled code (say, in a base class used 

by commands in a particular plugin). Therefore, when deallocate() is invoked on 
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a Command pointer in the main application, the virtual function dispatch ensures that 

delete is called from the correct compilation unit. Now, we just need a mechanism to 

ensure that we call deallocate() instead of directly calling delete when Commands are 

reclaimed. Fortunately, it’s as if the standards committee anticipated our needs perfectly 

when they designed unique_ptr. Let’s return to the CommandPtr alias to see how unique_

ptr can be used to solve our problem.

Remarkably few lines of code are necessary to define a CommandPtr alias and to 

implement a MakeCommandPtr() function capable of invoking deallocate() instead of 

delete. The code makes use of unique_ptr’s deleter object (see sidebar), which enables 

a custom routine to be called to reclaim the resource held by the unique_ptr when the 

unique_ptr’s destructor is invoked. Let’s look at the code:

inline void CommandDeleter(Command* p)

{

    if(p) p->deallocate();

    return;

}

using CommandPtr = unique_ptr<Command, decltype(&CommandDeleter)>;

inline auto MakeCommandPtr(Command* p)

{

    return CommandPtr{p, &CommandDeleter};

}

A brief explanation of the preceding dense code is warranted. A CommandPtr is simply 

an alias for a unique_ptr that contains a Command pointer that is reclaimed by calling the 

CommandDeleter() function at destruction. The CommandDeleter() function invoked by 

the unique_ptr is a simple inline function that calls the virtual deallocate() function 

previously defined. To ease the syntactic burden of creating CommandPtrs, we introduce 

an inlined MakeCommandPtr() helper function that constructs a CommandPtr from a 

Command pointer. That’s it. Now, just as before, unique_ptrs automatically manage the 

memory for Commands. However, instead of directly calling delete on the underlying 

Command, the unique_ptr’s destructor invokes the CommandDeleter function, which 

calls deallocate(), which issues a delete on the underlying Command in the correct 

compilation unit.
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If you look at the source code for MakeCommandPtr(), in addition to the version of 

the function seen previously that takes a Command pointer argument, you will see a very 

different overload that uses a variadic template and perfect forwarding. This overloaded 

function must exist due to a different semantic usage of MakeCommandPtr() in the 

construction of stored procedures. We’ll revisit the reasoning behind the two forms of 

the function in Chapter 8. If the suspense is overwhelming, feel free to skip ahead to 

Section 8.1.2.

MODERN C++ DESIGN NOTE: UNIQUE_PTR DESTRUCTION SEMANTICS

The unique_ptr<T,D> class template is a smart pointer that models unique ownership of 

a resource. The most common usage specifies only the first template parameter, T, which 

declares the type of pointer to be owned. The second parameter, D, specifies a custom 

delete callable object that is invoked during the destruction of a unique_ptr. Let’s look at a 

conceptual model for the destructor for unique_ptr:

template<typename T, typename D = default_delete<T>>

class unique_ptr

{

  T* p_;

  D d_;

public:

  ~unique_ptr()

  {

    d_(p_);

  }

};

Rather than directly calling delete, unique_ptr’s destructor passes the owned pointer to 

the deleter using function call semantics. Conceptually, default_delete is implemented as 

follows:

template<typename T>

struct default_delete

{

  void operator()(T* p)
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  {

    delete p;

  }

};

That is, the default_delete simply deletes the underlying pointer contained by the 

unique_ptr. However, by specifying a custom deleter callable object during construction 

(the D template argument), unique_ptr can be used to free resources requiring customized 

deallocation semantics. As a trivial example, unique_ptr’s delete semantics allow us to 

create a simple RAII (resource acquisition is initialization) container class, MyObj, allocated by 

malloc():

  MyObj* m = static_cast<MyObj*>( malloc(sizeof(MyObj) ) );

  auto p = unique_ptr<MyObj, decltype(&free)>{m, &free};

Of course, our design for pdCalc shows another instance of the usefulness of the custom 

delete semantics of unique_ptr. It should be noted that shared_ptr also accepts a custom 

deleter in an analogous fashion.

7.2.2  �The Interface for Adding New GUI Buttons
Conceptually, dynamically adding buttons is not much different than dynamically 

adding commands. The main application does not know what buttons need to be 

imported from the plugin, so the Plugin interface must provide a virtual function 

providing a button descriptor. Unlike commands, however, the plugin does not actually 

need to allocate the button itself. Recall from Chapter 6 that the GUI CommandButton 

widget only requires text for construction. In particular, it needs the push button’s 

display text (optionally, the shifted state text) and the command text issued with the 

clicked() signal. Therefore, even for plugin commands, the corresponding GUI button 

itself resides entirely in the main application; the plugin must only provide text. This 

leads to the following trivial interface in the Plugin class:

class Plugin

{

public:

  struct PluginButtonDescriptor
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  {

    int nButtons;

    char** dispPrimaryCmd; // primary command label

    char** primaryCmd; // primary command

    char** dispShftCmd; // shifted command label

    char** shftCmd; // shifted command

  };

  virtual const PluginButtonDescriptor* getPluginButtonDescriptor() const = 0;

};

Again, due to the rules we must follow for plugins, the interface must be comprised of 

low-level arrays of characters rather than a higher-level, STL construct. Again, we could 

have alternatively provided an interface that used an array of structs rather than a struct 

of arrays.

One interesting facet of the getPluginButtonDescriptor() function relative to 

the getPluginDescriptor() is the decision to return a pointer rather than a reference. 

The rationale behind this choice is that a plugin writer might wish to write a plugin 

that exports commands that do not have corresponding GUI buttons (i.e., CLI-only 

commands). The converse, of course, is nonsensical. That is, I cannot envision why 

someone would write a plugin that exported buttons for nonexistent commands. This 

practicality is captured in the return type for the two descriptor functions. Since both 

functions are pure virtual, Plugin specializations must implement them. Because 

getPluginDescriptor() returns a reference, it must export a nonnull descriptor. 

However, by returning a pointer to the descriptor, getPluginButtonDescriptor() is 

permitted to return a nullptr indicating that the plugin exports no buttons. One might 

argue that the getPluginButtonDescriptor() function should not be pure virtual 

and instead provide a default implementation that returns a nullptr. This decision 

is technically viable. However, by insisting a plugin author manually implement 

getPluginButtonDescriptor(), the interface forces the decision to be made explicitly.

7.2.3  �Plugin Allocation and Deallocation
Our original problem was that the main program did not know the class name of plugin 

commands and therefore could not allocate them via a call to new. We solved this 

problem by creating an abstract Plugin interface responsible for exporting command 
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prototypes, command names, and sufficient information for the GUI to create buttons. 

Of course, to implement this interface, plugins must derive from the Plugin class, 

thereby creating a specialization, the name of which the main application cannot know 

in advance. Seemingly, we have made no progress and have returned to our original 

problem.

Our new problem, similar as it may be to the original problem, is actually much 

easier to solve. The problem is solved by creating a single extern "C" allocation/

deallocation function pair in each plugin with prespecified names that allocate/

deallocate the Plugin specialization class via the base class pointer. To satisfy these 

requirements, we add the following two functions to the plugin interface:

extern "C" void* AllocPlugin();

extern "C" void DeallocPlugin(void*);

Obviously, the AllocPlugin() function allocates the Plugin specialization and 

returns it to the main application, while the DeallocPlugin() function deallocates the 

plugin once the main application is finished using it. Curiously, the AllocPlugin() and 

DeallocPlugin() functions use void pointers instead of Plugin pointers. This interface 

is necessary to preserve C linkage since an extern "C" interface must conform to C 

types. An unfortunate consequence of maintaining C linkage is the necessity of casting. 

The main application must cast the void* to a Plugin* before using it, and the shared 

library must cast the void* back to a Plugin* before calling delete. Note, however, 

that we do not need the concrete Plugin’s class name. Thus, the AllocPlugin()/

DeallocPlugin() function pair solves our problem.

7.2.4  �The Plugin Command Interface
Technically, a special plugin command interface is not necessary. However, providing 

such an interface facilitates writing plugin commands that obey the C++ plugin rules. 

Specifically, by creating a PluginCommand interface, we assure plugin developers of two 

key features. First, we provide an interface that guarantees that plugin commands do 

not inherit from a command class that has any state (to avoid alignment problems). This 

property is obvious by construction. Second, we adapt the checkPreconditionsImpl() 

function to create an exception-free interface across the plugin boundary. With this 

guidance in mind, we present the PluginCommand interface:
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class PluginCommand : public Command

{

public:

  virtual ~PluginCommand();

private:

  virtual const char* checkPluginPreconditions() const noexcept = 0;

  virtual PluginCommand* clonePluginImpl() const noexcept = 0;

  void checkPreconditionsImpl() const override final;

  PluginCommand* cloneImpl() const override final;

};

While only mentioned briefly in Chapter 4, all of the pure virtual functions in 

the Command class are marked noexcept except for checkPreconditionsImpl() 

and cloneImpl() (see the sidebar on keyword noexcept). Therefore, to ensure 

that plugin commands do not originate exceptions, we simply implement the 

checkPreconditionsImpl() and cloneImpl() functions at the PluginCommand level of 

the hierarchy and create new, exception-free pure virtual functions for its derived classes 

to implement. checkPreconditionsImpl() and cloneImpl() are both marked final in 

the PluginCommand class to prevent specializations from inadvertently overriding either 

of these functions. The implementation for checkPreconditionsImpl() can trivially be 

written as follows:

void PluginCommand::checkPreconditionsImpl() const

{

  if( const char* p = checkPluginPreconditions() )

    throw Exception(p);

  return;

}

Note that the key idea behind the preceding implementation is that the PluginCommand 

class’s implementation resides in the main application’s compilation unit, while 

any specializations of this class reside in the plugin’s compilation unit. Therefore, 

via virtual dispatch, a call to checkPreconditionsImpl() executes in the main 

application’s compilation unit, and this function in turn calls the exception-free 

checkPluginPreconditions() function that resides in the plugin’s compilation unit.  
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If an error occurs, the checkPreconditionsImpl() function receives the error via a pointer 

return value and subsequently originates an exception from the main application’s 

compilation unit rather than from the plugin’s compilation unit. If no precondition fails, 

checkPluginPreconditions() returns a nullptr, and no exception is thrown.

A similar trivial implementation for cloneImpl() can be found in Command.cpp. 

Plugin commands that inherit from PluginCommand instead of Command, UnaryCommand, or 

BinaryCommand are much more likely to avoid violating any of the C++ plugin rules and 

are therefore much less likely to generate difficult-to-diagnose plugin-specific runtime 

errors.

MODERN C++ DESIGN NOTE: NOEXCEPT

The C++98 standard admits using exception specifications. For example, the following 

specification indicates that the function foo() does not throw any exceptions (the throw 

specification is empty):

void foo() throw();

Unfortunately, many problems existed with C++98 exception specifications. While they were 

a noble attempt at specifying the exceptions a function could throw, they often did not behave 

as expected. For example, the compiler never guaranteed exception specifications at compile 

time but instead enforced this constraint through runtime checks. Even worse, declaring a 

no throw exception specification could impact code performance. For these reasons and 

more, many coding standards were written declaring one should simply avoid exception 

specifications (see, e.g., Standard 75 in [34]).

While specifying which specifications a function can throw has proven not to be terribly 

useful, specifying that a function cannot throw any exceptions can be an important interface 

consideration. Fortunately, the C++11 standard remedied the exception specification mess by 

introducing the noexcept keyword. For an in-depth discussion of the uses of the noexcept 

specifier, see Item 14 in [24]. For our discussion, we’ll concentrate on the keyword’s 

usefulness in design.

Performance optimization aside, the choice to use noexcept in a function’s specification is 

largely a matter of preference. For most functions, no exception specification is the norm. Even 

if a function’s code does not itself emit exceptions, it is difficult to ensure statically that nested 

function calls within a function do not emit any exceptions. Therefore, noexcept is enforced 
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at runtime rather than guaranteed at compile time. Thus, my personal recommendation is to 

reserve the usage of the noexcept specifier for particular instances where making a strong 

statement about the intent of a function is necessary. pdCalc’s Command hierarchy illustrates 

several situations where not throwing an exception is important for correct operation. This 

requirement is codified in the interface to inform developers that throwing exceptions will lead 

to runtime faults.

7.2.5  �API Versioning
Invariably, over the lifetime of a long-lived application, the specification for plugins 

may change. This implies that a plugin written at one point in time may no longer 

function with an updated API version. For an application shipped as a single unit, the 

components composing the whole (i.e., the multiple shared libraries) are synchronized 

by the development schedule. For a complete application, versioning is used to express 

to the external world that the overall application has changed. However, because plugins 

are designed to be stand-alone from the main application’s development, synchronizing 

plugin releases with application releases may be impossible. Furthermore, the plugin 

API may or may not change with each application release. Therefore, to ensure 

compatibility, we must version the plugin API separately from the main application. 

While you may not anticipate changing the plugin API in the future, if you don’t add the 

ability to query plugins for their supported API version up front as part of the API itself, 

you’ll have to introduce a breaking change to add this feature later. Depending on your 

requirements, such a breaking change may not be feasible, and you’ll never be able to 

add API versioning. Therefore, even if it’s not used initially, adding a function to query a 

plugin’s supported API version in the plugin interface should be considered an implicit 

requirement. As is hopefully apparent, the API version is distinct from the application’s 

version.

The actual API version numbering scheme can be as simple or as complicated 

as is deemed appropriate. On the simple side, it can be a single integer. On the more 

complicated side, it can be a structure containing several integers for major version, 

minor version, etc. For pdCalc, I chose a simple structure utilizing only a major version 

and a minor version number. The interface code is given by the following:
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class Plugin

{

public:

  struct ApiVersion

  {

    int major;

    int minor;

  };

  virtual ApiVersion apiVersion() const = 0;

};

The main application simply calls the apiVersion() function before calling plugin 

functions to ensure the plugin is compatible. If incompatibility is detected, an error 

message can be displayed, and the incompatible plugin can be ignored or rejected. 

Alternatively, the main application can support multiple plugin versions, and the 

ApiVersion information informs the main application what functions the plugin 

supports.

7.2.6  �Making the Stack Available
Part of the plugin interface consists of making plugins and their commands discoverable 

to pdCalc. The other part of pdCalc’s plugin interface consists of making necessary parts 

of pdCalc’s functionality available to plugins. Specifically, the implementation of new 

commands requires access to pdCalc’s stack.

As we saw when we developed the core commands, commands require only very 

basic access to the stack. Specifically, they need the ability to push elements onto the 

stack, to pop elements off of the stack, and potentially to inspect elements from the stack 

(to implement preconditions). Our strategy for making this functionality available to the 

core commands was to implement the Stack class as a singleton with a public interface 

that included push, pop, and inspection member functions. However, this design fails to 

extend to plugin commands because it violates two of the C++ plugin rules. Namely, our 

current interface does not conform to C linkage (the stack provides a C++ class interface) 

and the current inspection function returns stack elements via an STL vector.
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The solution to this problem is quite trivial. We simply add a new interface to the 

stack (preferably in a specially designated header file) consisting of a collection of global 

(outside the pdCalc namespace) extern "C" functions that translate between C linkage 

and C++ class linkage (the adapter pattern again). Recall that since the Stack class was 

implemented as a singleton, neither the plugins nor the global helper functions need to 

own a Stack reference or pointer. The helper functions directly access the Stack through 

its Instance() function. I chose to implement the following five functions in a separate 

StackPluginInterface.m.cpp module interface file:

export module pdCalc.stackinterface;

extern "C" void StackPush(double d, bool suppressChangeEvent);

extern "C" double StackPop(bool suppressChangeEvent);

extern "C" size_t StackSize();

extern "C" double StackFirstElement();

extern "C" double StackSecondElement();

For simplicity, since my example plugin did not need deeper access to the stack than 

the top two elements, I created only two inspection functions, StackFirstElement() 

and StackSecondElement(), for getting the top two elements of the stack. If desired, a 

function returning the elements of the stack to any depth could have been implemented. 

To maintain extern "C" linkage, the implementer of such a function would need to 

remember to use a raw array of doubles rather than an STL vector.

The complete, straightforward implementations for the preceding five functions 

appear in the StackPluginInterface.cpp file. As an example, the implementation of the 

StackSize() function is given by the following:

size_t StackSize()

{

  return pdCalc::Stack::Instance().size();

}
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7.3  �Problem 2: Loading Plugins
As previously stated, plugins are platform specific, and, inherently, the loading of plugins 

requires platform-specific code. In this section, we will consider two topics. First, we’ll 

address the platform-specific code necessary for loading libraries and their respective 

symbols. Here, we’ll look at two platform interfaces: POSIX (Linux, UNIX, Mac OS X) and 

win32 (MS Windows). Second, we’ll explore a design strategy to mitigate the source code 

clutter often arising from the use of platform-specific code.

7.3.1  �Platform-Specific Plugin Loading
In order to work with plugins, we only need three platform-specific functions: a 

function to open a shared library, a function to close a shared library, and a function to 

extract symbols from an opened shared library. Table 7-1 lists these functions and their 

associated header file by platform. Let’s look at how these functions are used.

7.3.2  �Loading, Using, and Closing a Shared Library
The first step in using a plugin is asking the runtime system to open the library and make 

its exportable symbols available to the current working program. The open command on 

each platform requires the name of the shared library to be opened (POSIX also requires 

a flag specifying the desired symbol binding, either lazy or immediate), and it returns an 

opaque handle to the library, which is used to refer to the library in subsequent function 

calls. On a POSIX system, the handle type is a void*, while on a win32 system, the handle 

Table 7-1.  Plugin functions for different platforms

POSIX win32

header dlfcn.h windows.h

load library dlopen() LoadLibrary()

close library dlclose() FreeLibrary()

get library symbol dlsym() GetProcAddress()

Chapter 7  Plugins



204

type is an HINSTANCE (which, after some unraveling, is a typedef for a void*). As an 

example, the following code opens a plugin library, libPlugin.so, on a POSIX system:

void* handle = dlopen("libPlugin.so", RTLD_LAZY);

where the RTLD_LAZY option simply tells the runtime system to perform lazy binding, 

which resolves symbols as the code that references them is executed. The alternative 

option is RTLD_NOW, which resolves all undefined symbols in the library before dlopen() 

returns. The null pointer is returned if the open fails. A simple error handling scheme 

skips loading any functionality from a null plugin, warning the user that opening the 

plugin failed.

Aside from the different function names, the main platform-specific difference 

for opening a plugin is the canonical naming convention employed by the different 

platforms. For example, on Linux, shared libraries begin with lib and have a .so file 

extension. On Windows, shared libraries (usually called dynamically linked libraries, 

or, simply, DLLs) have no particular prefix and a .dll file extension. On Mac OS X, 

shared libraries conventionally are prefaced with lib and have the .dylib extension. 

Essentially, this naming convention matters only in two places. First, the build system 

should create plugins with an appropriate name for the respective platform. Second, 

the call to open a plugin should specify the name using the correct format. Since plugin 

names are specified at runtime, we need to ensure that plugin names are correctly 

specified by the user supplying the plugin.

Once a plugin has been opened, we’ll need to export symbols from the shared library 

in order to call the functions contained within the plugin. This export is accomplished by 

calling either dlopen() or LoadLibrary() (depending on the platform), either of which 

uses a plugin function’s string name to bind the plugin function to a function pointer. 

The bound plugin function is then called in the main application indirectly via this 

obtained function pointer.

In order to bind to a symbol in the shared library, we need to have a plugin handle 

(the return value from opening a plugin), to know the name of the function in the plugin 

we want to call, and to know the signature of the function we want to call. For pdCalc, the 

first plugin function we need to call is AllocPlugin() to allocate the embedded Plugin 

class (see Section 7.2.3). Because this function is declared as part of the plugin interface, 

we know both its name and its signature. As an example, on Windows, for an already-
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loaded plugin pointed to by HINSTANCE handle, we bind to the plugin’s AllocPlugin() 

function to a function pointer with the following code:

// function pointer of AllocPlugin's type:

extern "C" { typedef void* (*PluginAllocator)(void); }

// bind the symbol from the plugin

auto alloc = GetProcAddress(handle, "AllocPlugin");

// cast the symbol from void* (return of GetProcAddress)

// to the function pointer type of AllocPlugin

PluginAllocator allocator{ reinterpret_cast<PluginAllocator>(alloc) };

Subsequently, the plugin’s Plugin specialization is allocated by the following:

// only dereference if the function was bound properly

if(allocator)

{

  // dereference the allocator, call the function,

  // cast the void* return to a Plugin*

  auto p = static_cast<Plugin*>((*allocator)());

}

The concrete Plugin is now available for use (e.g., loading plugin commands, querying 

the supported plugin API) through the abstract Plugin interface.

An analogous sequence of code is required to bind and execute the plugin’s 

DeallocPlugin() function upon plugin deallocation. The interested reader is referred 

to the platform-specific code in the GitHub repository for the details. Remember that 

before deallocating a plugin, since commands allocated by the plugin are resident 

in memory in the main application (but must be reclaimed in the plugin), a plugin 

must not be closed until all of its commands are freed. Examples of plugin commands 

resident in the main application’s memory space are command prototypes in the 

CommandFactory and commands on the undo/redo stack in the CommandManager.

Since a plugin is an acquired resource, we should release it when we are finished 

using it. This action is performed on a POSIX platform by calling dlclose() and on a 

win32 platform by calling FreeLibrary(). For example, the following code for a POSIX 

system closes a shared library (the handle) that was opened with dlopen():

// only try to close a non-null library

if(handle) dlclose(handle);
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Now that we have discussed the platform-specific mechanics of opening, using, and 

closing plugins, we turn our attention to a design strategy that mitigates the inherent 

complications of working with multiplatform source code.

7.3.3  �A Design for Multiplatform Code
Portability across platforms is a laudable goal for any software project. However, 

achieving this goal while maintaining a readable code base requires significant 

forethought. In this section, we’ll examine some design techniques for achieving 

platform portability while maintaining readability.

�The Obvious Solution: Libraries

The obvious (and preferred) solution to the portability problem is to use a library 

that abstracts platform dependencies for you. Using a high-quality library for any 

development scenario always saves you the effort of having to design, implement, test, 

and maintain functionality required for your project. Using a library for cross-platform 

development has the additional benefit of hiding platform-specific code behind a 

platform-independent API. Such an API, of course, allows you to maintain a single 

code base that works seamlessly across multiple platforms without littering the source 

code with preprocessor directives. Although we did not explicitly discuss these merits 

in Chapter 6, Qt’s toolkit abstraction provides a platform-independent API for building 

a GUI, an otherwise platform-dependent task. In pdCalc, we used Qt to build a GUI 

that compiles and executes on Windows and Linux (and presumably OS X, although I 

have not verified that fact) without changing a single line of the source code between 

platforms.

Alas, the obvious solution is not always available. Many reasons exist for not 

incorporating libraries in a project. First, many libraries are not free, and the cost 

of a library may be prohibitive, especially if the license has usage fees in addition to 

development fees. Second, a library’s license may be incompatible with a project’s 

license. For example, maybe you are building a closed source code, but the only 

available library has an incompatible open source license (or vice versa). Third, 

libraries are frequently shipped without source code. Lacking source code makes 

extending a library’s functionality impossible. Fourth, you might require support for a 

library, but the vendor might not supply any. Fifth, a library may ship with an upgrade 

cycle incompatible with your own. Sixth, a library might be incompatible with your 
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toolchain. Finally, a library may not exist at all for the functionality you are seeking. 

Therefore, while using a library typically is the first choice to achieve portability, enough 

counterexamples to using a library exist to merit discussing how to achieve portability 

without one.

�Raw Preprocessor Directives

Using raw preprocessor directives is undoubtedly the first method tried when attempting 

to achieve cross-platform code. Nearly everyone who has written portable code probably 

started this way. Simply, everywhere platform-dependent code appears, the platform-

specific pieces are surrounded by preprocessor #ifdef directives. Let’s take, for example, 

the runtime loading of a shared library in both Linux and Windows:

#ifdef POSIX

  void* handle = dlopen("libPlugin.so", RTLD_LAZY);

#elif WIN32

  HINSTANCE handle = LoadLibrary("Plugin.dll");

#endif

Don’t forget the preprocessor directives surrounding the header files too:

#ifdef POSIX

  #include <dlfcn.h>

#elif WIN32

  #include <windows.h>

#endif

For a small number of platforms or for a very few instances, using raw preprocessor 

directives can be tolerable. However, this technique scales poorly. As soon as either the 

number of platforms or the number of code locations requiring platform-dependent 

code increases, using raw preprocessor directives quickly becomes a mess. The code 

becomes difficult to read, and finding all the platform-dependent locations when adding 

a new platform becomes a nightmare. In even a medium-sized project, sprinkling the 

code with #ifdefs quickly becomes untenable.
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�(Slightly) More Clever Preprocessor Directives

Where platform APIs are different in name but identical in function call arguments 

(more common than you might expect since similar functionality, unsurprisingly 

enough, requires similar customizations), we can be a little more clever in our usage 

of the preprocessor. Instead of placing the preprocessor directives at the site of every 

platform-dependent function call and type declaration, we can instead create platform-

dependent macro names and define them in a centralized location. This idea is better 

explained with an example. Let’s look at closing a shared library on Linux and Windows:

// some common header defining all platform dependent analogous symbols

#ifdef POSIX

  #define HANDLE void*

  #define CLOSE_LIBRARY dlclose

#elif WIN32

  #define CLOSE_LIBRARY FreeLibrary

  #define HANDLE HINSTANCE

#endif

// in the code, for some shared library HANDLE handle

CLOSE_LIBRARY(handle);

This technique is significantly cleaner than the naive approach of sprinkling #ifdefs 

at every function call invocation. However, it is severely limited by only working for 

function calls with identical arguments. Obviously, we would still need an #ifdef at the 

call site for opening a shared library because the POSIX call requires two arguments, 

while the Windows call requires only one. Certainly, with the abstraction capabilities of 

C++, we can do better.

�A Build System Solution

An interesting idea that seems appealing at first is to separate platform-specific code 

into platform-specific source files and then use the build system to choose the correct 

file based on the platform. Let’s consider an example. Place all of the Unix-specific code 

in a file called UnixImpl.cpp, and place all of the Windows-specific code in a file called 

WindowsImpl.cpp. On each respective platform, code your build scripts to only compile 

the appropriate platform-specific file. Using this technique, no platform preprocessor 

directives are required since any given source file only contains source for one platform.
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The preceding scheme suffers from two distinct drawbacks. First, the method only 

works if you maintain identical interfaces (e.g., function names, class names, argument 

lists) to your own source code across all platform-specific files on all platforms. This 

feat is easier said than done, especially if you have independent teams working and 

testing on each platform. Compounding the problem, because the compiler only 

sees the code for a single platform at any given time, there is no language mechanism 

(e.g., type system) to enforce these cross-platform interface constraints. Second, the 

mechanics of achieving cross-platform compatibility are completely opaque to any 

developer examining the source code on a single platform. On any one platform, only 

one of the many platform-dependent source files effectively exists, and this source file 

supplies no hint of the others’ existence. Of course, this latter problem exacerbates the 

former because the lack of cross-platform source transparency coupled with the lack 

of language support for the technique makes it nearly impossible to maintain interface 

consistency. For these reasons, a pure build system solution is intractable.

With the downsides of this technique noted, we must be careful not to throw out the 

baby with the bathwater, for the kernel of our final solution lies in a language-supported 

mechanism at the juxtaposition of both the preprocessor and the build system solutions. 

This design technique is examined in the following section.

�A Platform Factory Function

Scattering preprocessor macros throughout a code everywhere platform-specific 

functionality is required is analogous to using integer flags and switch statements to 

execute type-specific code. Not coincidentally, both problems have the same solution, 

which is to build an abstract class hierarchy and execute specific functionality via 

polymorphism.

We’ll build our solution to designing a general cross-platform architecture in two 

steps. First, we’ll design a platform hierarchy for handling dynamic loading. Second, 

we’ll extend this specific solution into a framework for abstracting platform dependence 

into a platform-independent interface. In both steps, we will employ a hybrid solution 

that utilizes the build system in a type-safe manner through a minimum use of platform-

specific preprocessor directives. Along the way, we’ll encounter an important design 

pattern, the abstract factory. Let’s start by examining the platform-independent dynamic 

loading of plugins.
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To address our specific problem, we start by first defining a platform-independent 

abstract interface for a DynamicLoader base class. Our DynamicLoader only needs to do 

two things: allocate and deallocate plugins. The base class is therefore trivially defined as 

follows:

class DynamicLoader

{

public:

  virtual ~DynamicLoader();

  virtual Plugin* allocatePlugin(const string& pluginName) = 0;

  virtual void deallocatePlugin(Plugin*) = 0;

};

The design intent of the preceding base class is that the hierarchy will be specialized by 

platform.

Notice that the interface itself is platform independent. The platform-dependent 

allocation and deallocation is an implementation detail handled by the platform-specific 

derived classes of this interface through the virtual functions. Furthermore, because 

each platform-specific implementation is wholly contained in a derived class, by placing 

each derived class in a separate file, we can use the build system to selectively compile 

only the file relevant for each platform, obviating the need for platform preprocessor 

directives anywhere within the hierarchy. Even better, once a DynamicLoader has been 

allocated, the interface abstracts away the platform-specific details of plugin loading, 

and the consumer of a plugin need not be concerned with plugin loading details. 

Loading just works. For the implementer of the derived classes of the DynamicLoader, 

the compiler can use type information to enforce interface consistency across platforms 

since each derived class must conform to the interface specified by the abstract base 

class, which is common to all platforms. The design is summarized pictorially in 

Figure 7-1. The included source code for pdCalc implements platform-specific loaders 

for a POSIX-compliant system and for Windows.

The preceding design hides platform-specific details behind an abstract interface, 

alleviating the need for a plugin consumer to understand how a plugin is loaded. 

That is, of course, assuming that the plugin consumer instantiates the correct 

platform-specific derived class, something that cannot be handled automatically by 

the DynamicLoader hierarchy. Here, we can use a familiar design pattern, the factory 
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function, to solve the problem of instantiating the correct derived class. Recall, the 

factory function is a pattern that separates type creation from the logical point of 

instantiation.

In Chapter 4, we defined a factory function that returned a specific type of Command 

based on a string argument. Here, the factory function is even simpler. Since our 

hierarchy is specialized by platform, rather than passing in a string to choose the 

appropriate derived class, we simply make the selection by using preprocessor 

directives:

Listing 7-1.  A dynamic loader factory function

unique_ptr<DynamicLoader> dynamicLoaderFactory()

{

#ifdef POSIX

  return make_unique<PosixDynamicLoader>();

#elif WIN32

  return make_unique<WindowsDynamicLoader>();

Figure 7-1.  The dynamic loader hierarchy for platform-independent plugin 
allocation and deallocation
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#else

  return nullptr;

#endif

}

By compiling the dynamicLoaderFactory() function into its own source file, we 

can achieve platform-independent plugin creation by isolating one set of preprocessor 

directives in one source file. The factory function is then called to return the correct type 

of DynamicLoader at the site where plugin allocation or deallocation is needed. By having 

the factory return a unique_ptr, we need not worry about memory leaks. The following 

code snippet illustrates the platform-independent usage of the DynamicLoader:

// Question: What platform?

auto loader = dynamicLoaderFactory();

// Answer: Who cares?

auto plugin = (loader ? loader->allocatePlugin(pluginName) : nullptr);

For the purposes of pdCalc, we could stop with the DynamicLoader hierarchy and our 

simple factory function. We only have the need to abstract one platform-dependent feature 

(the allocation and deallocation of plugins), and the preceding code is sufficient for this 

purpose. However, we’ve come this far, and it’s worth taking one extra step to see a generalized 

implementation of platform independence applicable to situations calling for a number of 

different platform-dependent features, even if it is not specifically needed for our case study.

�An Abstract Factory for Generalized  
Platform-Independent Code

As software developers, we are constantly faced with design challenges caused by 

platform dependence. The following is an incomplete list of common platform-specific 

programming tasks for a C++ developer: plugin loading, interprocess communication, 

navigation of the file system (standardized in C++17), graphics, threading (standardized 

in C++11), persistent settings, binary serialization, sizeof() built-in data types, 

timers (standardized in C++11), and network communication. Most, if not all, of the 

functionality on this list can be obtained through platform-independent APIs in libraries 

such as boost or Qt. For me personally, the platform-specific feature that has caused the 

most aggravation has been the humble directory separator ('/' on a POSIX system and 

'\' on a Windows system).
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Suppose our calculator had required the ability to read, write, and save persistent 

custom settings (see Chapter 8 for some reasons why this might be necessary for a 

calculator). Typically, Linux systems save settings in text files (e.g., on Ubuntu, user 

settings are saved in files in the .config directory in home), while on Windows systems, 

persistent settings are saved in the system registry. In practice, the best solution would 

be to use an existing library that has already implemented this abstraction (e.g., Qt’s 

QSettings class). For instructional purposes, we’ll assume that no external libraries are 

available, and we’ll examine a design that adds persistent settings (or any number of 

platform-dependent functionality) alongside our existing dynamic loader. Our focus will 

be on the abstraction rather than the specifics of the settings implementation on each 

platform.

The easy solution is to piggyback on our dynamic loader and simply add the 

necessary settings interface directly into the DynamicLoader class. Of course, we would 

need to rename the class to something more generic, such as OsSpecificFunctionality, 

with derived classes such as LinuxFuntionality and WindowsFunctionality. This 

method is simple, fast, and quickly intractable; it is antithetical to cohesion. For any 

sizable code, this technique eventually leads to uncontrollable bloat and, hence, a 

complete lack of maintainability of the interface. Despite time pressures on projects, I 

recommend always avoiding this quick solution, as it merely increases your technical 

debt and causes longer delays in the future than would be experienced in the present 

with a proper solution.

Instead of bloating our existing DynamicLoader class, we instead take inspiration 

from its design and create a separate, analogous settings hierarchy as depicted in 

Figure 7-2.

Again, we have the problem of instantiating a platform-specific derived class on each 

unique platform. However, instead of adding an additional settingsLoaderFactory() 

function to mirror the existing dynamicLoaderFactory() function, we instead seek a 

generalized solution that enables indefinite functional extension while preserving the 

single code point for platform selection. As expected, we are not the first programmers 

to encounter this particular problem, and a solution already exists, the abstract factory 

pattern.
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According to Gamma et al. [11], an abstract factory “provides an interface for 

creating families of related or dependent objects without specifying their concrete 

classes.” Essentially, the pattern can be constructed in two steps:

	 1.	 Create independent hierarchies (families) for each of the related 

objects (e.g., a dynamic loader hierarchy and a settings hierarchy, 

related by their platform dependence).

	 2.	 Create a hierarchy, specializing on the dependent relationship 

(e.g., the platform), that provides factory functions for each of the 

families.

I find the preceding abstraction very difficult to comprehend without a concrete 

example; therefore, let’s consider the problem we are trying to solve in pdCalc. As we 

walk through this example, we’ll refer to the (overly complex) class diagram in Figure 7-3.  

Recall that the overall goal of this abstraction is to create a single source location capable 

of providing a platform-independent mechanism for creating any number of platform-

specific specializations.

As we’ve already seen, the platform-dependent functionality can be abstracted 

into parallel, independent hierarchies. These hierarchies enable platform-dependent 

implementations to be accessed through platform-independent base class interfaces 

via polymorphism. For pdCalc, this pattern translates into providing platform 

agnostic Settings and DynamicLoader hierarchies to abstract persistent settings 

and dynamic loading, respectively. For example, we can allocate and deallocate a 

plugin polymorphically through the abstract DynamicLoader interface, provided the 

system instantiates the correct underlying derived class (PosixDynamicLoader or 

WindowsDynamicLoader) based on the platform. This part of the abstract factory is 

represented by the DynamicLoader hierarchy in Figure 7-3.

Figure 7-2.  The settings hierarchy for platform-independent persistent settings
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The problem now reduces to instantiating the correct derived class based on the 

current platform. Instead of providing separate factory functions to instantiate the 

DynamicLoader and Settings objects (a decentralized approach requiring separate 

platform #ifdefs in each factory), we instead create a hierarchy that provides an abstract 

interface for providing the factory functions necessary to create the DynamicLoader and 

Settings objects. This abstract factory hierarchy (the PlatformFactory hierarchy in 

Figure 7-3) is then specialized on the platform so that we have platform-specific derived 

classes of the factory hierarchy that create platform-specific derived classes of the 

functional hierarchies. This scheme centralizes the platform dependence into a single 

factory function that instantiates the correct PlatformFactory specialization. In pdCalc’s 

implementation, I chose to make the PlatformFactory a singleton and thereby “hide” 

the PlatformFactory’s factory function in the Instance() function.

The abstract factory pattern might still not make a lot of sense, so let’s look at some 

sample code, viewing the abstraction in a top-down fashion. Ultimately, the abstract 

factory pattern enables us to write the following platform-independent, high-level code 

in pdCalc:

// PlatformFactory Instance returns either a PosixFactory or a

// WindowsFactory instance (based on the platform), which in turn

// creates the correct derived DynamicLoader

auto loader = PlatformFactory::Instance().createDynamicLoader();

Figure 7-3.  The abstract factory pattern applied to pdCalc
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// The correctly instantiated loader provides platform specific

// dynamic loading functionality polymorphically through a platform

// independent interface

auto plugin = loader->allocatePlugin(pName);

// ...

loader->deallocatePlugin(plugin);

// Same principle for settings...

auto settings = PlatformFactory::Instance().createSettings();

settings->readSettingsFromDisk();

// ...

settings->commitSettingsToDisk();

Drilling down, the first function we’ll examine is the PlatformFactory’s Instance() 

function, which returns either a PosixFactory or a WindowsFactory, depending on the 

platform.

PlatformFactory& PlatformFactory::Instance()

{

#ifdef POSIX

  static PosixFactory instance;

#elif WIN32

  static WindowsFactory instance;

#endif

  return instance;

}

The preceding function is doing something subtle but clever, and it’s a trick worth 

knowing. From the client’s perspective, PlatformFactory looks like an ordinary 

singleton class. One calls the Instance() function, and a PlatformFactory reference 

is returned. Clients then use the PlatformFactory’s public interface as they would any 

other singleton class. However, because the Instance() member function returns a 

reference, we are free to use the instance polymorphically. Since PosixFactory and 

WindowsFactory both derive from PlatformFactory, the instance variable instantiated 

is the specialization that matches the platform as defined by the #ifdef in the 

implementation. We have cleverly disguised an implementation detail, the mechanics 

of the abstract factory pattern, from the user of the class. Unless the client noticed that 
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the factory functions in the PlatformFactory are pure virtual, they would probably not 

realize they were consuming an object-oriented hierarchy. Of course, the goal is not to 

hide anything from the user in a nefarious plot to obscure the implementation. Rather, 

this use of information hiding is utilized to reduce the cognitive burden on the client of 

the PlatformFactory.

We next examine the trivial implementations of the createDynamicLoader() 

functions in the PosixFactory and WindowsFactory classes (note the covariant return 

type of the functions):

unique_ptr<DynamicLoader> PosixFactory::createDynamicLoader()

{

  return make_unique<PosixDynamicLoader>();

}

unique_ptr<DynamicLoader> WindowsFactory::createDynamicLoader()

{

  return make_unique<WindowsDynamicLoader>();

}

Previously, we’ve simply replaced the dynamic loader factory function (see Listing 7-1)  

by a class hierarchy, replacing the platform #ifdefs with polymorphism. With only 

one piece of functionality dependent on the platform, the replacement of a factory 

function with an abstract factory is certainly overkill. However, for our example, we have 

the independent DynamicLoader and Settings families both dependent on the same 

platform criterion (in principle, we could have any number of such hierarchies), and the 

abstract factory pattern allows us to centralize the platform dependency in one location 

(here, in the PlatformFactory’s Instance() function) instead of scattering it through 

multiple independent factory functions. From a maintenance standpoint, the value 

proposition is similar to preferring polymorphism to switch statements.

The final piece of the puzzle is the implementations of both the DynamicLoader and 

Settings hierarchies. Fortunately, these implementations are identical to the ideas 

outlined in Section 7.3.3, and we need not repeat their implementations here. Using the 

abstract factory pattern indeed adds no inherent complication to the implementation of 

platform-dependent functions. The pattern only adds mechanics around the instantiation 

of these classes via a single factory hierarchy instead of a sequence of factory functions.

In the source code in pdCalc’s repository, no Settings hierarchy (or its associated 

readSettingsFromDisk() and commitSettingsToDisk() functions in PlatformFactory) 
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implementation exists because pdCalc, as written, has no need for a persistent settings 

abstraction. The Settings hierarchy was merely manufactured as a plausible example 

to demonstrate concretely the mechanics and relevance of the abstract factory pattern. 

That said, I did opt to include a full abstract platform factory implementation in pdCalc’s 

code for the DynamicLoader alone just to illustrate a practical implementation of the 

abstract factory pattern even though a simpler single factory function would have 

sufficed and been preferred for production code.

7.4  �Problem 3: Retrofitting pdCalc
We now turn to the final plugin problem, which is retrofitting the already-developed 

classes and interfaces to accommodate adding calculator functionality dynamically. This 

problem is not about plugin management. Rather, the problem we are addressing here 

is extending pdCalc’s module interfaces to accept plugin features. Essentially, where 

Section 7.2 defined how to discover commands and buttons in a plugin, this section 

describes how to incorporate these newly discovered commands into pdCalc.

7.4.1  �Injecting Commands
Let’s begin by creating an interface to enable the injection of newly discovered 

plugin commands. Recall from Chapter 4 that core commands are loaded into 

the CommandFactory when the application starts. First, the main application 

calls the RegisterCoreCommands() function. Second, within this function, the 

registerCommand() function of the CommandFactory class is called for each core 

command, registering the command’s name and a command prototype with the 

CommandFactory. In Section 7.2, we developed an interface for exporting command 

names and command prototypes from plugins. Obviously, to register these plugin 

commands, we simply need to extend the command dispatcher module’s interface 

to include the existing registerCommand() function so that the code responsible for 

loading plugins can also register their commands. Since the CommandFactory partition 

of the commandDispatcher module was already being exported (in order to export the 

RegisterCoreCommands() function), achieving the needed interface change to the 

command dispatcher module is accomplished by simply exporting the CommandFactory 

class from the CommandFactory partition. It really is that easy.
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In hindsight, the need to export both the CommandFactory class and the 

RegisterCoreCommands() function explains why the RegisterCoreCommands() 

was placed in the CommandFactory partition. Originally, I had implemented the 

RegisterCoreCommands() in the CoreCommands partition, but I moved it when I realized 

that the CoreCommands partition would otherwise not need to be exported from the 

commandDispatcher module.

7.4.2  �Adding Plugin Buttons to the GUI
Recall at the outset of this section that we outlined two problems to be solved in retrofitting 

pdCalc for plugins. The first problem, which we just solved, was how to add plugin 

commands to the CommandFactory after a plugin is loaded. The solution turned out to be 

quite trivial since we had already written the necessary function and needed only to extend 

the module’s defined public interface. The second problem involves retrofitting pdCalc to 

be able to add buttons to the GUI that correspond to plugin commands.

By the design of our command dispatcher, once a command is registered, it can be 

executed by any user interface raising a commandEntered() event with the command’s 

name as the event’s argument. Hence, for the CLI, a plugin command can be executed 

by the user by typing in its name. That is, plugin commands become immediately 

accessible to the CLI as soon as they are registered. Making a plugin command 

accessible in the GUI, of course, is slightly more complicated because a button that can 

raise a commandEntered() event must be created for each discovered plugin command.

In Section 7.2, we defined an interface for labeling CommandButtons. Each plugin 

provides a PluginButtonDescriptor that defines the primary command label, the 

secondary command label, and the underlying commands associated with the labels. 

Therefore, in order to add a new GUI button corresponding to a plugin command, we 

must simply extend the interface of the GUI’s MainWindow class to include a function for 

adding buttons based on their labels:

class MainWindow : public QMainWindow, public UserInterface

{

public:

  // Existing interface plus the following:

  void addCommandButton(const string& dispPrimaryCmd,

    const string& primaryCmd, const string& dispShftCmd,

    const string& shftCmd);

};
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Of course, this function will also need to layout the buttons based on some suitable 

algorithm. My trivial algorithm simply places buttons left to right with four buttons in a 

row.

Unlike the registerCommand() function of the CommandRegistry, the 

addCommandButton() was not a preexisting public function of the MainWindow class. 

Therefore, we must add and implement this new function. In all likelihood, a modular 

implementation of the GUI would have already had a similar function somewhere in 

the GUI module, as this functionality was already required to create buttons for core 

commands. Therefore, implementation of the addCommandButton() function might be 

as trivial as forwarding this call from the MainWindow to the appropriate internal GUI 

class, where the function may have already existed. Because of the current limitations 

of Qt, we were not using C++ modules to encapsulate the GUI. The addition of the 

addCommandButton() to the pubic section of the MainWindow class is sufficient to extend 

the logical module.

7.5  �Incorporating Plugins
Thus far, we have discussed guidelines for C++ plugins, the plugin interface, plugin 

command memory management, loading and unloading plugins, design patterns 

for abstracting platform-dependent code behind interfaces, and retrofitting pdCalc 

to enable plugin command and GUI injection. However, we are yet to discuss any 

mechanism for finding plugins, actually loading and unloading plugins from disk, 

managing the lifetime of plugins, or injecting plugin functionality into pdCalc. These 

operations are performed by a PluginLoader class and the main() function of the 

application, both of which are now described.

7.5.1  �Loading Plugins
Loading plugins is accomplished by a PluginLoader class. The PluginLoader 

is responsible for finding plugin dynamic library files, loading the plugins into 

memory, and serving the concrete Plugin specializations to pdCalc, on demand. The 

PluginLoader is also responsible for deallocating plugin resources at the appropriate 

times. As we’ve seen previously, a good design will implement automatic deallocation 

via RAII.
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The first step in loading plugins is determining which plugins should be loaded and 

when. Really, only two practical options exist to answer this question. Either plugins 

are loaded automatically by pdCalc when the program starts (e.g., files specified in a 

configuration file or all DLLs in a specific directory), or plugins are loaded on demand 

by direct user requests. Of course, these options are not mutually exclusive, and a 

PluginLoader class could be designed that incorporates both options, possibly with the 

ability for the user to direct which manually loaded plugins should be automatically 

loaded in the future. There is no right or wrong answer to how plugins are loaded. The 

decision must be addressed by the program’s requirements.

For simplicity, I chose to implement a plugin loader that automatically loads  

plugins during pdCalc’s startup. The PluginLoader finds these plugins by reading an 

ASCII configuration file comprised of lines of text each individually listing the file name 

of a plugin. The configuration file is arbitrarily named plugins.pdp, and this file must 

be located in the current executable path. Plugin files listed in plugins.pdp can be 

specified using either a relative or absolute path. A more sophisticated plugin loader 

implementation would probably store the location of the plugin file in an operating 

system–specific configuration location (e.g., the Windows registry) and use a better file 

format, such as XML or JSON. A good library, like Qt, can help you parse files and find 

system-specific configuration files using a platform-independent abstraction.

As was previously mentioned in Section 7.1.1, plugins traditionally have different 

naming conventions on different platforms. For pdCalc, I chose to require the user to specify 

the platform-dependent file name of each plugin in the plugins.pdp file. An alternative 

would have been to require users to specify a platform-independent root name for each 

plugin and have pdCalc reconstruct the platform-dependent name on each platform. Had 

we chosen this latter route, we would have been able to cleanly implement this feature by 

extending the abstract platform factory with a plugin name builder hierarchy.

With the preceding plugin loader design constraints in mind, the PluginLoader 

interface is quite trivial:

export module pdCalc.pluginManagement;

export class PluginLoader

{

public:

  void loadPlugins(UserInterface& ui, const string& pluginFileName);

  const vector<const Plugin*> getPlugins();

};
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The loadPlugins() function takes the name of the configuration file as input, loads 

each library into memory, and allocates an instance of each library’s Plugin class. The 

UserInterface reference is solely for error reporting. When the main() function is 

ready to inject the plugins’ commands, the getPlugins() function is called to return a 

collection of loaded Plugins. Of course, the loadPlugins() and getPlugins() functions 

could be combined, but I prefer a design that enables the programmer to retain finer-

tuned control over the timing of plugin loading vs. plugin usage. My implementation 

of the PluginLoader makes use of a few clever techniques for using RAII to manage 

the automatic deallocation of the plugins. As the implementation here is orthogonal to 

the design, the interested reader is referred to the PluginLoader.m.cpp source file for 

details.

7.5.2  �Injecting Functionality
Having decided that plugins should be loaded automatically from a configuration file, 

the most logical placement for plugin loading is somewhere in the main() function (or 

a helper function called by main()). Essentially, this loadPlugins() function simply 

puts together all of the pieces we have previously discussed: loading plugin libraries, 

loading plugins, extracting commands and buttons from the plugin descriptors, and 

injecting these commands and buttons into pdCalc. Of course, a proper implementation 

will also perform error checking on the plugins. For example, error checking might 

include checking the plugin API version, ensuring the commands have not already been 

registered, and ensuring the GUI buttons correspond to commands in the command 

factory. The following code snippet is a skeleton of a function for loading plugins. Its 

inputs are a UserInterface reference for reporting errors and a PluginLoader reference.

void setupPlugins(UserInterface& ui, PluginLoader& loader)

{

  loader.loadPlugins(ui, "plugins.pdp");

  auto plugins = loader.getPlugins();

  for(auto p : plugins)

  {

    auto apiVersion = p->apiVersion();

    // verify plugin API at correct level

    // inject plugin commands into CommandFactory - recall
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    // the cloned command will auto release in the plugin

    auto descriptor = p->getPluginDescriptor();

    for( auto i : views::iota(0, descriptor.nCommands) )

    {

      registerCommand(ui, descriptor.commandNames[i],

        MakeCommandPtr(descriptor.commands[i]->clone()) );

    }

    // if gui, setup buttons

    auto mw = dynamic_cast<MainWindow*>(&ui);

    if(mw)

    {

      auto buttonDescriptor = p->getPluginButtonDescriptor();

      if(buttonDescriptor)

      {

        for( auto i : views::iota(0, buttonDescriptor->nButtons) )

        {

          auto b = *buttonDescriptor;

          // check validity of button commands

          mw->addCommandButton(b.dispPrimaryCmd[i], b.primaryCmd[i],

            b.dispShftCmd[i], b.shftCmd[i]);

        }

      }

    }

  }

  return;

}

After a long chapter describing how to implement C++ plugins, the denouement is 

somewhat anticlimactic, as most of the mechanics are handled at deeper layers of the 

abstraction. Of course, this “boringness,” as we’ve learned in this book, is only achieved 

through meticulous design. Simplicity is always more difficult to achieve than the code 

itself indicates. Had any complications leaked through at this high-level abstraction, it 

would surely have implied an inferior design.
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7.6  �A Concrete Plugin
After a long discussion explaining how to incorporate native C++ plugins into pdCalc, 

we’ve finally reached the point where we can implement a concrete plugin. Based 

on our requirements from Chapter 1, we need to write a plugin that adds commands 

for the natural logarithm, its inverse exponentiation algorithm, and the hyperbolic 

trigonometric functions. Of course, you should feel free to add plugins encompassing 

any functionality you might like. For example, two interesting plugins might be a 

probability plugin and a statistics plugin. The probability plugin could compute 

permutations, combinations, factorials, and random numbers, while the statistics plugin 

could compute mean, median, mode, and standard deviation. For now, however, we’ll 

simply consider the design and implementation of our hyperbolic, natural log plugin.

7.6.1  �Plugin Interface
The implementation of the HyperbolicLnPlugin is actually quite straightforward. We’ll 

begin with the interface for the class and then, uncharacteristically, examine a few 

implementation details. The code chosen for further examination highlights particular 

details relevant to native C++ plugins.

The interface for HyperbolicLnPlugin is given by the class definition specializing the 

Plugin class and the required plugin allocation and deallocation functions:

class HyperbolicLnPlugin : public pdCalc::Plugin

{

public:

  HyperbolicLnPlugin();

  ~HyperbolicLnPlugin();

private:

  const PluginDescriptor& getPluginDescriptor() const override;

  const PluginButtonDescriptor* getPluginButtonDescriptor()

    const override;

  pdCalc::Plugin::ApiVersion apiVersion() const;

};

extern "C" void* AllocPlugin();

extern "C" void DeallocPlugin(void*);
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As expected, the class implements the three pure virtual functions in the Plugin 

class. The AllocPlugin() and DeallocPlugin() functions have their obvious 

implementations. The AllocPlugin() simply returns a new HyperbolicLnPlugin 

instance, while the DeallocPlugin() function casts its void* argument to a Plugin* and 

subsequently calls delete on this pointer. Note that plugins are, by definition, not part of 

the main program and should therefore not be part of the pdCalc namespace. Hence, the 

explicit namespace qualification in a few locations.

The responsibility of the HyperbolicLnPlugin class is simply to serve plugin 

descriptors on demand and manage the lifetime of the objects needed by the 

descriptors. The PluginDescriptor provides command names and the corresponding 

Commands implemented by the plugin. These Commands are described in Section 7.6.3. 

The PluginButtonDescriptor for the plugin simply lists the names of the Commands as 

defined by the PluginDescriptor and the corresponding labels to appear on the GUI 

buttons. Because the commands in the HyperbolicLnPlugin all have natural inverses, 

we simply label each button with a forward command and attach the secondary (shifted) 

command to the inverse. I used the obvious labels for the commands provided by the 

plugin: sinh, asinh, cosh, acosh, tanh, atanh, ln, and exp. Whether you choose ln for the 

primary and exp as the secondary or vice versa is simply a matter of preference.

For reasons already discussed, plugin descriptors transfer content without using 

STL containers. Where we would normally prefer to use vectors and unique_ptrs in the 

interface to manage resources, we are forced instead to use raw arrays. Of course, the 

encapsulation provided by our class enables us to use whatever memory management 

scheme we desire in the implementation. For the HyperbolicLnPlugin, I chose a 

complicated scheme of automatic memory management using strings, unique_ptrs, 

and vectors. The advantage of using an RAII memory management scheme is that 

we can be assured that the plugin will not leak memory in the presence of exceptions 

(namely, an out of memory exception thrown during construction). Realistically, I would 

not expect the calculator to be executed in a low-memory environment, and even if it 

were, it’s unclear leaking memory during plugin allocation would matter much since the 

user’s likely next action in this situation would be to reboot their computer. Therefore, in 

retrospect, a simpler memory management scheme with naked news in the constructor 

and deletes in the destructor would probably have been more pragmatic.
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7.6.2  �Source Code Dependency Inversion
Surprisingly, the preceding class declaration for HyperbolicLnPlugin is indeed the 

complete interface to the plugin. I say surprisingly because, at first glance, one might be 

surprised that the plugin’s interface bears no relationship to the functionality the plugin 

provides. Of course, this situation is exactly as it should be. The calculator functionality 

that the plugin provides is indeed merely an implementation detail and can be 

contained entirely within the plugin’s implementation file.

The preceding subtlety, namely, that pdCalc knows only the interface to a plugin and 

nothing about the functionality itself, should not be overlooked. As a matter of fact, this 

source code dependency inversion is the entire point of plugin design. What exactly is 

source code dependency inversion and why is it important? To answer this question, we 

must first embark on a short history lesson.

Traditionally (think 1970s Fortran), code was extended by simply writing new 

functions and subroutines. The primary design problem with this approach was that 

requiring the main program to call new functions bound the main program to the 

concrete interface of any extension. Thus, the main program became dependent 

on interface changes defined by the whims of extension authors. That is, every new 

extension defined a new interface to which the main program had to conform. This setup 

was extremely brittle because the main program required constant modification to keep 

pace with the changes to its extensions’ interfaces. Since each new extension required 

unique modifications to the main program’s source code, the complexity of the main 

program’s code for handling extensions grew linearly with the number of extensions. 

If that wasn’t bad enough, adding new functionality always required recompiling and 

relinking the main program. In concrete terms, imagine a design for pdCalc that would 

require modifying, recompiling, and relinking pdCalc’s source code every time a new 

plugin command was added.

The preceding problem can be solved without object-oriented programming via 

function pointers and callbacks, albeit in a somewhat inelegant and cumbersome 

fashion. However, with the rise of object-oriented programming, specifically, inheritance 

and polymorphism, the solution to the dependency problem was solved in a type-safe 

manner with language support. These techniques enabled the popularization of source 

code dependency inversion. Specifically, source code dependency inversion states 

that the main program defines an interface (e.g., the plugin interface we’ve studied in 

this chapter) to which all extensions must conform. Under this strategy, the extensions 

become subservient to the main program’s interface rather than the reverse. Hence, 
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the main program can be extended via plugins without modifying, recompiling, or 

relinking the main program’s source code. More importantly, however, the interface 

for extensibility is dictated by the application rather than its plugins. In concrete terms, 

pdCalc provides the Plugin interface class to define the addition of new functionality, 

but pdCalc is never aware of the implementation details of its extensions. A plugin that 

does not conform to pdCalc’s interface is simply unable to inject new Commands.

7.6.3  �Implementing HyperbolicLnPlugin’s Functionality
By this stage in the game, we know that the HyperbolicLnPlugin will provide 

its functionality by implementing a command class for each operation. After 

implementing a few of these classes, one would quickly notice that all of the 

commands in the plugin are unary commands. Unfortunately, based on our third 

rule of C++ plugins (assume incompatible alignment), we cannot inherit from the 

UnaryCommand class and instead must inherit from the PluginCommand class. Note that 

our alignment assumption even precludes using the UnaryCommand class via multiple 

inheritance, and we must reimplement the unary command functionality in our 

HyperbolicLnPluginCommand base class. While this does feel a bit duplicative, the rules 

for C++ plugins leave us with no alternatives (although we could provide source code 

for a UnaryPluginCommand and a UnaryBinaryCommand, but these would have to be 

separately compiled with each plugin).

We, therefore, finally arrive at the interface class from which all commands within 

the HyperbolicLnPlugin derive:

class HyperbolicLnPluginCommand : public pdCalc::PluginCommand

{

public:

  HyperbolicLnPluginCommand() = default; // ???? see sidebar

  explicit HyperbolicLnPluginCommand(const HyperbolicLnPluginCommand&

    rhs);

  virtual ~HyperbolicLnPluginCommand() = default;

  void deallocate() override;

protected:

  const char* checkPluginPreconditions() const noexcept override;
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private:

  void executeImpl() noexcept override;

  void undoImpl() noexcept override;

  HyperbolicLnPluginCommand* clonePluginImpl() const noexcept override;

  virtual HyperbolicLnPluginCommand* doClone() const = 0;

  virtual double unaryOperation(double top) const = 0;

  double top_;

};

As with the UnaryCommand class, the HyperbolicLnPluginCommand class 

implements the pure virtual executeImpl() and undoImpl() commands, delegating 

the command operation to the pure virtual unaryOperation() function. Additionally, 

the HyperbolicLnPluginCommand class implements the checkPluginPreconditions() 

function to ensure at least one number is on the stack before the command is called. 

The function is protected so that a subclass can directly override the precondition 

function if it must implement any additional preconditions yet still call the base class’s 

checkPluginPreconditions() to make the unary command precondition check.

The deallocate() and clonePluginImpl() functions have obvious implementations 

but play critical roles in the plugin. The deallocate() function is simply implemented as

void HyperbolicLnPluginCommand::deallocate()

{

  delete this;

}

Recall that the point of the deallocate() function is to force memory deallocation 

of the plugin’s commands in the plugin’s compilation unit. It is called via the 

CommandDeleter() function when the unique_ptr holding a command is destroyed.

The clonePluginImpl() function is given by

HyperbolicLnPluginCommand*

HyperbolicLnPluginCommand::clonePluginImpl() const noexcept

{

  HyperbolicLnPluginCommand* p;

  try
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  {

    p = doClone();

  }

  catch(...)

  {

    return nullptr;

  }

  return p;

}

The sole purpose of this function is to adapt the cloning of a plugin command to ensure 

that exceptions do not cross the memory boundary between the plugin and the main 

application.

All that remains to complete the HyperbolicLnPlugin is to subclass 

HyperbolicLnPluginCommand for each mathematical operation required in the plugin 

and implement the few remaining pure virtual functions (unaryOperation(), doClone(), 

and helpMessageImpl()). Once we have gotten to this point, the implementation 

of these functions is no different than the implementation of the unary functions of 

Chapter 4. The interested reader is referred to the source code in HyperbolicLnPlugin.

cpp for details.
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MODERN C++ DESIGN NOTE: DEFAULTING SPECIAL FUNCTIONS

Some member functions are special in that if you don’t provide an implementation, the 

compiler is able to provide one for you. The only member functions for which this is permitted 

are the default constructor, the copy constructor, the move constructor, the default destructor, 

the copy assignment, the move assignment, and the comparison operations. Why do we need 

the = default syntax when the compiler can provide these operations automatically? Really, 

there are two primary reasons. First, sometimes default implementation is suppressed. For 

example, the default constructor is only automatically generated if no other constructor is 

provided. Therefore, if you provide an alternative constructor but still want the compiler to 

automatically generate a default constructor for you, you must manually instruct it to do so. 

The second reason the default keyword is useful is for clarity. Formerly, in instances where 

the compiler would implement a special member function for you, you could either allow it to 

do so silently (possibly confusing novices) or implement it manually, unnecessarily writing the 

same code the compiler could have written for you. The new syntax affords you the ability to 

be explicit by declaring the existence of a special function but also efficient by “implementing” 

it via = default.

7.7  �Next Steps
After a rather long discussion about C++ plugins and with the implementation of 

the hyperbolic trigonometric and natural logarithm plugin, we have completed the 

requirements for pdCalc set forth in Chapter 1. The calculator, as originally described, 

is complete, and we’re ready to release! However, as experienced software developers, 

we know that any “finished” product is just a temporary milestone before the customer 

requests new features. The next chapter handles this exact situation, where we’ll modify 

our design to incorporate unplanned extensions.
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CHAPTER 8

New Requirements
It’s a beautiful Monday morning, and you just stepped into work after a relaxing 

weekend. After all, you just finished pdCalc on Friday, and now you are ready to ship. 

Before you can sit down and have your morning cup of coffee, your project manager 

steps into your office and says, “We’re not done. The client requested some new 

features.”

The preceding scenario is all too common in software development. While new 

features probably won’t be requested on the go-live date, new features will almost 

inevitably be requested well after you have completed large parts of both your design 

and your implementation. Therefore, one should develop as defensively as practical 

to anticipate extensibility. I say as defensively as practical rather than as defensively as 

possible because overly abstract code can be as much of a detriment to development as 

overly concrete code. Often, it is easier to simply rewrite an inflexible code if the need 

arises than it is to maintain a highly flexible one for no reason. In practice, we seek to 

strike a balance for code to be both simple and maintainable yet somewhat extensible.

In this chapter, we’ll explore modifying our code to implement features beyond the 

design of the original requirements. The discussion of the new features introduced in 

this chapter ranges from full design and implementation to design only to suggestions 

merely for self-exploration. Let’s begin with two extensions that we’ll take from 

requirements all the way through implementation.

8.1  �Fully Designed New Features
In this section, we’ll examine two new features: batch operation of the calculator and 

execution of stored procedures. We’ll begin with batch operation.
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8.1.1  �Batch Operation
For those few unfamiliar with the term, let’s define batch operation. Batch operation 

of any program is simply the execution of the program, from beginning to end, without 

interaction from the user once the program is launched. Most desktop programs do not 

run in batch mode. However, batch operation is still very important in many branches of 

programming, such as scientific computing. Perhaps of greater interest, for those of you 

employed by large corporations, your payroll is probably run by a program operating in 

batch mode.

Let’s be honest. Batch operation for pdCalc, other than maybe for testing, is not a 

very useful extension. I’ve included it mainly because it demonstrates how trivially a 

well-designed CLI can be extended to add a batch mode.

Recall from Chapter 5 that pdCalc’s CLI has the following public interface:

class Cli : public UserInterface

{

public:

  Cli(istream& in, ostream& out);

  ~Cli();

  void execute(bool suppressStartupMessage = false, bool echo = false);

};

To use the CLI, the class is constructed with cin and cout as the arguments, and 

execute() is called with empty arguments:

Cli cli{cin, cout};

// setup other parts of the calculator

cli.execute();

How do we modify the Cli class to enable batch operation? Amazingly, we do not need 

to modify the class’s code at all! By design, the CLI is essentially a parser that simply 

takes space-separated character input from an input stream, processes the data through 

the calculator, and generates character output to an output stream. Because we had the 

forethought not to hard-code these input and output streams as cin and cout, we can 

convert the CLI to a batch processor by making the input and output streams to be file 

streams as follows:
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ifstream fin{inputFile};

ofstream fout{outputFile};

Cli cli{fin, fout};

// setup other parts of the calculator

cli.execute(true, true);

where inputFile and outputFile are file names that could be acquired through 

command line arguments to pdCalc. Recall that the arguments to the execute() 

function simply suppress the startup banner and echo commands to the output.

Yes, that really is it (but see main.cpp for a few implementation tricks). Our CLI was 

built originally so that it could be converted to a batch processor simply by changing its 

constructor arguments. You could, of course, argue that I, as the author, intentionally 

designed the Cli class this way because I knew the calculator would be extended in 

this manner. The reality is, however, that I simply construct all of my CLI interfaces with 

stream inputs rather than hard-coded inputs because this design makes the CLI more 

flexible with nearly no additional cognitive burden.

Before leaving this section, I’ll quickly note that the reality is that pdCalc’s CLI, with 

an assist from the operating system, already had a batch mode. By redirecting input and 

output at the command line, we can achieve the same results:

my_prompt> cat inputFile | pdCalc --cli > outputFile

For Windows, simply replace the Linux cat command with the Windows type 

command.

8.1.2  �Stored Procedures
Adding a batch mode to pdCalc was, admittedly, a somewhat contrived example. The 

added functionality was not terribly useful, and the code changes were trivial. In this 

section, we’ll examine a more interesting feature extension, stored procedures.

What is a stored procedure? In pdCalc, a stored procedure is a stored, repeatable 

sequence of operations that operate on the current stack. Stored procedures provide a 

technique to expand the calculator’s functionality by creating user-defined functions 

from existing calculator primitives. You can think of executing a stored procedure as 

being analogous to running a very simple program for the calculator. The easiest way to 

understand the concept is to consider an example.
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Suppose you need to frequently calculate the hypotenuse of a triangle. For the right 

triangle depicted in Figure 8-1, we can compute the length of the hypotenuse, c, using 

the Pythagorean formula: c a b� �2 2 .

Suppose we had a triangle with sides a = 4, b = 3, and these values were entered onto 

pdCalc’s stack. In the CLI, you would see the following:

Top 2 elements of stack (size = 2):

2:      3

1:      4

In order to compute c for this triangle, we would implement the following sequence of 

instructions: dup * swap dup * + 2 root. After hitting enter, the final result would be

Top element of stack (size = 1):

1:      5

If the commands were entered one at a time, we would see the intermediate results stack 

every time we pressed enter. Had we entered all of the commands on a single line and 

then pressed enter, pdCalc would display each intermediate stack before showing the 

final result. Note, of course, that this command sequence is not unique. The same result 

could have been achieved using, for example, the command sequence 2 pow swap 2 

pow + 2 root.

If you are anything like me, if you had to compute hypotenuses with pdCalc 

repeatedly, you would probably want to automate the operation after the first manual 

computation. That is precisely what stored procedures allow. Not only does automation 

save time, but it is also less error prone since stored procedures that encapsulate many 

Figure 8-1.  A right triangle
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consecutive commands can be written, tested, and subsequently reused. Provided the 

operation can be assembled from pdCalc primitives (including plugin functions), stored 

procedures enable extending the calculator’s functionality to compute simple formulas 

without needing to write any C++ code. Now we just need to design and implement this 

new feature.

�The User Interface

pdCalc has both a GUI and a CLI, so adding any user facing feature will require 

some modification to both user interface components. For stored procedures, the 

modifications to the user interfaces are remarkably minor. First, a stored procedure is 

simply a text file containing an ordered sequence of pdCalc instructions. Therefore, a 

user can create a stored procedure using any plain text editor. Thus, unless you want to 

provide a stored procedure text editor with syntax highlighting, the user interface for 

stored procedures reduces to enabling their execution from the CLI and the GUI.

Let’s first address incorporating stored procedures in the CLI. As previously stated, 

stored procedures are simply text files in the file system. Recall that the CLI works by 

tokenizing space-separated input and then passing each token individually to the command 

dispatcher by raising an event. Therefore, a trivial method for accessing a stored procedure 

is simply to pass the name of the stored procedure file to the CLI. This file name will then 

be tokenized like any other command or number and passed to the command dispatcher 

for processing. To ensure that the file name is interpreted by the command dispatcher as a 

stored procedure rather than a command, we simply prepend the symbol proc: to the file 

name and change the command dispatcher’s parser. For example, for a stored procedure 

named hypotenuse.psp, we would issue the command proc:hypotenuse.psp to the CLI. I 

adopted the file extension psp as a shorthand for pdCalc stored procedure. Naturally, the file 

itself is an ordinary ASCII text file containing a sequence of commands for calculating the 

hypotenuse of a right triangle, and you can use the txt extension if you prefer.

Recall that the GUI is designed to pass commands to the command dispatcher 

identically to the CLI. Therefore, to use a stored procedure, we add a button that opens 

a dialog to navigate the file system to find stored procedures. Once a stored procedure 

is selected, we prepend proc: to the file name and raise a CommandEntered event. 

Obviously, you can make your stored procedure selection dialog as fancy as you would 

like. I opted for a simplistic design that permits typing the name of the file into an 

editable combo box. For ease of use, the combo box is prepopulated with any files in the 

current directory with a .psp extension.
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�Changes to the Command Dispatcher Module

The following is an abbreviated listing of CommandInterpreter’s executeCommand() 

function including the logic necessary for parsing stored procedures. The omitted 

portions of the code appear in Section 4.5.2.

void CommandInterpreter::CommandInterpreterImpl::executeCommand(const

string& command)

{

  string_view sv{command};

  // handle numbers, undo, redo, help in nested if

  // ...

  else if( command.size() > 6 && sv.starts_with("proc:") )

  {

    string filename{sv.substr(5, command.size() - 5)};

    handleCommand( MakeCommandPtr<StoredProcedure>(ui_, filename) );

  }

  // else statement to handle Commands from CommandFactory

  // ...

  return;

}

From the preceding code listing, we see that the implementation simply peels off the 

proc: from the string command argument to create the stored procedure file name, 

creates a new StoredProcedure class, and executes this class. For now, we’ll assume 

that making the StoredProcedure class a subclass of the Command class is the optimal 

design. We’ll discuss why this strategy is preferred and examine its implementation in 

the following sections. However, before we get there, let’s discuss this new overload of 

the MakeCommandPtr() function.

In Section 7.2.1, we first saw a version of MakeCommandPtr given by the following 

implementation:

inline void CommandDeleter(Command* p)

{

  if(p) p->deallocate();

  return;

}
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using CommandPtr = std::unique_ptr<Command, decltype(&CommandDeleter)>;

inline auto MakeCommandPtr(Command* p)

{

  return CommandPtr{p, &CommandDeleter};

}

The preceding function is a helper function used to create CommandPtrs from raw 

Command pointers. This form of the function is used to create a CommandPtr from the 

cloning of an existing Command (e.g., as in CommandFactory::allocateCommand()):

auto p = MakeCommandPtr( command->clone() );

Semantically, however, in CommandInterpreterImpl::executeCommand(), we see a 

completely different usage, which is to construct a named instance of a class derived 

from Command. Certainly, we can meet this use case with the existing MakeCommandPtr 

prototype. For example, we could create a StoredProcedure as follows:

auto c = MakeCommandPtr(new StoredProcedure{ui, filename});

However, whenever possible, we would prefer not to pollute high-level code with naked 

news. We therefore seek to implement an overloaded helper function that can perform 

this construction for us. Its implementation is given by the following:

Listing 8-1.  Generic perfect forwarding constructor

template<typename T, typename... Args>

auto MakeCommandPtr(Args&&... args)

requires std::derived_from<T, Command>

{

  return CommandPtr{new T{std::forward<Args>(args)...}, &CommandDeleter};

}

Prior to C++11, no simple and efficient technique existed for constructing generic types 

with variable numbers of constructor arguments, as is necessary to create any one of 

the possible classes derived from the Command class, each having different constructor 

arguments. Modern C++, however, provides an elegant solution to this problem using 

variadic templates and perfect forwarding. This construct is the subject of the following 

sidebar.
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MODERN C++ DESIGN NOTE: VARIADIC TEMPLATES AND PERFECT FORWARDING

Variadic templates and perfect forwarding each solve different problems in C++. Variadic 

templates enable type-safe generic function calls with unknown numbers of typed arguments. 

Perfect forwarding enables correct type forwarding of arguments to underlying functions 

inside of template functions. The mechanics of each of these techniques can be studied in 

your favorite C++11 reference text (e.g., [30]). In this sidebar, we’ll examine a type-safe, 

generic design technique for constructing concrete objects that require different numbers of 

constructor arguments. This technique is enabled by the combination of variadic templates 

and perfect forwarding. Due to a lack of naming creativity, I named this pattern the generic 

perfect forwarding constructor (GPFC). Let’s begin by presenting the underlying problem that 

GPFC solves.

Let’s consider every author’s favorite overly simplified object-oriented programming example, 

the shapes hierarchy:

class Shape

{

public:

  virtual double area() const = 0;

};

class Circle : public Shape

{

public:

  Circle(double r) : r_{r} {}

  double area() const override { return 3.14159 * r_ * r_; }

private:

  double r_;

};

class Rectangle : public Shape

{

public:

  Rectangle(double l, double w) : l_{l}, w_{w} {}

  double area() const override { return l_ * w_; }
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private:

  double l_, w_;

};

In C++, substitutability, implemented as virtual dispatch, solves the problem of needing 

to call a derived type’s specific implementation via a base class pointer using an interface 

guaranteed by the base class. In the shapes example, substitutability implies the ability to 

compute the area as follows:

double area(const Shape& s)

{

  return s.area();

}

for any class derived from Shape. The exact interface for the virtual function is fully 

prescribed, including the number and type of any function arguments (even in the vacuous 

case as in the area() function in this example). The problem, however, is that object 

construction can never be “virtualized” in this manner, and even if it could, it wouldn’t work 

since the information necessary to construct an object (its arguments) is very frequently 

different from one derived class to the next.

Enter the generic perfect forwarding constructor pattern. In this pattern, we use variadic 

templates to provide a type-safe interface that can take any number of constructor arguments 

with different types. The first template argument is always the type we want to construct. 

Then, perfect forwarding is used to guarantee the arguments are passed to the constructor 

with the correct types. Precisely why perfect forwarding is necessary in this situation derives 

from how types are deduced in templates and is beyond the scope of this discussion (see [24]  

for details). For our shapes example, applying the GPFC pattern results in the following 

implementation:

template<typename T, typename... Args>

auto MakeShape(Args&&... args)

{

  return make_unique<T>(forward<Args>(args)...);

}
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The following code illustrates how the MakeShape() function can be used to create different 

types with different numbers of constructor arguments:

auto c = MakeShape<Circle>(4.0);

auto r = MakeShape<Rectangle>(3.0, 5.0);

Note that the GPFC pattern also works for creating classes not related to each other in an 

inheritance hierarchy. The GPFC pattern, in fact, is used by the make_unique() function 

in the standard library for making unique_ptrs in an efficient, generic manner without 

requiring a naked new. While they are, strictly speaking, distinct, I like to think of the GPFC 

pattern as the generic analogue of the factory method.

The astute reader will have noticed the peculiar requires clause following the 

function declaration in Listing 8-1. New to C++20, the requires clause introduces a 

constraint that specifies a compile time requirement on a template parameter. In the 

case of Listing 8-1, we are requiring that the type T must be derived from Command. 

Constraints are a component of concepts, a new language feature of C++20. Concepts are 

briefly addressed in the following sidebar.

MODERN C++ DESIGN NOTE: CONCEPTS

Concepts, a very prominent new feature of C++20, are used for adding requirements to 

template types. Concepts do not feature prominently in this book because pdCalc does not 

incorporate many templates in its implementation. However, because of the significance of 

concepts in the new standard, I’ve chosen to mention them briefly in a sidebar to illustrate 

why you might use them.

Templates have existed in the C++ language for decades, and during their entire existence, 

programmers have all had the same complaint: template errors result in long, indecipherable 

compiler error messages. Why were poor error messages uniform across compilers? The 

answer is essentially because type errors are generally found deep in the call stack and not at 

the first line where the type is used. At the point where the error occurs, too much context is 

lost to give a succinct message.

Concepts fix the preceding problem by constraining the acceptable template type at the point 

of use. These requirements can either be added as a constraint via a requires clause or by 

using a requires clause (or conjunctions thereof) to build a restricted template type called 
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a concept. If you choose to use concepts in your template code (and you probably should), 

don’t start from scratch. The C++20 concepts library predefines many concepts, such as the 

derived_from concept used in Listing 8-1.

Let’s reexamine the code in Listing 8-1 from the context of concepts and the requires 

clause. In the first edition of this book, because concepts were not yet a language feature, 

the exact same function was presented unconstrained. That is, Listing 8-1 was identical 

except the requires clause was not present. For both versions of the source code, when a 

class derived from Command is passed to MakeCommandPtr(), the same compiled code is 

generated. The real benefit of concepts is when errors are made.

Consider a default constructible dummy class A that does not derive from Command, and 

further consider the following erroneous function call:

auto p = MakeCommandPtr<A>();

Using gcc, calling the constrained version of MakeCommandPtr() results in the following 

“friendly” error:

note: 'pdCalc::Command' is not a base of 'A'

I wrote friendly in quotes because gcc gives a huge template expansion error but at least 

contains the useful comment that Command is not a base of A as a note at the end of the error, 

which is precisely why this code does not compile. Now let’s contrast that with the same call 

but to the unconstrained version of MakeCommandPtr(). This time, the final error appearing is

note: candidate expects 0 arguments, 2 provided

return CommandPtr{new T{std::forward<Args>(args)...}, &CommandDeleter};

which really does not explain why this function call failed. Before the introduction of concepts 

to the language, experienced programmers simply got used to bad template error messages. 

My personal strategy for diagnosing template errors was to use the compiler to find the 

offending line of source code, ignore all messages the compiler produced, and just think hard 

about why that line caused an error. Such techniques are impossible for novices; concepts are 

a big improvement.
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Before concluding this sidebar, it is worth noting that instead of using the requires clause 

in Listing 8-1, we could have created a concept and constrained the template parameter to 

MakeCommandPtr() instead. This strategy would have resulted in the following alternative 

code:

template<typename T>

concept PdCalcCommand = std::derived_from<T, Command>;

template<PdCalcCommand T, typename... Args>

auto MakeCommandPtr(Args&&... args)

{

  return CommandPtr{new T{std::forward<Args>(args)...}, &CommandDeleter};

}

I chose to use the requires clause directly instead of creating a concept because the concept 

was not used anywhere else in the code. That is, the code did not benefit conceptually from 

a PdCalcCommand; it only needed a single constraint on MakeCommandPtr. The use of the 

requires clause therefore seemed simpler, deferring once again to design by Occam’s razor.

�Designing the StoredProcedure Class

We now return to the thorny problem of designing the StoredProcedure class. The 

first question we ask is, do we need a class at all? We already have a design for parsing 

individual commands, executing them, and placing them on an undo/redo stack. Maybe 

the correct answer is to treat a stored procedure in a manner similar to the treatment 

of batch input. That is, during an interactive session (either GUI or CLI), handle stored 

procedures by reading the stored procedure file, parsing it, and executing the commands 

in batch (as we would a long line with multiple commands in the CLI) without 

introducing a new StoredProcedure class.

The aforementioned design can be dismissed almost immediately after considering 

the following very simple example. Suppose you implemented a stored procedure for 

computing the area of a triangle. The stored procedure’s input would be the base and 

height of the triangle on the stack. triangleArea.psp is given by the following:

*

0.5

*
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If we did not have a StoredProcedure class, then each of the commands in 

triangleArea.psp would be executed and entered, in order, on the undo/redo stack. 

For the values 4 and 5 on the I/O stack, forward execution of the stored procedure would 

yield the correct result of 10, and an undo stack as depicted in Figure 8-2. Based on 

this undo stack, if the user tried to undo, rather than undoing the triangle area stored 

procedure, the user would undo only the top operation on the stack, the final multiply. 

The I/O stack would read

4

5

0.5

(and the undo stack would have a * between the 5 and 0.5) instead of

4

5

To fully undo a stored procedure, the user needs to press undo n times, where n is equal 

to the number of commands in the stored procedure. The same deficiency is present for 

the redo operation. In my opinion, the expected behavior for undoing a stored procedure 

should be to undo the entire procedure and leave the I/O stack in its state prior to 

executing the stored procedure. Hence, the design for handling stored procedures not 

employing a StoredProcedure class fails to implement undo and redo properly and 

must therefore be discarded.

Figure 8-2.  The undo stack without a StoredProcedure class
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�The Composite Pattern

Essentially, in order to solve the undo/redo problem with stored procedures, we 

need a special command that encapsulates multiple commands but behaves as a 

single command. Fortunately, the composite pattern solves this dilemma. According 

to Gamma et al. [11], the composite pattern “lets clients treat individual objects and 

compositions of objects uniformly.” Typically, the composite pattern refers to treed data 

structures. I prefer a looser definition where the pattern may be applied to any data 

structure admitting uniform treatment of composite objects.

Figure 8-3 illustrates the composite pattern in its general form. The Component 

class is an abstract class that requires some action to be performed. This action can 

be performed individually by a Leaf node or by a collection of Components known as a 

Composite. Clients interact with objects in the component hierarchy polymorphically 

through the Component interface. Both Leaf nodes and Composite nodes handle 

doSomething() requests indistinguishably from the client’s point of view. Usually, 

Composites implement doSomething() by simply calling the doSomething() command 

for Components (either Leafs or nested Composites) it holds.

In our particular concrete case, the Command class takes the role of the Component, 

concrete commands such as Add or Sine take the role of Leaf nodes, and the 

StoredProcedure class is the composite. The doSomething() command is replaced by 

the executeImpl() and undoImpl() pair of pure virtual functions. I suspect combining 

the command and composite patterns in this fashion is rather common.

Figure 8-3.  General form of the composite pattern
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Previously, we learned that in order to properly implement the undo/redo strategy 

for stored procedures, a class design was necessary. Application of the composite 

pattern, as described previously, motivates subclassing the StoredProcedure class 

from the Command class. Let’s now design a StoredProcedure class and examine its 

implementation as a concrete application of the composite pattern.

�A First Attempt

A common approach to implementing the composite pattern is via recursion. The 

Composite class holds a collection of Components, often either via a simple vector or 

perhaps something more complex such as nodes in a binary tree. The Composite’s 

doSomething() function simply iterates over this collection calling doSomething() for 

each Component in the collection. The Leaf nodes’ doSomething() functions actually 

do something and terminate the recursion. Although not required, the doSomething() 

function in the Component class is often pure virtual.

Let’s consider the preceding approach for implementing the composite pattern for 

StoredProcedures in pdCalc. We have already established that pdCalc’s Command class is 

the Component and that the concrete command classes, such as Add, are the Leaf classes. 

Therefore, we need only to consider the implementation of the StoredProcedure class 

itself. Note that since the current implementation of the Component and Leaf classes can 

be used as is, the composite pattern can be trivially applied to extend the functionality of 

an existing code base.

Consider the following skeletal design for the StoredProcedure class:

class StoredProcedure : public Command

{

private:

  void executeImpl() noexcept override;

  void undoImpl() noexcept override;

  vector<unique_ptr<CommandPtr>> components_;

};
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The executeImpl() command would be implemented as follows:

void StoredProcedure::executeImpl()

{

  for(auto& i : components_)

    i->execute();

  return;

}

undoImpl() would be implemented analogously but with a reverse iteration over the 

component_ collection.

Does the preceding design solve the undo/redo problem previously encountered 

when entering stored procedure commands directly onto the undo/redo stack 

without a StoredProcedure class? Consider the undo stack shown in Figure 8-4 for the 

triangleArea.psp example that we previously examined. The stored procedure, shown 

as SP in the figure, appears as a single object in the undo stack rather than as individual 

objects representing its constituent commands. Hence, when a user issues an undo 

command, the CommandManager will undo the stored procedure as a single command by 

calling the stored procedure’s undoImpl() function. This stored procedure’s undoImpl() 

function, in turn, undoes the individual commands via iteration over its container 

of Commands. This behavior is precisely what was desired, and this application of the 

composite pattern indeed solves the problem at hand.

To complete the implementation of the StoredProcedure class, we need to parse 

the stored procedure file’s string commands (with error checking) and use them to 

populate the StoredProcedure’s components_ vector. This operation could be written 

in the StoredProcedure’s constructor, and the implementation would be both valid 

and complete. We would now have a StoredProcedure class that could transform string 

commands into Commands, store them in a container, and be able to execute and undo 

Figure 8-4.  The undo stack using a StoredProcedure class
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these stored Commands on demand. In other words, we would have essentially rewritten 

the CommandInterpreter! Instead, let’s consider an alternative design that implements 

the StoredProcedure class by reusing the CommandInterpreter class.

�A Final Design for the StoredProcedure Class

The goal in this design is to reuse the CommandInterpreter class as is. Relaxing 

this constraint and modifying the CommandInterpreter’s code can clean up the 

implementation slightly, but the essence of the design is the same either way. Consider 

the following modified skeletal design of the StoredProcedure class:

class StoredProcedure : public Command

{

private:

  void executeImpl() noexcept override;

  void undoImpl() noexcept override;

  std::unique_ptr<Tokenizer> tokenizer_;

  std::unique_ptr<CommandInterpreter> ci_;

  bool first_ = true;

};

The present design is almost identical to our previous design except the components_ 

vector has been replaced by a CommandInterpreter and the need for a tokenizer has 

been made explicit. Good thing we wrote our tokenizer to be reusable in Chapter 5!

We are now prepared to see the complete implementations of executeImpl() and 

undoImpl(). Note that while the following implementation does not use the canonical 

version of the pattern seen previously, this implementation of the StoredProcedure class 

is still simply an application of the composite pattern. First, let’s examine executeImpl():

void StoredProcedure::executeImpl() noexcept

{

  if(first_)

  {

    ranges::for_each( *tokenizer_,

      [this](auto c){ci_->commandEntered(c);} );

    first_ = false;

  }
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  else

  {

    for(auto i = 0u; i < tokenizer_->nTokens(); ++i)

      ci_->commandEntered("redo");

  }

  return;

}

The first time that executeImpl() is called, the tokens must be extracted from 

the tokenizer and executed by the StoredProcedure’s own CommandInterpreter. 

Subsequent calls to executeImpl() merely request the StoredProcedure’s 

CommandInterpreter to redo the forward execution of each of the StoredProcedure’s 

commands. Remember, StoredProcedure’s executeImpl() function will itself 

be called by pdCalc’s CommandInterpreter; hence, our design calls for nested 

CommandInterpreter’s. Figure 8-5 shows this design for the triangle area stored 

procedure example, where CI represents the CommandInterpreter.

The implementation of StoredProcedure’s undoImpl() is trivial:

void StoredProcedure::undoImpl() noexcept

{

  for(auto i = 0u; i < tokenizer_->nTokens(); ++i)

    ci_->commandEntered("undo");

  return;

}

Figure 8-5.  The undo stack using nested CommandInterpreters
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Undo is implemented by requesting the underlying CommandInterpreter to undo the 

number of commands in the stored procedure.

Before concluding our discussion of the final StoredProcedure class, we 

should consider tokenization of the commands within the StoredProcedure class. 

The tokenization process for a StoredProcedure involves two steps. The stored 

procedure file must be opened and read followed by the actual tokenization of the 

text stream. This process needs to be performed only once per StoredProcedure 

instantiation, at initialization. Therefore, the natural placement for tokenization is 

in the StoredProcedure’s constructor. However, placement of tokenization in the 

StoredProcedure’s constructor creates an inconsistency with pdCalc’s error handling 

procedure for commands. In particular, pdCalc assumes that commands can be 

constructed, but not necessarily executed, without failure. If a command cannot 

be executed, the expectation is that this error is handled by checking a command’s 

preconditions. Can tokenization fail? Certainly. For example, tokenization would 

fail if the stored procedure file could not be opened. Therefore, in order to maintain 

consistency in error handling, we implement tokenization in StoredProcedure’s 

checkPreconditionsImpl() function, which will be called when pdCalc’s 

CommandInterpreter first attempts to execute the stored procedure. Since tokenization 

needs to be performed once, we only perform the operation on the first execution of the 

checkPreconditionsImpl() function. The complete implementation can be found in 

the StoredProcedure.cpp file.

8.2  �Designs Toward a More Useful Calculator
Up until now, all of the discussion about pdCalc has focused on the design and 

implementation of a completed code available for download from GitHub. The 

remainder of this chapter, however, marks a departure from this style. Henceforth, we 

will discuss only ideas for extensions and suggestions for how pdCalc might be modified 

to accommodate new features. Not only is working code not provided, but working code 

was not created before writing these sections. Therefore, the designs we’re about to 

discuss have not been tested, and the adventurous reader choosing to complete these 

extensions may discover the ideas to be discussed are suboptimal, or, dare I say, wrong. 

Welcome to the wild west of designing features from a blank slate! Experimentation and 

iteration will be required.

Chapter 8  New Requirements



250

8.2.1  �Complex Numbers
The original design specification for the calculator called for double-precision numbers, 

and we designed and implemented the calculator explicitly to handle only double-

precision numbers. However, requirements change. Suppose your colleague, an 

electrical engineer, drops by your office, falls in love with your calculator, but requires a 

calculator that handles complex (imaginary) numbers. That’s a reasonable request, so 

let’s look at how we might refactor our calculator to satisfy this new feature.

Adding complex numbers requires four main modifications to pdCalc: using a 

complex number representation internally instead of representing numbers as doubles, 

changing input and output (and, by extension, parsing) to accommodate complex 

numbers, modifying pdCalc’s stack to store complex numbers instead of doubles, and 

modifying commands to perform their calculations on complex numbers instead of 

real valued inputs. The first change, finding a C++ representation for complex numbers, 

is trivial; we’ll use std::complex<double>. A number with only a real part will simply 

be stored as a complex<double> with its imaginary part set to 0. The other three 

changes are less trivial. Let’s now look in more depth at some design options capable of 

accommodating these changes.

�Modifying Input and Output

Of all the required changes, modifying the I/O routines is actually the easiest. The first 

item to be addressed is how will complex numbers be interpreted and presented. For 

example, do we want a complex number, c, to be represented as c = re + im * i 

(maybe the imaginary number should be j since the feature request came from an 

electrical engineer)? Perhaps we prefer using c = (re, im) or a variant that uses 

angle brackets or square brackets instead. There is no correct answer to this question. 

Although some choices might be easier to implement than others, since this choice is 

merely a convention, in practice, we would defer resolution to our customer. For our 

case study, we’ll simply adopt the convention c = (re, im).

We’ll only discuss modifying the command line version of the I/O. Once the 

infrastructure to handle complex numbers is in place for the CLI, adapting the GUI should 

be reasonably straightforward. The first problem that we encounter is the Tokenizer class. 

The original design for this class simply tokenized by splitting input on whitespace. However, 

for complex numbers, this scheme is insufficient. For example, complex numbers would be 

tokenized differently based on whether or not a space was inserted after the comma.
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At some point, input becomes sufficiently complex that you’ll need to employ 

a language grammar and migrate the simple input routines to a “real” scanner and 

parser (possibly using libraries such as lex and yacc). Some might argue that by adding 

complex numbers, we have reached this level of complexity. However, I think that 

we can probably scrape by with our existing simple input tokenizer if we modify the 

tokenize() routine to scan for the ‘(’ token and create one “number” token for anything 

between and including the opening and closing parenthesis. Obviously, we would need 

to perform some basic error checking to ensure correct formatting. Another alternative 

would be to decompose the input stream based on regular expression matching. This is 

essentially how lex operates, and I would investigate using lex or a similar library before 

writing a sophisticated scanner from scratch.

The next input problem we encounter is parsing of numbers in 

CommandInterpreterImpl’s executeCommand() function. Currently, a string argument 

(the token) is passed to this function, and the string is parsed to determine if it is a 

number or a command. Upon inspection, we can see that executeCommand() will work 

for complex numbers if we modify isNum() to identify and return complex numbers 

instead of floating-point numbers. Finally, the EnterNumber command will need to be 

updated to accept and store a complex<double>.

That takes care of modifying the input routines, but how do we modify the 

output routines? Recall that the Cli class is an (indirect) observer of the Stack’s 

stackChanged() event. Whenever the Stack raises this event, the Cli’s stackChanged() 

function will be called to output the current stack to the command line. Let’s examine 

how Cli::stackChanged() is implemented. Essentially, the CLI calls back to the stack to 

fill a container with the top nElements using the following function call:

auto v = Stack::Instance().getElements(nElements);

A string, s, and corresponding back_inserter, bi, are then created and filled first with 

some stack metadata and then with the stack elements using the following code:

for( auto j = v.size(); auto i : views::reverse(v) )

{

  std::format_to(bi, "{}:\t{:.12g}\n", j--, i);

}
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Finally, s is posted to the CLI’s output routine, which outputs it to the CLI’s 

output stream. Once Stack’s getElements() function is modified to return a 

vector<complex<double>> and the output formatting is changed accordingly, Cli’s 

stackChanged() function will work as expected. Very few changes are actually required – 

that’s the beauty of well-designed and well-implemented code.

�Modifying the Stack

In Chapter 3, we originally designed the calculator’s stack to operate only on double-

precision variables. Clearly, this limitation means the Stack class must now be 

refactored in order to handle complex numbers. At the time, we questioned the logic 

of hard-coding the target data type for the stack, and I recommended not designing a 

generic Stack class. My suggestion was, in general, to not design generic interfaces until 

the first reuse case is clearly established. Designing good generic interfaces is generally 

harder than designing specific types, and from my personal experience, I’ve found that 

serendipitous reuse of code infrequently comes to fruition. However, for our Stack class, 

the time to reuse this data structure for another data type has come, and it is prudent, 

at this point, to convert the Stack’s interface into a generic interface rather than merely 

refactor the class to be hard-coded for complex numbers.

Making the Stack class generic is almost as easy as you might expect. The first step is 

to make the interface itself generic by replacing explicit uses of double with our generic 

type T. The interface becomes

template<typename T>

class Stack : private Publisher

{

public:

  static Stack& Instance();

  void push(T, bool suppressChangeEvent = false);

  T pop(bool suppressChangeEvent = false);

  void swapTop();

  std::vector<T> getElements(size_t n) const;

  void getElements(size_t n, std::vector<T>&) const;

  using Publisher::attach;

  using Publisher::detach;

};
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In general, the required implementation changes are straightforward. Uses of double 

are replaced with T, and the uses of the Stack class within pdCalc obviously must be 

refactored to use the generic rather than the nontemplated interface.

The last part of the interface that requires modification is the five global extern "C" 

helper functions added in Chapter 7 for exporting stack commands to plugins. Because 

these functions must have C linkage, we cannot make them templates nor can they 

return the C++ complex type in place of a double. The first problem is not quite as dire 

as it may appear at first glance. While our goal is to make the Stack class generic and 

reusable, the stack’s plugin interface does not need to be generic. For any particular 

version of pdCalc, either one that operates on real numbers or one that operates on 

complex numbers, only one particular instantiation of Stack<T> will exist in the system, 

and this one instantiation will have a particular realization for T. Therefore, the C 

linkage interface to the stack for pdCalc needs to only reflect the choice of T used in the 

calculator. That is, the container is designed to be generic and reusable, but the interface 

for plugins does not require this flexibility since it is not reused once a data format for 

the calculator has been chosen.

Replacing the complex<double> representation in the C linkage interface to the 

stack is straightforward. We have several options. First, we could replace each double 

with a sequence of two doubles: one representing the real part and one representing 

the complex part. Of course, since a C function cannot natively return two doubles, 

we would have to modify the functions returning a stack value. One option would be 

to use pointer parameters in argument lists to “return” complex values through these 

parameters. A second option would be to return complex numbers through an array. 

Another solution, and my preferred choice, would be to simply define a struct:

struct Complex

{

  double re;

  double im;

};

to complement the interface functions, replacing the current use of double with Complex. 

While this new Complex struct does duplicate the storage of the standard complex class, 

we cannot use the standard complex class in a pure C interface.
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�Modifying Commands

Modifying commands to work with complex numbers is really quite easy since 

the C++ library provides overloads for all of the mathematical operations 

required by our calculator. Minus the syntactic changes of replacing Stack with 

Stack<complex<double>> (hopefully we’ve aliased that somewhere) and swapping 

complex<double> for double in BinaryCommand and UnaryCommand, most of the 

commands remain unchanged. For example, clearing a stack of real numbers vs. clearing 

a stack of complex numbers is identical. Adding two complex numbers vs. adding two 

real numbers is identical, given operator overloading. Of course, we might want to 

add additional commands such as complex conjugate, but even that functionality is 

provided by the C++ complex class. In the event that a command you’ve created uses an 

algorithm not supported natively by the complex class, you are likely to encounter more 

mathematical difficulties than programmatic ones in modifying commands to support 

complex numbers.

8.2.2  �Variables
Earlier in this chapter, we implemented stored procedures as a method for storing a 

simple instruction sequence. While stored procedures work fine for trivial operations 

that only use each input once (e.g., the Pythagorean theorem), you’ll very quickly run 

into problems trying to implement more complicated formulas that use each input 

more than once (e.g., the quadratic formula). To overcome this difficulty, you’ll need to 

implement the ability to store arguments in named variables.

Implementing variables in pdCalc will require several modifications to existing 

components, including the addition of one prominent new component, a symbol table. 

For simplicity in example code, I have reverted to using a real number representation for 

pdCalc. However, using complex numbers would add no additional design complexity. 

Let’s now explore some possible design ideas for implementing variables.

�Input and New Commands

Obviously, using variables will require some means of providing symbolic names. 

Currently, our calculator only accepts numbers and commands as input. Inputting any 

string that cannot be found in the CommandFactory results in an error. Recall, however, 

that this error is generated in the CommandInterpreter, not in the tokenizer. Therefore, 
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we need to modify the CommandInterpreter to not reject strings but instead to somehow 

place them on the stack. For now, we’ll assume that the stack can accept strings in 

addition to numbers. We’ll discuss the necessary modifications to the Stack class in the 

upcoming sections. Again, we’ll restrict our discussion to the command line interface. 

The only additional complication posed by the graphical user interface is providing 

a mechanism to input character strings in addition to numbers (perhaps a virtual 

keyboard to accompany the virtual numeric keypad).

Technically, we could allow any string to represent a variable. However, we are 

probably better served by restricting the allowable syntax to some subset of strings, possibly 

delimited by a symbol to differentiate variable names from commands. Because this choice 

is merely convention, you are free to choose whatever rules suit yours or your users’ tastes. 

Personally, I would probably choose something like variable names must begin with a 

letter and can contain any combination of letters, numbers, and possibly a few special 

symbols such as the underscore. To eliminate confusion between variable names and 

commands, I would enclose variables in either single or double quotation marks.

Now that we’ve established the syntax for variables, we’ll still need a mechanism 

for taking a number from the stack and storing it into a variable. The simplest method 

for accomplishing this task is to provide a new binary command, store, that removes a 

number and a string from the stack and creates a symbol table entry linking this variable 

name to this number. For example, consider the stack

4.5

2.9

"x"

Issuing the store command should result in an entry of x → 2.9 in the symbol table and 

a resultant stack of

4.5

Implicitly, variables should be converted to numbers for use during calculations but 

appear as names on the stack. We should also provide an explicit command, eval, to 

convert a symbolic name into a number. For example, given the stack

"x"

issuing the eval command should result in the stack

2.9
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Such a command should have a fairly obvious implementation: replace the variable 

on the top of the stack with its value from the symbol table. Obviously, requesting the 

evaluation of a variable not in the symbol table should result in an error. Evaluating 

a number can either result in an error or, preferably, just return the number. You can 

probably think of any number of fancy commands for working with variables (e.g., 

list the symbol table). However, store and eval commands comprise the minimum 

necessary command set to use variables.

�Number Representation and the Stack

Until now, our stack has only needed to represent a single, unique type, either a real 

or complex number. However, since variables and numbers can both be stored on the 

stack, we need the ability for the stack to store both types simultaneously. We dismiss 

immediately the notion of a stack that could handle two distinct types simultaneously as 

this would lead quickly to chaos. Instead, we seek a uniform representation capable of 

handling both number and variable types through a single interface. Naturally, we turn 

to a hierarchy.

Consider the design expressed in the class diagram in Figure 8-6. This hierarchy 

enables both Variables and Numbers to be used interchangeably as Values. This 

polymorphic design solves three problems that we’ve already encountered. First, 

Variables and Numbers can both be stored uniformly in a Stack<Value*> (likely using a 

more appropriate smart pointer storage scheme). Second, when commands such as Add 

or Sine need a number to perform an operation, they can pop Values from the stack and 

request doubles through the virtual evaluate() function. Obviously, a Number directly 

stores the double that it represents, while a Variable stores the variable’s name, which 

can be converted to a numeric value via lookup in the variable symbol table. Finally, 

subclasses of Value can return a string representation of their underlying value (either 

a Number’s numeric value or a Variable’s name). This string conversion is necessary for 

display on the I/O stack.
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�The Symbol Table

At its core, a symbol table is merely a data structure that allows symbolic lookup by 

pairing a key to a value (an associative array). In this case, the name of the variable 

serves as the key, and the numeric value serves as the value. The C++ standard library 

provides this service directly through either a map or an unordered_map, depending on 

the desired underlying data structure. However, as in Chapter 3, I highly recommend 

against directly using a standard library container as an external facing interface within 

a program. Instead, one should employ the adapter pattern to encapsulate the library 

container behind an interface defined by the application itself. This pattern adds no 

restrictions to the users of a class, but it does permit the designer to restrict, expand, or 

later modify the component’s interface independent of the interface of the underlying 

library container.

Therefore, the recommended design for a symbol table is to create a SymbolTable 

class to wrap an unordered_map<string, double>. This underlying hash table provides 

a storage type to map between the variable name as a string and the underlying 

numeric value. The public interface for the SymbolTable class provides member 

functions for adding and, optionally (we did not specify a command for clearing 

variables), removing variables from the symbol table. The SymbolTable should probably 

be implemented as a singleton since we only need one symbol table in the calculator.

Figure 8-6.  A hierarchy capable of representing both numbers and variables 
uniformly
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�A Trivial Extension: Numeric Constants

Once we’ve established the mechanics for storing user-defined variables, we can make 

a trivial extension to provide user-defined constants. Constants are simply variables that 

cannot be altered once set. Constants could be hard-coded in pdCalc, added at program 

launch through reading a constants file, or added dynamically during calculator 

execution.

Obviously, in order to store a constant, we will need to add a new command; let’s 

call it cstore. cstore works identically to store except that the command informs the 

symbol table that the variable being stored cannot be changed. We have two obvious 

options for implementation. First, inside the SymbolTable class, we add a second map 

that indicates whether a given name represents a variable or a constant. The advantage 

of this approach is that adding an additional map will require minimal implementation 

changes to the existing code. The disadvantage is that this approach requires two 

independent lookups for each call to the symbol table. The better approach is to modify 

the original map to store the value type as an Entry instead of a double, where an Entry 

is defined as

struct Entry

{

  double val;

  bool isConst;

};

Of course, to avoid hard-coding the double type, we could, of course, template both 

SymbolTable and Entry.

�Functionality Enabled by Variables

Let’s examine what variables enable us to do. Consider the quadratic equation 

ax2 + bx + c = 0 with roots given by

	
r

b b ac

a
�
� � �2 4

2 	
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Where we formerly could not write a stored procedure for computing both roots, we can 

now write the stored procedure:

"c" store "b" store "a" store "b" 2 pow 4 "a" "c" * * - sqrt "root" store

"b" neg "root" + 2 a * / "b" neg "root" - 2 a * /

which will take three entries from the stack representing the coefficients a, b, c and 

return two entries representing the roots of the quadratic equation. Now, our calculator 

is getting somewhere!

8.3  �Some Interesting Extensions for  
Self-Exploration

This chapter concludes with a section listing a few interesting extensions to pdCalc 

that you might consider trying on your own. In contrast to the previous section, I offer 

no design ideas to get you started. I have provided merely a brief description of each 

challenge.

8.3.1  �High DPI Scaling
Monitors with extremely high pixel resolutions are becoming increasingly the norm. 

Consider how you would modify the GUI for pdCalc to properly handle scaling for such 

displays. Is this feature operating system independent or do we have another use for the 

PlatformFactory from Chapter 7? Since version 5.6, Qt helps you out with this task via 

an interface for high DPI scaling.

8.3.2  �Dynamic Skinning
In Chapter 6, a class was introduced to manage the look-and-feel of the GUI. However, 

the provided implementation only centralized the look-and-feel. It did not permit user 

customization.

Users often want to customize the look-and-feel of their applications. Applications 

that permit such changes are considered “skinable,” and each different look-and-feel 

is called a skin. Consider an interface and the appropriate implementation changes 

necessary to the LookAndFeel class to enable skinning of pdCalc. Some possible options 

include a dialog for customizing individual widgets or a mechanism to choose skins 
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from skin configuration files. Having a centralized class to handle the look-and-feel for 

the application should make this change straightforward. Don’t forget to add a signal to 

LookAndFeel so the other GUI elements will know when they need to repaint themselves 

with a new appearance!

8.3.3  �Flow Control
With variables, we greatly enhanced the flexibility of stored procedures. For computing 

most formulas, this framework should prove sufficient. However, what if we wanted to 

implement a recursive formula such as computing the factorial of a number. While we have 

the ability to perform such complex computations via plugins, it would be nice to extend 

this functionality to users of the calculator who are not also experienced C++ programmers. 

To accomplish this task, we would need to devise a syntax for flow control. The simplest 

design would at least be able to handle looping and conditional operations. Adding flow 

control to pdCalc would be a fairly significant enhancement in terms of both added 

capability and implementation effort. It might be time to move to a real scanner and parser!

8.3.4  �An Alternative GUI Layout
The pdCalc GUI currently has a vertical orientation inspired by the HP48S calculator. 

However, modern screen resolutions tend to be wider than they are tall, making the 

vertical orientation suboptimal. Hard-coding a horizontal orientation is no more 

challenging than the original vertical orientation. Consider instead how to redesign 

pdCalc to be able to switch between orientations at runtime. Maybe vertical orientation 

is simply a different skin option?

8.3.5  �A Graphing Calculator
The HP48 series of calculators were not merely scientific calculators; they were graphing 

calculators. Although it might not be practical to implement a graphing calculator for 

a computer when sophisticated stand-alone graphing programs exist, the exercise 

might prove to be a lot of fun. Starting with version 5.7, Qt now includes a graphing 

module to make this task significantly easier than it would have been previously. Given 

this graphing widget set, the biggest challenge might simply be devising a method 

for graphical input. If you’re in the mood for a silly throwback to the 1970s, consider 

implementing an ASCII graphing calculator for the CLI!
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8.3.6  �A Plugin Management System
Currently, plugins are loaded during pdCalc’s startup, and which plugins to load are 

determined by reading shared library names from a text file. Plugins, once loaded, 

cannot be unloaded. Consider implementing a dynamic plugin management system so 

that plugins can be selected, loaded, and unloaded at runtime. You could even extend 

the plugin interface to enable dynamic querying of plugin descriptions. I think the real 

gotcha here will be in figuring out how to handle the unloading of a plugin that has one 

of its commands currently on the undo/redo stack.

8.3.7  �A Mobile Device Interface
In my original machinations for creating this book, I envisioned a chapter describing 

how to extend pdCalc to an iOS or Android tablet. The Qt library can once again help you 

with this task. The reason I did not include such a chapter in this book is that I do not 

have any practical experience with tablet programming. I felt it would be disingenuous 

to try to teach others how to design a tablet interface from my first ever foray into 

that design space. Well, it might have been an excellent example of a bad design! 

Nonetheless, extending pdCalc to a tablet or smartphone interface is a worthy challenge.

8.3.8  �pdCalc in the Cloud
Suppose you wanted to extend pdCalc to execute in the cloud. The design of pdCalc 

presented in this book would probably be classified as a modular monolith. Most 

large-scale cloud programs are designed as distributed services. Therefore, the first 

design change I would propose would be to restructure pdCalc into a microservices 

architecture. Instead of constructing modules as shared libraries, we would instead 

implement modules as separate services, each running in its own container. Modules 

would then communicate via RESTful APIs instead of function calls. Designing 

RESTful APIs from the existing C++ APIs should be a straightforward task. Depending 

on the expected load on the program, you could add dynamic scaling via a container 

orchestration service such as Kubernetes. However, I suspect our lowly calculator would 

unlikely ever see a load requiring more than a single container per service. A proper 

build system would even include an automated test suite and a pipeline for continuous 

integration and continuous deployment.
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A convenient feature of a microservice architecture is that since different 

components communicate through APIs, it is trivial to write different modules in 

different programming languages. Likely, the GUI for a cloud-based pdCalc would be a 

web page, and we’d probably want to write that component in JavaScript (or TypeScript), 

potentially using a library such as Angular. The backend could be designed with C++, but 

Python might be a more suitable language. Depending on the design for session state 

and the stack, pdCalc might even need a database.

Porting pdCalc to the cloud sounds like more than a minor design modification. In 

fact, its design might be sufficiently distinct to warrant its own book – feel free to email 

me if you want to cowrite it. Now that you’re done with this book, you and I will both 

need a new project!

Chapter 8  New Requirements



263
© Adam Singer 2022 
A. B. Singer, Practical C++ Design, https://doi.org/10.1007/978-1-4842-7407-1

�APPENDIX A

Acquiring, Building, 
and Executing pdCalc
This appendix explains how to acquire and build pdCalc, the program described in this 

book.

�A.1  Getting the Source Code
The source code for pdCalc is hosted on Apress’s GitHub repository:

https://github.com/Apress/practical-cplusplus-design-2e

From the GitHub site, you have two options for downloading the source code. The 

first option is to use a git client (https://git-scm.com/) and clone the repository to 

your local computer. For those familiar with managing source code with git, this is the 

preferred source code acquisition method. Using git to clone the repository will enable 

you to pull periodic bug updates from the online repository. Maybe you’ll even decide to 

contribute a bug fix to pdCalc yourself! The second option for acquiring the source code 

is to download a single zip file of pdCalc from GitHub. Obviously, downloading a single 

zip file makes updating the source code significantly more challenging than using git if 

you have made any local changes.

https://doi.org/10.1007/978-1-4842-7407-1#DOI
https://github.com/Apress/practical-cplusplus-design-2e
https://git-scm.com/
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�A.2  Dependencies
Now that you have the source code, you’ll probably want to build and execute pdCalc 

and its unit test suite. Before that can be accomplished, however, you’ll need to ensure 

that you have an appropriate toolchain. Intentionally, pdCalc requires very few external 

dependencies, all of which can be obtained for Linux, Windows, or Mac OS X at no cost. 

In order to build pdCalc, you will need a modern C++ compiler (C++20 compliant), Qt 

(version 5 or 6), and CMake.

As someone willing to have read this book, you probably already have or know 

how to get a C++ compiler. Unfortunately, at the time of writing, only one major 

compiler, Microsoft’s Visual C++ (MSVC), sufficiently supports the C++20 standard 

to build pdCalc. Fortunately, however, Microsoft provides a free version of Visual 

Studio (VS), Community Edition, which is downloadable from their website (https://

visualstudio.microsoft.com). The current version of Visual Studio is 2019, with 

version VS 2022 currently in preview. For Visual Studio 2019, you’ll need at least version 

16.10 to build the code as is.

On the Windows platform, Qt and its IDE, Qt Creator, can be downloaded from 

www.qt.io/download. Once you are on the website, select the version that is licensed 

appropriately for your use. pdCalc is distributed under the GPL version 3, so the open 

source edition of Qt is compatible. From there, download and execute the Qt Online 

Installer. If you don’t already have a Qt account, you’ll need to create one first. When 

you’re ready to install Qt, ensure you select the MSVC 2019 (32 or 64 bit, as appropriate) 

binaries for installation. While not strictly necessary, I highly recommend also installing 

Qt Creator. Please be patient with the download. Qt, with its many modules, is a powerful 

but very sizable package.

If you’ve written a lot of cross-platform C++ code, you’ve probably already 

encountered CMake. If it is not already installed on your system, it can be acquired from 

the CMake website: https://cmake.org. Building pdCalc with CMake is described in 

Section A.3.

For the first edition of this book, pdCalc was built with Qt’s own qmake tool. While 

qmake is still supported in Qt 6, the preferred build system for Qt 6 is CMake. I therefore 

chose to “upgrade” pdCalc’s build system from qmake to CMake. Additionally, even 

though CMake did not support automatic detection of C++ modules when this book 

was written, I found CMake to be more accommodating than qmake in compiling C++ 

modules. Admittedly, this ease of use may reflect more on my experience with each tool 

than with each tool’s actual flexibility.
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�A.3  Building pdCalc
pdCalc uses CMake for its build system and QTest for its unit test framework. Other good 

alternatives for unit testing are boost test, cppunit, or Google Test. QTest was used to 

avoid adding any additional dependencies. To build pdCalc, you can either configure 

and compile at the command line or use Qt Creator. Both build methods rely on CMake. 

Therefore, before discussing how to build pdCalc, a brief explanation of how CMake 

operates is warranted.

Using CMake to build a solution is a two-step process involving both CMake and a 

build tool such as ninja or make. CMake itself does not directly call the compiler and 

linker. Rather, CMake is simply a cross-platform build file generator. Therefore, in the 

first step of the build process, CMake reads its CMakeLists.txt configuration files and 

produces files native to the build tool you specified. This step needs to be performed 

before the first build and subsequently only after changes requiring modification to 

configuration files (e.g., the addition of a new source file). In the second step, the object 

code is built using your specified build tool, which, in turn, calls the compiler and linker. 

For pdCalc, on a Windows system, I set up the CMake configuration files to use Visual 

Studio’s nmake, which will, in turn, use the MSVC compiler and linker. Alternatively, 

it should be fairly easy to modify the CMakeLists.txt files to build with Visual Studio 

directly or with its command line build tool, msbuild. The main problems you will likely 

encounter are in the post build steps required to copy files (e.g., the plugin file and some 

testing files) to the proper build directories.

Now that you understand how CMake works, let’s examine how to build pdCalc 

using either Qt Creator or the command line. Since MSVC is the only compiler currently 

capable of building pdCalc, only Windows instructions are given. Once they reach a 

level of maturity capable of compiling pdCalc, the build processes using GCC and clang 

should be similar. In particular, though, you will need to modify the CMakeLists.txt 

files to manually account for module interface files and compiler options. I’ve provided 

an initial framework for working with both GCC and clang in the top-level CMake 

configuration file.
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�A.3.1  Using Qt Creator
If your preference is to use Qt Creator, most of the complexity of using CMake will be 

hidden from you. First, you need to ensure that Qt Creator is configured to use nmake 

(make if you are attempting to use GCC or clang). To begin, simply launch the IDE and 

click Tools->Options... from the menu. This will display the Qt Creator options dialog. 

If it is not already selected, select the Kits tab. If you have a valid C++ compiler and Qt 

installed, you should see at least one desktop kit in the auto-detected list. Highlight the 

kit you intend to use. Toward the bottom of this kit’s options, you should see the ability 

to set the CMake Generator. If it is not already set to NMake Makefiles, click Change... 

and select NMake Makefiles as your generator and click Ok. You are now ready to open 

pdCalc’s project.

Go to the File menu and open the CMakeLists.txt file located at the top level 

of pdCalc’s source tree. The first time you open a CMake project file with Qt Creator, 

you will be presented with a configuration list asking you which kit to target (you may 

only have one option). Select a kit that is configured to use either Qt 5 or 6, a C++20-

conforming compiler, and a properly configured CMake generator. If you expand the 

Details button for your selected Qt version, you will be given the option to configure 

pdCalc for Debug, Release, and a few other configurations. Select the configurations you 

wish to build, and, optionally, modify the default location for your out-of-source build. 

Once you have selected your configuration options, click the Configure Project button. 

Qt Creator will then configure your project. You can always change both your build and 

execute configuration options later through the Projects tab on the left (the wrench 

icon) in Qt Creator.

After Qt Creator configures your project, you will be presented with the edit mode 

for the project. The edit mode of Qt Creator is a good tool for exploring the source code. 

The complete source tree will appear in an expandable tree control on the left side of 

the display, and individual files can be opened by clicking on them. The source tree for 

pdCalc is described in Appendix B.

Qt Creator works similarly to any other fully featured IDE you have probably used, 

and a complete description of its usage is beyond the scope of this appendix (see 

http://doc.qt.io/qtcreator for its full manual). However, I will highlight a few quick 

features to help get you started. If you don’t like Qt Creator, pdCalc should work with 

any IDE that can understand CMake projects. You also have the option of using any IDE 

or text editor to view and modify the source code and then using the command line for 

compiling and debugging.
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The first shortcut to learn is choosing which configuration of your project you want 

to build and run. These options are selected by the monitor icon in the lower left corner 

of the display. It will currently be labeled with the active project (pdCalc if it’s the only 

project loaded) and the current configuration (e.g., Debug or Release). If you click this 

monitor icon, a pane will open, allowing you to select which configuration you wish to 

build and which executable you wish to run. For pdCalc, you’ll have four executable 

options: pdCalc, pdCalc-simple-cli, pdCalc-simple-gui, and testDriver. pdCalc 

runs the full version of pdCalc (the GUI by default), pdCalc-simple-cli runs the simple 

CLI constructed at the end of Chapter 5, pdCalc-simple-gui runs the simple GUI 

constructed at the end of Chapter 6, and testDriver runs the unit test suite. If you want 

to change the build or run configuration options, you can click the Projects button 

(folder icon) on the left side of the display to open the configuration panel. Clicking the 

Edit button will bring you back to edit mode.

pdCalc can be built either through the Build menu or by clicking the hammer icon 

(at least that’s what it looks like to me) on the lower left side of the display. If you want to 

watch the compiler output as it builds, click the Compile Output button on the bottom 

of your screen. If you have any build issues, they can be found on the Issues tab of the 

same information panel. Clicking on one of these issues should take you to the offending 

line of source code. Hopefully, pdCalc will build for you with no issues, no warnings, and 

no errors. If you have build problems, see the “Troubleshooting” section.

�A.3.2  Using the Command Line
If Qt Creator is not for you, pdCalc can be built directly at the command line. The first 

step in building at the command line is, of course, launching the command shell. While 

this may seem obvious, what might not be obvious is that you need to specifically launch 

the Visual Studio command shell, usually located in the start menu with a name like “x64 

Native Tools Command Prompt for VS 2019.” I always build in 64-bit mode, but I suspect 

pdCalc will build correctly if you choose the 32-bit shell and have all of the appropriate 

32-bit libraries installed.

Once you have launched a VS command shell, you are ready to configure CMake 

and then compile. CMake supports out-of-source builds, which is the recommended 

strategy. Simply create a build directory for each configuration of pdCalc that you wish to 

build, change your path to the build directory, and issue the following command:

CMake -G"NMake Makefiles" $PATH_TO_PDCALC
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where $PATH_TO_PDCALC must be replaced by the path to the CMakeLists.txt file in 

pdCalc’s root directory. If Qt is in your environment path variable, CMake should 

produce all the files needed to build pdCalc. If you receive an error indicating that 

CMake could not find Qt, you will need to either add the Qt bin directory to your path or 

manually specify how to find Qt by setting the CMAKE_PREFIX_PATH variable. For example, 

on my Windows machine, to use 64-bit Qt 5, I would instead call CMake as follows:

cmake -G"NMake Makefiles" -DCMAKE_PREFIX_PATH="c:\Qt\5.15.2\msvc2019_64" 

$PATH_TO_PDCALC

You can also issue additional options to CMake during this initial configuration 

phase, or you can reconfigure CMake later. CMake configuration options are issued 

using the -D switch. For example, to use Qt 6 (the configuration defaults to Qt 5), you 

would issue the following command:

cmake -G"NMake Makefiles" -DPDCALC_QT_VERSION=6 $PATH_TO_PDCALC

The other option you may wish to specify at the command line is which configuration 

you want to build. By default, CMake will configure the project to build the Debug 

configuration. If instead you wanted to configure CMake to build Release, you would 

issue the following command:

cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release $PATH_TO_PDCALC

If it’s not obvious, you can combine multiple CMake options on one line, and you can 

reissue separate options on successive calls to CMake. Your configuration options are 

saved in a CMake cache file in the build tree.

The preceding command triggers CMake to descend the pdCalc directory tree 

recursively reading each configuration file and writing a corresponding makefile. If 

everything executes normally, the output from the preceding command should be a 

sequence of lines informing you about detected compiler configurations and features 

ending with a statement informing you that build files have been written. After these 

makefiles are written, pdCalc can be built by issuing the build command nmake in the 

same top-level directory from which the CMake command was issued. The code should 

build cleanly without errors.
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�A.4  Executing pdCalc
pdCalc, pdCalc-simple-cli, and pdCalc-simple-gui and the unit test suite can be 

executed from Qt Creator, the command line, or double-clicking the executable (if all of 

your executable paths are correctly set). Let’s look at the details for the first two options. 

Hopefully, double-clicking is self-explanatory.

�A.4.1  Using Qt Creator
Using Qt Creator, the currently selected executable can be started by pressing the green 

triangular run button in the lower left corner. The green triangle with the magnifying 

glass will start the executable in Qt Creator’s interactive debugger. If the source code 

is out of date, the project will be built before execution begins. If you currently have 

the testDriver executable selected, the unit test suite will execute, and its output will 

appear in the Application Output information panel. Hopefully, you will see details of 

individual tests passing with a final message of “All tests passed.” If you currently have 

either the pdCalc or pdCalc-simple-gui executable selected, the GUI should launch. 

If you have the pdCalc-simple-cli executable selected, the CLI will launch in the 

Application Output information panel. However, you cannot interact with the CLI using 

this panel, making this mode of executing the CLI rather useless.

�A.4.2  Using the Command Line
pdCalc is configured to build all executables in the bin directory and all shared libraries 

in the lib directory. Therefore, in Windows, pdCalc’s lib directory must be added to the 

path before the executables are launched. For example, for a command line execution of 

pdCalc on Windows, one must first issue the following command:

path=%path%;$PATH_TO_PDCALC_LIB

where $PATH_TO_PDCALC_LIB must be replaced by the relative or absolute path to the 

pdCalc lib directory. As an example, $PATH_TO_PDCALC_LIB can be set to ..\lib for the 

relative path if executing pdCalc from the bin directory. Of course, an alternative is to 

simply copy the DLLs into the same location as the executables.

A build of pdCalc creates four executables: pdCalc, pdCalc-simple-cli, pdCalc-

simple-gui, and testPdCalc (all have an .exe extension in Windows).
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testPdCalc runs the unit test suite; it is a command line only program. As each unit 

test runs, you will see the names of the individual tests, the passage or failure of each 

test, and some statistics for each unit test suite. If all of the tests pass, an “All tests passed” 

message will be issued as the final output.

The pdCalc executable launches the complete calculator. It can be launched with  

the --gui option to run the graphical user interface, the --cli option to run the 

command line interface, or the --batch option to run the calculator in batch mode. 

Batch operation requires an input file and, optionally, an output file. pdCalc can also 

be given the --help option to see a listing of the various modes of operation. If no 

command line option is given, pdCalc defaults to launching the GUI.

The pdCalc-simple-cli executable launches the simple CLI built at the end of 

Chapter 5. The pdCalc-simple-gui executable launches the simple GUI built at the 

end of Chapter 6. Strictly speaking, both of these executables are unnecessary. They are 

provided merely as a convenience to the reader to be able to run pdCalc before it reaches 

feature complete status. In agile terms, these feature-incomplete executables provide 

stages of a minimum viable product.

�A.5  Troubleshooting
Despite considerable effort to ensure trouble-free building of pdCalc, I still find that 

every different combination of Qt, CMake, environment variables, operating system, 

and probably the weather manages to create some new, wonderful build error. If you 

encounter build or runtime errors, I encourage you to make an effort to diagnose and 

correct them yourself. Diagnosing and correcting build errors is a skill worth acquiring. 

It will also give you a greater appreciation for the thankless soul on your team tasked 

with maintaining your cross-platform build system. Often, the problem is as trivial as 

conflicting compiler versions or incorrect/missing paths.

Finally, I do understand that it can be extremely frustrating to invest time (and 

possibly money) on a new book and find that you cannot build the accompanying source 

code per the author’s instructions. If you’ve tried unsuccessfully to fix a build or runtime 

error yourself and find yourself ready to throw your computer (or this book!) out of the 

nearest window, just send me an email (PracticalDesignBook@gmail.com). I’ll do my 

best to get you up and running as quickly and as painlessly as possible.
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�APPENDIX B

Organization of the 
Source Code
The easiest way to explore the source code is through an IDE such as Qt Creator. 

However, this appendix is provided as a navigational guide to the source code tree. 

In addition to the source code files listed in the following tables, the source tree also 

contains CMake project files, a few assorted configuration files, and a few baseline files 

for regression tests.

The root level in the source code tree contains the root level CMakeLists.txt file and 

two directories, src and test, which contain the source code for pdCalc and the unit 

tests, respectively. Let’s look at these directories separately.

�B.1  The src Directory
The src directory subdivides into six directories: 3rdParty, app, utilities, backend, 

ui, and plugins. The 3rdParty directory contains the single instance of third-party 

code provided with pdCalc. The app directory is a folder for containing the pdCalc, 

pdCalc-simple-cli, and pdCalc-simple-gui directories. The utilities directory 

contains utility classes for pdCalc. The backend directory contains the stack module, the 

command dispatcher module, and all of the plugin management functionality. The ui 

directory is a folder for containing the user interface components, including both the 

CLI and the GUI. Finally, the plugins directory houses the single plugin included with 

pdCalc. Let’s now look at the files contained in each directory.

https://doi.org/10.1007/978-1-4842-7407-1#DOI
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�B.1.1  The 3rdParty Directory
The 3rdParty directory contains the single third-party tool required by pdCalc, cppcoro’s 

generator.hpp. While this file is only included in a single source file, Tokenizer.m.cpp 

in the utilities directory, it was placed in its own directory to clearly delineate code 

that is part of pdCalc versus code that is external to pdCalc.

�B.1.2  The app/pdCalc Directory
The pdCalc directory contains the source code that compiles into the pdCalc executable. 

Notably, this directory contains the main() function located in main.cpp, which is the 

entry point into the application.

�B.1.3  The app/pdCalc-simple-cli Directory
The pdCalc-simple-cli directory contains the source code that compiles into the 

simple CLI-only executable defined at the end of Chapter 5. This directory contains a 

single file, main.cpp.

�B.1.4  The app/pdCalc-simple-gui Directory
The pdCalc-simple-gui directory contains the source code that compiles into the 

simple GUI-only executable defined at the end of Chapter 6. This directory contains a 

single file, main.cpp.

�B.1.5  The utilities Directory
The utilities directory contains generic, reusable components, none of which are 

specifically associated with the calculator’s logic. Table B-1 lists the files contained in the 

utilities directory.
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�B.1.6  The backend Directory
The backend directory contains all of the “business logic” for the calculator. From the 

model-view-controller perspective, this directory contains the model and the controller. 

The backend directory also contains all of the logic for loading and managing plugins 

as well as the observer intermediary classes. Table B-2 lists the files contained in the 

backend directory.

Table B-1.  Source files in the utilities directory

Module Interface Files

Exception.m.cpp

Observer.m.cpp

Publisher.m.cpp

Tokenizer.m.cpp

Utilities.m.cpp

Table B-2.  Source files in the backend directory

Module Interface Files Implementation Files

AppObservers.m.cpp Command.cpp

Command.m.cpp CommandInterpreter.cpp

CommandDispatcher.m.cpp PlatformFactory.cpp

CommandInterpreter.m.cpp PosixFactory.cpp

CommandManager.m.cpp StackPluginInterface.cpp

(continued)
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�B.1.7  The ui Directory
The ui directory contains the source code for the user interface module, including 

both the CLI and the GUI. Notably, this is the only directory in pdCalc that contains 

traditional header files (excluding the test suite). Table B-3 lists the source files found in 

the ui directory.

Module Interface Files Implementation Files

CommandFactory.m.cpp StoredProcedure.cpp

CoreCommands.m.cpp WindowsFactory.cpp

DynamicLoader.m.cpp

PlatformFactory.m.cpp

Plugin.m.cpp

PluginLoader.m.cpp

PosixDynamicLoader.m.cpp

PosixFactory.m.cpp

Stack.m.cpp

StackPluginInterface.m.cpp

StoredProcedure.m.cpp

WindowsDynamicLoader.m.cpp

WindowsFactory.m.cpp

Table B-2.  (continued)
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�B.1.8  The plugins Directory
The plugins directory is a placeholder directory for the source code for plugins to 

pdCalc. It only includes one subdirectory, hyperbolicLnPlugin, which contains the 

source code for the hyperbolic functions and natural logarithm plugin developed in this 

book. The only source file in the hyperbolicLnPlugin directory is HyperbolicLnPlugin.

cpp. The source code implementing plugin loading and plugin management is all 

contained in the backend directory.

�B.2  The test Directory
The test directory is the home directory for all of the unit tests for pdCalc. This 

directory is simply a container for the following subdirectories, each of which tests the 

shared library corresponding to its name: utilitiesTest, backendTest, uiTest, and 

pluginsTest. The testDriver directory contains the code necessary to instantiate the 

tests, add them to the test manager, and execute the test suite. While I like to believe 

that I have been diligent in testing pdCalc thoroughly, I am certain of two things: I could 

have tested the code more, and bugs will be found after publication. We now detail the 

contents of each of the directories under test.

Table B-3.  Source files in the ui directory

Header Files Module Interface Files Implementation Files

CommandButton.h Cli.m.cpp CommandButton.cpp

Display.h UserInterface.m.cpp Display.cpp

GuiModel.h GuiModel.cpp

InputWidget.h InputWidget.cpp

LookAndFeel.h LookAndFeel.cpp

MainWindow.h MainWindow.cpp

StoredProcedureDialog.h StoredProcedureDialog.cpp
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�B.2.1  The testDriver Directory
The testDriver directory contains a single source file, main.cpp. This file sets up the 

QTest environment and registers all of the individual test modules. main.cpp compiles 

into the testPdCalc.exe executable, which is responsible for running all of the unit tests.

�B.2.2  The utilitiesTest Directory
The utilitiesTest directory contains the files necessary for testing the utilities module. 

The files contained in this directory are listed in Table B-4.

�B.2.3  The backendTest Directory
The backendTest directory contains the source code for testing the backend shared 

library of pdCalc. The files contained in this directory can be found in Table B-5. In 

addition to the source code files, the directory also contains a hypotenuse file containing 

a test stored procedure and the files plugins.unix.pdp and plugins.unix.win, which 

are plugin loader files for the two respective operating systems.

Table B-4.  Source files in the utilitiesTest directory

Header Files Implementation Files

PublisherObserverTest.h PublisherObserverTest.cpp

TokenizerTest.h TokenizerTest.cpp
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�B.2.4  The uiTest Directory
The uiTest directory contains the source code files necessary for testing the user 

interface. The files contained in this directory can be found in Table B-6. In addition to 

the source files, the uiTest directory contains a subdirectory, testCases. The testCases 

directory contains input files and output baselines used in testing the command line 

interface.

�B.2.5  The pluginsTest Directory
The pluginsTest directory contains the source files for testing the single plugin 

included with pdCalc, the hyperbolic functions, and natural logarithm plugin. These 

tests are contained in the following two source files: HyperbolicLnPluginTest.h and 

HyperbolicLnPluginTest.cpp.

Table B-5.  Source files in the backendTest directory

Header Files Implementation Files

CommandInterpreterTest.h CommandInterpreterTest.cpp

CommandManagerTest.h CommandManagerTest.cpp

CommandFactoryTest.h CommandFactoryTest.cpp

CoreCommandsTest.h CoreCommandsTest.cpp

PluginLoaderTest.h PluginLoaderTest.cpp

StackTest.h StackTest.cpp

StoredProcedureTest.h StoredProcedureTest.cpp

Table B-6.  Source files in the backendTest directory

Header Files Implementation Files

CliTest.h CliTest.cpp

DisplayTest.h DisplayTest.cpp
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